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Abstract
The best known size lower bounds against unrestricted circuits have remained around 3n for
several decades. Moreover, the only known technique for proving lower bounds in this model, gate
elimination, is inherently limited to proving lower bounds of less than 5n. In this work, we propose
a non-gate-elimination approach for obtaining circuit lower bounds, via certain depth-three lower
bounds. We prove that every (unbounded-depth) circuit of size s can be expressed as an OR of 2s/3.9

16-CNFs. For DeMorgan formulas, the best known size lower bounds have been stuck at around
n3−o(1) for decades. Under a plausible hypothesis about probabilistic polynomials, we show that
n4−ε-size DeMorgan formulas have 2n

1−Ω(ε)
-size depth-3 circuits which are approximate sums of

n1−Ω(ε)-degree polynomials over F2. While these structural results do not immediately lead to new
lower bounds, they do suggest new avenues of attack on these longstanding lower bound problems.

Our results complement the classical depth-3 reduction results of Valiant, which show that
logarithmic-depth circuits of linear size can be computed by an OR of 2εn nδ-CNFs, and slightly
stronger results for series-parallel circuits. It is known that no purely graph-theoretic reduction
could yield interesting depth-3 circuits from circuits of super-logarithmic depth. We overcome this
limitation (for small-size circuits) by taking into account both the graph-theoretic and functional
properties of circuits and formulas.

We show that improvements of the following pseudorandom constructions imply super-linear
circuit lower bounds for log-depth circuits via Valiant’s reduction: dispersers for varieties, correlation
with constant degree polynomials, matrix rigidity, and hardness for depth-3 circuits with constant
bottom fan-in. On the other hand, our depth reductions show that even modest improvements of
the known constructions give elementary proofs of improved (but still linear) circuit lower bounds.
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1 Introduction

The Boolean circuit model is natural for computing Boolean functions. A circuit corresponds
to a simple straight line program where every instruction performs a binary operation on
two operands, each of which is either an input or the result of a previous instruction. The
structure of this program is extremely simple: no loops, no conditional statements. Still, we
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24:2 Circuit Depth Reductions

know no functions in P (or even NP, or even ENP) that requires even 3.1n binary instructions
(“size”) to compute on inputs of length n. This is in sharp contrast with the fact that it is
easy to non-constructively find such functions: simple counting arguments show a random
function on n variables has circuit size Ω(2n/n) with probability 1− o(1) [52].

The strongest known circuit size lower bound (3 + 1
86 )n − o(n) was proved for affine

dispersers for sublinear dimension [14]. This proof, as well as all previous proofs for general
circuit lower bounds against explicit functions, is based on the method of gate elimination.
The main idea is to find a substitution to an input variable that eliminates sufficiently many
gates from the given circuit, and then proceed by induction. While this is the most successful
method known so far for proving lower bounds for unrestricted circuits, the resulting case
analysis becomes increasingly tedious: when eliminating (say) 3 or 4 gates, one must consider
all possible cases when two of these gates coincide. It is difficult to imagine a proof of 5n
lower bound using these ideas. This intuition was recently made formal in [17], where it
was shown that a certain formalization of the gate elimination technique is unable to obtain
a stronger than 5n lower bound. Therefore we must find new approaches for proving lower
bounds against circuits of unbounded depth. Let us review some of the prior results on
various circuit models.

Linear Circuits

Superlinear lower bounds are not known even for linear circuits, i.e., circuits consisting of only
XOR gates (also known as ⊕ gates). Note every linear function with one output has a circuit
of size at most n− 1. For linear circuits, we consider linear transformations, multi-output
functions of the form f(x) = Ax where A ∈ Fm×n2 . For a random matrix A ∈ {0, 1}n×n, the
size of the smallest linear circuit computing Ax is Θ(n2/ logn) [33] with probability 1− o(1),
but for explicitly-constructed matrices the strongest known lower bound is 3n− o(n) due
to Chashkin [6]. Interestingly, Chashkin’s proof is not based on gate elimination: he first
shows that the parity check matrix H ∈ {0, 1}logn×n of the Hamming code has circuit size
2n− o(n) by proving that every circuit for H has at least n− o(n) gates of out-degree at
least 2.1 Then he “pads” H to an n× n matrix H ′ and shows that n− o(n) additional gates
are needed for H ′. Similarly, the best known lower bound on the complexity of linear circuits
with logn ≤ m < o(n2) outputs is 2n+m− o(n) (also follows from [6]).

Log-Depth Circuits

Nothing stronger than a (3 + 1
86 )n − o(n) size lower bound is known even for circuits of

depth O(logn). It is straightforward to show that any function that depends on all of its
n variables requires depth at least logn. One can also present an explicit function that cannot
be computed by a circuit of depth smaller than 2 logn− o(logn) using Nechiporuk’s lower
bound of n2−o(1) on formula size over the full binary basis [35]. Still, proving superlinear
size lower bounds for circuits of depth O(logn) remains a major open problem [56].

Constant-Depth Circuits

Another natural and simple model of computation is bounded-depth unbounded fan-in
circuits, which correspond to highly parallelizable computation. In this paper, we focus
on depth-2 circuits of the form AND ◦ OR (i.e., CNFs) and depth-3 circuits of the form

1 All logarithms are base 2 unless noted otherwise.
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OR ◦AND ◦OR (i.e., ORs of CNFs), where the inputs of the circuit are variables and their
negations, and the gates have unbounded fan-in. Such circuits are much more structured,
and therefore are easier to analyze and to prove lower bounds. For example, it is easy to
show that the minimal number of clauses in a CNF computing the parity of n bits is equal to
2n−1, which yields an optimal lower bound for depth-2 circuits. However, already for depth 3
there is a large gap between known lower and upper bounds: it is known [10, 50] that the
minimum depth-3 circuit size of a random function on n variables is Θ(2n/2), but the best
known lower bound for an explicit function is 2Ω(

√
n) [20, 22, 39, 3, 38, 34].

Much stronger lower bounds are known for depth-3 circuits where the fan-in of the
“bottom” gates (those closest to the inputs) is bounded by a parameter k. Namely, for any
k ≤ O(

√
n), Paturi, Saks, and Zane [39] proved a 2n/k lower bound for computing parity,

Wolfovitz [60] proved a lower bound of (1 + 1/k)n+O(logn) for ETHR n
k+1

2, and a stronger
lower bound of 2

µkn

k−1 for k ≥ 3 and some constants µk > 1 was proven in [38] for a BCH
code. For example, [38] gives a lower bound of 20.612n when the bottom fan-in of the circuit
is k = 3, and a lower bound of 2n/10 for the bottom fan-in k = 16. For the case of bottom
fan-in k = 2, even a 2n−o(n) lower bound is known [40].

A simple counting argument shows that for any constant k = O(1), a random function
requires depth-3 circuits of size 2n−o(n). Calabro, Impagliazzo, and Paturi [5] construct a
family of 2O(n2) explicit functions, most of which require depth-3 circuits with k = O(1) of
size 2n−o(n). Santhanam and Srinivasan [46] improve on this by constructing such a family
of functions of size 2f(n) for every f(n) = ω(n logn).

DeMorgan Formulas

While explicit super-linear lower bounds for circuits are not known, there are super-linear
lower bounds for formulas. In this paper, we focus on the well-studied DeMorgan formulas,
which are circuits where every intermediate computation is used exactly once: all gates have
out-degree one, and the operations are fan-in two ANDs and ORs, with inputs being variables
and their negations. The two most successful methods for proving lower bounds on DeMorgan
formula size are random restrictions [54, 2, 24, 36, 21, 55] as well as Karchmer–Wigderson
games and the Karchmer–Raz–Wigderson conjecture [29, 27, 26, 16, 12]. Both approaches
have led to a lower bound of n3−o(1) and are currently stuck at giving stronger lower bounds.

1.1 Valiant’s Depth Reduction
Remarkably, a classical result of Valiant from the 70’s relates three of the four models
above: linear, log-depth, and constant-depth circuits. Using a depth reduction for DAGs [13],
Valiant [56] shows that for any circuit of size cn and depth d, and for every integer k, one can
remove at most 2ckn

log d wires such that the resulting circuit has depth at most d/2k. Letting k
be a sufficiently large constant, this wire-removal lemma shows how any circuit of size O(n)
and depth O(logn) can be converted into an OR ◦AND ◦OR circuit where the OR output
gate has fan-in 2O(n/ log logn) and the lower OR gates have fan-in O(nε) for any desired
ε > 0. Hence, by exhibiting a function that has no depth-3 circuit with these restrictions, it
follows that this function cannot be computed by circuits of linear size and logarithmic depth.
Unfortunately, the best known lower bounds on depth-3 circuits (as mentioned earlier) are
still too far from those required for this reduction.

2 ETHR n
k+1

outputs 1 if and only if the sum of the n input bits over the integers equals n
k+1 .
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In the same paper, Valiant introduced the notion of matrix rigidity (a similar notion was
independently introduced by Grigoriev [19]) and related it to the size of linear circuits of
log-depth using ideas similar to those described above. Alas, the known lower bounds on
matrix rigidity are also far from being able to give new lower bounds on the size of log-depth
linear circuits.

1.2 Our Results: New Depth Reductions
The main contributions of this paper are new reductions to depth-3 circuits that work for
unrestricted circuits and (conditionally) for super-cubic formulas, as well as new results
connecting various pseudorandom objects to circuit lower bounds. In particular, we show
how to express super-cubic DeMorgan formulas as subexponential-size depth-3 circuits of a
certain form, under the hypothesis that DeMorgan formulas have probabilistic polynomials
of non-trivial degree. This suggests an approach for improving formula size lower bounds, by
proving strong lower bounds on depth-3 circuits.

1.2.1 Depth Reductions for Circuits
In Valiant’s depth reduction, one can only have d/2k < logn (and < cn removed edges)
for circuits of depth d ≤ O(logn). Thus, Valiant’s depth reduction technique does not
yield interesting results for circuits of super-logarithmic depth. Moreover, Schnitger and
Klawe [47, 48, 30] construct an explicit family of DAGs showing that the parameters achieved
by Valiant are essentially optimal. Their counterexamples convincingly show that a pure
graph-theoretic approach to circuit depth reduction cannot give non-trivial results for
unrestricted circuits.

In this paper, we overcome this difficulty by presenting a counterpart of Valiant’s depth
reduction that works for circuits of unrestricted depth. Our depth reduction takes into
account not only the underlying graph of a circuit, but also the functions computed by the
circuit gates.

Our first result shows that unbounded-depth circuits of size less than 3.9n can be converted
into 2δn disjunctions of short 16-CNFs, for some δ < 1.

I Theorem 1. Every circuit of size s can be computed as an OR2d
s
2 e ◦ANDs ◦OR2 circuit

and as an OR2d
s

3.9 e ◦AND214·s ◦OR16 circuit.

As a consequence, in order to prove a 3.9n−o(n) size lower bound on unrestricted circuits,
it suffices to provide a function that cannot be computed by an OR of fewer than 2n−o(n)

16-CNF’s. To prove Theorem 1, we gradually transform the given circuit into an OR of
CNF’s by carefully picking a suitable internal gate and branching on its two possible output
values. In contrast to Valiant’s reduction, our transformation works for circuits of arbitrary
depth. This is achieved by an argument that takes into account both the graph structure of
the circuit and the functional properties of the gates involved. Since in this approach we can
branch on internal gates (inside the circuit), we can avoid a massive case analysis. This also
distinguishes our approach from known circuit lower bound proofs based on gate elimination,
which must set input gates (or gates very close to the inputs) for the argument to work.

It should be noted that known satisfiability algorithms based on branching, as well as
circuit lower bounds based on gate elimination [39, 38, 49, 45, 8] may be viewed as depth-
reductions for small circuits: if at most k variables are set in any branch before the circuit
has a “trivial” form, then the circuit can be expressed as an OR of 2k “trivial” forms. At
the same time, the known techniques in this line of work appear stuck at lower bounds of
around 3n, and provably cannot go beyond linear-size bounds [17].
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On the way to proving Theorem 1, we study structural results about converting small
circuits into disjunctions of k-CNFs, that have curious connections to properties of k-CNFs
found in the Satisfiability Coding Lemma [39, 38] and Sparsification Lemma [25, 5]. In
particular, we ask the following question.

I Open Problem 2. Prove or disprove: for any constant c, any circuit of size cn can be
computed as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.

If such depth-3 circuits always existed, this would constitute a new approach to proving
superlinear circuit lower bounds. If no depth-3 circuit of this form exists for some linear-size
circuits, then we would have a separation between linear-size circuits and (for example) super-
linear-size series-parallel circuits (by Valiant’s reduction for such circuits, see Theorem 9).
Note that for the gate elimination method such limitations are known [17], and they do not
apply to the approach presented in this work.

Our second result is a new “non-rigidity” result for matrices with small linear circuits: if
a matrix M over F2 can be computed by a linear circuit of size s, then it is possible to flip
at most 16 bits in every row of M to drop its rank below s/4. This opens up an approach to
proving linear circuit lower bounds on sizes up to 4n.

I Theorem 3. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

1.2.2 Pseudorandom Objects and Circuit Lower Bounds
The classical result by Valiant shows that improvements of known depth-3 circuit lower
bounds and rigid matrices imply super-linear log-depth circuit lower bounds. Our depth
reductions show that even modest improvements of the known constructions also give modest
improvements of unrestricted circuit lower bounds.

In the full version of this paper [18], we show that Valiant’s and our reduction are applicable
to two more types of pseudorandom objects: dispersers for varieties, and functions having
small correlation with low degree polynomials. These implications are briefly summarized3
in Table 1.

1.2.3 Depth Reduction for Formulas
For DeMorgan formulas we give a conditional depth-reduction (stated informally, see The-
orem 14 for a formal statement): if there is an ε > 0 such that DeMorgan formulas of
size s have probabilistic polynomials of degree s1−ε and error 1/3 over F2, then for some
δ > 0 every DeMorgan formula of size O(n3+δ) can be written as an approximate sum of
2n1−γ degree-n1−γ F2-polynomials for a constant γ > 0.4 Moreover, if there are probabilistic
polynomials of degree O(

√
s) for DeMorgan formulas of size s (which we conjecture is true),

our depth reduction holds for DeMorgan formulas of size n3.99.

3 In this table we only present strongest implications from the strongest premises. Our reductions would
still give new circuit lower bounds even from weaker objects (see the full version [18] for complete
statements of these results). For example, the second line of the table says that a lower bound of 2n−o(n)

against depth-3 circuits would give a lower bound of 3.9n. On the other hand, a lower bound of 20.8n

would lead to an elementary proof of a lower bound of 3.1n.
4 Similar results can be stated for Fp where p is any prime.

ITCS 2021
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Table 1 Comparing the depth reductions of this paper (labeled with *) with the depth reduction
of Valiant [56] (labeled with V). We use the following notation (all formal definitions are given in
Section 2 and the full version of the paper [18]): s(f) is the smallest size of a circuit computing f ,
slog refers to circuits of depth O(logn), sk3 refers to circuits that are ORs of k-CNFs, s⊕ refers to
circuits consisting of ⊕ gates only; (d,m, s)-disp. stands for a (d,m, s)-disperser, a function that is
not constant on any subset of the Boolean hypercube of size at least s that is defined as the set of
common roots of at most m polynomials of degree at most d; RM (r) is the row-rigidity of M for the
rank r over F2, i.e., the smallest row-sparsity of a matrix A such that rank(M ⊕A) ≤ r.

improving known lower bound to lower bound implies lower bound

V sn
ε

3 (f) ≥ 2n
1−ε

[39] sn
ε

3 (f) ≥ 2ω
(

n
log logn

)
slog(f) = ω(n)

* s16
3 (f) ≥ 2 n

10 [38] s16
3 (f) ≥ 2n−o(n) s(f) ≥ 3.9n

V
(
nε,∞, 2n−n1/2−ε

)
-disp. [44]

(
nε,∞, 2n−ω

(
n

log logn

))
-disp. slog(f) = ω(n)

*
(
16,∞, 2(1−ε)n)-disp. [58] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

*
(

16, n
(logn)c , 2

o(n)
)
-disp. [9] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

V RM
(
ω
(

n
log logn

))
> log logn [15] RM

(
ω
(

n
log logn

))
> nε s⊕,log(M) = ω(n)

* RM ( n65 ) > 16 [41] RM (n− o(n)) > 16 s⊕(M) ≥ 4n

Interestingly, the techniques used to express DeMorgan formulas as depth-3 circuits are
totally different from those used in Theorem 1 and 3. Namely, we first balance a formula
(without increasing its size too much), decompose it into a small top part and several small
bottom formulas, approximate the top part by a real-valued low-degree polynomial, then
rewrite the bottom parts as probabilistic polynomials (as hypothesized). Finally, we collapse
these two polynomials into a depth-3 circuit.

The hypothesis that lower-degree probabilistic polynomials exist for every DeMorgan
formula of size s looks very plausible. We have not found an example of a size-s formula
that resists the construction of an O(

√
s)-degree probabilistic polynomial. Note that such

polynomials do exist in the real-approximation sense [43]. For example, every symmetric
function (such as MAJORITY) has probabilistic polynomials of O(

√
s) degree [1], and it

is not hard to show that the layered OR-AND tree of depth log2(s) has a probabilistic
polynomial of O(

√
s) degree as well; in fact, any layered tree of depth log2(s) with the

same gate type at each layer (AND or OR) has such degree.5 It is possible that there are
“nasty” formulas that resist lower-degree probabilistic polynomials, but given the examples
we already know, we do not know what they might look like.

I Open Problem 4. Prove or disprove: every DeMorgan formula of size s has a probabilistic
polynomial over F2 of degree O(

√
s) with constant error less than 1/2.

5 Briefly: we can always write such formulas as either an OR of ANDs of O(
√
s) literals, or an AND

of ORs of O(
√
s) literals. From there, we can simply replace the output gate with an O(1)-degree

probabilistic polynomial (as in Razborov [42]), and the other gates with exact polynomials of O(
√
s)

degree.
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1.3 Motivating Example
Here we provide a simple example of a reduction of unbounded circuits to depth-3 circuits,
to give an idea of what is possible.

A formula is a circuit where every internal gate (i.e. not the inputs and not the output)
has out-degree exactly 1. In our simple example, we will show that a circuit of size, say,
2.7n can be computed by an OR of 20.9n formulas of small size (2.7n). Since we know
almost-quadratic lower bounds [35] on formula size, we may hope to find a function which is
not computable by an OR of � 2n linear-size formulas.

I Lemma 5 (Toy Example). Every circuit of size s can be expressed as an OR of 2ds/3e
formulas, each of size less than s.

Proof. For a circuit C, let s(C) denote its size. For s ≤ 3, we just transform a circuit into
a single formula of the same size. For s > 3, we proceed by induction. If the given circuit
C is a formula, no transformation is needed. Otherwise take the topologically first gate G of
out-degree at least 2. Note G is computed by a formula (all previous gates have out-degree
1); let t = s(G) be the size of this formula. Consider two minimum-size circuits C0 and
C1 that compute the same function as C on the input sets {x ∈ {0, 1}n : G(x) = 0} and
{x ∈ {0, 1}n : G(x) = 1}, respectively. We claim that s(C0), s(C1) ≤ s− t− 2 ≤ s− 3, since
to compute C0 and C1 one can remove the subcircuit in C computing gate G as well as two
successors of G. The successors can be removed because G outputs a constant on both parts
of the considered partition of the Boolean hypercube, and all gates in the subcircuit of G are
only needed to compute G (G is computed by a formula). Now, note that

C(x) ≡ (¬G(x) ∧ C0(x)) ∨ (G(x) ∧ C1(x)) .

Applying the induction hypothesis to C0 and C1, we can rewrite C as an OR of at most
2d(s−3)/3+1e ≤ 2ds/3e formulas of size (s− t− 2) + (t+ 1) < s. J

This result would imply a circuit lower bound of 3n − o(n) for any function that has
correlation at most 2−n+o(n) with all formulas of linear size. While we do know functions that
have exponentially small correlation 2−εn with formulas of linear size [45, 28, 51, 31, 55, 23],
none of them gives a bound of 2−n+o(n). At any rate there is an inherent limitation for
this toy approach. By Parseval’s identity, every Boolean function has a Fourier coefficient
≥ 2−n/2. This implies that the correlation of this function with the corresponding parity
function is at least 2−n/2 (and this is essentially tight correlation with small formulas for
a random function). Since every parity on a subset of inputs can be computed by a formula
of size ≤ n, Lemma 5 would only be able to prove circuit lower bounds of 1.5n.

In order to prove stronger circuit lower bounds, we need to improve both parameters: the
constant 3 in the exponent, and the class of formulas we reduce circuits to. Our Theorem 1
achieves this: it reduces a circuit to an OR of 2d s3.9 e formulas, each of which is a 16-CNF.
Therefore strong enough correlation bounds against 16-CNFs would yield new circuit lower
bounds.

2 Definitions and Preliminaries

2.1 Unrestricted Circuits
Let Bn,m be the set of all Boolean functions f : {0, 1}n → {0, 1}m and let B2 = B2,1. A circuit
is a directed acyclic graph that has n nodes of in-degree 0 labeled with x1, . . . , xn that are
called input gates. All other nodes are called internal gates, have in-degree 2, and are labeled

ITCS 2021



24:8 Circuit Depth Reductions

with operations from B2. Some m gates are also marked as output gates. Such a circuit
computes a function from Bn,m in a natural way. The size s(C) of a circuit C is its number
of internal gates. This definition extends naturally to functions: s(f) is the smallest size of
a circuit computing the function f .

The depth of a gate G is the maximum number of edges (also called wires) on a path
from an input gate to G. The depth of a circuit is the maximum depth of its gates. By
slogn(f) we denote the smallest size of a circuit of depth O(logn) computing f .

A circuit is called linear if it consists of ⊕ gates only. The corresponding circuit size
measure is denoted by s⊕.

Our unrestricted circuits are usually drawn with input gates at the top, so by a top gate
of a circuit we mean a gate that is fed by two variables.

2.2 Series-Parallel Circuits
A labeling of a directed acyclic graph G = (V,E) is a function ` : V → N such that for every
edge (u, v) ∈ E one has `(u) < `(v). A graph/circuit G is called series-parallel if there exists
a labeling ` such that for no two edges (u, v), (u′, v′) ∈ E, `(u) < `(u′) < `(v) < `(v′). The
corresponding circuit complexity measure is ssp.

2.3 Depth-3 Circuits
Unlike unrestricted circuits, depth-3 circuits are usually drawn the other way around, i.e.,
with the output gate at the top. In this paper, we focus on OR ◦ AND ◦ OR circuits, i.e.,
ORs of CNFs. We will use subscripts to indicate the fact that the fan-in of a particular layer
is bounded. Namely, an ORp ◦ ANDq ◦ ORr circuit is an OR of at most p CNFs each of
which contains at most q clauses and at most r literals in every clause. Since the gates of
a depth 3 circuit are allowed to have an unbounded fan-in, it is natural to define the size of
such a circuit as its number of wires. It is not difficult to see that for k = O(1) the size of
an OR ◦AND ◦ORk circuit is equal to the fan-in of its output gate up to a polynomial factor
in n. By sk3(f) we denote the smallest size of an OR ◦AND ◦ORk circuit computing f .

2.4 Rigidity
We say that a matrix M ∈ Fm×n2 is s-sparse if each row of M contains at most s non-zero
elements. The rigidity of a matrix M ∈ Fm×n2 for the rank parameter r is the minimum
sparsity of a matrix A ∈ {0, 1}m×n such that rankF2(M ⊕A) ≤ r:

RM (r) = min{s : rankF2(M ⊕A) ≤ r, A is s-sparse} .

2.5 Probabilistic, Approximate, and Robust Polynomials
Since even functions of small circuit and formula complexity may only have large-degree
polynomial representations, it often proves convenient to use randomized polynomials or
polynomials which approximate (rather than exactly compute) a given function.

I Definition 6 (Probabilistic polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function. A
distribution D of n-variate degree-d polynomials over F2 is a probabilistic polynomial for f
with degree d and error ε if for every x ∈ {0, 1}n,

Pr
p∼D

[f(x) = p(x)] ≥ 1− ε.
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I Definition 7 (Approximate Polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function.
An n-variate multilinear degree-d polynomial p over R is an approximate polynomial for f
with degree d and error ε if for every x ∈ {0, 1}n,

|p(x)− f(x)| ≤ ε.

I Definition 8 (Robust Polynomials). Let f : {0, 1}n → [0, 1] be a polynomial over R. Then
a polynomial p : Rn → R is δ-robust for f if for every x ∈ {0, 1}n and for every ε ∈
[−1/3, 1/3]n,

|f(x)− p(x+ ε)| ≤ δ.

2.6 Valiant’s Depth Reductions
Here we formally recall the classical depth reduction results by Valiant [56].

I Theorem 9 ([56, 4, 57]). For every c ≥ 1 and ε > 0 there exists a δ > 0 such that every
circuit C of size cn and depth c logn can be computed as
1. an OR

2
δn

log logn
◦AND ◦ORnε circuit

2. and as an OR2εn ◦AND ◦OR2(logn)1−δ circuit.
Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that every series-parallel circuit
of size cn and unbounded depth can be computed as an OR2εn ◦AND ◦ORk circuit.

Theorem 9 applied to linear circuits yields the following.

I Theorem 10 ([56, 4, 57]). Let M ∈ Fm×n be a matrix. For every c ≥ 1 and ε > 0 there
exists δ > 0 such that, if a linear circuit C of size cn and depth c logn computes Mx for
every x ∈ Fn, then
1. RM

(
δn

log logn

)
≤ nε;

2. and RM (εn) ≤ 2(logn)1−δ .
Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that if C is a series-parallel
linear circuit of size cn and unbounded depth, then RM (εn) ≤ k .

3 Formula Depth Reduction

In this section, we give a (conditional) depth reduction for DeMorgan formulas. We start by
balancing a given formula. For this we use the following result due to Tal [55].

I Lemma 11 (Claim VI.2 in [55]). Let F be a DeMorgan formula of size s over the set of
variables X = {x1, ..., xn}, and t be some parameter; then, there exist k ≤ 36s/t formulas
over X, denoted by T1, ..., Tk, each of size at most t, and there exists a read-once formula F ′
of size k such that F ′(T1(x), ..., Tk(x)) = F (x) for all x ∈ {0, 1}n.

Below we will also make use of the following results by Reichardt [43] and Sherstov [53].

I Theorem 12 ([43]). If f : {0, 1}n → {0, 1} can be computed by a DeMorgan formula of
size s, then f has an approximate polynomial of degree O(

√
s) with error ε = 1/10.

I Theorem 13 ([53]). If f : {0, 1}n → [0, 1] is a polynomial of degree d over R, then there is
a δ-robust polynomial p for f of degree O(d+ log(1/δ)).
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Now we are ready to present the main result of this section: Assuming DeMorgan formulas
of size s have probabilistic polynomials of degree O(s1−δ) for some δ > 0, we will obtain
subexponential-size depth-3 circuits computing formulas of super-cubic size.

In the following, a SUM gate will compute an approximate sum: a (real-weighted) sum of
the inputs such that, over all Boolean inputs, the sum is within ±1/3 of the 0-1 value of a
desired Boolean function.

I Theorem 14. Suppose for some δ > 0, DeMorgan formulas of size ` have probabilistic
polynomials of degree `1−δ with error 1/3. Then for every α < δ/(1− δ) there is a γ > 0,
so that for every formula F of size s = O(n3+α), there is a 2n1−γ -size approximate sum of
degree-n1−γ F2-polynomials computing F . That is, F can be computed by a

SUM2n1−γ ◦MOD22n1−γ ◦ ANDn1−γ .

Proof. First, we apply Lemma 11 to F for some parameter t to be defined later. We obtain
a read-once formula F ′ of size k = O(s/t), and k formulas T1, . . . , Tk each of size ≤ t.

Let p be an approximate polynomial (over the reals) for F ′ of degree d = O(
√
k) with error

1/10, guaranteed by Theorem 12. Applying Theorem 13, we get a 1/10-robust polynomial p′
for p of degree d′ = O(

√
k).

By the hypothesis of the theorem, we know that each Ti has a probabilistic polynomial
of degree O(t1−δ) with error ε = 1/3. For each Ti, draw O(log s) independent copies of this
probabilistic polynomial, and take their majority vote with an O(log s)-degree polynomial.
For an appropriate leading constant in the big-O, we can obtain a probabilistic polynomial
for Ti of degree O(t1−δ · log s) with error 1/(10s).

Let D1, . . . ,Dk be probabilistic polynomials of degree D = O(t1−δ · log s) with error
ε = 1/(10s) for the formulas T1, . . . , Tk. The error bound ε = 1/(10s) guarantees that for
every x ∈ {0, 1}n, all k polynomials compute the correct value with probability at least 9/10.

Now for every Ti, we compute the average Ai (over the reals) of O(n) independent samples
from Di. By a Chernoff bound and union bound, each Ai is within ±1/10 of the correct 0-1
value for Ti, over all 2n inputs x, with probability of error 1/ exp(n). By the properties of
robust polynomials, p′ fed the sums Ai will still output the correct value (within ±1/10) for
all inputs x ∈ {0, 1}n, for some choice of samples.

Therefore F can be computed by a

SUMnd′ ◦ PRODUCTd′ ◦ SUMO(n) ◦MOD2 ◦ ANDD.

Applying distributivity to the PRODUCT of SUMs, we get

SUMnd′ ◦ SUMnO(d′) ◦ PRODUCTd′ ◦MOD2 ◦ ANDD.

Noting the PRODUCTs now take 0/1 inputs, we can replace them with ANDs:

SUMnd′ ◦ SUMnO(d′) ◦ ANDd′ ◦MOD2 ◦ ANDD.

Taking the Fourier expansion of the AND function, we can replace each AND gate with a
SUM of 2d′ MOD2s of fan-in ≤ d′:

SUMnd′ ◦ SUMnO(d′) ◦ SUM2d′ ◦MOD2 ◦ ANDD.

Merging the SUMs, our final expression has the form:

SUMnO(d′) ◦MOD2 ◦ ANDD.
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Finally, we want to choose a value of t so that the fan-in of the SUM is subexponential,
and the fan-ins of the AND’s are sublinear (which will also imply that the fan-in of the
MOD2’s are sub-exponential). Let t = n1+β , where β is an arbitrary number between
α < β < δ/(1− δ). Note that

d′ = O(
√
k) = O(

√
s/t) = O(n1− β−α2 ) = O(n1−γ)

for every 0 < γ < β−α
2 . Also, observe that

D = O(t1−δ · log s) = O(n1−(1−δ)(δ/(1−δ)−β) logn) = O(n1−γ)

for every 0 < γ < (1− δ)(δ/(1− δ)− β).
From the upper bounds on d′ and D, we have that F can be computed by

SUM2n1−γ ◦MOD22n1−γ ◦ ANDn1−γ

for some γ > 0. J

The above formula depth reduction shows that, if there are more efficient probabilistic
polynomials for DeMorgan formulas (and we have no reason to doubt this), then super-
cubic formulas have interesting representations as approximate sums of sub-exponentially
many sub-linear degree F2-polynomials. Recent work [59, 7] can already be applied to prove
interesting lower bounds against approximate sums of 2nα F2-polynomials of degree nβ , where
α+ β < 1. The remaining challenge will be to prove lower bounds when max{α, β} < 1.

4 Circuit Depth Reductions

In this section, we present new depth reductions for circuits with unrestricted depth.

4.1 Linear Circuits
We start by considering linear circuits, i.e., circuits consisting of ⊕ gates only. For technical
reasons, we assume that there are n+ 1 input gates in a linear circuit: x1, . . . , xn as well as
the constant 0. For a matrix M ∈ {0, 1}m×n, we say that a linear circuit C with m outputs
computes the linear transformation M if the i-th output of C(x) equals the i-th row of Mx

for all x ∈ {0, 1}n, treating C(x) as the vector of output values. We say that a linear circuit C
computing M is optimal if no circuit of smaller size computes M .

The main result of this subsection asserts that matrices computable by small linear
circuits are not too rigid. The contrapositive says: to get an improved lower bound on the
size of linear circuits, it suffices to construct a matrix with good rigidity parameters. Below,
we restate the corresponding theorem formally and then prove it.

I Theorem 3. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

Proof. Let C be an optimal circuit of size s computing M . If s < 16 or the depth of C is at
most 4, then each output depends on at most 16 variables. Hence M is 16-sparse and the
theorem statement holds. Consider this as the base case of an induction on s.

For the induction step, we “normalize” C. Namely, we show how to express M as the
(modulo 2) sum of two F2-matrices A and B, where A is 16-sparse (each row has ≤ 16 ones)
and B has rank at most bs/4c. Note that if C has an output gate H of depth at most 4, then
H depends on at most 24 = 16 inputs. Thus the corresponding row rH of M has at most 16
ones. Consider the (m− 1)× n matrix M−H obtained by removing rH from M . We claim
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that RM−H (bs/4c) ≤ 16 implies RM (bs/4c) ≤ 16. Indeed, suppose M−H = A−H ⊕ B−H
where A−H is 16-sparse and rank(B−H) ≤ bs/4c. To get matrices A and B for M , we simply
add the row rH to A−H and a corresponding all-zero row to B−H . Clearly, the resulting
matrix A is 16-sparse and the rank of the resulting matrix B does not change. Thus, in the
following, we assume WLOG that C has no output gates of depth at most 4. Our crucial
step is the following claim.

B Claim 15. Let C be an optimal linear circuit computing M ∈ {0, 1}m×n such that
s(C) ≥ 16, and no output gate of C has depth smaller than 5. Then there is a gate G in C
and a linear circuit C′ computing a matrix M ′ ∈ {0, 1}m×n with the properties:
1. s(C′) ≤ s(C)− 4, and
2. for every x ∈ {0, 1}n, if G(x) = 0 then C(x) = C′(x).

For now, suppose the claim is proved. Consider the circuit C′, gate G in C, and matrix M ′
provided by Claim 15. Let g ∈ {0, 1}1×n be the characteristic vector of the linear function
computed by G, so that G(x) = gx. By the claim, gx = 0 implies (M ⊕M ′)x = 0. Hence
(M ⊕M ′) is either the zero matrix, or it defines the same linear subspace as g: M ⊕M ′ = tg

for a vector t ∈ {0, 1}m×1.
By the induction hypothesis, M ′ = A′ ⊕ B′ where A′ is 16-sparse, and rank(B′) ≤

b s−4
4 c = b s4c − 1. Thus, M = A′ ⊕B, where the matrix B = B′ ⊕ tg has rank at most bs/4c

by subadditivity of the rank function. J

We now turn to proving the remaining claim.

Proof of Claim 15.
Case 1: There is a gate G in C of depth at least 2 and at most 4, and has out-

degree at least 2. Let the predecessors of G be B and C, and call two of its successors D
and E, see Figure 1 (in this and the following figures, we write the out-degrees of some of
the gates near them). The circuit C′ is obtained from C by “assigning” the output of G
to be 0. Note that B(x) = C(x) for all x ∈ {0, 1}n where G(x) = 0. At least one of B
and C must be an internal gate (otherwise G would have depth 1), let it be C. Since C
computes the same function as B, it may be removed from C′: we remove it, and replace
every wire of the form C → H by a new wire B → H. Note that neither G nor C is an
output gate. Now, we show that both D and E can also be removed. Let us focus on
the gate D (for E it is shown similarly) and call its other predecessor F . Since G = 0,
the gate D computes the same function as F . This means that one may remove D: we
remove it and replace every wire D → H by a wire F → H. If D happens to be an output
gate, we move the corresponding output label from D to F .

Case 2: All gates of depth at least 2 and at most 4 have out-degree exactly 1
in C. Take a gate G of depth 4 and trace back its longest path to an input: xi → D →
C → B → G. Let also E be the successor of G (which exists because C has depth at
least 5). By assumption, gates B and C have out-degree 1. This means that in C they
are only used for computing the gate G. This, in turn, means that assuming G = 0, we
can remove G, B, and C (note none of them is an output). Finally, the gate E can be
replaced by the other input F of E (note F /∈ {B,C,G}, since C is optimal).

This completes the proof. C

I Remark 16. Extending the same ideas, one can show that any linear circuit C of size s can
be computed by an OR2d

s
4 e ◦ANDs·214 ◦OR16 circuit. For this, one considers two optimal

circuits C0 and C1 resulting from C by assuming G = 0 and G = 1, respectively. As shown
in the proof, both C0 and C1 have size at most s− 4. One then proceeds by induction. We
illustrate this approach in full detail in the next subsection.



A. Golovnev, A. S. Kulikov, and R. R. Williams 24:13

B ⊕ C

⊕G

⊕D ⊕ E

F

Case 1: assuming G = 0, the
gate G is removed, B is replaced
by C, and D and E are replaced by
their other predecessors.

xi

⊕D

⊕
1

C

⊕
1

B

⊕G

⊕E

⊕ F

Case 2: assuming G = 0, the gates
B, C, and G are removed whereas
E is replaced by F .

Figure 1 Cases in the proof of Claim 15.

I Remark 17. The proof of Theorem 3 gives a decomposition M = A ⊕ B = A ⊕ (C ·D),
where A ∈ Fm×n is 16-sparse, C ∈ Fm×s/4 is composed of vectors t, and D ∈ Fs/4×n is
composed of vectors g. Since the chosen gate G always has depth at most four, the vector g
is 16-sparse. Thus, we in fact have a decomposition M = A⊕ (C ·D), where both A and D
are 16-sparse. In particular, the row-space of M is spanned by the union of row-spaces of A
and D. This implies that the row-space of M can be spanned by at most (m+ s

4 ) 16-sparse
vectors. The corresponding matrix property is called outer dimension, and it is studied
in [37, 32]. While the current lower bounds on the outer dimension of explicit matrices do
not lead to new circuit lower bounds, it would be interesting to study their applications in
this context.

4.2 General Boolean Circuits
In this section, we study the following natural question: given a Boolean circuit6 and given
an integer k ≥ 2, what is the smallest OR ◦AND ◦ORk circuit computing the same function?
To this end, we introduce the following notation. For an integer k ≥ 2, we define α(k) as the
infimum of all values α such that any circuit of size s can be rewritten as a OR2αs ◦AND◦ORk
circuit.

For proving upper bounds on α(k) it will be convenient to consider the following class of
circuits. Let ORp ◦ANDq ◦ C(r) be a class of circuits with an output OR that is fed by at
most p AND’s of at most q circuits of size at most r.

I Theorem 18. Every circuit of size s can be computed as:
1. an OR2d

s
2 e ◦ANDd s2 e ◦ C(1) circuit;

2. an OR2d
s

3.9 e ◦ANDd s3 e ◦ C(15) circuit.

6 In this section we consider functions with one output, but these results can be trivially generalized to
the multi-output case.
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Note that any circuit of size r depends on at most r + 1 variables, and hence can be
written as an (r+1)-CNF with at most 2r clauses. Therefore every ORp ◦ANDq ◦C(r) circuit
can be easily converted into a ORp ◦ANDq2r ◦ORr+1 circuit. Thorem 1, which we restate
below, is then an immediate corollary of Theorem 18. In turn, it implies that α(2) ≤ 1

2 and
α(16) ≤ 1

3.9 .

I Theorem 1. Every circuit of size s can be computed as an OR2d
s
2 e ◦ANDs ◦OR2 circuit

and as an OR2d
s

3.9 e ◦AND214·s ◦OR16 circuit.

Proof of Theorem 18. Both parts are proven in a similar fashion. We proceed by induction
on s. The base case is when s is small. We then just have an OR1 ◦AND1 ◦ C(s) circuit.

For the induction step we take a gate G of C and consider two circuits C0 and C1 where
Ci computes the same as C on all inputs {x ∈ {0, 1}n : G(x) = i}. We may assume both Ci’s
are minimal size among all such circuits. Since Ci can be obtained from C by removing the
gate G (as it computes the constant i on the corresponding subset of the Boolean hypercube),
we conclude that s(Ci) < s. This allows us to proceed by induction. Assume that by the
induction hypothesis Ci is guaranteed to be expressible as an ORpi ◦ANDqi ◦ C(ri) circuit.
We use the following identity to convert C into the required circuit:

C(x) ≡ ([G(x) = 0] ∧ C0(x)) ∨ ([G(x) = 1] ∧ C1(x)) . (1)

Assume that the subcircuit of C computing the gate G has at most t gates. We claim that
[G(x) = i] ∧ Ci can be written as an ORpi ◦ ANDqi+1 ◦ C(max{ri, t}) circuit. For this, we
just feed a new circuit computing G to every AND gate. Plugging this into (1), gives an

ORp0+p1 ◦ANDmax{q0,q1}+1 ◦ C(max{t, r0, r1}) (2)

circuit for computing C.
Below, we provide details specific to each of the two items from the theorem statement.

In particular, we estimate the parameters pi’s, qi’s, ri’s, and t and plug them into (2).

1. The base case is s = 1. Then C consists of a single gate and can be expressed as
an OR1 ◦ AND1 ◦ C(1) circuit. For the induction step, assume that s ≥ 2 and take
a gate A that depends on two variables. Let G = A, hence t = 1. The gate A must have
at least one successor (otherwise C can be replaced by a circuit with smaller than s gates).
Clearly, A and its successors are not needed in Ci’s. Hence, by the induction hypothesis
pi ≤ 2 s−2

2 +1, qi ≤ s−2
2 + 1, ri ≤ 1. Plugging this into (2) gives the desired result.

2. Take a gate A that is fed by two variables x and z and has the maximum distance to an
output. If its distance to output is at most 4, then s(C) ≤ 15 and we just rewrite it as
an OR1 ◦ AND1 ◦ C(15) circuit. This is the base case. Assume now that the distance
from A to the output gate is at least 5. In the analysis below, we always “follow” the
longest path from A to the output. This allows us to conclude that any such path
is long enough and hence each gate considered has positive out-degree (i.e., is not an
output). Moreover, each gate on this path cannot depend on too many variables. Let
B be a successor of A on the longest path to the output.
In the five cases below, we show that we can always find a gate G that s(G) ≤ 15 and
both s(C0) and s(C1) are small enough. In particular, s(C0), s(C1) ≤ s− 4 works for us:
p0 + p1 ≤ 2 · 2d s−4

3.9 e < 2d s3.9 e, max{q0, q1}+ 1 ≤ d s−4
3 e+ 1 < d s3e.

See Figure 2 for an illustration of the five cases. For a gate G, by out(G) we denote the
out-degree of G.
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x z

A

1
B

1
C

E

Case 1.1: when E
is constant, one re-
moves B, C, E,
and successors
of E.

x z

A

1
B

2+

C

Case 1.2: when
C is constant, one
removes B, C, and
successors of C.

x z

A
D

⊕
2+

B

Case 2.1: when
B is constant, one
removes B and
its successors, re-
place A by D ⊕ c.

x z

A
1

∧
2+

B

Case 2.2.1: when
B is constant, one
removes B and its
successors, and A.

x z

A

2+

∧
2+

B

Case 2.2.2:
when B is con-
stant, one re-
moves B and
its successors;
moreover, B = 1
it forces A to be
a constant and re-
moves A and its
successors.

Figure 2 Cases in the proof of the second part of Theorem 18.

Case 1: out(B) = 1. Let C be the successor of B.
Case 1.1: out(C) = 1. Let E be the successor of C. Let G = E. In Ci’s, one

removes B, C (as they were only needed to compute E that is now a constant), E,
and the successors of E.

Case 1.2: out(C) ≥ 2. Let G = C. In Ci’s, one removes B, C, and the successors
of C.

Case 2: out(B) ≥ 2. Let D be the other input of B. It may be a gate or an input
variable. If B computes a constant Boolean binary operation or an operation that
depends on A or D only, then C is not optimal. Otherwise, B computes one of the
following two types of functions (either linear or quadratic polynomial over F2):
Case 2.1: B(A,D) = A⊕D⊕c where c ∈ {0, 1}. Let G = B. In Ci’s, one immediately

removes B and its successors. Also, in Ci, D⊕A = i⊕ c. Hence, A may be replaced
by D ⊕ i⊕ c.

Case 2.2: B(A,D) = (A⊕ a) · (D ⊕ d)⊕ c where a, d, c ∈ {0, 1}.
Case 2.2.1: out(A) = 1. Let G = C. In Ci’s, one removes B, its successors, and A.
Case 2.2.2: out(A) ≥ 2. Let D be the other successor of B. Let G = B. In
Ci’s, one removes B and its successors. Also, B = c ⊕ 1 forces A = a ⊕ 1 and
D = d⊕1. Hence, in Cc⊕1 two additional gates are removed: A and its successors
(if a successor of B happens to be a successor of A also, then it is a function on A
and D and the circuit can be simplified, which contradicts its optimality). Hence,
p0 + p1 ≤ 2d s−3

3.9 e + 2d s−5
3.9 e . This is smaller than 2d s3.9 e since 2− 3

3.9 + 2− 5
3.9 < 1.

This completes the proof. J

I Remark 19. It is not difficult to see that the output OR gate is a “disjoint OR”, and can
be replaced by a SUM gate over the integers. In other words, for every x ∈ {0, 1}n, at most
one subcircuit feeding into the OR gate may evaluate to 1. This holds because we always
consider two mutually exclusive cases: G = 0 or G = 1.
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4.3 Properties of α(k)
We start by observing a lower bound on α(k).

I Lemma 20. For any integer k ≥ 2, α(k) ≥ 1/k.

Proof. Let ⊕n denote the parity function of n inputs. It has 2n−1 inputs where it is equal
to 1 and all these inputs are isolated, that is, the Hamming distance between any pair of
them is at least 2. As proven by Paturi, Pudlák, and Zane [39], every k-CNF has at most
2n(1−1/k) isolated satisfying assignments. This implies that ⊕n cannot be computed by an
OR of fewer than 2n/k−1 k-CNFs. Since s(⊕n) = n− 1, this implies that

α(k) ≥
n
k − 1
n− 1 .

Since this must hold for arbitrary large n, α(k) ≥ 1/k. J

Thus, we know the exact value of α(2) = 1
2 . This immediately implies a circuit lower

bound of 2n− o(n) for BCH codes. Indeed, it was shown in [40] that when the bottom fan-in
is restricted to k = 2, then BCH codes require depth-3 circuits of size 2n−o(n). And, since
α(2) = 1

2 , they must have circuit complexity at least 2n− o(n).
One can use techniques from Theorem 18 to prove an upper bound of α(3) ≤ log2 3

4 . Thus,
we know that

1
3 ≤ α(3) ≤ log2 3

4 < 0.3963 .

We conjecture that the upper bound on α3 is tight. One way to prove this would be to find
the s3

3 complexity of the inner product function: IP(x1, . . . , xn) = x1x2⊕x3x4⊕· · ·⊕xn−1xn.
In particular, if the upper bound shown in the next lemma is tight, then α(3) = log2 3

4 .

I Lemma 21.
1. 2n4 ≤ s2

3(IP) ≤ 2n2−o(n).
2. 2n6 ≤ s3

3(IP) ≤ 3n4 .

Proof. Note that by substituting every other input of IP by 1, one gets the parity function
⊕n

2
on the remaining n/2 inputs. Now both lower bounds follow from the corresponding

lower bounds for the parity function: s2
3(⊕k) ≥ 2 k2 and s3

3(⊕k) ≥ 2 k3 .
1. The first upper bound follows from the fact that IP(x1, . . . , xn) = 1 iff there is an odd

number of ones among

p1 = x1x2, p2 = x3x4, . . . , pn2 = xn−1xn .

Hence,

IP(x1, . . . , xn) ≡
∨

S⊆[n2 ] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i6∈S

[pi = 0]

 .

It remains to note that each [pi = c] can be expressed as a 2-CNF because pi depends on
two variables.

2. For the second upper bound, note that IP(x1, . . . , xn) = 1 iff there is an odd number of
1’s among

p1 = x1x2 ⊕ x3x4, p2 = x5x6 ⊕ x7x8, . . . , pn4 = xn−3xn−2 ⊕ xn−1xn .
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To compute IP by a depth 3 circuit, we go through all possible 2n4−1 values of p1, . . . , pn4
such that an odd number of them is equal to 1:

IP(x1, . . . , xn) ≡
∨

S⊆[n4 ] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i 6∈S

[pi = 0]

 (3)

Now, we show that [pi = 0] can be written as a single 3-CNF, whereas [pi = 1] can
be expressed as an OR of two 3-CNFs. W.l.o.g. assume that i = 1. The clauses of
a 3-CNF expressing [pi = 0] should reject all assignments to x1, x2, x3, x4 ∈ {0, 1} where
IP(x1, x2, x3, x4) = 1. In all such assignments, one of the two monomials (x1x2 and
x3x4) is equal to 0 whereas the other one is equal to 1. Hence, one needs to write down
a set of clauses rejecting the following four partial assignments: {x1 = 0, x3 = x4 = 1},
{x2 = 0, x3 = x4 = 1}, {x1 = x2 = 1, x3 = 0}, {x1 = x2 = 1, x4 = 0}. Thus,

[p1(x1, x2, x3, x4) = 0] ≡ (x1∨¬x3∨¬x4)∧(x2∨¬x3∨¬x4)∧(¬x1∨¬x2∨x3)∧(¬x1∨¬x2∨x4) .

In turn, to express [p1 = 1] as an OR of two 3-CNFs we consider both assignments to x1:

[p1(x1, x2, x3, x4) = 1] ≡ ((x1) ∧ [x2 ⊕ x3x4 = 0]) ∨ ((¬x1) ∧ [x3x4 = 1]) .

It remains to note that each of [x2⊕ x3x4 = 0] and [x3x4 = 1] can be written as a 3-CNF.
Let [pi = 0] ≡ Pi and [pi = 1] ≡ ((xi) ∧ Qi) ∨ ((¬xi) ∧ Ri) where Pi, Qi, and Ri are
3-CNFs. One may then expand (3) as follows:

∨
S⊆[n4 ] : |S| mod 2=1

 ∨
T⊆S

∧
i∈T

((xi) ∧Qi) ∧
∧

i∈S\T

((¬xi) ∧Ri) ∧
∧
i 6∈S

Pi


The fan-in of the resulting OR-gate is

∑
S⊆[n4 ] : |S| mod 2=1

2|S| ≤
n
4∑
i=0

(
n/4
i

)
2i = 3n4 . J

I Open Problem 22. Determine s3
3(IP).

Besides finding the exact values of α(k), it would be interesting to find out whether every
circuit of linear size can be computed by a non-trivial depth 3 circuit with constant bottom
fan-in. We restate this open problem below.

I Open Problem 2. Prove or disprove: for any constant c, any circuit of size cn can be
computed as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.

This paper supports the conjecture by showing that it holds for small values of c. As
another example, we can consider a class of functions where we know linear upper bounds
on circuit complexity. For any symmetric function f (i.e., a function whose value depends
only on the sum over integers of the input bits) we know that s(f) ≤ 4.5n+ o(n) [11]. It is
also known [40, 60] that symmetric functions can be computed by relatively small depth-3
circuits: sk3(f) ≤ poly(n) · (1 + 1/k)n (and this bound is tight [60]).
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Since in our depth reduction results, we always get k-CNFs with small linear number of
clauses, it is interesting to study the expressiveness of OR of exponential number of such
k-CNFs. Let us define α(k, c) as the infimum of all values α such that any circuit of size at
most cn can be computed as an OR2αn ◦ ANDcn ◦ ORk. We can upper bound the rate of
convergence of α(k, c) using the following width reduction result for CNF-formulas [49, 5].

I Theorem 23 ([49, 5]). For any constant 0 < ε ≤ 1 and a function C : N→ N, any CNF
formula f with n variables and n·C(n) clauses can be expressed as f = ORti=1fi, where t ≤ 2εn

and each fi is a k-CNF formula with at most n ·C(n) clauses, where k = O
(

1
ε · log

(
C(n)
ε

))
.

For our applications, we are interested in α(k, c) for small fixed c. Since for every c, α(k, c)
is a non-increasing bounded sequence, we let α(∞, c) = limk→∞ α(k, c). Then Theorem 23
implies that α(k, c) ≥ α(∞, c) ≥ α(k, c)−O

( log(ck)
k

)
.
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