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——— Abstract

Systems Biology is a fundamental field and paradigm that introduces a new era in Biology. The crux
of its functionality and usefulness relies on metabolic networks that model the reactions occurring
inside an organism and provide the means to understand the underlying mechanisms that govern
biological systems. Even more, metabolic networks have a broader impact that ranges from resolution
of ecosystems to personalized medicine.

The analysis of metabolic networks is a computational geometry oriented field as one of the
main operations they depend on is sampling uniformly points from polytopes; the latter provides a
representation of the steady states of the metabolic networks. However, the polytopes that result
from biological data are of very high dimension (to the order of thousands) and in most, if not all,
the cases are considerably skinny. Therefore, to perform uniform random sampling efficiently in
this setting, we need a novel algorithmic and computational framework specially tailored for the
properties of metabolic networks.

We present a complete software framework to handle sampling in metabolic networks. Its
backbone is a Multiphase Monte Carlo Sampling (MMCS) algorithm that unifies rounding and
sampling in one pass, obtaining both upon termination. It exploits an improved variant of the
Billiard Walk that enjoys faster arithmetic complexity per step. We demonstrate the efficiency of our
approach by performing extensive experiments on various metabolic networks. Notably, sampling
on the most complicated human metabolic network accessible today, Recon3D, corresponding to a
polytope of dimension 5335, took less than 30 hours. To our knowledge, that is out of reach for
existing software.
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1 Introduction

1.1 The field of Systems Biology

Systems Biology establishes a scientific approach and a paradigm. As a research approach,
it is the qualitative and quantitative study of the systemic properties of a biological entity
along with their ever evolving interactions [32, 33]. By combining experimental studies with
mathematical modeling it analyzes the function and the behavior of biological systems. In
this setting, we model the interactions between the components of a system to shed light on
the system’s raison d’étre and to decipher its underlying mechanisms in terms of evolution,
development, and physiology [27].

Initially, Systems Biology emerged as a need. New technologies in Biology accumulate vast
amounts of information/data from different levels of the biological organization, i.e., genome,
transcriptome, proteome, metabolome [49]. This leads to the emerging question "what shall
we do with all these pieces of information"? The answer, if we consider Systems Biology
as a paradigm, is to move away from reductionism, still the main conceptual approach in
biological research, and adopt holistic approaches for interpreting how a system’s properties
emerge [43]. The following diagram provides a first, rough, mathematical formalization of
this approach.

components — networks — in silico models — phenotype [47].

Systems Biology expands in all the different levels of living entities, from the molecular,
to the organismal and ecological level. The notion that penetrates all levels horizontally is
metabolism; the process that modifies molecules and maintains the living state of a cell or
an organism through a set of chemical reactions [53]. The reactions begin with a particular
molecule which they convert into some other molecule(s), while they are catalyzed by enzymes
in a key-lock relationship. We call the quantitative relationships between the components
of a reaction stoichiometry. Linked reactions, where the product of the first acts as the
substrate for the next, build up metabolic pathways. Each pathway is responsible for a
certain function. We can link together the aggregation of all the pathways that take place in
an organism (and their corresponding reactions) and represent them mathematically using
the reactions’ stoichiometry. Therefore, at the species level, metabolism is a network of its
metabolic pathways and we call these representations metabolic networks.

1.2 From metabolism to computational geometry

The complete reconstruction of the metabolic network of an organism is a challenging,
time consuming, and computationally intensive task; especially for species of high level
of complexity such as Homo sapiens. Even though sequencing the complete genome of a
species is becoming a trivial task providing us with quality insight, manual curation is still
mandatory and large groups of researchers need to spend a great amount of time to build
such models [57]. However, over the last few years, automatic reconstruction approaches for
building genome-scale metabolic models [40] of relatively high quality have been developed.
Either way, we can now obtain the metabolic network of a bacterial species (single cell
species) of a tissue and even the complete metabolic network of a mammal. Biologists
are also moving towards obtaining such networks for all the species present in a microbial
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Figure 1 From DNA sequences to distributions of metabolic fluxes. (A) The genes of an organism
provide us with the enzymes that it can potentially produce. Enzymes are like a blueprint for the
reactions they can catalyze. (B) Using the enzymes we identify the reactions in the organism. (C)
We construct the stoichiometric matrix of the metabolic model. (D) We consider the flux space
under different conditions (e.g., steady states); they correspond to polytopes containing flux vectors
addressing these conditions. (E) We sample from polytopes that are typically skinny and of high
dimension. (F) The distribution of the flux of a reaction provides great insights to biologists.

community. This will allow us to further investigate the dynamics, the functional profile,
and the inter-species reactions that occur. Using the stoichiometry of each reaction, which is
always the same in the various species, we convert the metabolic network of an organism
to a mathematical model. Thus, the metabolic network becomes an in silico model of the
knowledge it represents. In metabolic networks analysis mass and energy are considered to
be conserved [46]. As many homeostatic states, that is steady internal conditions [54], are
close to steady states (where the production rate of each metabolite equals its consumption
rate [8]) we commonly use the latter in metabolic networks analysis.

Stoichiometric coefficients are the number of molecules a biochemical reaction consumes
and produces. The coefficients of all the reactions in a network, with m metabolites and
n reactions (m < n), form the stoichiometric matriz S € R™*™ [47]. The nullspace of S
corresponds to the steady states of the network:

S-x=0, (1)

where x € R" is the flur vector that contains the fluxes of each chemical reaction of the
network. Flux is the rate of turnover of molecules through a metabolic pathway.

All physical variables are finite, therefore the flux (and the concentration) is bounded [47];
that is for each coordinate x; of the x, there are 2n constants z,;; and x;,; such that
T < T < Typy, for i € [n]. We derive the constraints from explicit experimental
information. In cases where there is no such information, reactions are left unconstrained by
setting arbitrary large values to their corresponding bounds according to their reversibility
properties; i.e., if a reaction is reversible then its flux might be negative as well [38]. The
constraints define a n-dimensional box containing both the steady and the dynamic states
of the system. If we intersect that box with the nullspace of S, then we define a polytope
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Figure 2 Flux distributions in the most recent human metabolic network Recon3D [7]. We
estimate the flux distributions of the reactions catalyzed by the enzymes Hexokinase (D-Glucose:ATP)
(HEX), Glucose-6-Phosphate Phosphatase, Edoplasmic Reticular (G6PPer) and Phosphoenolpyruvate
carboxykinase (GTP) (PEPCK). As we sample steady states, the production rate of glc._ D_¢
should be equal to its consumption rate. Thus, in the corresponding copula, we see a positive
dependency between HEX, i.e., the reaction that consumes glc_D_ ¢ and G6PPer, that produces
it. Furthermore, the PEPCK reaction operates when there is no glc._ D _ ¢ available and does
not operate when the latter is present. Thus, in their copula we observe a negative dependency
between HEX and PEPCK. A copula is a bivariate probability distribution for which the marginal
probability distribution of each variable is uniform. It implies a positive dependency when the mass
of the distribution concentrates along the up-diagonal (HEX - G6PPer) and a negative dependency
when the mass is concentrated along the down-diagonal (HEX - PEPCK). The bottom line contains
the reactions and their stoichiometry.

that encodes all the possible steady states and their flux distributions [47]. We call it the
steady-state flur space. Fig. 1 illustrates the complete workflow from building a metabolic
network to the computation of a flux distribution.

Using the polytopal representation, a commonly used method for the analysis of a
metabolic network is Flux Balance Analysis (FBA) [45]. FBA identifies a single optimal flux
distribution by optimizing a linear objective function over a polytope [45]. Unfortunately,
this is a biased method because it depends on the selection of the objective function. To
study the global features of a metabolic network we need unbiased methods. To obtain an
accurate picture of the whole solution space we exploit sampling techniques [52]. If collect a
sufficient number of points uniformly distributed in the interior of the polytope, then the
biologists can study the properties of certain components of the whole network and deduce
significant biological insights [47]. Therefore, efficient sampling tools are of great importance.

1.3 Metabolic networks through the lens of random sampling

Efficient uniform random sampling on polytopes resulting from metabolic networks is a very
challenging task both from the theoretical (algorithmic) and the engineering (implementation)
point of view. First, the dimension of the polytopes is of the order of certain thousands. This
requires, for example, advanced engineering techniques to cope with memory requirements
and to perform linear algebra operations with large matrices; e.g., in Recon3D [7] we compute
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the null space of a 8399 x 13 543 matrix. Second, the polytopes are rather skinny (Sec. 4);
this makes it harder for sampling algorithms to move in the interior of polytopes and calls
for novel practical techniques to sample.

There is extended on-going research concerning advanced algorithms and implementations
for sampling metabolic networks over the last decades. Markov Chain Monte Carlo algorithms

such as Hit-and-Run (HR) [55] have been widely used to address the challenges of sampling.

Two variants of HR are the non-Markovian Artificial Centering Hit-and-Run (ACHR) [30] that
has been widely used in sampling metabolic models, e.g., [51], and Coordinate Hit-and-Run
with Rounding (CHRR) [25]. The latter is part of the cobra toolbox [26], the most commonly
used software package for the analysis of metabolic networks. CHRR enables sampling from
complex metabolic networks corresponding to the highest dimensional polytopes so far. There
are also stochastic formulations where the inclusion of experimental noise in the model makes
it more compatible with the stochastic nature of biological networks [39]. The recent study
in [19] offers an overview as well as an experimental comparison of the currently available
samplers.

These implementations played a crucial role in actually performing in practice uniform
sampling from the flux space. However, they are currently limited to handle polytopes of
dimension say < 2500 [19, 25]. This is also the order of magnitude of the most complicated,
so far, metabolic network model built, Recon3D [7]. By including 13 543 metabolic reactions
and involving 4 140 unique metabolites, Recon3D provides a representation of the 17% of
the functionally of annotated human genes. To our knowledge, there is no method that can
efficiently handle sampling from the flux space of Recon3D.

Apparently, the dimension of the polytopes will keep rising and not only for the ones
corresponding to human metabolic networks. Metabolism governs systems biology at all its
levels, including the one of the community. Thus, we are not only interested in sampling a
sole metabolic network, even if it has the challenges of the human. Sampling in polytopes
associated to network of networks are the next big thing in metabolic networks analysis and
in Systems Biology [4, 48].

Regarding the sampling process, from the theoretical point of view, we are interested
in the convergence time, or mizing time, of the Markov Chain, or geometric random walk,
to the target distribution. Given a d-dimensional polytope P, the mixing time of several
geometric random walks (e.g., HR or Ball Walk) grows quadratically with respect to the
sandwiching ratio R/r of the polytope [36, 37]. Here r and R are the radii of the smallest
and largest ball with center the origin that contains, and is contained, in P, respectively;
i.e.,, 7By C P C RBy, where By is the unit ball. Tt is crucial to reduce R/r, i.e., to put P in
well a rounded position where R/r = (5(\/&), the 6() notation means that we are ignoring
polylogarithmic factors. A powerful approach to obtain well roundness is to put P in near
isotropic position. In general, K C R? is in isotropic position if the uniform distribution
over K is in isotropic position, that is Ex~x[X] =0 and Exx[XT X] = I, where I, is the
d x d identity matrix. Thus, to put a polytope P into isotropic position one has to generate
a set of uniform points in its interior and apply to P the transformation that maps the
point-set to isotropic position; then iterate this procedure until P is in c-isotropic position
[17, 37], for a constant c. In [1] they prove that O(d) points suffice to achieve 2-isotropic
position. Alternatively in [25] they compute the maximum volume ellipsoid in P, they map
it to the unit ball, and then apply to P the same transformation. They experimentally show
that a few iterations suffice to put P in John’s position [28]. Moreover, there are a few
algorithmic contributions that combine sampling with distribution isotropization steps, e.g.,
the multi-point walk [5] and the annealing schedule [29].
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An important parameter of a random walk is the walk length, i.e., the number of the
intermediate points that a random walk visits before producing a single sample point. The
longer the walk length of a random walk is, the smaller the distance of the current distribution
to the stationary (target) distribution becomes. For the majority of random walks there are
bounds on the walk length to bound the mixing time with respect to a statistical distance.
For example, HR generates a sample from a distribution with total variation distance less
than € from the target distribution after O(d®) [37] steps, in a well rounded convex body and
for log-concave distributions. Similarly, CDHR mixes after a polynomial, in the diameter
and the dimension, number of steps [34, 42] for the case of uniform distribution. However,
extended practical results have shown that both CDHR and HR converges after O(d?)
steps [10, 17, 25]. The leading algorithms for uniform polytope sampling are the Riemannian
Hamiltonian Monte Carlo sampler [35] and the Vaidya walk [14], with mixing times O(md?/3)
and O(m!/2d3/2) steps, respectively. However, it is not clear if these random walks can
outperform CDHR in practice, because of their high cost per step and numerical instability.

Billiard Walk (BW) [23] is a random walk that employs linear trajectories in a convex
body with boundary reflections; alas with an unknown mixing time. The closest guarantees
for its mixing time are those of HR and stochastic billiards [18]. Interestingly, [23] shows
that, experimentally, BW converges faster than HR for a proper tuning of its parameters.
The same conclusion follows from the computation of the volume of zonotopes [11]. Tt is not
known how the sandwiching ratio of P affects the mixing time of BW. Since BW employs
reflections on the boundary, we can consider it as a special case of Reflective Hamiltonian
Monte Carlo [15].

For almost all random walks the theoretical bounds on their mixing times are pessimistic
and unrealistic for computations. Hence, if we terminate the random walk earlier, we generate
samples that are usually highly correlated. There are several MCMC' Convergence Diagnostics
[50] to check if the quality of a sample can provide an accurate approximation of the target
distribution. For a dependent sample, a powerful diagnostic is the Effective Sample Size
(ESS). It is the number of effectively independent draws from the target distribution that the
Markov chain is equivalent to. For autocorrelated samples, ESS bounds the uncertainty in
estimates [21] and provides information about the quality of the sample. There are several
statistical tests to evaluate the quality of a generated sample, e.g., potential scale reduction
factor (PSRF) [20], maximum mean discrepancy (MMD) [22], and the uniform tests [16].
Interestingly, the copula representation we employ in Fig. 2 to capture the dependence
between two fluxes of reactions was also used successfully in a geometric framework to detect
financial crises capturing the dependence between portfolio return and volatility [9].

1.4 Qur contribution

We introduce a Multi-phase Monte Carlo Sampling (MMCS) algorithm (Sec. 3 and Alg. 1)
to sample from a polytope P. In particular, we split the sampling procedure in phases where,
starting from P, each phase uses the sample to round the polytope. This improves the
efficiency of the random walk in the next phase, see Fig. 3. For sampling, we propose an
improved variant of Billiard Walk (BW) (Sec. 2 that enjoys faster arithmetic complexity per
step. We also handle efficiently the potential arithmetic inaccuracies near to the boundary,
see [15]. We accompany the MMCS algorithm with a powerful MCMC diagnostic, namely
the estimation of Effective Sample Size (ESS), to identify a satisfactory convergence to the
uniform distribution. However, our method is flexible and we can use any random walk and
combination of MCMC diagnostics to decide convergence.
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The open-source implementation of our algorithms' provides a complete software frame-
work to handle efficiently sampling in metabolic networks. We demonstrate the efficiency of
our tools by performing experiments on almost all the metabolic networks that are publicly
available and by comparing with the state-of-the-art software packages as cobra (Sec. 4.2).
Our implementation is faster than cobra for low dimensional models, with a speed-up
that ranges from 10 to 100 times; this gap on running times increases for bigger models
(Table 1). The quality of the sample our software produces is measured with two widely
used diagnostics, i.e., ESS and potential scale reduction factor (PSRF) [20]. The highlight of
our method is the ability to sample from the most complicated human metabolic network
that is accessible today, namely Recon3D. In Fig. 2 we estimate marginal univariate and
bivariate flux distributions in Recon3D which validate (a) the quality of the sample by
confirming a mutually exclusive pair of biochemical pathways, and that (b) our method
indeed generates steady states. In particular, our software can sample 1.44 - 10° points from
a 5 335-dimensional polytope in a day using modest hardware. This set of points suffices for
the majority of systems biology analytics. To our understanding this task is out of reach for
existing software. Last, MMCS algorithm is quite general sampling scheme and so it has the
potential to address other hard computational problems like multivariate integration and
volume estimation of polytopes.

2 Efficient Billiard walk

The geometric random walk of our choice to sample from a polytope is based on Billiard
Walk (BW) [23], which we modify to reduce the per-step cost.

For a polytope P = {x € R?| Az < b}, where A € R**? and b € R*¥, BW starts from a
given point py € P, selects uniformly at random a direction, say vy, and it moves along the
direction of vy for length L; it reflects on the boundary if necessary. This results a new point
p1 inside P. We repeat the procedure from p;. Asymptotically it converges to the uniform
distribution over P. The length is L = —7In 7, where 7 is a uniform number in (0, 1), that is
n ~U(0,1), and 7 is a predefined constant. It is useful to set a bound, say p, on the number
of reflections to avoid computationally hard cases where the trajectory may stuck in corners.
In [23] they set T ~ diam(P) and p = 10d. Our choices for 7 and p depend on a burn-in step
that we detail in Sec. 4.

At each step of BW we compute the intersection point of a ray, say £ := {p+tv, t € R},
with the boundary of P, 0P, and the normal vector of the tangent plane at the intersection
point. The inner vector of the facet that the intersection point belongs to is a row of A. To
compute the point 9P N ¢ where the first reflection of a BW step takes place, we solve the
following m linear equations

al (po + tjvo) = bj = t; = (bj — a; po)/aj vo, j € [k], (2)

and keep the smallest positive ¢;; a; is the j-th row of the matrix A. We solve each equation
in O(d) operations and so the overall complexity is O(dk). A straightforward approach for

BW would consider that each reflection costs O(kd) and thus the per step cost is O(pkd).

However, our improved version performs more efficiently both point and direction updates by
storing computations from the previous iteration combined with a preprocessing step. The
preprocessing step involves the normal vectors of the facets, that takes m2d operations, and
the amortized per-step complexity of BW becomes O((p + d)k).

! https://github.com/GeomScale/volume_approximation/tree/socg21
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» Lemma 1. The amortized per step complexity of BW is O((p + d)k) after a preprocessing
step that takes O(k*d) operations, where p is the mazimum number of reflections per step.

The use of floating point arithmetic could result to points outside P due to rounding
errors when computing boundary points. To avoid this, when we compute the roots in
Equation (2) we exclude the facet that the ray hit in the previous reflection.

3 Multiphase Monte Carlo Sampling algorithm

To sample steady states in the flux space of a metabolic network, with m metabolites and
n reactions, we introduce a Multiphase Monte Carlo Sampling (MMCS) algorithm; it is
multiphase because it consists of a sequence of sampling phases.

Let S € R™*™ be the stoichiometric matrix and x5, 4 € R™ bounds on the fluxes. The
flux space is the bounded convex polytope

FS:={x e R"|Sz =0, 2;p <z <y} CR™ (3)

The dimension, d, of FS is smaller than the dimension of the ambient space; that is

d < n. To work with a full dimensional polytope we restrict the box induced by the

inequalities x;, < z < x,; to the null space of S. Let the H-representation of the box be

1, .

{m eR” ( ; ) x < (x“b> }, where I, is the n x n identity matrix, and let N € R"*¢ be

—in Zib

the matrix of the null space of S, that is S N = 0,,x4. Then P = {x € R? | Az < b}, where
I,N

A= ( ; N) and b = (Iub) N, is a full dimensional polytope (in RY). After we sample
—in Lib

(uniformly) points from P, we transform them to uniformly distributed points (that is steady

states) in F'S by applying the linear map induced by N.

MMCS generates, in a sequence of sampling phases, a set of points, that is almost
equivalent to n independent uniformly distributed points in P, where n is given. At each
phase, it employs Billiard Walk (Section 2) to sample approximate uniformly distributed
points, rounding to speedup sampling, and uses the Effective Sample Size (ESS) diagnostic
to decide termination. The pseudo-code of the algorithm appears in Alg. 1.

Overview. Initially we set Py = P.

At each phase i > 0 we sample at most A points from P;. We generate them in chunks; we
also call them chain of sampling points. Each chain contains at most [ points (for simplicity
consider I = O(1)). To generate the points in each chain we employ BW, starting from a
point inside P;; the starting point is different for each chain. We repeat this procedure until
the total number of samples in P; reaches the maximum number \; we need % chains. To
compute a starting point for a chain, we pick a point uniformly at random in the Chebychev
ball of P; and we perform O(v/d) burn-in BW steps to obtain a warm start.

After we have generated A sample points we perform a rounding step on P; to obtain the
polytope of the next phase, P;;1. We compute a linear transformation, T;, that puts the
sample into isotropic position and then P, 1 = T;(F;). The efficiency of BW improves from
one phase to the next one because the sandwiching ratio decreases and so the average number
of reflections decreases and thus the convergence to the uniform distribution accelerates
(Section 4.2). That is we obtain faster a sample of better quality. Finally, the (product of
the) inverse transformations maps the samples to Py = P. Fig. 3 depicts the procedure.

Termination. There are no bounds on the mixing time of BW [23], hence for termination
we rely on ESS. MMCS terminates when the minimum ESS among all the univariate marginals
is larger than a requested value. We chose the marginal distributions (of each flux) because



A. Chalkis, V. Fisikopoulos, E. Tsigaridas, and H. Zafeiropoulos

Figure 3 An illustration of our Multiphase Monte Carlo Sampling algorithm. The method is
given an integer n and starts at phase ¢ = 0 sampling from Pp. In each phase it samples a maximum
number of points A. If the sum of Effective Sample Size in each phase becomes larger than n before
the total number of samples in P; reaches A then the algorithm terminates. Otherwise, we proceed
to a new phase. We map back to Py all the generated samples of each phase.

they are essential for systems biologists, see [6] for a typical example. In particular, after
we generate a chain, the algorithm updates the ESS of each univariate marginal to take

into account all the points that we have sampled in P;, including the newly generated chain.

We keep the minimum, say n;, among all marginal ESS values. If Z;:o n; becomes larger
than n before the total number of samples in P; reaches the upper bound A, then MMCS
terminates. Otherwise, we proceed to the next phase. In summary, MMCS terminates when
the sum of the minimum marginal ESS values of each phase reaches n.

Rounding step. This step is motivated by the theoretical result in [1] and the rounding
algorithms [37, 17]. We apply the linear transformation 7T; to P; so that the sandwiching ratio
of P;y; is smaller than that of P;. To find the suitable T; we compute the SVD decomposition
of the matrix that contains the sample row-wise [3].

Updating the Effective Sample Size. The effective sample size of a sample of points
generated by a process with autocorrelations p; at lag ¢ is function (actually an infinite series)
in the p;’s; its exact value is unknown. Following [21], we efficiently compute ESS employing
a finite sum of monotone estimators p; of the autocorrelation at lag t, by exploiting Fast
Fourier Transform. Furthermore, %Iiven M chains of samples, the autocorrelation estimator
Pt is given by, py = 1 — 7C_ﬁ%i=lpt’i
estimate and the multi-chain variance estimate given in [20] and p;; is an estimator of the
autocorrelation of the i-th chain at lag t. To update the ESS, for every new chain of points
the algorithm generates, we compute j; ;. Then, using Welford’s algorithm we update the
average of the estimators of autocorrelation at lag ¢, as well as the between-chain variance

, where C' and B are the within-sample variance

and the within-sample variance estimators given in [20]. Finally, we update the ESS using
these estimators.

» Lemma 2. Let P = {x €¢ R? | Az < b}, A€ R¥*4 b e RF q full dimensional polytope in
R<. The total number of operations per phase that Alg. 1 performs, is O(W (p+d)kA+\2d+d?),
where W is the walk length for Billiard Walk.

In Section 4 we discuss how to tune the parameters of MMCS to make it more efficient in

practice. We also comment on the (practical) complexity of each phase, based on the tuning.
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Algorithm 1 Multiphase Monte Carlo Sampling(P,n,l, A, p, 7, W).

Input :A full dimensional polytope P € R%; Requested effectiveness n € N; 1
length of each chain; upper bound for the number of generated points in
each phase A; upper bound on the number of reflections p; length of
trajectory parameter 7; walk length W.

Output : A set of approximate uniformly distributed points S € P

Set Py <+ P, sum_ess < 0, S+ 0, i < 0, Ty = Iy;

do

sum_ point_phase + 0, U + 0;

do

Generate a starting point p € P;;

Generate a set @ of [ points with Billiard Walk starting from p;
S+ SUT HQ); U+ TUuQ;

sum__point__phase < sum__point_ phase + [;

Update ESS n; of this phase;

if sum_ess+mn; > n then break ;

while sum_ point__phase < X;

sum__ess <— sum_ess +n;; 1 <1+ 1;

Compute T such that T'(U) is in isotropic position;
T; < T;_10T;

while sum__ess < n;

return S;

4 Implementation and Experiments

In the sequel we present the implementation of our approach and the tuning of various
parameters. We present experiments in an extended set of BURG models [31], including
the most complex metabolic networks i.e., the human Recon2D [56] and Recon3D [7]. We
end up to sample from polytopes of thousands of dimensions and show that our method
can estimate precisely the flux distributions. We analyze various aspects of our method as
the runtime, the efficiency and the quality of the output. We compare our method against
the state-of-the-art software for the analysis of metabolic networks, which is the Matlab
toolbox of cobra [26]. Our implementation for low dimensional networks is two orders of
magnitude faster than cobra. As the dimension grows this gap on the run-time increases.
The fast mixing of billiard walk allow us to use all the generated samples to approximate
each flux distribution improving the flux distribution estimation.

We provide a complete open-source software framework to handle big metabolic networks.
The framework loads a metabolic model in some standard format (e.g., mat, json files)
and performs an analysis of the model e.g., compute the marginal distributions of a given
metabolite. All the results in this paper are reproducible using our publicly available code?.
The core of our implementation is in C++ to optimize performance while the user interface
is implemented in R. The package employs eigen [24] for linear algebra, boost [41] for
random number generation, mosek [2] as the linear program solver, and expands volesti [12]
an open-source package for high dimensional sampling and volume approximation. All
experiments were performed on a PC with Intel® Core i7-6700 3.40GHz x 8 CPU and
32GB RAM.

2 https://github.com/GeomScale/volume_approximation/tree/socg21
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Figure 4 Our method estimation of the marginal distribution of the “Thioredoxin reductace”

flux in a constraint-based model of Homo Sapiens metabolism Recon2D [56] (left) and Recon3D [7]
(right).

4.1 Parameter tuning for practical performance

We give details on how we tune various parameters presented in Section 3 in our implement-
ation.

Parameters of Billiard Walk. To employ Billiard Walk (Section 2) we have to make efficient
selections for the parameter 7 that controls the length of the trajectory in each step, for the
maximum number of reflections per step p, and for the walk length W of the random walk.
We experimentally found that setting W = 1 the empirical distribution converges faster to
the uniform distribution. Thus, we get a higher ESS faster than the case of W > 1. To set 7
in phase 7, first we set 7 = 6v/dr where r is the radius of the Chebychev ball of P;. Then, we
start from the center of the Chebychev ball, we perform 100 + 4v/d Billiard Walk steps and
we store all the points in a set ). Then we set 7 = max{gleag{ﬂq — pl|2},6Vdr}. For the

maximum number of reflections we found experimentally that p = 100d is violated in less
than 0.1% of the total number of Billiard Walk steps in our experiments.

Rounding step. In each phase i of our method, when the minimum value of ESS among
all the marginals has not reached the requested threshold, we use the generated sample to
perform a rounding step by mapping the points to isotropic position. After computing the
SVD decomposition of the point-set we also rescale the singular values such that the smallest
one is 1, to improve numerical stability as suggested in [17]. We found experimentally that
setting the maximum number of Billiard Walk points per phase A = 20d, where d is the
dimension of the polytope, suffice to improve the roundness from phase to phase. When, in
any phase, the ratio between the maximum over the minimum singular value is smallest than
3 we stop performing any new rounding step. In that case we stay on the current phase until
we reach the requested value of ESS.

» Remark 1. Given the Stoichiometric matrix S € R™*" of a metabolic network with flux
bounds z;, < x < x,, the total number of operations per phase that our implementation of
Alg. 1 performs, according the parameterization given in this Section is O(nd?), where d is
the dimension of the null space of S and n is the number of reactions occur in the metabolic
network.
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4.2 Experiments

We test and evaluate our software on 17 models from the BIGG database [31] and Recon2D,
Recon3D from [44]. In particular, we sample from models that correspond to polytopes
of dimension less than 100; the simplest model in this setting is the well known bacteria
Escherichia Coli. We also computed with models that correspond to polytopes of dimension
a few thousands; this is the case for Recon2D and Recon3D. We do not employ parallelism for
any implementation, thus we report only sequential running times. To assess the quality of
our results we employ a second MCMC convergence diagnostic besides the Effective Sample
Size (ESS). This is the potential scale reduction factor (PSRF), introduced by Rubin and
Gelman [20]. In particular, we compute the PSRF for each univariate marginal of the sample
that MMCS outputs. Following [20], a convergence is satisfying according to PSRF when all
the marginals have PSRF smaller than 1.1.

The workflow of cobra for sampling first performs a rounding step and then samples
using Coordinate Directions Hit-and-Run (CDHR). To compare with cobra we set the walk
length of CDHR according to the empirical suggestion made in [25], i.e., equal to 8d?, where
d is the dimension of the polytope we sample. For Recon2D we follow the paradigm in [25]
which shows that the method converges for walk length equal to 1.57e+08. To have a fair
comparison we let cobra to sample a minimum number of 1000 points. If in the computed
sample there is a marginal with PSRF larger than 1.1 we continue sampling until all PSRFs
are smaller than 1.1.

Table 1 17 metabolic networks from [31] and Recon2D, Recon3D from [44]; (m) the number
of Metabolites, (n) the number of Reactions, (d) the dimension of the polytope; (N) is the total
number of sampled points x walk length; for MMCS we stop when the sum of the minimum value
of ESS among all the univariate marginals in each phase is 1000 (we report the number of phases
in parenthesis); for cobra we set the walk length to 8d* and 1.57¢+08 for Recon2D following [25],
sample at least 1000 points and stop when all marginals have PSRF < 1.1; the runtime of cobra for
Recon2D is an estimation of the sequential time just for the purpose of the comparison in this paper.

MMCS cobra

name (m) (n) (d) Time (sec) (N) Time (sec) (N)
e_coli__core 72 95 24 6.50e-01 3.40e+03 (8) 7.20e+-01 4.61e+06
iLLJ478 570 652 59 9.00e+-00 5.40e4-03 (5) 4.54e+02 2.79e+07
iSB619 655 743 83 1.70e+01 8.20e+03 (5) 9.56e+02 5.51e+407
iHN637 698 785 88 2.00e+-01 6.80e+03 (4) 1.03e+03 6.19e+4-07
iJN678 795 863 91 2.50e+01 8.10e+03 (4) 1.17e+03 6.62e+07
iNF517 650 754 92 1.70e+01 | 6.20e+03 (4) 1.33e+03 | 6.77e+07
iJN746 907 1054 116 5.70e+01 8.70e+03 (3) 2.22e+03 1.07e+4-08
iAB_ RBC 283 342 469 130 5.20e+01 1.07e+04 (5) 7.85e+03 4.05e+4-08
iJR904 761 1075 227 2.98e+-02 1.62e+04 (4) 8.81e+03 4.12e+4-08
iAT_PLT 636 738 1008 289 3.25e+02 1.04e+04 (2) 1.73e+04 6.68e+08
iSDY_ 1059 1888 | 2539 509 2.813e+03 | 2.31e+04 (3) 6.66e4-04 2.07e+09
iAF1260 1668 | 2382 516 6.84e+-03 5.33e+04 (6) 7.04e+04 2.13e+09
iEC1344 C 1934 | 2726 578 4.86e+03 3.95e+04 (4) 9.42e+04 2.67e+09
iJO1366 1805 | 2583 | 582 6.02e4+03 | 5.14e+04 (5) 9.99e+04 | 2.71e+09
iBWG_ 1329 1949 | 2741 609 3.06e+03 | 4.22e+04 (4) 1.05e+05 2.97e+09
iML1515 1877 | 2712 633 4.65e+4-03 5.65e4+04 (5) 1.15e4-05 3.21e+09
Reconl 2766 | 3741 931 8.09e+-03 1.94e+04 (2) 3.20e+05 6.93e+09
Recon2D 5063 | 7440 | 2430 2.48e+-04 5.44e+04 (2) ~ 140 days | 1.57e+11

Recon3D 8399 | 13543 | 5335 1.03e4-05 1.44e+05 (2) - -
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In Table 1 we report the results of MMCS and cobra. We run MMCS until we get a
value of ESS equal to 1000; meaning that we stop when the sum over all phases of the
minimum values of ESS among all the marginals is larger than 1000. Moreover, in Table 1
all the marginals of the sample that MMCS returns have PSRF < 1.1. This is another
statistical evidence on the quality of the generated sample. The histograms in Fig. 4 illustrate
an approximation for the flux distribution of the reaction Thioredoxin as computed in
Recon2D and Recon3D respectively. The same marginal flux distribution in Recon2D was
estimated also in [25]. Notice that the estimated density slightly changes in Recon3D as the
stoichiometric matrix has been updated and thus the corresponding marginal is affected. In
Fig. 2 we also employ the copula representation to capture the dependency between two
fluxes to confirm a mutually exclusive pair of biochemical pathways. Notice that the run-time
of MMCS is one or two orders of magnitude smaller than the run-time of cobra and this gap
becomes much larger for higher dimensional models such as Recon2D and Recon3D.

For some models —see in the full version of the paper [13]- we introduce a further
improvement to obtain a better convergence. If there is a marginal in the generated sample
from MMCS that has a PSRF larger than 1.1 then we do not take into account the k first
phases, starting with £ = 1 until we get both ESS equal to 1000 and all the PSRF values
smaller than 1.1 for all the marginals. By “do not take into account” we mean that we neither
store the generated sample —for the first k£ phases— nor we sum up its ESS to the overall ESS
considered for termination by MMCS. Note that for these models it is not practical to repeat
MMCS runs for different k until we get the required PSRF value. We can obtain the final
results —reported in Tables 1- in one pass. We simply drop a phase when the ESS reaches
the requested value but the PSRF is not smaller than 1.1 for all the marginals.

Interestingly, the total number of Billiard Walk steps —and consequently the run-time—
does not increase as k increases [13]. This means that the performance of our method
improves for these models, when we do not take into account the k first phases of MMCS.
This happens because the performance of Billiard Walk improves as the polytope becomes
more rounded from phase to phase. In particular, in the full version of the paper [13] we
analyze the performance of Billiard Walk for the model iAF1260. We sample 20d points
per phase with walk length equal to 1 and we report the average number of reflections, the
ESS, the run-time, and the ratio opax/omin per phase. The latter is the ratio between the
maximum over the minimum singular value of the point-set. The larger this ratio is the more
skinny the polytope of the corresponding phase is. As the method progresses from the first
to the last phase, the average number of reflections and the run-time decrease and the ESS
increases. This means that as the polytope becomes more rounded from phase to phase, the
Billiard Walk step becomes faster and the generated sample has better quality. This explains
why the total run-time does not increase when we do not take into account the first k& phases:
the initial phases are slow and they contribute poorly to the quality of the final sample; the
last phases are fast and contribute with more accurate samples.
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