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Abstract
We solve an open problem posed by Michael Biro at CCCG 2013 that was inspired by his and others’
work on beacon-based routing. Consider a human and a puppy on a simple closed curve in the
plane. The human can walk along the curve at bounded speed and change direction as desired. The
puppy runs with unbounded speed along the curve as long as the Euclidean straight-line distance to
the human is decreasing, so that it is always at a point on the curve where the distance is locally
minimal. Assuming that the curve is smooth (with some mild genericity constraints) or a simple
polygon, we prove that the human can always catch the puppy in finite time.
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5:2 Chasing Puppies: Mobile Beacon Routing on Closed Curves

1 Introduction

You have lost your puppy somewhere on a simple closed curve. Both of you are forced to
stay on the curve. You can see each other and both want to reunite. The problem is that
the puppy runs infinitely faster than you, and it believes naively that it is always a good
idea to minimize its straight-line distance to you. What do you do?

To be more precise, let γ : S1 ↪→ R2 be a simple closed curve in the plane, which we
informally call the track. Two special points move around the track, called the puppy p and
the human h. The human can walk along the track at bounded speed and change direction
as desired. The puppy runs with unbounded speed along the track as long as its Euclidean
straight-line distance to the human is decreasing, until it reaches a point on the curve where
the distance is locally minimized. As the human moves along the track, the puppy moves
to stay at a local distance minimum. The human’s goal is to move in such a way that the
puppy and the human meet. See Figure 1 for a simple example.
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Figure 1 Catching the puppy.

In this paper we show that it is always possible for the human to reunite with the puppy,
under the assumption that the curve is well-behaved in a sense to be defined.

This problem was posed in a different guise at the open problem session of the 25th
Canadian Conference on Computational Geometry (CCCG 2013) by Michael Biro. In Biro’s
formulation, the track was a railway, the human a locomotive, and the puppy a train carriage
that was attracted to an infinitely strong magnet installed in the locomotive.
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Figure 2 If the human walks only counterclockwise from h1, the human and the puppy will never
meet. To the right are closeups of two of the spikes of the star.

Returning to our formulation of catching a puppy, it was also asked if the human
will always catch the puppy by choosing an arbitrary direction and walking only in that
direction. This turns out not to be the case; consider the star-shaped track in Figure 2.
Suppose the human and puppy start at points h1 and p1, respectively, and the human walks
counterclockwise around the track. When the human reaches h2, the puppy runs from p2
to p′

2. When the human reaches h3, the puppy runs from p3 to p′
3. Then the pattern repeats
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indefinitely. Examples of this type, where the human walking in the wrong direction will
never catch the puppy, were independently discovered during the conference by some of the
authors and by David Eppstein.

1.1 Related work

Biro’s problem was inspired by his and others’ work on beacon-based geometric routing, a
generalization of both greedy geometric routing and the art gallery problem introduced at
the 2011 Fall Workshop on Computational Geometry [8] and the 2012 Young Researchers
Forum [9], and further developed in Biro’s PhD thesis [7] and papers [10,11]. A beacon is
a stationary point object that can be activated to create a “magnetic pull” towards itself
everywhere in a given polygonal domain P . When a beacon at point b is activated, a point
object p moves moves greedily to decrease its Euclidean distance to b, alternately moving
through the interior of P and sliding along its boundary, until it either reaches b or gets stuck
at a “dead point” where Euclidean distance is minimized. By activating different beacons
one at a time, one can route a moving point object through the domain. Initial results for
this model by Biro and his colleagues [7–11] sparked significant interest and subsequent work
in the community [3,4,6,14,19,21–23,27]. More recent works have also studied how to utilize
objects that repel points instead of attracting them [12,25].

Biro’s problem can also be viewed as a novel variant of classical pursuit problems, which
have been an object of intense study for centuries [26]. The oldest pursuit problems ask for a
description of the pursuit curve traced by a pursuer moving at constant speed directly toward
a target moving along some other curve. Pursuit curves were first systematically studied by
Bouguer [13] and de Maupertuis [15] in 1732, who used the metaphor of a pirate overtaking
a merchant ship; another notable example is Hathaway’s problem [17], which asks for the
pursuit curve of a dog swimming at unit speed in a circular lake directly toward a duck
swimming at unit speed around its circumference. In more modern pursuit-evasion problems,
starting with Rado’s famous “lion and man” problem [24, pp.114–117], the pursuer and target
both move strategically within some geometric domain; the pursuer attempts to capture
the target by making their positions coincide while the target attempts to evade capture.
Countless variants of pursuit-evasion problems have been studied, with multiple pursuers
and/or targets, different classes of domains, various constraints on motion or visibility,
different capture conditions, and so on. Biro’s problem can be naturally described as a
cooperative pursuit or pursuit-attraction problem, in which a strategic target (the human)
wants to be captured by a greedy pursuer (the puppy).

Kouhestani and Rappaport [20] studied a natural variant of Biro’s problem, which we
can recast as follows. A guppy is restricted to a closed and simply-connected lake, while
the human is restricted to the boundary of the lake. The guppy swims with unbounded
speed to decrease its Euclidean distance to the human as quickly as possible. Kouhestani
and Rappaport described a polynomial-time algorithm that finds a strategy for the human
to catch the guppy, if such a strategy exists, given a simple polygon as input; they also
conjectured that a capturing strategy always exists. Abel, Akitaya, Demaine, Demaine,
Hesterberg, Korman, Ku, and Lynch [1] recently proved that for some polygons and starting
configurations, the human cannot catch the guppy, even if the human is allowed to walk
in the exterior of the polygon, thereby disproving Kouhestani and Rappaport’s conjecture.
Their simplest counterexample is an orthogonal polygon with about 50 vertices.

SoCG 2021



5:4 Chasing Puppies: Mobile Beacon Routing on Closed Curves

1.2 Our results

Before describing our results in detail, we need to carefully define the terms of the problem.
The track is a simple closed curve γ : S1 ↪→ R2. We consider the motion of two points on this
curve, called the human (or beacon or target) and the puppy (or pursuer). A configuration
is a pair (x, y) ∈ S1 × S1 that specifies the locations h = γ(x) and p = γ(y) for the human
and puppy, respectively. Let D(x, y) denote the straight-line Euclidean distance between
these two points. When the human is located at h = γ(x), the puppy moves from p = γ(y)
to greedily decrease its distance to the human, as follows.

If D(x, y + ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs forward along the
track, by increasing the parameter y.

If D(x, y − ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs backward along
the track, by decreasing the parameter y.

If both of these conditions hold, the puppy runs in an arbitrary direction. While the
puppy is running, the human remains stationary. If neither condition holds, the configuration
is stable; the puppy does not move until the human does. When the configuration is stable,
the human can walk in either direction along the track; the puppy walks along the track in
response to keep the configuration stable, until it is forced to run again. The human’s goal is
to catch the puppy; that is, to reach a configuration in which the two points coincide.

Our main result is that the human can always catch the puppy in finite time, starting
from any initial configuration, provided the track is either a generic simple smooth curve or
an arbitrary simple polygon.

The remainder of the paper is structured as follows. We begin in Section 2 by giving a
simple self-contained proof of our main result for the special case of orthogonal polygons.

We consider generic smooth tracks in Sections 3 and 4. Specifically, in Section 3 we
define two important diagrams, which we call the attraction diagram and the dual attraction
diagram, and we prove several useful structural results. At a high level, the attraction
diagram is a decomposition of the configuration space S1 × S1 according to the puppy’s
behavior, similar to the free space diagrams introduced by Alt and Godau to compute Fréchet
distance [5]. We show that for a sufficiently generic smooth track, the attraction diagram
consists of a finite number of disjoint simple closed critical curves, exactly two of which are
topologically nontrivial. Then in Section 4, we argue that the human can catch the puppy
on any track whose attraction diagram has this structure.

In Section 5, we sketch an extension of our analysis from smooth curves to simple
polygonal tracks; complete details of this extension can be found in the full version of this
paper [2]. Because polygons do not have well-defined tangent directions at their vertices,
this extension requires explicitly modeling the puppy’s direction of motion in addition to its
location. We first prove that the human can catch the puppy on a polygon that has no acute
vertex angles and where no three vertices form a right angle; under these conditions, the
attraction diagram has exactly the same structure as for generic smooth curves. We then
reduce the problem for arbitrary simple polygons to this special case by chamfering – cutting
off a small triangle at each vertex – and arguing that any strategy for catching the puppy on
the chamfered track can be pulled back to the original polygon.

Finally, we close the paper by suggesting several directions for further research.
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2 Warmup: Orthogonal polygons

As a warmup, we give a simple self-contained proof of our main result for the special case
where the track is a simple orthogonal polygon.

▶ Theorem 1. The human can catch the puppy on any simple orthogonal polygon, by walking
counterclockwise around the polygon at most twice.

Proof. Let P be an arbitrary simple orthogonal polygon. Let u1 be its leftmost point with
the maximum y-coordinate, and u2 be the next boundary vertex of P in clockwise order (see
Figure 3). Finally, let ℓ be the horizontal line supporting the segment u1u2.

We break the motion of the human into two phases. In the first phase, the human moves
counterclockwise around P from their starting location to u1. If the human catches the
puppy during this phase, we are done, so assume otherwise. In the second phase, the human
walks counterclockwise around P starting from u1 to u2.

We claim that the puppy p is never in the interior of the segment u1u2 during the second
phase; thus, p always lies on the closed counterclockwise subpath of P from h to u2 (or less
formally, “between h and u2”). This claim implies that the human and the puppy meet
during the second phase on u2 at the latest.

u1 hp=u2
ℓ

Figure 3 Proof of Theorem 1. During the human’s second trip around P , the puppy lies between
u2 and the human.

The puppy must first be at u2 if it ever wants to be in the interior of u1u2. So consider
any moment during the second phase when p moves upward to the vertex u2. At that
moment, h must be on the line ℓ to the right of p. (For any point a below ℓ, there is a point b

below u2 that is closer to a than u2.) Thus, the puppy will stay on u2 as long as h is on ℓ.
As soon as h leaves ℓ the puppy will leave u2 downward. Thus the puppy can never go to
the interior of the edge u1u2. ◀

The star-shaped track in Figure 2 shows that this simple argument does not extend to
arbitrary polygons, even with a constant number of edge directions.

3 Diagrams of smooth tracks

We first formalize both the problem and our solution under the assumption that the track
is a generic smooth simple closed curve γ : S1 ↪→ R2. In particular, for ease of exposition,
we assume that γ is regular and C3, meaning it has well-defined continuous first, second,
and third derivatives, and its first derivative is nowhere zero. We also assume γ satisfies
some additional genericity constraints, to be specified later. We consider polygonal tracks in
Section 5.

SoCG 2021
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3.1 Configurations and genericity assumptions
We analyze the behavior of the puppy in terms of the configuration space S1 × S1, which
is the standard torus. Each configuration point (x, y) ∈ S1 × S1 corresponds to the human
being located at h = γ(x) and the puppy being located at p = γ(y).

For any configuration (x, y), recall that D(x, y) denotes the straight-line Euclidean
distance between the points γ(x) and γ(y). We classify all configurations (x, y) ∈ S1 × S1

into three types, according to the sign of the partial derivative of distance with respect to
the puppy’s position.

(x, y) is a forward configuration if ∂
∂y D(x, y) < 0.

(x, y) is a backward configuration if ∂
∂y D(x, y) > 0.

(x, y) is a critical configuration if ∂
∂y D(x, y) = 0.

Starting in any forward (resp. backward) configuration, the puppy automatically runs
forward (resp. backward) along the track γ. Genericity implies that there are a finite number
of critical configurations (x, y) with any fixed value of x, or with any fixed value of y. We
further classify the critical configurations as follows:

(x, y) is a stable critical configuration if ∂2

∂y2 D(x, y) > 0.
(x, y) is an unstable critical configuration if ∂2

∂y2 D(x, y) < 0.
(x, y) is a forward pivot configuration if ∂2

∂y2 D(x, y) = 0 and ∂3

∂y3 D(x, y) < 0.
(x, y) is a backward pivot configuration if ∂2

∂y2 D(x, y) = 0 and ∂3

∂y3 D(x, y) > 0.

In any stable configuration, the puppy’s distance to the human is locally minimized, so the
puppy does not move unless the human moves. In any unstable configuration, the puppy can
decrease its distance by running in either direction. Finally, in any forward (resp. backward)
pivot configuration, the puppy can decrease its distance by moving in one direction but not
the other, and thus automatically runs forward (resp. backward) along the track.

Critical points can also be characterized geometrically as follows. Refer to Figure 4. A
configuration (x, y) is critical if the human γ(x) lies on the line N(y) normal to γ at the
puppy’s location γ(y). Let C(y) denote the center of curvature of the track at γ(y). Then
(x, y) is a pivot configuration if γ(x) = C(y), a stable critical configuration if the open ray
from C(y) through the human point γ(x) contains the puppy point γ(y), and an unstable
critical configuration otherwise.

p
h3h2h1

Figure 4 Three critical configurations: (h1, p) is unstable; (h2, p) is a pivot configuration, and
(h3, p) is stable.

Genericity of the track γ implies that this classification of critical configurations is
exhaustive, and moreover, that the set of pivot configurations is finite. In particular, our
analysis requires that in any pivot configuration (x, y), the puppy point γ(y) is not a
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local curvature minimum or maximum.1 Otherwise, we would need higher derivatives to
disambiguate the puppy’s behavior. In the extreme case where γ contains both an open
circular arc α and its center c, all configurations where h = c and p ∈ α are stable.

3.2 Attraction diagrams
The attraction diagram of the track γ is a decomposition of the configuration space S1 ×S1

by critical configurations. Our genericity assumptions imply that the set of critical points –
the common boundary of the forward and backward configurations – is the union of a finite
number of disjoint simple closed curves, which we call critical cycles. At least one of these
critical cycles, the main diagonal x = y, consists entirely of stable configurations; critical
cycles can also consist entirely of unstable configurations. If a critical cycle is neither entirely
stable nor entirely unstable, then its points of vertical tangency are pivot configurations, and
these points subdivide the curve into x-monotone paths, which alternately consist of stable
and unstable configurations.

Figure 5 shows a sketch of the attraction diagram of a simple closed curve. We visualize
the configuration torus S1 × S1 as a square with opposite sides identified. Green and red
paths indicate stable and unstable configurations, respectively; blue dots indicate pivot
configurations; and backward configurations are shaded light gray. Figure 6 shows the
attraction diagram for a more complex polygonal track, with slightly different coloring
conventions. (Again, we will discuss polygonal tracks in more detail in Section 5.)

0 1

3 2
4 5

7 6

ph

0

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 00

Figure 5 The attraction diagram of a simple closed curve, with one unstable critical configuration
emphasized.

The cycles in any attraction diagram have a simple but important topological structure.
A critical cycle in the attraction diagram is contractible if it is the boundary of a simply
connected subset of the torus S1 × S1 and essential otherwise. For example, the main
diagonal is essential, and the attraction diagram in Figure 5 contains two contractible critical
cycles and two essential critical cycles.

▶ Lemma 2. The attraction diagram of any generic closed curve contains an even number
of essential critical cycles.

1 More concretely, we assume the track γ intersects its evolute (the locus of centers of curvature)
transversely, away from its cusps.

SoCG 2021
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Figure 6 The attraction diagram of a complex simple polygon. Serrations in the diagram are
artifacts of the curve being polygonal instead of smooth. The river is highlighted in blue.
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Proof. This lemma follows immediately from standard homological arguments, but for the
sake of completeness we sketch a self-contained proof.

Fix a generic closed curve γ. Let α be the horizontal cycle {(0, y) | y ∈ S1}, and let β be
the vertical cycle {(x, 0) | x ∈ S1} in the torus S1 × S1. Without loss of generality, assume
α and β intersect every critical cycle in the attraction diagram of γ transversely.

A critical cycle C in the attraction diagram is contractible if and only if α and β each
cross C an even number of times. (Indeed, this parity condition characterizes all simple
contractible closed curves in the torus.) On the other hand, α and β each cross the main
diagonal once. It follows that α and β each cross every essential critical cycle an odd number
of times; otherwise, some pair of essential critical cycles would intersect.

Because the critical cycles are the boundary between the forward and backward configu-
rations, α and β each contain an even number of critical points. The lemma now follows
immediately. ◀

We emphasize that this lemma does not actually require the track γ to be simple; the
argument relies only on properties of generic functions over the torus that are minimized
along the main diagonal.

3.3 Dual attraction diagrams
Our analysis also relies on a second diagram, which we call the dual attraction diagram
of the track. We hope the following intuition is helpful. While the attraction diagram tells
us the possible positions of the puppy depending on the position of the human, the dual
attraction diagram gives us the possible positions of the human depending on the position of
the puppy. For each puppy configuration y ∈ S1, we consider the normal line N(y). We are
interested in the intersection points of γ with N(y), as those are the possible positions of the
human. The idea of the dual attraction diagram is to trace the positions of the human as a
function of the position of the puppy, see Figure 8.

Let T (y) denote the directed line tangent to γ at the point γ(y). For any configuration
(x, y), let ℓ(x, y) denote the distance from γ(x) to the tangent line T (y), signed so that
ℓ(x, y) > 0 if the human point γ(x) lies to the left of T (y) and ℓ(x, y) < 0 if γ(y) lies to
the right of T (y). More concisely, assuming without loss of generality that the track γ is
parameterized by arc length, ℓ(x, y) is twice the signed area of the triangle with vertices
γ(x), γ(y), and γ(y) + γ′(y).

Let L : S1 × S1 → S1 × R denote the function L(x, y) = (y, ℓ(x, y)). The dual attraction
diagram is the decomposition of the infinite cylinder S1 × R by the points {L(x, y) |
(x, y) is critical}. At the risk of confusing the reader, we refer to the image L(x, y) ∈ S1 × R
of any critical configuration (x, y) as a critical point of the dual attraction diagram.

The dual attraction diagram can also be described as follows. For any y ∈ S1 and d ∈ R,
let Γ(y, d) denote the point on the normal line N(y) at distance d to the left of the tangent
vector γ′(y). More formally, assuming without loss of generality that γ is parametrized by
arc length, we have Γ(y, d) = γ(y) + d

[ 0 −1
1 0

]
γ′(y). We emphasize that Γ(y, d) does not

necessarily lie on the curve γ. The dual attraction diagram is the decomposition of the
cylinder S1 × R by the preimage Γ−1(γ) of γ.

Because γ is simple and regular, the dual attraction diagram is the union of simple
disjoint closed curves. The function L continuously maps each critical cycle in the attraction
diagram to a closed curve in the cylinder S1 × R. Thus, the restriction of L to the set of
critical configuration is a homeomorphism onto its image in the dual attraction diagram. In
particular, L maps the main diagonal x = y to the horizontal axis ℓ(x, y) = 0 of the dual

SoCG 2021
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γ(y)γ(x)=Γ(y, d)

γ(xʹ)

d=ℓ(x, y)

ℓ(xʹ, y)

N(y)

T(y)

Figure 7 Examples of the functions ℓ and Γ used to define the dual attraction diagram.

attraction diagram. We emphasize, however, that the two diagrams are not topologically
equivalent. Figure 8 shows the dual attraction diagram of the same track whose attraction
diagram is shown in Figure 5; here preimages of points inside the track are shaded.

0 1

3 2
4 5

7 6

p
h

0 1 2 3 4 5 6 7 0

Figure 8 The dual attraction diagram of a simple closed curve, with one critical configuration
emphasized. Compare with Figure 5.

▶ Lemma 3. For any generic simple closed curve γ, the attraction diagram of γ and the
dual attraction diagram of γ contain the same number of essential critical cycles.

Proof. Let α denote the horizontal cycle y = 0 in the torus S1 ×S1, and let α′ be the vertical
line y = 0 in the infinite cylinder S1 ×R. Let C be any critical cycle on the attraction diagram,
and let C ′ = L(C) be the corresponding critical cycle in the dual attraction diagram.

Recall from the proof of Lemma 2 that C is contractible on the torus if and only if |C ∩ α|
is even. Similarly, C ′ is contractible in the cylinder if and only if |C ′ ∩ α′| is even. The map
L : S1 × S1 → S1 × R maps C ∩ α bijectively to C ′ ∩ α′. We conclude that C is essential if
and only if C ′ is essential. ◀

With this correspondence in hand, we can now more carefully describe the topological
structure of the attraction diagram when the track is simple.

▶ Lemma 4. The attraction diagram of a simple generic closed curve contains two essential
critical cycles.

Proof. Fix a generic closed curve γ. Lemma 2 implies that the attraction diagram of γ

contains at least two essential critical cycles, one of which is the main diagonal. Thus, to
prove the lemma, it remains to show that there are at most two essential critical cycles, in
either the attraction diagram or the dual attraction diagram.
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Let Σ ⊂ S1 × R denote the set of essential critical cycles in the dual attraction diagram.
Any two cycles in Σ are homotopic – meaning one can be continuously deformed into the
other – because there is only one nontrivial homotopy class of simple cycles on the infinite
cylinder S1 × R. It follows that the cycles in Σ have a well-defined vertical total order. In
particular, the highest and lowest intersection points between any vertical line and Σ always
lie on the same two essential cycles in Σ.

Without loss of generality, suppose γ(0) is a point on the convex hull of γ with a unique
tangent line. Let C be any essential critical cycle in the attraction diagram of γ, and let
C ′ = L(C) denote the corresponding essential cycle in the dual attraction diagram. C must
pass through all possible puppy positions and all possible human positions; thus, C contains
a configuration (0, y) for some parameter y ∈ S1. Recall that N(y) denotes the line normal
to γ at γ(y). Then γ(0) must also lie on the convex hull of γ ∩ N(y). We conclude that C ′

must be either the highest or lowest essential critical cycle in the dual attraction diagram.
We conclude that there are at most two critical cycles, completing the proof. ◀

In the rest of the paper, we mnemonically refer to the two essential critical cycles in the
attraction diagram of a simple track as the main diagonal and the river.

We emphasize that the converse of Lemma 4 is false; there are non-simple tracks whose
attraction diagrams have exactly two essential critical cycles. (Consider the figure-eight
curve ∞.) Moreover, we conjecture that Lemma 4 can be generalized to all (smooth) tracks
with turning number ±1.

4 Dexter and sinister strategies

We can visualize any strategy for the human to catch the puppy as a path through the
attraction diagram that consists entirely of segments of stable critical paths and vertical
segments, as shown in Figure 9. We refer to the vertical segments as pivots. Every pivot
(except possibly the first) starts at a pivot configuration, and every pivot ends at a stable
configuration.

p

h

p

h

p

h

p

h

p

h p=h

Figure 9 A sinister strategy for catching the puppy; compare with Figures 1 and 5.

We call a strategy dexter if it ends with a backward pivot – a downward segment,
approaching the main diagonal to the right – and we call a configuration (x, y) dexter if
there is a dexter strategy for catching the puppy starting at (x, y). Similarly, a strategy is

SoCG 2021
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sinister if it ends with a forward pivot – a skyward segment, approaching the main diagonal
to the left – and a configuration is sinister if it is the start of a sinister strategy.2 A single
configuration can be both dexter and sinister; see Figure 10.

Figure 10 Dexter (orange) and sinister (cyan) configurations in the example attraction diagram.
Arrows on the stable critical paths describe dexter and sinister strategies for catching the puppy.

▶ Theorem 5. Let γ be a generic track whose attraction diagram has exactly two essential
critical cycles. Every configuration on γ is either dexter or sinister; thus, the human can
catch the puppy on γ from any starting configuration.

Before giving the proof, we emphasize that Theorem 5 does not require the track γ to be
simple. Also, it is an open question whether having exactly two essential critical cycle curves
is a necessary condition for the human to always be able to catch the puppy. (We conjecture
that it is not.)

Proof. Fix a generic track γ whose attraction diagram has exactly two essential critical
cycles, which we call the main diagonal and the river. Assume γ has at least one pivot
configuration, since otherwise, from any starting configuration, the puppy runs directly to
the human.

Let D be the set of all dexter configurations, and let S be the set of all sinister configura-
tions. We claim that D and S are both annuli that contain both the main diagonal and the
river. Because S and D meet on opposite sides of the main diagonal, this claim implies that
D ∪ S is the entire torus, completing the proof of the lemma. We prove our claim explicitly
for D; a symmetric argument establishes the claim for S.

For purposes of argument, we partition the attraction diagram of γ by extending vertical
segments from each pivot configuration to the next critical cycles directly above and below. We
call the cells in this decomposition trapezoids, even though their top and bottom boundaries
may not be straight line segments. At each forward pivot configuration p, we color the
vertical segment above (x, y) green and the vertical segment below p red; the colors are
reversed for backward vertical segments, see Figure 11.

The first step of any strategy is a (possibly trivial) pivot onto a stable critical path.
Because the human and puppy can move freely within any stable critical path σ, either every
point in σ is dexter, or no point in σ is dexter. Similarly, for any green pivot segment π,
either every point in π is dexter or no point in π is dexter.

2 Dexter and sinister are Latin for right (or skillful, or fortunate, or proper, from a Proto-Indo-European
root meaning “south”) and left (or unlucky, or unfavorable, or malicious), respectively.
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Consider any trapezoid τ , and let σ be the stable critical path on its boundary. Starting
in any configuration in τ , the puppy immediately moves to a configuration on σ. Thus, if any
point in τ is dexter, then σ is dexter, which implies that every point in τ is dexter. Thus,
we can describe entire trapezoids as dexter or not dexter. It follows that D is the union of
trapezoids.

If two trapezoids share a stable critical path other than the main diagonal, then either
both trapezoids are dexter or neither is dexter. Similarly, if the green pivot segment leaving
a pivot configuration p is dexter, then all four trapezoids incident to p are dexter; otherwise,
either two or none of these four trapezoids are dexter.

We conclude that aside from the main diagonal, the boundary of D consists entirely of
unstable critical paths, pivot configurations, and red vertical segments. Moreover, for every
pivot configuration p on the boundary of D, the green pivot segment leaving p is not dexter.

Figure 11 Possible arrangements of dexter trapezoids near a forward pivot configuration.

By definition, every point in D is connected by a (dexter) path to the main diagonal, so D

is non-empty and connected. On the other hand, D excludes a complete cycle of forward
configurations just below the main diagonal. For any x ∈ S1, let D(x) denote the set of
dexter configurations (x, y); this set consists of one or more vertical line segments in the
attraction diagram.

Suppose for the sake of argument that some set D(x) is disconnected. Because D is
connected, the boundary of D must contain a concave vertical bracket: A vertical boundary
segment π whose adjacent critical boundary segments both lie (without loss of generality)
to the right of π, but D lies locally to the left of π. See Figure 12. Let p be the pivot
configuration at one end of π. The green vertical segment on the other side of p is dexter,
which implies that all trapezoids incident to p are dexter, contradicting the assumption that
π lies on the boundary of D. We conclude that for all x, the set D(x) is a single vertical line
segment; in other words, D is a monotone annulus.

p

π

Figure 12 A hypothetical concave vertical bracket on the boundary of D.

The bottom boundary of D is the main diagonal. The monotonicity of D implies that
the top boundary of D is a monotone “staircase” alternating between upward red vertical
segments and rightward unstable critical paths. Every trapezoid immediately above the top
boundary of D contains only forward configurations. Thus, there is a complete essential
cycle ϕ of forward configurations just above the upper boundary of D. Because ϕ contains
only forward configurations, ϕ must lie entirely above the river. It follows that D contains
the entire river.
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Symmetrically, S is an annulus bounded above by the main diagonal and bounded below
by a non-contractible cycle of backward configurations; in particular, the entire river lies
inside S. We conclude that D ∪ S is the entire configuration torus. ◀

If the attraction diagram of γ has more than two essential critical cycles curves, then D

and S are still monotone annuli, each bounded by the main diagonal and an essential cycle
of red vertical segments and unstable paths, and thus S and D each contain at least one
essential critical cycle other than the main diagonal. However, D ∪ S need not cover the
entire torus.

▶ Corollary 6. The human can catch the puppy on any generic simple closed track, from any
starting configuration.

5 Polygonal tracks

Our previous arguments require, at a minimum, that the track has a continuous derivative
that is never equal to zero. We now extend our analysis to arbitrary polygonal tracks, which
do not have well-defined tangent directions at their vertices. Due to space constraints, we
only sketch the main ideas here; a complete discussion can be found in the full version of
our paper [2]. Our high-level strategy has two stages. First we argue that suitably defined
attraction and dual attraction diagrams for generic polygons have the same structural
properties as the corresponding diagrams of smooth curves. Then we reduce the analysis
of arbitrary polygons to the generic case by chamfering – cutting small triangles from all
polygon vertices.

To properly describe the puppy’s behavior, we must account for the direction that the
puppy is facing, even when the puppy lies at a vertex. To that end, we represent the puppy
using both a continuous position function π : S1 → R and a continuous direction function
θ : S1 → S1, such that for all y ∈ S1, the derivative vector π′(y) is a non-negative scalar
multiple of the unit vector θ(y). Intuitively, as we increase y, the puppy alternately moves at
constant speed along edges, without changing direction (where π′(y) ∥ θ(y) and θ′(y) = 0)
and rotates at constant speed at vertices, without changing position (where π′(y) = 0 and
θ′(y) ̸= 0).

To define the attraction diagram of P , we decompose the torus S1 × S1 into a 2n × n grid
of rectangular cells, where each column corresponds to an edge ej containing the human, and
each row corresponds to either a vertex vi or an edge ei containing the puppy. See Figure 13
(left) for a complete example.

We now analyze the structure of polygonal attraction diagrams. Each edge-edge cell
ei × ej contains at most one boundary-to-boundary path of stable critical configurations
(x, y). Refer to Figure 14.

Each vertex-edge cell vi × ej contains at most one boundary-to-boundary path of stable
critical configurations and at most one boundary-to-boundary path of unstable critical
configurations. A configuration (x, y) with π(y) = vi is stable if and only if P (x) lies in the
outer normal cone at vi, and unstable if and only if P (x) lies in the inner normal cone at vi.
Refer to Figure 15.

Unlike the attraction diagrams of generic smooth curves defined in Section 3.2, attraction
diagrams of polygons are not always well-behaved. In particular, a pivot configuration
may be incident to more (or fewer) than two critical curves, and in extreme cases, pivot
configurations need not even be discrete. We call such a configuration a degenerate pivot
configuration; see Figure 16.
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Figure 13 The attraction diagram of a degenerate polygon, before and after chamfering. All
existing degeneracies disappeared in the chamfered polygon, which does have one new but harmless
degeneracy.

We first consider polygonal tracks which do not have any degeneracies. Generic obtuse
polygonal tracks behave almost identically to smooth tracks. In particular, we prove that
the polygonal attraction diagram of P is the union of disjoint simple critical cycles, that it
contains exactly two essential critical cycles, and that if the attraction diagram of P has
exactly two essential critical cycles, then the human can catch the puppy on P , starting from
any initial configuration.

Finally, we extend our analysis to arbitrary simple polygons. We define a chamfering
operation which transforms a polygon P into a new polygon P̄ , intuitively by cutting off
a small triangle at each vertex, as shown in Figure 17. First we show that chamfering a
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Figure 14 All edge-edge critical configurations are stable.
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Figure 15 Stable and unstable vertex-edge critical configurations.

polygon removes most of its degenerate configurations – see Figure 13 (right) for an example.
All remaining degeneracies cause either isolated critical vertices or degenerate pivot edges
in the attraction diagram; these remaining degeneracies do not impact the existence of a
strategy to catch the puppy on P̄ . Finally, we argue that any strategy on P̄ can be correctly
translated back to a strategy on the original polygon P .

6 Further questions

For simple curves, we have only proved that a catching strategy exists. At least for polygonal
tracks, it is straightforward to compute such a strategy in O(n2) time by searching the
attraction diagram. In fact, we can compute a strategy that minimizes the total distance
traveled by either the human or the puppy in O(n2) time, using fast algorithms for shortest
paths in toroidal graphs [16,18]. Unfortunately, this quadratic bound is tight in the worst
case if the output strategy must be represented as an explicit path through the attraction
diagram. We conjecture that an optimal strategy can be described in only O(n) space
by listing only the human’s initial direction and the sequence of points where the human
reverses direction. On the other hand, an algorithm to compute such an optimal strategy in
subquadratic time seems unlikely.

If the track is a smooth curve of length ℓ whose attraction diagram has k pivot config-
urations, a trivial upper bound on the distance the human must walk to catch the puppy
is ℓ · k/2. In any optimal strategy, the human walks straight to the point on the curve
corresponding to a pivot located at one of the two endpoints of the current “stable sub-curve”
of a critical curve (walking less than ℓ). Then the configuration moves to another stable
sub-curve, and so on, never visiting the same stable sub-curve twice. Our question is whether
a better upper bound can be proved.

In fact, if minimizing distance is not a concern, we conjecture that no reversals are
necessary. That is, on any simple track, starting from any configuration, we conjecture that
the human can catch the puppy either by walking only forward along the track or by walking
only backward along the track. Figure 2 and its reflection show examples where each of these
naïve strategies fails, but we have no examples where both fail. (Our proof of Theorem 1
implies that the human can always catch the puppy on an orthogonal polygon by walking at
most once around the track in some direction, depending on the starting configuration.)
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Figure 16 Examples of degenerate pivot configurations, caused by an acute vertex (left) or a
vertex lying on a line perpendicular to an edge (right).
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Figure 17 The chamfering operation.

More ambitiously, we conjecture that the following oblivious strategy is always successful:
walk twice around the track in one (arbitrary) direction, then walk twice around the track in
the opposite direction.

Another interesting question is to what extent our result applies to curves in R3, or to
self-intersecting curves in the plane, when we consider the two strands of the curve at an
intersection point to be distinct. It is easy to see that the human cannot catch the puppy
on a curve that traverses a circle twice; see Figure 18. Indeed, we know how to construct
examples of bad curves with any rotation number except −1 and +1. We conjecture that
Lemma 4, and therefore our main result, extends to all non-simple tracks with rotation
number ±1.

h

p

Figure 18 A double loop; p and h will never meet.

Finally, it is natural to consider similar pursuit-attraction problems in more general
domains. In the full version of the paper [2], we prove that human can catch the puppy in
the interior of any simple polygon by walking along the dual tree of any triangulation. Can
the human always catch the puppy in any planar straight-line graph? Inside any polygon
with holes?
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