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Abstract
A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018,
FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of
distance metrics, including all norms. In particular, these data structures achieve approximation on
the order of p for ℓd

p norms with space complexity nearly linear in the dataset size n and polynomial
in the dimension d, and query time sub-linear in n and polynomial in d. The main shortcoming is
the exponential in d pre-processing time required for their construction.

In this paper, we describe a more direct framework for constructing NNS data structures for
general norms. More specifically, we show via an algorithmic reduction that an efficient NNS data
structure for a metric M is implied by an efficient average distortion embedding of M into ℓ1 or the
Euclidean space. In particular, the resulting data structures require only polynomial pre-processing
time, as long as the embedding can be computed in polynomial time.

As a concrete instantiation of this framework, we give an NNS data structure for ℓp with
efficient pre-processing that matches the approximation factor, space and query complexity of the
aforementioned data structure of Andoni et al. On the way, we resolve a question of Naor (Analysis
and Geometry in Metric Spaces, 2014) and provide an explicit, efficiently computable embedding
of ℓp, for p ≥ 1, into ℓ1 with average distortion on the order of p. Furthermore, we also give data
structures for Schatten-p spaces with improved space and query complexity, albeit still requiring
exponential pre-processing when p ≥ 2. We expect our approach to pave the way for constructing
efficient NNS data structures for all norms.
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1 Introduction

In the nearest neighbor problem, a fundamental problem in computational geometry, we are
given an n-point subset P of a metric space M with a distance function dM, and our goal is
to preprocess P into a data structure that, given a query point q ∈ M, finds a point x ∈ P

minimizing dM(x, q). The main parameters of a nearest neighbor search data structure are
the pre-processing time required to construct the data structure given P ;
the space taken up by the data structure, in words of memory;
the query time required to answer a nearest neighbor query.
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50:2 Near Neighbor Search via Efficient Average Distortion Embeddings

A trivial solution is to store P as a list of points and to answer queries by linear search.
Ignoring the time required to compute distances, this solution takes Θ(n) space, but also
requires Θ(n) query time, which is prohibitively large when we have a large data set and
expect to answer many queries. However, in some cases it is possible to use the geometry of
the metric to design data structures with much more efficient query procedures and nearly
the same space requirements. For instance, Lipton and Tarjan [19] gave a data structure
for the nearest neighbor problem in the 2-dimensional Euclidean plane with O(n log n)
pre-processing, O(n) space, and O(log n) query time. This result has been extended to
d-dimensional Euclidean space (see e.g. [21]), and other d-dimensional normed spaces. There
is, however, no known nearest neighbor data structure for the d-dimensional Euclidean space
that achieves space that is polynomial in n and d, and query time that is polynomial in d,
and sublinear in n (i.e., O(poly(d) · n1−α) for some α > 0).1 There is, furthermore, some
evidence that no such data structure exists [30].

The nearest neighbor search problem finds a multitude of applications beyond computa-
tional geometry, in areas as diverse as databases, computer vision, and machine learning.
For example, it is used to find joinable tables in publicly available data [24]; for object
recognition [22] and shape matching [10] in computer vision; to solve analogical reasoning
tasks [23]; in machine learning, the k-Nearest Neighbors classifier is a common baseline. In
these applications, often both the data set size n and the dimension d are large, making query
times that are linear in n or exponential in d unacceptable. It makes sense then to relax this
problem in the hope of allowing for efficient data structures in the high-dimensional regime.
A common relaxation is to allow returning an approximate nearest neighbor to the query
point q, i.e., a point x ∈ P for which dM(x, q) ≤ c miny∈P dM(y, q) for some approximation
factor c > 1. A long and fruitful line of work, recently surveyed in [4], has shown that it is
possible to construct data structures for this approximate nearest neighbor problem over
certain spaces such as the d-dimensional Euclidean or Manhattan distance that use space
O(n1+ε · poly(d)) and support queries in time O(nε · poly(d)), for a constant ε < 1 that goes
to 0 as the approximation factor c goes to infinity.

Rather than solving the nearest neighbor search problem directly, it is more convenient
to fix a scale for the distance, and work with the (c, r)-near neighbor search ((c, r)-NNS)
problem, defined below.

▶ Definition 1. In the (c, r)-near neighbor search ((c, r)-NNS) problem, we are given a set
of n points P in a metric space (M, dM), and are required to build a data structure so that
given a query point q ∈ M with the guarantee that dM(x∗, q) ≤ r for some x∗ ∈ P , we can
use the data structure to output a point x ∈ P satisfying dM(x, q) ≤ cr with probability at
least 2

3 .

It was shown by Indyk and Motwani [15] that the approximate nearest neighbor problem can
be reduced to solving poly(log n) instances of the (c, r)-NNS problem. Therefore, we focus
on the latter problem from this point onward.

Most (but not all) efficient data structures for the NNS problem in the high-dimensional
regime are based on the idea of locality sensitive hashing (LSH), introduced by Indyk and
Motwani [15]. A locality sensitive family of hash functions is a probability distribution H
over random functions h : M → Ω such that pairs of close points are much more likely to be
mapped by h to the same value than far points. In particular, pairs of points at distance at

1 Here and in the rest of the paper, we use the notation poly(A) to denote the class of polynomials in the
expression A.
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most r get mapped to the same bucket with probability at least p1, while pairs of points
at distance at least cr get mapped to the same bucket with probability at most p2, with
p1 > p2. Indyk and Motwani showed that an LSH family implies a data structure for the
(c, r)-NNS problem with space O(n1+ρ log1/p2(n)), and query time O(nρ log1/p2(n)), where
ρ = log(1/p1)

log(1/p2) . Moreover, they constructed LSH families for the Hamming and Manhattan
(i.e., ℓ1) distance with ρ ≈ 1

c . Subsequent work also showed the existence of LSH families for
the Euclidean distance (i.e., ℓ2), as well as the ℓp metric for 1 ≤ p ≤ 2, and improved the
parameters [2, 12]. The LSH definition above has the property that the distribution H is
independent of the dataset P . Sometimes, however, data structures with better trade-offs
can be constructed by allowing H to depend on properties of P [3, 5, 8].

Until recently, relatively little was known about the NNS problem beyond the ℓp spaces
for 1 ≤ p ≤ 2, and the ℓd

∞ space,2 for which Indyk gave an efficient deterministic decision
tree data structure with approximation O(log log d) [14]. Data structures for other spaces
can be constructed by reducing to these special cases via bi-Lipschitz embeddings. I.e., if
for some metric M we can find an efficiently computable injection f : M → ℓd

2 such that
∥f(x) − f(y)∥2 ≈ dM(x, y) for all x, y ∈ M, then we can use NNS data structures for ℓd

2 to
solve the NNS problem in M. The best approximation factor achievable by this approach
depends on the distortion of f , which measures how well ∥f(x) − f(y)∥2 approximates
dM(x, y) in the worst case, and is defined as ∥f∥Lip · ∥f−1∥Lip, where

∥f∥Lip := sup
x ̸=y,x,y∈M

∥f(x) − f(y)∥
dM(x, y) , ∥f−1∥Lip := sup

x ̸=y,x,y∈M

dM(x, y)
∥f(x) − f(y)∥2

are the Lipschitz constants of f and its inverse, respectively. Although this approach does
yield some non-trivial results (see [4] for a survey), it only produces data structures with
approximation c ≥ d

1
2 − 1

p even in the special case of ℓd
p (with p > 2), as this is the best

possible distortion achievable by a bi-Lipszhitz embedding into ℓ2 (see, e.g., [11]). It is
natural to ask if the best approximation achievable by an efficient NNS data structure for
a metric M is characterized by the optimal distortion of a bi-Lipschitz embedding into ℓ2.
More generally, a fundamental problem in high-dimensional computational geometry is to
determine the geometric properties of a metric space that allow efficient and accurate NNS
data structures.

A recent line of work showed that the answer to the first question above is negative, and
there exist efficient NNS data structures with approximation much better than what is implied
by bi-Lipszhitz embeddinds into ℓd

2 or ℓd
1 [6, 7]. These papers give data-dependent LSH

families for any d-dimensional normed space with approximation factor that is sub-polynomial
in the dimension d. A sample theorem is the following.

▶ Theorem 2 ([6]). For any r > 0, p ≥ 2 and any ε ∈ (0, 1), there is some c ≲ p
ε such

that the following holds. For any set P of n points in Rd such that for all x ∈ Rd we have
|Bℓd

p
(x, cr) ∩ P | ≤ n

2 , there exists a probability distribution on axis-aligned boxes S satisfying

P
[

n

4 ≤ |S ∩ P | ≤ 3n

4

]
= 1

∥x − y∥p ≤ r =⇒ P[|S ∩ {x, y}| = 1] ≤ ε.

2 Recall the ℓd
p norm on Rd: ∥x∥p :=

(∑d

i=1 |xi|p
)1/p

for 1 ≤ p < ∞, and ∥x∥∞ := maxd
i=1 |xi|.

SoCG 2021
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Here, Bℓd
p
(x, cr) = {y ∈ Rd : ∥y−x∥p ≤ cr} is the ℓd

p-ball of radius cr centered at x. Moreover,
here and in the rest of the paper, the notation A ≲ B means that there exists an absolute
constant C, independent of all other parameters, such that A ≤ CB.

Theorem 2 gives a form of LSH: we can think of points inside S as being mapped to 1,
and points outside mapped to 0. We still have the p1 condition: close points get mapped to
the same value with probability at least 1 − ε. Rather than guaranteeing that far points are
less likely to be mapped to the same value, we have a data-dependent condition: if the data
set contains no dense clusters of points, then most pairs of points are mapped to different
values. It is not hard to construct a randomized decision tree using Theorem 2, and [6]
showed how to use it to give a data structure for (c, r)-NNS over ℓd

p with approximation
c ≲ p

ε , space O(n1+ε · poly(d)) and query time O(nε · poly(d)). Similar results were also
proved for the Schatten-p norms, which extend the ℓp norms to matrices, and for arbitrary
norms (with appropriate access to the norm ball) in [7].

Theorem 2, however, has a significant shortcoming: it does not guarantee that the
distribution over axis-aligned boxes can be sampled efficiently given P as input. Indeed,
the proof of the theorem in [6], as well as the proofs of other similar results in [6, 7], rely
on a duality argument and yield sampling algorithms with running time exponential in the
dimension. For this reason, the resulting data structures have pre-processing time that is
also exponential in the dimension. These works thus raise an intriguing open problem: can
we sample a distribution such as the one in Theorem 2 in time polynomial in n and d?

1.1 Our Results on Near Neighbor Search
In this work, we resolve the open problem above (also posed explicitly in [6]), and prove the
following theorem.

▶ Theorem 3. Let ε ∈ (0, 1], r > 0, p ≥ 2. For some c ≲ p
ε , there exists a data structure for

the (c, r)-NNS problem over n-point sets in ℓd
p with

pre-processing time poly(nd);
space O(n1+ε log(n) · poly(d));
query time O(nε log(n) · poly(d)).
We note that the only previous NNS data structure over ℓd

p (for p > 2) with pre-processing
time poly(nd) could only achieve approximation on the order of 2p, and used polynomial
rather than nearly linear space [28, 9].

We further extend this result to the Schatten-p norms, which are a natural extension
of ℓd

p to matrices. For a d × d symmetric real matrix X and p ∈ [1, ∞], the Schatten-p
norm ∥X∥Cp of X is defined as the ℓp norm of the eigenvalues of X. In addition to their
intrinsic interest [16, 17, 18, 27], the Schatten-p spaces are an interesting first step when
extending geometric and analytic results from the ℓp spaces to more general norms: while
Schatten-p shares many properties with ℓp, extending proofs and algorithms from ℓp to
Schatten-p requires finding coordinate-free and often, more natural arguments. Here, we
partially succeed in extending Theorem 3 to Schatten-p spaces, and show the following two
theorems.

▶ Theorem 4. Let ε ∈ (0, 1], r > 0, 1 ≤ p ≤ 2. For some c ≲ 1
ε2/p , there exists a data

structure for the (cr, r)-NNS problem over n-point sets of d × d symmetric matrices with
respect to the Schatten-p norm with

pre-processing time poly(nd);
space O(n1+ε log(n) · poly(d));
query time O(nε log(n) · poly(d)).
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The only previously known NNS data structures for Schatten-p with constant approxi-
mation and poly(nd) pre-processing time have polynomial rather than nearly linear space
complexity. While not explicitly described there, such data structures follow from the
techniques in [28, 9], in combination with the results in [29].

▶ Theorem 5. Let ε ∈ (0, 1], r > 0, p ≥ 2. For some c ≲ 1
ε , there exists a data structure for

the (cr, r)-NNS problem over n-point sets of d × d symmetric matrices with respect to the
Schatten-p norm with

pre-processing time poly(n) · 2poly(d);
space O(n1+ε log(n) · poly(d));
query time O(nε log(n) · poly(d)).
In this theorem, the pre-processing time is exponential in the dimension as it is, as well,

in [6]. Nevertheless, the data structure in Theorem 5 has the benefit that it has query time
polynomial in d, rather than polynomial in dp, as in the data structure in [6].

1.2 Techniques and Results on Average Distortion Embeddings
To prove Theorems 3, 4, and 5, we develop a new approach for proving partitioning statements
such as Theorem 2 that relies on the notion of embeddings with average distortion, defined
below (this definition is taken from [26]).

▶ Definition 6. Given two metric spaces (M, dM) and (N , dN ), and an n-point set P ⊆ M,
we say a function f : M → N is an embedding of M into N with q-average distortion D

(with respect to P ) if

∑
x∈P

∑
y∈P

dN (f(x), f(y))q ≥
∥f∥q

Lip

Dq

n∑
x∈P

n∑
y∈P

dM(x, y)q.

As before, ∥f∥Lip is the Lipschitz constant of f , i.e., ∥f∥Lip = supx ̸=y,x,y∈M
dN (f(x),f(y))

dM(x,y) .
When the embedding has 1-average distortion D, we simply say it has average distortion
D. If for every integer n and any n point set in M, there exists an embedding into N with
average distortion D, then we say that M embeds into N with average distortion D.

Somewhat informally, we show that if a metric space M embeds into ℓd
1 with average

distortion D via an embedding f that can be efficiently computed from P , and efficiently
evaluated, then M supports NNS data structures with approximation c ≲ D log D

ε , space
O(n1+ε), query time O(nε), and efficient pre-processing. (Precise statements follow from
Lemmas 14 and 19, and Theorem 20 below.) This connection strengthens the reductions
via bi-Lipschitz embeddings mentioned above. Moreover, this connection between NNS
and average distortion embeddings is closely related to the connection between NNS and
the cutting modulus from prior work [6]. In particular, bounds on the cutting modulus
in [6] were proved by utilizing comparison inequalities between non-linear spectral gaps, in
the sense of [25]. Such comparison inequalities were shown in [25] to be equivalent to the
existence of average distortion embeddings. However, the connection between the cutting
modulus and NNS data structures in [6] is not algorithmic: it involves a non-algorithmic
duality argument that only yields data structures with exponential pre-processing, even
when the cutting modulus bound is witnessed by an efficiently computable average distortion
embedding. By contrast, our new connection between average distortion embeddings and
NNS data structures is an efficient reduction: if the embedding is computationally efficient,
so is the data structure, including the pre-processing.

SoCG 2021
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To reduce constructing efficient NNS data structures to finding efficient average distortion
embeddings, we first formalize the type of data dependent LSH family implicit in Theorem 2
and in other similar results. As mentioned above, these data-dependent LSH families relax
the p2 requirement of the standard LSH definition, by requiring that it holds empirically for
the input point set P . I.e., we require that each hash function in the family maps at least
1 − p2 fraction of the pairs of points in P to different values (see Definition 9 for the precise
requirement). As noted above, such a data-dependent LSH family is still sufficient to design
an NNS data structure with similar running time and space guarantees as given by standard
LSH (Lemma 14). Moreover, it is also not hard to construct a data-dependent LSH family
using a standard LSH family when the point set P is dispersed, i.e., when no ball of radius
cr contains more than half of P (Lemma 15).

So far these results just give a different perspective on standard NNS data structures
using LSH. The benefit of using data-dependent LSH, however, is that the data-dependent
requirement allows using a larger class of embeddings in reductions. While the existence
of a standard LSH family for, e.g., ℓd

1, is inherited by all metrics that have a bi-Lipschitz
embedding into ℓd

1 with small distortion,3 the existence of a data-dependent LSH family for
ℓd

1 is inherited by metrics M that have, for any dispersed point set P ⊆ M, an embedding f

into ℓd
1 which (1) does not expand distances too much, and (2) does not map a dispersed

point set P into a point set that is not dispersed. We formally define this class of embed-
dings, which we call embeddings with weak average distortion, in Definition 6 below. To
finish the connection between NNS and average distortion embeddings, we prove that the
existence of (computationally efficient) average distortion embeddings implies the existence
of (computationally efficient) weak average distortion embeddings. The proof of this fact uses
ideas previously used to relate embeddings with p- and q-average distortion (see Section 5.1
in [26]).

Finally, in order to utilize this general connection between average distortion embeddings
and NNS data structures, we need to construct explicit, efficiently computable average
distortion embeddings into ℓd

1 or ℓd
2. Naor has shown that the existence of average distortion

embeddings of a metric space M into ℓ2 is equivalent to proving a certain inequality between
non-linear spectral gaps, and, using this equivalence, he showed that when p ≥ 2 ℓd

p embeds
into ℓ2 with average distortion D ≲ p [25, 26]. The connection between average distortion
embeddings and spectral gap inequalities, however, uses a duality argument, and does not
provide explicit, efficiently computable embeddings. In fact, an explicit construction of an
embedding of ℓd

p into ℓ2 is given as an open problem in [25]. Here we resolve (a variant of)
this open problem. In the theorem below, the functions Mp,1, M̃p,1 : ℓd

p → ℓd
1 are defined by

Mp,1(x) = (sign(xi)|xi|p)d
i=1 M̃p,1(x) = ∥x∥pMp,1

(
x

∥x∥p

)
= ∥x∥1−p

p Mp,1(x),

with M̃p,1(0) = 0.

▶ Theorem 7. For any p ≥ 1, and any n-point set P in Rd, for t ∈ Rd so that

∀i ∈ [d] : |{x ∈ P : xi < ti}| = |{x ∈ P : xi > ti}|,

the map g : ℓd
p → ℓd

1 defined by g(x) = M̃p,1(x − t) has average distortion D ≲ p.

We note that Naor’s open problem was defined for embeddings into ℓ2 and 2-average
distortion. Our techniques can be extended to give similar results for such embeddings as
well.

3 In fact a weaker notion of randomized embedding suffices [4].
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Above, Mp,1 is the classical Mazur map from ℓd
p to ℓd

1. This map sends the unit sphere in
ℓd

p to the unit sphere in ℓd
1, and its restriction to the sphere has Lipschitz constant bounded

by p up to absolute constants. The Mazur map was previously used by Matoušek to prove
bounds on non-linear spectral gaps in ℓd

p [20]. As mentioned before, such bounds are closely
related to the existence of average distortion embeddings, via Naor’s duality argument
in [25]. The Mazur map itself, however, cannot be used directly to give an average distortion
embedding, since its Lipschitz constant is unbounded over all of ℓd

p. Our main technical
contribution in the proof of Thereom 7 is the observation that the rescaled Mazur map M̃p,1
has Lipschitz constant ≲ p everywhere, and that the machinery of Matoušek’s spectral gap
argument can be then used to prove a bound on the average distortion directly, without
going through a duality argument.

Our technique for constructing explicit average distortion embeddings in fact extends to
every pair of normed spaces X and Y for which we have a Hölder-continuous homeomorphism
f between the unit spheres of X and Y . We can then show that this homeomorphism can be
extended to a function f̃ which is Hölder-continuous on all of X, and that there is a shift t ∈ X

so that the map g : X → Y defined by g(x) = f̃(x − t) is an average distortion embedding of
(a snowflake of) X into Y . One can then use a variety of known homemorphisms between
spheres and construct reasonably explicit average distortion embeddings. We do so for the
Schatten-p spaces, and one can also use the homeomorphism between finite dimensional
normed spaces in [7] to give results for general normed spaces, too. Except for some special
cases like ℓd

p and Schatten-p for 1 ≤ p ≤ 2, however, one aspect of these embeddings is still
not fully explicit, and in particular, not computationally efficient. Namely, the argument
showing that there exists a good shift t, which was first given in [6], uses the theory of
topological degree that is also used in textbook proofs of Brouwer’s fixed point theorem, and
does not suggest an efficient algorithm for computing t. We leave finding such an algorithm,
even for the case of Schatten-p norms with p ≥ 2, as an open problem.

2 Weak Average Distortion Embeddings Imply NNS

We are going to assume that the metric spaces (M, dM) we deal with are endowed with a
dimension dim(M), which we use to quantify running times of basic tasks, e.g., evaluating
distances. We will mostly deal with metric spaces defined by a norm on Rd, in which case
dim(M) = d. We will assume that a point x ∈ M can be represented by poly(dim(M)) bits,
and that the distance dM(x, y) can be computed in time poly(dim(M)), as well.

In this section we first introduce a formalization of the data-dependent LSH families we
are going to use. We show how to use such LSH families to construct a data structure for the
NNS problem, by generalizing the randomized decision tree data structure from [6]. Then
we introduce the notion of weak average distortion embedding, and show that it can weak
average distortion embeddings into ℓd

1 or ℓd
2 imply the existence of data-dependent LSH.

2.1 Data-dependent LSH Families Imply NNS
The following definition is standard.

▶ Definition 8. Let (M, dM) be a metric space and fix a scale r > 0, approximation factor
c > 1, and range Ω. Then a probability distribution H over maps from M to Ω is called
(r, cr, p1, p2)-sensitive if

dM(x, y) ≤ r =⇒ P
h∼H

[h(x) = h(y)] ≥ p1,

dM(x, y) > cr =⇒ P
h∼H

[h(x) = h(y)] < p2.

SoCG 2021
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Our data structures are based on the following, in a sense, weaker definition which allows
H to depend on the point set, and defines p2 in terms of the how hash functions spread the
points among the bins they are hashed to.

▶ Definition 9. Let (M, dM) be a metric space and fix a scale r > 0, and range Ω. Let
P ⊆ M be set of cardinality |P | = n. Then a probability distribution H(P ) over maps from
M to Ω is called (r, p1, p2)-empirically sensitive for P if

dM(x, y) ≤ r =⇒ P
h∼H

[h(x) = h(y)] ≥ p1,

∀ω ∈ Ω, ∀h ∈ supp(H) : |{x ∈ P : h(x) = ω}| ≤ p2n.

We call families of hash functions H(P ) as in Definition 9 data-dependent locality sensitive
hash functions, because p2 constrains the data-dependent distribution of the points in P

among the bins defined by the hash function.

▶ Definition 10. Let (M, dM) be a metric space and fix a scale t > 0. A set P of n points
in a metric space M is called (t, β)-dispersed if, for all x ∈ M, |P ∩ BM(x, t)| ≤ (1 − β)n.

The following is a straightforward observation.4

▶ Lemma 11. Suppose for a set P of n points in a metric space M, for every x0 ∈ P we
have |P ∩ BM(x0, 2t)| ≤ (1 − β)n. Then P is (t, β)-dispersed.

▶ Definition 12. For a metric space (M, dM), and a (multi-)set P ⊂ M of size n, we use
the notation

ΨM(P, t) = |{(x, y) ∈ P × P : dM(x, y) > t}|
n2 .

The following lemma relates the notion of being (r, β)-dispersed and the function ΨM(P, t).

▶ Lemma 13. Let (M, dM) be a metric space, and let P be a set of n points in M. Then, if P

is (t, β)-dispersed, then ΨM(P, t) ≥ β. Conversely, P is (t, β)-dispersed for β = 1
2 ΨM(P, 2t).

The next lemma shows that data-dependently LSH families imply the existence of efficient
NNS data structures.

▶ Lemma 14. Let (M, dM) be a metric space and let r > 0, and c > 1. Suppose that
for every (cr, 1

2 )-dispersed m-point set Q ⊆ M, there exists a (r, p1(Q), p2(Q))-empirically
sensitive H(Q) such that log(1/p1(Q))

log(1/p2(Q)) ≤ ρ where all p2(Q) ≤ p2 for some p2 ∈ (0, 1). Define
b = max( 1

2 , p2). Further, suppose that any h in the support of H(Q) can be stored in space
and evaluted in time polynomial in dim(M), that h ∼ H(Q) can be sampled in time Ts(m),
for a non-decreasing function Ts(m) and the range Ω of H(Q) has size at most exp(dim(M)).
Then there exists a data structure for the (O(c), r)-NNS problem over n-point sets in M with

pre-processing time O(poly(n log1/b(n) dim(M)) · Ts(n));
space O(n1+ρ log1/b(n) · poly(dim(M)));
query time O(nρ log1/b(n) · poly(dim(M)));

The terminology used in its proof is largely adopted from [6]. The data structure is a
randomized decision tree similar to the one in [6] with a couple of generalizations: we allow
the hash function to split space into more than two parts, and, more importantly, we allow
the parameters of the data-dependent LSH family to change from one node of the decision
tree to the next.

4 The proofs of the statements in this section can be found in the full version of this paper.
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2.2 Data-dependent LSH Families from LSH Families
We show that the existence of an LSH family implies the existence of a data-dependent LSH
family.

▶ Lemma 15. Let (M, dM) be a metric space and let r > 0, and c > 1. Suppose there exists
a (r, cr, p1, p2)-sensitive H where p2 ≤ 1/2. Let P ⊆ M be a (cr, β)-dispersed n-point set.
Then, for

p′
2 =

√
1 − β(1 − 2p2)

the event E = {maxω∈Ω |{x ∈ P : h(x) = ω}| ≤ p′
2n} occurs with probability at least 1/2, and

H conditioned on E is (r, 2p1 − 1, p′
2)-empirically sensitive for P .

We instantiate this lemma with the LSH for ℓd
1 due to Indyk and Motwani [15] (see

also [13]).

▶ Lemma 16. For any r > 0, any c > 1, and any ∆ ≥ 1, the space ℓd
1 restricted to [−∆, ∆]d

has a (r, cr, p1, p2)-sensitive H with p1 = 1 − r
2d∆ and p2 = 1 − cr

2d∆ . Moreover, h ∼ H can
be sampled and evaluated in constant time.

Together with Lemma 15, Lemma 16 implies the following corollary.

▶ Corollary 17. Let r > 0, c > 6, ∆ ≥ 1, and let P be a (cr, β)-dispersed n-point set in
ℓd

1 restricted to [−∆, ∆]d. There exists a (r, 1 − 8
c , 1 − β

4 )-empirically sensitive Hℓd
1
(P ) for

P . Moreover, a function h ∼ H(P ) can be sampled in O(n poly(d∆/r)) time, evaluated in
poly(d∆/r) time, and stored using poly(d∆/r) bits.

2.3 Weak Average Distortion Embeddings
Below is our definition of weak average distortion embedding. We will use such embeddings
to construct data-dependent LSH families for spaces other than ℓd

1.

▶ Definition 18. Let (M, dM) and (N , dN ) be two metric spaces, and let P ⊆ M be an
n-point set. A function f : M → N is an embedding with weak average distortion D with
respect to P if we have

sup
t≥0

tΨN (f(P ), t) ≥ ∥f∥Lip

D
sup
t≥0

tΨM(P, t).

The name “weak average distortion” originates from the fact that supt≥0 tΨM(P, t) is the
weak-L1 norm of dM with respect to the uniform measure over f(P ) × f(P ). So, a weak
average distortion embedding is required to not expand distances too much while also not
decreasing the weak-L1 norm of the pairwise distances. The analogous notion of q-average
distortion, where we instead take the Lq norm of dM with respect to the same measure (see
Definition 6), has been studied before. The definition of weak average distortion embedding
appears to be new. It can be extended in the natural way to more general probability
measures, but we will not pursue this here.

In this subsection, we show that a weak average distortion embeddings of M into ℓd
1

imply, via Corollary 17, a data-dependent LSH family for M.

▶ Lemma 19. Let r > 0, D ≥ 1, and ∆ > 0. Fix an approximation factor c ≥ 48D. Suppose
that P is a (cr, 1

2 )-dispersed set of n points in a metric space (M, dM), and let ∆ be the
diameter of P . If f : M → ℓd

1 (or f : M → ℓd
2) is an embedding with weak average distortion

D with respect to P , then there exists a (r, p1, p2)-empirically sensitive H(P ) for P with
log(1/p1)
log(1/p2) ≲ D

c and p2 ≥ 1 − cr
16D∆ .
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Moreover, assume that d ∈ poly(dim(M)), and that f can be computed from P in time
T , and then stored in poly(dim(M)) bits, and evaluated in poly(dim(M)) time. Then
a function h ∼ H(P ) can be sampled in time O(T + poly(n dim(M)∆/r)), evaluated in
poly(dim(M)∆/r) time, and stored using using poly(dim(M)∆/r) bits.

3 From Average to Weak Average Distortion Embeddings

We show the following theorem connecting average and weak average distortion embeddings.

▶ Theorem 20. Suppose that the metric space (M, dM) embeds with into a Banach space
(X, ∥ · ∥) with average distortion D. Then, for any n-point set P ⊆ M, there exists an
embedding with weak average distortion D′ ≲ D(1 + log D).

Moreover, assume that for any point set Q of m ≤ n points in M, an embedding into
X with average distortion D with respect to Q can be can be computed from Q in time T ,
and then stored in poly(dim(M)) bits, and evaluated in poly(dim(M)) time. Then, for
any n-point set P ⊆ M, the embedding into X with weak average distortion D′ can be
computed in time poly(T + n dim(M)), stored in poly(dim(M)) bits, and evaluated in time
poly(dim(M)).

The proof of Theorem 20 is inspired by arguments relating p-average and q-average
distortion embeddings for different p and q in [26], and is discussed in complete detail in the
full version of this paper.

4 Efficient Average Distortion Embeddings

4.1 Average Distortion Embeddings from Bi-Hölder Homeomorphisms
We first give a general construction of embeddings with bounded average distortion using
homeomorphisms between spheres of normed spaces. The main theorems mentioned in
the Introduction are then proved using this general construction and the classical and
non-commutative Mazur maps as the homeomorphisms. Proofs and some of the additional
theorems from this section can be found in the full version of this paper. For a Banach space
(X, ∥ · ∥), we will use the notation SX = {x ∈ X : ∥x∥ = 1}.

We begin by showing that homeomorphisms between spheres can be radially extended to
the entire normed spaces while retaining their continuity properties. The lemma below was
also shown in [7] but with worse constants.

▶ Lemma 21. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces, and let α, β ∈ (0, 1]. Let
f : SX → SY be a function that, for any x, y ∈ SX satisfies

1
L

∥x − y∥1/β
X ≤ ∥f(x) − f(y)∥Y ≤ K∥x − y∥α

X .

Then the function f̃ : X → Y defined by f̃(x) = ∥x∥α
Xf

(
x

∥x∥X

)
, and f̃(0) = 0 satisfies the

following for any x, y ∈ X:

∥f̃(x) − f̃(y)∥Y ≤ (1 + 2αK)∥x − y∥α
X (1)

∥f̃−1(x) − f̃−1(y)∥X ≤
(

1
αβ

+ 2βLβ

)
∥x − y∥β

Y max{∥x∥Y , ∥y∥Y } 1
α −β (2)

Moreover, ∥f̃(x)∥Y = ∥x∥α
X for all x ∈ X.
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Recall that a median of a set of n points P in a metric space M is any point y ∈ M that
minimizes 1

n

∑
x∈P dM(x, y). The next definition is an approximate version of the median.

▶ Definition 22. We say that a point y in a metric space M is a (C, ε)-approximate median
of a finite point set P ⊆ M if

1
n

∑
x∈P

dM(x, y) ≤ C min
z∈M

1
n

∑
x∈P

dM(x, z) + ε.

The next lemma is our main tool for constructing explicit average distortion embeddings.
Recall that, for α ∈ (0, 1] the α-snowflake of a metric space (M, dM) is the metric space
Mα on the same ground set, with distance function dM(x, y)α.

▶ Lemma 23. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces, and let α ∈ (0, 1]. Let
f : SX → SY be a function that, for any x, y ∈ SX satisfies

∥f(x) − f(y)∥Y ≤ K∥x − y∥α
X ,

and let f̃(x) = ∥x∥α
Xf

(
x

∥x∥X

)
, f̃(0) = 0. Let P ⊆ X be an n point set, let t ∈ X, and define

g : Xα → Y by g(x) = f̃(x − t). Suppose that one of the following conditions is satisfied for
some C ≥ 1 and ε ≤ 1

4n2

∑
x∈P

∑
y∈P ∥x − y∥α

X

1. 0 is a (C, ε)-approximate median for g(P );
2.

∥∥ 1
n

∑
x∈P g(x)

∥∥
Y

≤ ε.
Then g is an embedding of the α-snowflake Xα into Y with average distortion at most D

with respect to P , where D ≲ C(1 + K) if the first condition is satisfied, and D ≲ 1 + K if
the second condition is satisfied.

Its proof is similar in spirit to bounds on non-linear Rayleigh quotients proved in [7], and is
discussed in the full version. In order to use Lemma 23, we need to find some t ∈ X that
satisfies one of the two assumptions in the lemma. A general method for establishing the
existence of such a t was proposed in [6, 7, 26], and relies on the following lemma. For a
proof, see Lemma 45 from [26].

▶ Lemma 24. For any finite dimensional Banach space (X, ∥ · ∥), and any continuous
function h : X → X such that

lim
M→∞

inf
t:∥t∥≥M

(∥t∥ − ∥h(t) − t∥) = ∞,

we have that h is surjective.

Using Lemma 24, we can show that there exists a t so that 0 is the mean of g(P ). The
argument is essentially identical to arguments in [6, 7], but, since the result was not stated in
the general form given below, we include a proof of the following lemma in the full version.

▶ Lemma 25. Under the assumptions and notation of Lemma 21, there exists some t ∈ X

such that 1
n

∑
x∈P g(x) = 0. Moreover, any such t must satisfy ∥t∥X ≤

(
M
n

∑
x∈P ∥x∥α

X

) 1
α ,

for a constant M that only depends on K, L, α, β.

While Lemma 25 is very general, it does not readily give rise to an efficient algorithm
to find t. The proof of Lemma 24 in [6, 26] is existential, and relies on a topological degree
argument of the type used to prove Brouwer’s fixed point theorem. Identifying general cases
in which we can give an algorithmic proof of Lemma 25 is an interesting open problem. In
the full version of this paper, we instantiate Lemma 23 with the Mazur map (for embedding
ℓd

p) and the non-commutative Mazur map (for embedding Schatten-p), and give alternative
algorithmic methods for finding a good center t in these special cases. This leads us to the
proofs of Theorems 3, 4, and 5 stated in the Introduction.
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5 Conclusion and Open Problems

We have constructed data structures for the (c, r)-NNS problem with efficient pre-processing,
nearly linear space, and sub-linear query time with approximation c ≲ p in the case of ℓp

spaces for all p ≥ 1, and with c ≲ 1 for Schatten-p spaces for 1 ≤ p ≤ 2. Furthermore, we
have laid out a general framework for producing such efficient data structures for general
metrics: as long as there are (computationally efficient) average distortion embeddings of
such metrics into ℓd

1 or ℓd
2, we can produce efficient NNS data structures. This framework is

an analogue of the cutting modulus framework from [6], but allows efficient pre-processing.
This connection between NNS data structures and low average distortion embeddings

naturally warrants further research into constructing such computationally efficient embed-
dings of arbitrary metric spaces into ℓd

1 or ℓd
2. A natural first step is to do this for Schatten-p

spaces where p > 2. As noted earlier, the bottleneck in our construction is the design of
an efficient algorithm for computing a center T satisfying the conditions of Lemma 23 for
embedding Schatten-p into Schatten-2.

▶ Problem 1. Given a dataset P of n d × d symmetric matrices in Schatten-p, find a
matrix T in poly(n, d, 1/ε) time such that either 0 is a (C, ε)-median of M̃p,2(T − P ), or∥∥∥ 1

n

∑
X∈P M̃p,2(T − X)

∥∥∥
C2

≤ ε.

In our quest to construct efficient NNS data structures for arbitrary finite-dimensional
norms, a slightly more ambitious goal is to make the main result of [26] algorithmic, as
follows.

▶ Problem 2. Given an n-point dataset P in a d-dimensional normed space (M, ∥ · ∥),
construct an embedding f : M 1

2 → ℓd
2 with 2-average distortion ≲

√
log d with respect to P

such that f can be computed in time poly(nd), stored in poly(d) bits, and evaluated in time
poly(d).

A solution to this problem will imply NNS data structures for any d-dimensional norm with
polynomial time pre-processing, nearly linear space, sub-linear query time, and approximation
poly-logarithmic in the dimension, solving also an open problem in [6]. Note that such data
structures are not known even with exponential pre-processing, but it was shown in [6] that
they do exist in the cell-probe model.

Finally, on a somewhat different note, it would also be very interesting to further optimize
the approximation factor c of our NNS data structures, even in the special case of ℓp spaces.

▶ Problem 3. Establish Theorem 3 with c ≲ log p
ε .

A solution to this problem would interpolate between data structures for ℓd
1 and ℓd

2, where
constant approximation is possible, and Indyk’s data structure for ℓd

∞ which guarantees an
O(log log d) approximation [14], and is optimal in several natural models [1].
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