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Abstract
We give a general fixed parameter tractable algorithm to compute quantum invariants of links
presented by planar diagrams, whose complexity is singly exponential in the carving-width (or the
tree-width) of the diagram.

In particular, we get a O(N 3
2 cwpoly(n)) ∈ NO(

√
n) time algorithm to compute any Reshetikhin-

Turaev invariant – derived from a simple Lie algebra g – of a link presented by a planar diagram with
n crossings and carving-width cw, and whose components are coloured with g-modules of dimension
at most N . For example, this includes the N th-coloured Jones polynomial.
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1 Introduction

In geometric topology, testing the topological equivalence of knots (up to isotopy) is a
fundamental yet remarkably difficult algorithmic problem.

A main approach is to compare knots by properties depending on their topological
types, called invariants. Starting with the introduction by Jones [15] in the 1980s of a
new polynomial invariant of knots, we have witnessed the birth of a new domain of low
dimensional topology called quantum topology. From the study of quantum groups [6, 14]
in algebra, topologists have designed new families of topological invariants for knots, links,
and 3-manifolds, such as the Reshetikhin-Turaev invariants [25]. In practice, these quantum
invariants have shown outstanding discriminative properties for non-equivalent knots and
links, e.g., in the composition of knot census databases [4] that are fundamental to the
mathematical work in geometric topology. The infinite families of quantum invariants have
even been conjectured to be complete, i.e., that no non-equivalent knot may have all identical
quantum invariants. They are also at the heart of deep mathematical conjectures in the
field [7, 8, 16, 24].

Consequently, in order to effectively distinguish between knots or verify experimentally
mathematical conjectures, efficient algorithms to compute quantum invariants are of strong
interest. However, even the simplest quantum invariants, such as the Jones polynomial [13],
are #P-hard to compute. A successful approach towards practical implementations has been
the introduction of parameterized complexity to low dimensional topology. Independently,
computing the Jones polynomial [19] and the HOMFLYPT polynomial [3] have been shown
to admit fixed parameter tractable algorithms in the tree-width of the input link diagrams.
Note that similar techniques have been applied to quantum invariants of 3-manifolds, such
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as the Turaev-Viro-Barrett-Westbury invariants of triangulated 3-manifolds [5, 30], where
other types of parameters have also been considered [22]. These algorithms led to significant
speed-ups in practice, with applications in experimental mathematics [4, 21].

Contribution. We introduce an algorithm to compute quantum invariants derived from
ribbon categories [25, 29], taking into account the carving-width of the input link diagram.

▶ Theorem 1. Fix a strict ribbon category C of Z[q]-modules, and free modules V1, . . . , Vm ∈ C
of dimension bounded by N . The problem:

Quantum invariant at C, V1, . . . , Vm:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JC

L(V1, . . . , Vm)

can be solved in O(poly(n)N 3
2 cw) ∈ NO(

√
n) machine operations, with O(N cw + n) memory

words, where n and cw are respectively the number of crossings and the carving-width of the
diagram D(L).

In particular, this implies that, up to some easily computable re-normalisation, computing
any fixed Reshetikhin-Turaev invariant derived from a simple Lie algebra g is fixed parameter
tractable (complexity class FPT) in the carving-width (and also the tree-width) of the input
link diagram.

To compare with the state-of-the-art, the only known parameterized and sub-exponential
time algorithms for quantum knot invariants are the Jones polynomial [19] (g = sl(2,C)
and N = 2) and the HOMFLYPT polynomial [3] (which interpolates the invariants for
g = sl(m,C), for all m). So,

1. Theorem 1 generalises these results (fixed parameter tractable algorithm and sub-
exponential time algorithm) to all the infinitely many dimensions N ≥ 2 – the so
called coloured Jones polynomials – quantum invariants, and in general to all coloured
invariants derived from other simple Lie algebras g.

2. It also generalises Burton’s result on the parameterized complexity of the HOMFLYPT
polynomial, to offer a parameterized solution to the coloured HOMFLYPT polynomials
by interpolation; see [23].

3. More generally, for knot theorists, the algorithm of Theorem 1 is a low exponent ( 3
2 cw)

singly exponential algorithm for quantum invariants1. In practice, and considering
past experience in 3-manifolds, this work offers a practical algorithm in order to verify
fundamental mathematical conjectures [7, 8, 16, 24] experimentally, and further tools to
distinguish between non-equivalent knots in the constitution of knot censuses [4] thanks
to the outstanding discriminative power of quantum invariants.

4. Finally, for computer scientists, the Jones polynomial has been studied in detail as it has
a very rich complexity theory: it is #P -hard [13] but admits an FPT and sub-exponential
time algorithm [19] ; it is also one of the few known natural BQP-complete problems in
quantum computing [1]. This article completes the computational complexity picture
on quantum invariants by showing that very large families of them admit an FPT and
sub-exponential algorithm.

1 Note that previous algorithms [19] are expressed in terms of tree-width, which is proportional but not
equal to the carving-width, in consequence exponents are not directly comparable ; see Theorem 4.
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Figure 1 Left: Diagram of a 4-components oriented tangle; leftmost component has framing +2.
Right: Positive/negative twists and crossings. The .= symbol is an equivalence of diagrams.

The key approach of this work is the use of the abstract construction of quantum invariants
via ribbon categories, in order to state the complexity result in full generality. This way, we
abstract ourselves from the specificity of each singular invariant to give a general algorithm.

In Section 2 we recall the general definition of quantum invariants derived from ribbon
categories, and notions of parameterized complexity. In Section 3 we give the general dynamic
programming approach for the parameterized algorithm, relying on a decomposition of the
knot diagram. In Section 4 we detail the topological and algebraic operations necessary
to implement the dynamic programming procedure ; the connection between topology and
algebra relies on graphical calculus. Finally, in Section 5, we implement the algebraic
operations with matrix multiplications, and analyse their complexity and the complexity of
the whole algorithm. In conclusion, we prove that all arithmetic operations have polynomial
time complexity and prove the main Theorem 1 in Section 6. Finally, in [23], we implement the
algorithm and verify mathematical conjectures on formally intractable quantum invariants.

2 Background

We introduce the necessary notions from knot theory and parameterized complexity.

Tangles and their diagrams. A tangle is a piecewise linear embedding of a collection of
arcs and circles into R2 × [0, 1], such that the arcs’ endpoints belong to the top or bottom
boundaries R2 × {0} and R2 × {1}. A tangle intersecting i times R2 × {0} and j times
R2 × {1} is an (i, j)-tangle.

A link is a tangle whose connected components are all closed curves (a (0, 0)-tangle), and
a knot is a 1-component link. An orientation on a tangle is an orientation of each tangle
component. Two tangles are equivalent iff they differ by an ambient isotopy of R2 × [0, 1]
maintaining the boundary fixed.

A tangle diagram is a projection of the tangle into the plane, induced by a projection of
R2 × [0, 1] into R× [0, 1], sending R2 × {0} and R2 × {1} to R× {0} and R× {1} respectively.
In a tangle diagram, the only multiple points are crossings, at which one section of the tangle
crosses under or over another one transversally. We consider diagrams of (0, 0)-tangles (i.e.,
link diagrams) as drawn on the sphere S2. Component orientations are pictured with arrow
heads, and a k ∈ Z framing is pictured by k positive twists if k > 0, and k negative twists is
k < 0. See Figure 1. We refer to [17] for more details on knot theory.

Graphical calculus on coloured tangles. We work in the category C of free finitely generated
R-modules, for a commutative ring R, with their usual tensor product ⊗ and dual V ∗ for
every object V . Additionally, some fixed special objects and morphisms are distinguished
and play an important role:

SoCG 2021
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(a) a finite set of objects {Vi : i ∈ I} ⊂ C, called colours,
(b) for every pair of colours Vi, Vj , an isomorphism cVi,Vj

: Vi ⊗ Vj → Vj ⊗ Vi and its inverse
c−1

Vi,Vj
, called braidings,

(c) for every colour Vi, two morphisms bVi : 1 → Vi ⊗ V ∗
i and dVi : V ∗

i ⊗ Vi → 1, called
respectively co-evaluation and evaluation, and

(d) for every colour Vi, an isomorphism θVi : Vi → Vi and its inverse θ−1
Vi

, called a twist.

We call the ring R, seen as a module over itself, the unit module, and denote it by 1. Note
that the set of morphisms HomC(1,1) has the structure of a commutative ring, isomorphic to
R, i.e., every module morphism 1 → 1 is a multiplication by a scalar τ ∈ R. By convention,
the tensor product of zero objects is equal to R.

Such category of modules, with braidings, twists, evaluations and co-evaluations, is a strict
ribbon category if the objects and morphisms satisfy a certain set of additional equations.
The theory of strict ribbon category is outside the scope of this article, and we only use the
fact that strict ribbon categories define topological invariants of links (Theorem 2 below).
We refer the interested reader to [29] for the general theory.

Fix a strict ribbon category C. A colouring of a link L, with m ordered components
L1, . . . , Lm, is an assignment of a colour Vi ∈ C, 1 ≤ i ≤ m, to every component Li of L.

A link diagram is in standard position if it can be decomposed into the following pieces:
vertical strands, positive and negative crossings, positive and negative right twists, and caps
and cups. See Figure 3 for a Hopf link in standard position. Any link diagram can be
isotoped into standard position without modifying the diagram combinatorially [29].

Figure 2 presents the conversion from oriented coloured tangles to C-morphisms, called
graphical calculus, and Figure 3 gives a full example on the Hopf link. Specifically, given a
coloured link diagram D(L) in standard position, the graphical calculus turns the diagram
into a morphism, following a set of conversion rules (from link diagram to morphism) and
equivalence relations, pictured graphically in Figure 2, and described below:

Figure 2a (i)&(ii) A morphism f : U → V in C is represented graphically by a box, aligned
with x- and y−axis, called a coupon, with an incoming vertical V -coloured strand (top)
and an outgoing vertical U -coloured strand (bottom). The identity morphism idV is
equivalent to a vertical downward-oriented V -coloured strand. Note that morphisms, and
more generally entire diagrams, are read bottom-to-top.

Figure 2a (iii) reversing a component orientation changes a colour V to its dual V ∗. See
also Figure 2b for equivalent representations of a morphism changing strands orientations.

Figure 2c (i)&(ii) two parallel strands coloured U (left) and V (right) respectively are
equivalent to a single strand coloured U ⊗ V . Two side-by-side coupons for morphisms h1
(left) and h2 (right) are equivalent to a single coupon for morphism h1 ⊗ h2.

Figure 2c (iii) a coupon for morphism g on top of a coupon for morphism f is equivalent to
their composition g ◦ f ,

Figure 2d (i)&(ii) a positive crossing is equivalent to a braiding morphism, a negative
crossing is equivalent to the inverse of the braiding morphism. See also Figure 2d (iii) for
a realisation of c−1 ◦ c = id as a Reidemeister move.

Figure 2e (i)&(ii) positive and negative twists are equivalent to the twist morphism and its
inverse respectively,

Figure 2f (i)&(ii) caps and cups are equivalent to evaluation and co-evaluation morphisms
respectively.
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Figure 2g graphical and algebraic definition of the dual morphism f∗ : V ∗ → U∗ of a
morphism f : U → V .

Figure 2h Sliding coupons along strands does not change the corresponding morphism.

The morphisms are applied to the objects colouring the entering and leaving strands. Note
that, by convention, morphisms are composed bottom-up. Additionally, we can reverse the
orientation of strands by dualising their colours if convenient. Figure 3 gives the morphism
associated to the Hopf link coloured with objects U and V .

Consequently, for a category C, graphical calculus associates to any coloured link, seen as
a (0, 0)-tangle, a morphism 1 → 1. More generally, it associates to a coloured (i, j)-tangle a
morphism U1 ⊗ . . . ⊗ Ui → V1 ⊗ . . . ⊗ Vj , for the C-objects Uk and Vℓ colouring the bottom
and top endpoints of the tangle respectively.

If the ordered components of a link L are coloured V1, . . . , Vm, this morphism is written:

JC
L(V1, . . . , Vm) ∈ HomC(1,1).

Strict ribbon categories produce topological invariants, called quantum invariants:

▶ Theorem 2 ([25, 29]). Let L be an m-components link, and D1 and D2 two arbitrary
diagrams of L in S2. Let V1, . . . , Vm ∈ C be a colouring of the components of L, and
JC

D1
(V1, . . . , Vm) and JC

D2
(V1, . . . , Vm) the two quantities obtained by graphical calculus on

D1 and D2 respectively. Then:

JC
D1

(V1, . . . , Vm) = JC
D2

(V1, . . . , Vm) = JC
L(V1, . . . , Vm).

Using Hom(1,1) ∼= R, we identify the invariant JC
L(V1, . . . , Vk) to a scalar in R.

Graph parameters. The carving-width, also known as congestion, is a graph parameter
introduced by Seymour and Thomas [28].

▶ Definition 3. Let G = (X, E) be a graph on n vertices, with loops and multiple edges. Let
T be an unrooted binary tree, with all internal nodes of degree 3, and with n leaves.

An embedding ϕ of G into T is a bijective mapping between the nodes X of G and
the leaves of T . Every edge e of T induces a partition of the vertices of G into two sets,
X = X

(1)
e ⊔ X

(2)
e , inherited from the partition of T ∖e into two trees. Let w(e) denote the

number of edges in G between X
(1)
e and X

(2)
e , called the weight of e. See Figure 4.

The width of an embedding (T , ϕ) is the maximal weight of a tree edge:
maxe edge of T w(e).

The carving-width cw(G) of a graph G is the minimal width over all its embeddings into
binary trees. The carving-width cw(D(L)) of a link diagram D(L) is the carving-width of
the 4-valent planar graph it realises (we use the same notation).

The carving-width cw(G) of a graph G is closely related to its tree-width [26] tw(G), which
plays a major role in combinatorial algorithms.

▶ Theorem 4 (Theorem 1 of [2]). Let G be a graph of maximal degree δ. Then,
2
3(tw(G) + 1) ≤ cw(G) ≤ δ(tw(G) + 1). For tangle diagrams δ ≤ 4.

Carving-width has several advantages over tree-width, and has been successfully used in
low dimensional topology [11, 12, 20, 27].

First, optimal tree embeddings of planar graphs can be realised topologically, as stated
below. A tree embedding (T , ϕ) of G is bond if the two vertex sets X

(1)
e and X

(2)
e from the

cut associated to an edge e of T induce connected sub-graphs in G.

SoCG 2021
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f

V

U

(i)

.
= idV

V

V

V(ii)

.
=

V V ∗(iii)

(a) (i) Graphical representation of morphism f : U → V
via stands and coupon. (ii) Equivalence strand and identity.
(iii) Dualisation and strand orientation.

f

V

U

.
= f

V ∗

U

.
= f

V

U∗

.
= f

V ∗

U∗

(b) Four equivalent representations of
morphism f : U → V with all possible
strands orientations.

V1

U1

V2

U2

h1 h2 h1 ⊗ h2

V1

U1

V2

U2

.
= h1 ⊗ h2

.
=

V1 ⊗ V2

U1 ⊗ U2

U V
.
=

U ⊗ V
g

f
g ◦ f.

=

V

U

V

U

(i) (ii) (iii)

(c) (i) & (ii) Side-by-side coloured strands and morphisms is equivalent to tensor product of colours
and morphisms. (iii) Morphisms on top of one another is equivalent to composition.

.
= cU,V

U ⊗ V
U V

UV
V ⊗ U(i)

cU,V :U ⊗ V → V ⊗ U

U

V

V

U
c−1
U,V

V ⊗ U

.
=

U ⊗ V(ii)

c−1
U,V :V ⊗ U → U ⊗ V

U V

VU

.
=

VU U ⊗ V

.
=

c−1
U,V ◦ cU,V = idU ⊗ idV = idU⊗V

(iii)

(d) (i) Positive and (ii) negative crossings are equivalent to the braiding morphism and its inverse,
respectively. As illustration, the equation c−1 ◦ c = id is equivalent to a Reidemeister move II.

.
= θV

V V

V

(i)

.
= θ−1

V

V V

V

(ii)

(e) (i) Positive and (ii) negative twists (framing)
are equivalent to the twist morphism and its in-
verse, respectively.

V ∗ V

dV

V ∗ ⊗ V

.
=

(i)
V V ∗

bV

V ⊗ V ∗
.
=

(ii)

(f) (i) Local maxima (caps) and (ii) local min-
ima (cups) are equivalent to evaluation and co-
evaluation morphisms.

f

U∗

V ∗

f∗ .
=

V

U

f :U → V

f∗:V ∗ → U∗

(g) Definition of the dual f∗ of a morphism f , as
f∗ := (dV ⊗ idU∗ )◦ (idV ∗ ⊗f ⊗ idU∗ )◦ (idV ∗ ⊗bU ).

U1 U2 U1 U2 U1 U2

h1

V1 V2

h2

h2

V1 V2 V1 V2

h1
h1 h2

.
=

.
=

(h) Invariance by sliding coupons along strands,
i.e., (h1 ⊗ idU2 ) ◦ (idU1 ⊗h2) = h1 ⊗ h2 =
(idU1 ⊗h2) ◦ (h1 ⊗ idU2 ).

Figure 2 Formal rules and some equations for graphical calculus.

▶ Theorem 5 ([28, Theorem 5.1]). Let G be 2-connected with at least two nodes. If G has
carving-width cw then there exists a bond tree embedding of G of width cw.

This theorem applies to link diagrams [27]. We interpret a bond tree embedding of a
planar graph (on the sphere S2) as a collection of disjoint Jordan curves λe ⊂ S2, one for
each edge e of T , realising the cut X

(1)
e ⊔ X

(2)
e .
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U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

VU

[(dU ⊗ dV ∗) ◦ (idU∗ ⊗ cU,V ⊗ idV ∗) ◦ (idU∗ ⊗ cV,U ⊗ idV ∗) ◦ (bU∗ ⊗ bV )] :1→ 1

(bU∗ ⊗ bV )

(idU∗ ⊗ cV,U ⊗ idV ∗)

(idU∗ ⊗ cU,V ⊗ idV ∗)

(dU ⊗ dV ∗)
1

1

Figure 3 Application of graphical calculus to the Hopf link coloured by objects U and V from a
strict ribbon category, leading to a 1 → 1 morphism by composition. Composition is bottom-to-top,
the expression of morphisms is given on the right, and correspond to the two cups (co-evaluations),
then the crossings (braidings), then the two caps (evaluations).

1

2

3 4

6

5

1

2

3 4

6

5

1 2

3

4 6

5

1 2

3

4 6

5

∞∞

Figure 4 Left/middle: 6-vertex graph on S2 with width 3 bond tree embedding (tree and Jordan
curves). Note that the two green curves represent the same cut on S2. Right: rooting of the tree by
adding a node at ∞.

For planar graphs, a bond tree embedding of minimal width can be computed in polynomial
time [10, 28]. No such result is known for tree-width. By the planar separator theorem [18],
the carving-width of a planar graph with n-vertices is in O(

√
n).

3 Fixed parameter tractable algorithm via graphical calculus

Let C be a strict ribbon category, and let L be an oriented link with m components L1, . . . , Lm.
Let D(L) be an oriented link diagram of L, where each link component Li is coloured by an
object Vi from the category C, such that graphical calculus gives an isotopy invariant of L

associated to its colouring, as described in Theorem 2.
It follows from the definition of graphical calculus, and particularly equality Fig-

ure 2c (i)&(ii), that the quantum invariant of a separable link L ∪ L′ is the product of
the invariants of L and L′, such that they can be computed separately. W.l.o.g. we assume
that the diagram D(L) is connected as a graph, and has at least 2 crossings, not all twists.
If any of the two last requirements are not met, which can be checked in linear time, the
diagram represents a possibly framed trivial knot, for which quantum invariants can be
deduced directly. Consequently, all crossings of diagrams have degree four, with at most one
self-edge ; see Figure 5. These properties are used in the complexity analysis Section 5.2.

SoCG 2021
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bVbU∗

V U
c−1
V,U

V

bV ∗

θV

?
?

? ?
cV,U

V U

bVbU∗

?

?

V

bV ∗

θ−1
V

?

?

Figure 5 Morphisms associated to neighbourhoods of crossings, i.e., morphisms at leaves of a tree
embedding. From left to right, the corresponding equations are given by Eq. (1), (2), (3), and (4) of
Section 3.3. The starred point is selected such that only these four morphisms are encountered (i.e.,
between the two arrow heads for crossings, and on the side of the loop for twists).

3.1 Tree embedding of link diagrams
Let (T , ϕ) be a bond tree embedding of the planar graph of D(L) in S2. We add a fake,
disconnected, node at infinity to the graph D(L), and we add a corresponding new leaf to
the tree embedding T by subdividing an arbitrary tree edge, and connecting a leaf to it.
Topologically, the Jordan curve in a neighbourhood of the node at infinity encircles the entire
graph D(L). We root the tree T to the new inner node to which the new leaf is attached ;
see Figure 4. All edges of T have now a parent and child endpoint.

Let e be an edge of T with child node z, and Z the set of crossings mapped to the
leaves of the subtree Tz rooted at z. According to Theorem 5, there exists a Jordan curve
λe separating Z from the rest of the diagram. All tangle diagrams are on the sphere. By
convention, we draw the tangle inside the Jordan curve when we represent it on the plane.

To an edge e corresponds a (0, w(e))-tangle T , spanned by the crossings Z and contained
inside the Jordan curve λe. We mark an arbitrary but fixed starred point on λe, and order
the endpoints of the tangle T counter-clockwise starting at that starred point. We get a
(0, w(e))-tangle by isotopically sliding all tangle endpoints to the top boundary, such that the
first endpoint in the starred point ordering is rightmost on the top boundary. See Figure 5
for examples of (0, w(e))-tangles at the tree leaves, and Figure 6 (left) for endpoints ordered
by starred point ordering.

In the process of the algorithm below, starred points are assigned on the fly. They
are used exclusively to deterministically order tangles’ endpoints and process the isotopy
described above ; they induce a planar isotopy of the tangle and consequently affect the
computation, but lead to the same output thanks to the isotopy invariance Theorem 2.

3.2 Tree traversal algorithm
Let D(L) be coloured by objects of the category C. To every edge e of weight w(e) in T ,
graphical calculus assigns a C-morphism fe : 1 → V1 ⊗ . . . ⊗ Vw(e) to the associated tangle,
where V1, . . . , Vw(e) are the colours of the strands intersecting the Jordan curve λe.

The morphism associated to the half-edge at the root is a 1 → 1 morphism, because the
corresponding Jordan curve does not intersect the link diagram. This morphism gives the
invariant JC

L ∈ R of Theorem 2. All edge morphisms are computed recursively following a
depth first traversal of T . We describe the base morphisms assigned to the edges whose child
node is a leaf, and we describe an algorithm for inner edges in the next section.



C. Maria 53:9

fe1 fe2

1
2

3 a
bc

e2e1
3

2
1

a
b

c

fe1 fe2

a
bc4

3

1
2

e2e1
a

bc

21

34

fe1 fe2

4
1

2 a
b

cd
3

e2e1
b1

3

2

a

c

d
4

? ? ? ? ?

? ?

?

? ?

?

?
?

?

? ?
?

Figure 6 Merging two sub-trees. Top: Planar embeddings of the diagram with Jordan curves
λe1 , λe2 (inner circles) and λe (outer circle), depending on the relative position of the starred points
for λe1 and λe2 . The bold lines connecting the Jordan curves represent multiple parallel strands
connecting the corresponding tangles. Bottom: Coupons for fe1 , fe2 and fe (outer coupon) obtained
after plane isotopy. The starred point for λe is selected so as to restrict to these three cases.

3.3 Morphisms at the leaves

The tree leaves are in bijection with tangles made by small neighbourhoods around single
crossings. All crossings being of degree 4, and up to reorientation of the strands which
algebraically consists of dualising colours, we get four base morphisms: one positive or
negative crossing, or one positive or negative twist (with a self-edge),

(idU∗ ⊗cV,U ⊗ idV ∗) ◦ (bU∗ ⊗ bV ) (1) (idU∗ ⊗c−1
V,U ⊗ idV ∗) ◦ (bU∗ ⊗ bV ) (2)

(idV ∗ ⊗θV ) ◦ bV ∗ (3) (idV ∗ ⊗θ−1
V ) ◦ bV ∗ (4)

They correspond graphically to the diagrams in Figure 5 (nodes of degree 4 are crossings,
nodes of degree 2 are twists).

3.4 Merging morphisms at tree nodes

Every inner node x of T is the parent node of two edges e1 and e2, and the child of an
edge e. Given the morphisms fe1 and fe2 for edges e1 and e2 respectively, we construct the
morphism fe for edge e. This is the fundamental operation of the dynamic programming
algorithm ; the end of Section 3 and Section 4 are dedicated to the design of an algorithm
for this operation.

First, note that the starred point ordering of the strands intersecting λe1 and λe2 leads to
three configurations when representing morphisms fe1 and fe2 with coupons ; see Figure 6
where thick lines represent sets of parallel tangle strands. By hypothesis, morphisms on tree
edges have domain 1. The coupons for fe1 , fe2 , and fe (the outer coupon) are obtained by a
plane isotopy forcing the strands to intersect coupons on their top side, and putting starred
points on the coupons’ left sides. More specifically, the isotopies are implemented by rotating
annulus neighbourhoods of the Jordan curves (grey circles in Figure 6) in order to position
the starred point on the left, then straightening the strands.

The starred point of the outer coupon fe is selected so as to restrict to the three
configurations of Figure 6.
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VU

f .
=

U

f

V
V1V2V3VjU1U2Ui · · · · · ·

· · ·

· · ·

U = Ui ⊗ . . .⊗ U1 V = Vj ⊗ . . .⊗ V1

f

.
=

Figure 7 Sliding of a V = Vj ⊗ . . . ⊗ V1-coloured strand under an f -coupon by underlying knot
isotopy. The operation composes f with a consecutive sequence of j twists θVℓ , of j(j − 1) crossings
c±

Vi,Vj
, and ij crossings c±

Uk,Vℓ
.

4 Factorisation of morphisms at tree nodes

Given the morphisms fe1 and fe2 in Figure 6, we describe graphically a factorisation scheme
to obtain the morphism fe.

4.1 Sliding and canonical form
The canonical form for morphisms to be merged is depicted in the top left corner of Figure 8.
It consists of two side-by-side morphisms g1 and g2, bridged by parallel strands coloured
U1, . . . Uk. All other strands go up vertically.

Given morphisms fe1 and fe2 in Figure 6, we obtain a canonical form by sliding strands,
wrapping clockwise around the coupons, under the coupons. For example, in the top right
case of Figure 6, we slide strand 1 under the fe1-coupon, and strands a and b under the
fe2 -coupons.

The details of the operation are depicted in Figure 7, where the V -strand wraps clockwise
around the f -coupon, and f is a 1 → U ⊗ V morphism. Sliding the V -strand under the
coupon by tangle isotopy produces a positive twist θV and a positive crossing cV,U .

More specifically, decomposing further in Figure 7, let U = Ui ⊗ . . . ⊗ U1 be the tensor
product of the colours of i parallel strands, and V = Vj ⊗ . . . ⊗ V1 the tensor product of j

parallel strands wrapping clockwise around the f coupon. As depicted in the figure, sliding
the j strands under f induces:

a twist θVℓ
on each of the Vℓ-coloured strands, 1 ≤ ℓ ≤ j,

a sequence of j(j − 1) positive and negative crossings of type c±
Vℓ,Vk

, followed by
a sequence of ij positive crossings of type cVℓ,Uk

.

We obtain the morphisms g1, g2 of the canonical form (Figure 8) by factorising the
morphisms fe1 and fe2 with these sequences of twists and crossings, after the sliding operation.

4.2 Factorisation of the canonical form
Figure 8 pictures two factorisation schemes for side-by-side morphisms g1 and g2 in canonical
form, bridged by k parallel strands coloured U1, . . . , Uk. Denote by cw the carving-width of
the link diagram, and assume the tree embedding (T , ϕ) has width cw.

We distinguish between two cases, depending on the value of k, which is necessary to
obtain the factor 3

2 in the exponent of the complexity analysis of the main Theorem 1:
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· · ·

· · · · · ·
· · ·
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if k ≤ cw
2

if k > cw
2

V1 Vi

· · ·
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· · · · · ·
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g1

· · ·
U1 Uk

V1 Vi

· · ·

· · · · · ·
g∗2
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· · ·
U1 Uk

W1 Wj
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WjW1

.
=
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· · ·

WjW1
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· · ·
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· · ·

.
=

.
=

.
=
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· · ·Uk Ukg2

· · ·

fe

· · ·

WjW1

.
=

g1

V1 Vi

· · ·
· · · · · ·h

U1
Ukh2h
· · ·

WjW1

· · ·U1 Uk

V1 Vi

· · · · · ·Uk

U1
Ukh2g2

· · ·
WjW1

fe

· · ·

.
=

.
=

Figure 8 Merging of two coupons in a canonical form (top left) along k strands coloured U1, . . . , Uk.
The factorisation scheme differs whether k ≤ cw /2 (left column) or k > cw /2 (right column). The
top right equivalence comes from the equality in Figure 9.

Small bridge. For k at most half the carving-width (Figure 8, Left), we consider first the
morphism dU1⊗...⊗Uk

induced by the composition of the evaluation morphisms dUℓ
, ℓ = k . . . 1.

More precisely, the morphism dU1⊗...⊗Uk
: U1 ⊗ . . . ⊗ Uk ⊗ U∗

k ⊗ . . . ⊗ U∗
1 → 1, is obtained by

composing the evaluation morphisms from bottom up:

dU1⊗...⊗Uk
: U1 ⊗ . . . ⊗ Uk ⊗ U∗

k ⊗ . . . ⊗ U∗
1 → 1,

=
∏1

ℓ=k

(
idU1⊗...⊗Uℓ−1 ⊗dU∗

ℓ
⊗ idU∗

ℓ−1⊗...⊗U∗
1

)
,

(5)

where ℓ = k is the rightmost term of the composition.
The (partial) composition of dU1⊗...⊗Uk

with g2 through U∗
k ⊗ . . .⊗U∗

1 gives the morphism:

h : U1⊗. . .⊗Uk → W1⊗. . .⊗Wj , h :=
(
dU1⊗...⊗Uk

⊗ idW1⊗...⊗Wj

)
◦(idU1⊗...⊗Uk

⊗g2) . (6)

Finally, the morphism fe obtained from the merging of fe1 and fe2 is given by the (partial)
composition of g1 and h, through U1 ⊗ . . . ⊗ Uk. Precisely,

fe : 1 → V1 ⊗ . . . ⊗ Vi ⊗ W1 ⊗ . . . ⊗ Wj , fe := (idV1⊗...⊗Vi
⊗h) ◦ g1. (7)

By construction, these operations give the morphism fe induced by graphical calculus on
the coloured tangle associated to the subtree of T rooted at the child node of edge e.

Large bridge. The case k strictly larger than half the carving-width starts by flipping
upside-down coupon g2. This operation is depicted in Figure 9. Starting with a morphism g,
it consists of a planar isotopy to produce g∗, the dual morphism to g. In the case where the
category C satisfies the hypothesis of Theorem 2, Figure 9, depicting an isotopy, proves the
equality: (dU ⊗ idV ) ◦ (idU∗ ⊗g) = (idV ⊗g∗) ◦ (bV ⊗ idU∗) .

SoCG 2021
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g g∗g.
=

.
=

V

U∗
U∗

V V

U∗

Figure 9 Planar isotopy, then factorisation with g∗, the dual morphism to g.

Applied to the canonical form on g1 and g2 (Figure 8, Top) the operation gives the
composition of morphisms, involving g1 and g∗

2 , in the top right corner of Figure 8.
The following compositions are similar to the case of a small bridge. Morphism bW1⊗...⊗Wj

describes the composition of the co-evaluation morphisms for W1, . . . , Wj , i.e.,

bW1⊗...⊗Wj
: 1 → W ∗

1 ⊗ . . . ⊗ W ∗
j ⊗ Wj ⊗ . . . ⊗ W1,

=
∏j

ℓ=1

(
idW ∗

1 ⊗...⊗W ∗
ℓ−1

⊗bVℓ
⊗ idWℓ−1⊗...⊗W1

)
,

(8)

where ℓ = 1 is the rightmost term of the composition.
The morphism h′ is obtained by (partial) composition of bW1⊗...⊗Wj

and g∗
2 :

h′ =
(

idW ∗
1 ⊗...⊗W ∗

j
⊗g∗

2

)
◦

(
bW1⊗...⊗Wj ⊗ idU1⊗...⊗Uk

)
, and fe is obtained by (partial) com-

position of g1 and h′: fe = (idV1⊗...⊗Vi ⊗h′) ◦ g1.

Correctness. The algorithm consists uniquely of:
ambient isotopies, when ordering tangle endpoints (Figure 6), sliding strands under
coupons (tree leaves Figure 5, and inner tree nodes Figure 7), and flipping coupons upside
down (dual morphism, Figure 9), and,
factorisations of morphisms in a specific order (Figure 8).

By virtue of Theorem 2, ambient isotopies do not affect the output of the algorithm
(even though it changes computation), as the algorithm computes a topological invariant
of links. By properties of ribbon categories, and more specifically the equivalence relations
pictured in Figure 2, the order of factorisation of morphisms does not change the output. In
conclusion, the high-level algorithm presented in Sections 3 and 4 outputs the topological
invariant JC

L(V1, . . . , Vm) for a (V1, . . . , Vm)-coloured link diagram L.

5 Algebraic implementation and complexity

For the implementation of the algorithm, we assume that the objects in the category C are
finite dimensional free R-modules, for a commutative ring with unity R and usual tensor
product. Denote the dimension of every link component colour Vi by Ni := dim Vi, and
let N := maxi{dim Vi}. Fixing a basis for every Vi, all morphisms in C – in particular the
distinguished braiding, evaluation and co-evaluation, and twist morphisms – are represented
by matrices with R coefficients.

This model is general, and contains all quantum invariants derived from simple Lie
algebras. We describe seven elementary matrix operations in Section 5.1, and use them in
Section 5.2 as building blocks to implement and analyse the complexity of the algorithm for
computing quantum invariants.
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hh h
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(4)

Figure 10 Graphical representation of the seven elementary compositions of morphisms.

5.1 Elementary compositions
We consider the seven elementary compositions of morphisms depicted in Figure 10. They
respectively represent the composition with (1) a single braiding, (2) a single twist, (3) a
single co-evaluation, (4) a single evaluation. Cases (5), (6), and (7) represent three types of
partial compositions of the morphisms f and g. We describe algorithms to perform these
compositions on matrices, then use them in Section 5.2 to implement the FPT algorithm
described in Sections 3 and 4.

▶ Lemma 6. Consider the elementary morphism compositions in Figure 10 (1), (2), (3),
and (4). Let U, V, V ′, W be finite dimensional free R-modules, with dim U = a, dim V = b,
dim V ′ = b′, and dim W = c. Then, given the matrices for morphisms f , θ±

V , c±
V,V ′ , bV , and

dU , we can compute the matrix for morphism h in:
O(a(bb′)2c) arithmetic operations in R for (1),
O(abc) arithmetic operations for (2),
O(ab2c) arithmetic operations for (3), and
O(a2b) arithmetic operations for (4).

The memory complexity of the operation does not exceed the size of the output, which is a
row or column vector h containing scalars from R.

Proof.
Figure 10 (1), (2), and (3). All three cases consist of the matrix-vector product h =

(idU ⊗M ⊗ idW ) ·f , where M is respectively the (bb′ ×bb′)-matrix c±
V,V ′ , the (b×b)-matrix

θ±
V , and the (b2 × 1)-matrix bV . Consider M to be an (m × m′)-matrix, with coefficients

(Mi,j)1≤i≤m,1≤j≤m′ . Matrix (idU ⊗M ⊗ idW ) has at most m′ non-zero coefficients per
row. Restricting to these non-zero coefficients, we get the ith entry of h:

hi,1 =
∑

k=1...m′

Mβ+1,k · fαcm′+γ+(k−1)c,1,

where i is uniquely written as i = α · cm + β · c + γ, with 0 ≤ α ≤ a − 1, 0 ≤ β ≤ m − 1,
and 1 ≤ γ ≤ c. Computing h requires O(m′|f |) arithmetic operations in R, where |f | is
the length of vector f , storing O(|f |) scalars from R. Note that matrix (idU ⊗M ⊗ idW )
does not need to be explicitly constructed, and only matrix M suffices.

Figure 10 (4) is treated similarly; see [23] for an explicit formula. ◀

▶ Lemma 7. Consider the elementary morphism compositions in Figure 10 (5), (6), and (7).
Let U, V, W be finite dimensional free R-modules, with dim U = a, dim V = b, and dim W = c.
Then, given the matrices for morphisms f and g, we can compute the matrix for morphism h

in O(abc) arithmetic operations in R, and memory complexity O(ab + bc + ac) times the size
of a scalar in R.

SoCG 2021
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Proof. In the same spirit of Lemma 6, the proof exploits the sparsity of tensoring with the
identity. Explicit formulae can be found in [23]. ◀

5.2 Implementation and complexity analysis
We implement the algorithm described in Sections 3 and 4 using the elementary compositions
of Figure 10. Let N be an upper bound on the dimensions of the different modules Ui, Vj ,
Wk, over all i, j, k, colouring the components of the link.

Leaf morphisms. The leaf morphisms described in Equations (1)-(4) and Figure 5 are
implemented using elementary compositions (1) and (2). By Lemma 6, the complexity is at
most O(N6) arithmetic operations in R.

Sliding under a coupon. The sliding operation as presented in Figure 7 composes a
morphism f with a sequence of twist and braiding morphisms. More precisely, let h denote
the entire morphism in Figure 7. Starting from the (O(N i+j) × 1) matrix f , it is computed
iteratively applying j times elementary composition (2) for the twists, then j(j − 1) times
elementary composition (1) for the braidings between Vi- and Vj-strands, and finally ij times
elementary composition (1) for the braidings between Vi- and Uj-strands.

During the computation, we maintain a vector of size (1 × O(N i+j)). Applying Lemma 6,
the sliding operation runs in O(j(i + j)N i+j+2) arithmetic operations in R, storing O(N i+j)
scalars from R. In the algorithm, i + j ≤ cw, the carving-width of the link diagram.
Consequently, we get O(cw2 N cw +2) operations, with memory O(N cw).

Construction of evaluations and co-evaluations. The morphism dU1⊗...⊗Uk
appearing in

Figure 8 is the result of k elementary compositions of type (4). The morphisms maintained
during the computation are of size (1 × O(N2k)). Applying Lemma 6, the computation
takes a total of O(kN2k) arithmetic operations in R, storing O(N2k) scalars from R. The
case bW1⊗...⊗Wj is similar. In the algorithm, k (or j) is at most cw /2. Consequently, the
complexity is O(cw N cw) arithmetic operations, storing O(N cw) scalars.

Composition of morphisms. Finally, the compositions of morphisms described in Figure 8
are implemented with a constant number of elementary compositions (5), (6), and (7).
Considering Lemma 7, the product abc of dimensions never exceeds N

3
2 cw. Indeed, by

property of the tree embedding, we have i + k, j + k, i + j ≤ cw in Figure 8 ; the dichotomy
with k

?
≤ cw /2 further ensures than no more than 3/2 cw are involved in the elementary

compositions. Consequently, the compositions of Figure 8 are implemented using O(N 3
2 cw)

arithmetic operations in R, storing O(N cw) scalars from R.

Overall complexity. In conclusion, we sum up the different steps of the algorithm and its
implementation. Let D be a coloured link diagram with n crossings and carving width cw,
where the dimension of each colouring module is at most N . The algorithm first computes
an optimal tree embedding in O(poly(n)) operations. The tree has size n and width cw.
W.l.o.g., we assume the diagram has at least one crossing that is not a twist, and consequently
cw ≥ 4, the maximal degree of the graph. Considering cw ∈ O(

√
n) and 4 ≤ cw +2 ≤ 3

2 cw,
the quantum invariant associated to the colouring is computed in:

O(nN
3
2 cw + n2N cw +2) arithmetic operations in R,

storing: O(n) words for the diagram, plus O(N cw) scalars from R for the matrices.
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Note that this complexity is expressed in algebraic operations in R, when the main
Theorem 1 is expressed in machine operations. We bound the arithmetic complexity of
operations in R in the following Section 6.

6 Bounding arithmetic complexity and proof of the main theorem

Working with matrices with R-coefficients, for a ring R, allows the algorithm to be applied
in great generality. We focus on the case R = Z[q], which is sufficient for all Jg

L invariants of
Theorem 1. See [29, Chapter 6] for an explicit construction of the Jg

L.

▶ Remark 8. Note that quantum invariants are usually defined in the category of Z[q, q−1]-
modules. Multiplying the braiding, twist, and (co)evaluation matrices by qa for a large
enough, and re-normalising the output, allows us to restrict to the case of Z[q]-modules.

Processing matrix multiplications with coefficients in Z[q], both degrees of polynomials
as well as values of coefficients may blow-up during intermediate computation. Specifically,
both arithmetic operations in R and bit size of R-elements may become exponential in n.

In the long version of the article [23], we describe a solution based on Lagrange interpo-
lation and the Chinese remainder theorem to reconstruct polynomial Jg

L from evaluations,
using only integers of bit size O(log n). Specifically, we prove that, for a fixed category C of
Z[q]-modules:

▶ Proposition 9. The invariant JC
L(V1, . . . , Vm) ∈ Z[q] of an m-component link L, of size n

and coloured with V1, . . . , Vm ∈ C of dimension at most N , can be computed by:
running O(n2√

n) times the FPT algorithm described in this article, using matrices with
coefficients in Z/pZ, for various primes p ∈ O(n

√
n),

and an extra cost of O(n4) for large integers reconstruction (Chinese remainder theorem)
and polynomial reconstruction (Lagrange interpolation).

The complexity analysis of Section 5.2 and Theorem 9 allows us to conclude the proof
of the main Theorem 1. Considering arithmetic operations in Z/pZ, p ∈ O(n

√
n), constant

time, the algorithm has complexity O(n3√
nN

3
2 cw + n4√

nN cw +2) machine operations.

Conclusion. We have introduced a general sub-exponential, and fixed parameter tractable
algorithm to compute any quantum knot invariants derived from a ribbon category, which
include infinite families of meaningful knot invariants such as coloured Jones polynomials.

We mention two open research directions:
This new algorithm offers a new tool to verify important mathematical conjectures [7,
8, 16, 24] on knots that where until now intractable computationally. As a proof of
concept, we have implemented the algorithm for coloured Jones polynomials and verified
experimentally some behaviours related to the volume conjecture and the slope conjecture
in [23].
No lower bound is known for the computation of quantum invariants. However, progress [9]
on the complexity of planar Tutte polynomials under the exponential time hypothesis
(ETH) may lead to a lower bound of 2Ω(

√
n) for the Jones polynomial, which would imply

that our FPT algorithm is optimal up to a constant in the exponent, under ETH.
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