Efficient Generation of Rectangulations
via Permutation Languages

Arturo Merino &
TU Berlin, Germany

Torsten Miitze =24
University of Warwick, Coventry, United Kingdom
Charles University, Prague, Czech Republic

—— Abstract
A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles,
such that no four rectangles meet in a point. In this work we present a versatile algorithmic
framework for exhaustively generating a large variety of different classes of generic rectangulations.
Our algorithms work under very mild assumptions, and apply to a large number of rectangulation
classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-
sided /area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to
classes of rectangulations that are characterized by avoiding certain patterns, and in this work we
initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms
are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation
is generated in constant time in the worst case or on average, respectively. Moreover, the Gray
codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a
Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding
rectangulations as permutations, and by applying our recently developed permutation language
framework.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Mathematics of computing — Discrete mathematics

Keywords and phrases Exhaustive generation, Gray code, flip graph, polytope, generic rectangulation,
diagonal rectangulation, cartogram, floorplan, permutation pattern

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.54

Related Version Full Version: arXiv:2103.09333 [23]

Funding This work was supported by German Science Foundation grant 413902284.
Arturo Merino: Supported by ANID Becas Chile 2019-72200522.
Torsten Miitze: Supported by Czech Science Foundation grant GA 19-08554S.

1 Introduction

Partitioning a geometric shape into smaller shapes is a fundamental theme in discrete and
combinatorial geometry. In this paper we consider rectangulations, i.e., partitions of a
rectangle into finitely many interior-disjoint rectangles. Such partitions have an abundance
of practical applications, which motivates their combinatorial and algorithmic study. For
example, rectangulations are an appealing way to represent geographic information as a
cartogram. This is a map where each country is represented as a rectangle, the adjacencies
between rectangles correspond to those between countries, and the areas of the rectangles are
determined by some geographic variable, such as population size [34]. If the rectangulation
is area-universal [12], then such an adjacency-preserving cartogram can be drawn for any
assignment of area values to the rectangles. Another important use of rectangulations is as
floorplans in VLSI design and architectural design. These problems often involve additional

© Arturo Merino and Torsten Miitze; [:,:j
oy 1

licensed under Creative Commons License CC-BY 4.0
37th International Symposium on Computational Geometry (SoCG 2021). }
Editors: Kevin Buchin and Eric Colin de Verdiere; Article No. 54; pp. 54:1-54:18 TN

\\v Leibniz International Proceedings in Informatics BN
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

]

[N
[

mailto:merino@math.tu-berlin.de
https://orcid.org/0000-0002-1728-6936
mailto:torsten.mutze@warwick.ac.uk
http://www.tmuetze.de
https://orcid.org/0000-0002-6383-7436
https://doi.org/10.4230/LIPIcs.SoCG.2021.54
https://arxiv.org/abs/2103.09333
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2

Rectangulations via Permutation Languages

constraints on top of adjacency, such as extra space for wires [27] or proportion limits for the
rooms [24]. An important notion in this context are slicing floorplans [27], i.e., floorplans
that can be subdivided into rectangles by a sequence of vertical or horizontal guillotine cuts.

Rectangulations have rich combinatorial properties, and a task that has received a lot of
attention is counting, i.e., determining the number of rectangulations of a particular type with
n rectangles, either exactly as a function of n [37] or asymptotically as n grows [32]. This led
to several beautiful bijections of rectangulations with pattern-avoiding permutations [1, 4, 29]
or with twin binary trees [37]. The focus of this paper is on another fundamental algorithmic
task, which is more fine-grained than counting, namely exhaustive generation, meaning that
every rectangulation from a given class must be produced exactly once. While such generation
algorithms are known for many other discrete objects such as permutations, combinations,
subsets, trees etc. and covered in standard textbooks such as Knuth’s [20], much less is
known about the generation of geometric objects such as rectangulations.

The ultimate goal for a generation algorithm is to produce each new object in time O(1),
which requires that consecutively generated objects differ only by a “small local change”.
Such a minimum change listing of combinatorial objects is often called a Gray code [31]. If
the time bound O(1) for producing the next object holds in every step, then the algorithm is
called loopless [11], and if it holds on average it is called constant amortized time (CAT) [30].
The Gray code problem entails the definition of a flip graph, which has as nodes all the
combinatorial objects to be generated, and an edge between any two objects that differ in
the specified small way. Clearly, computing a Gray code ordering of the objects is equivalent
to traversing a Hamilton path or cycle in the corresponding flip graph. It turns out that
some interesting flip graphs arising from rectangulations can be equipped with a natural
lattice structure [21, 22], analogous to the Tamari lattice on triangulations, and realized as
polytopes in high-dimensional space [28], analogous to the associahedron. This ties in the
Gray code problem with deep methods and results from lattice and polytope theory.

1.1 Our results

The main contribution of this paper is a versatile algorithmic framework for generating a
large variety of different classes of generic rectangulations, i.e., rectangulations with the
property that no four rectangles meet in a point. In particular, we obtain efficient generation
algorithms for several interesting classes known from the literature, in some cases loopless
or CAT algorithms; see Table 1. The initialization time and memory requirement for all
these algorithms is linear in the number of rectangles. The classes of rectangulations shown
in the table arise from generic rectangulations by imposing structural constraints, such as
the guillotine property or forbidden configurations, or by equivalence relations, and they
will be defined in Section 2.2. We implemented the algorithms generating the classes of
rectangulations from the table in C++4, and we made the code available for download and
experimentation on the Combinatorial Object Server [10].

The classes of rectangulations that our algorithms can generate are not limited to the
examples shown in Table 1, but can be described by the following closure property; see
Figure 1. Given an infinite class of rectangulations C, we require that if a rectangulation R
is contained in C, then the rectangulation obtained from R by deleting the bottom-right
rectangle is also in C, and the two rectangulations obtained from R by inserting a new
rectangle at the bottom or right, respectively, are also in C. If C satisfies this property, then
our algorithms allow generating the set C,, C C of all rectangulations from C with exactly n
rectangles, for every n > 1, by so-called jumps, a minimum change operation that generalizes
simple flips, T-flips, and wall slides studied in [8, 29]. Moreover, if the class C is symmetric,

A. Merino and T. Miitze

Table 1 Classes of rectangulations that can be generated by our algorithms. The second
column gives a description of the class in terms of forbidden rectangulation patterns (n/a means

not applicable), and one or more bijectively equivalent classes of pattern-avoiding permutations.

Underlined and overlined permutation patterns are so-called vincular and barred patterns; see [15]
and the papers referenced in the table. The last column specifies the obtained runtime bound
for generating each rectangulation, where n is the number of rectangles. These are all worst case
bounds that apply in every step (in particular, LL=loopless), with the exception of the O(1) bound
for generic rectangulations, which holds on average (CAT=constant amortized time). For more
extensive counting results on pattern-avoiding rectangulations, see [23].

Class Forbidden patterns Counts/OEIS [26] Refs. Runtime
generic 0 1,2,6,24,116,642, 393826194, ... | [22,29] | O(1) CAT
{35124, 35142, 24513, 42513}
2-clumped permutations

diagonal {EHE} 1,2,6,22,92,422,2074, 10754, . .. 1, 8 O(1) LL
=mosaic floorpl. {2413 3142}: Baxter A001181 (Baxter numbers) [21, 37
/R-equivalence {2413, 3412} twisted Baxter

{2143, 3142}

1-sided {Eﬂ E EQ E} 1,2,6,20,72,274,1088,4470, . .. 2] O(n)

—area-universal

block-aligned n/a 1,1,2,6,22,88,374,1668,7744, ... | [4] O(1) LL

/S-equivalence {2143, 3412} A214358
generic {@ @} 1,2,6,24,114,606,3494, 21434, . .. O(n)
diagonal {@ @ Eﬁ E} 1,2,6,22,90, 394, 1806, 8558, . . . [1,37] | O(n)

0 =slicing fl.pl. {2413, 3142}: separable A006318 (Schroder numbers) [4, 5]

= /R-equiv.

Q

= l-sided 1,2, 6,20, 70,254,948, 3618, . .. 5 [9)

= eied EF R A | L6 oo

{2413,3142, 21354, 45312}

{@@ Eﬁ EEQ E 1,2,6,20, 68,232,792, 2704, . .. 5] O(n?)
HH =)

A006012

{2413,3142,2143,3412}
block-aligned | n/a 1,1,2,6,20,70,254,948, 3618, . . . [4] O(n)
/S-equiv. (2413, 3142, 2143, 3412} A078482

i.e., if R is in C then the rectangulation obtained from R by reflection at the diagonal from
top-left to bottom-right is also in C, then the jump Gray code for C, is cyclic, i.e., the last
rectangulation differs from the first one only by a jump. In other words, we not only obtain
a Hamilton path in the corresponding flip graph, but a Hamilton cycle. In fact, all the
classes of rectangulations listed in Table 1 satisfy the aforementioned closure and symmetry
properties, so in all those cases we obtain cyclic jump Gray codes.

Generic rectangulations and diagonal rectangulations, shown in the first two rows of
Table 1, have an underlying lattice and polytope structure [21, 22, 28], and in those two
cases our Gray codes form a Hamilton cycle on the skeleton of this polytope, i.e., jumps are
provably optimal minimum change operations.

It turns out that many interesting classes of rectangulations can be characterized by
pattern avoidance; see the second column in Table 1. Under very mild conditions on the
patterns, these classes satisfy the aforementioned closure property, and can hence be generated
by our framework. In this work we initiate a systematic investigation of pattern avoidance in
rectangulations, and we obtain the first counting results for many known and new classes;
see the third column in Table 1 and the more extensive tables in [23].

Our generation framework for rectangulations consists of two main algorithms. The
first is a simple greedy algorithm that generates a jump Gray code ordering for any set
of rectangulations C,, C C for which C satisfies the aforementioned closure property; see

54:3

SoCG 2021

https://oeis.org/A001181
https://oeis.org/A214358
https://oeis.org/A006318
https://oeis.org/A078482
https://oeis.org/A006012
https://oeis.org/A078482

54:4

Rectangulations via Permutation Languages

closure property

eC = |]]] eC

bottom-right bottom right
deletion insertion insertion

symmetry property

| |ec = "|.. ec
Vs

Figure 1 Closure property and symmetry property.

Algorithm JY and Theorem 5 in Section 3. The second is a memoryless version of the first
algorithm, which computes the same ordering of rectangulations; see Algorithm M™ and
Theorem 8 in Section 5. This algorithm can be fine-tuned to derive efficient algorithms
for several known rectangulation classes such as the ones listed in Table 1, by providing
corresponding jump oracles for the class C.

To prove Theorems 5 and 8, we encode rectangulations by permutations as described by
Reading [29], and we then apply our framework for exhaustively generating permutation
languages presented in [14, 15, 17]. The minimum change operations on permutations used
in that framework translate to jumps on rectangulations. Generating different classes of
rectangulations efficiently is thus another major new application of our permutation language
framework, and in this paper we flesh out the details of this application.

1.2 Related work

There has been some prior work on generating a few special classes of rectangulations, all
based on Avis and Fukuda’s reverse search method [6]. Specifically, Nakano [25] described a
CAT generation algorithm for generic rectangulations, which does not produce a Gray code,
however. This algorithm has been adapted by Takagi and Nakano [33] to generate generic
rectangulations with bounds on the number of rectangles that do not touch the outer face.
Yoshii, Chigira, Yamanaka and Nakano [38] gave a Gray code for diagonal rectangulations
based on a generating tree that is different from ours, resulting in a loopless algorithm. Their
Gray code changes at most 3 edges of the rectangulation in each step, whereas our algorithm
changes only 1 edge in each step for diagonal rectangulations and generic rectangulations.
Consequently, none of the listings produced by these earlier algorithms corresponds to a walk
along the skeleton of the underlying polytope.

There has been a lot of work on combinatorial properties of rectangulations. Yao, Chen,
Cheng and Graham [37] showed that diagonal rectangulations are counted by the Baxter
numbers and that guillotine diagonal rectangulations are counted by the Schréder numbers,
using a bijection between diagonal rectangulations and twin binary trees. Ackerman, Barequet
and Pinter [1] presented another bijection between diagonal rectangulations and Baxter
permutations, which also yields a bijection between guillotine diagonal rectangulations
and separable permutations. Shen and Chu [32] provided asymptotic estimates for these
two rectangulation classes. Moreover, He [16] presented an optimal encoding of diagonal
rectangulations with n rectangles using only 3n — 3 bits, which is optimal.

A. Merino and T. Miitze

The term “generic rectangulation” was coined by Reading [29], who established a bijection
between generic rectangulations and 2-clumped permutations, proving that these permu-
tations are representatives of equivalence classes of a lattice congruence of the weak order
on the symmetric group. Earlier, generic rectangulations had been studied under the name
“rectangular drawings” by Amano, Nakano and Yamanaka [3] and by Inoue, Takahashi and
Fujimaki [13, 19], who established recursion formulas and asymptotic bounds for their number.
More general classes of rectangular partitions were analyzed by Conant and Michaels [9].

Ackerman, Barequet and Pinter [2] considered the setting where we are given a set of
n points in general position in a rectangle, and the goal is to partition the rectangle into
smaller rectangles by n walls, such that each point from the set lies on a distinct wall. They
showed that for every set of points that forms a separable permutation in the plane, the
number of possible rectangulations is the (n 4+ 1)st Baxter number, and for every point set
the number of possible guillotine rectangulations is the nth Schréder number. They also
presented a counting and generation procedure based on simple flips and T-flips using reverse
search, which was later improved by Yamanaka, Rahman and Nakano [36].

1.3 OQutline of this paper

In Section 2 we provide basic definitions and concepts that will be used throughout the paper.
In Section 3 we present a greedy algorithm for generating a set of rectangulations by jumps,
and we provide a sufficient condition for the algorithm to succeed. In Section 4 we show
that the algorithm applies to a large number of rectangulation classes that are characterized
by pattern avoidance. In Section 5 we demonstrate how to make our generation algorithm
memoryless and efficient. The implementation details of these algorithms and the proofs of
Theorems 5 and 8 are omitted due to space constraints; they can be found in [23].

2 Preliminaries

2.1 Generic rectangulations

A generic rectangulation, or rectangulation for short, is a partition of a rectangle into finitely
many interior-disjoint axis-aligned rectangles, such that no four rectangles of the partition
have a point in common; see Figure 2. Given rectangles r and s, we say that r is left of s,
and s is right of r, if the right side of r intersects the left side of s (necessarily in a line
segment, rather than a single point). Similarly, we say that r is below s, and s is above r, if
the top side of r intersects the bottom side of s. We consider generic rectangulations up to
equivalence that preserves the left/right and below/above relations between rectangles, and
we write R,, for the set of all rectangulations with n rectangles.

We refer to every rectangle corner in a rectangulation as a verter, to every minimal line
segment between two vertices as an edge, and to every maximal line segment between two
vertices that are not corners of the rectangulation as a wall. The type of a vertex that is not
a corner describes the shape of the T-joint at this vertex, and it is one of T, -, L, or .

2.2 Flip operations and classes of rectangulations

Our Gray codes use three types of local change operations on rectangulations; see Figure 3.

A wall slide swaps the order of two neighboring vertices of types F and — along a vertical
wall, or of types T and L along a horizontal wall. A simple flip swaps the orientation of a
wall that separates two rectangles. For a vertex v that belongs to three rectangles, consider
the wall w that goes through v and the wall ¢ that ends at v, and let w’ and w” be the two
halves of w meeting in v. A T-flip swaps the orientation of w’ or w” so that it merges with ¢.

54:5

SoCG 2021

54:6

Rectangulations via Permutation Languages

R
T2 3 T4
edges—
T8
1
7
5 T6 walls

mi

— —
/vertlces\

Figure 2 Generic rectangulation R with 11 rectangles. The rectangle r1 is below 72, 73 and 74,
above rs and rg, right of r7 and left of rs.

J— wall slide I
-

simple flip
-—>

Figure 3 Local change operations on rectangulations.

We now define various interesting subclasses of generic rectangulations that have been
studied in the literature and that appear in Table 1. A diagonal rectangulation is one
in which every rectangle intersects the main diagonal that goes from the top-left to the
bottom-right corner of the rectangulation. We write D,, C R,, for the set of all diagonal
rectangulations with n rectangles. Diagonal rectangulations are characterized by avoiding the
wall patterns Qﬂ and E [8]. Consider the equivalence relation on R, obtained from wall
slides, sometimes referred to as R-equivalence [4]. The equivalence classes are referred to as
mosaic floorplans, and every equivalence class contains exactly one diagonal rectangulation,
obtained by repeatedly destroying occurrences of Qﬂ or E by wall slides [8]. Consequently,
in a diagonal rectangulation, along every vertical wall, all F-vertices are below all 4-vertices,
and along every horizontal wall, all | -vertices are to the left of all T-vertices.

In a 1-sided rectangulation, every wall is the side of at least one rectangle. This notion
was introduced by Eppstein, Mumford, Speckmann, and Verbeek [12], who used it to
characterize area-universal rectangulations, i.e., for any assignment of areas to the rectangles,
the rectangulation can be drawn so that each rectangle has the prescribed area.

Asinowski et al. [4] also considered the equivalence relation on R,, obtained from wall
slides and simple flips, and they called it S-equivalence. By definition, S-equivalence is a
coarser relation than R-equivalence, i.e., the equivalence classes are obtained by identifying
mosaic floorplans that differ in simple flips. In [23] we introduce block-aligned rectangulations,
which are a subset of diagonal rectangulations with the property that every equivalence class
of S-equivalence contains exactly one block-aligned rectangulation.

A. Merino and T. Miitze

A rectangulation is guillotine, if each of its rectangles can be cut out from the entire
rectangulation by a sequence of straight vertical or horizontal cuts. Guillotine rectangu-
lations are characterized by avoiding the windmill patterns @ and @ Various special
classes of guillotine diagonal rectangulations, characterized by the avoidance of certain wall
configurations, were introduced by Asinowski and Mansour [5] (see Section 4 for precise
definitions). Mosaic floorplans that are guillotine are also known as slicing floorplans.

2.3 Deletion of rectangles

We now describe two operations on a generic rectangulation R with n rectangles, namely
deleting a rectangle and inserting a rectangle. The resulting rectangulations have n — 1 or
n + 1 rectangles, respectively, and they will be denoted by p(R) and ¢;(R), notations that
refer to the parent and children of R, in a tree structure that will be discussed shortly. The
deletion and insertion operations were introduced in [18] and heavily used e.g. in [1] and [25].

The idea of deletion is to contract the rectangle in the bottom-right corner of the
rectangulation. Formally, given a rectangulation R € R,, n > 2, we consider the rectangle r
in the bottom-right corner, and we consider the top-left vertex of r. If this vertex has type F,
then we collapse r by sliding its top side, which forms a wall, downwards until it merges
with the bottom side of r; see Figure 4 (a). Similarly, if this vertex has type T, then we
collapse r by sliding its left side, which forms a wall, to the right until it merges with the
right side of r; see Figure 4 (b). We denote the resulting rectangulation with n — 1 rectangles
by p(R) € Rn—1, and we say that p(R) is obtained from R by deletion.

— A
R | p(R)
@| 7
—
— A
R p(R)
| | _ A
w| T —
—r —
Figure 4 Deletion operation.
Moreover, we denote the n rectangles of R by r,,7,_1,...,71 in the order in which they

are deleted when applying the deletion operation exhaustively; see Figure 5. Clearly, if r;
is deleted and its top-left vertex has type I, then the rightmost rectangle above r; is r;_1.
Similarly, if the top-left vertex has type T, then the lowest rectangle to the left of r; is r;_1.

For any R € R, and i = 1,...,n we define R := p"»~%(R), i.e., this is the sub-
rectangulation of R formed by the first ¢ rectangles; see Figure 5.

2.4 Insertion of rectangles

The idea of insertion is to add a new rectangle into the bottom-right corner of the rectangu-
lation. Given a rectangulation R € R,,, we first define a set of points in R that can become
the top-left corner of the newly added rectangle; see Figure 6.

54:7

SoCG 2021

54:8

Rectangulations via Permutation Languages

2 2 2 2
1 3 e 1 3 1 3 e 1 3
4 I 4 4 I 4
7 - 7 7
5 6 e 5 6 5 6 |- 5 |26
S e EERREREEE e e
R p(R) = RI8] pQ(R) — Rl7 pS(R) — Rl6l

Figure 5 A rectangulation and the indexing of its rectangles given by repeated deletion.

For any rectangle r in R € R,, n > 1, that touches the bottom boundary of R, we
consider all edges forming the left side of r, and from every such edge we select one interior
point, and we refer to it as a wvertical insertion point. Similarly, for any rectangle r in R
that touches the right boundary of R, we consider the set of all edges forming the top side
of r, and from every such edge we select one interior point, and we refer to it as a horizontal
insertion point. Combinatorially it does not make a difference which interior point is selected.

25

Figure 6 Linear ordering of insertion points. First and last insertion point are filled.

We order the insertion points linearly, by sorting all vertical insertion points lexico-
graphically by their (x,y)-coordinates, followed by all horizontal insertion points sorted
lexicographically by their (y, z)-coordinates; see Figure 6. We write I(R) = (q1,492,---,q,)
for the sequence of all insertion points ordered in this linear order. In particular, v = v(R)
denotes the number of insertion points.

» Lemma 1. For any rectangulation R € R,, we have v(R) < n + 1.

The proof of Lemma 1 is straightforward; see [23]. The upper bound in Lemma 1 is
attained if every rectangle touches the bottom or right boundary of R.

Given R € R,, and the sequence of insertion points I(R) = (q1,...,q,), for each i =
1,...,v we define a rectangulation ¢;(R) € R,4+1 as follows: If ¢; is a vertical insertion
point, then ¢;(R) is obtained from R by inserting a new rectangle r,; in the bottom-right
corner such that 7,41 has above it exactly all rectangles which in R lie to the right of ¢; and
touch the bottom boundary of R, and such that 7,1 has to its left exactly all rectangles
which in R touch the vertical wall through ¢; below ¢;; see Figure 7 (a). Similarly, if ¢; is a
horizontal insertion point, then ¢;(R) is obtained from R by inserting a new rectangle r,11
in the bottom-right corner such that r,; has to its left exactly all rectangles which in R

A. Merino and T. Miitze

lie below ¢; and touch the right boundary of R, and such that 7,41 has above it exactly all
rectangles which in R touch the horizontal wall through ¢; to the right of ¢;; see Figure 7 (b).
We say that ¢;(R) is obtained from R by insertion.

— A

R

q;

n-+1

Figure 7 Insertion operation.

By these definitions, the operations of deletion and insertion are inverse to each other,
which we record in the following lemma.

» Lemma 2. For any rectangulation R € R,, and any two distinct insertion points ¢; and g;
from I(R), the rectangulations ¢;(R) € Rp+1 and ¢;(R) € Ry41 are distinct, and we have

R = p(ci(R)) = p(c;(R)).

The first and last insertion point, highlighted in Figure 6, play a special role. We say
that R is bottom-based if R has a rectangle whose bottom side is the entire bottom boundary
of R, and R is right-based if R has a rectangle whose right side is the entire right boundary
of R. Note that [0 is both bottom-based and right-based, and if n > 2, then R € R,, is
bottom-based if and only if R = c1(p(R)) and right-based if and only if R = ¢, ,(r))(p(R)).

3 The basic algorithm

We now present the basic algorithm that we use to generate a set of rectangulations C,, C R,,.

3.1 Jumps in rectangulations

We first introduce a local change operation that generalizes the three kinds of flips introduced
in Section 2.2 (recall Figure 3) and that will be applied when moving from one rectangulation
in C, to the next in the algorithm. A jump changes the insertion point for exactly one
rectangle of the rectangulation. Formally, for a rectangulation R € R,,, we say that R’ € R,
differs from R by a right jump of rectangle r; by d steps, denoted R’ = j(R,j,d), where
2 < j<mnandd >0, if one of the following conditions holds; see Figure 8:

54:9

SoCG 2021

54:10 Rectangulations via Permutation Languages

P= p(R) = p(R/) R= Ck(P) R = Ck+d(P)

1P) k+d F

J—1 J J—1 J

j—1

P k

right jump of T

eft jump of r;

Figure 8 Definition of jumps.

j=n,and p(R) =p(R') =: P € Rp_1, R = cx(P) and R’ = cyq(P) for some k > 0;

j <n,and R and R’ are either both bottom-based or both right-based, and p(R’) differs

from p(R) in a right jump of rectangle r; by d steps.

In words, the first condition asserts that the first n — 1 rectangles in R and R’ form the same
rectangulation P € R,,_1, and R and R’ are obtained by insertion from P using the kth and
(k + d)th insertion point, respectively. The second condition asserts that R and R’ agree in
the rectangle r,, which either forms the bottom boundary or the right boundary of those
rectangulations, and p(R’) differs from p(R) in a right jump with the same parameters.

A right jump as before is called minimal w.r.t. to a set of rectangulations C,, C R, if in
the first condition above there is no index ¢ with k < ¢ < k + d such that c,(P) € C,.

A (minimal) left jump, denoted R’ = 7(}27 J,d), is defined analogously by replacing
Ckta by cp_qgand k < £ < k+d by k > £ > k — d in the definitions above. Clearly, if R’
differs from R by a right jump of rectangle r; by d steps, then R differs from R’ by a left
jump of rectangle r; by d steps, and vice versa, i.e., we have R’ = 7(R7j, d) if and only if
R= 7(R' ,J,d). We sometimes simply say that R and R’ differ in a jump, without specifying
the direction. We state the following simple observations for further reference; see Figure 9.

P
wall slides

T-flips

%Ilple

j—1

flips

Figure 9 Jumps generalize wall slides, simple flips and T-flips.

» Lemma 3. Consider two rectangulations R, R’ € R,, that differ in a jump of rectangle r;,
define P := RU-1 = RU-1 ¢ Rj_1, and let qi and q¢ be the insertion points in I(P) such
that RV = ¢, (P) and R'U) = ¢,(P).

A. Merino and T. Miitze

(a) If qr and q¢ are consecutive (w.r.t. I(P)) on a common wall of P, then R and R’ differ
in a wall slide.

(b) If qi lies on the last vertical wall and qe on the first horizontal wall of P (w.r.t. I(P)),
then R and R’ differ in a simple flip.

(c) If g lies on a vertical wall and gy is the first insertion point on the next vertical wall
of P (w.r.t. I(P)), or if qx lies on a horizontal wall and qy is the last insertion point on
the previous horizontal wall, then R and R’ differ in a T-flip.

3.2 Generating rectangulations by minimal jumps

Consider the following algorithm that attempts to greedily generate a set of rectangulations
Cn € R, using minimal jumps.

Algorithm J" (Greedy minimal jumps).

This algorithm attempts to greedily generate a set of rectangulations C,, C R,, using minimal

jumps starting from an initial rectangulation Ry € C,.

J1. [Initialize] Visit the initial rectangulation Ry.

J2. [Jump] Generate an unvisited rectangulation from C,, by performing a minimal jump of
the rectangle with maximum index in the most recently visited rectangulation. If no
such jump exists, or the jump direction is ambiguous, then terminate. Otherwise visit
this rectangulation and repeat J2.

To illustrate how Algorithm J5 works, consider the set of five rectangulations C; =
{Ri1,...,R5} C R4 shown in Figure 10. If initialized with Ry := R;, then the algorithm
performs a left jump of rectangle 4 by one step (a right jump of rectangle 4 is impossible)
to reach Rg, i.e., we have Ry = 7(R1,4, 1). In R,, there are two options, either a right
jump of rectangle 4 by one step, leading back to R;, which has been visited before, or a left
jump of rectangle 4 by two steps, leading to Rs, so we visit R3 = 7(R2, 4,2). In Rs, the
jumps involving rectangle 4 lead to rectangulations that were visited before (R; and Rs).
Moreover, a jump of rectangle 3 does not lead to a rectangulation in C4. However, a right
jump of rectangle 2 by one step leads to R4 (a left jump of rectangle 2 is impossible), so
we visit Ry = 7(R3, 2,1). Finally, in R4 a right jump of rectangle 4 by two steps leads
to Ry = 7(R4, 4,2) (a left jump of rectangle 4 is impossible). In this example, Algorithm J&
successfully visits every rectangulation from C4 exactly once.

On the other hand, suppose we instead initialize the algorithm with Ry := R3. The
algorithm will then visit Ry := 7(R3, 4,2) followed by Ry := 7(R2, 4,1), and then terminates
without success, as from R; no jump leads to an unvisited rectangulation from C4. Lastly,

«— «—

J(Ri,4,1) =Ry J(R2,4,2) = Ry

Figure 10 Example execution of Algorithm J&.

54:11

SoCG 2021

54:12

Rectangulations via Permutation Languages

suppose we initialize Algorithm J& with Ry := Ry. As before, in Ry, there are two possibilities,
either a right jump or a left jump of rectangle 4, both leading to an unvisited rectangulation
from C4. Both are minimal jumps in opposite directions, and as the jump direction is
ambiguous, the algorithm terminates immediately without success.

» Remark 4. We do not recommend using Algorithm J= in the stated form to generate a set
of rectangulations efficiently! This is because the algorithm requires to maintain the list of
all previously visited rectangulations (possibly exponentially many), and to look up this list
in each step to check whether a rectangulation obtained by a jump from the current one has
been visited before. For us, Algorithm J® is merely a tool to define a Gray code ordering
of the rectangulations in the given set C, in way that is easy to remember (cf. [35]). In
fact, in Section 5 we will present a modified algorithm that dispenses with the costly lookup
operations, and that computes the very same sequence of rectangulations.

3.3 A guarantee for success

By definition, Algorithm J& visits every rectangulation from a given set C,, C R,, at most
once, but it may terminate before having visited all. We now provide a sufficient condition
guaranteeing that Algorithm JU visits every rectangulation from C, exactly once.

A set of generic rectangulations C,, C R, is called zigzag, if either n = 1 and C; = {{J}, or

ifn>2and C,_1 :={p(R) | R € C,} is zigzag and for every R € C,,_; we have ¢;1(R) € C,
and ¢, (gy(R) € C,. In words, a zigzag set C, is closed under repeatedly deleting bottom-
right rectangles and replacing them by rectangles inserted either below or to the right of
the remaining ones; recall Figure 1. The name “zigzag” does not refer to the shape of a
rectangulation and will become clear momentarily. We also say that C,, is symmetric, if
reflection at the main diagonal is an involution of C,,, i.e., if R € C,,, then the rectangulation
obtained from R by reflection at the main diagonal is also in C,,. We write III for the
rectangulation that consists of n vertically stacked rectangles.
» Theorem 5. Given any zigzag set of rectangulations C,, and initial rectangulation Ry = ,
Algorithm J5 wisits every rectangulation from C,, exactly once. Moreover, if C, is symmetric,
then the ordering of rectangulations generated by Algorithm J© is cyclic, i.e., the first and
last rectangulation differ in a minimal jump.

Note that the rectangulation Ry = is contained in every zigzag set by definition, so this
is a valid initialization for Algorithm J~. We write J5(C,,) for the sequence of rectangulations

generated by Algorithm J5 for a zigzag set C,, when initialized with Ry = .

It is easy to see that the number of distinct zigzag sets of generic rectangulations is at
least 2/Rnl(1=0(1)) > 9Q(11.56") (the latter estimate uses the best known lower bound on |R,,|
from [3]), i.e., at least double-exponential in n. In other words, Algorithm J& exhaustively
generates a given set of generic rectangulations in a vast number of cases. Moreover, many
natural classes of rectangulations are in fact zigzag. In particular, all the classes introduced
in Section 2.2 and shown in Table 1 satisfy the aforementioned closure property. Moreover,
all of these classes are symmetric, so for each of them we obtain cyclic jump orderings.

3.4 Tree of rectangulations

The notion of zigzag sets and the operation of Algorithm J™ can be interpreted combinatorially
in the so-called tree of rectangulations, which is an infinite rooted tree, defined recursively
as follows; see Figure 11: The root of the tree is a single rectangle [J € R;. For any node

A. Merino and T. Miitze

R € R,, n > 1, of the tree we consider all insertion points of the rectangulation R, and
the set of children of R in the tree is {¢;(R) € Rp41 | i = 1,...,v(R)}. Conversely, the
parent of each R € R, n > 2,is p(R) € R,—1. In words, insertion leads to the children of a
node, and deletion leads to the parent of a node. By Lemma 2, each generic rectangulation
appears exactly once in the tree, and the set of nodes in distance n from the root of the tree
is precisely the set R, 41 of generic rectangulations with n 4 1 rectangles. We emphasize
that this tree is unordered, i.e., there is no specified ordering among the children of a node.

By Lemma 1, a node R € R,, in the tree has at most n+1 children, i.e., we have |R,| < nl.

As we see from Figure 11, this inequality is tight up to n = 4, but starting from n = 4, there
are nodes R € R,, with strictly less than n + 1 children, i.e., we have |Rs5| < 5!. In fact, it
was shown in [3] that |R,| = O(28.3™).

Figure 11 Tree of generic rectangulations up to depth 3 with insertion points highlighted, where
first and last insertion point are filled. The rectangulations in the dashed boxes at the bottom
level R4 are stacked on top of each other due to space constraints, but they are children of a common
parent node. Bottom- or right-based rectangulations, corresponding to insertion at the first or last
insertion point, are marked by gray boxes.

54:13

SoCG 2021

54:14

Rectangulations via Permutation Languages

A subset C,, C R,, of nodes in depth n — 1 of this tree is zigzag, if and only if it arises
from the full tree of rectangulations by pruning some subtrees whose roots are neither
bottom-based nor right-based rectangulations. In Figure 11, all bottom-based or right-based
rectangulations are highlighted by gray boxes, and can therefore not be pruned, while all
other nodes can possibly be pruned. If no nodes are pruned, then we have C,, = R,,, and
if all possible nodes are pruned, then C, is the set B, of 2"~ ! rectangulations obtained
by repeatedly stacking a new rectangle either below or to the right of the previous ones,
ie., B, = {ci(R),c,(g)(R) | R € By_1} for n > 2 and B; = {{0}. Moreover, we have
B, CC, C R, for any zigzag set C,.

The operation of Algorithm J& for a zigzag set C,, as input can be interpreted as follows:
Given the pruned tree corresponding to C,, we consider the set of nodes on all previous
levels of the tree, i.e., the sets C;—1 := {p(R) | R € C;} for i = n,n —1,...,2, which are
all zigzag sets by definition. Moreover, we consider the orderings JD(CZ-), i =1,...,n,
defined by Algorithm J5 for each of these sets. These sequences turn the unordered tree
corresponding to C,, into an ordered tree, where the children ¢;(R) of each node R from
left to right appear alternatingly in increasing order ¢ = 1,...,v(R) or in decreasing order
i =v(R),v(R) —1,...,1. Consequently, in the sequence J7(C;), i > 2, which forms the left-
to-right sequence of all nodes in depth 7 — 1 of this ordered tree, the rectangle r; alternatingly
jumps left and right between the first and last insertion point, which motivates the name
“zigzag” set; see also the animations provided in [10].

4 Pattern-avoiding rectangulations

We now show that Algorithm J& applies to a large number of rectangulation classes that are
defined by pattern avoidance, under some very mild conditions; recall Table 1.

A rectangulation pattern is a configuration of walls with prescribed directions and inci-
dences. For example, the windmill patterns @ and @ describe four walls such that when
considering the walls in clockwise or counterclockwise order, respectively, the end vertex of
one wall lies in the interior of the next wall. We can also think of a pattern as the rectangu-
lation formed by the given walls and incidences. For example, we can think of the windmill
patterns as rectangulations with 5 rectangles. We say that a rectangulation R contains the
pattern P, if R contains a subset of walls with the directions and incidences specified by P.
Otherwise we say that R avoids P. For any set of rectangulation patterns P and for any set
of rectangulations C, we write C(P) for the rectangulations from C that avoid each pattern

from P. For example, diagonal rectangulations are given by D,, = R, ({Qﬂ, E})

We say that a rectangulation pattern P is tame, if for any rectangulation R that avoids P,
we also have that ¢;(R) and ¢, (g)(R) avoid P. In words, inserting a new rectangle below R
or to the right of R must not create the pattern P. These definitions yield the next lemma.

» Lemma 6. If a rectangulation pattern is neither bottom-based nor right-based, then it is
tame. In particular, each of the patterns @,@,Qﬂ,@, B;, E, EI:H, % s tame.

The following powerful theorem allows to obtain many new zigzag sets of rectangulations
from a given zigzag set C,, C R, by forbidding one or more tame patterns. All of these
zigzag sets can then be generated by our Algorithm J&.

» Theorem 7. Let C,, C 'R, be a zigzag set of rectangulations, and let P be a set of tame
rectangulation patterns. Then C,(P) is a zigzag set of rectangulations. Moreover, if P is
symmetric, then C,(P) is symmetric.

A. Merino and T. Miitze

Recall that P is symmetric if for each pattern P € P, we have that the pattern obtained
from P by reflection at the main diagonal is also in P. The significance of the second part
of the theorem is that if C,(P) is symmetric, then the ordering of rectangulations of C,(P)
generated by Algorithm J5 is cyclic by Theorem 5. See [23] for a proof of Theorem 7.

5 Efficient computation

Recall from Remark 4 that Algorithm JY in its stated form is unsuitable for efficient
implementation. We now discuss how to make the algorithm efficient, so as to achieve the
time bounds claimed in Table 1 for several interesting classes of rectangulations.

5.1 Memoryless algorithm

Consider Algorithm M™ below, which takes as input a zigzag set of rectangulations C,, C R,
and generates them exhaustively by minimal jumps in the same order as Algorithm J&, i.e.,
in the order JU (Cyn). After initialization in line M1, the algorithm loops over lines M2-M35,
visiting the current rectangulation R at the beginning of each iteration (line M2), until it
terminates (line M3). The key idea is to track explicitly which rectangle jumps in each
step, and the direction of the jump. With this information, the jump is determined by the
condition that it must be minimal w.r.t. C,, i.e., starting from the current insertion point of
the given rectangle, we choose the first insertion point (w.r.t. their linear ordering) for that
rectangle in the given direction that creates the next rectangulation from C,.

Algorithm M" (Memoryless minimal jumps).

This algorithm generates all rectangulations of a zigzag set C,, C R,, by minimal jumps in

the same order as Algorithm J®. It maintains the current rectangulation in the variable R,

and auxiliary arrays o = (01,...,0,) and s = (81,...,8p).

M1. [Initialize] Set R + III and 0; <<, s; < jforj=1,...,n.

M2. [Visit] Visit the current rectangulation R.

M3. [Select rectangle] Set j < s, and terminate if j = 1.

M4. [Jump rectangle] In the current rectangulation R, perform a jump of rectangle r; that
is minimal w.r.t. C,,, where the jump direction is left if o; = <1 and right if o; =1 .

M5. [Update o and s] Set s, < n. If o; =<1 and RU! is bottom-based set o; <>, or
if 0; = and RV is right-based set o; <— <1, and in both cases set s; + s;_1 and
sj—1 < j — 1. Go back to M2.

Specifically, the jump directions are maintained by an array o = (oy,...,0y,), where
0; =< means that rectangle r; performs a left jump in the next step, and o; => means
that rectangle r; performs a right jump in the next step (line M4). All sub-rectangulations
of the initial rectangulation are right-based, so the initial jump directions are o; = < for
j=1,...,n (line M1). Whenever rectangle r; jumps left and reaches the first insertion point,
which means that RU! is bottom-based, or if it jumps right and reaches the last insertion

point, which means that RU! is right-based, then the jump direction o0; is reversed (line M5).
The array s = ($1,...,5,) is used to determine which rectangle jumps in each step.

Specifically, the last entry s,, determines the rectangle that jumps in the current iteration
(line M3). This array simulates a stack in a loopless fashion, following an idea first used
by Bitner, Ehrlich, and Reingold [7]. The stack is initialized by (s1,...,8,) = (1,2,...,n)
(line M1), with s,, being the value on the top of the stack. The stack is popped (by the

54:15

SoCG 2021

54:16

Rectangulations via Permutation Languages

instruction s; <— s;_1 in line M5) when rectangle r; reaches its first or last insertion point in
this step, meaning that this rectangle is not eligible to jump in the next step, but becomes
eligible again after the next step, which is achieved by pushing the value j on the stack again
(by the instructions s, <—n and s;_; < j — 1 in line M5). See Table 2 for an example.

» Theorem 8. For any zigzag set of rectangulations C,, C R.,, Algorithm M visits every
rectangulation from C, ezactly once, in the order J2(C,) defined by Algorithm J©.

To make meaningful statements about the running time of Algorithm MY, we need to
specify the data structures used to represent the current rectangulation R, and the operations
on this data structure to perform the operations in lines M4 and M5. Most importantly, we
need to develop oracles which efficiently compute the next minimal jump w.r.t. C,, for some
interesting zigzag sets C,,. One should think of C,, here as a class of rectangulations specified
by some properties or forbidden patterns, such as “diagonal guillotine rectangulations”, and
not as large precomputed set of rectangulations. All of these details can be found in [23],
and they are part of our C++ implementation provided in [10].

Table 2 Execution of Algorithm M" for the set C4 = D4 of diagonal rectangulations with
4 rectangles. Empty entries in the o and s column are unchanged compared to the previous row.

JD(C4) jump 01020304 | §1528354 JD(C4) jump 01020304 | S1828384
1 II TJRAD | <1234 12 . J(R4,1)| > 11 4
2 “ T(R,4,1) 4 13 . T(R,4,1) 4
3 “ T(R,4,1) 4 14 . T(R,4,1) 4
4 “ T (R,3,1) > 33 15 . J(R,3,1) < 33
5 . J(R,4,1) 4 16 . T(R,4,1) 4
6 . J(R,4,1) 4 17 . T(R,4,1) 4
7 ' J(R,4,1) 4 18 . T(R,4,1) 4
8 ' T(R,3,1) < 33 19 . J(R,3,1) > 33
9 . T(R,4,1) > 224 20 . T(R,4,1) < 214
10 . T(R,4,2) 4 21 . T(R,4,2) 4
11 = T(R,2,1) > 32 22 . < 31

A. Merino and T. Miitze

—— References

1

10
11

12

13

14

15

16

17

18

19

20

E. Ackerman, G. Barequet, and R. Y. Pinter. A bijection between permutations and floorplans,
and its applications. Discrete Appl. Math., 154(12):1674-1684, 2006. doi:10.1016/j.dam.
2006.03.018.

E. Ackerman, G. Barequet, and R. Y. Pinter. On the number of rectangulations of a planar point
set. J. Combin. Theory Ser. A, 113(6):1072-1091, 2006. doi:10.1016/j.jcta.2005.10.003.
K. Amano, S. Nakano, and K. Yamanaka. On the number of rectangular drawings: Exact
counting and lower and upper bounds, 2007. IPSJ SIG Technical Report 2007-AL-115 (5).
A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Y. Pinter. Orders
induced by segments in floorplans and (2-14-3, 3-41-2)-avoiding permutations. Electron. J.
Combin., 20(2):Paper 35, 43, 2013.

A. Asinowski and T. Mansour. Separable d-permutations and guillotine partitions. Ann.
Comb., 14(1):17-43, 2010. doi:10.1007/s00026-010-0043-8.

D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21-46,
1996. First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz).
d0i:10.1016/0166-218X(95)00026-N.

J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient generation of the binary reflected Gray
code and its applications. Comm. ACM, 19(9):517-521, 1976. doi:10.1145/360336.360343.
J. Cardinal, V. Sacristdn, and R. I. Silveira. A note on flips in diagonal rectangulations.
Discrete Math. Theor. Comput. Sci., 20(2):Paper No. 14, 22, 2018.

J. Conant and T. Michaels. On the number of tilings of a square by rectangles. Ann. Comb.,
18(1):21-34, 2014. doi:10.1007/s500026-013-0209-2.

The Combinatorial Object Server: http://www.combos.org/rect.

G. Ehrlich. Loopless algorithms for generating permutations, combinations, and other combi-
natorial configurations. J. Assoc. Comput. Mach., 20:500-513, 1973. doi:10.1145/321765.
321781.

D. Eppstein, E. Mumford, B. Speckmann, and K. Verbeek. Area-universal and constrained
rectangular layouts. SIAM J. Comput., 41(3):537-564, 2012. doi:10.1137/110834032.

R. Fujimaki, Y. Inoue, and T. Takahashi. An asymptotic estimate of the numbers of rectangular
drawings or floorplans. In 2009 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 856-859, 2009. doi:10.1109/ISCAS.2009.5117891.

E. Hartung, H. P. Hoang, T. Miitze, and A. Williams. Combinatorial generation via permutation
languages. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1214—
1225. STAM, 2020. doi:10.1137/1.9781611975994.74.

E. Hartung, H. P. Hoang, T. Miitze, and A. Williams. Combinatorial generation via permutation
languages. I. Fundamentals, 2020. To appear in Trans. Amer. Math. Soc.; preprint available
at arXiv:1906.06069.

B. D. He. A simple optimal binary representation of mosaic floorplans and Baxter permutations.
Theoret. Comput. Sci., 532:40-50, 2014. doi:10.1016/j.tcs.2013.05.007.

H. P. Hoang and T. Miitze. Combinatorial generation via permutation languages. II. Lattice
congruences, 2020. To appear in Israel J. Math.; preprint available at arXiv:1911.12078.
X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner block list:
An effective and efficient topological representation of non-slicing floorplan. In E. Sentovich,
editor, Proceedings of the 2000 IEEE/ACM International Conference on Computer-Aided
Design, 2000, San Jose, California, USA, November 5-9, 2000, pages 8-12. IEEE Computer
Society, 2000. doi:10.1109/ICCAD.2000.896442.

Y. Inoue, T. Takahashi, and R. Fujimaki. Counting rectangular drawings or floorplans in
polynomial time. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(4):1115-1120,
2009. doi:10.1587/transfun.E92.A.1115.

D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial algorithms. Part 1.
Addison-Wesley, Upper Saddle River, NJ, 2011.

54:17

SoCG 2021

https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1016/j.jcta.2005.10.003
https://doi.org/10.1007/s00026-010-0043-8
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1145/360336.360343
https://doi.org/10.1007/s00026-013-0209-2
http://www.combos.org/rect
https://doi.org/10.1145/321765.321781
https://doi.org/10.1145/321765.321781
https://doi.org/10.1137/110834032
https://doi.org/10.1109/ISCAS.2009.5117891
https://doi.org/10.1137/1.9781611975994.74
https://arxiv.org/abs/1906.06069
https://doi.org/10.1016/j.tcs.2013.05.007
https://arxiv.org/abs/1911.12078
https://doi.org/10.1109/ICCAD.2000.896442
https://doi.org/10.1587/transfun.E92.A.1115

54:18

Rectangulations via Permutation Languages

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

S. Law and N. Reading. The Hopf algebra of diagonal rectangulations. J. Combin. Theory
Ser. A, 119(3):788-824, 2012. doi:10.1016/j.jcta.2011.09.006.

E. Meehan. The Hopf algebra of generic rectangulations, 2019. arXiv:1903.09874.

A. Merino and T. Miitze. Combinatorial generation via permutation languages. III. Rectangu-
lations, 2021. Full preprint version of the present article. arXiv:2103.09333.

W. J. Mitchell, J. P. Steadman, and R. S. Liggett. Synthesis and optimization of small
rectangular floor plans. Environment and Planning B: Planning and Design, 3(1):37-70, 1976.
doi:10.1068/b030037.

S. Nakano. Enumerating floorplans with n rooms. In Algorithms and computation (Christchurch,
2001), volume 2223 of Lecture Notes in Comput. Sci., pages 107-115. Springer, Berlin, 2001.
doi:10.1007/3-540-45678-3_10.

OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2020. URL: http:
//oeis.org.

R. H. J. M. Otten. Automatic floorplan design. In J. S. Crabbe, C. E. Radke, and H. Ofek,
editors, Proceedings of the 19th Design Automation Conference, DAC ’82, Las Vegas, Nevada,
USA, June 14-16, 1982, pages 261-267. ACM/IEEE, 1982. doi:10.1145/800263.809216.

V. Pilaud and F. Santos. Quotientopes. Bull. Lond. Math. Soc., 51(3):406—420, 2019. doi:
10.1112/blms.12231.

N. Reading. Generic rectangulations. Furopean J. Combin., 33(4):610-623, 2012. doi:
10.1016/j.ejc.2011.11.004.

F. Ruskey. Combinatorial Gray code. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages
342-347. Springer, 2016.

C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605-629, 1997. doi:
10.1137/50036144595295272.

Z. C. Shen and C. C. N. Chu. Bounds on the number of slicing, mosaic, and general floorplans.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10):1354—
1361, 2003. doi:10.1109/TCAD.2003.818136.

M. Takagi and S. Nakano. Listing all rectangular drawings with certain properties. Systems
and Computers in Japan, 35(4):1-8, 2004. doi:10.1002/scj.10563.

M. van Kreveld and B. Speckmann. On rectangular cartograms. Comput. Geom., 37(3):175-187,
2007. doi:10.1016/j.comgeo.2006.06.002.

A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures - 13th
International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings,
pages 525—536, 2013. doi:10.1007/978-3-642-40104-6_46.

K. Yamanaka, M. S. Rahman, and S. Nakano. Enumerating floorplans with columns. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., 101-A(9):1392-1397, 2018. doi:10.1587/
transfun.E101.A.1392.

B. Yao, H. Chen, C.-K. Cheng, and R. L. Graham. Floorplan representations: Complexity
and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55-80, 2003. doi:10.1145/
606603.606607.

S. Yoshii, D. Chigira, K. Yamanaka, and S. Nakano. Constant time generation of rectangular
drawings with exactly n faces. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
89-A(9):2445-2450, 2006. doi:10.1093/ietfec/e89-a.9.2445.

https://doi.org/10.1016/j.jcta.2011.09.006
http://arxiv.org/abs/1903.09874
http://arxiv.org/abs/2103.09333
https://doi.org/10.1068/b030037
https://doi.org/10.1007/3-540-45678-3_10
http://oeis.org
http://oeis.org
https://doi.org/10.1145/800263.809216
https://doi.org/10.1112/blms.12231
https://doi.org/10.1112/blms.12231
https://doi.org/10.1016/j.ejc.2011.11.004
https://doi.org/10.1016/j.ejc.2011.11.004
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1109/TCAD.2003.818136
https://doi.org/10.1002/scj.10563
https://doi.org/10.1016/j.comgeo.2006.06.002
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1587/transfun.E101.A.1392
https://doi.org/10.1587/transfun.E101.A.1392
https://doi.org/10.1145/606603.606607
https://doi.org/10.1145/606603.606607
https://doi.org/10.1093/ietfec/e89-a.9.2445

	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Outline of this paper

	2 Preliminaries
	2.1 Generic rectangulations
	2.2 Flip operations and classes of rectangulations
	2.3 Deletion of rectangles
	2.4 Insertion of rectangles

	3 The basic algorithm
	3.1 Jumps in rectangulations
	3.2 Generating rectangulations by minimal jumps
	3.3 A guarantee for success
	3.4 Tree of rectangulations

	4 Pattern-avoiding rectangulations
	5 Efficient computation
	5.1 Memoryless algorithm

