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1 Introduction

For a graph G = (V, E), a cut is a partition of V into two disjoint subsets. Any cut
determines a cut set which is the set of all edges that have one endpoint in one partition
and the other endpoint in the other partition. The size of a cut is the cardinality of its
cut set. The maximum cut problem or Max Cut asks for a cut of maximum size. Max
Cut is a fundamental and well-known NP-complete problem [17]. The weighted version of
the problem is one of Karp’s original 21 NP-complete problems [25]. Besides its theoretical
importance, it has applications in VLSI circuit design [11], statistical physics [3] etc. Max
Cut remains NP-hard even for cubic graphs [4], split graphs [7], co-bipartite graphs [7], unit
disk graphs [15] and total graphs [20]. On the positive side, polynomial time algorithms are
known for planar graphs [21], line graphs [20], graphs not contractible to K5 [2] and graphs
with bounded treewidth [7].

It is well known that many classical NP-complete problems like colourability [19], Hamilto-
nian cycle [26], minimum dominating set [12], minimum feedback vertex set [29], minimum
vertex cover [30] and maximum clique [22] are polynomial time solvable for interval graphs.
This is because interval graphs are well structured graphs with many nice properties and
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7:2 Complexity of Maximum Cut on Interval Graphs

decomposition models that are often exploited to design efficient dynamic programming or
greedy algorithms. Few problems that are known to be NP-hard in interval graphs include
optimal linear arrangement [14], achromatic number [5], harmonious colouring [1], geodetic
set [10], minimum sum colouring [31], metric dimension [16], identifying code [16] and
locating-dominating set [16]. The class of interval graphs is widely regarded as an important
graph class with many real-world applications. Interval graphs arise naturally in modelling
problems that involve temporal reasoning, e.g scheduling problems. Interval graphs are also
extensively used in bioinformatics (e.g. DNA mapping [32], protein sequencing [24]) and
mathematical biology (e.g. food webs in population biology [13]).

Surprisingly, the computational complexity of Max Cut for interval graphs is a long-
standing open problem. The first time that the problem was mentioned as open was probably
in 1985 [23]. No polynomial time algorithm is known even for the subclass of unit interval
graphs. There are two previous works [8, 9] reporting polynomial time algorithms solving
Max Cut for unit interval graphs. However, both algorithms were later reported to be
incorrect [6, 28]. In this paper, we show that Max Cut is NP-complete for interval graphs.

2 Preliminaries

For any simple undirected graph G = (V, E), a cut is a partition of V into two disjoint
subsets A and B, i.e., V = A ∪ B and A ∩ B = ∅. The corresponding cut set is the
set of all edges that have one endpoint in A and the other endpoint in B, i.e., the set
{(u, v) ∈ E | (u ∈ A, v ∈ B)∨ (u ∈ B, v ∈ A)}. The size of the cut is the cardinality of its cut
set. A typical instance of the decision version of Max Cut consists of a simple undirected
graph G = (V, E) and an integer k such that 1 ≤ k ≤ |E|. (G, k) is an yes-instance of Max
Cut if and only if G has a cut of size at least k.

Interval graphs are the intersection graphs of intervals on the real line. Formally, G =
(V, E) is said to be an interval graph if there is a set S of intervals on the real line and a
bijection φ : V −→ S such that u, v ∈ V are adjacent if and only if φ(u) ∩ φ(v) ̸= ∅.

3 NP-Completeness

In this section, we show that Max Cut is NP-complete on interval graphs. Max Cut is
known to be NP-complete on cubic graphs [4]. We reduce Max Cut on cubic graphs to
Max Cut on interval graphs.

3.1 Construction of the Reduction Graph
Let (G, x) be an instance of Max Cut where G = (V, E) is a cubic graph. Let |V | = n

and hence |E| = 3
2 n. We shall reduce it to an equivalent instance (G′, f(x)) of Max Cut

where G′ = (V ′, E′) is an interval graph. The construction of G′ is outlined in the following.
G′ = (V ′, E′) is described as the intersection graph of a set of intervals on the real line and
the vertices of G′ are referred to as intervals.
1. Fix an arbitrary ordering of the vertices and edges of G = (V, E) as v1, v2, . . . , vn, e1, e2,

. . . , em. We shall write any edge e ∈ E as an ordered pair of vertices that respects the
following convention. If e is an edge between vi and vj , where i < j, then we shall write
e = (vi, vj) (not e = (vj , vi)).

2. For each vertex v ∈ V , we construct a V-gadget G(v) and for each edge e ∈ E, we
construct an E-gadget G(e). They are shown in Fig. 1. The structure of a V-gadget is
identical to that of an E-gadget, the only difference is their size. Each V-gadget (E-gadget)
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consists of q (resp. q′) left long intervals, p (resp. p′) left short intervals, q (resp. q′) right
long intervals and p (resp. p′) right short intervals. The left long intervals and the right
long intervals of a V-gadget (E-gadget) all intersect each other to form a clique of size 2q

(resp. 2q′). All left short intervals of a V-gadget (E-gadget) are mutually disjoint and
each of them intersect only the q (resp. q′) left long intervals. Similarly all right short
intervals of a V-gadget (E-gadget) are mutually disjoint and each of them intersect only
the q (resp. q′) right long intervals. Therefore, the number of edges in each V-gadget
(E-gadget) is q(2q − 1) + 2pq (resp. q′(2q′ − 1) + 2p′q′).
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Figure 1 a) A V-gadget. b) An E-gadget.

3. We set q = 200n3 + 1, p = 2q + 7n, q′ = 10n2 + 1, p′ = 2q′ + 7n, where n is the number
of vertices in G. Note that the following inequalities hold:
a. p > 2q > 2p′ > 4q′ > 9n2

b. q2 > (p − q)6n

c. q′2 > (p′ − q′)6n

d. q > 3(p′ + q′)n + 9n2

4. There are a total of n V-gadgets, and 3n/2 E-gadgets. All 5n/2 gadgets are arranged in
the following order as shown in Fig. 2 : G(v1), G(v2), . . . , G(vn), G(e1), G(e2), . . . , G(e3n/2).
No two intervals belonging to different gadgets intersect.

5. To establish relationships between the V-gadgets and E-gadgets we introduce 6n link
intervals (See Fig. 2). Link intervals connect V-gadgets to E-gadgets. This will be
described in the next point. A link interval can intersect a gadget in four different ways
as described in the following.

A link interval is said to cover a gadget if it intersects all intervals of the gadget. (See
Fig. 3a)
A link interval is said to intersect a V-gadget in the first manner if it intersects only
the q right long intervals of the V-gadget. (See Fig. 3b).
A link interval is said to intersect an E-gadget in the second manner if it intersects
only the p′ left long intervals of the gadget. (See Fig. 3c).
A link interval is said to intersect an E-gadget in the third manner if it intersects only
the q′ left long intervals and the p′ left short intervals of the gadget. (See Fig. 3d).

6. For each edge e = (vi, vj) ∈ E, we introduce four link intervals: 1) a pair intersecting
G(vi) in the first manner and G(e) in the second manner, and 2) another pair intersecting
G(vj) in the first manner and G(e) in the third manner (See Fig. 4). Note that since G

is cubic, the total number of link intervals covering a V-gadget is 6k for some integer k,
where k may vary from 0 to n − 1. Similarly, the total number of link intervals covering
an E-gadget is 4k for some integer k, where k may vary from 0 to 3n/2 − 1. Also, the
total number of link intervals intersecting a V-gadget in the first manner is 6.

SoCG 2021
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Figure 2 Arrangement of the gadgets and the link intervals.

(a) A gadget is covered by a link interval. (b) A link interval intersects a V-gadget in
the first manner.

(c) A link interval intersects an E-gadget
in the second manner.

(d) A link interval intersects an E-gadget
in the third manner.

Figure 3 Illustrations showing the four different ways a link interval can intersect a gadget.

G(vi) G(vj) G(vi, vj)

Figure 4 link intervals connecting an E-gadget G((vi, vj)) with V-gadgets G(vi) and G(vj).



R. Adhikary, K. Bose, S. Mukherjee, and B. Roy 7:5

3.2 Properties of the Reduction Graph
In this section, we study some properties of the interval graph G′ constructed from G in
the previous section. We consider a partition of vertices of G′ that yields a maximum cut.
To prove that the partition satisfies some properties, in general we show that if it does not
satisfy those properties, then the size of the corresponding cut can be increased, contradicting
the maximality of the cut.

Now consider a maximum cut of G′ with the vertices partitioned into subsets A and B.
We show in the next lemma that for every vertex gadget G(vi), either A or B contains all of
its left short intervals. The same holds for the right short intervals of G(vi).

▶ Lemma 1. If a partition of G′ yields a maximum cut, then for any V-gadget G(vi), all of
its left short intervals lie in the same subset. The same holds for its right short intervals.

Proof. Consider a maximum cut of G′ that partitions its vertices into subsets A and B.
Let LLA

i and LLB
i denote the subset of left long intervals of G(vi) in A and B respectively.

Denote by OLA
i (resp. OLB

i ) the set of all link intervals that cover G(vi) and lie in subset A

(resp. B). Without loss of generality, let the following direction of inequality hold:

| LLA
i | + | OLA

i |>| LLB
i | + | OLB

i |

Note that the inequality must be strict since the sum of the number of left long intervals of
G(vi) and the number of link intervals covering G(vi) is 6k + q (0 ≤ k ≤ n − 1), which is odd
since q is odd. Suppose that a left short interval of G(vi) is in A. Recall that the left long
intervals of G(vi) and the link intervals covering G(vi) are the only intervals that a left short
interval of G(vi) intersects. Then due to the above inequality, moving the left short interval
to B increases the number of cut edges. This contradicts the fact that the partition yields a
maximum cut. Hence, all left short intervals of G(vi) must be in B. Using similar arguments
we can show that all right short intervals of G(vi) must be same subset. ◀

In the following lemma, we prove a property of the long intervals of each vertex gadget,
akin to the property of the short intervals proved in the previous lemma.

▶ Lemma 2. If a partition of G′ yields a maximum cut, then for any V-gadget G(vi), all its
left long intervals lie in the same subset. The same holds for its right long intervals.

Proof. Consider a maximum cut of G′ that partitions its vertices into subsets A and B. By
Lemma 1, all of the short intervals on the same side of G(vi) belong to the same subset.
Without loss of generality, we consider two cases, where (a) all the left short intervals of G(vi)
are in A, and all the right short intervals of G(vi) are in B, and (b) all the short intervals of
G(vi) are in A.

First consider Case (a), where all the left short intervals of G(vi) belong to A, and all the
right short intervals of G(vi) belong to B. Suppose that a left long interval of G(vi) is in A.
Then moving it to B results in losing at most 2q − 1 cut edges due to its intersections with
other long intervals of G(vi), and at most 6n cut edges due to its intersections with the link
intervals of G(vi). However, we gain at most p cut edges. Since p = 2q + 7n, the quantity
p − (2q − 1 + 6n) is positive, hence the size of the cut increases. This contradicts the fact
that the partition yields a maximum cut. Hence, all left long intervals of G(vi) must be in B.

Now consider Case (b), where all the short intervals of G(vi) belong to A. It can be seen
that the above argument is also applicable in this case, and the claim holds. ◀

In the following lemma, we consolidate the results obtained above into a complete partition
of a vertex gadget in a maximum cut.

SoCG 2021
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▶ Lemma 3. If a partition of G′ yields a maximum cut, then for any V-gadget G(vi), all the
left long and right short intervals are in one subset, while all the right long and left short
intervals are in the other.

Proof. Consider a maximum cut of G′ that partitions its vertices into subsets A and B.
Then without loss of generality, by Lemma 1, either (a) all left short intervals of G(vi) are in
A and all right short intervals of G(vi) are in B, or (b) all the short intervals of G(vi) are
in A.

First consider Case (a), i.e. G(vi) has all its left short intervals in A and right short
intervals in B. Then it follows from the proof of Lemma 2 that all left long intervals of G(vi)
are in B and all right long intervals of G(vi) must be in A, as claimed.

Now consider Case (b), i.e. G(vi) has all its short intervals in A. Since all the short
intervals of G(vi) are in A, it implies from the proof of 2 that all the long intervals of G(vi) are
in B. We move all the right short intervals of G(vi) to B and all right long intervals of G(vi)
to A. Due to their intersections with link intervals, this removes at most (p − q)6n edges
from the cut. But due to the intersections among the left and right long intervals, it also
adds at least q2 edges to the cut. Since by our choice of q and p, we have q2 − (p − q)6n > 0,
the total number of edges in the cut increases. This contradicts the fact that the partition
yields a maximum cut and hence this case is impossible. ◀

It can be seen that V-gadgets and E-gadgets are structurally similar, and only their
intersections with the link intervals can possibly be the cause of any different partitioning in
a maximum cut. We address this point in the following lemma and show that E-gadgets too
in fact admit a partition similar to that of V-gadgets.

▶ Lemma 4. Lemma 3 holds for E-gadgets of G′ as well.

Proof. Consider a maximum cut of G′ that partitions its vertices into subsets A and B. We
modify the proof of Lemma 1 a little, so that Lemma 1 holds for E-gadgets as well. Consider
an E-gadget G(ei) of G′. Observe that the proof holds for the right short intervals of G(ei),
since any link interval that intersects the right short intervals of an E-gadget, must also
cover the E-gadget. But the left short intervals of each E-gadget are intersected by two link
intervals in the third manner. Then denote by OL′A

i (resp. OL′B
i ) the set of all link intervals

that cover G(vi) or intersect G(vi) in the third manner, and lie in subset A (resp. B). Let
LLA

i and LLB
i denote the subset of left long intervals of G(vi) in A and B respectively, as

before. Again, without loss of generality we have the following inequality.

| LLA
i | + | OL′A

i |>| LLB
i | + | OL′B

i |

The rest of the proof is similar to that of 1, and it can be seen that the claim holds. The
proof of Lemma 2 for E-gadgets remains the same as for V-gadgets. Lemmas 1 and 2 along
with the choice of p′ and q′, imply Lemma 3 for E-gadgets as well. ◀

▶ Lemma 5. G has a cut of size at least x if and only if G′ has a cut of size at least
(2pq + q2)n + 3

2 (2p′q′ + q′2)n + 3(n − 1)(n − 2)(p + q) + 3n( 3
2 n − 1)(p′ + q′) + 6nq + 3np′ + 2xq′.

Proof. First suppose that G has a cut of size at least x. Denote the subsets in the partition
of the vertices of G by C and D. We partition the vertices of G′ as follows. If a vertex vi of
G is in C, then in the corresponding V-gadget G(vi) of G′, all left short intervals and right
long intervals are placed in A, all right short intervals and left long intervals are placed in
B. Finally, all link intervals intersecting G(vi) in the first manner are placed in B. If vi is
in D instead, then all the above placements of intervals are swapped. Recall that for each
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E-gadget exactly two link intervals intersect it in the second manner and exactly two link
intervals intersect it in the third manner. If the link intervals that intersect an E-gadget in
the third manner is in A, then we place the left short intervals and right long intervals of the
E-gadget in B, and the left long intervals and right short intervals in A. If the link intervals
are in B, then the placements of the intervals are swapped.

Due to the above placement of intervals in A and B, the number of cut edges obtained
internally from all the V-gadgets and E-gadgets of G′ are (2pq + q2)n and 3

2 (2p′q′ + q′2)n
respectively. The number of cut edges formed by the V-gadgets and the link intervals that
cover them is 3(n − 1)(n − 2)(p + q). The number of cut edges formed by the E-gadgets and
the link intervals covering them is 3n( 3

2 n − 1)(p′ + q′). For each V-gadget, the link intervals
intersecting it in the first manner give 6q cut edges, resulting in a total of 6nq cut edges.
Each link interval that intersects an E-gadget in the third manner gives p′ cut edges, thus
we have 3np′ in total. However, a link interval that intersects an E-gadget in the second
manner can produce cut edges from the E-gadget only when the other link interval mentioned
above is in a different subset, i.e. the vertices of G corresponding to the V-gadgets of these
link intervals are in C and D, and produce a cut edge. This means that such link intervals
produce at least 2xq′ cut edges in total, proving the forward direction of the claim.

Now we prove the backward direction of the claim. Assume that G′ has a cut of size at
least (2pq+q2)n+ 3

2 (2p′q′+q′2)n+3(n−1)(n−2)(p+q)+3n( 3
2 n−1)(p′+q′)+6nq+3np′+2xq′.

So the size of a maximum cut of G′ is at least this much. Consider a maximum cut of G′ that
partitions its intervals into two disjoint subsets A and B. By Lemma 3, for each V-gadget,
all the left long and right short intervals are in one subset, while all the right long and left
short intervals are in the other. Corresponding to this cut of G′, we define a cut of G in the
following way. If the left long and right short intervals of G(vi) are in A (resp. B), then we
put vi in C (resp. D). Let y be the size of the cut C ∪ D. We have to show that y ≥ x.

Due to Lemma 3 and 4, the internal cut edges of V-gadgets and E-gadgets, and the
cut edges formed between gadgets and the link intervals that cover them amount to (2pq +
q2)n + 3

2 (2p′q′ + q′2)n + 3(n − 1)(n − 2)(p + q) + 3n( 3
2 n − 1)(p′ + q′) cut edges in total.

Hence, the remaining 6nq + 3np′ + 2xq′ cut edges are obtained from the partial intersections
of the link intervals with the V-gadgets and E-gadgets, and the intersections among link
intervals. The number of cut edges among the link intervals is not more than (3n)2 = 9n2.
The partial intersections between link intervals and V-gadgets can contribute at most 6nq

cut edges. Note that the partial intersections between link intervals and E-gadgets, and
intersections among the link intervals cannot give more than 3(p′ + q′)n + 9n2 cut edges.
Since q > 3(p′ + q′)n + 9n2, it implies that exactly 6nq of the remaining cut edges are
obtained from link intervals intersecting V-gadgets in the first manner. This happens when
for each V-gadget, the link intervals intersecting it in the first manner are all in the subset
which contains the left long and right short intervals of the gadget. Hence, the placement
of the intervals of the V-gadget in the subsets A and B (and hence the placement of the
corresponding vertex of G in C or D) determines the placements of the link intervals.

The remaining 3np′ + 2xq′ cut edges should come from the partial intersections of the
link intervals with the E-gadgets, and the intersections among link intervals. We show that
this is not possible if y < x. For this, consider an E-gadget G(vi, vj). Let ℓi, ℓ′

i be the two
link intervals from G(vi) that intersect G(vi, vj) in the second manner and ℓj , ℓ′

j be the two
link intervals from G(vj) that intersect G(vi, vj) in the third manner. Consider the following
cases: ℓi, ℓ′

i, ℓj , ℓ′
j are in the same subset (Case 1), say ℓi, ℓ′

i, ℓj , ℓ′
j ∈ A and ℓi, ℓ′

i are in one
subset and ℓj , ℓ′

j are in the other (Case 2), say, ℓi, ℓ′
i ∈ A, ℓj , ℓ′

j ∈ B. In Case 2, the edge
(ei, ej) appears in the cut set of C ∪ D, while in Case 1, it does not. For each case, we have
two subcases as described in the following.

SoCG 2021
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Case 1a. A contains ℓi, ℓ′
i, ℓj , ℓ′

j and the left long and right short intervals of G(vi, vj). B

contains the right long and left short intervals of G(vi, vj). Hence, the intersections
between G(vi, vj) and ℓi, ℓ′

i, ℓj , ℓ′
j give 2p′ cut edges.

Case 1b. A contains ℓi, ℓ′
i, ℓj , ℓ′

j and the right long and left short intervals of G(vi, vj). B

contains the left long and right short intervals of G(vi, vj). Hence, the intersections
between G(vi, vj) and ℓi, ℓ′

i, ℓj , ℓ′
j give 4q′ cut edges.

Case 2a. A contains ℓi, ℓ′
i and the left long and right short intervals of G(vi, vj). B contains

ℓj , ℓ′
j and the right long and left short intervals of G(vi, vj). Hence, the intersections

between G(vi, vj) and ℓi, ℓ′
i, ℓj , ℓ′

j give 2q′ cut edges.
Case 2b. A contains ℓi, ℓ′

i and the right long and left short intervals of G(vi, vj). B contains
ℓj , ℓ′

j and the left long and right short intervals of G(vi, vj). Hence, the intersections
between G(vi, vj) and ℓi, ℓ′

i, ℓj , ℓ′
j give 2p′ + 2q′ cut edges.

Therefore, we see that an E-gadget gives at most 2p′ cut edges from its partial intersections
with link intervals if the link intervals belong to the same subset (since 2p′ > 4q′), and at most
2(p′+q′) cut edges if the link intervals belong to different subsets (since 2p′+2q′ > 2q′). Notice
that the later case occurs for exactly y E-gadgets. The number of cut edges obtained from
the partial intersections of E-gadgets with link intervals is at most 2p′( 3n

2 − y) + 2(p′ + q′)y =
3np′ + 2yq′. Hence if y < x, then at least 2(x − y)q′ > 2q′ cut edges must come from the
intersections among the link intervals. But this is not possible as 2q′ > 9n2. Hence y ≥ x as
required. ◀

▶ Theorem 6. Max Cut is NP-complete on interval graphs.

Proof. It can be checked in polynomial time if a given partition of an interval graph produces
a cut of a given size. Thus the problem is in NP. The construction of G′ from G clearly takes
polynomial time. The NP-hardness follows from Lemma 5. ◀

4 Concluding Remarks

In this paper, we have settled the question of computational complexity of Max Cut on
interval graphs. However, the question of whether Max Cut is polynomial-time solvable
or NP-hard on unit interval graphs still remains open. For an NP-hardness reduction, a
possible approach might be to reduce Max Cut on interval graphs to Max Cut on unit
interval graphs. An interval can be transformed into a sequence of unit intervals by replacing
it with a start and end interval, with “bunches” of unit intervals within (See Fig. 5). It is
easy to see that for such a standalone gadget, an alternating assignment of the bunches to
the two subsets yields a Max Cut. However, when multiple such gadgets of different sizes
are brought together to represent the whole interval graph for the reduction, such a partition
does not necessarily correspond to a partition in the original interval graph.

Figure 5 Transformation of an interval into a sequence of unit intervals in a possible reduction
from Max Cut on interval graphs to Max Cut on unit interval graphs.
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Another direction for future work is to find approximation algorithms for Max Cut
interval graphs. In general, polynomial-time approximation algorithm for Max Cut with
the best known approximation ratio is by Goemans and Williamson [18] which achieves an
approximation ratio ≈ 0.878. Assuming the Unique Games conjecture [27], this is the best
possible approximation ratio. An interesting question is whether this can be bettered for
interval graphs or unit interval graphs. A possible approach could be the following greedy
method. We first compute a unit interval representation the graph. In the first step, the
leftmost interval is put in A, then the leftmost interval not intersecting that interval is put
in A, and so on. In the second step, among the remaining intervals, we consider the ones
that intersect the most number of intervals put in A. The leftmost such interval is put in B,
then the leftmost of them not intersecting that interval is put in B, and so on. We repeat
this until all intervals are placed, i.e., in each odd (resp. even) step an independent set of
intervals, each of which intersect the most number of intervals put in B (resp A) thus far, are
put in A (resp. B). It is not clear to us how efficient this is, but the following is the worst
example that we have found so far which gives an approximation ratio of 0.9375. Consider a
graph G = (V, E) with 8a vertices {v1, . . . , v8a} where the first 6a vertices are all adjacent
to each other and the last 6a vertices are all adjacent to each other. The greedy algorithm
gives a cut of size 15a2, while the maximum cut is of size 16a2.
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