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Abstract
Two-player mean-payoff Stackelberg games are nonzero-sum infinite duration games played on a
bi-weighted graph by Leader (Player 0) and Follower (Player 1). Such games are played sequentially:
first, Leader announces her strategy, second, Follower chooses his best-response. If we cannot impose
which best-response is chosen by Follower, we say that Follower, though strategic, is adversarial
towards Leader. The maximal value that Leader can get in this nonzero-sum game is called the
adversarial Stackelberg value (ASV) of the game.

We study the robustness of strategies for Leader in these games against two types of deviations:
(i) Modeling imprecision - the weights on the edges of the game arena may not be exactly correct, they
may be delta-away from the right one. (ii) Sub-optimal response - Follower may play epsilon-optimal
best-responses instead of perfect best-responses. First, we show that if the game is zero-sum then
robustness is guaranteed while in the nonzero-sum case, optimal strategies for ASV are fragile.
Second, we provide a solution concept to obtain strategies for Leader that are robust to both
modeling imprecision, and as well as to the epsilon-optimal responses of Follower, and study several
properties and algorithmic problems related to this solution concept.
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1 Introduction

Stackelberg games [16] were first introduced to model strategic interactions among rational
agents in markets that consist of Leader and Follower(s). Leader in the market makes her
strategy public and Follower(s) respond by playing an optimal response to this strategy. Here,
we consider Stackelberg games as a framework for the synthesis of reactive programs [15, 3].
These programs maintain a continuous interaction with the environment in which they
operate; they are deterministic functions that given a history of interactions so far choose an
action. Our work is a contribution to rational synthesis [9, 14], a nonzero-sum game setting
where both the program and the environment are considered as rational agents that have
their own goals. While Boolean ω-regular payoff functions have been studied in [9, 14], here
we study the quantitative long-run average (mean-payoff) function.
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9:2 Fragility and Robustness in Mean-Payoff Adversarial Stackelberg Games

We illustrate our setting with the example in Figure 1. The set V of vertices is partitioned
into V0 (represented by circles) and V1 (represented by squares) that are owned by Leader
(also called Player 0) and Follower (also called Player 1) respectively. In the tuple on the edges,
the first element is the payoff of Leader, while the second one is the payoff of Follower (weights
are omitted if they are both equal to 0). Each player’s objective is to maximize the long run
average of the payoffs that she receives (a.k.a. mean-payoff). In the adversarial Stackelberg
setting, Player 0 (Leader) first announces how she will play then Player 1 (Follower) chooses
one of his best-responses to this strategy. Here, there are two choices for Player 0: L or R.
As Player 1 is assumed to be rational, Player 0 deduces that she must play L. Indeed, the
best response of Player 1 is then to play LL and the reward she obtains is 10. This is better
than playing R, for which the best-response of Player 1 is RL, and the reward is 8 instead of
10. Note that if there are several possible best responses for Player 1, then we consider the
worst-case: Player 0 has no control on the choice of best-responses by Player 1.

Quantitative models and robustness. The study of adversarial Stackelberg games with
mean-payoff objectives has been started in [8] with the concept of adversarial Stackelberg
value (ASV for short). ASV is the best value that Leader can obtain by fixing her strategy
and facing any rational response by Follower. As this setting is quantitative, it naturally
triggers questions about robustness that were left open in this first paper.

Robustness is a highly desirable property of quantitative models: small changes in the
quantities appearing in a model M (e.g. rewards, probabilities, etc.) should have small
impacts on the predictions made from M , see e.g. [2]. Robustness is thus crucial because it
accounts for modelling imprecision that are inherent in quantitative modelling and those
imprecision may have important consequences. For instance, a reactive program synthesized
from a model M should provide acceptable performances if it is executed in a real environment
that differ slightly w.r.t. the quantities modeled in M .

Some classes of models are robust. For instance, consider two-player zero-sum mean-payoff
games where players have fully antagonistic objectives. The value of a two-player zero-sum
mean-payoff G is the maximum mean-payoff that Player 0 can ensure against all strategies of
Player 1. A strategy σ0 that enforces the optimal value c in G is robust in the following sense.
Let G±δ be the set of games obtained by increasing or decreasing the weights on the edges
of G by at most δ. Then for all δ > 0, and for all H ∈ G±δ, the strategy σ0 ensures in H a
mean-payoff of at least c − δ for Player 0 against any strategy of Player 1 (Proposition 1).
So slight changes in the quantities appearing in the model have only a small impact on the
worst-case value enforced by the strategy.

The situation is more complex and less satisfactory in nonzero-sum games. Strategies
that enforce the ASV proposed in [8] may be fragile: slight differences in the weights of the
game, or in the optimality of the response by Player 1, may lead to large differences in the
value obtained by the strategy. We illustrate these difficulties on our running example. The
strategy of Player 0 that chooses L in v0 ensures her a payoff of 10 which is the ASV. Indeed,
the unique best-response of Player 1 against L is to play LL from v1. However, if the weights
in G are changed by up to ±δ = ±0.6 then there is a game H ∈ G±δ in which the weight
on the self-loop over vertex v4 changes to e.g. 9.55, and the weight on the self-loop over v3
changes to e.g. 9.45, and the action LR becomes better for Player 1. So the value of L in H
against a rational adversary is now 0 instead of 10. Thus a slight change in the rewards for
Player 1 (due to e.g. modelling imprecision) may have a dramatic effect on the value of the
optimal strategy L computed on the model G when evaluated in H.
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Figure 1 A game in which the strategy of Leader that maximizes the adversarial Stackelberg is
fragile while the strategy of Leader that maximizes the ϵ = 1-adversarial Stackelberg value is robust.

Contributions. As a remedy to this situation, we provide an alternative notion of value that
is better-suited to synthesize strategies that are robust against perturbations. We consider
two types of perturbations. First, the strategies computed for this value are robust against
modeling imprecision: if a strategy has been synthesized from a weighted game graph with
weights that are possibly slightly wrong, the value that this strategy delivers is guaranteed
to be close to what the model predicts. Second, strategies computed for this value are robust
against sub-optimal responses: small deviations from the best-response by the adversary have
only limited effect on the value guaranteed by the strategy.

Our solution relies on relaxing the notion of best-responses of Player 1 in the original
model G: we define the ϵ-adversarial Stackelberg value (ASVϵ, for short) as the value that
Leader can enforce against all ϵ-best responses of Follower. Obviously, this directly accounts
for the second type of perturbations. But we show that, additionally, this accounts for the
first type of perturbations: if a strategy σ0 enforces an ASVϵ equal to c then for all games
H ∈ G± ϵ

2 , we have that σ0 enforce a value larger than c− ϵ in H (Theorem 5 and Theorem 6).
We illustrate this by considering again the example of Figure 1. Here, if we consider

that the adversary can play 2δ = 1.2-best responses instead of best responses only, then the
optimal strategy of Player 0 is now R and it has a ASVϵ equal to 8. This value is guaranteed
to be robust for all games H ∈ G±δ as R is guaranteed to enforce a payoff that is larger than
8 − δ in all games in G±δ. Stated otherwise, we use the notion of ASVϵ in the original game
to find a strategy for Player 0 that she uses in the perturbed model while playing against a
rational adversary. Thus we show that in the event of modelling imprecision resulting in a
perturbed model, the solution concept to be used is ASVϵ instead of ASV since the former
provides strategies that are robust to such perturbations.

Table 1 Summary of our results.

Robustness Threshold Problem Computing ASV Achievability

Adversarial
best responses

of Follower

No

[Proposition 2]

NP [8]

Finite Memory
Strategy [1]

Memoryless
Strategy [1]

Theory of Reals [8] No [8]

Adversarial
ϵ-best responses

of Follower

Yes

[Thm 5]

NP

Finite Memory
Strategy [Thm 8]

Memoryless
Strategy [Thm 10]

Theory of Reals
[Thm 12]

Solving LP
in EXPTime
[Thm 12]

Yes [Thm 16]

(Requires
Infinite Memory

[Thm 19])

In addition to proving the fragility of the original concept introduced in [8] (Proposition 2)
and the introduction of the new notion of value ASVϵ that is robust against modelling
imprecision (Theorem 5), we provide algorithms to handle ASVϵ. First, we show how to

CONCUR 2021
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decide the threshold problem for ASVϵ in nondeterministic polynomial time and that finite
memory strategies suffice (Theorem 8). Second, we provide an algorithm to compute ASVϵ

when ϵ is fixed (Theorem 12). Third, we provide an algorithm that given a threshold value
c, computes the largest possible ϵ such that ASVϵ > c (Corollary 15). These three results
form the core technical contributions of this paper and they are presented in Section 4 and
Section 5. Additionally, in Section 6, we show that ASVϵ is always achievable (Theorem 16),
which is in contrast to the case in [8] where Follower only plays best-responses. Finally, we
provide results that concern the memory needed for players to play optimally, and complexity
results for subcases (for example when Players are assumed to play memoryless). Our
contributions have been summarized in Table 1, where the results obtained in this work are
in bold. The new results corresponding to ASV can be found in [1].

Related Works. Stackelberg games on graphs have been first considered in [9], where the
authors study rational synthesis for ω-regular objectives with co-operative Follower(s). In [8],
Stackelberg mean-payoff games in adversarial setting, and Stackelberg discounted sum games
in both adversarial and co-operative setting have been considered. However, as pointed out
earlier, the model of [8] is not robust to perturbations. In [10], mean-payoff Stackelberg
games in the co-operative setting have been studied. In [13], the authors study the effects
of limited memory on both Nash and Stackelberg (or leader) strategies in multi-player
discounted sum games. Incentive equilibrium over bi-matrix games and over mean-payoff
games in a co-operative setting have been studied in [11] and [12] respectively. In [14],
adversarial rational synthesis for ω-regular objectives have been studied. In [7], precise
complexity results for various ω-regular objectives have been established for both adversarial
and co-operative settings. In [6, 4], secure Nash equilibrium has been studied, where each
player first maximises her own payoff, and then minimises the payoff of the other player;
Player 0 and Player 1 are symmetric there unlike in Stackelberg games. For discounted sum
objectives, in [8], the gap problem has been studied. Given rationals c and δ, a solution to
the gap problem can decide if ASV > c + δ or ASV < c − δ. The threshold problem was left
open in [8], and is technically challenging. We leave the case of analysing robustness for
discounted sum objective for future work.

A full version of this work with detailed proofs appears in [1].

2 Preliminaries

We denote by N, N+, Q, and R the set of naturals, the set of naturals excluding 0, the set of
rationals, and the set of reals respectively.

Arenas. An (bi-weighted) arena A = (V, E, ⟨V0, V1⟩, w0, w1) consists of a finite set V of
vertices, a set E ⊆ V × V of edges such that for all v ∈ V there exists v′ ∈ V and (v, v′) ∈ E,
a partition ⟨V0, V1⟩ of V , where V0 (resp. V1) is the set of vertices for Player 0 (resp. Player 1),
and two edge weight functions w0 : E → Z, w1 : E → Z. In the sequel, we denote the
maximum absolute value of a weight in A by W . A strongly connected component of a
directed graph is a subgraph that is strongly connected. Unless otherwise mentioned, SCC

denotes a subgraph that is strongly connected, and which may or may not be maximal.

Plays and histories. A play in A is an infinite sequence of vertices π = π0π1 · · · ∈ V ω such
that for all k ∈ N, we have (πk, πk+1) ∈ E. A history in A is a (non-empty) prefix of a play
in A. Given π = π0π1 · · · ∈ PlaysA and k ∈ N, the prefix π0π1 . . . πk of π is denoted by π⩽k.
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We denote by inf(π) the set of vertices v that appear infinitely many times along π, i.e.,
inf(π) = {v ∈ V | ∀i ∈ N · ∃j ∈ N, j ⩾ i : π(j) = v}. It is easy to see that inf(π) forms an
SCC in the underlying graph of the arena A. We denote by PlaysA and HistA the set of
plays and the set of histories in A respectively; the symbol A is omitted when clear from
the context. Given i ∈ {0, 1}, the set Histi

A denotes the set of histories such that their last
vertex belongs to Vi. We denote the first vertex and the last vertex of a history h by first(h)
and last(h) respectively.

Games. A mean-payoff game G = (A, ⟨MP0, MP1⟩) consists of a bi-weighted arena A, payoff
functions MP0 : PlaysA → R and MP1 : PlaysA → R for for Player 0 and Player 1 respectively
which are defined as follows. Given a play π ∈ PlaysA and i ∈ {0, 1}, the payoff MPi(π) is
given by MPi(π) = lim inf

k→∞
1
k wi(π⩽k), where the weight wi(h) of a history h ∈ Hist is the sum

of the weights assigned by wi to its edges. In our definition of the mean-payoff, we have used
lim inf as the limit of the successive average may not exist.

Strategies and payoffs. A strategy for Player i ∈ {0, 1} in the game G is a function
σ : Histi

A → V that maps histories ending in a vertex v ∈ Vi to a successor of v. The set
of all strategies of Player i ∈ {0, 1} in the game G is denoted by Σi(G), or Σi when G is
clear from the context. A strategy has memory M if it can be realized as the output of
a state machine with M states. A memoryless strategy is a function that only depends
on the last element of the history h ∈ Hist. We denote by ΣML

i the set of memoryless
strategies of Player i, and by ΣFM

i her set of finite memory strategies. A profile is a pair
of strategies σ = (σ0, σ1), where σ0 ∈ Σ0(G) and σ1 ∈ Σ1(G). As we consider games with
perfect information and deterministic transitions, any profile σ yields, from any history h, a
unique play or outcome, denoted Outh(G, σ). Formally, Outh(G, σ) is the play π such that
π⩽|h|−1 = h and ∀k ⩾ |h| − 1 it holds that πk+1 = σi(π⩽k) if πk ∈ Vi. We write h ⩽ π

whenever h is a prefix of π. The set of outcomes compatible with a strategy σ ∈ Σi∈{0,1}(G)
after a history h is Outh(G, σ) = {π|∃σ′ ∈ Σ1−i(G) such that π = Outh(G, (σ, σ′))}. Each
outcome π ∈ G = (A, ⟨MP0, MP1⟩) yields a payoff MP(π) = (MP0(π), MP1(π)).

Usually, we consider instances of games such that the players start playing at a fixed
vertex v0. Thus, we call an initialized game a pair (G, v0), where G is a game and v0 ∈ V

is the initial vertex. When v0 is clear from context, we use G, Out(G, σ), Out(G, σ), MP(σ)
instead of Gv0 , Outv0(G, σ), Outv0(G, σ), MPv0

(σ). We sometimes omit G when it is clear
from the context.

Best-responses, ϵ-best-responses. Let G = (A, ⟨MP0, MP1⟩) be a two-dimensional mean-
payoff game on the bi-weighted arena A. Given a strategy σ0 for Player 0, we define
1. Player 1’s best responses to σ0, denoted by BR1(σ0), as:

{σ1 ∈ Σ1 | ∀v ∈ V.∀σ′
1 ∈ Σ1 : MP1(Outv(σ0, σ1)) ⩾ MP1(Outv(σ0, σ′

1))}

2. Player 1’s ϵ-best-responses to σ0, for ϵ > 01, denoted by BRϵ
1(σ0), as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′
1 ∈ Σ1 : MP1(Outv(σ0, σ1)) > MP1(Outv(σ0, σ′

1)) − ϵ}

1 Since we will use ϵ in ASVϵ to add robustness, we only consider the cases in which ϵ is strictly greater
than 0.
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9:6 Fragility and Robustness in Mean-Payoff Adversarial Stackelberg Games

We also introduce the following notation for zero-sum games (that are needed as interme-
diary steps in our algorithms). Let A be an arena, v ∈ V one of its states, and O ⊆ PlaysA
be a set of plays (called objective), then we write A, v ⊨≪ i ≫ O, if:

∃σi ∈ Σi · ∀σ1−i ∈ Σ1−i : Outv(A, (σi, σ1−i)) ∈ O, for i ∈ {0, 1}

All the zero-sum games we consider in this paper are determined meaning that for all A, for
all objectives O ⊆ PlaysA we have that A, v ⊨≪ i ≫ O ⇐⇒ A, v ⊭≪ 1 − i ≫ PlaysA \ O.
We sometimes omit A when the arena being referenced is clear from the context.

Convex hull and Fmin. Given a finite dimension d, a finite set X ⊂ Qd of rational vectors, we
define the convex hull CH(X) = {v | v =

∑
x∈X αx · x ∧ ∀x ∈ X : αx ∈ [0, 1] ∧

∑
x∈X αx = 1}

as the set of all their convex combinations. Let fmin(X) be the vector v = (v1, v2, . . . , vd)
where vi = min{c | ∃x ∈ X : xi = c} i.e. the vector v is the pointwise minimum of the
vectors in X. For S ⊆ Qd, we define Fmin(S) = {fmin(P ) | P is a finite subset of S}.

Mean-payoffs induced by simple cycles. A cycle c is a sequence of edges that starts and
stops in a given vertex v, it is simple if it does not contain repetition of any other vertex.
Given an SCC S, we write C(S) for the set of simple cycles inside S. Given a simple cycle c,
for i ∈ {0, 1}, let MPi(c) = wi(c)

|c| be the mean of the weights2 in each dimension along the
edges in the simple cycle c, and we call the pair (MP0(c), MP1(c)) the mean-payoff coordinate
of the cycle c. We write CH(C(S)) for the convex-hull of the set of mean-payoff coordinates
of simple cycles of S.

Adversarial Stackelberg Value for MP. Since the set of best-responses in mean-payoff
games can be empty (See Lemma 3 of [8]), we use the notion of ϵ-best-responses for the
definition of ASV which are guaranteed to always exist3. We define

ASV(v) = sup
σ0∈Σ0,ϵ>0

inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)).4

We also associate a (adversarial) value to a strategy σ0 ∈ Σ0 of Player 0, denoted

ASV(σ0)(v) = sup
ϵ>0

inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)).

Clearly, we have that ASV(v) = supσ0∈Σ0 ASV(σ0)(v).
We define the adversarial Stackelberg values, where strategies of Player 0 are restricted

to finite memory strategies, as

ASVFM(v) = sup
σ0∈ΣFM

0

inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

where ΣFM
0 refers to the set of all finite memory strategies of Player 0. We note that for

every finite memory strategy σ0 of Player 0, a best-response of Player 1 to σ0 always exists
as noted in [8].

We also define the adversarial Stackelberg values, where Player 0 is restricted to using
memoryless strategies, as

ASVML(v) = sup
σ0∈ΣML

0

inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

where ΣML
0 is the set of all memoryless strategies of Player 0.

2 We do not use MPi since lim inf and lim sup are the same for a finite sequence of edges.
3 For a game G, we also use ASVG and ASVϵ

G , and drop the subscript G when it is clear from the context.
4 The definition of ASV, as it appears in [8], is syntactically different but the two definitions are equivalent,

and the one presented here is simpler.
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In the sequel, unless otherwise mentioned, we refer to a two-dimensional nonzero-sum
two-player mean-payoff game simply as a mean-payoff game.

Zero-sum case. Zero-sum games are special cases of nonzero-sum games, where for all
edges e ∈ E, we have that w0(e) = −w1(e), i.e. the gain of one player is always equal to
the opposite (the loss) of the other player. For zero-sum games, the classical concept is the
notion of (worst-case) value. It is defined as

ValG(v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP0(Outv(σ0, σ1)).

Additionally, we define the value of a Player 0 strategy σ0 from a vertex v in a zero-sum
mean-payoff game G as ValG(σ0)(v) = inf

σ1∈Σ1
MP0(Outv(σ0, σ1)).

3 Fragility and robustness in games

In this section, we study fragility and robustness properties in zero-sum and nonzero-sum
games. Additionally, we provide a notion of value, for the nonzero-sum case, that is well-suited
to synthesize strategies that are robust against two types of perturbations:

Modeling imprecision: We want guarantees about the value that is obtained by a strategy
in the Stackelberg game even if this strategy has been synthesized from a weighted game
graph with weights that are possibly slightly wrong: small perturbations of the weight
should have only limited effect on the value guaranteed by the strategy.
Sub-optimal responses: We want guarantees about the value that is obtained by a strategy
in the Stackelberg game even if the adversary responds with an ϵ-best response instead
of a perfectly optimal response (for some ϵ > 0): small deviations from the best-response
by the adversary should have only limited effect on the value guaranteed by the strategy.

Formalizing deviations. To formalize modeling imprecision, we introduce the notion of a
perturbed game graph. Given a game G with arena AG = (V, E, ⟨V0, V1⟩, w0, w1), and a value
δ > 0, we write G±δ for the set H of games with arena AH = (V, E, ⟨V0, V1⟩, w′

0, w′
1) where

edge weight functions respect the following constraints:

∀(v1, v2) ∈ E, ∀i ∈ {0, 1}, w′
i(v1, v2) ∈ (wi(v1, v2) + δ, wi(v1, v2) − δ).

We note that as the underlying game graph (V, E) is not altered, for both players, the set
of strategies in G is identical to the set of strategies in H. Finally, to formalize sub-optimal
responses, we naturally use the notion of ϵ-best response introduced in the previous section.

Robustness in zero-sum games. In zero-sum games, the worst-case value ValG(σ0) is robust
against both modeling imprecision and sub-optimal responses of Player 1.

▶ Proposition 1 (Robustness in zero-sum games). For all zero-sum mean-payoff games G
with a set V of vertices, for all Player 0 strategies σ0,and for all vertices v ∈ V we have that:

∀δ, ϵ > 0 : ∀H ∈ G±δ : inf
σ1∈BRϵ

1,H(σ0)
MPH

0 (Outv(σ0, σ1)) > ValG(σ0)(v) − δ.
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v1 v2start

(0, 0)

(µ′, 2δ) (0, 0)
(0, 0)

Figure 2 In this game G, all vertices are
controlled by Player 1. Here, ASVG(v1) = µ′.

v1 v2start

(0, 0)

(µ′ − ι, 2δ − ι) (ι, ι)
(0, 0)

Figure 3 An δ-perturbed game H of G in
Figure 2. Here, we consider 0 < ι < δ. Here,
ASVH(v1) = µ′ − ι.

Fragility in non-zero sum games. On the contrary, the adversarial Stackelberg value
ASV(σ0) is fragile against both modeling imprecision and sub-optimal responses.

▶ Proposition 2 (Fragility - modeling imprecision). For all µ > 0, we can construct a nonzero-
sum mean-payoff game G and a Player 0 strategy σ0, such that there exist δ > 0, a perturbed
game H ∈ G±δ, and a vertex v in G with ASVH(σ0)(v) < ASVG(σ0)(v) − µ.

▶ Proposition 3 (Fragility - sub-optimal responses). For all µ > 0, we can construct a
nonzero-sum mean-payoff game G and a Player 0 strategy σ0, such that there exist ϵ > 0 and
a vertex v in G with inf

σ1∈BRϵ
1(σ0)

MPG
0 (Outv(σ0, σ1)) < ASVG(σ0)(v) − µ.

Note that µ can be arbitrarily large and thus the adversarial Stackelberg value in the model
under deviations can be arbitrarily worse than in the original model.

Relation between the two types of deviations. In nonzero-sum mean-payoff games, robust-
ness against modeling imprecision does not imply robustness against sub-optimal responses.

▶ Lemma 4. For all µ, δ, ϵ > 0, we can construct a nonzero-sum mean-payoff game G such
that for all Player 0 strategies σ0 and vertex v in G, we have that:

∀H ∈ G±δ : ASVH(σ0)(v) > inf
σ1∈BRϵ

1,G
MPG

0 (Outv(σ0, σ1)) + µ.

Proof. Consider the game G shown in Figure 2. Here, since all the vertices are controlled
by Player 1, the strategy of Player 0 is inconsequential. For every δ > 0, we claim that the
best strategy for Player 1 across all perturbed games H ∈ G±δ is to play v1 → v1 forever.
One such example of a perturbed game is shown in Figure 3. Here, for every 0 < ι < δ,
we have that v1 → v1 is the only best-response for Player 1. Therefore, we have that

inf
H∈G±δ

ASVH(σ0)(v1) = µ′ − δ, for all δ > 0.

However, if we relax the assumption that Player 1 plays optimally and assume that
he plays an ϵ-best response in the game G, we note that Player 1 can play a strategy
(vk1+1

1 vk2+1
2 )ω, for some k1, k2 ∈ N, such that 2δ·k1

k1+k2+2 > 2δ − ϵ, and Player 0 gets a payoff
of k1·µ′

k1+k2+2 > µ′(1 − ϵ
2δ ). Thus, we have that inf

σ1∈BRϵ
1,G

MPG
0 (Outv(σ0, σ1)) = µ′(1 − ϵ

2δ ). We

note that the choice of µ′ is arbitrary, and we can have a µ′ such that µ′ − δ > µ′(1 − ϵ
2δ ) + µ,

i.e, we choose µ′ to be large enough so that µ < µ′ · ϵ
2δ − δ. ◀

On the contrary, robustness against sub-optimal responses implies robustness against modeling
imprecision.
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▶ Theorem 5 (Robust strategy in non-zero sum games). For all non-zero sum mean-payoff
games G with a set V of vertices, for all ϵ > 0, for all vertices v ∈ V , for all strategies σ0 of
Player 0, we have that ∀H ∈ G±ϵ : ASVH(σ0)(v) > inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) − ϵ.

Proof. Consider a nonzero-sum mean-payoff game G and a vertex v in G and a strategy σ0
of Player 0. We let inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) = c , for some c ∈ Q. Let the supremum of

the payoffs that Player 1 gets when Player 0 plays σ0 be y, where y ∈ Q, i.e., sup{MP1(ρ) |
ρ ∈ Outv(G, σ0))} = y. For all outcomes ρ which are in Player 1’s 2ϵ-best response of σ0, we
have that MP1(ρ) > y − 2ϵ and MP0(ρ) ⩾ c.

Now, consider a game H ∈ G±ϵ and a Player 0 strategy σ0 played in H. We can see that
the maximum payoff that Player 1 gets when Player 0 plays σ0 is bounded by y + ϵ and
y − ϵ, i.e., y − ϵ < sup{MP1(ρ) | ρ ∈ Outv(H, σ0))} < y + ϵ. We let this value be denoted by
yH. We note that if supρ∈Outv(H,σ0)(MP1(ρ)) = yH, then for the corresponding play ρH in
the game G, the mean-payoff of Player 1 in ρH is MP1(ρH) > y − 2ϵ. Thus, in the game G,
we note that MP0(ρH) ⩾ c and for the corresponding play in H, we have MP0(ρH) > c − ϵ.
Thus, we have ASVH(σ0)(v) > c − ϵ = inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) − ϵ. ◀

We note that in the above theorem, we need to consider a strategy that is robust against
2ϵ-best-responses to ensure robustness against ϵ weight perturbations.

ϵ-Adversarial Stackelberg Value. The results above suggest that, in order to obtain some
robustness guarantees in nonzero-sum mean-payoff games, we must consider a solution
concept that accounts for ϵ-best responses of the adversary. This leads to the following
definition: Given an ϵ > 0, we define the adversarial value of Player 0 strategy σ0 when
Player 1 plays ϵ-best-responses as

ASVϵ(σ0)(v) = inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)) (1)

and the ϵ-Adversarial Stackelberg value at vertex v is: ASVϵ(v) = supσ0∈Σ0 ASVϵ(σ0)(v),
and we note that ASV(v) = supϵ>0 ASVϵ(v). We can now state a theorem about combined
robustness of ASVϵ.

▶ Theorem 6 (Combined robustness of ASVϵ). For all nonzero-sum mean-payoff games G
with a set V of vertices, for all ϵ > 0, for all δ > 0, for all H ∈ G±δ, for all vertices v ∈ V ,
and for all strategies σ0, we have that if ASV2δ+ϵ

G (σ0)(v) > c, then for all H ∈ G±δ, we have
that infσ1∈BRϵ

H(σ0) MPH
0 (Outv(σ0, σ1)) > c − δ.

Proof. The proof for Theorem 6 is very similar to the proof of Theorem 5 and involves
looking at the set of ϵ-best-responses in the game H and showing that the corresponding
plays lie in the set of (2δ + ϵ)-best-responses in the game G. This would imply that the
corresponding Player 0 mean-payoffs for the ϵ-best-responses of Player 1 in every perturbed
game H ∈ G±δ would always be greater than c − δ. Therefore, we can extrapolate that
ASVϵ

H(σ0)(v) > c − δ. ◀

In the rest of the paper we study properties of ASVϵ and solve the following two problems:
Threshold Problem of ASVϵ: Given G, c ∈ Q, an ϵ > 0, and a vertex v, we provide a
nondeterministic polynomial time algorithm to decide if ASVϵ(v) > c (see Theorem 8).

CONCUR 2021
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Computation of ASVϵ and largest ϵ: Given G, an ϵ > 0, and a vertex v, we provide an
exponential time algorithm to compute ASVϵ(v) (see Theorem 12). We also establish
that ASVϵ is achievable (see Theorem 16). Then we show, given a fixed threshold
c, how to computation of largest ϵ such that ASVϵ(v) > c. Formally, we compute
sup{ϵ > 0 | ASVϵ(v) > c} (See Corollary 15).

4 Threshold problem for the ASVϵ

In this section, given c ∈ Q, and a vertex v in game G, we study the threshold problem which
is to determine if ASVϵ(v) > c.

Witnesses for ASVϵ. For a game G and ϵ > 0, we associate with each vertex v in G, a
set Λϵ(v) of pairs or real numbers (c, d) such that Player 1 has a strategy that ensures a
mean-payoff greater than d - ϵ for himself while restricting the payoff of Player 0 to at most
c. Formally, we have:

Λϵ(v) = {(c, d) ∈ R2 | v ⊨≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ}.

A vertex v is (c, d)ϵ-bad if (c, d) ∈ Λϵ(v). Let c′ ∈ R. A play π of G is called a (c′, d)ϵ-witness
of ASVϵ(v) > c if (MP0(π), MP1(π)) = (c′, d) where c′ > c, and π does not contain any
(c, d)ϵ-bad vertex. A play π is called a witness for ASVϵ(v) > c if it is a (c′, d)ϵ-witness for
ASVϵ(v) > c for some c′, d. We now show that polynomial-size witnesses for ASVϵ > c exist:

▶ Theorem 7. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and c ∈ Q,
we have that ASVϵ(v) > c if and only if there exists a (c′, d)ϵ-witness of ASVϵ(v) > c, where
d ∈ Q. Furthermore, the (c′, d)ϵ-witness can be chosen as a regular witness π = u · vω, where
u and v are finite paths of polynomial size.

Proof sketch. We consider only the left to right direction here since the other direction
of the proof is similar to showing that existence of a witness for ASV(v) > c implies
ASV(v) > c [1]. We are given that ASVϵ(v) > c. First we show that ASVϵ(v) > c iff there
exists a strategy σ0 of Player 0 such that ASVϵ(σ0)(v) > c. Thus, there exists a δ > 0, such
that inf

σ1∈BRϵ
1(σ0)

MP0(Outv(σ0, σ1)) = c′ = c + δ Let d = sup
σ1∈BRϵ

1(σ0)
MP1(Outv(σ0, σ1)). We

show that for all σ1 ∈ BRϵ
1(σ0), we have that Outv(σ0, σ1) does not cross a (c, d)ϵ-bad vertex.

We then consider a sequence (σi)i∈N of Player 1 strategies such that σi ∈ BRϵ
1(σ0) for all

i ∈ N, and lim
i→∞

MP1(Outv(σ0, σi)) = d. Let πi = Outv(σ0, σi). W.l.o.g., we can have that all
the plays Outv(σ0, σi) end up in the same SCC, say S.

Now using the fact that Fmin(CH(C(S))) is a closed set, and using a result from [8, 5]
which states that for every pair of points (x, y) in Fmin(CH(C(S))), there exists a play π

in the SCC S such that (MP0(π), MP1(π)) = (x, y), we can show that there exists a play
π∗ ∈ Outv(σ0) with (MP0(π∗), MP1(π∗)) = (c∗, d) and c∗ ⩾ c′. That π∗ is a (c∗, d)ϵ-witness
now follows since the vertices appearing in π∗ are not (c, d)ϵ-bad. We have thus shown
that if ASVϵ(v) > c, then there exists a (c∗, d)ϵ-witness. Finally, by using the Carathéodory
baricenter theorem, we show that two simple cycles, and three acyclic finite plays suffice to
construct a regular witness. ◀

The following statement can be obtained by exploiting the existence of finite regular
witnesses of polynomial size proved above.
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▶ Theorem 8. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and
for all c ∈ Q, it can be decided in nondeterministic polynomial time if ASVϵ(v) > c, and a
pseudopolynomial memory strategy of Player 0 suffices for this threshold. Furthermore, this
decision problem is at least as hard as solving zero-sum mean-payoff games.

As a corollary of Theorem 8, we can deduce that the ϵ-adversarial Stackelberg value
achievable using finite memory strategies which defined as :

ASVϵ
FM(v) = sup

σ0∈ΣFM
0

inf
σ1∈BRϵ

1 (σ0)
MP0(Outv(σ0, σ1))

where ΣFM
0 refers to the set of all finite memory strategies of Player 0, is equal to ASVϵ:

▶ Corollary 9. For all games G, for all vertices v in G, and for all ϵ > 0, we have that
ASVϵ

FM(v) = ASVϵ(v).

This corollary is important from a practical point of view as it implies that the ASVϵ

value can be approached to any precision with a finite memory strategy. Nevertheless, we
show in Theorem 16 that infinite memory is necessary to achieve the exact ASVϵ.

Memoryless strategies of Player 0. We now establish that the threshold problem is
NP-complete when Player 0 is restricted to play memoryless strategies. First we define

ASVϵ
ML(v) = sup

σ0∈ΣML
0

inf
σ1∈BRϵ

1 (σ0)
MP0(Outv(σ0, σ1))

where ΣML
0 is the set of all memoryless strategies of Player 0.

▶ Theorem 10. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and for
all rationals c, the problem of deciding if ASVϵ

ML(v) > c is NP-Complete.

The proof of hardness is a reduction from the partition problem while easiness is straightfor-
wardly obtained by techniques used in the proof of Theorem 8.

5 Computation of the ASVϵ and the largest ϵ possible

Here, we express the ASVϵ as a formula in the theory of reals by adapting a method provided
in [8] for ASV. We then provide a new EXPTime algorithm to compute the ASVϵ based on
construction of linear programs (LPs) which in turn is applicable to ASV as well.

Extended mean-payoff game. Given a mean-payoff game G with a set V of vertices in its
arena, we construct an extended mean-payoff game Gext, whose arena consists of vertices
V ext = V × 2V . With a history h in G, we associate a vertex in Gext which is a pair (v, P ),
where v = last(h) and P is the set of the vertices traversed along h. The set Eext of edges,
and the weight functions wext

i for i ∈ {0, 1} are defined as Eext = {((v, P ), (v′, P ′)) | (v, v′) ∈
E, P ′ = P ∪ {v′}} and wext

i ((v, P ), (v′, P ′)) = wi(v, v′) respectively. There exists a bijection
between the plays π in G and the plays πext in Gext. Note that the second component of the
vertices of the play πext stabilises into a set of vertices of G which we denote by V ∗(πext).

We characterize ASVϵ(v) with the notion of witness introduced earlier and the decompos-
ition of Gext into SCCs. For a vertex v in V , let SCCext(v) be the set of strongly-connected
components in Gext which are reachable from (v, {v}).

CONCUR 2021
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▶ Lemma 11. For all mean-payoff games G and for all vertices v in G, we have

ASVϵ(v) = max
S∈SCCext(v)

sup{c ∈ R |∃πext : πext is a witness for ASVϵ(v, {v}) > c

and V ∗(πext) = S}.

By definition of Gext, for every SCC S of Gext, there exists a set V ∗(S) of vertices
of G such that every vertex of S is of the form (v′, V ∗(S)), where v′ is a vertex in G.
Now, we define Λext

S =
⋃

v∈V ∗(S) Λϵ(v) as the set of (c, d) such that Player 1 can ensure
v ⊨≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ from some vertex v ∈ S. The set Λext

S can be represented
by a formula Ψϵ

S(x, y) in the first order theory of reals with addition, ⟨R, +, <⟩, with two
free variables. We refer the reader to [1] for a formal statement and a proof of this. We can
now state the following theorem about the computability of ASVϵ(v):

▶ Theorem 12. For all mean-payoff games G, for all vertices v in G and for all ϵ > 0, the
ASVϵ(v) can be effectively expressed by a formula in ⟨R, +, <⟩, and can be computed from this
formula. Furthermore, the formula can be effectively transformed into exponentially many
linear programs which establish membership in EXPTime.

Proof sketch. Using Lemma 11, we have that for every S in SCCext(v), a value of c such
that ASVϵ(v) > c can be encoded by the formula ρS

v (c) ≡ ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬Ψϵ
S(c, y)

where the formula ΦS(x, y) expresses the symbolic encoding of the pair of values (x, y) which
represents the mean-payoff values of some play in S, and the formula ¬Ψϵ

S(c, y) expresses that
the play does not cross a (c, y)ϵ-bad vertex. We then construct a formula ρS

max,v(z) which is
satisfied by a value that is the supremum over the set of values c such that c satisfies the
formula ρS

v . From the formula ρS
max,v, we can compute the ASVϵ(v) by quantifier elimination,

and by finding the maximum across all the SCCs S in SCCext(v).
For the EXPTime algorithm, first note that for each SCC S in Gext, the set satisfying the

formula ΦS(x, y), which is the symbolic encoding of Fmin(CH(C(S))), can be expressed as a
set of exponentially many inequalities [5]. Also the formula Ψϵ

S(x, y) can be expressed using
exponentially many LPs. We refer the interested reader to [1] for more details. It follows that
the formula ρS

v (c) can be expressed with exponentially many LPs. In each LP, the objective
is to maximize c. The algorithm runs in EXPTime since there can be exponentially many
SCCs. ◀

▶ Example 13. We illustrate the computation of ASVϵ with an example. Consider the
mean-payoff game G depicted in Figure 4 and its extension Gext as shown in Figure 5.

Note that in Gext there exist three SCCs which are S1 = {v′
02 , v′

1}, S2 = {v′
21}, and

S3 = {v′
22}. The SCCs S2 and S3 are similar, and thus ρS2

max,v0
(z) and ρS3

max,v0
(z) would be

equivalent. We start with SCC S1 that contains two cycles v′
1 → v′

1 and v′
02 → v′

1, v′
1 → v′

02 ,
and SCC S2 contains one cycle v′

21 → v′
21 . Since S3 is similar to S2, we consider only S2 in our

example. Thus, the set Fmin(CH(C(S1))) is represented by the Cartesian points within the
triangle represented by (0, 2), (1, 1) and (0, 1) 5 and Fmin(CH(C(S2))) = {(0, 1)}. Thus, we get
that ΦS1(x, y) ≡ (x ⩾ 0∧x ⩽ 1)∧ (y ⩾ 1∧y ⩽ 2)∧ (x+y) ⩽ 2 and ΦS2(x, y) ≡ x = 0∧y = 1.
Now, we calculate Λϵ(v′

02), Λϵ(v′
21) and Λϵ(v′

1) for some value of ϵ less tan 1. We note that the
vertex v′

1 is not (0, 2 + ϵ − δ)ϵ-bad, for all 0 < δ < 1, as Player 0 can always choose the edge
(v′

1, v′
02) from v′

1, thus giving Player 1 a mean-payoff of 1. Additionally, the vertex v′
02 is both

(0, 1 + ϵ − δ)ϵ-bad, for all δ > 0, since Player 1 can choose the edge (v′
02 , v′

22) from v′
02 , and

5 Note that the coordinate (0, 1) is obtained as the pointwise minimum over the two coordinates separately.
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v0v1 v2

start

(1,1)

(0,1)

(0,2)
(1,1)

(0,1)

Figure 4 Example to calculate
ASVϵ(v).

v′
02v′

1

v′
01

v′
22

v′
21start

(1,1)

(0,1)

(1,1)

(0,1)

(0,2)
(1,1)

(0,1)

(0,1)

Figure 5 Extended Mean-Payoff Game where v′
01 =

(v0, {v0}), v′
02 = (v0, {v0, v1}), v′

1 = (v1, {v0, v1}),
v′

21 = (v1, {v0, v2}), and v′
22 = (v2, {v0, v1, v2}).

x

y

P1(0, 2)

P2(1, 1)P3(0, 1)

Figure 6 The red
triangle represents the
set of points in ΦS1 .

x

y

(0, 1 + ϵ)

Figure 7 The blue
region under and ex-
cluding the line y =
(1 − ϵ) represents the
set of points in Ψϵ

S1 and
Ψϵ

S2 .

x

y

P1(0, 2)

P2(1, 1)P3(0, 1)

A(1 − ϵ, 1 + ϵ)
(0, 1 + ϵ)

Figure 8 The formula ρS1 (c) is represented
by the points in ΦS1 and not in Ψϵ

S1 , i.e., the
points in the triangle which are not strictly
below the line y = (1 − ϵ). Here, the max c

value is represented by point A.

(1, 1 + ϵ − δ)ϵ-bad, for all δ > 0, since Player 1 can choose the edge (v′
02 , v′

1) from v′
02 . Thus,

we get that Λϵ(v′
1) = Λϵ(v′

02) = {(c, d) | (c ⩾ 1 ∧ d < 1 + ϵ)}
⋃

{(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}
which is the same as {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}, and Λϵ(v′

21) = {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}.
Therefore, we have that Λext

S1
= Λext

S2
= {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}. Hence, we get that

Ψϵ
S1

(x, y) = Ψϵ
S2

(x, y) ≡ (x ⩾ 0∧y < 1 + ϵ) as shown in Figure 7. From Figure 8, the formula
ρS1(c) holds true for values of c less than (1 − ϵ) and the formula ρS2(c) holds for values of c

less than 0. Hence, by assigning (1 − ϵ) to x, and (1 + ϵ) to y, we get that ρS1
max,v0

(z) holds
true for z = (1 − ϵ). Additionally, by assigning 0 to x, and 1 to y, we get that ρS2

max,v0
(z)

holds true for z = 0. It follows that ASVϵ(v0) = 1 − ϵ for ϵ < 1 as it is the maximum of the
values over all the SCCs. ◀

We now illustrate the LP formulation for ρS
v (c) for each SCC S with the following example,

and provide details for computing ASVϵ(v0).

▶ Example 14. We previously showed that the ASVϵ(v0) can be computed by quantifier
elimination of a formula in the theory of reals with addition. Now, we compute the ASVϵ(v0)
by solving a set of linear programs for every SCC in Gext. We recall that there are three
SCCs S1, S2 and S3 in Gext. From a result in [5], we have that Fmin(CH(C(Si))) for i ∈
{1, 2, 3} can be defined using a set of linear inequalities. Now recall that Fmin(CH(C(S2)) =
Fmin(CH(C(S3))) = {(0, 1)}, and Fmin(CH(C(S1))) is represented by the set of points enclosed
by the triangle formed by connecting the points (0, 1), (1, 1) and (0, 2) as shown in Figure 6,
and Λϵ(v′

02) = Λϵ(v′
21) = Λϵ(v′

22) = Λϵ(v′
1) = {(c, y) | c ⩾ 0 ∧ y < 1 + ϵ}. Now, we consider the
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SCC S1, and the formula ¬Ψϵ
S1

. We start this by finding the complement of Λϵ(v′
02) and Λϵ(v′

1),
that is, Λϵ(v′

02) = Λϵ(v′
1) = R × R − Λϵ(v′

02) = R × R − Λϵ(v′
1) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}.

Now, we get that ¬Ψϵ
S1

= Λϵ(v′
02)

⋂
Λϵ(v′

1) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}.
Similarly for the SCC S2 and SCC S3, we calculate the complement of Λϵ(v′

21) and Λϵ(v′
22),

that is, Λϵ(v′
22) = Λϵ(v′

21) = R×R− Λϵ(v′
21) = R×R− Λϵ(v′

22) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}
and obtain ¬Ψϵ

S2
= Λϵ(v′

21) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ} and ¬Ψϵ
S3

= Λϵ(v′
22) = {(c, y) | c <

0 ∨ y ⩾ 1 + ϵ}. Note that the formulaes ΦS2(x, y) and ΦS3(x, y) are represented by the set
of linear inequations x = 0 ∧ y = 1 and the formula ΦS1(x, y) is represented by the set of
linear inequations y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2. Now the formula ρS1

v0
(c) can be

expressed using a set of linear equations and inequalities as follows: x > c ∧ y ⩾ 1 ∧ y ⩽
2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ (c < 0 ∨ y ⩾ 1 + ϵ) and the formula ρS2

v0
(c) can be expressed using a

set of linear equations and inequalities as follows: x > c ∧ x = 0 ∧ y = 1 ∧ (c < 0 ∨ y ⩾ 1 + ϵ).
We maximise the value of c in the formula ρS1

v0
(c) to get the following two linear programs:

maximise c in (x > c ∧ y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ c < 0) which gives a solution
{0} and maximise c in (x > c ∧ y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ y ⩾ (1 + ϵ)) which gives
us a solution {(1 − ϵ)}. Similarly, maximising c in the formulaes ρS2

v0
(c) and ρS3

v0
(c) would

give us the following two linear programs: maximise c in (x > c ∧ x = 0 ∧ y = 1 ∧ c < 0)
which gives a solution {0} and maximise c in (x > c ∧ x = 0 ∧ y = 1 ∧ y ⩾ (1 + ϵ)) which
gives us a solution {0}. Thus, we conclude that ASVϵ(v0) = 1 − ϵ which is the maximum
value amongst all the SCCs. Note that in an LP, the strict inequalities are replaced with
non-strict inequalities, and computing the supremum in the objective function is replaced by
maximizing the objective function.

Again, for every SCC S and for every LP corresponding to that of S, we fix a value of
c and change the objective function to maximise ϵ from maximise c in order to obtain the
maximum value of ϵ that allows ASVϵ(v0) > c. For example, consider the LP (x > c ∧ y ⩾
1∧y ⩽ 2∧x ⩽ 1∧ (x+y) ⩽ 2∧y ⩾ (1+ϵ)) in SCC S1 and fix a value of c, and then maximize
the value of ϵ. Doing this over all linear programs in an SCC, and over all SCCs, reachable
from v0 for a fixed c gives us the supremum value of ϵ such that we have ASVϵ(v0) > c. ◀

On the other hand, we note that in every SCC S, the value c is a function of ϵ, for
illustration, in the example above, ρS1(c) holds true for values of c less than 1 − ϵ. Thus if
we fix a value of c, we can find the supremum over ϵ which allows ASVϵ(v) > c in S. Again,
taking the maximum over all SCCs reachable from (v, {v}) gives us the largest ϵ possible so
that we have ASVϵ(v) > c. We state the following corollary.

▶ Corollary 15. For all mean-payoff games G, for all vertices v in G, and for all c ∈ Q, we
can compute in EXPTime the maximum possible value of ϵ such that ASVϵ(v) > c.

6 Additional Properties of ASVϵ

In this section, we first show that the ASVϵ is achievable, i.e., there exists a Player 0 strategy
that achieves the ASVϵ. Then we study the memory requirement in strategies of Player 0
for achieving the ASVϵ, as well as the memory requirement by Player 1 for playing the
ϵ-best-responses.

Achievability of the ASVϵ. We formally define achievability as follows. Given ϵ > 0, we
say that ASVϵ(v) = c is achievable from a vertex v, if there exists a strategy σ0 for Player 0
such that ∀σ1 ∈ BRϵ

1(σ0) : MP0(Outv(σ0, σ1)) ⩾ c. We note that this result is in contrast to
the case for ASV as shown in [8].
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▶ Theorem 16. For all mean-payoff games G, for all vertices v in G, and for all ϵ > 0, we
have that the ASVϵ(v) is achievable.

The rest of this section is devoted to proving Theorem 16. We start by defining the
notion of a witness for ASVϵ(σ0)(v) for a strategy σ0 of Player 0.

Witness for ASVϵ(σ0)(v). Given a mean-payoff game G, a vertex v in G, and an ϵ > 0,
we say that a play π is a witness for ASVϵ(σ0)(v) > c for a strategy σ0 of Player 0 if
(i) π ∈ Outv(σ0), and (ii) π is a witness for ASVϵ(v) > c when Player 0 uses strategy σ0
where the strategy σ0 is defined as follows:
1. σ0 follows π if Player 1 does not deviate from π.
2. If Player 1 deviates π, then for each vertex v ∈ π, we have that σ0 consists of a memoryless

strategy that establishes v ⊭≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ, where d = MP1(π). The
existence of such a memoryless strategy of Player 0 has been established in Section 4.

Assume that the ASVϵ(v) cannot be achieved by a finite memory strategy. We show that
for such cases, it can indeed be achieved by an infinite memory strategy.

Let ASVϵ(v) = c. For every c′ < c, from Theorem 8, there exists a finite memory strategy
σ0 such that ASVϵ(σ0)(v) > c′, and recall from Theorem 7 that there exists a corresponding
regular witness. First we state the following proposition.

▶ Proposition 17. There exists a sequence of increasing real numbers, c1 < c2 < c3 < . . . < c,
such that the sequence converges to c, and a set of finite memory strategies σ1

0 , σ2
0 , σ3

0 , . . . of
Player 0 such that for each ci, we have ASVϵ(σi

0)(v) > ci, and there exists a play πi that is
a witness for ASVϵ(σi

0)(v) > ci, where πi = π1(lα·ki
1 · π2 · lβ·ki

2 · π3)ω, and π1, π2 and π3 are
simple finite plays, and l1, l2 are simple cycles in the arena of the game G.

These witnesses or plays in the sequence are regular, and they differ from each other only in
the value of ki that they use.

To show that lim
i→∞

ASVϵ(σi
0)(v) = c, we construct a play π∗ that starts from v, follows

π1 until the mean-payoff of Player 0 over the prefix becomes greater than c1. Then for
i ∈ {2, 3, . . . }, starting from first(l1), it follows πi, excluding the initial simple finite play π1,
until the mean-payoff of the prefix of πi becomes greater than ci. Then the play π∗ follows
the prefix of the play πi+1, excluding the initial finite play π1, and so on. Clearly, we have
that MP1(π∗) = c. We let MP1(π∗) = d = α · MP1(l1) + β · MP1(l2).

For the sequence of plays (πi)i∈N+ which are witnesses for (ASVϵ(σi
0)(v) > ci)i∈N+ for

the strategies (σi
0)i∈N+ , we let MP1(πi) = di. We state the following proposition.

▶ Proposition 18. The sequence (di)i∈N+ is monotonic, and it converges to d in the limit.

The above two propositions establish the existence of an infinite sequence of regular
witnesses ASVϵ(σi

0)(v) > ci for a sequence of increasing numbers c1 < c2 < . . . < c, such that
the mean-payoffs of the witnesses are monotonic and at the limit, the mean-payoffs of the
witnesses converge to c and d for Player 0 and Player 1 respectively. These observations show
the existence of a witness π∗ which gives Player 0 a mean-payoff value at least c and Player 1
a mean-payoff value equal to d. Assuming that Player 0 has a corresponding strategy σ0, we
show that Player 1 does not have an ϵ-best response to σ0 that gives Player 0 a payoff less
than c. Now, we have the ingredients to prove Theorem 16.

Proof sketch of Theorem 16. We consider a sequence of increasing numbers c1 < c2 < c3 <

. . . < c such that for every i ∈ N+, by Theorem 8, we consider a finite memory strategy σi
0

of Player 0 that ensures ASVϵ(σi
0)(v) > ci.

CONCUR 2021
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v0v1 v2

start

(0,0)

(0,1)

(2,0)(0,2+2ϵ)
(0,0)

(0,1)

Figure 9 Finite memory strategy of Player 0 may not achieve ASVϵ(v0). Also, no finite memory
ϵ-best response exists for Player 1 for the strategy σ0 of Player 0.

If the ASVϵ is not achievable, then there exists a strategy of Player 1 to enforce some
play π′ such that MP0(π′) = c′ < c and MP1(π′) = d′ > d − ϵ. Now, we use the monotonicity
of the sequence (di)i∈N+ established in Proposition 18 to show a contradiction. Since the
sequence (di)i∈N+ is monotonic, there can be two cases:
1. The sequence (di)i∈N+ is monotonically non-decreasing.
2. The sequence (di)i∈N+ is monotonically decreasing.

For each of these cases, we reach a contradiction if we assume that ASVϵ(v) is not
achievable, i.e. Player 1 deviates from π∗ to enforce the play π′ where MP0(π′) = c′ < c and
MP1(π′) = d′. ◀

Memory requirements of the players’ strategies. First we show that there exists a mean-
payoff game G in which Player 0 needs an infinite memory strategy to achieve the ASVϵ.

▶ Theorem 19. There exist a mean-payoff game G, a vertex v in G, and an ϵ > 0 such that
Player 0 needs an infinite memory strategy to achieve the ASVϵ(v).

Proof sketch. Consider the example in Figure 9. We show that in this example the
ASVϵ(v0) = 1, and that this value can only be achieved using an infinite memory strategy.
Assume a strategy σ0 for Player 0 such that the game is played in rounds. In round k: (i) if
Player 1 plays v0 → v0 repeatedly at least k times before playing v0 → v1, then from v1,
play v1 → v1 repeatedly k times and then play v1 → v0 and move to round k + 1; (ii) else, if
Player 1 plays v0 → v0 less than k times before playing v0 → v1, then from v1 , play v1 → v0.
Note that σ0 is an infinite memory strategy. The best-response for Player 1 to strategy σ0
would be to choose k sequentially as k = 1, 2, 3, . . . , to get a play π = ((v0)i(v1)i)i∈N. We
have that MP1(π) = 1 + ϵ and MP0(π) = 1. Player 1 can only sacrifice an amount that is
less than ϵ to minimize the mean-payoff of Player 0, and thus he would not play v0 → v2.
We can show that ASVϵ(σ0)(v0) = ASVϵ(v0), and that no finite memory strategy of Player 0
can achieve an ASVϵ(v0) of 1. ◀

There also exist mean-payoff games in which a finite memory (but not memoryless)
strategy for Player 0 can achieve the ASVϵ.

Further, we show that there exist games such that for a strategy σ0 of Player 0, and an
ϵ > 0, there does not exist any finite memory best-response of Player 1 to the strategy σ0.

▶ Theorem 20. There exist a mean-payoff game G, an ϵ > 0, and a Player 0 strategy σ0 in
G such that every Player 1 strategy σ1 ∈ BRϵ

1(σ0) is an infinite memory strategy.
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