
k-Distinct Branchings Admits a Polynomial Kernel
Jørgen Bang-Jensen #

University of Southern Denmark, Odense, Denmark

Kristine Vitting Klinkby #

University of Bergen, Bergen, Norway
University of Southern Denmark, Odense, Denmark

Saket Saurabh #

University of Bergen, Bergen, Norway
The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
Unlike the problem of deciding whether a digraph D = (V, A) has ℓ in-branchings (or ℓ out-
branchings) is polynomial time solvable, the problem of deciding whether a digraph D = (V, A) has
an in-branching B− and an out-branching B+ which are arc-disjoint is NP-complete. Motivated by
this, a natural optimization question that has been studied in the realm of Parameterized Complexity
is called Rooted k-Distinct Branchings. In this problem, a digraph D = (V, A) with two
prescribed vertices s, t are given as input and the question is whether D has an in-branching rooted
at t and an out-branching rooted at s such that they differ on at least k arcs. Bang-Jensen et
al. [Algorithmica, 2016] showed that the problem is fixed parameter tractable (FPT) on strongly
connected digraphs. Gutin et al. [ICALP, 2017; JCSS, 2018] completely resolved this problem
by designing an algorithm with running time 2O(k2 log2 k)nO(1). Here, n denotes the number of
vertices of the input digraph. In this paper, answering an open question of Gutin et al., we design a
polynomial kernel for Rooted k-Distinct Branchings. In particular, we obtain the following:
Given an instance (D, k, s, t) of Rooted k-Distinct Branchings, in polynomial time we obtain
an equivalent instance (D′, k′, s, t) of Rooted k-Distinct Branchings such that |V (D′)| ≤ O(k2)
and the treewidth of the underlying undirected graph is at most O(k). This result immediately
yields an FPT algorithm with running time 2O(k log k) + nO(1); improving upon the previous running
time of Gutin et al. For our algorithms, we prove a structural result about paths avoiding many
arcs in a given in-branching or out-branching. This result might turn out to be useful for getting
other results for problems concerning in-and out-branchings.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Digraphs, Polynomial Kernel, In-branching, Out-Branching

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.11

1 Introduction

Let D = (V, A) be a digraph and r be a vertex of D. An out-branching (respectively,
in-branching) in D is a connected spanning subdigraph B+

r (respectively, B−
r) of D in which

each vertex v ̸= r has precisely one entering (respectively, leaving) arc and r has no entering
(respectively, leaving) arc. The vertex r is called the root of B+

r (respectively, B−
r). The

study of finding a spanning tree in an undirected graph or an out-branching in a digraph
satisfying specific properties, such as having at least k leaves, or having at least k internal
vertices [1, 4, 7, 10, 11, 13, 14, 18, 19, 22] has been at the forefront of research in parameterized
algorithms. This paper aims to study a problem of finding an in-branching and an out-
branching, in the given digraph, whose arc sets is disjoint on at least k arcs, in the realm of
Kernelization Complexity [21] and Parameterized Complexity [12,15,17,24].

A parameterized problem Π is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance of Π down to an
equivalent instance of Π whose size is bounded by a function f(k) of k. (Here, two instances

© Jørgen Bang-Jensen, Kristine Vitting Klinkby, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jbj@imada.sdu.dk
mailto:klinkby@imada.sdu.dk
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.ESA.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 k-Distinct Branchings Admits a Polynomial Kernel

are equivalent if both of them are either yes-instances or no-instances.) Such an algorithm is
called an f(k)-kernel for Π. If f(k) is a polynomial function of k, we say that the kernel is a
polynomial kernel. See [12,15,17,21,24] for more details.

In studying problems around finding edge-disjoint spanning trees, arc-disjoint in-
branchings, or arc-disjoint in-branchings, one of the most important results is due to Edmonds.
This classical result states that given a digraph D and a positive integer ℓ, we can test
whether D contains ℓ arc-disjoint out-branchings in polynomial time [16]. In contrast to this,
Thomassen proved that the problem of deciding whether a digraph contains an out-branching
B+

s and an in-branching B−
t which are arc-disjoint is NP-complete, even if s = t (the proof

is published in [2]). The problem remains NP-complete even for 2-regular digraphs [5] but
it is polynomial time solvable on tournaments [2], locally semicomplete digraphs [3] and
acyclic digraphs [6,9]. In fact, even deciding whether a digraph D contains an out-branching
which is arc-disjoint from some spanning tree in the underlying undirected graph remains
NP-complete [8].

In this paper, we consider the following parameterized version of the arc-disjoint in- and
out-branching problem by using a parameter k to measure how distinct a given pair B+

s , B−
t

are, where the measure is in terms of the number of arcs that belongs to B+
s but not to B−

t .
In particular, we study the following problem.

Rooted k-Distinct Branchings (R-k-DB) Parameter: k

Input: A digraph D = (V, A), two fixed vertices s, t ∈ V and an integer k.
Question: Does there exist an out-branching B+

s and an in-branching B−
t such

that |A(B+
s) \ A(B−

t)| ≥ k?

Observe that the problem is NP-complete since it contains the arc-disjoint in- and
out-branching question as to the particular case when k is the number of vertices minus one.

Context of our Study. The problem R-k-DB has a rich history in the realm of Parameterized
Complexity. Bang-Jensen and Yeo [7] asked whether the problem would be FPT when s = t.
Answering this question in the affirmative, Bang-Jensen et al. [4] showed that the problem
is FPT when the input is a strongly connected digraph and asked whether the problem is
FPT on general digraphs. This was confirmed in affirmative by Gutin et al. [22], who showed
that the problem is solvable in time 2O(k2 log2 k)nO(1) time. A natural follow up question
that they ask is: Does R-k-DB admits a polynomial sized kernel? This open question is the
starting point of our work.

Our Results and Methods. We design a polynomial kernel for R-k-DB.

▶ Theorem 1.1. R-k-DB admits a polynomial kernel with O(k2) vertices.

A key ingredient in the work of Gutin et al. [22] is out-branchings with many leaves. A
vertex v is a leaf in the out-branching B+

s if no arc is leaving v in B+
s . If the input (D, s, t, k)

to the R-k-DB problem is such that D has an out-branching B+
s with at least k + 1 leaves,

then (D, s, t, k) is a “yes”-instance since every in-branching B−
t will have the property that no

arc of B−
t which leaves a vertex in L will be contained in B+

s , where L is the set of leaves of
B+

s . It was shown in [13,23] that the problem (parameterized by p) of deciding the existence
of an out-branching with at least p leaves is FPT. Furthermore, if the input is strongly
connected and has no out-branching B+

s with at least k + 1 leaves, then it has pathwidth

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:3

O(k log k) and now a result from [4] implies that the Rooted k-Distinct Branchings
problem is FPT for strongly connected digraphs. When the input is not strongly connected,
the case is considerably more complicated to handle when following the approach used in [22].
Indeed, the result of Gutin et al. [22] could be viewed as an algorithm that obtains an
equivalent instance with treewidth of the underlying graph bounded by kO(1). Our approach
is very different, as we bound the size rather than a structural property.

We use a fundamentally different approach, based on a structural analysis of paths
avoiding many arcs of a fixed out-branching, to prove an O(k2)-vertex kernel for the R-k-DB
problem. In the whole analysis, we work with a fixed out-branching and see how an in-
branching can be built that avoids as many arcs of the given out-branching. In a step-by-step
procedure, we either obtain reduction rules to reduce our input or at the end, we do get an
in-branching and an out-branching that avoids k-arcs of each other. Finally, we argue that
the instance on which none of the reduction rules can be applied has at most O(k2) vertices.

We further look into our kernel and try to bound the treewidth of the underlying
undirected graph. In particular, given an instance (D, k, s, t) of R-k-DB, in polynomial time
we obtain an equivalent instance (D′, k′, s, t) of R-k-DB such that |V (D′)| ≤ O(k2) and the
treewidth of the underlying undirected graph is at most O(k). This result yields the FPT
algorithm by a standard dynamic programming approach over graphs of bounded treewidth.

▶ Theorem 1.2 (⋆). 1 R-k-DB admits an algorithm with running time 2O(k log k) + nO(1).

The running time obtained in Theorem 1.2 improves upon the running time of Gutin et
al. [22]. We conclude by saying that the structural result on so-called substitute paths of an
out-branching might be of independent interest and could find further applications.

2 Notation and Preliminaries

Given a digraph D = (V, A), we also use V (D) and A(D) to denote the vertex set and
the arc set of D, respectively. If it is clear from the context we simply use V and A,
respectively. Given a digraph D = (V, A) and an arc a = (u, v) ∈ A we call u the tail
of a and v the head of a. The vertices u and v are the endpoints of a. For a set of arcs
A′ ⊆ A the set of heads denoted H(A′) is the set of heads of the arcs in A′. That is,
H(A′) = {h|(t, h) ∈ A′ for some h, t ∈ V }. Similarly, we have the set of tails denoted T (A′),
which is defined as follows: T (A′) = {t|(t, h) ∈ A′ for some h, t ∈ V }. In a digraph D we
will denote a path from u to v as Pu,v. By Pu,v[x, y] we will denote the subpath of Pu,v

which goes from x to y. We will denote the path Pu,v[x, y] − {y} as Pu,v[x, y[and the path
Pu,v[x, y]−{x} as Pu,v]x, y]. Given a path Pu,v and Pv,z we will describe the concatenation of
the paths Pu,v and Pv,z as Pu,z = Pu,vPv,z. For a vertex u ∈ V (D) and an arc (u, v) ∈ A(D)
we will often use the notation u ∈ D and (u, v) ∈ D respectively. For a vertex v ∈ V (D) we
denote the out-neighbors of v as N+(v) and the in-neighbors as N−(v). An out-branching
with a root r ∈ V is denoted B+

r . For a vertex u ∈ V (B+
r) we say that v is parent of u

if (v, u) ∈ A(B+
r). To indicate that v is parent of u we use the notation v = PB+

r
(u). We

denote the directed path from u to v in B+
r as B+

r [u, v] and we say that u is ancestor to v

in B+
r if the path B+

r [u, v] exists. An in-branching with a root r ∈ V is denoted B−
r . For a

vertex u ∈ V (B−
r) we say that v is parent of u if (u, v) ∈ A(B−

r). To indicate this we use the
notation v = PB−

r
(u). We denote the directed path from u to v in B−

r as B−
r [u, v] and we

say that u is ancestor to v in B−
r if the path B−

r [u, v] exists.

1 Proofs labeled with ⋆ is not included in this version.

ESA 2021

11:4 k-Distinct Branchings Admits a Polynomial Kernel

3 Backward Arcs, Crossing Arcs and Substitute-paths

In this section we initiate our structural analysis of substitute paths. Given an out-branching
B+

r in a digraph D = (V, A), we will work with the arcs in A(D) \ A(B+
r). We therefore

divide these arcs into backward and crossing arcs.

▶ Definition 1. Given an out-branching B+
r in a digraph D = (V, A) an arc (u, v) ∈

A(D) \ A(B+
r) is backward, if the path B+

r [v, u] exists, and crossing, if it is not backward.

In an out-branching B+
r the arc (u, v) ∈ A is backward if and only if v is an ancestor of

u. We say that a backward arc (u, v) for B+
r goes over a vertex p if p ∈ B+

r]v, u]. It means
that a backward arc (u, v) ∈ B+

r always goes over u. Figure 1 shows an out-branching B+
r

together with crossing and backward arcs in B+
r .

Figure 1 The figure shows D = (V, A). An out-branching B+
r is shown in black, the crossing

arcs for B+
r are shown in green, and the backwards arcs are shown in blue.

▶ Definition 2. For an out-branching B+
r in a digraph D a backward arc (u, v) is irrelevant

with respect to B+
r if and only if every path from r to u in D contains v. A backward arc

which is not irrelevant is relevant.

Definition 2 implies the following.

▶ Observation 3. An arc a is irrelevant wrt 2 some out-branching B+
r if and only if a is not

contained in any out-branching B∗+
r , that is, a is irrelevant in any out-branching B∗+

r .

In the rest of this section we consider a fixed out-branching B+
r , unless stated otherwise.

▶ Lemma 3.1. It is possible to find the set of all relevant arcs and the set of all irrelevant
arcs for B+

r in polynomial time.

Proof. For any arc (u, v) ∈ A(D) \ A(B+
r) it can clearly be determined in linear time if the

path B+
r [v, u] exists and, therefore, whether the arc is backward. For every backward arc

(u, v) ∈ A(D) we can also determine in polynomial time if there exists a path Pr,u in D

which does not contain v, e.g., by determine if a (r, u)-path exists in D − {v}. ◀

Given the set of relevant arcs wrt B+
r in D we can now define the following relation

between the relevant arcs and a vertex u ∈ V .

▶ Definition 4. Let R(u) be the set of those relevant arcs wrt B+
r which go over

u. The joint relevant arc set for u is (recursively) defined as the arc set J(u) =
R(u) ∪

(⋃
h∈H(R(u)) J(h)

)
.

2 We use wrt for an abbreviation of “with respect to”.

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:5

Hence for every vertex u ∈ B+
r the joint relevant arc set for u is defined recursively as

the union of R(u) and the joint relevant arc sets of all the heads of R(u). Figure 2 shows a
joint relevant arc set of a vertex v in a out-branching B+

r . For notational purpose we let
H(u) denote the set H(J(u)).

Figure 2 The Figure shows D. A(B+
r) is shown in yellow and J(v) is shown in blue.

▶ Lemma 3.2. For every vertex u ∈ V such that H(u) ̸= ∅, it holds that for the last vertex
x on B+

r [r, u] which is also in H(u) we have H(x) = H(u) − {x}.

In Figure 2 we have H(v) = {h1, h2, h3, h4}. Lemma 3.2 means that H(h4) = {h1, h2, h3}.
The following is the proof for Lemma 3.2.

Proof. Let u ∈ V be a vertex such that H(u) ̸= ∅ and let l = |H(u)|. Observe that for every
h ∈ H(u) it holds that h ∈ B+

r [r, u]. Now name the vertices in H(u) as h1, h2, · · · , hl such
that hj comes before hi on B+

r [r, u] if j < i. Let i be an integer in the range [1, l − 1]. Since
hi ∈ H(u) it holds that there exists a relevant arc (t, hi) which goes over either u or a head
hp ∈ H(u) where i < p ≤ l. Observe that hi+1 ∈ B+

r [hi, u] and hi+1 ∈ B+
r [hi, hj] for j > i.

Hence (t, hi) goes over hi+1. Therefore, hi ∈ H(hi+1). By induction it means that for i > 0
we have {h1, h2, · · · , hi−1} ⊆ H(hi). Now observe that no backward arc with the head hj for
j ≥ i can go over hi as hj ∈ B+

r [hi, u]. Hence {hi, hi+1, · · · , hl} ∩ H(hi) = ∅. As hi ∈ H(u)
we have that J(hi) ⊆ J(u). Hence H(hi) ⊆ H(u). As a result H(hi) = {h1, h2, · · · , hi−1}.
For i = l we therefore have that H(hl) = {h1, h2, · · · , hl−1} = H(u) − {hl}. ◀

▶ Lemma 3.3. Let C be the set of crossing arcs wrt. to B+
r . Then for every v ∈ V we have

H(v) ⊆ H(u) for some arc (w, u) ∈ C, where it is possible that v = u.

Proof. Assume for contradiction that there exists a vertex x ∈ V such that H(x) ̸⊆ H(u)
for every arc (v, u) ∈ C where we set H(u) = ∅ if C = ∅. Among all such vertices choose x

such that |H(x)| is maximized. Recall that for every h ∈ H(x) we have h ∈ B+
r [r, x]. Now

let h be the last vertex on B+
r [r, x] which is also in H(x). Observe h ∈ H(x) and there are

no vertices in B+
r]h, x] ∩ H(x). Therefore, there must exist an arc (t, h) ∈ R(x) which goes

over x, and since it is relevant there is a path Pr,t in D which does not contain h. As a
consequence, there is an arc (p, q) ∈ Pr,t which is either a backward arc or a crossing arc
such that it’s head is in Pr,t ∩ B+

r]h, t]. Figure 3 shows two possible situations where the arc
(p, q) is contained in Pr,t.

ESA 2021

11:6 k-Distinct Branchings Admits a Polynomial Kernel

Figure 3 In the top left of the Figure a possible section of B+
r is shown in black. In the top right,

the path Pr,t is shown in blue and the arc (t, h) is shown in gray. The bottom left figure shows an
other possible section of B+

r and the bottom right figure shows the path Pr,tin blue and the arc
(t, h) in gray.

Observe that since q ∈ B+
r]h, t] the arc (t, h) goes over q, implying that h ∈ H(q) and

therefore {h} ∪ H(h) ⊆ H(q). From Lemma 3.2 we have that H(h) = H(x) − {h}. Hence
H(x) ⊆ H(q). As we have assumed for contradiction that there is no crossing arc (v, u) such
that H(x) ̸⊆ H(u) it follows that the arc (p, q) can not be crossing. Hence the arc (p, q) must
be backward. Since (p, q) ∈ Pr,t the path Pr,t[r, p] does not contain q and, therefore, (p, q)
is relevant. Thus (p, q) ∈ R(p) and q ∈ H(p). We therefore have that {q} ∪ H(q) ⊆ H(p).
Hence {q} ∪ H(x) ⊆ H(p). But it means that |H(x)| < |H(p)| which contradicts that x was
chosen such that |H(x)| ≥ |H(p)|. ◀

3.1 Existence of Substitute-path for the Out-branching B+
r

Now we define a substitute-path for the out-branching B+
r in the digraph D = (V, A).

▶ Definition 5. Let u be a vertex in B+
r , then a substitute-path is a path Sr,u from r to u

in D such that

|J(u) ∩ A(Sr,u)| + |H(u) \ V (Sr,u)| ≥
⌈

|H(u)|
2

⌉
. (1)

Thus if there exists a substitute-path Sr,u to a vertex u in B+
r then Sr,u either contain at

most half of the vertices in H(u) or for each vertex from H(u) it contains more than the half
of the vertices in H(u) it also contain an arc from J(u). Let q be the number of vertices from
H(u) which are on a substitute-path Sr,u. It then follows that the number of arcs from J(u)
on Sr,u is at least q − ⌈ |H(u)|

2 ⌉. Figure 4 shows two substitute-paths in an out-branching.
The following result may be of independent interests. Theorem 3.1 means that every

vertex v ∈ V is reachable from r by a substitute-path.

▶ Theorem 3.1. For the out-branching B+
r there exists a substitute-path to every v ∈ V .

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:7

Figure 4 To the left, the digraph D = (V, A) is shown. The arcs of the out-branching B+
r are

shown in yellow, the arcs in J(v) are blue, and the remaining arcs are black. In the middle and to
the right, two paths from r to v are shown. One of the paths is green, the other is shown in red.
Both paths are substitute-paths to v.

Proof. In this proof we will be modifying paths and, therefore, we will first consider two
claims which deals with these modifications.

▷ Claim 6. For an arbitrary path Pr,v in D the following inequality holds for every vertex
x ∈ V (Pr,v)

|J(v) ∩ A(Pr,v[r, x])| + |H(v) \ V (Pr,v[r, x])| (2)
≥ |J(v) ∩ A(Pr,v)| + |H(v) \ V (Pr,v)|.

Proof. As Pr,v[r, x] ⊆ Pr,v we clearly have that |J(v) ∩ A(Pr,v[r, x])| ≤ |J(v) ∩ A(Pr,v)|. Let
j = |J(v)∩A(Pr,v)|−|J(v)∩A(Pr,v[r, x])|. For every arc (t, h) ∈ J(v) which is also on the path
Pr,v it follows that h ∈ H(v) and h ∈ V (Pr,v). Thus, the set H(v) \ V (Pr,v[r, x]) contains at
least j vertices more than H(v)\V (Pr,v). That is, |H(v)\V (Pr,v[r, x])|−j ≥ |H(v)\V (Pr,v)|.
From this (2) follows. ◁

▷ Claim 7. Given a vertex v ∈ B+
r , and two paths Pr,x and Px,u in D which are disjoint on

the vertex set H(v) − {x} the following inequality holds for the walk W = Pr,xPx,u and for
every (r, u)-path P = Pr,xPx,u obtained from W by deleting cycles.

|J(v) ∩ A(W)| + |H(v) \ V (W)| (3)
≤ |J(v) ∩ A(P)| + |H(v) \ V (P)|.

Proof. If |J(v) ∩ A(W)| > |J(v) ∩ A(P)| then there must exist one or more cycles in W

which contain arcs from J(v). For each such cycle there must exist at least one vertex
z ∈ (V (Pr,x) ∩ V (Px,u)) − {x}. Since Pr,x and Px,u are disjoint on the set H(v) − {x} we
have that z ̸∈ H(v). It means that for every arc (t, h) ∈ J(v) contained in W but not in P

the head h is not in P either. Therefore, for j = |J(v) ∩ A(W)| − |J(v) ∩ A(P)| we have
|H(v) \ V (P)| − j ≥ |H(v) \ V (W)| and Claim 7 follows. ◁

We are now ready to prove that there exists a substitute-path to every v ∈ V . We will
prove this by induction over the cardinality of H(v) = H(J(v)). Clearly, |H(r)| = 0 since no
backwards arc goes over r. Hence there exists at least one vertex v ∈ V for which |H(v)| = 0.

ESA 2021

11:8 k-Distinct Branchings Admits a Polynomial Kernel

For every such vertex the path B+
r [r, v] is clearly a substitute-path by (1). Thus there exists

a substitute-path to every v ∈ V for which |H(v)| = 0. Now assume for some positive integer
i ≤ n that for every vertex v ∈ V where |H(v)| < i it holds that there exists a substitute-path
to v.

Let u ∈ V be a vertex for which |H(u)| = i. If no such vertex exists in B+
r then clearly

there exists a substitute-path to every vertex u ∈ V where |H(u)| = i. Hence assume that
u exists. Recall that H(u) ⊆ V (B+

r [r, u]). Denote the vertices in H(u) by h0, h1, . . . , hi−1
such that B+

r [r, u] = B+
r [r, h0]B+

r [h0, h1] · · · B+
r [hi−2, hi−1]B+

r [hi−1, u].

▷ Claim 8. H(hj) = {h0, h1, · · · , hj−1} for every j ≤ i − 1.

Proof. From Lemma 3.2 it follows that H(hi−1) = {h0, h1, · · · , hi−2}. Now the claim follows
from Lemma 3.2 by induction over j ≤ i − 1. ◁

Since hj ∈ B+
r [r, hi−1] for j ≤ i − 1 no backwards arc with head in hi−1 can go over hj .

As hi−1 ∈ H(u) this means that there exists a relevant arc which goes over u. Fix such an
arc (t, hi−1).

▷ Claim 9. If there exists a path Pr,t in D such that

|J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≥ ⌈ i

2⌉. (4)

then there is a substitute-path to u

Proof. Assume that there exists a path Pr,t such that |J(u)∩A(Pr,t)|+ |H(u)\V (Pr,t)| ≥ ⌈ i
2 ⌉.

Let x be the first vertex on Pr,t which is also on the path B+
r [hi−1, t]. If x = u then

the path Pr,t[r, u] will be a substitute-path to u as |J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≤
|J(u) ∩ A(Pr,t[r, u])| + |H(u) \ V (Pr,t[r, u])| by Claim 6. Therefore, we may assume that
x ̸= u. We will consider the two cases: x ∈ B+

r [hi−1, u] or x ∈ B+
r [u, t]. By claim 6 it holds

that

|J(u) ∩ A(Pr,t[r, x])| + |H(u) \ V (Pr,t[r, x])| (5)

≥ |J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≥ ⌈ i

2⌉.

If x ∈ B+
r [hi−1, u] then for the walk W ′

r,u = Pr,t[r, x]B+
r [x, u] it clearly holds that |J(u) ∩

A(Pr,t[r, x])| + |H(u) \ V (Pr,t[r, x])| = |J(u) ∩ A(W ′
r,u)| + |H(u) \ V (W ′

r,u)|. For the path
P ′

r,u = Pr,t[r, x]B+
r [x, u] we therefore have by Claim 7 that |J(u)∩A(P ′

r,u)|+|H(u)\V (P ′
r,u)| ≥

|J(u)∩A(Pr,t[r, x])|+|H(v)\V (Pr,t[r, x])|. From (5) it therefore follows that |J(u)∩A(P ′
r,u)|+

|H(u) \ V (P ′
r,u)| ≥ ⌈ i

2 ⌉. Hence P ′
r,u is a substitute-path to u. Now consider the second case

where x ∈ B+
r [u, t]. Consider the (x, u)-walk P ′′

x,u = B+
r [x, t](t, hi−1)B+

r [hi−1, u] and observe
that J(u) ∩ A(P ′′

x,u) = (t, hi−1) and H(u) ∩ V (P ′′
x,u) = hi−1. It means that P ′′

x,u is disjoint
from H(u) − {hi−1}. As x is the first vertex on Pr,t which is on B+

r [hi−1, t] and x ∈ B+
r [u, t]

it holds that hi−1 ̸∈ Pr,t[r, x] and Pr,t[r, x] and P ′′
x,u are disjoint except in x. Now consider

the P ∗
r,u = Pr,t[r, x]P ′′

x,u and observe that

|J(u) ∩ A(P ∗
r,u)| + |H(u) \ V (P ∗

r,u)|
= |J(v) ∩ A(Pr,t[r, x])| + 1 + |H(v) \ V (Pr,t[r, x])| − 1
= |J(v) ∩ A(Pr,t[r, x])| + |H(v) \ V (Pr,t[r, x])|

From (5) it therefore follows that |J(u) ∩ A(P ∗
r,u)| + |H(u) \ V (P ∗

r,u)| ≥ ⌈ i
2 ⌉. Thus P ∗

r,u is a
substitute-path to u. ◁

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:9

Now we prove that there always exists a path such that (4) holds. Recall by the definition
of a relevant arc, that the relevant arc (t, hi−1) goes over t and there exists a path Pr,t in D

such that hi−1 ̸∈ Pr,t. If |H(u) \ V (Pr,t)| = i then (4) clearly holds. Hence we may assume
that there exists a vertex hj ∈ H(u) ∩ V (Pr,t). Now let hl be the last such vertex on the
path Pr,t, that is, no vertex hj ∈ H(u) − {hl} is on the path Pr,t[hl, t]. Observe that since
Pr,t does not contain hi−1 we have

l ≤ i − 2 (6)

By Claim 8, |H(hj)| = j for every j ≤ i − 1. By the induction assumption it therefore
follows that there is a substitute-path Sr,hj to every hj ∈ H(u).

▷ Claim 10. For every substitute-path to hl, Sr,hl
, either there exists a vertex hj ∈ Sr,hl

such that j > l or (4) holds.

Proof. Assume that there exists a substitute-path Sr,hl
to hl such that there is no vertex

hj ∈ Sr,hl
for j > l. Observe that since Sr,hl

is a substitute-path it holds that |J(hl) ∩
A(Sr,hl

)| + |H(hl) \ V (Sr,hl
)| ≥ ⌈ l

2 ⌉. Now consider the walk W ′
r,t = Sr,hl

Pr,t[hl, t]. The path
Sr,hl

does not contain any heads hj ∈ H(u) for j > l and Pr,t[hl, t] does not contain any
heads hj ∈ H(u) for j ̸= l. Hence we can deduce that:

|J(u) ∩ A(W ′
r,t)| + |H(u) \ V (W ′

r,t)|
≥ |J(hl) ∩ A(Sr,hl

)| + |H(hl) \ V (Sr,hl
)| + |{hj |l < j < i}|

= |J(hl) ∩ A(Sr,hl
)| + |H(hl) \ V (Sr,hl

)| + i − l − 1

≥ ⌈ l

2⌉ + i − l − 1

From this and Claim 7 we have the following inequality for the path P ′
r,t = Sr,hl

Pr,t[hl, t].

|J(u) ∩ A(P ′
r,t)| + |H(u) \ V (P ′

r,t)| ≥ ⌈ l

2⌉ + i − l − 1 (7)

From (6) it follows that l ≤ i − 2 and since l ≥ 0 it also holds that i ≥ 2. These
observations together with (7) give us the following inequality.

|J(u) ∩ A(P ′
r,t)| + |H(u) \ V (P ′

r,t)| ≥ ⌈ l

2⌉ + i − l − 1 ≥ ⌈ i

2⌉

It means that P ′
r,t is a path making (4) true. Hence if (4) does not hold we may assume that

for every substitute-path Sr,hl
to hl there exists a j > l such that hj ∈ Sr,hl

. ◁

Let Sr,hj
be a substitute-path to hj ∈ H(u). If there exists a vertex hp ∈ Sr,hj

such that
p > j we will call the first vertex hp with p > j on the path Sr,hj

the first exceeding head.
Recall that we are proving that a path exists such that (4) holds. Assume for contradiction
that no such path exists. Thus by Claim 10 it follows that for every substitute-path Sr,hl

to hl there is a vertex hj ∈ Sr,hl
for j > l, that is, every substitute-path Sr,hl

will contain
a first exceeding head hj such that j > l. Now let k ≤ l be the smallest integer such
that for every substitute-path Sr,hk

the first exceeding head hj has j > l. Observe that l

fulfills this property and therefore k exists. Let S′
r,hk

be a substitute-path to hk and hj

the first exceeding head on this path. Observe that S′
r,hk

[r, hj] is disjoint from the heads
{hk, hk+1, · · · , hj−1}. Therefore we have:

|J(hj) ∩ A(S′
r,hk

[r, hj])| + |H(hj) \ V (S′
r,hk

[r, hj])|
≥ |J(hk) ∩ A(S′

r,hk
)| + |H(hk) \ V (S′

r,hk
)| + |{hp|k ≤ p < j}|

≥ |J(hk) ∩ A(S′
r,hk

)| + |H(hk) \ V (S′
r,hk

)| + j − k (8)

ESA 2021

11:10 k-Distinct Branchings Admits a Polynomial Kernel

As S′
r,hk

is a substitute-path to hk and |H(hk)| = k we have that |J(hk)∩A(S′
r,hk

)|+ |H(hk)\
V (S′

r,hk
)| ≥ ⌈ k

2 ⌉. When we combine this with (8) we obtain the following inequality:

|J(hj) ∩ A(S′
r,hk

[r, hj])| + |H(hj) \ V (S′
r,hk

[r, hj])| ≥ ⌈k

2 ⌉ + j − k (9)

Now consider the (r, t)-path P ∗ = S′
r,hk

[r, hj]B+
r [hj , t]. Recall that the path B+

r [hj , t] is
disjoint from every head hp for p < j and S′

r,hk
[r, hj]. It therefore follow from (9) that.

|J(u) ∩ A(P ∗)| + |H(u) \ V (P ∗)|
≥ |J(hj) ∩ A(S′

r,hk
[r, hj])| + |H(hj) \ V (S′

r,hk
[r, hj])|

≥ ⌈k

2 ⌉ + j − k (10)

From (10) and the fact that l + 1 ≤ j we obtain the following inequality.

|J(u) ∩ A(P ∗)| + |H(u) \ V (P ∗)| ≥ l + 1 − ⌊k

2 ⌋ (11)

From the assumption that (4) does not hold it follows that |J(u) ∩ A(P ∗[r, t])| + |H(u) \
V (P ∗[r, t])| < ⌈ i

2 ⌉. Therefore, we have the following observation from (11).

▶ Observation 11. l + 1 − ⌊ k
2 ⌋ < ⌈ i

2 ⌉.

Recall that the path B+
r [r, h0] is a substitute-path to h0 and as every substitute-path to

hk has a first exceeding head hp such that p > l it must hold that k > 0. Furthermore, recall
that k was chosen as the smallest integer such that the first exceeding head hp on every
substitute-path to hk had p > l. Hence there exist a substitute-path S∗

r,hk−1
such that either

there is no exceeding head or for the first exceeding head hp it holds that k − 1 < p ≤ l. If
there is no exceeding head let p = k − 1 and otherwise let hp be the first exceeding head.
Consider S∗

r,hk−1
[r, hp]. Observe by Claim 6 and the fact that S∗

r,hk−1
is a substitute-path

that

|J(hk−1) ∩ A(S∗
r,hk−1

[r, hp])| + |H(hk−1) \ V (S∗
r,hk−1

[r, hp])| ≥ ⌈k − 1
2 ⌉

Now consider the (r, t)-walk W ′
r,t = S∗

r,hk−1
[r, hp]B+

r [hp, hl]Pr,t[hl, t]. Note that S∗
r,hk−1

[r, hp]
is disjoint from every head hq for q > p, B+

r [hp, hl] is disjoint from every head hq for q < p

and q > l, and furthermore Pr,t[hl, t] is disjoint from H(u) − {hl}. Hence:

|J(u) ∩ A(W ′)| + |H(u) \ V (W ′)| (12)
= |J(hk−1) ∩ A(S∗

r,hk−1
[r, hp])| + |H(hk−1) \ V ([S∗

r,hk−1
[r, hp])| + |{hq|l < q < i}|

= |J(hk−1) ∩ A(S∗
r,hk−1

[r, hp])| + |H(hk−1) \ V (S∗
r,hk−1

[r, hp])| + i − 1 − l

Consider the (r, t)-path P ′ = S∗
r,hk−1

[r, hp]B+
r [hp, hl]Pr,t[hl, t]. Then from (12), claim 7 and

the fact that S∗
r,hk−1

is a substitute-path to hk−1 we obtain the following:

|J(u) ∩ A(P ′])| + |H(u) \ V (P ′)|
≥ |J(u) ∩ A(W ′)| + |H(u) \ V (W ′)|

≥ ⌈k − 1
2 ⌉ + i − 1 − l (13)

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:11

By the assumption that (4) does not hold we have |J(u) ∩ A(P ′)| + |H(u) \ V (P ′)| < ⌈ i
2 ⌉.

This combined with (13) gives us:

⌈ i

2⌉ > ⌈k − 1
2 ⌉ + i − 1 − l ⇔ l + 1 − ⌈k − 1

2 ⌉ > ⌊ i

2⌋ (14)

Combining Observation 11 with (14) and the fact that ⌈ k−1
2 ⌉ = ⌊ k

2 ⌋ we obtain the following
inequality:

⌊ i

2⌋ < l + 1 − ⌊k

2 ⌋ < ⌈ i

2⌉ (15)

Now observe that l + 1 − ⌊ k
2 ⌋ is an integer and from (15) we therefore have a contradiction.

Hence either the path P ∗ or the path P ′ makes (4) true. It means that there exists a path
making (4) true. Thus by Claim 9 there exists a substitute-path to u.

Recall that u was an arbitrary fixed vertex x ∈ V for which |H(x)| = i. Thus we can
conclude that for every vertex x ∈ V where |H(x)| = i there exists a substitute path to x.
This concludes the induction step over for every vertex x ∈ V where |H(x)| = i.Thus we
can conclude that for every vertex x ∈ V where |H(x)| = i for i ∈ [0, |V |] there exists a
substitute-path. As |H(x)| ≤ n for every x ∈ V , the proof is complete. ◀

3.2 Finding Desired Paths in Polynomial Time
We now obtain the following lemma about finding a substitute-path to a vertex v ∈ V .

▶ Lemma 3.4 (⋆). There exists a polynomial time algorithm which given an out-branching
B+

r in D = (V, A) and a vertex v ∈ V finds a substitute-path to v.

▶ Lemma 3.5 (⋆). For every vertex u ∈ V (B+
r) there exists a path Pr,u from r to u such that

|R(u) ∩ A(Pr,u)| + |H(R(u)) \ V (Pr,u)| ≥
⌈

|H(R(u))|
2

⌉
(16)

and it can be found in polynomial time

▶ Lemma 3.6 (⋆). For every vertex v ∈ V (B+
r) let Rv ∈ {J(v), R(v)}. If there exists a path

Pr,v such that

|Rv ∩ A(Pr,v)| + |H(Rv) \ V (Pr,v)| ≥
⌈

|H(Rv)|
2

⌉
(17)

then there exists an out-branching B̂+
r such that |Rv ∩ A(B̂+

r)| ≥
⌈

|H(Rv)|
2

⌉
, and B̂+

r can be
found in polynomial time.

4 Backward arcs, Crossing Arcs and Substitute-paths with respect to
In-branchings

For in-branchings we have similar definitions and results as we have for out-branchings. Given
a digraph D = (V, A) which contains a fixed in-branching B−

r we can create a corresponding
digraph D′ = (V, A′) and an out-branching B+

r by creating an arc (v, u) in A′ for each
arc (u, v) ∈ A. That is, the direction of the arcs in A are flipped. Observe that the in-
branching B−

r in D will correspond to a fixed out-branching B+
r in D′. Due to this one-to-one

correspondence all the results given in Section 3 regarding a fixed out-branching will be
turned into equivalent statements about a fixed in-branching.

ESA 2021

11:12 k-Distinct Branchings Admits a Polynomial Kernel

5 A kernel for Rooted k-Distinct Branchings

In this section we prove the existence of an O(k2)-vertex kernel for the problem Rooted
k-Distinct Branchings. The proof of the next lemma will give the desired Theorem 1.1.

▶ Lemma 5.1. Given an instance (D = (V, A), k, s, t) of R-k-DB; In polynomial time we
can either find a kernel (D′, k, s′, t′) such that |V (D′)| < 16k2 + 5k = O(k2) or determine
the answer to the instance.

Proof. In linear time it can be determined if an out-branching B+
s and an in-branching B−

t

exist. If one of these do not exist then clearly (D, k, s, t) is a no-instance. Hence assume
that both exist. At any time during the proof let C+, R+, and I+, respectively, denote the
crossing, relevant, and irrelevant arcs wrt.. B+

s . Similarly, let C−, R−, and I−, respectively,
denote the crossing, relevant, and irrelevant arcs wrt.. B−

t . Moreover, at all times during
the proof let F = A(D) \

(
A(B+

s) ∪ A(B−
t)

)
be defined as the free arcs and at all times let

E+ = A(B+
s) \ A(B−

t), E− = A(B−
t) \ A(B+

s) denote the exclusive set, respectively, for
B+

s and B−
t . Note that |E+| = |E−|. Now we execute the following procedure.

▶ Procedure 5.1. Change B+
s and B−

t as follows until no longer possible or |E+| ≥ k.
1. If there exists an arc (u, v) ∈ F ∩C+ such that (PB+

s
(v), v) ̸∈ E+, then remove (PB+

s
(v), v)

from B+
s and insert the arc (u, v) into B+

s .
2. If there exists an arc (u, v) ∈ F ∩C− such that (u, PB−

t
(u)) ̸∈ E−, then remove (u, PB−

t
(u))

from B−
t and insert the arc (u, v) in to B−

t .

▶ Lemma 5.2 (⋆). Procedure 5.1 can be executed in polynomial time.

If we have not found a solution when Procedure 5.1 terminates, then we have

|E+| = |E−| < k. (18)

Since |E+| < k and we can not change B+
s further in Procedure 5.1 we have that for every

crossing arc (u, v) ∈ C+ either (u, v) ∈ A(B−
t) or (pB+

s
(v), v) ∈ E+. As C+ is disjoint from

B+
s it follows that every arc (u, v) ∈ A(B−

t) ∩ C+ is contained in E−. Hence there are less
than k such arcs. For the arcs (u, v) ∈ C+ where (pB+

s
(v), v) ∈ E+ there is less than k

different heads as |E+| < k. Therefore, there must be less than 2k different heads for the
crossing arcs of B+

s , that is, |H(C+)| < 2k. Similarly, we have that there are less than 2k

different tails of C−, that is, |T (C−)| < 2k.

▶ Observation 12. |H(C+)| < 2k and |T (C−)| < 2k

A vertex v ∈ V is a Type 1 vertex if it is the tail of an arc (v, u) ∈ R− ∪ C− and a Type
2 vertex if it is the head of an arc (u, v) ∈ R+ ∪ C+ Note that a vertex v ∈ V can be both a
Type 1 and a Type 2 vertex. Now we have the following reduction rule.

▶ Reduction Rule 5.1. As long as there exists an arc (u, v) ∈ A(B+
s) ∩ A(B−

t) such that u

is not a Type 1 vertex and v is not a Type 2 vertex contract (u, v) into one vertex.

▶ Lemma 5.3 (⋆). Reduction Rule 5.1 is safe and can be applied in polynomial time.

Let DR, B+
s and B−

t be the digraph and branchings that we have obtained after performing
Reduction 5.1. We now have the following lemma.

▶ Lemma 5.4. If |V (DR)| ≥ 16k2 + 5k then a solution exists.

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:13

Proof. Assume |V (DR)| ≥ 16k2 + 5k. As B+
s is an out-branching we have |A(B+

s)| =
|V (DR)| − 1. For every arc (u, v) ∈ A(B+

s) it holds that either (u, v) ̸∈ A(B−
t), u is a Type 1

vertex or v is a Type 2 vertex. By (18) we see that |A(B+
s) \ A(B−

t)| < k. It means that
|A(B+

s) ∩ A(B−
t)| ≥ |V (DR)| − k ≥ 2 · (8k2 + 2k). For every arc (u, v) ∈ A(B+

s) ∩ A(B−
t) we

have that u is a Type 1 vertex or v is a Type 2 vertex. Hence we can conclude that either
there is 8k2 + 2k vertices of Type 1 or 8k2 + 2k vertices of Type 2 (or both). In the following
we will only explicitly give the proof that a solution exists if there are at least 8k2 +2k vertices
of Type 2 as the proof for a solution exists if there are at least 8k2 + 2k vertices of Type
1 will follow from the symmetry between B+

s , C+, R+, I+ and B−
t , C−, R−, I−. Assume

therefore that there are at least 8k2 + 2k vertices of Type 2. Recall that it means, there are
at least 8k2 + 2k different vertices which are heads of the arcs R+ ∪ C+. By Observation 12
there are less than 2k vertices which are heads of C+. Consequently, the number of vertices
which are heads of R+ must be larger than 8k2. Clearly, |H(R+)| = | ∪v∈V H(J(v))| and
we therefore have 8k2 ≤ |H(R+)| = | ∪v∈V H(J(v))|. By Lemma 3.3 we have that for every
v ∈ V it holds that H(J(v)) ⊆ H(J(u)) for some arc (v, u) ∈ C+. We therefore have that:
|

⋃
(v,u)∈C+

H(J(u))| = |
⋃

v∈V

H(J(v))| ≥ 8k2. By Observation 12 there are at most 2k heads

of the arcs in C+ so there must exist at least one arc (u, v) ∈ C+ such that |H(J(v))| ≥ 4k.
Fix (u, v) to be such an arc. By Theorem 3.1 there exist a substitute-path S[s, v] in D such
that |J(v) ∩ A(S[s, v])| + |H(J(v)) \ A(S[s, v])| ≥

⌈
|H(J(v))|

2

⌉
and therefore by from Lemma

3.6 there exists an out-branching B̂+
s such that |J(v) ∩ A(B̂+

s)| ≥
⌈

|H(J(v))|
2

⌉
≥ 2k. Observe

that B+
s is disjoint from J(v) and therefore if |J(v) ∩ A(B−

t)| ≥ k then B+
s and B−

t would
have been a solution. If |J(v) ∩ A(B−

t)| < k then |A(B̂+
s) \ A(B−

t)| ≥ k and B̂+
s and B−

t is a
solution. Hence we conclude that if the number of different heads of R+ is larger than 4k2 a
solution exists. ◀

From Lemma 5.4 we can conclude that after applying Reduction Rule 5.1 it either holds
that we have a solution or |V (DR)| < 16k2 + 5k. In the first case we have a solution in the
latter we have a kernel of size O(k2). It therefore only remains to argue that the solution or
the kernel can be found in polynomial time. For an instance (D = (V, A), k, s, t) of R-k-DB
it is possible in polynomial time to decide if an out-branching B+

s and B−
t in D exists and

find them. By Claim 5.2, and Claim 5.3 we can execute the Procedure 5.1 and afterwards
apply Reduction Rule 5.1 in polynomial time. Furthermore, it is polynomial to decide if
the resulting digraph has at least 16k2 + 5k vertices and applying Lemma 5.4. Hence in
polynomial time we can either find a kernel with a vertex set of size less than 16k2 + 5k or
determine the answer to the instance. ◀

6 Conclusion

In this paper, we studied the problem of deciding if a digraph D = (V, A), contains an in-
and out-branching rooted at specific vertices s and t, such that the in- and out-branching are
distinct on at least k arcs. Before this paper, it was not known if the problem admitted a poly-
nomial kernel, and the best known complexity for solving the problem was 2O(k2 log2 k)nO(1).
We designed a polynomial kernel for the problem with O(k2) vertices and found an algorithm
with the complexity 2O(k log k) + nO(1). To obtain these results, we defined the concept of
substitute-paths in out- and in-branchings. This graph-theoretical concept might be useful for
obtaining other results on problems regarding in-and out-branchings. It is still open whether
there exists a kernel with O(k) vertices. We believe that using representative set approach

ESA 2021

11:14 k-Distinct Branchings Admits a Polynomial Kernel

applied for obtaining exact exponential time algorithm for finding a strongly connected
subgraph of a given digraph with minimum number of arcs [20], it seem possible to get an
algorithm for R-k-DB running in time 2O(k) + nO(1). Making this work seems an interesting
direction to pursue.

References
1 Noga Alon, Fedor V. Fomin, Gregory Gutin, Michael Krivelevich, and Saket Saurabh. Spanning

directed trees with many leaves. SIAM J. Discrete Math., 23(1):466–476, 2009. doi:10.1137/
070710494.

2 J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path problems.
J. Combin. Theory Ser. B, 51(1):1–23, 1991.

3 J. Bang-Jensen and J. Huang. Decomposing locally semicomplete digraphs into strong spanning
subdigraphs. J. Combin. Theory Ser. B, 102:701–714, 2010.

4 J. Bang-Jensen, S. Saurabh, and S. Simonsen. Parameterized algorithms for non-separating
trees and branchings in digraphs. Algorithmica, 76(1):279–296, 2016.

5 J. Bang-Jensen and S. Simonsen. Arc-disjoint paths and trees in 2-regular digraphs. Discrete
Applied Mathematics, 161(16-17):2724–2730, 2013.

6 J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. J. Graph Theory,
42(4):297–307, 2003.

7 J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph problem is fixed
parameter tractable. Discrete Appl. Math., 156:2924–2929, 2008.

8 J. Bang-Jensen and A. Yeo. Arc-disjoint spanning sub(di)graphs in digraphs. Theor. Comput.
Sci., 438:48–54, 2012.

9 K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find a pair of arc-disjoint
spanning in-arborescence and out-arborescence in a directed acyclic graph. Inform. Process.
Lett., 109(23-24):1227–1231, 2009.

10 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Transactions on Algorithms, 8(4):38, 2012. doi:10.1145/2344422.2344428.

11 Nathann Cohen, Fedor V. Fomin, Gregory Gutin, Eun Jung Kim, Saket Saurabh, and Anders
Yeo. Algorithm for finding k-vertex out-trees and its application to k-internal out-branching
problem. J. Comput. Syst. Sci., 76(7):650–662, 2010. doi:10.1016/j.jcss.2010.01.001.

12 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

13 J. Daligault, G. Gutin, E.J. Kim, and A. Yeo. FPT algorithms and kernels for the directed
k-leaf problem. J. Comput. Syst. Sci., 76:144–152, 2010.

14 Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In
STACS, volume 5, pages 251–262, 2010. doi:10.4230/LIPIcs.STACS.2010.2459.

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

16 J. Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms, pages 91–96. Academic
Press, 1973.

17 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
18 Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Stéphan Thomassé. A linear vertex

kernel for maximum internal spanning tree. J. Comput. Syst. Sci., 79(1):1–6, 2013. doi:
10.1016/j.jcss.2012.03.004.

19 Fedor V. Fomin, Fabrizio Grandoni, Daniel Lokshtanov, and Saket Saurabh. Sharp separation
and applications to exact and parameterized algorithms. Algorithmica, 63(3):692–706, 2012.
doi:10.1007/s00453-011-9555-9.

https://doi.org/10.1137/070710494
https://doi.org/10.1137/070710494
https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/j.jcss.2010.01.001
https://doi.org/10.4230/LIPIcs.STACS.2010.2459
https://doi.org/10.1016/j.jcss.2012.03.004
https://doi.org/10.1016/j.jcss.2012.03.004
https://doi.org/10.1007/s00453-011-9555-9

J. Bang-Jensen, K. V. Klinkby, and S. Saurabh 11:15

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016.

21 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

22 Gregory Z. Gutin, Felix Reidl, and Magnus Wahlström. k-distinct in- and out-branchings in
digraphs. J. Comput. Syst. Sci., 95:86–97, 2018.

23 J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with many leaves.
Algorithmica, 61(4):882–897, 2011.

24 R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford,
2006.

ESA 2021

	1 Introduction
	2 Notation and Preliminaries
	3 Backward Arcs, Crossing Arcs and Substitute-paths
	3.1 Existence of Substitute-path for the Out-branching {B_r^+}
	3.2 Finding Desired Paths in Polynomial Time

	4 Backward arcs, Crossing Arcs and Substitute-paths with respect to In-branchings
	5 A kernel for Rooted k-Distinct Branchings
	6 Conclusion

