
An Instance-Optimal Algorithm for Bichromatic
Rectangular Visibility
Jean Cardinal #

Université libre de Bruxelles (ULB), Brussels, Belgium

Justin Dallant #

Université libre de Bruxelles (ULB), Brussels, Belgium

John Iacono #

Université libre de Bruxelles (ULB), Brussels, Belgium

Abstract
Afshani, Barbay and Chan (2017) introduced the notion of instance-optimal algorithm in the order-
oblivious setting. An algorithm A is instance-optimal in the order-oblivious setting for a certain
class of algorithms A if the following hold:

A takes as input a sequence of objects from some domain;
for any instance σ and any algorithm A′ ∈ A, the runtime of A on σ is at most a constant factor
removed from the runtime of A′ on the worst possible permutation of σ.

If we identify permutations of a sequence as representing the same instance, this essentially states
that A is optimal on every possible input (and not only in the worst case).

We design instance-optimal algorithms for the problem of reporting, given a bichromatic set of
points in the plane S, all pairs consisting of points of different color which span an empty axis-aligned
rectangle (or reporting all points which appear in such a pair). This problem has applications for
training-set reduction in nearest-neighbour classifiers. It is also related to the problem consisting of
finding the decision boundaries of a euclidean nearest-neighbour classifier, for which Bremner et al.
(2005) gave an optimal output-sensitive algorithm.

By showing the existence of an instance-optimal algorithm in the order-oblivious setting for this
problem we push the methods of Afshani et al. closer to their limits by adapting and extending them
to a setting which exhibits highly non-local features. Previous problems for which instance-optimal
algorithms were proven to exist were based solely on local relationships between points in a set.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases computational geometry, instance-optimality, colored point sets, empty
rectangles, visibility

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.24

Related Version Full Version: https://arxiv.org/abs/2106.05638 [12]

Funding Justin Dallant: This work was supported by the French Community of Belgium via the
funding of a FRIA grant.
John Iacono: Supported by the Fonds de la Recherche Scientifique-FNRS under Grant
no MISU F 6001 1.

1 Introduction

In the theoretical study of algorithms one often quantifies the performance of an algorithm
in terms of the worst case or average running time over a distribution of inputs of a given
size. Sometimes, more precise statements can be made about the speed of an algorithm on
certain instances by expressing the running time in terms of some parameter depending on
the input. One class of such algorithms are the so-called output-sensitive algorithms, where
the parameter is the size of the output. In computational geometry, a classical example is

© Jean Cardinal, Justin Dallant, and John Iacono;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jcardin@ulb.ac.be
https://orcid.org/0000-0002-2312-0967
mailto:justin.dallant@ulb.be
mailto:john@johniacono.com
https://orcid.org/0000-0001-8885-8172
https://doi.org/10.4230/LIPIcs.ESA.2021.24
https://arxiv.org/abs/2106.05638
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

computing the convex hull of a set of n points in the plane in O(n log h) time, where h is
the size of the convex hull [15, 5]. More recently, Afshani et. al. [1] introduced a specific
notion of instance optimality in the order-oblivious setting and designed algorithms with this
property for different problems on point sets. Roughly speaking, an algorithm is instance
optimal in a certain class of algorithms A if on any input sequence S, its performance on
S is at most a constant factor removed from the best performance of any algorithm in
A on S. In the order-oblivious setting, performance is defined as the worst-case runtime
over all permutations of the input sequence (the motivation behind this will be made clear
below). A common characteristic of most problems solved in [1] is that they are based
around local relations between points in S, in the sense that the relation between two points
p, q ∈ S depends solely on their coordinates and not on those of any other point in S. This
is important because it allows one to decompose certain queries into independent queries on
a partition of S. In this paper we push these methods closer to their limits by adapting and
applying them to a problem which does not fit in this framework.

The studied problem. Here we consider the following problem: given a set S of points n in
the plane with distinct x and y coordinates, each colored red or blue, report the red/blue
pairs of points such that the rectangles they span contain no point of S in their interior. This
again has applications to machine learning and more specifically nearest-neighbour classifiers.
Indeed, by solving this problem and discarding all points which do not not appear in such a
pair, we obtain a (possibly much smaller) set of points where for any point y in the plane, the
color of its nearest neighbour is the same as in the original set of points for the L1 distance
(as pointed out in [10], where this problem was perhaps first studied). This remains true
even when a priori unknown (and possibly non-linear) scalings might be applied to the x

and y axis after this preprocessing step. In fact, the resulting set of points consists of exactly
those necessary for this to hold, so this constitutes an optimal reduction of the training set
in that sense. Note that this problem does not fit in the general framework of [1], as whether
two point span an empty rectangle depends on the position of all other points.

Related works. Pairs of points spanning empty rectangles and the corresponding graphs
have been studied at numerous occasions in the past, under various names. They are called
rectangular influence graphs in [10], which discusses applications to data clustering and
classification. In [9] a similar relation is called direct dominance, and a worst-case optimal
algorithm to report all pairs of related points is given. This algorithm runs in O(n log n + h)
time, where h is the size of the output. A straightforward adaptation yields an algorithm
with the same running time for the bichromatic problem studied here. In [18] this relation is
called rectangular visibility and a different algorithm with the same running time is given as
well as algorithms for the dynamic query setting. The expected size of a largest independent
set in this graph is studied in [7] (where they call such graphs Delaunay graphs with respect
to rectangles). Generalizations and variations of this type of relation between points have
also been widely studied [17, 16, 4, 2, 11, 14, 13, 19, 8]. Another problem of note which is
closely related to the one we study here is the following: given a set S of n points in the
plane, each colored red or blue, compute the subset of edges of the Voronoï diagram of S

which are adjacent to both a site corresponding to a blue point and a site corresponding to a
red point. This problem has some relevance to machine learning as we can equivalently state
it as finding the boundaries of a nearest-neighbour classifier with two classes in the plane. A
third formulation is finding the pairs of red and blue points such that there is an empty disk
whose boundary passes through both. In [3], Bremner et. al. show that this problem can

J. Cardinal, J. Dallant, and J. Iacono 24:3

be solved in output-sensitive optimal O(n log h) time, where h is the size of the output. It
is an interesting open problem to find instance-optimal algorithms for this problem in the
order-oblivious setting (or prove that no such algorithm exists).

Paper organization. In Section 2 we motivate and state more precisely the notion of
instance-optimality we work with in this paper. In Section 3 we define the problem formally
and give an instance lower bound in the order-oblivious model by adapting the adversarial
argument of [1]. The key new ingredients are a new definition of safety and a way to deal
with the fact that here the adversary cannot necessarily change the expected output of the
algorithm by moving a single point inside a so-called non-safe region. In Section 4 we give
an algorithm and prove that its runtime matches the lower bound. The main observation
which makes this work is that while the algorithms in [1] require the safety queries to be
decomposable (which they are not here), we can afford to do some preprocessing to make
them behave as if they were decomposable, as long as the amount of work done stays within a
constant of the lower bound. In section 5 we mention that when competing against algorithms
which can do linear queries, instance-optimality in the order-oblivious setting is impossible.
Some details and proofs have been left out of this version and can be found in the full
paper [12].

2 Instance optimality in the order-oblivious setting and model of
computation

Ideally, we would like to consider a very strong notion of optimality, where an algorithm
is optimal if on every instance its runtime is at most a constant factor removed from the
algorithm with the smallest runtime on that particular instance. There is an obvious flaw
with this definition, as for every instance we can have an algorithm “specialized” for that
instance, which simply checks if the input is the one it is specialized for then returns the
expected output without any further computation when it is the case (and spends however
much time it needs to compute the correct output otherwise). For problems which are
not solvable in linear time in the worst-case, this prohibits the existence of such optimal
algorithms. One way to get around this issue in some cases and get a meaningful notion of
instance-optimality is the following, taken from [1].

▶ Definition 1. Consider a problem where the input consists of a sequence of n elements from
a domain D. Consider a class A of algorithms. A correct algorithm refers to an algorithm
that outputs a correct answer for every possible sequence of elements in D. For a set S of
n elements in D, let TA(S) denote the maximum running time of A on input σ over all n!
possible permutations σ of S. Let OPT(S) denote the minimum of TA′(S) over all correct
algorithms A′ ∈ A. If A ∈ A is a correct algorithm such that TA(S) ≤ O(1) · OPT(S) for
every set S, then we say A is instance-optimal in the order-oblivious setting.

By measuring the performance of an algorithm on an instance as the maximum runtime
over all permutations of the instance elements, the algorithm can no longer take advantage
of the order in which the input elements are presented. In particular, simply checking if the
input is a specific sequence is no longer a good strategy. Here, the domain D consists of all
points in the plane, colored red or blue. An instance is a sequence of points, no two sharing the
same x or y coordinate. However, we really want to consider this sequence as a set of points,
as the order in which the points are presented does not change the instance conceptually.
Thus, it makes sense for us to consider a performance metric for which algorithms cannot

ESA 2021

24:4 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

take advantage of this order. For the class of algorithms A, we will consider algorithms
in a restricted real RAM model where the input can only be accessed through comparison
queries. That is, the algorithms can compare the x or y coordinates of two points but not,
for example, evaluate arbitrary arithmetic expressions on these coordinates. We refer to
such algorithms as comparison-based algorithms. The lower bound works even for a stronger
model of computation, comparison-based decision trees (assuming at least a unit cost for
every point returned in the output). We could also allow the comparison of the x coordinate
of a point with the y coordinate of another without changing any of the results of this paper.

3 Lower-bound for comparison-based algorithms in the order-oblivious
setting

Some basic notations and definitions

Throughout this section we consider a set S of n red and blue points in the plane. We
assume that S is non-degenerate, in the sense that no two points in S share the same x or y

coordinate (in particular, all points are distinct). If p is a point, we will denote its x and y

coordinates as x(p) and y(p) respectively and its color as c(p).

▶ Definition 2. A point p dominates q ̸= p if x(p) ≥ x(q) and y(p) ≥ y(q). A point is
maximal (resp. minimal) in S if is dominated by (resp. dominates) no point in S.

▶ Definition 3 (Visible and participating points). Let p, q be two points in S. We say that q is
visible from p in S (or that p sees q in S) if the axis-aligned box spanned by p and q contains
no point of S in its interior. We say that p ∈ S participates in S if it is visible from a point
in S of the opposite color. We will omit the set S when it is clear from context.

The problems we want to solve can thus be restated as follows.

▶ Problem 4 (Reporting participating points). Report all points which participate in S.

▶ Problem 5 (Reporting red-blue pairs of visible points). Report all red-blue pairs of points
(p, q) such that p and q see each other in S.

The following definitions will also be useful for us.

▶ Definition 6. We call the set of minimal points of S the NE-minimal-set of S (for “North-
East-minimal set”). The NW-minimal-set, SE-minimal-set and SW-minimal-set of S are
defined symmetrically (see Figure 1). In particular, the SE-minimal set of S is the set of
maximal points in S.

▶ Definition 7. Let B be an axis-aligned box. We denote the x coordinate of the right
boundary (resp. left boundary) of B as xmax(B) (resp. xmin(B)). We denote the y coordinate
of the top boundary (resp. bottom boundary) of B as ymax(B) (resp. ymin(B)).

The cross of B, denoted as cross(B) is the set of points p in the plane such that
xmin(B) ≤ x(p) ≤ xmax(B) or ymin(B) ≤ y(p) ≤ ymax(B).

The quadrants of B are the connected components of R2 \ cross(B). We call the four
components the NE-quadrant, NW-quadrant, SE-quadrant and SW-quadrant, denoted as
NE(B), NW(B), SE(B) and SW(B) respectively (see Figure 2).

All boxes we consider are axis-aligned boxes in the plane. For ease of exposition, we
assume that all boxes we consider have no point of S on the boundaries of their four quadrants.

J. Cardinal, J. Dallant, and J. Iacono 24:5

Figure 1 A set of points S and the four minimal-sets of S. No point in the shaded regions can
appear on the corresponding minimal-sets.

Figure 2 The four quadrants of an axis-
aligned box B. The shaded region corres-
ponds to cross(B). Figure 3 A red-safe box B.

Lower Bound

We prove an entropy-like lower bound on the number of comparisons which have to be done
to solve the problems of reporting participating points in the order-oblivious setting. The
proof and terminology are largely inspired from the lower bound proofs in [1] but some
additional arguments, which we underline later, are required. We need a few definitions in
order to state our lower bound.

▶ Definition 8. An axis-aligned box B is red-cross-safe (resp. blue-cross-safe) for S if
all points in S ∩ cross(B) are red (resp. blue). It is cross-safe if it is red-cross-safe or
blue-cross-safe.

It is red-safe if it is red-cross-safe and the NE-minimal (resp. NW-minimal, SE-minimal,
SW-minimal) set of S ∩NE(B) (resp. S ∩NW(B), S ∩SE(B), S ∩SW(B)) is red (see Figure
3). We define blue-safe boxes similarly. A box is safe if it is red-safe or blue-safe.

A subset S′ ∈ S has one of these properties if it can be enclosed by a box with the property.

Notice that if a subset S′ ∈ S is safe, then no point in in S′ participates in S. Thus, in
an intuitive sense, a partition of non-participating points into safe subsets can be seen as a
certificate for the fact that these points do not participate. The minimal entropy of such a
partition is then the minimal amount of information required to encode such a certificate.

ESA 2021

24:6 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

▶ Definition 9. A partition Π of S is respectful if every member Sk ∈ Π is a singleton
or a safe subset of S. The entropy of a partition Π is H(Π) :=

∑
Sk∈Π

|Sk|
n log n

|Sk| . The
structural entropy H(S) of S is the minimum of H(Π) over all respectful partitions Π of S.

We can now state our lower bound:

▶ Theorem 10. For the problem of reporting participating points in the order-oblivious
comparison-based model, OPT(S) ∈ Ω(n(H(S) + 1)). Consequently, for reporting red-blue
pairs of visible points, OPT(S) ∈ Ω(n(H(S) + 1) + h), where h is the size of the output.

The proof is similar to what can be found in [1]. In their case however, if a point can be moved
anywhere inside a non-safe box then it can be moved in a way that changes the expected
output of the algorithm. In our case, we can do something similar but sometimes need to
move multiple points to affect the expected output (but a constant number are enough). We
use a simple argument about the maximum number of chips which can be placed on a tree
in a constrained way to show that this has no impact on the lower bound. The full proof,
which is too long for this version of the paper, can be found in the full paper [12]. From this
lower bound one can also deduce that the existence of an instance-optimal algorithm in the
order-oblivious setting for reporting participating points implies the existence of such an
algorithm for reporting red-blue pairs of visible points (using known results about worst-case
optimal algorithms). Thus, we will focus on the former problem from now on.

4 Instance optimal comparison-based algorithm in the order-oblivious
setting

In this section we present a comparison-based algorithm for reporting participating points
with a runtime matching the lower bound we saw in the previous section (note that worst-case
optimal O(n log n + h) algorithms are easy to obtain by the method of [9]). Once again,
the main algorithm will be very similar to what is done in [1], however their results do not
directly apply here. The main difficulty in adapting their algorithm to our case is that the
relation we consider here is not decomposable. More precisely, if we know that some point p

does or does not participate in S′ and S′′, we cannot use this to decide if p participates in
S′ ∪ S′′. The bulk of the work here will thus be to preprocess the set S in order to make the
safety tests decomposable, while keeping our preprocessing time within O(n(H(S) + 1)).

4.1 The main algorithm
Before we go into detail about how to preprocess the points let us see how, if we can build the
right data structure, we can use it to report the participating points in S in O(n(H(S) + 1))
time. We will need the following definition and observations:

▶ Definition 11. Let S be a set of red and blue points. A subset S′ ⊂ S conforms with S if
it contains all points which participate in S.

▶ Observation 12. Let S be a set of of red and blue points and let S′ be a subset which
conforms with S. Then an axis-aligned box is safe for S if and only if it is safe for S′.
Moreover, a point participates in S if and only if it participates in S′.

▶ Observation 13. If B is a safe box for S, then any sub-box of B is safe for S.

▶ Observation 14. Let p be a point in S and let B be some axis-aligned box bounding p. If
B is safe, then p does not interact in S.

J. Cardinal, J. Dallant, and J. Iacono 24:7

We have the following algorithm and theorem, adapted from [1], where δ is a constant to
be chosen later:

Algorithm 1 Reporting participating points.

Input: A point set S of size n

1 Set Q = S.
2 for j = 0, 1, . . . ⌊log(δ log n)⌋ do
3 Partition the points in Q using a kd-tree to get rj = 22j subsets Q1, . . . , Qrj

of
size at most ⌈|Q|/rj⌉, along with corresponding bounding boxes B1, . . . , Brj .

4 for i = 0, 1, . . . , rj do
5 if Bi is safe for Q then
6 Prune all points in Qi from Q.

7 Solve the reporting problem for the remaining set Q directly in O(|Q| log |Q|) time.

▶ Theorem 15. Let S be a set of n points in general position. Suppose we have preprocessed
S such that for any subset S′ ⊂ S containing all points which participate in S we can test
if an axis-aligned box is safe for S′ in O(n1−α) time, plus the cost of a constant number of
range-emptiness queries on S′.
Then Algorithm 1 can report all points which participate in S in O(n(H(S) + 1)) time.

We reiterate the proof for the sake of completeness and to underline how Observation 12 and
our additional assumptions on preprocessing factor into it:

Proof. By Observation 12 and Observation 14, we only ever prune points which do not
participate in the original set S and we never modify which points participate among those
that remain. Thus the algorithm invoked at line 6 will compute the correct output.

By assumption, testing a box for safety in Q can be done in O(n1−α) time plus the
cost of a constant number of range-emptiness queries on Q. Using a simple and ingenious
trick by T. Chan [6], we can perform r orthogonal range emptiness queries on a set of
size m in O(m log r + rO(1)) time. Thus, the rj tests of lines 3 and 4 can be done in
O(|Q| log rj + r

O(1)
j + rjn1−α) time. As rj < nδ, by taking δ small enough the r

O(1)
j + rjn1−α

term can be made sublinear. As the outer loop of the algorithm is only executed O(log(log n))
times the total contribution of these terms over the whole algorithm can also be made
sublinear and thus negligible. Line 2 can be done in O(|Q| log rj) time by the classical
recursive algorithm to compute kd-trees.

Now let nj be the number of points in Q just after iteration j. The runtime of the algorithm
is in O(

∑
j nj log rj+1). This includes the final step at line 6, as for j = ⌊log(δ log n)⌋ (i.e. after

the last iteration of the outer loop) we have O(|Q| log |Q|) ⊂ O(nj log n2δ) = O(nj log rj+1).
Let Π be a respectful partition of S and consider Sk ∈ Π. At iteration j all subsets Qi lying
entirely inside the bounding box of Sk are pruned by Observation 13. Since the bounding box
of Sk intersects at most O(√rj) cells of the kd-tree, the number of points in Sk remaining
after iteration j is min{|Sk|, O(√rj · n/rj)} = min{|Sk|, O(n/

√
rj)}. The Sk’s cover the

entire point set so by double summation we have:

ESA 2021

24:8 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

Figure 4 A cell of red points and the corresponding box B. The relevant points are indicated by
arrows. The box point is indicated by a cross.

∑
j

nj log rj+1 ≤
∑

j

∑
k

min
{

|Sk|, O
(

n/
√

22j
)}

· 2j+1

=
∑

k

∑
j

min
{

|Sk|, O
(

n/22j−1
)}

· 2j+1

∈ O

∑
k

∑
j≤log(2 log(n/|Sk|))

|Sk| · 2j +
∑

j>log(2 log(n/|Sk|))

n · 2j/22j−1


∈ O

(∑
k

|Sk|(log(n/|Sk|) + 1)
)

= O(n(H(S) + 1)). ◀

4.2 Cross-safety tree
In order to solve our problem instance-optimally (in the order-oblivious comparison-based
model), we want to design a data-structure which allows us to quickly test if a given axis
aligned box B is safe for S. To make the presentation clearer, we focus on testing if B

is red-cross-safe and the NE-minimal-set of NE(B) ∩ S is red. This can then be repeated
symmetrically for NW(B), SE(B) and SW(B) to test if B is red-safe (and similarly for testing
if B is blue-safe). We will see how to build and query the following data structure:

▶ Definition 16. A cross-safety tree TS on S is a recursive partitioning on the plane similar
to a kd-tree where we stop subdividing the points once we have reached a cross-safe subset of
points. The root of TS corresponds to S. If S is not cross-safe, we split the points around
a vertical line L such that the two open halfplanes defined by L partition S into two sets
S1 and S2 of size at most ⌈|S|/2⌉. The children of the root will then correspond to S1 and
S2. For every newly created node we repeat the procedure, partitioning the set of points by
median x coordinates at even levels of the tree and median y coordinates at odd levels, until
the points contained are a cross-safe subset of S.

The cell of a point p, denoted as Cp is the the subset of points contained in the same leaf
as p. A cell of TS is red (resp. blue) if the points it contains are red (resp. blue).

The box of a point p, denoted as Bp is the smallest axis-aligned box containing all points
in Cp (slightly extended to enforce our assumption of only considering boxes for which there
are no points on the boundary of their four quadrants). A box of TS is red (resp. blue) if the
points it contains are red (resp. blue).

The box-point of p is the top-right point of the box of p, and has the same color as p.
A point is relevant if it has the minimum x or y coordinate among all points in its box

(or equivalently, in its cell).
(See Figure 4 for an illustration of these definitions.)
Each node u in the tree stores:
The set of point it contains, which we denote as Pu.

J. Cardinal, J. Dallant, and J. Iacono 24:9

The smallest axis-aligned bounding box of Pu, which we denote as Bu.
The red box-points of minimum x and y coordinates among all box-points associated with
a red point in Pu.
The subset of all relevant blue points in the minimal set of Pu, sorted by x-coordinate.

Note that if the points in a minimal set are sorted by x coordinate then they are also
sorted (in reverse order) by y coordinate.

4.3 Querying a cross-safety tree
Before we see how to build a cross-safety tree on S efficiently, let us see how we make queries
on a node u of TS . A query consists of a lower range RL = [xL, +∞] × [yL, +∞] and an
upper range RU = [−∞, xU] × [−∞, yU] such that RL ∩ RU ̸= ∅ and neither the boundaries
of RL nor RU intersect any blue box of TS . It returns:

rxu, the minimum x-coordinate of any red box-points associated with a red point in
Pu ∩ RL (set to +∞ if there are no red points in Pu ∩ RL).
ryu, the minimum y-coordinate of any red box-points associated with a red point in
Pu ∩ RL (set to +∞ if there are no red points in Pu ∩ RL).
bxu, the minimum x-coordinate of any blue points in the minimal set of Pu ∩ RL ∩ RU

(set to +∞ if there are no blue points in the minimal set of Pu ∩ RL ∩ RU).
byu, the minimum y-coordinate of any blue points in the minimal set of Pu ∩ RL ∩ RU

(set to +∞ if there are no blue points in the minimal set of Pu ∩ RL ∩ RU).

Observe the following:

▶ Observation 17. If a horizontal or vertical line passes through a red point then it does not
intersect any blue-cross-safe box. The same applies when “red” and “blue” are swapped.

▶ Observation 18. Let B be a red-cross-safe box. Then all points in B dominate (resp. are
dominated by) the same subset of blue points in S. The same applies when “red” and “blue”
are swapped.

We will need a few additional lemmas.

▶ Lemma 19. The points corresponding to bxu and byu are relevant points of TS.

Proof. Let P = Pu ∩ RL ∩ RU , and suppose there is a blue point on the minimal set of P .
Let p be the leftmost point in P which does not dominate any red point in P . Suppose that
bxu is not equal to x(p). The only way this can happen is if p is not on the minimal set of
P , meaning that there is a blue point q which is dominated by p (as p does not dominate
any red point). In particular, q lies to the left of p. By definition of p, q thus dominates a
red point. But if q dominates a red point and p dominates q, then p dominates a red point,
which contradicts the definition of p. Thus bxu = x(p). Moreover, if p does not dominate
any red point, then no point in its box dominates a red point, as the box is blue-cross-safe.
Because the boundaries of RL and RU do not intersect any blue box, the whole box of p is
contained in P . Thus, by definition of p, it is the leftmost point in its box and it is relevant.
The same reasoning shows that byu is the y coordinate of a relevant point. ◀

▶ Lemma 20. If the bounding box Bu of points in Pu lies entirely in RL, then we can return
the necessary information in O(log n) time.

ESA 2021

24:10 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

Proof. In this case, rxu and ryu are already stored in the node, so we can return them in
constant time. By Lemma 19, the point giving bxu is the relevant blue point with minimum
x coordinate among all blue points in the minimal set of Pu ∩ RU . This is also the relevant
blue point with maximum y coordinate among all blue points in the minimal set of Pu ∩ RU .

We can do a binary search through the relevant blue points in the minimal set of Pu

to find the point p below the line y = yU with maximum y coordinate. If this point is
not in RU (because x(p) > xU) then no relevant blue point in the minimal set of Pu is in
RU , as all other relevant blue points q in the minimal set of Pu with y(q) ≤ yU will have
x(q) > x(p) > xU . In this case we set bxu to +∞. Otherwise bxu = x(p).

We can find byu similarly with a single binary search. ◀

▶ Lemma 21. If u is not a leaf of TS and Bu intersects the boundary of RL, then we can
return the necessary information after querying the children of u with the same lower range
RL (but possibly different upper ranges) and a constant amount of additional work.

Proof. Suppose without loss of generality that the children of u split Pu by a vertical line
(the situation for a horizontal line is similar). Let v be the child corresponding to the left
half-plane and w the one corresponding to the right half-plane. Let us focus on computing
bxu, as this is the one requiring the most care.

Querying v with the same RL and RU returns some values rxv, ryv, bxv and byv. A
blue point p on the minimal set of Pw ∩ RL ∩ RU is a blue point on the minimal set of
Pu ∩ RL ∩ RU if and only if y(p) ≤ byv and p does not dominate any red point in Pv ∩ RU .
By Observation 18 this is equivalent to saying that y(p) ≤ byv and y(p) ≤ ryv.

Thus we can compute bxu by setting R′
U = [−∞, xU] × [−∞, min{yU , ryv}], querying w

with RL and R′
U to get values rxw, ryw, bxw and byw, then setting bxu = min{bxv, bxw}.

Notice that by Observation 17, we are allowed to query w with R′
U as its boundary does

not intersect any blue box of TS . It is then easy to see that rxu = min{rxv, rxw}, ryu =
min{ryv, ryw} and byu = min{byv, byw}. ◀

▶ Lemma 22. If u is a leaf of TS and Bu intersects the lower boundary or the left boundary
of RL but not both simultaneously, then we can return the necessary information in constant
time.

Proof. In this case, we know that Bu is a red box, as by assumption the boundary of RL

does not intersect any blue box of TS . Thus Bu contains no blue points and we know
bxw = byw = +∞. Suppose without loss of generality that Bu intersects the left boundary
of RL. Then the rightmost point of Bu is in RL, and thus Pu ∩ RL is non-empty. Because
all points in Pu have the same box-point p = (px, py), we have rxu = px and ryu = py. ◀

▶ Lemma 23. If u is a leaf of TS and Bu intersects both the lower boundary and the left
boundary of RL, then we can return the necessary information after a single orthogonal
range-emptiness test.

Proof. Again, we know that Bu is a red box and all points in Pu have the same box point
p = (px, py). To know if we need to set rxu = ryu = +∞ or rxu = px and ryu = py, we
simply need to test if there is a (necessarily red) point in Bu ∩ RL. This requires a single
range-emptiness test. ◀

By applying the relevant result among Lemmas 20, 21, 22 and 23 recursively we get:

▶ Theorem 24. We can query the root of a cross-safety tree TS in O(
√

n log n) time plus
the cost of a single range-emptiness test.

J. Cardinal, J. Dallant, and J. Iacono 24:11

As a corollary, we get:

▶ Corollary 25. Let B be an axis aligned box. We can query a cross-safety tree TS to test if
B is red-NE-safe for S in O(

√
n log n) time plus the cost of a constant number of orthogonal

range-emptiness tests on S.

Proof. With two orthogonal range-emptiness queries on the blue points of S and one on the
red points of S we can test if B contains at least one red point and cross(B) contains only
red points (that is, test if B is red-cross-safe for S). If B is not red-cross-safe for S we can
immediately return “No”. We assume from now on that it is.

Let RL be the range corresponding to NE(B), and let RU = [−∞, +∞] × [−∞, +∞].
Because R is red-cross-safe, it is easy to see that the boundary of RL does not intersect any
blue box of TS (this is also trivially true for RU). Thus, we can query the root u of TS with
RL and RU to get the x coordinate bxu of the blue point with minimum x coordinate among
all blue points on the minimal set of NE(B) ∩ S, or +∞ if no such point exists. In particular,
this allows us to test if such a point exists. ◀

We also have the following:

▶ Lemma 26. Let S′ ⊂ S be a subset which conforms with S and let B be an axis-aligned
box. If S′ ∩ B ̸= ∅, then we can replace all orthogonal range-emptiness tests on S with the
same tests on S′ in the procedure described in Corollary 25 (including the tests done while
querying TS) without affecting the outcome.

Proof. If there are both red and blue points in S ∩ cross(B), then at least one of these blue
points participates in S. Because S′ conforms with S, this blue point is also in S′, so S′ is
not red-cross-safe. The converse is trivially true. Thus, the initial three range-emptiness
tests return the same results on S and S′.

Now consider the query done on TS . If the corner of the lower range RL does not intersect
a red leaf box of TS , then no range-emptiness test is performed and the claim holds. Now
suppose RL intersects a red leaf box B of TS . Let S′′ be the set of points in S where we
remove all points in S ∩ B ∩ RL which are not in S′ ∩ B ∩ RL. Notice that by replacing the
range-emptiness query on S with one on S′, the procedure behave exactly like querying a
cross-safety tree on S′′. Because S′ ⊂ S′′ ⊂ S we know that S′′ conforms with S and thus
by Observation 12 the claim holds. ◀

Thus, this data-structure fits the prerequisites of Theorem 15, and we can use it to get
an algorithm solving the problem in O(n(H(S) + 1)) time after having built it. The only
missing ingredient to get an instance-optimal algorithm is building the data-structure within
the same asymptotic runtime. We show in the following section that we can indeed do this.

4.4 Construction in O(n(H(S) + 1)) time
Rather than focusing on constructing the cross-safety tree specifically, we start with a bit
more general setting.

▶ Theorem 27. Let S be a set of points. Let C be a property on axis-aligned bounding boxes
of the plane such that for boxes B2 ⊂ B1, if C(B1) is true then C(B2) is true. (Note that C

can depend on S).
A partition Π of S is C-respectful if every set in Π is a singleton or can be enclosed by

an axis aligned bounding box B such that C(B) is true.
Let HC(S) be the minimum of H(Π) over all C-respectful partitions of S.

ESA 2021

24:12 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

If property C(B) can be tested in O(|S ∩ B|) time when given access to S ∩ B, then a
kd-tree T C

S with stopping condition C on the leaves can be built in O(n(HC(S) + 1)) time.
This remains true if for each node in the tree we do an additional linear amount of work

(in the number of points considered at that node).

The proof is similar in spirit to that of Theorem 15, although simpler.

Proof. Consider the classical top-down recursive approach to construct a kd-tree on S (with
linear-time median, selection), where we stop subdividing points once we have reached a
bounding-box B with property C. Consider any C-respectful partition Π of S. Let Sk ∈ Π
and let Bk be a corresponding bounding box with the property C. At the j’th level of the
recursion, we have partitioned the plane into O(2j) boxes each containing at most

⌈
n/2j

⌉
points still to be considered. Any box B of T C

S which is entirely contained in Bk has property
C and can be set as a leaf. In other words the box B does not need to be recursed on
and the points in B ∩ S are not considered at level j or lower. Because Bk intersects at
most O(

√
2j) boxes of T C

S at level j, the number of points in Sk to consider at level j is
min{|Sk|, O(

√
2j · n/2j)} = min{|Sk|, O(n/

√
2j)}. At each level, the amount of work to be

done is linear in the number of points to consider. The Sk’s cover the entire point set so by
double summation we get that the runtime is in

O

∑
j

∑
k

min
{

|Sk|, n/
√

2j
} = O

∑
k

∑
j

min
{

|Sk|, n/
√

2j
}

= O

∑
k

∑
j≤2 log(n/|Sk|)

|Sk| +
∑

j>2 log(n/|Sk|)

n/
√

2j


= O

(∑
k

|Sk|(log(n/|Sk|) + 1)
)

⊂ O (n(HC(S) + 1)) . ◀

Note that the proof generalizes easily to any constant dimension d > 0. We can apply
this theorem to get the following (omitted proofs can be found in the full paper [12]):

▶ Lemma 28. A set of points S can be preprocessed in O(n(H(S) + 1)) time so that for any
subset Sk ⊂ S, we can test if all points in Sk lie in a common vertical slab containing only
points of S of the same color in O(Sk) time.

Which in turn implies:

▶ Theorem 29. A cross-safety tree on S can be constructed in O(n(H(S) + 1)).

Finally, putting this together with 26 and Theorem 15 we get the main result.

▶ Theorem 30. All points participating in S can be reported in O(n(H(S) + 1)) time. In
other words, there is an instance-optimal algorithm for this problem in the order-oblivious
comparison-based model.

One thing to note here is that while this guarantees that the algorithm is optimal with
respect to any parameter of the instance which does not depend on the order of the input
points, it is not immediately obvious that it runs in O(n log h) time, where h is the number
of points to report (we only know that if there is an algorithm in the comparison-based
model running within this time bound, then so does ours). The following results shows that
the runtime of our algorithm is indeed within this bound.

J. Cardinal, J. Dallant, and J. Iacono 24:13

Figure 5 Type of instance considered in the impossibility proof.

▶ Theorem 31. Let S be an instance of the Reporting participating points problem and let h

be the number of points which participate in S. Then n(H(S) + 1) ∈ O(n log h).

5 Instance-optimality is impossible with linear queries

In the previous section, we have shown that there is a comparison-based algorithm to report
participating points which is instance-optimal in the order-oblivious runtime against all
comparision-based algorithm solving the problem. We also show that if we “compete” against
algorithms which can do queries of the form x(p) − x(q) ≥ y(p) − y(q), then such a result
is no longer possible, even if we allow our algorithm to be in a much stronger model of
computation, such as algebraic computation trees. The full proof, in which we consider
instences of the type illustrated in Figure 5, can be found in the full paper [12]. One caveat
of this proof is that it relies on special instances with linear degeneracies (three points can be
collinear). It is not clear if instance-optimality is possible when restricted to non-degenerate
instances.

References
1 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric al-

gorithms. J. ACM, 64(1), 2017. doi:10.1145/3046673.
2 Pankaj K. Agarwal and Jirí Matousek. Relative neighborhood graphs in three dimensions.

Comput. Geom., 2:1–14, 1992. doi:10.1016/0925-7721(92)90017-M.
3 David Bremner, Erik D. Demaine, Jeff Erickson, John Iacono, Stefan Langerman, Pat

Morin, and Godfried T. Toussaint. Output-sensitive algorithms for computing nearest-
neighbour decision boundaries. Discret. Comput. Geom., 33(4):593–604, 2005. doi:10.1007/
s00454-004-1152-0.

4 Jean Cardinal, Sébastien Collette, and Stefan Langerman. Empty region graphs. Comput.
Geom., 42(3):183–195, 2009. doi:10.1016/j.comgeo.2008.09.003.

5 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discret. Comput. Geom., 16(4):361–368, 1996. doi:10.1007/BF02712873.

6 Timothy M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems. Discret. Comput. Geom., 16(4):369–387, 1996. doi:10.1007/BF02712874.

7 Xiaomin Chen, János Pach, Mario Szegedy, and Gábor Tardos. Delaunay graphs of point sets
in the plane with respect to axis-parallel rectangles. Random Struct. Algorithms, 34(1):11–23,
2009. doi:10.1002/rsa.20246.

8 Olivier Devillers, Jeff Erickson, and Xavier Goaoc. Empty-ellipse graphs. In Shang-Hua Teng,
editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

ESA 2021

https://doi.org/10.1145/3046673
https://doi.org/10.1016/0925-7721(92)90017-M
https://doi.org/10.1007/s00454-004-1152-0
https://doi.org/10.1007/s00454-004-1152-0
https://doi.org/10.1016/j.comgeo.2008.09.003
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712874
https://doi.org/10.1002/rsa.20246

24:14 An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 1249–1257. SIAM,
2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347218.

9 Ralf Hartmut Güting, Otto Nurmi, and Thomas Ottmann. Fast algorithms for direct enclosures
and direct dominances. J. Algorithms, 10(2):170–186, 1989. doi:10.1016/0196-6774(89)
90011-4.

10 Manabu Ichino and Jack Sklansky. The relative neighborhood graph for mixed feature variables.
Pattern Recognit., 18(2):161–167, 1985. doi:10.1016/0031-3203(85)90040-8.

11 J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their relatives.
Proceedings of the IEEE, 80(9):1502–1517, 1992. doi:10.1109/5.163414.

12 Justin Dallant Jean Cardinal and John Iacono. An instance-optimal algorithm for bichromatic
rectangular visibility. arXiv preprint arXiv:2106.05638, 2021. arXiv:2106.05638.

13 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete euclidean
graph. Discret. Comput. Geom., 7:13–28, 1992. doi:10.1007/BF02187821.

14 David G. Kirkpatrick and John D. Radke. A framework for computational morpho-
logy. In Godfried T. TOUSSAINT, editor, Computational Geometry, volume 2 of Ma-
chine Intelligence and Pattern Recognition, pages 217–248. North-Holland, 1985. doi:
10.1016/B978-0-444-87806-9.50013-X.

15 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
J. Comput., 15(1):287–299, 1986. doi:10.1137/0215021.

16 J. Ian Munro, Mark H. Overmars, and Derick Wood. Variations on visibility. In D. Soule,
editor, Proceedings of the Third Annual Symposium on Computational Geometry, Waterloo,
Ontario, Canada, June 8-10, 1987, pages 291–299. ACM, 1987. doi:10.1145/41958.41989.

17 Mark H. Overmars. Connectability problems. In Rolf G. Karlsson and Andrzej Lingas, editors,
SWAT 88, 1st Scandinavian Workshop on Algorithm Theory, Halmstad, Sweden, July 5-8,
1988, Proceedings, volume 318 of Lecture Notes in Computer Science, pages 105–112. Springer,
1988. doi:10.1007/3-540-19487-8_11.

18 Mark H. Overmars and Derick Wood. On rectangular visibility. J. Algorithms, 9(3):372–390,
1988. doi:10.1016/0196-6774(88)90028-4.

19 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput., 11(4):721–736, 1982. doi:10.1137/0211059.

http://dl.acm.org/citation.cfm?id=1347082.1347218
https://doi.org/10.1016/0196-6774(89)90011-4
https://doi.org/10.1016/0196-6774(89)90011-4
https://doi.org/10.1016/0031-3203(85)90040-8
https://doi.org/10.1109/5.163414
http://arxiv.org/abs/2106.05638
https://doi.org/10.1007/BF02187821
https://doi.org/10.1016/B978-0-444-87806-9.50013-X
https://doi.org/10.1016/B978-0-444-87806-9.50013-X
https://doi.org/10.1137/0215021
https://doi.org/10.1145/41958.41989
https://doi.org/10.1007/3-540-19487-8_11
https://doi.org/10.1016/0196-6774(88)90028-4
https://doi.org/10.1137/0211059

	1 Introduction
	2 Instance optimality in the order-oblivious setting and model of computation
	3 Lower-bound for comparison-based algorithms in the order-oblivious setting
	4 Instance optimal comparison-based algorithm in the order-oblivious setting
	4.1 The main algorithm
	4.2 Cross-safety tree
	4.3 Querying a cross-safety tree
	4.4 Construction in O(n(H(S)+1)) time

	5 Instance-optimality is impossible with linear queries

