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Abstract
We introduce and study ℓp-norm-multiway-cut: the input here is an undirected graph with
non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set
into k parts each containing exactly one terminal so as to minimize the ℓp-norm of the cut values
of the parts. This is a unified generalization of min-sum multiway cut (when p = 1) and min-max
multiway cut (when p = ∞), both of which are well-studied classic problems in the graph partitioning
literature. We show that ℓp-norm-multiway-cut is NP-hard for constant number of terminals
and is NP-hard in planar graphs. On the algorithmic side, we design an O(log2 n)-approximation
for all p ≥ 1. We also show an integrality gap of Ω(k1−1/p) for a natural convex program and an
O(k1−1/p−ϵ)-inapproximability for any constant ϵ > 0 assuming the small set expansion hypothesis.
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1 Introduction

multiway-cut is a fundamental problem in combinatorial optimization with both theoretical
as well as practical motivations. The input here is an undirected graph G = (V, E) with non-
negative edge weights w : E → R+ along with k specified terminals T = {t1, t2, . . . , tk} ⊆ V .
The goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for
each i ∈ [k] so as to minimize the sum of the cut values of the parts, i.e., the objective
is to minimize

∑k
i=1 w(δ(Pi)), where δ(Pi) denotes the set of edges with exactly one end-

vertex in Pi and w(δ(Pi)) :=
∑

e∈δ(Pi) w(e). On the practical side, multiway-cut has
been used to model file-storage in networks as well as partitioning circuit elements among
chips – see [14, 22]. On the theoretical side, multiway-cut generalizes the min (s, t)-cut
problem which is polynomial-time solvable. In contrast to min (s, t)-cut, multiway-cut
is NP-hard for k ≥ 3 terminals [14]. The algorithmic study of multiway-cut has led
to groundbreaking rounding techniques and integrality gap constructions in the field of
approximation algorithms [2, 4–7,12,16,17,21] and novel graph structural techniques in the
field of fixed-parameter algorithms [18]. It is known that multiway-cut does not admit a
(1.20016−ϵ)-approximation for any constant ϵ > 0 assuming the Unique Games Conjecture [4]
and the currently best known approximation factor is 1.2965 [21].

Motivated by its connections to partitioning and clustering, Svitkina and Tardos [22]
introduced a local part-wise min-max objective for multiway-cut– we will denote this
problem as min-max-multiway-cut: The input here is the same as multiway-cut while the
goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for each i ∈ [k] so
as to minimize maxk

i=1 w(δ(S)). We note that multiway-cut and min-max-multiway-cut
differ only in the objective function – the objective function in multiway-cut is to minimize
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29:2 ℓp-Norm Multiway Cut

the sum of the cut values of the parts while the objective function in min-max-multiway-cut
is to minimize the max of the cut values of the parts. min-max-multiway-cut can be
viewed as a fairness inducing multiway cut as it aims to ensure that no part pays too much in
cut value. Svitkina and Tardos showed that min-max-multiway-cut is NP-hard for k ≥ 4
terminals and also that it admits an O(log3 n)-approximation. Bansal, Feige, Krauthgamer,
Makarychev, Nagarajan, Naor, and Schwartz subsequently improved the approximation
factor to O(

√
log n log k) (which is O(log n)) [3].

In this work, we study a unified generalization of multiway-cut and min-max-multiway-
cut that we term as ℓp-norm-multiway-cut: In this problem, the input is the same as
multiway-cut, i.e., we are given an undirected graph G = (V, E) with non-negative edge
weights w : E → R+ along with k specified terminal vertices T = {t1, t2, . . . , tk} ⊆ V . The
goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for each i ∈ [k]
so as to minimize the ℓp-norm of the cut values of the k parts – formally, we would like to
minimize k∑

i=1

 ∑
e∈δ(Pi)

w(e)

p
1
p

.

Throughout, we will consider p ≥ 1. We note that ℓp-norm-multiway-cut for p = 1
corresponds to multiway-cut and for p =∞ corresponds to min-max-multiway-cut. We
emphasize that ℓp-norm-multiway-cut could also be viewed as a multiway cut that aims
for a stronger notion of fairness than multiway-cut but a weaker notion of fairness than
min-max-multiway-cut. For k = 2 terminals, ℓp-norm-multiway-cut reduces to min
(s, t)-cut for all p ≥ 1 and hence, can be solved in polynomial time.

1.1 Our Results
We begin by remarking that there is a fundamental structural difference between multiway-
cut and ℓp-norm-multiway-cut for p > 1 (i.e., between p = 1 and p > 1). The optimal
partition to multiway-cut satisfies a nice structural property: assuming that the input
graph is connected, every part in an optimal partition for multiway-cut will induce a
connected subgraph. Consequently, multiway-cut is also phrased as the problem of deleting
a least weight subset of edges so that the resulting graph contains k connected components
with exactly one terminal in each component. However, this nice structural property does
not hold for ℓp-norm-multiway-cut for p > 1 as illustrated by the example in Figure 1.
We remark that Svitkina and Tardos made a similar observation suggesting that the nice
structural property fails for min-max-multiway-cut, i.e., for p = ∞ – in contrast, our
example in Figure 1 shows that the nice structural property fails to hold for every p > 1.

We now discuss our hardness results for ℓp-norm-multiway-cut.

▶ Theorem 1. We have the following hardness results for ℓp-norm-multiway-cut.
1. ℓp-norm-multiway-cut is NP-hard for every p > 1 and every k ≥ 4.
2. ℓp-norm-multiway-cut in planar graphs is NP-hard for every p > 1.

We note that the case of p = 1 and p =∞ are already known to be hard: multiway-cut
is NP-hard for k = 3 terminals and is NP-hard in planar graphs when k is arbitrary (i.e.,
when k is not a fixed constant) [14]; min-max-multiway-cut is NP-hard for k = 4 terminals
and is NP-hard in trees when k is arbitrary [22]. Our NP-hardness in planar graphs result
also requires k to be arbitrary.
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Figure 1 An example where the unique optimum partition for ℓp-norm-multiway-cut for
k = 5 induces a disconnected part for every p > 1. The edge weights are as shown with a :=
8p/(p−1) and the set of terminals is {u1, v1, v2, v3, v4}. A partition that puts u2 with one of the
terminals in {v1, v2, v3, v4} (and isolates the remaining terminals) has ℓp-norm objective value
((3a + 3)p + 3(3a + 2)p + 4p)1/p and the partition that puts u2 with u1 (and isolates the remaining
terminals) has ℓp-norm objective value (4(3a + 2)p + 8p)1/p – the latter is strictly cheaper by the
choice of a.

Given that the problem is NP-hard, we focus on designing approximation algorithms. We
show the following result:

▶ Theorem 2. There exists a polynomial-time O(log1.5 n log0.5 k)-approximation for ℓp-
norm-multiway-cut for every p ≥ 1, where n is the number of vertices and k is the number
of terminals in the input instance.

We note that our approximation factor is O(log2 n) since k ≤ n. While it might be
tempting to design an approximation algorithm by solving a convex programming relaxation
for ℓp-norm-multiway-cut and rounding it, we rule out this approach: the natural convex
programming relaxation has an integrality gap of Ω(k1−1/p) – see Section 4. Hence, our
approach for the approximation algorithm is not based on a convex program but instead
based on combinatorial techniques.

For comparison, we state the currently best known approximation factors for p = 1 and
p =∞: multiway-cut admits a 1.2965-approximation via an LP-based algorithm [21] and
min-max-multiway-cut admits an O(

√
log n log k)-approximation based on a bicriteria

approximation for the small-set expansion problem [3].
As a final result, we show that removing the dependence on the number n of vertices

in the approximation factor of ℓp-norm-multiway-cut is hard assuming the small set
expansion hypothesis [20]. In particular, we show that achieving a (k1−1/p−ϵ)-approximation
for any constant ϵ > 0 is hard. We note that there is a trivial O(k1−1/p)-approximation for
ℓp-norm-multiway-cut.

1.2 Outline of techniques

We briefly outline the techniques underlying our results.

ESA 2021



29:4 ℓp-Norm Multiway Cut

Hardness results

We show hardness of ℓp-norm-multiway-cut for k = 4 terminals by a reduction from the
graph bisection problem. Our main tool to control the ℓp-norm objective in our hardness
reduction is the Mean Value Theorem and its consequences. In order to show NP-hardness of
ℓp-norm-multiway-cut in planar graphs, we reduce from the 3-partition problem. We do a
gadget based reduction where the gadget is planar. We note that the number of terminals in
this reduction is not a constant and is Ω(n), where n is the number of vertices. Once again,
we rely on the Mean Value Theorem and its consequences to control the ℓp-norm objective
in the reduction. We mention that the starting problems in our hardness reductions are
inspired by the hardness results shown by Svitkina and Tardos for min-max-multiway-cut:
they showed that min-max-multiway-cut is NP-hard for k = 4 terminals by a reduction
from the graph bisection problem and that min-max-multiway-cut is NP-hard in trees by
a reduction from the 3-partition problem. We also use these same starting problems, but our
reductions are more involved owing to the ℓp-norm nature of the objective.

Approximation algorithm

For the purposes of the algorithm, we will assume knowledge of the optimum value, say OPT
– such a value can be guessed within a factor of 2 via binary search. Our approximation
algorithm proceeds in three steps. We describe these three steps now.

In the first step of the algorithm, we obtain a collection S of subsets of the vertex set
satisfying four properties: (1) each set S in the collection S has at most one terminal, (2)
the ℓp-norm of the cut values of the sets in the collection raised to the pth power is small,
i.e.,

∑
S∈S w(δ(S))p = (βp log n)OPTp where β = O(

√
log n log k), (3) the number of sets

in the collection S is O(k log n), and (4) the union of the sets in the collection S is V . We
perform this first step via a multiplicative updates method. For this, we use a bicriteria
approximation algorithm for the unbalanced terminal cut problem which was given by Bansal
et al [3] (see Section 2 for a description of the unbalanced terminal cut problem and the
bicriteria approximation).

Although property (2) gives a bound on the ℓp-norm of the cut values of the sets in
the collection S relative to the optimum, the collection S does not correspond to a feasible
multiway cut: recall that a feasible multiway cut is a partition P = (P1, . . . , Pk) of the vertex
set where each Pi contains exactly one terminal. The objective of the next two steps is to
refine the collection S to achieve feasibility without blowing up the ℓp-norm of the cut values
of the parts.

In the second step of the algorithm, we uncross the sets in the collection S to obtain
a partition Q without increasing the cut values of the sets. We crucially exploit the
posimodularity property of the graph cut function to achieve this: posimodularity implies
that for all subsets A, B ⊆ V of vertices, either w(δ(A)) ≥ w(δ(A − B)) or w(δ(B)) ≥
w(δ(B − A)). We iteratively consider all pairs of crossing subsets A, B in the collection
S and replace A with A − B if w(δ(A)) ≥ w(δ(A − B)) or replace B with B − A if
w(δ(B)) ≥ w(δ(B − A)). The outcome of this step is a partition Q of the vertex set V

satisfying three properties: (i) each part Q in the partition Q has at most one terminal, (ii)
the ℓp-norm of the cut values of the parts in the partition Q raised to the pth power is still
small, i.e.,

∑
Q∈Q w(δ(Q))p = (βp log n)OPTp, and (iii) the number of parts in the partition

Q is O(k log n).
Once again, we observe that the partition Q at the end of the second step may not

correspond to a feasible multiway cut: we could have more than k parts in Q with some of the
parts having no terminals. We address this issue in the third step by a careful aggregation.
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For the third step of the algorithm, let Qi be the part in Q that contains terminal ti –
we have k such parts by property (i) – and let R1, . . . , Rt be the remaining parts in Q that
contain no terminals. We will aggregate the remaining parts of Q into the k parts Q1, . . . , Qk

without blowing up the ℓp-norm of the cut value of the parts. By property (iii), the number
of remaining parts t is O(k log n). We create k disjoint buckets B1, . . . , Bk where Bi contains
the union of O(log n) many parts among R1, . . . , Rt. Finally, we merge Bi with Qi. This
results in a partition P = (Q1 ∪B1, . . . , Qk ∪Bk) of V with terminal ti being in the ith part
Qi ∪Bi. The key now is to control the blow-up in the pth power of the ℓp-norm of the cut
values of the parts in P: we bound this by a O(logp−1 n)-factor relative to the pth power of
the ℓp-norm of the cut values of the parts in Q via Jensen’s inequality; while using Jensen’s
inequality, we exploit the fact that each bucket contained O(log n) many parts. Consequently,
using property (ii), the ℓp-norm objective value of the cut values of the parts in the partition
P raised to the pth power is still small – we show that

∑
P ∈P w(δ(P ))p = βp logp nOPTp

and hence, we have an approximation factor of O(β log n).
The first step of our algorithm is inspired by the O(log n)-approximation algorithm for

min-max-multiway-cut due to Bansal et al [3] – we modify the multiplicative weights
update method and adapt it for ℓp-norm-multiway-cut. Our second and third steps differ
from that of Bansal et al. We mention that the second and third steps of our algorithm can
be adapted to achieve an O(β log n)-approximation factor for ℓp-norm-multiway-cut for
p =∞, but the resulting approximation factor is only O(log2 n) which is weaker than the
O(log n)-factor achieved by Bansal et al. The additional loss of log n-factor in our algorithm
comes from the third step (i.e., the aggregation step). The aggregation step designed in [3]
is randomized and saves the log n-factor in expectation, but it does not generalize to ℓp-
norm-multiway-cut. As mentioned before, the second step of our algorithm relies on
posimodularity. The posimodularity property of the graph cut function has been used in
previous works for min-max-multiway-cut in an implicit fashion by a careful and somewhat
tedious edge counting argument [3, 22]. We circumvent the edge counting argument here by
the clean posimodularity abstraction. Moreover, the posimodularity abstraction makes the
counting considerably easier for our more general problem of ℓp-norm-multiway-cut.

1.3 Related Work
ℓp-norm-multiway-cut can be viewed as a fairness inducing objective in the context of
multiway partitioning problems. Recent works have proposed and studied various fairness
inducing objectives for graph cuts and partitioning that are different from ℓp-norm-multiway-
cut. We briefly discuss these works here. All of the works mentioned in this subsection
consider a more general problem known as correlation clustering – we discuss these works by
specializing to cut and partitioning problems since these specializations are the ones related
to our work.

Puleo and Milenkovic [19] introduced a local vertex-wise min-max objective for min (s, t)-
cut – here, the goal is to partition the vertex set V of the given edge-weighted undirected
graph into two parts (S, V \ S) each containing exactly one of the terminals in {s, t} so as
to minimize maxv∈V w(δ(v) ∩ δ(S)). The motivation behind this objective is that the cut
should be fair to every vertex in the graph, i.e., no vertex should pay a lot for the edges in
the cut. A result of Chvátal [13] implies that this problem is (2− ϵ)-inapproximable for every
constant ϵ > 0. Charikar, Gupta, and Schwartz [10] gave an O(

√
n)-approximation for this

problem. Reducing the approximability vs inapproximability gap for this problem remains
an intriguing open problem. Kalhan, Makarychev, and Zhou [15] considered an ℓp-norm
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version of the objective where the goal is to minimize (
∑

v∈V w(δ(v) ∩ δ(S))p)1/p and gave
an O(n

1
2 − 1

2p log
1
2 − 1

2p n)-approximation, thus interpolating the best known results for p = 1
and p =∞.

Ahmadi, Khuller, and Saha [1] introduced a min-max version of multicut: the input
consists of an undirected graph G = (V, E) with edge weights w : E → R+ along with source-
sink terminal pairs (s1, t1), . . . , (sk, tk). The goal is to find a partition P = (P1, . . . , Pr)
of the vertex set with all source-sink pairs separated by the partition so as to minimize
maxi∈[r] w(δ(Pi)). We emphasize that the number of parts here – namely, r – is not
constrained by the input and hence, could be arbitrary. Ahmadi, Khuller, and Saha gave an
O(
√

log n max{log k, log T})-approximation for this problem, where T is the number of parts
in the optimal solution. Kalhan, Makarychev, and Zhou [15] improved the approximation
factor to 2 + ϵ.

Organization

We begin with preliminaries in Section 2. We present the complete details of our approxim-
ation algorithm and prove Theorem 2 in Section 3. We discuss a convex program and its
integrality gap in Section 4. Due to space limitations, the proofs of the rest of the results
appear in the complete version of this work [9]. We conclude with a few open problems in
Section 5.

2 Preliminaries

We start with notations that will be used throughout. Let G = (V, E) be an undirected
graph with edge weight function w : E → R+ and vertex weight function y : V → R+.
For every subset S ⊆ V , we use δG(S) to denote the set of edges that have exactly one
end-vertex in S (we will drop the subscript G when the graph is clear from context), and
we write w(δ(S)) :=

∑
e∈δ(S) w(e). Moreover, we will use y(S) to refer to

∑
v∈S y(v). We

will denote an instance of ℓp-norm-multiway-cut by (G, w, T ), where G = (V, E) is the
input graph, w : E → R+ is the edge weight function, and T ⊆ V is the set of terminal
vertices. We will call a partition P̃ = (P1, . . . , Pr) of the vertex set to be a multiway cut if
r = k and ti ∈ Pi for each i ∈ [k] and denote the ℓp-norm of the cut values of the parts (i.e.,
(
∑k

i=1 w(δ(Pi))p)1/p) as the ℓp-norm objective value of the multiway cut P̃.
We note that the function µ : R → R defined by µ(x) := xp is convex for every p ≥ 1.

We will use Jensen’s inequality as stated below in our approximation algorithm as well as
our hardness reductions.

▶ Lemma 3 (Jensen). Let µ : R→ R be a convex function. For arbitrary x1, . . . , xt ∈ R, we
have

µ

(
1
t

t∑
i=1

xi

)
≤ 1

t

t∑
i=1

µ(xi).

Our algorithm relies on the graph cut function being symmetric and submodular. We
recall that the graph cut function f : 2V → R+ is given by f(S) := w(δ(S)) for all S ⊆ V .
Let f : 2V → R+ be a set function. The function f is symmetric if f(S) = f(V \ S) for all
S ⊆ V , submodular if f(A)+f(B) ≥ f(A∩B)+f(A∪B) for all A, B ⊆ V , and posimodular
if f(A) + f(B) ≥ f(A−B) + f(B −A) for all A, B ⊆ V . Symmetric submodular functions
are also posimodular (see Proposition 4) – this fact has been used implicitly [3, 22] and
explicitly [8, 11] before.
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▶ Proposition 4. Symmetric submodular functions are posimodular.

Proof. Let f : 2V → R be a symmetric submodular set function on a set V , and let A, B ⊆ V

be two arbitrary subsets. Then, we have

f(A) + f(B) = f(V −A) + f(B) ≥ f((V −A) ∪B) + f((V −A) ∩B)
= f(V − (A−B)) + f(B −A) = f(A−B) + f(B −A).

In the above, the first and last equations follow by symmetry and the inequality follows by
submodularity. ◀

Our algorithm for ℓp-norm-multiway-cut relies on an intermediate problem, namely
the Unbalanced Terminal Cut problem that we introduce now. In Unbalanced Terminal Cut
(UTC), the input (G, w, y, τ, T ) consists of an undirected graph G = (V, E), an edge weight
function w : E → R+, a vertex weight function y : V → R+, a real value τ ∈ [0, 1], and a set
T ⊆ V of terminal vertices. The goal is to compute

UTC(G, w, y, τ, T ) := min {w(δ(S)) : S ⊆ V, y(S) ≥ τ · y(V ), |S ∩ T | ≤ 1} .

Bansal et al. gave a bicriteria approximation for UTC that is summarized in the theorem
below.

▶ Theorem 5. [3] There exists an algorithm UTC-BICRIT-ALGO that takes as input
(G, w, y, τ, T ) consisting of an undirected graph G = (V, E), an edge weight function w : E →
R+, a vertex weight function y : V → R+, a number τ ∈ [0, 1], and a set T ⊆ V of terminal
vertices and runs in polynomial time to return a set S ⊆ V such that
1. |S ∩ T | ≤ 1,
2. y(S) = Ω(τ)y(V ), and
3. w(δ(S)) ≤ αUTC(G, w, y, τ, T ), where α = O(

√
log n log(1/τ)) and n = |V |.

3 Approximation Algorithm

Let OPT be the optimal ℓp-norm objective value of a multiway cut in the given instance. For
the purposes of the algorithm, we will assume knowledge of a value D such that D ≥ OPTp –
such a value can be guessed via binary search.

Our approximation algorithm to prove Theorem 2 involves three steps. In the first step
of the algorithm, we will obtain a collection S of O(k log n) sets whose union is the vertex
set V such that each set in the collection has at most one terminal, the cut value of each set
is not too large relative to D, and the ℓp-norm of the cut values of the sets in the collection
is within a polylog(n) factor of D (see Lemma 6). Although the collection S has low ℓp-norm
value relative to D, the collection S may not be a feasible multiway cut. In the second step
of the algorithm, we uncross the sets in the collection S without increasing the ℓp-norm of
the cut values of the sets in the collection (see Lemma 10). After uncrossing, we obtain a
partition, but we could have more than k sets. We address this in our third step, where
we aggregate parts to ensure that we obtain exactly k parts (see Lemma 11). We rely on
Jensen’s inequality to ensure that the aggregation does not blow-up the ℓp-norm of the cut
values of the sets in the partition.

We begin with the first step of the algorithm in Lemma 6.

▶ Lemma 6. There exists an algorithm that takes as input an undirected graph G = (V, E),
an edge weight function w : E → R+, k distinct terminal vertices T := {t1, . . . , tk} ⊆ V and
a value D > 0 such that there exists a partition (P ∗

1 , . . . , P ∗
k ) of V with ti ∈ P ∗

i for all i ∈ [k]
and

∑k
i=1 w(δ(P ∗

i ))p ≤ D, and runs in polynomial time to return a collection of sets S ⊆ 2V

that satisfies the following:

ESA 2021



29:8 ℓp-Norm Multiway Cut

1. |S ∩ T | ≤ 1 and w(δ(S)) ≤ β(2D)1/p for every S ∈ S,
2.
∑

S∈S w(δ(S))p = βp(log n)D, and
3. |S| = O(k log n) and |{S ∈ S : v ∈ S}| ≥ log n for each v ∈ V ,
where β = O(

√
log n log k).

Proof. We will use Algorithm 1 to obtain the desired collection S. We will show the
correctness of Algorithm 1 based on Claims 7, 8 and 9.

Algorithm 1 Multiplicative weights update.

Initialize t ← 1, S ← ∅, y1(v) = 1 for each v ∈ V , Y 1 =
∑

v∈V y1(v) and
β = O(

√
log n log k)

while Y t > 1
n do

for i = 1, 2, . . . , log(2k) do
Execute UTC-BICRIT-ALGO(G, w, yt, 2−i, T ) to obtain a subset St(i) ⊆ V

if w(δ(St(i))) ≤ β( 4D
2i )1/p then

Set St = St(i) and BREAK
end if

end for
S ← S ∪ {St}.
for v ∈ V do

Set yt+1(v) =
{

yt(v)/2 if v ∈ St,

yt(v) if v ∈ V \ St.

end for
Set Y t+1 =

∑
v∈V yt+1(v).

Set t← t + 1.
end while
Return S

Our first claim will help in showing that the set St added in each iteration of the while
loop satisfies certain nice properties.

▷ Claim 7. For every iteration t of the while loop of Algorithm 1, there exists i ∈
{1, 2, . . . , log(2k)} such that the set St(i) satisfies the following conditions:
1. |St(i) ∩ T | ≤ 1,
2. yt(St(i)) = Ω( Y t

2i ), and
3. w(δ(St(i))) ≤ β( 4D

2i )1/p.

Proof. We have that
∑k

i=1 yt(P ∗
i ) = yt(V ) and

k∑
i=1

w(δ(P ∗
i ))p ≤ D.

Let L be the subset of indices of parts for which the cut value is relatively low:

L :=
{

j ∈ [k] : w(δ(P ∗
j ))p ≤

2yt(P ∗
j )

Y t
·D
}

.

It follows that∑
j∈[k]\L

yt(P ∗
j ) <

∑
j∈[k]\L

w(δ(P ∗
j ))pY t

2D
≤ Y t

2
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and hence,

∑
j∈L

yt(P ∗
j ) = Y t −

∑
j∈[k]\L

yt(P ∗
j ) > Y t − Y t

2 = Y t

2 .

Since |L| ≤ k, there exists an index q ∈ L such that yt(P ∗
q ) > Y t/(2k). Let us fix i0 to

be an integer such that yt(P ∗
q ) ∈ (Y t · 2−i0 , Y t · 2−i0+1]. Then, we must have i0 ≤ log(2k).

We note that the set P ∗
q satisfies |P ∗

q ∩ T | = 1 and yt(P ∗
q ) > Y t/(2k) = yt(V )/(2k). This

implies P ∗
q is feasible to the UTC problem on input (G, w, yt, 1/2i0 , T ). Therefore, according

to Theorem 5, the set St(i0) has the following properties: Firstly, |St(i0) ∩ T | ≤ 1. Secondly,
yt(St(i0)) = Ω(1/2i0)yt(V ) = Ω(Y t/2i0). Finally,

w(δ(St(i0))) = O(
√

log n log(2k)) ·UTC
(

G, w, yt,
1

2i0
, T

)
= O(

√
log n log k) · w(δ(P ∗

q ))

= O(
√

log n log k) ·
(2yt(P ∗

q )
Y t

·D
) 1

p

= O(
√

log n log k) ·
(

2 · Y t · 2−i0+1

Y t
·D
) 1

p

= O(
√

log n log k) ·
(

4D

2i0

) 1
p

.

This completes the proof of Claim 7. ◁

For the rest of the proof, we will use the following notation: In the t’th iteration of the
while loop of Algorithm 1, we will fix it ∈ {1, 2, . . . , log(2k)} to be the integer such that
St = St(it). We will use ℓ to denote the total number of iterations of the while loop. For
each v ∈ V , We define Nv := |{t ∈ [ℓ] : v ∈ St}| to be the number of sets in the collection S
that contain the vertex v.

We observe that for each v ∈ V , we have yℓ+1(v) = 2−Nv . Claim 7 and Theorem 5
together imply that the t’th iteration of the while loop leads to a set St being added to the
collection S such that
1. |St ∩ T | ≤ 1,
2. yt(St) = Ω( Y t

2it
), and

3. w(δ(St)) ≤ β( 4D
2it

)1/p.

Our next claim shows that the number of iterations of the while loop executed in Algorithm
1 is small. Moreover, the union of the sets in the collection S is the vertex set V .

▷ Claim 8. The number of iterations ℓ of the while loop satisfies ℓ = O(k log n). Moreover,
Nv ≥ log n for each v ∈ V .

Proof. Upon termination of Algorithm 1, we must have Y ℓ+1 ≤ 1/n. Combining with the
earlier observation that yℓ+1(v) = 2−Nv for every v ∈ V , we have that

2−Nv = yℓ+1(v) ≤ Y ℓ+1 ≤ 1
n

,

which implies that Nv ≥ log n for every v ∈ V .
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It remains to show that ℓ = O(k log n). Consider the tth iteration of the while loop for an
arbitrary t ∈ [ℓ]. By property 2 of the set St stated above, we have that yt(St) ≥ cY t/2it ≥
cY t/(2k) for some constant c > 0. Consequently,

Y t+1 = Y t − yt(St)
2 ≤ Y t − cY t

4k
=
(

1− c

4k

)
Y t.

Due to the termination condition of the while loop, we know that Y ℓ > 1/n. Hence,

1
n

< Y ℓ ≤
(

1− c

4k

)ℓ−1
Y 1 =

(
1− c

4k

)ℓ−1
n ≤ exp

(
−c(ℓ− 1)

4k

)
n.

Therefore, c(ℓ−1)
4k = O(log n) which implies that ℓ = O(k log n). This completes the proof of

Claim 8. ◁

The next claim bounds the ℓp-norm of the cut values of the sets in the collection S.

▷ Claim 9. The collection S returned by Algorithm 1 satisfies
∑

S∈S w(δ(S))p = O(βp log n)·
D.

Proof. Consider the tth iteration of the while loop for an arbitrary t ∈ [ℓ]. By property
3 of the set St stated above, we have that w(δ(St)) ≤ β(4D/2it)1/p and consequently,
2it ≤ 4Dβp · w(δ(St))−p. Moreover, by property 2 of the set St stated above, we have that
yt(St) ≥ cY t/2it for some constant c > 0. Hence,

yt(St) ≥ cY t

2it
≥ cY t · w(δ(St))p

βp · 4D
.

Therefore,

Y t+1 = Y t − yt(St)
2 ≤

(
1− c · w(δ(St))p

βp · 8D

)
Y t.

Using the fact that Y ℓ > 1/n, we observe that

1
n

< Y ℓ ≤ Y 1 ·
ℓ−1∏
t=1

(
1− c · w(δ(St))p

βp · 8D

)
= n ·

ℓ−1∏
t=1

(
1− c · w(δ(St))p

βp · 8D

)

≤ n ·
ℓ−1∏
i=1

exp
(
−c · w(δ(St))p

βp · 8D

)
= n · exp

(
−

c ·
∑ℓ−1

i=1 w(δ(St))p

βp · 8D

)
.

This implies that c·
∑ℓ−1

i=1
w(δ(St))p

βp·8D = O(log n), and hence
∑ℓ−1

i=1 w(δ(St))p = O(βp log n) ·D.
In the ℓ’th iteration of the while loop, we have w(δ(Sℓ)) ≤ β(4D/2iℓ)1/p by property

3 of the set St stated above and hence w(δ(Sℓ))p ≤ βp · 4D/2iℓ ≤ O(βpD). Consequently,∑ℓ
i=1 w(δ(St))p = O(βp log n) ·D. This completes the proof of Claim 9. ◁

We now show correctness of our algorithm to complete the proof of Lemma 6. Firstly,
we note that every S ∈ S satisfies |S ∩ T | ≤ 1 by property 1 of the set St stated above.
Moreover, we have w(δ(S)) ≤ β(4D/2i)1/p ≤ β(2D)1/p, which implies conclusion 1 in Lemma
6. Secondly, Conclusion 2 in Lemma 6 is implied by Claim 9. Finally, conclusion 3 of Lemma
6 is implied by Claim 8 because each iteration of the while loop adds exactly one new set to
the collection S.

We now bound the run time of Algorithm 1. Each iteration of the while loop takes
polynomial time due to Theorem 5, and the number of iterations of the while loop is O(k log n).
This implies that the total run time of Algorithm 1 is indeed polynomial in the size of the
input. ◀
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The collection S that we obtain in Lemma 6 may not be a partition. Our next lemma
will uncross the collection S obtained from Lemma 6 to obtain a partition without increasing
the cut values of the sets.

▶ Lemma 10. There exists an algorithm that takes as input a collection S ⊆ 2V of subsets
of vertices satisfying the conclusions in Lemma 6 and runs in polynomial time to return a
partition Q̃ of V such that
1. |Q ∩ T | ≤ 1 for each Q ∈ Q̃,
2.
∑

Q∈Q̃ w(δ(Q))p ≤
∑

S∈S w(δ(S))p, and
3. the number of parts in Q̃ is O(k log n).

Proof. For convenience, we will define f : 2V → R+ by f(S) := w(δ(S)) for all S ⊆ V . We
will use Algorithm 2 to obtain the desired partition Q̃ of V .

Algorithm 2 Uncrossing.

Initialize Q̃ ← S
while there exist distinct sets A, B ∈ Q̃ such that A ∩B ̸= ∅ do

if f(A) ≥ f(A−B) then
Set A← A−B

else
Set B ← B −A

end if
end while
Return Q̃

We now prove the correctness of Algorithm 2. We begin by observing that Algorithm 2
indeed outputs a partition of the vertex set: Firstly, the while loop enforces that the output
Q̃ satisfies A ∩B = ∅ for all distinct A, B ∈ Q̃. Secondly, during each iteration of the while
loop, the set

⋃
Q∈Q̃ Q remains unchanged: In the iteration of the while loop that uncrosses

A, B ∈ Q̃, let A′ and B′ denote the updated sets at the end of the while loop, respectively.
Then we must have A′ ∪B′ = (A−B) ∪B = A ∪B or A′ ∪B′ = A ∪ (B −A) = A ∪B. In
either case, since A′ ∪ B′ = A ∪ B, the set

⋃
Q∈Q̃ Q remains unchanged after the update.

Therefore, we have
⋃

Q∈Q̃ Q =
⋃

S∈S S. We recall that
⋃

S∈S S = V by conclusion 3 of
Lemma 6. Hence, Q̃ is indeed a partition of V .

Furthermore, each set Q in the output Q̃ is a subset of some set S ∈ S. This implies
|Q ∩ T | ≤ |S ∩ T | ≤ 1, thus proving the first conclusion.

To prove the second conclusion, we use posimodularity of f as shown in Proposition 4.
Namely, for every A, B ⊆ V ,

f(A) + f(B) ≥ f(A−B) + f(B −A).

Therefore, at least one of the following two hold: either f(A) ≥ f(A−B) or f(B) ≥ f(B−A).
This implies that, by the choice of the algorithm,

∑
Q∈Q̃ f(Q)p does not increase.

To see the third conclusion, we note that after each iteration of the while loop, the size
of Q̃ is unchanged. Therefore, at the end Algorithm 2, we have |Q̃| = |S| = O(k log n) by
Lemma 6.

Finally, we bound the run time as follows. At initialization, there are O((k log n)2) pairs
(A, B) ∈ Q̃2 such that A ∩B ̸= ∅. After each iteration of the while loop, the number of such
pairs decreases by at least 1. Therefore, the total number of iterations of the while loop is
O((k log n)2). Hence, Algorithm 2 indeed runs in polynomial time. ◀
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The partition Q̃ that we obtain in Lemma 10 may contain more than k parts and hence,
some of the parts may not contain any terminals. Our next lemma will aggregate the parts
in Q̃ from Lemma 10 to obtain a k-partition that contains exactly one terminal in each part
while controlling the increase in the ℓp-norm of the cut value of the parts.

▶ Lemma 11. There exists an algorithm that takes as input a partition Q̃ of V satisfying the
conclusions in Lemma 10 and runs in polynomial time to return a partition (P1, P2, . . . , Pk)
of V such that
1. ti ∈ Pi for each i ∈ [k], and
2.
∑k

i=1 w(δ(Pi))p = O((β log n)p) ·D.

Proof. We will use Algorithm 3 on input P̃ to obtain the desired partition.

Algorithm 3 Aggregating.

Let F = {Q ∈ Q̃ : Q ∩ T = ∅}.
Let P ′ = {Q ∈ Q̃ : Q ∩ T ̸= ∅} = {Q′

1, . . . , Q′
k}, where ti ∈ Q′

i for each i ∈ [k].
Partition the sets in F into k buckets B1, . . . , Bk such that |Bi| = O(log n) for each i ∈ [k]
(arbitrarily).
for i = 1, 2, . . . , k do

Set Pi ← Q′
i ∪
(⋃

A∈Bi
A
)

end for
Return (P1, . . . , Pk).

The run time of Algorithm 3 is linear in its input size. We now argue the correctness.
We note that the third step in Algorithm 3 is possible because |F| ≤ |Q̃| = O(k log n).

Since |Q ∩ T | ≤ 1 for each Q ∈ Q̃, the tuple (P1, . . . , Pk) returned by Algorithm 3 is
indeed a partition of V satisfying ti ∈ Pi for all i ∈ [k]. We will now bound

∑k
i=1 f(Pi)p,

where f : 2V → R+ is given by f(S) := w(δ(S)) for all S ⊆ V . We have that
k∑

i=1
f(Pi)p =

k∑
i=1

f

(
Q′

i ∪

( ⋃
A∈Bi

A

))p

≤
k∑

i=1

(
f(Q′

i) +
∑

A∈Bi

f(A)
)p

.

Since the number of sets in Bi is O(log n), we have the following using Jensen’s inequality
(Lemma 3) for each i ∈ [k]:(

f(Q′
i) +

∑
A∈Bi

f(A)
)p

≤ (|Bi|+ 1)p−1

(
f(Q′

i)p +
∑

A∈Bi

f(A)p

)

= O(logp−1 n)
(

f(Q′
i)p +

∑
A∈Bi

f(A)p

)
.

Hence,
k∑

i=1
f(Pi)p =

k∑
i=1

O(logp−1 n)
(

f(Q′
i)p +

∑
A∈Bi

f(A)p

)
= O(logp−1 n)

∑
Q∈Q̃

f(Q)p

= O(logp−1 n)
∑
S∈S

f(S)p = βpO(logp n)D.

The last but one equality above is due to conclusion 2 of Lemma 10bbb and the last
equality is due to conclusion 2 of Lemma 6. Hence,

∑k
i=1 w(δ(Pi))p =

∑k
i=1 f(Pi)p =

O((β log n)p)D. ◀
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Lemmas 6, 10, and 11 together lead to an algorithm that takes as input an undirected
graph G = (V, E), an edge weight function w : E → R+, k distinct terminal vertices
T := {t1, . . . , tk} ⊆ V , and a value D > 0 such that there exists a partition (P ∗

1 , . . . , P ∗
k ) of

V with ti ∈ P ∗
i for all i ∈ [k] such that

∑k
i=1 w(δ(P ∗

i ))p ≤ D, and runs in polynomial time
to return a multiway cut P = (P1, . . . , Pk) such that(

k∑
i=1

w(δ(Pi))p

) 1
p

= (O((β log n)p)D)
1
p = O(β log n)D

1
p = O(log1.5 n log0.5 k)D

1
p .

In order to prove Theorem 2, we may use binary search to guess D ∈ [OPTp, (2OPT)p]
and run the above algorithm to obtain a multiway cut P = (P1, . . . , Pk) such that(

k∑
i=1

w(δ(Pi))p

) 1
p

= O(log1.5 n log0.5 k)D
1
p = O(log1.5 n log0.5 k)OPT.

This completes the proof of Theorem 2.

4 Convex program and integrality gap

The following is a natural convex programming relaxation for ℓp-norm-multiway-cut on
instance (G, w, T ) where T = {t1, . . . , tk} are the terminal vertices (the objective function
can be convexified by introducing additional variables and constraints):

Minimize
(

k∑
i=1

(∑
uv∈E

w(uv) · |x(u, i)− x(v, i)|
)p)1/p

subject to (1)

k∑
i=1

x(v, i) = 1 ∀v ∈ V,

x(ti, i) = 1 ∀i ∈ [k],
x(v, i) ≥ 0 ∀v ∈ V, ∀i ∈ [k].

▶ Lemma 12. The convex program in (1) has an integrality gap of at least k1−1/p/2.

Proof. Consider the star graph that has k leaves {t1, . . . , tk} and a center vertex v with
all edge weights being 1. Let the terminal vertices be the k leaves. The optimum ℓp-norm
objective value of a multiway cut is

((k − 1)p + k − 1)
1
p ,

and it corresponds to the partition ({t1, v}, {t2}, {t3}, . . . , {tk}). A feasible solution to the
convex program (1) is given by x(v, i) = 1/k for all i ∈ [k], which yields an objective of(

k ·
(

k − 1
k

+ (k − 1) · 1
k

)p) 1
p

= 2k − 2
k

· k
1
p .

This results in an integrality gap of at least

((k − 1)p + k − 1)
1
p

2k−2
k · k

1
p

≥ k − 1
2k−2

k · k
1
p

= k1− 1
p

2 . ◀

Bansal et al. give an SDP relaxation for min-max-multiway-cut and show that the star
graph has an integrality gap of Ω(k) for this SDP relaxation. This SDP relaxation can be
generalized in a natural fashion to ℓp-norm-multiway-cut. The star graph still exhibits an
integrality gap of Ω(k1−1/p) for the generalized SDP relaxation for ℓp-norm-multiway-cut.
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5 Conclusion

In this work, we introduced ℓp-norm-multiway-cut for p ≥ 1 as a unified generalization of
multiway-cut and min-max-multiway-cut. We showed that ℓp-norm-multiway-cut
is NP-hard for constant number of terminals or in planar graphs for every p ≥ 1. The
natural convex program for ℓp-norm-multiway-cut has an integrality gap of Ω(k1−1/p)
and the problem is (k1−1/p−ϵ)-inapproximable for any constant ϵ > 0 assuming the small
set expansion hypothesis, where k is the number of terminals in the input instance. The
inapproximability result suggests that a dependence on n in the approximation factor is
unavoidable if we would like to obtain an approximation factor that is better than the trivial
O(k1−1/p)-factor. On the algorithmic side, we gave an O(

√
log3 n log k)-approximation (i.e.,

an O(log2 n)-approximation), where n is the number of vertices in the input graph. Our
results suggest that the approximability behaviour of ℓp-norm-multiway-cut exhibits a
sharp transition from p = 1 to p > 1. Our work raises several open questions. We mention a
couple of them: (1) Can we achieve an O(log n)-approximation for ℓp-norm-multiway-cut
for every p ≥ 1? We recall that when p =∞, the current best approximation factor is indeed
O(log n) [3]. (2) Is there a polynomial-time algorithm for ℓp-norm-multiway-cut for any
given p that achieves an approximation factor that smoothly interpolates between the best
possible approximation for p = 1 and the best possible approximation for p =∞ – e.g., is
there an O(log1−1/p n)-approximation?
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