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Abstract
We consider the problem of solving integer programs of the form min{ c⊺x : Ax = b, x ∈ Z⩾0},
where A is a multistage stochastic matrix in the following sense: the primal treedepth of A is
bounded by a parameter d, which means that the columns of A can be organized into a rooted
forest of depth at most d so that columns not bound by the ancestor/descendant relation do not
have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-
parameter time f(d, ∥A∥∞) · n logO(2d) n, where f is a computable function and n is the number
of rows of A. The algorithm works in the strong model, where the running time only measures
unit arithmetic operations on the input numbers and does not depend on their bitlength. This
is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear
running time in the strong sense. For two-stage stochastic integer programs, our algorithm works in
time 2((r+s)∥A∥∞)O(r(r+s))

· n logO(rs) n, which improves over previous methods both in terms of the
polynomial factor and in terms of the dependence on r and s. In fact, for r = 1 the dependence on
s is asymptotically almost tight assuming the Exponential Time Hypothesis. Our algorithm can
be also parallelized: we give an implementation in the PRAM model that achieves running time
f(d, ∥A∥∞) · logO(2d) n using n processors.

The main conceptual ingredient in our algorithms is a new proximity result for multistage
stochastic integer programs. We prove that if we consider an integer program P , say with a
constraint matrix A, then for every optimum solution to the linear relaxation of P there exists an
optimum (integral) solution to P that lies, in the ℓ∞-norm, within distance bounded by a function of
∥A∥∞ and the primal treedepth of A. On the way to achieve this result, we prove a generalization and
considerable improvement of a structural result of Klein for multistage stochastic integer programs.
Once the proximity results are established, this allows us to apply a treedepth-based branching
strategy guided by an optimum solution to the linear relaxation.
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1 Introduction

We consider integer linear programming problems

min{ c⊺x : Ax = b, x ∈ Z⩾0 }, (♠)

that are described by the constraint matrix A ∈ Zn×m, the linear objective goal c ∈ Zm and
the right-hand side vector b ∈ Zn. As in this work we only consider linear objective functions,
for brevity we use term integer programming instead of integer linear programming.

While integer programming is NP-hard, there are various natural assumptions on the
constraint matrix A for which (♠) is solvable in polynomial time. Famous examples include
totally unimodular and bimodular integer programming [15, 1], integer programs with a
constant number of variables [20, 17] or bipartite matching and shortest path problems, see,
e.g. [25]. Another example are block-structured integer programs in which the constraint
matrix exhibits a (recursive) block structure. For instance, in the case of N-fold integer
programming [7], the removal of a small number of constraints (rows of A) results in
decomposing the instance into a large number of small independent subproblems.

We focus on the case where the removal of a few columns of A results in a large number
of independent subproblems, i.e., on the case where A is two-stage or multistage stochastic.

Figure 1 A schematic view of a two-stage stochastic matrix (left panel) and a multistage stochastic
matrix (right panel). All non-zero entries are contained in the blocks depicted in grey.

Formally, A is two-stage or (r, s)-stochastic (Figure 1, left panel) if after deleting the first
r columns the matrix can be decomposed into blocks with at most s columns each. The
terminology is borrowed from the field of stochastic integer optimization, a model for discrete
optimization under uncertainty. Here, the r “global” variables correspond to a decision
made in the first stage, whereas the Ω(n) blocks involving s variables represent a usually
large number different scenarios that arise in the second stage of stochastic optimization.
Two-stage stochastic integer programming has found multiple applications and is a classical
topic in optimization, see the survey of Schultz et al. [26] for some examples and algorithms.
Multistage stochastic integer programming is a generalization of the two-stage variant above
obtained by allowing further recursive levels in the block structure (Figure 1, right panel).

The recursive structure in multistage stochastic integer programs can be explained through
the notion of the primal treedepth of a matrix. The primal treedepth of A, denoted tdP(A),
is the least integer d such that the columns of A can be organized into a rooted forest of
depth at most d (called an elimination forest) with the following property: for every pair
of columns that are not independent – they have non-zero entries in the same row – these
columns have to be in the ancestor/descendant relation in the forest. The form presented in
Figure 1 can be obtained by ordering the columns as in the top-down depth-first traversal of
the elimination forest, and applying a permutation to the rows to form the blocks.

The primal treedepth is a structural parameter that is useful in the design of efficient
integer programming solvers. By this, we mean the existence of fixed-parameter algorithms for
the parameterization by tdP(A) and ∥A∥∞. For this parameterization, fixed-parameterized
tractability can be understood in two ways. Weak fpt algorithms have running time of
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the form f(tdP(A), ∥A∥∞) · |P |O(1), where f is a computable function and |P | is the total
bitlength of the encoding of the input. From strong fpt algorithms we require time complexity
of the form f(tdP(A), ∥A∥∞) · nO(1), where f is computable and n is the number of rows of
the input matrix. Such algorithms work in the model where input numbers occupy single
memory cells on which unit-cost arithmetic operations are allowed. Note that thus, the
running time is not allowed to depend on the bitlength of the input numbers.

A weak fixed-parameter algorithm for the considered parameterization follows implicitly
from the work of Aschenbrenner and Hemmecke [2]. The first to explicitly observe the
applicability of primal treedepth to the design of fpt algorithms for integer programming were
Ganian and Ordyniak [13], although their algorithm also treats ∥b∥∞ as a parameter besides
tdP(A) and ∥A∥∞. A major development was brought by Koutecký et al. [19], who gave the
first strong fpt algorithm, with running time f(tdP(A), ∥A∥∞) · n3 log2 n. We refer the reader
to the joint manuscript of Eisenbrand et al. [10], which comprehensively presents the recent
developments in the theory of block-structured integer programming. Corollaries 93 and 96
there discuss the cases of two-stage and multistage stochastic integer programming.

Our contribution. We advance the state-of-the-art of fpt algorithms for two-stage and
multistage stochastic integer programming problems by proving the following. Here, n and d

respectively denote the number of rows and the primal treedepth of the constraint matrix A.

A) We give an f(d, ∥A∥∞) · n logO(2d) n-time algorithm for integer programming (♠) in the
strong sense, where f is a computable function (Theorem 8). This improves upon the
currently fastest strong fpt algorithm by Koutecký et al. [19] that is nearly cubic in n.

B) We provide a 2((r+s)∥A∥∞)O(r(r+s)) ·n logO(rs) n-time algorithm for (r, s)-stochastic integer
programming, again in the strong sense. This improves upon the currently fastest
algorithm that runs in time 2(2∥A∥∞)O(r2s+rs2) · nO(1) [10, 18], both in terms of the
parametric dependence and in terms of the polynomial factor in the running time.

The algorithmic contributions A and B rely on the following proximity result for integer
programs with low primal treedepth. This result can be regarded as the core contribution
of this paper, and we believe that it uncovers an important connection between the primal
treedepth of A and the solution space of (♠).

C) (Proximity) For each optimal solution x⋆ to the linear relaxation of (♠) there is an
optimal (integral) solution x⋄ such that ∥x⋄ −x⋆∥∞ is bounded by a computable function
of tdP(A) and ∥A∥∞. (This is proved in Lemma 3.)

This proximity result provides a very simple template for designing fpt algorithms for
multistage integer programming. Let us explain it for the case of (r, s)-stochastic IPs. After
one has found an optimal fractional solution x⋆ of the linear relaxation of (♠), one only has
to enumerate the (2 · f(d, ∥A∥∞) + 1)r many possible integer assignments for the r stage 1
variables that are within the allowed distance, where f(d, ∥A∥∞) is the proximity bound
provided by Item C. For each of these assignments, the integer program (♠) decomposes
into O(n) independent sub-problems, each with at most s variables. This results in a
f(r, s, ∆) · n-time algorithm (excluding the time needed for solving the linear relaxation).
For multistage-stochastic integer programming, this argument has to be applied recursively.

As for solving the linear relaxation, note that to obtain results A and B we need to be able
to solve linear programs with low primal treedepth in near-linear fpt time in the strong sense.
This is a non-trivial task. Here we rely on a recent paper, Cslovjecsek et al. [5] have shown
that the dual of the linear programming relaxation of (♠) can be solved in time n logO(2d) n.
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By linear programming duality, this provides an algorithm for finding the optimum value of
the linear relaxation of (♠) within the required complexity, but for applying the approach
presented above, we need to actually compute an optimum fractional solution to (♠). While
it is likely that the approach of Cslovjecsek et al. [5] can be modified so that it outputs such
a solution as well, we give a self-contained argument using complementary slackness that
applies the results of [5] only as a black-box.

The approach of Cslovjecsek et al. [5] is parallelizable, in the sense that the algorithm for
solving the linear relaxation of (♠) can be implemented on a PRAM with n processors so
that the running time is logO(2d) n, assuming the constraint matrix A is suitably organized
on input. As the simple enumeration technique sketched above also can be easily applied in
parallel, we obtain the following PRAM counterpart of A and B.

D) In both cases A and B, we provide algorithms that run in time f(d, ∥A∥∞) · logO(2d) n

and 2((r+s)∥A∥∞)O(r(r+s)) · logO(rs) n, respectively, on a PRAM with n processors. For A
we assume that the constraint matrix is suitably organized on input.

The proof of Item C relies on a structural lemma of Klein [18], which allows us to bound
the ℓ∞-norm of the projections of Graver-basis elements to the space of stage 1 variables.
In the language of convex geometry, the lemma says the following: if the intersection of
integer cones C1, . . . , Cm ⊆ Zd is non-empty, where each generator of each Ci has ℓ∞-norm
at most ∆, then there is an integer vector b ∈

⋂m
i=1 Ci that satisfies ∥b∥∞ ⩽ 2O(d∆)d . In fact,

the original bound of Klein [18] is doubly exponential in d2, while we provide a new proof
that improves this to a doubly exponential dependence on d log d only. A direct implication
of this is the improvement in the parametric factor reported in B. We also consider some
further relaxations of the statement that appear to be important in the proof of Item C.

Related work. The algorithm proposed by Koutecký et al. [19] for multistage stochastic
programming relies on iterative augmentation using elements of the Graver basis, see also [7,
23, 14]. The Graver basis of a matrix A consists of all minimal integer solutions of Ax = 0.
Here, minimal is w.r.t. the partial order ⊑ of Rn where x ⊑ y if for each i ∈ {1, . . . , n} we
have |xi| ⩽ |yi| and xiyi ⩾ 0. Intuitively, a Graver basis element comprises of “single steps”
in the lattice of points x satisfying Ax = 0. The augmentation framework is to iteratively
improve the current solution along directions in the Graver basis. It turns out that in the
case of multistage stochastic programs, the ℓ∞-norms of the elements of the Graver basis of
the constraint matrix A can be bounded by g(tdP(A), ∥A∥∞) for some computable function g.
This makes the iterative augmentation technique applicable in this setting. It seems that the
augmentation framework is however inherently sequential.

Let us note that Koutecký et al. [19] relied on bounds on the function g above due to
Aschenbrenner and Hemmecke [2], which only guaranteed computability. Better and explicit
bounds on g were later given by Klein [18], see also [10]. Roughly speaking, the proof of
Klein [18] shows that g(d, a) is at most d-fold exponential, and it is open whether this bound
can be improved to an elementary function.

On a related note, Jansen et al. [16] have very recently given a 22o(s) · nO(1) lower bound
for (1, s)-stochastic IPs in which all coefficients of the constraint matrix are bounded by a
constant in absolute values. This is assuming the Exponential Time Hypothesis. Thus, for
(1, s)-stochastic integer programming with bounded coefficients, our result B is almost tight.

While robust and elegant, iterative augmentation requires further arguments to accelerate
the convergence to an optimal solution in order to guarantee a good running time. As
presented in [10], to overcome this issue one can either involve the bitlength of the input
numbers in measuring the complexity, thus resorting to weak fpt algorithms, or reduce this



J. Cslovjecsek, F. Eisenbrand, M. Pilipczuk, M. Venzin, and R. Weismantel 33:5

bitlength using arguments originating in the work of Frank and Tardos [12]. For instance,
integer program (♠) can be solved in time f(d, ∥A∥∞) · n1+o(1) · logd ∥c∥∞, where d = tdP(A).
However, to the best of our knowledge, before this work there was no strong fpt algorithm
that would achieve a subquadratic running time dependence on n, even in the setting of
two-stage stochastic integer programming.

The setting of N -fold and tree-fold integer programming, which is dual to the setting
considered in this work, has received a lot of attention in the literature, see e.g. [3, 5, 7, 10,
14, 24]. Here, we mostly rely on the recent results of Cslovjecsek et al. [5]. They obtained
nearly linear-time strong fpt algorithms using an approach quite different from iterative
augmentation, which served as a loose inspiration for our work. The key component is a
proximity result for integer programs with bounded dual treedepth: they show that if P is an
integer program with constraint matrix A, then for every optimal solution x⋆ to a suitable
linear relaxation of P there exists an optimal (integral) solution x⋄ to P such that ∥x⋄ − x⋆∥1
is bounded by a function of ∥A∥∞ and the dual treedepth of A (i.e. primal treedepth of A⊺).
It follows that if a solution x⋆ is available, then an optimal integral solution x⋄ can be found
in linear fpt time using dynamic programming, where the bound on ∥x⋄ − x⋆∥ is used to limit
the number of relevant states. This approach requires devising an auxiliary algorithm for
solving linear relaxations with bounded dual treedepth in strong fpt time. This is achieved
through recursive Laplace dualization using ideas from Norton et al. [22].

Let us stress that our proximity bound provided by Item C requires a different proof using
completely different tools than the one obtained for tree-fold integer programs by Cslovjecsek
et al. [5]. Note also that our proximity result concerns the standard linear relaxation, whereas
the one in [5] holds for the strengthened relaxation, where the blocks are replaced by their
integer hulls.

Very recently, Dong et al. [8] proposed a sophisticated interior-point algorithm to approx-
imately solve linear programs whose constraint matrices have primal treewidth t in time
Õ(nt2 · log(1/ε)), where ε is an accuracy parameter. Note here that the primal treewidth is
bounded by the primal treedepth, so this algorithm in principle could be applied to the linear
relaxation of (♠). There are two caveats: the algorithm of [8] provides only an approximate
solution, and it is unclear whether it can be parallelized. For these reasons we rely on the
algorithm of Cslovjecsek et al. [5] through dualization, but exploring the applicability of the
work of Dong et al. [8] in our context is an exciting perspective for future work.

Organization. In this paper we focus on presenting the proximity result Item C and deriving
algorithmic corollaries. Discussion of solving the linear relaxation as well as full proofs of
statements marked with (q), can be found in the full version of this paper, which is available
on ArXiv [6].

2 Preliminaries

Model of computation. We assume a real RAM model of computation, where each memory
cell stores a real number (of arbitrary bitlength and precision) and arithmetic operations
(including rounding) are assumed to be of unit cost. For parallel computation we assume the
CRCW PRAM model. As we will be working with sparse matrices, we assume that a matrix
is specified on input by a list of its non-zero entries.

(Integer) linear programming. We consider integer programs of the form (♠). When
replacing the integrality constraint x ∈ Z⩾0 by x ∈ R⩾0 yields the linear relaxation of (♠).
We represent a program P as a quadruple P = (x, A, b, c), where x, A, b, c are as in (♠). We
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33:6 Algorithms for Multistage Stochastic Integer Programming Using Proximity

denote by SolZ(P ) (resp. SolR(P )) the set of feasible integral solutions to P (resp. the set of
fractional solutions to the linear relaxation to P ). Analogously, we denote the set of optimal
solutions (with respect to the objective function) by optZ(P ) and optR(P ) respectively.

Stochastic matrices. We say that a matrix M is block-decomposable if there are non-zero
block matrices M1, · · · , Mt such that M can be written as M = diag(M1, · · · , Mt). The
matrices M, M1, · · · , Mt need not be square. The block decomposition of M is then the
unique presentation of M as M = diag(M1, · · · , Mt), where the blocks M1, . . . , Mt are non
empty and not block-decomposable.

For nonnegative integers r and s, a matrix A is (r, s)-stochastic if the following condition
holds: if A′ is A with the first r columns removed, then each block in the block decomposition
of A′ has at most s columns. Equivalently, an (r, s)-stochastic matrix can be written as

A =


A1 B1
A2 B2
...

. . .
At Bt

 , (♢)

where the blocks A1, . . . , At have r columns and each block Bi has at most s columns. As
usual, in (♢) and throughout the paper, empty spaces denote blocks filled with zeros. In
general, a presentation of matrix A as in (♢) is called the stochastic decomposition of A. To
define the primal treedepth tdP(A) of a matrix A, we first recursively define the depth of A:

if A has no columns, then its depth is 0;
if A is block-decomposable, then its depth is equal to the maximum among the depths of
the blocks in its block decomposition; and
if A has at least one column and is not block-decomposable, then the depth of A is one
larger than the depth of the matrix obtained from A by removing its first column.

The primal treedepth of A is then the smallest integer d, such that the rows and columns of
A can be permuted so that the resulting matrix has depth d.

For the remainder of this paper we will assume that matrices of bounded primal treedepth
are suitably organized on input. That is, rows and columns are permuted so that the matrix
has primal treedepth at most d and is in the block form depicted above. Finding such a
permutation can be done in linear fpt time, we discuss this in the full version of the paper.

Graver bases. We collect some basic facts about Graver bases, for a thorough introduction
to the theory and its applications we refer to [23, 21]. For an integer matrix A, we write
kerZ(A) for the set of all integer vectors from ker(A). The Graver basis of A, denoted G(A),
consists of all ⊑-minimal vectors of kerZ(A). We will use the following known bounds on
g∞(A) := maxv∈G(A) ∥v∥∞, the maximum norm of Graver basis elements:

▶ Theorem 1 ([9], q). For every integer matrix A with n rows and m columns, we have
g∞(A) ⩽ (2n∥A∥∞ + 1)n and g∞(A) ⩽ (2m∥A∥∞ + 1)m.

We will also use the more general bounds for matrices with bounded primal treedepth.

▶ Theorem 2 (Lemma 26 of [10]). There is a computable function f : N × N → N such that
for every integer matrix A, g∞(A) ⩽ f(tdP(A), ∥A∥∞).

We note that the proof of Theorem 2 given by Eisenbrand et al. [10] shows that, roughly
speaking, g∞(A) is bounded by a d-fold exponential function of ∥A∥∞, where d is the primal
treedepth of A.
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3 Algorithms

As discussed, our algorithms use two ingredients: proximity results for stochastic integer
programs, and algorithms for solving their linear relaxations. In this section we state those
ingredients formally and argue how the results claimed in Section 1 follow.

As for proximity, we show that in stochastic integer programs, for every optimal fractional
solution there is always an optimal integral solution that is not far, in terms of the ℓ∞-norm.
Precisely, the following results will be proved in Section 5.

▶ Lemma 3. There exists a computable function f : N × N → N with the following property.
Suppose P = (x, A, b, c) is a linear program in the form (♠). Then for every optimal fractional
solution x⋆ ∈ SolR(P ) there exists an optimal integral solution x⋄ ∈ SolZ(P ) satisfying

∥x⋄ − x⋆∥∞ ⩽ f(depth(A), ∥A∥∞).

▶ Lemma 4. Suppose P = (x, A, b, c) is a linear program in the form (♠), where A is
(r, s)-stochastic for some positive integers r, s. Then for every optimal fractional solution
x⋆ ∈ SolR(P ) there exists an optimal integral solution x⋄ ∈ SolZ(P ) satisfying

∥x⋄ − x⋆∥∞ ⩽ 2O(r(r+s)∥A∥∞)r(r+s)
.

A (r, s)-stochastic matrix has depth at most r + s, so Lemma 4 can be seen as a special
case of Lemma 3, but provides an explicit bound. For solving the linear relaxation we obtain:

▶ Lemma 5 (q). Suppose we are given a linear program P = (x, A, b, c) in the form (♠),
where A has n rows. Then, in the PRAM model, one can, using n processors and in time
logO(2depth(A)) n, compute an optimal fractional solution to P .

▶ Lemma 6 (q). Suppose we are given an (r, s)-stochastic linear program P = (x, A, b, c) in
the form (♠), where A has n rows. Then, in the PRAM model, one can, using n processors
and in time 2O(r2+rs2) · logO(rs) n, compute an optimal fractional solution to P .

Again, Lemma 6 differs from Lemma 5 by considering a more restricted class of matrices
(i.e., (r, s)-stochastic), but providing better complexity bounds.

We now combine the tools presented above to show the following theorems.

▶ Theorem 7 (q). Suppose we are given an (r, s)-stochastic linear program P = (x, A, b, c)
in the form (♠), where A has n rows. Then, in the PRAM model, one can, using n processors
and in time 2((r+s)∥A∥∞)O(r(r+s)) · logO(rs) n, compute an optimal integral solution to P .

Sketch of proof. Apply Lemma 5 to find an optimal fractional solution x⋆. By Lemma 4,
there is an optimal integral solution x⋄ satisfying ∥x⋄ − x⋆∥∞ ⩽ ρ, where ρ ∈
2O(r(r+s)∥A∥∞)r(r+s) . In particular, if x⋄

0 and x⋆
0 are the projections of x⋄ and x⋆ onto

the first r coordinates, respectively, then ∥x⋄
0 − x⋆

0∥∞ ⩽ ρ.
Assume the stochastic decomposition (♢) of A. For all ξ ∈ Zr

⩾0 satisfying ∥ξ − x⋆∥∞ ⩽ ρ

and all i ∈ {1, . . . , t}, let us consider the integer program Pi(ξ) defined as:

min{ c⊺i xi : Bixi = bi − Aiξ, xi ⩾ 0 },

where bi, ci, xi are suitable restrictions of b, c, x to entries corresponding to rows or columns
of Bi. It follows that

optZ(P ) = min
{

c⊺0ξ +
t∑

i=1
optZ(Pi(ξ)) : ξ ⩾ 0 is integral and ∥ξ − x⋆

1∥∞ ⩽ ρ

}
,
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where c0 is the projection of c onto the first r coordinates. Therefore, it suffices to iterate
through all integral vectors ξ ⩾ 0 satisfying ∥ξ − x⋆

1∥ ⩽ ρ one by one – of which there are
at most (2ρ + 1)r many – and for each of them solve all the programs Pi(ξ) in parallel, by
assigning to Pi(ξ) as many processors as the number of rows of Bi.

It remains to argue how each of the programs Pi(ξ) is going to be solved efficiently. For
this, we may apply the same approach. Namely, we use Lemma 5 to find an optimal fractional
solution x⋆

i of Pi(ξ), and using Lemma 4 again we can argue that there exists an optimal
integral solution x⋄

i of Pi(ξ) that satisfies ∥x⋄
i − x⋆

i ∥∞ ⩽ ρ. Now Bi has at most s columns,
so there are only at most (2ρ + 1)s candidates for an integral vector x⋄

i satifying the above,
and they can be checked one by one. The overall running time analysis follows easily from
the bounds provided by Lemma 4 and Lemma 5; we leave the details to the reader. ◀

The same basic idea, but applied recursively, yields the following.

▶ Theorem 8 (q). There is a computable function f : N × N → N such that the following
holds. Suppose we are given a linear program P = (x, A, b, c) in the form (♠), where A has n

rows. Then, in the PRAM model, one can using n processors and in time f(depth(A), ∥A∥∞) ·
logO(2depth(A)) n compute an optimal integral solution to P .

4 A stronger Klein bound

In this section we discuss a stronger variant of a structural result of Klein [18] which we will
need for our proximity bounds in the next section.

▶ Theorem 9 (Stronger Klein bound, q). Let T1, . . . , Tn ⊆ Zd be multisets of integer vectors
of ℓ∞-norm at most ∆ such that their respective sums are almost the same in the following
sense: there is some b ∈ Zd and a positive integer ϵ such that∥∥∥ ∑

v∈Ti

v − b
∥∥∥

∞
< ϵ for all i ∈ {1, . . . , n}.

There exists a function f(d, ∆) ∈ 2O(d∆)d such that the following holds. Assuming ∥b∥∞ >

ϵ · f(d, ∆), one can find nonempty submultisets Si ⊆ Ti for all i ∈ {1, . . . , n}, and a vector
b′ ∈ Zd satisfying ∥b′∥∞ ⩽ f(d, ∆), such that∑

v∈Si

v = b′ for all i ∈ {1, . . . , n}.

Theorem 9 strengthens the original formulation of Klein [18, Lemma 2] in various aspects.
First, the formulation of Klein required all the vectors to be nonnegative. Second, the
argument of Klein yields a bound on f(d, ∆) that is doubly exponential in d2, our proof
improves this dependence to doubly exponential in d log d. Finally, we allow the sums of the
respective multisets to differ by some slack parameter ϵ, while in the original setting of Klein
all sums need to be exactly equal. This last aspect will prove essential in the proof of our
proximity bound, while the second is primarily used for improving the parametric factor in
the running time.

The full proof of Theorem 9 relies on polyhedral techniques and is rather lengthy. However,
using only the original formulation due to Klein and the pigeonhole principle, there is a short
proof that achieves the third aspect of our improvement, i.e. that we may allow the sums of
respective multisets to differ by some slack parameter. As this is central for the next section,
we prove only this part and defer the full proof of Theorem 9 to the full version of the paper.
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Proof of a simpler variant of Theorem 9. Specifically, we show the following statement:

Let T1, . . . , Tn be multisets of vectors in Zd
⩾0 of ℓ∞ norm at most ∆ such that there is

some b ∈ Zd and ϵ ∈ N such that∥∥∥ ∑
v∈Ti

v − b
∥∥∥

∞
< ϵ for all i ∈ {1, . . . , n}.

Then there is a function g(d, ∆) such that provided ∥b∥∞ > ϵ · g(d, ∆), there exist
nonempty submultisets Si ⊆ Ti for i ∈ {1, . . . , n} and a vector b′ ∈ Zd

⩾0 satisfying
∥b′∥∞ ⩽ g(d, ∆) such that∑

v∈Si

v = b′ for all i ∈ {1, . . . , n}.

In fact, one can take g(d, ∆) = 2(f(d, ∆) + 1)d+1 where f(d, ∆) is the bound from [18].

To prove this, we first add vectors belonging to {0, 1}d to each multiset Ti so that∑
v∈T̃i

v = b + ϵ · 1 for all i ∈ {1, . . . , n},

where the T̃i are the resulting multisets and 1 is the all-ones vector. Clearly, this can be
achieved by adding to each multiset Ti at most 2ϵ vectors from {0, 1}d.

Assume that ∥b∥∞ > 2ϵ · (f(d, ∆) + 1)d+1 where f(d, ∆) is the original bound from [18].
Since the multisets T̃i all sum up to b + ϵ · 1 exactly, we can use the original formulation
of [18] to infer that there are submultisets S1

i ⊆ T̃i, for all {1, . . . , n}, and a vector b1 ∈ Zd
⩾0

with ∥b1∥∞ ⩽ f(d, ∆) such that∑
v∈S1

i

v = b1 for all i ∈ {1, . . . , n}.

Since the multisets T̃i − S1
i sum up to b + ϵ · 1 − b1, we can iteratively find nonempty

submultisets S2
i ⊆ T̃i − S1

i , . . . , Sk
i ⊆ T̃i − (S1

i ∪ . . . ∪ Sk
i ) and vectors b1, . . . , bk of ℓ∞-norm

bounded by f(d, ∆) such that∑
v∈Sj

i

v = bj for all j ∈ {2, . . . , k} and i ∈ {1, . . . , n}.

Since we assumed that ∥b∥∞ > 2ϵ·(f(d, ∆)+1)d+1, we can continue the above procedure until
k > 2ϵ · (f(d, ∆) + 1)d. Note that there are at most (f(d, ∆) + 1)d integral and nonnegative
vectors of ℓ∞ norm at most f(d, ∆). Therefore, by pigeonhole principle there exists b′ ∈ Zd

⩾0
with ∥b′∥∞ ⩽ f(d, ∆) and a set of indices J of size 2ϵ + 1 such that

∑
v∈Sj

i
v = b′ for all

j ∈ J and i ∈ {1, . . . , n}. For each i ∈ {1, . . . , n}, one of these multisets Sj
i ⊆ T̃i for j ∈ J

does not contain any of the (at most) 2ϵ vectors we have added to Ti to obtain T̃i. Thus, for
each i ∈ {1, . . . , n} we can find a nonempty submultisets Si ⊆ Ti satisfying∑

v∈Si

v = b′.

Since ∥b′∥∞ ⩽ f(d, ∆) ⩽ g(d, ∆), this concludes the proof. ◀
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5 Proximity

The goal of this section to prove a very general theorem, Theorem 12, that will imply
Lemma 3 and Lemma 4, see Corollaries 14 and 15. To facilitate the discussion of proximity,
let us introduce the following definition.

▶ Definition 10. Let P = (x, A, b, c) be a linear program in the form (♠). The proximity
of P , denoted proximity∞(P ), is the infimum of reals ρ ⩾ 0 satisfying the following: for every
fractional solution x⋆ ∈ SolR(P ) and integral solution x@ ∈ SolZ(P ), there is an integral
solution x⋄ ∈ SolZ(P ) such that

∥x⋄ − x⋆∥∞ ⩽ ρ and x⋄ − x⋆ ⊑ x@ − x⋆.

The condition x⋄ − x⋆ ⊑ x@ − x⋆ is equivalent to saying that x⋄ is contained in the axis
parallel box spanned by x⋆ and x@, see Figure 2.

x⋆

x ⩾ 0

x@

x⋄
x•

Figure 2 x⋄ − x⋆ ⊑ x@ − x⋆, x⋄ is in the rectangle spanned by x@ and x⋆.

Comparing to earlier work, for instance [4, 11], this notion of proximity is independent
of the optimization goal. However, it can also be used to bound the distance of optimal
fractional solutions to optimal integral solutions.

▶ Lemma 11 (q). Suppose P = (x, A, b, c) is a linear program in the form (♠). Then
for every optimal fractional solution x⋆ to P there is an optimal integral solution x⋄ to P

satisfying

∥x⋄ − x⋆∥∞ ⩽ proximity∞(P ).

Sketch of proof, see Figure 2. Let x@ any optimal integral solution. By our definition of
proximity there is x⋄ with ∥x⋄ − x⋆∥∞ ⩽ proximity∞(P ) and x⋄ − x⋆ ⊑ x@ − x⋆. It can be
easily checked that if c⊺x@ < c⊺x⋄, then x• := x⋆ + x@ − x⋄ is feasible and c⊺x• < c⊺x⋆,
contradicting the optimality of x⋆. Thus, x⋄ is an optimal integral solution. ◀

For the remainder of this section we adopt the following notation. Suppose that A has a
stochastic decomposition (♢). Let x0, x1, . . . , xt be the partition of the vector of variables x

so that x0 ∈ Rr corresponds to the columns of matrices A1, . . . , At, while xi ∈ Rs corresponds
to the columns of Bi, for each i ∈ {1, . . . , t}. Finally, partition b into b1, . . . , bt so that bi

corresponds to the rows of Ai and Bi respectively. Thus, SolR(P ) takes the form:

Aix0 + Bixi = bi for all i ∈ {1, . . . , t},

xi ⩾ 0 for all i ∈ {0, 1, . . . , t}.
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For each i ∈ {1, . . . , t}, we define

Pi =
((

x0
xi

)
, Di, bi, 0

)
with Di := (Ai Bi). (1)

We observe that
x0
x1
...

xt

 ∈ SolR(P ) if and only if
(

x0
xi

)
∈ SolR(Pi) for all i ∈ {1, . . . , t}.

This decomposition of the constraint matrix is the key to our main technical result.

▶ Theorem 12 (Composition Theorem). Suppose P = (x, A, b, c) is a linear program in the
form (♠), where A admits a stochastic decomposition (♢). Adopt the notation presented
above and let k be the number of columns of each of the matrices A1, . . . , At. Further, let

γ := max
1⩽i⩽t

g∞(Di) and ρ := max
1⩽i⩽t

proximity∞(Pi).

Then

proximity∞(P ) ⩽ 3kγρ · f(k, γ)

where f(k, γ) is the bound provided by Theorem 9.

By substituting f(k, γ) with the bound of Theorem 9, we get proximity∞(P ) ⩽ ρ · 2O(kγ)k .
To derive the promised bounds on the proximity we use the following simple lemma.

▶ Lemma 13 (q). Let P = (x, A, b, c) be a linear program in the form (♠) where A has m

columns. Then

proximity∞(P ) ⩽ (m∥A∥∞)m+1.

Sketch of proof. Given a feasible fractional solution x⋆ and an integral vector x@, we can
consider the ILP on m variables defined by constraints Ax = b and x − x⋆ ⊑ x@ − x⋆. By the
classic theorem of Cook et al. [4], there is an integral solution whose ℓ∞ distance from x⋆ is
at most m times the largest sub-determinant. It remains to apply the Hadamard bound. ◀

▶ Corollary 14. Let P = (x, A, b, c) be a linear program in the form (♠), where A is
(r, s)-stochastic. Then

proximity∞(P ) ⩽ 2O(r(r+s)∥A∥∞)r(r+s)
.

Proof. Recalling the definition of Pi in (1) and using that the matrix A is (r, s)-stochastic,
we see that the constraint matrix Di of Pi has at most r + s columns with entries bounded
by ∥A∥∞. Using Lemma 13 and Theorem 1 respectively, we get

g∞(Di) ⩽ (2(r + s)∥A∥∞ + 1)r+s and proximity∞(Pi) ⩽ ((r + s)∥A∥∞)r+s+1.

By Theorem 12 we obtain the claimed bound on proximity∞(A). ◀

Applying the same idea recursively yields the following.

▶ Corollary 15 (q). There is a computable function h : N×N → N such that for every linear
program P = (x, A, b, c) in the form (♠), we have

proximity∞(P ) ⩽ h(tdP(A), ∥A∥∞).

ESA 2021
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5.1 Proof of Theorem 12
We now use our strengthening of the lemma of Klein [18], Theorem 9, to prove Theorem 12.

Proof of Theorem 12. Consider any x⋆ ∈ SolR(P ) and x@ ∈ SolZ(P ). Let x⋄ ∈ SolZ(P ) be
an integral solution such that x⋄ − x⋆ ⊑ x@ − x⋆ and subject to the condition that ∥x⋄ − x⋆∥1
is minimized. Our goal is to show that then ∥x⋄ − x⋆∥∞ ⩽ 3kγρ · f(k, γ), where f(·, ·) is the
function given by Theorem 9.

Observe that if there existed a non-zero vector u ∈ kerZ(A) such that u ⊑ x⋆ − x⋄, then
we would have that x⋄ + u ∈ SolZ(P ), (x⋄ + u) − x⋆ ⊑ x⋄ − x⋆ ⊑ x@ − x⋆, and the ℓ1 distance
from x⋆ to x⋄ + u would be strictly smaller than to x⋄. This would contradict the choice of
x⋄. Therefore, it is sufficient to show the following: if ∥x⋄ −x⋆∥∞ is larger than 3kγρ ·f(k, γ),
then there exists a non-zero vector u ∈ kerZ(A) such that u ⊑ x⋆ − x⋄.

To this end, for all i ∈ {1, . . . , t}, restrict x⋆ and x⋄ to the variables of Pi as follows:

x̃⋆
i :=

(
x⋆

0
x⋆

i

)
∈ SolR(Pi) and x̃⋄

i :=
(

x⋄
0

x⋄
i

)
∈ SolZ(Pi).

By the definition of proximity, for all i ∈ {1, . . . , t} there are integral solutions

x̃i ∈ SolZ(Pi) with ∥x̃i − x̃⋆
i ∥∞ ⩽ proximity∞(Pi) ⩽ ρ and x̃i − x̃⋆

i ⊑ x̃⋄
i − x̃⋆

i .

Since x̃i and x̃⋄
i are both integral solutions to Pi, we have x̃i − x̃⋄

i ∈ kerZ(Ai Bi) and we
can decompose this vector into a multiset Gi of Graver elements. That is, Gi is a multiset
consisting of sign compatible (i.e., belonging to the same orthant) elements of G(Di) with
x̃i − x̃⋄

i =
∑

g∈Gi
g. Note that the first k entries of vectors x̃1, . . . , x̃t correspond to the same

k variables of P , but they may differ for different i ∈ {1, . . . , t}. For a vector w, let π(w) be
the projection onto the first k entries of w.

Let π(Gi) be the multiset that includes a copy of π(g) for each g ∈ Gi. By the definition
of x̃⋆

i and x̃⋄
i , we have π(x̃⋆

i ) = π(x̃⋆
j ) and π(x̃⋄

i ) = π(x̃⋄
j ) for all i, j ∈ {1, . . . , t}. From this,

for all i ∈ {1, . . . , t},∥∥∥ ∑
x∈π(Gi)

x − π(x̃⋆
1 − x̃⋄

1)
∥∥∥

∞
= ∥π(x̃i) − π(x̃⋆

1)︸ ︷︷ ︸
=π(x̃⋆

i
)

+ π(x̃⋄
1) − π(x̃⋄

i )︸ ︷︷ ︸
=0

∥∞ ⩽ ∥x̃i − x̃⋆
i ∥∞ ⩽ ρ.

Thus, Theorem 9 is applicable for d = k, ∆ = γ, ϵ = ρ and b = π(x̃⋆
1 − x̃⋄

1). Note that for
each i ∈ {1, . . . , t} and g ∈ Gi, we have ∥g∥∞ ⩽ γ. We now distinguish between two cases:
Case 1: ∥π(x̃⋆

1 − x̃⋄
1)∥∞ > ρ · f(k, γ).

By Theorem 9, there exist nonempty submultisets S1 ⊆ π(G1), . . . , St ⊆ π(Gt) such that∑
x∈Si

x =
∑

x∈Sj

x for all i, j ∈ {1, . . . , t}.

Define a vector u in the following way. For all i ∈ {1, . . . , t}, let Ĝi ⊆ Gi be submultisets
with π(Ĝi) = Si and set ũi :=

∑
g∈Ĝi

g ∈ kerZ(Di). Observe that vectors π(ũi) are equal for
all i ∈ {1, . . . , t}. This allows us to define u as the vector obtained by combining all the ũi,
so that projecting u to the variables of Pi yields ũi, for each i ∈ {1, . . . , t}. Note that since
multisets Ĝi are nonempty, u is a non-zero vector. Also u ∈ kerZ(A), since ũi ∈ kerZ(Di) for
all i ∈ {1, . . . , t}. Further, we have u ⊑ x⋆ − x⋄, because for all i ∈ {1, . . . , t},

ũi =
∑

g∈Ĝi

g ⊑ x̃i − x̃⋄
i ⊑ x̃⋆

i − x̃⋄
i .
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Thus, u contradicts the minimality of ∥x⋄ − x⋆∥1. We move to the second case.
Case 2: ∥π(x̃⋆

1 − x̃⋄
1)∥∞ ⩽ ρ · f(k, γ).

Since we have ∥π(x̃i − x̃⋄
i ) − π(x̃⋆

1 − x̃⋄
1)∥∞ ⩽ ρ for all i ∈ {1, . . . , t}, we have

∥π(x̃i − x̃⋄
i )∥∞ ⩽ ρ · f(k, γ) + ρ ⩽ 2ρ · f(k, γ) for all i ∈ {1, . . . , t}.

Suppose for a moment that for some i ∈ {1, . . . , t}, there exists an element g ∈ Gi with
π(g) = 0. Then by putting zeros on all the other coordinates, we can extend g to a vector
u ∈ kerZ(A) which satisfies u ⊑ x⋆ − x⋄. As g is non-zero, so is u, hence u satisfies all the
requested properties. Hence, from now on we may assume that no multiset Gi contains an
element g with π(g) = 0. It follows that

|Gi| = |π(Gi)| ⩽
∥∥∥ ∑

x∈π(Gi)

x
∥∥∥

1
⩽ k

∥∥∥ ∑
x∈π(Gi)

x
∥∥∥

∞
= k∥π(x̃i − x̃⋄

i )∥∞ ⩽ 2kρ · f(k, γ).

Since ∥g∥∞ ⩽ γ for every element g ∈ Gi, we infer that

∥x̃i − x̃⋄
i ∥∞ ⩽

∥∥∥ ∑
g∈Gi

g
∥∥∥

∞
⩽ γ|Gi| ⩽ 2kγρ · f(k, γ).

By combining this with ∥x̃i − x̃⋆
i ∥∞ ⩽ ρ, we get

∥x̃⋄
i − x̃⋆

i ∥∞ ⩽ ∥x̃⋄
i − x̃i∥∞ + ∥x̃i − x̃⋆

i ∥∞ ⩽ 2kγρ · f(k, γ) + ρ ⩽ 3kγρ · f(k, γ).

This implies that ∥x⋄ − x⋆∥ ⩽ 3kγρ · f(k, γ) and concludes the proof. ◀
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