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Abstract
In this paper, we study several important geometric optimization problems arising in machine
learning. First, we revisit the Minimum Enclosing Ball (MEB) problem in Euclidean space Rd. The
problem has been extensively studied before, but real-world machine learning tasks often need to
handle large-scale datasets so that we cannot even afford linear time algorithms. Motivated by
the recent developments on beyond worst-case analysis, we introduce the notion of stability for
MEB, which is natural and easy to understand. Roughly speaking, an instance of MEB is stable, if
the radius of the resulting ball cannot be significantly reduced by removing a small fraction of the
input points. Under the stability assumption, we present two sampling algorithms for computing
radius-approximate MEB with sample complexities independent of the number of input points n. In
particular, the second algorithm has the sample complexity even independent of the dimensionality d.
We also consider the general case without the stability assumption. We present a hybrid algorithm
that can output either a radius-approximate MEB or a covering-approximate MEB, which improves
the running time and the number of passes for the previous sublinear MEB algorithms. Further, we
extend our proposed notion of stability and design sublinear time algorithms for other geometric
optimization problems including MEB with outliers, polytope distance, one-class and two-class linear
SVMs (without or with outliers). Our proposed algorithms also work fine for kernels.
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1 Introduction

Many real-world machine learning tasks can be formulated as geometric optimization problems
in Euclidean space. We start with a fundamental geometric optimization problem, Minimum
Enclosing Ball (MEB), which has attracted a lot of attentions in past years. Given a set P of
n points in Euclidean space Rd, where d could be quite high, the problem of MEB is to find a
ball with minimum radius to cover all the points in P [16,38,60]. MEB finds several important
applications in machine learning [68]. For example, the popular classification model Support
Vector Machine (SVM) can be formulated as an MEB problem in high dimensional space, if
all the mapped points have the same norm by using kernel method, e.g., the popular radial
basis function kernel [80]. Hence fast MEB algorithms can be adopted to speed up its training
procedure [24,25, 80]. Recently, MEB has also been used for preserving privacy [37,69] and
quantum cryptography [46].

Usually, we consider the approximate solutions of MEB. If a ball covers all the n points
but has a radius larger than the optimal one, we call it a “radius-approximate solution”;
if a ball has the radius no larger than the optimal one but covers less than n points, we
call it a “covering-approximate solution” instead (the formal definitions are shown in
Section 3). In the era of big data, the dataset could be so large that we cannot even afford
linear time algorithms. This motivates us to ask the following questions:
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38:2 Stability Yields Sublinear Time Algorithms

Is it possible to develop approximation algorithms for MEB that run in sublinear time
in the input size? And how about other high-dimensional geometric optimization problems
arising in machine learning?

It is common to assume that the input data is represented by a n× d matrix, and thus
any algorithm having complexity o(nd) can be considered as a sublinear time algorithm.
In practice, data items are usually represented as sparse vectors in Rd; thus it can be fast
to perform the operations, like distance computing, even though the dimensionality d is
high (see the concluding remarks of [25]). Moreover, the number of input points n is often
much larger than the dimensionality d in many real-world scenarios. Therefore, we are
interested in designing the algorithms that have complexities sublinear in n (or
linear in n but with small factor before it). Designing sublinear time algorithms has
become a promising approach to handle many big data problems, and a detailed discussion
on previous works is given in Section 2.

1.1 Our Main Ideas and Results
Our idea for designing sublinear time MEB algorithms is inspired by the recent developments
on optimization with respect to stable instances, under the umbrella of beyond worst-case
analysis [74]. For example, several recent works introduced the notion of stability for problems
like clustering and max-cut [8, 10, 15]. In this paper, we give the notion of “stability” for
MEB. Roughly speaking, an instance of MEB is stable, if the radius of the resulting ball
cannot be significantly reduced by removing a small fraction of the input points (e.g., the
radius cannot be reduced by 10% if only 1% of the points are removed). The rationale behind
this notion is quite natural: if the given instance is not stable, the small fraction of points
causing significant reduction in the radius should be viewed as outliers (or we may need
multiple balls to cover the input points as k-center clustering [45,52]). To the best of our
knowledge, this is the first study on MEB from the perspective of stability.

We prove an important implication of the stability assumption: informally speaking, if
an instance of MEB is stable, its center should reveal a certain extent of robustness in the
space (Section 4). Using this implication, we propose two sampling algorithms for computing
(1 + ϵ)-radius approximate MEB with sublinear time complexities (Section 5); in particular,
our second algorithm has the sample size (i.e., the number of sampled points) independent
of the number of input points n and dimensionality d (to the best of our knowledge, this is
the first algorithm achieving (1 + ϵ)-radius approximation with such a sublinear complexity).

Moreover, we have an interesting observation: the ideas developed under the stability
assumption can even help us to solve the general instance without the stability assumption,
if we relax the requirement slightly. We introduce a hybrid approach that can output either a
radius-approximate MEB or a covering-approximate MEB, depending upon whether the input
instance is sufficiently stable1 (Section 6). It is worth noting that the simple uniform sampling
idea based on VC-dimension [49, 81] can only yield a “bi-criteria” approximation, which has
errors on both the radius and the number of covered points (see the discussion on our first
sampling algorithm in Section 5.1). Comparing with the sublinear time MEB algorithm
proposed by Clarkson et al. [25], we reduce the total running time from Õ(ϵ−2n+ ϵ−1d+M)
to O(n+h(ϵ, δ) ·d+M), where M is the number of non-zero entries in the input n×d matrix
and h(ϵ, δ) is a factor depending on the pre-specified radius error bound ϵ and covering error
bound δ. Thus, our improvement is significant if n ≫ d. The only tradeoff is that we allow a

1 We do not need to know whether the instance is stable or not, when running our algorithm.
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covering approximation for unstable instance (given the lower bound proved by [25], it is
quite unlikely to reduce the term ϵ−2n if we keep restricting the output to be (1 + ϵ)-radius
approximation). Moreover, our algorithm only needs uniform sampling and a single pass
over the data; on the other hand, the algorithm of [25] needs Õ(ϵ−1) passes (the details are
shown in Table 1).

Table 1 The existing and our results for computing MEB in high dimensions. In the table, “rad.”
and “cov.” stand for “radius approximation” and “covering approximation”, respectively. “M” is
the number of non-zero entries in the input n × d matrix. The factor C1 depends on ϵ and the
stability degree of the given instance; the factor C2 depends on ϵ and δ. The mark “∗” means that
the method can be extended for MEB with outliers.

Results Quality Time Number of passes

Clarkson et al. [25] (1 + ϵ)-rad. Õ(ϵ−2n + ϵ−1d + M) Õ(ϵ−1)

Core-sets methods∗

[16, 24,60,71]
(1 + ϵ)-rad.

roughly O(ϵ−1nd)
or O(ϵ−1(n + d + M))

if M = o(nd)

O(ϵ−1)

Numerical method [76] (1 + ϵ)-rad.
Õ(ϵ−1/2nd) or

Õ(ϵ−1/2(n + d + M))
if M = o(nd)

O(ϵ−1/2)

Numerical method [6] (1 + ϵ)-rad. Õ(nd + n
√

d/
√

ϵ) Õ(d +
√

d/ϵ)

Streaming algorithm [4,21] 1.22-rad. O(nd/ϵ5) one pass

This
paper

stable
instance∗

(1 + ϵ)-rad. O(C1 · d) uniform sampling

general
instance∗

(1 + ϵ)-rad.
or (1 − δ)-cov.

O
(
(n + C2)d

)
or

O(n + C2 · d + M)
if M = o(nd)

uniform sampling
plus a single pass

Our proposed notion of stability can be naturally extended to several other geometric
optimization problems arising in machine learning.

MEB with outliers. In practice, we often assume the presence of outliers in given datasets.
MEB with outliers is a natural generalization of the MEB problem, where the goal is to
find the minimum ball covering at least a certain fraction of input points. The presence
of outliers makes the problem not only non-convex but also highly combinatorial in high
dimensions. We define the stability for MEB with outliers, and propose the sublinear time
approximation algorithms. Our algorithms are the first sublinear time single-criterion
approximation algorithms for the MEB with outliers problem (comparing with the previous
bi-criteria approximations like [18,31]), to the best of our knowledge.

Polytope distance and SVM. Given a set P of points in Rd, the polytope distance problem
is to compute the shortest distance of any point inside the convex hull of P to the origin.
Similar to MEB, polytope distance is also a fundamental problem in computational geometry
and has many important applications, such as sparse approximation [24]. The polytope
distance problem is also closely related to SVMs. Actually, training linear SVM is equivalent
to solving the polytope distance problem for the Minkowski difference of two differently

ESA 2021



38:4 Stability Yields Sublinear Time Algorithms

labeled training datasets [41]. Though polytope distance is quite different from the MEB
problem, they in fact share several common features. For instance, both of them can be
solved by the greedy core-set construction method [24]. Following our ideas for MEB, we
define the stability for polytope distance, and propose the sublinear time algorithms.

Because the geometric optimization problems studied in this paper are motivated from
machine learning applications, we also take into account the kernels [78]. Our proposed
algorithms only need to conduct the basic operations, like computing the distance and inner
product, on the data items. Therefore, they also work fine for kernels.

The rest of the paper is organized as follows. In Section 2, we summarize the previous
results that are related to our work. In Section 3, we present the important definitions and
briefly introduce the coreset construction method for MEB from [16] (which will be used
in our following algorithms design and analysis). In Section 4, we prove the implication of
MEB stability. Further, we propose two sublinear time MEB algorithms in Section 5. We
also briefly introduce several important extensions in Section 6; due to the space limit, we
leave the details to our full paper.

2 Previous Work

The works most related to ours are [7,25]. Clarkson et al. [25] developed an elegant perceptron
framework for solving several optimization problems arising in machine learning, such as
MEB. Given a set of n points in Rd represented as an n× d matrix with M non-zero entries,
their framework can compute the MEB in Õ( n

ϵ2 + d
ϵ ) time 2. Note that the parameter “ϵ” is

an additive error (i.e., the resulting radius is r + ϵ if r is the radius of the optimal MEB)
which can be converted into a relative error (i.e., (1+ ϵ)r) in O(M) preprocessing time. Thus,
if M = o(nd), the running time is still sublinear in the input size nd (please see Table 1).
The framework of [25] also inspires the sublinear time algorithms for training SVMs [51] and
approximating Semidefinite Programs [40]. Hayashi and Yoshida [50] presented a sampling-
based method for minimizing quadratic functions of which the MEB objective is a special
case, but it yields a large additive error O(ϵn2).

Alon et al. [7] studied the following property testing problem: given a set of n points in
some metric space, determine whether the instance is (k, b)-clusterable, where an instance is
called (k, b)-clusterable if it can be covered by k balls with radius (or diameter) b > 0. They
proposed several sampling algorithms to answer the question “approximately”. Specifically,
they distinguish between the case that the instance is (k, b)-clusterable and the case that it is
ϵ-far away from (k, b′)-clusterable, where ϵ ∈ (0, 1) and b′ ≥ b. “ϵ-far” means that more than
ϵn points should be removed so that it becomes (k, b′)-clusterable. Note that their method
cannot yield a single criterion radius-approximation or covering-approximation algorithm for
the MEB problem, since it will introduce unavoidable errors on the radius and the number
of covered points due to the relaxation of “ϵ-far”. But it is possible to convert it into a
“bi-criteria” approximation, where it allows approximations on both the radius and the
number of uncovered outliers (e.g., discard more than the pre-specified number of outliers).

MEB and core-set. A core-set is a small set of points that approximates the structure/shape
of a much larger point set [1, 35, 72]. The core-set idea has also been used to compute
approximate MEB in high dimensional space [18,57,60,71]. Bădoiu and Clarkson [16] showed

2 The asymptotic notation Õ(f) = O
(
f · polylog( nd

ϵ )
)
.
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that it is possible to find a core-set of size ⌈2/ϵ⌉ that yields a (1 + ϵ)-radius approximate
MEB. Several other methods can yield even lower core-set sizes, such as [17, 57]. In fact, the
algorithm for computing the core-set of MEB is a Frank-Wolfe algorithm [39], which has been
systematically studied by Clarkson [24]. Other MEB algorithms that do not rely on core-sets
include [6, 38,76]. Agarwal and Sharathkumar [4] presented a streaming ( 1+

√
3

2 + ϵ)-radius
approximation algorithm for computing MEB; later, Chan and Pathak [21] proved that the
same algorithm actually yields an approximation ratio less than 1.22.

MEB with outliers and bi-criteria approximations. The MEB with outliers problem can
be viewed as the case k = 1 of the k-center clustering with outliers problem [22]. Bădoiu et
al. [18] extended their core-set idea to the problems of MEB and k-center clustering with
outliers, and achieved linear time bi-criteria approximation algorithms (if k is assumed to
be a constant). Huang et al. [53] and Ding et al. [31, 33] respectively showed that simple
uniform sampling approach can yield bi-criteria approximation of k-center clustering with
outliers. Several algorithms for the low dimensional MEB with outliers have also been
developed [5, 34, 47, 62]. There also exist a number of works on streaming MEB and k-center
clustering with outliers [20, 23, 63, 82]. Other related topics include robust optimization [14],
robust fitting [3, 48], and optimization with uncertainty [19].

Polytope distance and SVMs. The Gilbert’s algorithm [42] is one of the earliest known
algorithms for computing polytope distance. Similar to the core-set construction of MEB,
the Gilbert’s algorithm is also an instance of the Frank-Wolfe algorithm where the upper
bound of the number of iterations is independent of the data size and dimensionality [24, 41].
In general, SVM can be formulated as a quadratic programming problem, and a number of
efficient techniques have been developed besides the Gilbert’s algorithm, such as the soft
margin SVM [26,73], ν-SVM [27,77], and CVM [80].

Optimizations under stability. Bilu and Linial [15] showed that the Max-Cut problem
becomes easier if the given instance is stable with respect to perturbation on edge weights.
Ostrovsky et al. [70] proposed a separation condition for k-means clustering which refers to the
scenario where the clustering cost of k-means is significantly lower than that of (k− 1)-means
for a given instance, and demonstrated the effectiveness of the Lloyd heuristic [61] under the
separation condition. Balcan et al. [10] introduced the concept of approximation-stability for
finding the ground-truth of k-median and k-means clustering. Awasthi et al. [8] introduced
another notion of clustering stability and gave a PTAS for k-median and k-means clustering.
More clustering algorithms under stability assumption were studied in [9, 11–13,59].

Sublinear time algorithms. Besides the aforementioned sublinear MEB algorithm [25], a
number of sublinear time algorithms have been studied for the problems like clustering [29,
54,55,64,65] and property testing [44]. More detailed discussion on sublinear time algorithms
can be found in the survey papers [28,75].

3 Definitions and Preliminaries

We describe and analyze our algorithms in the unit-cost RAM model [66]. Suppose the input
is represented by an n× d matrix (i.e., n points in Rd). As mentioned in [25], it is common
to assume that any entry of the matrix can be recovered in constant time.

ESA 2021



38:6 Stability Yields Sublinear Time Algorithms

We let |A| denote the number of points of a given point set A in Rd, and ||x− y|| denote
the Euclidean distance between two points x and y in Rd. We use B(c, r) to denote the
ball centered at a point c with radius r > 0. Below, we give the definitions for MEB and
the notion of stability. To keep the structure of our paper more compact, we place other
necessary definitions for our extensions to the full paper.

▶ Definition 1 (Minimum Enclosing Ball (MEB)). Given a set P of n points in Rd, the MEB
problem is to find a ball with minimum radius to cover all the points in P . The resulting ball
and its radius are denoted by MEB(P ) and Rad(P ), respectively.

▶ Definition 2 (Radius Approximation and Covering Approximation). Let 0 < ϵ, δ < 1. A
ball B(c, r) is called a (1 + ϵ)-radius approximation of MEB(P ), if the ball covers all points
in P and has radius r ≤ (1 + ϵ)Rad(P ). On the other hand, the ball is called a (1 − δ)-
covering approximation of MEB(P ), if it covers at least (1 − δ)n points in P and has radius
r ≤ Rad(P ).

Both radius approximation and covering approximation are single-criterion approximations.
When ϵ (resp., δ) approaches to 0, the (1 + ϵ)-radius approximation (resp., (1 − δ)-covering
approximation) will approach to MEB(P ). The “covering approximation” seems to be
similar to “MEB with outliers”, but actually they are quite different.

▶ Definition 3 ((α, β)-stable). Given a set P of n points in Rd with two parameters α
and β in (0, 1), P is an (α, β)-stable instance if (1) Rad(P ′) > (1 − α)Rad(P ) for any
P ′ ⊂ P with |P ′| > (1 − β)n, and (2) there exists a P ′′ ⊂ P with |P ′′| = (1 − β)n having
Rad(P ′′) ≤ (1 − α)Rad(P ).

The intuition of Definition 3. Actually, β can be viewed as a function of α. For any α > 0,
there always exists a β ≥ 1

n such that P is an (α, β)-stable instance (β ≥ 1
n because we

must remove at least one point). The property of stability indicates that Rad(P ) cannot
be significantly reduced unless removing a large enough fraction of points from P . For a
fixed α, the larger β is, the more stable P becomes. Actually, our stability assumption is
quite reasonable in practice. For example, if the radius can be reduced considerably (say by
α = 10%) after removing only a very small fraction (say β = 1%) of points, it is natural to
view the small fraction of points as outliers. In practice, it is difficult to obtain the exact
value of β for a fixed α. However, the value of β only affects the sample sizes in our proposed
algorithms in Section 5, and thus only assuming a reasonable lower bound β0 < β is already
sufficient. To better understand the notion of stability in high dimensions, we consider the
following two examples.

Example (i). Suppose that the distribution of P is uniform and dense inside MEB(P ).
Let α ∈ (0, 1) be a fixed number, and we study the corresponding β of P . If we want
the radius of the remaining (1 − β)n points to be as small as possible, intuitively we
should remove the outermost βn points (since P is uniform and dense). Let P ′′ denote
the set of innermost (1 − β)n points that has Rad(P ′′) ≤ (1 − α)Rad(P ). Then we have
|P ′′|
|P | ≈ V ol

(
MEB(P ′′)

)
V ol

(
MEB(P )

) = (Rad(P ′′))d

(Rad(P ))d ≤ (1 − α)d, where V ol(·) is the volume function. That

is, 1 − β ≤ (1 − α)d and thus limd→∞ β = 1 when α is fixed; that means P tends to be very
stable as d increases.
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Example (ii). Consider a regular d-dimensional simplex P containing d+ 1 points where
each pair of points have the pairwise distance equal to 1. It is not hard to obtain Rad(P ) =√

d
2(1+d) , and we denote it by rd. If we remove β(d+ 1) points from P , namely it becomes a

regular d′-dimensional simplex with d′ = (1 − β)(d+ 1) − 1, the new radius rd′ =
√

d′

2(1+d′) .
To achieve rd′

rd
≤ 1 − α with a fixed α, it is easy to see that 1 − β should be no larger than

1
1+(2α−α2)d and thus limd→∞ β = 1. Similar to example (i), the instance P tends to be very
stable as d increases.

3.1 Core-set Construction for MEB [16]
To compute a (1 + ϵ)-radius approximate MEB, Bădoiu and Clarkson [16] proposed an
algorithm yielding an MEB core-set of size 2/ϵ (for convenience, we always assume that 2/ϵ
is an integer). We first briefly introduce their main idea, since it will be used in our proposed
algorithms (we do not use the MEB algorithm of [24] because it is not quite convenient to
analyze under our stability assumption; the other construction algorithms [17,57], though
achieving lower core-set sizes, are more complicated and thus not applicable to our problems).

Given a point set P ⊂ Rd, the algorithm is a simple iterative procedure. Initially, it
selects an arbitrary point from P and places it into an initially empty set T . In each of the
following 2/ϵ iterations, the algorithm updates the center of MEB(T ) and adds to T the
farthest point from the current center of MEB(T ). Finally, the center of MEB(T ) induces
a (1 + ϵ)-radius approximation for MEB(P ). The selected set of 2/ϵ points (i.e., T ) is called
the core-set of MEB. However, computing the exact center of MEB(T ) could be expensive;
in practice, one may only compute an approximate center of MEB(T ) in each iteration. In
the i-th iteration, we let ci denote the exact center of MEB(T ); also, let ri be the radius
of MEB(T ). Suppose ξ is a given number in (0, 1). Using another algorithm proposed
in [16, Section 3], one can compute an approximate center oi having the distance to ci less
than ξri in O( 1

ξ2 |T |d) time. Since we only compute oi rather than ci in each iteration, we
in fact only select the farthest point to oi (not ci). In [31], Ding provided a more careful
analysis on Bădoiu and Clarkson’s method and presented the following theorem.

▶ Theorem 4 ( [31]). In the core-set construction algorithm of [16], if one computes an
approximate MEB for T in each iteration and the resulting center oi has the distance to ci

less than ξri with ξ = s ϵ
1+ϵ for some s ∈ (0, 1), the final core-set size is bounded by z = 2

(1−s)ϵ .
Also, the bound could be arbitrarily close to 2/ϵ when s is sufficiently small.

▶ Remark 5. (i) We can simply set s to be any constant in (0, 1); for instance, if s = 1/3, the
core-set size will be bounded by z = 3/ϵ. Since |T | ≤ z in each iteration, the total running
time is O

(
z
(
|P |d+ 1

ξ2 zd
))

= O
(

1
ϵ

(
|P | + 1

ϵ3

)
d
)

. (ii) We also want to emphasize a simple
observation mentioned in [18,31] on the above core-set construction procedure, which will be
used in our algorithms and analyses later on. The algorithm always selects the farthest point
to oi in each iteration. However, this is actually not necessary. As long as the selected point
has distance at least (1 + ϵ)Rad(P ), the result presented in Theorem 4 is still true. If no
such a point exists (i.e., P \ B

(
oi, (1 + ϵ)Rad(P )

)
= ∅), a (1 + ϵ)-radius approximate MEB

(i.e., the ball B
(
oi, (1 + ϵ)Rad(P )

)
) has been already obtained.

▶ Remark 6 (kernels). If each point p ∈ P is mapped to ψ(p) in RD by some kernel function
(e.g., as the CVM [80]), where D could be +∞, we can still run the core-set algorithm
of [16, 58], since the algorithm only needs to compute the distances and the center oi is
always a convex combination of T in each iteration; instead of returning an explicit center,
the algorithm will output the coefficients of the convex combination for the center. And
similarly, our Algorithm 2 presented in Section 5.2 also works fine for kernels.
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Figure 1 (a) The case MEB(P ′) ⊂ MEB(P ); (b) an illustration under the assumption ∠ao′o <

π/2 in the proof of Claim 9; (c) the angle ∠ao′o ≥ π/2; (d) an illustration of Lemma 10.

4 Implication of the Stability Property

In this section, we show an important implication of the stability property of Definition 3.

▶ Theorem 7. Assume ϵ, ϵ′, β0 ∈ (0, 1). Let P be an (ϵ2, β)-stable instance of the MEB
problem with β > β0, and o be the center of its MEB. Let õ be a given point in Rd. Assume
the number r ≤ (1 + ϵ′2)Rad(P ). If the ball B

(
õ, r

)
covers at least (1 − β0)n points from P ,

the following holds

||õ− o|| < (2
√

2ϵ+
√

3ϵ′)Rad(P ). (1)

Theorem 7 indicates that if a ball covers a large enough subset of P and its radius is
bounded, its center should be close to the center of MEB(P ). Let P ′ = B

(
õ, r

)
∩ P , and

assume o′ is the center of MEB(P ′). To bound the distance between õ and o, we bridge
them by the point o′ (since ||õ− o|| ≤ ||õ− o′|| + ||o′ − o||). The following are two key lemmas
for proving Theorem 7.

▶ Lemma 8. The distance ||o′ − o|| ≤
√

2ϵRad(P ).

Proof. We consider two cases: MEB(P ′) is totally covered by MEB(P ) and otherwise. For
the first case (see Figure 1(a)), it is easy to see that

||o′ − o|| ≤ Rad(P ) − (1 − ϵ2)Rad(P ) = ϵ2Rad(P ) <
√

2ϵRad(P ), (2)

where the first inequality comes from the fact that MEB(P ′) has radius at least (1 −
ϵ2)Rad(P ) (Definition 3). Thus, we can focus on the second case below.

Let a be any point located on the intersection of the two spheres of MEB(P ′) and
MEB(P ). Consequently, we have the following claim.

▷ Claim 9. The angle ∠ao′o ≥ π/2.

Proof. Suppose that ∠ao′o < π/2. Note that ∠aoo′ is always smaller than π/2 since
||o − a|| = Rad(P ) ≥ Rad(P ′) = ||o′ − a||. Therefore, o and o′ are separated by the
hyperplane H that is orthogonal to the segment o′o and passes through the point a. See
Figure 1(b). Now we show that P ′ can be covered by a ball smaller than MEB(P ′). Let oH

be the point H ∩ o′o, and t (resp., t′) be the point collinear with o and o′ on the right side of
the sphere of MEB(P ′) (resp., left side of the sphere of MEB(P ); see Figure 1(b)). Then,
we have

||t− oH || + ||oH − o′|| = ||t− o′|| = ||a− o′|| < ||o′ − oH || + ||oH − a||
=⇒ ||t− oH || < ||oH − a||. (3)
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Similarly, we have ||t′ − oH || < ||oH − a||. Consequently, MEB(P ) ∩ MEB(P ′) is covered
by the ball B(oH , ||oH − a||). Further, because P ′ is covered by MEB(P ) ∩ MEB(P ′) and
||oH − a|| < ||o′ − a|| = Rad(P ′), P ′ is covered by the ball B(oH , ||oH − a||) that is smaller
than MEB(P ′). This contradicts to the fact that MEB(P ′) is the minimum enclosing ball
of P ′. Thus, the claim ∠ao′o ≥ π/2 is true. ◁

Given Claim 9, we know that ||o′ − o|| ≤
√(

Rad(P )
)2 −

(
Rad(P ′)

)2. See Figure 1(c).
Moreover, Definition 3 implies that Rad(P ′) ≥ (1 − ϵ2)Rad(P ). Therefore, we have

||o′ − o|| ≤
√(

Rad(P )
)2 −

(
(1 − ϵ2)Rad(P )

)2 ≤
√

2ϵRad(P ). (4)

◀

▶ Lemma 10. The distance ||õ− o′|| < (
√

2ϵ+
√

3ϵ′)Rad(P ).

Proof. Let L be the hyperplane orthogonal to the segment õo′ and passing through the
center o′. Suppose õ is located on the left side of L. Then, there exists a point b ∈ P ′

located on the right closed semi-sphere of MEB(P ′) divided by L (this result was proved
in [18,43] and see Lemma 2.2 in [18]). See Figure 1(d). That is, the angle ∠bo′õ ≥ π/2. As a
consequence, we have

||õ− o′|| ≤
√

||õ− b||2 − ||b− o′||2. (5)

Moreover, since ||õ− b|| ≤ r ≤ (1 + ϵ′2)Rad(P ) and ||b− o′|| = Rad(P ′) ≥ (1 − ϵ2)Rad(P ),
(5) implies that ||õ− o′|| ≤

√
(1 + ϵ′2)2 − (1 − ϵ2)2Rad(P ), where this upper bound is equal

to √
2ϵ′2 + ϵ′4 + 2ϵ2 − ϵ4Rad(P ) <

√
3ϵ′2 + 2ϵ2Rad(P ) < (

√
2ϵ+

√
3ϵ′)Rad(P ). (6)

◀

By triangle inequality, Lemmas 8 and 10, we immediately have

||õ− o|| ≤ ||õ− o′|| + ||o′ − o|| < (2
√

2ϵ+
√

3ϵ′)Rad(P ). (7)

This completes the proof of Theorem 7.

5 Sublinear Time Algorithms for MEB under Stability Assumption

Suppose ϵ ∈ (0, 1). We assume that the given instance P is an (ϵ2, β)-stable instance where
β is larger than a given lower bound β0 (i.e., β > β0). Using Theorem 7, we present two
different sublinear time sampling algorithms for computing MEB. Following most of the
articles on sublinear time algorithms (e.g., [29,64,65]), in each sampling step of our algorithms,
we always take the sample independently and uniformly at random.

5.1 The First Algorithm
The first algorithm is based on the theory of VC dimension and ϵ-nets [49, 81]. Roughly
speaking, we compute an approximate MEB of a small random sample (say, B(c, r)), and
expand the ball slightly; then we prove that this expanded ball is an approximate MEB
of the whole data set (see Figure 2). Our key idea is to show that B(c, r) covers at least
(1 − β0)n points and therefore c is close to the optimal center by Theorem 7. As emphasized
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r

c

Figure 2 An illustration for the first sampling algorithm. The red points are the samples; we
expand B(c, r) slightly and the larger ball is a radius-approximate MEB of the whole input point set.

in Section 1.1, our result is a single-criterion approximation. If simply applying the uniform
sample idea without the stability assumption (as the ideas in [33, 53]), it will result in a
bi-criteria approximation where the ball has to cover less than n points for achieving the
desired bounded radius.

▶ Theorem 11. With probability 1 − η, Algorithm 1 returns a λ-radius approximate MEB of
P , where

λ =
(
1 + (2

√
2 +

√
3)ϵ

)
(1 + ϵ2)

1 − ϵ2
(8)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1).

Algorithm 1 MEB Algorithm I.

Input: Two parameters 0 < ϵ, η < 1; an (ϵ2, β)-stable instance P of MEB problem in Rd,
where β is larger than a known lower bound β0 > 0.

1: Sample a set S of Θ( 1
β0

· max{log 1
η , d log d

β0
}) points from P uniformly at random.

2: Apply any approximate MEB algorithm (such as the core-set based algorithm [16]) to
compute a (1 + ϵ2)-radius approximate MEB of S, and let the obtained ball be B(c, r).

3: Output the ball B
(
c, 1+(2

√
2+

√
3)ϵ

1−ϵ2 r
)
.

Before proving Theorem 11, we prove the following lemma first.

▶ Lemma 12. Let S be a set of Θ( 1
β0

· max{log 1
η , d log d

β0
}) points sampled randomly and

independently from a given point set P ⊂ Rd, and B be any ball covering S. Then, with
probability 1 − η, |B ∩ P | ≥ (1 − β0)|P |.

Proof. Consider the range space Σ = (P,Φ) where each range ϕ ∈ Φ is the complement
of a ball in the space. In a range space, a subset Y ⊂ P is a β0-net if for any ϕ ∈ Φ,
|P ∩ϕ|

|P | ≥ β0 =⇒ Y ∩ ϕ ̸= ∅. Since |S| = Θ( 1
β0

· max{log 1
η , d log d

β0
}), we know that S is a

β0-net of P with probability 1−η [49,81]. Thus, if |B∩P | < (1−β0)|P |, i.e., |P \B| > β0|P |,
we have S ∩

(
P \B

)
̸= ∅. This contradicts to the fact that S is covered by B. Consequently,

|B ∩ P | ≥ (1 − β0)|P |. ◀

Proof of Theorem 11. Denote by o the center of MEB(P ). Since S ⊂ P and B(c, r) is
a (1 + ϵ2)-radius approximate MEB of S, we know that r ≤ (1 + ϵ2)Rad(P ). Moreover,
Lemma 12 implies that |B(c, r) ∩ P | ≥ (1 − β0)|P | with probability 1 − η. Suppose it is true
and let P ′ = B(c, r) ∩ P . Then, we have the distance

||c− o|| ≤ (2
√

2 +
√

3)ϵRad(P ) (9)
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via Theorem 7 (we set ϵ′ = ϵ). For simplicity, we use x to denote (2
√

2+
√

3)ϵ. The inequality
(9) implies that the point set P is covered by the ball B(c, (1 + x)Rad(P )). Note that we
cannot directly return B(c, (1 + x)Rad(P )) as the final result, since we do not know the
value of Rad(P ). Thus, we have to estimate the radius (1 + x)Rad(P ).

Since P ′ is covered by B(c, r) and |P ′| ≥ (1 − β0)|P |, r should be at least (1 − ϵ2)Rad(P )
due to Definition 3. Hence, we have

1 + x

1 − ϵ2
r ≥ (1 + x)Rad(P ). (10)

That is, P is covered by the ball B(c, 1+x
1−ϵ2 r). Moreover, the radius

1 + x

1 − ϵ2
r ≤ 1 + x

1 − ϵ2
(1 + ϵ2)Rad(P ). (11)

This means that ball B(c, 1+x
1−ϵ2 r) is a λ-radius approximate MEB of P , where

λ = (1 + ϵ2) 1 + x

1 − ϵ2
=

(
1 + (2

√
2 +

√
3)ϵ

)
(1 + ϵ2)

1 − ϵ2
(12)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1). ◀

Running time of Algorithm 1. For simplicity, we assume log 1
η < d log d

β0
. If we use

the core-set based algorithm [16] to compute B(c, r) (see Remark 5), the running time of
Algorithm 1 is O

( 1
ϵ2 (|S|d + 1

ϵ6 d)
)

= O
(

d2

ϵ2β0
log d

β0
+ d

ϵ8

)
= Õ(d2) where the hidden factor

depends on ϵ and β0.
▶ Remark 13. If the dimensionality d is too high, the random projection technique Johnson-
Lindenstrauss (JL) transform [30] can be used to approximately preserve the radius of
enclosing ball [2, 56,79]. However, it is not very useful for reducing the time complexity of
Algorithm 1. If we apply the JL-transform on the sampled Θ( d

β0
log d

β0
) points in Step 1, the

JL-transform step itself already takes Ω( d2

β0
log d

β0
) time.

5.2 The Second Algorithm
Our first algorithm in Section 5.1 is simple, but has a sample size (i.e., the number of sampled
points) depending on the dimensionality d, while the second algorithm has a sample
size independent of both n and d (it is particularly important when a kernel function is
applied, because the new dimension could be very large or even +∞). We briefly overview
our idea first.

High level idea of the second algorithm. Recall our Remark 5 (ii). If we know the value of
(1 + ϵ)Rad(P ), we can perform almost the same core-set construction procedure described in
Theorem 4 to achieve an approximate center of MEB(P ), where the only difference is that
we add a point with distance at least (1 + ϵ)Rad(P ) to oi in each iteration. In this way, we
avoid selecting the farthest point to oi, since this operation will inevitably have a linear time
complexity. To implement our strategy in sublinear time, we need to determine the value of
(1+ ϵ)Rad(P ) first. We propose Lemma 14 below to estimate the range of Rad(P ), and then
perform a binary search on the range to determine the value of (1 + ϵ)Rad(P ) approximately.
Based on the stability property, we observe that the core-set construction procedure can
serve as an “oracle” to help us to guess the value of (1 + ϵ)Rad(P ) (see Algorithm 3). Let
h > 0 be a candidate. We add a point with distance at least h to oi in each iteration. We
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prove that the procedure cannot continue for more than z iterations if h ≥ (1 + ϵ)Rad(P ),
and will continue more than z iterations with constant probability if h < (1 − ϵ)Rad(P ),
where z is the size of core-set described in Theorem 4. Also, during the core-set construction,
we add the points to the core-set via random sampling, rather than a deterministic way. A
minor issue here is that we need to replace ϵ by ϵ2 in Theorem 4, so as to achieve the overall
(1 +O(ϵ))-radius approximation in the following analysis. Below, we introduce Lemma 14
and Theorem 16 first, and then present the main result in Theorem 17.

▶ Lemma 14. Given a parameter η ∈ (0, 1), one selects an arbitrary point p1 ∈ P and takes
a sample Q ⊂ P with |Q| = 1

β0
log 1

η uniformly at random. Let p2 = arg maxp∈Q ||p − p1||.
Then, with probability 1 − η,

Rad(P ) ∈ [ 12 ||p1 − p2||, 1
1 − ϵ2

||p1 − p2||]. (13)

Proof. First, the lower bound of Rad(P ) is obvious since ||p1 − p2|| is always no larger than
2Rad(P ). Then, we consider the upper bound. Let B(p1, l) be the ball covering exactly
(1 − β0)n points of P , and thus l ≥ (1 − ϵ2)Rad(P ) according to Definition 3. To complete
our proof, we also need the following folklore lemma presented in [32].

▶ Lemma 15 ( [32]). Let N be a set of elements, and N ′ be a subset of N with size |N ′| = τ |N |
for some τ ∈ (0, 1). Given η ∈ (0, 1), if one randomly samples ln 1/η

ln 1/(1−τ) ≤ 1
τ ln 1

η elements
from N , then with probability at least 1 − η, the sample contains at least one element of N ′.

ll

p1p1

p2p2

Figure 3 An illustration of Lemma 14; the red points are the sampled set Q.

In Lemma 15, let N and N ′ be the point set P and the subset P \ B(p1, l), respectively.
We know that Q contains at least one point from N ′ according to Lemma 15 (by setting
τ = β0). Namely, Q contains at least one point outside B(p1, l). Moreover, because p2 =
arg maxp∈Q ||p−p1||, we have ||p1 −p2|| ≥ l ≥ (1−ϵ2)Rad(P ), i.e., Rad(P ) ≤ 1

1−ϵ2 ||p1 −p2||
(see Figure 3 for an illustration). ◀

Lemma 14 immediately implies the following result.

▶ Theorem 16. In Lemma 14, the ball B(p1,
2

1−ϵ2 ||p1 − p2||) is a 4
1−ϵ2 -radius approximate

MEB of P , with probability 1 − η.

Proof. From the upper bound in Lemma 14, we know that 2
1−ϵ2 ||p1 −p2|| ≥ 2Rad(P ). Since

||p1 − p|| ≤ 2Rad(P ) for any p ∈ P , the ball B(p1,
2

1−ϵ2 ||p1 − p2||) covers the whole point
set P . From the lower bound in Lemma 14, we know that 2

1−ϵ2 ||p1 − p2|| ≤ 4
1−ϵ2 Rad(P ).

Therefore, it is a 4
1−ϵ2 -radius approximate MEB of P . ◀

Since |Q| = 1
β0

log 1
η in Lemma 14, Theorem 16 indicates that we can easily obtain a

4
1−ϵ2 -radius approximate MEB of P in O( 1

β0
(log 1

η )d) time. Below, we present our second
sampling algorithm (Algorithm 2) that can achieve a much lower (1 +O(ϵ))-approximation
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ratio. Algorithm 3 serves as a subroutine in Algorithm 2. In Algorithm 3, we simply set
z = 3

ϵ2 with s = 1/3 as described in Theorem 4 (as mentioned before, we replace ϵ by ϵ2); we
compute oi having distance less than s ϵ2

1+ϵ2 Rad(T ) to the center of MEB(T ) in Step 2(1).

▶ Theorem 17. With probability 1 − η0, Algorithm 2 returns a λ-radius approximate MEB
of P , where

λ = (1 + x1)(1 + x2)
1 + ϵ2

with x1 = O
( ϵ2

1 − ϵ2
)
, x2 = O

( ϵ√
1 − ϵ2

)
, (14)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1). The running time is Õ
(
( 1

ϵ2β0
+ 1

ϵ8 )d
)
, where

Õ(f) = O(f · polylog( 1
ϵ ,

1
η0

)).

Algorithm 2 MEB Algorithm II.

Input: Two parameters 0 < ϵ, η0 < 1; an (ϵ2, β)-stable instance P of MEB problem in Rd,
where β is larger than a given lower bound β0 > 0. Set the interval [a, b] for Rad(P )
that is obtained by Lemma 14.

1: Among the set {(1 − ϵ2)a, (1 + ϵ2)(1 − ϵ2)a, · · · , (1 + ϵ2)w(1 − ϵ2)a = (1 + ϵ2)b} where
w = ⌈log1+ϵ2

2
(1−ϵ2)2 ⌉ + 1 = O( 1

ϵ2 ), perform binary search for the value h by using
Algorithm 3 with z = 3

ϵ2 and η = η0
2 log w .

2: Suppose that Algorithm 3 returns “no” when h = (1 + ϵ2)i0(1 − ϵ2)a and returns “yes”
when h = (1 + ϵ2)i0+1(1 − ϵ2)a.

3: Run Algorithm 3 again with h = (1 + ϵ2)i0+2a, z = 3
ϵ2 , and η = η0/2; let õ be the

obtained ball center of T when the loop stops.

4: Return the ball B(õ, r), where r =
1+(2

√
2+ 2

√
6√

1−ϵ2
)ϵ

1+ϵ2 h.

Algorithm 3 Oracle for testing h.

Input: An instance P , a parameter η ∈ (0, 1), h > 0, and a positive integer z.
1: Initially, arbitrarily select a point p ∈ P and let T = {p}.
2: i = 1; repeat the following steps:

(1) Compute an approximate MEB of T and let the ball center be oi as described in
Theorem 4 (replace ϵ by ϵ2 and set s = 1/3).

(2) Sample a set Q ⊂ P with |Q| = 1
β0

log z
η uniformly at random.

(3) Select the point q ∈ Q that is farthest to oi, and add it to T .
(4) If ||q − oi|| < h, stop the loop and output “yes”.
(5) i = i+ 1; if i > z, stop the loop and output “no”.

Before proving Theorem 17, we provide Lemma 18 first.

▶ Lemma 18. If h ≥ (1+ϵ2)Rad(P ), Algorithm 3 returns “yes”; else if h < (1−ϵ2)Rad(P ),
Algorithm 3 returns “no” with probability at least 1 − η.

Proof. First, we assume that h ≥ (1 + ϵ2)Rad(P ). Recall the remark following Theorem 4.
If we always add a point q with distance at least h ≥ (1 + ϵ2)Rad(P ) to oi, the loop 2(1)-(5)
cannot continue more than z iterations, i.e., Algorithm 3 will return “yes”.

Now, we consider the case h < (1 − ϵ2)Rad(P ). Similar to the proof of Lemma 14, we
consider the ball B(oi, l) covering exactly (1 − β0)n points of P . According to Definition 3,
we know that l ≥ (1 − ϵ2)Rad(P ) > h. Also, with probability 1 −η/z, the sample Q contains
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at least one point outside B(oi, l) due to Lemma 15. By taking the union bound, with
probability (1 − η/z)z ≥ 1 − η, ||q − oi|| is always larger than h and eventually Algorithm 3
will return “no”. ◀

Proof of Theorem 17. Since Algorithm 3 returns “no” when h = (1 + ϵ2)i0(1 − ϵ2)a and
returns “yes” when h = (1 + ϵ2)i0+1(1 − ϵ2)a, from Lemma 18 we know that

(1 + ϵ2)i0(1 − ϵ2)a < (1 + ϵ2)Rad(P ); (15)
(1 + ϵ2)i0+1(1 − ϵ2)a ≥ (1 − ϵ2)Rad(P ). (16)

The above inequalities together imply that

(1 + ϵ2)3

1 − ϵ2
Rad(P ) > (1 + ϵ2)i0+2a ≥ (1 + ϵ2)Rad(P ). (17)

Thus, when running Algorithm 3 with h = (1 + ϵ2)i0+2a in Step 3, the algorithm returns
“yes” (by the right hand-side of (17)). Then, consider the ball B(õ, h). We claim that
|P \ B(õ, h)| < β0n. Otherwise, the sample Q contains at least one point outside B(õ, h)
with probability 1 − η/z in Step 2(2) of Algorithm 3, i.e., the loop will continue. Thus, it
contradicts to the fact that the algorithm returns “yes”. Let P ′ = P ∩ B(õ, h), and then
|P ′| ≥ (1 − β0)n. Moreover, the left hand-side of (17) indicates that

h = (1 + ϵ2)i0+2a < (1 + 8ϵ2

1 − ϵ2
)Rad(P ). (18)

Now, we can apply Theorem 7, where we set “ϵ′” to be “
√

8ϵ2

1−ϵ2 ” in the theorem. Let o be
the center of MEB(P ). Consequently, we have

||õ− o|| < (2
√

2 + 2
√

6/
√

1 − ϵ2)ϵ · Rad(P ). (19)

For simplicity, we let x1 = 8ϵ2

1−ϵ2 and x2 = (2
√

2 + 2
√

6/
√

1 − ϵ2)ϵ. Hence, h ≤ (1 +
x1)Rad(P ) and ||õ − o|| ≤ x2Rad(P ) in (18) and (19). From (19), we know that P ⊂
B(õ, (1 + x2)Rad(P )). From the right hand-side of (17), we know that (1 + x2)Rad(P ) ≤
1+x2
1+ϵ2 h. Thus, we have P ⊂ B

(
õ, 1+x2

1+ϵ2 h
)

where 1+x2
1+ϵ2 h =

1+(2
√

2+ 2
√

6√
1−ϵ2

)ϵ

1+ϵ2 h. Also, the radius

1 + x2

1 + ϵ2
h ≤︸︷︷︸

by (18)

(1 + x2)(1 + x1)
1 + ϵ2

Rad(P ) = λ · Rad(P ). (20)

Thus B
(
õ, 1+x2

1+ϵ2 h
)

is a λ-radius approximate MEB of P , and λ = 1 +O(ϵ) if ϵ is fixed.

Success probability. The success probability of Algorithm 3 is 1 − η. In Algorithm 2, we
set η = η0

2 log w in Step 1 and η = η0/2 in Step 3, respectively. We take the union bound and
the success probability of Algorithm 2 is (1 − η0

2 log w )log w(1 − η0/2) > 1 − η0.

Running time. As the subroutine, Algorithm 3 runs in O(z( 1
β0

(log z
η )d+ 1

ϵ6 d)) time; Al-
gorithm 2 calls the subroutine O

(
log( 1

ϵ2 )
)

times. Note that z = O( 1
ϵ2 ). Thus, the total

running time is Õ
(
( 1

ϵ2β0
+ 1

ϵ8 )d
)
. ◀
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6 Extensions

We also present two important extensions in this paper (due to the space limit, we place the
details to our full paper). We briefly introduce the main ideas and summarize the results
below.

We first consider MEB with outliers under the stability assumption and provide a sublinear
time constant factor radius approximation. We also consider the general case without the
stability assumption. An interesting observation is that the ideas developed for stable
instance can even help us to develop a hybrid approach for MEB (without or with outliers)
when the stability assumption does not hold. First, we “suppose” the input instance is
(α, β)-stable where “α” and “β” are carefully designed based on the pre-specified radius error
bound ϵ and covering error bound δ, and compute a “potential” (1 + ϵ)-radius approximation
(say a ball B1); then we apply the recently proposed sublinear time bi-criteria MEB with
outliers algorithm [31] to compute a “potential” (1 − δ)-covering approximation (say a ball
B2); finally, we determine the final output based on the ratio of their radii. Specifically,
we set a threshold τ that is determined by the given radius error bound ϵ. If the ratio is
no larger than τ , we know that B1 is a “true” (1 + ϵ)-radius approximation and return it;
otherwise, we return B2 that is a “true” (1 − δ)-covering approximation. Moreover, for the
latter case (i.e., returning a (1 − δ)-covering approximation), we will show that our proposed
algorithm yields a radius not only being strictly smaller than Rad(P ), but also having a gap
of Θ(ϵ2) · Rad(P ) to Rad(P ) (i.e., the returned radius is at most

(
1 − Θ(ϵ2)

)
· Rad(P )).

Our algorithm only needs uniform sampling and a single pass over the input data, where the
space complexity in memory is O(d) (the hidden factor depends on ϵ and δ); if the input
data matrix is sparse (i.e., M = o(nd)), the time complexity is sublinear. Furthermore, we
propose the similar results for the polytope distance and SVM problems (for both stable
instance and general instance).

7 Future Work

Following our work, several interesting problems deserve to be studied in future. For example,
different from radius approximation, the current research on covering approximation of MEB is
still inadequate. In particular, can we provide a lower bound for the complexity of computing
covering approximate MEB, as the lower bound result for radius approximate MEB proved
by [25]? Also, is it possible to extend the stability notion to other geometric optimization
problems with more complicated structures (like subspace fitting and clustering [36], and
regression problems [67])?

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation

via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.
2 Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Embeddings of surfaces, curves, and moving

points in euclidean space. In Proceedings of the 23rd ACM Symposium on Computational
Geometry, Gyeongju, South Korea, June 6-8, 2007, pages 381–389, 2007.

3 Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling and grating
coresets. Discrete & Computational Geometry, 39(1-3):38–58, 2008.

4 Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high
dimensions. Algorithmica, 72(1):83–98, 2015.

5 Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with minimum
diameter and related problems. Journal of algorithms, 12(1):38–56, 1991.

ESA 2021



38:16 Stability Yields Sublinear Time Algorithms

6 Zeyuan Allen Zhu, Zhenyu Liao, and Yang Yuan. Optimization algorithms for faster computa-
tional geometry. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 53:1–53:6, 2016.

7 Noga Alon, Seannie Dar, Michal Parnas, and Dana Ron. Testing of clustering. SIAM Journal
on Discrete Mathematics, 16(3):393–417, 2003.

8 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Stability yields a PTAS for k-median and
k-means clustering. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 309–318, 2010.

9 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Inf. Process. Lett., 112(1-2):49–54, 2012.

10 Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering under approximation
stability. Journal of the ACM (JACM), 60(2):8, 2013.

11 Maria-Florina Balcan and Mark Braverman. Finding low error clusterings. In COLT 2009 -
The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009, 2009.

12 Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under perturbation
resilience. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 68:1–68:14, 2016.

13 Maria-Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. SIAM J.
Comput., 45(1):102–155, 2016.

14 Dimitris Bertsimas and Melvyn Sim. The price of robustness. Oper. Res., 52(1):35–53, 2004.
15 Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability &

Computing, 21(5):643–660, 2012.
16 Mihai Bădoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 801–802, 2003.
17 Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Computational Geometry,

40(1):14–22, 2008.
18 Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In

Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 250–257, 2002.
19 Giuseppe Carlo Calafiore and Marco C. Campi. Uncertain convex programs: randomized

solutions and confidence levels. Math. Program., 102(1):25–46, 2005.
20 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering

(with outliers) in mapreduce and streaming, almost as accurately as sequentially. PVLDB,
12(7):766–778, 2019.

21 Timothy M. Chan and Vinayak Pathak. Streaming and dynamic algorithms for minimum
enclosing balls in high dimensions. Comput. Geom., 47(2):240–247, 2014.

22 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 642–651. Society for Industrial and Applied Mathematics, 2001.

23 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 30–39. ACM, 2003.

24 Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):63, 2010.

25 Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear optimization for machine
learning. J. ACM, 59(5):23:1–23:49, 2012.

26 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273,
1995.

27 David J. Crisp and Christopher J. C. Burges. A geometric interpretation of v-SVM classifiers.
In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors, NIPS, pages 244–250. The
MIT Press, 1999.

28 Artur Czumaj and Christian Sohler. Sublinear-time algorithms. Survey paper, 2004.



H. Ding 38:17

29 Artur Czumaj and Christian Sohler. Sublinear-time approximation for clustering via random
sampling. In International Colloquium on Automata, Languages, and Programming, pages
396–407. Springer, 2004.

30 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

31 Hu Ding. A sub-linear time framework for geometric optimization with outliers in high
dimensions. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual
European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual
Conference), volume 173 of LIPIcs, pages 38:1–38:21, 2020.

32 Hu Ding and Jinhui Xu. Sub-linear time hybrid approximations for least trimmed squares estim-
ator and related problems. In Proceedings of the International Symposium on Computational
geometry (SoCG), page 110, 2014.

33 Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with
outliers and coreset construction. In 27th Annual European Symposium on Algorithms, ESA
2019, September 9-11, 2019, Munich/Garching, Germany., pages 40:1–40:16, 2019.

34 Alon Efrat, Micha Sharir, and Alon Ziv. Computing the smallest k-enclosing circle and related
problems. Computational Geometry, 4(3):119–136, 1994.

35 Dan Feldman. Core-sets: An updated survey. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov., 10(1), 2020.

36 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 569–578.
ACM, 2011.

37 Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially
private k-means clustering and applications to privacy in mobile sensor networks. In Proceed-
ings of the 16th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2017, Pittsburgh, PA, USA, April 18-21, 2017, pages 3–15, 2017.

38 Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast smallest-enclosing-ball computation in
high dimensions. In Algorithms - ESA 2003, 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003, Proceedings, pages 630–641, 2003.

39 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

40 Dan Garber and Elad Hazan. Approximating semidefinite programs in sublinear time. In John
Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, pages 1080–1088, 2011.

41 Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In Proceedings of the
International Symposium on Computational geometry (SoCG), pages 33–42, 2009.

42 Elmer G. Gilbert. An iterative procedure for computing the minimum of a quadratic form on
a convex set. SIAM Journal on Control, 4(1):61–80, 1966.

43 Ashish Goel, Piotr Indyk, and Kasturi R Varadarajan. Reductions among high dimensional
proximity problems. In SODA, volume 1, pages 769–778. Citeseer, 2001.

44 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

45 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

46 Laszlo Gyongyosi and Sandor Imre. Geometrical analysis of physically allowed quantum
cloning transformations for quantum cryptography. Information Sciences, 285:1–23, 2014.

47 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing
circle. Algorithmica, 41(3):147–157, 2005.

ESA 2021



38:18 Stability Yields Sublinear Time Algorithms

48 Sariel Har-Peled and Yusu Wang. Shape fitting with outliers. SIAM Journal on Computing,
33(2):269–285, 2004.

49 David Haussler and Emo Welzl. eps-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, 1987.

50 Kohei Hayashi and Yuichi Yoshida. Minimizing quadratic functions in constant time. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2217–2225,
2016.

51 Elad Hazan, Tomer Koren, and Nati Srebro. Beating SGD: learning svms in sublinear time. In
John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, pages 1233–1241, 2011.

52 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985.

53 Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering (with
outliers) in doubling metrics. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 814–825, 2018.

54 Piotr Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 428–434, 1999.

55 Piotr Indyk. A sublinear time approximation scheme for clustering in metric spaces. In 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999,
New York, NY, USA, pages 154–159, 1999.

56 Michael Kerber and Sharath Raghvendra. Approximation and streaming algorithms for
projective clustering via random projections. In Proceedings of the 27th Canadian Conference
on Computational Geometry, CCCG 2015, Kingston, Ontario, Canada, August 10-12, 2015,
2015.

57 Michael Kerber and R. Sharathkumar. Approximate čech complex in low and high dimensions.
In Algorithms and Computation - 24th International Symposium, ISAAC 2013, Hong Kong,
China, December 16-18, 2013, Proceedings, pages 666–676, 2013.

58 Amer Krivosija and Alexander Munteanu. Probabilistic smallest enclosing ball in high dimen-
sions via subgradient sampling. In Gill Barequet and Yusu Wang, editors, 35th International
Symposium on Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Ore-
gon, USA, volume 129 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

59 Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 299–308.
IEEE, 2010.

60 Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. Approximate minimum enclosing
balls in high dimensions using core-sets. ACM Journal of Experimental Algorithmics, 8, 2003.

61 Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

62 Jiří Matoušek. On enclosing k points by a circle. Information Processing Letters, 53(4):217–221,
1995.

63 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 165–178. Springer, 2008.

64 Adam Meyerson, Liadan O’callaghan, and Serge Plotkin. A k-median algorithm with running
time independent of data size. Machine Learning, 56(1-3):61–87, 2004.



H. Ding 38:19

65 Nina Mishra, Dan Oblinger, and Leonard Pitt. Sublinear time approximate clustering. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 439–447.
Society for Industrial and Applied Mathematics, 2001.

66 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, USA, 1995.

67 David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. On the least trimmed squares estimator. Algorithmica, 69(1):148–183, 2014.

68 Frank Nielsen and Richard Nock. Approximating smallest enclosing balls with applications to
machine learning. Int. J. Comput. Geom. Appl., 19(5):389–414, 2009.

69 Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Locating a small cluster privately. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 413–427, 2016.

70 Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness
of lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

71 Rina Panigrahy. Minimum enclosing polytope in high dimensions. arXiv preprint cs/0407020,
2004.

72 Jeff M. Phillips. Coresets and sketches. Computing Research Repository, 2016.
73 J. Platt. Fast training of support vector machines using sequential minimal optimization.

In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

74 Tim Roughgarden. Beyond worst-case analysis. Commun. ACM, 62(3):88–96, 2019.
75 Ronitt Rubinfeld. Sublinear time algorithms. Citeseer, 2006.
76 Ankan Saha, S. V. N. Vishwanathan, and Xinhua Zhang. New approximation algorithms for

minimum enclosing convex shapes. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1146–1160, 2011.

77 B. Scholkopf, A. J. Smola, K. R. Muller, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207–1245, 2000.

78 Bernhard Schölkopf and Alexander Johannes Smola. Learning with Kernels: support vector
machines, regularization, optimization, and beyond. Adaptive computation and machine
learning series. MIT Press, 2002.

79 Donald R. Sheehy. The persistent homology of distance functions under random projection.
In 30th Annual Symposium on Computational Geometry, SOCG’14, Kyoto, Japan, June 08 -
11, 2014, page 328, 2014.

80 Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

81 Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.

82 Hamid Zarrabi-Zadeh and Asish Mukhopadhyay. Streaming 1-center with outliers in high
dimensions. In Proceedings of the Canadian Conference on Computational Geometry (CCCG),
pages 83–86, 2009.

ESA 2021


	1 Introduction
	1.1 Our Main Ideas and Results

	2 Previous Work
	3 Definitions and Preliminaries
	3.1 Core-set Construction for MEB [16]

	4 Implication of the Stability Property
	5 Sublinear Time Algorithms for MEB under Stability Assumption
	5.1 The First Algorithm
	5.2 The Second Algorithm

	6 Extensions
	7 Future Work

