
Data Structures Lower Bounds and Popular
Conjectures
Pavel Dvořák #

Charles University, Prague, Czech Republic

Michal Koucký #

Charles University, Prague, Czech Republic

Karel Král #

Charles University, Prague, Czech Republic

Veronika Slívová #

Charles University, Prague, Czech Republic

Abstract
In this paper, we investigate the relative power of several conjectures that attracted recently lot of
interest. We establish a connection between the Network Coding Conjecture (NCC) of Li and Li [25]
and several data structure problems such as non-adaptive function inversion of Hellman [19] and
the well-studied problem of polynomial evaluation and interpolation. In turn these data structure
problems imply super-linear circuit lower bounds for explicit functions such as integer sorting and
multi-point polynomial evaluation.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Data structures, Circuits, Lower bounds, Network Coding Conjecture

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.39

Related Version Full Version: https://arxiv.org/abs/2102.09294

Funding The authors were partially supported by Czech Science Foundation GAČR grant #19-
27871X. This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 823748. The fourth
author was supported by Charles University project UNCE/SCI/004.

Acknowledgements We would like to thank to Mike Saks and Sagnik Mukhopadhyay for insightful
discussions.

1 Introduction

One of the central problems in theoretical computer science is proving lower bounds in
various models of computation such as circuits and data structures. Proving super-linear
size lower bounds for circuits even when their depth is restricted is rather elusive. Similarly,
proving polynomial lower bounds on query time for certain static data structure problems
seems out of reach. To deal with this situation researchers developed various conjectures
which if true would imply the sought after lower bounds. In this paper, we investigate the
relative power of some of those conjectures. The Network Coding Conjecture (NCC) of Li
and Li [25] attracted recently lot of attention and it was used to prove various lower bounds
such as lower bounds on the size of circuits computing multiplication [3] and the number of
IO operations needed for external memory sorting [13].

Another problem that is popular in cryptography is a certain data structure type problem
for function inversion [19]. Corrigan-Gibbs and Kogan [9] observed that lower bounds for the
function inversion problem imply lower bounds for logarithmic depth circuits. A similar more

© Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koblich@iuuk.mff.cuni.cz
mailto:koucky@iuuk.mff.cuni.cz
mailto:kralka@iuuk.mff.cuni.cz
mailto:slivova@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.ESA.2021.39
https://arxiv.org/abs/2102.09294
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Data Structures Lower Bounds and Popular Conjectures

general observation was made by Viola [35]. In this paper, we establish a new connection
between the function inversion problem and NCC. We show that NCC implies certain weak
lower bounds for the inversion data structure problem. That in turn implies the same type
of circuit lower bounds as given by Corrigan-Gibbs and Kogan [9]. We show that similar
results apply to a host of other data structure problems such as the well-studied polynomial
evaluation problem or the Finite Field Fourier transform problem. Corrigan-Gibbs and
Kogan [9] gave their circuit lower bound for certain apriori undetermined function. We
establish the same circuit lower bounds for sorting integers which is a very explicit function.
Similarly, we establish a connection between data structure for polynomial evaluation and
circuits for multi-point polynomial evaluation. Our results sharpen and generalize the picture
emerging in the literature.

The data structures considered in this paper are static, non-adaptive, and systematic,
i.e., a very restricted class of data structures for which lower bounds should perhaps be
easier to obtain. Such data structure problems have the following structure: Given the
input data described by N bits, create a data structure of size s. Then we receive a single
query from a set of permissible queries and we are supposed to answer the query while
non-adaptively inspecting at most t locations in the data structure and in the original
data. The non-adaptivity means that the inspected locations are chosen only based on
the query being answered but not on the content of the inspected memory. We show that
when s ≥ ω

(
N/ log log N

)
, polynomial lower bounds on t for certain problems would imply

super-linear lower bounds on log-depth circuits for computing sorting, multi-point polynomial
evaluation, and other problems.

We show that logarithmic lower bounds on t for the data structures can be derived from
NCC even in the more generous setting of s ≥ εN and when inspecting locations in the
data structure is for free. This matches the lower bounds of Afshani [3] for certain circuit
parameters derived from NCC. One can recover the same type of result they showed from
our connection between NCC, data structure lower bounds, and circuit lower bounds. In
this regards, NCC seems to be a stronger assumption than that certain functions require
large boolean circuits or inefficient data structures. One would hope that for the strongly
restricted data structure problems, obtaining the required lower bounds should be within
our reach.

Our technique seems applicable to data structure problems that are involutions that
are inverses of themselves. Although we use a lot of the same technical machinery as the
previous papers on NCC our proofs involve new ideas. An interesting aspect of our proofs is
that they apply the hypothesized data structure twice in the reductions. This is reminiscent
of many quantum algorithms that use Hadamard transform twice in a row.

Organization. The statement of our main results is in Section 4. In the next section, we
review the data structure problems we consider. Then we provide a precise definition of
Network Coding Conjecture in Section 3. In Section 5 we prove our main result for function
inversion. In Section 6 we discuss the connection between data structure and circuit lower
bounds for explicit functions. Some of the proofs are left for the full version [12].

2 Data Structure Problems

In this paper, we study lower bounds on systematic data structures for various problems –
function inversion, polynomial evaluation, and polynomial interpolation. We are given an
input I = {x0, . . . , xn−1}, where each xi ∈ [n] = {0, . . . , n − 1} or each xi is an element of

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:3

some field F. First, a data structure algorithm can preprocess I to produce an advice string
aI of s bits (we refer to the parameter s as space of the data structure D). Then, we are
given a query q and the data structure should produce a correct answer (what is a correct
answer depends on the problem). To answer a query q, the data structure D has access to
the whole advice string aI and can make t probes to the input I, i.e., read at most t elements
from I. We refer to the parameter t as the query time of the data structure.

We consider non-uniform data structures as we want to provide connections between data
structures and non-uniform circuits. Formally, a non-uniform systematic data structure Dn

for an input I = {x0, . . . , xn−1} is a pair of algorithms (Pn, Qn) with oracle access to I. The
algorithm Pn produces the advice string aI ∈ {0, 1}s. The algorithm Qn with inputs aI and
a query q outputs a correct answer to the query q with at most t oracle probes to I. The
algorithms Pn and Qn can differ for each n ∈ N.

2.1 Function Inversion
In the function inversion problem, we are given a function f : [n] → [n] and a point y ∈ [n]
and we want to find x ∈ [n] such that f(x) = y. This is a central problem in cryptography
as many cryptographic primitives rely on the existence of a function that is hard to invert.
To sum up we are interested in the following problem.

Function Inversion
Input: A function f : [n] → [n] as an oracle.
Preprocessing: Using f , prepare an advice string af ∈ {0, 1}s.
Query: Point y ∈ [n].
Answer: Compute the value f−1(y), with a full access to af and

using at most t probes to the oracle for f .
We want to design an efficient data structure, i.e., make s and t as small as possible.

There are two trivial solutions. The first one is that the whole function f−1 is stored in the
advice string af , thus s = O(n log n) and t = 0. The second one is that the whole function f

is probed during answering a query y ∈ [n], thus t = O(n) and s = 0. Note that the space s

of the data structure is the length of the advice string af in bits but with one oracle-probe
xi the data structure reads the whole f(xi), thus with n oracle-probes we read the whole
description of f , i.e., n log n bits.

The question is whether we can design a data structure with s, t ≤ o(n). Hellman [19]
gave the first non-trivial solution and introduced a randomized (adaptive) systematic data
structure which inverts a function with a constant probability (over the uniform choice of
the function f and the query y ∈ [n]) and s = O

(
n2/3 log n

)
and t = O

(
n2/3 log n

)
. Fiat

and Naor [14] improved the result and introduced a data structure that inverts any function
at any point, however with a slightly worse trade-off: s3t = O

(
n3 log n

)
. Hellman [19]

also introduced a more efficient data structure for inverting a permutation – it inverts any
permutation at any point and st = O(n log n). Thus, it seems that inverting a permutation
is an easier problem than inverting an arbitrary function.

In this paper, we are interested in lower bounds for the inversion problem. Yao [36]
gave a lower bound that any systematic data structure for the inversion problem must
have st ≥ Ω(n log n), however, the lower bound is applicable only if t ≤ O(

√
n). Since

then, only slight progress was made. De et al. [10] improved the lower bound of Yao [36]
to be applicable for the full range of t. Abusalah et al. [1] improved the trade-off, that
for any k it must hold that skt ≥ Ω

(
nk

)
. Seemingly, their result contradicts Hellman’s

trade-off
(
s = t = O

(
n2/3 log n

))
as it implies s = t ≥ nk/k+1 for any k. However, for

Hellman’s attack [19] we need that the function can be efficiently evaluated and the functions
introduced by Abusalah et al. [1] cannot be efficiently evaluated. There is also a series of

ESA 2021

39:4 Data Structures Lower Bounds and Popular Conjectures

papers [17, 30, 11, 8] that study how the probability of successful inversion depends on
the parameters s and t. However, none of these results yields a better lower bound than
st ≥ Ω(n log n). Hellman’s trade-off is still the best-known upper bound trade-off for the
inversion problem. Thus, there is still a substantial gap between the lower and upper bounds.

Another caveat of all known data structures for the inversion is that they heavily use
adaptivity during answering queries y ∈ [n]. I.e., probes to the oracle depend on the advice
string a and answers to the oracle probes which have been already made. We are interested
in non-adaptive data structures. We say a systematic data structure is non-adaptive if all
oracle probes depend only on the query y ∈ [n].

As non-adaptive data structures are weaker than adaptive ones, there is a hope that
for non-adaptive data structures we could prove stronger lower bounds. Moreover, the
non-adaptive data structure corresponds to circuits computation [31, 32, 34, 9]. Thus,
we can derive a circuit lower bound from a strong lower bound for a non-adaptive data
structure. Non-adaptive data structures were considered by Corrigan-Gibbs and Kogan [9].
They proved that improvement by a polynomial factor of Yao’s lower bound [36] for non-
adaptive data structures would imply the existence of a function F : {0, 1}N → {0, 1}N

for N = n log n that cannot be computed by a linear-size and logarithmic-depth circuit.
More formally, they prove that if a function f : [n] → [n] cannot be inverted by a non-
adaptive data structure of space O (n log n/ log log n) and query time O(nε) for some ε > 0
then there exists a function F : {0, 1}N → {0, 1}N that cannot be computed by any
circuit of size O(N) and depth O(log N). They interpret r ∈ {0, 1}N as n numbers in
[n], i.e, r = (r1, . . . , rn) ∈ {0, 1}N where each ri ∈ [n]. The function F is defined as
F (y) = F (y1, . . . , yn) =

(
f−1(y1),f−1(yn)

)
where f−1(yi) = min

{
x ∈ [n] | f(x) = y

}
and min ∅ = 0. Informally, if the function f is hard to invert at some points, then it is hard
to invert at all points together. Compared to the result of Corrigan-Gibbs and Kogan [9],
we provide an explicit function (sorting n-bit integers) which will require large circuits if
any of the functions f is hard to invert. A connection similar to Corrigan-Gibbs and Kogan
between data structures and circuits was made also by Viola [35].

2.2 Evaluation and Interpolation of Polynomials
In this section, we describe two natural problems connected to polynomials. We consider our
problems over a finite field F to avoid issues with encoding reals.

Polynomial Evaluation over F
Input: Coefficients of a polynomial p ∈ F[x]: α0, . . . , αn−1 ∈ F

(i.e., p(x) =
∑

i∈[n] αix
i)

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: A number x ∈ F.
Answer: Compute the value p(x), with a full access to ap and using

at most t probes to the coefficients of p.

Polynomial Interpolation over F
Input: Point-value pairs of a polynomial p ∈ F[x] of degree at

most n − 1:
(
x0, p(x0)

)
, . . . ,

(
xn−1, p(xn−1)

)
∈ F × F

where xi ̸= xj for any two indices i ̸= j

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: An index j ∈ [n].
Answer: Compute j-th coefficient of the polynomial p, i.e., the

coefficient of xj in p, with a full access to ap and using
at most t probes to the oracle for point-value pairs.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:5

In the paper we often use a version of polynomial interpolation where the points
x0, x1, . . . , xn−1 are fixed in advance and the input consists just of p(x0), p(x1), . . . , p(xn−1).
Since we are interested in lower bounds, this makes our results slightly stronger.

Let F = GF(pk) denote the Galois Field of pk elements. Let n be a divisor of pk − 1.
It is a well-known fact that for any finite field F its multiplicative group F∗ is cyclic (see
e.g. Serre [28]). Thus, there is a primitive n-th root of unity σ ∈ F (that is an element σ

such that σn = 1 and for each 1 ≤ j < n, σj ̸= 1). Pollard [27] defines the Finite Field
Fourier transform (FFFT) (with respect to σ) as a linear function FFFTn,σ : Fn → Fn which
satisfies:

FFFTn,σ(α0, . . . , αn−1) = (β0, . . . , βn−1) where

βi =
∑

j∈[n]

αjσij for any i ∈ [n]

The inversion FFFT−1
n,σ is given by:

FFFT−1
n,σ(β0, . . . , βn−1) = (α0, . . . , αn−1) where

αi = 1
n

∑
j∈[n]

βjσ−ij for any i ∈ [n]

Here, 1
n = (

∑n
i=1 1)−1 over F. In our theorems we always set n to be a divisor of |F|−1 = pk−1

thus n modulo p is non-zero and the inverse exists. Observe, that FFFT−1
n,σ = 1

n FFFTn,σ−1 .
FFFT is the finite field analog of Discrete Fourier transform (DFT) which works over

complex numbers. The FFT algorithm by Cooley and Tukey [7] can be used for the case of
finite fields as well (as observed by Pollard [27]) to get an algorithm using O(n log n) field
operations (addition or multiplication of two numbers). Thus we can compute FFFTn,σ and
its inverse in O(n log n) field operations.

It is easy to see that FFFTn,σ is actually evaluation of a polynomial in multiple special
points (specifically in σ0, . . . , σn−1). We can also see that it is a special case of interpolation
by a polynomial in multiple special points since FFFT−1

n,σ = 1
n FFFTn,σ−1 . We provide an

NCC-based lower bound for data structures computing the polynomial evaluation. However,
we use the data structure only for evaluating a polynomial in powers of a primitive root
of unity. Thus, the same proof yields a lower bound for data structures computing the
polynomial interpolation.

There is a great interest in data structures for polynomial evaluation in a cell probe
model. In this model, some representation of a polynomial p =

∑
i∈[n] αix

i ∈ F[x] is stored
in a table T of scell cells, each of w bits. Usually, w is set to O

(
log |F|

)
, that we can store

an element of F in a single cell. On a query x ∈ F the data structure should output p(x)
making at most tcell probes to the table T . A difference between data structures in the cell
probe model and systematic data structures is that a data structure in the cell probe model
is charged for any probe to the table T but a systematic data structure is charged only for
probes to the input (the coefficients αi), reading from the advice string ap is for free. Note
that, the coefficients αi of p do not have to be even stored in the table T . There are again
two trivial solutions. The first one is that we store a value p(x) for each x ∈ F and on a query
x ∈ F we probe just one cell. Thus, we would get tcell = 1 and scell = |F| (we assume that we
can store an element of F in a single cell). The second one is that we store the coefficients of
p and on a query x ∈ F we probe all cells and compute the value p(x). Thus, we would get
tcell = scell = n.

ESA 2021

39:6 Data Structures Lower Bounds and Popular Conjectures

Let k = log |F|. Kedlaya and Umans [22] provided a data structure for the polynomial
evaluation that uses space n1+ε · k1+o(1) and query time logO(1) n · k1+o(1). Note that, n · k

is the size of the input and k is the size of the output.
The first lower bound for the cell probe model was given by Miltersen [26]. He proved

that for any cell probe data structure for the polynomial evaluation it must hold that
tcell ≥ Ω

(
k/ log scell

)
. This was improved by Larsen [23] to tcell ≥ Ω

(
k/ log(scellw/nk)

)
, that

gives tcell ≥ Ω(k) if the data structure uses linear space scell · w = O(n · k). However, the
size of F has to be super-linear, i.e., |F| ≥ n1+Ω(1), and it is not known if the bound holds
for smaller fields, e.g., of linear size. Data structures in a bit probe model were studied by
Gál and Miltersen [15]. The bit probe model is the same as the cell probe model but each
cell contains only a single bit, i.e., w = 1. They studied succinct data structures that are
data structures such that scell = (n + r) · k for r < o(n). Thus, the succinct data structures
are related to systematic data structures but still, the succinct data structures are charged
for any probe (as any other data structure in the cell probe model). Note that a succinct
data structure stores only a few more bits than it is needed due to information-theoretic
requirement. Gál and Miltersen [15] showed that for any succinct data structure in the
bit probe model it holds that r · tcell ≥ Ω(n · k). We are not aware of any lower bound for
systematic data structures for the polynomial evaluation.

Larsen et al. [24] also gave a log-squared lower bound for dynamic data structures in the
cell probe model. Dynamic data structures also support updates of the polynomial p which
usually impacts their query time.

There is a great interest in algorithmic questions about the polynomial interpolation
such as how fast we can interpolate polynomials [16, 5, 18], how many probes we need to
interpolate a polynomial if it is given by oracle [6, 20], how to compute the interpolation
in a numerically stable way over infinite fields [29] and many others. However, we are not
aware of any results about data structures for the interpolation, i.e., when the interpolation
algorithm has an access to some precomputed advice.

3 Network Coding

We prove our conditional lower bounds based on the Network Coding Conjecture. In network
coding, we are interested in how much information we can send through a given network. A
network consists of a graph G = (V, E), positive capacities of edges c : E → R+ and k pairs
of vertices (s0, t0), . . . , (sk−1, tk−1). We say a network R =

(
G, c, (si, ti)i∈[k]

)
is undirected

or directed (acyclic) if the graph G is undirected or directed (acyclic). We say a network is
uniform if the capacities of all edges in the network equal to some q ∈ R+ and we denote
such network as

(
G, q, (si, ti)i∈[k]

)
.

A goal of a coding scheme for directed acyclic network R =
(
G, c, (si, ti)i∈[k]

)
is that at

each target ti it will be possible to reconstruct an input message wi which was generated at
the source si. The coding scheme specifies messages sent from each vertex along the outgoing
edges as a function of received messages. Moreover, the lengths of the messages sent along
the edges have to respect the edge capacities.

More formally, each source si of a network receives an input message wi sampled (in-
dependently of the messages for the other sources) from the uniform distribution Wi on a
set Wi. Without loss of generality we can assume that each source si has an in-degree 0
(otherwise we can add a vertex s′

i and an edge (s′
i, si) and replace si by s′

i). There is an
alphabet Σe for each edge e ∈ E(G). For each source si and each outgoing edge e = (si, u)
there is a function fsi,e : Wi → Σe which specifies the message sent along the edge e as a

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:7

function of the received input message wi ∈ Wi. For each non-source vertex v ∈ V, v ̸= si

and each outgoing edge e = (v, u) there is a similar function fv,e :
∏

e′=(u′,v) Σe′ → Σe which
specifies the message sent along the edge e as a function of the messages sent to v along the
edges incoming to v. Finally, each target ti has a decoding function di :

∏
e′=(u′,ti) Σe′ → Wi.

The coding scheme is executed as follows:
1. Each source si receives an input message wi ∈ Wi. Along each edge e = (si, u) a message

fsi,e(wi) is sent.
2. When a vertex v receives all messages m1, . . . , ma along all incoming edges (u′, v) it

sends along each outgoing edge e = (v, u) a message fv,e(m1, . . . , ma). As the graph
G is acyclic, this procedure is well-defined and each vertex of non-zero out-degree will
eventually send its messages along its outgoing edges.

3. At the end, each target ti computes a string w̃i = di(m′
1, . . . , m′

b) where m′
j denotes the

received messages along the incoming edges (u′, ti). We say the encoding scheme is correct
if w̃i = wi for all i ∈ [k] and any input messages w0, . . . , wk−1 ∈ W0 × · · · × Wk−1.

The coding scheme has to respect the edge capacities, i.e., if Me is a random variable that
represents a message sent along the edge e, then H(Me) ≤ c(e), where H(·) denotes the
Shannon entropy. A coding rate of a network R is the maximum r such that there is a correct
coding scheme for input random variables W0, . . . , Wk−1 where H(Wi) = log |Wi| ≥ r for
all i ∈ [k]. A network coding can be defined also for directed cyclic networks or undirected
networks but we will not use it here.

Network coding is related to multicommodity flows. A multicommodity flow for an
undirected network R̄ =

(
Ḡ, c, (si, ti)i∈[k]

)
specifies flows for each commodity i such that they

transport as many units of commodity from si to ti as possible. A flow of the commodity i

is specified by a function f i : V × V → R+
0 which describes for each pair of vertices (u, v)

how many units of the commodity i are sent from u to v. Each function f i has to satisfy:
1. If u, v are not connected by an edge, then f i(u, v) = f i(v, u) = 0.
2. For each edge {u, v} ∈ E(Ḡ), it holds that f i(u, v) = 0 or f i(v, u) = 0.
3. For each vertex v that is not the source si or the target ti, it holds that what comes to

the vertex v goes out from the vertex v, i.e.,∑
u∈V

f i(u, v) =
∑
u∈V

f i(v, u).

4. What is sent from the source si arrives to the target ti, i.e.,∑
u∈V

f i(si, u) − f i(u, si) =
∑
u∈V

f i(u, ti) − f i(ti, u).

Moreover, all flows together have to respect the capacities, i.e., for each edge e = {u, v} ∈ E(Ḡ)
it must hold that

∑
i∈[k] f i(u, v) + f i(v, u) ≤ c(e). A flow rate of a network R̄ is the

maximum r such that there is a multicommodity flow F = (f0, . . . , fk−1) that for each
i transports at least r units of the commodity i from si to ti, i.e., for all i, it holds that∑

u∈V f i(u, ti)−f i(ti, u) ≥ r. A multicommodity flow for directed graphs is defined similarly,
however, the flows can transport the commodities only in the direction of edges.

Let R be a directed acyclic network of a flow rate r′. It is clear that for a coding rate r

of R it holds that r ≥ r′. As we can send the messages without coding and thus reduce the
encoding problem to the flow problem. The opposite inequality does not hold: There is a
directed network R =

(
G, c, (si, ti)i∈[k]

)
such that its coding rate is Ω

(
|V (G)|

)
-times larger

than its flow rate as shown by Adler et al. [2]. Thus, the network coding for directed networks
provides an advantage over the simple solution given by the maximum flow. However, such a

ESA 2021

39:8 Data Structures Lower Bounds and Popular Conjectures

result is not known for undirected networks. Li and Li [25] conjectured that the network
coding does not provide any advantage for undirected networks, thus for any undirected
network R̄, the coding rate of R̄ equals to the flow rate of R̄. This conjecture is known as
Network Coding Conjecture (NCC) and we state a weaker version of it below.

For a directed graph G = (V, E) we denote by un(G) the undirected graph (V, Ē) obtained
from G by making each directed edge in E undirected (i.e., replacing each (u, v) ∈ E(G)
by {u, v}). For a directed acyclic network R =

(
G, c, (si, ti)i∈[k]

)
we define the undirected

network un(R) =
(
un(G), c̄, (si, ti)i∈[k]

)
by keeping the source-target pairs and capacities the

same, i.e, c
(
(u, v)

)
= c̄

(
{u, v}

)
.

▶ Conjecture 1 (Weaker NCC). Let R be a directed acyclic network, r be a coding rate of R

and r̄ be a flow rate of un(R). Then, r = r̄.

This conjecture was used to prove a conditional lower bound for sorting algorithms with
an external memory [13] and for circuits multiplying two numbers [3].

4 NCC Implies Data Structure Lower Bounds

In this paper, we provide several connections between lower bounds for data structures and
other computational models. The first connection is that the Network Coding Conjecture
(Conjecture 1) implies lower bounds for data structures for the permutation inversion
and the polynomial evaluation and interpolation. Assuming NCC, we show that a query
time t of a non-adaptive systematic data structure for any of the above problems satisfies
t ≥ Ω

(
log n/ log log n

)
, even if it uses linear space, i.e., the advice string a has size εn log n

for sufficiently small constant ε > 0. Formally, we define tInv(s) as a query time of the optimal
non-adaptive systematic data structure for the permutation inversion using space at most
s. Similarly, we define tFEval(s) and tFInterp(s) for the polynomial evaluation and interpolation
over F.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

▶ Theorem 3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F| for a
sufficiently small constant ε > 0. Then assuming NCC, it holds that tFEval(s), tFInterp(s) ≥
Ω

(
log n/ log log n

)
.

Note that by Theorem 2, assuming NCC, it holds that s · t ≥ Ω
(
n log2 n/ log log n

)
for

s = εn log n and t = tInv(s). The same holds for tFEval and tFInterp by Theorem 3. Thus, these
conditional lower bounds cross the barrier Ω(n log n) for s · t given by the best unconditional
lower bounds known for the function inversion [36, 10, 1, 17, 30, 11, 8] and the lower bound
for the succinct data structures for the polynomial evaluation by Gál and Miltersen [15].
Note that our lower bound does not contradict Hellman’s attack [19] for the permutation
inversion, as his data structure is heavily adaptive.

Our lower bound for the data structure for the polynomial evaluation and interpolation
is applicable even for linear size field (i.e., linear number of queries). Larsen’s lower bound
for the data structure for the polynomial evaluation [23] is applicable only for superlinear
fields, i.e., |F| ≥ n1+Ω(1). We give the result for the polynomial evaluation here as it has an
analogous proof as the lower bound for the polynomial interpolation and it might illustrate
a more general phenomenon that our technique might be applicable to a broader class of
functions that contains an involution as a subproblem.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:9

To prove Theorems 2 and 3, we build on the technical machinery of Farhadi et al. [13].
The proof can be divided into two steps:
1. From a data structure for the problem we derive a network R with O(tn) edges such

that R admits an encoding scheme that is correct on a large fraction of the inputs. This
step is distinct for each problem and the reduction for the function inversion is shown in
Section 5, the reduction for the polynomial problems is left to the full version [12]. This
step uses new ideas and interestingly, it uses the data structure twice in a sequence.

2. If there is a network R with dn edges that admits an encoding scheme which is correct
for a large fraction of inputs, then d ≥ Ω

(
log n/ log log n

)
. This step is common to all the

problems. It was implicitly proved by Farhadi et al. [13] and Afshani et al. [3].

5 NCC Implies a Weak Lower Bound for the Function Inversion

In this section, we prove Theorem 2 that assuming NCC, any non-adaptive systematic
data structure for the permutation inversion requires query time at least Ω

(
log n/ log log n

)
even if it uses linear space. Let D be a data structure for inverting permutations of a
linear space s = εn log n, for sufficiently small constant ε < 1, with query time t = tInv(s).
Recall that tInv(s) is a query time of the optimal non-adaptive systematic data structure for
the permutation inversion using space s. From D we construct a directed acyclic network
R =

(
G, c, (si, ti)i∈[n]

)
and an encoding scheme of a coding rate log n. By Conjecture 1 we get

that the flow rate of un(R) =
(
Ḡ, c, (si, ti)i∈[n]

)
is log n as well. We prove that there are many

source-target pairs of distance at least Ω(logt n). Since the number of edges of Ḡ will be O(tn)
and flow rate of un(R) is log n, we are able to derive a lower bound t ≥ Ω

(
log n/ log log n

)
.

We will design the network based on the probe graph of the data structure. By the probe
graph of the data structure, we understand a graph with n input vertices corresponding to
possible oracle probes and n output vertices corresponding to possible data structure queries.
Each query vertex is connected to the vertices of oracle probes executed by the data structure
when answering that query. Here, we use the non-adaptivity of the studied data structures as
the probe graph does not depend on the stored data but only on the data structure itself. Our
construction will utilize two copies of the probe graph connected in a sequence. The network
will have input vertices s0, . . . , sn−1 and output vertices u0, . . . , un−1 where each target ti is
set to ui+b mod n for a suitable constant b. The input vertices s0, . . . , sn−1 correspond to
the oracle vertices of the first copy of the probe graph. (See Fig. 1 for an illustration.)

We will feed distinct values x0, . . . , xn−1 ∈ [n] to the input vertices which then send
them to the query vertices of the first copy of the probe graph. Values x0, . . . , xn−1 define a
permutation f(i) = xi. Each query vertex j of the first copy of the probe graph can determine
f−1(j) if it is provided with the advice string af of the data structure corresponding to f .
(We will fix the most common advice string af and restrict ourselves to inputs x0, . . . , xn−1
consistent with it.) Each query vertex j can also determine the value of a newly defined
function h(j) = f−1(j) + b which it sends along its outgoing edges. The second copy of the
data structure serves to invert the function h similarly to inverting f . The oracle vertices of
the second copy of the probe graph coincide with the query vertices of the first copy. The
query vertices of the second copy of the probe graph are the output vertices u0, . . . , un−1.
Hence, the query vertex i + b of the second copy will be used to determine h−1(i + b) = xi.
Thus, xi is directed from si to ti = ui+b.

The above construction gives a network R with an encoding scheme E that is correct only
on a substantial fraction of all possible inputs. Namely on inputs x0, . . . , xn−1 ∈ [n] which
are distinct and consistent with the fixed advices. This forces correlations among messages

ESA 2021

39:10 Data Structures Lower Bounds and Popular Conjectures

received by the sources. However, the Network Coding Conjecture requires independently
sampled messages for each source. To overcome this issue we use the technique introduced
by Farhadi et al. [13] to augment R so that it admits an encoding scheme for independent
messages. We provide technical details next.

Let R =
(
G, c, (si, ti)i∈[k]

)
be a directed acyclic network. Let each source receive a binary

string of length r as its input message, i.e., each Wi = {0, 1}r. If we concatenate all input
messages wi we get a string of length r · k, thus the set of all possible inputs for an encoding
scheme for R corresponds to the set I = {0, 1}rk. We say an encoding scheme is correct on an
input w̄ = (w0, . . . , wk−1) ∈ I if it is possible to reconstruct all messages wi at appropriate
targets. An (ε, r)-encoding scheme is an encoding scheme which is correct on at least 2(1−ε)rk

inputs in I.
We say a directed network R =

(
G, c, (si, ti)i∈[k]

)
is (δ, d)-long if for at least δk source-

target pairs (si, ti), it holds that distance between si and ti in un(G) is at least d. Here, we
measure the distance in the undirected graph un(G), even though the network R is directed.
The following lemma is implicitly used by Farhadi et al. [13] and Afshani et al. [3].

▶ Lemma 4 (Implicitly used in [13, 3]). Let R =
(
G, r, (si, ti)i∈[k]

)
be a (δ, d)-long directed

acyclic uniform network for δ > 5
6 and sufficiently large r ∈ R+. Assume there is an

(ε, r)-encoding scheme for R for sufficiently small ε. Then assuming NCC, it holds that
|E(G)|

k ≥ δ′ · d, where δ′ = δ−5/6
10 .

Now we are ready to prove a conditional lower bound for the permutation inversion. For
the proof we use the following fact which follows from well-known Stirling’s formula:

▶ Fact 1. The number of permutations [n] → [n] is at least 2n log n−2n.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

Proof Sketch. Let D = Dn be the optimal data structure for the inversion of permutation on
[n] using space εn log n. We set t = tInv(εn log n). We will construct a directed acyclic uniform
network R =

(
G, r, (si, ti)i∈[n]

)
where r = log n. Let ε′ = 2 · ε + 2

q + 2
log n for sufficiently large

q so that we could apply Lemma 4. The network R will admit an (ε′, r)-encoding scheme E.
The number of edges of G will be at most 2tn and the network R will be

(9
10 , d

)
-long for

d = 1
2 logqt n. Thus, by Lemma 4 we get that

2t = 2tn

n
≥ Ω

(
logqt n

)
,

from which we can conclude that t ≥ Ω
(
log n/ log log n

)
. Thus, it remains to construct the

network R and the scheme E.
First, we construct a graph G′ which will yield the graph G by deleting some edges.

The graph G′ has three layers of n vertices: a source layer A of n sources s0, . . . , sn−1, a
middle layer M of n vertices v0, . . . , vn−1 and a target layer B of n vertices u0, . . . , un−1.
The targets t0, . . . , tn−1 of R will be assigned to the vertices u0, . . . , un−1 later.

We add edges according to the data structure D: Let Qj ⊆ [n] be the set of oracle probes
which D makes during the computation of f−1(j), i.e., for each i ∈ Qj , the query j probes
the oracle f for f(i). As D is non-adaptive, the sets Qj are well-defined. For each j ∈ [n]
and i ∈ Qj we add edges (si, vj) and (vi, uj). We set a capacity of all edges to r = log n.
This finishes the construction of G′, see Fig. 1 for illustration of the graph G′.

The graph G′ has exactly 2tn edges. Moreover, the vertices of the middle and the target
layer have in-degree at most t as the incoming edges correspond to the oracle probes made
by D. However, some vertices of the source and the middle layer might have large outdegree,

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:11

Input messages from [n] x0 x1 xi xn−1

t

h−1(i+ b) = xi

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

xi+b

f−1(i)

si sends f(i) = xi

vj sends h(j) = f−1(j) + b

Figure 1 A sketch of the graph G′ and encoding scheme E.

which is a problem that might prevent the network R to be
(9

10 , d
)
-long. Thus, we need

to remove edges adjacent to high-degree vertices. Let W ⊆ V (G′) be the set of vertices of
out-degree larger than qt. We remove all edges incident to W from G′ to obtain the graph
G. (For simplicity, we keep the degree 0 vertices in G). Thus, the maximum degree of G is
at most qt. Since the graph G′ has 2tn edges, it holds that |W | ≤ 2

q · n.
Now, we assign the targets of R in such a way that R is

(9
10 , d

)
-long. Let Cv be the set

of vertices of G which have distance at most d from v in un(G). Since the maximum degree
of G is at most qt and d = 1

2 logqt n, for each v ∈ V (G), |Cv| ≤ 2
√

n. It follows from an
averaging argument that there is an integer b such that there are at least n − 2

√
n sources si

with distance at least d from ui+b in un(G). (Here the addition i + b is modulo n.) We fix
one such b and set ti = ui+b. For n large enough, it holds that n − 2

√
n ≥ 9

10 · n. Thus, the
network R is

(9
10 , d

)
-long.

It remains to construct the (ε′, r)-encoding scheme E for R (see Fig. 1 for a sketch of the
encoding E). We only sketch the construction here, the full proof is in the full version [12].
At vertices of the middle layer we compute the inversion of f , i.e., at a vertex vj we compute
f−1(j) using the data structure D. To do that we need to fix the advice string af (of at
most εn log n bits) and values on the vertices in W (the high degree vertices).

We define a function h : [n] → [n] as h(j) = f−1(j) + b. Thus, at each vertex vj we are
able to compute the value h(j). By the anologous strategy, we compute the inverse h−1(ℓ) at
each vertex uℓ (again using the data structure D, now for the function h). It can be showed
that h−1(i + b) = xi, thus we can reconstruct xi at each vertex ti = ui+b. Overall, we fix
at most (2ε + 2

q) · n log n bits (the advice strings af and ah, and the computed values at
the vertices in W). Since the sheme E is correct on all inputs encoding a permutation and
consistent with the fixing, the scheme E is (ε′, r)-encoding scheme for ε′ = 2ε + 2

q + 2
log n . ◀

6 Strong Lower Bounds for Data Structures and Lower Bounds for
Boolean Circuits

In this section, we study a connection between non-adaptive data structures and boolean
circuits. We are interested in circuits with binary AND and OR gates, and unary NOT
gates. (See e.g. [21] for background on circuits). Corrigan-Gibbs and Kogan [9] describe
a connection between lower bounds for non-adaptive data structures and lower bounds for
boolean circuits for a special case when the data structure computes function inversion. They

ESA 2021

39:12 Data Structures Lower Bounds and Popular Conjectures

show that we would get a circuit lower bound if any non-adaptive data structure using O(Nε)
queries must use at least ω

(
N/ log log N

)
bits of advice (for some fixed constant ε > 0). They

define a boolean operator to be a family of functions (FN)N∈N for FN : {0, 1}N → {0, 1}N

represented by boolean circuits with N input and N output bits and constant fan-in gates.
A boolean operator is said to be an explicit operator if the decision problem whether the
j-th output bit of FN is equal to one is in the complexity class NP.

▶ Theorem 5 (Corrigan-Gibbs and Kogan [9], Theorem 6 (in contraposition)). If every explicit
operator FN has fan-in-two boolean circuits of size O(N) and depth O(log N) then, for every
ε > 0, there exists a family of strongly non-adaptive black-box algorithms that inverts all
functions f : [n] → [n] using O

(
n log n/ log log n

)
bits of advice and O(nε) online probes.

To prove their theorem Corrigan-Gibbs and Kogan [9] use the common bits model of
boolean circuits introduced by Valiant [31, 32, 33]. Valiant proves that for any circuit there
is a small cut, called common bits, such that each output bit is connected just to few input
bits. Corrigan-Gibbs and Kogan [9] use the common bits of the given circuit to create a
non-adaptive data structure by setting the advice string to the content of common bits and
the queries are to those function values which are still connected to the particular output
after removing the common bits. Using Valiant’s result directly one can obtain the following
corollaries (see the full version [12] for details).

▶ Corollary 6. Let S =
{

pk | p is a prime, k ∈ N, k ̸= 0
}

be the set of all sizes of finite
fields. For each n ∈ S, let Fn = GF (n) and σn be a primitive (n − 1)-th root of unity
(thus a generator of the multiplicative group F∗

n). If there is a circuit family computing
FFFTn−1,σn (over Fn) of size O(n log n) and depth O(log n) (where each input and output
number is represented by log |Fn| bits) then for every ε > 0 there is a family of non-adaptive
data structures {Dn}n∈S where Dn uses advice of size O

(
n log n/ log log n

)
and on a query

j ∈ [n − 1] outputs the j-th output of FFFTn−1,σn
using O(nε) queries to the input.

To put the corollary in a counter-positive way: if for some ε > 0, there are no non-adaptive
data structures for polynomial interpolation, polynomial evaluation, or FFFT with an advice
of size o

(
n log n/ log log n

)
that use O(nε) queries to the input then there are no linear-size

circuits of logarithmic depth for FFFT.
In Theorem 2, resp. Theorem 3, we prove a conditional lower bound for permutation

inversion, resp. polynomial evaluation and polynomial interpolation, of the form, that a
non-adaptive data structure using εn log n bits must do at least Ω

(
log n/ log log n

)
queries.

It is not clear if assuming NCC we can get a sufficiently strong lower bound which would rule
out non-adaptive data structures with sublinear advice string using O(nε) oracle queries.

▶ Corollary 7. We say that a circuit Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉ sorts its input if on
an input viewed as n binary strings x1, x2, . . . , xn ∈ {0, 1}⌈log n⌉ outputs the strings sorted
lexicographically. If there is a circuit family (Cn)n∈N, where Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉

sorts its inputs, and each circuit Cn is of size O(n log n) and depth O(log n) then for every
ε > 0, for every permutation f : [n] → [n] there is a non-adaptive data structure for inverting
f that uses advice of size O

(
n log n/ log log n

)
and O(nε) queries.

The works of Farhadi et al. [13] and Asharov et al. [4] connect the NCC conjecture
directly to lower bounds for sorting. Their work studies sorting n numbers of k + w bits by
their first k bits. Namely Asharov et al. [4] show that NCC implies that constant fan-in
constant fan-out circuits must have size Ω

(
nk(w − log(n) + k)

)
whenever w > log(n) − k and

k ≤ log n. This is incomparable to our results as we have w = 0.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:13

References
1 Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid

Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 357–379. Springer, 2017. doi:10.1007/
978-3-319-70697-9_13.

2 Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman.
On the capacity of information networks. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, page 241–250, USA, 2006. Society for Industrial
and Applied Mathematics.

3 Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green Larsen. Lower
Bounds for Multiplication via Network Coding. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 10:1–10:12, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.10.

4 Gilad Asharov, Wei-Kai Lin, and Elaine Shi. Sorting short keys in circuits of size o (n log n).
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2249–2268. SIAM, 2021.

5 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, page 301–309, New York, NY, USA, 1988. Association for Computing
Machinery. doi:10.1145/62212.62241.

6 Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski. On zero-testing
and interpolation of k-sparse multivariate polynomials over finite fields. Theor. Comput. Sci.,
84(2):151–164, July 1991. doi:10.1016/0304-3975(91)90157-W.

7 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

8 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and
non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, 2018 Proceedings, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages
227–258. Springer Verlag, 2018. 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT 2018 ; Conference date: 29-04-2018
Through 03-05-2018. doi:10.1007/978-3-319-78381-9_9.

9 Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and
opportunities. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages
393–421, Cham, 2019. Springer International Publishing.

10 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
pages 649–665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

11 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, pages 473–495, Cham, 2017. Springer
International Publishing.

12 Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data structures lower bounds
and popular conjectures, 2021. arXiv:2102.09294.

13 Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi. Lower
bounds for external memory integer sorting via network coding. In Proceedings of the 51st

ESA 2021

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.4230/LIPIcs.ICALP.2019.10
https://doi.org/10.1145/62212.62241
https://doi.org/10.1016/0304-3975(91)90157-W
https://doi.org/10.1007/978-3-319-78381-9_9
http://arxiv.org/abs/2102.09294

39:14 Data Structures Lower Bounds and Popular Conjectures

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 997–1008, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316337.

14 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM J.
Comput., 29(3):790–803, 1999. doi:10.1137/S0097539795280512.

15 Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures. In
Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,
Automata, Languages and Programming, pages 332–344, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

16 Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra. Cambridge University
Press, USA, 3rd edition, 2013.

17 Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, 2005. doi:10.1137/
S0097539704443276.

18 Dima Grigoryev, Marek Karpinski, and Michael Singer. Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields. SIAM J. Comput., 19:1059–1063,
December 1990. doi:10.1137/0219073.

19 M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, 1980. doi:10.1109/TIT.1980.1056220.

20 Gábor Ivanyos, Marek Karpinski, Miklos Santha, Nitin Saxena, and Igor E. Shparlinski.
Polynomial interpolation and identity testing from high powers over finite fields. Algorithmica,
80(2):560–575, 2018. doi:10.1007/s00453-016-0273-1.

21 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

22 K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In 2008
49th Annual IEEE Symposium on Foundations of Computer Science, pages 146–155, 2008.
doi:10.1109/FOCS.2008.13.

23 Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS ’12,
page 293–301, USA, 2012. IEEE Computer Society. doi:10.1109/FOCS.2012.21.

24 Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the logarithmic barrier
for dynamic boolean data structure lower bounds. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, page 978–989, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188790.

25 Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast sessions. Proceed-
ings of the 42nd Allerton Annual Conference on Communication, Control, and Computing,
October 2004.

26 Peter Bro Miltersen. On the cell probe complexity of polynomial evaluation. Theor. Comput.
Sci., 143(1):167–174, 1995. doi:10.1016/0304-3975(95)80032-5.

27 John M Pollard. The fast fourier transform in a finite field. Mathematics of computation,
25(114):365–374, 1971.

28 Jean-Pierre Serre. A course in arithmetic, volume 7. Springer Science & Business Media, 2012.
29 A. Smoktunowicz, I. Wróbel, and P. Kosowski. A new efficient algorithm for polynomial

interpolation. Computing, 79(1):33–52, February 2007. doi:10.1007/s00607-006-0185-z.
30 Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, Advances

in Cryptology - CRYPTO 2007, pages 205–223, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

31 Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 162–176. Springer, 1977.

32 Leslie G Valiant. Exponential lower bounds for restricted monotone circuits. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 110–117, 1983.

33 Leslie G Valiant. Why is boolean complexity theory difficult. Boolean Function Complexity,
169(84-94):4, 1992.

https://doi.org/10.1145/3313276.3316337
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1137/S0097539704443276
https://doi.org/10.1137/S0097539704443276
https://doi.org/10.1137/0219073
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/s00453-016-0273-1
https://doi.org/10.1109/FOCS.2008.13
https://doi.org/10.1109/FOCS.2012.21
https://doi.org/10.1145/3188745.3188790
https://doi.org/10.1016/0304-3975(95)80032-5
https://doi.org/10.1007/s00607-006-0185-z

P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:15

34 Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput.
Sci., 5(1):1–72, 2009.

35 Emanuele Viola. Lower bounds for data structures with space close to maximum imply circuit
lower bounds. Theory of Computing, 15(18):1–9, 2019. doi:10.4086/toc.2019.v015a018.

36 A. C.-C. Yao. Coherent functions and program checkers. In Proceedings of the Twenty-Second
Annual ACM Symposium on Theory of Computing, STOC ’90, page 84–94, New York, NY,
USA, 1990. Association for Computing Machinery. doi:10.1145/100216.100226.

ESA 2021

https://doi.org/10.4086/toc.2019.v015a018
https://doi.org/10.1145/100216.100226

	1 Introduction
	2 Data Structure Problems
	2.1 Function Inversion
	2.2 Evaluation and Interpolation of Polynomials

	3 Network Coding
	4 NCC Implies Data Structure Lower Bounds
	5 NCC Implies a Weak Lower Bound for the Function Inversion
	6 Strong Lower Bounds for Data Structures and Lower Bounds for Boolean Circuits

