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Abstract
We give polynomial-time approximation schemes for monotone maximization problems expressible
in terms of distances (up to a fixed upper bound) and efficiently solvable on graphs of bounded
treewidth. These schemes apply in all fractionally treewidth-fragile graph classes, a property which is
true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time
approximation schemes for these problems in all classes with sublinear separators.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases approximation, sublinear separators

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.40

Related Version Full Version: https://arxiv.org/abs/2105.01780

Funding Zdeněk Dvořák: Supported by the ERC-CZ project LL2005 (Algorithms and complexity
within and beyond bounded expansion) of the Ministry of Education of Czech Republic.
Abhiruk Lahiri: Supported by ISF grant 822/18 and Ariel University Post-doctoral fellowship.

Acknowledgements The second author wish to thank the Caesarea Rothschild Institute and the
Department of Computer Science, University of Haifa, for providing its facilities for his research
activities.

1 Introduction

In this paper, we consider optimization problems such as:
Maximum r-Independent Set, r ∈ Z+: Given a graph G, the objective is to find a
largest subset X ⊆ V (G) such that distance in G between any two vertices in X is at
least r.
Maximum weight induced forest: Given a graph G and an assignment w : V (G) →
Z+

0 of non-negative weights to vertices, the objective is to find a subset X ⊆ V (G)
such that G[X] does not contain a cycle and subject to that, w(X) :=

∑
v∈X w(v) is

maximized.
Maximum (F, r)-Matching, for a fixed connected graph F and r ∈ Z+: Given a graph
G, the objective is to find a largest subset X ⊆ V (G) such that G[X] can be partitioned
into vertex-disjoint copies of F such that distance in G between any two vertices belonging
to different copies is at least r.

To be precise, to fall into the scope of our work, the problem must satisfy the following
conditions:

It must be a maximization problem on certain subsets of vertices of an input
graph, possibly with non-negative weights. That is, the problem specifies which subsets
of vertices of the input graph are admissible, and the goal is to find an admissible subset
of largest size or weight.
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40:2 PTAS for Bounded Distance Problems on Fractionally Tw-Fragile Graphs

The problem must be defined in terms of distances between the vertices, up
to some fixed bound. That is, there exists a parameter r ∈ Z+ such that for any
graphs G and G′, sets X ⊆ V (G) and X ′ ⊆ V (G′), and a bijection f : X → X ′, if
min(r, dG(u, v)) = min(r, dG′(f(u), f(v))) holds for all u, v ∈ X, then X is admissible in
G if and only if X ′ is admissible in G′.
The problem must be monotone (i.e., all subsets of an admissible set must be admissible),
or at least near-monotone (as happens for example for Maximum (F, r)-Matching)
in the following sense: There exists a parameter c ∈ Z+ such that for any admissible set
A in a graph G, there exists a system {Rv ⊆ A : v ∈ A} of subsets of A such that

each vertex belongs to Rv for at most c vertices v ∈ A,
v ∈ Rv for each v ∈ A, and
for every Z ⊆ A, the subset A \

⋃
v∈Z Rv is admissible in G.

The problem must be tractable in graphs of bounded treewidth, that is, there must
exist a function g and a polynomial p such that given any graph G, its tree decomposition
of width t, an assignment w of non-negative weights to the vertices of G, and a set X0 ⊆ X,
it is possible to find a maximum-weight admissible subset of X0 in time g(t)p(|V (G)|).

Let us call such problems (≤r)-distance determined c-near-monotone (g, p)-tw-tractable. Note
that a convenient way to verify these assumptions is to show that the problem is expressible
in solution-restricted Monadic Second-Order Logic (MSOL) with bounded-distance predicates,
i.e., by a MSOL formula with one free variable X such that the quantification is restricted
to subsets and elements of X, and using binary predicates d1, . . . , dr, where di(u, v) is
interpreted as testing whether the distance between u and v in the whole graph is at most i.
For example, r-Independent Set is expressed by the formula (∀u, v ∈ X) u = v ∨ ¬dr(u, v).
This ensures that the problem is (≤r)-distance determined, and (g, O(n))-tw-tractable for
some function g by Courcelle’s meta-algorithmic result [5].

Of course, the problems satisfying the assumptions outlined above are typically hard to
solve optimally, even in rather restrictive circumstances. For example, Maximum Independ-
ent Set is NP-hard even in planar graphs of maximum degree at most 3 and arbitrarily large
(fixed) girth [1]. Moreover, it is hard to approximate it within factor of 0.995 in graphs of
maximum degree at most three [4]. Hence, to obtain polynomial-time approximation schemes
(PTASes), i.e., polynomial-time algorithms for approximating within any fixed precision, a
restriction other than just bounding the maximum degree is needed.

A natural restriction that has been considered in this context is the requirement that the
graphs have sublinear separators (a set S of vertices of a graph G is a balanced separator if
every component of G \ S has at most |V (G)|/2 vertices, and a hereditary class G of graphs
has sublinear separators if for some c < 1, every graph G ∈ G has a balanced separator of
size O(|V (G)|c)). This restriction still lets us speak about many interesting graph classes
(planar graphs [19] and more generally proper minor-closed classes [2], many geometric graph
classes [21], . . . ). Moreover, the problems discussed above admit PTASes in all classes with
sublinear separators or at least in substantial subclasses of these graphs:

Maximum Independent Set has been shown to admit a PTAS in graphs with sublinear
separators already in the foundational paper of Lipton and Tarjan [20].
For any positive integer, Maximum r-Independent Set and several other problems are
known to admit PTASes in graphs with sublinear separators by a straightforward local
search algorithm [16].
All of the problems mentioned above (and more) are known to admit PTASes in planar
graphs by a layering argument of Baker [3]; this approach can be extended to some related
graph classes, including all proper minor-closed classes [6, 12].
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The problems also admit PTASes in graph classes that admit thin systems of overlays [11],
a technical property satisfied by all proper minor-closed classes and by all hereditary
classes with sublinear separators and bounded maximum degree.
Bidimensionality arguments [7] apply to a wide range of problems in proper minor-closed
graph classes.

However, each of the outlined approaches has drawbacks. On one side, the local search
approach only applies to specific problems and does not work at all in the weighted setting.
On the other side of the spectrum, Baker’s approach is quite general as far as the problems
go, but there are many hereditary graph classes with sublinear separators to which it does
not seem to apply. The approach through thin systems of overlays tries to balance these
concerns, but it is rather technical and establishing this property is difficult.

Another option that has been explored is via fractional treewidth-fragility. For a function
f : Z+ × Z+ → Z+ and a polynomial p, a class of graphs G is p-efficiently fractionally
treewidth-f-fragile if there exists an algorithm that for every k ∈ Z+ and a graph G ∈ G
returns in time p(|V (G)|) a collection of subsets X1, X2, . . . , Xm ⊆ V (G) such that each
vertex of G belongs to at most m/k of the subsets, and moreover, for i = 1, . . . , m, the
algorithm also returns a tree decomposition of G \ Xi of width at most f(k, |V (G)|). We
say a class is p-efficiently fractionally treewidth-fragile if f does not depend on its second
argument (the number of vertices of G). This property turns out to hold for basically all
known natural graph classes with sublinear separators. In particular, a hereditary class G of
graphs is efficiently fractionally treewidth-fragile if

G has sublinear separators and bounded maximum degree [9],
G is proper minor-closed [8, 12], or
G consists of intersection graphs of convex objects with bounded aspect ratio in a finite-
dimensional Euclidean space and the graphs have bounded clique number, as can be seen
by a modification of the argument of Erlebach et al. [15]. This includes all graph classes
with polynomial growth [18].

In fact, Dvořák conjectured that every hereditary class with sublinear separators is fractionally
treewidth-fragile, and gave the following result towards this conjecture.

▶ Theorem 1 (Dvořák [10]). There exists a polynomial p so that the following claim holds.
For every hereditary class G of graphs with sublinear separators, there exists a polynomial q

such that G is p-efficiently fractionally treewidth-f -fragile for the function f(k, n) = q(k log n).

Moreover, Dvořák [9] observed that weighted Maximum Independent Set admits a PTAS
in any efficiently fractionally treewidth-fragile class of graphs. Indeed, the algorithm is
quite simple, based on the observation that for the sets X1, . . . , Xm from the definition of
fractional treewidth-fragility, at least one of the graphs G \ X1, . . . , G \ Xm (of bounded
treewidth) contains an independent set whose weight is within the factor of 1 − 1/k from the
optimal solution. A problem with this approach is that it does not extend to more general
problems; even for the Maximum 2-Independent Set problem, the approach fails, since a
2-independent set in G \ Xi is not necessarily 2-independent in G. Indeed, this observation
served as one of the motivations behind more restrictive (and more technical) concepts
employed in [11, 12].

As our main result, we show that this intuition is in fact false: There is a simple way
how to extend the approach outlined in the previous paragraph to all bounded distance
determined near-monotone tw-tractable problems.

ESA 2021
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▶ Theorem 2. For every class G of graphs with bounded expansion, there exists a function
h : Z+ × Z+ → Z+ such that the following claim holds. Let c and r be positive integers,
g : Z+ → Z+ and f : Z+ × Z+ → Z+ functions and p and q polynomials. If G is q-
efficiently fractionally treewidth-f-fragile, then for every (≤r)-distance determined c-near-
monotone (g, p)-tw-tractable problem, there exists an algorithm that given a graph G ∈ G,
an assignment of non-negative weights to vertices, and a positive integer k, returns in time
h(r, c)|V (G)| + q(|V (G)|) · p(|V (G)|) · g(f(h(r, c)k, |V (G)|)) an admissible subset of V (G)
whose weight is within the factor of 1 − 1/k from the optimal one.

Note that the assumption that G has bounded expansion is of little consequence – it is
satisfied for any hereditary class with sublinear separators [14] as well as for any fractionally
treewidth-fragile class [9]; see Section 2 for more details. The time complexity of the
algorithm from Theorem 2 is polynomial if f does not depend on its second argument,
and quasipolynomial (exponential in a polylogarithmic function) if f is logarithmic in the
second argument and g is single-exponential, i.e., if g(n) = exp

(
nO(1)). Hence, we obtain

the following corollaries.

▶ Corollary 3. Let c and r be positive integers, g : Z+ → Z+ a function and p a polynomial.
Every (≤r)-distance determined c-near-monotone (g, p)-tw-tractable problem admits a PTAS
in any efficiently fractionally treewidth-fragile class of graphs.

We say a problem admits a quasipolynomial-time approximation schemes (QPTAS) if
there exist quasipolynomial-time algorithms for approximating the problem within any fixed
precision. Combining Theorems 1 and 2, we obtain the following result.

▶ Corollary 4. Let c and r be positive integers, g : Z+ → Z+ a single-exponential function,
and p a polynomial. Every (≤ r)-distance determined c-near-monotone (g, p)-tw-tractable
problem admits a QPTAS in any hereditary class of graphs with sublinear separators.

The idea of the algorithm from Theorem 2 is quite simple: We consider the sets X1, . . . , Xm

from the definition of fractional treewidth-f -fragility, extend them to suitable supersets Y1,
. . . , Ym, and argue that for i = 1, . . . , m, any admissible set in G \ Xi disjoint from Yi is also
admissible in G, and that for some i, the weight of the heaviest admissible set in G \ Xi

disjoint from Yi is within the factor of 1 − 1/k from the optimal one. The construction of
the sets Y1, . . . , Ym is based on the existence of orientations with bounded outdegrees that
represent all short paths, a generalization of a result Kowalik and Kurowski [17] that we
present in Section 2.

Let us remark one can develop the idea of this paper in further directions. Dvořák proved
in [13](via a substantially more involved argument) that every monotone maximization
problem expressible in first-order logic admits a PTAS in any efficiently fractionally treewidth-
fragile class of graphs. Note that this class of problems is incomparable with the one
considered in this paper (e.g., Maximum Induced Forest is not expressible in first-order
logic, while Maximum Independent Set consisting of vertices belonging to triangles is
expressible in first-order logic but does not fall into the scope of the current paper).

Finally, it is worth mentioning that our results only apply to maximization problems.
We were able to extend the previous uses of fractional treewidth-fragility by giving a way to
handle dependencies over any bounded distance. However, for the minimization problems,
we do not know whether fractional treewidth-fragility is sufficient even for the distance-
1 problems. For a simple example, consider the Minimum Vertex Cover problem in
fractionally treewidth-fragile graphs, or more generally in hereditary classes with sublinear
separators. While the unweighted version can be dealt with by the local search method [16],
we do not know whether there exists a PTAS for the weighted version of this problem.
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2 Paths and orientations in graphs with bounded expansion

For r ∈ Z+
0 , a graph H is an r-shallow minor of a graph G if H can be obtained from a

subgraph of G by contracting pairwise vertex-disjoint connected subgraphs, each of radius
at most r. For a function f : Z+ → Z+, a class G of graphs has expansion bounded by f if
for all non-negative integers r, all r-shallow minors of graphs from G have average degree
at most f(r). A class has bounded expansion if its expansion is bounded by some function
f . The theory of graph classes with bounded expansion has been developed in the last 15
years, and the concept has found many algorithmic and structural applications; see [23] for
an overview. Crucially for us, this theory includes a number of tools for dealing with short
paths. Moreover, as we have pointed out before, all hereditary graph classes with sublinear
separators [14] as well as all fractionally treewidth-fragile classes [9] have bounded expansion.

Let G⃗ be an orientation of a graph G, i.e, uv is an edge of G if and only if the directed
graph G⃗ contains at least one of the directed edges (u, v) and (v, u); note that we allow
G⃗ to contain both of them at the same time, and thus for the edge uv to be oriented in
both directions. We say that a directed graph H⃗ with the same vertex set is a 1-step
fraternal augmentation of G⃗ if G⃗ ⊆ H⃗, for all distinct edges (x, y), (x, z) ∈ E(G⃗), either
(y, z) or (z, y) is an edge of H⃗, and for each edge (y, z) ∈ E(H⃗) \ E(G⃗), there exists a vertex
x ∈ V (G⃗) \ {y, z} such that (x, y), (x, z) ∈ E(G⃗). That is, to obtain H⃗ from G⃗, for each pair
of edges (x, y), (x, z) ∈ E(G⃗) we add an edge between y and z in one of the two possible
directions (we do not specify the direction, but in practice we would choose directions of the
added edges that minimize the maximum outdegree of the resulting directed graph). For an
integer a ≥ 0, we say F⃗ is an a-step fraternal augmentation of G⃗ if there exists a sequence
G⃗ = G⃗0, G⃗1, . . . , G⃗a = F⃗ where for i = 1, . . . , a, G⃗i is a 1-step fraternal augmentation of
G⃗i−1. We say F⃗ is an a-step fraternal augmentation of an undirected graph G if F⃗ is an
a-step fraternal augmentation of some orientation of G.

A key property of graph classes with bounded expansion is the existence of fraternal
augmentations with bounded outdegrees. Let us remark that whenever we speak about an
algorithm returning an a-step fraternal augmentation H⃗ or taking one as an input, this
implicitly includes outputting or taking as an input the whole sequence of 1-step fraternal
augmentations ending in H⃗.

▶ Lemma 5 (Nešetřil and Ossona de Mendez [22]). For every class G with bounded expansion,
there exists a function d : Z+

0 → Z+ such that for each G ∈ G and each non-negative integer
a, the graph G has an a-step fraternal augmentation of maximum outdegree at most d(a).
Moreover, such an augmentation can be found in time O(d(a)|V (G)|).

As shown already in [22], fraternal augmentations can be used to succinctly represent
distances between vertices of the graph. For the purposes of this paper, we need a more explicit
representation by an orientation of the original graph without the additional augmentation
edges, as we only assume that the original (rather than the augmented) graph is fractionally
treewidth-fragile. Let us remark that the existence of such a representation was shown
by Kowalik and Kurowski [17] in a more restrictive setting of graph classes closed under
topological minors.

By a walk in a directed graph G⃗, we mean a sequence W = v0v1v2 . . . vb such that for
i = 1, . . . , b, (vi−1, vi) ∈ E(G⃗) or (vi, vi−1) ∈ E(G⃗); that is, the walk does not have to respect
the orientation of the edges. The walk W is inward directed if for some c ∈ {0, . . . , b}, we
have (vi, vi+1) ∈ E(G⃗) for i = 0, . . . , c − 1 and (vi, vi−1) ∈ E(G⃗) for i = c + 1, . . . , b. For
a positive integer r, an orientation G⃗ of a graph G represents (≤ r)-distances if for each
u, v ∈ V (G) and each b ∈ {0, . . . , r}, the distance between u and v in G is at most b if and

ESA 2021
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only if G⃗ contains an inward-directed walk of length at most b between u and v. Note that
given such an orientation with bounded maximum outdegree for a fixed r, we can determine
the distance between u and v (up to distance r) by enumerating all (constantly many) walks
of length at most r directed away from u and away from v and inspecting their intersections.

Our goal now is to show that graphs from classes with bounded expansion admit orienta-
tions with bounded maximum outdegree that represent (≤r)-distances. Let us define a more
general notion used in the proof of this claim, adding to the fraternal augmentations the
information about the lengths of the walks in the original graph represented by the added
edges. A directed graph with (≤r)-length sets is a pair (H⃗, ℓ), where H⃗ is a directed graph and
ℓ is a function assigning a subset of {1, . . . , r} to each unordered pair {u, v} of vertices of H⃗,
such that if neither (u, v) nor (v, u) is an edge of H⃗, then ℓ({u, v}) = ∅. We say that (H⃗, ℓ) is
an orientation of a graph G if G is the underlying undirected graph of H⃗ and ℓ({u, v}) = {1}
for each uv ∈ E(G). We say that (H⃗, ℓ) is an (≤ r)-augmentation of G if V (H⃗) = V (G),
for each uv ∈ E(G) we have 1 ∈ ℓ({u, v}), and for each u, v ∈ V (G) and b ∈ ℓ({u, v}) there
exists a walk of length b from u to v in G. Let (H⃗1, ℓ1) be another directed graph with
(≤r)-length sets. We say (H⃗1, ℓ1) is a 1-step fraternal augmentation of (H⃗, ℓ) if H⃗1 is a 1-step
fraternal augmentation of H⃗ and for all distinct u, v ∈ V (H⃗) and b ∈ {1, . . . , r}, we have
b ∈ ℓ1({u, v}) if and only if b ∈ ℓ({u, v}) or there exist x ∈ V (H⃗) \ {u, v}, b1 ∈ ℓ({x, u}), and
b2 ∈ ℓ({x, v}) such that (x, u), (x, v) ∈ E(H⃗) and b = b1 + b2. Note that a 1-step fraternal
augmentation of an (≤r)-augmentation of a graph G is again an (≤r)-augmentation of G.
The notion of an a-step fraternal augmentation of a graph G is then defined in the natural
way, by starting with an orientation of G and performing the 1-step fraternal augmentation
operation a times. Let us now restate Lemma 5 in these terms (we just need to maintain the
edge length sets, which can be done with O(a2) overhead per operation).

▶ Lemma 6. Let G be a class of graphs with bounded expansion, and let d : Z+
0 → Z+ be the

function from Lemma 5. For each G ∈ G and each non-negative integer a, we can in time
O(a2d(a)|V (G)|) construct a directed graph with (≤ a + 1)-length sets (H⃗, ℓ) of maximum
outdegree at most d(a) such that (H⃗, ℓ) is an a-step fraternal augmentation of G.

Let (H⃗, ℓ) be an (≤ r)-augmentation of a graph G. For b ≤ r, a walk of span b in
(H⃗, ℓ) is a tuple (v0v1 . . . vt, b1, . . . , bt), where v0v1 . . . vt is a walk in H⃗, bi ∈ ℓ({vi−1, vi}) for
i = 1, . . . , t, and b = b1 + . . . + bt. Note that if there exists a walk of span b from u to v

in (H⃗, ℓ), then there also exists a walk of length b from u to v in G. We say that (H⃗, ℓ)
represents (≤ r)-distances in G if for all vertices u, v ∈ V (G) at distance b ≤ r from one
another, (H⃗, ℓ) contains an inward-directed walk of span b between u and v. Next, we show
that this property always holds for sufficient fraternal augmentations.

▶ Lemma 7. Let G be a graph and r a positive integer and let (H⃗, ℓ) be a directed graph
with (≤r)-length sets. If (H⃗, ℓ) is obtained as an (r − 1)-step fraternal augmentation of G,
then it represents (≤r)-distances in G.

Proof. For b ≤ r, consider any walk W = (v0v1 . . . vt, b1, . . . , bt) of span b in an (≤ r)-
augmentation (H⃗1, ℓ1) of G, and let (H⃗2, ℓ2) be a 1-step augmentation of (H⃗1, ℓ1). Note that
W is also a walk of span b between v0 and vt in (H⃗2, ℓ2). Suppose that W is not inward-directed
in (H⃗1, ℓ1), and thus there exists i ∈ {1, . . . , t − 1} such that (vi, vi−1), (vi, vi+1) ∈ E(H⃗1).
By the definition of 1-step fraternal augmentation, this implies bi + bi+1 ∈ ℓ2({vi−1, vi+1}),
and thus (v0 . . . vi−1vi+1 . . . vt, b1, . . . , bi + bi+1, . . . bt) is a walk of span b from v0 to vt in
(H⃗2, ℓ2).

Let (G⃗0, ℓ0), . . . , (G⃗r−1, ℓr−1) be a sequence of (≤r)-augmentations of G, where (G⃗, ℓ0)
is an orientation of G, (G⃗r−1, ℓr−1) = (H⃗, ℓ), and for i = 1, . . . , r − 1, (G⃗i, ℓi) is a 1-step
fraternal augmentation of (G⃗i−1, ℓi−1). Let u and v be any vertices at distance b ≤ r in G,
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and let P be a shortest path between them. Then P naturally corresponds to a walk P0
of span b in (G⃗0, ℓ0). For i = 1, . . . , r − 1, if Pi−1 is inward-directed, then let Pi = Pi−1,
otherwise let Pi be a walk of span b in (G⃗i, ℓi) obtained from Pi−1 as described in the previous
paragraph. Since each application of the operation decreases the number of vertices of the
walk, we conclude that Pr−1 is an inward-directed walk of span b between u and v in (H⃗, ℓ).
Hence, (H⃗, ℓ) represents (≤r)-distances in G. ◀

Next, let us propagate this property back through the fraternal augmentations by ori-
enting some of the edges in both directions. We say that (H⃗, ℓ) is an a-step fraternal
superaugmentation of a graph G if there exists an a-step fraternal augmentation (F⃗ , ℓ) of
G such that V (F⃗ ) = V (H⃗), E(F⃗ ) ⊆ E(H⃗) and for each (u, v) ∈ E(H⃗) \ E(F⃗ ), we have
(v, u) ∈ E(F⃗ ). We say that (F⃗ , ℓ) is a support of (H⃗, ℓ).

▶ Lemma 8. Let G be a graph and r a positive integer and let (H⃗, ℓ) be an (≤r)-augmentation
of G of maximum outdegree ∆ representing (≤r)-distances. For a ≥ 1, suppose that (H⃗, ℓ)
is an a-step fraternal superaugmentation of G. Then we can in time O(r2∆|V (G)|) obtain
an (a − 1)-step fraternal superaugmentation of G representing (≤r)-distances, of maximum
outdegree at most (r + 1)∆.

Proof. Let (F⃗ , ℓ) be an a-step fraternal augmentation of G forming a support of (H⃗, ℓ),
obtained as a 1-step fraternal augmentation of an (a − 1)-step fraternal augmentation (F⃗1, ℓ1)
of G. Let (H⃗1, ℓ1) be the (a−1)-step fraternal superaugmentation of G obtained from (F⃗1, ℓ1)
as follows:

For all distinct vertices y, z ∈ V (G) such that (y, z), (z, y) ∈ E(H⃗), (y, z) ∈ E(F⃗1), and
(z, y) ̸∈ E(F⃗1), we add the edge (z, y).
For each edge (y, z) ∈ E(H⃗) and integer b ∈ ℓ({y, z}) \ ℓ1({y, z}), we choose a vertex
x ∈ V (G) \ {y, z} such that (x, y), (x, z) ∈ E(F⃗1) and b = b1 + b2 for some b1 ∈ ℓ1({x, y})
and b2 ∈ ℓ1({x, z}), and add the edge (y, x). Note that such a vertex x and integers b1
and b2 exist, since b was added to ℓ({y, z}) when (F⃗ , ℓ) was obtained from (F⃗1, ℓ1) as a
1-step fraternal augmentation.

Each edge (y, x) ∈ E(H⃗1) \ E(H⃗) arises from an edge (y, z) ∈ E(H⃗) leaving y and an element
b ∈ ℓ({y, z}) \ ℓ1({y, z}), and each such pair contributes at most one edge leaving y. Hence,
the maximum outdegree of H⃗1 is at most (r + 1)∆.

Consider an inwards-directed walk (v0v1 . . . vt, b1, . . . , bt) of span b in H⃗, for any b ≤ r.
Then H⃗ contains an inwards-directed walk of span b from v0 to vt obtained by natural edge
replacements: For any edge (y, z) ∈ E(H⃗) of this walk and b′ ∈ ℓi({y, z}), the construction
described above ensures that if (y, z) ̸∈ E(H⃗1) or b′ ̸∈ ℓ1({y, z}), then there exists x ∈
V (G) \ {y, z} such that (y, x), (x, z) ∈ E(H⃗1) and b′ = b′′ + b′′′ for some b′′ ∈ ℓ1({x, y}) and
b′′′ ∈ ℓ1({x, z}), and we can replace the edge (y, z) in the walk by the edges (y, x) and (x, z)
of E(H⃗1). Since H⃗ represents (≤r)-distances in G, this transformation shows that so does
H⃗1. ◀

We are now ready to prove the main result of this section.

▶ Lemma 9. For any class G with bounded expansion, there exists a function d′ : Z+ → Z+

such that for each G ∈ G and each positive integer r, the graph G has an orientation with
maximum outdegree at most d′(r) that represents (≤r)-distances in G. Moreover, such an
orientation can be found in time O(r2d′(r)|V (G)|).

Proof. Let d be the function from Lemma 5, and let d′(r) = (r +1)r−1d(r −1). By Lemma 6,
we obtain an (r − 1)-step fraternal augmentation (H⃗, ℓ) of G of maximum outdegree at most
d(r − 1). By Lemma 7, (H⃗, ℓ) represents (≤r)-distances in G. Repeatedly applying Lemma 8,
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we obtain a 0-step fraternal superaugmentation (G⃗, ℓ0) of G of maximum outdegree at most
d′(r) representing (≤r)-distances. Clearly, G⃗ is an orientation of G of maximum outdegree
at most d′(r) representing (≤r)-distances. ◀

3 Approximation schemes

Let us now prove Theorem 2. To this end, let us start with a lemma to be applied to the
sets arising from fractional treewidth-fragility.

▶ Lemma 10. Let G⃗ be an orientation of a graph G with maximum outdegree ∆. Let A be a
set of vertices of G and for a positive integer c, let {Rv : v ∈ A} be a system of subsets of
A such that each vertex belongs to at most c of the subsets. For X ⊆ V (G) and a positive
integer r, let DG⃗,r(X) ⊆ A be the union of the sets Rv for all vertices v ∈ A such that G⃗

contains a walk from v to X of length at most r directed away from v. For a positive integer
k, let X1, . . . , Xm be a system of subsets of V (G) such that each vertex belongs to at most

m
c(∆+1)rk of the subsets. For any assignment w of non-negative weights to vertices of G, there
exists i ∈ {1, . . . , m} such that w(A \ DG⃗,r(Xi)) ≥ (1 − 1/k)w(A).

Proof. For a vertex z ∈ A, let B(z) be the set of vertices reachable in G⃗ from vertices
v ∈ A such that z ∈ Rv by walks of length at most r directed away from v. Note that
|B(z)| ≤ c(∆ + 1)r and that for each X ⊆ V (G), we have z ∈ DG⃗,r(X) if and only if
B(z) ∩ X ̸= ∅.

Suppose for a contradiction that for each i we have w(A \ DG⃗,r(Xi)) < (1 − 1/k)w(A),
and thus w(DG⃗,r(Xi)) > w(A)/k. Then

m

k
w(A) <

m∑
i=1

w(DG⃗,r(Xi)) =
m∑

i=1

∑
z∈DG⃗,r(Xi)

w(z) =
m∑

i=1

∑
z∈A:B(z)∩Xi ̸=∅

w(z)

≤
m∑

i=1

∑
z∈A

w(z)|B(z) ∩ Xi| =
∑
z∈A

w(z)
m∑

i=1
|B(z) ∩ Xi|

=
∑
z∈A

w(z)
∑

x∈B(z)

|{i ∈ {1, . . . , m} : x ∈ Xi}| ≤
∑
z∈A

w(z)
∑

x∈B(z)

m

c(∆ + 1)rk

=
∑
z∈A

w(z)|B(z)| m

c(∆ + 1)rk
≤

∑
z∈A

w(z)m

k
= m

k
w(A),

which is a contradiction. ◀

Next, let us derive a lemma on admissibility for (≤r)-distance determined problems.

▶ Lemma 11. For a positive integer r, let G⃗ be an orientation of a graph G representing
(≤ r)-distances. For a set X ⊆ V (G), let YG⃗,r(X) be the set of vertices y such that G⃗

contains a walk from y to X of length at most r directed away from y. For any (≤r)-distance
determined problem, a set B ⊆ V (G)\YG⃗,r(X) is admissible in G if and only if it is admissible
in G − X.

Proof. Since the problem is (≤ r)-distance determined, it suffices to show that
min(r, dG(u, v)) = min(r, dG−X(u, v)) holds for all u, v ∈ B. Clearly, dG(u, v) ≤ dG−X(u, v),
and thus it suffices to show that if the distance between u and v in G is b ≤ r, then G − X

contains a walk of length b between u and v. Since G⃗ represents (≤r)-distances, there exists
an inward-directed walk P of length b between u and v in G⃗. Since u, v ̸∈ YG⃗,r(X), we have
V (P ) ∩ X = ∅, and thus P is also a walk of length b between u and v in G − X. ◀
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We are now ready to prove the main result.

Proof of Theorem 2. Let d′ be the function from Lemma 9 for the class G. Let us define
h(r, c) = c(d′(r) + 1)r. The algorithm is as follows. Since G is q-efficiently fractionally
treewidth-f -fragile, in time q(|V (G)|) we can find sets X1, . . . , Xm ⊆ V (G) such that each
vertex belongs to at most m

h(r,c)k of them, and for each i, a tree decomposition of G − Xi of
width at most f(h(r, c)k, |V (G)|). Clearly, m ≤ q(|V (G)|). Next, using Lemma 9, we find an
orientation G⃗ of G that represents (≤r)-distances. Let YG⃗,r be defined as in the statement
of Lemma 11. Since the problem is (g, p)-tw-tractable problem, for each i we can in time
p(|V (G)|) · g(f(h(r, c)k, |V (G)|)) find a subset Ai of V (G) \ YG⃗,r(Xi) admissible in G − Xi

of largest weight. By Lemma 11, each of these sets is admissible in G; the algorithm return
the heaviest of the sets A1, . . . , Am.

As the returned set is admissible in G, it suffices to argue about its weight. Let A

be a heaviest admissible set in G. Let {Rv ⊆ A : v ∈ A} be the system of subsets
from the definition of c-near-monotonicity, and let DG⃗,r be defined as in the statement of
Lemma 10. By the definition of c-near-monotonicity, for each i the set A \ DG⃗,r(Xi) is
admissible in G. Since v ∈ Rv for each v ∈ A, we have YG⃗,r(Xi) ∩ A ⊆ DG⃗,r(Xi), and thus
A \ DG⃗,r(Xi) ⊆ V (G) \ YG⃗,r(Xi). By Lemma 11, A \ DG⃗,r(Xi) is also admissible in G − Xi,
and by the choice of Ai, we have w(Ai) ≥ w(A \ DG⃗,r(Xi)). By Lemma 10, we conclude that
for at least one i, we have w(Ai) ≥ (1 − 1/k)w(A), as required. ◀
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