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Abstract
A multiple knapsack constraint over a set of items is defined by a set of bins of arbitrary capacities,
and a weight for each of the items. An assignment for the constraint is an allocation of subsets of items
to the bins which adheres to bin capacities. In this paper we present a unified algorithm that yields
efficient approximations for a wide class of submodular and modular optimization problems involving
multiple knapsack constraints. One notable example is a polynomial time approximation scheme for
Multiple-Choice Multiple Knapsack, improving upon the best known ratio of 2. Another example is
Non-monotone Submodular Multiple Knapsack, for which we obtain a (0.385 − ε)-approximation,
matching the best known ratio for a single knapsack constraint. The robustness of our algorithm is
achieved by applying a novel fractional variant of the classical linear grouping technique, which is of
independent interest.
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1 Introduction

The Knapsack problem is one of the most studied problems in mathematical programming
and combinatorial optimization, with applications ranging from power management and
production planning, to blockchain storage allocation and key generation in cryptosystems [31,
26, 38, 41]. In a more general form, knapsack problems require assigning items of various
sizes (weights) to a set of bins (knapsacks) of bounded capacities. The bin capacities then
constitute the hard constraint for the problem. Formally, a multiple knapsack constraint
(MKC) over a set of items is defined by a collection of bins of varying capacities and a
non-negative weight for each item. A feasible solution for the constraint is an assignment of
subsets of items to the bins, such that the total weight of items assigned to each bin does
not exceed its capacity. This constraint plays a central role in the classic Multiple Knapsack
problem [8, 23, 24]. The input is an MKC and each item also has a profit. The objective is to
find a feasible solution for the MKC such that the total profit of assigned items is maximized.

Multiple Knapsack can be viewed as a maximization variant of the Bin Packing problem [25,
13]. In Bin Packing we are given a set of items, each associated with non-negative weight.
We need to pack the items into a minimum number of identical (unit-size) bins.
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41:2 Submodular Optimization with Multiple Knapsack Constraints

A prominent technique for approximating Bin Packing is grouping, which decreases the
number of distinct weights in the input instance. Informally, a subset of items is partitioned
into groups G1, . . . , Gτ , and all the items within a group are treated as if they have the
same weight (e.g., [13, 25]). By properly forming the groups, the increase in the number of
bins required for packing the instance can be bounded. Classic grouping techniques require
knowledge of the items to be packed, and thus cannot be easily applied in the context of
maximization problems, and specifically for a multiple knapsack constraint.

The main technical contribution of this paper is the introduction of fractional grouping, a
variant of linear grouping which can be applied to multiple knapsack constraints. Fractional
Grouping partitions the items into groups using an easy to obtain fractional solution,
bypassing the requirement to know the items in the solution.

Fractional Grouping proved to be a robust technique for maximization problems. We use
the technique to obtain, among others, a polynomial-time approximation scheme (PTAS)
for the Multiple-Choice Multiple Knapsack Problem, a (0.385− ε)-approximation for non-
monotone submodular maximization with a multiple knapsack constraint, and a (1− e−1 −
o (1))-approximation for the Monotone Submodular Multiple Knapsack Problem with Uniform
Capacities.

1.1 Problem Definition
We first define formally key components of the problem studied in this paper.

A multiple knapsack constraint (MKC) over a set I of items, denoted by K = (w, B, W ),
is defined by a weight function w : I → R≥0, a set of bins B and bin capacities given by
W : B → R≥0. An assignment for the constraint is a function A : B → 2I which assigns a
subset of items to each bin. An assignment A is feasible if

∑
i∈A(b) w(i) ≤W (b) for all b ∈ B.

We say that A is an assignment of S if S =
⋃

b∈B A(b).
A set function f : 2I → R is submodular if for any S ⊆ T ⊆ I and i ∈ I \ T it holds

that f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ).1 Submodular functions naturally arise in
numerous settings. While many submodular functions, such as coverage [19] and matroid
rank function [6], are monotone, i.e., for any S ⊆ T ⊆ I, f(S) ≤ f(T ), this is not always
the case (cut functions [18] are a classic example). A special case of submodular functions
is modular (or, linear) functions in which, for any S ⊆ T ⊆ I and i ∈ I \ T , we have
f(S ∪ {i})− f(S) = f(T ∪ {i})− f(T ).

For a constant d ∈ N, the problem of Submodular Maximization with d-Multiple Knapsack
Constraints (d-MKCP) is defined as follows. The input is T =

(
I, (Kt)d

t=1 , I, f
)

, where I is
a set of items, Kt, 1 ≤ t ≤ d are d MKCs over I, I ⊆ 2I and f : 2I → R≥0 is a non-negative
submodular function. I is an additional constraint which can be one of the following: (i)
I = 2I , i.e., any subset of items can be selected. (ii) I is the independent set of a matroid,2
or (iii) I is the intersection of independent sets of two matroids, or (iv) I is a matching.3 A
solution for the instance is S ∈ I and (At)d

t=1, where At is a feasible assignment of S w.r.t
Kt for 1 ≤ t ≤ d. The value of the solution is f(S), and the objective is to find a solution of
maximal value.

We assume the function f is given via a value oracle. We further assume that the input
indicates the type of constraint that I represents. Finally, I is given via a membership oracle,
and if I is a matroid intersection, a membership oracle is given for each matroid.

1 Alternatively, for every S, T ⊆ I: f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).
2 A formal definition for matroid can be found in [34].
3 I is a matching if there is a graph G = (V, I), and S ∈ I iff S is a matching in G.
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Table 1 Results of Theorem 1 for d-MKCP.

Type of Additional Modular Monotone Non-Monotone
Constraint Maximization Submodular Max. Sub. Max

No additional constraint PTAS 1 − e−1 − ε 0.385 − ε

Matroid constraint PTAS 1 − e−1 − ε −
2 matroids or a matching PTAS − −

We refer to the special case in which f is monotone (modular) as monotone (modular)
d-MKCP. Also, we use non-monotone d-MKCP when referring to general d-MKCP instances.
Similarly, we refer to the special case in which I is an independent set of a matroid (intersection
of independent sets of two matroids or a matching) as d-MKCP with a matroid (matroid
intersection or matching) constraint. If I = 2I we refer to the problem as d-MKCP with no
additional constraint. Thus, for example, in instances of modular 1-MKCP with a matroid
constraint the function f is modular and I is an independent set of a matroid.

Instances of d-MKCP naturally arise in various settings (see a detailed example in the
full version of this paper [16]).

1.2 Our Results
Our main results are summarized in the next theorem (see also Table 1).

▶ Theorem 1. For any fixed d ∈ N+ and ε > 0, there is
1. A randomized PTAS for modular d-MKCP ((1− ε)-approximation). The same holds for

this problem with a matroid constraint, matroid intersection constraint, or a matching
constraint.

2. A polynomial-time random (1− e−1 − ε)-approximation for monotone d-MKCP with a
matroid constraint.

3. A polynomial-time random (0.385− ε)-approximation for non-monotone d-MKCP with
no additional constraint.

All of the results are obtained using a single algorithm (Algorithm 2). The general
algorithmic result encapsulates several important special cases. The Multiple-Choice Multiple
Knapsack Problem is a variant of the Multiple Knapsack Problem in which the items
are partitioned into classes C1, . . . , Ck, and at most one item can be selected from each
class. Formally, Multiple-Choice Multiple Knapsack is the special case of modular 1-MKCP
where I describes a partition matroid.4 The problem has natural applications in network
optimization [12, 37]. The best known approximation ratio for the problem is 2 due to [12].
This approximation ratio is improved by Theorem 1, as stated in the following.

▶ Corollary 2. There is a randomized PTAS for the Multiple-Choice Multiple Knapsack
Problem.

While the Multiple Knapsack Problem and the Monotone Submodular Multiple Knapsack
Problem are well understood [8, 23, 24, 15, 35], no results were previously known for the
Non-Monotone Submodular Multiple Knapsack Problem, the special case of non-montone
1-MKCP with no additional constraint. A constant approximation ratio for the problem is
obtained as a special case of Theorem 1.

4 That is, I = {S ⊆ I | ∀1 ≤ j ≤ k : |S ∩ Cj | ≤ 1} where C1, . . . , Ck is a partition of I.
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41:4 Submodular Optimization with Multiple Knapsack Constraints

▶ Corollary 3. For any ε > 0 there is a polynomial time random (0.385− ε)-approximation
for the Non-Monotone Submodular Multiple Knapsack Problem.

A PTAS for Multistage Multiple Knapsack, a multistage version of the Multiple Knapsack
Problem, can be obtained via a reduction to modular d-MKCP with a matroid constraint.5
Here, to obtain a (1−O(ε))-approximation for the multistage problem, the reduction solves
instances of modular Θ

( 1
ε

)
-MKCP with a matroid constraint (see [14] for details). Beyond

the rich set of applications, our ability to derive such a general result is an evidence for the
robustness of fractional grouping, the main technical contribution of this paper.

Our result for modular d-MKCP, for d ≥ 2, generalizes the PTAS for the classic d-
dimensional Knapsack problem (I = 2I and |Bt| = 1 for any 1 ≤ t ≤ d). Furthermore,
a PTAS is the best we can expect as there is no efficient PTAS (EPTAS) already for
d-dimensional Knapsack, unless W[1] = FPT [28]. While there is a well-known PTAS
for Multiple Knapsack [8], existing techniques do not readily enable handling additional
constraints, such as a matroid constraint.

The approximation ratio obtained for monotone d-MKCP is nearly optimal, as for any
ε > 0 there is no (1− e−1 + ε)-approximation for monotone submodular maximization with
a cardinality constraint in the oracle model [32]. The approximation ratio is also tight under
P ≠ NP due to the special case of coverage functions [19]. Previous works [15, 35] obtained
the same approximation ratio for the Monotone Submodular Multiple Knapsack Problem
(i.e, monotone 1-MKCP). However, as in the modular case, existing techniques are limited to
handling a single MKC (with no other constraints).

In the non-montone case, the approximation ratio is in fact (c− ε) for any ε > 0, where
c > 0.385 is the ratio derived in [4]. This approximation ratio matches the current best
known ratio for non-monotone submodular maximization with a single knapsack constraint
[4]. A 0.491 hardness of approximation bound for non-monotone d-MKCP follows from [22].

Our technique can be cast also as a variant of contention resolution scheme [11]. The
scheme can be used to derive approximation algorithms for special cases of d-MKCP which
are not considered in Theorem 1. Such a scheme can be found in an earlier version of this
paper [17].6

The Monotone Submodular Multiple Knapsack Problem with Uniform Capacities (USMKP)
is the special case of d-MKCP in which I = 2I , d = 1, f is monotone, and furthermore, all the
bins in the MKC have the same capacity. That is, K1 = (w, B, W ) and W (b1) = W (b2) for
any b1, b2 ∈ B. This restricted variant of d-MKCP commonly arises in real-life applications
(e.g., in file assignment to several identical storage devices). The best known approximation
ratio for USMKP is (1− e−1 − ε) for any fixed ε > 0 [15, 35]. Another contribution of this
paper is an improvement of this ratio.

▶ Theorem 4. There is a polynomial-time random (1− e−1−O((log |B|)− 1
4 ))-approximation

for the Monotone Submodular Multiple Knapsack Problem with Uniform Capacities.

1.3 Related Work
In the classic Multiple Knapsack problem, the goal is to maximize a modular set function
subject to a single multiple knapsack constraint. A PTAS for the problem was first presented
by Chekuri and Khanna [8]. The authors also ruled out the existence of a fully polynomial
time approximation scheme (FPTAS). An EPTAS was later developed by Jansen [23, 24].

5 See, e.g., [2] for the Multistage Knapsack model.
6 We were unable to obtain tight approximation ratios for the studied problems using this approach.
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In the Bin Packing problem, we are given a set I of items, a weight function w : I → R≥0
and a capacity W > 0. The objective is to partition the set I into a minimal number
of sets S1, . . . , Sm (i.e., find a packing) such that

∑
i∈Sb

w(i) ≤ W for all 1 ≤ b ≤ m.
In [25] the authors presented a polynomial-time algorithm which returns a packing using
OPT + O(log2 OPT) bins, where OPT is the number of bins in a minimal packing. The
result was later improved by Rothvoß [33].

Research work on monotone submodular maximization dates back to the late 1970’s.
In [32] Nemhauser and Wolsey presented a greedy-based tight (1− e−1)-approximation for
maximizing a monotone submodular function subject to a cardinality constraint, along with a
matching lower bound in the oracle model. The greedy algorithm of [32] was later generalized
to monotone submodular maximization subject to a knapsack constraint [27, 36].

A major breakthrough in the field of submodular optimization resulted from the intro-
duction of algorithms for optimizing the multilinear extension of a submodular function
([6, 30, 7, 40, 20, 5]). For x̄ ∈ [0, 1]I , we say that a random set S ⊆ I is distributed by x̄

(i.e., S ∼ x̄) if Pr(i ∈ S) = x̄i, and the events (i ∈ S)i∈I are independent. Given a function
f : 2I → R≥0, its multilinear extension is F : [0, 1]I → R≥0 defined as F (x̄) = ES∼x̄[f(S)].

The input for the problem of optimizing the multilinear relaxation is an oracle for a
submodular function f : 2I → R≥0 and a downward closed solvable polytope P .7 The
objective is to find x̄ ∈ P such that F (x̄) is maximized, where F is the multilinear extension
of f . The problem admits a random (1− e−1 − o(1))-approximation in the monotone case
and a random (0.385 + δ)-approximation in the non-monotone case (for some small constant
δ > 0) due to [7] and [4].

Several techniques were developed for rounding a (fractional) solution for the multilinear
optimization problem to an integral solution. These include Pipage Rounding [1], Randomized
Swap Rrounding [9], and Contention Resolution Schemes [11]. These techniques led to the
state of art results for many problems (e.g., [29, 7, 1, 9]).

A random (1− e−1− ε)-approximation for the Monotone Submodular Multiple Knapsack
problem was presented in [15]. The technique in [15] modifies the objective function and
its domain. This modification does not preserve submodularity of a non-montone function
and the combinatorial properties of additional constraints. Thus, it does not generalize to
d-MKCP.

A deterministic (1−e−1−ε)-approximation for Monotone Submodular Multiple Knapsack
was later obtained by Sun et al. [35]. Their algorithm relies on a variant of the greedy
algorithm of [36] which cannot be extended to the non-monotone case, or easily adapted to
handle more than a single MKC.

1.4 Technical Overview
In the following we describe the technical problem solved by fractional grouping and give
some insight to the way we solve this problem. For simplicity, we focus on the special
case of 1-MKCP, in which the number of bins is large and all bins have unit capacity. Let
(I, (w, B, W ), 2I , f) be a 1-MCKP instance where W (b) = 1 for all b ∈ B. Also, assume that
no two items have the same weight. Let S∗ and A∗ be an optimal solution for the instance.

7 A polytope P ∈ [0, 1]I is downward closed if for any x̄ ∈ P and ȳ ∈ [0, 1]I such that ȳ ≤ x̄ (that is,
ȳi ≤ x̄i for every i ∈ I) it holds that ȳ ∈ P . A polytope P ∈ [0, 1]I is solvable if, for any λ̄ ∈ RI , a
point x̄ ∈ P such that λ̄ · x̄ = maxȳ∈P λ̄ · ȳ can be computed in polynomial time, where λ̄ · x̄ is the dot
product of λ̄ and x̄.
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41:6 Submodular Optimization with Multiple Knapsack Constraints

Fix an arbitrary small µ > 0 such that µ−2 ∈ N. We say that an item i ∈ I is heavy
if w(i) > µ; otherwise, i is light. Let H ⊆ I denote the heavy items. We can apply linear
grouping [13] to the heavy items in S∗. That is, let h∗ = |S∗ ∩H| be the number of heavy
items in S∗, and partition S∗ ∩H to µ−2 groups of cardinality µ2 · h∗, assuming the items
are sorted in decreasing order by weights (for simplicity, assume h∗ ≥ µ−2 and µ2 · h∗ ∈ N).
Specifically, S∗ ∩H = G∗

1 ∪ . . . ∪G∗
µ−2 , where |G∗

k| = µ2 · h∗ for all 1 ≤ k ≤ µ−2 and for any
i1 ∈ G∗

k1
, i2 ∈ G∗

k2
where k1 < k2 we have that w(i1) > w(i2). Also, for any 1 ≤ k ≤ µ−2 let

qk, the k-th pivot, be the item of highest weight in G∗
k.

We use the pivots to generate a new collection of groups G1, . . . , Gµ−2 where Gk = {i ∈
H | w (qk+1) < w(i) ≤ w(qk)} for 1 ≤ k < µ−2, and Gµ−2 = {i ∈ H | w(i) ≤ w(qµ−2)}.
Clearly, G∗

k ⊆ Gk for any 1 ≤ k ≤ µ−2. Let X = {i ∈ H | w(i) > w(q1)} be the set of largest
items in H.

A standard shifting argument can be used to show that any set S ⊆ I \X, such that
w(S) ≤ |B| and |S ∩Gk| ≤ µ2 · h∗ for all 1 ≤ k ≤ µ−2, can be packed into (1 + 2µ)|B|+ 1
bins as follows.8 The items in S ∩Gk can be packed in place of the items in G∗

k−1 in A∗, each
of the items in S∩G1 can be packed in a separate bin (observe that |S∩G1| ≤ µ2 ·h∗ ≤ µ|B|
as packing of h∗ heavy items requires at least h∗ · µ bins). Finally, First-Fit can be used to
pack the light items in S.

Now, assume we know q1, . . . , qµ−2 and h∗; thus, the sets G1, . . . , Gµ−2 and X can
be constructed. Consider the following optimization problem: find S ⊆ I \ X such that
w(S) ≤ |B|, |S ∩Gk| ≤ µ2 · h∗ for all 1 ≤ k ≤ µ−2, and f(S) is maximal. The problem is an
instance of non-monotone submodular maximization with a (1 + µ−2)-dimensional knapsack
constraint, for which there is a (0.385−ε)-approximation algorithm [29, 4]. The algorithm can
be used to find S ⊆ I \X which satisfies the above constraints and f(S) ≥ (0.385− ε) · f(S∗),
as S∗ is a feasible solution for the problem. Subsequently, S can be packed into bins
using a standard bin packing algorithm. This will lead to a packing of S into roughly
(1 + 2µ)|B|+ O(log2 |B|) bins. By removing the bins of least value (along with their items),
and using the assumption that |B| is sufficiently large, we can obtain a set S′ and an
assignment of S′ into B such that f(S) is arbitrarily close to 0.385 · f(S∗).

Indeed, we do not know the values of q1, . . . , qµ−2 and h∗. This prevents us from using
the above approach. However, as in [3], we can overcome this difficulty through exhaustive
enumeration. Each of q1, . . . , qµ−2 and h∗ takes one of |I| possible values. Thus, by iterating
over all |I|1+µ−2 possible values for q1, . . . , qµ−2 and h∗, and solving the above problem for
each, we can find a solution of value at least 0.385 · f(S∗).

While this approach is useful for our restricted class of instances, due to the use of
exhaustive enumeration it does not scale to general instances, where bin capacities may be
arbitrary. Known techniques ([15]) can be used to reduce the number of unique bin capacities
in a general MKC to be logarithmic in |B|. As enumeration is required for each unique
capacity, this results in |I|Θ(log |B|) iterations, which is non-polynomial.

Fractional Grouping overcomes this hurdle by using a polytope P ⊆ [0, 1]I to represent
an MKC. A grouping Gȳ

1, . . . , Gȳ
τ with τ ≤ µ−2 + 1 is derived from a vector ȳ ∈ P . The

polytope P bears some similarity to configuration linear programs used in previous works
([24, 21, 3]). While P is not solvable, it satisfies an approximate version of solvability which
suffices for our needs.

Fractional grouping satisfies the main properties of the grouping defined for S∗. Each
of the groups contains roughly the same number of fractionally selected items. That is,∑

i∈Gȳ
k

ȳi ≈ µ2|B| for all 1 ≤ k ≤ τ . Furthermore, we show that if ȳ is strictly contained in

8 For a set S ⊆ I we denote w(S) =
∑

i∈S
w(i).
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P then any subset S ⊆ I satisfying (i) |S ∩Gk| ≤ µ|B| for all 1 ≤ k ≤ τ , and (ii) w(S \H)
is sufficiently small, can be packed into strictly less than |B| bins (see the details in Section
2). The existence of a packing for S relies on a shifting argument similar to the one used
above. In this case, however, the structure of the polytope P replaces the role of S∗ in our
discussion.

This suggests the following algorithm. Use the algorithm of [4] to find ȳ ∈ P such that
F (ȳ) ≥ (0.385− ε)f(S∗), and sample a random set R ∼ (1− δ)2ȳ. By the above property, R

can be packed into strictly less than |B| bins with high probability, as E [|R ∩Gk|]≪ µ|B|.
Thus, R can be packed into B using a bin packing algorithm. Standard tools (specifically,
the FKG inequality as used in [11]) can also be used to show that E[f(R)] is arbitrarily close
to F (ȳ). Hence, we can obtain an approximation ratio arbitrarily close to (0.385− ε) while
avoiding enumeration.

This core idea of fractional grouping for bins of uniform capacities can be scaled to obtain
Theorem 1. This scaling involves use of existing techniques for submodoular optimization
([15, 9, 10, 7, 4]), along with a novel block association technique we apply to handle MKCs
with arbitrary bin capacities.

Organization

We present the fractional grouping technique in Section 2. Our algorithms for uniform bin
capacities and the general case are given in Section 3 and 4, respectively. Due to space
constraints, the block association technique and some proofs are omitted. Those appear in
the full version [16].

2 Fractional Grouping

Given an MKC (w, B, W ) over I, a subset of bins K ⊆ B is a block if all the bins in K have
the same capacity. Denote by W ∗

K the capacities of the bins in block K, then W ∗
K = W (b)

for any b ∈ K.
We first define a polytope PK which represents the block K ⊆ B of an MKC (w, B, W ) over

I. To simplify the presentation, we assume the MKC (w, B, W ) and K are fixed throughout
this section. W.l.o.g., assume that I = {1, 2, . . . , n} and w(1) ≥ w(2) ≥ . . . ≥ w(n). A K-
configuration is a subset C ⊆ I of items which fits into a single bin of block K, i.e., w(C) ≤W ∗

K .
We use CK to denote the set of all K-configurations. Formally, CK = {C ⊆ I | w(C) ≤W ∗

K}.

▶ Definition 5. The extended block polytope of K is

P e
K =

ȳ ∈ [0, 1]I , z̄ ∈ [0, 1]CK

∣∣∣∣∣∣∣∣
∑

C∈CK

z̄C ≤ |K|

∀i ∈ I : ȳi ≤
∑

C∈CK s.t. i∈C

z̄C

 (1)

The first constraint in (1) bounds the number of selected configurations by the number of
bins. The second constraint requires that each selected item is (fractionally) covered by a
corresponding set of configurations. It is easy to verify that, for any (ȳ, z̄) ∈ P e

K , it holds
that

∑
i∈I w(i) · ȳi ≤ |K| ·W ∗

K .

▶ Definition 6. The block polytope of K is

PK =
{

ȳ ∈ [0, 1]I | ∃z̄ ∈ [0, 1]CK : (ȳ, z̄) ∈ P e
K

}
. (2)
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41:8 Submodular Optimization with Multiple Knapsack Constraints

While P e
K and PK are defined using an exponential number of variables (as z̄ ∈ [0, 1]CK

and CK is exponential), it follows from standard arguments (see, e.g., [21, 25]) that, for any
c̄ ∈ RI , maxȳ∈PK

c̄ · ȳ can be approximated.

▶ Lemma 7. There is a fully polynomial-time approximation scheme (FPTAS) for the
problem of finding ȳ ∈ PK such that c̄ · ȳ is maximized, given an MKC (w, B, W ), a block
K ⊆ B and a vector c̄ ∈ RI , where PK is the block polytope of K.

A formal proof for Lemma 7 if given in [16]. We say that A : K → 2I is a feasible assignment
for K if w(A(b)) ≤W ∗

K for any b ∈ K. Also, we use 1S = x̄ ∈ {0, 1}I , where x̄i = 1 if i ∈ S

and x̄i = 0 if i ∈ I \ S. The next lemma implies that the definition of P e
K is sound for the

problem.

▶ Lemma 8. Let A be a feasible assignment for K and S =
⋃

b∈K A(b). Then 1S ∈ PK .

The lemma is easily proved, by setting z̄C = 1 if A(b) = C for some b ∈ B, and z̄C = 0
otherwise. We say an item i ∈ I is µ-heavy for µ > 0 (w.r.t K) if W ∗

K ≥ w(i) > µ ·W ∗
K ; i ∈ I

is µ-light if w(i) ≤ µW ∗
K . Denote by HK,µ and LK,µ the sets of µ-heavy items and µ-light

items, respectively.
Given a vector ȳ ∈ PK , we now describe the partition of µ-heavy items into groups

G1, . . . , Gτ , for some τ ≤ µ−2 + 1. Starting with k = 1 and Gk = ∅, add items from HK,µ to
the current group Gk until

∑
i∈Gk

ȳi ≥ µ|K|. Once the constraint is met, mark the index of
the last item in Gk as qk, the µ-pivot of Gk, close Gk and open a new group, Gk+1. Each of
the groups G1, . . . , Gτ−1 represents a fractional selection of ≈ µ|K| heavy items of ȳ. The
last group, Gτ , contains the remaining items in HK,µ, for which the µ-pivot is qmax (last
item in HK,µ). We now define formally the partition process.

▶ Definition 9. Let ȳ ∈ PK and µ ∈
(
0, 1

2
]
. Also, let q0 ∈ {0, 1, . . . , n} and qmax ∈ I such

that HK,µ = {i ∈ I | q0 < i ≤ qmax}. The µ-pivots of ȳ, given by q1, . . . , qτ , are defined
inductively, i.e.,

qk = min

s ∈ HK,µ

∣∣∣∣∣∣
s∑

i=qk−1+1
ȳi ≥ µ · |K|

 .

If the set over which the minimum is taken is empty, let τ = k and qτ = qmax. The µ-grouping
of ȳ consists of the sets G1, . . . , Gτ , where Gk = {i ∈ HK,µ | qk−1 < i ≤ qk} for 1 ≤ k ≤ τ .

Note that in the above definition it may be that q0 ̸= 0 as there may be items i ∈ I for which
w(i) > W ∗

K . Given a polytope P and δ ∈ R, we use the notation δP = {δx̄ | x̄ ∈ P}. The
main properties of fractional grouping are summarized in the next lemma.

▶ Lemma 10 (Fractional Grouping). For any ȳ ∈ PK and 0 < µ < 1
2 there is a polynomial

time algorithm which computes a partition G1, . . . , Gτ of HK,µ with τ ≤ µ−2 + 1 for which
the following hold:
1.

∑
i∈Gk

ȳi ≤ µ · |K|+ 1 for any 1 ≤ k ≤ τ .
2. Let S ⊆ HK,µ ∪LK,µ such that |S ∩Gk| ≤ µ|K| for every 1 ≤ k ≤ τ , and w(S ∩LK,µ) ≤∑

i∈LK,µ
ȳi · w(i) + λ ·W ∗

K for some λ ≥ 0. Also, assume ȳ ∈ (1− δ)PK for some δ ≥ 0.
Then S can be packed into (1− δ + 3µ)|K|+ 4 · 4µ−2 + 2λ bins of capacity W ∗

K .
We refer to G1, . . . , Gτ as the µ-grouping of ȳ.
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Proof. It follows from Definition 9 that G1, . . . , Gτ can be computed in polynomial time.
Also,

∑
i∈Gτ

ȳi < µ · |K| and

∀1 ≤ k < τ : µ · |K| ≤
∑

i∈Gk

ȳi ≤ µ · |K|+ 1. (3)

Furthermore, τ ≤ µ−2 + 1. Thus, it remains to show Property 2 in the lemma.
Define the type of a configuration C ∈ CK , denoted by type(C), as the vector T ∈ Nτ with

Tk = |C ∩Gk|. Let T = {type(C) | C ∈ CK} be the set of all types. Given a type T ∈ T ,
consider a set of items Q ⊆ HK,µ \G1, such that |Q ∩Gk| ≤ Tk−1 for any 2 ≤ k ≤ τ , then
w(Q) ≤ W ∗

K . This is true since we assume the items in HK,µ are sorted in non-increasing
order by weights. We use this key property to construct a packing for S.

We note that
∑τ

k=1 |C ∩ Gk| < µ−1 for any C ∈ CK (otherwise w(C) > W ∗
K , as

Gk ⊆ HK,µ). It follows that |T | ≤ 4µ−2 . Indeed, the number of types is bounded by the
number of different non-negative integer τ -tuples whose sum is at most µ−1.

By Definition 5, there exists z̄ ∈ [0, 1]CK such that (ȳ, z̄) ∈ (1 − δ)P e
K . For T ∈ T , let

η(T ) =
∑

C∈CK s.t. type(C)=T z̄C . Then, for any 1 ≤ k ≤ τ − 1, we have

µ|K| ≤
∑

i∈Gk

ȳi ≤
∑

i∈Gk

∑
C∈Ck s.t. i∈C

z̄C =
∑

C∈CK

|Gk ∩ C|z̄C =
∑
T ∈T

Tk · η(T ) (4)

The first inequality follows from (3). The second inequality follows from (1). The two
equalities follow by rearranging the terms.

Using z̄ (through the values of η(T )) we define an assignment of S ∩ (G2 ∪ . . . ∪Gτ ) to
η =

∑
T ∈T ⌈η(T )⌉ bins. We initialize η sets (bins) A1, . . . , Aη = ∅ and associate a type with

each set Ab, such that there are ⌈η(T )⌉ sets associated with the type T ∈ T , using a function
R. That is, let R : {1, 2, . . . , η} → T such that |R−1(T )| = ⌈η(T )⌉. We assign the items in
S ∩ (G2 ∪ . . .∪Gτ ) to A1, . . . , Aη while ensuring that |Ab ∩Gk| ≤ R(b)k−1 for any 1 ≤ b ≤ η

and 2 ≤ k ≤ τ . In other words, the number of items assigned to Ab from Gk is at most
the number of items from Gk−1 in the configuration type T assigned to bin b by R. The
assignment is obtained as follows. For every 2 ≤ k ≤ τ , iterate over the items i ∈ S ∩Gk,
find 1 ≤ b ≤ η such that |Ab ∩Gk| < R(b)k−1 and set Ab ← Ab ∪{i}. It follows from (4) and
the conditions of the lemma that such b will always be found.

Upon completion of the process, we have that S ∩ (G2 ∪ . . . ∪Gτ ) = A1 ∪ . . . ∪ Aη.
Furthermore, for every 1 ≤ b ≤ η, there are C ∈ CK and T ∈ T such that type(C) = T = R(b).
Since Ab ⊆ G2 ∪ . . . ∪Gτ , we have

w(Ab) =
τ∑

k=2
w(Ab∩Gk) ≤

τ∑
k=2

Tk−1 ·w(qk−1) =
τ∑

k=2
|C∩Gk−1| ·w(qk−1) ≤

∑
i∈C

w(i) ≤W ∗
K .

The first inequality holds since w(qk−1) ≥ w(i) for every i ∈ Gk, and the second holds since
w(qk−1) ≤ w(i) for every i ∈ Gk−1. By similar arguments, for every 2 ≤ k ≤ τ , we have

w(S∩Gk) ≤ |S∩Gk| ·w(qk−1) ≤ µ|K| ·w(qk−1) ≤
∑

i∈Gk−1

ȳi ·w(qk−1) ≤
∑

i∈Gk−1

ȳi ·w(i). (5)

The third inequality is due to (3). Using (5) and the conditions in the lemma,

w (S \G1) = w(S ∩ LK,µ) +
τ∑

k=2
w(S ∩Gk) ≤

∑
i∈LK,µ

ȳiw(i) + λW ∗
K +

τ−1∑
k=1

∑
i∈Gk

ȳiw(i)

≤
∑
i∈I

ȳi · w(i) + λW ∗
K ≤ (1− δ)W ∗

K · |K|+ λW ∗
K .

(6)
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We use First-Fit (see, e.g., Chapter 9 in [39]) to add the items in S ∩ LK,µ to the
sets (=bins) A1, . . . , Aη while maintaining the capacity constraint, w(Ab) ≤W ∗

K . First-Fit
iterates over the items i ∈ S∩LK,µ and searches for a minimal b such that w(Ab∪{i}) ≤W ∗

K .
If such b exists, First-Fit updates Ab ← Ab ∪ {i}; otherwise, it adds a new bin with i as
its content. Let η′ be the number of bins by the end of the process. As w(i) ≤ µW ∗

K for
i ∈ S∩LK,µ, and due to (6), it holds that η′ ≤ max{η, (|K|(1− δ) + λ) (1+2µ)+1}. Finally,

η =
∑
T ∈T
⌈η(T )⌉ ≤ |T |+

∑
T ∈T

η(T ) ≤ 4µ−2
+

∑
C∈CK

z̄C ≤ 4µ−2
+ (1− δ)|K|.

Thus, there is a packing of S \G1 into at most (1− δ)|K|+ 4µ−2 + 1 + 2µ|K|+ 2λ bins of
capacity W ∗

K . Since |S ∩G1| ≤ µ|K|, each of the items in S ∩G1 can be packed into a bin
of its own. This yields a packing using at most (1− δ + 3µ)|K|+ 4 · 4µ−2 + 2λ bins. ◀

3 Uniform Capacities

In this section we apply fractional grouping (as stated in Lemma 10) to solve the Monotone
Submodular Multiple Knapsack Problem with Uniform Capacities (USMKP). An instance of
the problem consists of an MKC (w, B, W ) over a set I of items, such that W ∗

B = W (b) for
all b ∈ B, and a submodular function f : 2I → R≥0. For simplicity, we associate a solution
for the problem with a feasible assignment A : B → 2I . Then, the set of assigned items is
given by S =

⋃
b∈B A(b).

Our algorithm for USMKP instances applies Pipage Rounding [1, 6]. The input for a
Pipage Rounding step is a (fractional) solution x̄ ∈ [0, 1]I , and two items i1, i2 ∈ I with
costs c1, c2 ≥ 0. The Pipage Rounding step returns a new random solution x̄′ ∈ [0, 1]I such
that x̄′

i = x̄i for i ∈ I \ {i1, i2}, x̄i1 · c1 + x̄i2 · c2 = x̄′
i1
· c1 + x̄′

i2
· c2, and either x̄′

i1
∈ {0, 1}

or x̄′
i2
∈ {0, 1}. Furthermore, for any submodular function f : 2I → R≥0 it holds that

E [F (x̄′)] ≥ F (x̄), where F is the multilinear exetension of f . Algorithm 1 calls a subroutine
Pipage(x̄, f, G, c̄), which can be implemented by an iterative application of Pipage Rounding
steps as long as x̄ contains two fractional entries, and randomly sampling the last remaining
fractional entry. The properties of Pipage are summarized in the next result.

▶ Lemma 11. There is a polynomial time procedure Pipage(x̄, f, G, c̄) for which the following
holds. Given x̄ ∈ [0, 1]I , a submodular function f : 2I → R≥0, a subset of items G ⊆ I and
a cost vector for the items c̄ ∈ RG

≥0, the procedure returns a random vector x̄′ ∈ [0, 1]I such
that E [F (x̄′)] ≥ F (x̄), x̄′

i ∈ {0, 1} for i ∈ G, x̄′
i = x̄i for all i ∈ I \ G, and there is i∗ ∈ G

such that
∑

i∈G x̄′
i · ci ≤ ci∗ +

∑
i∈G x̄i · ci.

To solve USMKP instances, our algorithm initially finds ȳ ∈ PB , where PB is the block
polytope of B (note that B is a block in this case), for which F (ȳ) is large (F is the multilinear
extension of the value function f). The algorithm chooses a small value for µ and uses
G1, . . . , Gτ , the µ-grouping of (1 − 4µ)ȳ, to guide the rounding process. Pipage rounding
is used to convert (1− 4µ) · ȳ to S ⊆ I while preserving the number of selected items from
each group as ≈ µ|B|, and the total weight of items selected from LB,µ (i.e., µ-light items)
as ≈ (1− 4µ) ·

∑
i∈LB,µ

ȳi · w(i). An approximation algorithm for bin packing is then used
to find a packing of S to the bins. Lemma 10 ensures the resulting packing uses at most
|B| bins for sufficiently large B. In case the packing requires more than |B| bins we simply
assume the algorithm returns an empty solution. We give the pseudocode in Algorithm 1.

▶ Lemma 12. Algorithm 1 yields a
(

1− e−1 −O
(

(log |B|)− 1
4
))

-approximation for USMKP.
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Algorithm 1 Submodular Multiple Knapsack with Uniform Capacities.

Input: An MKC (w, B, W ) over I with uniform capacities. A submodular function
f : 2I → R≥0.

1 Find an approximate solution ȳ ∈ PB for maxȳ∈PB
F (ȳ), where PB is the block

polytope of B, and F is the multilinear extension of f .
2 Choose µ = min

{
(log |B|)− 1

4 , 1
2

}
.

3 Set ȳ0 ← (1− 4µ)ȳ. and let G1, . . . , Gτ be the µ-grouping of ȳ0.
4 for k = 1, 2, . . . , τ do ȳk ← Pipage

(
ȳk−1, f, Gk, 1̄

)
.

5 ȳ′ = Pipage
(

ȳτ , f, LB,µ, (w(i))i∈LB,µ

)
.

6 Let S = {i ∈ I | ȳ′
i = 1}.

7 Pack the items in S into B using a bin packing algorithm. Return the resulting
assignment.

Proof. Let A∗ be an optimal solution for the input instance, and OPT = f
(⋃

b∈B A∗(b)
)

its
value. By Lemma 8, 1⋃

b∈B
A∗(b) ∈ PB. Let c = 1− e−1. By using the algorithm of [7] we

have that F (ȳ) ≥
(

c− 1
|I|

)
·OPT (ȳ is defined in Step 1 of Algorithm 1). The algorithm of [7]

is used with the FPTAS of Lemma 7 as an oracle for solving linear optimization problems
over PB. We note that a

(
c− 1

|I|

)
-approximate solution can be obtained even when the

algorithm is only given an FPTAS (and not an exact solver) for linear optimization problems
over the polytope.

Since the multilinear extension has negative second derivatives [7], it follows that F (ȳ0) ≥
(1− 4µ) ·

(
c− 1

|I|

)
·OPT. Now, consider the vector ȳ′ output in Step 5 of the algorithm. By

Lemma 11, it follows that E [F (ȳ′)] ≥ F (ȳ0) ≥ (1−4µ)·
(

c− 1
|I|

)
·OPT, and ȳ′ ∈ {0, 1}I (note

that ȳ′
i = ȳi = 0 for any i with w(i) > W ∗

B due to (1)). Thus, for the set S defined in Step 6 of
the algorithm, we have E [f(S)] ≥ (1− 4µ) ·

(
c− 1

|I|

)
·OPT ≥

(
c−O

(
(log |B|)− 1

4
))
·OPT

(observe we may assume w.l.o.g that |I| ≥ |B|).
To complete the proof, it remains to show that the bin packing algorithm in Step 7

packs all items in S into the bins B. By Lemma 11, for any 1 ≤ k ≤ τ , it holds that
|S∩Gk| =

∑
i∈Gk

ȳ′
i ≤ 1+

∑
i∈Gk

ȳ0
i ≤ µ · |B|+2 (the last inequality follows from Lemma 10).

Similarly, there is i∗ ∈ LB,µ such that

w(S ∩ LB,µ) =
∑

i∈LB,µ

ȳ′
i · w(i) ≤ w(i∗) +

∑
i∈LB,µ

ȳ0
i · w(i) ≤ µ ·W ∗

B +
∑

i∈LB,µ

ȳ0
i · w(i).

To meet the conditions of Lemma 10, we need to remove (up to) two items from each group,
i.e., S ∩Gk, for 1 ≤ k ≤ τ . Let R ⊆ S be a minimal subset such that |(S \R) ∩Gk| ≤ µ|B|
for all 1 ≤ k ≤ τ . By the above we have that |R| ≤ 2 · τ ≤ 2 · (µ−2 + 1). Therefore, S \ R

satisfies the conditions of Lemma 10. Hence, by taking δ = 4µ and λ = µ, the items in S \R

can be packed into (1− µ)|B|+ 4 · 4µ−2 + 2µ bins. By using an additional bin for each item
in R, and assuming |B| is large enough, the items in S can be packed into

(1− µ)|B|+ 4 · 4µ−2
+ 2µ + 2 · (µ−2 + 1) ≤ |B| − |B|

(log |B|)
1
4

+ 5 · 4
√

log |B| + 3 ≤ |B|

bins of capacity W ∗
B. Recall that the algorithm of [25] returns a packing in at most

OPT + O(log2 OPT) bins. Thus, for large enough |B|, the number of bins used in Step 7 of
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Algorithm 1 is at most

|B| − |B|
(log |B|)

1
4

+ 5 · 4
√

log |B| + O(log2 |B|) ≤ |B|.

Finally, we note that Algorithm 1 can be implemented in polynomial time. ◀

4 Approximation Algorithm

In this section we present our algorithm for general instances of d-MKCP, which gives the
result in Theorem 1. In designing the algorithm, a key observation is that we can restrict our
attention to d-MKCP instances of certain structure, with other crucial properties satisfied
by the objective function. For the structure, we assume the bins are partitioned into levels
by capacities, using the following definition of [15].

▶ Definition 13. For any N ∈ N, a set of bins B and capacities W : B → R≥0, a partition
(Kj)ℓ

j=0 of B is N -leveled if, for all 0 ≤ j ≤ ℓ, Kj is a block and |Kj | = N⌊
j

N2 ⌋. We say
that B and W are N -leveled if such a partition exists.

For N, ξ ∈ N, (N, ξ)-restricted d-MKCP is the special case of d-MKCP in which for
any instance R =

(
I, (wt, Bt, Wt)d

t=1 , I, f
)

it holds that Bt and Wt are N -leveled for all
1 ≤ t ≤ d, and f({i}) − f(∅) ≤ OPT

ξ for any i ∈ I, where OPT is the value of an optimal
solution for the instance. We assume the input for (N, ξ)-restricted d-MKCP includes the
N -leveled partition (Kt

j)ℓt
j=0 of Bt for all 1 ≤ t ≤ d. Combining standard enumeration with

the structuring technique of [15], we derive the next result.

▶ Lemma 14. For any N, ξ, d ∈ N and c ∈ [0, 1], a polynomial time c-approximation for
modular/ monotone/ non-monotone (N, ξ)-restricted d-MKCP with a matroid/ matroid
intersection/ matching/ no additional constraint implies a polynomial time c ·

(
1− d

N

)
-

approximation for d-MKCP, with the same type of function and same type of additional
constraint.

The proof of the lemma is given in [16].
Our algorithm for (N, ξ)-restricted d-MKCP associates a polytope with each instance.

To this end, we first generalize the definition of a block polytope (Definition 6) to represent
an MKC. We then use it to define a polytope for the whole instance.

▶ Definition 15. For γ > 0, the extended γ-partition polytope of an MKC (w, B, W ) and the
partition (Kj)ℓ

j=0 of B to blocks is

P e =

(x̄, ȳ0, . . . , ȳℓ)

∣∣∣∣∣∣∣∣∣
x̄ ∈ [0, 1]I∑ℓ

j=0 ȳj = x̄

ȳj ∈ PKj
∀0 ≤ j ≤ ℓ

ȳj
i = 0 ∀0 ≤ j ≤ ℓ, |Kj | = 1, i ∈ I \ LKj ,γ

 (7)

where PKj
is the block polytope of Kj, and LKj ,γ is the set of γ-light items of Kj. The

γ-partition polytope of (w, B, W ) and (Kj)ℓ
j=0 is

P =
{

x̄ ∈ [0, 1]I
∣∣ ∃ȳ0, . . . ȳℓ ∈ [0, 1]I s.t. (x̄, ȳ0, . . . , ȳℓ) ∈ P e

}
(8)
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The last constraint in (7) forbids the assignment of γ-heavy items to blocks of a single bin.
This technical requirement is used to show a concentration bound.

Finally, the γ-instance polytope of
(

I, (wt, Bt, Wt)d
t=1 , I, f

)
and a partition

(
Kt

j

)ℓt

j=0 of

Bt to blocks, for 1 ≤ t ≤ d, is P = P (I) ∩
(⋂d

t=1 Pt

)
, where P (I) is the convex hull of I

and Pt is the γ-partition polytope of (wt, Bt, Wt) and
(
Kt

j

)ℓt

j=0. In the instance polytope
optimization problem, we are given a d-MKCP instance R with a partition of the bins to
blocks for each MKC, c̄ ∈ RI and γ > 0. The objective is to find x̄ ∈ P such that x̄ · c̄ is
maximized, where P is the γ-instance polytope of R. While the problem cannot be solved
exactly, it admits an FPTAS.

▶ Lemma 16. There is an FPTAS for the instance polytope optimization problem.

The lemma follows from known techniques for approximating an exponential size linear
program using an approximate separation oracle for the dual program. The full proof appears
in [16].

The next lemma asserts that the γ-instance polytope provides an approximate represent-
ation for the instance as a polytope.

▶ Lemma 17. Given an (N, ξ)-restricted d-MKCP instance R with objective function f , let
S, (At)d

t=1 be an optimal solution for R and γ > 0. Then there is S′ ⊆ S such that 1S′ ∈ P

and f(S′) ≥
(

1− N2·d
ξ·γ

)
f(S), where P is the γ-instance polytope of R.

Lemma 17 is proved constructively by removing the γ-heavy items assigned to blocks of a
single bin in At, for 1 ≤ t ≤ d. The full proof appears in [16].

Recall that F is the multiliear extension of the objective function f . Our algorithm
finds a vector x̄ in the instance polytope for which F (x) approximates the optimum. The
fractional solution x̄ is then rounded to an integral solution. Initially, a random set R ∈ I is
sampled, with Pr(i ∈ R) = (1− δ)2x̄i.9 The technique by which R is sampled depends on I.
If I = 2I then R is sampled according to x̄, i.e., R ∼ (1− δ)2x̄ (as defined in Section 1.3). If
I is a matroid constraint, the sampling of [9] is used. Finally, if I is a matroid intersection,
or a matching constraint, then the dependent rounding technique of [10] is used. Each of the
distributions admits a Chernoff-like concentration bound. These bounds are central to our
proof of correctness. We refer to the above operation as sampling R by x̄, δ and I.

Given the set R, the algorithm proceeds to a purging step. While this step does not
affect the content of R if f is monotone, it is critical in the non-monotone case. Given a
submodular function f : 2I → R, we define a purging function ηf : 2I → 2I as follows. Fix
an arbitrary order over I (which is independent of S), initialize J = ∅ and iterate over the
items in S by their order in I. For an item i ∈ S, if f(J ∪ {i})− f(J) ≥ 0 then J ← J ∪ {i};
else, continue to the next item. Now, ηf (S) = J , where J is the set at the end of the process.
The purging function was introduced in [11] and is used here similarly in conjunction with
the FKG inequality.

While the above sampling and purging steps can be used to select a set of items for the
solution, they do not determine how these items are assigned to the bins. We now show that
it suffices to associate the selected items with blocks and then use a Bin Packing algorithm
for finding their assignment to the bins in the blocks, as in Algorithm 1.

Intuitively, we would like to associate a subset of items It
j with a block Kt

j in a way that
enables to assign the items in It

j ∩ R to |Kt
j | bins, for 1 ≤ t ≤ d and 1 ≤ j ≤ ℓt. Consider

two cases. If |Kt
j | > 1 then we ensure It

j ∩R satisfies conditions that allow using Fractional

9 Recall that I is the additional constraint.
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Grouping (see Lemma 10). On the other hand, if |Kt
j | = 1, it suffices to require that R ∩ It

j

adheres to the capacity constraint of this bin. Such a partition (It
j)ℓt

j=0 of supp(x̄) can be
computed for each of the MKCs. We refer to this partition as the Block Association of a point
in the γ-partition polytope and µ, on which the partition depends. The formal definition of
block association and its properties can be found in [16].

We proceed to analyze our algorithm (see the pseudocode in Algorithm 2).

Algorithm 2 (N, ξ)-restricted d-MKCP.

Input: An (N, ξ)-restricted d-MKCP instance R defined by(
I, (wt, Bt, Wt)d

t=1 , I, f
)

and (Kt
j)ℓt

j=0, the N -leveled partition of Bt for
1 ≤ t ≤ d.

Configuration : γ > 0, δ > 0, N ∈ N, ξ ∈ N,
1 Optimize F (x̄) with x̄ ∈ P , where P is the γ-instance polytope of R, and F is the

multilinear extension of f .
2 Let R be a random set sampled by x̄, δ and I. Define J = ηf (R) (ηf is the purging

function).
3 Let ȳt,0, . . . , ȳt,ℓt ∈ [0, 1]I such that (x̄, ȳt,0, . . . , ȳt,ℓt) ∈ P e

t , where P e
t is the extended

γ-partition polytope of (wt, Bt, Wt) and the partition (Kt
j)ℓt

j=0, for 1 ≤ t ≤ d.
4 Find the block association (It

j)ℓt
j=0 of (1− δ)(x̄, ȳt,0, . . . , ȳt,ℓt) and µ = δ

4 for
1 ≤ t ≤ d.

5 Pack the items of J ∩ It
j into the bins of Kt

j using an algorithm for bin packing if
|Kt

j | > 1, or simply assign J ∩ It
j to Kt

j otherwise .
6 Return J and the resulting assignment if the previous step succeeded; otherwise,

return an empty set and an empty packing.

▶ Lemma 18. For any d ∈ N, ε > 0 and M > 0, there are parameters N ∈ N satisfying
N > M , ξ ∈ N, γ > 0 and δ > 0 such that Algorithm 2 is a randomized (c−ε)-approximation
for (N, ξ)-restricted d-MKCP, where c = 1 for modular instances with any type of additional
constraint, c = 1− e−1 for monotone instances with a matroid constraint, and c = 0.385 for
non-monotone instances with no additional constraint.

A formal proof of the lemma appears in [16]. Theorem 1 follows immediately from Lemmas
18 and 14.
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