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Abstract
In grammar-based compression a string is represented by a context-free grammar, also called a
straight-line program (SLP), that generates only that string. We refine a recent balancing result
stating that one can transform an SLP of size g in linear time into an equivalent SLP of size O(g)
so that the height of the unique derivation tree is O(log N) where N is the length of the represented
string (FOCS 2019). We introduce a new class of balanced SLPs, called contracting SLPs, where for
every rule A → β1 . . . βk the string length of every variable βi on the right-hand side is smaller by a
constant factor than the string length of A. In particular, the derivation tree of a contracting SLP
has the property that every subtree has logarithmic height in its leaf size. We show that a given SLP
of size g can be transformed in linear time into an equivalent contracting SLP of size O(g) with rules
of constant length. This result is complemented by a lower bound, proving that converting SLPs
into so called α-balanced SLPs or AVL-grammars can incur an increase by a factor of Ω(log N).

We present an application to the navigation problem in compressed unranked trees, represented
by forest straight-line programs (FSLPs). A linear space data structure by Reh and Sieber (2020)
supports navigation steps such as going to the parent, left/right sibling, or to the first/last child
in constant time. We extend their solution by the operation of moving to the i-th child in time
O(log d) where d is the degree of the current node.

Contracting SLPs are also applied to the finger search problem over SLP-compressed strings
where one wants to access positions near to a pre-specified finger position, ideally in O(log d) time
where d is the distance between the accessed position and the finger. We give a linear space solution
for the dynamic variant where one can set the finger in O(log N) time, and then access symbols or
move the finger in time O(log d + log(t) N) for any constant t where log(t) N is the t-fold logarithm
of N . This improves a previous solution by Bille, Christiansen, Cording, and Gørtz (2018) with
access/move time O(log d + log log N).
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1 Introduction

In grammar-based compression a long string is represented by a context-free grammar, also
called a straight-line program (SLP), that generates only that string. Straight-line programs
can achieve exponential compression, e.g. a string of length 2n can be produced by the
grammar with the rules An → An−1An−1, . . . , A0 → a. While it is NP-hard to compute a
smallest SLP for a given string [5] there are efficient grammar-based compressors of both
practical and theoretical interest such as the LZ78/LZW-algorithms [25, 24], Sequitur [19],
and Re-Pair [16]. There is a close connection between grammar-based compression and the
LZ77 algorithm, which parses a string into z phrases (without self-references): On the one
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45:2 Compression by Contracting Straight-Line Programs

hand z is always a lower bound on the size of the smallest SLP for the string [5]. On the
other hand one can always construct an SLP of size O(z log N) where N is the string length
[5, 22] (see also [13] for LZ77 with self-referential phrases). Furthermore, the hierarchical
structure of straight-line programs makes them amenable to algorithms that work directly
on the compressed representation, without decompressing the string first. We refer to [17]
for a survey on the broad literature on algorithms on grammar-compressed data.

Balanced grammars. For some algorithmic applications it is useful if the SLP at hand
satisfies certain balancedness conditions. In the following we always denote by N the length
of the represented string. A recent result states that one can transform an SLP of size g in
linear time into an equivalent SLP of size O(g) so that the height of the unique derivation
tree is O(log N) [10]. This yields a clean O(g) space data structure which supports random
access to any position i in the string in time O(log N), by descending in the derivation tree
from the root to the i-th leaf. The original solution for the random access problem by Bille,
Landau, Raman, Sadakane, Satti, and Weimann relied on a sophisticated weighted ancestor
data structure [3]. Its advantage over the balancing approach from [10] is that it supports
random access to the string defined by any given variable A in time O(log |A|).

Although the derivation tree of an SLP may have logarithmic height its subtrees may
still be very unbalanced. Arguably, the strongest balancedness notions are α-balanced SLPs
[5] and AVL-grammars [22]. An SLP in Chomsky normal form is α-balanced if for every rule
A → BC the ratios |B|/|A| and |C|/|A| lie between α and 1−α. An AVL-grammar is an SLP
in Chomsky normal form whose derivation tree is an AVL-tree, i.e. for every rule A → BC

the subtree heights below B and C differ at most by one. In fact, the aforementioned
transformations from LZ77 into SLPs produce an α-balanced SLP, with α ≤ 1 − 1

2
√

2 [5],
and an AVL-grammar [22]. Using the same proof techniques one can also transform an SLP
of size g into an α-balanced SLP or an AVL-grammar of size O(g log N) [5, 22].

Let us list a few algorithmic results on α-balanced SLPs and AVL-grammars. The
compressed pattern matching problem can be solved in linear time if the text is given by an
α-balanced SLP and the pattern is given explicitly [13]. Gagie, Gawrychowski, Kärkkäinen,
Nekrich, and Puglisi [7] presented a solution for the bookmarking problem in α-balanced
SLPs or AVL-grammars of size g. Given b positions in the string, called bookmarks, we
can decompress any substring of length ℓ that covers a bookmark in time O(ℓ) and space
O(g + b log∗ N). Based on this bookmarking data structure they present self-indexes for LZ77
and SLPs [7, 8], which support extracting substrings and finding all occurrences of a given
pattern. Abboud, Backurs, Bringmann, and Künnemann studied the Hamming distance
problem and the subsequence problem on SLP-compressed strings [1]. As a first step their
algorithms convert the input SLPs into AVL-grammars, and solve both problems in time
Õ(g1.410 · N0.593), improving on the decompress-and-solve O(N) time algorithms.

Main results. The starting point of this paper is the observation that the size increase by a
O(log N) factor in the transformation from SLPs to α-balanced SLPs or AVL-grammars is
unavoidable (Theorem 4). This lower bound holds whenever in the derivation tree any path
from a variable A to a leaf has length Θ(log |A|). This motivates the search for balancedness
notions of SLPs that can be established without increasing the size by more than a constant
factor and that provide good algorithmic properties. We introduce a new class of balanced
SLPs, called contracting straight-line programs, in which every variable βi occurring on the
right-hand side of a rule A → β1 . . . βk satisfies |βi| ≤ |A|/2. The derivation tree of an
contracting SLP has the property that every subtree has logarithmic height in its leaf size,
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i.e. in the number of descendant leaves. We explicitly admit rules with right-hand sides of
length greater than two, however, the length will always be bounded by a constant in this
paper. We say that an SLP G defines a string s if some variable in G derives s (and s only).
The main theorem of this paper refines the balancing theorem from [10] as follows:

▶ Theorem 1. Given an SLP G of size g, one can compute in linear time a contracting SLP
of size O(g) with constant-length right-hand sides which defines all strings that G defines.

As an immediate corollary we obtain a simple O(g) size data structure supporting access
to the i-th symbol of a variable A in time O(log |A|) instead of O(log N). This is useful
whenever multiple strings s1, . . . , sm are compressed using a single SLP since we can support
random access to any string si in time O(log |si|). We present an example application to
unranked trees represented by forest straight-line programs (FSLPs). FSLPs are a natural
generalization of SLPs that can compress trees both horizontally and vertically, and share
the good algorithmic applicability of their string counterparts [11]. Reh and Sieber presented
a linear space data structure on FSLP-compressed trees that allows to perform various
navigation steps in constant time [21]. We extend their data structure by the operation of
moving to the i-th child in time O(log d) where d is the degree of the current node.

▶ Theorem 2. Given an FSLP G of size g, one can compute an data structure in O(g)
time and space supporting the following operations in constant time: Move to the root of the
first/last tree of a given variable, move to the first/last child, to the left/right sibling or to
the parent of the current node, return the symbol of the current node. One can also move to
the i-th child of the current node in time O(log d) where d is the degree of the current node.

A second application concerns the finger search problem on grammar-compressed strings.
A finger search data structure supports fast updates and searches to elements that have
small rank distance from the fingers, which are pointers to elements in the data structure.
The survey [4] provides a good overview on dynamic finger search trees. In the setting of
finger search on a string s, Bille, Christiansen, Cording, and Gørtz [2] considered three
operations: access(i) returns symbol s[i], setfinger(i) sets the finger at position i of s, and
movefinger(i) moves the finger to position i in s. Given an SLP of size g for a string of
length N , they presented an O(g) size data structure which supports setfinger(i) in O(log N)
time, and access(i) and movefinger(i) in O(log d + log log N) time where d is the distance
from the current finger position [2]. If we assume that the SLP is α-balanced or an AVL-
grammar, there is a linear space solution supporting access(i) and movefinger(i) in O(log d)
time (Theorem 17). For general SLPs we present a finger search structure with improved
time bounds:

▶ Theorem 3. Let t ≥ 1. Given an SLP of size g for a string of length N , one can support
setfinger(i) in O(log N) time, and access(i) and movefinger(i) in O(log d + log(t) N) time,
where d is the distance between i and the current finger position, after O(tg) preprocessing
time and space.

Here log(t) N is the t-fold logarithm of N , i.e. log(0) N = N and log(t+1) N = log log(t) N .
Choosing any constant t we obtain a linear space solution for dynamic finger search, supporting
access(i) and movefinger(i) in O(log d + log(t) N) time. Alternatively, we obtain a clean
O(log d) time solution if we admit a O(g log∗ N) space data structure. Theorem 3 also works
for multiple fingers where every finger uses additional O(log N) space.

Let us remark that Theorem 1 holds in the pointer machine model [23], whereas for
Theorem 2 and Theorem 3 we assume the word RAM model with the standard arithmetic and
bitwise operations on w-bit words, where w ≥ log N . The assumption on the word length is
standard in the area of grammar-based compression, see [3, 2].
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Overview of the proofs. The proof of Theorem 1 follows the ideas from [3] and [10].
The obstacle for O(log N) time random access or O(log N) height are occurrences of heavy
variables on right-hand sides of rules A → β1 . . . βk, i.e. variables βi whose length exceeds
|A|/2. These occurrences can be summarized in the heavy forest, which is a subgraph of the
directed acyclic graph associated with the SLP. The random access problem can be reduced
to weighted ancestor queries (see Section 5) on every heavy tree whose edges are weighted by
the lengths of the variables that branch off from the heavy tree. Using a “biased” weighted
ancestor data structure one can descend in the derivation tree in O(log N) time, spending
amortized constant time on each heavy tree [3]. Our main contribution is a solution of the
weighted ancestor problem in the form of an SLP: Given a tree T of size n where the edges
are labeled by weighted symbols, we construct a contracting SLP of size O(n) defining all
prefixes in T , i.e. labels of paths from the root to some node. The special case of defining all
prefixes of a weighted string by a weight-balanced SLP of linear size (i.e. T is a path) was
solved in [10]; however, the constructed SLP only satisfies a weaker balancedness condition.

To solve finger search efficiently, Bille, Christiansen, Cording, and Gørtz first consider the
fringe access problem [2]: Given a variable A and a position 1 ≤ i ≤ |A|, access symbol A[i],
ideally in time O(log d) where d = min{i, |A|− i+1}. For this purpose the SLP is partitioned
into leftmost and rightmost trees, which produce strings of length N , N1/2, N1/4, N1/8,
etc. The leftmost/rightmost trees can be traversed in O(log log N) time using a O(log log N)
time weighted ancestor data structure by Farach-Colton and Muthukrishnan [6]. Applying
this approach to contracting SLPs one can solve fringe access in time O(log d + log log |A|)
since the trees have O(log N) height, for which one can answer weighted ancestor queries in
constant time using a predecessor data structure by Pǎtraşcu-Thorup [20]. Using additional
weighted ancestor structures, we can reduce the term log log |A| to log(t) N .

2 Straight-line programs

A context-free grammar G = (V, Σ, R, S) consists of a finite set V of variables, an alphabet
Σ of terminal symbols, where V ∩ Σ = ∅, a finite set R of rules A → u where A ∈ V and
u ∈ (V ∪ Σ)∗ is a right-hand side, and a start variable S ∈ V. The set of symbols is V ∪ Σ.
We call G a straight-line program (SLP) if every variable occurs exactly once on the left-hand
side of a rule and there exists a linear order < on V such that A < B whenever B occurs on
the right-hand side of a rule A → u. This ensures that every variable A derives a unique
string JAK ∈ Σ∗. We also write |A| for |JAK|. A string s ∈ Σ∗ is defined by G if JAK = s

for some A ∈ V. The size of G is the total length of all right-hand sides in G. We denote
by height(A) the height of the derivation tree rooted in A. The height of G is height(S).
We define the directed acyclic graph dag(G) = (V ∪ Σ, E) where E is a multiset of edges,
containing for every rule A → β1 . . . βk in R the edges (A, β1), . . . , (A, βk). An SLP G can be
transformed in linear time into an SLP G′ in Chomsky normal form which defines all strings
that G defines, i.e. each rule is of the form A → BC or A → a where A, B, C ∈ V and a ∈ Σ.

An SLP is α-balanced, for some constant 0 < α ≤ 1/2, if it is in Chomsky normal
form and for all rules A → BC both |B|/|A| and |C|/|A| lie between α and 1 − α. An
AVL-grammar is an SLP in Chomsky normal form where for all rules A → BC we have
|height(B) − height(C)| ≤ 1. An SLP in Chomsky normal form is (α, β)-path balanced, for
some constants 0 < α ≤ β, if for every variable A the length of every root-to-leaf path in
the derivation tree is between α log |A| and β log |A|. Observe that every α-balanced SLP is
(1/ log(α−1), 1/ log((1 − α)−1))-path balanced and AVL-grammars are (0.5, 2)-path balanced.
The latter follows from the fact that the height decreases at most by 2 when going from an
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AVL-tree to an immediate subtree. There are algorithms that compute for given a string w

an α-balanced SLP [5] and an AVL-grammar [22] of size O(g log N) where g is the size of a
smallest SLP for w. We show that these bounds are optimal even for path balanced SLPs:
There are strings for which the smallest path balanced SLPs have size Ω(g log N).

▶ Theorem 4. There exists a family of strings (sn)n≥1 over {a, b} such that |sn| = Ω(2n),
sn has an SLP of size O(n) and every (α, β)-path balanced SLP has size Ω(n2).

Proof. First we use an unbounded alphabet. Let sn = b1a2n

b2a2n

. . . bn−1a2n

bn, which has
an SLP of size O(n) with the rules S → b1Anb2An . . . bn, A0 → a and Ai → Ai−1Ai−1 for
all 1 ≤ i ≤ n. Consider an (α, β)-path balanced SLP G for sn. We will show that dag(G) has
Ω(n2) edges. Let 1 ≤ i ≤ n and consider the unique path in dag(G) from the starting variable
to bi. Let πi be the suffix path starting in the lowest node Ai such that JAiK contains some
symbol bj with i ̸= j. Therefore |Ai| ≥ 2n. Since G is (α, β)-path balanced πi has length
≥ αn. Since all paths πi are edge-disjoint it follows that G has size Ω(n2).

For a binary alphabet define the separator Ti = ba2i−2ba2i−1b for 1 ≤ i ≤ n and define
sn = T1a2n

T2 . . . Tn−1a2n

Tn of length Ω(2n). The string sn also has an SLP of size O(n).
Consider an (α, β)-path balanced SLP G for sn. Let 1 ≤ i ≤ n and consider the unique
path ρi in dag(G) from the starting variable to the symbol b in the middle of the separator
Ti = ba2i−2ba2i−1b. Let Bi be the lowest node on ρi such that JBiK contains either ba2i−2b

or ba2i−1b. Since the successor of Bi on ρi produces a string strictly shorter than |Ti| ≤ 4n,
the suffix path of ρi starting in Bi has length at most 1 + β log(4n) = O(log n). Let Ai be
the lowest ancestor of Bi on ρi such that JAiK contains a symbol from a separator Tj for
i ̸= j. Therefore |Ai| ≥ 2n and hence the suffix path of ρi starting in Ai has length at least
α log(2n) = αn = Ω(n). Thus, the path πi from Ai to Bi has length Ω(n) − O(log n) = Ω(n).
All paths πi are edge-disjoint since for any edge (X, Y ) in πi, JY K is of the form aℓba2i−2bar

or aℓba2i−1bar. This implies that G has size Ω(n2). ◀

We define contracting SLPs over a weighted alphabet, i.e. an alphabet Γ equipped with
a function ∥ · ∥ : Γ → N \ {0}, which is extended additively to Γ∗. The standard weight
function is the length function | · |. A symbol β occurring in a weighted string s is heavy
in s if ∥β∥ > ∥s∥/2; otherwise it is light in s. Consider an SLP G = (V, Σ, R, S) over a
weighted alphabet Σ. We define ∥A∥ = ∥JAK∥ for A ∈ V. A symbol β ∈ V ∪ Σ is a heavy
child of A ∈ V if β is heavy on the right-hand side of the rule A → u. We also call β a heavy
symbol. A rule A → u is contracting if u contains no heavy variables, i.e. every variable B

occurring in u satisfies ∥B∥ ≤ ∥A∥/2. Let us emphasize that heavy terminal symbols from Σ
are permitted in contracting rules. If all rules in G are contracting we call G contracting. If
B occurs heavily in a rule A → uBv and the rule B → x is contracting we can expand the
occurrence of B and obtain a contracting rule A → uxv.

3 Transformation into contracting SLPs

A labeled tree T = (V, E, γ) is a rooted tree where each edge e ∈ E is labeled by a string γ(e)
over a weighted alphabet Γ. A prefix in T is the labeling of a path starting from the root.
The first step towards proving Theorem 1 is a reduction to the following problem: Given a
labeled tree T , construct a contracting SLP over Γ of size O(|T |), defining all prefixes in T .

Decomposition into heavy trees. Consider an SLP G = (V, Σ, R, S). If a rule A → β1 . . . βk

contains a unique heavy symbol βi then β1 . . . βi−1 is the light prefix of A and βi+1 . . . βk

is the light suffix of A. The heavy forest H = (V ∪ Σ, EH) contains all edges (A, β) where

ESA 2021



45:6 Compression by Contracting Straight-Line Programs

S

TA B

C D U E

V

A B

DC

ε ε

E

Figure 1 An excerpt from the dag representation of an SLP. The variables S, T, U, V form a
heavy tree with root U . The value of S can be split into the prefix ACD, the root U of the heavy
tree, and the suffix B. Observe that the left labeling of the path from U to S is DCA, which is the
reverse of the prefix ACD.

β ∈ V ∪ Σ is a heavy child of A ∈ V, which is a subgraph of dag(G). Notice that the edges
in H point towards the roots, i.e. if (α, β) ∈ E then α is a child of β in H. We define two
labeling functions: The left label λ(e) of an edge e = (A, β) is the reversed light prefix of A

and the right label ρ(e) of e is the light suffix of A. The connected components of (H, λ)
and (H, ρ) are called the left labeled and right labeled heavy trees, which can be computed in
linear time from G. If β is the root of a heavy tree containing a variable A we can factorize
JAK into the reversed left labeling from A to its root β in H, the value of β, and the right
labeling of the path from β to A. In that way one can redefine every variable using SLPs
which define all prefixes in the left labeled and the right labeled heavy trees.

▶ Proposition 5. Given an SLP G and contracting SLPs HL and HR defining all prefixes
of all left labeled and right labeled heavy trees of G. Let g be the total number of variables
in the SLPs and r be the maximal length of a right-hand side. One can compute in linear
time a contracting SLP G′ which defines all strings that G defines, has O(g) variables and
right-hand sides of length O(r).

The goal of this section is to prove the following result.

▶ Theorem 6. Given a labeled tree T with n edges and labels of length ≤ ℓ, one can compute
in linear time a contracting SLP with O(n) variables and right-hand sides of length O(ℓ)
defining all prefixes in T .

Together with Proposition 5 it implies Theorem 1. We can always assume that every
edge in T is labeled by a single symbol: Edges labeled by ε can clearly be contracted. Edge
labels u of length > 1 are replaced by a new symbol Xu of weight ∥u∥, which can be replaced
by u again in the constructed SLP. We will also assume that all symbols in T are distinct.

Prefixes of weighted strings. We start with the case where the tree is a path, i.e. we need
to define all prefixes of a weighted string s using O(|s|) contracting rules. The following
theorem refines [10, Lemma III.1] where only the path length from a prefix variable Si to a
symbol aj in the derivation tree was bounded by O(1 + log ∥Si∥

∥aj∥ ).

▶ Theorem 7. Given a weighted string s of length n one can compute in linear time a
contracting SLP with O(n) variables with right-hand sides of length at most 10 that defines
all nonempty prefixes of s.

Let us illustrate the difficulty of defining all prefixes with contracting rules. Consider the
weighted string s = a1 . . . an where symbol ai has weight 2n−i. Since in every factor ai . . . aj

the left-most symbol ai is heavy, every rule for ai . . . aj must split off the first symbol. If for
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a9a8

a7B

E

F

a6a5

a4

a3D

a2a1

A

C

a9

a7E

F

a6

a3a2

Figure 2 The derivation tree D of a base SLP and the modified tree D0 containing all symbols
which are not a left-most child in D.

every prefix we would only repeatedly split off the first symbol we would create Ω(n2) many
variables. This shows that there is no better solution with right-hand sides of length ≤ 2.
However, using longer rules we can simultaneously reduce both the weight (in a contracting
fashion) and the length.

First we recursively construct a contracting “base” SLP B = (V, Σ, R, S) for the weighted
string s = a1 . . . an. It will have the additional property of being left-heavy, i.e. for every rule
A → β1 . . . βk and all 2 ≤ i ≤ k with βi ∈ V we have ∥β1 . . . βi−1∥ ≥ ∥βi∥. Let us emphasize
that the condition does not apply when βi is a terminal symbol. The case n = 1 is clear. If
n > 1 we factorize s = uaiv such that u, v ∈ Σ∗ have weight at most ∥s∥/2. Next factorize
v = v1v2 such that |v1| and |v2| differ at most by one. We add the rule S → UaiV1V2 to
the SLP, possibly omitting variables if some of the strings u, v1, v2 are empty. Finally, we
recursively define the variables U , V1 and V2. The SLP B is clearly contracting, has at
most n variables, since every variable can be identified with the unique symbol a ∈ Σ on
its right-hand side, and its right-hand sides have length at most 4. Notice that the rule
S → UaiV1V2 is left-heavy since ∥uai∥ > ∥s∥/2 ≥ ∥v1∥ + ∥v2∥.

▶ Lemma 8. The base SLP B can be computed in linear time from s.

Consider the derivation tree D of B whose node set is S = V ∪ Σ. Let ⪯D and ≺D be
the ancestor and the proper ancestor relation on S. For all α ⪯D β we define left(α, β) = u

where α ⇒∗
B uβv is the unique derivation with u, v ∈ Σ∗. In the derivation tree left(α, β)

is the string that branches off to the left on the path from α to β. Notice that every
proper nonempty prefix of s can be written as left(S, ai) = a1 . . . ai−1. For α ∈ S \ {S}
occurring in the unique rule α′ → uαv we define the left sibling string lsib(α) = u. It satisfies
lsib(α) ⇒∗

B left(α′, α). Notice that we can have left(α, β) = left(α′, β′) for different pairs
(α, β), (α′, β′). For a unique description we define the set of nodes S0 ⊆ S which are not a
left-most child in D, i.e. symbols α such that α = S or lsib(α) ̸= ε. In particular S belongs
to S0. Observe that left(α, β) = left(α′, β′) where α′ and β′ are the lowest ancestors of α

and β, respectively, that belong to S0. In particular, every proper nonempty prefix of s is of
the form left(α, β) for some α, β ∈ S0. Let D0 be the unique unordered tree with node set
S0 whose ancestor relation is the ancestor relation of D restricted to S0. Figure 2 shows an
example of a tree D with the modified tree D0.

We will introduce variables Lα,β for the strings left(α, β). The variable Lα,β can be
defined using Lα′,β′ where α′ is a child of α in D0 and β′ is the parent of β in D0. To achieve
the O(n) bound we will restrict to variables Lα,β that are used in the derivation of a prefix
variable, namely L = {Lα,β | α, β ∈ S0, α ≺ β, level(α) ≤ height(β)}. Here level(α) refers to
distance from α to the root in D0, and height(β) is the height of the subtree of D0 below β.

ESA 2021



45:8 Compression by Contracting Straight-Line Programs

▶ Lemma 9. We can compute in linear time a contracting SLP G = (V ∪ L, Σ, R ∪ Q, S)
with right-hand sides of constant length such that JLα,βK = left(α, β) for all Lα,β ∈ L.

We have seen that G defines all nonempty prefixes (S derives s and every proper nonempty
prefix is defined by some variable LS,ai). To finish the proof of Theorem 7 remains to show
that G has O(n) variables. The SLP G consists of n variables from the base SLP B and the
variables in L. A variable Lα,β ∈ L is determined by β and the level of α, which is an integer
between 0 and the height of β in D0. Hence it suffices to show that

∑
β∈S0

height(β) is O(n).
This follows from the fact that every node in D0 has logarithmic height in its leaf size.

Prefixes in trees. For Theorem 6 we will construct an SLP G for the prefixes in T , which
will not be contracting in general. Still, its heavy forest is a disjoint union of caterpillar trees,
i.e. trees where every node has at most one child which is not a leaf. Put differently, every
heavy tree of G consists of a central path α1, . . . , αm such that every αi occurs at most once
heavily in a rule A → u where A is heavy, namely A = αi−1. We first extend Theorem 7 to
caterpillar trees and then apply Proposition 5 to G, concluding the proof of Theorem 6.

▶ Proposition 10. Given a labeled caterpillar tree T with n edges and labels of length ≤ ℓ,
one can compute a contracting SLP G defining all nonempty prefixes in T such that G has
O(n) variables and right-hand sides of length O(ℓ).

▶ Proposition 11. Given a labeled tree T with n edges we can compute an SLP G defining
all nonempty prefixes in T such that
(a) G has 4n variables and right-hand sides of length ≤ 6,
(b) the subgraph of dag(G) induced by the set of heavy symbols is a disjoint union of paths.

Proof sketch. We proceed by induction on n. Let us assume a tree T = (V, E, ω) with
n ≥ 2 edges. We partition E into maximal unary paths π = (v0, . . . , vk), where k ≥ 1, and
v1, . . . , vk−1 have degree one. For every such a path π we create an SLP Gπ with the rules
Pv0,v1 → ω(v0, v1) and Pv0,vi → Pv0,vi−1ω(vi−1, vi) for 2 ≤ i ≤ k. We contract every such a
maximal unary path into a single edge (v0, vk) labeled by the variable Pv0,vk

and remove all
leaves. This new tree T ′ has at most n/2 many edges. Let V ′ ⊆ V be the node set of T ′.

For v ∈ V ′ let d(v) be the weight of the path from the root to v in T ′ and define
rk(v) = inf{k ∈ Z | d(v) ≤ 2k}. Let v̂ be the highest ancestor of v in T ′ with rk(v) = rk(v̂),
called the peak node of v. We partition T ′ into subtrees consisting of nodes with the same
peak node, and apply the construction recursively on each part. Let G′ be the union of all
obtained SLPs with at most 4 · n/2 ≤ 2n variables. For every node v ∈ V ′ which is not a
peak node G′ contains a variable Bv̂,v where JBv̂,vK is the path labeling from v̂ to v in T ′.

Let G be the union of G′ and all SLPs Gπ, which has at most n + 2n = 3n variables. For
every x ∈ V which is not the root of T we add a variable Ax such that JAxK is the labeling
of the path from the root to x in T . This yields 4n variables, as claimed. Let v be the lowest
ancestor of x in T contained in V ′. If v is the root then we add the rule

Ax → Pv,x. (1)

Now assume that v is not the root and hence v̂ is also not the root, since the children of the
root are peak nodes. Let u be the parent of v̂ in T ′. If u is the root of T ′ we add the rule

Ax → Pu,v̂ Bv̂,v Pv,x. (2)
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Otherwise, u and û are not the root. Let s be the parent node of û in T ′ and add the rule

Ax → As Ps,û Bû,u Pu,v̂ Bv̂,v Pv,x. (3)

One can prove correctness by induction on rk(v). It remains to prove property (b) of the
statement. One can observe that the A- and B-variables are light in the rules (2) and (3).
Consider a maximal unary path π = (v0, . . . , vk). The variable Pv0,vi for 1 ≤ i ≤ k − 1 only
occurs in the rule of Pv0,vi−1 . The variable Pv0,vk

can occur on the right-hand sides of (1),
(2) and (3), but the corresponding left-hand side Ax is not heavy. By induction hypothesis
Pv0,vk

is the heavy child of at most one heavy variable in G′. This concludes the proof. ◀

4 Navigation in FSLP-compressed trees

As a simple application we extend the navigation data structure on FSLP-compressed trees
[21] by the operation which moves to the i-th child in time O(log d) where d is the degree
of the current node. This is established by applying Theorem 1 to the substructure of the
FSLP that compresses forests horizontally.

SLP navigation. The navigation data structure on FSLPs is based on a navigation data
structure on (string) SLPs from [18], which extends the data structure from [12] from one-way
to two-way navigation. The data structure represents a position 1 ≤ i ≤ |A| in a variable A

by a data structure σ(A, i), that we will call pointer, which is a compact representation of
the path in the derivation tree from A to the leaf corresponding to position i.

▶ Theorem 12 ([18]). A given SLP S can be preprocesed in O(|S|) time and space so that
the following operations are supported in constant time:

Given a variable A, compute σ(A, 1) or σ(A, |A|).
Given σ(A, i), compute σ(A, i − 1) or σ(A, i + 1), or return ⊥ if the position is invalid.
Given σ(A, i), return the symbol at position i in A.

Furthermore, a single pointer σ(A, i) uses O(height(A)) space and can be computed in time
O(height(A)) for a given pair (A, i).

Forest straight-line programs. In this section we use the natural term representation for
forests. Let Σ be an alphabet of node labels. The set of forests is defined inductively as
follows: The concatenation of n ≥ 0 forests is a forest (this includes the empty forest ε), and,
if a ∈ Σ and t is a forest, then a(t) is a forest. A context is a forest over Σ ∪ {x} where x

occurs exactly once and this occurrence is at a leaf node. If f is a context and g is a forest or
a context then f⟨g⟩ is obtained by replacing the unique occurrence of x in f by g. A forest
straight-line program (FSLP) G = (V0, V1, Σ, R, S) consists of finite sets of forest variables V0
and context variables V1, the alphabet Σ, a finite set of rules R, and a start variable S ∈ V0.
The rules contain arbitrary applications of horizontal concatenation and substitutions of
forest and context variables. We restrict ourselves to rules in a certain normal form, which
can be established in linear time with a constant factor size increase [11]. The normal form
assumes a partition V0 = V⊤

0 ∪ V⊥
0 where V⊥

0 -variables produce trees whereas V⊤
0 -variables
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A → a(B) X → Y ⟨Y ⟩
B → CC Y → b⟨DxD⟩
C → X⟨D⟩ E → ε

D → c(E)

a

b

cb

ccc

c

b

cb

ccc

c

Figure 3 An example FSLP with the variables V⊥
0 = {A, C, D}, V⊤

0 = {B, E} and V1 = {X, Y }.
The tree defined by A is displayed on the right.

produce forests with arbitrarily many trees. The rules in R have one of the following forms:

A → ε where A ∈ V⊤
0 ,

A → BC where A ∈ V⊤
0 and B, C ∈ V0,

A → a(B) where A ∈ V⊥
0 , a ∈ Σ, and B ∈ V0,

A → X⟨B⟩ where A, B ∈ V⊥
0 and X ∈ V1,

X → Y ⟨Z⟩ where X, Y, Z ∈ V1

X → a(LxR) where X ∈ V1, a ∈ Σ, and L, R ∈ V0,

Every variable A ∈ V0 derives a forest JAK and every variable X ∈ V1 derives a context
JXK, see [11] for formal definitions. An example FSLP for a tree is shown in Figure 3.

The normal form allows us to define two string SLPs (without start variables) that
capture the horizontal and the vertical compression in G. The rib SLP G⊟ = (V0, Σ⊟, R⊟)
over the alphabet Σ⊟ = {A | A ∈ V⊥

0 } contains all rules of the form A → ε or A → BC from
R where A ∈ V⊤

0 , and the rule A → A for all A ∈ V⊥
0 . We write JAK⊟ = A1 . . . An for the

string derived by A in G⊟, which satisfies JAK = JA1K . . . JAnK. In the example of Figure 3
we have JBK⊟ = C C. The spine SLP G� = (V⊥

0 ∪ V1, Σ�, R�) is defined over the alphabet

Σ� = {a(B) | (A → a(B)) ∈ R} ∪ {a(LxR) | (X → a(LxR)) ∈ R}.

The set R� contains all rules A → a(B) and X → a(LxR) from R. It also contains
the rule A → X for all (A → X⟨B⟩) ∈ R where A ∈ V⊥

0 , and X → Y Z for all (X →
Y ⟨Z⟩) ∈ R. We write JV K� for the string derived by V in G�. If X ∈ V1 and JXK� =
a1(L1xR1) . . . an(LnxRn) then JXK is the vertical composition of all contexts ai(JLiKxJRiK).
In the example of Figure 3 we have JCK⊟ = b⟨DxD⟩ b⟨DxD⟩.

FSLP navigation. Now we define the data structure from [21]. It represents a node v in a
tree produced by a variable A ∈ V0 by a pointer τ(A, v), which is basically a sequence of
navigation pointers in the SLPs G⊟ and G� describing the path from the root of JAK to v.
Intuitively, the pointer τ(A, v) can be described as follows. First we select the subtree of
JAK which contains v, by navigating in G⊟ to a symbol B0 where B0 ∈ V⊥

0 . The tree JB0K is
defined by a sequence of insertion rules B0 → X1⟨B1⟩, B1 → X2⟨B2⟩, . . . , Bk−1 → Xk⟨Bk⟩,
where possibly k = 0, and a final rule Bk → a(C). We navigate in G� in the variable B0
from left to right. The string JB0K� specifies the contexts aj(LjxRj) which together form
the context JX1K. If we encounter a context aj(LjxRj) which contains v, there are two cases.
If v is the aj-labeled root then we are done. If v is contained in either Lj or Rj then we
record the direction (L or R) and continue recursively from the variable Lj or Rj . If v is not
contained in the context X1 then we reach the end of JB0K�, and continue searching from B1,
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etc. If v is contained in Bk then it is either its root or it is contained in C. In the former case,
we are done; in the latter case we record the direction M and continue recursively from C.

To define τ(A, v) formally, let us write σ⊟(A, i) and σ�(A, i) for the pointers to the i-th
position of a variable A ∈ V0 in G⊟ and G�, respectively. We represent every node v in every
variable A ∈ V0 by a horizontal pointer τ⊟(A, v). Furthermore, we represent every node v

in every variable A ∈ V⊥
0 , deriving a tree, by a vertical pointer τ�(A, v). The pointers are

defined recursively as follows:
1. Let A ∈ V0. If JAK⊟ = A1 . . . An and v is contained in JAiK then set τ⊟(A, v) :=

σ⊟(A, i) τ�(Ai, v).
2. Let A ∈ V⊥

0 with a rule A → a(B). If v is the root of JAK set τ�(A, v) := σ�(A, 1), and
otherwise τ�(A, v) := σ�(A, 1) M τ⊟(B, v).

3. Let A ∈ V⊥
0 with a rule A → X⟨B⟩ and JAK� = JXK� = a1(L1xR1) . . . an(LnxRn). If

v is contained in fi = ai(JLiKxJRiK) set τ�(A, v) to be σ�(A, i), σ�(A, i) L τ⊟(Li, v) or
σ�(A, i) R τ⊟(Ri, v), depending whether v is the root of fi or is contained in JLiK or JRiK.
If v is contained in JBK set τ�(A, v) := σ�(A, n) τ�(B, v).

For the navigation we only use the horizontal pointers and write τ(A, v) instead of τ⊟(A, v).

▶ Theorem 13 ([21]). A given FSLP G can be preprocesed in O(|G|) time and space so that
the following operations are supported in constant time:

Given a variable A, compute τ(A, v) where v is the root of the first/last tree in JAK.
Given τ(A, v), compute τ(A, v′) where v′ is the parent, first/last child or left/right sibling
of v, or return ⊥ if it does not exist.
Given τ(A, v), return the symbol of node v.

Navigation to a child. We extend Theorem 13 by the operation which, given a pointer
τ(S, v) and a number 1 ≤ j ≤ d, where v has degree d, moves the pointer to the j-th child of
v in O(log d) time. To this end we apply Theorem 1 to G⊟ so that every variable A ∈ V0
in the rib SLP has height O(log |JAK⊟|), by adding only O(g) new variables. In particular,
we can compute a pointer σ⊟(A, i) in O(log |JAK⊟|) time by Theorem 12. Furthermore, we
compute the length |JAK⊟| for all A ∈ V0 in linear time.

Suppose we are given a pointer τ(S, v) to a node v with degree d for some variable S ∈ V0.
We show how to compute τ(S, vj) where vj is the j-th child of v in O(log d) time.
1. In the first case the last pointer in τ(S, v) is σ�(A, 1) where the rule of A ∈ V⊥

0 is of the
form A → a(B). Here B derives the forest below the a-node and we need to move to the
root of the j-th tree in the forest. We compute the pointer σ⊟(B, j) in O(log |JBK⊟|) ≤
O(log d) time. Then we query the symbol Bj at pointer σ⊟(B, j) and compute the pointer
σ�(Bj , 1) in constant time. Then we obtain τ(S, vj) = τ(S, v) M σ⊟(B, j) σ�(Bj , 1).

2. In the second case the last pointer in τ(S, v) is σ�(A, i) where the rule of A ∈ V⊥
0 is

of the form A → X⟨B⟩. We query the symbol ai(LixRi) at pointer σ�(A, i). The j-th
child vj is either in Li, Ri or at the position of the parameter x. If j = |JLiK⊟| + 1 we
replace σ�(A, i) by σ�(A, i + 1) in constant time. If this is not successful then vj is the
root of B and we have τ(S, vj) = τ(S, v) σ�(B, 1), which can be computed in constant
time. If j ≤ |JLiK⊟| we compute σ⊟(Li, j) in O(log |JLiK⊟|) ≤ O(log d) time. We query
the symbol Bj at σ⊟(Li, j) and compute σ�(Bj , 1) in constant time. Then we have
τ(S, vj) = τ(S, v) L σ⊟(Li, j) σ�(Bj , 1). If j ≥ |JLiK⊟| + 2 we proceed similarly using
σ⊟(Ri, j − |JLiK⊟| − 1).

Remarks. In its original form the SLP navigation data structure from [18] is non-persistent,
i.e. the operations modify the given pointer. However, it is not hard to adapt the structure so
that an operation returns a fresh pointer, by representing paths in the derivation tree using
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linked lists that share common prefixes. In a similar fashion, Theorem 2 can be adapted so
that a pointer is not modified by a navigation step.

Finally, let us comment on the space consumption of a single pointer in Theorem 2. A
single pointer τ(A, v) consists of a sequence of pointers in G⊟ and G� that almost describes a
path in the derivation tree of A in G. The sequence may contain pointers σ�(A, n) that point
to the lowest node above the parameter of a context JXK. However, in the representation
of [18] such a pointer σ�(A, n) only uses O(1) space, since it is a rightmost path in the
derivation tree of A in G�. Therefore τ(A, v) uses O(height(A)) space where height(A) is the
height of the derivation tree of A in G. By [10, Theorem VII.3] we can indeed assume that
the FSLP G has O(log N) height while retaining the size bound of O(|G|). We also need the
fact that the transformation into the normal form increases the height only by a constant
factor. However, since the application of Theorem 1 to the rib SLP may possibly increase the
total height of the FSLP G by more than a constant factor, it is unclear whether Theorem 2
can be achieved with O(log N) sized pointers.

5 Finger search in SLP-compressed strings

In this section we present our solution (Theorem 3) for the finger search problem using
contracting SLPs. Our finger data structure is an accelerated path, which compactly represents
the path from root to the finger in the derivation tree using precomputed forests on the dag
of the SLP. To move the finger we ascend to some variable on the path, branch off from the
path, and descend in a subtree while computing the new accelerated path. We can maintain
the accelerated path in a dynamic predecessor structure with constant update and query
time, thanks to the O(log N) height of the SLP. We follow the approach of [2] and present
an improved O(tg) space solution for the fringe access problem: Given a variable A and a
position 1 ≤ i ≤ |A|, we can access the i-th symbol of JAK in time O(log d + log(t) N) where
d = min{i, |A| − i + 1} is the distance from the fringe of A, and t is any parameter.

Data structures. Recall that we assume the word RAM model with word size w ≥ log N

where N is the string length. Since all occurring sets and trees have size n ≤ N we have
w ≥ log n in the following. We use a dynamic predecessor data structure by Pǎtraşcu-
Thorup, which represents a dynamic set S of n = wO(1) many w-bit integers in space O(n),
supporting the following updates and queries in constant time [20]: insert(S, x) = S ∪ {x},
delete(S, x) = S \ {x}, pred(S, x) = max{y ∈ S | y < x}, succ(S, x) = min{y ∈ S | y > x},
rank(S, x) = |{y ∈ S | y < x}|, and select(S, i) = x with rank(S, x) = i, if any. By enlarging
the word size to 2w we can identify a number x · 2w + y, where x, y are w-bit numbers, with
the key-value pair (x, y), allowing us to store key-value pairs in the data structure sorted by
their keys. We remark that all standard operations on a 2w-bit word RAM can be simulated
by a constant number of w-bit operations. This dynamic predecessor structure is used to
maintain the accelerated path to the finger. We extend the data structure by the operation
split(S, x) = {y ∈ S | y ≤ x} for O(w)-sized sets.

▶ Theorem 14 ([20]). There is a data structure representing a dynamic set S of at most
n = O(w) many w-bit numbers in space O(n) supporting the operations insert(S, x), split(S, x)
and pred(S, x) in constant time.

A weighted tree T is a rooted tree where each node v carries a nonnegative integer d(v),
called the weighted depth, satisfying d(u) ≤ d(v) for all nodes v with parent u. Given a node
v and a number p ∈ N, the weighted ancestor query (v, p) asks to return the highest ancestor
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u of v with d(u) > p. Given a node v and p ∈ N, we can also compute the highest ancestor u

of v where the weighted distance d(u, v) = d(v) − d(u) is less than p, by the weighted ancestor
query (v, d(v) − p). In our application the edges have nonnegative weights and the weighted
depth of a node is computed as the sum of all edge weights on the path from the root.

Kopelowitz and Lewenstein [15] showed that weighted ancestor queries on a tree of size n

can be answered in time O(pred(n)+ log∗ n) where pred(n) is the query time of a predecessor
data structure. It was claimed in [14] that the log∗ n-term can be eliminated without giving
an explicit proof. We refer to [9, Proposition 17] for a proof in the setting where n ≤ w

using the predecessor structure from [20]. Furthermore, we can also support constant time
weighted ancestor queries if the tree height is O(w).

▶ Proposition 15. A weighted tree T with n nodes and height h = O(w) can be preprocessed
in O(n) space and time so that weighted ancestor queries can be answered in constant time.

The fringe access problem. Consider an SLP G with the variable set V containing g

variables for a string of length N . Using Theorem 1 we assume that G is in Chomsky normal
form and that every variable A has height O(log |A|). We precompute in linear time the
length of all variables in G. To simplify notation we assume that the variables B and C in
all rules A → BC are distinct, which can be established by doubling the number of variables.
We assign to each edge e in dag(G) a left weight λ(e) and a right weight ρ(e): For every rule
A → BC in G, the edge e = (A, B) has left weight λ(e) = 0 and right weight ρ(e) = |C|,
whereas the edge e = (A, C) has left weight ρ(e) = |B| and right weight ρ(e) = 0.

Let F be a finite set of subforests of dag(G) with node set V whose edges point towards
the roots (as for example in the heavy forest). The forests will be computed later in
Proposition 16. For every forest F ∈ F we define two edge-weighted versions FL and FR
where the edges inherit the left weights and the right weights from dag(G), respectively,
yielding 2|F| many weighted forests. Let λF (A) and ρF (A) be the weighted depths of A in FL
and FR, respectively. In O(|F| ·g) time we compute for all A ∈ V0 the weighted depths λF (A)
and ρF (A) and the root rootF (A) of the subtree of F containing A. We write λF (A, B)
and ρF (A, B) for the weighted distances between A and B in FL and FR, respectively. We
preprocess all 2|F| weighted forests in time and space O(|F| · g) to support weighted ancestor
queries in constant time according to Proposition 15. This is possible because the height of
the forests is O(log N) = O(w).

We denote by ⟨A, i⟩ the state in which we aim to compute a compact representation of
the path from A to the i-th leaf in the derivation tree of A. Starting from state ⟨A, i⟩ we can
take short steps and long steps. A short step considers the rule of A: If it is a terminal rule
A → a we have found the symbol a. If it is a binary rule A → BC we compare i with |B|: If
i ≤ |B| then the short step leads to ⟨B, i⟩, and otherwise to ⟨C, i − |B|⟩. A left long step in
F ∈ F is possible if i ≤ λF (A)+ |rootF (A)|. Put differently, the path from A to A[i] branches
off to the left on the path from A to rootF (A), or continues below rootF (A). We determine
the highest ancestor X of A in FL with λF (A, X) < i and move to ⟨X, i − λF (A, X)⟩. Using
the weighted ancestor data structure on F the variable X can be determined in constant
time. Symmetrically, a right long step in F is possible if |A| − i + 1 ≤ ρF (A) + |rootF (A)|.
Put differently, the path from A to A[i] branches off to the right on the path from A to
rootF (A), or continues below rootF (A). After finding the highest ancestor X of A in FR with
ρF (A, X) < |A| − i + 1 we move to ⟨X, |A| − i + 1 − ρF (A, X)⟩.

If we take a long step in a forest F then a subsequent short step moves us from one
subtree in F to a different subtree, by maximality of the answer from the weighted ancestor
query. A sequence of short and long steps is summarized in an accelerated path (e1, . . . , em) of
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short and long edges. A short edge is an edge (A, B) in dag(G) whereas a long edge is a triple
(A, F, B) such that F ∈ F contains a (unique) path from A to B. In the triple (A, F, B) we
store only an identifier of F instead of the forest itself. The left weight and the right weight
of a long edge e = (A, F, B) are λ(e) = λF (A, B) and ρ(e) = ρF (A, B), respectively.

▶ Proposition 16. Let t ≥ 1. One can compute and preprocess in O(tg) time a set of forests
F with |F| = O(t) so that given a variable A and a position 1 ≤ i ≤ |A|, one can compute an
accelerated path from A to A[i] in time O(log d + log(t+1) N) where d = min{i, |A| − i + 1}.

Proof sketch. First let us assume that i ≤ |A|/2. To this end we construct forests F =
{F0, . . . , Ft−1} in O(tg) time so that an accelerated path from A to A[i] can be computed in
time O(log i + log(t+1) N). For all F ∈ F we construct two constant time weighted ancestor
data structures (for FL and FR), and compute λF (A), ρF (A) and rootF (A) for all A ∈ V.

The simple algorithm which only uses short steps takes time O(log |A|). We first improve
the running time to O(log i + log log |A|). Let rk(A) = min{k ∈ N : |A| ≤ 22k }, which is at
most 1 + log log |A|. The forest F0 contains for every rule A → BC in G either the edge
(A, B), if rk(A) = rk(B), or the edge (A, C) if rk(A) = rk(C) > rk(B). If rk(A) is strictly
greater than both rk(B) and rk(C) then no edge is added for the rule A → BC. To query
A[i] where rk(A) = k we make a case distinction. If i ≤ λF0(A) + |rootF0(A)| we take a left
long step in F0 to some state ⟨X, j⟩ with rk(X) < k and j ≤ i, and repeat the procedure
from there. Otherwise i > |rootF0(A)| > 22k−1 ≥

√
|A| and we query A[i] using short steps

in time O(log |A|) ≤ O(log i). Since the rank is reduced in the former case this procedure
takes time O(log i + k) ≤ O(log i + log log |A|).

We can replace log log |A| by log(t+1) N by adding forests F1, . . . , Ft−1 to F : The forest
Fk where 1 ≤ k ≤ t − 1 contains for every rule A → BC in G either the edge (A, B), if
|B| > log(k) N , or the edge (A, C), if |B| ≤ log(k) N and |C| > log(k) N . To query A[i] we
compute the maximal k ∈ [0, t − 1] such that i ≤ log(k) N . We will compute the accelerated
path in time O(log i + log(k+2) N) ≤ O(log i + log(t+1) N). If |A| ≤ log(k) N we can query
A[i] in time O(log i + log log |A|) ≤ O(log i + log(k+2) N). If i ≤ log(k) N < |rootFk

(A)| we
can take a left long step in Fk and then a short step to some state ⟨X, j⟩ where |X| ≤ log(k) N

and j ≤ i. We can query X[j] in time O(log j + log log |X|) ≤ O(log i + log(k+2) N).
Finally, for every forest F ∈ F we include a mirrored right-skewed version of F , which

then supports access to symbol A[i] in time O(log(|A| − i + 1) + log(t+1) N). ◀

Solving the finger search problem. We are ready to prove Theorem 3. We maintain an
accelerated path π = (e1, . . . , em) from the start variable S to the current finger position f

with its left weights and right weights as follows. Let ℓj =
∑j

k=1 λ(ek) and rj =
∑j

k=1 ρ(ek)
be the prefix sums of the weights. Observe that f = ℓm + 1. We store a stack γ =
((e1, ℓ1, r1), (e2, ℓ2, r2), . . . , (em, ℓm, rm)), implemented as an array. Given i ∈ [1, m], one can
pop all elements at positions i + 1, . . . , m in constant time. We store the set of distinct prefix
sums L = {ℓj | 0 ≤ j ≤ m} in a dynamic predecessor data structures from Theorem 14
where a prefix sum ℓ is stored together with the maximal index j such that ℓ = ℓj . Similarly
R = {rj | 0 ≤ j ≤ m} is stored in a predecessor data structure.

For setfinger(f) we compute an arbitrary accelerated path from S to S[f ], say only using
only short steps, and set up the list γ and the predecessor data structures for L and R in
time O(log N). For movefinger(i) we can assume that f − i = d > 0 since the data structures
are left-right symmetric. By a predecessor query on L we can find the unique index j with
ℓj < i ≤ ℓj+1. Then we restrict γ to its prefix of length j, and perform split(L, ℓj) and
split(R, rj), all in constant time. Using fringe access we can compute an accelerated path
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π′ from A to S[i] = A[i′] where i′ = i − ℓj : If ej+1 is a short edge we take a short step and
then use Proposition 16 for the remaining path. If ej+1 is a left or right long edge in a forest
F ∈ F we take a left long step, followed by a short step, and then use Proposition 16 for
the remaining path. Finally, we update the stack γ and the prefix sums in L and R in time
O(|π′|). This concludes the proof of Theorem 3.

We leave it as an open question whether there exists a linear space finger search data
structure, supporting access(i) and movefinger(i) in O(log d) time. For path balanced SLPs
such a solution does exist.

▶ Theorem 17. Given an (α, β)-path balanced SLP of size g for a string of length N , one
can support setfinger(i) in O(log N) time, and access(i) and movefinger(i) in O(log d) time,
where d is the distance between i and the current finger position, after O(g) preprocessing
time and space.
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