
Computing the 4-Edge-Connected Components of
a Graph in Linear Time
Loukas Georgiadis #

Department of Computer Science & Engineering, University of Ioannina, Greece

Giuseppe F. Italiano #

LUISS University, Rome, Italy

Evangelos Kosinas #

Department of Computer Science & Engineering, University of Ioannina, Greece

Abstract
We present the first linear-time algorithm that computes the 4-edge-connected components of an
undirected graph. Hence, we also obtain the first linear-time algorithm for testing 4-edge connectivity.
Our results are based on a linear-time algorithm that computes the 3-edge cuts of a 3-edge-connected
graph G, and a linear-time procedure that, given the collection of all 3-edge cuts, partitions the
vertices of G into the 4-edge-connected components.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Cuts, Edge Connectivity, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.47

Related Version Full Version: https://arxiv.org/abs/2105.02910 [6]

Funding Research at the University of Ioannina supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost research equipment grant”, Project
FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431. G. F. Italiano is
partially supported by MIUR, the Italian Ministry for Education, University and Research, under
PRIN Project AHeAD (Efficient Algorithms for HArnessing Networked Data).

1 Introduction

Let G = (V, E) be a connected undirected graph with m edges and n vertices. An (edge) cut
of G is a set of edges S ⊆ E such that G \ S is not connected. We say that S is a k-cut if its
cardinality is |S|= k. Also, we refer to the 1-cuts as the bridges of G. A cut S is minimal
if no proper subset of S is a cut of G. The edge connectivity of G, denoted by λ(G), is the
minimum cardinality of an edge cut of G. A graph is k-edge-connected if λ(G) ≥ k.

A cut S separates two vertices u and v, if u and v lie in different connected components
of G \S. Vertices u and v are k-edge-connected, denoted by u

G≡k v, if there is no (k− 1)-cut
that separates them. By Menger’s theorem [16], u and v are k-edge-connected if and only
if there are k-edge-disjoint paths between u and v. A k-edge-connected component of G

is a maximal set C ⊆ V such that there is no (k − 1)-edge cut in G that disconnects any
two vertices u, v ∈ C (i.e., u and v are in the same connected component of G \ S for any
(k − 1)-edge cut S). We can define, analogously, the vertex cuts and the k-vertex-connected
components of G.

Computing and testing the edge connectivity of a graph, as well as its k-edge-connected
components, is a classical subject in graph theory, as it is an important notion in several
application areas (see, e.g., [19]), that has been extensively studied since the 1970’s. It is
known how to compute the (k−1)-edge cuts, (k−1)-vertex cuts, k-edge-connected components

© Loukas Georgiadis, Giuseppe F. Italiano, and Evangelos Kosinas;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:loukas@cs.uoi.gr
https://orcid.org/0000-0002-9706-7409
mailto:gitaliano@luiss.it
https://orcid.org/0000-0002-9492-9894
mailto:ekosinas@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.ESA.2021.47
https://arxiv.org/abs/2105.02910
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Computing the 4-Edge-Connected Components of a Graph in Linear Time

and k-vertex-connected components of a graph in linear time for k ∈ {2, 3} [5, 10, 18, 21, 25].
The case k = 4 has also received significant attention [2, 3, 11, 12]. Unfortunately, none
of the previous algorithms achieved linear running time. In particular, Kanevsky and
Ramachandran [11] showed how to test whether a graph is 4-vertex-connected in O(n2) time.
Furthermore, Kanevsky et al. [12] gave an O(m + nα(m, n))-time algorithm to compute
the 4-vertex-connected components of a 3-vertex-connected graph, where α is a functional
inverse of Ackermann’s function [23]. Using the reduction of Galil and Italiano [5] from edge
connectivity to vertex connectivity, the same bounds can be obtained for 4-edge connectivity.
Specifically, one can test whether a graph is 4-edge-connected in O(n2) time, and one can
compute the 4-edge-connected components of a 3-edge-connected graph in O(m + nα(m, n))
time. Dinitz and Westbrook [3] presented an O(m + n log n)-time algorithm to compute
the 4-edge-connected components of a general graph G (i.e., when G is not necessarily
3-edge-connected). Nagamochi and Watanabe [20] gave an O(m + k2n2)-time algorithm to
compute the k-edge-connected components of a graph G, for any integer k. We also note that
the edge connectivity of a simple undirected graph can be computed in O(mpolylogn) time,
randomized [8, 13] or deterministic [9, 15]. The best current bound is O(m log2 n log log2n),
achieved by Henzinger et al. [9] which provided an improved version of the algorithm of
Kawarabayashi and Thorup [15].

Our results and techniques. In this paper we present the first linear-time algorithm that
computes the 4-edge-connected components of a general graph G, thus resolving a problem
that remained open for more than 20 years. Hence, this also implies the first linear-time
algorithm for testing 4-edge connectivity. We base our results on the following ideas. First,
we extend the framework of Georgiadis and Kosinas [7] for computing 2-edge cuts (as well as
mixed cuts consisting of a single vertex and a single edge) of G. Similar to known linear-time
algorithms for computing 3-vertex-connected and 3-edge-connected components [10, 25],
Georgiadis and Kosinas [7] define various concepts with respect to a depth-first search (DFS)
spanning tree of G. We extend this framework by introducing new key parameters that can
be computed efficiently and provide characterizations of the various types of 3-edge cuts
that may appear in a 3-edge-connected graph. We deal with the general case by dividing
G into auxiliary graphs H1, . . . , Hℓ, such that each Hi is 3-edge-connected and corresponds
to a different 3-edge-connected component of G. Also, for any two vertices x and y, we
have x

G≡4 y if and only if x and y are both in the same auxiliary graph Hi and x
Hi≡4 y.

Furthermore, this reduction allows us to compute in linear time the number of minimal 3-edge
cuts in a general graph G. Next, in order to compute the 4-edge-connected components in
each auxiliary graph Hi, we utilize the fact that a minimum cut of a graph G separates
G into two connected components. Hence, we can define the set VC of the vertices in the
connected component of G \ C that does not contain a specified root vertex r. We refer
to the number of vertices in VC as the r-size of the cut C. Then, we apply a recursive
algorithm that successively splits Hi into smaller graphs according to its 3-cuts. When no
more splits are possible, the connected components of the final split graph correspond to the
4-edge-connected components of G. We show that we can implement this procedure in linear
time by processing the cuts in non-decreasing order with respect to their r-size.

Due to the space constraints we omit several technical details and proofs. They can be
found in the full version of the paper which is available at [6].

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:3

2 Concepts defined on a DFS-tree structure

Let G = (V, E) be a connected undirected graph, which may have multiple edges. For a
set of vertices S ⊆ V , the induced subgraph of S, denoted by G[S], is the subgraph of G

with vertex set S and edge set {e ∈ E | both ends of e lie in S}. Let T be the spanning tree
of G provided by a depth-first search (DFS) of G [21], with start vertex r. The edges in
T are called tree-edges; the edges in E \ T are called back-edges, as their endpoints have
ancestor-descendant relation in T . A vertex u is an ancestor of a vertex v (v is a descendant
of u) if the tree path from r to v contains u. Thus, we consider a vertex to be an ancestor
(and, consequently, a descendant) of itself. We let p(v) denote the parent of a vertex v in
T . If u is a descendant of v in T , we denote the set of vertices of the simple tree path
from u to v as T [u, v]. The expressions T [u, v) and T (u, v] have the obvious meaning (i.e.,
the vertex on the side of the parenthesis is excluded). From now on, we identify vertices
with their preorder number (assigned during the DFS). Thus, v being an ancestor of u in T

implies that v ≤ u. Let T (v) denote the set of descendants of v, and let ND(v) denote the
number of descendants of v (i.e. ND(v) = |T (v)|). With all ND(v) computed, we can check
in constant time whether a vertex u is a descendant of v, since u ∈ T (v) if and only if v ≤ u

and u < v + ND(v) [22].
Whenever (x, y) denotes a back-edge, we shall assume that x is a descendant of y. We

let B(v) denote the set of back-edges (x, y), where x is a descendant of v and y is a proper
ancestor of v. Thus, if we remove the tree-edge (v, p(v)), T (v) remains connected to the rest of
the graph through the back-edges in B(v). This implies that G is 2-edge-connected if and only
if |B(v)|> 0, for every v ̸= r. Furthermore, G is 3-edge-connected only if |B(v)|> 1, for every
v ̸= r. We let b_count(v) denote the number of elements of B(v) (i.e. b_count(v) = |B(v)|).
low(v) denotes the lowest y such that there exists a back-edge (x, y) ∈ B(v). Similarly,
high(v) is the highest y such that there exists a back-edge (x, y) ∈ B(v).

We let M(v) denote the nearest common ancestor of all x for which there exists a back-
edge (x, y) ∈ B(v). Note that M(v) is a descendant of v. Let m be a vertex and v1, . . . , vk

be all the vertices with M(v1) = . . . = M(vk) = m, sorted in decreasing order. (Observe that
vi+1 is an ancestor of vi, for every i ∈ {1, . . . , k − 1}, since m is a common descendant of
all v1, . . . , vk.) Then we have M−1(m) = {v1, . . . , vk}, and we define nextM (vi) := vi+1, for
every i ∈ {1, . . . , k− 1}, and lastM (vi) := vk, for every i ∈ {1, . . . , k}. Thus, for every vertex
v, nextM (v) is the successor of v in the decreasingly sorted list M−1(M(v)), and lastM (v) is
the lowest element in M−1(M(v)).

The following two facts have been proved in [7].

▶ Fact 1. All ND(v), b_count(v), M(v), low(v) and high(v) can be computed in total
linear-time, for all vertices v.

▶ Fact 2. B(u) = B(v) ⇔ M(u) = M(v), and high(u) = high(v) ⇔ M(u) = M(v) and
b_count(u) = b_count(v).

Furthermore, [7] implies the following characterization of a 3-edge-connected graph.

▶ Fact 3. G is 3-edge-connected if and only if |B(v)|> 1, for every v ̸= r, and B(v) ̸= B(u),
for every pair of vertices u and v, u ̸= v.

Now let us provide some extensions of those concepts that will be needed for our purposes.
Assume that G is 3-edge-connected, and let v ̸= r be a vertex of G. By Fact 3, b_count(v) > 1,
and therefore there are at least two back-edges in B(v). Thus, there is at least one back-edge
(x, y) ∈ B(v) such that y = low(v). We let low1 (v) denote y, and low1D(v) denote x. In other

ESA 2021

47:4 Computing the 4-Edge-Connected Components of a Graph in Linear Time

words, low1 (v) is the low point of v, and low1D(v) is a descendant of v which is connected with
a back-edge to its low point. (Notice, however, that low1D(v) is not uniquely determined.)
Similarly, we let highD(v) denote a descendant of v which is connected with a back-edge to the
high point of v. Then we define low2 (v) := min{y′ | ∃(x′, y′) ∈ B(v)\{(low1D(v), low1 (v))}},
and we let low2D(v) denote a descendant of v which is connected with a back-edge to low2 (v).
Thus, if v ̸= r, we have that (low1D(v), low(v)) and (low2D(v), low2 (v)) are two distinct
back-edges in B(v). It is easy to compute all low1 (v), low1D(v), low2 (v) and low2D(v)
during the DFS. It is also easy to extend the algorithm for the computation of high points in
order to compute all highD(v). (We refer to [6] for the details.)

We let l(v) denote the lowest y for which there exists a back-edge (v, y), or v if no
such back-edge exists. Thus, low(v) ≤ l(v). Now let c1, . . . , ck be the children of v sorted
in non-decreasing order w.r.t. their low point. Then we call c1 the low1 child of v, and
c2 the low2 child of v. (Of course, the low1 and low2 children of v are not uniquely
determined after a DFS on G, since we may have low(c1) = low(c2).) We let M̃(v) denote
the nearest common ancestor of all x for which there exists a back-edge (x, y) ∈ B(v) with
x a proper descendant of M(v). Formally, M̃(v) := nca{x | ∃(x, y) ∈ B(v) and x ̸= M(v)}.
If the set {x | ∃(x, y) ∈ B(v) and x ̸= M(v)} is empty, we leave M̃(v) undefined. We
also define Mlow1(v) as the nearest common ancestor of all x for which there exists a
back-edge (x, y) ∈ B(v) with x being a descendant of the low1 child of M(v), and also
define Mlow2(v) as the nearest common ancestor of all x for which there exists a back-
edge (x, y) ∈ B(v) with x a descendant of the low2 child of M(v). Formally, Mlow1(v) :=
nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low1 child of M(v)} and Mlow2(v) :=
nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low2 child of M(v)}. If the set in the
formal definition of Mlow1(v) (resp. Mlow2(v)) is empty, we leave Mlow1(v) (resp. Mlow2(v))
undefined.

The following list summarizes the concepts that we use on a DFS-tree; they are defined
for all v ̸= r. (For an illustration, see Figure 1.)

B(v) := {(x, y) | x is a descendant of v and y is a proper ancestor of v}.
l(v) := min({y | ∃(v, y) ∈ B(v)} ∪ {v}).
low(v) := min{y | ∃(x, y) ∈ B(v)}.
low1 (v) := low(v).
low1D(v) := a vertex x such that (x, low1 (v)) ∈ B(v).
low2 (v) := min{y′ | ∃(x′, y′) ∈ B(v) \ {(low1D(v), low1 (v))}}.
low2D(v) := a vertex x such that (x, low2 (v)) ∈ B(v).
high(v) := max{y | ∃(x, y) ∈ B(v)}.
highD(v) := a vertex x such that (x, high(v)) ∈ B(v).
M(v) := nca{x | ∃(x, y) ∈ B(v)}.
M̃(v) := nca{x | ∃(x, y) ∈ B(v) and x is a proper descendant of M(v)}.
Mlow1(v) := nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low1 child of M(v)}.
Mlow2(v) := nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low2 child of M(v)}.

In Section 2.1 of the full paper [6], we show how to compute all these concepts in
linear time.

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:5

v

high(v)

low2(v)

low1(v)

M(v)

Mlow1(v) Mlow2(v)

(v)M̃(v)

Figure 1 An illustration of some concepts defined on a DFS-tree. The red arrows correspond to
the back-edges in B(v). Dashed lines correspond to tree-paths.

3 Computing the 3-cuts of a 3-edge-connected graph

In this section we present a linear-time algorithm that computes all the 3-edge-cuts of a
3-edge-connected graph G = (V, E). It is well-known that the number of the 3-edge-cuts
of G is O(n) [19] (e.g., it follows from the definition of the cactus graph [1, 14]), but we
provide an independent proof of this fact. Then, in Section 4.1, we show how to extend this
algorithm so that it can also count the number of minimal 3-edge-cuts of a general graph.
Note that there can be O(n3) such cuts [2].

Our method is to classify the 3-cuts on the DFS-tree T in a way that allows us to compute
them efficiently. If {e1, e2, e3} is a 3-cut, we can initially distinguish three cases w.l.o.g.:
either e1 is a tree-edge and both e2 and e3 are back-edges, or e1 and e2 are two tree-edges
and e3 is a back-edge, or e1, e2 and e3 is a triplet of tree-edges. Then, we divide those cases
in subcases based on the concepts we have introduced in the previous section. Figure 2 gives
a general overview of the cases we will handle in some detail in the following sections.

3.1 One tree-edge and two back-edges

The following lemma characterizes all 3-cuts consisting of a tree-edge and two back-edges.

▶ Lemma 4. Let {(u, p(u)), e, e′} be a 3-cut such that e and e′ are back-edges. Then
B(u) = {e, e′}. Conversely, if for a vertex u ̸= r we have B(u) = {e, e′} where e and e′ are
back-edges, then {(u, p(u)), e, e′} is a 3-cut.

Thus, to compute all the 3-cuts of this type, we have to find all u ̸= r with b_count(u) =
2. For every such u, there are two back-edges e1, e2 such that B(u) = {e1, e2}, and so,
w.l.o.g., we have e1 = (low1D(u), low1 (u)) and e2 = (low2D(u), low2 (u)). Then we mark
{(u, p(u)), e1, e2} as a 3-cut.

ESA 2021

47:6 Computing the 4-Edge-Connected Components of a Graph in Linear Time

u p(u)

r

u p(u)

r
v p(v) w p(w)

r

u

p(u)

v
p(v)

u p(u)

r
w p(w)v p(v)

(a) (b)

(c)

(d)

(e)

u p(u)

r
v p(v)

Figure 2 The types of 3-cuts with respect to a DFS-tree. (a) One tree-edge (u, p(u)) and two
back-edges. (b) Two tree-edges (u, p(u)) and (v, p(v)), where u is a descendant of v, and one-back
edge in B(v) \ B(u). (c) Two tree-edges (u, p(u)) and (v, p(v)), where u is a descendant of v, and
one-back edge in B(u) \ B(v). (d) Three tree-edges (u, p(u)), (v, p(v)) and (w, p(w)), where w is an
ancestor of u and v, but u and v are not related as ancestor and descendant. (d) Three tree-edges
(u, p(u)), (v, p(v)) and (w, p(w)), where u is a descendant of v and v is a descendant of w.

3.2 Two tree-edges and one back-edge
In the case of 3-cuts consisting of two tree-edges and a back-edge, we have the following.

▶ Lemma 5. Let {(u, p(u)), (v, p(v)), e} be a 3-cut such that e is a back-edge. Then u and v

are related as ancestor and descendant.

▶ Proposition 6. Let {(u, p(u)), (v, p(v)), e} be a 3-cut, where e is a back-edge. Then, either
(1) B(v) = B(u) ⊔ {e} or (2) B(u) = B(v) ⊔ {e}. Conversely, if there exists a back-edge e

such that (1) or (2) is true, then {(u, p(u)), (v, p(v)), e} is a 3-cut.

We let V (u), for a u ̸= r, be the set of all v that are ancestors of u such that B(v) = B(u)⊔{e},
for a back-edge e. We also let U(v), for a v ̸= r, be the set of all u that are descendants of v

such that B(u) = B(v)⊔{e}, for a back-edge e. Then, for every 3-cut {(u, p(u)), (v, p(v)), e},
where e is a back-edge, Proposition 6 implies that either u ∈ V (u) or v ∈ U(v).

The following two lemmata imply that the number of 3-cuts consisting of two tree-edges
and a back-edge is O(n).

▶ Lemma 7. Let v, v′ be two distinct vertices. Then V (u) ∩ V (u′) = ∅.

▶ Lemma 8. Let u, u′ be two distinct vertices. Then U(v) ∩ U(v′) = ∅.

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:7

Now, every v ∈ V (u) has either M̃(v) = M(u), or Mlow1(v) = M(u), or Mlow2(v) =
M(u), and u is the lowest vertex which is greater than v such that M̃(v) = M(u), or
Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. This suggests a method to compute,
for every vertex v, the unique u (if it exists) such that v ∈ V (u). We process all vertices v,
and for every v that we process we have to find the lowest element u of M−1(x) which is
greater than v, for every x ∈ {M̃(v), Mlow1(v), Mlow2(v)}, and check whether v ∈ V (u). To
perform this efficiently, we have the lists M−1(x), for every vertex x, sorted in decreasing
order, and we process the vertices in a bottom-up fashion. Then, for every v that we process,
and every x ∈ {M̃(v), Mlow1(v), Mlow2(v)}, we search for the lowest u in M−1(x) which
is greater than v, by traversing the list M−1(x) starting from the last element of M−1(x)
that we considered, which is being stored in a variable currentVertex[x]. This is to avoid
traversing M−1(x) from the beginning each time we process a vertex v. We can check in
constant time whether v ∈ V (u) thanks to the following lemma.

▶ Lemma 9. Let v be an ancestor of u such that either M̃(v) = M(u), or Mlow1(v) = M(u),
or Mlow2(v) = M(u), and let m = M̃(v), or m = Mlow1(v), or m = Mlow2(v), depending
on whether M̃(v) = M(u), or Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. Then,
v ∈ V (u) if and only if u is the lowest element in M−1(m) which is greater than v and such
that high(u) < v and b_count(v) = b_count(u) + 1.

Finally, for a v ∈ V (u), we can immediately identify the back-edge (x, y) with B(v) =
B(u) ⊔ {(x, y)}, since we have x = M̃(v) and y = l(M̃(v)), or x = Mlow1(v) and y =
l(Mlow1(v)), or x = Mlow2(v) and y = l(Mlow2(v)), depending on whether M̃(v) = M(u),
or Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. Algorithm 1 shows how we can
compute all 3-cuts of the form {(u, p(u)), (v, p(v)), e}, with B(v) = B(u) ⊔ {e}.

We can use a similar method to compute the 3-cuts of the form {(u, p(u)), (v, p(v)), e},
with B(u) = B(v) ⊔ {e}.

3.3 Three tree-edges
The case of 3-cuts consisting of three tree-edges is more involved and is subdivided into
several subcases. The following is generally true for all such 3-cuts.

▶ Lemma 10. Let {(u, p(u)), (v, p(v)), (w, p(w))} be a 3-cut, and assume, without loss of
generality, that w < min{v, u}. Then w is an ancestor of both u and v.

First we treat the case that u and v are not related as ancestor and descendant. We have
the following characterizations of the 3-cuts of this type.

▶ Proposition 11. Let u and v be two vertices which are not related as ancestor and
descendant, and let w be an ancestor of both u and v. Then {(u, p(u)), (v, p(v)), (w, p(w))}
is a 3-cut if and only if B(w) = B(u) ⊔B(v).

▶ Lemma 12. Let u and v be two vertices which are not related as ancestor and descendant,
and let w be an ancestor of both u and v. Then B(w) = B(u) ⊔ B(v) if and only if:
Mlow1(w) = M(u) and Mlow2(w) = M(v) (or Mlow1(w) = M(v) and Mlow2(w) = M(u)),
and high(u) < w, high(v) < w, and b_count(w) = b_count(u) + b_count(v).

Then, as an implication of the following lemma, we see than the pair {u, v} with the property
that u and v are descendants of w, but are not related as ancestor and descendant, and
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, is uniquely determined by w (and thus the number
of those 3-cuts in O(n)).

ESA 2021

47:8 Computing the 4-Edge-Connected Components of a Graph in Linear Time

Algorithm 1 Find all 3-cuts {(u, p(u)), (v, p(v)), e)}, where u is a descendant of v and
B(v) = B(u) ⊔ {e}, for a back-edge e.

1 initialize an array currentVertex with n entries
// m = M̃(v)

2 foreach vertex x do currentVertex[x]← x

3 for v ← n to v = 1 do
4 m← M̃(v)
5 if m = ∅ then continue

// find the lowest u ∈M−1(m) which is greater than v

6 u← currentVertex[m], prev ← u

7 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
8 currentVertex[m]← prev

// check the condition in Lemma 9
9 if high(u) < v and b_count(v) = b_count(u) + 1 then

10 mark the triplet {(u, p(u)), (v, p(v)), (M(v), l(M(v)))}
11 end
12 end

// m = Mlow1(v)
13 foreach vertex x do currentVertex[x]← x

14 for v ← n to v = 1 do
15 m←Mlow1(v)
16 if m = ∅ or l(M(v)) < v then continue

// find the lowest u ∈M−1(m) which is greater than v

17 u← currentVertex[m], prev ← u

18 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
19 currentVertex[m]← prev

// check the condition in Lemma 9
20 if high(u) < v and b_count(v) = b_count(u) + 1 then
21 mark the triplet {(u, p(u)), (v, p(v)), (Mlow2(v), l(Mlow2(v)))}
22 end
23 end

// m = Mlow2(v)
24 foreach vertex x do currentVertex[x]← x

25 for v ← n to v = 1 do
26 m←Mlow2(v)
27 if m = ∅ or l(M(v)) < v then continue

// find the lowest u ∈M−1(m) which is greater than v

28 u← currentVertex[m], prev ← u

29 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
30 currentVertex[m]← prev

// check the condition in Lemma 9
31 if high(u) < v and b_count(v) = b_count(u) + 1 then
32 mark the triplet {(u, p(u)), (v, p(v)), (Mlow1(v), l(Mlow1(v)))}
33 end
34 end

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:9

▶ Lemma 13. Let {(u, p(u)), (v, p(v)), (w, p(w))} be a 3-cut such that u and v are not related
as ancestor and descendant and let w is an ancestor of both u and v. By Proposition 11
and Lemma 12, we may assume w.l.o.g. that Mlow1(w) = M(u) and Mlow2(w) = M(v), and
let m1 = Mlow1(w) and m2 = Mlow2(w). Then u is the lowest vertex in M−1(m1) which is
greater than w, and v is the lowest vertex in M−1(m2) which is greater that w.

This suggests a method to compute those u, v (if they exist) for a particular w. We simply
have to find the lowest u in M−1(Mlow1(w)) which is greater than w, and the lowest v in
M−1(Mlow2(w)) which is greater than w, and, if they exist, check whether high(u) < w,
high(v) < w, and b_count(w) = b_count(u) + b_count(v). To perform this search efficiently,
we have the lists M−1(x), for every vertex x, sorted in decreasing order, we process the
vertices w in a bottom-up fashion, and we keep stored in a variable currentVertex[x] the
most recent element of M−1(x) that we considered. Algorithm 2 is an implementation of
this procedure, for computing all 3-cuts of this type.

Algorithm 2 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where w is an ancestor of u

and v, and u, v are not related as ancestor and descendant.

1 initialize an array currentVertex with n entries
2 foreach vertex x do currentVertex[x]← x

3 for w ← n to w = 1 do
4 m1 ←Mlow1(w), m2 ←Mlow2(w)
5 if m1 = ∅ or m2 = ∅ then continue

// find the lowest u in M−1(m1) which is greater than w

6 u← currentVertex[m1]
7 while nextM (u) ̸= ∅ and nextM (u) > w do u← nextM (u)
8 currentVertex[m1]← u

// find the lowest v in M−1(m2) which is greater than w

9 v ← currentVertex[m2]
10 while nextM (v) ̸= ∅ and nextM (v) > w do v ← nextM (v)
11 currentVertex[m2]← v

// check the condition in Lemma 12
12 if b_count(w) = b_count(u) + b_count(v) and high(u) < w and high(v) < w

then
13 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
14 end
15 end

Now we treat the case that u and v are related as ancestor and descendant, and assume
w.l.o.g. that u is a descendant of v. We have the following characterization of those 3-cuts.

▶ Proposition 14. Let u, v, w be three vertices such that u is a descendant of v and v is
a descendant of w. Then {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if B(v) =
B(u) ⊔B(w).

This implies that M(v) is an ancestor of M(w), and we distinguish two cases, depending on
whether M(v) is a proper ancestor of M(w). In the first case we have the following.

▶ Lemma 15. Let u be a descendant of v and v a descendant of w, and M(v) ̸= M(w).
Then, {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if: M(w) = Mlow1(v) and w is
the greatest vertex with M(w) = Mlow1(v) which is lower than v, M(u) = Mlow2(v) and u

ESA 2021

47:10 Computing the 4-Edge-Connected Components of a Graph in Linear Time

is the lowest vertex with M(u) = Mlow2(v), high(u) < v and b_count(v) = b_count(u) +
b_count(w).

This shows that the number of such 3-cuts is O(n), and it immediately suggests an algorithm
to compute them efficiently (i.e. we work as in Algorithm 2).

Now, if M(v) = M(w), we distinguish two cases, depending on whether w = nextM (v)
or w < nextM (v). In any case, there is a unique u which is a descendant of v such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, since by Proposition 14 we have B(u) = B(v)\B(w),
and we have assumed that the graph is 3-edge-connected (and so the result follows from Fact
3). The next lemma shows that u satisfies high(u) = high(v) and nextM (u) = ∅.

▶ Lemma 16. Let u, v, w be three vertices such that u is a descendant of v, v is a descendant
of w, and M(v) = M(w). Then, B(v) = B(u) ⊔ B(w) only if high(u) = high(v) and
nextM (u) = ∅.

Thus, for every vertex h, we seek in the decreasingly sorted list high−1(h) pairs of vertices
{u, v} that have the potential to provide a 3-cut of the form {(u, p(u)), (v, p(v)), (w, p(w))},
where u is a descendant of v, v is a descendant of w, and M(v) = M(w). In the case
w = nextM (v) we have the following:

▶ Proposition 17. Let h = high(v) and w = nextM (v), and suppose that the list
high−1(h) is sorted in decreasing order. Then, u is a descendant of v such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if u is a predecessor of v in high−1(h),
nextM (u) = ∅, low(u) ≥ w, b_count(u) = b_count(v) − b_count(w), and all elements of
high−1(h) between u and v are ancestors of u.

Thus we traverse the decreasingly sorted list high−1(h) from its first element, and we keep
consecutive entries that are related as ancestor and descendant in a stack. When we meet a
v ∈ high−1(h) that has nextM (v) ̸= ∅, we simply check whether there is an entry u in the
stack that satisfies nextM (u) = ∅, low(u) ≥ nextM (v) and b_count(u) = b_count(v) −
b_count(nextM (v)), whence we immediately infer that {(u, p(u)), (v, p(v)), (nextM (v),
p(nextM (v)))} is a 3-cut. This procedure is shown in Algorithm 3.

The case w < nextM (v) is more complicated, since for a particular v ∈ high−1(h) there
may be many pairs {u, w} such that u is a descendant of v and w is a proper ancestor of
nextM (v) with M(w) = M(v), and {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut. Thus, we keep
in a stack stackU [v], for every v ∈ high−1(h), a set of u ∈ high−1(h) with the potential to
provide such a 3-cut. In particular, let Ũ(v), for a vertex v, denote the set of all descendants
u of v with the property that there exists a w with M(w) = M(v) and w < nextM (v),
such that {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut. Then the stacks stackU [v] are filled with
Algorithm 4, and satisfy the following:

▶ Lemma 18. For every vertex v we have Ũ(v) ⊆ stackU (v), and for every v′ ̸= v we have
stackU (v) ∩ stackU (v′) = ∅. Furthermore, if u′ is a successor of u in stackU (v), then u′ is
an ancestor of u.

This implies that the number of 3-cuts of the form {(u, p(u)), (v, p(v)), (w, p(w))}, where
u is a descendant of v and w is a proper ancestor of nextM (v) with M(w) = M(v), is
O(n). The next lemma provides a criterion to determine whether a u ∈ stackU (v) is in
Ũ(v), and a way to compute the vertex w with M(w) = M(v) and w < nextM (v), such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut.

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:11

Algorithm 3 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v

and w = nextM (v).

1 initialize an array A with m entries (where m is the number of edges of the graph)
2 initialize a stack S

3 sort the elements of every list high−1(h), for every vertex h, in decreasing order
4 foreach vertex h do
5 u← first element of high−1(h)
6 while u ̸= ∅ do
7 z ← next element of high−1(h)
8 if z = ∅ then break
9 if z is not an ancestor of u then

10 while S is not empty do
11 u′ ← S.pop()
12 A[b_count(u′)]← ∅
13 end
14 end
15 if nextM (z) = ∅ then
16 S.push(z)
17 A[b_count(z)]← z

18 end
19 else if nextM (z) ̸= ∅ then
20 v ← z, w ← nextM (v)
21 if A[b_count(v)− b_count(w)] ̸= ∅ then
22 u← A[b_count(v)− b_count(w)]
23 if low(u) ≥ w then
24 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
25 end
26 end
27 end
28 u← z

29 end
30 end

▶ Lemma 19. Let u be a vertex in stackU [v] and w a proper ancestor of v such that
M(w) = M(v). Then, if {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, we have that b_count(v) =
b_count(u) + b_count(w) and w is the greatest element of M−1(M(v)) such that w ≤
low(u). Conversely, if b_count(v) = b_count(u) + b_count(w) and w ≤ low(u), then
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut.

Thus, for every u ∈ stackU [v], we have to find the greatest w ∈ M−1(M(v)) such that
w ≤ low(u) and b_count(v) = b_count(u) + b_count(w). To do this efficiently, we take
advantage of the fact that the stack stackU [v] has been filled in such a way, that the successor
of every u ∈ stackU [v] is an ancestor of u, and of the fact that low(u′) ≤ low(u), for every
ancestor u′ of u. Then we have the lists M−1(x), for every vertex x, sorted in decreasing order,
and we process the vertices v from lowest to highest. For every u ∈ stackU [v], we traverse
the list M−1(M(v)) in order to find the greatest w ∈ M−1(M(v)) that has w ≤ low(u).

ESA 2021

47:12 Computing the 4-Edge-Connected Components of a Graph in Linear Time

Algorithm 4 Fill all stacks stackU [v], for all vertices v.

1 initialize a stack S

2 sort the elements of every list high−1(h), for every vertex h, in decreasing order
3 foreach vertex v do initialize a stack stackU [v]
4 foreach vertex h do
5 u← first element of high−1(h)
6 while u ̸= ∅ do
7 z ← next element of high−1(h)
8 if z = ∅ then break
9 if z is not an ancestor of u then

10 pop out all elements from S

11 end
12 if nextM (z) = ∅ then
13 S.push(z)
14 end
15 else if nextM (z) ̸= ∅ then
16 while low(S.top()) < lastM (z) do S.pop()
17 while low(S.top()) < nextM (z) do
18 u← S.pop()
19 stackU [v].push(u)
20 end
21 end
22 u← z

23 end
24 end

Using a path-compression method, we can bypass segments of M−1(M(v)) that we have
already visited. This procedure is shown in Algorithm 5. A detailed proof of correctness and
linear complexity is given in the full version of this paper [6].

Algorithm 5 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v,
v is a descendant of w with M(v) = M(w), and w ̸= nextM (v).

1 initialize an array lowestW with n entries
2 foreach vertex v do lowestW [v]← nextM (v)
3 for v ← 1 to v ← n do
4 while stackU [v].top() ̸= ∅ do
5 u← stackU [v].pop()
6 w ← lowestW [v]
7 while w > low(u) do w ← lowestW [w]
8 lowestW [v]← w

9 if b_count(v) = b_count(u) + b_count(w) then
10 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
11 end
12 end
13 end

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:13

4 Computing the 4-edge-connected components in linear time

Now we consider how to compute the 4-edge-connected components of an undirected graph
G in linear time. First, we reduce this problem to the computation of the 4-edge-connected
components of a collection of auxiliary 3-edge-connected graphs.

4.1 Reduction to the 3-edge-connected case
Given a (general) undirected graph G, we execute the following steps:
1. Compute the connected components of G.
2. For each connected component, we compute the 2-edge-connected components which are

subgraphs of G.
3. For each 2-edge-connected component, we compute its 3-edge-connected components

C1, . . . , Cℓ.
4. For each 3-edge-connected component Ci, we compute a 3-edge-connected auxiliary graph

Hi, such that for any two vertices x and y, we have x
G≡4 y if and only if x and y are

both in the same auxiliary graph Hi and x
Hi≡4 y.

5. Finally, we compute the 4-edge-connected components of each Hi.

Steps 1–3 take overall linear time [21, 25]. We describe step 5 in the next section, so it
remains to give the details of step 4. Let H be a 2-edge-connected component (subgraph) of
G. We can construct a compact representation of the 2-cuts of H, which allows us to compute
its 3-edge-connected components C1, . . . , Cℓ in linear time [7, 25]. Now, since the collection
{C1, . . . , Cℓ} constitutes a partition of the vertex set of H, we can form the quotient graph Q

of H by shrinking each Ci into a single node. Graph Q has the structure of a tree of cycles [2];
in other words, Q is connected and every edge of Q belongs to a unique cycle. Let (Ci, Cj)
and (Ci, Ck) be two edges of Q which belong to the same cycle. Then (Ci, Cj) and (Ci, Ck)
correspond to two edges (x, y) and (x′, y′) of G, with x, x′ ∈ Ci. If x ̸= x′, we add a virtual
edge (x, x′) to G[Ci]. (The idea is to attach (x, x′) to G[Ci] as a substitute for the cycle of Q

which contains (Ci, Cj) and (Ci, Ck).) Now let C̄i be the graph G[Ci] plus all those virtual
edges. Then C̄i is 3-edge-connected and its 4-edge-connected components are precisely those
of G that are contained in Ci [2]. Thus we can compute the 4-edge-connected components
of G by computing the 4-edge-connected components of the graphs C̄1, . . . , C̄ℓ (which can
easily be constructed in total linear time). Since every C̄i is 3-edge-connected, we can apply
Algorithm 6 of the following section to compute its 4-edge-connected components in linear
time. Finally, we define the multiplicity m(e) of an edge e ∈ C̄i as follows: if e is virtual,
m(e) is the number of edges of the cycle of Q which corresponds to e; otherwise, m(e) is 1.
Then, the number of minimal 3-cuts of H is given by the sum of all m(e1) ·m(e2) ·m(e3),
for every 3-cut {e1, e2, e3} of C̄i, for every i ∈ {1, . . . , l} [2]. Since the 3-cuts of every C̄i can
be computed in linear time, the minimal 3-cuts of H can also be computed within the same
time bound.

4.2 Computing the 4-edge-connected components of a
3-edge-connected graph

Now we describe how to compute the 4-edge-connected components of a 3-edge-connected
graph G in linear time. Let r be a distinguished vertex of G, and let C be a minimum cut of
G. By removing C from G, G becomes disconnected into two connected components. We let
VC denote the connected component of G \ C that does not contain r, and we refer to the
number of vertices of VC as the r-size of the cut C. (Of course, these notions are relative
to r.)

ESA 2021

47:14 Computing the 4-Edge-Connected Components of a Graph in Linear Time

G

C

splitx1
x2
x3

y1
y2
y3

x1
x2
x3

y1

y3

y2

y x

G1 G2

Figure 3 C = {(x1, y1), (x2, y2), (x3, y3)} is a 3-cut of G, with {x1, x2, x3} and {y1, y2, y3}
lying in different connected components of G \ C. The split operation of G at C consists of
the removal the edges of C from G, and the introduction of two new nodes x, y, and six virtual
edges (x1, y), (x2, y), (x3, y), (x, y1), (x, y2), (x, y3). Now, the split graph is made of two connected
components, G1 and G2. Every 3-cut C′ ̸= C of G (or more precisely: a 3-cut that corresponds to
C′) lies entirely within G1 or G2. Conversely, every 3-cut of either G1 or G2 corresponds to a 3-cut
of G. Thus, every 4-edge-connected component of G lies entirely within G1 or G2.

Let G = (V, E) be a 3-edge-connected graph, and let C be the collection of the 3-cuts of G.
If the collection C is empty, then G is 4-edge-connected, and V is the only 4-edge-connected
component of G. Otherwise, let C ∈ C be a 3-cut of G. By removing C from G, G is
separated into two connected components, and every 4-edge-connected component of G

lies entirely within a connected component of G \ C. This observation suggests a recursive
algorithm for computing the 4-edge-connected components of G, by successively splitting
G into smaller graphs according to its 3-cuts. Thus, we start with a 3-cut C of G, and we
perform the splitting operation shown in Figure 3. Then we take another 3-cut C ′ of G and
we perform the same splitting operation on the part which contains (the corresponding 3-cut
of) C ′. We repeat this process until we have considered every 3-cut of G. When no more
splits are possible, the connected components of the final split graph correspond (by ignoring
the newly introduced vertices) to the 4-edge-connected components of G.

To implement this procedure in linear time, we must take care of two things. First,
whenever we consider a 3-cut C of G, we have to be able to know which ends of the edges
of C belong to the same connected component of G \ C. And second, since an edge e of a
3-cut of the original graph may correspond to two virtual edges of the split graph, we have
to be able to know which is the virtual edge that corresponds to e. We tackle both these
problems by locating the 3-cuts of G on a DFS-tree T of G rooted at r, and by processing
them in increasing order with respect to their r-size. By locating a 3-cut C ∈ C on T we can
answer in O(1) time which ends of the edges of C belong to the same connected component
of G \ C. And then, by processing the 3-cuts of G in increasing order with respect to their
size, we ensure that (the 3-cut that corresponds to) a 3-cut C ∈ C that we process lies in the
split part of G that contains r.

Now, due to the analysis of the preceding sections, we can distinguish the following types
of 3-cuts on a DFS-tree T (see also Figure 2):

(I) {(v, p(v)), (x1, y1), (x2, y2)}, where (x1, y1) and (x2, y2) are back-edges.
(IIa) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(v).
(IIb) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(u).
(III) {(u, p(u)), (v, p(v)), (w, p(w))}, where w is an ancestor of both u and v, but u, v are
not related as ancestor and descendant.
(IV) {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v and v is a descendant
of w.

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:15

Let r be the root of T . Then, for every 3-cut C ∈ C, VC is either T (v), or T (v) \ T (u), or
T (w) \ (T (u) ∪ T (v)), or T (u) ∪ (T (w) \ T (v)), depending on whether C is of type (I), (II),
(III), or (IV), respectively. Thus we can immediately calculate the size of C and the ends
of its edges that lie in VC . In particular, the size of C is either ND(v), or ND(v)−ND(u),
or ND(w) − ND(u) − ND(v), or ND(u) + ND(w) − ND(v), depending on whether it is of
type (I), (II), (III), or (IV), respectively; VC contains either {v, x1, x2}, or {p(u), v, x}, or
{p(u), v, y}, or {p(u), p(v), w}, or {u, p(v), w}, depending on whether C is of type (I), (IIa),
(IIb), (III), or (IV), respectively.

Algorithm 6 shows how we can compute the 4-edge-connected components of G in linear
time, by repeatedly splitting G into smaller graphs according to its 3-cuts. When we process
a 3-cut C of G, we have to find the edges of the split graph that correspond to those of C, in
order to delete them and replace them with (new) virtual edges. That is why we use the
symbol v′, for a vertex v ∈ V , to denote a vertex that corresponds to v in the split graph.
(Initially, we set v′ ← v.) Now, if (x, y) is an edge of C with x ∈ VC , the edge of the split
graph corresponding to (x, y) is (x′, y′). Then we add two new vertices vC and ṽC to G, and
the virtual edges (x′, ṽC) and (vC , y′). Finally, we let x correspond to vC , and so we set
x′ ← vC . This is sufficient, since we process the 3-cuts of G in increasing order with respect
to their size, and so the next time we meet the edge (x, y) in a 3-cut, we can be certain that
it corresponds to (vC , y′).

Algorithm 6 Compute the 4-edge-connected components of a 3-edge-connected graph
G = (V, E).

1 Find the collection C of the 3-cuts of G

2 Locate and classify the 3-cuts of G on a DFS-tree of G rooted at r

3 For every C ∈ C, calculate size(C) (relative to r)
4 Sort C in increasing order w.r.t. the size of its elements
5 foreach v ∈ V do Set v′ ← v

6 foreach C = {(x1, y1), (x2, y2), (x3, y3)} ∈ C do
7 Find the ends of the edges of C that lie in VC // Let those ends be x1,x2

and x3
8 Remove the edges (x′

1, y′
1),(x′

2, y′
2),(x′

3, y′
3) from G

9 Introduce two new vertices vC and ṽC to G

10 Add the edges (x′
1, ṽC),(x′

2, ṽC),(x′
3, ṽC),(vC , y′

1),(vC , y′
2),(vC , y′

3) to G

11 Set x′
1 ← vC , x′

2 ← vC , x′
3 ← vC

12 end
13 Output the connected components of G, ignoring the newly introduced vertices

Final Remarks
Independently from our work, Nadara et al. [17] also presented a linear-time algorithm
for computing the 4-edge-connected components of a graph. Both our algorithm and the
algorithm of [17] require the use of the static tree disjoint-set-union data structure of Gabow
and Tarjan [4] to achieve linear running time. Also, similar to our algorithm, the main part
in the algorithm of Nadara et al. is the computation of the 3-edge cuts of a 3-edge-connected
graph G. Both algorithms operate on a depth-first search tree of G, with start vertex r, and
distinguish 3 types of cuts C = {e1, e2, e3}, depending on the number of tree edges in C.
These cases are handled in a different manner in [17]. In particular, Nadara et al. [17] show

ESA 2021

47:16 Computing the 4-Edge-Connected Components of a Graph in Linear Time

that the case where C consists of three tree edges can be reduced, in linear time, to the other
two cases. We note that by applying this idea in our framework, we are able to avoid the
use of high points. (We achieve this by modifying the algorithm that identifies 3-edge cuts
consisting of two tree edges, described in Section 3.2.) This way, we obtain a linear-time
algorithm that does not require the Gabow-Tarjan disjoint-set-union data structure, and
thus is implementable in the pointer machine computation model [24].

References
1 E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal

weighted cuts in a graph. Studies in Discrete Optimization (in Russian), page 290–306, 1976.
2 Y. Dinitz. The 3-edge-components and a structural description of all 3-edge-cuts in a graph.

In Proceedings of the 18th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG ’92, page 145–157, Berlin, Heidelberg, 1992. Springer-Verlag.

3 Y. Dinitz and J. Westbrook. Maintaining the classes of 4-edge-connectivity in a graph on-line.
Algorithmica, 20:242–276, 1998. doi:10.1007/PL00009195.

4 H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209–21, 1985.

5 Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT News,
22(1):57–61, 1991. doi:10.1145/122413.122416.

6 L. Georgiadis, G. F. Italiano, and E. Kosinas. Computing the 4-edge-connected components
of a graph in linear time. CoRR, abs/2105.02910, 2021. arXiv:2105.02910.

7 L. Georgiadis and E. Kosinas. Linear-Time Algorithms for Computing Twinless Strong
Articulation Points and Related Problems. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation (ISAAC 2020),
volume 181 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:16,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ISAAC.2020.38.

8 M. Ghaffari, K. Nowicki, and M. Thorup. Faster algorithms for edge connectivity via random
2-out contractions. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’20, page 1260–1279, USA, 2020. Society for Industrial and Applied
Mathematics.

9 M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity.
SIAM Journal on Computing, 49(1):1–36, 2020.

10 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

11 A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-connectivity. Journal
of Computer and System Sciences, 42(3):288–306, 1991. doi:10.1016/0022-0000(91)90004-O.

12 A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-
connected components of a graph. In Proceedings 32nd Annual Symposium of Foundations of
Computer Science (FOCS 1991), pages 793–801, 1991. doi:10.1109/SFCS.1991.185451.

13 D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, January
2000. doi:10.1145/331605.331608.

14 D. R. Karger and D. Panigrahi. A near-linear time algorithm for constructing a cactus repres-
entation of minimum cuts. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, page 246–255, USA, 2009. Society for Industrial and Applied
Mathematics.

15 K.-I. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear time.
Journal of the ACM, 66(1), December 2018. doi:10.1145/3274663.

16 K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.
17 W. Nadara, M. Radecki, M. Smulewicz, and M. Sokolowski. Determining 4-edge-connected

components in linear time. In Proc. 29th European Symposium on Algorithms, 2021.

https://doi.org/10.1007/PL00009195
https://doi.org/10.1145/122413.122416
http://arxiv.org/abs/2105.02910
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
https://doi.org/10.1016/0022-0000(91)90004-O
https://doi.org/10.1109/SFCS.1991.185451
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663

L. Georgiadis, G. F. Italiano, and E. Kosinas 47:17

18 H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-edge-connected
components in a multigraph. Japan J. Indust. Appl. Math, 9(163), 1992. doi:10.1007/
BF03167564.

19 H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, 2008. 1st edition.

20 H. Nagamochi and T. Watanabe. Computing k-edge-connected components of a multigraph.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
76(4):513–517, 1993.

21 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

22 R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):62–89,
1974.

23 R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22(2):215–225, 1975.

24 R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets.
Journal of Computer and System Sciences, 18(2):110–27, 1979.

25 Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. Journal of Discrete
Algorithms, 7(1):130–146, 2009. Selected papers from the 1st International Workshop on
Similarity Search and Applications (SISAP). doi:10.1016/j.jda.2008.04.003.

ESA 2021

https://doi.org/10.1007/BF03167564
https://doi.org/10.1007/BF03167564
https://doi.org/10.1016/j.jda.2008.04.003

	1 Introduction
	2 Concepts defined on a DFS-tree structure
	3 Computing the 3-cuts of a 3-edge-connected graph
	3.1 One tree-edge and two back-edges
	3.2 Two tree-edges and one back-edge
	3.3 Three tree-edges

	4 Computing the 4-edge-connected components in linear time
	4.1 Reduction to the 3-edge-connected case
	4.2 Computing the 4-edge-connected components of a 3-edge-connected graph

