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Abstract
We present a new quantum algorithm for estimating the mean of a real-valued random variable
obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic
speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed
distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier
works on the mean estimation problem that were not optimal for heavy-tailed distributions [9, 8], or
that require prior information on the variance [23, 32, 22]. As an application, we obtain new quantum
algorithms for the (ϵ, δ)-approximation problem with an optimal dependence on the coefficient of
variation of the input random variable.
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1 Introduction

The problem of estimating the mean µ of a real-valued random variable X given i.i.d.
samples from it is one of the most basic tasks in statistics and in the Monte Carlo method.
The properties of the various classical mean estimators are well understood. The standard
non-asymptotic criterion used to assess the quality of an estimator is formulated as the
following high probability deviation bound: upon performing n random experiments that
return n samples from X, and given a failure probability δ ∈ (0, 1), what is the smallest error
ϵ(n, δ,X) such that the output µ̃ of the estimator satisfies |µ̃−µ| > ϵ(n, δ,X) with probability
at most δ? Under the standard assumption that the unknown random variable X has a
finite variance σ2, the best possible performances are obtained by the so-called sub-Gaussian
estimators [30] that achieve the following deviation bound

Pr
[
|µ̃− µ| > L

√
σ2 log(1/δ)

n

]
≤ δ (1)

for some constant L. The term “sub-Gaussian” reflects that these estimators have a Gaussian
tail even for non-Gaussian distributions. The most well-known sub-Gaussian estimator is
arguably the median-of-means [35, 27, 2], which consists of partitioning the n samples into
roughly log(1/δ) groups of equal size, computing the empirical mean over each group, and
returning the median of the obtained means.

The process of generating a random sample from X is generalized in the quantum model
by assuming the existence of a unitary operator U where U |0⟩ coherently encodes the
distribution of X. A quantum experiment is then defined as one application of this operator
or its inverse. The celebrated quantum amplitude estimation algorithm [9] provides a way
to estimate the mean of any Bernoulli random variable by performing fewer experiments

© Yassine Hamoudi;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 50; pp. 50:1–50:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hamoudi@irif.fr
https://orcid.org/0000-0002-3762-0612
https://doi.org/10.4230/LIPIcs.ESA.2021.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 Quantum Sub-Gaussian Mean Estimator

than with any classical estimator. Yet, for general distributions, the existing quantum
mean estimators either require additional information on the variance [23, 32, 22] or are
less performant than the classical sub-Gaussian estimators when the distribution is heavy
tailed [9, 38, 8, 32]. These results leave open the existence of a general quantum speedup
for the mean estimation problem. We address this question by introducing the concept of
quantum sub-Gaussian estimators, defined through the following deviation bound

Pr
[
|µ̃− µ| > L

σ log(1/δ)
n

]
≤ δ (2)

for some constant L. We give the first construction of a quantum estimator that achieves
this bound up to a logarithmic factor in n. Additionally, we prove that it is impossible
to go below that deviation level. This result provides a clear equivalent of the concept of
sub-Gaussian estimator in the quantum setting.

A second important family of mean estimators addresses the (ϵ, δ)-approximation problem,
where given a fixed relative error ϵ ∈ (0, 1) and a failure probability δ ∈ (0, 1) the goal is to
output a mean estimate µ̃ such that

Pr[|µ̃− µ| > ϵ|µ|] ≤ δ. (3)

The aforementioned sub-Gaussian estimators do not quite answer this question since the num-
ber of experiments they require (respectively n = Ω

(
( σ

ϵµ )2 log(1/δ)
)

and n = Ω̃
(

σ
ϵ|µ| log(1/δ)

)
)

depends on the unknown quantities σ and µ. Sometimes a good upper bound is known
on the coefficient of variation |σ/µ| and can be used to parametrize a sub-Gaussian estim-
ator. Otherwise, the standard approach is based on sequential analysis techniques, where
the number of experiments is chosen adaptively depending on the results of previous com-
putations. Given a random variable distributed in [0, 1], the optimal classical estimators
perform Θ

(((
σ
ϵµ

)2 + 1
ϵµ

)
log(1/δ)

)
random experiments in expectation [17] for computing an

(ϵ, δ)-approximation of µ. We construct a quantum estimator that reduces this number to
Θ̃

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
and we prove that it is optimal.

1.1 Related work
There is an extensive literature on classical sub-Gaussian estimators and we refer the reader
to [30, 15, 12, 18, 28] for an overview of the main results and recent improvements. We
point out that the empirical mean estimator is not sub-Gaussian, although it is optimal for
Gaussian random variables [37, 15]. The non-asymptotic performances of the empirical mean
estimator are captured by several standard concentration bounds such as the Chebyshev,
Chernoff and Bernstein inequalities.

There is a series of quantum mean estimators [21, 1, 8] that get close to the bound
Pr

[
|µ̃−µ| > L log(1/δ)

n

]
≤ δ for any random variable distributed in [0, 1] and some constant L.

Similar results hold for numerical integration problems [1, 36, 23, 39, 24]. The amplitude
estimation algorithm [9, 38] leads to a sharper bound of Pr

[
|µ̃− µ| > L

(√
µ(1−µ) log(1/δ)

n +
log(1/δ)2

n2

)]
≤ δ (see Proposition 12) when X is distributed in [0, 1]. Nevertheless, the quantity

µ(1− µ) is always larger than or equal to the variance σ2. The question of improving the
dependence on σ2 was considered in [23, 32, 22]. The estimators of [23, 32] require to know
an upper bound Σ on the standard deviation σ, whereas [22] needs an upper bound ∆ on
the coefficient of variation σ/µ (for non-negative random variables). The performances of
these estimators are captured (up to logarithmic factors) by the deviation bound given in
Equation (2) with σ replaced by Σ and µ∆ respectively.
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The (ϵ, δ)-approximation problem has been addressed by several classical works such
as [17, 31, 20, 26]. In the quantum setting, there is a variant [9, Theorem 15] of the
amplitude estimation algorithm that performs O(log(1/δ)/(ϵ√µ)) experiments in expectation
to compute an (ϵ, δ)-approximate of the mean of a random variable distributed in [0, 1] (see
Theorem 7 and Proposition 15). However, the complexity of this estimator does not scale
with σ. Given an upper bound ∆ on σ/µ, the estimator of [22] can be used to compute
an (ϵ, δ)-approximate with roughly Õ(∆ log(1/δ)/ϵ) quantum experiments if the random
variable is non-negative.

We note that the related problem of estimating the mean with additive error ϵ, that
is Pr[|µ̃ − µ| > ϵ] ≤ δ, has also been considered by several authors. The optimal number
of experiments is Θ(log(1/δ)/ϵ2) classically [14] and Θ(1/ϵ) quantumly [34] (with failure
probability δ = 1/3). These bounds do not depend on unknown parameters (as opposed to the
relative error case), thus sequential analysis techniques are unnecessary here. Montanaro [32]
also described an estimator that performs Õ(Σ log(1/δ)/ϵ) quantum experiments given an
upper bound Σ on the standard deviation σ.

1.2 Contributions and organization
We first formally define the input model in Section 2.1. We introduce the concept of “q-
random variable” (Definition 3) to describe a random variable that corresponds to the output
of a quantum computation. We measure the complexity of an algorithm by counting the
number of quantum experiments (Definition 4) it performs with respect to a q-random
variable. We also introduce some needed tools in Section 2.2. Next, we construct a quantum
algorithm for estimating the quantiles of a q-random variable in Section 3, and we use it in
Section 4 to design the following quantum sub-Gaussian estimator.

Theorem 13 (Restated). There exists a quantum algorithm with the following properties.
Let X be a q-random variable with mean µ and variance σ2, and set as input a time
parameter n and a real δ ∈ (0, 1) such that n ≥ log(1/δ). Then, the algorithm outputs a mean
estimate µ̃ such that Pr

[
|µ̃− µ| > σ log(1/δ)

n

]
≤ δ and it performs O(n log3/2(n) log log(n))

quantum experiments.

Then we turn our attention to the (ϵ, δ)-approximation problem in Section 5. In case
we have an upper bound ∆ on the coefficient of variation |σ/µ|, we directly use our sub-
Gaussian estimator to obtain an algorithm that performs Õ

( ∆
ϵ log(1/δ)

)
quantum experiments

(Corollary 14). Next, we consider the more subtle parameter-free setting where there is no
prior information about the input random variable, except that it is distributed in [0, 1]. In
this case, the number of experiments is chosen adaptively, and the bound we get is stated in
expectation.

Theorem 16 (Restated). There exists a quantum algorithm with the following properties.
Let X be a q-random variable distributed in [0, 1] with mean µ and variance σ2, and set
as input two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃ such that
Pr[|µ̃− µ| > ϵµ] ≤ δ, and it performs Õ

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in

expectation.

Finally, we prove several lower bounds in Section 6 that match the complexity of the
above estimators. We also consider the weaker input model where one is given copies of
a quantum state encoding the distribution of X. We prove that no quantum speedup is
achievable in this setting (Theorem 22).

ESA 2021
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1.3 Proof overview

Sub-Gaussian estimator. Our approach (Theorem 13) combines several ideas used in
previous classical and quantum mean estimators. In this section, we simplify the exposition
by assuming that the random variable X is non-negative and by replacing the variance σ2

with the second moment E[X2]. We also take the failure probability δ to be a small constant.
Our starting point is a variant of the truncated mean estimators [6, 12, 30]. Truncation
is a process that consists of replacing the samples larger than some threshold value with
a smaller number. This has the effect of reducing the tail of the distribution, but also
of changing its expectation. Here we study the effect of replacing the values larger than
some threshold b with 0, which corresponds to the new random variable Y = X1X≤b. We
consider the following classical sub-Gaussian estimator that we were not able to find in
the literature: set b =

√
nE[X2] and compute the empirical mean of n samples from Y .

By a simple calculation, one can prove that the expectation of the removed part is at
most E[X − Y ] ≤ E[X2]/b =

√
E[X2]/n. Moreover, using Bernstein’s inequality and the

boundedness of Y , the error between the output estimate and E[Y ] is on the order of√
E[X2]/n. These two facts together imply that the overall error for estimating E[X] is

indeed of a sub-Gaussian type. This approach can be carried out in the quantum model
by performing the truncation in superposition. This is similar to what is done in previous
quantum mean estimators [23, 32, 22]. In order to obtain a quantum speedup, one must
balance the truncation level differently by taking b = n

√
E[X2]. Then, by a clever use of

amplitude estimation discovered by Heinrich [23], the expectation of Y can be estimated
with an error on the order of

√
E[X2]/n. The main drawback of this estimator is that it

requires the knowledge of E[X2] to perform the truncation. In previous work [23, 32, 22],
the authors made further assumptions on the variance to be able to approximate b. Here,
we overcome this issue by choosing the truncation level b differently. Borrowing ideas from
classical estimators [30], we define b as the quantile value that satisfies Pr[X ≥ b] = 1/n2.
This quantile is always smaller than the previous threshold value n

√
E[X2]. Moreover,

it can be shown that the removed part E[X − Y ] is still on the order of
√
E[X2]/n. We

give a new quantum algorithm for approximating this quantile with roughly n quantum
experiments (Theorem 11), whereas it would require n2 random experiments classically. Our
quantile estimation algorithm builds upon the quantum minimum finding algorithm of Dürr
and Høyer [19, 3] and the kth-smallest element finding algorithm of Nayak and Wu [34].
Importantly, it does not require any knowledge about E[X2].

(ϵ, δ)-Approximation without side information. We follow an approach similar to that
of a classical estimator described in [17]. Our algorithm (Theorem 16) uses the quantum
sub-Gaussian estimator and the quantum sequential Bernoulli estimator described in Propos-
ition 15. The latter estimator can estimate the mean µ of a random variable X distributed
in [0, 1] with constant relative error by performing O(1/√µ) quantum experiments in expect-
ation. The first step of the (ϵ, δ)-approximation algorithm is to compute a rough estimate µ̂
of µ with the sequential Bernoulli estimator. Then, the variance σ2 of X is estimated by
using again the sequential Bernoulli estimator on the random variable (X −X ′)/2 (where X ′

is an independent copy of X). The latter estimation is stopped if it uses more than O(1/
√
ϵµ̂)

quantum experiments. We show that if σ2 ≥ Ω(ϵµ) then the computation is not stopped and
the resulting estimate σ̃2 is close to σ2 with high probability. Otherwise, it is stopped with
high probability and we set σ̃ = 0. Finally, the quantum sub-Gaussian estimator is used with
the parameter n ≈ max

(
σ̃

ϵµ̂
, 1√

ϵµ̂

)
to obtain a refined estimate µ̃ of µ. The choice of the first
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(resp. second) term in the maximum value implies that |µ̃− µ| ≤ ϵµ with high probability
when the variance σ2 is larger (resp. smaller) than ϵµ. In order to upper bound the expected
number of experiments performed by this estimator, we show in Proposition 15 that the
estimates µ̂ and σ̃ obtained with the sequential Bernoulli estimator satisfy the expectation
bounds E[1/µ̂] ≤ 1/µ, E[σ̃] ≤ σ and E[1/

√
µ̂] ≤ 1/√µ.

Lower bounds. We sketch the proof of optimality of the quantum sub-Gaussian estimator
(Theorem 18). The lower bound is proved in the stronger quantum query model, which
allows us to extend it to all the other models mentioned in Section 2.1. Our approach is
inspired by the truncation level chosen in the algorithm. Given σ and n, we consider the two
distributions p0 and p1 that output respectively nσ√

1−1/n2
and −nσ√

1−1/n2
with probability 1/n2,

and 0 otherwise. The two distributions have variance σ2 and the distance between their
means is larger than 2σ

n . Thus, any estimator that satisfies the bound Pr
[
|µ̃− µ| > σ

n

]
≤ 1

3
can distinguish between p0 and p1 with constant success probability. However, we show
by a reduction to Quantum Search that it requires at least Ω(n) quantum experiments to
distinguish between two distributions that differ with probability at most 1/n2.

2 Preliminaries

2.1 Model of input
The input to the mean estimation problem is represented by a real-valued random variable X
defined on some probability space. A classical estimator accesses this input by obtaining n
i.i.d samples of X. In this section, we describe the access model for quantum estimators
and we compare it to previous models suggested in the literature. We only consider finite
probability spaces for finite encoding reasons. First, we recall the definition of a random
variable, and we define a classical model of access called a random experiment.

▶ Definition 1 (Random variable). A finite random variable is a function X : Ω→ E for
some probability space (Ω, p), where Ω is a finite sample set, p : Ω→ [0, 1] is a probability
mass function and E ⊂ R is the support of X. As is customary, we will often omit to mention
(Ω, p) when referring to the random variable X.

▶ Definition 2 (Random experiment). Given a random variable X on a probability space
(Ω, p), we define a random experiment as the process of drawing a sample ω ∈ Ω according
to p and observing the value of X(ω).

We now introduce the concept of “q-random variable” to represent a quantum process
that outputs a real number.

▶ Definition 3 (q-random variable). A q-variable is a triple (H, U,M) where H is a
finite-dimensional Hilbert space, U is a unitary transformation on H, and M = {Mx}x∈E is
a projective measurement on H indexed by a finite set E ⊂ R. Given a random variable X
on a probability space (Ω, p), we say that a q-variable (H, U,M) generates X when,
1. H is a finite-dimensional Hilbert space with some basis {|ω⟩}ω∈Ω indexed by Ω.
2. U is a unitary transformation on H such that U |0⟩ =

∑
ω∈Ω

√
p(ω)|ω⟩.

3. M = {Mx}x is the projective measurement on H defined by Mx =
∑

ω:X(ω)=x|ω⟩⟨ω|.
A random variable X is a q-random variable if it is generated by some q-variable (H, U,M).

We stress that the sample space Ω may not be known explicitly, and we do not assume
that it is easy to perform a measurement in the {|ω⟩}ω∈Ω basis for instance. Often, we are
given a unitary U such that U |0⟩ =

∑
x∈E

√
p(x)|ψx⟩|x⟩ for some unknown garbage unit

ESA 2021
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state |ψx⟩, together with the measurement M = {I⊗|x⟩⟨x|}x∈E . In this case, we can consider
the q-random variable X defined on the probability space (Ω, p) where Ω = {|ψx⟩|x⟩}x∈E

and X(|ψx⟩|x⟩) = x.
We further assume that there exist two quantum oracles, defined below, for obtaining

information on the function X : Ω→ E. These two oracles can be efficiently implemented if
we have access to a quantum evaluation oracle |ω⟩|0⟩ 7→ |ω⟩|X(ω)⟩ for instance. The rotation
oracle (Assumption 2) has been extensively used in previous quantum mean estimators [38,
8, 32, 22]. The comparison oracle (Assumption 1) is needed in our work to implement the
quantile estimation algorithm.

▶ Assumption 1 (Comparison oracle). Given a q-random variable X on a probability
space (Ω, p), and any two values a, b ∈ R ∪ {−∞,+∞} such that a < b, there is a unitary
operator Ca,b acting on H⊗ C2 such that for all ω ∈ Ω,

Ca,b(|ω⟩|0⟩) =
{
|ω⟩|1⟩ when a < X(ω) ≤ b,
|ω⟩|0⟩ otherwise.

▶ Assumption 2 (Rotation oracle). Given a q-random variable X on a probability space
(Ω, p), and any two values a, b ∈ R ∪ {−∞,+∞} such that a < b, there is a unitary operator
Ra,b acting on H⊗ C2 such that for all ω ∈ Ω,

Ra,b(|ω⟩|0⟩) =

|ω⟩
(√

1−
∣∣∣ X(ω)

b

∣∣∣|0⟩+
√∣∣∣ X(ω)

b

∣∣∣|1⟩) when a < X(ω) ≤ b,

|ω⟩|0⟩ otherwise.

We now define the measure of complexity used to count the number of accesses to a
q-random variable, which are referred to as quantum experiments.

▶ Definition 4 (Quantum experiment). Let X be a q-random variable that satisfies
Assumptions 1 and 2. Let (H, U,M) be a q-variable that generates X. We define a quantum
experiment as the process of applying any of the unitaries U , Ca,b, Ra,b (for any values
of a < b), their inverses or their controlled versions, or performing a measurement according
to M .

Note that a random experiment (Definition 2) can be simulated with two quantum
experiments by computing the state U |0⟩ and measuring it according to M . We briefly
mention two other possible input models. First, some authors [21, 34, 23, 10, 16, 8, 29]
consider the stronger query model where p is the uniform distribution and a quantum
evaluation oracle is provided for the function ω 7→ X(ω). A second model tackles the problem
of learning from quantum states [11, 5, 4], where the input consists of several copies of∑

x∈E

√
Pr[X = x]|x⟩ (we do not have access to a unitary preparing that state). We show

in Theorem 22 that no quantum speedup is achievable for our problem in the latter setting.

2.2 Tools
We will use a variant of the amplitude amplification algorithm that does not need a time
parameter n as input. We call it the “sequential amplitude amplification” algorithm in
reference to sequential analysis. The original version of this algorithm was analysed in
Theorem 3 of [7, 9], with a bound on the expected complexity E[T ]. We propose a slightly
different version that allows us to bound E[T 2] and E[1/T ] (note that E[T ] ≤

√
E[T 2]). The

algorithm and its analysis are deferred to the extended version of this paper.
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▶ Theorem 5 (Sequential amplitude amplification). Let U be a unitary quantum
algorithm and let Π be a projection operator. Define the number p ∈ [0, 1] and the two unit
states |ψ0⟩, |ψ1⟩ such that U |0⟩ =

√
1− p|ψ0⟩+√p|ψ1⟩ and ΠU |0⟩ = √p|ψ1⟩. If p > 0 then

the sequential amplitude amplification algorithm Seq-AAmp(U,Π) outputs the state |ψ1⟩ with
probability 1. Moreover, if we let T denote the number of applications of U , U† and I − 2Π
used by the algorithm, then E[T 2] ≤ O(1/p) and E[1/T ] ≤ O(√p).

The next result is a generalization of Quantum Counting that corresponds to Theorems 11
and 12 in [9].

▶ Theorem 6 (Amplitude estimation, [9]). Let U be a unitary quantum algorithm
and let Π be a projection operator. Define the number p ∈ [0, 1] such that p = ∥ΠU |0⟩∥2.
Then, for any integer n ≥ 0, the amplitude estimation algorithm AEst(U,Π, n) outputs an
amplitude estimate p̃ such that, Pr

[
|p̃− p| ≤ 2π

√
p(1−p)
n + π2

n2

]
≥ 8/π2. The algorithm uses n

applications of U , U†, I − 2Π and O(log2(n)) 2-qubit quantum gates.

We will also use a sequential version of the amplitude estimation algorithm that does
not need a time parameter n as input. This result was first obtained by [9, Theorem 15].
We describe a variant with additional properties that is based on the sequential amplitude
amplification algorithm.

▶ Theorem 7 (Sequential amplitude estimation). There exists an algorithm, called the
sequential amplitude estimation algorithm Seq-AEst, with the following properties. Let U be
a unitary quantum algorithm and let Π be a projection operator. Define the number p ∈ [0, 1]
such that p = ∥ΠU |0⟩∥2. Then, the algorithm Seq-AEst(U,Π) outputs an amplitude estimate
p̃ and uses a number T of applications of U , U†, I − 2Π such that,
1. There is a universal constant c ∈ (0, 1) such that Pr[|p̃− p| ≤ cp] ≥ 7/8.
2. There is a universal constant c′ such that E[T 2] = E[1/p̃] ≤ c′/p.
3. There is a universal constant c′′ such that E[1/T ] = E[

√
p̃] ≤ c′′√p.

Proof. The algorithm Seq-AEst(U,Π) consists of recording the number T of applications of
U , U†, I − 2Π used by the sequential amplitude amplification algorithm Seq-AAmp(U,Π)
(Theorem 5), and choosing the estimate p̃ = 1/T 2. The results follow immediately from
Theorem 5 and Markov’s inequality. ◀

3 Quantile estimation

In this section, we present a quantum algorithm for estimating the quantiles of a finite
random variable X. This is a key ingredient for the sub-Gaussian estimator of Section 4.
For the convenience of reading, we define a quantile in the following non-standard way (the
cumulative distribution function is replaced with its complement).

▶ Definition 8 (Quantile). Given a discrete random variable X and a real p ∈ [0, 1], the
quantile of order p is the number Q(p) = sup{x ∈ R : Pr[X ≥ x] ≥ p}.

Our result is inspired by the minimum finding algorithm of Dürr and Høyer [19] and its
generalization in [3]. The problem of estimating the quantiles of a set of numbers under the
uniform distribution was studied before by Nayak and Wu [34, 33]. We differ from that work
by allowing arbitrary distributions, and by not using the amplitude estimation algorithm. On
the other hand, we restrict ourselves to finding a constant factor estimate, whereas [34, 33]
can achieve any wanted accuracy.

ESA 2021
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The idea behind our algorithm is rather simple: if we compute a sequence of values
−∞ = y0 ≤ y1 ≤ y2 ≤ y3 ≤ . . . where each yj+1 is sampled from the distribution of X
conditioned on yj+1 ≥ yj , then when j ≃ log(1/p) the value of yj should be close to the
quantile Q(p). The complexity of sampling each yj is on the order of 1/Pr[X ≥ yj ] classically,
but it can be done quadratically faster in the quantum setting. We analyze a slightly different
algorithm, where the sequence of samples is strictly increasing and instead of stopping after
roughly log(1/p) iterations we count the number of experiments performed by the algorithm
and stop when it reaches a value close to 1/√p. This requires showing that the times Tj

spent on sampling yj is neither too large nor too small with high probability, which is proved
in the next lemma.

▶ Lemma 9. There is a quantum algorithm such that, given a q-random variable X and
a value x ∈ R ∪ {−∞,+∞}, it outputs a sample y from the probability distribution of X
conditioned on y > x. If we let T denote the number of quantum experiments performed by this
algorithm, then there exist two universal constants c0 < c1 such that E[T ] ≤ c1/

√
Pr[X > x]

and Pr[T < c0/
√

Pr[X > x]] ≤ 1/10.

Proof. Let (H, U,M) be a q-variable generating X. We use the comparison oracle Cx,+∞
from Assumption 1 to construct the unitary V = Cx,+∞(U ⊗ I) acting on H ⊗ C2. By
definition of Cx,+∞ and U (Section 2.1), we have that V |0⟩ =

∑
ω∈Ω:X(ω)≤x

√
p(ω)|ω⟩|0⟩+∑

ω∈Ω:X(ω)>x

√
p(ω)|ω⟩|1⟩ =

√
1− Pr[X > x]|ϕ0⟩|0⟩ +

√
Pr[X > x]|ϕ1⟩|1⟩ for some unit

states |ϕ0⟩, |ϕ1⟩ where |ϕ1⟩ = 1√
Pr[X>x]

∑
ω:X(ω)>x

√
p(ω)|ω⟩. The algorithm for sampling y

conditioned on y > x consists of two steps. First, we use the sequential amplitude amplification
algorithm Seq-AAmp(V, I ⊗ |1⟩⟨1|) from Theorem 5 on V to obtain the state |ϕ1⟩. Next, we
measure |ϕ1⟩ according to M . The claimed properties follow directly from Theorem 5. ◀

We use the next formula for the probability that a value x occurs in the sequence (yj)j

defined before. This lemma is adapted from [19, Lemma 1].

▶ Lemma 10 (Lemma 47 in [3]). Let X be a discrete random variable. Consider the increasing
sequence of random variables Y0, Y1, Y2, . . . where Y0 is a fixed value and Yj+1 for j ≥ 0 is a
sample drawn from X conditioned on Yj+1 > Yj. Then, for any x, y ∈ R,

Pr[x ∈ {Y1, Y2, . . .} | Y0 = y] =
{

Pr[X = x |X ≥ x] when x > y,
0 otherwise.

The quantile estimation algorithm is described in Algorithm 1 and the analysis is detailed
in the extended version of this paper.

Algorithm 1 Quantile estimation algorithm, Quantile(X, p, δ).

1. Repeat the following steps for i = 1, 2, . . . , ⌈6 log(1/δ)⌉.
a. Set y0 = −∞ and initialize a counter C = 0 that is incremented each time a quantum

experiment is performed.
b. Set j = 1. Repeat the following process and interrupt it when C = c′/

√
p (where c′

is a constant chosen in the proof of Theorem 11): sample an element yj+1 from X

conditioned on yj+1 > yj by using the algorithm of Lemma 9, set j ← j + 1.
c. Set Q̃(i) = yj .

2. Output Q̃ = median(Q̃(1), . . . , Q̃(⌈6 log(1/δ)⌉)).
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▶ Theorem 11 (Quantile estimation). Let X be a q-random variable. Given two
reals p, δ ∈ (0, 1), the approximate quantile Q̃ produced by the quantile estimation algorithm
Quantile(X, p, δ) (Algorithm 1) satisfies Q(p) ≤ Q̃ ≤ Q(cp) with probability at least 1−δ, where
c < 1 is a universal constant. The algorithm performs O

(
log(1/δ)√

p

)
quantum experiments.

4 Sub-Gaussian estimator

In this section, we present the main quantum algorithm for estimating the mean of a random
variable with a near-quadratic speedup over the classical sub-Gaussian estimators. Our result
uses the following Bernoulli estimator, which is a well-known adaptation of the amplitude
estimation algorithm to the mean estimation problem [9, 38, 32]. The Bernoulli estimator
allows us to estimate the mean of the truncated random variable X1a<X≤b for any a, b.

▶ Proposition 12 (Bernoulli estimator). There exists a quantum algorithm, called
the Bernoulli estimator, with the following properties. Let X be a q-random variable and
set as input a time parameter n ≥ 0, two range values 0 ≤ a < b, and a real δ ∈ (0, 1)
such that n ≥ log(1/δ). Then, the Bernoulli estimator BernEst(X,n, a, b, δ) outputs a mean
estimate µ̃a,b of µa,b = E[X1a<X≤b] such that |µ̃a,b − µa,b| ≤

√
bµa,b log(1/δ)

n + b log(1/δ)2

n2 . It
performs O(n) quantum experiments.

Proof. Let (H, U,M) be a q-variable generating X. Using the rotation oracle Ra,b from
Assumption 2, we define the unitary algorithm V = Ra,b(U ⊗ I) acting on H ⊗ C2. In
order to simplify notations, let us first assume that the random variable X is only distrib-
uted in the interval (a, b). Then, we have µ = µa,b and by definition of Ra,b and U (Sec-
tion 2.1) the operator V satisfies that V |0⟩ =

∑
ω∈Ω

√
p(ω)|ω⟩

(√
1− X(ω)

b |0⟩+
√

X(ω)
b |1⟩

)
=√

1− µ
b

(∑
ω∈Ω

√
p(ω)(b−X(ω))

b−µ |ω⟩
)
|0⟩ +

√
µ
b

(∑
ω∈Ω

√
p(ω)X(ω)

µ |ω⟩
)
|1⟩. Thus, there exist

some unit states |ψ0⟩, |ψ1⟩ such that V |0⟩ =
√

1− µ
b |ψ0⟩+

√
µ
b |ψ1⟩ and (I ⊗ |1⟩⟨1|)V |0⟩ =√

µ
b |ψ1⟩. If X takes values outside the interval (a, b) then the same result holds with µa,b in

place of µ and a different definition of |ψ0⟩, |ψ1⟩.
Consider the output ṽ of the amplitude estimation algorithm AEst

(
V,Π,

⌈ 2πn
log(1/δ)

⌉)
(The-

orem 6) where Π = I⊗|1⟩⟨1|. Then, the estimate bṽ satisfies the statement of the proposition
with probability 8/π2 by Theorem 6. The Bernoulli estimator consists of running ⌈6 log(1/δ)⌉
copies of AEst

(
V,Π,

⌈ 2πn
log(1/δ)

⌉)
and outputting the median of the results. The success

probability is at least 1− δ by the Chernoff bound. ◀

The Bernoulli estimator can estimate the mean of a non-negative q-random variable X
by setting a = 0 and b = maxX. However, its performance is worse than that of the classical
sub-Gaussian estimators when the maximum of X is large compared to its variance. Our
quantum sub-Gaussian estimator (Algorithm 2) uses the Bernoulli estimator in a more subtle
way, and in combination with the quantile estimation algorithm.

▶ Theorem 13 (Sub-Gaussian estimator). Let X be a q-random variable with mean µ

and variance σ2. Given a time parameter n and a real δ ∈ (0, 1) such that n ≥ log(1/δ),
the sub-Gaussian estimator SubGaussEst(X,n, δ) (Algorithm 2) outputs a mean estimate µ̃
such that, Pr

[
|µ̃− µ| ≤ σ log(1/δ)

n

]
≥ 1− δ. The algorithm performs O(n log3/2(n) log log(n))

quantum experiments.
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Algorithm 2 Sub-Gaussian estimator, SubGaussEst(X, n, δ).

1. Set k = logn and m = dn
√

logn log(9k/δ)
log(1/δ) , where d > 1 is a constant chosen in the proof

of Theorem 13 (if k is not an integer, round n to the next power of two).
2. Compute the median η of ⌈30 log(2/δ)⌉ classical samples from X and define the non-

negative random variables

Y + = (X − η)1X≥η and Y − = −(X − η)1X≤η.

3. Compute an estimate µ̃Y+ of E[Y+] and an estimate µ̃Y− of E[Y−] by executing the
following steps with Y := Y+ and Y := Y− respectively:
a. Compute an estimate Q̃ of the quantile of order p =

(
log(1/δ)

6n

)2
of Y with failure

probability δ/8 by using the quantile estimation algorithm Quantile(Y, p, δ/8).
b. Define a−1 = 0 and aℓ = 2ℓ

n Q̃ for ℓ ≥ 0. Compute an estimate µ̃ℓ of E[Y 1aℓ−1<Y ≤aℓ
]

with failure probability δ/(9k) for each 0 ≤ ℓ ≤ k, by using the Bernoulli estimator
BernEst(Y,m, aℓ−1, aℓ, δ/(9k)) with m quantum experiments.

c. Set µ̃Y =
∑k

ℓ=0 µ̃ℓ.
4. Output µ̃ = η + µ̃Y+ − µ̃Y− .

Proof. First, by standard concentration inequalities, the median η computed at step 2
satisfies |η − µ| ≤ 2σ with probability at least 1 − δ/2. Moreover, if |η − µ| ≤ 2σ then√
E[(X − η)2] =

√
E[(X − µ+ µ− η)2] ≤

√
E[(X − µ)2] + |µ − η| ≤ 3σ, by using the

triangle inequality. Below we prove that for any non-negative random variable Y the estimate
µ̃Y of µY = E[Y ] computed at step 3 satisfies

|µ̃Y − µY | ≤
√
E[Y 2] log(1/δ)

5n (4)

with probability at least 1−δ/4. Using the fact that X = η+Y+−Y− and (X−η)2 = Y 2
+ +Y 2

−,
we can conclude that

|µ̃− µ| ≤

(√
E[Y 2

+] +
√

E[Y 2
−]

)
log(1/δ)

5n ≤
√

2E[(X − η)2] log(1/δ)
5n ≤ σ log(1/δ)

n

with probability at least 1 − δ. The algorithm performs O(log(1/δ)) ≤ O(n) classical
experiments during step 2, O(log(1/δ)/√p) ≤ O(n) quantum experiments during step 3.a,
and O(km) ≤ O(n log3/2(n) log log(n)) quantum experiments during step 3.b.

We now turn to the proof of Equation (4). We make the assumption that all the
subroutines used in step 3 are successful, which is the case with probability at least (1 −
δ/8)(1− δ/(9k))k+1 ≥ 1− δ/4. First, according to Theorem 11, we have Q(p) ≤ Q̃ ≤ Q(cp)
for some universal constant c. It implies that cp ≤ Pr[Y ≥ Q(cp)] ≤ Pr[Y ≥ Q̃] ≤ E[Y 2]/Q̃2,
where the first two inequalities are by definition of the quantile function Q, and the last
inequality is a standard fact. Consequently, by our choice of p,

Q̃ ≤
6n

√
E[Y 2]√

c log(1/δ)
. (5)

Next, we upper bound the expectation of the part of Y that is above the largest threshold
ak = Q̃ considered in step 3.b. By Cauchy–Schwarz’ inequality, we have E[Y 1

Y >Q̃
] ≤
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√
E[Y 2] Pr[Y > Q̃]. Moreover, by definition of Q, Pr[Y > Q̃] ≤ Pr[Y > Q(p)] ≤ p. Thus,

E[Y 1
Y >Q̃

] ≤
√
E[Y 2] log(1/δ)

6n . (6)

The expectation of Y is decomposed into the sum µY =
∑k

ℓ=0 µℓ + E[Y 1Y >ak
], where

µℓ = E[Y 1aℓ−1<Y ≤aℓ
] is estimated at step 3.b. We have |µ̃ℓ−µℓ| ≤

√
aℓµℓ log(1/δ)
dn
√

log n
+ aℓ log(1/δ)2

d2n2 log n

for all 0 ≤ ℓ ≤ k according to Proposition 12. Thus, by the triangle inequality,

|µ̃Y − µY | ≤
k∑

ℓ=0
|µ̃ℓ − µℓ|+ E[Y 1Y >ak

]

≤
k∑

ℓ=0

√
aℓµℓ log

( 1
δ

)
dn
√

logn
+

k∑
ℓ=0

aℓ log
( 1

δ

)2

d2n2 logn + E[Y 1Y >ak
]

≤
Q̃ log

( 1
δ

)
dn2√logn

+
k∑

ℓ=1

√
2E[Y 21aℓ−1<Y ≤aℓ

] log
( 1

δ

)
dn
√

logn
+

2Q̃ log
( 1

δ

)2

d2n2 logn + E[Y 1Y >ak
]

≤

√
2k

√∑k
ℓ=1 E[Y 21aℓ−1<Y ≤aℓ

] log
( 1

δ

)
dn
√

logn
+

3Q̃ log
( 1

δ

)2

dn2√logn
+ E[Y 1Y >ak

]

≤
√

2k
√
E[Y 2] log

( 1
δ

)
dn
√

logn
+

3Q̃ log
( 1

δ

)2

dn2√logn
+ E[Y 1Y >ak

]

≤
√

2
√
E[Y 2] log

( 1
δ

)
dn

+
18

√
E[Y 2] log

( 1
δ

)
√
cdn
√

logn
+

√
E[Y 2] log

( 1
δ

)
6n

≤
√

E[Y 2] log
( 1

δ

)
5n

where the third step uses a0µ0 ≤ a2
0 = (Q̃/n)2 and aℓµℓ ≤ (aℓ/aℓ−1)E[Y 2

1aℓ−1<Y ≤aℓ
] ≤

2E[Y 2
1aℓ−1<Y ≤aℓ

] when ℓ ≥ 1, the fourth step uses the Cauchy–Schwarz inequality, the sixth
step uses Equations (5) and (6), and in the last step we choose d = 600/

√
c. ◀

5 (ϵ, δ)-Estimators

We study the (ϵ, δ)-approximation problem under two different scenarios. First, we consider
the case where we know an upper bound ∆ on the coefficient of variation |σ/µ|. As a direct
consequence of Theorem 13 we obtain the following estimator that subsumes a similar result
shown in [22] for non-negative random variables.

▶ Corollary 14 (Relative estimator). There exists a quantum algorithm with the following
properties. Let X be a q-random variable with mean µ and variance σ2, and set as input a
value ∆ ≥ |σ/µ| and two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃
such that Pr[|µ̃− µ| > ϵ|µ|] ≤ δ and it performs Õ

( ∆
ϵ log(1/δ)

)
quantum experiments.

Proof. The algorithm runs the sub-Gaussian estimator SubGaussEst
(
X, ∆

ϵ log(1/δ), δ
)
. ◀

Next, we construct a parameter-free estimator that performs Õ
((

σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in expectation for any random variable distributed in [0, 1]. We
follow an approach similar to the classical AA algorithm described in [17]. We first give
a sequential estimator that approximates the mean with constant relative error and that
performs O(1/√µ) quantum experiments in expectation. We use the term “sequential” in
reference to sequential analysis techniques. The classical counterpart of this estimator is the
Stopping Rule Algorithm in [17].
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▶ Proposition 15 (Sequential Bernoulli estimator). There is an algorithm, called the
sequential Bernoulli estimator, with the following properties. Let X be a q-random variable
distributed in [0, 1] with mean µ. Then, the sequential Bernoulli estimator Seq-BernEst(X)
outputs an estimate µ̃ and performs a number T of quantum experiments such that,
1. There is a universal constant c ∈ (0, 1) such that Pr[|µ̃− µ| ≤ cµ] ≥ 7/8.
2. There is a universal constant c′ such that E[T 2] = E[1/µ̃] ≤ c′/µ.
3. There is a universal constant c′′ such that E[

√
µ̃] ≤ c′′√µ.

Proof. The algorithm is identical to the one of Proposition 12 with a = 0 and b = 1, except
that the amplitude estimation algorithm is replaced with the sequential amplitude estimation
algorithm (Theorem 7). The algorithm inherits the properties proved in Theorem 7. ◀

The expected number of experiments performed by the sequential Bernoulli estimator
is E[T ] ≤

√
E[T 2] ≤ 1/√µ. The output µ̃ of the sequential Bernoulli estimator can be

used in the Bernoulli estimator (Proposition 12) with parameter n = 8 log(1/δ)/(ϵ
√
µ̃)

to solve the (ϵ, δ)-approximation problem. However, the expected number of experiments
performed with this approach is O(log(1/δ)/(ϵ√µ)). We propose a better algorithm with an
improved dependence on ϵ. The algorithms uses the sequential Bernoulli estimator and the
sub-Gaussian estimator.

Algorithm 3 Sequential (ϵ, δ)-estimator.

1. For i = 1, . . . , 32 log(1/δ):
a. Compute an estimate µ̃X of µ = E[X] by using the sequential Bernoulli estimator

Seq-BernEst(X) (Proposition 15).
b. Let Y denote the random variable (X − X ′)2/2 where X ′ is independent from X

and identically distributed. Compute an estimate µ̃Y of µY = E[Y ] by using the
sequential Bernoulli estimator Seq-BernEst(Y ) (Proposition 15). Stop the computation
if it performs more than c1√

ϵµ̃X

quantum experiments (where c1 is a constant chosen
in the proof of Theorem 16) and set µ̃Y = 0.

c. Compute a second estimate µ̃
(i)
X of µ by using the sub-Gaussian estimator

SubGaussEst(X,n, 15/16) (Theorem 13) with n = c2 max
(√

µ̃Y

ϵµ̃X

, 1√
ϵµ̃X

)
(where c2

is a constant chosen in the proof of Theorem 16).
2. Output µ̃ = median

(
µ̃

(1)
X , . . . , µ̃

(32 log(1/δ))
X

)
.

▶ Theorem 16 (Sequential relative estimator). Let X be a q-random variable dis-
tributed in [0, 1] with mean µ and variance σ2. Given two reals ϵ, δ ∈ (0, 1) the estimate µ̃
output by the sequential relative estimator (Algorithm 3) satisfies Pr[|µ̃− µ| > ϵµ] ≤ δ. The
algorithm performs Õ

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in expectation.

Proof. We prove that, for a fixed value of i, the estimate µ̃(i)
X computed at step 1.c satisfies

Pr
[
|µ̃(i)

X −µ| ≤ ϵµ
]
≥ 5/8 and the number of experiments performed during its computation is

Õ
((

σ
ϵµ + 1√

ϵµ

))
in expectation. The theorem follows by the Chernoff bound and the linearity

of expectation.
Let c, c′, c′′ denote the constants mentioned in Proposition 15, and set c1 = 16c′

√
(1 + c)

and c2 = 4(1 + c)/
√

1− c. We assume that |µ̃X − µ| ≤ cµ at step 1.a, which is the case
with probability at least 7/8 by Proposition 15. The analysis of steps 1.b and 1.c is split
into two cases to show that Pr

[
|µ̃(i)

X − µ| ≤ ϵµ
]
≥ 5/8. First, if σ ≤ √ϵµ, then we can
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ignore step 1.b and consider the second term in the max at step 1.c. By Theorem 13,
the estimate µ̃(i)

X satisfies |µ̃(i)
X − µ| ≤

4σ

c2/
√

ϵµ̃X

≤ 4
√

1+c
c2

ϵµ ≤ ϵµ with probability 15/16.

Secondly, if σ ≥ √ϵµ, then by Proposition 15 and the fact that µY = σ2, the estimate µ̃Y

computed at step 1.b satisfies |µ̃Y −σ2| ≤ cσ2 with probability 7/8 if we remove the stopping
condition. Since we assumed that µ̃X ≤ (1 + c)µ, the computation is interrupted if it
performs more than c1√

ϵµ̃X

≥ c1√
(1+c)µY

= 16c′
√

µY
experiments. However, by Proposition 15

and Markov’s inequality, the number of experiments performed by the sequential Bernoulli
estimator at step 1.b is at most 16c′/

√
µY with probability at least 15/16. Consequently,

we can assume that µ̃Y ≥ (1 − c)σ2 with success probability at least 7/8 · 15/16. In
this case, by considering the first term in the max at step 1.c, the estimate µ̃(i)

X satisfies
|µ̃(i)

X − µ| ≤
4σ

c2

√
µ̃Y /(ϵµ̃X )

≤ 4(1+c)
c2

√
1−c

ϵµ ≤ ϵµ with probability 15/16. The overall success

probability is at least (7/8)2(15/16)2 ≥ 5/8.
We now analyse the expected number of quantum experiments performed during the

computation of µ̃(i)
X . Step 1.a performs O(1/√µ) experiments in expectation by Proposition 15.

Step 1.b is stopped after O(1/(√ϵµ)) experiments in expectation since E[1/
√
µ̃X ] ≤ O(1/√µ)

by Proposition 15. Step 1.c performs Õ
(

max
(√

µ̃Y

ϵµ̃X

, 1√
ϵµ̃X

))
experiments by Theorem 13.

The estimates µ̃Y and µ̃X are independent if we ignore the stopping condition at step 1.b, in

which case E
[√

µ̃Y

µ̃X

]
= E

[
1

µ̃X

]
E[

√
µ̃Y ] ≤ O

(
σ
µ

)
by Proposition 15. The stopping condition

can only decrease this quantity. Thus, step 1.c performs Õ
(
max

(
σ
ϵµ ,

1√
ϵµ

))
experiments in

expectation. ◀

6 Lower bounds

We prove several lower bounds for the mean estimation problem under different scenarios. In
Section 6.1, we study the number of experiments that must be performed to estimate the
mean with a sub-Gaussian error rate. In Section 6.2, we study the number of experiments
needed to solve the (ϵ, δ)-approximation problem. Finally, in Section 6.3, we consider the
mean estimation problem in the state-based model, where the input consists of several copies
of a quantum state encoding a distribution.

6.1 Sub-Gaussian estimation
We show that the quantum sub-Gaussian estimator described in Theorem 13 is optimal up
to a polylogarithmic factor. We make use of the following lower bound for Quantum Search
in the small-error regime.

▶ Proposition 17 (Theorem 4 in [13]). Let N > 0, 1 ≤ K ≤ 0.9N and δ ≥ 2−N . Let
T (N,K, δ) be the minimum number of quantum queries any algorithm must use to decide
with failure probability at most δ whether a function f : [N ]→ {0, 1} has 0 or K preimages
of 1. Then, T (N,K, δ) ≥ Ω(

√
N/K log(1/δ)).

We construct two particular probability distributions that allow us to reduce the Quantum
Search problem to the sub-Gaussian mean estimation problem.

▶ Theorem 18. Let n > 1 and δ ∈ (0, 1) such that n ≥ 2 log(1/δ). Fix σ > 0 and consider the
family Pσ of all q-random variables with variance σ2. Let T (n, σ, δ) be the minimum number
of quantum experiments any algorithm must perform to compute with failure probability
at most δ a mean estimate µ̃ such that |µ̃ − µ| ≤ σ log(1/δ)

n for any X ∈ Pσ with mean µ.
Then, T (n, σ, δ) ≥ Ω(n).
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Proof. Let m = n
log(1/δ) and b = m√

1−1/m2
σ. We define the probability distribution p0 with

support {0, b} that takes value b with probability 1
m2 . Similarly, we define the probability

distribution p1 with support {0,−b} that takes value −b with probability 1
m2 . The variance

of each distribution is equal to σ2. Moreover, the means µ0 and µ1 of the two distributions
satisfy that,

µ0 − µ1 > 2σ log(1/δ)
n

. (7)

Let N,K be two integers such that N ≥ log(1/δ) and K/N = 1/m2 (assuming m is
rational). Let F0 be the family of all functions f : [N ]→ {0, 1} with exactly K preimages
of 1. Similarly, let F1 be the family of all functions f : [N ] → {−1, 0} with exactly K

preimages of −1. By using Proposition 17, it is easy to see that any algorithm that can
distinguish between f ∈ F0 and f ∈ F1 with success probability 1 − δ must use at least
Ω(

√
N/K log(1/δ)) = Ω(m log(1/δ)) = Ω(n) quantum queries to f . We associate with each

function f ∈ F0∪F1 the q-variable (H, U,M)f whereH = CN+2, U |0⟩ = 1√
N

∑
x∈[N ]|x⟩|f(x)⟩,

andM = {I⊗|0⟩⟨0|, I⊗|−1⟩⟨−1|, I⊗|1⟩⟨1|}. The random variable X generated by (H, U,M)f

is distributed according to p0 if f ∈ F0, and according to p1 if f ∈ F1. Moreover, one quantum
experiment with respect to X can be simulated with one quantum query to f . Consequently,
any algorithm that can distinguish between a random variable distributed according to p0 or p1
with success probability 1−δ must perform at least Ω(n) quantum experiments. On the other
hand, by Equation (7), if an algorithm can estimate the mean with an error rate smaller than
σ log(1/δ)

n then it can distinguish between f ∈ F0 and f ∈ F1. Thus, T (n, σ, δ) ≥ Ω(n). ◀

6.2 (ϵ, δ)-Estimation
We consider the (ϵ, δ)-estimation problem in the parameter-free setting, when the coefficient
of variation is unknown. We make use of the next lower bound for Quantum Counting.

▶ Proposition 19 (Theorem 4.2.6 in [33]). Let N > 0, 1 < K ≤ N and ϵ ∈
( 1

4K , 1
)
.

Consider the set of all quantum algorithms such that, given a query oracle to any function
f : [N ] → {0, 1}, they return an estimate C̃ of the number C of preimages of 1 in f such
that |C̃ − C| ≤ ϵC with probability at least 2/3. Let TK(N, ϵ) be the minimum number of
quantum queries any such algorithm must use when the oracle has exactly K preimages of 1.
Then, TK(N, ϵ) ≥ Ω

(√
K(N−K)
ϵK+1 +

√
N

ϵK+1

)
.

We obtain by a simple reduction to the above problem that the result described in
Theorem 16 is nearly optimal.

▶ Proposition 20. Let ϵ ∈ (0, 1). Let PB denote the family of all q-random variables that
follow a Bernoulli distribution. Consider any algorithm that takes as input X ∈ PB and that
outputs a mean estimate µ̃ such that |µ̃− E[X]| ≤ ϵE[X] with probability at least 2/3. Then,
for any µ ∈ (0, 1), there exists X ∈ PB with mean µ such that the algorithm performs at least
Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments on input X, where σ2 = Var[X].

Proof. Given ϵ ∈ (0, 1) and µ ∈ (0, 1), we choose two integers K and N such that K > 1/(4ϵ)
and K/N = µ (assuming µ is rational). Similarly to the proof of Theorem 18, we associate
with each function f : [N ] → {0, 1} the q-variable (H, U,M)f where H = CN+2, U |0⟩ =

1√
N

∑
x∈[N ]|x⟩|f(x)⟩, and M = {I⊗|0⟩⟨0|, I⊗|1⟩⟨1|}. If an algorithm can estimate the mean
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of any Bernoulli random variable with error ϵ and success probability 2/3, then it can be used
to count the number of preimages of 1 in f with the same accuracy. Thus, by Proposition 19,
it must perform at least Ω

(√
K(N−K)
ϵK+1 +

√
N

ϵK+1

)
= Ω

(√
µ(1−µ)

ϵµ+1/N + 1√
ϵµ+1/N

)
= Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments on a q-random variable with mean µ and variance σ2 = µ(1− µ). ◀

6.3 State-based estimation

We consider the state-based model where the input consists of several copies of a quantum
state |p⟩ =

∑
x∈E

√
p(x)|x⟩ encoding a distribution p over E. This model is weaker than the

one described before, since it does not provide access to a unitary algorithm preparing |p⟩.
We prove that no quantum speedup is achievable in this setting. Our result uses the next
lower bound on the number of copies needed to distinguish two states.

▶ Lemma 21. Let δ ∈ (0, 1) and consider two probability distributions p0 and p1 with
the same finite support E ⊂ R. Define the states |ϕ0⟩ =

∑
x∈E

√
p0(x)|x⟩ and |ϕ1⟩ =∑

x∈E

√
p1(x)|x⟩. Then, the smallest integer T such that there is an algorithm that can

distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T with success probability at least 1− δ satisfies T ≥ ln(1/(4δ))
D(p0∥p1) ,

where D(p0∥p1) =
∑

x∈E p0(x) ln
(

p0(x)
p1(x)

)
is the KL-divergence from p0 to p1.

Proof. According to Helstrom’s bound [25] the best success probability to distinguish between
two states |ϕ⟩ and |ϕ′⟩ is 1

2 (1 +
√

1− |⟨ϕ |ϕ′⟩|2). Thus, the smallest number T needed to
distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T must satisfy 1

2 (1 +
√

1− ⟨ϕ0 |ϕ1⟩2T ) ≥ 1 − δ. It implies

that T ≥ − ln(1−(1−2δ)2)
−2 ln(⟨ϕ0 | ϕ1⟩) ≥

ln(1/(4δ))

−2 ln
(∑

x
p0(x)

√
p1(x)
p0(x)

) ≥ ln(1/(4δ))∑
x

p0(x) ln
(

p0(x)
p1(x)

) = ln(1/(4δ))
D(p0∥p1) where the

second inequality uses the concavity of the logarithm function. ◀

We use the above lemma to show that no quantum mean estimator can perform better
than the classical sub-Gaussian estimators in the state-based input model.

▶ Theorem 22. Let n > 1 and δ ∈ (0, 1) such that n ≥ 2 log(1/δ). Fix σ > 0 and consider
the family Pσ of all distributions with finite support whose variance lies in the interval
[σ2, 4σ2]. For any p ∈ Pσ with support E ⊂ R, define the state |p⟩ =

∑
x∈E

√
p(x)|x⟩.

Let T (n, σ, δ) be the smallest integer such that there exists an algorithm that receives the
state |p⟩⊗T (n,σ,δ) for any p ∈ Pσ, and that outputs an estimate µ̃ of the mean µ of p such
that Pr

[
|µ̃− µ| >

√
σ2 log(1/δ)

n

]
≤ δ. Then, T (n, σ, δ) ≥ Ω(n).

Proof. Let m = n
log(1/δ) , b = m√

m−1σ and α = 2 ln
(

1 +
√

1− 1
m

)
. We define the two

distributions p0 and p1 with support E = {0, b} such that p0(b) = eα

m and p1(b) = 1
m . Let µ0

and σ2
0 (resp. µ1 and σ2

1) denote the expectation and the variance of p0 (resp. p1). Observe
that p0, p1 ∈ Pσ since σ0 ∈ [σ, 2σ] and σ1 = σ. Moreover, µ0 − µ1 = σ eα−1√

m−1 = σ
(
eα/2 +

1
)

eα/2−1√
m−1 > 2

√
σ2 log(1/δ)

n . Thus, we can distinguish |p0⟩⊗T (n,σ,δ) from |p1⟩⊗T (n,σ,δ) with
failure probability δ by using any optimal algorithm that satisfies the error bound stated in
the theorem. Since the KL-divergence from p0 to p1 isD(p0∥p1) ≤ p0(b) ln

(
p0(b)
p1(b)

)
= αeα

m2 ≤ 6
m ,

we must have T (n, σ, δ) ≥ Ω
(

log(1/δ)
D(p1∥p0)

)
= Ω(n) by Lemma 21. ◀
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