
Finding an Approximate Mode of a Kernel Density
Estimate
Jasper C.H. Lee #

Brown University, Providence, RI, USA

Jerry Li #

Microsoft Research, Redmond, WA, USA

Christopher Musco #

New York University, NY, USA

Jeff M. Phillips #

University of Utah, Salt Lake City, UT, USA

Wai Ming Tai #

University of Chicago, IL, USA

Abstract
Given points P = {p1, ..., pn} subset of Rd, how do we find a point x which approximately maximizes
the function 1

n

∑
pi∈P

e−∥pi−x∥2
? In other words, how do we find an approximate mode of a Gaussian

kernel density estimate (KDE) of P ? Given the power of KDEs in representing probability distribu-
tions and other continuous functions, the basic mode finding problem is widely applicable. However,
it is poorly understood algorithmically. We provide fast and provably accurate approximation
algorithms for mode finding in both the low and high dimensional settings. For low (constant)
dimension, our main contribution is a reduction to solving systems of polynomial inequalities. For
high dimension, we prove the first dimensionality reduction result for KDE mode finding. The
latter result leverages Johnson-Lindenstrauss projection, Kirszbraun’s classic extension theorem, and
perhaps surprisingly, the mean-shift heuristic for mode finding. For constant approximation factor
these algorithms run in O(n(log n)O(d)) and O(nd + (log n)O(log3 n)), respectively; these are proven
more precisely as a (1 + ϵ)-approximation guarantee. Furthermore, for the special case of d = 2,
we give a combinatorial algorithm running in O(n log2 n) time. We empirically demonstrate that
the random projection approach and the 2-dimensional algorithm improves over the state-of-the-art
mode-finding heuristics.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Kernel density estimation, Dimensionality reduction, Coresets, Means-shift

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.61

Funding Jasper C.H. Lee: Partially supported by NSF award IIS-1562657.
Christopher Musco: Partially supported by NSF CCF-2045590.
Jeff M. Phillips: Partially supported by NSF CCF-1350888, CNS-1514520, CNS-1564287, IIS-1619287,
IIS-1816149, and CBET-1953350.

1 Introduction

Given a point set P in Rd and a kernel K : Rd ×Rd → R, the kernel density estimate (KDE)
is a function mapping from Rd to R and is defined as 1

|P |
∑

p∈P K(x, p) for any x ∈ Rd. One
common example of kernel K is the Gaussian kernel, K(x, y) = e−∥x−y∥2 for any x, y ∈ Rd,
which is the focus of this paper.

These kernel density estimates are a fundamental tool in statistics [48, 45, 18, 19] and
machine learning [44, 23, 36]. For d = 1, KDEs with a triangular kernel (K(x, p) =
max(0, 1− |x− p|)) can be seen as the average over all shifts of a fix-width histogram. And

© Jasper C.H. Lee, Jerry Li, Christopher Musco, Jeff M. Phillips, and Wai Ming Tai;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 61; pp. 61:1–61:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasperchlee@brown.edu
mailto:jerrl@microsoft.com
mailto:cmusco@nyu.edu
mailto:jeffp@cs.utah.edu
mailto:waiming.tai@chicagobooth.edu
https://doi.org/10.4230/LIPIcs.ESA.2021.61
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Finding an Approximate Mode of a Kernel Density Estimate

unlike histograms these generalize naturally to a higher dimensions as a stable way to create
a continuous function to represent the measure of a finite point set. Indeed, the KDEs
constructed on an iid sample from any tame distribution will converge to that distribution in
the limit as the sample size grows [48, 45]. Not surprisingly they are also central objects in
Bayesian data analysis [27, 21]. Using Gaussian kernels (and other positive definite kernels),
KDEs are members of a reproducing kernel Hilbert space [53, 50, 36] where for instance they
induce a natural distance between distributions [49, 28]. Their other applications includes
outlier detection [56], clustering [43], topological data analysis [40, 14], spatial anomaly
detection [2, 24], and statistical hypothesis testing [23].

In this paper, we study how to find an approximate mode of a Gaussian KDE. An
ϵ-approximate mode of a KDE is a point x′ whose KDE value is at least 1 − ϵ times the
maximum of the KDE. It is known that Gaussian KDEs can have complex structure of local
maximum [20, 26], but other than some heuristic approaches [9, 10, 54, 22] there has been
very little prior work [40, 2] (which we discuss shortly) in developing and formally analyzing
algorithms to find this maximum. Beyond being a key descriptor (the mode) of one of the
most common representations of a continuous distribution, finding the (global) maximum
of a KDE has many other specific applications. It is a necessary step to create a simplicial
complex to approximate superlevel sets of KDEs [40]; to localize and track objects [13, 46]; to
quantify multi-modality of distributions [47]; to finding typical objects, including curves [22].

Problem Definition. For any x, y ∈ Rd, we define the Gaussian kernel as K(x, y) = e−∥x−y∥2 .
The Gaussian kernel density estimate (KDE) GP (x) of a point set P is defined as GP (x) =

1
|P |
∑

p∈P K(p, x), for x ∈ Rd. We will sometimes use the notation GP (x) = |P | · GP (x) to
simplify calculations. In line with other works on optimization, we focus on the approximate
version of the mode finding problem, defined as follows. Given a point set P of size n

where maxx∈Rd GP (x) ≥ ρ for some parameter ρ below which the maximum is uninteresting,
and an error parameter ϵ > 0, the goal is to find an ϵ-approximate mode x′, such that
GP (x′) ≥ (1− ϵ) maxx∈Rd GP (x). We assume the lower bound ρ is known to the algorithm;
or we can set ρ = 1/n since GP (p) ≥ 1/n for any p ∈ P . In practice, one should expect that
ρ≪ ϵ, so we aim for algorithms with far smaller dependence on 1/ρ than on 1/ϵ.

Known Results. One trivial approach is exhaustive search. It is easy to see that the optimal
point x∗ cannot be too far away from the input data. More precisely, x∗ should be within
the radius of

√
log 1

ρ of a point p for some p ∈ P . Given the above observation, one can
construct a grid of width 1

ϵρ around each point of input data and evaluate the value of GP at
each grid point. This approach will allow us to output a solution with additive error at most
ϵnρ. However, the size of the search space could be as large as O

(
n
(√

log 1
ρ

/
ϵρ
)d
)

which is
infeasible in practice. A similar approach is suggested by [40].

Another approach, proposed by [2], is to compute the depth in an arrangement of a set
of geometric objects. Namely, it is to find the point that maximizes the number of objects
including that point. They consider a set S of segment in R2 and, for any x ∈ R2 and s ∈ S,
define K(x, s) = K(x, y) where y is the closest point on s to x. In our setting, we treat the
point set P as degenerate (length 0) segments S. By discretizing the continuous function K

into the level set of it, one can view the problem as computing the depth in an arrangement
of a collection of level sets. This approach has a running time of O(n

ϵ4 log3 n) (this implicitly
sets ρ = 1/n). One can generalizes their approach to the high dimensional case, but the
running time would still be O(nO(d)).

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:3

Related Work. As mentioned before, computing depth in an arrangement of a set of
geometric object is highly related to our problem. Given a collection C of geometric object in
Rd, one can expressed the depth as

∑
c∈C 1c(x) where 1c(x) is the indicator function of x ∈ c.

It is easy to see that KDE is basically the same formula by replacing 1c(x) with K(x, p).
Namely, one can view finding a maximum point of KDE as computing the point of maximum
“fractional” depth among kernels. Surprisingly, there are not many non-trivial algorithmic
results on computing the depth of high-dimensional geometric objects. In general, whenever
C is a collection of bounded complexity (e.g. VC dimension [52]) objects, the arrangement is
always of complexity O(nO(d)) and it can be constructed, with the depth encoded, in as much
time. A celebrated case is when C is a collection of axis parallel box, the point of maximum
depth can be found in O(nd/2−o(1)) time [12]. For our task we can run such approaches on a
sample of size n0 = O(d

ϵ2ρ log 1
ρ) [32, 25], so the runtimes still have a 1/ρO(d) term.

Another line of work [11, 20, 5] attempts to bound the number of local maximum of a
Gaussian KDE. Perhaps surprisingly, the number is greater than n for dimensions d ≥ 2, and
in fact can be at least

(
n
d

)
+ n for n, d ≥ 2 [5]. It is currently unknown whether the number

can be infinite, but the best upper bound assuming finiteness is 2d+(n
2)(5 + 3d)n. So even if

we could identify all of these, there still would be Ω(nd) points to evaluate.
While not as explicit as the dimensionality reduction results we will present, other work

based on LSH [6, 7] or related to geometric graphs [41] have shown properties of evaluating
KDEs after what can be interpreted as forms of dimensionality reduction. For instance,
Quanrud [41] shows that using dimensionality reduction, as well as other approximations
and structures, one can evaluate KDEs within 1± ϵ error in roughly 1/ϵ2 time, but also with
logarithmic factors depending on, for example, spread parameters for the Gaussian kernel.

Our Approach and Result. We present an approximation scheme that reads the data (to
sample it) in O(nd) time, and then its runtime depends only on 1/ϵ and 1/ρ. At the heart of
our algorithm are two techniques: dimensionality reduction and polynomial system solving.
We also use standard coreset results for Gaussian kernel density estimates.

For dimensionality reduction (Section 3), we use Johnson-Lindenstrauss matrices to
project the point set down to low dimensions, and solve the problem in low dimensions. The
crucial issue is, if we solve the mode finding problem in the low dimensional space, it is not
immediately clear that the original high dimensional space also has a point that gives a high
KDE value. We resolve this with an application of Kirszbraun’s extension theorem [30, 51],
which shows the existence of such a high dimensional point. To find the actual point in the
high dimensional space, we use one step of the mean-shift algorithm [9, 10], which is a known
heuristic for the KDE maximum finding problem with provable monotonicity properties.
We could alternatively combine a terminal dimensionality reduction result [37] with our
mean-shift recovery strategy. Doing so would give the same level of dimensionality reduction,
at the expense of reduced simplicity and runtime efficiency.

In low dimensions, we consider Taylor series truncations of the Gaussian kernel, and reduce
the mode finding problem to solving systems of polynomial inequalities (Section 2). The
result of [42] implies that one can find a solution to a system of λ polynomial inequalities with
degree D and k variables in time O((λD)O(k)). Here, k will essentially be the dimensionality
d of the problem, and λ will be a constant as shown in our constructions. We observe that
since the optimal point must be close to one of the points in the input, we can consider a
sufficiently fine grid in the vicinity of each input point, which totals to O(n2O(d)) grid points.
For each grid point, we formulate and solve a system of polynomial inequalities based on
Taylor expansions, up to O(log 1

ρ) terms around that grid point. This gives a running time
of O(n(log 1

ρ)O(d)), where n is the size of the input point set.

ESA 2021

61:4 Finding an Approximate Mode of a Kernel Density Estimate

Combining the above ideas with standard coreset results (small subsets Q ⊂ P so GQ

approximates GP) yields approximation schemes for the KDE mode finding problem. We
present two such schemes, one with exponential runtime dependence on the dimensionality
d which is more suitable for low dimensions, and another with only linear dependence
in d (which is necessary for reading the input) and is designed for the high dimensional
regime. Guarantees of these approximations are captured by Theorems 1 and 2; we provide
algorithmic details and intuition, but proofs are in the appendices.

▶ Theorem 1 (Low dimensional regime). Given ϵ, ρ > 0 and a point set P ⊂ Rd of size n with
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ Rd so GP (x′) ≥ (1− ϵ)GP (x∗)

in O

(
nd + d

ϵ2ρ · log 1
ρδ ·

(
log d

ϵρ

)O(d)
)

time with probability at least 1− δ.

▶ Theorem 2 (High dimensional regime). Given ϵ, ρ > 0 and a point set P ⊂ Rd of size n with
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ Rd so GP (x′) ≥ (1− ϵ)GP (x∗)

in O

(
nd +

(
log 1

ϵρ

)O(1
ϵ2 log3 1

ϵρ)
· log 1

δ + min{nd log 1
δ , d

ϵ2ρ2 log2 1
δ }
)

time with probability at

least 1− δ.

One may set the relative error parameter ϵ, and failure probability δ to constants, and
observe the mode of GP must be at least 1/n and set ρ = 1/n. Then the runtimes become
O(n(log n)O(d)) for constant dimensions, and O(nd + (log n)O(log3 n)) in high dimensions.

In addition to our result in Theorems 1 and 2, we also consider the special case where
d = 2. We present a combinatorial algorithm for the 2-dimensional regime which is easier to
implement. Here, we borrow the idea from [2] which is to compute the depth. Instead of
simply considering the level sets of the Gaussian kernel (which are circles in our setting), we
consider a more involved decomposition. One important property of the Gaussian kernel is its
multiplicatively separability – namely, the Gaussian kernel can be decomposed into factors,
with one factor for each dimension. We now discretize each factor into level sets (which
are simply intervals) and then consider their Cartesian products, generating a collection of
axis-parallel rectangles. A similar idea was also suggested by [38]. Finally, if we compute
the depth of this collection of axis-parallel rectangles, we can find out an approximate mode
in time O(1

ϵ2ρ log2 1
ρ). This approach also works in higher dimensions, but it would yield a

slower running time than our general approaches in Theorems 1 and 2. The formal guarantees
of this 2-d algorithm are captured in Theorem 3, and proven in the appendices.

▶ Theorem 3 (2-dimensional setting). Given ϵ, ρ > 0 and a point set P ⊂ R2 of size n such that
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ R2 so GP (x′) ≥ (1− ϵ)GP (x∗)
in O

(
n + 1

ϵ2ρ (log 1
ρ + log 1

δ) log(1
ϵρ log 1

δ)
)

time with probability at least 1− δ.

There are different extensions of our problem formulation. For example, one can define
the weighted KDE of a point set P ,

∑
p∈P wpK(x, p), and find its mode. Another common

extension is to consider non-spherical Gaussians with different variances. We expect that our
technique with some straightforward modifications work for these extensions and will omit
the details.

2 KDE Mode Finding via System of Polynomials

In this section we provide algorithms that approximately find the maximum of the Gaus-
sian KDE in Rd. We first define the following notations. For a point p ∈ Rd and r > 0,
we define Bp(r) as

{
y ∈ Rd | ∥y − p∥ ≤ r

}
, namely the Euclidean ball around p. For a

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:5

point set P ⊂ Rd and r > 0, we define BP (r) as ∪p∈P Bp(r), that is the union of Eu-
clidean balls around all the points in P . For a point set P ⊂ Rd, a point q ∈ Rd and
r > 0, also define QP,q(r) = P ∩ Bq(r

√
log 1

ϵρ). Finally, let Grid(γ) be the infinite grid
{x = (i1γ, i2γ, . . . , idγ) | i1, i2, . . . , id are integers}, parametrized by a cell length γ > 0.

We first make an observation that the maximum point must be close to one of the data
points, captured by Observation 4.

▶ Observation 4. x∗ ∈ BP (
√

log 1
ρ). Recall that x∗ = argmaxx∈Rd GP (x).

Proof. Suppose x∗ /∈ BP (
√

log 1
ρ). Then, GP (x∗) =

∑
p∈P e−∥p−x∗∥2

<
∑

p∈P ρ = nρ.

However, GP (x∗) ≥ nρ by assumption. ◀

The algorithm presented in this section relies crucially on the result of Renegar for solving
systems of polynomial inequalities, as stated in the following lemma.

▶ Lemma 5 ([42]). Consider λ polynomial inequalities with maximum degree D and k

variables. There is an algorithm either finds a solution that satisfies all λ polynomial
inequalities or returns NO SOLUTION in O((λD)O(k)) time.

Before we give details of our algorithm, we present the family of systems of polynomial
inequalities we formulate for mode finding. Let SysPoly(P, q, r, r′, β) be the following system.

∑
p∈QP,q(r′)

d∏
i=1

s−1∑
j=0

1
j!
(
−(xi − pi)2)j

 ≥ β
∧

∥x− q∥2 ≤ r2 log 1
ϵρ

where s = (r + r′)2e2 log d
ϵρ . Intuitively, if a point x ∈ Rd satisfies the left inequality of

SysPoly(P, q, r, r′, β), then the value GP (x) is larger than a threshold that is approximately β.
It is because the LHS of the left inequality is the sum of the truncated Taylor expansion of the
Gaussians centered at p that is around q. On the other hand, the truncated Taylor expansion
only gives a good approximation locally. Hence, the right inequality of SysPoly(P, q, r, r′, β)
ensures that x is around q.

Also, let SysPoly(P, q, r, r′) be the algorithm that performs binary search on β of the
above system SysPoly(P, q, r, r′, β) and terminates when the search gap is less than 1

10 |P | ϵρ.
Note that β lies between 0 and O(|P |) which means we need O

(
log
(
|P | / 1

10 |P | ϵρ
))

=
O
(

log 1
ϵρ

)
iterations in binary search. The total running time of SysPoly(P, q, r, r′) is

O
(

(4s)O(d) log 1
ϵρ

)
= O(sO(d)) since k = d, λ = 2 and D = 2s in Lemma 5.

The following lemma captures the approximation error from the Taylor series truncation.

▶ Lemma 6. Suppose r + r′ > 1 and q ∈ Rd such that ∥x∗ − q∥ ≤ r
√

log 1
ϵρ . Then, the

output x(q) of SysPoly(P, q, r, r′) satisfies GQP,q(r′)(x(q)) ≥ GQP,q(r′)(x∗)− |P | ϵρ
2 .

In short, it shows that the truncation of the above infinite summation of polynomial
terms (wrapped in a sum over all points Q, and the product over d dimensions) induces an
error terms E(x(q)) and E(x∗) at x(q) and x∗, respectively. We can show that the difference
between these terms is at most ϵρ for our choice of s, as desired.

ESA 2021

61:6 Finding an Approximate Mode of a Kernel Density Estimate

Proof. First, we write
∑

p∈Qq(r′) e−∥p−x(q)∥2 into the following form.

∑
p∈Qq(r′)

e−∥p−x(q)∥2
=

∑
p∈Qq(r′)

d∏
i=1

 ∞∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j


=

∑
p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j

+ E(x(q))

where E(x) =
∑

p∈Qq(r′)
∑

j1,...,jd|one of ji ≥ s
1

j1!···jd!
(
−(x1 − p1)2)j1 · · ·

(
−(xd − pd)2)jd for

any x ∈ Rd.
Now, we have

∑
p∈Qq(r′)

e−∥x(q)−p∥2
=

∑
p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j

+ E(x(q))

≥
∑

p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!
(
−(x∗

i − pi)2)j

− |P | ϵρ

10 + E(x(q))

≥
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 + E(x(q))− E(x∗)

In order to analyze the term E(x(q)) and E(x∗), we can first analyze the term∣∣∣∣∣∣
∑

j1,...,jd|one of ji ≥ s

1
j1! · · · jd!α

j1
1 · · ·α

jd

d

∣∣∣∣∣∣
where αi = −(yi − pi)2 where y is x(q) or x∗.

∑
j1,...,jd|one of ji ≥ s

(
d∏

i=1

1
ji!

αji

i

)
=

d∑
i=1

i−1∏
k=1

s−1∑
j=0

1
j!α

j
k

 ∞∑
j=s

1
j!α

j
i

 d∏
k=i+1

∞∑
j=0

1
j!α

j
k


For each i = 1, 2, . . . , d, by taking s = (r + r′)2e2 log d

ϵρ ,∣∣∣∣∣∣
∞∑

j=s

1
j!α

j
i

∣∣∣∣∣∣ ≤
∞∑

j=s

1
j! |αi|j ≤ max

ξ∈[−|αi|,|αi|]

eξ

s! |αi|s

The last inequality is the error approximation of Taylor expansion of exponential function.
Note that |αi| = (yi− pi)2 ≤ ∥y− p∥2 ≤ (∥y − q∥+ ∥p− q∥)2 ≤

(
r
√

log 1
ϵρ + r′

√
log 1

ϵρ

)2
≤

(r + r′)2 log 1
ϵρ . We have∣∣∣∣∣∣

∞∑
j=s

1
j!α

j
i

∣∣∣∣∣∣ ≤ e(r+r′)2 log 1
ϵρ

s! ((r + r′)2 log 1
ϵρ

)s

≤ e(r+r′)2 log 1
ϵρ

ss
((r + r′)2e log 1

ϵρ
)s by s! ≥ (s

e
)s

≤ e(r+r′)2 log 1
ϵρ

es
≤ (ϵρ

d
)(r+r′)2(e2−1) recall that s = (r + r′)2e2 log d

ϵρ

≤ ϵρ

20d
by r + r′ > 1 and for sufficient small ϵρ

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:7

Now, we can plug this into
∣∣∣∑j1,...,jd|one of ji ≥ s

1
j1!···jd! α

j1
1 · · ·α

jd

d

∣∣∣.∣∣∣∣∣∣
∑

j1,...,jd|one of ji ≥ s

1
j1! · · · jd!α

j1
1 · · ·α

jd

d

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i=1

i−1∏
k=1

s−1∑
j=0

1
j!α

j
k

 ∞∑
j=s

1
j!α

j
i

 d∏
k=i+1

∞∑
j=0

1
j!α

j
k

∣∣∣∣∣∣
≤

d∑
i=1

(
i−1∏
k=1

(1 + ϵρ

10d
)
)(ϵρ

10d

)(d∏
k=i+1

eαk

)

≤
(

1 + ϵρ

20d

)d ϵρ

20 ≤ e
ϵρ
20

ϵρ

20 ≤
ϵρ

8 for sufficient small ϵρ

That means∑
p∈Qq(r′)

e−∥x(q)−p∥2
≥

∑
p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 + E(x(q))− E(x∗)

≥
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 − |QP,q(r′)| ϵρ8 − |QP,q(r′)| ϵρ8

=
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ2 . ◀

2.1 Algorithm for Searching Polynomial Systems in Neighborhoods

A first attempt invokes Lemma 6 in a ball Bp

(√
log 1

ρ

)
around each p ∈ P . However, to

find out the subset of points that lie inside the ball Bp

(√
log 1

ρ

)
for each p ∈ P , one needs

to search linearly over P naively. Therefore, it requires Ω(n2) runtime.
Rather, following Algorithm 1, we create a set GP of neighborhoods, defined by the subset

of Grid
(

2
√

log 1
ϵρ

d

)
which is within 4

√
log 1

ϵρ of some point p ∈ P . For each q ∈ GP we define

a neighborhood set QP,q(4), and run the algorithm in Lemma 5. Again we return the output
with associated maximum GQP,q()(·) value, which satisfies Theorem 7.

Algorithm 1 Solving System of Polynomial using an Infinite Grid.

input: a point set P ⊂ Rd, parameter ϵ, ρ > 0
1: for each p ∈ P do
2: insert p into QP,q(4) for each q ∈ Bp(4

√
log 1

ϵρ) ∩ Grid(2
√

log 1
ϵρ

d)

3: Let GP be the q ∈ Grid(2
√

log 1
ϵρ

d) such that QP,q(4) is non empty
4: for each q ∈ GP do
5: Let x(q) be the solution to SysPoly(P, q, 2, 4) by the algorithm in Lemma 5
6: return x′ = argmaxq∈GP

GQP,q(4)(x(q))

▶ Theorem 7. Given 0 < ϵ, ρ < 1/2 and a point set P ⊂ Rd of size n, let x∗ =
argmaxx∈Rd GP (x). If GP (x∗) ≥ ρ, we find x′ ∈ Rd with GP (x′) ≥ GP (x∗)− ϵρ in time

O

(
n · log n · (2

√
2eπ)d + n ·

(
log d

ϵρ

)O(d)
)

.

ESA 2021

61:8 Finding an Approximate Mode of a Kernel Density Estimate

Proof. We need to argue that x∗ must be contained in some neighborhood Bq(2
√

log 1
ϵρ) for

some q ∈ GP , and then apply Lemma 5 with r = 2 and r′ = 4. This follows since, by Lemma
4, x∗ ∈ Bp(

√
log 1

ρ) ⊂ Bp(
√

log 1
ϵρ) for some p ∈ P . Then let q ∈ GP be the closest grid

point to that point p; the distance ∥p − q∥ ≤
√

dγ/2 =
√

log 1
ϵρ with γ = 2

√
log(1/ϵρ)/d.

Then by triangle inequality ∥q − x∗∥ ≤ ∥q − p∥+ ∥p− x∗∥ ≤ 2
√

log 1
ϵρ . Now, we conclude

that the output of SysPoly(P, p, 2, 4) satisfies

GP (x′) ≥ GQP,q(4)(x′) = GQP,q(4)(x(q)) ≥ GQP,q(4)(x∗)− |P | ϵρ2
=
∑
p∈P

e−∥p−x∗∥2
−

∑
p/∈QP,q(4)

e−∥p−x∗∥2
− |P | ϵρ2

Note that ∥x∗ − p∥ ≥ ∥q − p∥ − ∥q − x∗∥ ≥ 4
√

log 1
ϵρ − 2

√
log 1

ϵρ = 2
√

log 1
ϵρ since x∗ ∈

Bq

(
2
√

log 1
ϵρ

)
and p /∈ Bq

(
4
√

log 1
ϵρ

)
.

GP (x′) ≥ GP (x∗)− |QP,q(4)| (ϵρ)4 − |P | ϵρ2 ≥ GP (x∗)− |P | ϵρ since ϵ, ρ < 1/2

We now compute the running time. First, to construct QP,q(4) (for notation con-
venience, we use Qq instead), for each p ∈ P , we enumerate all q ∈ Bp

(
4
√

log 1
ϵρ

)
∩

Grid
(

2
√

log 1
ϵρ

d

)
and insert p into Qq. Since, by considering the volume of high dimen-

sional sphere, there are O

(
πd/2

Γ(d
2 +1)

(
4
√

log 1
ϵρ

/
2
√

log 1
ϵρ

d

)d
)

= O
(
(2
√

2eπ)d
)

points in

Bp

(
4
√

log 1
ϵρ

)
∩Grid

(
2
√

log 1
ϵρ

d

)
for each p ∈ P , we have

∑
q∈GP

|Qq| = O(n(2
√

2eπ)d) and

also there are only O(n(4
√

2eπ)d) non empty Qq. Here, Γ is the gamma function and we use
the fact of Γ(x + 1) ≥ (x

e)x. It is easy to construct a data structure to insert all p into all of
the corresponding Qq in O

(
n(2
√

2eπ)d log
(
n(2
√

2eπ)d
))

= O
(
n(2
√

2eπ)d(log n + d)
)
. Let

s = 36e2 log d
ϵρ . We now can precompute each polynomial

∏d
i=1

(∑s−1
j=0

1
j!
(
−(xi − pi)2)j

)
in

O(d(2s)d) time for each p ∈ P which takes O(nd(2s)d) total time to compute all of them.
For each q ∈ GP , it takes O(|Qq| (2s)d) to construct the polynomial and O(sO(d)) time to
solve the system of polynomial as suggested in Lemma 5. Therefore, the total running time is

O

n(2
√

2eπ)d(log n + d) + nd(2s)d +
∑

q∈GP

(|Qq| (2s)d + sO(d)


= O

(
n · log n · (2

√
2eπ)d + n ·

(
log d

ϵρ

)O(d)
)

. ◀

To achieve our final result for low dimensionality, we pre-process the input P by construct-
ing, under the assumption that maxx GP (x) ≥ ρ, a (1− ϵ/3)-approximation coreset from [55]
of size O(d

ϵ2
1
ρ (log 1

ρ + log 1
δ)). Running Algorithm 1 on this coreset yields Theorem 1.

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:9

Proof of Theorem 1. Let x∗∗ = argmaxx∈Rd GP1(x). We first have GP1(x∗∗) ≥ GP1(x∗) ≥
(1− 1

3 ϵ)GP (x∗) = Ω(ρ) for small ϵ. By Theorem 7 and reparameterizing ϵ, we have

GP (x′) ≥ GP1(x′)− 1
3ϵMx′ by the construction of P1

≥ GP1(x∗∗)− 1
3ϵρ− 1

3ϵMx′ since GP1(x∗∗) = Ω(ρ) and by Theorem 7

≥ GP0(x∗)− 1
3ϵρ− 1

3ϵMx′

≥ (1− 1
3ϵ)GP (x∗)− 1

3ϵρ− 1
3ϵMx′ by GP (x∗) ≥ ρ and construction of P1

≥ (1− ϵ)GP (x∗) since Mx′ ≤ GP (x∗)

The final running time is O(nd) to read data and construct P1 plus

O

(
n1 · log n1 · (2

√
2eπ)d + n1 ·

(
log d

ϵρ

)O(d)
)

= O

(
d

ϵ2ρ
· log 1

ρδ
·
(

log d

ϵρ

)O(d)
)

. ◀

3 Dimensionality Reduction for KDE Mode Finding

Leveraging Kirszbraun’s extension theorem, we prove that compressing P = {p1, . . . , pn}
using a Johnson-Lindenstrauss random projection to O

(
log n log2(1/ϵρ)/ϵ2) dimensions

preserves the mode of the KDE with centers in P , to a (1 − ϵ) factor. Crucially, we then
show that it is possible to recover an approximate mode for P from a solution to the low
dimensional problem by applying a single iteration of the mean-shift algorithm.

In Section 3.1 we combine this result with our low dimensional algorithm from Section 2
and existing coreset results for KDEs (which allow us to eliminate the log n dependence) to
give our final algorithm for high-dimensional mode finding. We first present the dimensionality
reduction result in isolation as, like dimensionality reduction strategies for other computational
hard problems [15, 35, 8], it could in principle be combined with any other heuristic or
approximate mode finding method. For example, we show a practical strategy is to solve the
low-dimensional problem using the mean-shift heuristic.

We need one basic definition before outlining our approach in Algorithm 2.

▶ Definition 8 ((γ, k, δ)-Johnson-Lindenstrauss Guarantee). A randomly selected matrix
Π ∈ Rm×d satisfies the (γ, k, δ)-JL Guarantee if, for any k data points v1, . . . , vk ∈ Rd,

∥vi − vj∥ ≤ ∥Πvi −Πvj∥ ≤ (1 + γ)∥vi − vj∥,

for all pairs i, j ∈ 1, . . . , k simultaneously, with probability (1− δ).

Definition 8 is satisfied by many possible constructions. When Π is a properly scaled random
Gaussian or sign matrix, it satisfies the (γ, k, δ)-JL guarantee as long as m = O(log(k/δ)/γ2)
[17, 1]. In this case, Π can be multiplied by a d dimensional vector in O(md) time. For
simplicity, we assume such a construction is used in our algorithm. Other constructions,
including fast Johnson-Lindenstrauss transforms [3, 4, 31] and sparse random projections
[29, 16] satisfy the definition with slightly larger m, but faster multiplication time. Depending
on problem parameters, using such constructions may lead to a slightly faster overall runtime.

ESA 2021

61:10 Finding an Approximate Mode of a Kernel Density Estimate

Algorithm 2 Dimensionality Reduction for KDE mode finding.

input: a set of n points P ⊂ Rd, parameters ϵ, δ > 0, ρ such that maxx GP (x) ≥ ρn

output: a point x′ ∈ Rd satisfying GP (x′) ≥ (1− ϵ) maxx GP (x) with prob. 1− δ

1: Set γ = ϵ
4 log(4/ϵρ) .

2: Choose a random matrix Π ∈ Rm×d satisfying the (γ, n + 1, δ)-JL guarantee (Defn. 8).
3: For each pi ∈ P , compute Πpi and let ΠP denote the data set {Πp1, . . . , Πpn}
4: Using an algorithm for mode finding in low dimensions (e.g. Algorithm 1) find a point

x′′ satisfying GΠP (x′′) ≥ (1− ϵ/2) maxx∈Rm GΠP (x).

5: return x′ =
∑

p∈P
p·e−∥x′′−Πp∥2∑

p∈P
e−∥x′′−Πp∥2

▶ Theorem 9. With probability (1 − δ), Algorithm 2 returns an x′ satisfying GP (x′) ≥
(1 − ϵ) maxx GP (x). When implemented with a random Rademacher or Gaussian Π, the
algorithm runs in time O (ndm) + Tm,(1−ϵ/2), where m = O

(
log(n/δ) log2(1/ϵρ)

ϵ2

)
and Tm,(1−ϵ)

is the time required to compute a (1− ϵ/2) approximate mode for an O (m) dimension dataset.

The runtime claim is immediate, so we focus on proving the correctness of Algorithm 9.
The following key lemma is the main structural result, that the mode of our dimensionality
reduced problem has approximately the same density as that of the original. Its proof, as we
see below, crucially uses Kirszbraun’s extension theorem.

▶ Lemma 10. Suppose Π is a projection satisfying the (γ, n + 1, δ)-JL guarantee, then

(1− ϵ/2) max
x∈Rd

GP (x) ≤ max
x∈Rm

GΠP (x) ≤ max
x∈Rd

GP (x) (1)

Proof. Let x∗ = argmaxx GP (x). Since Π was chosen to satisfy the (γ, n + 1, δ)-JL property
with γ = ϵ

4 log(4/ϵρ) , we have that, with probability at least 1− δ, for all y, z ∈ {x∗} ∪ P ,

∥y − z∥2 ≤ ∥Πy −Πz∥2 ≤
(

1 + ϵ

4 log(4/ϵρ)

)
∥y − z∥2. (2)

The rest of our analysis conditions on this fact being true. We first prove the left side of (1).
From (2), we have that ∥Πx∗ −Πp∥2 ≤ (1 + ϵ

4 log(4/ϵρ))∥x∗ − p∥2 for all p ∈ P . Accordingly,

max
x∈Rm

GΠP (x) ≥ GΠP (Πx∗) =
∑
p∈P

e−∥Πx∗−Πp∥2
≥
∑
p∈P

e−(1+ ϵ
4 log(4/ϵρ))∥x∗−p∥2

≥
∑
p∈P

∥x∗−p∥2<log(4/ϵρ)

e−∥x∗−p∥2
e− ϵ

4 log(4/ϵρ) ∥x∗−p∥2
≥ (1− ϵ/4)

∑
p∈P

∥x∗−p∥2<log(4/ϵρ)

e−∥x∗−p∥2
. (3)

The last step uses that e− ϵ
4 log(4/ϵρ) ∥x−p∥2

≥ 1− ϵ/4 when ∥x− p∥2 ≤ log(4/ϵρ). Next we have∑
p∈P

∥x∗−p∥2<log 4
ϵρ

e−∥x∗−p∥2
≥
∑
p∈P

e−∥x∗−p∥2
− ϵnρ = GP (x∗)− ϵnρ ≥ (1− ϵ/4)GP (x∗).

This statement follows from two facts: 1) If ∥x−p∥2 ≥ log 4
ϵρ then e−∥x−p∥2 ≤ ϵρ/4 and 2) we

assume that GP (x∗) ≥ ρn. Combining with (3) we conclude that GΠP (x) ≥ (1− ϵ/2)GP (x∗).
We are left to prove the right hand side of (1). To do so, we rely on the classic Kirszbraun

extension theorem for Lipschitz functions, which is stated as follows:

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:11

▶ Theorem 11 (Kirszbraun Theorem [30, 51]). For any S ⊂ Rz, let f : S → Rw be an
L-Lipschitz function: for all x, y ∈ S, ∥f(x)− f(y)∥2 ≤ L∥x− y∥2. Then there always exists
some extension f̃ : Rz → Rw of f to the entirety of Rz such that:
1. f̃(x) = f(x) for all x ∈ S,
2. f̃ is also L-Lipschitz: for all x, y ∈ Rz, ∥f̃(x)− f̃(y)∥2 ≤ L∥x− y∥2.

We will apply this theorem to the function g : {Πx∗}∪ΠP → {x∗}∪P with g(Πy) = y for
any y ∈ {x∗}∪P . By (2), we have that g is 1-Lipschitz. It follows that there is some function
g̃ : Rm → Rd which agrees with g on inputs {Πx∗}∪P and satisfies ∥g̃(s)− g̃(t)∥ ≤ ∥s− t∥ for
all s, t ∈ Rm. This fact can be used to establish that, for any x ∈ Rm, GΠP (x) ≤ GP (g̃(x)):

GΠP (x) =
∑
p∈P

e−∥x−Πp∥2
≤
∑
p∈P

e−∥g̃(x)−g̃(Πp)∥2
=
∑
p∈P

e−∥g̃(x)−p∥2
= GP (g̃(x)).

It thus follows that maxx GΠP (x) ≤ maxx GP (x), so the right side of (1) is proven. ◀

In proving Lemma 10 we have also proven the following statement.

▶ Corollary 12. For any x ∈ Rm, there exists some point g̃(x) ∈ Rd such that, for all p ∈ P ,
∥g̃(x)− p∥ ≤ ∥x−Πp∥.

We complete the proof of Theorem 9 by showing that, not only does the maximum of
GΠP approximate that of GP , but an approximate maximizer for GΠP can be used to recover
one for GP . Algorithm 2 does so on Line 5 by applying a single iteration of the mean-shift
algorithm, a common heuristic KDE mode finding [9, 10], which repeatedly iterates the

equation x(i+1) =
∑

p∈P
p·e−∥x(i)−p∥2∑

p∈P
e−∥x(i)−p∥2 . While not guaranteed to converge to a point which

maximizes GP , a useful property of the mean-shift algorithm is that its solution is guaranteed
to never decrease in quality on each iteration:

▷ Claim 13. Given y ∈ Rd, let y′ =
∑

p∈P
p·e−∥y−p∥2∑

p∈P
e−∥y−p∥2 , then GP (y′) ≥ GP (y).

Proof. We prove this well known fact for completeness. First, observe by rearrangement that
GP (y′)− GP (y) =

∑
p∈P

(
e−∥y′−p∥2+∥y−p∥2 − 1

)
e−∥y−p∥2 . Then, since ez ≥ 1 + z for all z,

we have e−∥y′−p∥2+∥y−p∥2 − 1 ≥ −∥y′ − p∥2 + ∥y − p∥2 = −
(
∥y′∥2 − ∥y∥2 − 2(y′ − y)T p

)
.

GP (y′)− GP (y) ≥ −
(
∥y′∥2 − ∥y∥2)∑

p∈P

e−∥y−p∥2
+ 2(y′ − y)T

∑
p∈P

pe−∥y−p∥2

= GP (y)
(
−∥y′∥2 + ∥y∥2 + 2(y′ − y)T y′) = GP (y)∥y′ − y∥2 ≥ 0. ◀

Proof of Theorem 9. Recall from Corollary 12 that for any x, there is always a g̃(x) with

∥g̃(x)− p∥ ≤ ∥x−Πp∥ (4)

for all p ∈ P . Suppose this inequality was tight: i.e., suppose that for all p ∈ P, x ∈ Rm,
∥g̃(x)− p∥ = ∥x−Πp∥. Then letting x′′ be as defined in Algorithm 2, we would have that
Line 5 sets x′ equal to a mean-shift update applied to g̃(x′′). From Claim 13 we would
then immediately have that GP (x′) ≥ GP (g̃(x′′)) = GΠP (x′′) ≥ (1 − ϵ/2) maxx GΠP (x) ≥
(1− ϵ) maxx GP (x), which would prove the theorem.

However, since (4) is not tight, we need a more involved argument by lifting to a d + 1-
dimensional space. In particular, for each p ∈ P , let p̄ ∈ Rd+1 be a vector with its first d

entries equal to p and let the final entry be equal to
√
∥x−Πp∥2 − ∥g̃(x)− p∥2. Additionally,

ESA 2021

61:12 Finding an Approximate Mode of a Kernel Density Estimate

Algorithm 3 Full algorithm for high dimensional case.

input: a point set P ∈ Rd, parameter ϵ, ρ, δ > 0
1: Generate O(log 1

δ) random samples P j
0 ⊂ P of size n0 = O(1

ϵ2ρ2) (à la Lopaz-Paz et al.)
2: for j ← 1 to O(log 1

δ) do
3: Set γ = ϵ

4 log(4/ϵρ) .
4: Choose random matrix Π ∈ Rm×d satisfying (γ, n + 1, 1/100)-JL guarantee (Defn. 8)
5: For each pi ∈ P j

0 , compute Πpi and let ΠP j
0 denote the data set {Πp1, . . . , Πpn}

6: Run the algorithm in Phillips and Tai [39] to construct a subset P j
2 ⊂ ΠP j

0 of size
n2 = O(

√
m

ϵρ

√
log 1

ϵρ) = O(1
ϵ2ρ log2 1

ϵρ)
7: Set x′′ as the output of Algorithm 1 (Section 2) on P j

2 in dimension m

8: Compute new x′ =
∑

p∈P
j
0

p·e−∥x′′−Πp∥2∑
p∈P

j
0

e−∥x′′−Πp∥2

9: Return the best solution from all iterations of Step 8, evaluated on
⋃

j P j
0

for every point x ∈ Rm, let ¯̃g(x) ∈ Rd+1 be a vector with its first d entries equal to g̃(x) ∈ Rd

and final entry equal to 0. Clearly, for any p ∈ P ,

∥¯̃g(x)− p̄∥ = ∥x−Πp∥. (5)

For z ∈ Rd+1, let GP (z) =
∑

p∈P e−∥z−p̄∥2 and let x̄′ =
∑

p∈P
p̄e−∥x′′−Πp∥2∑

p∈P
e−∥x′′−Πp∥2 . It follows from

(5) and the argument above that GP (x̄′) ≥ GP (¯̃g(x′)) = GΠP (x′′). But clearly it also holds
that GP (x′) ≥ GP (x̄′) because, for any p ∈ P , ∥x′ − p∥ ≤ ∥x̄′ − p̄∥. So we conclude that
GP (x′) ≥ GΠP (x′′) as desired. Furthermore, recall that x′′ is an approximate mode in the
projected setting. It satisfies GΠP (x′′) ≥ maxx(1− ϵ/2)GΠP (x), and from Lemma 10 we have
that maxx GΠP (x) ≥ (1 − ϵ/2) maxx GP (x). Chaining these inequalities gives the desired
bound that GP (x′) ≥ (1− ϵ/2)2 maxx GP (x) ≥ (1− ϵ) maxx GP (x). ◀

3.1 Final Result for High Dimensions
For the high dimensional case, we combine together the techniques of 1) dimensionality
reduction, 2) polynomial system solving and 3) coresets by [34] and [39] to obtain an algorithm
that is linear in the dimensionality d and exponential only in poly(1/ϵ, log 1/ρ), leading to
Theorem 2.

In the regime where ϵ (the relative error) and δ (the probability of failure) are constant,

the runtime simplifies to O

((
n + 1

ρ2

)
d +

(
log 1

ρ

)O(log3 1
ρ)
)

. Note however that if 1/ρ2 ≤ n0

dominates n, then we would not have constructed the coresets P j
0 in the first place but used the

entire point set instead, and so we can treat the first term as just O(nd). We also recall that
ρ = GP (x∗) ≥ 1/n, which by substitution gives an upper bound of O

(
nd + (log n)O(log3 n)

)
.

Proof of Theorem 2. We first show the approximation guarantee. It suffices to prove that
an iteration of the for loop succeeds with constant probability, so we fix a particular j and
omit the superscript in P0 and P2. From Lemma 4, x∗ ∈ Bq

(√
log 1

ρ

)
⊂ Bq

(√
log 1

ϵρ

)
for some q ∈ P2. Let x∗∗

0 be arg maxx∈Rm GP2(x). By Lemma 6 with r = 1, we have
GP2(x′′) ≥ GP2(x∗∗

0) − ϵρ ≥ (1 − ϵ)GP2(x∗∗
0). The coreset result by [39] implies that, both∣∣GΠP0(x′′)− GP2(x′′)

∣∣ ≤ ϵρ and
∣∣GΠP0(x∗∗)− GP2(x∗∗)

∣∣ ≤ ϵρ which implies GΠP0(x′′) ≥

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:13

(1 − O(ϵ))GΠP0(x∗∗). Now, let x∗
0 be arg maxx∈Rd GΠP0(x). By Theorem 9, with constant

probability we have GP0(x′) ≥ (1−O(ϵ))GP0(x∗
0). By [34], a random sample P0 ⊂ P of size

n0 = O(1
ϵ2ρ2) is sufficient to have the guarantee of

∣∣GP (x)− GP0(x)
∣∣ ≤ ϵρ for any x ∈ Rd. If

we combine this inequality and the guarantee of random sampling, we can conclude that
GP (x′) ≥ (1− ϵ)GP (x∗).

We now analyze the running time. Reading the input and constructing the coresets P j
0

take O(nd + n0 log 1
δ) time in total. Evaluating all the solutions in Step 9 takes O(n0d log2 1

δ)
time, since there are O(log 1

δ) many candidates evaluated over a coreset of size O(n0 log 1
δ) in d

dimensions. From Theorem 9, the runtime of a single iteration of the loop is O(n0dm)+Tm,ϵ/2,
where Tm,ϵ/2 is the runtime of solving the approximate mode finding problem in m dimensions.
In our case, Tm,ϵ/2 consists of the runtime of the second coreset result as well as Algorithm 1.
It takes time O(n0poly(1/ϵρ)) to compute the second coreset P j

2 . Then, Theorem 7 implies

that Algorithm 1 requires O(n2 log n2 · (2
√

2eπ)m + n2 ·
(

log m
ϵρ

)O(m)
).

The single-loop runtime is dominated by the runtime of Algorithm 1. Writing out the
runtime of Algorithm 1 gives

O

(
n2 log n2 · (2

√
2eπ)m + n2 ·

(
log m

ϵρ

)O(m)
)

= O

(
n2 ·

(
log m

ϵρ

)O(m)
)

= O

(
1

ϵ2ρ
log2 1

ϵρ
·
(

log 1
ϵ3ρ

log 1
ϵρ

log2 1
ϵρ

)O(1
ϵ2 log3 1

ϵρ)
)

= O

((
log 1

ϵρ

)O(1
ϵ2 log3 1

ϵρ)
)

.

Combining with the runtimes for reading the input, coreset construction and evaluating
solutions in Step 9, then repeating the loop for O(log 1

δ) times gives the bound in the theorem
statement. If n < n0 log 1

δ , we use the full set P as each P j
0 . ◀

4 KDE mode finding for Two Dimensional Case

In this subsection, we assume that P ⊂ R2 and p = (p1, p2) for each p ∈ P . We can improve
our low-dimensional analysis that used a set of systems of polynomials by about a logarithmic
factor using a different approach. This shows how to approximate each Gaussian by a
weighted set of rectangles. After sampling by these weights, we can quickly retrieve the point
of maximum depth in these rectangles as an approximation of the maximum.

We first define the following notation. We let s = ϵρ
6 be a minimal additive error

we will allow for the spatial approximation, and then m = ⌈ 1
s⌉ will be the number of

discretizations we will need. A Gaussian has infinite support, but we will only need
to consider m such widths defined rj =

√
log 1

lj
with lj = 1 − j

m for j = 0, 1, . . . , m.

As a special case we set rm = ∞ (note that this allows e−r2
j = lj). We can now

define a series of axis-parallel rectangles centered at a point p = (p1, p2) ∈ P as Rp ={
[p1 − ra1 , p1 + ra1]× [p2 − ra2 , p2 + ra2] | (a1, a2) ∈ {0, 1, . . . , m− 1}2}. It enumerates all

widths r0, r1, . . . , rm−1 on both directions, so its size is m2. Also, let R be ∪p∈PRp.
Given any x ∈ Rd and any finite collection C subsets of R2, denote N(C, x) as the number

of C ∈ C that x ∈ C, known as the depth or ply of x. And we can show that the depth,
normalized by 1/(nm2), approximates the KDE value GP (x).

▶ Lemma 14. GP (x) ≥ N(R,x)
nm2 ≥ GP (x)− 1

3 ϵρ

The main idea is to show that Gaussian kernel can be approximated by a collection of
axis-parallel rectangle where m controls precision. Observe that |R| = nm2. However, |R|
(and therefore m) does not show up in the running time of our algorithm since, we perform
the random sampling on R in the first step of Algorithm 4.

ESA 2021

61:14 Finding an Approximate Mode of a Kernel Density Estimate

Proof. For any p ∈ P and i ∈ {1, 2}, let ai be the integer such that rai−1 ≤ |pi − xi| ≤ rai

which implies e−r2
ai−1 ≥ e−(pi−xi)2 ≥ e−r2

ai = 1− ai

m . Then, we have

e−∥p−x∥2
= e−(p1−x1)2−(p2−x2)2

≥ (1− a1

m
)(1− a2

m
) = N(Rp, x)

m2

Note that N(R, x) =
∑d

i=1 N(Rp, x). Now,

GP (x) =
∑
p∈P

e−∥p−x∥2
≥
∑
p∈P

N(Rp, x)
m2 = N(R, x)

m2

On the other hand, let ∆p,x,i = e−(pi−xi)2 − (1− ai

m) which is larger than 0,

N(Rp, x)
m2 = (1− a1

m
)(1− a2

m
) =

(
e−(p1−x1)2

−∆p,x,1

)(
e−(p2−x2)2

−∆p,x,2

)
= e−(p1−x1)2

e−(p2−x2)2
−∆p,x,1e−(p2−x2)2

−∆p,x,2e−(p1−x1)2
+ ∆p,x,1∆p,x,2

≥ e−(p1−x1)2
e−(p2−x2)2

−∆p,x,1e−(p2−x2)2
−∆p,x,2e−(p1−x1)2

Recall that e−r2
ai−1 ≥ e−(pi−xi)2 ≥ e−r2

ai which implies ∆p,x,i ≤ e−r2
ai−1 − e−r2

ai = s. The
above equation becomes

N(Rp, x)
m2 ≥ e−(p1−x1)2

e−(p2−x2)2
−∆p,x,1e−(p2−x2)2

−∆p,x,2e−(p1−x1)2

≥ e−∥p−x∥2
− 2s

Finally, we have

N(R, x)
m2 =

∑
p∈P

N(Rp, x)
m2 ≥

∑
p∈P

(e−∥p−x∥2
− 2s) = GP (x)− 1

3ϵnρ. ◀

Now consider (X,S) be a range space with VC dimension ν. Given ϵ > 0 and α > 0, we call
a subset Z of X a relative (α, ϵ)-approximation for (X,S) if, for any τ ∈ S,

∣∣∣ |X∩τ |
|X| −

|Z∩τ |
|Z|

∣∣∣ ≤
ϵM when M = max{ |X∩τ |

|X| , α}. A random sample of size O
(1

ϵ2α (ν log 1
α + log 1

δ)
)

is an
(α, ϵ)-approximation with probability at least 1− δ [25]. The range space (R2,B) where B is
the set of all axis-parallel box in R2 has VC dimension 4. Thus its dual range space (B,D)
where D =

{
{B ∈ B | x ∈ B} | x ∈ R2}, has VC dimension is O(1).

Given a set B0 of λ axis-aligned rectangles in R2, [12] finds a maximal depth point, that
maximizes N(B0, x), in O(λ log λ) time. This leads to Algorithm 4 and Theorem 3.

Algorithm 4 Computing Depth.

input: a point set P ⊂ R2, parameter ϵ, ρ, δ > 0
1: generate a random subset R0 of R of size O

(
1

ϵ2ρ (log 1
ρ + log 1

δ)
)

.
2: compute x′ ∈ R2 such that x′ = arg maxx∈Rd N(R0, x) using the algorithm by [12].
3: return x′

Proof of Theorem 3. First, by Lemma 14, N(R,x∗)
|R| ≥ GP (x∗) − 1

3 ϵρ = Ω(ρ). Let M be
max{N(R,x′)

|R| , ρ}. We also have M = max{N(R,x′)
|R| , ρ} ≤ GP (x∗). By Lemma 14 and the

construction of R0, we have GP (x′) ≥ N(R,x′)
|R| ≥ N(R0,x′)

|R0| − 1
3 ϵM . Since x′ is the optimal

solution, the term N(R0,x′)
|R0| is larger than N(R0,x∗)

|R0| .

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:15

GP (x′) ≥ N(R0, x∗)
|R0| − 1

3 ϵM

≥
(1 − 1

3 ϵ)N(R, x∗)
|R| − 1

3 ϵM by N(R, x∗)
|R| = Ω(ρ) and construction of R0

≥ (1 − 1
3 ϵ)(GP (x∗) − 1

3 ϵρ) − 1
3 ϵM by [12]

Finally, by the assumption of ρ ≤M ≤ GP (x∗), we have GP (x′) ≥ (1− ϵ)GP (x∗).
To see the running time, note that the size of input λ = O

(
1

ϵ2ρ (log 1
ρ + log 1

δ)
)

in our
context and O(n) time to create a sample. Therefore, the total running time is

O

(
n + 1

ϵ2ρ
(log 1

ρ
+ log 1

δ
) log(1

ϵρ
log 1

δ
)
)

. ◀

5 Experiments

In this section, we present two sets of experiments, demonstrating the efficacy of 1) our
dimensionality reduction approach and 2) our 2D combinatorial algorithm. We did not have
a ground truth, so we took the best run of any algorithm as the optimal (OPT), and present
the “Error in %” as (x−OPT)/OPT. The experiments were run in Python on Google Colab
instances with GPU.

Dimensionality Reduction. The first experiment shows the speedup attained via dimension-
ality reduction, while sacrificing little in solution quality. As noted in Section 3, dimensionality
reduction can be combined with any algorithm for mode finding; we compare the state-of-the-
art mean-shift heuristic (described also in Section 3) with applying mean-shift after reducing
the dimensionality in the data. We use a subset of the CelebA images [33]: n = 20,000
aligned and cropped face 178× 218 pixel images of celebrities. We converted each image to
greyscale, and treat as (d = 38804)-dimensional vectors.

Given the KDE, we pick 10 random starting points and run mean-shift starting at each
of them until the KDE value improves by less than 0.001. Then we return to the original
dimensionality by running a single iteration of mean shift, to get a final value. We output the
best solution, and report the total time of all restarts. For each target dimension (20–800),
we report 500 trials as separate marks in the plot. Each trial with reduced dimensionality
uses a single JL matrix across all restarts.

Figure 1 (Left) shows that, even if we reduce from 38804 dimensions down to 20 dimensions,
the solution quality loss is only in the order of 0.1%. For reference, the solution quality is
roughly 6550. The runtime savings are significant, from roughly 130 seconds in the original
38804 dimensions, to 8-9 seconds in 20 dimensions.

The theory demands a JL matrix with one-sided error; the random Gaussian matrix
should be divided by some factor of 1− ϵ. We did not do so because: (1) for very low target
dimensions (say, 20), there is no valid ϵ ∈ (0, 1); and (2) even when such ϵ exists, this ϵ is
large enough that a division by 1− ϵ introduces significant bias and worsens the solution.

2D Algorithm. Figure 1 (Right) shows the comparison of our 2D combinatorial algorithm
and heuristics for mode finding. It shows both the best heuristic from [54] of evaluating
random points, and then also the mean-shift iterative improvement on top of these [9, 10].

ESA 2021

61:16 Finding an Approximate Mode of a Kernel Density Estimate

20 40 60 80 100 120 140
Total runtime (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Er

ro
r i

n
%

20-dim
40-dim
60-dim
80-dim
100-dim
200-dim
400-dim
800-dim
38804-dim

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Total running time (s)

0

20

40

60

80

Er
ro

r i
n

%

Random
2D algorithm

Figure 1 Percentage Error of algorithms as a function of runtime. (Left): Scatterplot for the
dimensionality reduction, then mean-shift with 10 restarts. For each target dimension, we show
500 trials. (Right): 2D experiments, our algorithm versus choosing random starting point, then
mean-shift. In each segment top point is error before mean-shift, and bottom one is after mean-shift.

We use the entire “Iowa_highway” dataset in [54], which has n = 1,155,101 points in R2

denoting all waypoints in Iowa from Open Street Maps. It is very multi-modal.
To compare our algorithm, we start with the best heuristic [54] of evaluating the KDE

at k data points, and selecting the best. We use k between 1 and 10 random data points,
and repeat 5 times for each, and select the lowest error. These are the top blue xs of each
segment in the figure. Then for each initial data point, we run mean-shift to improve the
error, and report the lowest error (out of each set of k starting points). These are the lower
blue x of each segment in the figure. Note that the initial data point sampling heuristic
occasionally obtains near-optimal error, but is typically much worse. The blue line segments
showing the improvement of mean-shift indicate again it sometimes obtains near-optimal
error, but not consistently. It also takes several seconds.

Our algorithm is shown as green dots. The top dot of the green segment is the cost/error
of our algorithm, and the lower one is after optimizing with mean shift. We observe that our
algorithm is significantly more efficient than the heuristics, taking less than one second, and
achieves near-optimality, basically the same error as the best of prior heuristics.

References

1 Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

2 Pankaj K Agarwal, Haim Kaplan, and Micha Sharir. Union of random minkowski sums
and network vulnerability analysis. In Proceedings of the twenty-ninth annual symposium on
Computational geometry, pages 177–186. ACM, 2013.

3 Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput., pages 302–322, 2009.

4 Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-lindenstrauss transform.
ACM Trans. Algorithms, 9(3):21:1–21:12, 2013.

5 Carlos Améndola, Alexander Engström, and Christian Haase. Maximum number of modes of
gaussian mixtures. Information and Inference: A Journal of the IMA, 9(3):587–600, 2020.

6 Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evalu-
ation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 615–626. IEEE, 2018.

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:17

7 Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation
in high dimensions. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 15799–15808, 2019.

8 Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegel-
shohn. Oblivious dimension reduction for k-means: beyond subspaces and the Johnson-
Lindenstrauss lemma. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 1039–1050, 2019.

9 Miguel Á. Carreira-Perpiñán. Mode-finding for mixtures of gaussian distributions. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1318–1323, 2000.

10 Miguel Á. Carreira-Perpiñán. Gaussian mean-shift is an em algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(5):767–776, 2007.

11 Miguel A Carreira-Perpinán and Christopher KI Williams. On the number of modes of a
gaussian mixture. In International Conference on Scale-Space Theories in Computer Vision,
pages 625–640. Springer, 2003.

12 Timothy M Chan. Klee’s measure problem made easy. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 410–419. IEEE, 2013.

13 Cheng Chang and R. Ansari. Kernel particle filter for visual tracking. IEEE Signal Processing
Letters, 12:242–245, 2005.

14 Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo,
and Larry Wasserman. Robust topolical inference: Distance-to-a-measure and kernel distance.
Technical report, arXiv:1412.7197, 2014.

15 Michael Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Di-
mensionality reduction for k-means clustering and low rank approximation. In In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 163–172, 2015.

16 Michael B. Cohen, T.S. Jayram, and Jelani Nelson. Simple analyses of the sparse johnson-
lindenstrauss transform. In The 1st Symposium on Simplicity in Algorithms, pages 15:1–15:9,
2018.

17 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

18 Luc Devroye and László Györfi. Nonparametric Density Estimation: The L1 View. Wiley,
1984.

19 Luc Devroye and Gábor Lugosi. Combinatorial Methods in Density Estimation. Springer-Verlag,
2001.

20 Herbert Edelsbrunner, Brittany Terese Fasy, and Günter Rote. Add isotropic Gaussian kernels
at own risk: More and more resiliant modes in higher dimensions. Proceedings 28th Annual
Symposium on Computational Geometry, pages 91–100, 2012.

21 Kenji Fukumizu, Le Song, and Arthur Gretton. Kernel bayes’ rule: Bayesian inference with
positive definite kernels. Journal of Machine Learning Research, 2013.

22 Theo Gasser, Peter Hall, and Brettt Presnell. Nonparametric estimation of the mode of a
distribution of random curves. Journal of the Royal Statistical Society: Series B, 60:681–691,
1997.

23 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

24 Mingxuan Han, Michael Matheny, and Jeff M. Phillips. The kernel spatial scan statistic. In
ACM International Conference on Advances in Geographic Information Systems, 2019.

25 Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete &
Computational Geometry, 45(3):462–496, 2011.

26 Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael Jordan.
Local maxima in the likelihood of gaussian mixture models: Structural results and algorithmic
consequences. In NeurIPS, 2016.

27 Geoge H. John and Pat Langley. Estimating continuous distributions in bayesian classifiers.
In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, 1995.

ESA 2021

61:18 Finding an Approximate Mode of a Kernel Density Estimate

28 Sarang Joshi, Raj Varma Kommaraji, Jeff M Phillips, and Suresh Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. In Proceedings of the twenty-
seventh annual symposium on Computational geometry, pages 47–56. ACM, 2011.

29 Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the
ACM, 61(1):4, 2014.

30 M. Kirszbraun. Über die zusammenziehende und lipschitzsche transformationen. Fundamenta
Mathematicae, 22(1):77–108, 1934.

31 Felix Krahmer and Rachel Ward. New and improved johnson-lindenstrauss embeddings via
the restricted isometry property. SIAM Journal on Mathematical Analysis, 43(3):1269–1281,
2011.

32 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the samples complexity
of learning. Journal of Computer and System Science, 62:516–527, 2001.

33 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

34 David Lopaz-Paz, Krikamol Muandet, Bernhard Schölkopf, and Ilya Tolstikhin. Towards a
learning theory of cause-effect inference. In International Conference on Machine Learning,
2015.

35 Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of Johnson-
Lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1027–1038, 2019.

36 Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel
mean embedding of distributions: A review and beyond. Foundations and Trends in Machine
Learning, 10:1–141, 2017.

37 Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean
space. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC),
pages 1064–1069, 2019.

38 Jeff M Phillips and Wai Ming Tai. Improved coresets for kernel density estimates. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2718–2727.
SIAM, 2018.

39 Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. In 34th
International Symposium on Computational Geometry (SoCG 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

40 Jeff M. Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates.
In International Symposium on Computational Geometry, 2015.

41 Kent Quanrud. Spectral sparsification of metrics and kernels. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1445–1464. SIAM, 2021.

42 James Renegar. On the computational complexity of approximating solutions for real algebraic
formulae. SIAM Journal on Computing, 21(6):1008–1025, 1992.

43 Alessandro Rinaldo, Larry Wasserman, et al. Generalized density clustering. The Annals of
Statistics, 38(5):2678–2722, 2010.

44 Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

45 David W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley,
1992.

46 Chunhua Shen, Michael J. Brooks, and Anton van den Hengel. Fast global kernel density mode
seeking: Applications to localization and tracking. IEEE Transactions on Image Processing,
16:1457–1469, 2007.

47 Bernard W. Silverman. Using kernel density estimates to investigate multimodality. Journal
of the Royal Statistical Society: Series B, 43:97–99, 1981.

48 Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman &
Hall/CRC, 1986.

J. C. Lee, J. Li, C. Musco, J. M. Phillips, and W. M. Tai 61:19

49 Alex J. Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding
for distributions. In Proceedings of Algorithmic Learning Theory, 2007.

50 Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert
R. G. Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of
Machine Learning Research, 11:1517–1561, 2010.

51 F. A. Valentine. A lipschitz condition preserving extension for a vector function. American
Journal of Mathematics, 67(1):83–93, 1945.

52 Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theo. of Prob and App, 16:264–280, 1971.

53 Grace Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomization
GACV. In Advances in Kernel Methods – Support Vector Learning, pages 69–88. Bernhard
Schölkopf and Alezander J. Smola and Christopher J. C. Burges and Rosanna Soentpiet, 1999.

54 Yan Zheng and Jeff M Phillips. L_infty error and bandwidth selection for kernel density
estimates of large data. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1533–1542. ACM, 2015.

55 Yan Zheng and Jeff M Phillips. Coresets for kernel regression. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 645–654.
ACM, 2017.

56 Shaofeng Zou, Yingbin Liang, H Vincent Poor, and Xinghua Shi. Unsupervised nonpara-
metric anomaly detection: A kernel method. In 2014 52nd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 836–841. IEEE, 2014.

ESA 2021

	1 Introduction
	2 KDE Mode Finding via System of Polynomials
	2.1 Algorithm for Searching Polynomial Systems in Neighborhoods

	3 Dimensionality Reduction for KDE Mode Finding
	3.1 Final Result for High Dimensions

	4 KDE mode finding for Two Dimensional Case
	5 Experiments

