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Abstract
We study the problem of finding a spanning forest in an undirected, n-vertex multi-graph under two
basic query models. One are Linear queries which are linear measurements on the incidence vector
induced by the edges; the other are the weaker OR queries which only reveal whether a given subset
of plausible edges is empty or not. At the heart of our study lies a fundamental problem which we
call the single element recovery problem: given a non-negative vector x ∈ RN

≥0, the objective is to
return a single element xj > 0 from the support. Queries can be made in rounds, and our goals is
to understand the trade-offs between the query complexity and the rounds of adaptivity needed
to solve these problems, for both deterministic and randomized algorithms. These questions have
connections and ramifications to multiple areas such as sketching, streaming, graph reconstruction,
and compressed sensing. Our main results are as follows:

For the single element recovery problem, it is easy to obtain a deterministic, r-round algorithm
which makes (N1/r −1)-queries per-round. We prove that this is tight: any r-round deterministic
algorithm must make ≥ (N1/r − 1) Linear queries in some round. In contrast, a 1-round
O(polylog(N))-query randomized algorithm is known to exist.

We design a deterministic O(r)-round, Õ(n1+1/r)-OR query algorithm for graph connectivity.
We complement this with an Ω̃(n1+1/r)-lower bound for any r-round deterministic algorithm in
the OR-model.

We design a randomized, 2-round algorithm for the graph connectivity problem which makes
Õ(n)-OR queries. In contrast, we prove that any 1-round algorithm (possibly randomized)
requires Ω̃(n2)-OR queries. A randomized, 1-round algorithm making Õ(n)-Linear queries is
already known.

All our algorithms, in fact, work with more natural graph query models which are special cases of
the above, and have been extensively studied in the literature. These are Cross queries (cut-queries)
and BIS (bipartite independent set) queries.
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7:2 Graph Connectivity and Single Element Recovery via Linear and OR Queries

1 Introduction

Many modern applications compel algorithm designers to rethink random access to input
data, and revisit basic questions in a query access model where the input is accessed only
via answers to certain kinds of queries. There are many reasons for this ranging from data
volume (only snapshots of the data can be accessed) to data ownership (access is restricted
via certain APIs).

In this paper, we study algorithms accessing an unknown, undirected multi-graph G

on n vertices in the following two basic query models. Think of the graph as an unknown
non-negative

(
n
2
)

dimension vector xG with supp(xG) denoting the positive coordinates. With
this view, answers to these queries below can be interpreted as measurements on this vector.

Linear Queries (Linear): Given any non-negative1 (n
2
)

dimension vector aG, what is
aG · xG?
OR Queries (OR): Given any subset S of the

(
n
2
)

dimensions, is supp(xG) ∩ S empty?
Reverting back to the combinatorial nature of graphs, it is perhaps more natural to think of
different kinds of queries, and indeed the following two have been extensively studied. These
are however special2 cases, respectively, of the queries above.

Cross-additive Queries (Cross): Given two disjoint subsets A, B of V , Cross(A, B)
returns the number of edges, including multiplicity, that have one endpoint in A and the
other in B.
Bipartite Independent Set Queries (BIS): Given two disjoint subsets A, B of V ,
BIS(A, B) returns whether or not there is an edge that has one endpoint in A and the
other in B.

The above query models (and similar variants such as additive queries [30], cut-queries [49],
edge-detection queries [6, 9]) have a rich literature [1, 4, 9, 16, 17, 30, 41, 44, 49]. Most previous
works, however, have focused on either graph reconstruction [15–17, 41], or on parameter
estimation (e.g., estimating the number of edges [9] or triangles [11]). In this work, however,
our goal is to understand the power and limitations of these queries to reveal structural
properties of the underlying graph. In particular, we study the following basic property.

▶ Problem 1 (Graph connectivity). Given query access to an undirected multigraph on the
vertex set V = {1, . . . , n}, return a spanning forest.

It is not too hard to implement the classic BFS or DFS traversals to obtain an Õ(n)-
query deterministic algorithm for the above problem in either query model. However, such
algorithms are adaptive, that is, the queries depend on the answers obtained so far. A
much more modern algorithm of Ahn, Guha, and McGregor [2] gives3 an Õ(n)-Linear query
non-adaptive but randomized algorithm for the problem. This raises the following questions
that motivate us

What is the rounds-of-adaptivity versus query-complexity trade-off for deterministic
algorithms for Problem 1? Can randomization also help in the OR and BIS models?

It turns out that understanding the complexity of Problem 1 is closely related to understanding
an even more basic problem which we discuss below.

1 Non-negativity is for convenience. A general linear query can be broken into two non-negative queries.
2 The Cross (and BIS queries) correspond to {0, 1} vectors aG (and subsets) corresponding to cuts. Indeed,

our algorithms work with the weaker queries while our lower bounds will be for the stronger queries. It
should also be clear that the Linear (and respectively Cross) queries are at least as strong as OR (resp,
BIS) queries.

3 Using results in [51], one can also obtain a Õ(n)-query deterministic algorithm in the Cross-query model.
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Single Element Recovery
Consider a non-negative real-valued vector x ∈ RN

≥0 and suppose we have access to x only
via Linear or OR queries where the dimension is now N . We define the following problem
which we call the single-element recovery problem (following the standard “support-recovery”
problem in compressed sensing).

▶ Problem 2 (Single-element recovery). Given a non-negative real-valued vector x ∈ RN
≥0,

accessed via either Linear-queries or OR-queries, output any arbitrary element4 from the
support supp(x).

To see how the above problem relates to Problem 1, consider the vector of possible edges
incident to a single vertex. A spanning forest must find an edge incident to this vertex.
This corresponds to solving Problem 2 on this vector. The problem is also interesting
in its own right, with connections to combinatorial group testing [23, 24, 43], compressed
sensing [19,22,33], and coin-weighing problems. [12,30,40,50]. While most of these works
have focused on recovering the full support, we ask the simpler question of just recovering a
single element.

If one allows randomization, then one can use ℓ0-samplers [34] to solve the above problem
using O(log2 N log( 1

δ )) Linear queries5, non-adaptively. In fact, ℓ0-samplers return a random
element in supp(x). The parameter δ is the error probability. There have been numerous
applications of these (see the table in Figure 1 of [37], for instance), and indeed many
applications (including the AGM [2] algorithm alluded to above) need only an arbitrary
element in the support. This is precisely what is asked in Problem 2. Furthermore, the
upper bound for randomized algorithms is nearly tight [34,37], and therefore, for randomized
algorithms, our understanding is pretty much complete. But what can be said about
deterministically finding a single support element6? This is an important question for it
relates to deterministic analogs to the various applications stated above.

It is not too hard to make a couple of observations. One, any non-adaptive deterministic
algorithm for Problem 2 using Linear-queries can in fact be recursively used to completely
recover the whole vector. This implies an Ω̃(N) information theoretic lower bound. Two,
if one allows more rounds, then one can indeed do better using a binary-search style idea.
More precisely, in each round the algorithm partitions the search space into N1/r parts and
using N1/r queries finds a non-zero part. In this way in r rounds, one can gets algorithm
making N1/r-queries per round. This leads to the following fundamental question which we
answer in our paper.

What is the rounds-of-adaptivity versus query-complexity trade-off for deterministic
algorithms for Problem 2?

1.1 Motivation and Perspective
Why should we care about the questions above?

We think that algorithmic question of computation on graphs via queries is as natural
and important as the reconstruction question. Indeed, our study was inspired by trying to
understand the power of cut-queries to check whether a graph was connected or not; this

4 In the case of OR-queries, we can only return the j with xj > 0
5 A similar result holds with OR queries as well. See Section 3
6 A “deterministic ℓ0 sampler”, if you allow us the abuse of notation.
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7:4 Graph Connectivity and Single Element Recovery via Linear and OR Queries

is an (extremely) special case of submodular function minimization. More recently, this
type of “property-testing via queries” question on graphs has been asked for matchings
by Nisan [44], and more generally for matrix properties by [51] and [46]. Single element
recovery is also as natural as whole-vector recovery. Indeed, one can imagine a scenario
where recovering a big7 subset of the support (diseased blood samples, say) faster and
with fewer queries may be more beneficial than reconstructing the whole vector.
The Linear query model is closely connected to linear sketches that have found plenty
of applications in dynamic streaming; see, e.g. [29,35,39]. The single element recovery
problem also has connections to the universal relation UR⊂ problem in communication
complexity, which was studied in [37, 42]. Understanding these questions, therefore, have
ramifications to other areas. As a concrete example, one consequence of our results is a
deterministic, O(r)-pass dynamic streaming algorithm for graph connectivity in Õ(n1+1/r)
space. This was not known before.
We believe the question of the trade-off between rounds versus query complexity is
natural and important, especially in today’s world of massively parallel computing. Such
trade-offs are closely related to similar questions in communication complexity, number
of passes in streaming algorithms, etc. It is worthwhile building up an arsenal of tools
to attack such questions. Indeed, one main contribution of this paper is to show how
LP-duality can be used as one such tool.
Why do we focus on deterministic algorithms? Mainly because, as mentioned above, our
understanding of the complexity of randomized algorithms for the problems above is near
complete. However, in some applications one may require exponentially low error, or
has to deal with an “adversary” (say, the one giving updates to a streaming algorithm)
that is not oblivious to the algorithm’s randomness; see, e.g. [10]. This further motivates
the study of deterministic algorithms in this context. Furthermore, we need to design
lower-bounding techniques which only work against deterministic algorithms, and this is
of technical interest.

1.2 Our Results
Our first result is a tight lower bound for the question on single element recovery. The
binary-search style algorithm mentioned above is the best one can do.

▶ Result 1. For the single element recovery with Linear-query access, any r-round,
deterministic algorithm must make ≥ N1/r − 1 queries in some round.

We should remind the reader that the above lower bound is for vectors whose domain is
non-negative rationals. In particular, it does not hold for Boolean vectors8. Moving to the
continuous domain allows one to use tools from geometry, in particular duality theory and
Caratheodory’s theorem, to prove the tight lower bound.

As mentioned above, Linear queries are stronger than OR queries, and thus the above
lower bound holds for OR queries as well. The proof for OR queries, however, is combinatorial,
arguably simpler, and more importantly can be generalized to prove the following lower
bound for Problem 1 as well.

7 As we show later in Lemma 16, algorithmically we can get results when the “single” in single element
recovery can be larger.

8 Indeed, for Boolean vector with Linear queries one can recover the whole vector if the query vector has
exponentially large coefficients. Even when the coefficients are small ({0, 1} even), the vector can be
recovered with O(n/ log n)-queries which is information theoretically optimal.
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▶ Result 2. Any r-round deterministic algorithm for finding a spanning forest, must
make Ω̃(n1+ 1

r )-OR queries.

As we explain below, the above smooth trade-off between rounds and query complexity is
optimal, even when we allow the weaker BIS-queries. Algorithmically, we have the following
result. We mention that such a result was not known even using Linear or Cross queries. A
similar lower bound as in Result 2 with Cross-queries is left open.

▶ Result 3. For any positive integer r, there exists an O(r)-round deterministic algorithm
which makes Õ

(
n1+ 1

r

)
-BIS queries per round, and returns a spanning forest of the graph.

It is worth remarking that our algorithm with Linear queries (which is implied by the weaker
BIS queries) above also implies an O(r)-pass Õ(n1+1/r)-space deterministic algorithm for
maintaining a spanning forest in dynamic graph streams. As the edge updates arise, one
simply updates the answers to the various queries made in each round. This result was not
known before.

Finally, we show that for Problem 1, randomization is helpful in decreasing the number
of rounds. More precisely, we consider Monte-Carlo algorithms.

▶ Result 4. There exists a 2-round randomized algorithm for graph connectivity which
makes Õ(n)-OR queries per round. There exists a 4-round randomized algorithm for graph
connectivity which makes Õ(n)-BIS queries per round. Any non-adaptive, randomized
algorithm for graph connectivity must make Ω̃(n2)-OR queries.

Table 1 summarizes our contributions.

Table 1 Summary of the state-of-the-art and our results for graph connectivity and single-element
recovery problems. In each cell, we write the number of rounds followed by the query complexity
per round. All lower bounds are with respect to the stronger model (Linear and OR). For upper
bounds, if there is a discrepancy between the stronger and weaker models, we show this using a | as
partition. Bold results are ours. The remaining results are folklore unless a reference is explicitly
cited. The ? indicates the main open question of our paper.

Linear | Cross OR | BIS

Upper Bound Lower Bound Upper Bound Lower Bound

Single
Element
Recovery

Det r , N1/r − 1 r , N1/r − 1 r , N1/r − 1 r , N1/r − 1

Rand r = 1 , O(log2 N) r = 1, Ω(log2 N) [34] r = 1, O(log2 N) r = 1, Ω(log2 N)

Graph
Connectivity

Det O(r) , n1+1/r ? O(r) , n1+1/r r , Ω̃(n1+1/r)

Rand r = 1 , Õ(n) [2] | Õ(n) [2, 51] r, Ω(n/ log n) r = 2|4 , Õ(n) r = 1, Ω̃(n2)

1.3 Technical Overview

In this section we give a technical overview of our results. These highlight the main underlying
ideas and will assist in reading the detailed proofs which appear in the subsequent sections.

ESA 2021



7:6 Graph Connectivity and Single Element Recovery via Linear and OR Queries

Overview of Result 1. It is relatively easy to prove an r-round lower bound for single
element recovery in the OR-query model via an adversary argument (see [7]). At a high
level, OR-queries only mildly interact with each other and can be easily fooled. Linear
queries, on the other hand, strongly interact with each other. To illustrate: if we know x(A)
and x(B) for B ⊆ A, then we immediately know x(A \ B). This is untrue for OR-queries
– if x has a non-zero entry in both A and B, nothing can be inferred about its entries in
A \ B. Indeed, this power manifests itself in the non-adaptive, randomized algorithm using
Cross-queries; it is important that we can use subtraction. This makes proving lower bounds
against Linear-queries distinctly harder.

In our proof of Result 1, we use duality theory. To highlight our idea, for simplicity,
let’s consider a warmup non-adaptive problem. The algorithm has to ask ≪

√
N queries,

and on obtaining the response, needs to return a subset S ⊆ [N ] of size ≪
√

N with the
guarantee that supp(x) ∩ S is not empty. Note that if this were possible, then there would
be a simple 2-round o(

√
N)-algorithm – simply query the individual coordinates of S in the

second round. This is what we want to disprove. Therefore, given the first round’s ≪
√

N

queries, we need to show there exists responses such that no matter which set S of ≪
√

N

size is picked, there exists a feasible x ∈ RN
≥0 which sets all entries in S to 0. Note this is a

∃∀∃-statement. How does one go ahead establishing this?
We first observe that for a fixed response a and a fixed set S, whether or not a feasible

x ∈ RN
≥0 exists is asking whether a system of linear inequalities has a feasible solution. Farkas

Lemma, or taking the dual, tells us exactly when this is the case. The nice thing about the
dual formulation is that the “response” a becomes a “variable” in the dual program, as it
should be since we are trying to find it. To say it another way, taking the dual allows us to
assert conditions that the response vector a must satisfy, and the goal becomes to hunt for
such a vector. How does one do that? Well, the conditions are once again linear inequalities,
and we again use duality. In particular, we use Farkas Lemma again to obtain conditions
certifying the non-existence of such an a. The final step is showing that the existence of
this certificate is impossible. This step uses another tool from geometry – Carathedeory’s
theorem. Basically, it shows that if a certificate exists, then a sparse certificate must exist.
And then a simple counting argument shows the impossibility of sparse certificates. This,
of course, is an extremely high-level view and for just the warmup problem. In Section 2
we give details of this warmup, an also details of how one proves the general r-round lower
bound building on it.

The interested reader may be wondering about the two instantiations of duality (isn’t the
dual of the dual the primal?). We point out that duality can be thought of as transforming
a ∃ statement into a ∀ statement: feasibility is a ∃ statement, Farkas implies infeasibility
is a different ∃ statement, and negating we get the original feasibility as a ∀ statement.
Since we were trying to assert a ∃∀∃-statement, the two instantiations of duality hit the two
different ∃.

Overview of Result 2. At a high level, the lower bound for Problem 1, the spanning forest
problem, boils down to a “direct sum” version of Problem 2, the single element recovery
problem. Imagine the graph is an n × n bipartite graph. Therefore, finding a spanning forest
requires us finding an edge incident to each of the n vertices on one side. This is precisely
solving n-independent versions of Problem 2 in parallel. However, note that a single query
can “hit” different instances at once. The question is, as all direct-sum questions are, does
this make the problem n-times harder? We do not know the answer for Linear queries and
leave this as the main open question of our work. However, we can show that the simpler,
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combinatorial proof of Result 1 against OR-queries does have a direct-sum version, and
gives an almost tight lower bound for Problem 1. This is possible because OR-queries, as
mentioned in the previous paragraph, have only mild interaction between them. We show
that this interaction cannot help by more than a poly(r)-factor. Our proof is an adversary
argument, and a similar argument was used recently by Nisan [44] to show that matchings
cannot be approximated well by deterministic algorithms with OR-queries. Details of this
are given in [7].

Overview of Result 3. In Section 3, we show some simple, folklore, and known results for
single element recovery. We build on these algorithms to obtain our algorithms for Problem 1.
With every vertex one associates an unknown vector which is an indicator of its neighborhood.
If one applies the r-round binary-search algorithm for the single element recovery problem
on each such vector, then in r-rounds with O(n1+1/r)-BIS queries, for every vertex one can
obtain a single edge incident on it. This alone however doesn’t immediately help: perhaps,
we only detect n/2 edges and get n/2 disconnected clusters. Recursively proceeding only
gives an O(r log n)-round algorithm. And we would like no dependence on n.

To make progress, we actually give a more sophisticated algorithm for single element
recovery than binary search, which gives more and may be of independent interest. In
particular, we describe an algorithm (Lemma 16) for single element recovery which in O(r)
rounds, and making N1/r-queries per round, can in fact return as many as N1/4r elements in
the support. Once we have this, then for graph connectivity we observe that in O(r) rounds,
we get polynomially many edges incident on each vertex. Thus as rounds go on, the number
of effective vertices decreases, which allows us to query more aggressively. Altogether, we
get an O(r)-round algorithm making only Õ(n1+1/r)-BIS queries. The details of this are
described in Section 4.

Overview of Result 4. In the overview of the deterministic algorithm, we had to be a bit
conservative in that even after every vertex found k edges (k being 1 or nO(1/r)) incident
on it, we pessimistically assumed that after this step the resulting graph still has Θ(n/k)
disconnected clusters, and we haven’t learned anything about the edges across these clusters.
In particular, we allow for the situation that the cross-cluster edges can be dense. With
randomization, however, we get to sample k random edges incident on a vertex. This is
where we use the recent result of Holm et al. [31] which shows that if the k incident edges
are random, then, as long as k = Ω(log n), the number of inter-component edges between the
connected components induced by the sampled edges, is O(n/k). That is the cross-cluster
edges are sparse. Therefore, in a single round with Õ(n)-randomized BIS queries, we can
obtain a disconnected random subgraph, but one such that, whp, there exist at most Õ(n)
edges across the disconnected components.

Given the above fact, the algorithm is almost immediate. After round 1, we are in a
sparse graph (where nodes now correspond to subsets of already connected vertices). If
we were allowed general OR-queries, then a single round with Õ(n)-OR queries suffices to
learn this sparse graph, which in turn, gives us a spanning forest in the original graph. This
follows from algorithms for single element recovery when the vector is promised to be sparse
(discussed in Section 3). Unfortunately, these queries may not be BIS-queries; recall that
BIS-queries are restricted to ask about edges across two subsets. Nevertheless, we can show
how to implement the above idea using 2-extra rounds with only BIS-queries, giving a 4-round
algorithm. Details can be found in [7].

ESA 2021



7:8 Graph Connectivity and Single Element Recovery via Linear and OR Queries

To complement the above, we also prove that even with randomization, one cannot get
non-adaptive (1-round) o(n2/ log2 n)-query algorithms with OR-queries . Indeed, the family
of examples is formed by two cliques (dense graphs) which could have a single edge, or
not, that connects them. A single collection of o(n2/ log2 n)-OR queries cannot distinguish
between these two families. Details can be found in [7].

1.4 Related Works
Our work falls in the broad class of algorithm design in the query access model, where one has
limited access to the input. Over the years there has been a significant amount of work relevant
to this paper including in graph reconstruction [1,3, 4, 6, 12,14,15,17,30,41,47], parameter
estimation [9,11,21,48], minimum cuts [8,49] sketching and streaming [2,5,8,27,28,34,36,37,
42, 51], combinatorial group testing, compressed sensing, and coin weighing [12,19, 22–25,50].
It is impossible to do complete justice, but in the full version [7] we give a more detailed
discussion of some of these works and how they fit in with our paper.

2 Lower Bound for Single Element Recovery

The following is the formal statement of the r-round lower bound for single element recovery.

▶ Theorem 1. Any r-round deterministic algorithm for Single Element Recovery must make
≥ (N1/r − 1)-Linear queries in some round.

In fact, we prove (see Corollary 9) that if k1, . . . , kr are r positive integers such that∏r
i=1(ki + 1) < N , then no r-round algorithm making ≤ ki queries in round i can be

successful for the Single Element Recovery problem. This implies Theorem 1. To begin with,
we give a proof for essentially the r = 2 case, which was the warm-up question we discussed
in Section 1.3. More precisely, we prove that if (k + 1)s < N then no one-round algorithm
making ≤ k queries can return a subset S of size ≤ s with xj > 0 for some j ∈ S. That is, a
subset which traps an element in supp(x). This essentially implies the r = 2 case with k1 = k

and k2 = s − 1. This proof contains the core ideas behind the more general statement, which
follows via an inductive application of the same idea. The complete proof of Theorem 1 can
be found in Section 2.1. For now, we focus on proving the following statement.

▶ Theorem 2. If (k + 1)s < N , then there cannot exist a 1-round deterministic algorithm
making k-Linear queries for the trapping problem with parameter s.

Note that if s divides N , then k = N
s − 1 queries suffice and so the above theorem is tight.

Proof. Since x is a non-zero, non-negative vector, by scaling, we assume that x([N ]) = 1.
We let A denote the k × N matrix corresponding to the k queries arranged as row vectors.
We use a ∈ Rk

≥0 to denote the answers we will give to fool any algorithm. To find this, fix
any subset S with |S| ≤ s, and consider the following system of inequalities parametrized by
the answer vector a. The only inequalities are the non-negativity constraints. Below, and
throughout, [N ] := {1, 2, . . . , N}.

P(a; S) = {x ∈ RN
≥0 : x([N ]) = 1 A · x = a x(S) = 0} (P)

Note that if P(a; S) has a feasible solution, then given the answers a to its queries, the
algorithms cannot return the subset S. This is because there is a non-negative x consistent
with these answers with S disjoint from its support. In other words, S is safe for the lower
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bound w.r.t. a. Therefore, if there exists an answer vector a such that every subset S ⊆ [N ]
with |S| ≤ s is safe with respect to a, that is P(a; S) is feasible, then we would have proved
our lower bound. We use use duality and geometry to prove the existence of this vector (if
(k + 1)s < N).

The first step is to understand when for a fixed set S, the system P(a; S) is infeasible. This
is answered by Farkas Lemma. In particular, consider the following system9 of inequalities
where the variables are the Lagrange multipliers corresponding to the equalities in (P). We
note that the variables are free, since P(a; S) has only equalities in the constraints. For
convenience, we have eliminated the variable corresponding to the subset S and have moved
it to the right hand side. Below, and throughout, for any subset S ⊆ [N ], we use 1S to
denote the N -dimensional 0, 1-vector which has 1 in the coordinates i ∈ S.

CS :=
{

(y(0), y) ∈ R × Rk : y(0) · 1[N ] + y · A ≤ 1S

}
Farkas Lemma asserts that P(a; S) is infeasible if and only if there exists (y(0), y) ∈ CS such
that y(0) · 1 + y · a > 0. Contrapositively, we get that P(a; S) is feasible, that is S is safe
with respect to a, iff y(0) + y · a ≤ 0 for all y ∈ CS . Since we want an answer a such that all
subsets S with |S| ≤ s are safe, we conclude that such an answer exists if and only if the
following system of linear inequalities has a feasible solution.

Q :=
{

a ∈ Rk
≥0 : y · a ≤ −y(0), ∀S ⊆ [N ], |S| ≤ s, ∀(y(0), y) ∈ CS

}
(D)

In summary, to prove the lower bound, it suffices to show that Q has a feasible solu-
tion, and this solution will correspond to the answers to the queries. Suppose, for the
sake of contradiction, Q is infeasible. Then, again by Farkas Lemma (but on a differ-
ent system of inequalities), there exists multipliers λt > 0 corresponding to constraints(

St s.t. |St| ≤ s, (y(0)
t , yt) ∈ CSt

)
for some t = 1 . . . T such that (P1)

∑T
t=1 λtyt ≥ 0k

where 0k is the k-dimensional all zero (row) vector, and (P2)
∑T

t=1 λty
(0)
t > 0. Note that

this time λt’s are non-negative since Q has inequalities in the constraints.
We can focus on the λt’s which are positive and discard the rest. The next key observation

is to upper bound the size T of the support. Note that the conditions (P1) and (P2) can be
equivalently stated as asserting that the (k + 1)-dimensional cone spanned by the vectors
(y(0)

t , yt) contains a non-negative point with first coordinate positive. Caratheodory’s theorem
(for cones) asserts that any such point can be expressed as a conic combination of at most
(k + 1) vectors. Therefore, we can assume that T ≤ k + 1.

Now we are almost done. Since (y(0)
t , yt) ∈ CSt , we have y

(0)
t · 1[N ] + yt · A ≤ 1St . Taking

λt combinations and adding, we get (since all λt > 0) that(
T∑

t=1
λty

(0)
t

)
· 1[N ] +

(
T∑

t=1
λtyt

)
· A ≤

T∑
t=1

λt1St

Since every |St| ≤ s, the support of the right hand side vector is ≤ sT ≤ s(k + 1). The
support of the left hand side vector is = N . This is because the second summation is a
non-negative vector by (P1), and the first has full support. This contradicts (k + 1)s < N .
Hence, Q has a feasible solution, which in turn means there exists answers a which foils A.
This proves Theorem 2. ◀

9 Here y and 1S are row vectors. In the general proof, there will be multiple y’s indexed with super-scripts.
All of them are row-vectors.
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2.1 The General r-round Lower Bound
We begin by formally defining what an r-round deterministic algorithm is, and what it means
for such an algorithm to successfully solve Single Element Recovery.

▶ Definition 3 (r-round deterministic algorithm.). An r-round deterministic algorithm A

proceeds by making a collection of linear queries A(1) ∈ Rk1×N
≥0 and obtains the answer

a(1) = A(1) · x. This is the first round of the algorithm. For 1 < i ≤ r, in the ith round
the algorithm makes a collection of linear queries A(i) ∈ Rki×N

≥0 . This matrix depends on
the history (A(1), a(1)), . . . , (A(i−1), a(i−1)). Upon making this query it obtains the answer
a(i) = A(i) · x. We call Πr :=

(
(A(1), a(1)), . . . , (A(r), a(r))

)
the r-round transcript of the

algorithm. The output of the deterministic algorithm A only depends on Πr.
A vector y ∈ RN

≥0 is said to be consistent with respect to a transcript Πr if A(i) · y = a(i)

for all 1 ≤ i ≤ r. A transcript Πr =
(
(A(1), a(1)), . . . , (A(r), a(r))

)
is feasible for the

algorithm if there is some vector y consistent with respect to it, and if the algorithm indeed
queries A(i) given the (i − 1)-round transcript

(
(A(1), a(1)), . . . , (A(i−1), a(i−1))

)
▶ Definition 4. An r-round deterministic algorithm A is said to successfully solve Single
Element Recovery if for all non-zero x ∈ RN

≥0, upon completion of r-rounds the algorithm A

returns a coordinate j ∈ [N ] with xj > 0. In particular, if the algorithm returns a coordinate
j given a feasible transcript Πr, then every x that is consistent with Πr must have xj > 0.

For technical reasons, we add a 0th-round for any r-round algorithm. In this round, the
query “matrix” A(0) is the single N -dimensional row with all ones. That is, we ask for the
sum of xj for all j ∈ [N ]. We assume that the answer a(0) is the scalar 1 to capture the fact
that the vector x is non-zero.

Next we define the notion of safe subsets with respect to a transcript generated till round
i. A safe subset of coordinates are those for which there is a consistent vector x whose
support is disjoint from the subset, that is, xj = 0 for all j ∈ S, or equivalently x(S) = 0
since x ≥ 0.

▶ Definition 5. Given an i-round transcript Πi =
(
(A(0), a(0)), . . . , (A(i), a(i))

)
, a subset

S ⊆ [N ] is safe w.r.t. Πi if the following system of linear inequalities

P(a(≤i); S) :=
{

x ∈ RN :


A(j) · x = a(j) ∀0 ≤ j ≤ i

x(S) = 0
x ≥ 0

}
(Primal)

has a feasible solution.

▷ Claim 6. If Πr is a feasible r-round transcript of an algorithm A such that all singletons
are safe w.r.t Πr, then the algorithm A cannot be successful in solving Single Element
Recovery.

Proof. Given Πr, the algorithm A must return some coordinate j ∈ [N ]. However {j} is safe.
That is, there is a feasible solution x to P(a(≤r), {j}). Indeed, if x were the input vector,
the algorithm would return a coordinate not in the support. ◁

▶ Definition 7 (Transcript Creation Procedure). Given an r-round algorithm A, the transcript
creation procedure is the following iterative process. In round i, given the transcript
Πi−1 :=

(
(A(0), a(0)), . . . , (A(i−1), a(i−1))

)
upon which the algorithm A queries A(i), and the

transcript creation procedure produces an answer a(i) such that Πi = Πi−1 ◦ (A(i), a(i)) is
feasible.
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Our main theorem, which implies Theorem 1, is the following.

▶ Theorem 8 (Transcript Creation Theorem). Let k1, . . . , kr and s0, s1, . . . , sr be positive
integers such that s0 ≤ n − 1 and (ki + 1)si ≤ si−1 for all i ≥ 1. Then given any r-round
algorithm A making ≤ ki queries in round i, there is a transcript creation procedure to create
an r-round transcript such that for all 0 ≤ i ≤ r, any subset S ⊆ [N ] with |S| ≤ si is safe
with respect to Πi.

▶ Corollary 9. Let k1, . . . , kr be any r positive integers with
∏r

i=1(ki + 1) < n. No r-round
algorithm A which makes ≤ ki queries in round i can be successful for the Single Element
Recovery problem. In particular, this implies Theorem 1.

Proof. Set sr = 1, sr−1 = (kr + 1), and in general, si = (kr + 1)(kr−1 + 1) · · · (ki+1 + 1).
Note that the conditions of Theorem 8 are satisfied. Therefore given any algorithm A making
≤ ki queries in round i, we can create a r-round transcript such that all singleton sets are
safe with respect to Πr. Claim 6 implies A cannot be succesful. ◀

2.1.1 Proof of the Transcript Creation Theorem
We start with writing the dual representation of safe sets. Fix a subset S ⊆ [N ] and a
transcript Πi. By Farkas lemma we know that the system P(a(≤i); S) is infeasible only if
there exists a infeasibility certificate

(
y(0), y(1), . . . , y(i)

)
∈ R×Rk1 × · · ·Rki :

i∑
j=0

y(j) · A(j) ≤ 1S and
i∑

j=0
y(j) · a(j) > 0

Here 1S is the n-dimensional indicator vector of the subset S, that is, it has 1 in the
coordinates j ∈ S and 0 otherwise. Taking negations, we get that the system P(a(≤i); S) is
feasible, that is S ⊆ [N ] is safe w.r.t Πi−1, if and only if the following condition holds

S is safe w.r.t. Πi iff y(≤i) · a(≤i) :=
i∑

j=0
y(j) · a(j) ≤ 0 for all y(≤i) ∈ C(i)

S (Dual)

where,

C(i)
S :=

{
y(≤i) := (y(0), y(1), . . . , y(i)) ∈ R × Rk1 × · · · × Rki :

i∑
j=0

y(j) · A(j) ≤ 1S

}
We are now ready to prove Theorem 8 via induction on i. The above representation is the
dual definition of safe sets, and this definition is what is easy to induct with.
Base Case: i = 0. We need to show that any subset S ⊆ [N ] of size |S| ≤ s0 = N − 1 is

safe with respect to the transcript (A(0), a(0)). To remind the reader, A(0) is just the all
ones vector and a(0) is just the scalar 1. Using (Dual), we need to show for any subset
S ⊆ [N ] with |S| ≤ N − 1, we must have

y(0) · a(0) ≤ 0 for all y(0) ∈ R such that y(0) · A(0) ≤ 1S

However, y(0) · A(0) is the n-dimensional vector which is y(0) on all coordinates. Since
|S| ≤ n − 1, there is some coordinate j /∈ S such that 1S [j] = 0. Thus, y(0) ≤ 0 implying
y(0) · a(0) ≤ 0. The base case holds.
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Inductive Case: i ≥ 1. Assume the conclusion of the theorem holds for all 0 ≤ j ≤
i − 1. That is, there is a procedure which has created a transcript Πi−1 =(
(A(0), a(0)), · · · , (A(i−1), a(i−1))

)
such that every subset S ⊆ [N ] with |S| ≤ si−1 is

safe w.r.t Πi−1. Using (Dual), we can rewrite this as the following statement

∀S ⊆ [N ], |S| ≤ si−1, for all y(≤ i−1) ∈ C(i−1)
S we have y(≤ i−1) · a(≤ i−1) ≤ 0.

(IH)

Given Πi−1, the algorithm A now queries A(i) in round i. Our goal is to find answers
a(i) ∈ Rki

≥0 such that any subset S ⊆ [N ] with |S| ≤ si is safe w.r.t Πi = Πi−1 ◦ (A(i), a(i)).
Again referring to (Dual), we need to find a(i) ∈ Rki

≥0 satisfying the following system of linear
inequalities.

Q(i) :=
{

a(i) ∈ Rki
≥0 : y(i) ·a(i) ≤ −

(
y(≤ i−1) · a(≤ i−1)) , ∀S ⊆ [N ], |S| ≤ si, ∀y(≤i) ∈ C(i)

S

}
Although it may appear that the above system has infinitely many constraints, it suffices to

write the constraints for extreme points for the polyhedra C(i)
S ’s. To complete the proof, we

need to show that Q(i) is non-empty; if so, we can select any a(i) ∈ Q(i) for completing the tran-
script creation procedure, and proving the theorem by induction. The next lemma does pre-
cisely that; this completes the proof of the theorem. ◀ Theorem 8

▶ Lemma 10. The system of inequalities Q(i) has a feasible solution.

Proof. For the sake of contradiction, suppose not. Applying Farkas lemma (again), we get
the following certificate of infeasibility. There exists the tuples (λt > 0, St ⊆ [N ] with |St| ≤
si, y

(≤i)
t ∈ C(i)

St
) for 1 ≤ t ≤ ki + 1 such that

(P1):
∑ki+1

t=1 λty
(i)
t ≥ 0ki

, and
(P2):

∑ki+1
t=1 λt

(
y

(≤ i−1)
t · a(≤ i−1)

)
> 0.

Since y
(≤i)
t ∈ C(i)

St
, we get

∑i
j=0 y

(j)
t · A(j) ≤ 1St for all 1 ≤ t ≤ ki. Taking the positive

λt-combinations of these inequalities, we get
ki+1∑
t=1

λt ·

 i∑
j=0

y
(j)
t · A(j)

 ≤
ki+1∑
t=1

λt1St
(P3)

Now, define w(j) :=
∑ki+1

t=1 λty
(j)
t for 0 ≤ j ≤ i. (P1) above implies (Q1): w(i) ≥ 0ki

, and
(P2) implies (Q2): w(≤ i−1) · a(≤ i−1) > 0. And finally, (P3) translates to

i−1∑
j=0

w(j) · A(j)

︸ ︷︷ ︸
Call this u1

+ w(i) · A(i)︸ ︷︷ ︸
Call this u2

≤
ki+1∑
t=1

λt1St︸ ︷︷ ︸
Call this v

(Q3)

Now we are ready to see the contradiction. First observe that the vector v has at most
(ki + 1)si positive entries since it is the sum of ki + 1 vectors each of support ≤ si. Since w(i)

and A(i) are both non-negative, u2 is a non-negative vector. This implies that u1 must have
≤ (ki + 1)si positive entries. From the conditions of the theorem, we get (ki + 1)si ≤ si−1.
Thus, u1 has ≤ si−1 positive entries. This in turn implies there exists a scalar θ such that
θu1 ≤ 1S for some subset S ⊆ [N ] with |S| ≤ si−1. That is,

i−1∑
j=0

(θw(j)) · A(j) ≤ 1S ⇒ θw(≤ i−1) ∈ C(i−1)
S

The induction hypothesis (IH) implies θw(≤ i−1) · a(≤ i−1) ≤ 0. This contradicts (Q2). This
completes the proof of the lemma. ◀
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3 Algorithms Warmup: Algorithms for Single Element Recovery

In this section, we state some simple and/or well known algorithms for single element recovery
which we use these as subroutines for our algorithms for graph connectivity as well.

▶ Lemma 11. Let x ∈ RN
≥0 be a non-zero, non-negative vector, and let r be a positive integer.

There exists an r-round deterministic algorithm BinarySearchr(x) which makes (N1/r −1)-OR
queries per round, and returns a coordinate j with xj > 0. If Linear queries are allowed, then
one can recover xj as well.

Proof. (Sketch) Divide [N ] into N1/r blocks each of size N1−1/r, and run OR query on each
block but the last, taking N1/r − 1 queries in all. If one of them evaluates to 1, recurse on
that for the next r − 1 rounds. Otherwise, recurse on the last block. ◀

Next, we state a standard result from the combinatorial group testing and coin-weighing
literature [19, 25, 32, 38, 45] which says that if the support of x is known to be small, then
there exist efficient one-round deterministic algorithms to recover the complete vector.

▶ Lemma 12. [32,45] Let x ∈ RN
≥0 be a non-zero vector, and let d be any positive integer.

There exists a 1-round (non-adaptive) deterministic algorithm BndSuppRec(x, d) which makes
O(d2 log N)-OR queries and (a) either asserts supp(x) > d, or (b) recovers the full support
of x. With Linear queries, the number of queries reduces to O(d log N).

Proof. (Sketch) We give a very high level sketch only for the sake of completeness. For
the case of d = 1, take the O(⌈log N⌉ × N) matrix A where column i is the number i

represented in binary. Then Ax (the “OR product”) points to the unique element in the
support. To see the existence of a deterministic procedure for larger d, one can proceed by
the probabilistic method. If one samples each coordinate with probability 1/d, then with
constant probability the vector restricted to this sample has precisely support 1 for which
the above “d = 1” algorithm can be used to recover it. Repeating this O(d log N) times leads
to error probability which swamps the union bound over ≤ Nd possible sets, implying the
existence of a deterministic scheme. Finally, another O(d) arises since we need to recover
all the ≤ d coordinates. All this can be made explicit by using ideas from error correcting
codes; we point the interested reader to [32,45] for the details. ◀

Next we move to randomized algorithms. Here ideas from F0-estimation [5, 27] and ℓ0-
sampling [18,28,34] give the following algorithms.

▶ Lemma 13. Let x ∈ RN
≥0 be a non-zero vector. There exists a 1-round (non-adaptive)

randomized algorithm RandSuppSamp(x) which makes O(log2 N log
( 1

δ

)
)-OR queries and

returns a random j ∈ supp(x) with probability ≥ 1 − δ.

Proof. (Sketch) Suppose we knew the support supp(x) = d. Then, we sample each j ∈ [N ]
with probability 1/d to get a subset R ⊆ [N ]. With constant probability supp(x∩R) = 1 and,
conditioned on that, it contains a random j ∈ supp(x). Therefore, running the algorithm
BndSuppRec(x∩R, 1) asserted in Lemma 12, we can find a random j ∈ supp(x) with constant
probability. Repeating this O(log(1/δ)) times gives the desired error probability. Since we
don’t know supp(x), we run for various powers of 2 in 1 to N . ◀

▶ Lemma 14. (Theorem 7 in [13], also in [20, 26]) Let x ∈ RN
≥0 be a non-zero vec-

tor. There exists a 1-round (non-adaptive) randomized algorithm SuppEst(x) which makes
O (log N · log(1/δ))-OR-queries and returns an estimate s̃ of the support which satisfies
supp(x)

3 ≤ s̃ ≤ 3supp(x) with probability ≥ 1 − δ.
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4 Deterministic Algorithm for Graph Connectivity

In this section, we prove the following theorem which formalizes Result 3.

▶ Theorem 15. Let r be any fixed positive integer. There exists an 35r-round deterministic
algorithm DetGraphConn(G) which makes at most O(n1+ 1

r log n)-BIS-queries per round on
an undirected multigraph G, and returns a spanning forest of G.

We start by establishing some simple subroutines which we need. We will refer to some
algorithmic paradigms defined in Section 3.

4.1 Simple Subroutines
We begin by strengthening the simple algorithm BinarySearch asserted in Lemma 11. While in
r-rounds with O(N1/r)-OR queries BinarySearchr(x) recovers a single element in the support,
one can in fact get many more elements from the support. This result may be of independent
interest.

▶ Lemma 16. Let x ∈ RN
+ be a non-zero, non-negative vector, and let r be a positive integer,

and let c < r. There exists a ⌈2r/c⌉-round deterministic algorithm DetFindManyr,c(x)
which makes O(N c/r log N)-OR queries per round, and returns min(N c/4r, supp(x)) distinct
coordinates from supp(x).

Proof. In the first round, we partition the range [N ] into N c/2r blocks of size N1−c/2r each.
Let these blocks be B1, . . . , Bk with k = N c/2r. For each i ∈ [k], we run the algorithm
BndSuppRec(x ∩ Bi, N c/4r) asserted in Lemma 12. The total number of queries used here is
O(N c/2r ·

(
N c/4r

)2 log N) = O(N c/r log N).
At the end of this round, either we recover supp(x ∩ Bi) for each block, and thus recover

supp(x), and we are done. Or, there is at least one block of size N1−c/2r which is guaranteed
to contain ≥ N c/4r elements in its support. We call this the heavy block of round 1. Next,
we now proceed to recover N c/4r elements from this heavy block of round 1.

In the second round, we partition the indices of this heavy block again into N c/2r blocks
of size N1−2c/2r each, and run BndSuppRec again on this block with d = N c/4r. Once again,
either we recover the entire support of the heavy block (which is guaranteed to contain at
least N c/4r elements) and we are done. Or find a block of size N1−2c/2r that contains at
least N c/4r elements in its support– this is the heavy block of round 2 – and we now proceed
to recover N c/4r elements in the heavy block of round 2.

We continue in this manner, and after ⌈2r/c⌉ − 1 rounds, either we have already re-
covered at least N c/4r elements in the support of x, or have identified a heavy block of size
N1−(( 2r

c −1)· c
2r ) = N c/2r that contains at least N c/4r elements in the support of x. In the

final round, we can simply probe each entry completing the proof. ◀

▶ Remark 17. The trade-off between the number of queries and number of elements re-
covered is not tightly established for the purpose of what we need in the graph connectivity
algorithm. For instance, using the same idea as above, in 2 rounds one can actually recover
min(N1/4, supp(x)) coordinates making O(N3/4)-queries per round.
Next, we give an algorithm to find edges between two disjoint sets of vertices using BIS-queries.

▶ Lemma 18. Let A and B be two disjoint sets of vertices with at least one edge between
them. There exists a 2r-round deterministic algorithm DetFindEdger(A, B) which makes
O(|A|1/r + |B|1/r)-BIS queries per round, and returns an edge (a, b) with a ∈ A and b ∈ B.
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Proof. Consider the |B| dimensional vector x where xb indicates the number of edges from a
vertex b ∈ B to vertices in A. We can simulate an OR-query in this vector using a BIS-query in
the graph – for any subset S ⊆ B, OR(S) on x has the same answer as BIS(A, S). Therefore,
using Lemma 11, in r-rounds and |B|1/r-BIS-queries, we can find a coordinate b∗ ∈ B with
xb∗ > 0. That is, there is an edge between b∗ and some vertex in A.

We can find one such vertex a ∈ A to which b∗ has an edge, again as above. We define
the |A|-dimensional vector y where ya indicates the number of edges from b∗ to a. Once
again, the OR-query on y can be simulated using a BIS query on the graph – for any subset
S ⊆ A, OR(S) on y is the same as BIS(S, {b∗}). ◀

4.2 The Connectivity Algorithm
Now we give the O(r)-round deterministic algorithm to find a spanning forest. First, we
need the following simple claim.

▷ Claim 19. Let G(V, E) be an arbitrary connected multigraph graph on n vertices, and let
D be an arbitrary integer in {0, 1, . . . , (n − 1)}. Let VL denote all vertices in V which has at
most D neighbors in G, and let VH = V \ VL. Let E′ ⊆ E be an arbitrary set of edges that
satisfies the following property: for each vertex u ∈ VL, the set E′ contains all edges incident
on u, and for every each vertex v ∈ VH , the set E′ contains D arbitrary edges incident on v.
Then the graph G′ = (V, E′) contains at most ⌊n/D⌋ connected components.

Proof. Suppose G′ has K ≥ n
D connected components. Thus, there must exist some compon-

ent C with ≤ D vertices. Firstly, that C must have some vertex v ∈ VH . If not, then since
vertices in VL have all their edges in G also in G′, this component would be disconnected in
G which contradicts G’s connectedness. Secondly, observe that this leads to a contradiction:
v has at least D neighbors in G′, and since there are at most D − 1 other vertices in C, one
of v’s neighbor in G′ must lie outside C. This contradicts that C is a connected component.

◁

We are now ready to describe the algorithm DetGraphConn(G). For simplicity, assume G is
connected and our goal is to find a spanning tree. Subsequently, we explain how to modify
the algorithm to find a spanning forest of a general graph. The algorithm proceeds in
O(log r) phases starting with phase 0. The input to phase i is a partition Πi = (S1, . . . , Sp)
of the vertices. Each Sj in Πi is guaranteed to be a connected in the graph G. Π0 is the
trivial partition of n singletons. Given Πi, we define the graph Gi = (Πi, Ei) where Ei is the
collection of pseudo-edges between components: we have a pseudo-edge (Sa, Sb) ∈ Ei if and
only if there exists some edge in G between a vertex u ∈ Sa and a vertex v ∈ Sb. Thus, G0 is
indeed the original graph. Note that by our assumption that G is connected, all the Gi’s are
connected. We will be collecting pseudo-edges which will imply the connected components;
we initialize this set F to empty set. We will maintain the following invariant for a phase:
|Πi| ≤ n1− 4i−1

r ; this is certainly true for i = 0. Next, we describe a phase i.
1. For each S ∈ Πi, we construct a vector x indexed by all sets in Πi \ S where xT indicates

whether there is a pseudo-edge (S, T ) in Gi. Next, we run the algorithm DetFindManyr,c(x)
asserted in Lemma 16 to either find all pseudo-edges incident on S, or at least n4i/4r of
them. To do so, we set c such that N c/4r = n4i/4r, where N is the dimension of x. That
is, N = |Πi| − 1.Indeed, we should set c = θ · 4i where Nθ = n. Note, θ ≥ 1. Also note
that the OR-queries on x can be simulated using BIS-queries on the original graph G.
This is because we are looking at edges between S and a union of a subset of parts in
Πi \ S.
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The number of rounds is
⌈ 2r

c

⌉
≤
⌈ 2r

4i

⌉
. The number of BIS-queries per round is

O(N c/r log N) = O(n4i/r log n) per subset S ∈ Πi. And thus, the total number of
queries made is N · O(n4i/r log n) ≤ |Πi| · O(n4i/r log n) ≤ n1− 4i−1

r · O(n4i/r log n) =
O(n1+1/r · log n).

2. Let E ′
i ⊆ Ei be the pseudo-edges obtained from the previous step. Let F ′

i be an arbitrary
spanning forest of E ′

i . We add all these edges to the collection F . Note, F ′
i is a collection

of ≤ |Πi| pseudo-edges.
3. Applying Claim 19 to the graph Gi, adding the pseudo edges in E ′

i reduces the number of
connected components to at most |Πi|/n

4i

4r . We now repeat the above two steps 11 more
times sequentially, and each time the number of connected components multiplicatively
drops by n

4i

4r . Thus, after the 12 sub-phases we end up with the partition Πi+1 of
connected components, with |Πi+1| ≤ |Πi|/n

12·4i

4r ≤ n1− 4i−1
r · n− 12·4i

4r = n1− 4i+1−1
r , as

desired. The second inequality follows from the invariant before phase (i + 1) started.

To summarize, Phase i performs O( r
4i )-rounds and makes O(n1+1/r log n)-BIS queries

per round. We run phase 0 to L = O(log r), till we get |ΠL| ≤
√

n. After than we run a
clean up phase.

4. Clean-up Phase. Once |ΠL| = O(
√

n), for each pair (S, T ) in ΠL × ΠL, we make a single
BIS-query to detect if the pseudo-edge (S, T ) ∈ EL. The total number of queries is O(n).
We add an arbitrary spanning tree of EL to the set F . At this point, F lets us know the
structure of connectivity via pseudo-edges. The next step is to recover the actual graph
edges.

5. Tree Building Phase. Note that the total number of pseudo-edges in F is < n − 1. For
each (S, T ) ∈ F , we now desire to find an edge (s, t) in the graph where s ∈ S and
t ∈ T . Note that once we do this, we have the spanning tree the graph. This can be done
in 2r more rounds using the algorithm DetFindEdger(S, T ) using O

(
|S|1/r + |T |1/r

)
-BIS

queries per round. Therefore, the total number of queries per round of this phase is
O(n) · O(n1/r) = O(n1+1/r).

The number of rounds is
∑O(log r)

i=1
24r
4i + 1 + 2r ≤ 35r.

This ends the description of the algorithm when G is connected. If G had more than one
connected component, then one can recognize the connected components as the algorithm
progresses. More precisely, if the algorithm is processing the partition Πi = (S1, . . . , Sp)
and find that Si has no edges coming out of it, then by the invariant that Si is connected,
the algorithm can discard this component and proceed on the remaining graph as if it were
connected. The analysis becomes better as the effective number of vertices decrease but the
number of available queries don’t. This completes the proof of Theorem 15.
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