
Restricted t-Matchings via Half-Edges
Katarzyna Paluch
Institute of Computer Science, University of Wrocław, Poland

Mateusz Wasylkiewicz
Institute of Computer Science, University of Wrocław, Poland

Abstract
For a bipartite graph G we consider the problem of finding a maximum size/weight square-free
2-matching and its generalization - the problem of finding a maximum size/weight Kt,t-free t-
matching, where t is an integer greater than two and Kt,t denotes a bipartite clique with t vertices
on each of the two sides. Since the weighted versions of these problems are N P-hard in general, we
assume that the weights are vertex-induced on any subgraph isomorphic to Kt,t. We present simple
combinatorial algorithms for these problems. Our algorithms are significantly simpler and faster
than those previously known. We dispense with the need to shrink squares and, more generally
subgraphs isomorphic to Kt,t, the operation which occurred in all previous algorithms for such
t-matchings and instead use so-called half-edges. A half-edge of edge e is, informally speaking, a half
of e containing exactly one of its endpoints.

Additionally, we consider another problem concerning restricted matchings. Given a (not
necessarily bipartite) graph G = (V, E), a set of k subsets of edges E1, E2, . . . , Ek and k natural
numbers r1, r2, . . . , rk, the Restricted Matching Problem asks to find a maximum size matching of
G among such ones that for each 1 ≤ i ≤ k, M contains at most ri edges of Ei. This problem
is N P-hard even when G is bipartite. We show that it is solvable in polynomial time if (i) for
each i the graph G contains a clique or a bipartite clique on all endpoints of Ei; in the case of a
bipartite clique it is required to contain Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint -
the endpoints of any two different sets have at most one vertex in common.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases restricted 2-matchings

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.73

Funding Partially supported by Polish National Science Center grant 2018/29/B/ST6/02633.

Acknowledgements The authors thank Pratik Ghosal and Prajakta Nimbhorkar for discussions at
the early stage of research on this paper.

1 Introduction

Given a positive integer t, a subset M of edges of an undirected simple graph G is called a
t-matching if every vertex is incident to at most t edges of M . A t-matching of maximum
size can be found in polynomial time by a reduction to the classical matching problem.
A 2-matching is called square-free if it does not contain any cycle of length 4. A Ck-
free 2-matching is one without any cycle of length at most k. The Ck-free 2-matching
problem consists in finding a Ck-free 2-matching of maximum size. Observe that the Ck-free
2-matching problem for n/2 ≤ k < n, where n is the number of vertices in the graph,
is equivalent to finding a Hamiltonian cycle, and thus N P-hard. Hartvigsen [13] gave a
complicated algorithm for the case of k = 3. Papadimitriou [4] showed that this problem is
N P-hard when k ≥ 5. The complexity of the C4-free 2-matching problem is unknown.

When the graph is bipartite the smallest length of a cycle contained in it is at least 4.
We refer to cycles of length four as squares. Polynomial time algorithms for the C4-free
2-matching problem in bipartite graphs were shown by Hartvigsen [14], Pap [30], Babenko [1]

© Katarzyna Paluch and Mateusz Wasylkiewicz;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 73; pp. 73:1–73:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ESA.2021.73
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Restricted t-Matchings via Half-Edges

and analyzed by Király [18]. A generalization of a square-free 2-matching in a bipartite
graph is a Kt,t-free t-matching - a t-matching without any Kt,t - a bipartite clique with
t vertices on each of the two sides. Kt,t-free t-matchings were first considered by Frank
[7], who provided a min-max formula for Kt,t-free t-matchings based on a result in [8] on
crossing bi-supermodular functions. Using this formula, it is possible to compute the size
of a maximum Kt,t-free t-matching by the ellipsoid method or a combinatorial method by
Fleiner [6]. Moreover, one can compute a maximum Kt,t-free t-matching through Végh and
Benczúr’s algorithm [36] for covering pairs of sets and directly using Pap’s algorithm [29].

In the weighted version of the Kt,t-free t-matching problem, each edge e is associated
with a nonnegative weight w(e) and we are interested in finding a Kt,t-free t-matching of
maximum weight, where the weight of a t-matching M is defined as the sum of weights of
edges belonging to M . The weighted square-free 2-matching problem in bipartite graphs was
proven to be N P-hard [12, 19] even if the weight of every edge is either 0 or 1. Bérczi and
Kobayashi [2] sharpened the result and showed that the problem is N P-hard even if the
given graph is cubic, bipartite and planar. The weighted Kt,t-free t-matching problem in
bipartite graphs is solvable in polynomial time when the weights of edges are vertex-induced
on every subgraph isomorphic to Kt,t, which was shown by Makai [24] and Takazawa [33].

Apart from Kt,t-free t-matchings, we consider another problem concerning restricted
matchings. Given a (not necessarily bipartite) graph G = (V, E), a set of k subsets of edges
E1, E2, . . . , Ek and k natural numbers r1, r2, . . . , rk, the Restricted Matching Problem asks
to find a maximum size classical matching of G among such ones that for each 1 ≤ i ≤ k,
M contains at most ri edges of Ei. This problem was first studied in [17] by Itai, Rodeh and
Tanimoto for bipartite graphs and shown to be N P-hard for the general case and solvable in
polynomial time for the variant when there is only one set E1, i.e., when k = 1. The version,
in which G is bipartite and each Ei contains two edges (and hence each ri = 1) was proven to
be N P-hard by Garey and Johnson [11]. The problem was also considered in [25] and [31].

Our results We present simple combinatorial algorithms for the weighted and unweighted
version of the Kt,t-free t-matching problem in bipartite graphs. In the weighted version we
assume that the weights of edges are vertex-induced on every subgraph isomorphic to Kt,t. In
these algorithms we successively find and apply a minimum length/weight augmenting path
until it is no longer possible. The search for an augmenting path is conducted in a specially
modified graph G, called G′. Graph G′ is obtained from G by replacing some subgraphs
with so-called gadgets that contain half-edges. A half-edge of edge e is, informally speaking,
a half of e containing exactly one of its endpoints. Half-edges have been first introduced
in [27]. Each subgraph that is replaced with a gadget in a given step is isomorphic to Kt,t

and t2 − 1 of its edges belong to the current t-matching M . In previous algorithms for these
problems such or similar subgraphs were shrunk. One could say that we take an opposite
approach and expand such subgraphs. However, in our case these expansions do not build on
each other and in each step G′ is constructed only from the original graph G and a current
t-matching M . We give a detailed description of these algorithms for square-free 2-matchings
and their analyses and only an outline for the Kt,t-free t-matching problem. In addition
to being significantly simpler our algorithms are also faster than those known previously.
For the unweighted square-free 2-matching problem our algorithm has running time O(nm),
where n denotes the number of vertices in the graph and m the number of edges. Both
algorithms by Hartvigsen and Babenko run in O(n3) time and the one by Pap in O(n4). For
the weighted/unweighted version of the Kt,t-free t-matching problem we give an algorithm
with running time, respectively, O(tnm + t2n2 log n) and O(nm + tn2 +

√
tnm). For the

weighted variant the algorithm by Takazawa has runtime O(tn2m + tn3 log n) for the t-factor

K. Paluch and M. Wasylkiewicz 73:3

problem (each vertex has to be incident with exactly t edges) and O(t5n6 + t4n6 log n) for the
t-matching problem because of the costly reduction to the t-factor problem. The algorithm
by Makai has polynomial time but it uses the ellipsoid method.

Regarding classical matchings we devise a polynomial time algorithm for the variant
of the Restricted Matching Problem when (i) for each i the graph G contains a clique or
a bipartite clique on all endpoints of Ei; in the case of a bipartite clique it is required to
contain Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint - the endpoints of any two
different sets have at most one vertex in common.

Motivation Ck-free 2-matchings and Kt,t-free t-matchings are classical problems of com-
binatorial optimization. They have applications in traveling salesman problems, problems
related to finding a smallest 2-edge-connected spanning subgraph as well as in increasing the
vertex-connectivity (see [5, 2, 3, 34] for more details). A good survey of these applications
has been given by Takazawa [35].

Related work Some generalizations of the Ck-free 2-matching problem were investigated.
Recently, Kobayashi [21] gave a polynomial algorithm for finding a maximum weight 2-
matching that does not contain any triangle from a given set of forbidden edge-disjoint
triangles. Polynomial algorithms for square-free and/or triangle-free 2-matchings in subcubic
graphs were presented in [15, 16, 2, 3, 20, 28, 22]. An algorithm by Paluch and Wasylkiewicz
uses a similar approach as the one presented in this paper but requires only one computation
of a b-matching. When it comes to the square-free 2-matching problem in general graphs,
Nam [26] constructed a complex algorithm for it for graphs, in which all squares are vertex-
disjoint.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We denote the
number of vertices of G by n and the number of edges of G by m. We denote a vertex
set of G by V (G) and an edge set by E(G). We assume that all graphs are simple, i.e.,
they contain neither loops nor parallel edges. We denote an edge connecting vertices v and
u by (v, u). A path of graph G is a sequence P = (v0, . . . , vl) for some l ≥ 1 such that
(vi, vi+1) ∈ E for every i ∈ {0, 1, . . . , l − 1}. We refer to l as the length of P . A cycle of
graph G is a sequence c = (v0, . . . , vl−1) for some l ≥ 3 of pairwise distinct vertices of G

such that (vi, v(i+1) mod l) ∈ E for every i ∈ {0, 1, . . . , l − 1}. We refer to l as the length of c.
We will sometimes treat a path or a cycle as an edge set and sometimes as a sequence of
edges. For an edge set F ⊆ E and v ∈ V , we denote by degF (v) the number of edges of F

incident to v. For any two edge sets F1, F2 ⊆ E, the symmetric difference F1 ⊕ F2 denotes
(F1 \ F2) ∪ (F2 \ F1).

For a natural number t, we say that an edge set F ⊆ E is a t-matching if degF (v) ≤ t

for every v ∈ V . t-matchings belong to a wider class of b-matchings, where for every vertex
v of G, we are given a natural number b(v) and a subset of edges is a b-matching if every
vertex v is incident to at most b(v) of its edges. A b-matching of G of maximum weight
can be computed in polynomial time. We refer to Lovász and Plummer [23] for further
background on b-matchings.

Let M be a b-matching. We say that an edge e is matched (in M) if e ∈ M and
unmatched (in M) otherwise. Additionally, an edge belonging to M will be referred to as a
M-edge and an edge not belonging to M as a non-M-edge. We call a vertex v deficient (in
M) if degM (v) < b(v). An M-alternating path P is any sequence of vertices (v1, v2, . . . , vk)
such that edges on P are alternately M -edges and non-M -edges and no edge occurs on P

ESA 2021

73:4 Restricted t-Matchings via Half-Edges

more than once and v1 ̸= vk. An M-alternating cycle C has the same definition as an
M -alternating path except that v1 = vk and additionally (vk−1, vk) ∈ M iff (v1, v2) /∈ M .
Note that an M -alternating path or cycle may go through some vertices more than once but
via different edges. An M -alternating path is called M-augmenting if it begins and ends
with a non-M -edge and if it begins and ends with a deficient vertex. We say that M is a
maximum b-matching if there is no b-matching of G with more edges than M . Given a
weight function w : E → R we define weight of M as w(M) =

∑
e∈M w(e). We say that M

has maximum weight if there is no b-matching of G of weight greater than w(M).
Given a weight function w, the alternating weight of an M -alternating path or cycle P is

defined as w̃(P) =
∑

e∈P ∩M w(e) −
∑

e∈P \M w(e). We say that an M -augmenting path P is
minimum if it has minimum alternating weight among all M -augmenting paths and cannot
be shortened without increasing its alternating weight. An M -alternating cycle is a negative
cycle if its alternating weight is negative. An application of an M -alternating path or cycle
P to M is an operation whose result is M ⊕ P . Note that w(M ⊕ P) = w(M) − w̃(P).

We are interested in computing a b-matching of a graph G where we are given vectors
l, u ∈ NV and a weight function w : E → R. For a vertex v ∈ V , [l(v), u(v)] is said to
be a capacity interval of v. An edge set M ⊆ E is said to be an (l, u)-matching if
l(v) ≤ degM (v) ≤ u(v) for every v ∈ V . A maximum weight (l, u)-matching can be computed
efficiently.

For a weight function w : E → R and a subgraph H of G, we say that w is vertex-
induced on H if there exists a function r : V (H) → R such that w(u, v) = r(u) + r(v) for
every edge (u, v) of H. We call r a potential function of H.

An instance of the square-free 2-matching problem consists of an undirected bipartite
graph G = (V, E) and the goal is to find a maximum square-free 2-matching of G. A
generalization of a square-free 2-matching in a bipartite graph is a Kt,t-free t-matching
- a t-matching without any Kt,t - a bipartite clique with t vertices on each of the two
sides. An instance of the Kt,t-free t-matching problem consists of an undirected bipartite
graph G = (V, E) and a natural number t ≥ 2. The aim is to compute a maximum Kt,t-
free t-matching. We also consider weighted versions of these problems, in which we are
additionally given a weight function w : E → R≥0 that is vertex-induced on each subgraph of
G isomorphic to Kt,t and the task consists in finding a maximum weight Kt,t-free t-matching.

3 Outline of the Algorithm for Square-Free 2-Matchings

The general scheme of the algorithm for each variant of the square-free 2-matching problem
is the same - we give it below.

Algorithm 1 Computing a maximum (weight) square-free 2-matching of a bipartite graph G.
1: Let M be an empty 2-matching of G.
2: Construct an auxiliary bipartite graph G′ = (V ′, E′) with O(n) vertices and O(m)

edges, and its 2-matching M ′ of size O(n) by replacing some squares of G with gadgets
containing half-edges. (Both gadgets and half-edges are defined later.)

3: Compute a shortest (resp. minimum) M ′-augmenting path P of G′. If G′ contains no
M ′-augmenting path (resp. no M ′-augmenting path with negative alternating weight),
stop the algorithm and return M .

4: Apply P to M ′ obtaining M ′′ and extract a square-free 2-matching M1 of G from M ′′

such that |M1| = |M | + 1 (resp. w(M1) > w(M)). Set M as M1 and go to 2.

K. Paluch and M. Wasylkiewicz 73:5

▷ Claim 3.1. Algorithm 1 runs in time O(nm + n2 log n).

Proof. It will be easy to implement all steps of an Algorithm 1 except 3 in linear time. 3 can
be implemented to run in time O(|E′|+|V ′| log |V ′|) by Fredman and Tarjan’s implementation
of Dijkstra’s algorithm [9] similarly as in the Hungarian method described by Schrijver [32].
Every step is executed O(n) times since |M | increases by one every time 4 is executed. ◁

Let us also remark that in the unweighted version of the problem Algorithm 1 runs in
O(nm) since 3 can be implemented to run in linear time.

4 Maximum square-free 2-matchings in bipartite graphs

In this section we show how to find a maximum square-free 2-matching in a bipartite graph
G. When computing a maximum 2-matching N of G, which is not required to be square-free,
we can proceed as follows. As long as G contains some N -augmenting path P , apply it to
N and repeat. When the goal is to compute a maximum square-free 2-matching of G, this
approach is not applicable for two reasons. Firstly, by applying an augmenting path to a
square-free 2-matching we may obtain a 2-matching which is not square-free. Secondly, it
may happen that a square-free 2-matching M is not maximum but G does not contain any
M -augmenting path P such that M ⊕ P is square-free. An example of such a 2-matching is
shown in Figure 1. Nevertheless, it turns out as we demonstrate below, that we may still use
this method if the search for an augmenting path is conducted in an appropriately modified
graph G, called G′.

a1

b1

Figure 1 Edges of a square-free 2-matching M are waved. M is not maximum, G contains an
M -augmenting path P (with endpoints a1, b1) but M ⊕ P is not square-free. If we apply both P

and an M -alternating cycle C (indicated by red edges), we obtain a larger square-free 2-matching.

First let us check what types of squares of G are in danger of appearing in a 2-matching
after the application of a shortest augmenting path. (In fact P does not have to be shortest -
it suffices if P has no shortcuts.)

▶ Fact 4.1. Any shortest M-augmenting path P ′ has the property that for any vertex v,
it contains at most two edges incident to v: at most one matched edge and at most one
unmatched one.

Proof. Otherwise P ′ would contain an alternating cycle C and hence could be shortened.
(This property does not hold in non-bipartite graphs.) ◀

▶ Lemma 4.2 (Proposition 2.1. in [33]). Let M be a square-free 2-matching of G and P any
shortest M-augmenting path. If M ⊕ P contains a square s, then exactly three edges of s

belong to M .

ESA 2021

73:6 Restricted t-Matchings via Half-Edges

Proof. Suppose that M ⊕ P contains a square s = (a, b, c, d) such that at least two of its
edges do not belong to M , one of which is (a, b). Therefore (a, b) ∈ P and by the fact above
we get that both (b, c) and (a, d) belong to M . Hence, (c, d) /∈ M . Thus, the edges (a, b), (c, d)
belong to P and are connected in P by an odd-length alternating M -path R. R’s endpoints
are either a and d or b and c. Also, R begins and ends with an M -edge. This means that P

can be shortened by replacing R either with (a, d) or (b, c) - a contradiction. ◀

Suppose that M is a (possibly empty) square-free 2-matching of G. We say that a square
s of G is saturated (in M) if exactly three edges of s are contained in M . The graph G′ in
which we are going to search for an augmenting path is obtained from the original graph
G by replacing a subset of saturated squares with specially constructed subgraphs called
gadgets. More details are given below.

One can observe that, since G is bipartite, any edge e of G belongs to at most two
different saturated squares.

▶ Definition 4.3. A saturated square s, which has exactly one common edge with some other
saturated square is said to be unproblematic. Otherwise, s is said to be problematic.

Unproblematic squares can be easily got rid of by replacing some edges with other ones
as explained in more detail in the proof of Lemma 4.8.

▶ Fact 4.4. If two problematic squares have a common edge, then they share exactly two
edges, both of which are in M . Any problematic square is non-edge-disjoint with at most one
other problematic square.

Proof. Let s1 and s2 be two problematic squares of G with a common edge. Since they are
problematic, they have at least two common edges. Note that s1 and s2 cannot share more
than two edges because otherwise they would share all four vertices. However, two different
squares cannot share all vertices because G is simple and bipartite. Let e1, e2 be the common
edges of s1 and s2. They cannot be vertex-disjoint because then again s1 and s2 would have
four common vertices. Hence, e1 and e2 have a common vertex v.

Next we argue that both e1 and e2 must belong to M . Suppose to the contrary that
e1 /∈ M . This implies that the endpoint v′of e2 different from v is incident to three egdes of
M - a contradiction.

To see that s1 cannot share an edge with a problematic square s3 ̸= s2, observe that
in such a case s3 would have to share with s1 exactly one of the edges of {e1, e2} and
additionally some edge e3. The edge e3 cannot belong to s2 because it is incident to a vertex
of s1 not contained in s2. Hence, s3 and s2 share exactly one edge, which implies that s2 is
not problematic - a contradiction. ◀

If G contains at least one problematic square, we build a graph G′ = (V ′, E′) together
with its 2-matching M ′, in which each problematic square s is replaced with a subgraph,
called a gadget for s. The precise construction of G′ and M ′ is the following. We start off
with G′ = G. We initialize M ′ as the set of edges of M which are not part of any problematic
square.

Let s = (a, b, c, d) be any problematic square of G such that (a, b) /∈ M . For each edge
(p, q) of s we add two new vertices vp

q and vq
p, called subdivision vertices (of s), and we

replace (p, q) with three new edges: (p, vp
q), (vp

q , vq
p), (vq

p, q). Each of the edges (p, vp
q), (vq

p, q)
is called a half-edge (of (p, q) and also of s). The edge (vp

q , vq
p) is called an eliminator (of

(p, q)). We remove the eliminator of the edge (a, b) from E′. Additionally, we introduce two
new vertices u1

s and u2
s, called global vertices. We connect u1

s with every subdivision vertex

K. Paluch and M. Wasylkiewicz 73:7

connected to a or c. Similarly, we connect u2
s with every subdivision vertex connected to b or

d. We define vectors l, u ∈ NV ′ as follows. We set a capacity interval of every vertex of the
original graph G to [0, 2] and we set a capacity interval of every other vertex of G′ to [1, 1],
i.e., every vertex of V ′ \ V is matched to exactly one vertex of G′ in any (l, u)-matching of
G′. For every edge e ∈ M of s, we add half-edges of e to M ′. Additionally, we add (u1

s, va
b)

and (u2
s, vb

a) to M ′. If two problematic squares share two edges, then their gadgets overlap,
i.e., we build a gadget for each one of them in the way described above.

The main ideas behind the gadget for a problematic square s = (a, b, c, d) are the following.
An (l, u)-matching M ′ of G′ is to represent roughly a square-free 2-matching M of G. If
M ′ contains both half-edges of some edge e, then e is included in M . If M ′ contains an
eliminator of e, then e does not belong to M (is excluded from M). We want to ensure that
at least one edge of s does not belong to M . This is done by requiring that the two global
vertices u1

s and u2
s are matched to two subdivision vertices. In this way two half-edges of s

are guaranteed not to belong to M ′ and hence to M .
Additionally, we can observe that for a 2-matching M depicted in Figure 1, there exists

one M ′-augmenting path in G′ comprising all red edges.

a b

cd

s

a b

cd

va
b vb

a

vb
c

vc
b

vc
dvd

c

vd
a

va
d

u1
s u2

s

ra rb

rb

rc

rcrd

rd

ra

Figure 2 A gadget for a problematic square s = (a, b, c, d) such that (a, b) /∈ M . Weights of the
edges for the weighted version are given in red.

It turns out that if G′ contains an M ′-augmenting path, then we can apply a shortest
one to M ′, obtaining a larger 2-matching M ′′ of G′. From M ′′ we can in turn obtain a
square-free 2-matching M2 of G of size |M | + 1. This is achieved by first changing around
the half-edges of M ′′ so that for each edge e ∈ E belonging to a problematic square we have
that either both half-edges of e are contained in M ′′ or none. Next, if needed, we get rid of
unproblematic squares.

▶ Lemma 4.5. Let P be a shortest M ′-augmenting path of G′ and let M ′′ = M ′ ⊕ P . Then
there exists exactly one 2-matching M1 of G, denoted as img(M ′′), such that:
1. for each vertex v of G it holds that degM ′′(v) = degM1(v),
2. for each edge e ∈ E not belonging to any problematic square, we have that e ∈ M1 ⇔ e ∈

M ′′.

Proof. We obtain M1 from M ′′ as follows. First for each edge e ∈ E not belonging to any
problematic square, we include e into M1 if and only if e ∈ M ′′. Next we remove all edges of
M ′′ incident to global vertices and flip the half-edges so that for each edge e ∈ E belonging
to a problematic square we have that either both half-edges of e are contained in M ′′ or
none. To see that the half-edges can indeed be changed around in such a way we use the
following observation.

ESA 2021

73:8 Restricted t-Matchings via Half-Edges

▶ Observation 4.6. Let s = (a, b, c, d) be a problematic square such that (a, b) /∈ M . If P

goes through any unmatched half-edge of (a, b), then it does not go through any matched
half-edge of s incident to a or b.

Proof. Assume that P goes through (vb
a, b). Then P must also go through the global vertex

u2
s, which in turn means that P must also go through d. (Otherwise P would contain an

alternating cycle going through vertices u2
s, vb

c, b, vb
a.) Suppose now that P also contains the

matched half-edge of s incident to b. Then P must also contain (vb
c, vc

b) and (vc
b , c). (If s

shares edges (b, c) and (c, d) with another problematic square s′, then from vb
c P may go to a

global vertex of s′, but then it also has to go to d and the case is as below.) This way we
obtain a contradiction, because we could shorten P : instead of going through d and u2

s, b, c

using seven edges P could use three edges (d, vd
c), (vd

c , vc
d), (vc

d, c) instead.
If, on the other hand, P also contained the matched half-edge incident to a, then it would

have to contain also the eliminator of (a, d) and the second half-edge of (a, d), which would
mean that P contains four edges incident to d, using both matched edges incident to it - a
contradiction. ◀

This means the following.
1. If P goes through u1

s but not u2
s, then P also goes through c and thus P contains exactly

two half-edges of s: one matched half-edge incident to c and one unmatched half-edge
incident to a. As a result M ′′ contains exactly one matched half-edge incident to c and
two matched half-edges incident to a and thus the degrees of vertices a, b, c, d with respect
to half-edges of s contained in M ′′ are equal to, respectively, 2, 1, 1, 2. In this case we
set M1 so that it contains edges (b, a), (a, d), (d, c) but not (b, c). The case when P goes
through u2

s but not u1
s is symmetrical.

2. If P goes through both u1
s and u2

s, then P contains exactly four half-edges of s: one
matched half-edge incident to c, one matched half-edge incident to d and both half-edges
of (a, b). As a result the degrees of vertices a, b, c, d with respect to half-edges of s

contained in M ′′ are equal to, respectively, 2, 2, 1, 1. In this case we set M1 to contain
edges (b, a), (a, d), (b, c) but not (d, c).

3. If P goes neither through u1
s nor through u2

s, then P either does not go through any
half-edge of s at all or goes through two matched half-edges of exactly one of the edges
(b, c), (c, d), (a, d). As a result M ′′ has the property that for each edge e of s either both
half-edges of e are in M ′′ or none. In this case we include an edge e of s into M only if
its both half-edges are present in M ′′.

This finishes the proof. ◀

We have the analogue of Lemma 4.2.

▶ Lemma 4.7. Let P be any shortest M ′-augmenting path in G′. If M1 = img(M ′ ⊕ P)
contains a square s, then s is unproblematic (in M).

Proof. Let s = (a, b, c, d) be some square of G that is contained in M1. First, we can notice
that if each of the unmatched edges of s is also present in G′, then by Lemma 4.2, we know
that s can appear in M1 only if it is saturated and hence only if it is unproblematic (because
otherwise s is replaced with a gadget). Second, we observe that s cannot be problematic,
because the gadget for s ensures that at least two half-edges of s do not belong to M ′ ⊕ P

and hence at least one edge of s does not belong to M1.
Suppose then now that s is not saturated and at least one of its unmatched edges, say

(a, b), is not present in G′. It means that there exists a problematic square s′ that contains
(a, b). The edge (a, b) appears in M1 only if at least one of the half-edges of (a, b) is contained

K. Paluch and M. Wasylkiewicz 73:9

in P . Suppose it is (a, va
b). It means that P contains also some matched (half-)edge e′

incident to a. By Observation 4.6 the edge e′ cannot be contained in s′. Neither can it be
contained in s because then s could not appear in M1. This means that the edge (a, d) of s

is unmatched. We notice however, that (a, d) cannot belong to M1 because neither (a, d) can
belong to P (as it would mean that P contains four (half-)edges incident to a and thus could
be shortened) nor any half-edge of (a, d) can belong to P (if (a, d) belongs to a problematic
square s′′ then by Observation 4.6, if P contains a half-edge of (a, d), then it does not contain
a matched half-edge incident to a). ◀

▶ Lemma 4.8. Let P be any shortest M ′-augmenting path in G′ and M1 = img(M ′ ⊕ P).
If M1 is not square-free then it can be transformed into a square-free 2-matching M2 such
that |M1| = |M2|.

Proof. We consider every square s = (a, b, c, d) of M1. By Lemma 4.7, s is unproblematic.
Hence it shares exactly one edge with another unproblematic square s′. Assume that (a, b)
is unmatched in M . Observe that (c, d) cannot be a common edge of s and s′ because any
vertex of G can be incident to at most two edges of M . Neither can (a, b) be a common edge
of s and s′, because then P could be shortened and not go through (a, b) at all. Suppose
then that (b, c) is a common edge of s and s′ = (b, c, e, f). It means that (c, e) /∈ M and
(b, f) ∈ P ∩ M . Since apart from (a, b) none of the edges of s belongs to P , the edge (e, c)
cannot belong to P either. Therefore, s′ is an M1-alternating cycle. We apply s′ to M1. As
a result s does not occur in M1 any more. Also, this operation does not introduce any new
square into M1 because the edges (f, b), (b, a), (a, d), (d, c), (c, e) form a path of length five
and are guaranteed to belong to M1; therefore, none of them can be part of a square. ◀

▶ Lemma 4.9. If there is no M ′-augmenting path in G′, then M is a maximum square-free
2-matching of G.

Proof. It is a special case of Lemma 5.9. ◀

5 Maximum weight square-free 2-matchings in bipartite graphs

In this section we extend the results from the previous section to the weighted setting.
Recall that this problem is N P-hard for general weights, therefore we assume that the
weight funcion w is vertex-induced on every square. Some proofs are omitted due to space
constraints.

▶ Lemma 5.1. Let s and s′ be two problematic squares that have exactly two common edges.
Then w is vertex-induced on s ∪ s′.

Proof. Let s = (a, b, c, d) and s′ = (a, b, c, e). Let r and r′ be potential functions of,
respectively, s and s′. Observe that r(a) + r(b) = w(a, b) = r′(a) + r′(b) and r(b) + r(c) =
w(b, c) = r′(b) + r′(c). Let ∆ = r(a) − r′(a). We increase both r′(a) and r′(c) by ∆ and
decrease both r′(b) and r′(e) by ∆. Notice that r′ is still a valid potential function of s′ after
this operation. Additionally, now r and r′ agree on the common vertices. Therefore, r ∪ r′ is
a potential function of s ∪ s′. ◀

To the construction of G′ from Section 4 we add a weight function w′ : E(G′) → R
defined as follows. The half-edges incident to a, b, c and d get weight r(a), r(b), r(c) and
r(d), respectively, where r(a), . . . , r(d) are potentials of s. All the other edges of the gadget
get weight 0.

ESA 2021

73:10 Restricted t-Matchings via Half-Edges

Define k : E(G′) → {0, 1/2, 1} such that

k(e) =


1 if e ∈ E(G),
1/2 if e is a half-edge,
0 otherwise.

For e ∈ E(G′) we say that k(e) is the size of e.

▶ Definition 5.2. Consider any (l, u)-matching N of G′. We define the size of N as
k(N) =

∑
e∈N k(e). We say that N is extreme if it has maximum weight among all (l, u)-

matchings of size k(N) in G′. A matching M of G is said to be extreme if it has maximum
weight among all matchingss of size |M | in G′.

Algorithm 1 for computing a maximum weight square-free 2-matching differs from the
variant for computing for computing a maximum (size) 2-matching only in the fact that
we compute a minimum M ′-augmenting path instead of a shortest M ′-augmenting one.
Finding a minimum M ′-augmenting path requires computing an M ′-augmenting path P

with minimum alternating weight. To be able to do this, we need to know that there are no
negative cycles in G′. We prove the absence of negative cycles in G′ as well as the optimality
of the 2-matching computed by Algorithm 1 by using linear programming.

The weighted square-free 2-matching problem can be formulated as an integer program
as follows. We assign a variable x(e) for each edge e ∈ E. Any such variable can take on only
two values: 0 or 1, where setting a variable x(e) to 1 denotes including e in the 2-matching.
To ensure that variables x(e) encode a 2-matching we add constraint 2b. Constraint 2c means
that for any square s of the graph at most three of its edges can belong to the 2-matching.

Let S denote the set of all squares of G and x ∈ RE(G). The weighted square-free
2-matching problem can be formulated as an integer program, whose linear programming
relaxation is the following:

(P) maximize
∑

e∈E(G)

w(e)x(e) (1a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (1b)

∑
e∈E(s)

x(e) ≤ 3 (∀s ∈ S), (1c)

∑
e∈E(G)

x(e) = k. (1d)

Let x be any feasible solution of (P) and M = {e ∈ E : x(e) = 1}. We can check that M

is a square-free 2-matching of G. Namely, the first constraint ensures that for any vertex v at
most two edges of M are incident to v and the second constraint implies that for any square
s of the graph at most three of its edges belong to M . The linear program (P) has been
shown to have an integral optimal solution by Makai [24]. For our purposes we need linear
programs, which are relaxations of integer programs for, correspondingly, the extreme size k

square-free 2-matching problem and the extreme size k (l, u)-matching problem. These linear
programs (Pk) and (P ′

k) and their duals (Dk), (D′
k) are given below, where x′ ∈ RE′(G).

K. Paluch and M. Wasylkiewicz 73:11

(Pk) maximize
∑

e∈E(G)

w(e)x(e) (2a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (2b)

∑
e∈E(s)

x(e) ≤ 3 (∀s ∈ S), (2c)

∑
e∈E(G)

x(e) = k, (2d)

0 ≤ x(e) ≤ 1 (∀e ∈ E(G)). (2e)

(Dk) minimize 2
∑

v∈V (G)

p(v) +
∑

e∈E(G)

q(e) + 3
∑
s∈S

α(s) + βk (3a)

subject to p(u) + p(v) + q(e) +
∑

s∈S:e∈E(s)

α(s) + β ≥ w(e)(∀e = (u, v) ∈ E(G)),

(3b)
p, q, α ≥ 0. (3c)

(P ′
k) maximize

∑
e∈E(G)

w′(e)x(e) (4a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (4b)

∑
e∈δ(v)

x(e) = 1 (∀v ∈ V (G′) \ V (G)), (4c)

∑
e∈E(G′)

k(e)x(e) = k, (4d)

0 ≤ x(e) ≤ 1 (∀e ∈ E(G′)). (4e)

(D′
k) minimize 2

∑
v∈V (G)

p(v) +
∑

v∈V (G′)\V (G)

p(v) +
∑

e∈E(G′)

q(e) + βk (5a)

subject to p(u) + p(v) + q(e) + βk(e) ≥ w′(e) (∀e = (u, v) ∈ E(G′)), (5b)
p(v) ≥ 0 (∀v ∈ V (G)), (5c)
q ≥ 0. (5d)

We define the linear program (P ′) as (P ′
k) without the inequality 4d. We denote the

dual programs of (P) and (P ′), respectively, as (D) and (D′), correspondingly. These dual
programs differ from (Dk) and (D′

k) in that they do not contain the variable β.

▶ Fact 5.3. Consider an optimal integral primal solution x∗ of (Pk) and an optimal dual
solution p∗, q∗, α∗, β∗ of (Dk). Define M∗ = {e ∈ E : x∗(e) = 1}. From complementarity
slackness we have the following:

ESA 2021

73:12 Restricted t-Matchings via Half-Edges

e ∈ M∗ =⇒ p∗(u) + p∗(v) + q∗(e) +
∑

s∈S:e∈E(s)

α∗(s) + β∗ = w(e)

(∀e = (u, v) ∈ E(G))
v is deficient in M∗ =⇒ p∗(v) = 0 (∀v ∈ V),

e /∈ M∗ =⇒ q∗(e) = 0 (∀e ∈ E),
s is not saturated in M∗ =⇒ α∗(s) = 0 (∀s ∈ S).

Similar constraints hold for the other linear programs. We identify a 2-matching with its
incidence vector x.

Let us now explain how we use these linear programs. Observe that to show that G′

contains no negative cycles, it suffices to demonstrate that M ′ is extreme in G′, or in other
words, that M ′ is an optimal solution of (P ′

k). Below in Lemma 5.6 we prove that M ′

is extreme in G′ if M is extreme in G. This means that we need to show that for every
k, 0 ≤ k ≤ n in iteration k of Algorithm 1, the computed 2-matching M of size k is an
optimal solution of (Pk). Of course, the empty 2-matching is an optimal solution of (P0).
Assuming that we have an extreme 2-matching of size k − 1 in M , we build M ′ and G′

and find a minimum M ′-augmenting path in G′. Next we show that by applying P to M ′

we obtain an (l, u)-matching N of size k, which is extreme in G′. This (l, u)-matching N

corresponds to a 2-matching M1 of size k. We prove that the optimality of the solution N of
(P ′

k) implies the optimality of the solution M1 of (Pk).

▶ Lemma 5.4. Consider any bipartite graph H and l, u : V (H) → N≥0. Then an (l, u)-
matching polytope is defined by the following inequalities:

l(v) ≤ x(δ(v)) ≤ u(v) (∀v ∈ V (H)),
0 ≤ x(e) ≤ 1 (∀e ∈ E(H)).

Proof. It is known that an incidence matrix of a bipartite graph is totally unimodular, hence
incidence matrix AH of H is totally unimodular. Observe that P = {x ∈ RE(H) : l ≤ AHx ≤
u ∧ 0 ≤ x ≤ 1}, hence P is integral from theory of totally unimodular matrices. ◀

▶ Lemma 5.5. Linear programs (P ′
k) and (P ′) have integral optimal solutions.

To compute a minimum M ′-augmenting path in G′, we first find an M ′-augmenting path
P with minimum alternating weight. To be able to do this, we need to know that there are
no negative cycles in G′. In the following lemma we prove the absence of negative cycles in
G′. Next, if needed, we shorten P .

▶ Lemma 5.6. Assume that M is an optimal solution to (Pk). Then M ′ is an optimal
solution to (P ′

k), and thus M ′ is extreme in G′. Hence, there are no negative cycles in G′.

▶ Lemma 5.7. Let M ′ be an extreme (l, u)-matching in G′ and P a minimum M ′-augmenting
path. Then N ′ = M ′ ⊕ P is extreme in G′.

The proof is almost identical to that of Theorem 17.2 in [32].

▶ Lemma 5.8. Let P be a minimum M ′-augmenting path and let M ′′ = M ′ ⊕ P and
N = img(M ′′).

If M ′ ⊕ P is extreme in G′, then N is an optimal solution of (Pk).

K. Paluch and M. Wasylkiewicz 73:13

▶ Lemma 5.9. Assume that M ′ is a maximum-weight (l, u)-matching of G′. Then M is a
maximum-weight square-free 2-matching of G.

▶ Lemma 5.10. Let P be a minimum M ′-augmenting path and let M ′′ = M ′ ⊕ P and
M1 = img(M ′′). Then w(M1) = w′(M ′) − w̃′(P) and M1 can contain only unproblematic
squares. M1 can be transformed into a square-free 2-matching M2 such that w(M2) = w(M1).

Proof. At the beginning we show that w(M1) = w′(M ′′). We have that w′(M ′′) = w′(M ′) −
w̃′(P). Observe that the flipping of half-edges does not change the weight of M1. Hence
w(M1) = w′(M ′′).

We observe that Fact 4.1 is still valid in the weighted case, because G′ contains no
negative alternating cycles. The same is true for Observation 4.6 because of Fact 4.1 and
the following. We can shorten P going through d and u2

s, b, c so that it uses three edges
(d, vd

c), (vd
c , vc

d), (vc
d, c) instead, because the weight of each of these two subpaths is the same

and equal to r(c) + r(d).
Next we notice that the proof of Lemma 4.7 goes through for the weighted setting as

long as Lemma 4.2 is still valid. We now argue that it indeed is. It suffices to prove that if
s = (a, b, c, d) is such that (a, b), (c, d) ∈ P \M , (b, c), (a, d) ∈ M \P , then P can be shortened.
Suppose that R is a subpath of P that consists of edges strictly between (a, b) and (c, d) and
that a and d are its endpoints. (The case that b and c are the endpoints of R is symmetrical.)
Let PR be a path obtained from P by replacing its subpath R by an edge (a, d). We show
that w′(PR) ≤ w′(P), contradicting the choice of P . w is vertex-induced on s, therefore,
w′(P) − w′(PR) = w′(R) − w′(a, d) = w′(R) + w(a, d) = w′(R) + w(a, b) + w(c, d) − w(b, c) =
w′(R) + w′(a, b) + w′(b, c) + w′(c, d) = w′(C) where C is an alternating cycle of G consisting
of R and three edges of s. Recall that w′(C) ≥ 0 because M is extreme. ◀

The corollary of Lemmas 4.8, 5.9 and 5.10 is:

▶ Theorem 5.11. Algorithm 1 computes a maximum (resp. maximum weight) square-free
2-matching of G.

6 Maximum-weight Kt,t-free t-matchings in bipartite graphs

In this section we solve the weighted Kt,t-free t-matching problem in bipartite graphs. Since
the case of t = 2 has already been addressed in the previous section, we assume that t ≥ 3.
Also, similarly as in Section 5, we assume that the weight function w is vertex-induced on
every Kt,t of G. The general scheme of the algorithm for the weighted Kt,t-free t-matching
problem is similar to Algorithm 1- we give it below.

Algorithm 2 Computing a maximum weight Kt,t-free t-matching of a bipartite graph G.
1: Let M be an empty t-matching of G.
2: Construct an auxiliary bipartite graph G′ = (V ′, E′) with O(tn) vertices and O(m)

edges, and its t-matching M ′ of size O(tn) by replacing some Kt,t’s of G with gadgets
containing half-edges.

3: Compute a minimum M ′-augmenting path P of G′. If G′ contains no M ′-augmenting
path with negative alternating weight, stop the algorithm and return M .

4: Apply P to M ′ obtaining M ′′ and extract a Kt,t-free t-matching M1 of G from M ′′

such that |M1| = |M | + 1 and w(M1) > w(M). Set M as M1 and go to 2.

▷ Claim 6.1. Algorithm 2 runs in time O(tnm + t2n2 log n).

ESA 2021

73:14 Restricted t-Matchings via Half-Edges

Proof. It is possible to implement all steps of an Algorithm 2 except 3 in linear time. Every
step is executed O(tn) times since |M | increases by one every time 4 is executed. ◁

Let us also remark that in the unweighted version of the problem the runtime of Al-
gorithm 2 is O(nm + tn2 +

√
tnm) because 3 can be implemented to run in linear time and

the algorithm can start not from an empty matching but from a maximum (t − 1)-matching,
whose computation takes O(

√
tnm) time. Additionally, we may want to forbid only some

subgraphs of G isomorphic to Kt,t. Then we proceed analogously, but replace only forbidden
subgraphs with gadgets.

▶ Definition 6.2. A subgraph H of G isomorphic to Kt,t is saturated if it contains exactly
one non-M -edge.

▶ Lemma 6.3. Any two different saturated Kt,t’s of G are vertex-disjoint.

Proof. Let H be any saturated Kt,t of G. We say that a vertex v of H is basic in H if v is
an endpoint of the only non-M -edge of H. Otherwise, we say that v is nonbasic in H. Let
V1(G) ∪ V2(G) denote the bipartition of V (G). Thus H has exactly two basic vertices: one
in V1(H) and the other in V2(H).

Let H1 and H2 be any two different saturated Kt,t’s of G with a common vertex v ∈ V1(G1).
We first show that it cannot happen that v is nonbasic both in H1 and H2. Suppose to the
contrary that v is nonbasic both in H1 and H2. Then all t edges of M incident to v1 belong
both to H1 and H2. Hence, we get that V2(H1) = V2(H2). Since t ≥ 3, at least one of the
vertices of V2(H1) is nonbasic both in H1 and H2, which implies that V1(H1) = V1(H2), but
this contradicts the fact that H1 and H2 are different.

Suppose next that v is basic both in H1 and H2. Then v has t − 1 incident edges of M in
H1 and t − 1 incident edges of M in H2. Since M is a t-matching, at least one of these edges,
say (v, v′), belongs both to H1 and H2. This however means that v′ is nonbasic both in H1
and H2 (because the endpoints of an M -edge cannot be both basic in the same saturated
Kt,t).

Finally, consider the case when v is basic in H1 and nonbasic in H2. It means that at least
two M -edges incident to v, say (v, v′) and (v, v′′), belong to both H1 and H2. Vertices v′, v′′

belong to V2(H2), none of them is basic in H1 and at most one is basic in H2. Therefore, at
least one of them is nonbasic both in H1 and H2 - a contradiction. ◀

▶ Observation 6.4. All saturated Kt,t’s of G can be found in linear time.

Proof. We can use a linear time algorithm by Galil and Italiano [10]. ◀

We replace every saturated Kt,t of G with a gadget described below. By Lemma 6.3, all
saturated Kt,t’s of G are vertex-disjoint.

The construction of the gadget for a saturated Kt,t is the following. Let H by any Kt,t

of G, AH = {a1, a2, . . . , at} be a set of vertices of one side of H and BH = {b1, b2, . . . , bt} -
of the other side. Let r : V (H) → R be a potential function of H. Assume that (a1, b1) /∈ M .
For every edge (ai, bj) of H, we introduce two subdivision vertices, vai

bj
, v

bj
ai , two half-edges

and one eliminator. We remove an eliminator of (a1, b1). We set the weight of every half-edge
incident to v ∈ V (H) to r(v). Additionally, we add u1

s and u2
s to G′. We connect u1

s to every
subdivision vertex adjacent to some vertex of AH and we connect u2

s to every subdivision
vertex adjacent to some vertex of BH . We add all half-edges of this gadget except for (a1, va1

b1
)

and (b1, vb1
a1

) to M ′. Additionally, we add (u1
s, va1

b1
) and (u2

s, vb1
a1

) to M ′.

K. Paluch and M. Wasylkiewicz 73:15

a1 b1

a2 b2

a3 b3

a1 b1

a2 b2

a3 b3

va1
b1 vb1

a1

va1
b2

vb2
a1

va1
b3

vb3
a1

va2
b1

vb1
a2

va2
b2 vb2

a2

va2
b3

vb3
a2

va3
b1

vb1
a3

va3
b2

vb2
a3

va3
b3 vb3

a3

u1
s u2

s

Figure 3 A gadget for a problematic K3,3.

7 Restricted matchings

In this section we consider the following variant of the Restricted Matching Problem. We are
given (1) a (not necessarily bipartite) graph G = (V, E), (2) a natural number k, (3) a set of
k subsets of edges E1, E2, . . . , Ek such that for each 1 ≤ i ≤ k (i) the graph G contains a
clique or a bipartite clique on all endpoints of Ei; in the case of a bipartite clique, it contains
the whole set Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint - the endpoints of
any two different cliques have at most one vertex in common and (4) k natural numbers
r1, r2, . . . , rk. The task is to find a maximum size matching M of G among ones that satisfy
the condition: for each 1 ≤ i ≤ k it holds that M contains at most ri edges of Ei. Any
matching M of G that satisfies: for each 1 ≤ i ≤ k |M ∩ Ei| ≤ ri is called a restricted
matching.

To solve this problem we construct a graph G′ with gadgets for each of the sets Ei.
The construction of G′ is similar to the one used for square-free 2-matchings. The precise
construction of G′ is the following. We start off with G′ = G. For each 1 ≤ i ≤ k we build a
subgraph, called a gadget for Ei. Let ni = |Ei|. Each edge (p, q) of Ei is replaced with
three new edges (p, vp

q), (vp
q , vq

p), (vq
p, q), two of which are half-edges of (p, q) and the third

one the eliminator of (p, q). If G contains a clique on all endpoints of Ei we introduce one
new global vertex ui and connect it with every subdivision vertex of an edge belonging
to Ei. We set the interval of ui as [2ni − 2ri, 2ni − 2ri]. If G contains a bipartite clique
Ki = (Ai ∪Bi, E′

i) on all endpoints of Ei we introduce two new global vertices u1
i and u2

i . We
connect u1

s with every subdivision vertex of an edge of Ei, which is a neighbour of a vertex
of Ai and similarly, we connect u2

s with every subdivision vertex of an edge of Ei, which is a
neighbour of a vertex of Bi. We set the interval of both u1

i and u2
i as [ni − ri, ni − ri]. Let

N =
∑k

i=1 ni, R =
∑k

i=1 ri and ER =
⋃k

i=1 Ei.
An (l, u)-matching M ′ of G′ is to represent roughly a restricted matching M of G. If M ′

contains both half-edges of some edge e ∈ ER, then e is included in M . If M ′ contains an
eliminator of e, then e does not belong to M (is excluded from M). The intuition behind the
gadget for the set Ei is that the global vertex or vertices in it are required to be matched
to 2ni − 2ri subdivision vertices of edges of Ei. In this way they block 2ni − 2ri half-edges,
which means that at most 2ni − (2ni − 2ri) = 2ri half-edges of edges of Ei can be present in
M ′. This implies that at most ri edges of Ei can appear in the matching M .

ESA 2021

73:16 Restricted t-Matchings via Half-Edges

▶ Theorem 7.1. Any maximum (l, u)-matching M ′ of G′ yields a maximum restricted
matching of G.

Proof. Any restricted matching M of G corresponds to an (l, u)-matching M1 of G′ such
that |M1| = |M | + 2N − R. To construct such M1 we proceed as follows. We set M1
to an empty (l, u)-matching. For each e ∈ M ∩ ER, we add both half-edges of e to M1.
For each edge e ∈ M \ ER, we add e to M1. Next for each 1 ≤ i ≤ k there exist at
least ni − ri edges of Ei that do not belong to M . We choose any such (ni − ri)-element
subset Fi ⊆ Ei and for each e ∈ Fi we connect in M1 the global vertex/the global vertices
ui/u1

i , u2
i to the two subdivision vertices of e. For every edge e of Ei \ (M ∪ Fi) we add the

eliminator of e to M1. Let us note that the size of any (l, u)-matching N ′ of G′ satisfies:
2|N ′| =

∑
v∈V degN ′(v) +

∑
v∈V ′\V degN ′(v) =

∑
v∈V degN ′(v) + 4N − 2R. This means that

the thus constructed M1 has size |M | + 2N − R.
Consider now any (l, u)-matching M ′ of G′. If for every edge e ∈ Er it holds that either

both half-edges of e are contained in M ′ or none, then we say that M ′ is integral. Every
integral M ′ yields a restricted matching M of G such that |M | = |M ′| − 2N + R. We next
show that even when M ′ is not integral, we are able to build a restricted matching M such
that |M | = |M ′| − 2N + R. We only need to say what to do with half-edges, i.e., with those
edges of Er for which M ′ contains only one of their half-edges. We deal with each set Ei

separately. Suppose first that Ei is such that the graph G contains a clique on all endpoints of
Ei. Let us notice that the number of edges of Ei with exactly one of its half-edges contained
in M ′ is even. Let Fi denote such edges and V ′

i denote those endpoints of edges of Fi that
are incident to some half-edge of an edge of Fi. Then |V ′

i | is even. We pair vertices of V ′
i in

an arbitrary way and for two vertices u, u′ belonging to one pair we replace two half-edge of
M ′ incident with u and u′ with one edge (u, u′) of M . The case when G contains a bipartite
clique on all endpoints of Ei is analogous. ◀

References
1 Maxim Babenko. Improved algorithms for even factors and square-free simple b-matchings.

Algorithmica, 64(3):362–383, 2012.
2 Kristóf Bérczi and Yusuke Kobayashi. An algorithm for (n − 3)-connectivity augmentation

problem: Jump system approach. Journal of Combinatorial Theory, Series B, 102(3):565–587,
2012.

3 Kristóf Bérczi and László Végh. Restricted b-matchings in degree-bounded graphs. In Integer
Programming and Combinatorial Optimization, pages 43–56, 2010.

4 Gérard Cornuéjols and William Pulleyblank. A matching problem with side conditions.
Discrete Mathematics, 29(2):135–159, 1980.

5 Marshall Fisher, George Nemhauser, and Laurence Wolsey. An analysis of approximations for
finding a maximum weight hamiltonian circuit. Operations Research, 27(4):799–809, 1979.

6 Tamás Fleiner. Uncrossing a family of set-pairs. Combinatorica, 21:145–150, 2001.
7 András Frank. Restricted t-matchings in bipartite graphs. Discrete Applied Mathematics,

131(2):337–346, 2003.
8 András Frank and Tibor Jordán. Minimal edge-coverings of pairs of sets. Journal of Combin-

atorial Theory, Series B, 65(1):73–110, 1995.
9 Michael Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
10 Zvi Galil and Giuseppe Italiano. Reducing edge connectivity to vertex connectivity. SIGACT

News, 22:57–61, 1991.
11 Michael Garey and David Johnson. Computers and Intractability. Freeman, 1979.

K. Paluch and M. Wasylkiewicz 73:17

12 Jim Geelen. The C6-free 2-factor problem in bipartite graphs is NP-complete. Unpublished,
1999.

13 David Hartvigsen. Extensions of Matching Theory. PhD thesis, Carnegie-Mellon University,
1984.

14 David Hartvigsen. Finding maximum square-free 2-matchings in bipartite graphs. Journal of
Combinatorial Theory, Series B, 96(5):693–705, 2006.

15 David Hartvigsen and Yanjun Li. Maximum cardinality simple 2-matchings in subcubic graphs.
SIAM Journal on Optimization, 21(3):1027–1045, 2011.

16 David Hartvigsen and Yanjun Li. Polyhedron of triangle-free simple 2-matchings in subcubic
graphs. Mathematical Programming, 138:43–82, 2013.

17 Alon Itai, Michael Rodeh, and Steven Tanimoto. Some matching problems for bipartite graphs.
Journal of the ACM, 25(4):517–525, 1978.

18 Zoltán Király. C4-free 2-factors in bipartite graphs. Technical report, Egerváry Research
Group, 1999.

19 Zoltán Király. Restricted t-matchings in bipartite graphs. Technical report, Egerváry Research
Group, 2009.

20 Yusuke Kobayashi. A simple algorithm for finding a maximum triangle-free 2-matching in
subcubic graphs. Discrete Optimization, 7:197–202, 2010.

21 Yusuke Kobayashi. Weighted triangle-free 2-matching problem with edge-disjoint forbidden
triangles. In Integer Programming and Combinatorial Optimization, pages 280–293, 2020.

22 Yusuke Kobayashi and Xin Yin. An algorithm for finding a maximum t-matching excluding
complete partite subgraphs. Discrete Optimization, 9(2):98–108, 2012.

23 László Lovász and Michael Plummer. Matching theory. AMS Chelsea Publishing, corrected
reprint of the 1986 original edition, 2009.

24 Márton Makai. On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM Journal
on Discrete Mathematics, 21:349–360, 2007.

25 Monaldo Mastrolilli and Georgios Stamoulis. Constrained matching problems in bipartite
graphs. In Combinatorial Optimization, pages 344–355, 2012.

26 Yunsun Nam. Matching Theory: Subgraphs with Degree Constraints and other Properties.
PhD thesis, University of British Columbia, 1994.

27 Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen. Simpler approximation of the
maximum asymmetric traveling salesman problem. In 29th International Symposium on
Theoretical Aspects of Computer Science, pages 501–506, 2012.

28 Katarzyna Paluch and Mateusz Wasylkiewicz. A simple combinatorial algorithm for restricted
2-matchings in subcubic graphs - via half-edges. Information Processing Letters, 171, 2021.

29 Gyula Pap. Alternating paths revisited ii: restricted b-matchings in bipartite graphs. Technical
report, Egerváry Research Group, 2005.

30 Gyula Pap. Combinatorial algorithms for matchings, even factors and square-free 2-factors.
Mathematical Programming, 110:57–69, 2007.

31 Irena Rusu. Maximum weight edge-constrained matchings. Discrete Applied Mathematics,
156(5):662–672, 2008.

32 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

33 Kenjiro Takazawa. A weighted Kt,t-free t-factor algorithm for bipartite graphs. Mathematics
of Operations Research, 34(2):351–362, 2009.

34 Kenjiro Takazawa. Decomposition theorems for square-free 2-matchings in bipartite graphs.
Discrete Applied Mathematics, 233:215–223, 2017.

35 Kenjiro Takazawa. Finding a maximum 2-matching excluding prescribed cycles in bipartite
graphs. Discrete Optimization, 26:26–40, 2017.

36 László Végh and András Benczúr. Primal-dual approach for directed vertex connectivity
augmentation and generalizations. In SODA 2005. Proceedings of the sixteenth annual ACM-
SIAM symposium on discrete algorithms., pages 186–194, 2005.

ESA 2021

	1 Introduction
	2 Preliminaries
	3 Outline of the Algorithm for Square-Free 2-Matchings
	4 Maximum square-free 2-matchings in bipartite graphs
	5 Maximum weight square-free 2-matchings in bipartite graphs
	6 Maximum-weight K_{t,t}-free t-matchings in bipartite graphs
	7 Restricted matchings

