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Abstract
The quantum k-Local Hamiltonian problem is a natural generalization of classical constraint
satisfaction problems (k-CSP) and is complete for QMA, a quantum analog of NP. Although the
complexity of k-Local Hamiltonian problems has been well studied, only a handful of approximation
results are known. For Max 2-Local Hamiltonian where each term is a rank 3 projector, a natural
quantum generalization of classical Max 2-SAT, the best known approximation algorithm was
the trivial random assignment, yielding a 0.75-approximation. We present the first approximation
algorithm beating this bound, a classical polynomial-time 0.764-approximation. For strictly quadratic
instances, which are maximally entangled instances, we provide a 0.801 approximation algorithm,
and numerically demonstrate that our algorithm is likely a 0.821-approximation. We conjecture
these are the hardest instances to approximate. We also give improved approximations for quantum
generalizations of other related classical 2-CSPs. Finally, we exploit quantum connections to a
generalization of the Grothendieck problem to obtain a classical constant-factor approximation for
the physically relevant special case of strictly quadratic traceless 2-Local Hamiltonians on bipartite
interaction graphs, where a inverse logarithmic approximation was the best previously known (for
general interaction graphs). Our work employs recently developed techniques for analyzing classical
approximations of CSPs and is intended to be accessible to both quantum information scientists
and classical computer scientists.
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1 Introduction

The design and analysis of approximation algorithms [37,38] is an extensively studied area
in theoretical computer science. In this setting, we are given some (generally NP-hard)
optimization problem, and we are tasked with producing a valid (feasible) solution with
objective within some provable factor of the optimal objective value. To understand this
formally imagine we are given some optimization problem P , which corresponds to an infinite
set of problem instances {Pi}. Each problem instance corresponds to a triple Pi = (fi, Ti, ni)
where ni ∈ N+, Ti ⊆ {0, 1}ni , and fi : Ti → R+ is an objective function. This gives rise to
an optimization problem of the form: OPTi = maxs∈Ti fi(s).
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74:2 Beating Random Assignment

An approximation algorithm A acts on an efficient description of an instance to produce
some feasible solution to the problem: A(fi, Ti, ni) = s̄i ∈ Ti in time polynomial in the
instance size (polynomial in ni). It is said that algorithm has approximation factor α for
0 < α ≤ 1 if in the worst-case (over all instances), the solution produced by the algorithm is
a factor of α off of the optimal answer:

min
i

fi(s̄i)
OPTi

≥ α.

Since we should not expect to solve NP-hard problems in polynomial time, an interesting
question is then the approximability of NP-hard optimization problems, or the study of
which approximation factors α are obtainable for different problems. As one might expect,
approximability is highly problem sensitive and there are many classes of natural problems
with widely varying approximability [15,17,23,37,38].

2-Local Hamiltonian. In stark contrast, although QMA-hard quantum optimization prob-
lems arise naturally through well-known physically motivated problems [5, 35], they have
very few known approximation algorithms with provable approximation factors [2, 4, 8, 11, 18,
19,21,22,31]1. The QMA-hard optimization studied in these works, as well as the problem
we sill study here, is the 2-Local Hamiltonian problem [24, 25].

An instance of this problem is specified by a problem size, n, as well as a set of 2-local
interactions (i.e., interactions on pairs of qubits), {Hij}ij∈E . Each Hij ∈ C2n×2n is some local
Hamiltonian which can be written as the tensor product of n− 2 identity terms with some
nontrivial operator, Oij ∈ C4×4, that acts on at most 2 qubits, i.e. Hij = Oij ⊗ I[n]\{i,j} ∈
C2n×2n (see Section 2.1 for notation). The optimization problem corresponding to a particular
instance is to find the smallest or largest eigenvalue, λmin or λmax, of H =

∑
ij∈E Hij .

▶ Problem 1 (QLH: Quantum Max 2-Local Hamiltonian). Given a problem size, n, as well as
a classical description of a set of 2-local terms {Hij = Oij ⊗ I[n]\{i,j}}ij∈E with Hij ∈ C2n×2n

Hermitian, find:

λmax(H) := max
|ϕ⟩∈(C2)⊗n

⟨ϕ|H|ϕ⟩ = max
ρ∈C2n

×C2n

Tr(ρ)=1, ρ⪰0

Tr [Hρ] , where H :=
∑
ij∈E

Hij .

Ideally, an algorithm solving this problem would also produce a description of or access to
a corresponding eigenvector. We will focus on approximating λmax for special cases of 2-local
Hamiltonian. Although exactly computing λmax(H) is equivalent to computing λmin(−H),
the approximability of these problems can differ. An approximation algorithm, A, acts on
the description of the local Hamiltonians {Hij} to produce a classical description of a valid
quantum state, ρ̄. Once again we say that the algorithm achieves approximation factor α if:

Tr[
(∑

ij Hij

)
ρ̄]

λmax

(∑
ij Hij

) ≥ α, for all instances.

1 Here and throughout this paper we mean a classical algorithm which takes as input a classical description
of a quantum problem and produces a classical description of a quantum state. An approximation
algorithm for a QMA-hard problem can have several natural meanings distinct from this (quantum
input, quantum algorithm which produces classical output, etc.).
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Generally we assume some property of the Hamiltonian which forces λmax(H) > 0 so that this
is a sensible definition. A common assumption [18,21,24] is that the terms Hij are positive
semi-definite (PSD) and nonzero. We note that when all of the terms Hij are taken to be
diagonal projectors (in say, the standard computational basis), the corresponding instance
of 2-Local Hamiltonian corresponds precisely to an instance of the classical 2-Constraint-
Satisfaction problem (2-CSP). In this case, the 4 diagonal entries of Oij correspond to the
{0, 1} output values of a Boolean function on variables xi and xj corresponding to i and
j. See Appendix E in [30] for more details as well as a classical motivation for 2-Local
Hamiltonian. In addition Table 1 highlights classical 2-CSP specializations of quantum Max
2-local Hamiltonian problems for which approximation algorithms are known.

The 2-Local Hamiltonian problem is interesting in many different contexts of physics and
quantum information [24,25,29]. This problem is manifestly interesting to physicists because
the 2-local nature of the problem matches the local nature of many physical systems (spin
chains, Ising model, etc.). Hence, the study of eigenstates and energies is of utmost importance,
and has been since the beginnings of quantum mechanics itself [6]. From a theoretical
computer science perspective, the 2-Local Hamiltonian problem is interesting for the same
reasons that classical approximation algorithms are interesting. Under standard complexity
theoretic assumptions, we should not expect to be able to efficiently solve the problem, so the
interesting direction is the study of the approximability of the problem. Can we find rigorous
approximation algorithms, and how well can we expect to be able to approximate the answer?
Moreover, which classes of instances admit constant-factor approximation algorithms? Akin
to the classical PCP Theorem, the potential inapproximability of local Hamiltonian problems
to within constant factors is known as the Quantum PCP Conjecture. The resolution of the
conjecture would yield insight into properties of quantum mechanics and entanglement (e.g.,
Section 1.3 in [1]).

1.1 Our Contributions

The QLH problems we consider generalize a variety of classical optimization problems,
including Max 2-SAT, Max Cut, general Max 2-CSP, and the Grothendieck problem (see
Table 1 for our results). We focus on QLH where each term Hij is a projector and the special
case where each projector is strictly quadratic, both of which remain QMA-hard [32]. The
strictly quadratic case precludes non-identity 1-local terms (i.e. Oi ⊗ I[n]\{i} with Oi ̸= I)
that may be implicit in a 2-local term (see Definition 8). In this case Oij = wijPij , where Pij

is a 2-qubit projector, and wij ≥ 0 is a weight. There are three interesting cases, depending
on the rank of Pij . We will obtain approximation factors for each.

▶ Problem 2 (QLHP(k): Quantum Max 2-Local Hamiltonian on Projectors). Given a problem
size, n, as well as a classical description of a set of 2-local terms {Hij = wijPij ⊗I[n]\{i,j}}ij∈E

with wij ≥ 0 and Pij ∈ C4×4 a 2-qubit projector of rank at least k, find λmax(
∑

ij∈E Hij).

▶ Remark 3. Although Problem 2 is formulated for a single term Hij per pair of qubits i, j,
our techniques apply when multiple terms are present per pair. Since any Oij ⪰ 0 can be
written as a positive combination of rank-1 projectors, the version of QLHP(1) we solve more
generally captures instances of QLH where each Hij ⪰ 0.

ESA 2021



74:4 Beating Random Assignment

▶ Theorem 4 (Informal). Given an instance of QLHP(k), {Hij = wijPij ⊗ I[n]\{i,j}}, where
all 2-local projectors Pij are rank k ∈ {1, 2, 3}, we give a classical randomized polynomial-time
algorithm with approximation ratio α(k), where

α(k) =


0.387 if k = 1
0.565 if k = 2
0.764 if k = 3.

▶ Theorem 5 (Informal). If in addition to the assumptions of Theorem 4, the terms Hij are
strictly quadratic, we give a classical randomized polynomial-time algorithm with approxima-
tion ratio α(k), where

α(k) =


0.467 if k = 1
0.639 if k = 2
0.805 if k = 3.

The decision version of the problem we consider is known as Quantum-SAT and was
introduced in 2006 by Bravyi [10], and the approximability of QLHP was first considered in
2011 by Gharibian and Kempe [18], who observed that the maximally mixed state trivially
achieves an approximation ratio of k/4 for k ∈ {1, 2, 3}. The only nontrivial result previously
known is a 0.328-approximation for the k = 1 case by Hallgren, Lee, and Parekh [21]. In
contrast to previous works [19, 21], we are able to directly analyze the expected performance
of our algorithm rather than appealing to known but weaker black-boxes.

Significance of our work. We give the first approximation algorithms beating random
assignment for QLHP. We show how to move beyond numerical evaluation of approximation
ratios for QLH, which is not as critical in the classical case that enjoys only a handful of
parameters. This is accomplished by: (1) reducing the number of parameters for analysis of
a single term from 18 to 3 (in the strictly quadratic case), and (2) explicitly computing the
coefficients of a Hermite decomposition of a multivariate Gaussian expectation. The latter
generalizes previous results of Briët, de Oliveira Filho, and Vallentin [13] employed in [19].
We are able to analyze a natural generalization of classical hyperplane rounding that we
expect will enable approximation of other QLH problems.

Strictly quadratic instances. We believe the strictly quadratic case is an interesting special
case for several reasons. As noted, one of the difficulties in analyzing rounding schemes for
QLH is the sheer number of parameters involved. The quadratic case reduces the number of
parameters to consider, while still including physically relevant QMA-hard instances such
as the Max Heisenberg model that serves as a quantum generalization of Max Cut [19].
Indeed we believe that quadratic instances allow one to glean insights and develop techniques
that might otherwise be obscured in more general instances. Some of the first rigorous
approximation algorithms for QLH that go beyond product states were recently developed
for quantum Max Cut [2,31]. Moreover, maximally entangled instances are strictly quadratic,
and we conjecture these are the hardest cases to approximate.

Numerical results and upper bounds. We conjecture that the true performance of our
algorithm for general QLHP, including linear terms, is:
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▶ Conjecture 6. (Informal) Our rounding algorithm achieves approximation ratio:

α(k) =


0.498 if k = 1
0.653 if k = 2
0.821 if k = 3,

and these quantities match the worst-case gap between OPT and our SDP upper bound.

We have indeed confirmed the approximation ratios in Conjecture 6 through numerical
experiments. The difficulty in taking these encouraging results as fact is: (1) the increase in
complexity for an exhaustive search as the number of parameters grows, and (2) although
we do give series expansions for the expected performance of the algorithm, establishing
smoothness of the expected performance is more difficult than for classical CSP approximation
algorithms. Classical 2-CSP approximation factors are also established numerically; however,
the performance is usually a well-behaved function of a single parameter, which makes
exhaustive numerical search more plausible. There has been limited work on rigorous analysis
of 2-CSP approximation guarantees [36]. We note that for the strictly quadratic case, our
approach requires a search over only three parameters, rendering these numerical results
more plausible. We also note that the performance of a similar approximation algorithm for
quantum Max Cut, a special case of QLHP(1), is a hypergeometric function in one parameter,
and the corresponding approximation guarantee is indeed 0.498 [19].

An upper bound on α(k) is given below for an instance of QLPH(k) on 2 qubits, with
multiple edges that are each strictly quadratic rank-k projectors. These bounds are fairly
close to the values in Conjecture 6.

▶ Theorem 7. There exist an instance of QLH on a single edge e, where He ⪰ 0 is strictly
quadratic, is a convex combination of rank-k projectors, and satisfies:

max
|ϕ1⟩∈C2,|ϕ2⟩∈C2

⟨ϕ1| ⊗ ⟨ϕ2|He |ϕ1⟩ ⊗ |ϕ2⟩ ≤ β(k) · λmax (He) ,

where β(k) =


1/2 if k = 1
2/3 if k = 2
5/6 if k = 3.

Proof. The Bell states take their usual definition:

|Φ+⟩ = |00⟩ + |11⟩√
2

, |Φ−⟩ = |00⟩ − |11⟩√
2

, |Ψ+⟩ = |01⟩ + |10⟩√
2

, and |Ψ−⟩ = |01⟩ − |10⟩√
2

.

We define,

He(k) = k − 1
3 I + 4 − k

3 |Ψ−⟩ ⟨Ψ−| .

Let µ(k) = max|ϕ1⟩∈C2,|ϕ2⟩∈C2 ⟨ϕ1| ⊗ ⟨ϕ2|He(k) |ϕ1⟩ ⊗ |ϕ2⟩. From, e.g., [19], we know that
µ(1) = 1/2, while λmax(He(1)) = 1 since |Ψ−⟩ is an eigenvector of the rank-1 projector
He(1). For k > 1 we have that

µ(k) = k − 1
3 + 4 − k

3 µ(1) = k + 2
6 , and

λmax(He(k)) = k − 1
3 + 4 − k

3 λmax(He(1)) = 1,

ESA 2021
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yielding the desired values of β(k). We give explicit descriptions of He(k) as convex combi-
nations of rank-k projectors for k = 2, 3:

He(2) =1
3(|Ψ−⟩ ⟨Ψ−| + |Φ+⟩ ⟨Φ+|) + 1

3(|Ψ−⟩ ⟨Ψ−| + |Φ−⟩ ⟨Φ−|)

+ 1
3(|Ψ−⟩ ⟨Ψ−| + |Ψ+⟩ ⟨Ψ+|), and

He(3) =1
3
(
I − |Φ+⟩ ⟨Φ+|

)
+ 1

3
(
I − |Φ−⟩ ⟨Φ−|

)
+ 1

3
(
I − |Ψ+⟩ ⟨Ψ+|

)
. ◀

1.2 Related Work
In the interest of classical approximations of a 2-Local Hamiltonian instance H, let OPT :=
λmax(H) and define

OPTprod := max
|ϕ1⟩,...,|ϕn⟩

∈C2

⟨ϕ1| ⊗ ...⊗ ⟨ϕn|H |ϕ1⟩ ⊗ ...⊗ |ϕn⟩

to be the product state2 with the largest objective value or energy.
Approximations for QLH generally make assumptions on the form of the terms Hij . One

common assumption is on the geometry of the interactions in E. Bansal, Bravyi, and Terhal
show that 2-Local Hamiltonian on bounded-degree planar graphs admits a polynomial-time
approximation scheme3 (PTAS) [4], and Brandão and Harrow generalize this to arbitrary
planar graphs [8]. On the other end, for k-Local Hamiltonian on dense graphs, Gharibian
and Kempe give a PTAS with respect to OPTprod [18], and Brandão and Harrow extend this
result to obtain a PTAS for dense graphs with respect to OPT [8]. Brandão and Harrow also
show the existence of product-states with energy nearly that of OPT or give product-state
approximations for a variety of graph classes [8].

Bravyi, Gosset, König, and Temme give an Ω( 1
log n )- approximation for traceless 4

QLH [11]. This case is general enough to capture classical problems with no constant-
factor approximations [3]. Harrow and Montanaro give an approximation algorithm for
traceless k-Local Hamiltonian with respect to the maximum degree and size of the interaction
hypergraph [22]. Note that approximating traceless QLH generalizes all problems considered
in this paper, since adding copies of the identity only improves the approximation factor;
however there is no reason to expect such analysis could be used to prove constant factor
approximations for the classes we study.

A unifying theme among recent approaches (see Table 1 for approximation guarantees)
is employing a semi-definite program (SDP) to provide an upper bound on OPT and then
using generalization of some classical randomized rounding scheme to produce a product
state [11,19,21]. Such an approach was first carried out by Brandão and Harrow [8]. Gharibian
and Parekh [19] consider a QMA-hard rank-1 QLHP problem that is a generalization of
the classical Max Cut problem. Hallgren, Lee, and Parekh [21] study QLHP and give
the first approximation beating random assignment for rank-1 QLHP. They also provide

2 As is suggested by the expression, a product state is a quantum state which factors according to tensor
product of individual quantum states. Such states have no entanglement and are considered “classical”
states.

3 This is an approximation algorithm that for a constant ε > 0, allows a 1-ε approximation factor at the
expense of a runtime that depends on 1/ε.

4 A traceless instance is one with Tr[H] = 0. Alternatively, when expressed as a polynomial in the Pauli
basis, H is traceless if it has no identity term.
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approximations when each term is a product term, Hij = Hi ⊗Hj , which is a QMA-hard class
of QLH. An approximation result of [8] leverages the quantum Lasserre hierarchy of SDPs.
The first level of this hierarchy yields a natural SDP relaxation that is employed by [11]
and [19]. Our work adopts the approach of [21] and strengthens the natural SDP relaxation
with additional constraints related that enforce positivity of 2-qubit marginals. Both [19]
and [21] appeal to approximation results of Briët, de Oliveira Filho, and Vallentin [12, 13] to
analyze the expected performance of their rounding algorithms. The rounding scheme of [11]
is a generalization of a classical approximation by Charikar and Wirth [14].

Beyond product states. Gharibian and Parekh [19] give a 0.498-approximation for their
quantum generalization of Max Cut, where 1

2 is the best possible approximation by product
states (see Theorem 7). Anshu, Gosset, and Morenz [2] demonstrate that it is possible to beat
a 1

2 -approximation for quantum Max Cut by furnishing a classical randomized approximation
that outputs a description of a tensor product of 1- and 2-qubit states rather than product
states, which are tensor products of 1-qubit states. This result does not rely on an SDP
as an upper bound on OPT , instead appealing to well-known monogamy of entanglement
bounds for the Heisenberg model. Parekh and Thompson [31] observe that a similar type
of approximation is possible using the second level of the quantum Lasserre hierarchy and
obtain a slight improvement over the approximation ratio of [2].

Although these results may seem to suggest that the future of approximation algorithms
for QLH should look beyond product states, a solid understanding of the approximability of
product states is likely necessary for any type of general approximation algorithm for QLH.
Brandão and Harrow [8] show that for (certain generalizations of) regular graphs, OPTprod
approaches OPT as the degree increases. Indeed, trading off product-state approximations
with more general quantum states is a key ingredient in both [2] and [31].

2 Semidefinite Relaxation and Rounding Approach

In this section we present a rigorous but high-level overview of our approach, with technical
lemmas deferred to later sections. We define the main problems considered and our semidefi-
nite relaxation and rounding algorithm. We conclude by motivating the analysis that will
occur in detail in the full version of this paper, [30].

2.1 Preliminaries
Quantum information notation. We adopt some standard notations used in quantum
information [28]. The kets |0⟩ := [0, 1] and |1⟩ := [1, 0] represent the standard basis vectors
for C2, while the bras ⟨0| and ⟨1| represent their conjugate transposes. The d× d identity
matrix is denoted by Id, and the subscript will be omitted when redundant. We obtain
the standard bases for C2n as |b1b2 . . . bn⟩ := |b1⟩ |b2⟩ . . . |bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ . . .⊗ |bn⟩, with
bi ∈ {0, 1}. The Pauli matrices will have the usual definition:

σ0 = I =
[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
. (1)

We will generally use subscripts to indicate quantum subsystems. If ρ is a density matrix on
n qubits, for instance, ρij will correspond to the marginal density matrix on qubits i and j,
i.e. the partial trace ρij = Tr[n]\{i,j}[ρ] (e.g. [28], Section 2.4.3). Similarly, σj

i corresponds
to Pauli j on qubit i. Subscripts will supercede position in many cases in the paper, for
instance σ1

i ⊗ σ2
j ⊗ I[n]\{i,j} is meant as I ⊗ I ⊗ ...⊗ σ1 ⊗ ...⊗ I ⊗ σ2 ⊗ ...⊗ I where σ1 is at

ESA 2021
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Table 1 Approximation algorithms for Max 2-local Hamiltonian problems. The number of
qubits or Boolean variables is n, and the set of pairwise constraints is E. For readability in the table
below, we omit weights wij ≥ 0 that may be present in both 2-local Hamiltonian (2-LH) and related
classical constraint satisfaction (2-CSP) problems. [30] provides more details on the relationship between
2-LH and 2-CSP, as well as definitions for Xi, Yi, Zi. An “N” denotes a numerical result; the classical
results are implicitly numerical since they are obtained by numerically finding the worst-case ratio over a
range of parameters. The abbreviation “quad.” refers to strictly quadratic instances.

Max 2-LH problem
(QMA-hard)

Max 2-CSP
specialization
(NP-hard)

Classical approx.
for 2-CSP

Classical approx.
for 2-LH problem
(product state)

Traceless∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij has no I terms

Classical Ising
max -

∑
ij∈E

zizj

zi ∈ {±1}

Ω( 1
log n

) [14] Ω( 1
log n

)†[11]

Bipartite Traceless∑
e∈E

Hij ⊗ I[n]\{ij}
Hij has no I terms
E bipartite

Grothendieck
max -

∑
ij∈E

zizj

zi ∈ {±1}
E bipartite

0.561 + ε [9] 0.187†(quad.)

Positive/Rank 1∑
ij∈E

Hij ⊗ I[n]\{ij}
I ⪰ Hij ⪰ 0
(≡ Hij rank 1 projector)

Max 2-CSP
(≡ 1 satisfying
assignment
per clause)

0.874 [27] 0.25 (random)
0.328 [21]
0.387
0.467 (quad.)
0.498 (quad., N)
0.5 (upper bound)

Max Heisenberg∑
ij∈E

I − XiXj − YiYj − ZiZj

(special case of above)

Max Cut
max

∑
ij∈E

1 − zizj

zi ∈ {±1}

0.878 [20] 0.25 (random)
0.498 [19]
0.5 (upper bound)
0.53*[2]
0.533*[31]

Rank 2∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij rank 2 projector

Max 2-CSP
with 2 satisfying
assignments/clause

0.874 [27] 0.5 (random)
0.565
0.639 (quad.)
0.653 (quad., N)
0.667 (upper bound)

2-QSAT∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij rank 3 projector

Max 2-SAT
(≡ 3 satisfying
assignments/clause)

0.940 [27] 0.75 (random)
0.764
0.805 (quad.)
0.821 (quad., N)
0.834 (upper bound)

* This exceeds the product-state upper bound because it is achieved by a classical approximation
algorithm that rounds to a description of a non-product state.

† For any traceless 2-LH problem, we obtain a product-state approximation ratio that is 1
3 of an

approximation ratio for a related classical CSP, using the appropriate classical approximation
algorithm as a black box (see Appendix F in the extended version of this article [30]). This
also gives another algorithm and proof for the result of [11] in the first row.
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the ith position and σ2 is at the jth position. We encourage readers familiar with classical
constraint satisfaction problems to consult Appendix E in [30], which casts such problems as
quantum local Hamiltonian problems.

2-local Hamiltonian. Our approxiations for QLHP allow multiedges, i.e. distinct edges e
and e′ on the same pair of qubits i, j. For the sake of exposition, we generally ignore this
possibility and conduct our analysis assuming we have a single term Hij for each ij ∈ E.
However, when necessary, we will use the notation e1 and e2 to refer to the qubits on
which an edge e acts. In this context a term He is 2-local if it can be written in the form
He = Oe ⊗ I[n]\{e1,e2}. Local Hamiltonians have polynomially-sized descriptions which can
be given in terms of the local operators Oe, but for our purposes the details of the description
will not be important. We will use rank(He) to mean rank(Oe). The actual rank of He is
rank(Oe)2n−2, but for ease of exposition we will say that the “rank” of a 2-local term is
equal to the rank of its non-trivial part.

The bulk of our work focuses on strictly quadratic instances of QLHP, allowing us to
express our main ideas more clearly. The strictly quadratic case precludes non-identity
1-local terms (i.e. Oi ⊗ I[n]\{i} with Oi ̸= I) that may be implicit in a 2-local term.

▶ Definition 8 (Strictly Quadratic). Let He be a 2-local term on n qubits. Write He =
Oe ⊗ I[n]\{e1,e2} for some nontrivial operator Oe. Express Oe in the Pauli basis as:

Oe =
3∑

k,l=0
αk,lσ

k ⊗ σl. (2)

We say that He is a strictly quadratic if αk,0 = 0 for all k ̸= 0, and α0,l = 0 for all l ̸= 0.

Note that the coefficients in Equation (2) may be obtained as αk,l = Tr[(σk ⊗ σl)Oe]/4 and
are real since Oe is Hermitian.

Example. An example of a strictly quadratic instance of QLH is quantum Max Cut [19],
where for all ij ∈ E, Oij = 1

4 (I−σ1 ⊗σ1 −σ2 ⊗σ2 −σ3 ⊗σ3). In this case Oij = |Ψ−⟩ ⟨Ψ−|,
with |Ψ−⟩ = 1√

2 (|01⟩ − |10⟩), so that Oij has rank 1. In general, any maximally entangled
pure state on 2 qubits gives rise to a rank-1 strictly quadratic term, since such states must
have maximally mixed reduced density matrices.

2.2 Semidefinite Relaxation
We employ a semidefinite programming relaxation for QLH (Problem 1) that is a refinement of
the now standard SDP relaxation that has been used in designing approximation algorithms [8,
11, 19]. Our relaxation is related to one used by Hallgren, Lee, and Parekh [21] and may be
viewed as a specialization of noncommutative Lasserre hierarchies proposed for quantum
information applications [16,31,34].

In this section we assume, for the sake of exposition, that there is a single edge ij on
any pair of qubits i, j ∈ [n]; however, the relaxation and rounding algorithm may be readily
extended to handle general instances of QLH with multiedges. Suppose we have an instance
of QLH on n qubits. The first set of variables in our SDPs will be marginal density matrices
{ρij}. Since there are n qubits, there are

(
n
2
)

many of these, and each of them is a 4 × 4
Hermitian matrix. While we cannot impose global consistency, we can force each ρij to
be a valid density matrix on its own: Tr[ρij ] = 1 and ρij ⪰ 0 for all i, j ∈ [n]. We could
also explicitly force overlapping marginals to be consistent on single qubit density matrices,
however this will be implicit through our use of moment matrices.
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Moment matrices. Suppose we have a quantum state on n qubits |ψ⟩ ∈ C2n . Consider the
1-local Pauli operators, M = {I}∪{σk

i ⊗I[n]\{j} | k ∈ [3], i ∈ [n]}. We apply each of the 3n+1
Pauli operators O ∈ M on |ψ⟩ to obtain columns of a matrix V = {O |ψ⟩}O∈M ∈ C2n×(3n+1).
We call M := V †V ∈ C(3n+1)×(3n+1) the moment matrix of |ψ⟩ with respect to M; note
that M is Hermitian and M ⪰ 0 by construction. The notation M(O,P) refers to the
entry of M at the row and column corresponding to O,P ∈ M respectively. We have
M(O,P) = ⟨ψ| OP |ψ⟩, for all O,P ∈ M, so that M captures all the 2-local Pauli statistics
of |ψ⟩. In particular the quantity ⟨ψ|H |ψ⟩ is a linear function of the entries of M for a
2-local Hamiltonian H. If we let Mk consist of all the k-local tensor products of Paulis,
instead of just the 1-local ones, the corresponding moment matrix Mk, of size O(nk) by
O(nk), includes all the 2k-local Pauli statistics. We may obtain SDP relaxations for QLH
problems by constructing a relaxed Mk ⪰ 0 that satisfies linear constraints of the form
Tr[AMk] = b, that a true moment matrix would satisfy. This corresponds to the kth level of
noncommutative Lasserre hierarchies introduced for quantum information [16,31,34]. Our
approach relaxes M1 and adds additional constraints enforcing positivity of 2-local marginals;
the relaxation we obtain sits between the k = 1 and k = 2 levels of the noncommutative
Lasserre hierarchy.

SDP Relaxation. We define a (relaxed) moment matrix M , which will track local statistics
of the set of marginals {ρij}. Let M be a symmetric, (3n+ 1) × (3n+ 1) real matrix whose
rows and columns correspond to operators in M. Entries of M will correspond to coefficients
of the marginal density matrices {ρij} in the Pauli basis. We use the notation M(σk

i , σ
l
j) to

refer to entries of M for i, j ∈ [n] and k, l ∈ [3]; in addition we have a row and column of M
indexed by I. We set M(σk

i , σ
l
j) = Tr[σk ⊗ σl ρij ] for (i, k), (j, l) in [n] × [3]. In addition we

set M(I, I) = 1, and M(σk
i , I) = Tr[σk ⊗ I ρij ] for all (i, k) ∈ [n] × [3] and j ∈ [n]. Note that

this constraint forces consistent single-qubit marginals since

Tru[ρiu] = Trv[ρiv] ⇔ Tr[σl ⊗ I ρiu] = Tr[σl ⊗ I ρiv] ∀l.

Since M contains all local information of {ρij}, we can use M to evaluate the objective of
our SDP. In this direction, we will define a weight matrix for each edge Hij = wijOij ⊗In\{i,j},
where Oij ∈ C4×4, and wij is a scalar weight. We define the (3n+ 1) × (3n+ 1) matrix Cij ,
which contains the coefficients of Oij in the Pauli basis:

Cij(σk
i , σ

l
j) = Cij(σl

j , σ
k
i ) = Tr[σk ⊗ σl Oij ]/8 ∀k, l ∈ [3], (3)

Cij(σk
i , I) = Cij(I, σk

i ) = Tr[σk ⊗ I Oij ]/8 ∀k ∈ [3],
Cij(σl

j , I) = Cij(I, σl
j) = Tr[I ⊗ σl Oij ]/8 ∀l ∈ [3],

and all other entries of Cij are 0. To illustrate application of the matrix Cij , suppose Oij

and the marginal density matrix ρij have Pauli decompositions:

Oij =
3∑

k,l=0
αklσ

k ⊗ σl and ρij = 1
4

3∑
k,l=0

βklσ
k ⊗ σl.

Since, for k, l ≥ 0, (σk)2 = I and Tr[σkσl] = 0 when k ̸= l, the value we gain from edge ij,
ignoring the weight wij , is written as:

Tr[Oijρij ] = α00β00 +
∑
k,l:

(k ̸=0)∨(l ̸=0)

αklβkl = Tr[Oij ]
4 + Tr[CijM ]. (4)

With these facts in hand, we may finally give the main SDP relaxation in this work:
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▶ Problem 9. Given an instance of QLH (Problem 1) on n qubits with local terms {Hij =
wijOij ⊗ I[n]\{i,j}}, let Cij be defined according to Equation (3) for each ij ∈ E. Solve the
following SDP:

max
∑
ij∈E

wij

(
Tr[Oij ]

4 + Tr[CijM ]
)

(5)

s.t. M(I, I) = 1, (6)
M(σk

i , σ
k
i ) = 1 ∀i ∈ [n] and k ∈ [3], (7)

M(σk
i , σ

l
i) = 0 ∀i ∈ [n] and k ̸= l ∈ [3], (8)

M(σk
i , σ

l
j) = Tr[σk ⊗ σl ρij ] ∀ij ∈ E and k, l ∈ [3], (9)

M(σk
i , I) = Tr[σk ⊗ I ρij ] ∀ij ∈ E and k ∈ [3], (10)

M(σl
j , I) = Tr[I ⊗ σl ρij ] ∀ij ∈ E and l ∈ [3], (11)

Tr[ρij ] = 1 ∀ij ∈ E, (12)
H(C4×4) ∋ ρij ⪰ 0 ∀ij ∈ E, (13)

S(R(3n+1)×(3n+1)) ∋ M ⪰ 0, (14)

where S(·) and H(·) refer to the symmetric and Hermitian matrices, respectively.
▶ Theorem 10. The mathematical program of Problem 9 is an efficiently computable semidef-
inite program that provides an upper bound on λmax(

∑
ij∈E Hij).

Proof. Constraints (6)–(12) are linear equalities on the entries of PSD matrices M and ρij

∀ij ∈ E, hence we do indeed have an SDP. Since there are polynomially many variables of
polynomial size, the usual considerations show computational efficiency, i.e. the program can
be solved to arbitrary additive precision in polynomial time.

A larger matrix X ⪰ 0, consisting of M and the ρij as its diagonal blocks may be used
to put the SDP into a more standard form (e.g. [7], Section 4.6.2). Although the ρij are
complex, the SDP may be solved as a real SDP by appealing to the standard approach of
tracking the real and imaginary parts separately and observing X ⪰ 0 if and only if[

Re(X) −Im(X)
Im(X) Re(X)

]
⪰ 0.

Let |ψ⟩ be an eigenvector corresponding to λmax(
∑

ij∈E Hij), and let ρ∗
ij , ∀ij ∈ E, be

the 2-qubit marginal density matrices of ρ = |ψ⟩ ⟨ψ|, so that Constraints (12) and (13) are
satisfied for the ρ∗

ij . In addition consider the moment matrix M for |ψ⟩ with respect to M,
as described above. The matrix M satisfies Constraints (6), (7), (9)–(11), and (14) by the
definition of a moment matrix, since

⟨ψ|σk
i ⊗ σl

j ⊗ I[n]\{i,j} |ψ⟩ = Tr[σk ⊗ σl ρ∗
ij ], for 0 ≤ k, l ≤ 3. (15)

Constraint (8) is the only one that remains. Note that the real part of M , M∗ := Re(M) ⪰
0 sinceM ⪰ 0. By Equation (15), for any j ∈ [n] and k ̸= l ∈ [3], M(σk

i , σ
l
i) = ±iTr[σm⊗I ρ∗

ij ],
where m ∈ [3] \ {k, l}. The quantities in Equation (15) are real since tensor products of Pauli
operators are Hermitian. This implies that M(σk

i , σ
l
i) for k ̸= l ∈ [3] is imaginary and more

generally that M∗ and the ρ∗
ij satisfy all the constraints.

Consider the objective value for this solution,
∑

ij∈E wij(Tr[Oij ]/4 + Tr[CijM
∗]) =

∑
ij∈E

wijTr[Oijρ
∗
ij ] = Tr

∑
ij∈E

Hij ρ

 = λmax

∑
ij∈E

Hij

 ,

where the first equality follows from Equation (4). It follows that the optimal solution to
Problem 9 has value at least that of the optimal solution of QLH. ◀
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2.3 Rounding Approach and Formal Statement of Results

Overview. In classical SDP-based rounding schemes, one typically seeks to randomly “round”
unit vectors vi ∈ Rd to scalars zi ∈ {±1} so that the expected value of zizj approximates
vi · vj . The seminal hyperplane rounding scheme of Goemans and Williamson [20] achieves
this by selecting a random unit vector r ∈ Rd and setting zi = r · vi/|r · vi|.

Rounding solutions from SDP relaxations for QLH to product states generalizes this
approach. Recall that a product state has the form |ψ⟩ = |ψ1⟩⊗. . .⊗|ψn⟩ where each |ψi⟩ ∈ C2

is a local state on qubit i. We obtain a density matrix ρ = |ψ⟩ ⟨ψ| = |ψ1⟩ ⟨ψ1|⊗ . . .⊗|ψn⟩ ⟨ψn|,
which is a tensor product of single-qubit density matrices ρi := |ψi⟩ ⟨ψi|. Any such ρi may be
expressed in the Pauli basis as ρi = 1

2 (I + θi1σ
1 + θi2σ

2 + θi3σ
3), where θik = Tr[σkρi] ∈ R

and
∑

k∈[3] θ
2
ik = 1. In particular, product states with θi1 = θi2 = 0 and θ2

i3 = 1 correspond
precisely to the classical setting (see Appendix E in [30] for an explicit connection between
the two). Product states exhibit no entanglement, and we may specify θik independently
for each qubit i. However, instead of producing a single z2

i = 1 as in the classical case,
we must produce a unit vector θi = [θi1, θi2, θi3] ∈ R3 for each i ∈ [n]. Briët, de Oliveira
Filho, and Vallentin were the first to consider such generalizations of scalars to unit vectors,
in the context of the Grothendieck problem [12, 13], and their analysis has fueled recent
approximation algorithms for QLH [19,21].

The classical Goemans-Williamson rounding scheme obtains the unit vectors vi from a
Cholesky decomposition of a PSD matrix V TV = R ⪰ 0. Taking the vi to be columns of V
yields Ri,j = vi · vj . Recent approximation algorithms [11,19,21] for QLH have mimicked
this approach, as do we. Let M∗ ⪰ 0 be an optimal solution to Problem 9 (the ρ∗

ij are
not necessary to describe the rounding algorithm). We find a Cholesky decomposition
V TV = M∗, and let vik ∈ Rd be the column of V associated with σk

i for i ∈ [n], k ∈ [3]; we
may assume d ≤ 3n+ 1. In addition we let v0 be the column of V corresponding to I. These
are unit vectors as a consequence of Constraints (6) and (7).

We will employ the same rounding algorithm for both the general and strictly quadratic
cases. While previous related works [11, 19, 21] have in some cases had to rely on more
sophisticated rounding schemes because they have been amenable to analysis, we are able to
shed light on what is arguably the most natural generalization of the Goemans-Williamson
approach. We draw r ∼ N (0, Id), i.e. a multivariate distribution over d independent and
standard Gaussian variables. For each qubit, we obtain the desired vector θi = [θi1, θi2, θi3]
as:

[vi1 · r, vi2 · r, vi3 · r]/Qi,

where Qi :=
√

(vi1 · r)2 + (vi2 · r)2 + (vi3 · r)2 is a normalization.
The classical Max Cut problem corresponds to a strictly quadratic Hamiltonian (see

Appendix E in [30] for justification); however, classical Max 2-SAT and more general Max
2-CSP have 1-local terms (i.e., linear terms in {±1} variables). In contrast, strictly quadratic
instances of QLHP serve as a quantum generalization of Max 2-SAT and Max 2-CSP that
have no 1-local terms. In order to obtain effective classical approximations in the presence of
1-local terms, an additional vector v0 is necessary, representing (scalar) identity. Generally,
the vector v0 is used in conjunction with more sophisticated rounding schemes (e.g. [27]) to
obtain positive expectation from the 1-local terms. For the quantum case, relatively simple
approaches suffice to get good approximations [21]. Using the vector v0 is not necessary for
the strictly quadratic case, and including it does not affect its approximation.
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Rounding algorithm. The rounding approach described above produces single-qubit density
matrices:

ρi = 1
2

(
I + vi1 · r

Qi
σ1 + vi2 · r

Qi
σ2 + vi3 · r

Qi
σ3
)
.

Hence, on any 1-local term, E[Tr[σkρi]] = E[vik · r/Qi] = 0 since Qi is an even function and
vik · r is an odd function in each entry of r. Thus, in order to get a nontrivial approximation
on 1-local terms, we will use the vector v0 to globally flip the sign of the θi vectors of all
qubits, i.e. vik · r/Qi → sign(v0 · r)(vik · r/Qi). Since sign(v0 · r) ∈ {±1}, for quadratic
objective terms this factor will cancel out, but for 1-local terms we will gain additional
objective from the correlation of v0 · r and vik · r. Formally, we can state the rounding
algorithm, which applies to any instance of QLH, in Algorithm 1.

Algorithm 1 Hyperplane rounding for 2-Local Hamiltonian.
1. Given some instance of Problem 1 formulate and solve the corresponding instance of

Problem 9. Let M∗ be the optimal moment matrix obtained from Problem 9.
2. Find the Cholesky decomposition of M∗, obtaining Cholesky vectors v0 ∈ Rd and

{vik ∈ Rd} such that M∗(σk
i , σ

l
j) = vik · vjl and M∗(I, σk

i ) = v0 · vik for i, j ∈ [n] and
k, l ∈ [3].

3. Let r be a random vector with r ∼ N (0, Id).
4. For each qubit i, set Qi =

√
(vi1 · r)2 + (vi2 · r)2 + (vi3 · r)2, and set θik = sign(v0 ·

r)(vik · r/Qi) for k ∈ [3].
5. Output the (pure) state:

ρ =
n⊗

i=1

1
2(I + θi1σ

1 + θi2σ
2 + θi3σ

3).

We will give the following approximation guarantees for QLHP:

▶ Theorem 11. Fix k ∈ {1, 2, 3}. Suppose we are given an instance of QLHP (Problem 2),
{He} where He = wePe ⊗ I[n]\{e1,e2} for we ≥ 0 and Pe a projector of rank at least k, for
all e ∈ E. Let M∗ be the optimal moment matrix for the corresponding SDP relaxation,
Problem 9, and let ρ be the random output of Algorithm 1. Then,

E

[
Tr
[∑

e∈E

He ρ

]]
≥ α(k)

(∑
e∈E

we

(
rank(Pe)

4 + Tr[CeM
∗]
))

≥ α(k)λmax

(∑
e∈E

He

)
,

where

α(k) =


2/π − 1/4 ≈ 0.387 if k = 1
16/(9π) ≈ 0.565 if k = 2
3/8 + 11/(9π) ≈ 0.764 if k = 3.

▶ Theorem 12. If, in addition to the assumptions of Theorem 11, the Pe are strictly quadratic
projectors, then the random output of Algorithm 1 satisfies:

E

Tr

∑
ij∈E

Hijρ

 ≥ α(k)λmax

∑
ij∈E

Hij

 ,
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where

α(k) =


22/(15π) ≈ 0.467 if k = 1
1/3 + 24/(25π) ≈ 0.639 if k = 2
1/2 + 388/(405π) ≈ 0.804 if k = 3.

The above results are rigorous, but non-optimal. The quadratic analysis depends crucially
on an expansion of a particular expectation in Hermite polynomials. One can consider a
higher order Hermite series to more accurately capture the expectation and achieve a better
approximation factor. We have such results, but opt to not include them in the interest of
the reader. Higher orders bring increased tedium, and our technique should be clear enough
at the end of the paper that an interested reader could do the higher order calculation.

One can ask, why not include a high enough order that the result becomes essentially
optimal? The issue is that polynomial expansions often converge slowly in the presence
of discontinuities [33]. Indeed, computationally we have determined that to get essentially
optimal results one would need to go to high enough order that the polynomial expansion
would become intractable. One can determine the optimal approximation factor by using a
high order expansion and numerically optimizing or simply by randomly sampling over some
“net” of the parameter space. Our observed approximation factors under these approaches are
stated in Conjecture 6. Proving an approximation factor as large as the observed performance
of our algorithm is the subject of future work.

2.4 Analysis Overview

We present an overview of our analysis for the strictly quadratic case, which will also carry
over to the general case with additional bookkeeping and bounding for the 1-local terms.
Suppose we are given an instance of QLHP (Problem 2) on which we execute Algorithm 1 to
produce a random solution ρ. For i, j ∈ [n], the 2-qubit marginals of ρ are

ρij = 1
4(I + θi1σ

1 + θi2σ
2 + θi3σ

3) ⊗ (I + θj1σ
1 + θj2σ

2 + θj3σ
3), (16)

and the objective value of ρ is
∑

ij∈E Tr[Hijρ] =
∑

ij∈E wijAPXij , where APXij :=
Tr[Pijρij ] is the unweighted contribution to the objective value from edge ij. Let M∗

and ρ∗
ij for ij ∈ E be the SDP solution obtained by Algorithm 1, and let SDPij := Tr[Pijρ

∗
ij ]

be the unweighted contribution to the SDP objective value from edge ij. The approximation
ratio, which we seek to bound from below, is consequently:

α = E

[∑
ij∈E wijAPXij∑
ij∈E wijSDPij

]
=
∑

ij∈E wijE[APXij ]∑
ij∈E wijSDPij

.

Observe that APXij ≥ 0 and SDPij ≥ 0 since Pij , ρij , and ρ∗
ij are all PSD. Since all the

terms in the denominator are nonnegative, it follows from an elementary argument that

α ≥
∑

ij∈E wijE[APXij ]∑
ij∈E wijSDPij

≥ min
ij∈E

E[APXij ]
SDPij

.

Thus it suffices to bound the approximation ratio for the worst case occurring on a single
edge.
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Bounding a worst-case edge. We now focus our attention on a single edge e = 12 on
qubits 1, 2. We collect the vectors vik, obtained from a Cholesky decomposition of the SDP
solution M∗, into matrices Vi = [vi1,vi2,vi3] ∈ Rd×3, for i = 1, 2. We define an objective
matrix C ∈ R3×3, containing scaled 2-local Pauli-basis coefficients of P12, in the vein of
Equation (3): C(σk

1 , σ
l
2) := Tr[σk ⊗ σl P12], for k, l ∈ [3] (note that C is not symmetric).

With these definitions in hand, observe that V T
i Vi = I3, by the SDP constraints (7) and

(8), and that 4Tr[C12M
∗] = Tr[V1CV

T
2 ]. The hyperplane rounding produces unit vectors

θT
i = [θi1, θi2, θi3] = rTVi/||V T

i r||. In terms of these variables, we have:

SDPe = Tr[P12ρ
∗
12] = 1

4
(
rank(P12) + Tr[V1CV

T
2 ]
)
, and

E[APXe] = E[Tr[P12ρ12]] = 1
4
(
rank(P12) + E

[
θT

1 Cθ2
])

=

1
4

(
rank(P12) + Er

[
rTV1CV

T
2 r

||V T
1 r|| ||V T

2 r||

])
,

by Equation (4) and because Tr[P12] = rank(P12), since P12 is a projector. Thus, setting
k = rank(P12), the quantity we seek to bound is

α ≥ min
V1,V2,C

k + Er

[
rT V1CV T

2 r
||V T

1 r|| ||V T
2 r||

]
k + Tr[V1CV T

2 ]
.

The bulk of our analysis lies in (i) simplifying the above to reduce the number of parameters
in the minimization and expectation (Appendix B in [30]), and (ii) deriving analytical bounds
on the expectation (Appendix C in [30]).

Simplifying the Gaussian expectation. The first simplification follows from observing that
V T

i r ∈ R3 are multivariate Gaussians for i = 1, 2 since they are linear combinations of
Gaussians, r ∼ N (0, I). If we let zT = [z1, z2, z3] = rTV1 and (z′)T = [z′

1, z
′
2, z

′
3] = rTV2,

then [z, z′] ∼ N (0,Σ), where

Σ =
[

I V T
1 V2

V T
2 V1 I

]
∈ R6×6.

The Gaussians zi are mutually independent as well as the z′
i, and the covariance between z

and z′ is given by M = V T
1 V2 ∈ R3×3. Our bound now depends on a constant number of

parameters, the 18 entries of C and M :

α ≥ min
M,C

k + Ez,z′

[
zT Cz′

||z|| ||z′||

]
k + Tr[CTM ] . (17)

For classical hyperplane rounding algorithms, C and M simply reduce to scalars, and one
may resort to a numerical argument to furnish the desired bound. However, in the case of
QLH above, numerical bounds exhibit poor precision or convergence due to the number of
parameters. Thus we press on, and our next observation is that only the singular values of
M matter for the analysis. The above arguments are detailed in Lemma 15 in [30], which
also shows that we may assume:

C =

p 0 0
0 q 0
0 0 r

 and M =

a 0 0
0 b 0
0 0 c

 , (18)
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where a, b, c are the singular values of V T
1 V2. This reduction to 6 parameters puts analysis of

α within reach. The special case when a = b = c turns out to be equivalent to the recently
studied quantum analog of Max Cut related to the quantum Heisenberg model [2, 19]. For
this case, a representation of the expectation,

Ez,z′

[
zTCz′

||z|| ||z′||

]
(19)

as a hypergeometric function follows from work of Briët, de Oliveira Filho, and Vallentin (the
expectation ends up being equivalent to the one in Lemma 2.1 from [13], when u · v in the
lemma equals a = b = c). To the best of our knowledge, no elementary representation is known
when a, b, c may be distinct. We appeal to Hermite analysis to express the expectation (19)
as a polynomial that we are subsequently able to bound; this is carried out in Lemmas
17-18/Appendix C of [30].

Introducing constraints from positivity. The matrices C and M from (18) are related to
the quadratic Pauli-basis coefficients of P12 and ρ∗

12, respectively. The other ingredient of
our analysis of the bound (17) is restricting C and M based on the facts that P12 ⪰ 0 and
ρ∗

12 ⪰ 0, which is undertaken in Appendix B.1 and Lemma 14 of [30]. This is where the SDP
constraint (13) is used. The bound we obtain is

α ≥ min
[a,b,c]∈S

[p,q,r]∈Pk

k + Ez,z′

[
pz1z′

1+qz2z′
2+rz3z′

3√
(z2

1+z2
2+z2

3)((z′
1)2+(z′

2)2+(z′
3)2)

]
k + ap+ bq + cr

, (20)

where S and Pk are specific polytopes (S is a simplex as is Pk for k ̸= 2) derived from the
positivity of P12 and ρ∗

12. We further observe in Lemma 34 in [30] that p, q, r may be fixed
(e.g., for k = 3, we may take p = q = r = 1). Finally, Lemmas 17 and 18 in [30] derive the
bounds in the main theorems 11 and 12, respectively.

Analysis Highlights. We utilize Hermite polynomials to evaluate the expectation given in
Equation (20). As the natural set of polynomials orthogonal under the expectation of Gaussian
variables, [26], we obtain an expression for the expectation in terms of a convergent series
which we can then truncate and bound to get rigorous results. Obtaining the coefficients in
this series requires some additional facts about Hermite polynomials, and some combinatorial
identities.

3 Conclusion

In this work we have demonstrated several new approximation algorithms for interesting cases
of the Max 2-Local Hamiltonain problem. As is the theme in many works [4, 8, 18], we have
given evidence that the geometry of 2-Local interactions can drastically effect approximability
for traceless Hamiltonians since we demonstrate the the bipartite case has a constant factor
approximation algorithm and the unconstrained case is known to have no constant factor
algorithm [11]. In addition to this, we have given a novel approximation algorithm and
analysis for 2-Local Hamiltonian with local terms that are also projectors. This is especially
interesting given the the scarcity of approximation algorithms for quantum problems. Indeed,
the rank 3 case, has been open for some time [18,21]. Furthermore, we have provided new
techniques for rounding to product states that we believe will have additional applications
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in quantum information. Our rounding algorithm is quite natural given the solution of the
SDP, and the ability to understand the expectation through Hermite polynomial analysis
seems likely to extend to other kinds of Hamiltonians or problems.
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