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Abstract
In the Connected F-Deletion problem, F is a fixed finite family of graphs and the objective is to
compute a minimum set of vertices (or a vertex set of size at most k for some given k) such that (a)
this set induces a connected subgraph of the given graph and (b) deleting this set results in a graph
which excludes every F ∈ F as a minor. In the area of kernelization, this problem is well known to
exclude a polynomial kernel subject to standard complexity hypotheses even in very special cases
such as F = {K2}, i.e., Connected Vertex Cover.

In this work, we give a (2 + ε)-approximate polynomial compression for the Connected
F-Deletion problem when F contains at least one planar graph. This is the first approximate
polynomial compression result for this generic problem. As a corollary, we obtain the first approximate
polynomial compression result for the special case of Connected η-Treewidth Deletion.
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1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hardness
in practice, and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms for
decision problems. The central notion in this area is that of a kernelization (also called a
kernel), which is a preprocessing algorithm that runs in polynomial time and transforms a
“large” instance of a decision problem into a significantly smaller, but equivalent instance.
Over the last decade, the area of kernelization has seen the development of a wide range of
tools to design preprocessing algorithms and lower bounds techniques. The reader may find
an introduction to the field in [24, 25, 3, 7].

An “efficient preprocessing algorithm” in this setting is referred to as a polynomial kernel
and is simply a kernel whose output has size bounded polynomially in a parameter of the
input. The central classification task in the area of kernelization is to identify NP-hard
problems and associated parameters for which polynomial kernels exist and one of the main
success stories in the area is the development of a rich theory of lower bounds based on
complexity theoretic assumptions [1, 5, 2, 18, 4, 9, 21, 6, 20] allowing one to rule out the
existence of polynomial kernels completely or lower bound the degree of the polynomial.

One fundamental class of problems for which polynomial kernels have been ruled out in this
way is the class of subgraph hitting problems with connectivity constraints. It is well-known
that placing connectivity constraints on subgraph hitting problems can have a dramatic
effect on their amenability to efficient preprocessing. A case in point is the classic Vertex
Cover problem. This problem is known to admit a kernel whose output has O(k) vertices [3],
where the parameter k is the solution size. However, the Connected Vertex Cover
problem is amongst the earliest problems shown to exclude a polynomial kernel [6] and this
lower bound immediately rules out the possibility of such a kernel for numerous well-studied
generalizations of this problem. Consequently, one cannot hope to design approximation
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algorithms for such problems via polynomial kernels in the traditional sense and so, obtaining
a finer understanding of the impact of connectivity constraints on the limits of preprocessing
is an important objective in furthering the study of preprocessing techniques in general and
in the design of approximation algorithms for connectivity constrained subgraph hitting
problems.

One of the most frequently investigated subgraph hitting problems in the literature is the
F-Deletion problem which generalizes numerous well-studied NP-complete problems. In
this problem, F is a fixed finite family of graphs and one is given a graph G and an integer k as
input. The objective is to determine whether at most k vertices can be deleted from G so that
the resulting graph is F-minor free (does not contain a minor isomorphic to a graph in F).
The optimization version of this problem asks for a minimum set of vertices whose deletion
leaves a graph which is F-minor free. Well-studied special cases of this problem include
Vertex Cover (F = {K2}), Feedback Vertex Set (F = {K3}), Planarization
(F = {K3,3, K5}) [27], Diamond Hitting Set (F = {θ3}) [14], Pathwidth One Vertex
Deletion (F = {K3, T2}) [29], and θc-Deletion [22, 15]. A common feature shared by
many such well explored special cases of this problem is that F contains at least one planar
graph. Motivated by this, Fomin et al. [17] investigated this restricted variant of the problem
(when the family F contains at least one planar graph) and obtained a polynomial kernel
for every such F . This particular variant of F-Deletion is known in the literature as the
Planar F-Deletion problem.

Motivated by the prevalence of the Planar F-Deletion problem in existing work on
subgraph hitting problems, we initiate the study of the Planar F-Deletion problem
when there is a connectivity constraint on the solution. This problem, which we call the
Connected Planar F-Deletion problem, is formally defined as follows. The input is a
graph G, and integer k (the parameter) and the goal is to determine whether there is a set
S ⊆ V (G) of size at most k such that G[S] is connected and G − S is F -minor free? The set
S is called a connected F-deletion set.

As already discussed, Connected Planar F-Deletion displays stark differences to
the version without connectivity constraints when considering the approximability as well as
amenability to efficient preprocessing even when F is a very simple family such as {K2}. To
be specific, since this problem is a clear generalization of Connected Vertex Cover, it
cannot have a (2 − ε)-approximation in polynomial time for any fixed ε > 0 under UGC [23]
and moreover, it is unlikely to have a polynomial kernel [6].

Since using the existing notion of polynomial kernels and associated reduction rules
in order to design approximation algorithms for such connectivity constrained problems
appears to be difficult, we rely on the recently developed notion of α-approximate kernels
which was introduced by Lokshtanov et al. [26] in order to facilitate the rigorous analysis of
preprocessing algorithms in conjunction with approximation algorithms.

Informally speaking, an α-approximate kernel is a polynomial-time algorithm that given
as input a pair (I, k) where I is the problem instance and k is the parameter, outputs an
instance (I ′, k′) of the same problem such that |I ′| + k′ ≤ g(k) for some computable function
g and any c-approximate solution for the instance I ′ can be turned in polynomial time into
a (c · α)-approximate solution for the original instance I. When the output is an instance of
a different problem (with the remaining conditions holding), one obtains an α-approximate
compression.

As earlier, the notion of efficiency in this context is captured by the function g being
required to be polynomially bounded, in which case we call this algorithm an α-approximate
polynomial kernelization. We refer the reader to Section 2 for a formal definition of all terms
related to (approximate) kernelization.
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In their work, Lokshtanov et al. considered several problems which are known to exclude
polynomial kernels and presented an α-approximate polynomial kernel for these problems for
every fixed α > 1. This implies that allowing for an arbitrarily small amount of error while
preprocessing can drastically improve the extent to which the input instance can be reduced,
even when dealing with problems for which polynomial kernels have been ruled out under
the existing theory of lower bounds. In particular, they showed that Connected Vertex
Cover admits an α-approximate polynomial kernel for every α > 1. Their result provided a
promising starting point towards a refined understanding of the role played by connectivity
constraints in relation to preprocessing for covering problems on graphs. Subsequently, Eiben
et al. [11] extended this result to the Connected H-hitting set problem where H is a
fixed collection of finite subgraphs and the solution is a minimum set of vertices in the given
graph G which induce a connected subgraph and hit all copies of graphs in H which are
present in G. Recently, Ramanujan [30] obtained the first α-approximate polynomial kernel
(for every α > 1) for the Connected Feedback Vertex Set problem, demonstrating
the power of approximate preprocessing for cases where the goal is to hit obstructions of
unbounded size while maintaining connectivity of the hitting set.

Our results

A formal definition of α-approximate kernels and compressions can be found in Section 2.

▶ Theorem 1. For every fixed 0 < ε < 1, Connected Planar F-Deletion has a
(2 + ε)-approximate compression of polynomial size.

As an immediate corollary of Theorem 1, we obtain a factor-(2 + ε) parameterized approx-
imation algorithm for Connected Planar F-Deletion running in time 2O(k log k)nO(1)

for every fixed 0 < ε < 11. In fact, the proof techniques we use in order to prove Theorem 1
also enable us to obtain a polynomial-time poly(OPT) approximation for this problem.

▶ Theorem 2. For every fixed F containing a planar graph, there is an algorithm that, given
a graph G and k ∈ N, runs in polynomial time and either correctly concludes that G has no
connected F-deletion set of size at most k or returns a connected F-deletion set of G of size
kO(1).

Using Theorem 2 and adopting an approach similar to that in [30], we obtain the following.

▶ Theorem 3. There is a 0 < δ < 1 such that Connected Planar F-Deletion can be
approximated within a factor min{OPTO(1), n1−δ} in polynomial time.

Related work on approximation for connected hitting set problems

Grigoriev and Sitters [19] studied the design of approximation algorithms for the Connected
Feedback Vertex Set problem on planar graphs and obtained a Polynomial Time Ap-
proximation Scheme (PTAS), building upon the result of Escoffier et al. [13] for Connected
Vertex Cover. Fiorini et al. [14] studied the Diamond Hitting Set problem (where
F = {θ3}) and obtained the first constant-factor approximation.

1 We note that this problem can be easily seen to be fixed-parameter tractable parameterized by k since
the problem is MSO-expressible and the treewidth of yes-instances must be bounded by O(k), allowing
for an invocation of Courcelle’s theorem.
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2 Preliminaries

For a graph G, we denote by CC(G) the set of connected components of G. Let G be a graph
and x, y ∈ V (G). Let P be a set of internally vertex-disjoint x-y paths in G. Then, we call
P an x-y flow. The value of this flow is |P|. Recall that Menger’s theorem states that for
distinct non-adjacent vertices x and y, the size of the smallest x-y separator is precisely
the value of the maximum x-y flow in G. For a set X ⊆ V (G), the graph obtained from G

by identifying the vertices in X is the graph G′ defined as follows. The vertex set of G′ is
(V (G) \ X) ∪ {x} where x /∈ V (G). For every edge of G which is not incident on X, G′ has
the same edge. For every edge (u, v) ∈ E(G) where u ∈ X, v /∈ X, we add a new edge (x, v).
Note that we ignore all edges which have both endpoints in X.

Parameterized problems and (approximate) kernels

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. We assume
that k is given in unary and hence k ≤ |x|. The notion of kernelization is formally defined as
follows.

▶ Definition 4 (Kernelization). Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm
referred to as a kernelization (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in time
polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π, and (b) max{|x′|, k′} ≤ g(k). If g(k) = kO(1) then we say that Π admits a
polynomial kernel.

▶ Definition 5 ([26]). A parameterized optimization (minimization or maximization) problem
is a computable function Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and
a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I| + k. The value of the
solution s is Π(I, k, s). Since the problems we come across in this paper are minimization
problems, we state some of the definitions only in terms of minimization problems when
the definition for maximization problems is analogous. For instance, the parameterized
optimization version of Connected Planar F-Deletion is defined as follows (using
the convention from [26]). This is a minimization problem with the optimization function
CPFD : Σ∗ × N × Σ∗ → R ∪ {∞} defined as follows.

CPFD(G, k, S) =
{

∞ if S is not a feasible solution,

min{|S|, k + 1} otherwise.

▶ Definition 6 ([26]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k

Π(I, k, s).

We now recall the other relevant definitions from [26] regarding approximate kernels.

▶ Definition 7 ([26]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial-time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ × N → Σ∗ × N. Given as input an instance (I, k) of Π the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).
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The second algorithm is called the solution-lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution-lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that Π(I,k,s)

OP T (I,k) ≤ α · Π(I′,k′,s′)
OP T (I′,k′) .

The size of a polynomial-time preprocessing algorithm A is a function sizeA : N → N
defined as sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

▶ Definition 8 ([26]). Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized
minimization problems. An α-approximate polynomial parameter transformation (α-appt for
short) A from Π to Π′ is a pair of polynomial-time algorithms, called reduction algorithm RA
and solution-lifting algorithm. Given as input an instance (I, k) of Π the reduction algorithm
outputs an instance (I ′, k′) of Π′ such that k′ = kO(1). The solution-lifting algorithm takes
as input an instance (I, k) of Π, the output instance (I ′, k′) = RA(I, k) of Π′, and a solution
s′ to the instance I ′ and outputs a solution s to (I, k) such that

Π(I,k,s)
OP TΠ(I,k) ≤ α · Π′(I′,k′,s′)

OP TΠ′ (I′,k′) .

▶ Definition 9 ([26], α-approximate compression). Let α ≥ 1 be a real number. Let Π and Π′

be two parameterized minimization problems. An α-approximate compression from Π to Π′ is
an α-appt A from Π to Π′ such that sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}, is
upper bounded by a computable function g : N → N, where RA is the reduction algorithm in
A. We say that A is an α-approximate polynomial compression if g is a polynomial function.

Treewidth, t-Boundaried graphs and minors

We now recall standard definitions regarding treewidth and minor models. The nota-
tion is based on [17]. Let G be a graph. A tree decomposition of G is a pair (T, X =
{Xt}t∈V (T )) where T is a tree and X is a collection of subsets of V (G) such that (a)
∀e = uv ∈ E(G), ∃t ∈ V (T ) : {u, v} ⊆ Xt and (b) ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-
empty connected subtree of T . We call the vertices of T nodes and the sets in X bags of
the tree decomposition (T, X ). The width of (T, X ) is denoted by width(T, χ) is defined
as max{|Xt| − 1 | t ∈ V (T )} and the treewidth of G is the minimum width over all tree
decompositions of G. A t-boundaried graph is a graph G and a set B ⊂ V (G) of size at
most t with each vertex v ∈ B having a label ℓG(v) ∈ {1, . . . , t}. Each vertex in B has a
unique label. We refer to B as the boundary of G. We use the notation (G, B) to refer to
the t-boundaried graph G with boundary B.

Least Common Ancestor-Closure of Sets in Graphs of Bounded Treewidth

For a graph G with a nice tree decomposition (T, χ) rooted at r ∈ V (T ) and vertex set
X ⊆ V (G) the least common ancestor-closure LCA-closure(T, χ, X) is defined as follows. We
let M ⊆ V (T ) denote a minimal set of nodes in T such that for every x ∈ X, there is a
bag u ∈ M such that x ∈ χ(u) and moreover, u is the closest such vertex to r. Finally,
we define LCA-closure(T, χ, X) as the set χ(LCA-closure(M)), where LCA-closure(M) denotes
the LCA-closure of M in the rooted tree T . We ignore the explicit reference to the root r in
the notation LCA-closure(T, χ, X) because we will be using an arbitrary vertex as the root
when invoking this definition.

The following lemma is a direct consequence of the definition of LCA-closure(T, χ, X) and
the application of LCA-closure on trees (see, for example, [17]).

ESA 2021
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▶ Lemma 10. Let G be a graph with a nice tree decomposition (T, χ) and let X ⊆ V (G).
Let X ′ denote the set LCA-closure(T, χ, X). Then, |X ′| ≤ 2|X| · width(T, χ) and for every
connected component C of G − X ′, |N(C)| ≤ 2 · width(T, χ).

▶ Definition 11. Let G be a graph and H be a minor of G with V (H) = {h1, . . . , hℓ} and
suppose that H has no self-loops. A set PH = {P1, . . . , Pℓ} of pairwise vertex-disjoint subsets
of V (G) is said to be a minor model of H in G if

G[Pi] is connected for every i ∈ [ℓ] and
there is an injective mapping ϕ : E(H) → E(G) such that for every e = (i, j) ∈ E(H),
ϕ(e) is an edge in G with one endpoint in Pi and one in Pj.

Note that if H has parallel edges, then the minor model needs to have a unique edge
corresponding to each parallel edge. We say that H is a minimal minor model if there is no
strict subgraph of G[

⋃
i∈[ℓ] Pi] which also contains H as a minor.

▶ Definition 12. Let G1 and G2 be two graphs, and let t be a fixed positive integer. For
i ∈ {1, 2}, let fGi

be a function that associates with every vertex of V (Gi) some subset of [t].
The image of a vertex v ∈ Gi under fGi is called the label of that vertex. We say that G1 is
label-wise isomorphic to G2, and denote it by G1 ∼=t G2, if there is a map h : V (G1) → V (G2)
such that (a) h is one to one and onto; (b) (u, v) ∈ E(G1) if and only if (h(u), h(v)) ∈ E(G2)
and (c) fG1(v) = fG2(h(v)). We call h a label-preserving isomorphism.

Notice that the first two conditions of Definition 12 simply indicate that G1 and G2 are
isomorphic. Now, let G be a t-boundaried graph, that is, G has t distinguished vertices,
uniquely labeled from 1 to t. Given a t-boundaried graph G, we define a canonical labeling
function µG : V (G) → 2[t]. The function µG maps every distinguished vertex v with label
ℓ ∈ [t] to the set {ℓ}, that is µG(v) = {ℓ}, and for all other vertices we have that µG(v) = ∅.

Next we define a notion of labeled edge contraction. Let H be a graph together with a
function fH : V (H) → 2[t] and (u, v) ∈ E(H). Furthermore, let H ′ be the graph obtained
from H by identifying the vertices u and v into wuv and removing all loops. Then by labeled
edge contraction of an edge (u, v) of a graph H, we mean obtaining a graph H ′ with the
label function fH′ : V (H ′) → 2[t] defined as follows. For x ∈ V (H ′) ∩ V (H) we have that
fH′(x) = fH(x) and for wuv we define fH′(wuv) = fH(u) ∪ fH(v). Now we introduce a
notion of labeled minors of a t-boundaried graph.

▶ Definition 13. Let H be a graph together with a function f : V (H) → 2[t] and (G, Z) be a
t-boundaried graph with canonical labeling function µG. A graph H is called a labeled minor
of G, if we can obtain a labeled isomorphic copy of H from G by performing edge deletions
and labeled edge contractions. The h-folio of a t-boundaried graph (G, Z) is the set Mh(G, Z)
of all labeled minors of G (starting with the canonical labeling on G) on at most h vertices.

We also need the following well-known result bounding the treewidth of any graph which
excludes a fixed planar graph as a minor.

▶ Proposition 14 ([17]). For every fixed planar graph H, there is a constant λH such that
any graph G with tw(G) ≥ λH contains H as a minor.

Steiner Trees

For a graph G, a set R ⊆ V (G) called terminals and a cost function w : E(G) → N ∪ {0}, a
Steiner tree is a subtree T of G such that R ⊆ V (T ), and the cost of a tree T is defined as
w(T ) =

∑
e∈E(T ) w(e). In the Steiner Tree problem we are given as input the graph G,
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the set R and the cost function w : E(G) → N ∪ {0}. The task is to find an optimal Steiner
tree, which is a Steiner tree of minimum cost. However, in this paper we will only work with
edges of unit or zero cost and we denote by w1 the function that assigns a cost of 1 to every
edge of the graph under consideration. When T is a Steiner tree for the set of terminals R,
we say that T is an R-Steiner tree. An R-Steiner tree T is said to be minimal if there is
no e ∈ E(T ) such that T − e also contains an R-Steiner tree. It is well-known that there
is an algorithm for Steiner Tree with a single exponential dependence on the number of
terminals.

▶ Proposition 15 ([8, 28]). The Steiner Tree problem can be solved in time 2O(|R|)nO(1).

Let R continue to denote the set of terminals. For a k ∈ N, a k-component is a tree
with at most k leaves, all of which are in R. A k-restricted Steiner tree T is a collection
of k-components, such that the union of these components is a Steiner tree T . The cost of
T is the sum of the costs of all the k-components in T . It may be the case that multiple
k-components which are part of a k-restricted Steiner tree, share edges. As a result, some
edges may contribute multiple times to the cost of T . To keep the presentation simple, if the
k-components of a k-restricted Steiner tree are clear from the context, then we also refer to
the Steiner tree composed of their union as a k-restricted Steiner tree. Recall that according
to its original definition, a k-restricted Steiner tree is a set of k-components.

3 Overview of our Algorithms

Fix 0 < ε < 1. We identify a partition (A, B, C) of the vertex set of G, where |B| = kO(f(1/ε))

and there are no edges between A and C. In other words, B separates A and C. We then
prove that the vertices in C only play the role of “connectors” and removing them from a
hypothetical solution S may disconnect G[S], but will still leave a minimal hitting set for all
F -minor models. On the other hand, while the interaction of vertices in A with the solution
S could be much more complex, we show that the number of connected components of G[A]
is kO(f(1/ε)) and these can be shown to have a well-structured neighborhood in B. Once
we have this partition in hand, we focus on each connected component of G[A] separately
and from each component we identify a set of kO(f(1/ε)) vertices which, together with B and
a kO(f(1/ε)) sized subset of C cover a (2 + ε)-approximate solution. Finally, the remaining
vertices are discarded in an appropriate manner once the relevant information they hold is
compiled into a polynomially bounded data structure. This high level approach of identifying
“hitters” and “connectors” among the vertices is a natural first step for problems with this
flavor [11, 12, 30] and the more involved problem-specific part in each case resides in (a)
computing such a partition and (b) setting up a procedure to identify and remove redundant
parts of the input, leaving only kO(f(1/ε)) vertices or edges.

Fix ρ = 2O(1/ε) to be a constant such that 1
⌊log2 ρ⌋ ≤ ε. Our starting point is a lemma

of Fomin et al. [17] showing that there is a polynomial-time algorithm that takes as input
the pair (G, k) and either correctly concludes that G has no F -deletion set (a set of vertices
whose deletion leaves an F-minor free graph) of size at most k or outputs disjoint sets
X, Z ⊆ V (G) such that (a) |X ∪ Z| = kO(1), (b) X is an F-deletion set of G, (c) for every
connected component C of G − (X ∪ Z), |N(C) ∩ Z| ≤ 2(η + 1), and (d) for every x, y ∈ X,
either Z intersects every x, y path in G − (X \ {x, y}) or there is an x-y flow of value at least
3k + η + 3 in the graph G − (X \ {x, y}). Let Gτ denote the graph G − (X ∪ Z). In the
proposed partition (A, B, C), our intention is to set B = X ∪ Z.

Given the sets X and Z described above we will compute a subset of vertices covering a
(2+ε)-approximate connected F -deletion set (if one of size at most k exists) in two stages. In
the first stage, we mark a set of kO(ρ) vertices of Gτ such that for every subset U of X ∪ Z, if

ESA 2021
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there is a set TU of vertices in Gτ using which the vertices in U can be connected, then there
is a set of roughly (1 + ε)|U | marked vertices which can do the same connecting task as TU

with respect to the vertices in U . In the second stage, we ignore the connectivity requirement
on the subset of the solution in X ∪ Z and for each connected component of Gτ , mark kO(ρ)

vertices such that if there is a solution which intersects a component of Gτ then there is a
way to select a sufficiently small subset of the marked vertices in the component which can
be connected to the vertices of the solution in X ∪ Z and achieve the same “F -minor hitting”
behaviour as the original set of vertices.

A major obstacle here is the fact that the number of connected components of Gτ

may be unbounded, which might mean that we mark a set of vertices whose size is not
bounded by a function of the parameter k at all. It is to overcome this obstacle that we
distribute the set V (G) \ B among the remaining partitions A and C. In other words, we
will be able to partition the components of Gτ into two sets that we call Type 1 components
(corresponding to C) and Type 2 components (corresponding to A) and then show that the
Type 1 components although unbounded in number, only provide connectivity to a minimal
F -deletion set contained in the solution while, on the other hand, the Type 2 components are
more complex but bounded polynomially (in k) in number. We then argue that there is a way
to achieve the objective of our initial marking strategy by marking only a polynomial number
of vertices of Gτ in total, and these vertices cover a factor-(2 + ε) approximate solution and
moreover, a factor-OPTO(1) approximate solution can be recovered by a straightforward
examination of the connected components of the subgraph induced by the marked vertices.

To extend this to our approximate compression, we prove the following lemma.

▶ Lemma 16. There is an algorithm that given G, k, X, Z as described above, runs in time
kO(ρ)nO(1) and either correctly concludes that G has no connected F-deletion set of size at
most k or returns a set L ⊆ V (G) such that the following statements hold.
1. L ⊇ (X ∪ Z), |L| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| contained in L.
3. For every connected component C of G − L, |N(C) ∩ (L \ X)| ≤ 2(η + 1).
4. For every F-deletion set S of G of size at most 3k and every C ∈ CC(G − L), |(N(C) ∩

X) \ S| ≤ η + 1.

The above lemma is obtained following the previously discussed marking steps that led to
the factor-OPTO(1) approximation and can be seen as an “approximate-solution-capturing”
variant of the lemma of Fomin et al. [17] in the context of our problem. Once we have this
lemma in hand, we define an annotated version of Connected Planar F-Deletion and
encode the output of the lemma above as an instance of Annotated Connected Planar
F-Deletion whose size is bounded polynomially in k, which completes the compression,
giving us Theorem 1.

4 The (2 + ε)-Approximate Compression for Connected Planar
F-Deletion

Recall that we have chosen ρ = 2O(1/ε) to be a constant such that 1
⌊log2 ρ⌋ ≤ ε. Throughout

this section, we suppress the dependence of the running time and compression size on F in
the O(.) notation. However, we make the dependencies on ε explicit. Our first aim in this
section is to prove Lemma 17, which is then invoked in the proof of Lemma 16. This lemma
says that there is a polynomial-time algorithm that identifies a set of kO(ρ) vertices that
cover a (2 + ε)-approximate solution (if one of size at most k exists).
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▶ Lemma 17. There is an algorithm that, given G and k, runs in time kO(ρ)nO(1) and either
correctly concludes that G has no connected F-deletion set of size at most k or returns a set
V ∞ ⊆ V (G) such that the following statements hold.
1. |V (G) \ V ∞| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| that is disjoint from V ∞.
Let η be a constant depending only on F such that every graph which is F-minor free

has treewidth at most η. By Proposition 14, we know that such a constant exists. Let
h = 10η + maxF ∈F |F |. Note that h is an upper bound on the number of vertices and the
number of edges in any graph in F .

We begin building towards the proof of Lemma 17 by recalling the following lemma
from [17] and some associated observations. The numbering of the lemmas in our citations
is derived from the full version of [16]. A set S ⊆ V (G) is called an F-deletion set of G if
G − S is an F-minor free graph.

▶ Lemma 18 (Lemma 25, [16]). There is a randomized polynomial-time algorithm that given
(G, k), either concludes that G has no F-deletion set of size at most k or outputs disjoint
sets X, Z ⊆ V (G) satisfying the following properties.
1. |X ∪ Z| = kO(1).
2. X is an F-deletion set of G.
3. For every connected component C of G − (X ∪ Z), |N(C) ∩ Z| ≤ 2(η + 1).
4. For every x, y ∈ X, either Z intersects every x-y path in G − (X \ {x, y}) or there is an

x-y flow of value at least 3k + η + 3 in the graph G − (X \ {x, y}).
If G has an F-Deletion set of size k, then this algorithm outputs the pair (X, Z) with
probability (1 − 1

2n ). Otherwise, the algorithm always correctly concludes that no such set
exists.

When the pair τ = (X, Z) is clear from the context, we use Gτ to refer to the graph
G − (X ∪ Z).

The randomization in Fomin et al.’s proof of this lemma arises due to the execution of a
randomized linear-time constant-factor approximation algorithm for (unconnected) Planar
F-deletion, i.e., the subroutine used to compute the set X. However, this step can be
replaced with any deterministic factor-OPTO(1) approximation for the same problem with,
again, only a constant-factor change in the degree of the polynomial in the first property of
the lemma. In particular, we can use the factor-O(log3/2 OPT) approximation from [15] and
avoid the randomization.

We now recall the following useful properties of non-solution vertices in the neighborhood
of any connected component of Gτ .

▶ Proposition 19 (Lemma 26, [16]). Let P be a set of vertices such that for every distinct
u, v ∈ P , there is a u-v flow of value 3k + η + 3, let S be an F-deletion set of G of size at
most 3k which is disjoint from P and let (T, χ) be a tree decomposition of G − S of width
at most η. Then, for every pair of vertices u, v ∈ P , there is a vertex x ∈ V (T ) such that
u, v ∈ χ(x) and moreover, there is a vertex y ∈ V (T ) such that P ⊆ χ(y).

The above proposition captures the fact that if P is disjoint from S and is a set of vertices
with pairwise-high flow, then these vertices must appear together in some bag of the tree
decomposition (T, χ). Indeed, if this were not the case, then a pair of vertices in this set can
be separated by deleting a small separator in the graph, contradicting the high flow between
them. The next statement follows as a consequence of Proposition 19.
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▶ Proposition 20 (Lemma 26, [16]). Let G, k and τ = (X, Z) be as in Lemma 18. For
every F-deletion set S of G of size at most 3k and every connected component C of Gτ ,
|(N(C) ∩ X) \ S| ≤ η + 1.

Indeed, the fourth property ensured by Lemma 18 guarantees that for every connected
component C of Gτ , N(C) ∩ X is a set of vertices with a pairwise flow of value at least
3k + η + 3 in G. If it were the case that |(N(C) ∩ X) \ S| > η + 1, then Proposition 19
would imply that some bag of a tree decomposition of G − S of width η contains the set
(N(C) ∩ X) \ S, which has size greater than η + 1, a contradiction.

Proposition 20 guarantees that for every connected component C of Gτ , all but at most
η + 1 vertices in N(C) ∩ X must be deleted (equivalently, contained in S). Combining this
with the third property ensured by Lemma 18, we may conclude that all but at most 3(η + 1)
vertices in N(C) must be contained in S.

Our marking rules rely on the following result of Du et al. [10] which has found applications
in other algorithms for connected deletion problems [11, 30].

▶ Proposition 21 ([10]). For every p ≥ 1, graph G, R ⊆ V (G), cost function w : E(G) →
N ∪ {0} and R-Steiner tree T , there is a p-restricted R-Steiner tree in G of cost at most
(1 + 1

⌊log2 p⌋ ) · w(T ).

4.1 The OPTO(1)-approximation for Connected Planar F-deletion
In what follows, we fix G, k, and τ⋆ = (X, Z) as given by Lemma 18.

▶ Definition 22. For a vertex set C disjoint from X, a set J ⊆ N(C) is called a set
compatible with C if |J ∩ X| ≤ η + 1. We denote by BC the set of all sets compatible with C.
For a set C and set J compatible with C, the |J |-boundaried graph (G[C ∪ J ], J) is denoted
by GC,J .

Recall that ∀C ∈ CC(Gτ⋆), |N(C) ∩ Z| ≤ 2(η + 1) (argued using the third property of
Lemma 18). Consequently, for every C ∈ CC(Gτ⋆), any set J ⊆ N(C) compatible with C

has size at most 3η + 3, which is a constant in our setting. Moreover, due to Proposition 20,
we have that for any solution S, the set N(C) \ S must be a set compatible with C.

▶ Lemma 23. There is an algorithm that given G, k, and τ⋆ = (X, Z), runs in polynomial
time and returns a set P ∞ ⊆ V (G) \ (X ∪ Z) and a partition of CC(Gτ⋆) into sets P and Q
such that the following statements hold.

1. |P| = kO(1) and P ∞ ⊆ V (P).
2. Every F-deletion set of G − V (Q) − P ∞ of size at most 3k is an F-deletion set of G.

▶ Definition 24. Let G, k, τ⋆ = (X, Z), P, Q be as in Lemma 23. We call every component
in Q a Type 1 component of Gτ and every component in P a Type 2 component of Gτ⋆ .

Lemma 23 implies that the vertices contained in Type 1 components are only required for
providing connectivity between those vertices of a minimal F-deletion set of size at most
3k that are contained in X ∪ Z and the Type 2 components are bounded polynomially in k.
The proof of this lemma closely follows the proof of Fomin et al. (see Lemma 36, [16]) with
the following difference: instead of discarding irrelevant vertices, we identify them and use
them to define the sets P and Q.

We are now ready to state our marking rules. We fix G, k, τ⋆ = (X, Z), P ∞, P, Q as given
by Lemma 23.
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▶ Marking Rule 1. For every R ⊆ X ∪Z of size at most ρ, we compute an optimal R-Steiner
tree TR in G with the unitary cost function (denoted w1). If |V (TR)| ≤ (2 + ε)k, then we
mark the vertices of TR.

Before we describe our next marking rule, we need the following definition.

▶ Definition 25. For a graph G and vertex p ∈ V (G), we say that a set S ⊆ V (G) is a
p-connected set in G if p /∈ S and G[S ∪ {p}] is connected. For a t-boundaried graph (G, L),
P ⊆ V (G) \ L, k ∈ N and p ∈ V (G) \ L, a set S ⊆ V (G) is called a (p, P, k)-representative
set for (G, L) if the following holds:

For every p-connected set S ⊆ V (G) \ L of size at most k in G, S contains a p-connected
set S̃ ⊆ V (G)\L of size at most |S| such that Mh(G−p−(S∪P ), L) ⊇ Mh(G−p−(S̃∪P ), L).

We extend the notion of p-connected sets in a natural way to the additional case when p

is not a vertex, but p = ∅. In this case, S is p-connected if G[S] is connected. The definition
of (p, P, k)-representative sets for p = ∅ is analogous.

The notion of p-connected sets is motivated by the following observation.

▶ Observation 26. Let S be a connected F-deletion set of G of size at most 3k and let
C ∈ CC(Gτ ). Let SC = S ∩ C and suppose that SC is non-empty. Let J = N(C) \ S and
consider the boundaried graph (GJ

C , J), where GJ
C is defined as the graph obtained from

G[N [C]] as follows. If TC = N(C) ∩ S is non-empty, then we identify the vertices in TC into
a single vertex v⋆

J to obtain GJ
C . Otherwise, GJ

C = G[N [C]] and set v⋆
J = ∅. Then, SC is a

v⋆
J -connected set of size at most 3k in the graph GJ

C .

The definition of the (p, P, k)-representative set S (Definition 25) guarantees that for
every p-connected set S ⊆ V (G) \ L of size at most k in G, there is a p-connected set in S
that provides the “same” connectivity as S with respect to p, costs at most |S|, and hits
every minor model hit by S in G − p − P (and possibly more). The case when p = ∅ covers
the case when the entire solution is contained in a single component of Gτ⋆ .

▶ Lemma 27. Let (G, L) be a t-boundaried graph for some t ≤ 3η + 3, k ∈ N, p ∈ V (G) \ L

and P ⊆ V (G) \ L. Then, there is a (p, P, k)-representative set for (G, L) of size O(k).
Moreover, if tw(G) = O(η), then such a set can be computed in polynomial time.

We are now ready to describe our second and final marking rule. Recall that P, Q and
P ∞ are as given by Lemma 23. Let C be a Type 2 component of CC(Gτ⋆). Then, C ∈ P.
Let P ∞

C denote the set P ∞ ∩ C.

▶ Marking Rule 2. For each compatible set J ∈ BC , we construct a |J |-boundaried graph
(GJ

C , J) defined as the graph obtained from (G[N [C]], J) by identifying all vertices of N(C)\J

with the resulting vertex denoted by v⋆
J . If J = N(C), then we simply define v⋆

J := ∅. We
then use Lemma 27 to compute a (v⋆

J , P ∞
C , 3k)-representative set QJ

C of size O(k) for (GJ
C , J)

and mark the vertices in it.

In the rule above, J is intended to represent the subset of N(C) that is not deleted by a
hypothetical connected F -deletion set of size at most 3k that intersects N [C]. If N(C) = J ,
then any hypothetical connected F-deletion set that intersects N [C] and has an empty
intersection with N(C) must also be contained entirely in C. Consequently, we simulate
this case by setting v⋆

J = ∅. Note that (GJ
C , J) is a t-boundaried graph for some t ≤ 3η + 3

because |J ∩X| ≤ η +1 and |J ∩Z| ≤ 2(η +1). Moreover, tw(GJ
C) ≤ 2η +2. As the treewidth

of G[C ∪ (N(C) ∩ Z)] is at most η, it follows that adding v⋆
J and a subset of X of size at

most η + 1 can increase the treewidth of G[C ∪ (N(C) ∩ Z)] to at most 2η + 2.
We are now ready to prove Lemma 17.
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Proof of Lemma 17. We first invoke Lemma 18 to either correctly conclude that G has
no F-deletion set of size at most k or compute the pair τ⋆ = (X, Z). In the former case
we return the same. Otherwise, we invoke Lemma 23 to compute the partition P ⊎ Q of
CC(Gτ⋆) and the set P ∞ ⊆ V (P). Recall that the components contained in P are called
Type 2 components and those contained in Q are called Type 1 components. We now execute
Marking Rule 1.

For each C ∈ CC(Gτ⋆), let RC denote the set of marked vertices in the connected
component C. Note that the total number of vertices marked across all components of Gτ⋆

in this step is at most 3k · |X ∪ Z|ρ = kO(ρ).
Now, for each Type 2 component C ∈ CC(Gτ⋆) we execute Marking Rule 2 with QC

denoting the subset of its vertices marked in this execution. For every Type 1 component C,
QC = ∅. Note that the number of vertices marked in each Type 2 component C in this step
is bounded by O(k · |BC |) = kO(1). Since the number of Type 2 components is bounded by
kO(1), we conclude that Marking Rule 2 marks a total of kO(1) vertices across all connected
components of Gτ⋆ .

We now argue that we have preserved a (2 + ε)-approximation in the union of the marked
set of vertices and X ∪ Z.

▷ Claim 28. If G has a connected F -deletion set S of size at most k, then it has a connected
F-deletion set of size at most (2 + ε)|S| contained in X ∪ Z ∪

⋃
C∈CC(Gτ⋆ )(QC ∪ RC).

Proof sketch. Let S′′ = S ∩ (X ∪ Z) and A = S \ S′′. Suppose that G[S′′] is not connected.
Consider the terminal set S′′ with a weight function on the edges that assigns 0 to every
edge with both endpoints in S′′ and assigns 1 to every other edge. Then, we observe
that G[S] contains an S′′-Steiner tree with weight at most |A| + β − 1 where β is the
number of connected components in G[S′′] and Proposition 21 guarantees that the set of
vertices marked by Marking Rule 1 contains a set A′′ such that G[A′′ ∪ S′′] is connected,
|A′′| + β − 1 ≤ (1 + ε)(|A| + β − 1), implying that |A′′ ∪ S′′| ≤ (1 + ε)|S|.

In order to prove the claim, we will show that once we have added A′′ to S′′, we can (a)
ignore all other vertices of Type 1 components originally contained in S and (b) consider
each Type 2 component C ∈ CC(Gτ⋆) independently and replace the set S ∩ C with a subset
of QC of size at most |S ∩ C| in such a way that the resulting set is eventually still connected
and hits all F -minor models in G. Observe that if S′′ = ∅, then A′′ = ∅. Moreover, if G[S′′]
is connected, then we set A′′ = ∅. ◁

Finally, we define V ∞ as follows. V ∞ = V (G) \ (X ∪ Z ∪
⋃

C∈CC(Gτ⋆ )(QC ∪ RC)). ◀

Theorem 2 can now be proved using Lemma 17.

4.2 The approximate compression for Connected Planar F-deletion
The crux of our approximate compression is the following stronger version of Lemma 18,
where we have now also ensured the presence of a (2 + ε)-approximate solution within a
polynomially bounded set L (which plays the role that the set X ∪ Z plays in Lemma 18).

▶ Lemma 29. There is an algorithm that given G, k, τ⋆ = (X, Z) from Lemma 18, runs in
time kO(ρ)nO(1) and either correctly concludes that G has no connected F-deletion set of size
at most k or returns a set L ⊆ V (G) such that the following statements hold.
1. L ⊇ (X ∪ Z), |L| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| contained in L.
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3. For every connected component C of G − L, |N(C) ∩ (L \ X)| ≤ 2(η + 1).
4. For every F-deletion set S of G of size at most 3k and any C ∈ CC(G − L), |(N(C) ∩

X) \ S| ≤ η + 1.

Proof. We invoke Lemma 17 to either conclude that G has no F -deletion set of size at most
k or compute the set V ∞ such that |V (G) \ V ∞| = kO(ρ) and for every S which is a minimal
connected F -deletion set of G of size at most k, G has a connected F -deletion set of size at
most (2 + ε)|S| disjoint from V ∞. In the former case we return the same. Otherwise, let
Y = V (G) \ V ∞. Although it does not follow from the statement of Lemma 17, an inspection
of the definition of V ∞ in the proof shows that V ∞ ∩ (X ∪ Z) = ∅ and so we may assume
without loss of generality that Y ⊇ X ∪ Z.

Consider the graph G − X which is known to be F -minor free and hence has treewidth at
most η. Let (T, χ) be an arbitrary tree decomposition of G−X of minimum width and suppose
that it is arbitrarily rooted. We now define L to be the set X ∪ LCA-closure(T, χ, Y \ X).
The fact that L ⊇ X ∪ Z and |L| = kO(ρ) follows from the fact that X ∪ Z ⊆ Y ⊆ L,
|Y | = kO(ρ), and Lemma 10. Moreover, Lemma 10 also implies that the third statement
holds. Similarly, the second statement follows from the fact that for every S which is a
minimal connected F-deletion set of G of size at most k, G has a connected F-deletion set
of size at most (2 + ε)|S| contained in Y which is contained in L.

For the final statement, we know from Lemma 18 that for every x, y ∈ X, either
Z ⊆ Y ⊆ L intersects every x, y path in G − (X \ {x, y}) or there is an x-y flow of value at
least 3k + η + 3 in the graph G − (X \ {x, y}). Consequently, we can invoke Proposition 20
with the pair (X, L \ X) instead of (X, Z) to conclude that for every F-deletion set S of G

of size at most 3k and any C ∈ CC(G − L), |(N(C) ∩ X) \ S| ≤ η + 1. This completes the
proof of the lemma. ◀

Before proceeding to the description of the compression (Theorem 1), we need to define
an annotated version of our problem. Recall that h ≥ max{10η, maxF ∈F |F |}. In the
Annotated Connected F-Deletion problem, the input is a graph G, integer k, and a
set R = {(Pi, Qi, Ti)}i∈[ℓ] where ∀i ∈ [ℓ], Pi ∩ Qi = ∅, Pi ∪ Qi ⊆ V (G), |Qi| ≤ 3(η + 1), and
Ti is a set of |Qi|-labeled graphs of size at most h. The goal is to decide whether there is a
set S ⊆ V (G) of size at most k such that G[S] is connected and GS has no minor isomorphic
to a graph in F , where GS is defined as the graph obtained from G by going over all i ∈ [ℓ]
and gluing a graph (Hi, Qi) on to (G, Qi) using the canonical labeling, whenever Pi ⊆ S and
Qi ∩ S = ∅, and where Mh(Hi, Qi) = Ti.

A set S (not necessarily of size at most k) satisfying the properties above is said to be a
feasible solution. Following the convention from [26], the parameterized optimization version
of Annotated Connected F-Deletion is defined to be a minimization problem with the
optimization function ACFD : Σ∗ × N × Σ∗ → R ∪ {∞} defined as follows.

ACFD(G, R, k, S) =
{

∞ if S is not a feasible solution,

min{|S|, k + 1} otherwise.

We next describe a compression algorithm that takes as input an instance of Connected
F-Deletion and outputs an instance of Annotated Connected F-Deletion with size
bounded polynomially in k and in which a (2 + ε)-approximate solution for the original
instance is preserved.

▶ Lemma 30. There is an algorithm that given G, k, runs in time kO(ρ)nO(1) and either
correctly concludes that G has no connected F-deletion set of size at most k or returns an
instance Γ = (G̃, k̃, R̃ = {(P̃i, Q̃i, T̃i)}i∈[ℓ]) of Annotated Connected F-Deletion such
that the following statements hold.
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1. |V (G̃)| = kO(ρ), ℓ = kO(ρ).
2. If G has a connected F-deletion set S of size at most k, then Γ has a feasible solution of

size at most (2 + ε)|S|.
3. Every feasible solution of Γ is a connected F-deletion set of G.

Proof sketch. We begin by executing Lemma 18 and then Lemma 29 to either conclude
that G has no connected F -deletion set of size at most k or compute τ = (X, Z) and the set
L ⊇ X ∪ Z. We set G̃ = G[L] and k̃ = (2 + ε)k. Recall that |L| = kO(ρ).

If the number of connected components of G − L is not already bounded by kO(ρ), then
we use the arguments from Lemma 23 (with L used in place of X ∪ Z) to partition them into
P and Q and compute the set P ∞ ⊆ V (P) such that every F-deletion set of size at most
3k for G − V (Q) − P ∞ is an F -deletion set of G and |P| = kO(ρ). Observe that because we
are now using L in place of X ∪ Z, the size of the set |P| is now bounded by kO(ρ) (because
|L| = kO(ρ)) as opposed to kO(1) where the degree of the polynomial only depends on F .

We now define R̃ as follows. Let Ĝ = G − V (Q) − P ∞. For every C ∈ CC(Ĝ) and
compatible set J ∈ BC in the graph Ĝ, we add to R̃ the tuple (N(C) \ J, J, Mh(ĜJ

C , J)).
This completes the definition of R̃ and consequently, the definition of Γ. We now show that
the three properties specified in the lemma hold.

Since we have kO(ρ) connected components in CC(Ĝ) and each connected component has
kO(1) compatible sets, we conclude that ℓ = kO(ρ). It remains to prove the second and third
statements of the lemma. For the second statement, Lemma 29 guarantees that if G has a
connected F-deletion set S of size at most k then it has a connected F-deletion set S′ of
size at most (2 + ε)|S| which is contained in L. We claim that S′ is also a feasible solution
for the constructed instance of Annotated Connected F-Deletion. If this were not
the case then there is an F-minor model in the graph G̃S′ as defined in the definition of
the problem. However, the definition of the tuples in P̃ implies that every F-minor model
present in G̃S′ is also present in G − S′, a contradiction to S′ being a connected F -deletion
set S′ of G. Therefore, we conclude that the second statement holds.

For the third statement, let S be a feasible solution for the constructed instance of
Annotated Connected F-Deletion and suppose that it is not a connected F-deletion
set of G. Then, there is an F-minor model in G − S. In fact, due to Lemma 23 and
the definition of the sets P ∞ and Q, we conclude that there is an F-minor model in
G − V (Q) − P ∞ − S = Ĝ − S because otherwise S must be an F-deletion set of G as well.

However, for every F-minor model in Ĝ − S, one can invoke “cut and paste” arguments
similar to those used in the proof of Lemma 23 to construct an alternate minor model in G̃S

for the same graph in F , a contradiction to our choice of S as a feasible solution of Γ. This
completes the proof of the lemma. ◀

Theorem 1 now follows from Lemma 30. The reduction algorithm uses the algorithm
of this lemma and the solution-lifting algorithm simply returns the approximate solution
computed for the instance of Annotated Connected F-Deletion.

5 Conclusion and Open Problems

Our result on the approximate compressibility of the connectivity constrained variant of
Planar F-Deletion demonstrates that preprocessing lower bounds can be side-stepped
even for very general versions of problems such as Vertex Cover and Feedback Vertex Set
as long as one allows a small loss in accuracy. While a step forward in our understanding
of preprocessing under connectivity constraints, our work leaves some natural questions for
follow-up work.
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1. Is there a (1 + ε)-approximate kernel for this problem (for every 0 < ε < 1)?
2. What is the best approximation factor one can achieve for this problem in polynomial

time?
3. Is there a fixed-parameter algorithm for Connected Planar F-Deletion with a

single-exponential dependence on k? To the best of our knowledge, such an algorithm is
not known in the literature even when F = {θc} for c ≥ 3. Here, θc is the graph on 2
vertices with c parallel edges between them.
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