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Preface

This volume contains the extended abstracts selected for presentation at ESA 2021, the 29th
European Symposium on Algorithms. The event was planned by an organizing committee
from University of Lisbon, Portugal as part of ALGO 2021. Due to the COVID-19 pandemic,
ALGO was organized as an on-line event, rather than as a physical or hybrid event as
originally planned, September 6–8, 2021.

The scope of ESA includes original, high-quality, theoretical and applied research on
algorithms and data structures. Since 2002, it has had two tracks: the Design and Analysis
Track (Track A), intended for papers on the design and mathematical analysis of algorithms,
and the Engineering and Applications Track (Track B), for submissions that also address real-
world applications, engineering, and experimental analysis of algorithms. Information on past
symposia, including locations and proceedings, is maintained at http://esa-symposium.org.

In response to the call for papers for ESA 2021, 320 papers were submitted, 274 for
Track A and 46 for Track B (these are the counts after track changes and withdrawals).
Paper selection was based on originality, technical quality, exposition quality, and relevance.
Each paper received at least three reviews. The program committees selected 80 papers for
inclusion in the program, 68 from track A and 12 from track B, yielding an acceptance rate
of about 1/4 for both tracks.

The presentations of the accepted papers together with two invited talks resulted in a very
exciting program. Frauke Liers presented recent work on the complexity of and algorithms for
network optimization tasks with a timing component, and Aaron Roth about a user-friendly
framework for deriving online learning alorithms.

The European Association for Theoretical Computer Science (EATCS) sponsored best
paper and best student paper awards. The best paper award for track A was given to Zhiyang
He, Jason Li and Magnus Wahlström for the paper Near-linear-time, Optimal Vertex Cut
Sparsifiers in Directed Acyclic Graphs. For track B, the best paper award was given to Simon
D. Fink, Matthias Pfretzschner and Ignaz Rutter for the paper Experimental Comparison
of PC-Trees and PQ-Trees. A submission was eligible for the best student paper award if
all authors were doctoral, master, or bachelor students at the time of submission. The best
student paper award for track A was given to Wojciech Nadara, Mateusz Radecki, Marcin
Smulewicz and Marek Sokołowski for the paper Determining 4-edge-connected Components
in Linear Time. For track B, the best student paper award was given to Florian Wörz and
Jan-Hendrik Lorenz for the paper Evidence for Long-Tails in SLS Algorithms.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and the nearly 500
external reviewers who assisted the program committees in the evaluation process. Special
thanks go to the organizing committee, who helped us with the organization of the conference.
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Abstract
In this invited contribution for ESA 2021, we will study the complexity of and algorithms for
network optimization tasks with a timing component. They occur, for example, in planning or
routing problems that need to be solved repeatedly over time. Typically, already simplified versions
of such problems are NP-hard. In addition, the instances typically are too large to be solved
straight-forwardly on a time-expanded graph. After an introduction into the area, we state the
problem of determining best possible non-stop trajectories in a network that are not allowed to cross
at any point in time. For simplified settings, polynomial-time solution approaches are presented
whereas already for restricted settings the problems are shown to be NP-hard. When moving to
more complex and more realistic settings as they occur, for example, in determining non-stop
disjoint trajectories for a set of aircraft, we present heuristic algorithms that adaptively refine coarse
disjoint trajectories in the timing dimension. In order to be able to solve the non-stop disjoint
trajectories problem over time, the method is integrated in a rolling-horizon algorithm. We present
computational results for realistic settings. Motivated by the fact that rolling-horizon approaches
are often applied in practice without knowledge on the quality of the obtained solutions, we study
this problem from an abstract point of view. In fact, we more abstractly analyze the solution quality
of general rolling-horizon algorithms for optimization tasks that show a timing component. We
apply it to different planning problems. We end by pointing out some challenges and possibilities
for future research.
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1:2 Network Planning and Routing Problems over Time

1 Summary

In this contribution, we will introduce several network optimization tasks that contain a
timing component. Such tasks often occur in planning or routing problems that need to
be solved repeatedly over time. Already simplified such network optimization tasks are
NP-hard. In addition, realistic instances are typically too large to be solved in an integrated
fashion. On the other hand, straight-forward decomposition approaches typically lead to bad
solution quality.

We first introduce the class of optimization problems that are considered here. We will
then more concretely show complexity results for several settings together with algorithms
and computational evaluations. We start by introducing the task of determining best possible
non-stop trajectories in a network that are not allowed to cross at any point in time. For
simplified settings, polynomial-time solution approaches are presented. Those settings include
instances with unit traversal times on the line or grids and meshes, where all commodities
have the same destination. For several only slightly more complicated settings the problems
are shown to be NP-hard. For example, if time intervals to start the trajectories are given,
the problem on the line is hard. On the mesh with arbitrary arc costs the problem is not
fixed-parameter tractable in the number of commodities, even if traversal times are unit.
More details can be found in [5].

We then move on to more complex and more realistic settings as they occur, for example,
in determining non-stop disjoint trajectories for a set of aircraft [4, 7, 8]. We focus on the
surroundings of airports where both the planning of conflict-free trajectories as well as the
determination of runway schedules are crucial and challenging tasks. In current practice, the
resulting continuous and discrete optimization problems are often solved sequentially. In this
work, we develop an integrated optimization model for conflict-free multi-aircraft trajectory
planning and runway scheduling. We use a space-time discretization and model conflict-free
trajectories by an integer linear program that is designed to provide optimal, piecewise-linear
reference trajectories and a runway scheduling for multiple aircraft. Even for moderately
sized instances, a sufficiently detailed representation of 3D-airspace and time leads to huge
models, which cannot be treated by current hard- and software. To overcome this issue,
we develop an iterative adaptive-refinement algorithm. Starting from an optimal solution
in a coarse discretization, the algorithm re-optimizes trajectories in a neighborhood of the
current solution with a higher resolution. The method is integrated into a rolling-horizon
approach. The latter repeatedly restricts trajectory determinations within a (sliding) time
window. Computational results on realistic instances illustrate the computational efficiency
of our approach.

The relevance of the rolling-horizon approach has been demonstrated by applying it to
solve a large variety of practical optimization problems, e.g. as in [6] or [1]. Hence it is
very interesting to know theoretical properties of the rolling-horizon approach, which have
been investigated, e.g. in [2] or [9]. We complement these works in [3]. Hence, we analyze
the solution quality of general rolling-horizon algorithms that are applied to multi-period
optimization problems with a timing component.

We demonstrate that the solution quality of the standard rolling-horizon procedure can
be arbitrarily low considering our general problem setting. We thus adapt the general
rolling-horizon procedure such that statements on the quality of solutions obtained from
adapted rolling-horizon algorithms can be made.

On the practical side, we present computational results on lot-sizing problems in produc-
tion planning as well as on tail-assignment problems in aircraft management. The latter
assigns available aircraft to specific flights in a best possible way. It can be shown that huge
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instances can be solved quickly with an almost negligible loss in solution quality by only a
few percent. We end by pointing out some challenges and possibilities for future research.
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A User Friendly Power Tool for Deriving Online
Learning Algorithms
Aaron Roth #

University of Pennsylvania, Philadelphia, PA, USA

Abstract
In this talk, we overview a simple and user friendly framework developed in [4] that can be used to
derive online learning algorithms in a number of settings. In the core framework, at every round,
an adaptive adversary introduces a new game, consisting of an action space for the learner, an
action space for the adversary, and a vector valued objective function that is concave-convex in
every coordinate. The learner and the adversary then play in this game. The learner’s goal is to
play so as to minimize the maximum coordinate of the cumulative vector-valued loss. The resulting
one-shot game is not concave-convex, and so the minimax theorem does not apply. Nevertheless we
give a simple algorithm that can compete with the setting in which the adversary must announce
their action first, with optimally diminishing regret.

We demonstrate the power of our simple framework by using it to derive optimal bounds and
algorithms across a variety of domains. This includes no regret learning: we can recover optimal
algorithms and bounds for minimizing exernal regret, internal regret, adaptive regret, multigroup
regret, subsequence regret, and permutation regret in the sleeping experts setting. It also includes
(multi)calibration [2] and related notions: we are able to recover recently derived algorithms and
bounds for online adversarial multicalibration [1], mean conditioned moment multicalibration [3],
and prediction interval multivalidity [1]. Finally we use it to derive a new variant of Blackwell’s
Approachability Theorem, which we term “Fast Polytope Approachability”.
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Abstract
Bi-objective search is a well-known algorithmic problem, concerned with finding a set of optimal
solutions in a two-dimensional domain. This problem has a wide variety of applications such as
planning in transport systems or optimal control in energy systems. Recently, bi-objective A*-based
search (BOA*) has shown state-of-the-art performance in large networks. This paper develops a bi-
directional and parallel variant of BOA*, enriched with several speed-up heuristics. Our experimental
results on 1,000 benchmark cases show that our bi-directional A* algorithm for bi-objective search
(BOBA*) can optimally solve all of the benchmark cases within the time limit, outperforming the
state of the art BOA*, bi-objective Dijkstra and bi-directional bi-objective Dijkstra by an average
runtime improvement of a factor of five over all of the benchmark instances.
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1 Introduction

Bi-objective search aims at finding a set of non-dominated, Pareto-optimal solutions in a
domain with two objectives [2]. It has a wide range of real-world applications, such as
planning routes for maritime transportation based on both the fuel consumption and the
total risk of the vehicle route [18], or energy efficient paths for electric vehicles with arrival
time considerations [13]. When the underlying system is a network, the problem is finding a
set of paths between two points that are not dominated by other solution paths.

A comparison of traditional approaches to the bi-objective one-to-all shortest path
problem, such as the label correcting algorithm in [15], the label setting approach in [6],
and the adaptation of a near shortest path procedure in [1], was presented in [11]. These
label-based approaches have been extended in several recent papers. A generalisation of
Dijkstra’s algorithm and its bi-directional counterpart (for the one-to-one variant) to the
bi-objective problem was presented in [12] by utilising the pruning strategies of [5] to avoid
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expanding unpromising paths during the search. The results show that the state-of-the-art
bi-objective Dijkstra algorithm can outperform the bounded label setting approach in [10]
and the depth-first search-based Pulse algorithm in [5] on large-size instances.

Another recent work on point-to-point bi-objective search is the Bi-Objective A* search
scheme (BOA*) in [17]. BOA* is a standard A* heuristic search that leverages the fast
dominance checking procedure of [9] for multi-objective search. In contrast to eager dominance
checking approaches, as in [12], BOA* lazily postpones dominance checking for newly
generated nodes until their expansion. The experimental results in [17] on a set of large
instances show that the efficient dominance checking helps BOA* to perform better than
the bi-objective Dijkstra algorithm of [12] and other best-first search approaches such as
the label-setting multi-objective search NAMOA* of [8] and its improved version with a
dimensionality reduction technique called NAMOA*dr [9].

In this paper, we present Bi-Objective Bi-directional A* (BOBA*), a bi-directional
extension of the BOA* algorithm that is easy to parallelise, uses different objective orders
and includes several new heuristics to speed up the search. Our experiments on a set of 1,000
large test cases from the literature show that BOBA* can solve all of the cases to optimality,
outperforming the state-of-the-art algorithms in both runtime and memory requirement.

2 Background and Notation

For a directed bi-objective graph G = (S, E) with a finite set of states S and a set of edges
E ⊆ S × S, the point-to-point bi-objective search problem is to find the set of Pareto-optimal
solution paths from start ∈ S to goal ∈ S that are not dominated by any solution for both
objectives. Every edge e ∈ E has two non-negative attributes accessed via the cost function
cost : E → R+ × R+. A path is a sequence of states si ∈ S with i ∈ {1, . . . , n}. The cost
of path p = {s1, s2, s3, . . . , sn} is then defined as the sum of corresponding attributes on all
the edges constituting the path as cost(p) =

∑n−1
i=1 cost(si, si+1). Following the standard

notation in the heuristic search literature, we define our search objects to be nodes. A node x
is a tuple that contains a state s(x) ∈ S; a value g(x) which measures the cost of a concrete
path from the start state to state s(x); a value f(x) which is an estimate of the cost of a
complete path from start to goal via s(x); and a reference parent(x) which indicates the
parent of node x. We perform a systematic search by expanding nodes in best-first order.
Each expansion operation generates a set of successor nodes, each denoted Succ(s(x)), which
are added into an Open list. The Open list sorts the nodes according to their f-values in an
ascending order, for the purpose of further expansion.

As with other A*-based algorithms, we compute f-values using a consistent and admissible
heuristic function h : S → R+ × R+ [7]. In other words, f(x) = g(x) + h(s) where h(s) is a
lower bound on the cost of paths from state s to goal. Moreover, in bi-objective search, the
cost function has two components which means that every (boldface) cost function is a tuple,
eg. f = (f1, f2) or h = (h1, h2) and all operations are considered element-wise.

▶ Definition 1. A heuristic function h is consistent if we have h(s) ≤ cost(s, t) + h(t) for
every edge (s, t) ∈ E. It is also admissible iff h(s) ≤ cost(p) for every s ∈ S and the optimal
path p from state s to the goal state.

▶ Definition 2. For every pair of nodes (x, y) associated with the same state s(x) = s(y), node
y is dominated by x if we have g1(x) < g1(y) and g2(x) ≤ g2(y) or if we have g1(x) = g1(y)
and g2(x) < g2(y). Node x weakly dominates y if g1(x) ≤ g1(y) and g2(x) ≤ g2(y).
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Bi-objective A*. The Bi-Objective A* (BOA*) algorithm [17] first obtains its heuristic
function h using two basic one-to-all searches on the reversed graph. BOA* can then establish
lower bounds on the cost of complete paths or f -values using the admissible heuristic h.
Although either of the two objectives can potentially play the key role in the bi-objective
setting, standard BOA* usually chooses the first objective in the (f1, f2) order. The search
then expands all the promising nodes based on their cost estimates so as to ensure the node
with the lexicographically smallest f -value is explored first. The algorithm terminates when
there is no node in Open while keeping all the non-dominated nodes associated with the goal
state in the solution set Sol. The main steps of the standard BOA* algorithm can be found
in Algorithm 2, scripted with normal line numbers (without asterisk *) in black.

▶ Theorem 3. BOA* computes a set of cost-unique Pareto-optimal solution paths [17].

BOA* utilises an efficient strategy to check nodes for their dominance, originally employed
in [9] for multi-objective search. The idea is simple yet powerful. Let us assume A* explores
the graph in the (f1, f2) order, that is, nodes are extracted based on their f1-value in order
(with tie-breaking on f2-values). Meanwhile, x and y are two nodes associated with the same
state or s(x) = s(y) in the Open list where x is going to be expanded first, i.e., we have
f1(x) ≤ f1(y). Since both nodes have used the same heuristic value as h1(s(x)) = h1(s(y))
to determine their cost estimate f1, we can conclude g1(x) ≤ g1(y). Therefore, the second
node will be dominated by the first node if g2(x) ≤ g2(y) as shown in [9] in detail. BOA*
takes advantage of this dimension reduction technique by systematically keeping track of the
g2-value of the last non-dominated node using gmin

2 (s(x)) via line 11 of Algorithm 2.
BOA* can also prune some of the dominated nodes during the expansion with a similar

reasoning via line 28 of Algorithm 2. This is done by comparing the newly generated node of
a state and the last expanded node of the state against their secondary costs g2. Furthermore,
BOA* prunes unpromising nodes based on their cost estimate to the goal state, which is
known as pruning by bound. Given gmin

2 (goal) as the upper bound of the secondary cost,
partial paths will be pruned if the cost estimate of their complete paths to goal on g2 is
greater than that of the last solution already stored in gmin

2 (goal). Interested readers are
referred to the standard BOA* algorithm in [17] for the detailed proof discussion.

Challenges. Lazy dominance checking in BOA* slows down the operations in the Open list
and consumes more space. In contrast to the costly linear dominance checking approach
where new nodes are checked against all of the previously generated nodes associated with a
state before their insertion into the Open list, BOA* may add a node for which we have an
unexpanded dominant node in Open. Thus, the search generates more nodes (using extra
memory), and the Open list will inevitably be longer. Moreover, BOA* is only able to search
the graph in one direction and with a specific objective ordering, whereas there can be cases
with better performance on the reverse objective ordering as shown in [17]. Our preliminary
experiments also reveal that searching backwards (from goal to start) may lead to significant
improvements in the overall runtime. There are also some inefficiencies in BOA* which can
be addressed with extra considerations. As an example, for the simple graph in Figure 2,
BOA* needs to expand all intermediate states for each individual solution, despite the fact
that some of them are not offering any alternative (non-dominated) path to goal (eg. s2).

3 Bi-objective Bi-directional A* Search

Recent improvements in bi-directional heuristic search have introduced new techniques to
reduce the number of necessary node expansions, such as Near-Optimal Bi-directional Search
in [16] and Dynamic Vertex Cover Bi-directional Search in [14]. Given the single-objective
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Algorithm 1 Bi-Objective Bidirectional A* (BOBA*) High-level.
Input: A problem instance (G, cost, sstart, sgoal)
Output: A set of cost-unique Pareto-optimal solutions

1 do in parallel
2 h′

1, ub′
2 ← cost-bounded A* from sstart to sgoal on G in (f1, f2) order

3 h2, ub1 ← cost-bounded A* from sgoal to sstart on Reversed(G) in (f2, f1) order
4 do in parallel
5 h′

2, ub′
1 ← cost-bounded A* from sstart to sgoal on G in (f2, f1) order

6 h1, ub2 ← cost-bounded A* from sgoal to sstart on Reversed(G) in (f1, f2) order
7 do in parallel
8 Sol← BOA*enh for (G, cost, sstart, sgoal) with heuristics (h, ub, h′) in (f1, f2) order
9 Sol′ ← BOA*enh for (Rev(G), cost, sgoal, sstart) with heuristics (h′, ub′, h) in (f2, f1) order

10 return Sol + Sol′

nature of the conventional shortest path problem, none of the existing front-to-end or front-
to-front algorithms can practically tackle the bi-objective shortest path problem without
incorporating necessary modifications. Moreover, those algorithms are not necessarily efficient
for the bi-objective search as obtaining the solutions’ cost would no longer be possible in O(1)
time. In the conventional bi-objective setting where both searches work on the same objective,
every state offers a set of non-dominated nodes (partial paths) in each direction, and handling
frontier collisions (obtaining all of the complete start-goal joined paths of the state) would be
an exhaustive process which can outweigh the speed-up achieved by expanding fewer nodes.
Our preliminary experiments also confirmed that the conventional front-to-end bi-directional
search with an efficient partial paths coupling approach can potentially generate fewer nodes
but shows poor performance compared to the unidirectional search scheme BOA*.

We now present our contributions to the problem by explaining our Bi-Objective Bi-
directional A* search (BOBA*). BOBA* employs two complementary (enhanced) uni-
directional BOA* to search the solution space in both (forward and backward) directions
with different objective orders ((f1, f2) and (f2, f1)). Therefore, since the algorithm does
not perform partial paths coupling, we do not need to handle frontier collisions. In other
words, each uni-directional BOA* is allowed to explore the entire graph towards the opposite
end for each individual solution. The high level structure of BOBA* is given in Algorithm 1.
BOBA* first obtains the preliminary heuristics and then performs two individual searches that
explore the graph in both directions concurrently. The output will then be the aggregation of
solutions found in each search routine. To avoid searching for the same cost-optimum paths
in both directions, BOBA* always chooses different orders for each direction. Figure 1(Left)
depicts the way Pareto-optimal solutions are found based on two searches in the two orders.
Initial solutions (solinit) at both ends are typically the minimum cost paths already obtained
via the heuristic searches for each objective. These cost-optimum paths can also initialise the
global upper bounds (ub1, ub2) needed by the pruning by bound strategies in BOA*. The
upper bounds are updated (always decreasing) during the search every time a valid solution
is found, and sollast is the last solution for which we have had f1 < ub1 and f2 < ub2.

▶ Definition 4. For every state s ∈ S, ub(s) is the upper bound on cost of complementary
paths from state s to goal, eg., ub1(s) denotes the upper bound on cost1.

▶ Definition 5. A path/node/state x is invalid if its estimated costs f(x) are not in the
search global upper bounds (ub1, ub2), i.e., x is invalid if f1(x) ≥ ub1 or f2(x) ≥ ub2.
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Figure 1 Left: Objective orders, bounds and Pareto-optimal solutions. Right: Schematic of states
outside or inside of upper bounds. State u is out of bounds for f1 and will be discarded in f2 search.

3.1 Preliminary Heuristics
BOBA* requires both lower and upper bounds on the costs of complementary paths for each
direction via four individual searches. In each search, we calculate a state’s upper bound
to be the cost of the optimum path using the non-primary objective. For example, the
optimum path to state s for the first objective sets both h1(s) and ub2(s) (here ub2(s) is the
cost of the path using the second objective). BOA* traditionally uses two runs of Dijkstra’s
algorithm to initialise lower bounds. For difficult cases, this initialisation time is usually
outweighed by the main search time, but there can be simple cases where the total time of
these heuristic searches dominates the main search time, especially in large instances. As a
more efficient initialisation approach, we replace Dijkstra’s algorithm with cost-bounded A*
(or cost-bounded Dijkstra without heuristics), as formally stated in Lemma 6 and shown in
lines 2-6 of Algorithm 1.

▶ Lemma 6. The preliminary A* search on f1 (or f2) can terminate before expanding a
state with f1 > ub1 (or f2 > ub2).

Proof. Assume that a forward BOA* is intended and, therefore, the corresponding heur-
istics (via two backward searches) are required. If we start with two simple backward
A* searches (one for each objective), each optimum start-goal path gives us two bounds
as (h1(sstart), ub2(sstart)) and (h2(sstart), ub1(sstart)). Now, given h1(sstart) and h2(sstart)
as the global lower bounds on f1 and f2-values respectively, we will have f1 ≥ h1(sstart)
and f2 ≥ h2(sstart) for every start-goal path. Therefore, any state with a cost estimate of
f1 > ub1(sstart) in the A* search on the first objective, and similarly f2 > ub2(sstart) in the
search on the second objective, will be dominated by one of the optimum solutions. On
the other hand, since A* expands states in an increasing order of f -values, each heuristic
search can terminate early with the first out-of-bound state, guaranteeing that all paths via
unexplored states are already dominated. ◀

Algorithm 1 shows the parallel computation of all necessary heuristics in BOBA* in two
phases. In the first phase (lines 2-3), we can execute our cost-bounded A* using any admissible
heuristic for the primary objective (f1 or f2) and with tie-breaking on the secondary objective
(f2 or f1). Note that the upper bounds are unknown prior to the searches in phase one,
i.e., we initially have ub1 = ub2 = ∞, but we can update our global upper bounds as soon
as we establish the optimal solution in each search. The initialisation step of BOBA* can
be further improved for the heuristic searches in the opposite direction in phase two (lines
5-6). Once the necessary heuristics in one direction have been obtained, the heuristic search
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in the opposite direction can use the lower bounds obtained from the first round as more
informed heuristics. That is, the second phase of our cost-bounded A* searches are normally
executed faster. Moreover, the opposite search in the second round can take advantage of
the reduced search space resulting from the first round, delivering better quality heuristics
without needing to expand already invalidated (out-of-bound) states. Lemma 8 states this
technique more formally.

▶ Example 7. State v in Figure 1 (right) is within the upper bound of both objectives and
will be expanded in the opposite direction. However, state u is observed out of bounds for the
first objective (but within the bound of the second objective) and will then be discarded if it
is going to be expanded in the second round of our heuristic searches. Note that violating at
least one objective’s upper bound is enough to mark nodes (or states) invalid.

▶ Lemma 8. In the preliminary A* search on f1 (or f2), states with an estimated cost of
f2 > ub2 (or f1 > ub1) are not part of any solution path.

Proof. States with f2 > ub2 are dominated by the optimum path obtained for the first
objective. This means that unexplored states with an estimated cost of f2 > ub2 are all
invalid. Therefore, the following search on f1 can ignore expanding such states knowing that
no non-dominated solution can be found via invalid states. The same reasoning is valid for
the reverse order. ◀

3.2 Bi-directional Search
BOBA* performs two enhanced BOA* concurrently, one from each direction. Algorithm 2
shows the details of our first enhanced BOA* algorithm used in BOBA* (forward search
in the (f1, f2) order). Lines scripted in black are from the standard BOA* and the red
lines with an asterisk (*) next to line numbers are our proposed enhancements. To be
consistent with the BOA* notation, we obtain the latest global upper bounds from gmin

values, i.e., we have gmin
2 (sgoal) = ub2 and gmin

1 (sstart) = ub1. This is because the forward
search on (f1, f2) updates gmin

2 (sgoal) for every solution, whereas the backward search on
(f2, f1) simultaneously updates gmin

1 (sstart). We also add a pruning criterion to discard
nodes violating the primary upper bound gmin

1 (sstart) in line 29. To achieve the backward
search, we simply reverse the search direction and the objective ordering. For example,
instead of gmin

2 (sgoal) and h1(s(x)) in Algorithm 2 we will have gmin
1 (sstart) and h′

2(s(x))
respectively (the backward search establishes its f -values using h′). Note that each search
has an independent Open list. Now we describe our contributions to the individual searches
of BOBA* followed by their formal presentation in Lemmas 10-12.

Early solution update. This strategy allows the search to update the secondary upper
bound and establish a tentative solution before reaching the goal state. This is done via
line 17 of Algorithm 2 by coupling nodes with their complementary shortest path to goal. If
the joined path is valid, the corresponding node is then temporarily added to the solution
set knowing that solution nodes with a state other than sgoal (or s(x) ̸= sgoal) must be
joined with their complementary shortest path. This strategy can be further improved by
not expanding nodes for which we have a unique non-dominated complementary path. This
heuristic is incorporated in line 22 and is formalised in Lemma 10.

Secondary heuristic tuning. Bi-directional search provides our algorithm with a great
opportunity to further improve the quality of the preliminary heuristics. Since the main
search of BOBA* has more information about non-dominated paths to states and constantly
updates upper bounds, there can be more outliers that our preliminary heuristic searches are
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Algorithm 2 Enhanced forward Bi-Objective A* (BOA*enh) in (f1, f2) objective ordering.

Inputs: A problem instance (G, cost, sstart, sgoal) and heuristics (h, ub, h′)
Output: A set of cost-unique Pareto-optimal solutions

1 Open← ∅, Sol← ∅
2 gmin

1 (s)← gmin
2 (s)←∞ for each s ∈ S

3 x← new node with s(x) = sstart

4 g(x)← (0, 0), f(x)← (h1(sstart), h2(sstart)), parent(x)← Null
5 Add x to Open
6 while Open ̸= ∅ do
7 Remove a node x with the lexicographically smallest (f1, f2) values from Open

8* if f1(x) ≥ gmin
1 (sstart) then break

9 if g2(x) ≥ gmin
2 (s(x)) or f2(x) ≥ gmin

2 (sgoal) then continue
10* if gmin

2 (s(x)) =∞ then h′
1(s(x))← g1(x)

11 gmin
2 (s(x))← g2(x)

12 if s(x) = sgoal then
13* z ← last node in Sol
14* if (z ̸= Null and f1(z) = f1(x)) then Remove z from Sol
15 Add x to Sol
16 continue
17* if g2(x) + ub2(s(x)) < gmin

2 (sgoal) then
18* gmin

2 (sgoal)← g2(x) + ub2(s(x))
19* z ← last node in Sol
20* if (z ̸= Null and f1(z) = f1(x)) then Remove z from Sol
21* Add x to Sol
22* if h1(s(x)) = ub1(s(x)) then continue
23 for all t ∈ Succ(s(x)) do
24 y ← new node with s(y) = t
25 g(y)← g(x) + cost(s(x), t)
26 f(y)← g(y) + h(t)
27 parent(y)← x

28 if g2(y) ≥ gmin
2 (t) or f2(y) ≥ gmin

2 (sgoal) then continue
29* if f1 ≥ gmin

1 (sstart) then continue
30 Add y to Open
31 return Sol

not aware of. Therefore, benefiting from the main property of BOA* (finding non-dominated
nodes in order), we can tune our findings over the preliminary searches and empower the
pruning by bound strategy of the concurrent search in the opposite direction. This tuning
is done in O(1) time by updating the secondary heuristics of the reverse direction via line
10 of Algorithm 2. Note that h′

1 denotes the secondary heuristic in the backward search
where BOBA* uses f2 as its primary cost. We discuss the correctness of this technique in
Lemma 12.

▶ Example 9. We explain these strategies by just running the forward search of BOBA*
for the graph in Figure 2 and iterations in Table 2. In the first iteration, the forward
search explores the node associated with the start state ss. Since the primary (heuristic)
cost-optimum path from ss is initially valid, the search immediately updates its secondary
upper bound via the early solution update strategy by setting gmin

2 (sg) = 6 and adds the
node into the Sol set with costs (4, 6). During the ss expansion, we notice that the extended
path for state s1 is invalid (f2(y) ≥ gmin

2 (sg) or 3 + 3 ≥ 6). Therefore, the partial path
to s1 is pruned meaning that s2 is no longer reachable via its primary cost optimum path.
Nodes generated for states s2 and s3 , however, are successfully added to Open. In the second
iteration, the algorithm picks the node associated with s2 (with higher priority). Now, since
this is the first time we see s2 being expanded, and since future visits will always have
higher costs (via s3 with g1 = 5 for example), we can update the lower bound of reaching
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s2
(2,1)
(2,1)

ss
(4,3)
(7,6)

s1
(3,3)
(3,3)

s3
(3,2)
(4,4)

sg
(0,0)
(0,0)

state
h
ub

(1,3)
(3,4)

(3,1)

(1,2) (2,1)

(3,4)
(2,1)

(3,4)

Open list Sol Update
It. (s(x), g(x), f(x)) found gmin

2 (sg)
1 ↑(ss, (0,0), (4,3)) (4,6) ∞→ 6
2 ↑(s2, (3,4), (5,5)) (5,5) 6 → 5

(s3, (3,1), (6,3))
3 ↑(s3, (3,1), (6,3))
4 ↑(s2, (5,2), (7,3)) (7,3) 5 → 3
5 empty

parent arrays ss s1 s2 s3 sg

par_state [Null] [ss, s3] [ss]
par_path_id [Null] [1, 1] [1]

Figure 2 Left: An example graph with cost on the edges, and with (state, h, ub) inside the
nodes. Right: Status of the Open list, new solution (Sol) and secondary upper bound gmin

2 (sg) in
every iteration (It.) for the forward search on the (f1, f2) ordering. Symbol ↑ beside nodes denotes
the expanded min-cost node. The second table shows the status of the parent arrays of the states
when the search terminates.

s2 from ss knowing that all possible shorter paths have already been invalidated. This is
done by updating h′

1(s2) = 3. Note that from the preliminary heuristics, we already had
h′

1(s2) = 2 (lower bound from ss to s2 ). After this update, the backward search would have
better quality secondary lower bounds and can effectively prune more nodes (the backward
primary heuristic is h′

2). We skip the backward search for now and continue with our forward
expansions. As coupling the node (associated with s2) with its (complementary) primary
cost-optimum path yields a valid complete path, the search updates its secondary upper
bound and temporarily adds the node to the Sol set with costs (5, 5). The search also skips
expanding s2 as it does not offer any non-dominated path to sg. In the third iteration, the
node associated with state s3 is picked. This time, s3 is expanded since coupling does not
yield valid path. During the s3 expansion, the search finds sg invalid but adds s2 into Open.
In the fourth iteration, the node associated with s2 is the only node in Open which reveals
the final solution with costs (7, 3), again with the early solution update strategy. This last
solution also verifies that the temporary solution found in the second iteration is now a valid
non-dominated solution, since the primary cost of the last solution is larger than that of the
second solution (5 < 7).

Now we formally prove the correctness of the presented techniques as follows.

▶ Lemma 10. At every iteration, if g2(x) + ub2(s(x)) < gmin
2 (sgoal), the next solution has a

primary cost of f1(x) and a secondary cost of at most g2(x) + ub2(s(x)). Node x is also a
terminal node if h1(s(x)) = ub1(s(x)).

Proof. If the joined path is valid (its secondary cost is within the bounds), expanding nodes
on the complementary shortest path will definitely navigate us to sgoal with a valid secondary
cost as they offer the same f1-value. This means we can efficiently update the secondary
upper bound earlier assuming that a potential solution path is already established. Therefore,
valid joined paths determine the primary cost f1 of the next solution along with setting a
new upper bound for the secondary cost f2. Furthermore, given the secondary cost as a
tie-breaker in the preliminary heuristic searches, states with h1(s(x)) = ub1(s(x)) would only
offer one complementary path optimum for both objectives. As none of the states on the
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complementary path would offer an alternative non-dominated path to sgoal , the search can
save time by not expanding such terminal nodes. Therefore, nodes with h1(s(x)) = ub1(s(x))
are terminal nodes if they appear on any solution path. ◀

The early solution update strategy above guarantees that the primary cost f1 of the next
solution is determined by the joined path, but this does not apply to its secondary cost.
E.g., we might see two consecutive temporary solutions with the same f1-value but different
(sequentially) valid secondary costs. Therefore, the search needs to make sure that the
previously added solution is not dominated by the next potential solution, and if it is
dominated, it must be removed from the non-dominated solution set Sol. We address this
matter in O(1) time by checking our last (temporary) solution against new solutions for
dominance as shown in lines 13-14 and 19-20 of Algorithm 2. This pruning is formally stated
in the following Lemma 11.

▶ Lemma 11. Given z and x as the last and new temporary solution nodes respectively, node
z represents a non-dominated solution if f1(z) < f1(x). The temporary solution node z is
dominated by x if f1(z) = f1(x).

Proof. Since the secondary cost of the new solution x is already checked to be smaller than
that of the last solution z stored in gmin

2 (sgoal), we have f2(x) < gmin
2 (sgoal) if s(x) = sgoal

or g2(x) + ub2(s(x)) < gmin
2 (sgoal) if s(x) ̸= sgoal. On the other hand, since x is the new

potential solution and the search explores nodes in an increasing order of f1-values, we must
have f1(z) ≤ f1(x). Therefore, if f1(z) < f1(x), we can see that the temporary solution z is
now a non-dominated solution. Otherwise, if f1(z) = f1(x), the last solution z is dominated
by the new solution x because the new solution offers a lower secondary cost. ◀

We now show the correctness of the heuristic tuning approach in BOBA*.

▶ Lemma 12. The secondary heuristic tuning maintains the correctness of A* heuristics.

Proof. BOBA* expands partial paths in the increasing order of f -values. This means the
first expanded node of every state is guaranteed to have the minimum valid primary cost
g1 in each search direction, and all of the following valid nodes will have a larger primary
cost. Moreover, since BOBA* uses different objective ordering for its searches, updated lower
bounds in one direction represent the secondary heuristics of the other direction. Therefore,
we can guarantee that the updated secondary heuristic is still admissible as there will not be
any min-cost path to states better than what their first expanded node presents. Furthermore,
the tuning strategy only updates the secondary heuristics of the opposite search, i.e., h′

1(s(x))
in the forward and h2(s(x)) in the backward search. Therefore, the preliminary primary
heuristics h1(s(x)) and h′

2(s(x)) are unchanged and the A* searches are correct. ◀

Considering the correctness of the enhancements presented above, we now show the correctness
of our BOBA* algorithm.

▶ Theorem 13. BOBA* returns a set of cost-unique non-dominated solution paths.

Proof. BOBA* executes two enhanced BOA* searches concurrently, each capable of finding
all of the solutions. Therefore, we just need to show the correctness of the stopping criteria.
Each (enhanced) BOA* searches the primary objective’s domain in the increasing order of
f -values and continually shrinks the secondary objective’s domain every time a valid solution
is found. Furthermore, since BOBA* shares the upper bounds between its searches, each
search can terminate with the first node violating the main objective’s upper bound (and

ESA 2021



3:10 Bi-Objective Search with Bi-Directional A*

consequently other unexplored nodes with larger f -values in Open) knowing that the rest of
the objective’s domain has already been investigated by the concurrent search (see Figure 1).
Therefore, the aggregation of the solutions found in each search yields a complete set of
cost-unique non-dominated solutions. ◀

4 Practical Considerations

As BOA* enumerates all non-dominated paths, the size of Open can grow exponentially over
the course of search. Furthermore, the huge number of nodes in difficult cases may result
in major memory issues. For instance, for one particular case in our experiments BOA*
generates two billion nodes. We now present two techniques to handle search nodes more
efficiently.

More efficient Open list. To achieve faster operations in our Open lists, since the lower and
upper bounds on the f -values of the nodes in BOBA* are known prior to its main searches,
we replace the conventional heap-based lists with fixed-size bucket lists without tie-breaking
[3]. In contrast to other problems where the bucket list is regularly resized and the list
is sparsely populated, for the significant number of (cost-bounded) nodes in our problem
we expect to see almost all of the buckets filled. Note that the search may also expand
dominated nodes if they are not extracted in a lexicographical order (i.e., nodes are sorted
based on their primary cost only), but BOBA* can still obtain cost-unique solutions via the
dominance checks incorporated in lines 13-14 and 19-20 of Algorithm 2 as formally stated in
the following Lemma 14.

▶ Lemma 14. BOBA* is able to obtain cost-unique solutions even without tie-breaking in
its Open lists.

Proof. Let z and x be two solution nodes where f1(z) = f1(x) and z is dominated by x.
Without any tie-breaking, the search may temporarily add dominated node z to the solution
set first. In the next iterations, when x is extracted, the search performs a quick dominance
check by comparing the f1-value of the new node x against that of the previous solution z

and substitutes the dominated solution with the new solution x if f1(z) = f1(x), as already
shown in the early solution update strategy and Lemma 11 in detail. Therefore, BOBA*
computes cost-unique non-dominated solutions even without tie-breaking. ◀

Memory efficient backtracking. Creating nodes is necessary to appropriately navigate the
search to valid solution paths. Each new node occupies a constant amount of memory and
conventionally contains essential information about paths such as costs and also back-pointers
for solution path construction. Considering the difficulty of the problem and the significant
number of generated nodes, we suggest a more memory efficient approach for the solution
path construction in BOBA*. Since BOBA* only expands nodes once, we propose to recycle
the memory used to store heavy processed nodes, while storing their backtracking information
in other compact data structures. This technique results in a major reduction in memory use
as part of the nodes’ information would no longer be required for backtracking. We explain
our compact approach using an example from Figure 2. Assume that in the second iteration
of the algorithm, we want to store the backtracking information of the node corresponding to
s2 with ss as the parent state. To this end, we keep two (initially empty) dynamic arrays for
each state: one to store the parent state of the node par_state, and another to look up the
corresponding path index in the parent state par_path_id. For our example, since the first
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path to s2 is derived from the first non-dominated path of ss, we store this sequence in s2 as
par_state[1]=ss and par_path_id[1]=1. Similarly, for the second expansion of s2 with s3
as the parent in the fourth iteration, we update s2 arrays, this time with par_state[2]=s3
and par_path_id[2]=1. Figure 2 also shows the situation of our parent arrays when the
forward search terminates. As a further optimisation, we can store the index of incoming
edges (which are usually very small integers) instead of parent states. We will investigate
the impacts of this compression on memory usage in the following section.

5 Empirical Study and Analysis

We compare our BOBA* with recent algorithms designed for the bi-objective search problem.
The selected algorithms are the bi-objective variants of Dijkstra’s algorithm (Dij) and bi-
directional Dijkstra (Bi-Dij) from [12], and bi-objective A* (BOA*) from [17]. We use all
seven benchmark instances of [12] which include 700 random start-goal pairs from the large
road networks in the 9th DIMACS challenge [4] with (distance, time) as objectives. To
further challenge the algorithms, we used the competition’s random pair generator to design
an additional set of 300 test-cases for the larger networks in the DIMACS instances: E,
W and CTR (100 cases each) with up to 15 M nodes and 33 M edges. The details of the
instances can be found in [4].

Implementation. We implemented our BOBA* algorithms based on a parallel framework
using two cores in C++ and used the C implementations of the Dij, Bi-Dij and BOA*
algorithms kindly provided to us by their authors. We also fixed the scalability and tie-
breaking issues in the standard BOA* algorithm before running the experiments. All code
was compiled with O3 optimisation settings using the GCC7.4 compiler. Our codes are
publicly available2. We ran the 1,000 experiments on an Intel Xeon E5-2660V3 processor
running at 2.6 GHz and with 128 GB of RAM, under the SUSE Linux 12.4 environment and
with a one-hour timeout.

BOA* analysis. The search in BOA* can be performed in different directions and objective
orders, resulting in four variants. We also consider the virtual best version of the four, called
BOA*best (essentially assuming an oracle that could select the best variant). Figure 3 is
a cactus plot comparing the performance of all BOA* variants including the virtual best,
showing how many instances can be solved in a given time (the plot only shows the longest
running 300 instances). Backward BOA* in the (f1, f2) order (in green) is the weakest
variant, but the other variants perform quite similarly, and it is difficult to declare a clear
winner. The performance of the virtual variant BOA*best shows that an ideally-tuned BOA*
can be up to two times better than its standard version on average, but is still unable to
solve 15 cases to optimality within the time limit (see Table 2).

Memory. We investigate the impact of our compact approach for the solution paths
construction in BOBA*. Table 1 compares the memory usage of our proposed compact
approach against the conventional backtracking approach on part of the benchmark instances.
In order to measure the overall space requirement of the main search, we ignore the memory
required for graph construction, shared libraries and heuristics, allocated prior to the search.
The results show that BOBA* can solve all of the instances with both approaches within

2 https://bitbucket.org/s-ahmadi
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Figure 3 Performance of the BOA* variants.

Table 1 BOBA* memory usage for the
conventional and compact backtracking ap-
proaches.

Saving Mem. (MB)
Inst. Approach Avg. Max
NE Conv. 307 7618

Compact 61 1186
CAL Conv. 326 5421

Compact 62 1009
LKS Conv. 5585 54331

Compact 955 9411
E Conv. 5836 62963

Compact 999 10895
W Conv. 5877 79602

Compact 925 10498
CTR Conv. 15835 99108

Compact 2662 21749

the time limit, but the compact approach runs slightly faster and is five times more efficient
on average in terms of memory. For the most difficult case in the experiments, the required
memory of the compact approach can be as low as 21 GB (allocating 15M nodes with
recycling) where the conventional approach needs 96 GB (allocating 1B nodes). Note that
both approaches nearly expand the same number of nodes to solve the cases to optimality.

BOBA* performance. We compare the performance of our parallel BOBA* algorithm with
the state-of-the-art Dij, Bi-Dij and BOA* algorithms from the literature. Table 2 shows
the summary of experimental results for the 100 cases of each instance. For unsolved cases,
we generously assume a runtime of one hour (the timeout). We also report the average
memory usage of the main search of each algorithm over solved cases, ignoring the space
allocated for their initialisation phase. The results in Table 2 show that the standard BOA*
algorithm runs faster, needs less memory compared to both Dij and Bi-Dij algorithms and
solves more instances. However, our new BOBA* outperforms BOA* in all of the instances,
showing an (arithmetic) average speed up of 16 over all of the individual cases. For the
average runtime of all instances, BOBA* is around five times faster than BOA*. We also
compare the algorithms’ performance over the solved instances for both CPU time and
memory usage in Figure 4. As shown for both metrics, BOBA* delivers superior performance
to its competitors by solving all of the instances to optimality within the time limit and with
a maximum memory usage of 21 GB, compared to the nearly full (128 GB) memory usage of
other algorithms in difficult instances. BOBA* also shows a massive speed up in the easy
cases due to its efficient initialisation phase. It can solve 282 cases before BOA* solves its
easiest case. Moreover, the figure shows that BOBA* completes the task eight times more
efficiently in terms of memory than BOA* on average. Note that because of the difficulties
in reporting the memory usage, we allow 1 MB tolerance in our experiments.

Multi-threading. We investigate the impact of multi-threading in BOBA* by running the
(unmodified) algorithm on a single core instead of two cores, allowing decisions on scheduling
of the threads to be made by the operating system. We compare single-core BOBA*1c
with the virtual best variant BOA*best and our BOBA* with two cores in Table 2. The
results show a slowdown of around 1.8 compared to parallel BOBA*, but it still outperforms
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Table 2 Number of solved cases (|S|), runtime (in seconds) and average memory usage (Mem.)
of algorithms over instances (Ins.). Memory in MB for the main search over solved cases.

Runtime (s) Mem. Runtime (s) Mem.
Alg. Ins. |S| Min Avg. Max Avg. Ins. |S| Min Avg. Max Avg.
BiDij NY 100 0.53 0.92 6.66 21 CAL 98 4.04 168.58 3600.00 1206
Dij 100 0.31 1.47 16.98 75 100 2.73 88.93 1105.57 4283
BOA* 100 0.11 0.22 1.70 9 100 0.89 24.50 538.40 893
BOA*best 100 0.11 0.16 0.65 6 100 0.89 8.63 187.04 498
BOA*enh 100 0.01 0.12 0.67 2 100 0.02 6.69 147.44 67
BOBA*1c 100 0.01 0.11 0.59 7 100 0.01 6.08 116.10 97
BOBA* 100 0.00 0.08 0.40 2 100 0.00 3.75 64.80 62
BiDij BAY 100 0.61 1.32 11.96 35 LKS 69 6.12 1610.14 3600.00 2597
Dij 100 0.36 2.01 19.71 107 81 4.13 936.23 3600.00 11394
BOA* 100 0.13 0.38 4.10 19 89 1.30 528.12 3600.00 4854
BOA*best 100 0.13 0.23 1.26 13 100 1.28 224.42 3500.80 9374
BOA*enh 100 0.01 0.19 1.20 3 100 0.02 97.05 1077.96 787
BOBA*1c 100 0.01 0.19 1.08 10 100 0.02 129.64 1488.41 1123
BOBA* 100 0.00 0.13 0.86 2 100 0.00 69.68 812.17 955
BiDij COL 100 0.84 6.84 147.55 118 E 64 8.08 1611.10 3600.00 2223
Dij 100 0.52 6.27 111.81 348 82 5.48 1034.61 3600.00 16156
BOA* 100 0.19 1.20 20.53 77 89 1.72 552.64 3600.00 5299
BOA*best 100 0.18 0.58 7.03 49 98 1.72 293.27 3600.00 8701
BOA*enh 100 0.01 0.54 10.46 7 100 0.02 110.69 1684.94 850
BOBA*1c 100 0.02 0.42 5.50 21 100 0.02 143.08 1818.63 1160
BOBA* 100 0.00 0.34 6.58 6 100 0.00 75.94 952.32 999
BiDij FLA 100 2.11 51.49 1088.49 808 W 69 14.38 1585.11 3600.00 3476
Dij 100 1.37 52.34 1048.67 2630 74 10.04 1220.44 3600.00 12722
BOA* 100 0.48 6.42 153.07 276 94 3.14 416.94 3600.00 7705
BOA*best 100 0.48 3.22 36.32 202 98 3.14 253.85 3600.00 8043
BOA*enh 100 0.01 2.05 34.47 22 100 0.04 93.16 1792.57 784
BOBA*1c 100 0.01 2.06 27.98 43 100 0.04 130.81 1834.67 1134
BOBA* 100 0.00 1.31 19.86 25 100 0.02 70.41 971.67 925
BiDij NE 99 3.31 181.67 3600.00 1367 CTR 48 40.41 2666.66 3600.00 4904
Dij 100 2.18 68.41 1306.04 3281 51 29.29 2163.50 3600.00 16149
BOA* 100 0.73 16.83 332.36 587 77 8.46 1124.03 3600.00 9828
BOA*best 100 0.70 10.51 332.01 533 89 8.46 745.16 3600.00 12418
BOA*enh 100 0.02 4.79 97.25 49 100 0.03 340.50 2953.12 2178
BOBA*1c 100 0.02 5.71 154.51 82 98 0.03 461.07 3600.00 2644
BOBA* 100 0.00 3.41 90.01 61 100 0.02 246.01 2496.95 2662

BOA*best, solving more instances and showing an (arithmetic) average speed-up of six over
all of the individual cases. Note that this virtual best version BOA*best does not exist, and
the results are based on the best timings obtained via four individual runs of the standard
BOA* algorithm.

Enhanced BOA*. To measure the contributions of our improvements to the uni-directional
bi-objective search, we analyse the performance of the enhanced variant BOA*enh with the
speed-up techniques above. This variant is obtained by switching off the backward search of
BOBA*. Based on the results given in Table 2, BOA*enh outperforms BOA*best in almost
all of the cases and shows a comparable performance to BOBA*1c, solving a few more cases
in the CTR map and using less memory on average. Comparing the maximum runtime over
instances, we can see that BOBA*1c is faster than BOA*enh in half of the instances (maps
NY, BAY, COL, FLA and CAL). Nonetheless, given the results in Table 2, BOBA* is still
superior to BOA*enh showing a speed-up factor of 1.5 on average.
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Figure 4 Cactus plots of algorithms’ performance. Left: Runtime. Right: Search memory usage.

Bucket vs. heap. We found BOBA* with the bucket-based Open list around 1.8 times
faster than BOBA* with heap for the same set of instances on average. Nonetheless, BOBA*
with heap is still 2.2 times faster than standard heap-based BOA* (average over instances).

6 Conclusion

This paper introduced BOBA*, a bi-directional version of the state-of-the-art BOA* algorithm
for bi-objective search. Our new algorithm explores the graph from both (forward and
backward) directions in different objective orders in parallel. We enrich BOBA* with more
efficient approaches for both the initial heuristic procedure and the solution path construction.
We also present several speed up strategies to enhance BOBA*’s searches in various scenarios.
Our experiments show that BOBA* outperforms the state-of-the-art algorithms in both
runtime and memory use, solving all of the 1,000 benchmark cases to optimality in one
hour timeout. Furthermore, compared to BOA*, BOBA* is five times faster and needs eight
times less memory on average. Additional experiments reveal that the single-core version of
BOBA* is around 1.8 times slower than the parallel version but still superior to the virtual
best variant of BOA* and shows a comparable performance to BOA* enhanced with the
speed-up strategies of this study.
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Abstract
Let G = (V, E) be a weighted undirected graph with n vertices and m edges, and let dG(u, v) be the
length of the shortest path between u and v in G. In this paper we present a unified approach for
obtaining algorithms for all pairs approximate shortest paths in weighted undirected graphs. For
every integer k ≥ 2 we show that there is an Õ(n2 + kn2−3/km2/k) expected running time algorithm
that computes a matrix M such that for every u, v ∈ V :

dG(u, v) ≤ M [u, v] ≤ (2 + k − 2
k

)dG(u, v).

Previous algorithms obtained only specific approximation factors. Baswana and Kavitha [FOCS
2006, SICOMP 2010] presented a 2-approximation algorithm with expected running time of Õ(n2 +
m

√
n) and a 7/3-approximation algorithm with expected running time of Õ(n2 + m2/3n). Their

results improved upon the results of Cohen and Zwick [SODA 1997, JoA 2001] for graphs with
m = o(n2). Kavitha [FSTTCS 2007, Algorithmica 2012] presented a 5/2-approximation algorithm
with expected running time of Õ(n9/4).

For k = 2 and k = 3 our result gives the algorithms of Baswana and Kavitha. For k = 4, we
get a 5/2-approximation algorithm with Õ(n 5

4 m
1
2 ) expected running time. This improves upon the

running time of Õ(n9/4) due to Kavitha, when m = o(n2).
Our unified approach reveals that all previous algorithms are a part of a family of algorithms

that exhibit a smooth tradeoff between approximation of 2 and 3, and are not sporadic unrelated
results. Moreover, our new algorithm uses, among other ideas, the celebrated approximate distance
oracles of Thorup and Zwick [STOC 2001, JACM 2005] in a non standard way, which we believe is
of independent interest, due to their extensive usage in a variety of applications.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph algorithms, Approximate All Pairs of Shortest Paths, Distance Oracles

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.4

1 Introduction

Computing All Pairs of Shortest Paths (APSP) is one of the most fundamental problems
in Computer Science. The fastest known algorithms for APSP in weighted graphs run in
min{Õ(mn), n3/ exp(

√
log n)} [27, 19, 20].

In unweighted undirected graphs the fastest known APSP algorithms run in Õ(min{mn,

nω}) time1 [21], where ω < 2.373 is the exponent of square matrix multiplication [28, 17, 24],
n is the number of vertices and m is the number of edges. For an extension of this result to
undirected graphs with integral weights see [22] and to directed graphs see [30]. Fast Matrix
Multiplication (FMM) algorithms hide large constants and are thus far from being practical.
A fundamental research question is whether one can obtain fast “combinatorial” algorithms,
that can be implemented.

1 Õ notation hides polylogarithmic factors
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4:2 A Unified Approach for APASP in Weighted Graphs

Aingworth, Chekuri, Indyk and Motwani [1] initiated the research on efficient APSP
algorithms in unweighted undirected graphs, that settle for an approximated solution and
do not use FMM. An all pairs approximate shortest paths (APASP) algorithm has (α, β)-
approximation if every distance X is estimated by the algorithm to be at least X and at most
αX + β, where α is the multiplicative approximation and β is the additive approximation.
Aingworth et al. [1] presented a (1, 2)-approximation that runs in Õ(n2.5).

Dor, Halperin and Zwick [10] improved and generalized the results of [1]. For every even
k > 2, they presented a generalized scheme with Õ(min{n2− 2

k+2 m
2

k+2 , n2+ 2
3k−2 }) running

time and an additive approximation of k. For k = 2, the running time is Õ(min{n 3
2 m

1
2 , n

7
3 })

and the additive approximation is 2. They also obtained an algorithm with Õ(n2) running
time and (3, 0)-approximation. Berman and Kasiviswanathan [6] improved this result and
obtained an algorithm with the same running time of Õ(n2) and (2, 1)-approximation. The
question of obtaining efficient APASP algorithms for unweighted undirected graphs was
considered by many subsequent works [11, 5, 3, 23, 16, 2].

Cohen and Zwick [9] extended the results of Dor et al. [10] to weighted undirected
graphs. They obtained an Õ(n2) time algorithm with a (3, 0)-approximation, an Õ(n 3

2 m
1
2 )

time algorithm with a (2, 0)-approximation and also Õ(n 7
3 ) time algorithm with (7/3, 0)-

approximation. Their analysis of the (3, 0)-approximation algorithm allowed them to obtain a
general scheme with a running time of Õ(n2−1/km1/k) that for every pair u, v ∈ V computes
an additive approximation of 2

∑k−1
i=1 wi, where wi is the ith heaviest edge on the shortest

path between u and v. (For a similar result see also [12].) This is still a (3, 0)-approximation
in the worst case.

Baswana and Kavitha [4] presented several algorithms that perform better than the
algorithms of Cohen and Zwick when m = o(n2). They presented a (2, 0)-approximation
algorithm with expected running time of Õ(n2+m

√
n) and a (7/3, 0)-approximation algorithm

with expected running time of Õ(n2 + m2/3n). Notice that both algorithms have the same
running times as those of Cohen and Zwick when m = Θ(n2). Kavitha [15] presented a
(5/2, 0)-approximation algorithm with expected running time of Õ(n9/4). Baswana and
Kavitha [4] presented also a (2, W )-approximation algorithm, where W is the largest edge
weight, with expected running time of Õ(min{n2, m

√
n}). This is still a (3, 0)-approximation

in the worst case. A deterministic algorithm with the same bounds was presented by Berman
and Kasiviswanathan [6].

It stems from all the previous results mentioned above that for m = Θ(n2) there is a
(2 + (k − 2)/k, 0)-approximation algorithm with an expected running time of Õ(n2+1/k), for
every k ∈ {2, 3, 4}. For k ∈ {2, 3}, there is a (2 + (k− 2)/k, 0)-approximation algorithm with
expected running time of Õ(n2 + n2− 3

k m
2
k ). Therefore, in light of the existing results and the

lack of progress in improving them for more than 15 years, a natural research question that
arises is, whether there is a general scheme of algorithms with (2+(k−2)/k, 0)-approximation
and Õ(n2+1/k) running time, for every k > 4 or even more generally, is there a general
scheme of algorithms with (2+(k−2)/k, 0)-approximation that work better for sparse graphs
and have a running time of Õ(n2 + n2− 3

k m
2
k ), for every k > 3. Obtaining the latter scheme

requires first to improve the (5/2, 0)-approximation algorithm with expected running time of
Õ(n9/4) of Kavitha [15]. In this paper we answer the more general question positively and
prove:

▶ Theorem 1. For every integer k ≥ 2, there is an APASP algorithm with expected running
time of Õ(n2 + m

2
k n2− 3

k ) and multiplicative approximation of 2 + k−2
k .

For k = 2, 3 we get the results of Baswana and Kavitha [4]. For k = 4, we improve upon
the result of Kavitha [15] and get a (5/2, 0)-approximation algorithm with Õ(n2 + n

5
4 m

1
2 )

expected running time, which is better than Õ(n9/4) when m = o(n2).
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The main contribution of Theorem 1 is in unifying all previous algorithms into one general
systematic scheme which reveals for the previous known algorithms with 2, 7/3 and 5/2
approximation, that rather than being accidental ad-hoc results, they are part of a family of
algorithms that exhibits a smooth tradeoff between time and approximation.

Another aspect of Theorem 1 is that the current state of the art in conditional lower
bounds only rules out the existence of a (2 − ε)-approximation algorithm whose running
time is better than the running time of FMM. No conditional lower bounds are currently
known for approximation factors in the range between 2 and 3. Our result shed a light on
this range from the upper bound perspective.

From the technical perspective our result is obtained by a combination of several obser-
vations with one important key ingredient that might be useful for generalizing also other
algorithms that are based on distance computation. Very roughly speaking, the algorithms
for k = 2, 3 of [4] and for k = 4 of [15] are obtained by using a case analysis in which one of
the cases uses the following approach. For every u, v ∈ V there is some edge (a, b) ∈ E on a
shortest path between u and v that is used to get an estimation to the distance between u

and v based on approximate distance queries between u and b and v and a. We develop a
generalization of this idea which is based on the query procedure of the approximate distance
oracles (ADO) of Thorup and Zwick [26]. However, this key ingredient in its own is not
enough to obtain Theorem 1. A tighter analysis of the algorithm of [4] for the case that
k = 2 and a careful combination of it with our generalization technique is required.

The ADO of Thorup and Zwick [26] plays a pivotal role in many results related to
approximating distances. Formally, Thorup and Zwick showed that for any integer k ≥ 1 it
is possible to preprocess a weighted undirected graph in O(kmn1/k) expected time and to
create ADO of size O(kn1+1/k). For every u, v ∈ V a query returns in O(k) time a (2k−1, 0)-
approximation. Many of the subsequent works on ADO were focused on improving the
preprocessing time. (For more details see for example [4, 29, 23].) Baswana and Kavitha [4]
showed that for k > 2 it is possible to compute ADO in Õ(min{n2, kmn1/k}) expected
running time. Other aspects of ADO were considered as well. For more details see for
example [18, 29, 7, 8, 13, 14].

The rest of this paper is organized as follows. In the next section we present notations and
review previous works. In Section 3 we present the main ingredients needed for obtaining the
generalization. In Section 4 we present a couple of additional ingredients whose combination
with the generalization presented in Section 3 yields the proof of Theorem 1.

2 Preliminaries

Let G = (V, E) be a weighted undirected graph with n = |V | vertices and m = |E| edges.
Let w : E → R+ be a weight function on the edges of G. For a vertex u ∈ V , let N(u) be the
set of neighbours of u including u itself. Let Eu be the set of incident edges of u. Let Eu(i)
be the i lightest edges2 that are incident to u and let N(u, i) = {v | (u, v) ∈ Eu(i)}. Let
E(i) = ∪u∈V Eu(i). Let u, v ∈ V and let dG(u, v) be the distance between u and v in G, that is,
the length of the shortest path between u and v. Let S ⊆ V . Let pS(u) = arg minw∈S dG(u, w)
and let dG(u, S) = dG(u, pS(u)). If S = ∅ then dG(u, S) = ∞. Notice that pS(s) = s for
every s ∈ S. Let ES(u) = {(u, v) ∈ Eu | w(u, v) < dG(u, S)} and let ES = ∪u∈V ES(u).
Notice that in the degenerate case that S = ∅ we have ES = E, since dG(u, S) =∞.

2 Ties are broken arbitrarily. If i is not integral we take the ⌈i⌉ lightest edges.
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4:4 A Unified Approach for APASP in Weighted Graphs

Several variants of the next two Lemmas were used in many of the previous papers [10, 9,
26]. For our needs we use the formulation of Baswana and Kavitha [4]:

▶ Lemma 2 ([4]). Given a weighted undirected graph G = (V, E) and a set S ⊆ V the
following holds:
1. If dG(u, v) < dG(u, S) then all the edges on a shortest path between u and v are in

G(V, ES) and dG(V,ES)(u, v) = dG(u, v).
2. dG(V,ES∪EpS (u))(u, pS(u)) = dG(u, pS(u)).

▶ Lemma 3 ([4]). If v ∈ V is added to S with probability p then E[|ES |] is O(n/p).

For every u ∈ V , the ball of u with respect to S is BS(u) = {w | dG(u, w) < dG(u, S)}.
An example to a ball is presented in The next definition of overlapping balls is used implicitly
in many of the previous research on ADO and APASP. This definition was stated explicitly
by Kavitha [15].

▶ Definition 4 ([15]). Balls BS(u) and BS(v) overlap if dG(u, S) + dG(v, S) > dG(u, v).

The next Corollary from [15] is crucial for our new algorithms.

▶ Corollary 5 ([15]). If P (u, v) is a shortest path and BS(u) and BS(v) overlap then P (u, v)
can be divided into a portion P (u, a) in BS(u), a portion P (v, b) in BS(v), and an edge
(a, b)3.

Let S0 ⊆ V , Si+1 ⊆ Si, where i ∈ [0, k] and k ≥ 1. The set Si+1 is constructed by picking
every vertex of Si independently at random with probability p · c log n, for some constant
c. We denote these k + 1 vertex sets with Sp

k and call them a regular hierarchy if S0 = V

and Sk = ∅. Later we also define augmented and mixed hierarchies. We will usually refer to
vertices in Si, for i > 0, as pivots. For every u ∈ V let pi(u) = pSi

(u).
Thorup and Zwick [26] introduced approximate distance oracles (ADO). Given k ≥ 1,

an ADO of size Õ(n1+1/k) can be constructed in Õ(mn1/k) time. A query between any
u, v ∈ V returns in O(k) time a (2k − 1)-multiplicative approximation of the distance.
At the core of the ADO is the definition of a bunch Bi(u) for every vertex u ∈ V and
i ∈ [0, k − 1]. For a given i ∈ [0, k − 1] and u ∈ V a bunch Bi(u) is defined as follows:
Bi(u) = {w ∈ Si \ Si+1 | dG(u, w) < dG(u, pi+1(u))}. Notice that if we translate the
definition of bunches to the terminology of balls then for every u ∈ V and i ∈ [0, k − 1],
Bi(u) = Si ∩BSi+1(u). In particular, for i = 0 we have that the bunch B0(u) is simply the
ball BS1(u). Thorup and Zwick [26] proved the following Lemma on the size of the bunches.

▶ Lemma 6 ([26]). Let p = qc log n, where c is a large constant and q ∈ (0, 1/(c log n)). For
every i ∈ [0, k− 2] the size of Bi(u) is O(q−1 log n) with high probability. The size of Bk−1(u)
is O(n(q log n)k−1), whp.

The different bound on |Bk−1(u)| is not really relevant for the ADO of Thorup and Zwick,
as they set q = n−1/k and both bounds coincide at the same value. In our case, however, it
raises a non trivial obstacle on the way to obtain efficient algorithms for sparse graphs. We
will elaborate more on this issue later on.

The ADO is composed of an hierarchy Sp
k , where p = n−1/kc log n, and Sk = ∅. For every

u ∈ V and i ∈ [0, k], pi(u) and Bi(u) are computed and saved in the data structure. Thorup
and Zwick defined also clusters Ci(w) = {u | w ∈ Bi(u)}, for every w ∈ Si \ Si+1. The query
algorithm is presented in Algorithm 1.

3 Notice that in the degenerate case of a path of two edges either u = a or b = v
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Algorithm 1 dist(u, v).

i← 0;
while pi(u) /∈ Bi(v) do

i← i + 1;
swap u and v;

end
return d(u, pi(u)) + d(v, pi(u));

Algorithm 2 dist(u, v, r).

i← r;
while pi(u) /∈ Bi(v) do

i← i + 1;
swap u and v;

end
return d(u, pi(u)) + d(v, pi(u));

For the purpose of our new algorithms we generalize the query of Thorup and Zwick’s
ADO (see Algorithm 2) by adding an additional input value r. The search is for the first
i ≥ r, for which pi(u) ∈ Bi(v), alternating between u and v after each iteration. Let f(u, v, r)
be the value of i when dist(u, v, r) ends.

▶ Lemma 7. Let u, v ∈ V , r ∈ [0, k−1] and f = f(u, v, r). If f−r is even then dG(u, pf (u)) ≤
dG(u, pr(u))+(f−r)dG(u, v). If f−r is odd then dG(v, pf (v)) ≤ dG(u, pr(u))+(f−r)dG(u, v).

Proof. Consider every i ∈ [r, f − 1]. If i − r is even then pi(u) /∈ Bi(v) and from bunch
definition together with the triangle inequality we get dG(v, pi+1(v)) ≤ dG(v, pi(u)) ≤
dG(u, v) + dG(u, pi(u)). Similarly, if i − r is odd then pi(v) /∈ Bi(u) and dG(u, pi+1(u)) ≤
dG(u, pi(v)) ≤ dG(u, v)+dG(v, pi(v)). This implies that for even i−r we have dG(v, pi+1(v)) ≤
(i + 1− r) · dG(u, v) + dG(u, pr(u)) and for odd i− r we have dG(u, pi+1(u)) ≤ (i + 1− r) ·
dG(u, v) + dG(u, pr(u)).

Thus, if f − r is even we have dG(u, pf (u)) ≤ (f − r) · dG(u, v) + dG(u, pr(u)) and if f − r

is odd we have dG(v, pf (v)) ≤ (f − r) · dG(u, v) + dG(u, pr(u)).
As before we consider two subcases. The first is that r is even and the second is that r is

odd.
In case that r is even then we let f = f(a, u, r). ◀

3 A generalized scheme for APASP algorithms

3.1 Improving the pivots data
Baswana and Kavitha [4] presented a simple algorithm that given an hierarchy Sp

k computes
the distance between every pair of vertices (s, v) ∈ Si×V in the graph (V, ESi+1 ∪Es), where
i ∈ [0, k − 1], in expected running time of Õ(n2+1/k).

In our new pivot-dist algorithm we compute the bunches of every u ∈ V with respect to
hierarchy Sp

k . We also change the way distances are computed for the pairs (s, v) ∈ Si × V

in the graph (V, ESi+1 ∪ Es) by using more edges and in particular edges which are not
necessarily in E.

We define a new graph Gi+1(s) = (V, Hi+1(s)), for every i ∈ [0, k − 1] and s ∈ Si and
run Dijkstra’s algorithm for s in Gi+1(s). The graph Gi+1(s) is constructed as follows. The
edge set Hi+1(s) is initialized with ESi+1 . The first change is that we add to Hi+1(s) the set
of edges E(1/(pi+1)).

The second change is that for every s ∈ Si the set H(s) contains an edge between s and
every u ∈ V . The weight of every (s, v) ∈ H(s)\Es is initially set to∞. Every (s, v) ∈ H(s)∩
Es already has a weight. Next, we ensure in a loop that the weight of (s, v) ∈ H(s) is at most
min{w(s, v), minu∈Ci(s)∩N(v){dG(s, u)+w(u, v)}, minu∈N(v)∧pi(u)=s{dG(s, u)+w(u, v)}} and
add H(s) to Hi+1(s).

ESA 2021



4:6 A Unified Approach for APASP in Weighted Graphs

As mentioned above we perform these computations using algorithm pivot-dist. The
additional data computed by pivot-dist for the pairs (s, v) ∈ Si × V enables us later on to
perform more queries when computing the approximate distance between pairs u, v ∈ V .

Algorithm 3 pivot-dist(Sp
k ).

M [i, j]←∞, for every (i, j) ∈ [n]× [n];
for i← 0 to k − 1 do

// Phase 1: Adding shortcut edges
foreach s ∈ Si \ Si+1 do

H(s)← {(s, v) | v ∈ V };
foreach e ∈ H(s) \ Es do w(e)←∞;

end
// Phase 2: Computing dG(u, Si), pi(u), Bi(u) and updating edge weights.
foreach u ∈ V do

compute dG(u, Si), pi(u) and Bi(u);
M [pi(u), u]← dG(u, Si), M [u, pi(u)]← dG(u, Si);
w(pi(u), u) = dG(u, Si);

(1) foreach (u, v) ∈ Eu do
w(pi(u), v)← min{w(pi(u), v), dG(pi(u), u) + w(u, v)};

foreach s ∈ Bi(u) do M [s, u]← dG(u, s), M [u, s]← dG(u, s);
(2) foreach (u, v) ∈ Eu do

foreach s ∈ Bi(u) do w(s, v)← min{w(s, v), dG(s, u) + w(u, v)};
end

end
// Phase 3: Computing shortest paths for the vertices of Si

foreach s ∈ Si do
Gi+1(s) = (V, ESi+1 ∪ E(1/(pi+1)) ∪H(s));
run Dijkstra’s algorithm from s in Gi+1(s);
foreach u ∈ V do

M [s, u]← min{M [s, u], dGi+1(s)(s, u)},
M [u, s]← min{M [u, s], dGi+1(s)(s, u)}

end
end

end
return M ;

A pseudocode of pivot-dist(Sp
k) for computing distance information for (s, v) ∈ Si × V ,

for every i ∈ [0, k − 1], s ∈ Si and v ∈ V , is presented in Algorithm 3. A matrix M of size
n× n is initialized with ∞ in every entry. We iterate on i from 0 to k − 1. For every i we
have three phases. In the first phase we iterate on the set Si. For every s ∈ Si \ Si+1 the
set H(s) is initialized with edges between s and every v ∈ V . For every (s, v) ∈ H(s) \ Es

we set w(s, v) to ∞. In the second phase for every u ∈ V we compute pi(u), dG(u, Si)
and Bi(u). We then set M [pi(u), u] = dG(u, Si) and w(pi(u), u) = dG(u, Si). Notice
that here we update the weight of edges in H(s), some might be in the original graph
and some might not. In line (1) we scan the edges of u and for each (u, v) ∈ Eu we set
w(pi(u), v) = min{w(pi(u), v), dG(pi(u), u) + w(u, v)}. We set M [s, u] = dG(u, s), for every
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s ∈ Bi(u). Notice that by this we ensure that we have for every u ∈ V the distance between
u and every vertex in its bunches, according to the bunch definition of Thorup and Zwick’s
ADO. In line (2) we scan the edges of u and the vertices of Bi(u) and for every (u, v) ∈ Eu

and s ∈ Bi(u) we set w(s, v) = min{w(s, v), dG(s, u) + w(u, v)}.
In the third phase we iterate on the vertices of Si. We compute the distance from every

s ∈ Si to every vertex in V in the graph Gi+1(s) by running Dijkstra’s algorithm from s

and update M accordingly. The matrix M is returned as the output. Next, we analyze the
running time of Algorithm 3.

▶ Lemma 8. pivot-dist(Sp
k) runs in Õ(n2 + (k − 1)n2p−1 + mnpk−1) expected time.

Proof. Initializing M takes O(n2) time. In the first phase of the loop on i we scan Si \ Si+1
and for every s ∈ Si \ Si+1 we add an edge between s and every vertex of V to the set H(s).
We then update the weight. This costs O(|Si \ Si+1|n). The total cost of the first phase for
every i ∈ [0, k − 1] is O(n2).

In the second phase we compute pi(u), dG(u, Si) and Bi(u) for every u ∈ V . It is easy to
compute pi(u) and dG(u, Si), for every u ∈ V , in Õ(m) time by connecting a dummy vertex
only to the vertices of Si and running Dijkstra’s algorithm from the dummy vertex.

Thorup and Zwick [26] showed that computing Bi(u) for every u ∈ V takes
Õ(

∑
u∈V |Bi(u)| · |N(u)|) time (Section 4.3 in [26]). For i ∈ [0, k − 2] this results in a

running time of Õ(m · p−1), since from Lemma 6 we have Bi(u) = Õ(1/p). The cost
of computing Bk−1(u), for every u ∈ V , is Õ(m · npk−1), since from Lemma 6 we have
Bk−1(u) = Õ(npk−1).

For every i, the cost of line (1) is Õ(
∑

u∈V |N(u)|) = Õ(m) and the cost of line (2) is
Õ(

∑
u∈V |Bi(u)| · |N(u)|). Thus, the total cost of the second phase is Õ(km ·p−1 +m ·npk−1).

In the third phase we run Dijkstra’s algorithm from every s ∈ Si in Gi+1(s). The set
of edges of Gi+1(s) is ESi+1 ∪ E(1/(pi+1)) ∪H(s). The set H(s) is of size O(n). The set
E(1/(pi+1)) is of size O(n/(pi+1)).

Consider now the set ESi+1 , for i < k − 1. The probability of a vertex to be in Si+1 is
Õ(pi+1). Applying Lemma 3 we get that the expected size of the set ESi+1 is O(n/(pi+1)).

We get that the cost of the third phase for every inetger i ∈ [0, k − 2] is Õ(|Si| · n/pi+1).
Since the expected size of Si is Õ(npi) we get a bound of Õ(

∑k−2
i=0 (n · pi · n/pi+1)=Õ(n2 +

(k − 1)n2p−1).
When i = k − 1 we cannot apply Lemma 3 to bound the size of ESk

since Sk = ∅,
thus, we bound the cost of running Dijkstra’s algorithm from every s ∈ Sk−1 in Gk(s) with
Õ(|Sk−1|m) = Õ(n · pk−1m). We get a running time of O(n2 + (k− 1)n2p−1 + mnpk−1). ◀

In the next Lemma we summarize several properties of the matrix M returned by
pivot-dist. These properties are ensured by phase 2.

▶ Lemma 9. Let i ∈ [0, k − 1], let s ∈ Si and let u ∈ V .
1. If s ∈ {pi(u)} ∪Bi(u) then M [s, u] = dG(s, u)
2. If s ∈ {pi(u)} ∪Bi(u) and (u, v) ∈ E then M [s, v] ≤ dG(s, u) + w(u, v)

Proof. The proof easily follows from the execution of phase 2. ◀

We finish this section with a Lemma that summarizes several additional properties that
follow from the structure of the graph Gi+1(s), where s ∈ Si and i ∈ [0, k − 1]. These
properties are ensured by phase 3 of pivot-dist.
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▶ Lemma 10. Let u, v ∈ V and let P (u, v) be a shortest path between u and v with at least
two edges. Let s ∈ Si and let pi(u) = s, where i ∈ [0, k − 1].
1. If P (u, v) is in Gi+1(s) then M [s, v] ≤ dG(s, u) + dG(u, v).
2. If P (u, v) is not in Gi+1(s) then i ≤ k − 2.
3. If P (u, v) is not in Gi+1(s) and BSi+1(u) and BSi+1(v) overlap, where (a, b) ∈ P (u, v) is

the edge that connects them, then (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1 .

Proof.
1. The claim follows since P (u, v) is in Gi+1(pi(u)), (pi(u), u) ∈ H(pi(u)) and w(pi(u), u) =

dG(pi(u), u).
2. Assume towards a contradiction that i = k − 1. The graph Gk(pk−1(u)) contains the

edges ESk
and since Sk = ∅ we have ESk

= E. Thus, Gk(pk−1(u)) contains E and in
particular, P (u, v) is Gk(pk−1(u)), a contradiction.

3. Since dG(u, a) < dG(u, pi+1(u)) and dG(v, b) < dG(v, pi+1(v)) it follows from Lemma 2
that P (u, a) and P (v, b) are in ESi+1 and thus in Gi+1(pi(u)). Since P (u, v) is not in
Gi+1(pi(u)) it must be that (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1

4. ◀

3.2 A general scheme
We turn now to describe our new and general scheme for APASP algorithm. We denote this
algorithm with apasp. Our new algorithm is obtained by using pivot-dist(Sp

k) to obtain
better estimations in several important cases. These better estimations are then combined
with a procedure similar to the query of Thorup and Zwick distance oracles. The main
challenge is in the analysis of the approximation factor.

The algorithm gets as an input a weighted undirected graph G and an hierarchy Sp
k . The

algorithm returns a matrix M of approximate distances.
The algorithm works as follows. We start by initializing the matrix M . For every

(i, j) ∈ E we set M [i, j] to w(i, j) and for every (i, j) /∈ E we set M [i, j] to ∞. Next, we run
pivot-dist(Sp

k) and update matrix M with the result. Finally, we scan for every u, v ∈ V

the vertices pi(u), for every i ∈ [0, k − 1] and the vertices in Bi(u), for every i ∈ [0, k − 2].
We update M [u, v] if we find a vertex w such that M [u, w] + M [v, w] < M [u, v]. Notice that
we are not scanning the vertices of Bk−1(u) deliberately. This caveat is because the size
of Bk−1(u) is Õ(npk−1), for every u ∈ V , thus scanning these bunches is prohibited if we
like to obtain an algorithm with an efficient running time in sparse graphs. A careful case
analysis of odd and even values of k allows us to avoid scanning Bk−1(u) without affecting
the approximation factor. A pseudocode of apasp is presented in Algorithm 4.

We now analyze the approximation of the algorithm.

▶ Lemma 11. The output M of apasp(G,Sp
k) satisfies dG(u, v) ≤ M [u, v] ≤ 2dG(u, v) +

k−2
k · dG(u, v).

Proof. Let u, v ∈ V . Let P (u, v) be a shortest path between u and v. If P (u, v) has a
single edge then M [u, v] = w(u, v) since we set M [u, v] to w(u, v) in apasp. Thus, we can
assume that P (u, v) has at least 2 edges. Let i ∈ [0, k − 1] be the largest index such that
dG(u, Si) + dG(v, Si) ≤ dG(u, v). Such an index must exist since S0 = V which implies that
dG(u, S0) + dG(v, S0) = 0 ≤ dG(u, v).

4 If P (u, v) has two edges then the claim hold since either v = b or u = a.
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Algorithm 4 apasp(G, Sp
k ).

foreach (i, j) ∈ [n]× [n] do M [i, j]←∞;
foreach (i, j) ∈ E do M [i, j]← w(i, j);
M ← min{M, pivot-dist(Sp

k)};
foreach u ∈ V do

for i← 0 to k − 1 do
foreach v ∈ V do

(1) M [u, v]← min{M [u, v], M [pi(u), u] + M [pi(u), v], M [v, u]};
if i ≤ k − 2 then

foreach w ∈ Bi(u) do
(2) M [u, v]← min{M [u, v], M [w, u] + M [w, v], M [v, u]}

end
end

end
end

end
return M ;

Assume, wlog, that dG(u, Si) ≤ dG(v, Si). If P (u, v) is in Gi+1(pi(u)) it follows from
Lemma 9(i) and from Lemma 10(i) that after updating M with the result of pivot-dist
M [pi(u), u] = dG(pi(u), u) and M [pi(u), v] ≤ dG(pi(u), u) + dG(u, v). In line (1) of apasp we
update M [u, v] if needed, therefore, it is guaranteed that M [u, v] ≤ 2dG(pi(u), u)+dG(u, v) ≤
2dG(u, v).

Consider now the case that P (u, v) is not in Gi+1(pi(u)). From Lemma 10(ii) it follows
that i < k−1. Since i is the largest index for which we have dG(u, Si)+dG(v, Si) ≤ dG(u, v) it
follows that dG(u, Si+1) + dG(v, Si+1) > dG(u, v), which implies that BSi+1(u) and BSi+1(v)
overlap. Let (a, b) ∈ P (u, v) be the edge that connects BSi+1(u) and BSi+1(v). From
Lemma 10(iii) it follows that (a, b) /∈ Ea(1/pi+1) and (a, b) /∈ Eb(1/pi+1). Therefore, for the
rest of the proof we can assume that P (u, v) has at least 2 edges, i < k − 1, P (u, a) is in
G(V, ESi+1), P (v, b) is in G(V, ESi+1) and (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1 .

Next, we will prove two different bounds on M [u, v].

▷ Claim 12. M [u, v] ≤ min{3dG(u, v)− 2dG(b, v), 3dG(u, v)− 2dG(a, u)}.

Proof. Let j > i + 1 be the smallest index for which (a, b) ∈ E(1/pj). If j ≥ k we set j to k.
Assume that (a, b) ∈ Ea(1/pj) and (a, b) ∈ Eb(1/pj′), where j′ ≥ j. If j = k we set j′ to k.
By definition, the sets N(a, 1/pj−1) and N(b, 1/pj−1) are of size 1/pj−1. Since vertices of V

are in Sj−1 with probability at least pj−1c log n, it follows that, whp, Sj−1 contains at least
one vertex from N(a, 1/pj−1) and N(b, 1/pj−1).

Let x ∈ N(a, 1/pj−1) ∩ Sj−1 and let y ∈ N(b, 1/pj−1) ∩ Sj−1. Since (a, x) ∈ Ea(1/pj−1)
and (a, b) /∈ Ea(1/pj−1) we have w(a, x) ≤ w(a, b). Similarly, since (b, y) ∈ Eb(1/pj−1)
and (a, b) /∈ Eb(1/pj−1) we have w(b, y) ≤ w(a, b). Thus, we get that dG(u, pj−1(u)) ≤
dG(u, a) + w(a, b) ≤ dG(u, b) and dG(v, pj−1(v)) ≤ dG(v, b) + w(a, b) ≤ dG(v, a).

Now since (a, b) ∈ Ea(1/pj) it follows that the path P (u, v) is in Gj(pj−1(u)) and
Gj(pj−1(v)), when j < k. When j = k we have ESk

= E and P (u, v) is in Gk(pk−1(u)). It
follows from Lemma 10(i) that M [pj−1(u), v] ≤ dG(pj−1(u), u)+dG(u, v) and M [pj−1(v), u] ≤
dG(pj−1(v), v) + dG(u, v).
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Thus, after line (1) of apasp is executed for the pair u, v and for the pair v, u we have
M [u, v] = M [v, u] ≤ min{2dG(u, pj−1(u)) + dG(u, v), 2dG(v, pj−1(v)) + dG(u, v)}. We get:

M [v, u] = M [u, v] ≤ min{2dG(u, pj−1(u)) + dG(u, v), 2dG(v, pj−1(v)) + dG(u, v)}
≤ min{dG(u, v) + 2dG(u, b), dG(u, v) + 2dG(v, a)}
= min{3dG(u, v)− 2dG(b, v), 3dG(u, v)− 2dG(a, u)},

since dG(u, pj−1(u)) ≤ dG(u, b) and dG(v, pj−1(v)) ≤ dG(v, a) and since dG(u, b) = dG(u, v)−
dG(b, v) and dG(v, a) = dG(u, v)− dG(a, u). ◁

We now turn to prove a second bound on M [u, v].

▷ Claim 13. M [u, v] is bounded either by (i) 2 · (k − 1)dG(u, a) + dG(u, v) or by (ii)
2 · (k − 1)dG(v, b) + dG(u, v)

Proof. We consider the pair of vertices u and a and the pair of vertices v and b.
Let r be the largest index such that a /∈ BSr

(u) and u /∈ BSr
(a). Let r′ be the largest

index such that b /∈ BSr′ (v) and v /∈ BSr′ (b). Since S0 = V it follows that BS0(x) = {x}, for
every x ∈ V . Thus, we have a /∈ BS0(u) and u /∈ BS0(a) and also b /∈ BS0(v) and v /∈ BS0(b).

We assume that r ≥ r′ and show that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). If r′ ≥ r

then a symmetric proof shows that M [u, v] ≤ 2 · (k− 1)dG(v, b) + dG(u, v). In the degenerate
case that P (u, v) has only two edges and b = v we set r′ = r. The proof below works for this
case as well and hence M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). If a = u a symmetric proof
shows that M [u, v] ≤ 2 · (k − 1)dG(v, b) + dG(u, v).

Recall that we are in the case that dG(u, a) < dG(u, pi+1(u)) and dG(v, b) < dG(v, pi+1(v)),
thus we have a ∈ BSi+1(u) and b ∈ BSi+1(v). This implies that r ≤ i < k−1 and r′ ≤ i < k−1,
since i < k − 1.

From the definition of r it follows that either a ∈ BSr+1(u) or u ∈ BSr+1(a). If a ∈
BSr+1(u) then dG(u, a) < dG(u, Sr+1) and it follows from Lemma 2 that P (u, a) ∈ ESr+1 .
Similarly, if u ∈ BSr+1(a) then dG(u, a) < dG(a, Sr+1) and it follows from Lemma 2 that
P (u, a) ∈ ESr+1 . From symmetrical arguments we get that P (v, b) ∈ ESr′+1 . Since ESj

⊆
ESj+1 , for every j ∈ [0, k − 1], we have and P (u, a) ∪ P (v, b) ⊆ ESq+1 , for every q ≥ r.

Next, we distinguish between odd and even values of k. Assume first that k is odd. This
implies that k − 1 is even. We now consider two subcases. The first is that r is even and the
second is that r is odd. In case that r is even then we let f = f(u, a, r).

From Lemma 7 it follows that if f − r is even then we have dG(u, pf (u)) ≤ dG(u, pr(u)) +
(f − r)dG(u, a) and if f − r is odd then dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a).

We proceed by considering these two scenarios.

1. Even f−r. In this case dG(u, pf (u)) ≤ dG(u, pr(u))+(f−r)dG(u, a) and pf (u) ∈ Bf (a).
It follows from Lemma 9(ii) that after Phase 2 of pivot-dist M [pf (u), b] ≤ dG(pf (u), a)+
w(a, b). When executing in Phase 3 of pivot-dist Dijkstra’s algorithm from pf (u) in
Gf+1(pf (u)) with edge set ESf+1 ∪ E(1/(pf+1)) ∪ H(pf (u)) the weight of the edge
(pf (u), b) ∈ H(pf (u)) is M [pf (u), b] ≤ dG(pf (u), a) + w(a, b) and P (v, b) ⊆ ESf+1 . Thus,
we get that M [pf (u), v] ≤ dG(pf (u), a)+dG(a, v) ≤ dG(pf (u), u)+dG(u, v). In line (1) of
apasp we update M [u, v] so that it is at most M [pf (u), u]+M [pf (u), v]. From Lemma 9(i)
it follows that M [pf (u), u] = dG(pf (u), u) and since M [pf (u), v] ≤ dG(pf (u), u)+dG(u, v)
we get that M [u, v] ≤ 2 · dG(pf (u), u) + dG(u, v). (See
Combining this with the fact that dG(u, pf (u)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) we get
that for even f − r we have M [u, v] ≤ 2 · (dG(u, pr(u)) + (f − r)dG(u, a)) + dG(u, v).
Recall also that f ≤ k − 1. In the degenerate case of r = 0 we have p0(u) = u and
M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v).
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For the case that r ≥ 1 since a /∈ BSr (u) we have dG(u, pr(u)) ≤ dG(u, a). Using this we
get M [u, v] ≤ 2 · ((f − r + 1)dG(u, a)) + dG(u, v) ≤ 2 · (k − 1)dG(u, a) + dG(u, v).

2. Odd f − r. In this case dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).
It follows from Lemma 9(ii) that after Phase 2 of pivot-dist M [pf (a), b] ≤ dG(pf (a), a)+
w(a, b). When executing in Phase 3 of pivot-dist Dijkstra’s algorithm from pf (a)
in Gf+1(pf (a)) with edge set ESf+1 ∪ E(1/(pf+1)) ∪ H(pf (a)) the weight of the edge
(pf (a), b) ∈ H(pf (a)) is M [pf (a), b] ≤ dG(pf (a), a) + w(a, b) and P (v, b) ⊆ ESf+1 . Thus,
we get that M [pf (a), v] ≤ dG(pf (a), a) + dG(a, v).
Consider the execution of line (2) in apasp for vertices v, u and a and the index f . Notice
that this line is only executed for indices i ≤ k−2. In our case we have pf (a) ∈ Bf (u) and
since r is even and f−r is odd, f must be odd. Since k−1 is even we have f ≤ k−2. Thus
line (2) is executed and we update M [u, v] so that it is at most M [pf (a), u] + M [pf (a), v].
Since pf (a) ∈ Bf (u) it follows from Lemma 9(i) that M [pf (a), u] = dG(pf (a), u) ≤
dG(u, a) + dG(pf (a), a) and since M [pf (a), v] ≤ dG(pf (a), a) + dG(a, v) we get that
M [u, v] ≤ 2 · dG(pf (a), a) + dG(u, v).
Combining this with the fact that dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) we get
that for odd f − r we have M [u, v] ≤ 2 · (dG(u, pr(u))+(f − r)dG(u, a))+ dG(u, v). Recall
also that f ≤ k − 1.
In the degenerate case of r = 0 we have p0(u) = u and M [u, v] ≤ 2 · (k − 1)dG(u, a) +
dG(u, v).
For the case that r ≥ 1 since a /∈ BSr (u) we have dG(u, pr(u)) ≤ dG(u, a). Using this we
get M [u, v] ≤ 2 · ((f − r + 1)dG(u, a)) + dG(u, v) ≤ 2 · (k − 1)dG(u, a) + dG(u, v).

Consider now the second case in which r is odd and let f = f(a, u, r).
1. Odd f − r. In this case dG(u, pf (u)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) and even f − r.
2. Even f − r. In this case dG(a, pf (a)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r.

Assume now that k is even. This implies that k − 1 is odd.
1. Odd f − r. In this case dG(u, pf (u)) ≤ dG(a, pa(u)) + (f − r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) and even f − r.
2. Even f − r. In this case dG(a, pf (a)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r.

Consider now the second case in which r is odd and let f = f(u, a, r).
1. Even f−r. In this case dG(u, pf (u)) ≤ dG(u, pr(u))+(f−r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) even f − r.
2. Odd f − r. In this case dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r. ◁

We now combine the two bounds to complete the proof. From Claim 13 it follows that
either M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v) or M [u, v] ≤ 2 · (k − 1)dG(v, b) + dG(u, v).
Assume that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). From Claim 12 it follows that
M [u, v] ≤ min{3dG(u, v) − 2dG(b, v), 3dG(u, v) − 2dG(a, u)}. Thus, M [u, v] ≤ min{2 · (k −
1)dG(u, a) + dG(u, v), 3dG(u, v)− 2dG(a, u)}. Let X = 2 · (k − 1)dG(u, a) + dG(u, v) and let
Y = 3dG(u, v) − 2dG(a, u). When dG(u, a) = dG(u, v)/k, we have X = Y = 2dG(u, v) +
k−2

k · dG(u, v). When dG(u, a) < dG(u, v)/k we have X < 2dG(u, v) + k−2
k · dG(u, v). When

dG(u, a) > dG(u, v)/k we have Y < 2dG(u, v) + k−2
k · dG(u, v). Since M [u, v] ≤ min{X, Y }

we get that M [u, v] ≤ 2dG(u, v) + k−2
k · dG(u, v).
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Consider the degenerate case in which P (u, v) has only two edges, and assume that b = v.
From Claim 13 it follows that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). From Claim 12 it
follows that M [u, v] ≤ 3dG(u, v) − 2dG(a, u). Thus, from the same arguments as above,
M [u, v] ≤ 2dG(u, v) + k−2

k · dG(u, v). ◀

We now turn to analyze the running time of the algorithm.

▶ Lemma 14. The expected running time of apasp(G,Sp
k) is Õ(n2 +(k−1)n2p−1 +mnpk−1)

Proof. Initializing M takes O(n2) time. From Lemma 8 it follows that the call to pivot-dist
takes Õ(n2 + (k− 1)n2p−1 + mnpk−1) time. Finally, for every u ∈ V , i ∈ [0, k− 2] and v ∈ V

we do |Bi(u)| + 1 read operations to matrix M . This takes Õ(n2 + k(n2p−1)) time, since
|Bi(u)| = Õ(p−1), for i ∈ [0, k − 2]. ◀

We can now prove:
The approach presented so far powerful enough on its own to obtain the following non

trivial generalization, which already improves the general scheme presented by Cohen and
Zwick [9].

▶ Theorem 15. For every integer k ≥ 2, there is an APASP algorithm with expected running
time of Õ(kn2−1/km1/k) and multiplicative approximation of 2 + k−2

k .

Proof. We run apasp with the hierarchy Sp
k . From Lemma 14 it follows that the running

time is Õ(n2 +(k−1)n2p−1 +mnpk−1). Setting n2p−1 = mnpk−1 we get p =
(

n2

mn

)1/k

. Thus,
the running time is Õ(kn2−1/km1/k). From Lemma 11 it follows that the multiplicative
approximation is 2 + k−2

k . ◀

4 A faster scheme

In this section we first present augmented hierarchies. This is basically the first part of the
2-approximation algorithm of Baswana and Kavitha [4]. We provide a tighter analysis that
relaxes the requirements for getting a 2-approximation. We then present the idea of mixed
hierarchies, a combination of a regular hierarchy with the last set of the augmented hierarchy.
This allows us to connect our algorithm from Section 3, that worked with a base set V , to the
first part of the 2-approximation algorithm, by forcing the second set of a mixed hierarchy
to be the last set of the augmented hierarchy. We end by proving Theorem 1.

4.1 Augmented hierarchy with Ŝk ̸= ∅
Thorup and Zwick [25] showed that if a set S ⊆ V is constructed by a careful recursive
sampling procedure then the maximum size of every cluster is bounded as well. They proved:

▶ Lemma 16 ([25]). Given a parameter p, we can compute a set S of size Õ(np) in Õ(mp−1)
expected time such that, |CS(w)| = O(1/p) for every vertex w ∈ V \ S, and |BS(v)| = O(1/p)
for every v ∈ V .

Following Baswana and Kavitha [4] we will extend the vertex hierarchy to an augmented
hierarchy, denoted with Ŝp

k . Let Sp
k be a regular hierarchy with S0 = V and Sk = ∅. Let

S be a set computed using Lemma 16 with parameter pk. In Ŝp
k we have Ŝi = Si ∪ S, for

every i ∈ [0, k]. In particular, we have Ŝk = S. We also set Ŝk+1 = ∅. We refer to S as the
augmenting set of the hierarchy.
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The pivots data that we compute for an augmented hierarchy Ŝp
k is computed using

algorithm aug-pivot-dist. Algorithm aug-pivot-dist differs from pivot-dist by an
additional special phase that is added between the first phase and the second phase and by
avoiding the explicit computation of bunches in phase 2. The special phase is devoted for the
set Ŝk. For every u ∈ V , we compute BŜk

(u) and CŜk
(u). For every a ∈ BŜk

(u) ∪ CŜk
(u)

and i ∈ [0, k] we scan the edges of a and update the weight of the edge between pi(u) and
every b ∈ N(a) so that it will be at most dG(pi(u), u) + dG(u, a) + w(a, b).

Next, we analyze the running time of aug-pivot-dist.

▶ Lemma 17. If S is computed using Lemma 16 with parameter pk then the expected running
time of Algorithm aug-pivot-dist(Ŝp

k) is Õ(n2 + (k − 1)n2p−1 + kmp−k)

Proof. Phase 1 remains unchanged, therefore, its cost remains Õ(n2) as in Lemma 8 .
In the special phase we compute for every u ∈ V the ball BS(u) in Õ(

∑
u∈V deg(u)|BS(u)|)

time as was shown by Baswana and Kavitha [4]. Since |BS(u)| = O(p−k) this part takes
Õ(mp−k) time. Since clusters are simply the inverse of balls we can compute them at the
same cost. For every a ∈ BŜk

(u) ∪ CŜk
(u) and for every i ∈ [0, k − 1] we scan the edges of a

and update for every b ∈ N(a) the value of w(pi(u), b), if needed. The total cost of this is
O(k

∑
a∈V |CŜk

(a)∪BŜk
(a)|deg(a)) = O(kmp−k). In phase 2 we do not compute bunches as

before and thus the cost is only Õ(m) for the computation of pi(u) and dG(u, Si). In phase
3 we no longer have to split the analysis of the case that i = k − 1 from the analysis of the
general case. This is due to the fact that Ŝk ≠ ∅. Since a vertex is in Ŝk with probability
less than pk we can apply Lemma 3 and get that the expected size of ESk

is O(n/(pk)).
Therefore, phase 3 takes Õ(n2 + (k − 1)n2p−1) time. ◀

We use aug-pivot-dist for computing APASP in an algorithm denoted with aug-apasp.
The running time analysis of aug-apasp stems from Lemma 17 and Lemma 14.

▶ Corollary 18. aug-apasp(G, Ŝp
k) has Õ(n2 + kn2p−1 + kmp−k) expected running time.

In order to analyse the approximation produced by aug-apasp we introduce the following
definition which allows us to relax the condition required for proving a 2 approximation.

▶ Definition 19. Let u, v ∈ V and let S ⊆ V . We say that u and v are covered by balls
BS(u) and BS(v) if there is a shortest path P between u and v such that P ⊆ BS(u)∪BS(v).

The next Lemma follows easily from the above definition.

▶ Lemma 20. If BS(u) and BS(v) do not cover u, v ∈ V then dG(u, S)+dG(v, S) ≤ dG(u, v)

Proof. As u and v are not covered by BS(u) and BS(v) every shortest path P (u, v) has
a vertex w /∈ BS(u) ∪ BS(v). Thus, dG(u, S) ≤ dG(u, w) and dG(v, S) ≤ dG(v, w). Since
w ∈ P (u, v) we get dG(u, v) = dG(u, w) + dG(v, w) and dG(u, S) + dG(v, S) ≤ dG(u, v). ◀

We are now ready to bound the approximation produced by aug-apasp.

▶ Lemma 21. Let Ŝp
k be an augmented hierarchy with Ŝ0 = V and Ŝk = S. If BŜk

(u) and
BŜk

(v) do not cover u, v ∈ V then aug-apasp(G, Ŝp
k) returns a matrix M that satisfies:

dG(u, v) ≤M [u, v] ≤ 2dG(u, v).

Proof. Let u, v ∈ V . Let i ∈ [0, k] be the smallest index such that BŜi
(u) and BŜi

(v) cover
u and v. Such an index must exist since u and v are covered by BŜk

(u) and BŜk
(v). Since

BŜ0
(v) = {v} and BŜ0

(u) = {u} and since we can assume that any shortest path between u
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and v is of at least two edges we have that u and v are not covered by BŜ0
(v) and BŜ0

(u).
Thus, i > 0. From Lemma 20 it follows that dG(u, Ŝi−1) + dG(v, Ŝi−1) ≤ dG(u, v). Assume,
wlog, that dG(u, Ŝi−1) ≤ dG(v, Ŝi−1). Let P (u, v) be a shortest path between u and v such
that P (u, v) ⊆ BŜi

(u) ∪BŜi
(v).

We can partition P (u, v) into three portions. A portion P (u, a) between u and a in BŜi
(u),

a portion P (b, v) between v and b in BŜi
(v), and an edge (a, b). Since dG(u, a) < dG(u, pi(u))

it follows from Lemma 2 that P (u, a) is in G(V, EŜi
) and d(V,E(Ŝi))(u, a) = dG(u, a). Similarly,

P (v, b) is in G(V, EŜi
) and d(V,E(Ŝi))(v, b) = dG(v, b).

Now BŜi
(u) ⊆ BŜk

(u). This implies that a ∈ BŜk
(u) and w(pi−1(u), b) was updated in the

special phase of aug-pivot-dist such that w(pi−1(u), b) ≤ dG(pi−1(u), u)+dG(u, a)+w(a, b).
After running Dijkstra’s algorithm in phase 3 of aug-pivot-dist for pi−1(u) in Gi(pi−1(u))
we have M [pi−1(u), v] ≤ dG(pi−1(u), u)+dG(u, v). Thus, after updating the M with the result
of aug-pivot-dist we have M [pi−1(u), v] ≤ dG(pi−1(u), u) + dG(u, v) and M [pi−1(u), u] =
dG(pi−1(u), u). In line (1) of aug-apasp we update M [u, v] if needed, therefore, it is
guaranteed that M [u, v] ≤ 2dG(pi−1(u), u) + dG(u, v) ≤ 2dG(u, v). ◀

4.2 A mixed hierarchy
Let S be the augmenting set of an augmented hierarchy. We define a mixed hierarchy as
follows: S̄0 = V , S̄1 = S. For i ∈ [2, k − 1] the set S̄i is constructed by picking every vertex
of S̄i−1 independently at random with probability p · c log n, for some constant c. The set S̄k

is empty. We denote a mixed hierarchy with S̄p,q
k , where q is the parameter used to create S

by Lemma 16.
We update pivot-dist to handle a mixed hierarchy. We add a special phase as in

aug-pivot-dist for the set S̄1. Since |S̄0| = n and |ES̄1
| = O(nq−1) we do not execute

phase 3 for the vertices of S̄0 = V to avoid an additional cost of Õ(n2q−1) time. In phase 3
the set E(1/(pi+1)) is changed to E(1/(qpi)), so that it reflects the size of S̄1. The updated
algorithm is called mix-pivot-dist.

Next, we anaylze the running time of mix-pivot-dist.

▶ Lemma 22. mix-pivot-dist(S̄p,q
k ) has an expected running time of Õ(n2 + (k− 2)n2p−1 +

mq−1 + mnqpk−2).

Proof. The analysis of the first phase remains as in Lemma 8, and therefore it is O(n2).
The special phase costs Õ(mq−1) as in Lemma 17. In the second phase we compute pi(u),
dG(u, S̄i) and Bi(u) for every u ∈ V . It takes Õ(m) time to compute pi(u) and dG(u, S̄i),
for every u ∈ V . Computing Bi(u) for every u ∈ V , where i ∈ [2, k − 2] costs Õ(m · p−1).
Computing B1(u) for every u ∈ V costs Õ(m · q−1) since q is the parameter used for S̄1.
Computing Bk−1(u), for every u ∈ V , costs Õ(m · nqpk−2), since from Lemma 6 we have
Bk−1(u) = Õ(nqpk−2).

Line (1) costs Õ(
∑

u∈V |N(u)|) = Õ(m) and line (2) costs Õ(
∑

u∈V |Bi(u)| · |N(u)|) =
Õ(m · (p−1 + q−1)).

In the third phase we run Dijkstra’s algorithm from every s ∈ S̄i in Gi+1(s), as beofre.
The set of edges of Gi+1(s) is ESi+1 ∪ E(1/(qpi)) ∪ H(s). The set H(s) is of size O(n).
The set E(1/(qpi)) is of size O(n/(qpi)). Consider now the set ES̄i+1

, for 0 < i < k − 1.
The probability of a vertex to be in Si+1 is Õ(qpi). Applying Lemma 3 we get that the
expected size of the set ESi+1 is O(n/(qpi)). We get that the cost of the third phase for
every i ∈ [1, k − 2] is Õ(|S̄i| · n/qpi). Since the expected size of S̄i is Õ(nqpi−1) we get a
bound of Õ(

∑k−2
i=1 (n · qpi−1 · n/qpi)=Õ(n2 + (k − 2)n2p−1).
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When i = k − 1 we cannot apply Lemma 3 to bound the size of ES̄k
since S̄k = ∅,

thus, we bound the cost of running Dijkstra’s algorithm from every s ∈ S̄k−1 in Gk(s) with
Õ(|S̄k−1|m) = Õ(n ·qpk−2m). We get a running time of O(n2 +(k−2)n2p−1 +mnqpk−2). ◀

mix-apasp is algorithm apasp in which mix-pivot-dist is called instead of pivot-dist.
We do not execute Line (2) of apasp when i = 0, from the same reason we have not executed
phase 3 for the vertices of S̄0 = V in mix-pivot-dist. The analysis of the running time of
mix-apasp is relatively straightforward and stems from Lemma 22 and Lemma 14.
▶ Corollary 23. mix-apasp(G, Ŝp,q

k ) runs in Õ(n2 + kn2p−1 + mq−1 + mnqpk−2) expected
time.

We prove a variant of Lemma 11 for mix-apasp (G, S̄p,q
k ). The difference with respect to

Lemma 11 is that the Lemma is proved only for vertices u, v ∈ V that are not covered by
BS̄1

(u) and BS̄1
(v). This change is required since we are not computing shortest paths for

the vertices of S̄0 in phase 3 of mix-pivot-dist.
▶ Lemma 24. mix-apasp(G, S̄p,q

k ) returns a matrix M that satisfies: dG(u, v) ≤M [u, v] ≤
2dG(u, v) + k−2

k · dG(u, v), for every u, v ∈ V that are not covered by BS̄1
(u) and BS̄1

(v).
Proof. Let u, v ∈ V . Let P (u, v) be a shortest path between u and v. Let i ∈ [0, k − 1] be
the largest index such that dG(u, S̄i) + dG(v, S̄i) ≤ dG(u, v). Such an index must exist since
S̄0 = V , which implies that dG(u, S̄0) + dG(v, S̄0) = 0 ≤ dG(u, v). Since u and v are not
covered by BS̄1

(u) and BS̄1
(v), it follows from Lemma 20 that dG(u, S̄1)+dG(v, S̄1) ≤ dG(u, v),

as well and i ≥ 1. This implies that the analysis of the case that P (u, v) is in Gi+1(pi(u))
remains the same and is not affected by the fact that in mix-pivot-dist no data is computed
in phase 3 for the set S̄0.

The analysis of the case that the path P (u, v) is not in Gi+1(pi(u)) is not using the
third phase data of S̄0 and remains the same. Thus, for the rest of the proof we can
assume that 0 < i < k − 1, P (u, a) is in G(V, ES̄i+1

), P (v, b) is in G(V, ES̄i+1
) and (a, b) /∈

Ea(1/qpi) ∪ Eb(1/qpi) ∪ ES̄i+1
.

The proof of Claim 12 remains the same since we only use data for pivots from S̄j−1,
where j > i + 1 and i > 0. Thus, not computing data for S̄0 in phase 3 of mix-pivot-dist
has no affect.

The proof of Claim 13 remains also the same from the following reason. Recall that we
focus on the pair of vertices u and a and the pair of vertices v and b. In the proof we use r

which is defined to be the largest index such that a /∈ BS̄r
(u) and u /∈ BS̄r

(a) and r′ which
is defined to be the largest index such that b /∈ BS̄r′ (v) and v /∈ BS̄r′ (b). Recall also that
since S̄0 = V we have BS̄0

(x) = {x}, for every x ∈ V and thus a /∈ BS̄0
(u) and u /∈ BS̄0

(a)
and similarly b /∈ BS̄0

(v) and v /∈ BS̄0
(b).

From the definition of r it follows that either a ∈ BS̄r+1
(u) or u ∈ BS̄r+1

(a). If a ∈
BS̄r+1

(u) then dG(u, a) < dG(u, S̄r+1) and it follows from Lemma 2 that P (u, a) ∈ ES̄r+1
.

Similarly, if u ∈ BS̄r+1
(a) then dG(u, a) < dG(a, S̄r+1) and it follows from Lemma 2 that

P (u, a) ∈ ES̄r+1
.

From symmetrical arguments we get that P (v, b) ∈ ES̄r′+1
. Since ES̄j

⊆ ES̄j+1
, for every

j ∈ [0, k− 1], we have and P (u, a) ⊆ ES̄q+1
, and P (v, b) ⊆ ES̄q′+1

for every q ≥ r and q′ ≥ r′,
respectively.

Because we do not compute in the third phase data for the set S̄0 we deal separately with
the special case that r = r′ = 0. In such a case we have a ∈ BS̄1

(u) or u ∈ BS̄1
(a) and also

b ∈ BS̄1
(v) or v ∈ BS̄1

(b)5. Now since u and v are not covered by BS̄1
(u) and BS̄1

(v) it must

5 If there are only two edges of the path the same proof holds with b = v
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Algorithm 5 main-apasp(G, k′).

create a set S with prob. n−β using Lemma 16;
create an augmented hierarchy Ŝn−β/ log n

log n with S as the augmenting set;

create a mixed hierarchy H̄n−γ/(k′−2),n−β

k′ with H̄1 = S;
M1 ← aug-apasp(G, Ŝn−β/ log n

log n );

M2 ← mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ );
M ← min{M1, M2};
return M ;

be that either a /∈ BS̄1
(u) or b /∈ BS̄1

(v). Assume, wlog, that a /∈ BS̄1
(u). From the definition

of r it must be that u ∈ BS̄1
(a), as otherwise r > 0. Because u ∈ BS̄1

(a) we update w(p1(u), b)
in the special phase of mix-pivot-dist so that it is at most dG(p1(u), u) + dG(u, a) + w(a, b).

Since r′ = 0 we have that P (v, b) ∈ ES̄2
. Thus, at the third phase of mix-pivot-dist

we update M [p1(u), v], due to the bound of w(p1(u), b), so that it is at most dG(p1(u), u) +
dG(u, v). Now in line (1) of mix-apsp M [u, v] is updated so that it is at most 2dG(p1(u), u) +
dG(u, v). Since a /∈ BS̄1

(u) we have dG(p1(u), u) ≤ dG(u, a) and we get that M [u, v] ≤
2dG(u, a) + dG(u, v). This is exactly bound (i) in Claim 13 for k = 2 and thus holds for
every k ≥ 2. Thus, we can assume that r > 0 and not computing data for S̄0 in phase 3 of
mix-pivot-dist has no affect on the proof of Claim 13 since f ≥ r . ◀

4.3 Combining augmented hierarchies and mixed hierarchies
We now describe our main APASP algorithm main-apasp. The input is a weighted undirected
graph G and an integer k′. We use two hierarchies. An augmented hierarchy Ŝp

k , k = log n

levels, set Ŝ0 is V and the probability p is Õ(n−β/ log n). The hierarchy is augmented with
a set S computed by Lemma 16 with parameter n−β . Notice that |Ŝlog n| = Õ(n1−β), and
for every v ∈ V we have |BŜlog n

(v)| = |CŜlog n
(v)| = O(nβ). The second hierarchy is a

mix hierarchy H̄p,q
k′ with k′ levels, H̄1 = Ŝlog n and H̄k′ = ∅. Since Ŝlog n is formed using

Lemma 16 with parameter n−β we have q = n−β . The probability p is Õ(n−γ/(k′−2)).
Next, we run aug-apasp(G, Ŝn−β/ log n

log n ). Then we run mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ ).
main-apasp is presented in Algorithm 5. We now turn to analyse the running time.

▶ Lemma 25. main-apasp(G, k′) runs in of Õ(n2 + m
2

k′ n2− 3
k′ ) expected time.

Proof. It follows from Lemma 16 that S can be computed in Õ(mnβ) expected running time.
It follows from Corollary 18 that the expected running time of aug-apasp(G, Ŝn−β/ log n

log n ) is
Õ(n2 + n2 · nβ/ log n log n + mnβ log n) = Õ(n2 + mnβ). It follows from Corollary 23 that
the expected running time of mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ ) is Õ(n2 + (k′ − 2)n2nγ/(k′−2) +
mn1−β−γ). We first express nβ as a function of nγ using the equation n2nγ/(k′−2) = mn1−β−γ

which balances the two main terms in the running time of mix-apasp.

n2nγ/(k′−2) = mn1−β−γ −→ nβ = mn1−γ

n2nγ/(k′−2) −→ nβ = m

n1+γ(1+1/(k′−2))

Next, we substitute nβ as a function of nγ in the running time of aug-apasp.

Õ(n2 + mnβ) −−−−−−−−−−−−−−→
nβ= m

n1+γ(1+1/(k′−2))

Õ(n2 + m2

n1+γ(1+1/(k′−2)) )
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We now compute the value of nγ using the equation n2+γ/(k′−2) = m2

n1+γ(1+1/(k′−2)) which
balances the two main terms in the running times of mix-apasp and aug-apasp.

nγ(1+2/(k′−2)) = m2

n3 −→ nγ =
(

m2

n3

) k′−2
k′

To obtain the running time of apasp we substitute nγ in n2+γ/(k′−2):

n2+γ/(k′−2) −−−−−−−−−−→
nγ =

(
m2
n3

) k′−2
k′

n2
(

m2

n3

) 1
k′

= n2− 3
k′ m

2
k′

Thus, we get that the running time of apasp is Õ(n2 + m
2

k′ n2− 3
k′ ) . ◀

We now bound the approximation of main-apasp.

▶ Lemma 26. Algorithm main-apasp(G, k′) returns a matrix M that satisfies: dG(u, v) ≤
M [u, v] ≤ 2dG(u, v) + k′−2

k′ · dG(u, v), where k′ ≥ 2.

Proof. Let u, v ∈ V . Recall that H̄1 = Ŝlog n. If u and v are covered by BH̄1
(u) and BH̄1

(v)
then it follows from Lemma 21 that Algorithm aug-apasp returns a matrix M1 that satisfies:
dG(u, v) ≤ M1[u, v] ≤ 2dG(u, v). If u and v are not covered by BH̄1

(u) and BH̄1
(v) then it

follows from Lemma 24 that Algorithm mix-apasp returns a matrix M that satisfies:

dG(u, v) ≤M2[u, v] ≤ 2dG(u, v) + k′ − 2
k′ · dG(u, v).

Since M = min{M1, M2} the claim follows. ◀

Proof of Theorem 1

Proof. The proof follows from Lemma 25 and Lemma 26 . ◀
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5:2 The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination

(a)

x

rα

p(r)

(b)

Figure 1 (a) An α-floodlight aligned with a ray r, having apex p(r). The angle α is the angular
distance from a point x to r. (b) The Rotating Rays Voronoi diagram of four rays in the plane.
Each region is represented by a different color, and all points in a region are first illuminated by the
ray of the respective color.

1 Introduction

In this work, we study the Voronoi diagram of rotating rays in the plane, which is defined
by a set of n rays in R2, under an angular distance function. Given a point x and a ray
r in the plane, the angular distance from x to r is the smallest angle α such that, if we
counterclockwise rotate r around its apex by α, it reaches (illuminates) x; see Figure 1. We
define this diagram and use it to solve related floodlight illumination problems.

Motivation. Illumination problems are well known art gallery type of problems, where a
given domain has to be covered by so-called floodlights, which are light sources that illuminate
a cone from their apex. The distance measure we study in this work is motivated by the
following illumination problem. An α-floodlight is a floodlight with aperture α. Given a
simple polygon P , an α-floodlight facing the interior of P is placed on each vertex v, is such
a way that one of its rays contains the successor of v in the counterclockwise order of the
vertices of P ; see Figure 2(a). The Brocard Illumination problem [1] asks for the Brocard
angle, the smallest value of α for which the set of α-floodlights covers the interior of P .

When P is a convex polygon, the Brocard angle α∗ can be revealed by constructing the
Voronoi diagram of the rays placed at the vertices of P . In particular, α∗ is realized at a
vertex of the diagram with the maximum angular distance; see Figure 2(b). A rather natural
extension is to follow a similar approach, not only in polygonal, but also in different domains.
In addition to polygons, traditional domains to illuminate by floodlights include the entire
plane, a region in the plane, or a single curve; see e.g., [6, 10, 25, 27]. Constructing the
respective Voronoi diagram restricted to each domain yields the minimum angle needed by
the floodlights to illuminate this domain. Hence, there is an interest in studying such Voronoi
diagrams and in designing efficient construction algorithms for different domains.

Related work. In the Brocard illumination problem, a polygon P is called a Brocard polygon,
if the Brocard angle is realized at a point, which is illuminated by all the floodlights, and is
also equidistant to all the rays containing the sides of P [4]. The characterization of Brocard
polygons has a long history, yet, only harmonic polygons (which include triangles and regular
polygons) are known to be Brocard [7]. Nevertheless, we can detect if a convex polygon with
n vertices is Brocard in O(n) time, and compute the Brocard angle in such case in O(1)



C. Alegría et al. 5:3

(a)

α
α∗

(b)

Figure 2 A polygon P . (a) Illumination by α-floodlights aligned with each edge of P . (b) The
Voronoi diagram of the edge-aligned rays confined into P . Highlighted are the rays that realize the
Brocard angle α∗, along with the point at which α∗ is realized.

time. Algorithms for the computation of the Brocard angle of arbitrary simple polygons were
recently presented by Alegría et al. [1]. The authors gave an O(n3 log2 n) time algorithm
and complemented this with an O(n log n)-time algorithm for convex polygons1.

Since their introduction [6], floodlight illumination problems have been studied a lot, see
e.g., [22, 28]. The case when the floodlights are of uniform angle has also been explored by
several authors, see e.g., [8, 13, 16, 23, 27]. From a different viewpoint, rotating α-floodlights
can also be used to model devices with limited sensing range, like surveillance cameras or
directional antennae; see [3, 9, 20, 21]. In this context, the minimum angle is interpreted
as the minimum range needed by a set of devices to cover a domain. The Rotating Rays
Voronoi Diagram is novel with respect to both the input sites and the distance function. A
somewhat related diagram was defined in [11] to model dominance regions in the analysis of
soccer matches [26].

Our contribution. We introduce the Rotating Rays Voronoi Diagram and prove a series of
results, paving the way for future work on similar problems. Our interest in this diagram
stems from its application to floodlight illumination in different domains.

In Section 3, we consider the diagram in the plane. We identify structural properties
which we complement with complexity results: an Ω(n2) worst case lower bound and an
O(n2+ϵ) upper bound. As a by-product we get an O(n2+ϵ)-time construction algorithm.
This algorithm allows us to find, within the same time, the minimum angle needed to
illuminate the plane with a given set of ray-aligned floodlights.
Motivated by the Brocard illumination problem, in Section 4, we restrict our domain to a
convex polygonal region bounded by the input set of sites. We study the Voronoi diagram
in such domain and describe a construction algorithm that works in deterministic Θ(n)
time. As our main contribution, we show how to use the resulting diagram to find the
Brocard angle of a convex polygon in optimal linear time.
Finally, in Section 5, we consider the case where the domain of interest is a curve, and
we show how to construct the diagram along various types of curves.

1 The O(n) time analysis of the algorithm for convex polygons stated in [1] is not correct.
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Figure 3 The bisector of two rays r and s, consisting of r (red ray), s (blue ray) and an arc
of Cb(r, s) (black curve), in different configurations. (a) Non-intersecting with I /∈ r ∪ s. (b)
Non-intersecting with I ∈ r. (c) Intersecting. (d) “Tangent” with p(r) ∈ s. (e) “Tangent” with
p(r) ∈ l(s)\s. (f) Sharing their apex. (g) Parallel. (h) Anti-parallel with l(r) ̸= l(s). (j) Anti-parallel
with l(r) = l(s).

2 Preliminaries

Let S be a set of n rays in R2. Given a ray r, we denote its apex by p(r), its supporting line
by l(r), and its direction in the unit circle by d̂(r). We define the distance function as follows.

▶ Definition 1. Given a ray r and a point x ∈ R2, the oriented angular distance from x to
r, denoted by d∠(x, r), is the minimum counterclockwise angle α from r to a ray with apex
p(r) passing through x; see Figure 1(a). Further, we define d∠(p(r), r) = 0.

It is easy to see that the oriented angular distance is not a metric. Moreover, observe
that d∠(x, r) ∈ [0, 2π), and there is a discontinuity at 2π. Using this distance function, we
define the bisector of two rays and the Voronoi diagram of a set of rays.

▶ Definition 2. Given two rays r and s, the dominance region of r over s, denoted by
dr(r, s), is the set of points with smaller angular distance to r than to s, i.e., dr(r, s) :=
{ x ∈ R2 | d∠(x, r) < d∠(x, s) }. The angular bisector of r and s, denoted by b∠(r, s), is the
curve delimiting dr(r, s) and dr(s, r); see Figure 3.

Note that, due to the discontinuity of the distance function, our definition of a bisector is
slightly different from standard, which is the locus of points equidistant from two sites.

Given two rays r and s, let I = l(r) ∩ l(s). The bisector b∠(r, s) is the union of the two
rays r and s, and a circular arc a that connects p(r) to p(s); see Figure 3. The arc a belongs
to the bisecting circle Cb(r, s), which we define as follows:

If I, p(r), and p(s) are three distinct points, then Cb(r, s) is the circle through I, p(r),
and p(s). The arc a contains I, if and only if I lies either on none or on both of r and s;
see Figure 3(a), Figure 3(b) and Figure 3(c).
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If I = p(r) and I ̸= p(s), then Cb(r, s) is the circle tangent to l(r) passing through p(r)
and p(s). Both a and r lie on the same side of l(s), if and only if p(r) lies on s. We
analogously define Cb(r, s) if I = p(s) and I ̸= p(r); see Figure 3(d) and Figure 3(e).
If p(r) = p(s), then both Cb(r, s) and a degenerate to a single point; see Figure 3(f).
If l(r) and l(s) are parallel, then Cb(r, s) degenerates to the line through p(r) and p(s).
If d̂(r) = −d̂(s), then a is a line segment. If instead d̂(r) = d̂(s), then a consists of two
half-lines; see Figure 3(g), Figure 3(h) and Figure 3(i).

Observe that the oriented angular distance is monotone along the circular arc a. Further,
the angular bisector is connected, unless its defining rays are parallel. For the sake of
simplicity, unless otherwise stated, we assume that no two rays in S have parallel supporting
lines, and that the apex of any ray does not lie on any other ray.

▶ Definition 3. The Rotating Rays Voronoi Diagram (RVD) of a set of rays S is the
subdivision of R2 into Voronoi regions defined as follows:

vreg(r) := { x ∈ R2 | ∀s ∈ S \ {r} : d∠(x, r) < d∠(x, s) }.

The graph structure of the diagram is RVD(S) :=
(
R2 \

⋃
r∈S vreg(r)

)
∪ S.

The Voronoi region vreg(r) can be equivalently defined as the intersection of all the dom-
inance regions of r, i.e., vreg(r) =

⋂
s∈S\{r} dr(r, s). A Voronoi region may be disconnected;

each connected component of a Voronoi region is called a face.
The diagram RVD(S) has different types of edges and vertices. An edge can be a line

segment, a half-line, or a circular arc. A vertex can be the apex of a ray, the intersection
point of two rays, the intersection point of three circular arcs, or the intersection point of a
ray and a circular arc. Further, RVD(S) is a planar graph with bounded maximum degree;
thus, to bound its complexity, it suffices to bound any of its edges, vertices, or faces.

3 RVD in the Plane

In this section we study the diagram RVD(S) in the plane. We first look at some properties
and combinatorial complexity bounds. Then we consider the problem of illuminating the
plane with a set of floodlights aligned with S.

3.1 Properties, complexity, and an algorithm
The diagram RVD(S) satisfies the following two simple structural properties.

▶ Lemma 4. RVD(S) has exactly n unbounded faces, one for each ray in S.

Proof. Let r be an arbitrary ray of S. To examine the unbounded portion of vreg(r),
consider the intersection of RVD(S) with a circle Γ of sufficiently large radius, enclosing the
vertices of RVD(S) and the bisecting circles of all the bisectors of S.

For s ∈ S \ {r}, the intersection dr(r, s) ∩ Γ is a circular arc of Γ going counterclockwise
from r ∩ Γ to s ∩ Γ. The region vreg(r) is the intersection of all the dominance regions of
r, thus, vreg(r) ∩ Γ is the intersection of n − 1 circular arcs, all starting from r. Hence,
vreg(r) ∩ Γ is a single arc starting from r and ending at the first ray on the counterclockwise
ordering along Γ. So, for any ray r, the region vreg(r) has exactly one unbounded face. ◀

▶ Lemma 5. RVD(S) is connected.

ESA 2021
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(a) (b)

Figure 4 (a) A set of pairwise non-intersecting rays with RVD(S) having Θ(n2) complexity. (b)
A diagram with a Voronoi region (purple ray - leftmost apex) having Θ(n2) complexity.

Proof. Assume that RVD(S) is not connected, hence, it has at least two connected compon-
ents. Then some region vreg(r) disconnects RVD(S) by either having an unbounded face
with two occurrences at infinity, or by enclosing a component creating conceptually an island.

The first case is excluded by the proof of Lemma 4. For the second case, consider the
disconnected component of RVD(S) surrounded by vreg(r). This component consists of at
least one face of a region vreg(s) for some s ∈ S. Then, in RVD({r, s}), there is an island
inside vreg(r). Thus, b∠(r, s) has a bounded connected component, in contradiction to the
fact that each bisector is a single unbounded curve. ◀

We now study the combinatorial complexity of RVD(S). An Ω(n2) lower bound is easily
achieved by a set S of n pairwise intersecting rays. In such case, RVD(S) has

(
n
2
)

= Θ(n2)
vertices (one per intersection of rays) and thus Ω(n2) complexity. Next, we show that this
bound also holds for pairwise non-intersecting rays.

▶ Theorem 6. The worst case combinatorial complexity of RVD(S) has an Ω(n2) lower
bound, even if the rays are pairwise non-intersecting.

Proof. We give the following construction illustrated in Figure 4(a), where the Voronoi
regions of the n/2 − 1 rays with the leftmost apices have n/2 + 1 faces each. We set n = 2m

and let p(ri) = (i, 0), i = 1, . . . , 2m, with rays rm+1, . . . , r2m pointing vertically upwards.
For i = 1, . . . , m, let the direction of ri be d̂(ri) = (sin αi, cos αi) with α1 ∈ (3π/2, 2π) and
αi = αi−1 + ϵi where ϵi > 0 for i = 2, . . . , m. We choose ϵi one by one, in the increasing
order of i, so that both ri and ri+1 have a face between any two consecutive upward shooting
rays. This is always possible since we can choose ϵi small enough so that, at any x-coordinate
x < 2m, the circular arc of b∠(ri, ri+1) is arbitrarily close to the x-axis and, thus, it is below
the circular arc of b∠(ri−1, ri). ◀

▶ Theorem 7. A Voronoi region of RVD(S) has Θ(n2) complexity in the worst case.

Proof. We first argue that the complexity of a region is O(n2). A vertex v of RVD(S) can
be defined by a triplet of rays r, s, t ∈ S. The bisectors b∠(r, s) and b∠(r, t) intersect O(1)
times, hence, RVD({r, s, t}) has O(1) vertices. Now consider a ray r and its region vreg(r).
All but at most O(n) vertices on the boundary of vreg(r) are defined by r and a pair of sites.
There are Θ(n2) pairs, each inducing O(1) vertices on vreg(r), so vreg(r) has O(n2) vertices.

We now give a construction of n = 2m + 1 rays, where a single region has Θ(n2)
complexity; refer to the construction of Figure 4(b). We first create a grid structure. For
i = 1, . . . , m, let ri be a ray with p(ri) = (i, 0) shooting vertically upward, and let si be a
ray with p(si) = (0, i) shooting horizontally to the right. For all (i, j) ∈ {1, . . . , m − 1}2,
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let R(i, j) be the square [i, i + 1) × [j, j + 1). Each square R(i, j) is made up of two faces
of RVD({r1, . . . , rm, s1, . . . , sm}), one belonging to vreg(ri) and one belonging to vreg(sj).
Now let α(i, j) := max{ min{d∠(x, ri), d∠(x, sj)} | x ∈ R(i, j) } and let αmin := min{ α(i, j) |
(i, j) ∈ {1, . . . , m − 1}2 }. It is easy to see that αmin < arctan 1/(m − 1).

We now introduce another ray t, so that max{ d∠(x, t) | x ∈ [1, n − 1]2 } < αmin. This
can be achieved if p(t) = (−n2, 0) and t is shooting horizontally to the right. This means
that in each R(i, j), for (i, j) ∈ {1, . . . , n − 1}2, t will visit some point before any of the rays
ri or sj , implying that vreg(t) has Θ(n2) faces. ◀

We now show how the angular distance function can be adapted in order to apply the
general upper bounds of Sharir [24]. As a by-product we also obtain an algorithm for RVD(S).

▶ Theorem 8. RVD(S) has O(n2+ϵ) combinatorial complexity, for any ϵ > 0. Further,
RVD(S) can be constructed in O(n2+ϵ) time.

Proof. Each site r induces a function dr
∠(x) = d∠(x, r) which maps a point x = (x1, x2) ∈ R2

to its angular distance from r. The RVD can be seen as the projection of the lower envelope
of the graphs of these distance functions in 3-space to the plane. For algebraic distance
functions, Sharir [24] gives complexity bounds for this lower envelope accompanied with
algorithmic results. The angular distance functions though are not algebraic. Our strategy
is to find algebraic functions dr

alg that are equivalent to the functions dr
∠ for the computation

of the lower envelope, i.e., they fulfill the following property for all r, s ∈ S and x ∈ R2:

dr
∠(x) < ds

∠(x) ⇔ dr
alg(x) < ds

alg(x).

Without loss of generality, assume that p(r) lies on the origin and r is facing to the right,
that is, in the positive x1-direction of the coordinate system. Let x ∈ R2 and α := dr

∠(x).
Then we want to set dr

alg(x) := 1 − cos(α) if 0 ≤ α ≤ π, and dr
alg(x) := 3 + cos(α) if

π < α < 2π. The function x 7→ cos(α) is indeed algebraic since it is obtained by first scaling
x to unit length and then mapping it to its first coordinate. Then we have

dr
alg(x) =


0 if x1 = x2 = 0,

1 − x1√
x2

1+x2
2

if x1 ̸= 0, x2 ≥ 0,

3 + x1√
x2

1+x2
2

otherwise.

Since dr
alg consists of three patches, which are all algebraic and have simple domain boundaries,

applying [24] to these functions yields the claimed results. ◀

3.2 Minimum angle needed to illuminate the plane
Given a set S of n rays in R2, the Brocard Illumination problem can be naturally extended to
the plane as follows. An α-floodlight f is aligned with a ray r, if f is equal to r when α = 0.
Let fr denote a floodlight aligned with the ray r ∈ S. The goal is to find the minimum angle
α∗ for which the set of α∗-floodlights { fr | r ∈ S } illuminates the entire plane.

The angle α∗ is realized at a point x∗ that has the maximum angular distance to its
nearest ray, that is, α∗ = maxx∈R2 minr∈S d∠(x, r). Hence, the point x∗ necessarily lies on
RVD(S). Since the distance along a circular edge is monotone, it follows that x∗ cannot lie
on such an edge. Thus, x∗ is either a vertex of RVD(S) or a point at infinity on a ray of
S. We can find x∗, and hence α∗, by first constructing RVD(S) in O(n2+ϵ) time, and then
traversing the diagram in linear time in its size. We obtain the following result.

ESA 2021
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▶ Theorem 9. Given a set of rays S and an α-floodlight aligned with each ray, the minimum
angle α∗ needed to illuminate R2 can be found in O(n2+ϵ) time, for any ϵ > 0.

Next, we give tight bounds on the value of α∗.

▶ Proposition 10. Given a set of rays S and an α-floodlight aligned with each ray, the angle
α∗ is greater or equal to 2π/n. Further, α∗ can take any value in the interval [2π/n, 2π).

Proof. For the lower bound, consider that in order to illuminate the entire plane, all the
points at infinity should also be illuminated. To illuminate these points, the sum of the
angles of all rays, should be at least 2π. Hence, in the best case, each point at infinity is
seen by exactly one ray, and the 2π/n lower bound follows. Next, we give a construction
realizing this bound.

Let S be a set of rays having their apices on (0, 0), with the property that any two
consecutive rays have an angular difference of 2π/n. The last points to be illuminated will
be all the points on the right side of each ray ri. These points are illuminated simultaneously
by ri−1 when α reaches 2π/n. Further, this construction can be easily adapted to attain any
value in (2π/n, 2π), by expanding a wedge bounded by two consecutive rays to the desired
angle and shrinking all the other wedges analogously. ◀

4 RVD of a convex polygon: Brocard illumination

We now turn our attention to the Brocard illumination problem. We are given a convex
polygon P with n vertices, and we want to find the Brocard angle α∗ of P . By computing
an RVD restricted to P , we show how to compute α∗ in optimal Θ(n) time.

Let SP be the set of n rays such that each ray has a vertex v ∈ P as apex, and passes
through the successor vertex of v in a counterclockwise traversal of P ; see Figure 5(a). Let
PRVD(SP ) be the diagram RVD(SP ) restricted to the interior of P . We first describe an
algorithm to construct PRVD(SP ) and then show to use this diagram to obtain α∗. Note
that we do not construct the complete RVD(SP ), which may have Θ(n2) complexity, but
only PRVD(SP ), which has Θ(n) size.

4.1 Algorithm to compute RVD of a convex polygon
The general strategy is to split the problem into four subproblems. Each subproblem will
satisfy a set of conditions that allows us to use the existing Θ(n) time algorithms, which are
based on abstract Voronoi diagrams [17, 19]. We then complete our construction by merging
the resulting diagrams.

(a) P

SP

(b)

N
W

S
E

SS

SE

SN

SW

Figure 5 (a) A convex polygon P and the corresponding set of rays SP . (b) The partitioning of
SP into the four subsets SN , SW , SS and SE , depending on the direction of the rays.



C. Alegría et al. 5:9

(a) (b)

Figure 6 (a) The diagram RVD(SS); some Voronoi regions are disconnected. (b) The diagram
RVD(Sr

S), after a clockwise rotation of π/2; all Voronoi regions are connected.

More specifically, we first partition SP into four sets SN , SW , SS and SE depending
whether a ray points north, west, south or east respectively; see Figure 5(b). In this way,
rays in a subset are consecutive and the direction of any two rays have a difference of at most
π/2. For each set Sd, d ∈ {N,W,S,E}, we obtain a set Sr

d in which every ray of Sd is rotated
clockwise by an angle of π/2; see Figure 6. Then, we construct each diagram RVD(Sr

d)
independently. Finally, we merge the four diagrams to obtain PRVD(SP ); see Figure 8.

4.2 The four diagrams of Sr
d

To construct the diagram of each subset Sr
d in Θ(|Sr

d |) time, we make use of the abstract
Voronoi diagrams framework [17, 18]. To fall under this framework, the system of angular
bisectors must satisfy the following three axioms:

(A1) The bisector b∠(r, s), ∀r, s ∈ S, is an unbounded Jordan curve.
(A2) The region vreg(r) in RVD(S ′), ∀S ′ ⊆ S and ∀r ∈ S ′, is non-empty and connected.
(A3) The closure of the union of all regions in RVD(S ′), ∀S ′ ⊆ S, covers R2.

▶ Lemma 11. The system of bisectors of Sr
d satisfies the axioms (A1)-(A3).

Proof sketch. (A1): Consider a pair of rays r, s ∈ Sr
d . Let ℓ be the line through p(r) and

p(s). Let x ̸= p(r) and y ̸= p(s) denote respectively, two points lying on r and s. Observe
that the angles ∠(p(s), p(r), x), ∠(x, p(r), p(s)), ∠(y, p(s), p(r)), and ∠(p(r), p(s), y) are all
greater than or equal to π

2 , where ∠(x, y, z) denotes the counterclockwise angle at point y,
between the rays with apex y passing through x and z, respectively. Hence, r and s are
non-intersecting regardless of whether both are contained on ℓ, or lie on the same side of ℓ.
The bisector of two non-intersecting rays is an unbounded Jordan curve.

(A2): A Voronoi region vreg(r) is obviously non-empty as it contains the ray r. Regarding
the region connectivity, we claim that no ray of Sr

d cuts twice a bisecting circle induced by
the rays of Sr

d . From the analysis of Section 2, this implies that every region of RVD(Sr
d)

is connected, since it consists of a single unbounded face. Consider three rays r, s, t ∈ Sd.
The angle −α required to rotate r around p(r) such that l(r) is either tangent to or not
intersecting Cb(s, t) is strictly greater than − π

2 . After rotating r by − π
2 ∈ [−α, −(α + π)], we

obtain a ray in Sr
d that does not intersect twice Cb(r, s); see Figure 6(b). Our claim follows

since Sd and Sr
d induce the same set of bisecting circles.

(A3): The diagram RVD(Sr
d) is defined by distance functions, one for each site in Sr

d ,
whose domain is the entire plane. Thus, it follows that any point in the plane belongs to the
closure of a region of RVD(Sr

d). ◀
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(a) (b) (c)

Figure 7 (a) RVD(SP ) of a polygon with five vertices. (b) A subset of three rays rotated by
−π/2. The teal region has two faces; for it to be connected, the rays should be rotated by an angle
greater than −π/2. (c) A subset of three rays rotated by −π/2. The red region has two faces; for it
to be connected, the rays should be rotated by an angle smaller than −π/2.

Since each Voronoi region is connected, and it has exactly one unbounded face, as shown
in Lemma 4, it follows that RVD(Sr

d) is a tree of complexity Θ(Sr
d).

It is worth to note that the original set SP need not satisfy axioms (A1)-(A3), thus,
RVD(SP ) need not fall under the framework of abstract Voronoi diagrams, and hence, the
partition into the four subsets and the rotation.

The intuition behind the rotation of the rays comes from the fact that only circular parts
of bisectors appear in PRVD(SP ), and that the bisecting circles remain the same under
a uniform rotation. The partitioning of SP into the specific four sets is justified by the
following remark.

▶ Remark 12. There are sets of rays SP for which there exists no unique angle to rotate the
rays in SP , so that (A2) is satisfied. Refer to Figure 7.

RVD(Sr
d) can be constructed in O(n log n) time [17]. We can construct RVD(Sr

d) in O(n)
time by showing that the system of bisectors of Sr

d falls under the Hamiltonian abstract
Voronoi diagram framework of Klein and Lingas [19]. In addition to satisfying (A1)-(A3),
the cyclic version of [19] requires the following axiom to be satisfied:

(A4) There exists a Jordan curve H of constant complexity such that, H visits the region
vreg(r) in RVD(S ′), ∀S ′ ⊆ S and ∀r ∈ S ′, exactly once.

If a Voronoi diagram satisfies axioms (A1)-(A4) and the ordering of the regions of RVD(S ′)
along H is given, then RVD(S) can be computed in Θ(n)-time [19]. Hence, it suffices to find
a curve H satisfying these properties. We show this in the following.

▶ Lemma 13. RVD(Sr
d) can be constructed in deterministic Θ(|Sd|) time.

Proof. We show that Sr
d satisfies axiom (A4) of the Hamiltonian abstract Voronoi diagram

framework [19]. The linear time algorithm is then a direct corollary of the existing results [19].
Let Γ be a circle of sufficient large radius enclosing all bisecting circles. Γ is obviously a

Jordan curve of constant complexity. For any S ′ ⊆ Sr
d , the diagram RVD(S ′) is a tree, and

by definition, Γ does not intersect any bisecting circle, hence, Γ visits each region of RVD(S ′)
exactly once, with a change on the visited region happening when Γ intersects a ray. Γ is a
Hamiltonian curve H satisfying axiom (A4).

The ordering of the unbounded faces of RVD(Sr
d) corresponds to the ordering of the

respective vertices along the polygon P , and this is maintained for any S ′ ⊂ Sr
d . The ordering

of the vertices of P is given, so this concludes the proof. ◀
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4.3 Merging the four diagrams
We now merge all the diagrams to obtain PRVD(SP ). Our merging procedure consists of
two steps; see Figure 8. In an initial step we merge RVD(Sr

W ) with RVD(Sr
S) to obtain

RVD(Sr
W ∪ Sr

S), and analogously we obtain RVD(Sr
E ∪ Sr

N ). Then, in a final step we merge
the diagrams RVD(Sr

W ∪ Sr
S) and RVD(Sr

E ∪ Sr
N ), restricted to the interior of P , to obtain

PRVD(SP ). We show the following statement.

▶ Lemma 14. Given RVD(Sd), for all d ∈ {N,W,S,E}, PRVD(SP ) can be constructed in
Θ(n) time.

We now describe the two merging steps and sketch the arguments of the proof. Refer also
to Figure 8 and Figure 9. Note that, although the four Voronoi diagrams RVD(Sd) to be
merged fall under the abstract Voronoi framework, this is not the case for the resulting
diagrams. This requires special care in the merging process.

Initial step. We describe how to merge RVD(Sr
W ) with RVD(Sr

S). Let w1, . . . , wk be the
rays in Sr

W and let s1, . . . , sl be the rays in Sr
S , as they appear ordered on P . We need to

construct the merge curve, which consists of the rays s1, w1 and the set of circular edges
of RVD(Sr

W ∪ Sr
S) equidistant to sites w ∈ Sr

W and s ∈ Sr
S , which we denote by EC . We

describe each procedure separately.
Tracing s1: The ray s1 lies entirely in vreg(wk). To see this, consider the set SW (before
rotation) and continuously clockwise rotate all rays by an angle of π/2. During this
process, wk does not intersect any of the rays in SW , hence, s1 ∈ vreg(wk). Thus, s1
does not intersect RVD(Sr

W ) and it can be trivially traced in O(1) time.
Tracing EC : We start from the point p(s1), using the bisector b∠(s1, wk) and we trace
a chain of circular edges until we reach the ray w1. In order to identify at each step the
next bisector to proceed, we adapt standard tracing techniques for Voronoi diagrams, see
e.g., [2]. More specifically, while going from s1 to w1, the curve EC visits the regions of
the sites s1, . . . , sl in exactly that order (some sites might possibly not appear at all).
The same holds for the sites w1, . . . , wk but in reverse order. Hence, to trace EC we can
go over the two lists of regions in the aforementioned order.
Structure of EC : To see that the chain ends up at w1, consider the distance of any point
on the chain to the nearest ray. The distance when the chain starts, at p(s1), is exactly
π/2, and it is monotonically increasing. Moreover, consider the polygonal chain P ∗

consisting of the line segments p(w1)p(w2), p(w2)p(w3), . . . , p(wk)p(s1), p(s1)p(s2), . . . ,

p(sl−1)p(sl) and the ray sl. The distance of any point on P ∗ to its nearest ray, is exactly
π/2. Hence, since the distance along the chain of circular edges is increasing, the chain
may only end up at w1 (but not necessarily at its apex, see e.g., Figure 9(a)).
We now need to show that the chain, which we traced, is the complete set EC , i.e., there
are no other connected components to identify. Additionally, we have to show that EC

does not induce any bounded faces in RVD(Sr
W ∪ Sr

S). To prove both statements we
define an auxiliary Voronoi diagram, where in contrast to Definition 2, we define the
bisector between two rays r and s, to be the entire circle Cb(r, s).
We use this auxiliary diagram due to the simplicity of its bisectors. Since only the circular
arcs of the bisectors appear inside P , some properties of the auxiliary Voronoi diagram
also hold for RVD(Sr

W ∪ Sr
S). More specifically, each region in the auxiliary diagram is

connected and the union of all the regions covers P . In addition, the auxiliary Voronoi
diagram implies that RVD(Sr

W ∪ Sr
S) has Θ(|Sr

W | + |Sr
S |) size, hence, EC has O(n) size.

The curve EC has O(n) size, and there is no backtracking while traversing the two lists
of regions (to identify the edges), hence, EC can be constructed in time O(n).
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(a) (b) (c)

s1

w1

(d) (e) (f)

Figure 8 Merging diagrams (a) RVD(Sr
W ) and (b) RVD(Sr

S) into (c) RVD(Sr
W ∪ Sr

S). Merging
diagrams (d) RVD(Sr

W ∪ Sr
S) and (e) RVD(Sr

E ∪ Sr
N ) into (f) PRVD(SP ). The highlighted red edges

correspond to the merge curve. The arrows schematize tracing.

(a)
s1 w1

(b)

s1

w1

Figure 9 Two special cases of merging two diagrams RVD(Sr
W ) and RVD(Sr

S). (a) The sequence
of circular edges does not end at p(w1). (b) Ray w1 intersects RVD(Sr

S).

Tracing w1: In contrast to s1, the ray w1 may intersect many circular edges of RVD(Sr
S),

each inducing a vertex; see e.g., Figure 9(b). To identify such vertices, we can intersect
w1 (starting from the point on w1 where EC ended) with RVD(Sr

S). This can be easily
done in O(Sr

S) time, as RVD(Sr
S) is a tree.

All steps described can be done in O(n) time, concluding the initial merging step.

Final step. We now merge RVD(Sr
W ∪ Sr

S) and RVD(Sr
E ∪ Sr

N ) restricted to P . The merge
curve, as it lies inside P , consists only of EC , the set of circular edges equidistant to sites
r ∈ Sr

S ∪ Sr
W and t ∈ Sr

E ∪ Sr
N . Using the same properties as in the initial step, it follows that

EC consists of a single chain, it does not create bounded faces in PRVD(SP ), and tracing
may not go outside P . Overall, EC can be identified in O(n) time, and a simple truncation
of the merged diagram inside P , yields PRVD(SP ) in Θ(n) time, concluding the proof.

We can summarize the main result of this section as follows.

▶ Theorem 15. Given a convex polygon P , we can construct PRVD(SP ) in Θ(n) time.
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4.4 Minimum angle needed to illuminate PPP - Brocard angle
We now turn back to the problem of computing the Brocard angle α∗ of a convex polygon
P . As in the respective problem in R2, the angle α∗ is realized at a point x∗ on PRVD(SP ).
Since the distance along the edges of PRVD(SP ) is monotone, x∗ cannot lie on an edge.
Further, since PRVD(SP ) is confined to P by definition, x∗ lies actually on a vertex of
PRVD(SP ). A special case occurs when α∗ is realized by two anti-parallel rays (edges), and
the circular arc of their bisector degenerates to a line segment ℓ, as in Figure 3(h). In this
case, any point on ℓ is at distance α∗ from the rays, but since the endpoints of ℓ are also at
distance α∗, the Brocard angle is still realized at a vertex of PRVD(SP ).

Therefore, to find α∗ we can construct PRVD(SP ) and then traverse it to find the vertex
of maximum distance. Both steps can be done in Θ(n) time, so we obtain the following.

▶ Theorem 16. Given a convex polygon the Brocard angle α∗ can be found in Θ(n) time.

Following, we give tight bounds on the Brocard angle.

▶ Proposition 17. Given a convex polygon P , the Brocard angle α∗ is less or equal to
π/2 − π/n. Further, α∗ can take any value in the interval (0, π/2 − π/n].

Proof. A π/2 − π/n upper bound on the Brocard angle is given in [5, 12]. Such an angle is
realized by regular polygons. The last illuminated point is the center of the regular polygon,
which is simultaneously illuminated by all the floodlights at an angle of π/2 − π/n.

To prove the lower bound, consider a polygon with a bounding box of width w and height
h. The aspect ratio h

w can be arbitrarily close to zero, hence α∗ is also arbitrarily close to zero.
Further, we can smoothly transform any such polygon to a regular polygon, while preserving
convexity. Thus, it is possible to get any Brocard angle in the range (0, π/2 − π/n]. ◀

As a final note, observe that the three floodlights, which realize α∗, suffice to illuminate P ;
see the dashed segments in Figure 2(a). Consider the k-floodlight illumination problem [28],
which asks for the minimum angle αk, under which a convex polygon is illuminated by k

floodlights, k ≥ 3, where the sum of their apertures is αk. The Brocard illumination gives
an α3 = 3α∗ solution to the problem. By Proposition 17, it follows that α3 ≤ 3π/2 − 3π/n.
Hence, for n ≤ 6, the Brocard angle improves the current a3 = π solution given in [28].

5 RVD on curves

Floodlight illumination problems have also been considered restricted to curves. In this
section, we are given a set S of n rays in R2, a set of α-floodlights each aligned with a ray, and
a curve C, and we want to find the minimum value of α such that C is completely illuminated

(a)

r

g

b

rg

g

gbb
(b)

α∗

Figure 10 A set S of 3 rays and the line C : x2 = 0. (a) RVD(S) in R2 and its intersection
with C. (b) RVD(S) along C as the lower envelope (highlighted) of distance functions. The angle α∗

is illustrated; the last illuminated point is (−∞, 0) (first illuminated by the blue ray).
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by the set of α-floodlights. We show how these problems can be solved by viewing RVD(S)
as the lower envelope of distance functions in 2-space; see Figure 10. We give the proof for
the case when C is a line and then discuss how this approach can be extended to other curves.

▶ Theorem 18. Given a line C, RVD(S) along C has complexity O(n2α(n)) and it can be
constructed in O(nα(n) log n) time.

Proof. Without loss of generality, let C be the horizontal line x2 = 0. Each site r ∈ S induces
a distance function which maps a point x = (x1, 0) ∈ C to d∠(x, r); see Figure 10(b). If r

intersects C at point (i, 0), then there is a point of discontinuity, and the distance function
is split into two partially defined functions, one with the domain up to i and one with the
domain starting at i. RVD(S) along C is the lower envelope of these distance functions. The
lower envelope of n partially defined functions, where each pair of functions intersects at
most s times, has O(λs+2(n)) complexity [14] and it can be constructed in O(λs+1(n) log n)
time [15], where λs(n) is the length of the longest (n, s) Davenport-Schinzel sequence.

In our case, a pair of functions intersects at most twice, as C may intersect twice the
bisecting circle of the two respective rays, so s = 2. Further, we have at most 2n partially
defined functions. Thus, RVD(S) along C has complexity O(n2α(n)) and it can be constructed
in O(nα(n) log n) time, where α(n) is the inverse Ackermann function. ◀

Observe that, the minimum angle α∗ needed to illuminate the line C is realized either at
an intersection point between RVD(S) and C, or at a point of C at infinity; see for example
the point (−∞, 0) in Figure 10. Hence, after constructing RVD(S) along C, the angle α∗ is
revealed by a simple traversal of RVD(S) in time linear in its size.

The aforementioned approach can be generalized to arbitrary curves in a straightforward
way. Let C be a closed curve enclosing the apices of all the rays of S. Note that, if C is a
circle, then the same results as Theorem 18 can be derived, since C intersects a bisecting
circle at most twice; hence, s = 2. On the other hand, if C is an m-sided convex polygon,
then C intersects a bisecting circle at most 2m times, hence s = 2m; see Figure 11(b). If C is
an arbitrary simple polygon, then there might be portions of C not visible by a ray; thus, an
additional parameter k should be introduced, to represent the number of partially defined
functions corresponding to each ray.

(a)

P

123

4
5

r

(b)
P

r s

1

2

3 4

5

6

Figure 11 Illustration of the parameters s and k related to curve illumination. The boundary of
the polygon P is the curve to be illuminated. (a) The distance function of the ray r is split into 5
partial functions, i.e., k = 5. Splits are induced by visibility constraints due to P itself (breakpoint
3-4), by visibility constraints due to other curves (breakpoint 2-3), or by the discontinuity of the
distance function at the ray (breakpoint 1-2). (b) The circular arc of the bisector of the two rays r

and s intersects the boundary of P at 6 points, i.e., s = 6.
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Finally, the approach generalizes to cases where the apices of the rays are not enclosed by
some curve; see Figure 11(a). As before, the complexity of RVD(S) restricted to a curve, will
be affected by a parameter s, representing the number of times a curve intersects a bisecting
circle, and a parameter k, representing the number of partially defined functions in which a
distance function has to be split due to visibility constraints.

6 Concluding remarks

Using the Rotating Rays Voronoi Diagram, we showed how to find the Brocard angle of a
convex polygon in optimal linear time, settling an interesting open problem. We exhibited
that our method is more general: given any domain D and a set of rays S, we can find
the minimum angle that is required to illuminate D using floodlights aligned with S, by
constructing RVD(S) restricted to D.

There are many interesting questions to investigate. Regarding the Brocard angle of
polygons, we would like to see how our approach could extend to other classes of polygons.
We expect to have some difficulties due to the visibility constraints, but we believe that
our algorithm could be adapted to work as well. Regarding RVD(S) in R2, we would like
to settle whether the worst case combinatorial complexity is Θ(n2). Further, if the current
O(n2+ϵ) bound is not tight, we believe that it is possible to design o(n2+ϵ)-time algorithms.
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1 Introduction

Exploitation of symmetry has a dramatic impact on the efficiency of algorithms in various
fields. This includes the fields of computer vision and computer graphics [15], automated
reasoning [10], machine learning [22] and in particular convolutional neural networks [7],
mathematical programming [14], chemical databases [20], SAT-solving [12], constraint pro-
gramming [8], software verification [5], model checking [9, 18] and so on.

Before symmetries of a structure can be exploited, one first has to have algorithmic means
to find the symmetries. For this, the structure is usually transformed into an annotated
graph whose automorphisms correspond to the symmetries of the original structure. Then
tools are employed that compute the graph’s automorphism group.

The current state-of-the-art implementations of solvers computing automorphism groups
are bliss [11], nauty and Traces [17], conauto [16] as well as saucy [6]. All of the
mentioned algorithms follow the individualization-refinement (IR) framework.
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These tools have become increasingly powerful through a multitude of techniques. Initially,
each mentioned tool provided insightful new pruning ideas or new implementation tricks.
However, many of these very diverse ideas from all the tools have transcended into all of the
other tools by now. This lead to a second generation comprised of improved versions of the
tools. The most recent and currently fastest solver is Traces which excels at pruning the
search space of difficult graphs. The tool has been meticulously engineered by Piperno over
the past decade ever improving its performance. The tool is fastest on most graph classes,
and on the few where it is not, it still performs competitively with the best of all the solvers.

Recently the requirements of the application domains for the tools have changed. One
major change stems from the different architecture of modern hardware. In fact, all of
the aforementioned tools are sequential, single-threaded applications: spreading the work
load across multiple cores would align with the contemporary hardware trend of steadily
increasing core counts. While there are some theoretical results, research on practical parallel
isomorphism algorithms is quite limited. In his thesis, Tener [23] describes approaches to
parallel isomorphism testing. However, he has subsequently not pursued this further in the
last decade, and the described algorithm is based on algorithms of the first generation. The
study [4] only performs comparisons against slow sequential algorithms. Overall, parallel
graph isomorphism testing has not witnessed any of the ideas that characterize the second
generation of algorithms. Generally, fast isomorphism and automorphism algorithms have
been persistently resistant to parallelization attempts in theory and practice.

The goal of this paper is to stimulate a third generation of isomorphism solvers by
harnessing the power of a modern CPU for the computation of graph automorphisms.
Parallelizing existing libraries is not a straightforward task, since the practical algorithms
are based on the IR technique, which is a priori sequential.

Contribution. We introduce dejavu, a novel randomized algorithm solving the automor-
phism group problem based on the IR paradigm. The tool is (1) on a single thread competitive
with currently fastest solvers available (sometimes even outperforming them), and (2) on 8
threads outperforms the currently fastest solvers on most graph classes. Using the de facto
standard benchmark suite, we report extensive experimental results corroborating these two
claims. The results also demonstrate the scalability of the tool as the number of threads is
varied from 1 to 8.

Underlying ideas and techniques. The quintessence of our new algorithm, by which we
achieve parallelizability, is to replace inherently sequential traversal strategies with randomized
traversal: dejavu mainly performs repeated random root-to-leaf walks in the search tree
(stemming from the IR-framework) in conjunction with a probabilistic abort criterion. The
main motivation is that computing multiple random root-to-leaf walks can be parallelized. To
allow for an even split of the work load, various subroutines, most notably the so-called sifting
algorithm which is used for the probabilistic abort criterion, also have to be parallelized
efficiently. However, to create a truly efficient tool, the algorithm has to be combined with
further heuristics tailored to the new parallel, probabilistic setting.

Randomization. Our tool dejavu is a randomized tool which, in principle, means that
the output is not always correct. The idea of exploiting randomization originated from
isomorphism testing algorithms [3, 13] which however neither compute automorphisms nor
have any form of parallelization whatsoever. For these randomized approaches (including
dejavu), the user can set an error probability (e.g. 1%) and the tool guarantees that for each
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input the probability of error is at most this number. However, crucially our approach only
has a 1-sided error. This means while some automorphisms may be missed when queried for
the automorphism group of a graph, the solver guarantees that the output consists entirely
of automorphisms of the graph. For applications exploiting symmetry this is the right kind
of error. This way, they may sometimes fail to exploit symmetries that were missed but this
only slows down the running time. It does not lead to incorrect results for the application.

2 Preliminaries

2.1 Individualization-Refinement
Following [17] closely, we introduce IR algorithms. The summary is focused on the results
necessary to describe automorphism computations and what is needed for our algorithms.

Colored Graphs. An undirected, finite graph G = (V, E) consists of a set of vertices V ⊆ N
and a set of edges E ⊆ V 2, where E is symmetric. We always assume V = {1, . . . , n}.

A coloring π : V → {1, . . . , k} is a surjective map, mapping vertices of a graph to cells
1, . . . , k. We call π−1(i) ⊆ V with i ∈ {1, . . . , k} the i-th cell of π, which is non-empty since π

is surjective. With |π| = k we denote the number of cells in a coloring. If |π| = n holds, we
call π discrete. Note that a discrete coloring also characterizes a permutation of V .

A colored graph (G, π) consists of a graph and a coloring. The symmetric group
on {1, . . . , n} is denoted Sym(n). With Aut(G) we denote the automorphism group of
a graph. An element φ ∈ Aut(G) is a permutation of vertices which maps the graph to itself,
i.e., a bijective map φ : V → V where Gφ := (φ(V ), φ(E)) = (V, E) = G holds. For colored
graphs we additionally require that the coloring is preserved, i.e., a vertex of a cell c must be
mapped to a vertex of cell c. We thus define the colored automorphism group Aut(G, π) as
those permutations φ with (G, π)φ = (Gφ, πφ) = (G, π). Note that in all of these definitions
actual equality, e.g., equality of adjacency matrices and not isomorphism, is required. In the
following, we only consider uncolored input graphs for the sake of simplicity. Let us remark,
however, that we could use exactly the same machinery for colored graphs (see [17]).

Refinement. In the following, we want to individualize vertices and refine colorings. Indi-
vidualizing vertices in a coloring is a process that artificially forces the vertex into its own
singleton cell. We use ν ∈ V ∗ to denote a sequence of vertices. In particular, we can record
in such a sequence which vertices have been individualized.

A refinement is a function Ref : G × V ∗ → Π. Here Π is the set of colorings of V , i.e., the
set of ordered partitions of V . Given a graph G and sequence of vertices ν, it must satisfy the
following properties: first, it is invariant under isomorphism, i.e., Ref(Gφ, νφ) = Ref(G, ν)φ

holds for all φ ∈ Sym(n). Secondly, it respects vertices in ν as being individualized, i.e., {v}
is a singleton cell in Ref(G, ν) for all v ∈ ν.

Cell Selector. If refinement classifies all vertices into different cells, determining automor-
phisms and isomorphisms for a graph is easy, after all, cells have to be preserved. Otherwise,
individualization is used to artificially single out a vertex inside a non-singleton class. The
task of a cell selector is to isomorphism invariantly pick a non-singleton cell of the coloring. In
the IR paradigm, all vertices of the selected cell will then be individualized one after the other
using some form of backtracking. After the individualization, refinement is applied again and
the process continues recursively. Formally, a cell selector is a function Sel : G × Π → 2V

into the power set of V satisfying the following properties:
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It is invariant under isomorphism, that is Sel(Gφ, πφ) = Sel(G, π)φ holds for φ ∈ Sym(n).
If π is discrete then Sel(G, π) = ∅.
If π is not discrete then | Sel(G, π)| > 1 and Sel(G, π) is a cell of π.

Search Tree. With the functions Ref and Sel at hand, we are now ready to define the
search tree. For a graph G we use T(Ref,Sel)(G) to denote the search tree of G with respect
to refinement operator Ref and cell selector Sel. The search tree is constructed as follows:
each node of the search tree corresponds to a sequence of vertices of G.

The root of T(Ref,Sel)(G) is the empty sequence ϵ.
If ν is a node in T(Ref,Sel)(G) and C = Sel(G, Ref(G, ν)), then its children are {ν.v | v ∈
C}, i.e., all extensions of ν by one vertex v of C.

With T(Ref,Sel)(G, ν) we denote the subtree of T(Ref,Sel)(G) rooted in ν. We omit indices Sel
and Ref if they are apparent from context. Note that the leaves of a search tree correspond
to discrete colorings of the graph, and therefore to permutations of V .

We recite the following crucial facts on isomorphism invariance of the search tree as given
in [17], which follows from the isomorphism invariance of Sel and Ref:

▶ Lemma 1. For a graph G and φ ∈ Sym(n) we have T(G)φ = T(Gφ).

▶ Corollary 2. If ν is a node of T(G) and φ ∈ Aut(G), then νφ is a node of T(G) and
T(G, ν)φ = T(G, νφ).

We have yet to mention how the search tree is used to find automorphisms of a graph:

▶ Lemma 3. If ν and ν′ are leaves of T(G), then there exists an automorphism φ ∈ Aut(G)
such that ν = φ(ν′) if and only if Ref(G, ν′)−1 · Ref(G, ν) is an automorphism of G.

We also say that ν′ is an occurrence of ν if there is some automorphism φ ∈ Aut(G) for
which φ(ν′) = ν.

Pruning. In the overall algorithm, we fix a single leaf τ and then search for automorphisms
by comparing other leaves to it. We call this fixed leaf τ the target leaf. Corollary 2 and
Lemma 3 show that this suffices to derive all automorphisms from the search tree.

Unfortunately, however, the search tree itself can be exponentially large in the input [19].
Therefore, we want to prune it as much as possible.

Towards this goal, we define a node invariant Inv : G × V ∗ → I, which is a function
mapping nodes of the tree to a totally ordered set I. We require some further properties:

The invariant must be isomorphism invariant, i.e., we require Inv(G, ν1) = Inv(Gφ, νφ
1 )

for all φ ∈ Sym(n).
If |ν1| = |ν2| and Inv(G, ν1) < Inv(G, ν2), then for all leaves ν′

1 ∈ T(G, ν1) and ν′
2 ∈

T(G, ν2) we require Inv(G, ν′
1) < Inv(G, ν′

2).
It follows that even if we remove all nodes of the tree whose invariant deviates from the
corresponding node invariant on the same level on the path to the target leaf, we can still
retrieve the entire automorphism group. This operation is called pruning using invariants.
Formally, we define PruneInv(τ ′, ν′) to denote the operation that removes the subtree of node
ν′ if Inv(G, τ ′) ̸= Inv(G, ν′), where |τ ′| = |ν′| holds and τ ′ is the prefix of length |ν′| of τ .

We now describe pruning using automorphisms. Assume we already have φ ̸= id of Aut(G)
available. For nodes ν where νφ is not a prefix of the target leaf, we define PruneAut(ν, νφ) to
denote the operation which removes the subtree rooted at νφ from the search tree. Applying
PruneAut can only cut away parts of the search tree which are generated by the already
available automorphisms anyway [17].
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Algorithm 1 Sifting.

1 function Sift(S, T, B, φ)
Input : generators S, transversal table T , base points B, element φ

Output : whether S, B and T remained unchanged
2 for ( i = 1; i ≤ |B|; i = i + 1 )
3 bi := φ(Bi);
4 t := (Ti)bi

;
5 if t = ⊥ then break;
6 φ := φ · t−1;
7 if φ ̸= id then
8 S := S ∪ {φ};
9 bi := φ(Bi);

10 (Ti)bi
:= φ;

11 return false;
12 return true;

2.2 Schreier-Sims Fundamentals
The procedure to aggregate automorphisms of dejavu works on similar principles as the
random Schreier-Sims algorithm, which provides us with a data structure to dynamically
manage permutation groups. To be more precise, our algorithm needs a way to determine
whether a newly found automorphism φ is in the group generated by the automorphisms
that were found previously. The procedure we use for this is called sifting. We give a brief
description following the lines of [21].

All groups we consider are permutation groups Γ ≤ Sym(Ω). For the domain we always
set Ω = {1, . . . , n}. By ⟨S⟩ we denote the group generated by the elements of S, i.e., all
elements that can be written as a product of elements of S. If ⟨S⟩ = Γ holds, we call S a
generating set of Γ.

We need the notion of a pointwise stabilizer of a permutation group Γ ⊆ Sym(Ω).
Let β ∈ Ω be a point, then Γ(β) := {φ ∈ Γ | φ(β) = β}. For a sequence of points
(β1, . . . , βm) ∈ Ωm we just recursively take the pointwise stabilizer of all elements:

Γ(β1,...,βm) :=
{

Γ if m = 0
(Γ(β1,...,βm−1))(βm) otherwise.

We call a sequence of points B = (β1, . . . , βm) ∈ Ωm a base relative to Γ ≤ Sym(Ω) if
ΓB = {id}. For a generating set ⟨S⟩ = Γ and a base (β1, . . . , βm) we define Si = S ∩Γ(β1,...,βi).
We call S strong relative to Γ and (β1, . . . , βm) if ⟨Si⟩ = Γ(β1,...,βi) holds for all i ∈ {0, . . . , m}.

Given a subgroup ∆ ≤ Γ, a transversal of ∆ in Γ is a subset T ⊆ Γ that satisfies
|T ∩ gH| = 1 for every coset g∆ of ∆ in Γ. We construct a transversal table for a given
base B and generating set S, which contains a transversal for each subgroup ⟨Si⟩ in ⟨Si−1⟩.
We refer with Ti to the transversal of Si. Careful inspection of the definition reveals that
each ⟨Si⟩ fixes the i-th base point of B, i.e., for all φ ∈ ⟨Si⟩ it is true that φ(βi) = βi. If we
want to know the cosets of Si in ⟨Si−1⟩, we need to find the possible images of βi in ⟨Si−1⟩.
Elements of ⟨Si−1⟩ under which βi has the same image are in the same coset of ⟨Si⟩. Thus,
we can differentiate transversal elements Ti according to the image of βi under them. We
denote by (Ti)b the element in Ti mapping βi 7→ b if it exists. We set (Ti)b = ⊥ if such an
element does not exist. The cosets correspond to the orbit of βi in Si−1. Given an element
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6:6 Parallel Computation of Combinatorial Symmetries

φ ∈ Si−1, we need to determine to where φ maps βi in order to find the coset in which it is
contained. The representative of the coset is that element t in the transversal Ti which also
maps βi to φ(βi). By forming the product φ · t−1 ∈ Si we obtain an element that fixes βi.

Algorithm 1 describes a sifting procedure, which can be used to test membership in a
given permutation group whenever a strong generating set S and corresponding base B are
available. Otherwise, if S is not strong or B not complete, the sifting procedure computes a
non-trivial permutation. In the version of the algorithm described here, this permutation
is added to the generating set to ensure that now the sifted element is covered. Possibly
one needs to extend the base for this purpose. If an element sifts successfully, i.e., the
procedure returns true, we know that it is contained in ⟨S⟩. On the other hand, if the sifting
is unsuccessful then the element was not in the group or the generating set was not strong
and has been extended towards ensuring it to become strong.

The algorithm repeatedly multiplies transversal elements to the initial element. The
operations preserve the property of whether the initially given element is in the group. Each
operation modifies the element so that it is contained the next respective pointwise stabilizer.

We refer to base, transversal table and generating set together as a Schreier structure.
As elements are sifted, such a structure captures the progress made towards constructing the
group. A crucial result we exploit is the following, related to Lemma 4.3.1 in [21]:

▶ Lemma 4. Let Γ be a group, B a base, S a set of permutations in Γ and φ a uniformly
distributed element in Γ. If ⟨S⟩ ̸= Γ, the probability that φ does not successfully sift through
the Schreier structure defined by B and S is at least 1

2 .

The previous results are also the foundation for the random Schreier-Sims method, which is
used by all competitive solvers to detect possibilities to apply the pruning function PruneAut.

Let us also record that the individualized vertices in a leaf of the search tree (defined in
Section 2.1) actually form a base of the respective automorphism group [17].

3 Parallel Computation of Automorphisms

We first describe how to turn random walks on IR trees into a correct, probabilistic algorithm.
Then, we discuss how to parallelize sifting as required by the algorithm. Lastly, we augment
the algorithm using breadth-first traversal into the underlying procedure of dejavu.

The motivation is that the three fundamental methods mentioned above parallelize
efficiently as long as the IR tree is sufficiently large.

3.1 Random Walks and Automorphisms
The first step of our algorithm is to compute a random walk to one of the leaves, the target
leaf. The goal is then to find another occurrence target leaf through random walks, whereby
automorphisms are found. A key observation is that by choosing uniform, random walks
through the tree – which we describe in Algorithm 2 – we also get a uniform distribution of
elements in the automorphism group. The algorithm applies the refinement to the input graph
and then repeatedly chooses a uniform random vertex of the target cell chosen by the cell
selector for individualization. Starting from the initial coloring, it then keeps individualizing
and refining until the coloring becomes discrete. It returns the coloring and the sequence of
individualized vertices.

Recall that we refer to a leaf τ ′ as an occurrence of τ if τ ′ can be mapped to τ using
an element φ ∈ Aut(G) (i.e., φ(τ ′) = τ). In this situation we call φ the corresponding
automorphism with regard to τ ′. Note that there is a unique occurrence of τ for every
φ ∈ Aut(G):
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▶ Lemma 5. A leaf τ can be mapped to exactly | Aut(G)| leaves in T(G) using elements of
the automorphism group Aut(G).

Proof. Note that τ is a base of Aut(G). Now consider an element φ ∈ Aut(G). Clearly, τφ

also corresponds to a leaf in the tree (Lemma 2) and τφ is a base as well. Now consider a
different element φ′ ∈ Aut(G), i.e., φ′ ̸= φ. Clearly, τφ ̸= τφ′ holds since τ is a base. ◀

▶ Lemma 6. As a random variable, the output of Algorithm 2, which is a leaf in the search
tree, is uniformly distributed within each equivalence class of leaves.

Proof. There is a unique occurrence of τ for every automorphism (Lemma 5). Hence, it
suffices to argue that the probability of finding each occurrence of τ through a random walk
in the tree is equal. Assume that we are in a node ν of the search tree and let ν1, . . . , νk be
the children of ν. Let ν′

1, . . . , ν′
k be the children that correspond to the subtrees of ν that do

contain an occurrence of τ . Since we are sampling an element uniformly from ν1, . . . , νk in
Algorithm 2, each of these subtrees has the same probability of being chosen. Therefore, it
suffices to argue that the chance of finding an occurrence of τ in each of ν′

1, . . . , ν′
k is equal.

Since they all contain an occurrence of τ , they can all be mapped to each other using the
corresponding automorphisms. But this immediately implies that all of these subtrees must
be isomorphic (Lemma 1), showing the claim. ◀

The following lemma immediately follows.

▶ Lemma 7. Let τ be a fixed leaf. Consider the distribution of outputs of Algorithm 2 under
the condition that an occurrence of τ is computed. For such a given output τ ′ consider the
automorphism φ with φ(l) = l′ corresponding τ ′. Then φ is uniformly distributed in Aut(G).

So, Algorithm 2 provides us with a method to uniformly sample random automorphisms.
We now need a method to collect these automorphisms and determine when we have found
enough of them to generate the entire automorphism group.

Description of Algorithm 3. The algorithm repeatedly samples automorphisms from
the automorphism group through random walks (using Algorithm 2). Then, it uses a
probabilistic test based on Lemma 4 and Lemma 7 to determine termination. When a certain
number d = ⌈− log2( ε

2 )⌉ of consecutively sampled automorphisms turn out to be already
covered by the previously found automorphisms (i.e., they sift successfully) the algorithm
terminates. The initial value of d is linked to the guaranteed bound on the error probability ε

that can be chosen by the user. To guarantee that the error bound is kept, when some but
not d consecutively found automorphisms were discovered, the value of d is incremented.

Finishing the execution therefore hinges on seeing already explored leaves as well as
already generated automorphisms again. Note that the correctness of the algorithm depends
on the fact that we are probing automorphisms uniformly from the group. In Section 3.3, we
introduce further techniques to prune the search tree. When we do so, we always make sure
to do this in a manner that still enables us to probe uniformly after the pruning. Ensuring
this suffices to retain a correct behavior of the algorithm.

We now argue correctness for Algorithm 3.

▶ Lemma 8. Given a graph G and probability ε, Algorithm 3 produces a generating set for
the automorphism group of G with probability at least 1 − ε.

Proof. First, observe that the discovered permutations are certified before being added to
the group, which immediately ensures that all elements of the computed group are actual
automorphisms. The algorithm can therefore only fail by not adding enough elements to
the group.
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Algorithm 2 Random Walk of the Search Tree.

1 function RandomWalk(G)
Input : graph G

Output : a random leaf of the search tree and the individualized vertices
2 base := ();
3 col := Ref(G, [v 7→ 1], base);
4 cell := Sel(G,col);
5 while cell ̸= ∅ do
6 v := RandomElement(cell);
7 base := base.v; // append v to base

8 col := Ref(G, col, base);
9 cell := Sel(G, col);

10 return (col, base);

Algorithm 3 Parallel Randomized Automorphisms.

1 function Automorphisms(G, ϵ)
Input : graph G and probability ε

Output : a subset of Aut(G) that generates Aut(G) with probability at least 1 − ε

2 c := 0, d := ⌈− log2( ε
2 )⌉, S := ∅;

3 (τ, B) := RandomWalk(G);
4 initialize trivial tranversal table T relative to B;
5 while c ≤ d do in parallel
6 // run multiple instances of the body of the loop in parallel
7 (l′, _) := RandomWalk(G);
8 φ := l′ · τ−1;
9 if φ(G) = G then

10 if ¬ Sift(S, T , B, φ) then c := c + 1;
11 else
12 if c > 0 then d := d + 1;
13 c := 0
14 return S;

Choosing random walks through the tree produces a uniform distribution of occurrences
of the leaf τ , which gives us a uniform distribution of elements in Aut(G) (Lemma 7). This
in turn enables us to use Lemma 4 to argue correctness as follows.

We terminate the algorithm after we sifted uniform elements of G successfully into the
Schreier structure d times in a row. As long as sifting fails and we add elements to the
Schreier structure, we know that no error occurs and that we are not done. We view the
computation as a sequence of tests against the hypothesis that we are missing automorphisms.
We define the beginning of a test to be right after sifting succeeds once (i.e., at the moment
when c is set to 1 in an execution of Line 10). The probability that the test fails (i.e., that
we do not abort the test early and instead increment c for d times in a row) is bounded by
( 1

2 )d (Lemma 4). In order to ensure a total error bound of ε for the algorithm, we require
the sum of the probabilities of the tests to fail is at most ε. For this it suffices to have that
the i-th test fails with probability at most ε

2i . The probability that the entire computation
fails is then surely at most ε since

∑∞
i=1

ε
2i ≤ ε.
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In order to satisfy this bound of ε
2i , we increment d after each successful test. Initially, for

the first test, we set d1 = ⌈− log2( ε
2 )⌉ which ensures that ( 1

2 )d ≤ ε
2 . Note the value di for

variable d used during the i-th test is then di = d1 + i − 1, so ( 1
2 )di < ε

2i , as desired. ◀

We should clarify that while the algorithm is based on some of the same principles as
the isomorphism test of [3], that isomorphism test neither has to consider uniformity of
automorphism sampling (Lemma 7), nor employ repeated testing, nor requires any form
of sifting.

Through the use of the randomized approach, a simple opportunity for parallelization
arises by running the body of the while-loop in Line 6 on multiple threads. In particular, only
two components have to be synchronized: the state of the abort criterion c and d, as well as
the Schreier structure S and T which is manipulated by the sifting procedure. While the
former is trivial, parallelization of the sifting procedure is discussed in the following section.

There is a slight technical issue we should address when running Algorithm 3 in parallel.
If, say, the elements that are already generated by S can be computed more quickly than
those that are not, using many threads would create a bias towards finding the former type
of element first, leading to an incrementation of c with a probability larger than 1/2. This
would break the error bound. However, there is a simple way to fix the issue: whenever c

exceeds d, it suffices to additionally ensure all threads finish their current iteration.

3.2 Sifting in Parallel
For the abort criterion of the algorithm, we check whether an automorphism is contained in
the group generated by the automorphisms found so far (see Line 10 of Algorithm 3). To
check this, we sift it into a Schreier structure using a base of the automorphism group.

As it turns out, sifting elements is sometimes expensive: using a conventional, sequential
implementation of the sifting procedure to determine the abort criterion of our algorithm
does not scale with more threads. In practice, sifting would often become the bottleneck.

For the random abort criterion we observe the following when sifting elements.
1. The base is never changed or extended.
2. Changes in the transversal tables T are always local to one level in the Schreier structure.
3. In practice, if sifting is expensive, many elements are sifted. The computationally

expensive part is then mostly multiplication of elements (Line 6 of Algorithms 1 and 4).
We should stress that in particular, (1) and (2) are generally not true when sifting is employed
by previous IR algorithms, and are indeed specific to the way it is used by Algorithm 3.

Crucially, these three observations enable a rather simple modification to the algorithm:
we can sift elements into a Schreier structure concurrently, as long as we synchronize changes
to transversal tables when changing a level. We add a lock for every level and one global
lock for the generating set to enable parallel sifting on a fixed base (see Algorithm 4). We
should remark that the locking mechanism could be made more granular to further improve
scaling. However, due to observation (3), we never deemed this necessary in practice.

3.3 Uniform Pruning
While Algorithm 3 is able to solve the problem on its own and parallelizes whenever enough
random walks are required, it never actually prunes the search tree. This means that if it is
discovered during random probing that a certain path does not lead to an occurrence of the
target leaf, there is no mechanism to prevent making the same bad choices again.
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Algorithm 4 Thread-safe Sifting.

1 function Sift(S, T, B, φ)
Input : generators S, transversal table T , base B, element φ

Output : whether S and T remained unchanged
2 for ( i = 1; i ≤ |B|; i = i + 1 )
3 bi := φ(Bi);
4 t := (Ti)bi

;
5 if t = ⊥ then break;
6 φ := φ · t−1;
7 if φ ̸= id then
8 acquire lock for level i;
9 acquire lock for generators;

10 S := S ∪ {φ};
11 release lock for generators;
12 bi := φ(Bi);
13 update (Ti)bi

= φ;
14 release lock for level i;
15 return false;
16 return true;

To rectify this, we want to intersperse the random walks of the tree with breadth-first
search. Fortunately, probing after breadth-first traversal of an entire level has been performed
naturally results in a uniform distribution of leaves again. Indeed, upon completion of an
entire level of breadth-first traversal, probing can also be characterized as starting a random
walk at a uniformly random node of that level. We probe from a level k by choosing uniformly
at random a node ν′ with |ν′| = k of the search tree that satisfies Inv(ν′) = Inv(ν). Here
ν is the prefix of length k of the vertex sequence corresponding to the target leaf. Due to
Lemma 1, the trees rooted in prefixes that contain some occurrence of the target leaf are
isomorphic. Therefore they yield the same probability for finding an occurrence of the target
leaf within them. The process therefore samples automorphisms with a uniform distribution.
Hence, breadth-first traversal can safely be combined with Algorithm 3.

When using the breadth-first traversal, we still want to be able to use the automorphism
pruning rule PruneAut. However, this can break uniformity. Assume for example ν and ν′

are both children of µ′. Assume further they each correspond to a “bad choice” on this level
of the search tree in the sense that neither of them contains an occurrence of the target leaf.
During the algorithm we would not yet know whether these choices are bad, but suppose we
find an automorphism mapping one to the other. By contracting them to a single node, we
reduce the number of children without a target leaf and thus increase the chance of finding
an occurrence of the target leaf in µ′.

Our solution to this problem is that whenever we use PruneAut, we artificially restore
uniformity. We do so by introducing weights to nodes of the tree, which essentially denote
the number of paths represented by a node of the tree. When combining elements of the
same level, their weights (represented paths) are combined as well. Later on, when probing
for leaves, we take weights into account when sampling random elements. Considering the
example again, when we contract the bad choices ν and ν′ to a single node, and both have
weight 1 to begin with, the remaining node gets weight 2. The remaining node is then chosen
with the same probability as both of the initial nodes together – hence, keeping the same
probability of finding the target leaf in µ.
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Since the probability of finding automorphisms is supposed to remain constant, one might
wonder why this kind of pruning should be applied at all. The reason is that the work for
the breadth-first traversal is reduced: we need to compute less nodes when advancing the
breadth-first level, since symmetric nodes are contracted. On later levels, we may be able
to throw away nodes (uniformly, since we are performing breadth-first traversal) and thus
actually increase the probability of finding target leaves.

We now formalize the notion of weights. We describe this using the following construction:
we start by defining internal weights w and external weights w for all nodes. The internal
weights and external weights of all nodes are initially set to 1, i.e., w(ν) := w(ν) := 1 for all
ν. The internal weights are then manipulated by the algorithm. Whenever internal weights
are modified, the following formula calculates the corresponding external weights:

w(ν) :=
{

1 if ν = ϵ

w(ν) · w(ν1, . . . , νk−1) if ν = ν1, . . . , νk

We now modify PruneAut into Prune′
Aut by making it update the internal weights in addition

to pruning: assume we already have φ of Aut(G) available. For all nodes ν where νφ is not
a prefix of the target leaf, Prune′

Aut(ν, νφ) removes νφ from the search tree and updates
w(ν) = w′(ν) + w′(νφ), where w′ are the previous internal weights.

Additionally, we want to formalize the notion that the tree rooted in νφ is now represented
by the tree rooted in ν. We do this by introducing an equivalence relation ∼, which we update
every time PruneAut is executed. Initially, every node represents itself, hence [ν]∼ = {ν}
holds. Note that trivially |[ν]∼| = w(ν) = 1 is satisfied initially. We update the relation
whenever Prune′

Aut(ν, νφ) is executed. The old relation ∼′ is then replaced by ∼, which we
define in the following. We do so using three states of the search tree: first, the unpruned tree
T(G, ν), which is the initial tree where no pruning rule has been applied. Secondly, there is
the pruned tree before the operation Prune′

Aut was executed, i.e., T(G, ν)′ with the relation
∼′. Lastly, there is the pruned tree after the operation Prune′

Aut has taken place, for which
we want to define the relation ∼. The goal is then to argue inductively that the size of the
equivalence class is equal to the external weight of the representative in the pruned trees.

We stipulate that νφ, as well as all nodes currently represented by νφ, are now represented
by ν. Formally, we unify the equivalence classes of the root nodes in question, i.e., we set
[ν]∼ := [ν]∼′ ∪ [νφ]∼′ .

We extend this definition recursively for all nodes of the tree rooted in ν, i.e., all elements
of the unpruned tree rooted in νφ need to be represented by some element of ν′ ∈ T(G, ν)′.
The tree rooted at νφ may also represent other trees, which need to be consider. We
let [νφ]∼′ = {νφ1 , . . . , νφk }, where clearly φi ∈ ⟨S⟩ for i ∈ {1, . . . , k} holds. Since all
of these trees may have been pruned differently through applications of Prune′

Aut, we
refer back to nodes of the unpruned tree T(G). For every node ν′ in the pruned tree
T(G, ν)′, we find all of the nodes of the unpruned tree that are now represented by it,
i.e., [ν′]∼ := [ν′]∼′ ∪ {ν′′φi | ν′′ ∈ [ν′]∼′ , i ∈ {1, . . . , k} | ν′′ ∈ T(G, ν)}. Note that this is
well-defined in terms of equivalence relations, since all φi define bijections between nodes of
T(G, ν) and T(G, νφi) (Lemma 2). All other nodes of the pruned tree keep their equivalence
classes of ∼′, which is correct since their weight is unaltered as well.

We now argue that the external weight of a remaining node represents the size of its
respective equivalence class:

▶ Lemma 9. Let A be a sequence of applications of Prune′
Aut to a search tree T(G). Assume

that applying A results in T(G)′ with external weight function w′ and ∼′ is the corresponding
equivalence relation (as described previously). Then, it holds that |[ν]∼′ | = w′(ν).
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Proof. We argue the claim by induction over the sequence A. Initially, the claim is true
since all weights are 1 and every node represents itself in ∼.

Let us now argue that when applying some Prune′
Aut(ν, νφ), the invariant remains valid.

For the root node this is easy to see: by induction |[ν]∼′ | = w′(ν) and |[νφ]∼′ | = w′(νφ) hold,
which in turn shows |[ν]∼| = |[ν]∼′ ∪ [νφ]∼′ | = w′(ν) + w′(νφ) = w(ν).
The third equality holds since φ ̸= id is required by definition. We now show this for
all ν′ ∈ T(G, ν)′ by induction. Let ν′ = ν′

1, . . . , ν′
k and µ = ν′

1, . . . , ν′
k−1. We know that

w(µ) = |[µ]∼| holds, i.e., the statement is true for the parent of ν′.
It can be easily seen that set of the elements µ′ ∈ T(G, ν) with µ′ ∈ [µ]∼, i.e., elements

represented by µ in the subtree of ν, has not been altered. Hence, we can rewrite w(µ) =
|[µ]∼| = |{µ′ ∈ [µ]∼ | µ′ ∈ T(G, ν)}| · w(ν).
The internal weight w of ν′ is only changed whenever Prune′

Aut is directly applied on ν′.
This means that in the unpruned tree, ν′ represents w(ν′) many elements in T(G, µ). We
can conclude |[ν′]∼| = |{ν′′ ∈ [ν′]∼′ | ν′′ ∈ T(G, ν)}| · w(ν) = w(ν′) · |{µ′ ∈ [µ]∼ | µ′ ∈
T(G, ν)}| · w(ν) = w(ν′) · w(µ), which proves our claim. ◀

Since we weigh each equivalence class of nodes with its size in the pruned tree, it does not
matter up to ∼ whether we perform random walks on the pruned search tree or the unpruned
tree. The distributions of equivalence classes are indistinguishable. Let us now argue why this
suffices for the correctness of our algorithm. By looking carefully at the previous discussion,
we can observe that all elements of an equivalence class can be mapped to each other through
elements of ⟨S⟩. This implies that given a leaf ν, all elements represented by ν are generated
by S if and only if ν is generated by S. In terms of Lemma 4, the automorphism derived
from a leaf sampled uniformly at random from ν therefore has the same chance of sifting
through the structure as one of νφ. Therefore, by using a modified version of Lemma 4 as
the abort criterion, we can consider sampled weighted nodes of the pruned tree instead of
proper uniform random nodes of the unpruned tree:

▶ Lemma 10. Let G be a graph, B a base, S a set of permutations, T(G)′ the search
tree resulting from repeated application of Prune′

Aut with elements of S and τ ∈ T(G)′

the target leaf. Furthermore, let ν be a leaf drawn from T(G)′ with weight w(ν) where
ν−1 ·τ = φ ∈ Aut(G). If ⟨S⟩ ̸= Aut(G) holds, then the probability that φ does not sift through
the Schreier structure defined by B and S is at least 1

2 .

Proof. Since ν is an occurrence of the target leaf, we can require νφ = τ . From the previous
discussion, we know that external weights of remaining leaves determine the amount of
leaves in the unpruned tree represented by them (Lemma 9) and that no other remaining
leaves represent them. It therefore suffices to argue that the derivable automorphisms of
leaves of T(G) represented by ν all have the same chance of being generated by ⟨S⟩. Since
leaves are represented by ν if they were pruned using Prune′

Aut – which by assumption can
only use elements of S – all of them can be derived by applying some φ′ ∈ ⟨S⟩ to ν: hence,
φ ∈ ⟨S⟩ ⇐⇒ φ · φ′ ∈ ⟨S⟩. ◀

The actual solver will – in addition to finding a generating set in the first place – still need
to fill the Schreier structure sufficiently. This can however only require more elements and
thus increases the chance of elements not sifting successfully. Hence, it even decreases error
probabilities.
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d1 d2 d3 d1 d2 d1

Figure 1 Potential search tree traversed when using trace deviation sets. Orange indicates base
nodes and gray indicates pruned nodes. Children of pruned nodes are of course eventually pruned
as well.

4 Implementation and Heuristics

We use the tools of the previous section to construct the parallel graph automorphism solver
dejavu. We start by describing the high-level structure of dejavu. It consists of 4 modes of
operation, between which it continuously switches. The solver decides how to switch between
the modes using heuristics, which are based on a cost estimation.

The solver begins by trying to sample a good cell selector (in parallel). Then, base-aligned
automorphism search is performed (Section 4.2), followed by breadth-first search (Section 4.1),
followed by level automorphism search (see Section 4.2). At any point, depending on the
cost estimation, the solver can decide to go to a preceding mode again.
The tool is written in C++. Threads of the C++ standard library are used for parallelization.
It contains some modified code of the nauty / Traces distribution (available at [2]), namely
specialized versions of the Schreier-Sims implementation. The source code is available at [1].

The refinement of dejavu is a highly-engineered version of color refinement [17], following
the implementation of Traces closely. We also exploit the blueprint technique as described
in [3], extending the technique to also cache cell selector choices for subsequent branches.

Next, we provide further details on practical and conceptual aspects of the solver.

4.1 Breadth-first Traversal and Trace Deviation Sets
The work of the breadth-first traversal is shared between threads through lock-free queues. A
master thread adds all of the elements which have to be computed to a queue. Threads then
dequeue a chunk of work, compute the elements, and report their results back to the master
thread through another queue. In order to minimize overhead, large chunks of work are
enqueued and dequeued from the queue rather than single elements. Furthermore, dejavu
uses automorphism pruning when performing breadth-first search as described in Section 3.3
while filling up the queue (not enqueuing multiple elements known to be isomorphic).

During breadth-first traversal, we make use of a trace invariant, as introduced by Traces
and described in [17]. Furthermore, we introduce the trace deviation set technique. The
approach is related to the special automorphism algorithm of Traces [17] as well as the
trace deviation trees used in [3].

During breadth-first traversal, we also keep a trace deviation set. The idea of this pruning
technique is related to the special automorphism algorithm of Traces (see [17]) and the
trace deviation tree technique of [3]. We present the idea in the following.

To describe the technique, we first define a new node invariant, which we call the deviation
value DevInv : V ∗ → N2 ∪ {⊥}. Consider a fixed trace Inv(τ), which for our purposes will be
the trace invariant of the target leaf τ . The deviation value DevInv(ν) for a node ν is then
defined as a tuple of the first position and the corresponding value in the trace Inv(ν) that is
different from Inv(τ). If there are no differences, we set the deviation value to ⊥ denoting
“no deviation”. Since the deviation value is a function of the invariant computed up until an
isomorphism-invariant point, it is also naturally invariant under isomorphism.
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Consider a node µ in the search tree. The crucial observation is that in our algorithm,
we can also use the set of deviation values of its children as an invariant for µ itself. Assume
ν1, . . . , νk are children of µ and none of the subtrees rooted in the children has been pruned
through PruneInv. Then, D(µ) := {DevInv(ν1), . . . , DevInv(νk)}, the trace deviation set of µ,
can be used as an invariant for µ: we claim that for any other node µ′ with children ν′

1, . . . , ν′
k,

it must hold that D(µ) = {DevInv(ν1), . . . , DevInv(νk)} = {DevInv(ν′
1), . . . , DevInv(ν′

k)} =
D(µ′) whenever µ and µ′ are isomorphic. If no pruning has taken place, this is easy to
see since the branches are isomorphic by assumption, immediately implying that branches
must contain the same invariant values. But if Prune′

Aut is applied, no invariant values
can be removed either: since pruned nodes are isomorphic to remaining nodes, they, again
immediately by definition, must contain the same invariant values.

When advancing in a breadth-first manner, the aforementioned requirements are guar-
anteed to be satisfied: no PruneInv has taken place on the level that is currently being
pruned. Furthermore, while computing the level, the set of deviation values is automatically
calculated anyway: whenever we observe that a node ν below µ deviates from the desired
invariant Inv(ν) and should be pruned using PruneInv, we already have enough information
to derive DevInv(ν).

These observations are specifically exploited as follows: first, all children of the base node
τ ′ (which belongs to the path on the way to the target leaf τ) are computed. If nodes deviate
from the trace, their deviation values are recorded into a set, i.e., we calculate the trace
deviation set D(τ ′). The idea is that if a node is (supposedly) isomorphic to the base node
τ ′, then, for its (supposedly) isomorphic children, it must deviate from the trace in the same
manner at the same position. Hence, for all other parent nodes µ, we also keep track of D(µ)
when calculating their children. Whenever we discover a new element of D(µ), we check
whether the set equivalence D(τ ′) = D(µ) can still be satisfied. If not, µ can be pruned
immediately, without the necessity to calculate all its children.

For example, assume that we calculated deviation values {d1, d2} for the base node
(illustrated in Figure 1). From the previous discussion, it follows that we can immediately
prune all nodes that produce a value other than {d1, d2}. We can also prune nodes that do
not produce all of the deviation values. If for example a value d3 /∈ {d1, d2} is encountered,
the parent node can immediately be removed from the tree.

A crucial point is that pruning through trace deviation sets has negligible cost: children of
the base node always have to be computed, and the trace deviation does not necessitate more
calculation than is done for that particular node anyway. We are still able to fully use the
early-out capabilities of the trace invariant. In the parallel implementation, only the initial
recording of deviation values of base nodes has to be synchronized. In the implementation we
do however, depending on a heuristic, use a slight variation: to make deviation values more
distinct, it is sometimes beneficial to not use the early-out immediately. Instead, for a fixed
constant k, color refinement is continued past the deviation for k more cells, accumulating
more information for the deviation value. The trade-off is as follows: if k becomes larger, the
early-out in color refinement is taken later, but deviation values become more distinct. In
practice, this trades per-node cost for the number of nodes in the search tree. However, in
our experiments we observed that even for very small k (we use k = 5), node reduction can
be substantial – while not increasing per-node cost by a significant amount.

4.2 Automorphism Sampling
A central aspect when sampling automorphisms is whether we can guarantee that the
resulting automorphisms are distributed uniformly in the group or not. If the distribution
is uniform, they count towards the probabilistic abort criterion of the solver. The solver
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Figure 2 Level search (left) and base-aligned search (right). Squiggly lines indicate where random
walks originate, orange indicates base nodes and gray nodes are pruned by breadth-first traversal.

uses two approaches, namely base-aligned search (generally non-uniform) and level search
(uniform).

Level search is essentially sampling as described in Section 3 (see Figure 2, left). Walks
are initiated from the remaining nodes of the search tree at the current breadth-first level, and
when drawing the initial node, weights are accounted for to make the resulting distribution
of automorphisms uniform. Crucially, in this mode, dejavu usually stores additional target
leaves, which is proven to result in an exponential speedup in the worst-case [3].

Base-aligned search is designed to find as many automorphisms as possible with minimal
effort. This typically entails giving up on uniformity. Base-aligned search initiates random
walks from a base point of a given strategy (see Figure 2, right). Whenever finding automor-
phisms from a certain base point is deemed hard, search is advanced to the next base point.
As a side effect, this handles inherently easy graphs efficiently: whenever color refinement
already determines the orbit partition, base-aligned search finds all automorphisms and is
even able to terminate search deterministically.

5 Practical Performance

We provide benchmark results corroborating that dejavu performs competitively on a large
variety of graphs while scaling with the use of more threads.

5.1 Benchmarks
All benchmarks were run on an Intel Core i7 9700K (8 cores) processor with 16GB of RAM
and Ubuntu 19.04. All graphs were randomly permuted, but every solver was given the same
permuted version of a graph. All runtimes are measured without parsing the input.

The benchmarks include most sets from [2], which is the de facto standard when it
comes to symmetry computation. We extended two of the sets to larger instance sizes. The
respective graphs can be found in [1]. We should point out that for random trees and pipe
graphs Traces benefits from specialized code that is not implemented in dejavu.

The (user-definable) error bound for dejavu was set to 1%. A 1% error bound means
that with at most that probability at least 1 generator of the generating set is missing. It
can be proven however that the probability of missing at least 2 generators then only has a
probability of at most 1

2 %, missing at least 3 only at most 1
22 % and so forth (the argument

for this is similar to the proof of Lemma 8 involving the index of the subgroup found). Hence,
even if errors occur, it is highly likely only a small part of the generating set is missing.

Actual error probabilities are even lower. Due to the one-sided nature of the error, on
asymmetric graphs dejavu can not err (e.g. most random regular graphs, random graphs,
multipedes, latin-sw). Secondly, on many graph families dejavu can invoke a deterministic
criterion for termination (e.g. for most of rantree, hypercubes, dac, lattice, complete
graphs, tran). This means for the majority of the benchmarks errors can not be observed.
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Figure 3 Relative runtimes of benchmark sets for Traces and dejavu (using the respective
number of threads). For sets marked with *, we capped the runtime of Traces at 2.

The benchmarks corroborate that through the use of parallelism, we are able to achieve
significant speedup over state-of-the-art tools in a domain that so far has been exclusively
dominated by sequential solvers (see Figure 3). Specifically, we do so on the particular,
representative benchmark suite state-of-the-art solvers are tuned to solve.

Overall benchmarks show that dejavu with a single thread performs competitively with
Traces (on 12 benchmark sets dejavu is faster, while Traces is faster on the other 10
sets). Using 8 threads, dejavu outperforms Traces on most sets (on 17 out of 22 sets).
Additionally, on lattice, dejavu performs better than Traces for larger instances.

5.2 Scaling
We want to discuss in detail how dejavu scales with the use of more threads. In Figure 3,
scaling is illustrated. To lessen the bonus of sampling cell selectors (see Section 4) gained
when adding threads, we provide the 1 and 2 thread variants with the best cell selector for
each set. (Otherwise, scaling would be even better, but the comparison would not be fair.)
The diagram shows the summed up runtimes for a graph class relative to the runtime of a
single thread, i.e., the single thread variant has a runtime of 1. This might overrepresent
larger instances in the data, but of course larger instances are exactly those of biggest interest.

The diagram shows that for most sets of the benchmark suite, on our hardware, dejavu
scales remarkably with the use of more threads. Overall we achieved our goal of designing
a competitive tool that on most graph classes can efficiently exploit parallelism, in our
experiments sometimes even approaching what is theoretically possible on 8 cores.

6 Conclusion and Future Work

We presented the new randomized, parallel algorithm dejavu that computes automorphism
groups and can be used to compute symmetries of combinatorial objects. Benchmarks
show that dejavu is competitive with state-of-the-art solvers, and parallelizes to 8 cores
remarkably well on a wide variety of instances. In order to show further scaling in the
same generic manner, we believe developing more large-scale, meaningful benchmark sets
is required. For harder instances, preliminary testing shows that the use of more cores
significantly improves the runtimes even further.
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In future work, we intend to improve dejavu by adding dedicated subroutines to handle
low degree vertices and gadget graph constructions. On very simple graphs, color refinement
is the bottleneck which seems to necessitate an efficient parallel implementation for color
refinement.
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Abstract
We study the problem of finding a spanning forest in an undirected, n-vertex multi-graph under two
basic query models. One are Linear queries which are linear measurements on the incidence vector
induced by the edges; the other are the weaker OR queries which only reveal whether a given subset
of plausible edges is empty or not. At the heart of our study lies a fundamental problem which we
call the single element recovery problem: given a non-negative vector x ∈ RN

≥0, the objective is to
return a single element xj > 0 from the support. Queries can be made in rounds, and our goals is
to understand the trade-offs between the query complexity and the rounds of adaptivity needed
to solve these problems, for both deterministic and randomized algorithms. These questions have
connections and ramifications to multiple areas such as sketching, streaming, graph reconstruction,
and compressed sensing. Our main results are as follows:

For the single element recovery problem, it is easy to obtain a deterministic, r-round algorithm
which makes (N1/r −1)-queries per-round. We prove that this is tight: any r-round deterministic
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We complement this with an Ω̃(n1+1/r)-lower bound for any r-round deterministic algorithm in
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Õ(n)-OR queries. In contrast, we prove that any 1-round algorithm (possibly randomized)
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7:2 Graph Connectivity and Single Element Recovery via Linear and OR Queries

1 Introduction

Many modern applications compel algorithm designers to rethink random access to input
data, and revisit basic questions in a query access model where the input is accessed only
via answers to certain kinds of queries. There are many reasons for this ranging from data
volume (only snapshots of the data can be accessed) to data ownership (access is restricted
via certain APIs).

In this paper, we study algorithms accessing an unknown, undirected multi-graph G

on n vertices in the following two basic query models. Think of the graph as an unknown
non-negative

(
n
2
)

dimension vector xG with supp(xG) denoting the positive coordinates. With
this view, answers to these queries below can be interpreted as measurements on this vector.

Linear Queries (Linear): Given any non-negative1 (n
2
)

dimension vector aG, what is
aG · xG?
OR Queries (OR): Given any subset S of the

(
n
2
)

dimensions, is supp(xG) ∩ S empty?
Reverting back to the combinatorial nature of graphs, it is perhaps more natural to think of
different kinds of queries, and indeed the following two have been extensively studied. These
are however special2 cases, respectively, of the queries above.

Cross-additive Queries (Cross): Given two disjoint subsets A, B of V , Cross(A, B)
returns the number of edges, including multiplicity, that have one endpoint in A and the
other in B.
Bipartite Independent Set Queries (BIS): Given two disjoint subsets A, B of V ,
BIS(A, B) returns whether or not there is an edge that has one endpoint in A and the
other in B.

The above query models (and similar variants such as additive queries [30], cut-queries [49],
edge-detection queries [6, 9]) have a rich literature [1, 4, 9, 16, 17, 30, 41, 44, 49]. Most previous
works, however, have focused on either graph reconstruction [15–17, 41], or on parameter
estimation (e.g., estimating the number of edges [9] or triangles [11]). In this work, however,
our goal is to understand the power and limitations of these queries to reveal structural
properties of the underlying graph. In particular, we study the following basic property.

▶ Problem 1 (Graph connectivity). Given query access to an undirected multigraph on the
vertex set V = {1, . . . , n}, return a spanning forest.

It is not too hard to implement the classic BFS or DFS traversals to obtain an Õ(n)-
query deterministic algorithm for the above problem in either query model. However, such
algorithms are adaptive, that is, the queries depend on the answers obtained so far. A
much more modern algorithm of Ahn, Guha, and McGregor [2] gives3 an Õ(n)-Linear query
non-adaptive but randomized algorithm for the problem. This raises the following questions
that motivate us

What is the rounds-of-adaptivity versus query-complexity trade-off for deterministic
algorithms for Problem 1? Can randomization also help in the OR and BIS models?

It turns out that understanding the complexity of Problem 1 is closely related to understanding
an even more basic problem which we discuss below.

1 Non-negativity is for convenience. A general linear query can be broken into two non-negative queries.
2 The Cross (and BIS queries) correspond to {0, 1} vectors aG (and subsets) corresponding to cuts. Indeed,

our algorithms work with the weaker queries while our lower bounds will be for the stronger queries. It
should also be clear that the Linear (and respectively Cross) queries are at least as strong as OR (resp,
BIS) queries.

3 Using results in [51], one can also obtain a Õ(n)-query deterministic algorithm in the Cross-query model.
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Single Element Recovery
Consider a non-negative real-valued vector x ∈ RN

≥0 and suppose we have access to x only
via Linear or OR queries where the dimension is now N . We define the following problem
which we call the single-element recovery problem (following the standard “support-recovery”
problem in compressed sensing).

▶ Problem 2 (Single-element recovery). Given a non-negative real-valued vector x ∈ RN
≥0,

accessed via either Linear-queries or OR-queries, output any arbitrary element4 from the
support supp(x).

To see how the above problem relates to Problem 1, consider the vector of possible edges
incident to a single vertex. A spanning forest must find an edge incident to this vertex.
This corresponds to solving Problem 2 on this vector. The problem is also interesting
in its own right, with connections to combinatorial group testing [23, 24, 43], compressed
sensing [19,22,33], and coin-weighing problems. [12,30,40,50]. While most of these works
have focused on recovering the full support, we ask the simpler question of just recovering a
single element.

If one allows randomization, then one can use ℓ0-samplers [34] to solve the above problem
using O(log2 N log( 1

δ )) Linear queries5, non-adaptively. In fact, ℓ0-samplers return a random
element in supp(x). The parameter δ is the error probability. There have been numerous
applications of these (see the table in Figure 1 of [37], for instance), and indeed many
applications (including the AGM [2] algorithm alluded to above) need only an arbitrary
element in the support. This is precisely what is asked in Problem 2. Furthermore, the
upper bound for randomized algorithms is nearly tight [34,37], and therefore, for randomized
algorithms, our understanding is pretty much complete. But what can be said about
deterministically finding a single support element6? This is an important question for it
relates to deterministic analogs to the various applications stated above.

It is not too hard to make a couple of observations. One, any non-adaptive deterministic
algorithm for Problem 2 using Linear-queries can in fact be recursively used to completely
recover the whole vector. This implies an Ω̃(N) information theoretic lower bound. Two,
if one allows more rounds, then one can indeed do better using a binary-search style idea.
More precisely, in each round the algorithm partitions the search space into N1/r parts and
using N1/r queries finds a non-zero part. In this way in r rounds, one can gets algorithm
making N1/r-queries per round. This leads to the following fundamental question which we
answer in our paper.

What is the rounds-of-adaptivity versus query-complexity trade-off for deterministic
algorithms for Problem 2?

1.1 Motivation and Perspective
Why should we care about the questions above?

We think that algorithmic question of computation on graphs via queries is as natural
and important as the reconstruction question. Indeed, our study was inspired by trying to
understand the power of cut-queries to check whether a graph was connected or not; this

4 In the case of OR-queries, we can only return the j with xj > 0
5 A similar result holds with OR queries as well. See Section 3
6 A “deterministic ℓ0 sampler”, if you allow us the abuse of notation.
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7:4 Graph Connectivity and Single Element Recovery via Linear and OR Queries

is an (extremely) special case of submodular function minimization. More recently, this
type of “property-testing via queries” question on graphs has been asked for matchings
by Nisan [44], and more generally for matrix properties by [51] and [46]. Single element
recovery is also as natural as whole-vector recovery. Indeed, one can imagine a scenario
where recovering a big7 subset of the support (diseased blood samples, say) faster and
with fewer queries may be more beneficial than reconstructing the whole vector.
The Linear query model is closely connected to linear sketches that have found plenty
of applications in dynamic streaming; see, e.g. [29,35,39]. The single element recovery
problem also has connections to the universal relation UR⊂ problem in communication
complexity, which was studied in [37, 42]. Understanding these questions, therefore, have
ramifications to other areas. As a concrete example, one consequence of our results is a
deterministic, O(r)-pass dynamic streaming algorithm for graph connectivity in Õ(n1+1/r)
space. This was not known before.
We believe the question of the trade-off between rounds versus query complexity is
natural and important, especially in today’s world of massively parallel computing. Such
trade-offs are closely related to similar questions in communication complexity, number
of passes in streaming algorithms, etc. It is worthwhile building up an arsenal of tools
to attack such questions. Indeed, one main contribution of this paper is to show how
LP-duality can be used as one such tool.
Why do we focus on deterministic algorithms? Mainly because, as mentioned above, our
understanding of the complexity of randomized algorithms for the problems above is near
complete. However, in some applications one may require exponentially low error, or
has to deal with an “adversary” (say, the one giving updates to a streaming algorithm)
that is not oblivious to the algorithm’s randomness; see, e.g. [10]. This further motivates
the study of deterministic algorithms in this context. Furthermore, we need to design
lower-bounding techniques which only work against deterministic algorithms, and this is
of technical interest.

1.2 Our Results
Our first result is a tight lower bound for the question on single element recovery. The
binary-search style algorithm mentioned above is the best one can do.

▶ Result 1. For the single element recovery with Linear-query access, any r-round,
deterministic algorithm must make ≥ N1/r − 1 queries in some round.

We should remind the reader that the above lower bound is for vectors whose domain is
non-negative rationals. In particular, it does not hold for Boolean vectors8. Moving to the
continuous domain allows one to use tools from geometry, in particular duality theory and
Caratheodory’s theorem, to prove the tight lower bound.

As mentioned above, Linear queries are stronger than OR queries, and thus the above
lower bound holds for OR queries as well. The proof for OR queries, however, is combinatorial,
arguably simpler, and more importantly can be generalized to prove the following lower
bound for Problem 1 as well.

7 As we show later in Lemma 16, algorithmically we can get results when the “single” in single element
recovery can be larger.

8 Indeed, for Boolean vector with Linear queries one can recover the whole vector if the query vector has
exponentially large coefficients. Even when the coefficients are small ({0, 1} even), the vector can be
recovered with O(n/ log n)-queries which is information theoretically optimal.
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▶ Result 2. Any r-round deterministic algorithm for finding a spanning forest, must
make Ω̃(n1+ 1

r )-OR queries.

As we explain below, the above smooth trade-off between rounds and query complexity is
optimal, even when we allow the weaker BIS-queries. Algorithmically, we have the following
result. We mention that such a result was not known even using Linear or Cross queries. A
similar lower bound as in Result 2 with Cross-queries is left open.

▶ Result 3. For any positive integer r, there exists an O(r)-round deterministic algorithm
which makes Õ

(
n1+ 1

r

)
-BIS queries per round, and returns a spanning forest of the graph.

It is worth remarking that our algorithm with Linear queries (which is implied by the weaker
BIS queries) above also implies an O(r)-pass Õ(n1+1/r)-space deterministic algorithm for
maintaining a spanning forest in dynamic graph streams. As the edge updates arise, one
simply updates the answers to the various queries made in each round. This result was not
known before.

Finally, we show that for Problem 1, randomization is helpful in decreasing the number
of rounds. More precisely, we consider Monte-Carlo algorithms.

▶ Result 4. There exists a 2-round randomized algorithm for graph connectivity which
makes Õ(n)-OR queries per round. There exists a 4-round randomized algorithm for graph
connectivity which makes Õ(n)-BIS queries per round. Any non-adaptive, randomized
algorithm for graph connectivity must make Ω̃(n2)-OR queries.

Table 1 summarizes our contributions.

Table 1 Summary of the state-of-the-art and our results for graph connectivity and single-element
recovery problems. In each cell, we write the number of rounds followed by the query complexity
per round. All lower bounds are with respect to the stronger model (Linear and OR). For upper
bounds, if there is a discrepancy between the stronger and weaker models, we show this using a | as
partition. Bold results are ours. The remaining results are folklore unless a reference is explicitly
cited. The ? indicates the main open question of our paper.

Linear | Cross OR | BIS

Upper Bound Lower Bound Upper Bound Lower Bound

Single
Element
Recovery

Det r , N1/r − 1 r , N1/r − 1 r , N1/r − 1 r , N1/r − 1

Rand r = 1 , O(log2 N) r = 1, Ω(log2 N) [34] r = 1, O(log2 N) r = 1, Ω(log2 N)

Graph
Connectivity

Det O(r) , n1+1/r ? O(r) , n1+1/r r , Ω̃(n1+1/r)

Rand r = 1 , Õ(n) [2] | Õ(n) [2, 51] r, Ω(n/ log n) r = 2|4 , Õ(n) r = 1, Ω̃(n2)

1.3 Technical Overview

In this section we give a technical overview of our results. These highlight the main underlying
ideas and will assist in reading the detailed proofs which appear in the subsequent sections.
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7:6 Graph Connectivity and Single Element Recovery via Linear and OR Queries

Overview of Result 1. It is relatively easy to prove an r-round lower bound for single
element recovery in the OR-query model via an adversary argument (see [7]). At a high
level, OR-queries only mildly interact with each other and can be easily fooled. Linear
queries, on the other hand, strongly interact with each other. To illustrate: if we know x(A)
and x(B) for B ⊆ A, then we immediately know x(A \ B). This is untrue for OR-queries
– if x has a non-zero entry in both A and B, nothing can be inferred about its entries in
A \ B. Indeed, this power manifests itself in the non-adaptive, randomized algorithm using
Cross-queries; it is important that we can use subtraction. This makes proving lower bounds
against Linear-queries distinctly harder.

In our proof of Result 1, we use duality theory. To highlight our idea, for simplicity,
let’s consider a warmup non-adaptive problem. The algorithm has to ask ≪

√
N queries,

and on obtaining the response, needs to return a subset S ⊆ [N ] of size ≪
√

N with the
guarantee that supp(x) ∩ S is not empty. Note that if this were possible, then there would
be a simple 2-round o(

√
N)-algorithm – simply query the individual coordinates of S in the

second round. This is what we want to disprove. Therefore, given the first round’s ≪
√

N

queries, we need to show there exists responses such that no matter which set S of ≪
√

N

size is picked, there exists a feasible x ∈ RN
≥0 which sets all entries in S to 0. Note this is a

∃∀∃-statement. How does one go ahead establishing this?
We first observe that for a fixed response a and a fixed set S, whether or not a feasible

x ∈ RN
≥0 exists is asking whether a system of linear inequalities has a feasible solution. Farkas

Lemma, or taking the dual, tells us exactly when this is the case. The nice thing about the
dual formulation is that the “response” a becomes a “variable” in the dual program, as it
should be since we are trying to find it. To say it another way, taking the dual allows us to
assert conditions that the response vector a must satisfy, and the goal becomes to hunt for
such a vector. How does one do that? Well, the conditions are once again linear inequalities,
and we again use duality. In particular, we use Farkas Lemma again to obtain conditions
certifying the non-existence of such an a. The final step is showing that the existence of
this certificate is impossible. This step uses another tool from geometry – Carathedeory’s
theorem. Basically, it shows that if a certificate exists, then a sparse certificate must exist.
And then a simple counting argument shows the impossibility of sparse certificates. This,
of course, is an extremely high-level view and for just the warmup problem. In Section 2
we give details of this warmup, an also details of how one proves the general r-round lower
bound building on it.

The interested reader may be wondering about the two instantiations of duality (isn’t the
dual of the dual the primal?). We point out that duality can be thought of as transforming
a ∃ statement into a ∀ statement: feasibility is a ∃ statement, Farkas implies infeasibility
is a different ∃ statement, and negating we get the original feasibility as a ∀ statement.
Since we were trying to assert a ∃∀∃-statement, the two instantiations of duality hit the two
different ∃.

Overview of Result 2. At a high level, the lower bound for Problem 1, the spanning forest
problem, boils down to a “direct sum” version of Problem 2, the single element recovery
problem. Imagine the graph is an n × n bipartite graph. Therefore, finding a spanning forest
requires us finding an edge incident to each of the n vertices on one side. This is precisely
solving n-independent versions of Problem 2 in parallel. However, note that a single query
can “hit” different instances at once. The question is, as all direct-sum questions are, does
this make the problem n-times harder? We do not know the answer for Linear queries and
leave this as the main open question of our work. However, we can show that the simpler,
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combinatorial proof of Result 1 against OR-queries does have a direct-sum version, and
gives an almost tight lower bound for Problem 1. This is possible because OR-queries, as
mentioned in the previous paragraph, have only mild interaction between them. We show
that this interaction cannot help by more than a poly(r)-factor. Our proof is an adversary
argument, and a similar argument was used recently by Nisan [44] to show that matchings
cannot be approximated well by deterministic algorithms with OR-queries. Details of this
are given in [7].

Overview of Result 3. In Section 3, we show some simple, folklore, and known results for
single element recovery. We build on these algorithms to obtain our algorithms for Problem 1.
With every vertex one associates an unknown vector which is an indicator of its neighborhood.
If one applies the r-round binary-search algorithm for the single element recovery problem
on each such vector, then in r-rounds with O(n1+1/r)-BIS queries, for every vertex one can
obtain a single edge incident on it. This alone however doesn’t immediately help: perhaps,
we only detect n/2 edges and get n/2 disconnected clusters. Recursively proceeding only
gives an O(r log n)-round algorithm. And we would like no dependence on n.

To make progress, we actually give a more sophisticated algorithm for single element
recovery than binary search, which gives more and may be of independent interest. In
particular, we describe an algorithm (Lemma 16) for single element recovery which in O(r)
rounds, and making N1/r-queries per round, can in fact return as many as N1/4r elements in
the support. Once we have this, then for graph connectivity we observe that in O(r) rounds,
we get polynomially many edges incident on each vertex. Thus as rounds go on, the number
of effective vertices decreases, which allows us to query more aggressively. Altogether, we
get an O(r)-round algorithm making only Õ(n1+1/r)-BIS queries. The details of this are
described in Section 4.

Overview of Result 4. In the overview of the deterministic algorithm, we had to be a bit
conservative in that even after every vertex found k edges (k being 1 or nO(1/r)) incident
on it, we pessimistically assumed that after this step the resulting graph still has Θ(n/k)
disconnected clusters, and we haven’t learned anything about the edges across these clusters.
In particular, we allow for the situation that the cross-cluster edges can be dense. With
randomization, however, we get to sample k random edges incident on a vertex. This is
where we use the recent result of Holm et al. [31] which shows that if the k incident edges
are random, then, as long as k = Ω(log n), the number of inter-component edges between the
connected components induced by the sampled edges, is O(n/k). That is the cross-cluster
edges are sparse. Therefore, in a single round with Õ(n)-randomized BIS queries, we can
obtain a disconnected random subgraph, but one such that, whp, there exist at most Õ(n)
edges across the disconnected components.

Given the above fact, the algorithm is almost immediate. After round 1, we are in a
sparse graph (where nodes now correspond to subsets of already connected vertices). If
we were allowed general OR-queries, then a single round with Õ(n)-OR queries suffices to
learn this sparse graph, which in turn, gives us a spanning forest in the original graph. This
follows from algorithms for single element recovery when the vector is promised to be sparse
(discussed in Section 3). Unfortunately, these queries may not be BIS-queries; recall that
BIS-queries are restricted to ask about edges across two subsets. Nevertheless, we can show
how to implement the above idea using 2-extra rounds with only BIS-queries, giving a 4-round
algorithm. Details can be found in [7].
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7:8 Graph Connectivity and Single Element Recovery via Linear and OR Queries

To complement the above, we also prove that even with randomization, one cannot get
non-adaptive (1-round) o(n2/ log2 n)-query algorithms with OR-queries . Indeed, the family
of examples is formed by two cliques (dense graphs) which could have a single edge, or
not, that connects them. A single collection of o(n2/ log2 n)-OR queries cannot distinguish
between these two families. Details can be found in [7].

1.4 Related Works
Our work falls in the broad class of algorithm design in the query access model, where one has
limited access to the input. Over the years there has been a significant amount of work relevant
to this paper including in graph reconstruction [1,3, 4, 6, 12,14,15,17,30,41,47], parameter
estimation [9,11,21,48], minimum cuts [8,49] sketching and streaming [2,5,8,27,28,34,36,37,
42, 51], combinatorial group testing, compressed sensing, and coin weighing [12,19, 22–25,50].
It is impossible to do complete justice, but in the full version [7] we give a more detailed
discussion of some of these works and how they fit in with our paper.

2 Lower Bound for Single Element Recovery

The following is the formal statement of the r-round lower bound for single element recovery.

▶ Theorem 1. Any r-round deterministic algorithm for Single Element Recovery must make
≥ (N1/r − 1)-Linear queries in some round.

In fact, we prove (see Corollary 9) that if k1, . . . , kr are r positive integers such that∏r
i=1(ki + 1) < N , then no r-round algorithm making ≤ ki queries in round i can be

successful for the Single Element Recovery problem. This implies Theorem 1. To begin with,
we give a proof for essentially the r = 2 case, which was the warm-up question we discussed
in Section 1.3. More precisely, we prove that if (k + 1)s < N then no one-round algorithm
making ≤ k queries can return a subset S of size ≤ s with xj > 0 for some j ∈ S. That is, a
subset which traps an element in supp(x). This essentially implies the r = 2 case with k1 = k

and k2 = s − 1. This proof contains the core ideas behind the more general statement, which
follows via an inductive application of the same idea. The complete proof of Theorem 1 can
be found in Section 2.1. For now, we focus on proving the following statement.

▶ Theorem 2. If (k + 1)s < N , then there cannot exist a 1-round deterministic algorithm
making k-Linear queries for the trapping problem with parameter s.

Note that if s divides N , then k = N
s − 1 queries suffice and so the above theorem is tight.

Proof. Since x is a non-zero, non-negative vector, by scaling, we assume that x([N ]) = 1.
We let A denote the k × N matrix corresponding to the k queries arranged as row vectors.
We use a ∈ Rk

≥0 to denote the answers we will give to fool any algorithm. To find this, fix
any subset S with |S| ≤ s, and consider the following system of inequalities parametrized by
the answer vector a. The only inequalities are the non-negativity constraints. Below, and
throughout, [N ] := {1, 2, . . . , N}.

P(a; S) = {x ∈ RN
≥0 : x([N ]) = 1 A · x = a x(S) = 0} (P)

Note that if P(a; S) has a feasible solution, then given the answers a to its queries, the
algorithms cannot return the subset S. This is because there is a non-negative x consistent
with these answers with S disjoint from its support. In other words, S is safe for the lower



S. Assadi, D. Chakrabarty, and S. Khanna 7:9

bound w.r.t. a. Therefore, if there exists an answer vector a such that every subset S ⊆ [N ]
with |S| ≤ s is safe with respect to a, that is P(a; S) is feasible, then we would have proved
our lower bound. We use use duality and geometry to prove the existence of this vector (if
(k + 1)s < N).

The first step is to understand when for a fixed set S, the system P(a; S) is infeasible. This
is answered by Farkas Lemma. In particular, consider the following system9 of inequalities
where the variables are the Lagrange multipliers corresponding to the equalities in (P). We
note that the variables are free, since P(a; S) has only equalities in the constraints. For
convenience, we have eliminated the variable corresponding to the subset S and have moved
it to the right hand side. Below, and throughout, for any subset S ⊆ [N ], we use 1S to
denote the N -dimensional 0, 1-vector which has 1 in the coordinates i ∈ S.

CS :=
{

(y(0), y) ∈ R × Rk : y(0) · 1[N ] + y · A ≤ 1S

}
Farkas Lemma asserts that P(a; S) is infeasible if and only if there exists (y(0), y) ∈ CS such
that y(0) · 1 + y · a > 0. Contrapositively, we get that P(a; S) is feasible, that is S is safe
with respect to a, iff y(0) + y · a ≤ 0 for all y ∈ CS . Since we want an answer a such that all
subsets S with |S| ≤ s are safe, we conclude that such an answer exists if and only if the
following system of linear inequalities has a feasible solution.

Q :=
{

a ∈ Rk
≥0 : y · a ≤ −y(0), ∀S ⊆ [N ], |S| ≤ s, ∀(y(0), y) ∈ CS

}
(D)

In summary, to prove the lower bound, it suffices to show that Q has a feasible solu-
tion, and this solution will correspond to the answers to the queries. Suppose, for the
sake of contradiction, Q is infeasible. Then, again by Farkas Lemma (but on a differ-
ent system of inequalities), there exists multipliers λt > 0 corresponding to constraints(

St s.t. |St| ≤ s, (y(0)
t , yt) ∈ CSt

)
for some t = 1 . . . T such that (P1)

∑T
t=1 λtyt ≥ 0k

where 0k is the k-dimensional all zero (row) vector, and (P2)
∑T

t=1 λty
(0)
t > 0. Note that

this time λt’s are non-negative since Q has inequalities in the constraints.
We can focus on the λt’s which are positive and discard the rest. The next key observation

is to upper bound the size T of the support. Note that the conditions (P1) and (P2) can be
equivalently stated as asserting that the (k + 1)-dimensional cone spanned by the vectors
(y(0)

t , yt) contains a non-negative point with first coordinate positive. Caratheodory’s theorem
(for cones) asserts that any such point can be expressed as a conic combination of at most
(k + 1) vectors. Therefore, we can assume that T ≤ k + 1.

Now we are almost done. Since (y(0)
t , yt) ∈ CSt , we have y

(0)
t · 1[N ] + yt · A ≤ 1St . Taking

λt combinations and adding, we get (since all λt > 0) that(
T∑

t=1
λty

(0)
t

)
· 1[N ] +

(
T∑

t=1
λtyt

)
· A ≤

T∑
t=1

λt1St

Since every |St| ≤ s, the support of the right hand side vector is ≤ sT ≤ s(k + 1). The
support of the left hand side vector is = N . This is because the second summation is a
non-negative vector by (P1), and the first has full support. This contradicts (k + 1)s < N .
Hence, Q has a feasible solution, which in turn means there exists answers a which foils A.
This proves Theorem 2. ◀

9 Here y and 1S are row vectors. In the general proof, there will be multiple y’s indexed with super-scripts.
All of them are row-vectors.
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2.1 The General r-round Lower Bound
We begin by formally defining what an r-round deterministic algorithm is, and what it means
for such an algorithm to successfully solve Single Element Recovery.

▶ Definition 3 (r-round deterministic algorithm.). An r-round deterministic algorithm A

proceeds by making a collection of linear queries A(1) ∈ Rk1×N
≥0 and obtains the answer

a(1) = A(1) · x. This is the first round of the algorithm. For 1 < i ≤ r, in the ith round
the algorithm makes a collection of linear queries A(i) ∈ Rki×N

≥0 . This matrix depends on
the history (A(1), a(1)), . . . , (A(i−1), a(i−1)). Upon making this query it obtains the answer
a(i) = A(i) · x. We call Πr :=

(
(A(1), a(1)), . . . , (A(r), a(r))

)
the r-round transcript of the

algorithm. The output of the deterministic algorithm A only depends on Πr.
A vector y ∈ RN

≥0 is said to be consistent with respect to a transcript Πr if A(i) · y = a(i)

for all 1 ≤ i ≤ r. A transcript Πr =
(
(A(1), a(1)), . . . , (A(r), a(r))

)
is feasible for the

algorithm if there is some vector y consistent with respect to it, and if the algorithm indeed
queries A(i) given the (i − 1)-round transcript

(
(A(1), a(1)), . . . , (A(i−1), a(i−1))

)
▶ Definition 4. An r-round deterministic algorithm A is said to successfully solve Single
Element Recovery if for all non-zero x ∈ RN

≥0, upon completion of r-rounds the algorithm A

returns a coordinate j ∈ [N ] with xj > 0. In particular, if the algorithm returns a coordinate
j given a feasible transcript Πr, then every x that is consistent with Πr must have xj > 0.

For technical reasons, we add a 0th-round for any r-round algorithm. In this round, the
query “matrix” A(0) is the single N -dimensional row with all ones. That is, we ask for the
sum of xj for all j ∈ [N ]. We assume that the answer a(0) is the scalar 1 to capture the fact
that the vector x is non-zero.

Next we define the notion of safe subsets with respect to a transcript generated till round
i. A safe subset of coordinates are those for which there is a consistent vector x whose
support is disjoint from the subset, that is, xj = 0 for all j ∈ S, or equivalently x(S) = 0
since x ≥ 0.

▶ Definition 5. Given an i-round transcript Πi =
(
(A(0), a(0)), . . . , (A(i), a(i))

)
, a subset

S ⊆ [N ] is safe w.r.t. Πi if the following system of linear inequalities

P(a(≤i); S) :=
{

x ∈ RN :


A(j) · x = a(j) ∀0 ≤ j ≤ i

x(S) = 0
x ≥ 0

}
(Primal)

has a feasible solution.

▷ Claim 6. If Πr is a feasible r-round transcript of an algorithm A such that all singletons
are safe w.r.t Πr, then the algorithm A cannot be successful in solving Single Element
Recovery.

Proof. Given Πr, the algorithm A must return some coordinate j ∈ [N ]. However {j} is safe.
That is, there is a feasible solution x to P(a(≤r), {j}). Indeed, if x were the input vector,
the algorithm would return a coordinate not in the support. ◁

▶ Definition 7 (Transcript Creation Procedure). Given an r-round algorithm A, the transcript
creation procedure is the following iterative process. In round i, given the transcript
Πi−1 :=

(
(A(0), a(0)), . . . , (A(i−1), a(i−1))

)
upon which the algorithm A queries A(i), and the

transcript creation procedure produces an answer a(i) such that Πi = Πi−1 ◦ (A(i), a(i)) is
feasible.
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Our main theorem, which implies Theorem 1, is the following.

▶ Theorem 8 (Transcript Creation Theorem). Let k1, . . . , kr and s0, s1, . . . , sr be positive
integers such that s0 ≤ n − 1 and (ki + 1)si ≤ si−1 for all i ≥ 1. Then given any r-round
algorithm A making ≤ ki queries in round i, there is a transcript creation procedure to create
an r-round transcript such that for all 0 ≤ i ≤ r, any subset S ⊆ [N ] with |S| ≤ si is safe
with respect to Πi.

▶ Corollary 9. Let k1, . . . , kr be any r positive integers with
∏r

i=1(ki + 1) < n. No r-round
algorithm A which makes ≤ ki queries in round i can be successful for the Single Element
Recovery problem. In particular, this implies Theorem 1.

Proof. Set sr = 1, sr−1 = (kr + 1), and in general, si = (kr + 1)(kr−1 + 1) · · · (ki+1 + 1).
Note that the conditions of Theorem 8 are satisfied. Therefore given any algorithm A making
≤ ki queries in round i, we can create a r-round transcript such that all singleton sets are
safe with respect to Πr. Claim 6 implies A cannot be succesful. ◀

2.1.1 Proof of the Transcript Creation Theorem
We start with writing the dual representation of safe sets. Fix a subset S ⊆ [N ] and a
transcript Πi. By Farkas lemma we know that the system P(a(≤i); S) is infeasible only if
there exists a infeasibility certificate

(
y(0), y(1), . . . , y(i)

)
∈ R×Rk1 × · · ·Rki :

i∑
j=0

y(j) · A(j) ≤ 1S and
i∑

j=0
y(j) · a(j) > 0

Here 1S is the n-dimensional indicator vector of the subset S, that is, it has 1 in the
coordinates j ∈ S and 0 otherwise. Taking negations, we get that the system P(a(≤i); S) is
feasible, that is S ⊆ [N ] is safe w.r.t Πi−1, if and only if the following condition holds

S is safe w.r.t. Πi iff y(≤i) · a(≤i) :=
i∑

j=0
y(j) · a(j) ≤ 0 for all y(≤i) ∈ C(i)

S (Dual)

where,

C(i)
S :=

{
y(≤i) := (y(0), y(1), . . . , y(i)) ∈ R × Rk1 × · · · × Rki :

i∑
j=0

y(j) · A(j) ≤ 1S

}
We are now ready to prove Theorem 8 via induction on i. The above representation is the
dual definition of safe sets, and this definition is what is easy to induct with.
Base Case: i = 0. We need to show that any subset S ⊆ [N ] of size |S| ≤ s0 = N − 1 is

safe with respect to the transcript (A(0), a(0)). To remind the reader, A(0) is just the all
ones vector and a(0) is just the scalar 1. Using (Dual), we need to show for any subset
S ⊆ [N ] with |S| ≤ N − 1, we must have

y(0) · a(0) ≤ 0 for all y(0) ∈ R such that y(0) · A(0) ≤ 1S

However, y(0) · A(0) is the n-dimensional vector which is y(0) on all coordinates. Since
|S| ≤ n − 1, there is some coordinate j /∈ S such that 1S [j] = 0. Thus, y(0) ≤ 0 implying
y(0) · a(0) ≤ 0. The base case holds.
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Inductive Case: i ≥ 1. Assume the conclusion of the theorem holds for all 0 ≤ j ≤
i − 1. That is, there is a procedure which has created a transcript Πi−1 =(
(A(0), a(0)), · · · , (A(i−1), a(i−1))

)
such that every subset S ⊆ [N ] with |S| ≤ si−1 is

safe w.r.t Πi−1. Using (Dual), we can rewrite this as the following statement

∀S ⊆ [N ], |S| ≤ si−1, for all y(≤ i−1) ∈ C(i−1)
S we have y(≤ i−1) · a(≤ i−1) ≤ 0.

(IH)

Given Πi−1, the algorithm A now queries A(i) in round i. Our goal is to find answers
a(i) ∈ Rki

≥0 such that any subset S ⊆ [N ] with |S| ≤ si is safe w.r.t Πi = Πi−1 ◦ (A(i), a(i)).
Again referring to (Dual), we need to find a(i) ∈ Rki

≥0 satisfying the following system of linear
inequalities.

Q(i) :=
{

a(i) ∈ Rki
≥0 : y(i) ·a(i) ≤ −

(
y(≤ i−1) · a(≤ i−1)) , ∀S ⊆ [N ], |S| ≤ si, ∀y(≤i) ∈ C(i)

S

}
Although it may appear that the above system has infinitely many constraints, it suffices to

write the constraints for extreme points for the polyhedra C(i)
S ’s. To complete the proof, we

need to show that Q(i) is non-empty; if so, we can select any a(i) ∈ Q(i) for completing the tran-
script creation procedure, and proving the theorem by induction. The next lemma does pre-
cisely that; this completes the proof of the theorem. ◀ Theorem 8

▶ Lemma 10. The system of inequalities Q(i) has a feasible solution.

Proof. For the sake of contradiction, suppose not. Applying Farkas lemma (again), we get
the following certificate of infeasibility. There exists the tuples (λt > 0, St ⊆ [N ] with |St| ≤
si, y

(≤i)
t ∈ C(i)

St
) for 1 ≤ t ≤ ki + 1 such that

(P1):
∑ki+1

t=1 λty
(i)
t ≥ 0ki

, and
(P2):

∑ki+1
t=1 λt

(
y

(≤ i−1)
t · a(≤ i−1)

)
> 0.

Since y
(≤i)
t ∈ C(i)

St
, we get

∑i
j=0 y

(j)
t · A(j) ≤ 1St for all 1 ≤ t ≤ ki. Taking the positive

λt-combinations of these inequalities, we get
ki+1∑
t=1

λt ·

 i∑
j=0

y
(j)
t · A(j)

 ≤
ki+1∑
t=1

λt1St
(P3)

Now, define w(j) :=
∑ki+1

t=1 λty
(j)
t for 0 ≤ j ≤ i. (P1) above implies (Q1): w(i) ≥ 0ki

, and
(P2) implies (Q2): w(≤ i−1) · a(≤ i−1) > 0. And finally, (P3) translates to

i−1∑
j=0

w(j) · A(j)

︸ ︷︷ ︸
Call this u1

+ w(i) · A(i)︸ ︷︷ ︸
Call this u2

≤
ki+1∑
t=1

λt1St︸ ︷︷ ︸
Call this v

(Q3)

Now we are ready to see the contradiction. First observe that the vector v has at most
(ki + 1)si positive entries since it is the sum of ki + 1 vectors each of support ≤ si. Since w(i)

and A(i) are both non-negative, u2 is a non-negative vector. This implies that u1 must have
≤ (ki + 1)si positive entries. From the conditions of the theorem, we get (ki + 1)si ≤ si−1.
Thus, u1 has ≤ si−1 positive entries. This in turn implies there exists a scalar θ such that
θu1 ≤ 1S for some subset S ⊆ [N ] with |S| ≤ si−1. That is,

i−1∑
j=0

(θw(j)) · A(j) ≤ 1S ⇒ θw(≤ i−1) ∈ C(i−1)
S

The induction hypothesis (IH) implies θw(≤ i−1) · a(≤ i−1) ≤ 0. This contradicts (Q2). This
completes the proof of the lemma. ◀
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3 Algorithms Warmup: Algorithms for Single Element Recovery

In this section, we state some simple and/or well known algorithms for single element recovery
which we use these as subroutines for our algorithms for graph connectivity as well.

▶ Lemma 11. Let x ∈ RN
≥0 be a non-zero, non-negative vector, and let r be a positive integer.

There exists an r-round deterministic algorithm BinarySearchr(x) which makes (N1/r −1)-OR
queries per round, and returns a coordinate j with xj > 0. If Linear queries are allowed, then
one can recover xj as well.

Proof. (Sketch) Divide [N ] into N1/r blocks each of size N1−1/r, and run OR query on each
block but the last, taking N1/r − 1 queries in all. If one of them evaluates to 1, recurse on
that for the next r − 1 rounds. Otherwise, recurse on the last block. ◀

Next, we state a standard result from the combinatorial group testing and coin-weighing
literature [19, 25, 32, 38, 45] which says that if the support of x is known to be small, then
there exist efficient one-round deterministic algorithms to recover the complete vector.

▶ Lemma 12. [32,45] Let x ∈ RN
≥0 be a non-zero vector, and let d be any positive integer.

There exists a 1-round (non-adaptive) deterministic algorithm BndSuppRec(x, d) which makes
O(d2 log N)-OR queries and (a) either asserts supp(x) > d, or (b) recovers the full support
of x. With Linear queries, the number of queries reduces to O(d log N).

Proof. (Sketch) We give a very high level sketch only for the sake of completeness. For
the case of d = 1, take the O(⌈log N⌉ × N) matrix A where column i is the number i

represented in binary. Then Ax (the “OR product”) points to the unique element in the
support. To see the existence of a deterministic procedure for larger d, one can proceed by
the probabilistic method. If one samples each coordinate with probability 1/d, then with
constant probability the vector restricted to this sample has precisely support 1 for which
the above “d = 1” algorithm can be used to recover it. Repeating this O(d log N) times leads
to error probability which swamps the union bound over ≤ Nd possible sets, implying the
existence of a deterministic scheme. Finally, another O(d) arises since we need to recover
all the ≤ d coordinates. All this can be made explicit by using ideas from error correcting
codes; we point the interested reader to [32,45] for the details. ◀

Next we move to randomized algorithms. Here ideas from F0-estimation [5, 27] and ℓ0-
sampling [18,28,34] give the following algorithms.

▶ Lemma 13. Let x ∈ RN
≥0 be a non-zero vector. There exists a 1-round (non-adaptive)

randomized algorithm RandSuppSamp(x) which makes O(log2 N log
( 1

δ

)
)-OR queries and

returns a random j ∈ supp(x) with probability ≥ 1 − δ.

Proof. (Sketch) Suppose we knew the support supp(x) = d. Then, we sample each j ∈ [N ]
with probability 1/d to get a subset R ⊆ [N ]. With constant probability supp(x∩R) = 1 and,
conditioned on that, it contains a random j ∈ supp(x). Therefore, running the algorithm
BndSuppRec(x∩R, 1) asserted in Lemma 12, we can find a random j ∈ supp(x) with constant
probability. Repeating this O(log(1/δ)) times gives the desired error probability. Since we
don’t know supp(x), we run for various powers of 2 in 1 to N . ◀

▶ Lemma 14. (Theorem 7 in [13], also in [20, 26]) Let x ∈ RN
≥0 be a non-zero vec-

tor. There exists a 1-round (non-adaptive) randomized algorithm SuppEst(x) which makes
O (log N · log(1/δ))-OR-queries and returns an estimate s̃ of the support which satisfies
supp(x)

3 ≤ s̃ ≤ 3supp(x) with probability ≥ 1 − δ.

ESA 2021



7:14 Graph Connectivity and Single Element Recovery via Linear and OR Queries

4 Deterministic Algorithm for Graph Connectivity

In this section, we prove the following theorem which formalizes Result 3.

▶ Theorem 15. Let r be any fixed positive integer. There exists an 35r-round deterministic
algorithm DetGraphConn(G) which makes at most O(n1+ 1

r log n)-BIS-queries per round on
an undirected multigraph G, and returns a spanning forest of G.

We start by establishing some simple subroutines which we need. We will refer to some
algorithmic paradigms defined in Section 3.

4.1 Simple Subroutines
We begin by strengthening the simple algorithm BinarySearch asserted in Lemma 11. While in
r-rounds with O(N1/r)-OR queries BinarySearchr(x) recovers a single element in the support,
one can in fact get many more elements from the support. This result may be of independent
interest.

▶ Lemma 16. Let x ∈ RN
+ be a non-zero, non-negative vector, and let r be a positive integer,

and let c < r. There exists a ⌈2r/c⌉-round deterministic algorithm DetFindManyr,c(x)
which makes O(N c/r log N)-OR queries per round, and returns min(N c/4r, supp(x)) distinct
coordinates from supp(x).

Proof. In the first round, we partition the range [N ] into N c/2r blocks of size N1−c/2r each.
Let these blocks be B1, . . . , Bk with k = N c/2r. For each i ∈ [k], we run the algorithm
BndSuppRec(x ∩ Bi, N c/4r) asserted in Lemma 12. The total number of queries used here is
O(N c/2r ·

(
N c/4r

)2 log N) = O(N c/r log N).
At the end of this round, either we recover supp(x ∩ Bi) for each block, and thus recover

supp(x), and we are done. Or, there is at least one block of size N1−c/2r which is guaranteed
to contain ≥ N c/4r elements in its support. We call this the heavy block of round 1. Next,
we now proceed to recover N c/4r elements from this heavy block of round 1.

In the second round, we partition the indices of this heavy block again into N c/2r blocks
of size N1−2c/2r each, and run BndSuppRec again on this block with d = N c/4r. Once again,
either we recover the entire support of the heavy block (which is guaranteed to contain at
least N c/4r elements) and we are done. Or find a block of size N1−2c/2r that contains at
least N c/4r elements in its support– this is the heavy block of round 2 – and we now proceed
to recover N c/4r elements in the heavy block of round 2.

We continue in this manner, and after ⌈2r/c⌉ − 1 rounds, either we have already re-
covered at least N c/4r elements in the support of x, or have identified a heavy block of size
N1−(( 2r

c −1)· c
2r ) = N c/2r that contains at least N c/4r elements in the support of x. In the

final round, we can simply probe each entry completing the proof. ◀

▶ Remark 17. The trade-off between the number of queries and number of elements re-
covered is not tightly established for the purpose of what we need in the graph connectivity
algorithm. For instance, using the same idea as above, in 2 rounds one can actually recover
min(N1/4, supp(x)) coordinates making O(N3/4)-queries per round.
Next, we give an algorithm to find edges between two disjoint sets of vertices using BIS-queries.

▶ Lemma 18. Let A and B be two disjoint sets of vertices with at least one edge between
them. There exists a 2r-round deterministic algorithm DetFindEdger(A, B) which makes
O(|A|1/r + |B|1/r)-BIS queries per round, and returns an edge (a, b) with a ∈ A and b ∈ B.
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Proof. Consider the |B| dimensional vector x where xb indicates the number of edges from a
vertex b ∈ B to vertices in A. We can simulate an OR-query in this vector using a BIS-query in
the graph – for any subset S ⊆ B, OR(S) on x has the same answer as BIS(A, S). Therefore,
using Lemma 11, in r-rounds and |B|1/r-BIS-queries, we can find a coordinate b∗ ∈ B with
xb∗ > 0. That is, there is an edge between b∗ and some vertex in A.

We can find one such vertex a ∈ A to which b∗ has an edge, again as above. We define
the |A|-dimensional vector y where ya indicates the number of edges from b∗ to a. Once
again, the OR-query on y can be simulated using a BIS query on the graph – for any subset
S ⊆ A, OR(S) on y is the same as BIS(S, {b∗}). ◀

4.2 The Connectivity Algorithm
Now we give the O(r)-round deterministic algorithm to find a spanning forest. First, we
need the following simple claim.

▷ Claim 19. Let G(V, E) be an arbitrary connected multigraph graph on n vertices, and let
D be an arbitrary integer in {0, 1, . . . , (n − 1)}. Let VL denote all vertices in V which has at
most D neighbors in G, and let VH = V \ VL. Let E′ ⊆ E be an arbitrary set of edges that
satisfies the following property: for each vertex u ∈ VL, the set E′ contains all edges incident
on u, and for every each vertex v ∈ VH , the set E′ contains D arbitrary edges incident on v.
Then the graph G′ = (V, E′) contains at most ⌊n/D⌋ connected components.

Proof. Suppose G′ has K ≥ n
D connected components. Thus, there must exist some compon-

ent C with ≤ D vertices. Firstly, that C must have some vertex v ∈ VH . If not, then since
vertices in VL have all their edges in G also in G′, this component would be disconnected in
G which contradicts G’s connectedness. Secondly, observe that this leads to a contradiction:
v has at least D neighbors in G′, and since there are at most D − 1 other vertices in C, one
of v’s neighbor in G′ must lie outside C. This contradicts that C is a connected component.

◁

We are now ready to describe the algorithm DetGraphConn(G). For simplicity, assume G is
connected and our goal is to find a spanning tree. Subsequently, we explain how to modify
the algorithm to find a spanning forest of a general graph. The algorithm proceeds in
O(log r) phases starting with phase 0. The input to phase i is a partition Πi = (S1, . . . , Sp)
of the vertices. Each Sj in Πi is guaranteed to be a connected in the graph G. Π0 is the
trivial partition of n singletons. Given Πi, we define the graph Gi = (Πi, Ei) where Ei is the
collection of pseudo-edges between components: we have a pseudo-edge (Sa, Sb) ∈ Ei if and
only if there exists some edge in G between a vertex u ∈ Sa and a vertex v ∈ Sb. Thus, G0 is
indeed the original graph. Note that by our assumption that G is connected, all the Gi’s are
connected. We will be collecting pseudo-edges which will imply the connected components;
we initialize this set F to empty set. We will maintain the following invariant for a phase:
|Πi| ≤ n1− 4i−1

r ; this is certainly true for i = 0. Next, we describe a phase i.
1. For each S ∈ Πi, we construct a vector x indexed by all sets in Πi \ S where xT indicates

whether there is a pseudo-edge (S, T ) in Gi. Next, we run the algorithm DetFindManyr,c(x)
asserted in Lemma 16 to either find all pseudo-edges incident on S, or at least n4i/4r of
them. To do so, we set c such that N c/4r = n4i/4r, where N is the dimension of x. That
is, N = |Πi| − 1.Indeed, we should set c = θ · 4i where Nθ = n. Note, θ ≥ 1. Also note
that the OR-queries on x can be simulated using BIS-queries on the original graph G.
This is because we are looking at edges between S and a union of a subset of parts in
Πi \ S.
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The number of rounds is
⌈ 2r

c

⌉
≤
⌈ 2r

4i

⌉
. The number of BIS-queries per round is

O(N c/r log N) = O(n4i/r log n) per subset S ∈ Πi. And thus, the total number of
queries made is N · O(n4i/r log n) ≤ |Πi| · O(n4i/r log n) ≤ n1− 4i−1

r · O(n4i/r log n) =
O(n1+1/r · log n).

2. Let E ′
i ⊆ Ei be the pseudo-edges obtained from the previous step. Let F ′

i be an arbitrary
spanning forest of E ′

i . We add all these edges to the collection F . Note, F ′
i is a collection

of ≤ |Πi| pseudo-edges.
3. Applying Claim 19 to the graph Gi, adding the pseudo edges in E ′

i reduces the number of
connected components to at most |Πi|/n

4i

4r . We now repeat the above two steps 11 more
times sequentially, and each time the number of connected components multiplicatively
drops by n

4i

4r . Thus, after the 12 sub-phases we end up with the partition Πi+1 of
connected components, with |Πi+1| ≤ |Πi|/n

12·4i

4r ≤ n1− 4i−1
r · n− 12·4i

4r = n1− 4i+1−1
r , as

desired. The second inequality follows from the invariant before phase (i + 1) started.

To summarize, Phase i performs O( r
4i )-rounds and makes O(n1+1/r log n)-BIS queries

per round. We run phase 0 to L = O(log r), till we get |ΠL| ≤
√

n. After than we run a
clean up phase.

4. Clean-up Phase. Once |ΠL| = O(
√

n), for each pair (S, T ) in ΠL × ΠL, we make a single
BIS-query to detect if the pseudo-edge (S, T ) ∈ EL. The total number of queries is O(n).
We add an arbitrary spanning tree of EL to the set F . At this point, F lets us know the
structure of connectivity via pseudo-edges. The next step is to recover the actual graph
edges.

5. Tree Building Phase. Note that the total number of pseudo-edges in F is < n − 1. For
each (S, T ) ∈ F , we now desire to find an edge (s, t) in the graph where s ∈ S and
t ∈ T . Note that once we do this, we have the spanning tree the graph. This can be done
in 2r more rounds using the algorithm DetFindEdger(S, T ) using O

(
|S|1/r + |T |1/r

)
-BIS

queries per round. Therefore, the total number of queries per round of this phase is
O(n) · O(n1/r) = O(n1+1/r).

The number of rounds is
∑O(log r)

i=1
24r
4i + 1 + 2r ≤ 35r.

This ends the description of the algorithm when G is connected. If G had more than one
connected component, then one can recognize the connected components as the algorithm
progresses. More precisely, if the algorithm is processing the partition Πi = (S1, . . . , Sp)
and find that Si has no edges coming out of it, then by the invariant that Si is connected,
the algorithm can discard this component and proceed on the remaining graph as if it were
connected. The analysis becomes better as the effective number of vertices decrease but the
number of available queries don’t. This completes the proof of Theorem 15.
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8:2 Fully Dynamic Set Cover via Hypergraph Maximal Matching

1 Introduction

In the set cover problem, we are given a family S = (S1, . . . , Sm) of m sets on a universe
[n]. The goal is to find a minimum-size subfamily of sets F ⊆ S such that F covers all the
elements of [n]. Throughout the paper, we use f to denote the maximum frequency of any
element i ∈ [n] inside the sets in S (by frequency of element i, we mean the number of sets
in S that contain i).

The set cover problem is one of the most fundamental and well-studied NP-hard
problems, with two classic approximation algorithms, both with runtime O(fn): greedy
ln n-approximation and primal-dual f -approximation. One cannot achieve approximation
(1 − ε) ln n unless P = NP [26, 17] or approximation f − ε for any fixed f under the unique
games conjecture [20].

In recent years there is a growing body of work on this problem in the dynamic setting,
where one would like to efficiently maintain a set cover for a universe that is subject to
element insertions and deletions. The holy grail is to coincide with the bounds of the static
setting: approximation factor of either ln n or f with (amortized) update time O(f) (as a
static runtime of Θ(fn) means that we spend Θ(f) time per each element of the universe
on average). Indeed, in any dynamic model where element updates are explicit, update
time Ω(f) is inevitable. Even in stronger models where updates are supported implicitly in
constant time, recent SETH-based conditional lower bounds imply that update time O(f1−ε)
requires polynomial approximation factor [1].

The dynamic set cover problem was first studied by Gupta et al. [18] who gave an
O(log n)-approximation with update time O(f log n) based on a greedy algorithm. The rest
of the known algorithms are primal-dual-based and their approximation factor depends only
on f . The state-of-the-art algorithms are: (1) An O(f3)-approximation with O(f2) update
time, by Gupta et al. [18] and independently by Bhattacharya et al. [9], and (2) A (1 + ε) · f -
approximation with update time O(f · log n/ε2) by Bhattacharya et al. [11], improving the
O(f2 · log n/ε5) bound of Abboud et al. [1] as well as an earlier result by Bhattacharya et
al. [10]. Interestingly, the state-of-the-art algorithms for this problem are all deterministic
(the algorithm of [1] is randomized however).

Our Result

In this work we demonstrate the power of randomization for the dynamic set cover problem
by achieving the best possible approximation of f with runtime independent of both m, n:

▶ Theorem (Informal). There is an algorithm for the dynamic set cover problem that achieves
an exact f-approximation in O(f2) expected (and with high probability) amortized update
time.

This gives the first algorithm for dynamic set cover with approximation ratio that exactly
matches f (as opposed to almost f in prior work), as well as the first one with runtime
independent of n, m (for any approximation factor of o(f3)). The bound O(f2) on the
update time of our algorithm holds with high probability and in expectation. As in [1] and
in the great majority of randomized dynamic graph algorithms, we assume an oblivious
adversary. We shall remark that even for the much simpler problem of dynamic vertex cover
(corresponding to f = 2 case), no algorithm is known against an adaptive adversary that
achieves an exact 2-approximation in time independent of other input parameters (although
(2 + ε)-approximation algorithms have been known for some time now [13, 9, 6, 8]).
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Maximal Hypergraph Matching

The key technical ingredient of our work is an algorithm for maintaining a maximal matching
in a dynamic hypergraph of rank r – where each hyperedge has at most r vertices – that
undergoes hyperedge insertions and deletions in O(r2) amortized update time. This result
generalizes the maximal matching algorithm of Solomon [25] with constant update time
for ordinary graphs, and is of independent merit; the previous state-of-the-art algorithms
for set cover do not translate to (integral) matchings for hypergraphs, let alone a maximal
one (however the algorithm of [1] translates to an integral (non-maximal) matching). The
result for set cover follows immediately from this: taking all the matched vertices in a
maximal hypergraph matching of rank f yields an f -approximate hypergraph vertex cover, or
equivalently, an f -approximate set cover; (see Section 2 for details of this standard reduction).

We stress that there is an inherent difference between a maximal matching (yielding exactly
f -approximation) and an almost-maximal matching (yielding (1 + ε) · f -approximation),
wherein an ε-fraction of the potentially matched vertices may be unmatched; this is true in
general but particularly important in the dynamic setting. Despite extensive work on dynamic
algorithms for matching and vertex cover in ordinary graphs (f = 2), the state-of-the-art
deterministic algorithm (or even randomized against adaptive adversary) for 2-approximate
matching and vertex cover (via a maximal matching) has update time O(

√
|E|) [21], while

(2+ε)-approximate matching and vertex cover can be maintained deterministically in poly-log
update time [6, 7]; for approximate vertex cover and fractional matching, the update time
can be further reduced to O(1/ε2) [13]. Therefore, it is only natural that our algorithm,
which achieves an integral maximal hypergraph matching, is randomized and assumes an
oblivious adversary.

Distributed networks

There is a growing body of work on distributed networks that change dynamically (cf.
[22, 24, 15, 3, 19, 14, 2]). A distributed network can be modeled as an undirected (hy-
per)graph G(V, E), where each vertex v ∈ V is identified with a unique processor and
the edge set E corresponds to direct communication links between the processors. In a
static distributed setting all processors wake up simultaneously, and computation proceeds
in fault-free synchronous rounds during which every processor exchanges messages of size
O(log n) with its neighbors. We consider the standard CON GEST model (cf. [23]), which
captures the essence of spatial locality and congestion. For hypergraphs, the messages should
be of size O(log m), where m is the number of edges in the graph.

We focus on the standard setting in dynamic graph algorithms – dynamically changing
networks that undergo edge updates (both insertions and deletions, a single edge update
per step), which initially contain no edges. But in a distributed network we are subject
to the following local constraint: After each edge update, only the affected vertices – the
endpoints of the updated edge – are woken up; this is referred to in previous work as the
(CON GEST ) local wakeup model. Those affected vertices initiate an update procedure, which
also involves waking up the vertices in the network (beyond the affected ones) that are
required to participate in the update procedure, to adjust all outputs to agree on a valid
global solution – in our case a maximal hypergraph matching; the output of each vertex is
the set of its incident edges that belong to the matching. We make a standard assumption
that the edge updates occur in large enough time gaps, and hence the network is always
“stable” before the next change occurs (see, e.g., [22, 15, 3]). In this setting, the goal is to
optimize (1) the number of communication rounds, and (2) the number of messages, needed
for repairing the solution per edge update, over a worst-case sequence of edge updates.
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Our dynamic maximal hypergraph matching algorithm can be naturally adapted to
distributed networks. Note that following an edge update, O(1) communication rounds
trivially suffice for updating a maximal hypergraph matching. However, the number of
messages sent per update via this naive algorithm may be a factor of r2 greater than the
maximum degree in the hypergraph, which could be Ω(

(
n

r−1
)
), where n is the number of

vertices and r is the rank. An important objective is to design a dynamic distributed
algorithm that achieves, in addition to low round complexity, a low message complexity. The
inclusion-maximality of our maintained matching enforces our algorithm to work persistently
so there is never any “slack”; that is, the algorithm makes sure that every edge that can be
added to the matching is added to it, which stands in contrast to “lazy” approximate-maximal
matching (or approximate set cover) algorithms, which may wait to accumulate an ε-factor
additive slack in size or weight, and only then run an update procedure. However, such
a lazy update procedure is inherently non-local, where, following an edge update e, the
required changes to the maintained graph structure may involve edges and vertices that
are arbitrarily far from e; indeed, this is the case with the previous algorithms that achieve
approximation factor close to f [11, 1]; moreover, the “lazy” feature of these algorithms must
rely on a centralized agent that orchestrates the update algorithm with the use of global
data structures, and this is, in fact, the key behind the efficiency of these algorithms [11, 1].
Our algorithm, on the other hand, does not employ any global update procedure or global
data structures, and as such it is inherently local and can be easily distributed, so that the
average number of messages sent per update is O(r2), matching the sequential update time.
The number of rounds is clearly upper bounded by the number of messages. Refer to Section
9 in the full version [4] for more details.

Recent related work

Independently and concurrently to our work, Bhattacharya, Henzinger, Nanongkai, and Wu
[arXiv’20, SODA’21] obtained an algorithm for dynamic set cover with O(f2/ε3) amortized
update time and O(f · log2 n/ε3) worst case update time and (1 + ε) · f approximation.
While closely related, their results and ours are incomparable. Our algorithm can achieve a
better approximation ratio of exactly f as opposed to (1 + ε)f (which is the first dynamic
algorithm with this guarantee) but is randomized, while their result is deterministic and can
work for weighted set cover (with extra log C-dependence on the update time where C is
the maximum weight of any set). Also, as mentioned, our algorithm is inherently local and
can be distributed efficiently, whereas the algorithm of Bhattacharya et al. , as the previous
aforementioned algorithms, is non-local. In terms of techniques, the two works are disjoint.

1.1 Technical overview
At a high level, all the previous state-of-the-art algorithms [18, 9, 11] (as well as the
independent work of [12]) follow a deterministic primal-dual approach by maintaining a
fractional packing solution as a dual certificate. The main advantage of this approach over
ours, of course, is in being deterministic, and its drawbacks are that (1) the approximation
factor is almost f rather than exactly f , (2) it does not give rise to an integral matching in
the context of hypergraphs, and (3) it is non-local.

Our algorithm generalizes and strengthens the maximal matching algorithm by Solomon
[25], which, in turn, builds on and refines the pioneering approach of Baswana et al. [5]. For
conciseness, we shall sometimes refer only to [25] in the following (to avoid explaining the
differences between [25] and [5]); of course, by that we do not mean to take any credit of [5],
on which [25] relies.
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Maximal matching algorithm of [5, 25]. Consider a deletion of a matched edge (u, v)
from the graph (for r = 2), which is the only nontrivial update. Focusing on u, if u has
an unmatched neighbor, we need to match u. To avoid a naive scan of the neighbors of
u (requiring O(n) time), the key idea is to match u with a randomly sampled (possibly
matched) neighbor w. Under the oblivious adversarial model, the expected number of edges
incident on u deleted from the graph before the deletion of edge (u, w) is roughly half the
“sample space” size of u, i.e., the number of neighbors of u from which we sampled w, which
can be viewed as “time token” (or potential value) that is expected to arrive in the future.

To benefit from these tokens, [5, 25] introduces a leveling scheme where the levels of
vertices are exponentially smaller estimates of these potential values: Unmatched vertices
have level −1 and matched vertices are assigned the levels of their matched edge, which is
roughly the logarithm of the sample space size. This defines a dynamic hierarchical partition
of vertices into O(log n) levels.

A key ingredient in the algorithm of [5, 25] is the sampling rule: A random mate w is
chosen for a vertex u among its neighbors of strictly lower level. Intuitively, if w’s level is
lower than u’s, then w’s potential value is much smaller than u’s, and the newly created
matched edge (u, w) provides enough potential value to cover the cost of deleting the old
matched edge on w (if any).

Difficulties of going from ordinary graphs to hypergraphs. The main difficulty of extending
the prior work in [5, 25] to hypergraphs of rank r > 2 has to do with the “vertex-centric”
approach taken by these works [5, 25]. For instance, even at the definition level, it is already
unclear how to generalize the sampling rule of the algorithm for hypergraphs, even for r = 3,
since the hyperedges incident on u may consist of endpoints of various levels, some smaller
than that of u, some higher. Ideally we would want to sample the matched hyperedge among
those where all endpoints have lower level than that of u, but it is a-priori unclear how to
maintain this hyperedge set efficiently. In particular, to perform the sampling rule efficiently,
the strategy of [25] is to dynamically orient each edge towards the lower level endpoint, and
a central obstacle is to efficiently cope with edges where both endpoints are at the same level.
For hypergraphs, naturally, these obstacles become more intricate considering there are r

different endpoints now.
There are also other hurdles that need to be carefully dealt with, such as the following.

Say a matched hyperedge e = (u1, . . . , ur) gets deleted from the hypergraph. When r = 2,
any edge incident on u1 is different than any edge incident on u2, hence informally the
update algorithm can handle u1 and u2 independently of each other. When r > 2 (even for
r = 3), different endpoints of e may share (many) hyperedges in common. Therefore, when
choosing random matched hyperedges for the newly unmatched endpoints of e, we need to
(i) be careful not to create conflicting matched hyperedges, but at the same time (ii) keep
the sample spaces of endpoints sufficiently large so that the potential values can cover the
runtime of the update procedure; balancing between these two contradictory requirements is
a key challenge in our algorithm.

An O(r3) update time algorithm. We manage to cope with these and other hurdles by
instead switching to a “hyperedge-centric” view of the algorithm. Informally speaking, this
means that instead of letting vertices derive the potential values and levels, we assign these
values to the hyperedges and use those to define the corresponding level for remaining vertices.
Under this new view of the algorithm, we can indeed generalize the approach of [25] to obtain
an O(r4)-update time algorithm for rank r hypergraphs. Considering the intricacies in [25],
already achieving this O(r4) time bound turned out to be considerably challenging.
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Improving the update time to O(r3) is based on the following insight. In this hyperedge-
centric view, a level-ℓ matched hyperedge e is sampled to the matching from a sample space
S(e) of size roughly αℓ, where α = Θ(r). We refer to the hyperedges in S(e) as the core
hyperedges of e. All the core hyperedges of e are then also assigned a level ℓ. Let us focus on
an e′ = (u1, . . . , ur) ∈ S(e). Subsequently, u1 may initiate the creation of a new matched
hyperedge at level ℓ′ > ℓ, at which stage we randomly sample a new matched hyperedge,
denoted by e1, among all its incident hyperedges of level lower than ℓ′, so e′ ∈ S(e1), i.e.,
hyperedge e′ is now a core hyperedge of e1 as well. Perhaps later u2 may initiate the creation
of a new matched hyperedge e2 at level ℓ′′ > ℓ′, and then hyperedge e′ will become a core
hyperedge of e2, and so on and so forth. Thus any hyperedge may serve as a core hyperedge
of up to r matched hyperedges at any point in time.

To shave a factor of r from the runtime, we need to make sure that each hyperedge
serves as a core hyperedge of a single matched hyperedge. This is achieved by “freezing” (or
temporarily deleting) all core hyperedges of a newly created matched hyperedge e; in the
sequel (see Section 3.2) we shall refer to these hyperedges as temporarily deleted hyperedges
(due to e) rather than “core hyperedges”, and they will comprise the set D(e). Then, whenever
the matched hyperedge gets deleted from the matching, we need to “unfreeze” these core
hyperedges and update all their ignored data structures – our analysis shows that this can
be carried out efficiently.

Since this algorithm already requires an entirely new view of the previous approaches for
ordinary graphs and several nontrivial ideas, we present it as a standalone result in Section 3.

An O(r2) update time algorithm. The main step is to improve the update time from
O(r3) to O(r2). We next provide a couple of technical highlights behind this improvement.

In our algorithm, the potential values of level-ℓ matched hyperedges are in the range
[αℓ, αℓ+1), for α = O(r), hence they may differ by a factor of O(r). Consider the moment a
level-ℓ matched hyperedge e = (u1, . . . , ur) gets deleted by the adversary; the leveling scheme
allows us to assume we have an O(αℓ+2) “potential time” for handling this hyperedge. To
get an update time of O(r2), we need to handle each of the endpoints ui ∈ e within time
O(αℓ+1) time or instead “contribute” to the potential by creating a new matched hyperedge.
If ui has more than αℓ+1 incident hyperedges of level at most ℓ, we can sample a random
hyperedge among them to be added to the matching, thereby creating a level-(ℓ + 1) matched
hyperedge; we discuss some issues related to the creation of matched edges later. But if ui

has slightly less than αℓ+1 incident edges, this sample space size suffices only for creating a
level-ℓ matched edge, but it is crucial that the sample space of a level-ℓ matched edge would
consist only of edges where all endpoints have level strictly lower than ℓ. Even checking
whether this is the case is too costly, since iterating over all endpoints of all such edges takes
time (slightly less than) O(αℓ+2), and if we are in the same scenario for each ui this gives
rise to a runtime of O(αℓ+3), and thus to an amortized update time of O(r3). Even if we
could check this for free, if most of the edges have endpoints of level ℓ, we need to find those
endpoints, and to pass the “ownership” of the edges to those endpoints. To cope with these
issues, we maintain a data structure for each hyperedge e that keeps track of all its endpoints
of highest level and in O(1) time returns an arbitrary such endpoint or reports that none
exists. Of course, now the challenge becomes maintaining these data structures for the edges
with O(r2) update time.

Consider the moment that a level-ℓ matched edge e is created. At this stage, another
crucial invariant tells us to “raise” all endpoints of edge e to level ℓ, and then to update the
ownership set of each endpoint according to its up-to-date level. One challenging case is when
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each endpoint ui of e now owns slightly less than αℓ+1 new edges. This sample space size
does not suffice for creating a level-(ℓ + 1) matched edge yet it is too costly to update each
of the endpoints of these edges about the up-to-date level of ui; summing over all endpoints
of e, this again gives rise to update time of O(r3). However, if we are equipped with the
aforementioned data structure, we can efficiently focus on the edges where all endpoints have
level lower than ℓ, and can thus create a level-ℓ matched edge. This is not enough, however,
since we are merely replacing one level-ℓ matched edge by another, and this process could
repeat over and over. Our goal would be to replace one level-ℓ matched edge by at least two
others, so as to provide enough increase in “potential” to cover for this runtime. Since the
total number of edges incident on e in this case is slightly less than αℓ+2, the intuition is
that we should be able to easily achieve here a fan-out of 2, and therefore a valid charging
argument. Alas, there is one significant caveat when working with hypergraphs, which we
already mentioned above – dependencies. It is possible that the first level-ℓ matched edge that
we randomly sampled for u1 intersects all the edges incident on e, which will result in fan-out
1. To overcome this final obstacle, we take our hyperedge-centric view to the next level by
employing a new sampling method different than [5, 25] altogether. In particular, in this
case, our sample space is not necessarily restricted to hyperedges incident on a single vertex,
but could be an arbitrary hyperedge set as a function of the deleted hyperedge; however,
importantly, to achieve a local sampling method, we will make sure that the entire sample
space is incident to the endpoints of a single edge. This new sampling method (see Procedure
insert-hyperedge in Section 5 of the full version [4]) entails a few technical complications
primarily to ensure that we still get enough “potential” from the adversary, but it ultimately
enables us to achieve the desired update time bound of O(r2).

The role of randomness in our algorithm. Our algorithm relies crucially on randomization
and on the oblivious adversary assumption, and the probabilistic analysis employed in this
work is highly nontrivial; in particular, the usage of randomization for reducing the update
time bound from O(r3) to O(r2) relies on several new insights. We note that if the entire
update sequence is known in advance and is stored in a data structure that allows for fast
access, which is sometimes referred to as the “(dynamic) offline setting” (cf. [16]) – then
a straightforward variant of our algorithm works deterministically with O(r2) amortized
update time. Specifically, whenever a matched edge is randomly sampled by our algorithm
(which is always done uniformly) from a carefully chosen sample space of edges – in the
offline setting, instead of randomly sampling the matched edge, one can choose the matched
edge deterministically to be the one that will be deleted last among all edges in the sample
space. It is not difficult to verify that this simple tweak translates our probabilistic O(r2)
amortized update time bound into a deterministic O(r2) time bound, while avoiding the
entire probabilistic analysis. The probabilistic ingredients of the analysis are omitted due to
space constraints; they appear in Sections 7 and 8 of the full version [4].

2 Preliminaries and Organization

Hypergraph Notation. For a hypergraph G = (V, E), V denotes the set of vertices and E

denotes the set of hyperedges. We use v ∈ e to mean that v is one of the vertices incident
on hyperedge e. Rank r of a hypergraph is the maximum number of vertices incident on
any edge, i.e., r := max {|e| | e ∈ E}. A matching M in G is a collection of vertex-disjoint
hyperedges of M . A matching M is called maximal if no other edge of G can be added to M

without violating its matching constraint. A vertex cover U in G is a collection of vertices so
that every hyperedge in E has at least one endpoint in U . We use the next standard fact.
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▶ Fact 1. Let G be any hypergraph with rank r. Suppose M is a maximal matching in G

and U denotes all vertices incident on M . Then U is an r-approximate vertex cover of G.

Hypergraph Formulation of Set Cover. Consider a family S = {S1, . . . , Sm} of sets over a
universe [n]. We can represent S by a hypergraph G on m vertices corresponding to sets of S
and n hyperedges corresponding to elements of [n]: Any element i ∈ [n] is now a hyperedge
between vertices corresponding to sets in S that contain i. It is easy to see that there is a
one-to-one correspondence between set covers of S and vertex covers of G and that the rank
r of G is the same as the maximum frequency parameter f in the set cover instance. With
this transformation, by Fact 1, obtaining an f -approximation to this instance of set cover
reduces to obtaining a maximal matching of G. This is the direction we take in this paper
for designing fully dynamic algorithms for set cover by designing a fully dynamic algorithm
for hypergraph maximal matching.

Organization. Due to space constraints, in this extended abstract we focus on the O(r3)
update time algorithm and its analysis, where we provide only part of the analysis. The
O(r2) update time algorithm and its analysis are inherently more involved and are entirely
omitted. All the missing details appear in the full version [4].

3 An O(r3)-Update Time Algorithm

Throughout, we use M to denote the maximal matching of the underlying hypergraph
G = (V, E) maintained by the algorithm. We use the following parameters in our algorithm:

α := (4 · r), L := ⌈logα |N |⌉ (1)

where N approximates the dynamic number of edges |E| plus the fixed number of vertices |V |
from above, so that logα |N | = Θ(logα(|V | + |E|)). Every Ω(N) steps we update the value of
N , and as a result rebuild all the data structures; this adds a runtime of O(|V |+ |E|) = O(N)
every Ω(N) update steps, hence a negligible overhead to the amortized cost of the algorithm.
We may henceforth ignore this technical subtlety and treat N as a fixed value in what follows.

3.1 A Leveling Scheme and Hyperedge Ownerships
We use a leveling scheme for the input hypergraph that partitions hyperedges and vertices.
This is done by assigning a level ℓ(e) to each hyperedge e ∈ E and a level ℓ(v) to each vertex
v ∈ V .

▶ Invariant 2. Our leveling scheme satisfies the following properties:
1. For any hyperedge e ∈ E, 0 ≤ ℓ(e) ≤ L and for any vertex v ∈ V , −1 ≤ ℓ(v) ≤ L;

moreover, ℓ(v) = −1 iff v is unmatched by M .
2. For any matched hyperedge e ∈ M and any incident vertex v ∈ e, ℓ(v) = ℓ(e).
3. For any unmatched hyperedge e /∈ M , ℓ(e) = maxv∈e ℓ(v).
Our leveling scheme needs only to specify ℓ(e) for each e ∈ M ; the rest are fixed determ-
inistically by Invariant 2. Moreover, this invariant ensures that the matching M obtained
by the algorithm is maximal as all unmatched vertices are at level −1 while the level of
any hyperedge is at least 0 and at the same time equal to the maximum level of any of its
incident vertices. Based on the leveling scheme, we assign each hyperedge e to exactly one of
its incident vertices v ∈ e with ℓ(v) = ℓ(e) to own (the ties between multiple vertices at the
same level are broken by the algorithm). We use O(v) to denote the set of edges owned by v.
This definition, combined with Invariant 2, implies the following invariant.
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▶ Invariant 3. (i) For any vertex v ∈ V , any owned hyperedge e ∈ O(v), and any other
incident vertex u ∈ e, ℓ(u) ≤ ℓ(v). (ii) For any vertex v ∈ V , any incident hyperedge e ∈ v

has ℓ(e) ≥ ℓ(v).

3.2 Temporarily Deleted Hyperedges
To obtain the desired update time of O(r3), we would need to allow some hyperedges of the
hypergraph to be considered temporarily deleted and no longer participate in any of the other
data structures; moreover, whenever we no longer consider them deleted, we simply treat
them as a hyperedge insertion to our hypergraph and handle them similarly (which will take
O(r) time per each hyperedge exactly as in the previous algorithm). The role of these deleted
hyperedges becomes apparent only in the probabilistic analysis that is omitted due to space
constraints; see Section 7 in the full version [4] for this analysis. However, it is the goal of
the algorithm itself (rather than the analysis) to cope efficiently with the required deletions.
We shall note that these deletions constitute one of several differences of our algorithm with
that of [25]. The next invariant allows us to maintain the maximality of our matching.

▶ Invariant 4. Any temporarily deleted hyperedge is incident on some matched hyperedge.

To maintain Invariant 4, each matched hyperedge e ∈ M is responsible for a set of deleted
edges denoted by D(e) and stored in a linked-list data structure. This set will be finalized at
the time e joins the matching M and will remain unchanged throughout the algorithm until e

is removed from M ; at that point, we simply bring back all hyperedges in D(e) to the graph
as new hyperedge insertions. Invariant 4 is crucial for the correctness of our algorithm.

We note that besides this data structure D(e), these deleted hyperedges do not appear
in any other data structure of the algorithm and do not (necessarily) satisfy any of the
invariants in the algorithm – they are simply treated as if they do not belong to the hypergraph.
Invariant 4 ensures that even though we are ignoring temporarily deleted hyperedges in the
algorithm, the resulting maximal matching on the hypergraph of undeleted hyperedges is
still a maximal matching for the entire hypergraph. As such, throughout the rest of the
paper, with a slight abuse of notation, whenever we talk about hyperedges of G, we refer to
the hyperedges that are not temporarily deleted (unless explicitly stated otherwise).

3.3 Data Structures
We maintain the following information for each vertex v ∈ V (again, to emphasize, we ignore
the temporarily deleted hyperedges in all the following data structures):

ℓ(v): the level of v in the leveling scheme;
M(v): the hyperedge in M incident on v (if v is unmatched M(v) =⊥);
O(v): the set of hyperedges e owned by v – we define ov := |O(v)|;
N (v): the set of hyperedges e incident on v;
A(v, ℓ) for any integer ℓ ≥ ℓ(v): the set of hyperedges e ∈ N (v) that are not owned by v

and have level ℓ(e) = ℓ – we define av,ℓ := |A(v, ℓ)|.
We also maintain the following information for each hyperedge e ∈ E:

ℓ(e): the level of e in the leveling scheme;
O(e): the single vertex v ∈ e that owns e, i.e., e ∈ O(v);
M(e): a Boolean variable to indicate whether or not e is matched.

We also maintain back-and-forth pointers between these different data structures that refer
to the same hyperedge or vertex in a straightforward way.
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Next, we introduce the main procedures used for updating these data structures. In these
procedures, if there is room for confusion, we use superscript ∗old to denote a parameter or
data structure ∗ before the update and ∗new to denote the value of ∗ after the update.

Procedure set-owner(e, v). Given a hyperedge e and vertex v ∈ e where ℓ(v) =
maxu∈e ℓ(u), sets owner of e to be v, i.e., O(e) = v.

To implement set-owner(e, v), we first set Onew(e) = v and ℓnew(e) = ℓ(v), add e to O(v),
and remove e from O(Oold(e)). If ℓnew(e) = ℓold(e), there is nothing else to do. Otherwise,
for any w ̸= v ∈ e, we remove e from A(w, ℓold(e)) and instead insert e in A(w, ℓnew(e)).

▷ Claim 5 (straightforward proof). set-owner(e, v) takes O(r) time.

Procedure set-level(v, ℓ). Given a vertex v ∈ V and integer ℓ ∈ {−1, 0, . . . , L},
updates the level of v to ℓ, i.e., sets ℓ(v) = ℓ.

The implementation of set-level(v, ℓ) is as follows. First, we determine the ownership of
all hyperedges e ∈ Oold(v) that were previously owned by v. We go over each hyperedge
e ∈ Oold(v) one by one, find u := arg maxw∈e ℓ(w) (where we use ℓnew(v) = ℓ for the
computations here), and use the procedure set-owner(e, u) to update the owner of e to u.

If ℓold(v) > ℓ, nothing is left to do as no new hyperedge needs to be owned by v now that
level of v has decreased (Invariant 3). If ℓold(v) < ℓ, we should make v the new owner of all
hyperedges e ∈ N (v) with level between ℓold(v) to ℓ − 1. This is done by traversing the lists
maintained in A(v, ℓold(v)), · · · , A(v, ℓ − 1), and running set-owner(e, v) for each edge e in
these lists.

Remark. It will be the responsibility of the procedure calling set-level to make sure that
the invariants (and particularly Invariant 2) continue to hold.

▷ Claim 6. set-level(v, ℓ) takes O
(
r · (oold

v + onew
v ) + ℓ + 1

)
time.

Proof. The algorithm iterates over all hyperedges in Oold(v) and use set-owner that takes
O(r) time by Claim 5 for each one. When ℓold(v) > ℓ, this is all that is done by the algorithm
and the bound on runtime follows. Otherwise, the algorithm also needs to iterate over the
lists A(v, ℓold(v)), · · · , A(v, ℓ − 1) one by one which takes O(ℓ) time and run set-owner for
each of them that takes O(r · onew

v ) time in total. This gives the bound on runtime. ◁

3.4 The Update Algorithm
There are multiple cases to handle by the update algorithm depending on whether the
updated hyperedge is an insertion or deletion, and whether or not it belongs to the maximal
matching M . But the only interesting case is when a hyperedge in M is deleted and that is
where we start with.

3.4.1 Case 1: a hyperedge e ∈ M is deleted
There are two things we should take care of upon deletion of a hyperedge e from M ;
bringing back the temporarily deleted hyperedges in D(e) to maintain Invariant 4, and more
importantly, updating the matching M to ensure its maximality. All the interesting part of
the algorithm happen in the second step, but before we get to that, let us quickly mention
how the first part is done.
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Maintaining Invariant 4

Throughout the course of handling a single hyperedge update, we may need to delete multiple
hyperedges e1, e2, . . . from M , starting from the originally deleted hyperedge by the adversary.
Each of these hyperedge ei ∈ M that are now removed from M is responsible for temporarily
deleted hyperedges D(ei).

We will maintain a queue of all hyperedges in D(e1), D(e2), . . . during the course of this
update. At the very end of the update, once all other changes are finalized, we will insert
the hyperedges in this queue one by one to the hypergraph as if they were inserted by the
adversary (using the procedure of Section 3.4.3). This allows us to maintain Invariant 4.

We note that throughout the update we may also temporarily delete some new hyperedges.
We’ll show that in that case, all these hyperedges are also incident on some matched hyperedge
which is responsible for them and thus Invariant 4 holds for these hyperedges as well.

Maintaining maximality of M

Let us now begin the main part of the update algorithm. Suppose e = (v1, . . . , vr) is deleted
from M . This makes the vertices v1, . . . , vr temporarily free. We will handle each of these
vertices using the procedure handle-free which is the key ingredient of the update algorithm
(we will simply run handle-free(v1), . . . , handle-free(vr)).

Procedure handle-free(v). Handles a given vertex v ∈ V which is unmatched currently
in the algorithm (its matched hyperedge may have been deleted via an update or by
the algorithm in this time step, or v may simply be unmatched at this point of the
algorithm)a.
a To simplify the exposition, we may some time call handle-free(v) for a vertex v that is now

matched again (while handling other vertices). In that case, this procedure simply aborts.

The execution of Procedure handle-free(v) depends on the number of owned hyperedges of v,
i.e., ov (both procedures used within this one are described below): (i) if ov < αℓ(v)+1, we will
run deterministic-settle(v); and otherwise (ii) if ov ≥ αℓ(v)+1, we run random-settle(v)
instead. We now describe each procedure.

Procedure deterministic-settle(v). Handles a given vertex v ∈ V with ov <

αℓ(v)+1.

In deterministic-settle(v), we iterate over all hyperedges e ∈ O(v) owned by v and check
whether all endpoints of e are now unmatched; if so, we add e to M , and run set-level(v, 0)
and set-owner(e, v). Moreover, for any vertex u ̸= v ∈ e, we further run set-level(u, 0)
so all vertices incident on e are now at level 0. If no such hyperedge is found, we run
set-level(v, −1).

▷ Claim 7. deterministic-settle(v) takes O(r · oold
v ) = O(r · αℓold(v)+1) time and main-

tains Invariants 2 and 3 for vertex v and hyperedges incident on v.

Proof. Checking if there is any hyperedge that can be added to M takes O(r · oold
v ) time.

Moreover, running set-level(v, 0) or set-level(v, −1) take O(r · oold
v ) time by Claim 6 as

onew
v ≤ oold

v considering level of v has not increased. If the algorithm finds a hyperedge e to
add to M , we run set-level(u, 0) for u ̸= v ∈ e as well which takes O(1) time for each u

by Claim 6 as ℓold(u) = −1 (u was unmatched and by Invariant 2) and thus oold
u = onew

u = 0.
As there are at most r − 1 choices for u, this step takes O(r) = O(r · αℓold(v)+1) time (we are
not being tight here). We also need to run set-owner(e, v) in this case which takes another
O(r) time by Claim 5. Since deterministic-settle(v) is only called when oold

v < αℓold(v)+1,
the desired time bound follows.
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As for maintaining Invariant 2, consider the hyperedge e chosen by the algorithm to be
added to M . We set the level of all vertices incident on e to be 0 and making v the owner
of e, hence satisfying Invariant 2. On the other hand, if we cannot find such a hyperedge
e incident on v, we know that all hyperedges incident on v are already at level at least 0
by Invariant 2 (even after removing v) and hence setting ℓnew(v) = −1 keeps Invariant 2.
Invariant 3 also holds by maintaining Invariant 2 and the fact that we choose correct owners
in the algorithm. ◁

Before defining random-settle, we need the following definition. For any vertex v ∈ V

and integer ℓ > ℓ(v), we define:
õv,ℓ: the number of edges v will own assuming we increase its level from ℓ(v) to ℓ.

The following claim is a straightforward corollary of procedure set-level.

▷ Claim 8. For any v ∈ V and ℓ > ℓ(v), õv,ℓ =
(∑ℓ−1

ℓ′=ℓ(v) av,ℓ′

)
+ ov. In particular, õv,ℓ can

be obtained from õv,ℓ−1 in O(1) time.

We can now describe random-settle (this is the main procedure of our update algorithm).

Procedure random-settle(v). Handles a given vertex v ∈ V with ov ≥ αℓ(v)+1.

In random-settle(v), we first compute the level ℓnew(v) as minimum ℓ > ℓ(v) with õv,ℓ <

αℓ+1 and run set-level(v, ℓnew(v)). Then, we sample a hyperedge e uniformly at random
from Onew(v). The next step of the algorithm now depends on this particular hyperedge e.

Case (a): for all u ∈ e, õu,ℓnew(v) < αℓnew(v)+1. In this case, we add the hyperedge
e to M and run set-level(u, ℓnew(v)) for all u ∈ e to maintain Invariant 2. This
potentially can make M not a matching since some matched hyperedges e1, . . . , ek for
k < r incident on e might be in M . We will thus delete these hyperedges from M one by
one and recursively run the procedure of Section 3.4.1 for each one, treating it as if this
hyperedge was deleted by the adversary (although we do not remove the hyperedge from
the hypergraph).
Case (b): there exists u ∈ e, s.t. õu,ℓnew(v) ≥ αℓnew(v)+1. We run
deterministic-settle(v) to handle v and “switch” the focus to u instead. We then call
set-level(u, ℓnew(v)). If u is matched in M , say by hyperedge eu, we remove eu from
M , and then recursively run the procedure of Section 3.4.1 for hyperedge eu – we only
note that when processing eu, we start by running handle-free(u) first before all other
vertices incident on eu; this is only done for making the analysis more clear and is not
needed. If u is not matched in M , we will simply run handle-free(u).

▷ Claim 9. The first step of random-settle(v) before either case (changing level of v

and picking hyperedge e) takes O(r · αℓnew(v)+1) time. Additionally, case (a) takes O(r2 ·
αℓnew(v)+1) time and case (b) takes O(r · onew

u ) time ignoring the recursive calls. Finally,
random-settle(v) maintains Invariants 2 and 3.

Proof. Finding ℓnew(v) takes O(ℓnew(v)) time by Claim 8 and set-level(v, ℓnew(v)) takes
O(r · onew

v + ℓnew(v)) = O(r · αℓnew(v)+1) time by Claim 6 as level of v is increased (and so is
number of its owned edges) and since onew

v < αℓnew(v)+1 by design. This proves the first part.
The second part for case (a) also follows because for any u ∈ e, set-level(u, ℓnew(v))

takes O(r · onew
u + ℓnew(u)) = O(r · õu,ℓnew(v) + ℓnew(v)) by Claim 6 as level of u is increased.

This is O(r · αℓnew(v)+1) by the condition õu,ℓnew(v) < αℓnew(v)+1 in case (a). Multiplying this
with at most r vertices u ∈ e gives the desired bound.



S. Assadi and S. Solomon 8:13

The second part for case (b) holds because v has ov ≤ αℓnew(v)+1 by the definition of
ℓnew(v) and thus deterministic-settle(v) takes O(r ·αℓnew(v)+1) time by Claim 7. Moreover,
running set-level(u, ℓnew(v)) takes O(r · onew

u ) by Claim 6 which is at least O(r · αℓnew(v)+1)
by the lower bound on õu,ℓnew(v) in this case.

Finally, Invariants 2 and 3 also hold as explained in the description of the procedure. ◁

The following observation plays a key rule in the recursive analysis of our algorithm.

▶ Observation 10. In random-settle(v): (i) the hyperedge e is sampled uniformly at random
from at least αℓnew(v) edges. Moreover, (ii) any hyperedge e1, . . . , ek or eu deleted from M

during this procedure is at level at most ℓnew(v) − 1.

Part (i) of the observation follows from the definition of ℓnew(v). For part (ii), note that
any deleted edge e′ in the process is incident on e with ℓold(e) = ℓold(v) < ℓnew(v). Let
u be any vertex incident on both e′ and e. Firstly, ℓ(u) ≤ ℓold(v) as e was owned by v

and not u, and secondly ℓ(e′) = ℓ(u) as e′ is a matched hyperedge (see Invariant 2); thus
ℓ(e′) ≤ ℓ(e) < ℓnew(v) as well.

Temporarily deleting new hyperedges

An astute reader may have noticed that we have not yet temporarily deleted any hyperedge in
the update algorithm. The only place that this will be done is in case (a) of random-settle.
In this case, when we decide to insert e to M , we will temporarily delete all other hyperedges
in Onew(v) from which e was sampled from, and make e responsible for them by adding them
to D(e). The deletions of these hyperedges is done by the procedure of Section 3.4.2 (as they
do not belong to M). As the cost of each such hyperedge deletion is O(r) and their total
number is O(αℓnew(v)+1), this does not change the asymptotic bounds of Claim 9. Finally,
since these edges are incident on e which now belongs to M , Invariant 4 will be maintained
by this process. The following observation is now immediate.

▶ Observation 11. Any hyperedge e ∈ M is responsible for O(αℓ(e)+1) hyperedges in D(e).

3.4.2 Case 2: a hyperedge e /∈ M is deleted
We only need to remove e from the corresponding data structures which can be done in O(r)
time for the (at most) r endpoints of e.

3.4.3 Case 3: a hyperedge e is inserted
We need to find v = arg maxu∈e ℓ(u) and run set-owner(e, v) which takes O(r) time.
Moreover, if all vertices incident on e are unmatched, we should additionally add e to M

and run set-level(u, 0) for all u ∈ e which takes O(r) time per vertex by Claim 6.

This concludes the description of our algorithm for update time O(r3).

4 Part of the Analysis of the O(r3)-Update Time Algorithm

A key definition in analysis is the notion of an epoch borrowed from the prior work in [5, 25].

▶ Definition 12 (Epoch). For any time t and any hyperedge e in the matching M at time t,
epoch of e and t, denoted by epoch(e, t), is the pair (e, {t′}) where {t′} denotes the maximal
continuous time period containing t during which e was always present in M (not even deleted
temporarily during one step and inserted back at the same time step).
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We further define level of epoch(e, t) as the level ℓ(e) of e during the time period of the epoch;
we note that our update algorithm never changes level of a hyperedge in M without removing
it from M first and thus level of an epoch is well-defined.

The update algorithm in Section 3.4 takes O(r) time deterministically for any update step
that does not change the matching M . However, an update at a time step t that changes M

may force the algorithm a large computation time and hence we use amortization to charge
the cost of processing such an update at time t to the epochs that are created and removed
at time t. In particular, for any time step t, define:

epochscreate(t): the set of all epoch(e, t) that are created at time t; respectively,
epochsterm(t) is defined for epochs terminated at time t;
Ccreate(epoch(e, t)): the computation cost at time t for creation of epoch(e, t); respectively,
Cterm(epoch(e, t)) is defined for the cost of termination of epoch(e, t).

Then, the total cost of update at time t is:

C(t) = O(r) +
∑

epoch(e,t)∈
epochscreate(t)

Ccreate(epoch(e, t)) +
∑

epoch(e,t)∈
epochsterm(t)

Cterm(epoch(e, t)). (2)

▶ Lemma 13. The total computation cost C(t) of an update at time t in Equation (2) can
be charged to the epochs in the RHS so that any level-ℓ epoch is charged with O(αℓ+3) units
of cost.

Proof. We prove this lemma in a sequence of claims. In the following, whenever we say “some
computation cost can be charged to Ccreate(epoch(e, t)) or Cterm(epoch(e, t))” we mean that
the cost of computation is O(αℓ+3) and there is a level-ℓ epoch epoch(e, t) at time t that is
either created or terminated, respectively, and that this cost is charged to Ccreate(epoch(e, t))
or Cterm(epoch(e, t)). We emphasize that each epoch during this process is only charged a
constant number of times. This then immediately satisfies the bounds in Lemma 13.

▷ Claim 14. Cost of a hyperedge-insertion update e at time t can be charged to
Ccreate(epoch(e, t)).

Proof. As in Section 3.4.3, this update takes O(r) time and creates a level-0 epoch(e, t). ◁

From now on, we consider the main case of a hyperedge-deletion update e from M

at time t using the procedure in Section 3.4.1. In this case, we remove e from M which
results in epoch(e, t) to be terminated (and hence epoch(e, t) ∈ epochsterm(t) in RHS of
C(t) in Equation (2)). This step is then followed by running handle-free(v) for all v ∈
e. Recall that handle-free(v) can be handled either by deterministic-settle(v) or
random-settle(v) (depending on value of ov).

▷ Claim 15. Let e be a hyperedge in M deleted at time t (either by the adversary or the
algorithm in a recursive call). Cost of handle-free(v) for all v ∈ e that are handled by
deterministic-settle(v) can be charged to Cterm(epoch(e, t)).

Proof. By Claim 7, for each v ∈ e that is handled by deterministic-settle(v), the runtime
of handle-free(v) is O(r · αℓ(e)+1). As there are at most r such vertices, their total cost is
O(r2 · αℓ(e)+1) = O(αℓ(e)+3) by the choice of α in Equation (1). Hence the total cost of all
these vertices that are charged to Cterm(epoch(e, t)) is O(αℓ(e)+3). ◁

We now switch to analyzing random-settle(v) for a fixed v ∈ e. The easier part, when
we can process random-settle(v) by case (a), is handled via the next claim.
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▷ Claim 16. Cost of case (a) of random-settle(v) at time t ignoring the recursive calls can
be charged to Ccreate(epoch(ev, t)), where ev is the hyperedge inserted to M in this case.

Proof. In case (a) of random-settle(v), we create a new edge ev in M at level ℓ(ev) = ℓnew(v).
By Claim 9, ignoring the recursive calls, this case takes O(r2 · αℓ(ev)+1) = O(αℓ(ev)+3) time.
We can thus charge the cost of random-settle(v) to Ccreate(epoch(ev, t)). ◁

We now analyze case (b) of random-settle(v). In this case, instead of handling v, we in
fact recursively handle the vertex u (with õu,ℓnew(v) ≥ αℓnew(v)+1) using handle-free(u) and
only after that will come back to take care of v if needed. Moreover, since we first set level
of u to ℓnew(v), we will have onew

u ≥ αℓnew(u)+1. This means handle-free(u) will be handled
using random-settle(u) recursively. It is again possible that random-settle(u) hits case
(b) and so on and so forth. However, note that when going from v to u, we obtain that
ℓnew(v) < ℓnew(u) by Observation 10 (here ℓnew(u) refers to ℓ(u) = ℓnew(v) at the beginning
of random-settle(u)) and hence whenever case (b) happens, the vertex we move on to will
have a strictly larger level. As such, this chain of recursive calls to random-settle will
terminate eventually in some case (a) of random-settle.

We’ll denote the vertices in the chain of calls to random-settle in case (b) for v by
(v =)w0, w1, w2, . . . , wk for some k ≤ L (number of levels); in particular, w1 is the vertex u

in case (b) of random-settle(v), w2 is the vertex u in case (b) of random-settle(w1), etc.
The computation cost of random-settle(v) in case (b) then involves two parts: (i)

pre-processing before calling each random-settle(wi) (which is bounded in Claim 9), (ii)
calling random-settle(wi) itself, and (iii) removing hyperedges ewi

from M (for each one
that exist) and recursively handling them using the procedure of Section 3.4.1.

Among these costs, the cost of handling ewi
for i ∈ [k] is handled separately by recursion

(charged either to the termination of epoch(ewi , t) or creation of new epochs). We thus need
to handle the costs in parts (i) and (ii) in the following claim, whose proof is omitted.

▷ Claim 17. Cost of case (b) of random-settle(v) at time t with chain of ver-
tices w0, w1, . . . , wk ignoring the recursive calls (i.e., part (iii) of costs above) can be
charged to Ccreate(epoch(e∗, t)), where e∗ is the hyperedge inserted to M in case (a) of
random-settle(wk). (Note that by definition, random-settle(wk) finishes in case (a).)

Finally, we also have to handle the cost associated with maintaining Invariant 4, namely,
“bringing back” temporarily deleted hyperedges at the very end of the update step (the cost
of temporarily deleting new hyperedges is accounted for in Claim 9 already).

▷ Claim 18. Cost of inserting back the temporarily deleted hyperedges in D(e) for any
hyperedge e ∈ M can be charged to Cterm(epoch(e, t)).

Proof. Any hyperedge e ∈ M is responsible for O(αℓ(e)+1) hyperedges in D(e) by Observa-
tion 11. As bringing back these hyperedges requires O(r · αℓ(e)+1) time in total, this charge
can be charged to the termination of epoch(e, t). ◁

We thus showed that any cost in C(t) can be charged by a factor of O(αℓ+3) to some
level-ℓ epoch in RHS of Equation (2) without charging any epoch more than a constant
number of times, thus finalizing the proof of Lemma 13. ◀

In Lemma 13, we charge at most O(αℓ+3) to the creation and/or termination of a level-ℓ
epoch. It can be shown that, without loss of generality, we may assume that every epoch
created will also be terminated, hence we can re-distribute the charges to creation of each
level-ℓ epoch to the termination of the same epoch. We now have an equivalent charging
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scheme in which only termination of each level-ℓ epoch is charged with O(αℓ+3) computation
time (and not the creations). Recall that an epoch is terminated when the corresponding
hyperedge e is deleted from the maximal matching M . There are two types of hyperedge
deletions from M in the algorithm: those that are the result of the adversary deleting a
hyperedge from the graph, and those that are the result of the update algorithm to remove
a matched hyperedge in favor of another (so the original hyperedge is still part of the
hypergraph). Based on this, we differentiate between epochs as follows:

Natural epoch: Ending with the adversary deleting the hyperedge e from G.
Induced epoch: Ending with the update algorithm removing the hyperedge e from M .

With the following lemma, we are going to re-distribute the charge assigned to all induced
epochs between the natural epochs. This then will allow us to focus solely on natural epochs.

▶ Lemma 19 (proof omitted). The total cost charged to all induced epochs can be charged
to natural epochs so that any level-ℓ natural epoch is charged with the costs of at most r − 1
induced epochs at lower levels.

Next, we move from natural and induced epochs to the corresponding notions in levels:
A level ℓ is called an induced level (resp., natural level) if the number of induced level-ℓ
epochs is greater than (resp., at most) the number of natural level-ℓ epochs. We will charge
the computation costs incurred by any induced level to the computation costs at higher
levels, so that in the end, the entire cost of the algorithm will be charged to natural levels.
Specifically, in any induced level ℓ, we define a one-to-one mapping from the natural to the
induced epochs. For each induced epoch, at most one natural epoch (at the same level) is
mapped to it; any natural epoch that is mapped to an induced epoch is called semi-natural.
For any induced level ℓ, all natural ℓ-level epochs are semi-natural by definition. For any
natural level, all natural epochs terminated at that level remain as before; these epochs are
called fully-natural. By Lemma 19, for any epoch, at most r − 1 induced epochs at lower
levels are charged to it. We define the recursive cost of an epoch as the sum of its actual
cost and the recursive costs of the at most r − 1 induced epochs charged to it as well as the
(at most) r − 1 semi-natural epochs mapped to them; the recursive cost of a level-0 epoch is
defined as its actual cost. We are now ready to state the following lemma (proof omitted).

▶ Lemma 20. For any ℓ ≥ 0, the recursive cost of any level-ℓ epoch is bounded by O(αℓ+3).

The sum of recursive costs over all fully-natural epochs is equal to the sum of actual
costs over all epochs (fully-natural, semi-natural and induced) that have been terminated
throughout the update sequence, which also bounds the total runtime of the algorithm.

For the omitted proofs in the above statements, we refer the reader to Section 4 in the
full version [4]. The final step of the analysis is to use the randomization in the algorithm
(and obliviousness of the adversary) to prove a probabilistic upper bound on the amortized
cost of the algorithm; this part is handled in detail in Section 7 of the full version [4].

This allows us to conclude the following theorem.

▶ Theorem 21. For any integer r > 1, starting from an empty rank-r hypergraph on a fixed
set of vertices, a maximal matching can be maintained over any sequence of t hyperedge
insertions and deletions in O(t · r3) time in expectation and with high probability.
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Abstract
The weighted k-server problem is a natural generalization of the k-server problem in which the
cost incurred in moving a server is the distance traveled times the weight of the server. Even after
almost three decades since the seminal work of Fiat and Ricklin (1994), the competitive ratio of
this problem remains poorly understood even on the simplest class of metric spaces – the uniform
metric spaces. In particular, in the case of randomized algorithms against the oblivious adversary,
neither a better upper bound that the doubly exponential deterministic upper bound, nor a better
lower bound than the logarithmic lower bound of unweighted k-server, is known. In this paper,
we make significant progress towards understanding the randomized competitive ratio of weighted
k-server on uniform metrics. We cut down the triply exponential gap between the upper and lower
bound to a singly exponential gap by proving that the competitive ratio is at least exponential in k,
substantially improving on the previously known lower bound of about ln k.
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1 Introduction

The k-server problem of Manasse, McGeoch, and Sleator [12] is one of the cleanest, simple-
looking, and yet profound problems in online computation, and has been actively studied
for over three decades. The k-server problem concerns deciding movements of k mobile
servers on an underlying metric space to serve a sequence of online requests. Each request is
issued at some point of the metric space, and to serve such a request, a server must move
to the requested point (unless a server is already present there). The cost incurred in the
movement of a server is equal to the distance through which the server moves, and the goal
is to minimize the total cost.

Since an online algorithm is required to take its decisions only based on the past inputs,
it cannot output the optimal solution, in general. An online algorithm for a minimization
problem is said to be c-competitive if, on any instance, it produces a solution whose (expected)
cost is at most c times the cost of the optimum solution. The competitive ratio of an algorithm
is the minimum (technically, the infimum of all) c such that the algorithm is c-competitive.
The deterministic (resp. randomized) competitive ratio of an online minimization problem is
the minimum (technically, the infimum of all) c for which a c-competitive deterministic (resp.
randomized) algorithm exists. Note that, unless otherwise specified, we assume that in case
of randomized algorithms, the adversarial input is oblivious, that is, constructed with the
knowledge of the algorithm but not the random choices the algorithm makes.
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In their seminal work, Manasse, McGeoch, and Sleator [12] proved that the deterministic
competitive ratio of the k-server problem is at least k on every metric with more than k points.
They conjectured that the deterministic competitive ratio is, in fact, equal to k on any metric.
This conjecture is popularly called the deterministic k-server conjecture and it remains
unresolved to date. The deterministic algorithm with the best known competitive ratio
of 2k − 1 is due to Koutsoupias and Papadimitriou [10]. Surprisingly, no better algorithm
is known even using randomization. The randomized k-server conjecture states that a
randomized algorithm with competitive ratio O(log k) exists on all metrics, and this remains
unresolved after some recent progress [5, 11]. The k-server problem on uniform metric spaces
is particularly interesting because it is equivalent to the paging problem. In this case, several
deterministic algorithms including Least-Recently-Used (LRU) and First-In-First-Out (FIFO)
are known to be k-competitive. The randomized competitive ratio is known to be exactly
H(k) =

∑k
i=1 1/i ≈ ln k, where the lower bound is due to Fiat et al. [8] and the upper bound

is due to [13, 1].
The weighted k-server problem is a natural generalization of the k-server problem where

the objective is to minimize the weighted sum of the movements of servers. Specifically, the
k servers have weights β1 ≤ · · · ≤ βk, and the cost of moving the i’th server is βi times the
distance through which it moves. It is easy to see that a c-competitive k-server algorithm
has competitive ratio at most cβk/β1 for the weighted k-server problem, and therefore, the
challenge is to design an algorithm with competitive ratio independent of the servers’ weights.
Surprisingly, this innocuous-looking introduction of weights into the k-server problem makes
it incredibly difficult, and a competitive algorithm is known only for k ≤ 2 [14] (of which,
the k = 1 case is trivial).

1.1 Weighted k-Server on Uniform Metrics
Owing to the difficulty of the weighted k-server problem on general metrics, the problem
becomes particularly interesting on uniform metrics. The weighted k-server problem on
uniform metric spaces models the paging problem where the cost of page replacement is
determined by the location where the replacement takes place. Note that this problem is
different from weighted caching [15], where the cost of page replacement is determined by
the pages that get swapped in and out.

The seminal paper of Fiat and Ricklin [9] gave a deterministic algorithm for weighted
k-server on uniform metrics whose competitive ratio is doubly exponential in k: about 34k/3

specifically, but can be improved to 22k+2 = 162k due to the result of Bansal et al. [3] for a
more general problem. The fact that the deterministic competitive ratio is indeed doubly
exponential in k was established only recently by Bansal et al. [2], who proved a lower
bound of 22k−4 , improving the previously known lower bound of (k + 1)!/2 due to Fiat and
Ricklin [9].

The only known algorithm for the weighted k-server problem on uniform metrics which
makes non-trivial use of randomness is by Chiplunkar and Vishwanathan [6]. This algorithm
also achieves a doubly exponential competitive ratio of about c2k for c ≈ 1.59792. It
is, in fact, a randomized memoryless algorithm generalizing the algorithm by Chrobak
and Sgall [7] for k = 2, and it achieves the competitive ratio against a stronger form of
adversary called adaptive online adversary1. Chiplunkar and Vishwanathan also proved

1 An adaptive online adversary can see the movements of the algorithm’s servers even though the algorithm
is randomized. However, the adversary must also serve its requests in an online manner. The algorithm’s
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that no randomized memoryless algorithm can achieve a better competitive ratio against
adaptive online adversaries. However, even when an algorithm is allowed to use both memory
and randomness, and the adversary is oblivious, no better upper bound is known. More
embarrassingly, for randomized algorithms, no better lower bound than the logarithmic
lower bound of (unweighted) k-server on uniform metrics is known, thus, leaving a triply
exponential gap between the upper and lower bounds.

In this paper, we cut down the triply exponential gap between the best known bounds
on the randomized competitive ratio of weighted k-server on uniform metrics by a doubly
exponential improvement in the lower bound. We prove,

▶ Theorem 1. The competitive ratio of any randomized algorithm for weighted k-server
on uniform metrics is at least exponential in k, even when the algorithm is allowed to use
memory and the adversary is oblivious.

Due to our result, we now have only a singly exponential gap between the best known
upper and lower bounds on the randomized competitive ratio of weighted k-server on uniform
metrics.

1.2 Comparison with the Deterministic Lower Bound
Our proof of the randomized lower bound for weighted k-server is inspired by the proof of
the deterministic lower bound by Bansal et al. [2]. Both proofs give adversaries which run
recursively defined strategies relying crucially on a certain set-system Q. However, our proof
differs in the following aspects.
1. The adversary in the deterministic lower bound proof is able to carefully pick from Q a

set of points that does not contain points covered by the algorithm’s heavier servers, and
run its strategy on that set. In contrast, our adversary is oblivious and is unable to see
the positions of the algorithm’s servers. Therefore, it merely picks a random set from
Q and hopes that none of the points in that set is covered by the algorithm’s heavier
servers.

2. The strategy of Bansal et al. to defeat deterministic algorithms ensures that whenever
an adversary’s server other than the heaviest moves, it is accompanied by an eventual
movement of a heavier server of the algorithm. Therefore, assuming that the weights
of the servers are well-separated, their task reduces to proving that the heaviest server
of the algorithm moves a large number of times as compared to the heaviest server
of the adversary. On the other hand, we are unable to charge the movement of an
adversary’s server to the movement of an algorithm’s heavier server. Consequently, we
need to carefully track the contributions of all k servers towards the algorithm’s and the
adversary’s costs.

2 Preliminaries

Let the weights of the k servers be 1, β, β2, . . . , βk−1 for some large integer β which we will
fix later. Define the sequence n0, n1, . . . inductively as follows. n0 = 1, and for ℓ > 0,

nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

cost is compared with the cost of the adversary’s online solution to determine the competitive ratio.
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Observe that nk grows doubly exponentially with respect to k. Since nℓ ≥ n2
ℓ−1/4, it is easy

to prove using induction that nℓ ≥ 4 · (641/32)2ℓ for all ℓ ≥ 5. Let H denote the harmonic
function, that is, H(n) =

∑n
i=1 1/i. It is known that H(n) ≥ ln n. We will establish

Theorem 1 by proving the following bound.

▶ Theorem 2. The randomized competitive ratio of weighted k-server on uniform metric
spaces is at least H(nk−1) = Ω(2k).

We use the following version of Yao’s principle to prove the above bound.

▶ Proposition 3 (Yao’s principle). Suppose there exists a probability distribution D on the
instances of an online minimization problem such that for every deterministic online algorithm
A, we have,

EI∼D[A(I)] > α · EI∼D[OPT(I)],

where A(I) is the cost of the algorithm’s solution and OPT(I) is the cost of an optimal
solution to instance I. Then the problem does not have an α-competitive randomized online
algorithm.

Thus, in order to prove Theorem 2, our task is exhibit a distribution on instances of
weighted k-server on a uniform metric space such that the expected cost of any deterministic
online algorithm is greater than H(nk−1) times the expectation of the optimum cost. To
construct our distribution on instances, we use a combinatorial result with a constructive
proof given by Bansal et al. [2]. We reproduce its proof in Appendix A for completeness.
The result is as follows.

▶ Lemma 4. Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.

1. Qℓ contains ⌈nℓ−1/2⌉ + 1 sets, each of size nℓ−1.

2. For every p ∈ P , there exists a set in Qℓ not containing p.

3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

3 Adversarial Strategy and Analysis

Consider the uniform metric space on a set S of nk−1 + 1 points. Our adversarial input
distribution is generated by the procedure adversary which uses a recursive procedure strategy,
an oblivious version of its counterpart in Bansal et al. [2]. These procedures are defined as
follows.

Procedure 1 adversary.

repeat infinitely many times
Pick a point p uniformly at random from S (with replacement);
Call strategy(k − 1, S \ {p});
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Procedure 2 strategy(ℓ, P ) (Promise: |P | = nℓ).

if ℓ = 0 (and therefore, |P | = n0 = 1) then
Request the unique point in P ;

else
Construct the set-system Qℓ ⊆ 2P using Lemma 4;
repeat (β − 1) · (⌈nℓ−1/2⌉ + 1) times

Pick a set P ′ uniformly at random from Qℓ (with replacement);
Call strategy(ℓ − 1, P ′);

Procedure strategy gets as input a non-negative number ℓ and a set P of nℓ points. In
the base case where ℓ = 0, the procedure issues a request to the unique point in P . In the
inductive case where ℓ > 0, the procedure constructs the set-system Qℓ with properties
stated in Lemma 4 on the set P . Then it repeatedly gives recursive calls, passing ℓ − 1 in
place of ℓ, on sets chosen uniformly at random from Qℓ. Recall that these sets have size
nℓ−1, as required. Procedure adversary takes a uniform metric space on nk−1 + 1 points. It
repeatedly picks a point p uniformly at random and calls the procedure strategy on the set of
points other than p.

For analysis, fix an arbitrary deterministic online algorithm and the initial positions of
its servers. We first consider requests given by one execution of procedure strategy(ℓ, P ), and
bound the number of movements of the algorithm’s servers to serve those requests.

▶ Lemma 5. For every ℓ ∈ {0, . . . , k −1} the following holds. Let ρ0 be an arbitrary sequence
of requests and L be the set of positions of the algorithm’s heaviest k − ℓ servers after serving
ρ0. Let P be an arbitrary set of nℓ points disjoint from L. Suppose ρ0 is followed by a
random sequence ρ of requests given by a strategy(ℓ, P ) call. For i = 1, . . . , k, let the random
variable Xi denote the number of movements of the algorithm’s i’th lightest server while the
algorithm serves ρ. Then we have,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ.

We defer the proof of this lemma to Appendix B. On a high level, the proof goes as
follows. If the algorithm moves one of its heaviest k − ℓ servers while it serves ρ, then it
pays a lot already. If not, it must serve ρ using its lightest ℓ servers only. In this case,
each recursive call given by the strategy(ℓ, P ) call is, with sufficient probability, on a set P ′

not containing the location of the algorithm’s ℓ’th lightest server. This enables us to use
induction hypothesis to bound the algorithm’s cost in each recursive call.

Intuitively, Lemma 5 gives a lower bound of (β − 1)ℓ on the expected cost incurred by
the algorithm in serving requests given by a strategy(ℓ, P ) call, but with the following caveat:
movements of the heaviest k − ℓ − 1 servers are charged at a discounted rate of βℓ. However,
when ℓ is instantiated to k −1 in particular, no discount remains applicable. Thus, (β −1)k−1

becomes a lower bound on the expected actual cost of the algorithm in serving requests given
by a strategy(k − 1, P ) call. With this observation, we immediately get the following bound
on the expected cost of the algorithm in serving requests given by each strategy call made by
the procedure adversary.

▶ Corollary 6 (to Lemma 5). The expected cost of the algorithm in serving requests given by
each strategy call made by adversary is at least (β − 1)k−1/(nk−1 + 1).
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Proof. Consider any strategy(k − 1, S \ {p}) call, where p is a uniformly random point
in S. Let r be the location of the algorithm’s heaviest server at the time the call is
made. Then Pr[r /∈ S \ {p}] = Pr[p = r] = 1/|S| = 1/(nk−1 + 1). Lemma 5 implies that
conditioned on r /∈ S \ {p}, the expected cost of the algorithm in serving requests given by
the strategy(k − 1, S \ {p}) call is at least (β − 1)k−1. Thus, the claim follows. ◀

Let us now turn our attention towards the adversary’s cost. We will show how the
adversary, having the ability to see the future requests, can ensure that whenever strategy(ℓ, P )
is called, it has at least one server other than its ℓ lightest servers occupying a point in P

already. On the contrary, recall that in Lemma 5, we relied on the algorithm not having any
of its servers except the ℓ lightest ones occupying points in P at the time strategy(ℓ, P ) is
called. Intuitively, the adversary is able to obtain advantage over the algorithm by having
one server other than the ℓ lightest ones in P whereas the algorithm has none.

▶ Lemma 7. Define the sequence c0, c1, . . . inductively as follows: c0 = 0, and for ℓ > 0,

cℓ = βℓ−1 + β · (⌈nℓ−1/2⌉ + 1) · cℓ−1.

Suppose that the adversary has at least one server other than its ℓ lightest servers occupying
some point in P at the time strategy(ℓ, P ) is called. Then the adversary is able to serve all
requests given in this call with cost at most cℓ by moving only its ℓ lightest servers.

Proof. We prove the claim by induction on ℓ. For the base case, suppose ℓ = 0. Then |P | = 1
and by assumption, the adversary has at least one server at the unique point in P . Therefore,
the adversary can serve the unique request given by strategy(0, P ) with cost c0 = 0, without
moving any server.

For the inductive case, suppose ℓ > 0. We have assumed that the adversary has at
least one server other than its lightest ℓ servers occupying some point p in P . By the third
property of the set-system Qℓ from Lemma 4, there exists a point q ∈ P such that each set
in Qℓ contains at least one of p and q. The adversary moves its ℓ’th lightest server to such a
point q and keeps it there until the end of the strategy(ℓ, P ) call. Due to this movement, the
adversary incurs cost βℓ−1, the first term in the definition of cℓ. As a result, both p and q

become occupied by the adversary’s servers other than the ℓ − 1 lightest ones. We now show
how the requests in all recursive calls made by strategy(ℓ, P ) can be served by moving the
ℓ − 1 lightest servers only.

Consider any of the recursive calls made by strategy(ℓ, P ). The set P ′ ∈ Qℓ on which
this call is made contains at least one of p and q. Both p and q were occupied by the
adversary’s servers other than the ℓ − 1 lightest ones before strategy(ℓ, P ) made its first
recursive call. All the previous recursive calls were served by moving only the ℓ − 1 lightest
servers. Thus, at the time the current recursive call strategy(ℓ − 1, P ′) is made, points p and
q are still occupied by the adversary’s servers other than the ℓ − 1 lightest ones. Therefore,
at least one of these servers occupies a point in P ′. By induction hypothesis, the adversary
can serve all requests in the current recursive call strategy(ℓ − 1, P ′) with cost at most
cℓ−1 by moving only the ℓ − 1 lightest servers. Since the number of such recursive calls is
(β − 1) · (⌈nℓ−1/2⌉ + 1) ≤ β · (⌈nℓ−1/2⌉ + 1), the adversary serves all requests made in these
calls with cost at most β · (⌈nℓ−1/2⌉ + 1) · cℓ−1, the second term in the expression for cℓ. ◀

We now use Corollary 6 and Lemma 7 to prove Theorem 2.

▶ Theorem 2. The randomized competitive ratio of weighted k-server on uniform metric
spaces is at least H(nk−1) = Ω(2k).
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Proof. We track the costs incurred by the algorithm and the adversary per strategy(k − 1, P )
call made by the procedure adversary, and show that the former is at least H(nk−1) times
the latter.

Here is how the adversary serves the requests. Let q denote the position of the adversary’s
heaviest server at the time a strategy(k − 1, P ) call is made. If P = S \ {q}, that is, the
random point sampled from S turns out to be q, then the adversary finds the point q′

which is sampled farthest in future by the procedure adversary, and moves its heaviest server
there. These are the only movements of the adversary’s heaviest server. By the standard
coupon-collector argument, the expected number of samples from the current sample of q to
q′ is (nk−1 + 1)H(nk−1), because |S| = nk−1 + 1 and we have already sampled q. Thus, in
the long run, the cost of the adversary resulting from moving its heaviest server, per strategy
call made by the procedure adversary, is βk−1/((nk−1 + 1)H(nk−1)).

By moving its heaviest server as described above, the adversary ensures the following.
Before the adversary starts serving requests given by a strategy(k −1, S \{p}) call, its heaviest
server is located at some point different from p, and therefore, in S \ {p}. By Lemma 7, the
adversary is able to serve requests given by each strategy(k − 1, S \ {p}) with cost at most
ck−1 without moving its heaviest server. In other words, the contribution of the adversary’s
servers other than the heaviest towards its cost per strategy call is at most ck−1.

Thus, the adversary’s cost per strategy call made by the procedure adversary is at most
βk−1/((nk−1 + 1) · H(nk−1)) + ck−1, which, by unrolling the recurrence in the statement of
Lemma 7, is given by

βk−1

(nk−1 + 1) · H(nk−1) + ck−1 = βk−1

(nk−1 + 1) · H(nk−1) + βk−2 ·
k−1∑
i=1

k−2∏
j=i

(⌈nj

2

⌉
+ 1

)
.

Let ε be an arbitrarily small positive number. By choosing

β = ⌈ε−1⌉ · (nk−1 + 1) · H(nk−1) ·
k−1∑
i=1

k−2∏
j=i

(⌈nj

2

⌉
+ 1

)
,

the adversary’s cost per strategy call is bounded from above by

βk−1 · (1 + ε)
(nk−1 + 1) · H(nk−1) .

On the other hand, recall from Corollary 6 that the expected cost of the algorithm per
strategy call made by the procedure adversary is at least

(β − 1)k−1

nk−1 + 1 = βk−1

nk−1 + 1 ·
(

1 − 1
β

)k−1
≥ βk−1

nk−1 + 1 ·
(

1 − k − 1
β

)
≥ βk−1 · (1 − ε)

nk−1 + 1 ,

because β ≫ k/ε. Thus, modulo the (1 ± ε) factors, the algorithm’s cost per strategy call is
at least H(nk−1) times the adversary’s cost per strategy call. Since ε is arbitrarily small, we
use Proposition 3 to conclude that the competitive ratio of any randomized online algorithm
for weighted k-server on uniform metrics is at least H(nk−1). ◀

4 Concluding Remarks

Given our lower bound on the randomized competitive ratio of weighted k-server on uniform
metric spaces, the gap between the known upper and lower bounds has reduced from three
orders of exponentiation to one. The natural question that needs to be investigated is to
determine the randomized competitive ratio, or at least, prove upper and lower bounds that
match in the order of exponentiation.
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9:8 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

Our result also sheds light on the randomized competitive ratio of a generalization of
the weighted k-server problem on uniform metrics called the generalized k-server problem
on weighted uniform metrics. In this problem k servers are restricted to move in k different
uniform metric spaces that are scaled copies of one another. A request contains one point
from each copy and to serve it, one of the points must be covered by the server moving in
its copy. Our lower bound directly applies to the generalized k-server problem on weighted
uniform metrics and improves the previously known lower bound2 of Ω(k/ log2 k) by Bansal et
al. [3] to exponential in k. This also proves that the generalized k-server problem on weighted
uniform metrics is qualitatively harder than its unweighted counterpart, the generalized
k-server problem on uniform metrics, which has randomized competitive ratio O(k2 log k)
due to Beinkowski, Jeż, and Schmidt [4].
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A Set-system Construction

▶ Lemma 4. Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.
1. Qℓ contains ⌈nℓ−1/2⌉ + 1 sets, each of size nℓ−1.
2. For every p ∈ P , there exists a set in Qℓ not containing p.
3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

Proof (Bansal et al. [2]). Construct the set-system Qℓ as follows. Recall that

|P | = nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

Let M be an arbitrary subset of P having size ⌈nℓ−1/2⌉ + 1, so that

|P \ M | =
(⌈nℓ−1

2

⌉
+ 1

)
·
⌊nℓ−1

2

⌋
.

Partition P \ M into ⌈nℓ−1/2⌉ + 1 sets of size ⌊nℓ−1/2⌋ each, and for each r ∈ M , name a
distinct set in the partition P ′

r. Next, for each r ∈ M , define Pr = (M \ {r}) ∪ P ′
r, and let

Qℓ = {Pr | r ∈ M}.
We now prove that Qℓ indeed satisfies the required properties. First, the number of sets

in Qℓ is equal to |M | = ⌈nℓ−1/2⌉ + 1, and the size of each set Pr ∈ Qℓ is

|Pr| = |M | − 1 + |P ′
r| =

⌈nℓ−1

2

⌉
+

⌊nℓ−1

2

⌋
= nℓ−1.

For the second property, observe that a point p ∈ M is not contained in the corresponding
set Pp ∈ Qℓ, whereas for a point p ∈ P ′

r, the only set in Qℓ that contains p is Pr. For the
third property, if p ∈ M , define q to be any other point in M , and if p ∈ P ′

r, define q = r,
and check that the property is indeed satisfied. ◀

B Analysis of the Algorithm’s Movements

We present the proof of Lemma 5 here, for which we need the following lemma.

▶ Lemma 8. Let Z1 and Z2 be non-negative random variables and E be an event on a
common sample space such that E[Z1 | E] ≥ b and E[Z2 | ¬E] ≥ b for some real number b.
Then E[Z1 + Z2] ≥ b.

Proof. We have,

E[Z1 + Z2] = E[Z1 + Z2 | E] · Pr[E] + E[Z1 + Z2 | ¬E] · Pr[¬E].

Since Z1 and Z2 are non-negative, we have,

E[Z1 + Z2] ≥ E[Z1 | E] · Pr[E] + E[Z2 | ¬E] · Pr[¬E] ≥ b · Pr[E] + b · Pr[¬E] = b,

as required. ◀

▶ Lemma 5. For every ℓ ∈ {0, . . . , k −1} the following holds. Let ρ0 be an arbitrary sequence
of requests and L be the set of positions of the algorithm’s heaviest k − ℓ servers after serving
ρ0. Let P be an arbitrary set of nℓ points disjoint from L. Suppose ρ0 is followed by a
random sequence ρ of requests given by a strategy(ℓ, P ) call. For i = 1, . . . , k, let the random
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variable Xi denote the number of movements of the algorithm’s i’th lightest server while the
algorithm serves ρ. Then we have,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ.

Proof. We prove the claim by induction on ℓ. For the base case, suppose ℓ = 0. Then
|P | = 1, and we are assured that L, the set of points occupied by all the algorithm’s servers,
is disjoint from P . In other words, none of the algorithm’s servers occupies the unique point
in P . Therefore, to serve the one request given by strategy(0, P ), the algorithm must move
at least one of its servers, and thus,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] =
k∑

i=1
E[Xi] ≥ 1 = (β − 1)ℓ,

as required.
For the inductive case, suppose ℓ > 0. We are assured that except for the lightest ℓ servers,

none of the servers of the algorithm occupies any point in P at the time the strategy(ℓ, P )
call is made. This call makes m = (β − 1) · (⌈nℓ−1/2⌉ + 1) = (β − 1) · |Qℓ| recursive calls. For
i = 1, . . . , k and j = 1, . . . , m, let the random variable Y j

i denote the number of movements
of the algorithm’s i’th lightest server to serve requests from the j’th recursive call. Thus, for
all i, Xi =

∑m
j=1 Y j

i .
Consider an arbitrary j ∈ {1, . . . , m}. Let Ej denote the event that the random variables

Y j′

i are all 0 for all i > ℓ and j′ < j. In words, Ej is the event that none of the algorithm’s
heaviest k − ℓ servers moves during the first j − 1 recursive calls. Recall that originally these
servers did not occupy any point in P . Therefore, if Ej happens, these servers are guaranteed
to be out of the set P ′ ⊆ P on which the j’th recursive call is made. Next, let E′

j denote the
event that the j’th recursive call is made on a set P ′ that does not contain the position of
the algorithm’s ℓ’th lightest server after the first j − 1 recursive calls. Thus, if both Ej and
E′

j happen, then P ′ is disjoint from the set of positions of the algorithm’s k − ℓ + 1 heaviest
servers. We can then apply the induction hypothesis to get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i | Ej ∧ E′

j ] ≥ (β − 1)ℓ−1. (1)

Next, let us understand the behavior of the random variables Y j
i conditioned on Ej only.

We have,

E[Y j
i | Ej ] ≥ E[Y j

i | Ej ∧ E′
j ] · Pr[E′

j | Ej ] ≥
E[Y j

i | Ej ∧ E′
j ]

|Qℓ|
. (2)

Here, the first inequality holds because Y j
i is non-negative. The second inequality holds

because, by the second property of the set-system Qℓ given by Lemma 4, for every possible
history before the j’th recursive call, Qℓ contains at least one set which does not contain
the position of the algorithm’s ℓ’th lightest server. This implies Pr[E′

j | Ej ] ≥ 1/|Qℓ|. From
Equation 1 and Equation 2, we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i | Ej ] ≥ (β − 1)ℓ−1

|Qℓ|
. (3)
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By the non-negativity of the random variables Y j′

i and the definition of Ej , we trivially have,

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i | ¬Ej ] ≥
k∑

i=ℓ+1

j−1∑
j′=1

E[Y j′

i | ¬Ej ] ≥ 1,

and hence,

(β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i | ¬Ej ] ≥ (β − 1)ℓ−1

|Qℓ|
. (4)

From Equation 3 and Equation 4, using Lemma 8, we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i ] + (β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i ] ≥ (β − 1)ℓ−1

|Qℓ|
.

The above inequality holds for all j ∈ {1, . . . , m}. Summing up over all j and recalling
Xi =

∑m
j=1 Y j

i , we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Xi] + m · (β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

E[Xi] ≥ m · (β − 1)ℓ−1

|Qℓ|
.

Recall that m = (β − 1) · |Qℓ|. Thus,

k∑
i=1

βmin(i−1,ℓ−1) · E[Xi] + (β − 1)ℓ ·
k∑

i=ℓ+1
E[Xi] ≥ (β − 1)ℓ. (5)

Finally, note that for i > ℓ, min(i − 1, ℓ − 1) = ℓ − 1, and since ℓ ≥ 1, we have (β − 1)ℓ ≤
βℓ−1(β − 1). Therefore, the multiplier of the E[Xi] term in Equation 5 is bounded as,

βmin(i−1,ℓ−1) + (β − 1)ℓ ≤ βℓ−1 + βℓ−1(β − 1) = βℓ = βmin(i−1,ℓ).

On the other hand, for i ≤ ℓ, min(i − 1, ℓ − 1) = min(i − 1, ℓ). Thus, for all i ∈ {1, . . . , k},
the multiplier of the E[Xi] term in Equation 5 is at most βmin(i−1,ℓ). Since the Xi’s are all
non-negative, we get,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ,

as required. ◀
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1 Introduction

The research area of explorable uncertainty is concerned with scenarios where parts of the
input are initially uncertain, but the precise weight (or value) of an input item can be
obtained via a query. For example, an uncertain weight may be represented as an interval
that is guaranteed to contain the precise weight, but only a query can reveal the precise
weight. Adaptive algorithms make queries one by one until they have gathered sufficient
information to solve the given problem. The goal is to make as few queries as possible.
In most of the previous work on explorable uncertainty, an adversarial model has been
studied where an adversary determines the precise weights of the uncertain elements in such
a way that the performance of the algorithm, compared to the optimal query set, is as bad
as possible. While this model provides worst-case guarantees that hold for every possible
instance, it is also very pessimistic because the adversary is free to choose the precise weights
arbitrarily. In realistic scenarios, one may often have some information about where in the
given interval the precise weight of an uncertain element is likely to lie. This information
can be represented as a probability distribution and exploited in order to achieve better
performance guarantees.

In this paper, we study the following problem under stochastic uncertainty: Given a family
of (not necessarily disjoint) subsets of a set of uncertain elements, determine the element
with minimum precise weight in each set, using queries of minimum total cost. Note that we
do not necessarily need to obtain the precise minimum weight. We phrase the problem in
the language of hypergraphs, where each uncertain element corresponds to a node and each
set corresponds to a hyperedge. We call this the hypergraph orientation problem, as we can
think of orienting each hyperedge towards its minimum-weight vertex. Each node v ∈ V of
a hypergraph H = (V, E) is associated with a known continuous probability distribution1

dv over an interval Iv = (ℓv, rv) and has query cost cv. The precise weight of v is drawn
independently from dv and denoted by wv. We assume that Iv is the minimal interval that
contains the support of dv, i.e., ℓv is the largest value satisfying P[wv ≤ ℓv] = 0 and rv is
the smallest value satisfying P[wv ≥ rv] = 0. For S ⊆ V , we define c(S) =

∑
v∈S cv. An

algorithm can sequentially make queries to vertices to learn their weights, until it has enough
information to identify the minimum-weight vertex of each hyperedge. A query of v reveals
its precise weight wv, which is drawn independently from dv. If all vertices have the same
query cost, we say that the query costs are uniform and assume w.l.o.g. that cv = 1 for all
v ∈ V . Otherwise, we speak of arbitrary query costs. The objective of an algorithm is to
minimize the expected cost of the queries it makes.

We also consider the special case where we are given a graph G = (V, E) instead of a
hypergraph H = (V, E), called the graph orientation problem.

As an example consider a multi-national medical company that needs a certain product
(say, chemical ingredient, medicine or vaccine) for its operation in each country. The particular
products that are available in each country are different due to different approval mechanisms.
The task is to find the best product for each country, that is, the best among the approved
ones. The quality itself is independent of the country and can be determined by extensive
tests in a lab (queries). The set of products available in one country corresponds to a
hyperedge, and the problem of identifying the best product in each country is the hypergraph
orientation problem.

1 We assume the distribution is given in such a way that P[wv ∈ (a, b)] can be computed in polynomial
time for every v ∈ V, a, b ∈ R. For all our algorithms it suffices to be given a probability matrix: rows
correspond to vertices v, columns to elementary intervals (ti, ti+1), and entries to P[wv ∈ (ti, ti+1)],
where t1, . . . , t2|V | represent the sorted elements of {ℓv, rv|v ∈ V }.
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Our contribution. Our main result (Section 3) is an algorithm for the graph orientation
problem with competitive ratio 1

2 (α+
√

8 − α(4 − α)), assuming we have an α-approximation
for the vertex cover problem (which we need to solve on an induced subgraph of the given
graph). This factor is always between ϕ ≈ 1.618 (for α = 1), and 2 (for α = 2). We show that,
for the special cases of directing O(log |V |) hyperedges and sorting O(1) sets, the algorithm
can be applied with α = 1 in polynomial running time. The algorithm has a preprocessing
phase in two steps. First, we compute the probability that a vertex is mandatory, i.e., that
it is part of any feasible solution, and we query all vertices with probability over a certain
threshold. The second step uses a LP relaxation of the vertex cover problem to select some
further vertices to query. Next, we compute an α-approximation of the vertex cover on a
subgraph induced by the preprocessing, and we query the vertices in the given solution. The
algorithm finishes with a postprocessing that only queries mandatory intervals. For the
analysis, we show two main facts: (1) the expected optimal solution can be bounded by the
expected optimal solutions for the subproblems induced by a partition of the vertices; (2) for
the subproblem on which we compute a vertex cover, the expected optimal solution can be
bounded by applying the Kőnig-Egerváry theorem [52] on a particular bipartite graph, in
case of uniform costs. When given arbitrary query costs, we show in the full version [6] that
we can utilize a technique of splitting the vertices in order to obtain a collection of disjoint
stars with obvious vertex covers that imply a bound on the expected optimum.

We further show how to generalize the algorithm to hypergraphs. Unfortunately in this
case it is #P-hard to compute the probability of a vertex being mandatory, but we can
approximate it by sampling. This yields a randomized algorithm that attains, with high
probability, a competitive ratio arbitrarily close to the expression given above for graphs.
Here, we need to solve the vertex cover problem on an induced subgraph of an auxiliary
graph that contains, for each hyperedge of the given hypergraph, all edges between the node
with the leftmost interval and the nodes whose intervals intersect that interval.

We also consider a natural alternative algorithm (Section 4) that starts with a particular
vertex cover solution followed by adaptively querying remaining vertices. We prove a
competitive ratio of 4/3 on special cases, namely, for bipartite graphs with arbitrary cost and
for a single hyperedge with uniform costs, and complement this by matching lower bounds.

Related work. Graph orientation problems are fundamental in the area of graph theory
and combinatorial optimization. In general, graph orientation refers to the task of giving
an orientation to edges in an undirected graph such that some given requirement is met.
Different types of requirements have been investigated. While Robbins [50] initiated research
on connectivity and reachability requirements already in the 1930s, most work is concerned
with degree-constraints; cf. overviews given by Schrijver [52, Chap. 61] and Frank [29, Chap. 9].

Our requirement, orienting each edge towards its node with minimum weight, becomes
challenging when there is uncertainty in the node weights. While there are different ways of
modeling uncertainty in the input data, the model of explorable uncertainty was introduced
by Kahan [40]. He considers the task of identifying the minimum element in a set of
uncertainty intervals, which is equivalent to orienting a single hyperedge. Unlike in our
model, no distributional information is known, and an adversary can choose weights in a
worst-case manner from the intervals. Kahan [40] shows that querying the intervals in order
of non-decreasing left endpoints requires at most one more query than the optimal query
set, thus giving a competitive ratio of 2. Further, he shows that this is best possible in the
adversarial model.

ESA 2021
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Subsequent work addresses finding the k-th smallest value in a set of uncertainty inter-
vals [27,37], caching problems [49], computing a function value [41], and classical combinatorial
optimization problems, such as shortest path [26], knapsack [31], scheduling problems [2,3,21],
minimum spanning tree and matroids [22,25,28,45,46]. Recent work on sorting elements of a
single or multiple non-disjoint sets is particularly relevant as it is a special case of the graph
orientation problem [24,38]. For sorting a single set in the adversarial explorable uncertainty
model, there is a 2-competitive algorithm and it is best possible, even for arbitrary query
costs [38]. The competitive ratio can be improved to 1.5 for uniform query cost by using
randomization [38]. Algorithms with limited adaptivity have been proposed in [23].

Although the adversarial model is arguably pessimistic and real-world applications often
come with some distributional information, surprisingly little is known on stochastic variants
of explorable uncertainty. The only previous work we are aware of is by Chaplick et al. [16], in
which they studied stochastic uncertainty for the problem of sorting a given set of uncertain
elements, and for the problem of determining the minimum element in a given set of uncertain
elements. They showed that the optimal decision tree (i.e., an algorithm that minimizes the
expected query cost among all algorithms) for a given instance of the sorting problem can be
computed in polynomial time. For the minimum problem, they leave open whether an optimal
decision tree can be determined in polynomial time, but give a 1.5-competitive algorithm
and an algorithm that guarantees a bound slightly smaller than 1.5 on the expectation of
the ratio between the query cost of the algorithm and the optimal query cost. The problem
of scheduling with testing [42] is also in the spirit of stochastic explorable uncertainty but
less relevant here.

There are many other stochastic problems that take exploration cost into account. Some
of the earliest work has studied multi-armed bandits [15,30,54] and Weitzman’s Pandora’s
box problem [55], which are prime examples for analyzing the tradeoff between the cost for
exploration and the benefit from exploiting gained information. More recently, query-variants
of combinatorial optimization problems received some attention, in general [33, 53], and for
specific problems such as stochastic knapsack [20, 43], orienteering [8, 34], matching [5, 7,
12, 13, 17], and probing problems [1, 35, 36]. Typically such work employs a query-commit
model, meaning that queried elements must be part of the solution, or solution elements are
required to be queried. These are quite strong requirements that lead to a different flavor of
the cost-benefit tradeoff.

Research involving queries to identify particular graph structures or elements, or queries
to verify certain properties, can be found in various flavors. A well-studied problem class
is property testing [32], and there are many more, see e.g., [4, 11, 18, 44, 48, 51]. Without
describing such problems in detail, we emphasize a fundamental difference to our work.
Typically, in these query models, the bounds on the number of queries made by an algorithm
are absolute numbers, i.e., given as a function of the input size, but independent of the input
graph itself and without any comparison to the minimum number of queries needed for the
given graph.

2 Definitions and Preliminary Results

The hypergraph orientation problem and the graph orientation problem have already been
defined in Section 1. In this section we first give additional definitions and discuss how we
measure the performance of an algorithm. Then we introduce the concept of mandatory
vertices and show how the probability for a vertex to be mandatory can be computed or
at least approximated efficiently. We also give a lower bound showing that no algorithm
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can achieve competitive ratio better than 4
3 . Next, based on the concept of witness sets, we

define the vertex cover instance associated with an instance of our problem and define a class
of vertex cover-based algorithms, which includes all the algorithms we propose in this paper.
Finally, we characterize the optimal query set for each realization and give lower bounds on
the expected optimal query cost, which we will use later in the analysis of our algorithms.

Definitions. To measure the performance of an algorithm, we compare the expected cost
of the queries it makes to the expected optimal query cost. Formally, given a realization
of the values, we call feasible query set a set of vertices to be queried that permits one to
identify the minimum-weight vertex in every hyperedge. Note that a query set is feasible
if, for each hyperedge, it either queries the node v with minimum weight wv and all other
nodes whose intervals contain wv, or it does not query the node v with minimum weight but
queries all nodes whose intervals overlap Iv, and in addition the precise weights of all those
intervals lie to the right of Iv. An optimal query set is a feasible query set of minimum query
cost. We denote by E[OPT] the expected query cost of an optimal query set. Similarly, we
denote by E[A] the expected query cost of the query set queried by an algorithm A. The
supremum of E[A]/E[OPT], over all instances of the problem, is called the competitive ratio
of A. Alternatively, one could compare E[A] against the cost E[A∗] of an optimal adaptive
algorithm A∗. However, in explorable uncertainty, it is standard to compare against the
optimal query set, and, since E[OPT ] is a lower bound on E[A∗], all our algorithmic results
translate to this alternative setting.

Let F ∈ E be a hyperedge consisting of vertices v1, . . . , vk, indexed in order of non-
decreasing left endpoints of the intervals, i.e., ℓv1 ≤ . . . ≤ ℓvk

. We call v1 the leftmost vertex
of F . We can assume that Iv1 ∩ Ivi

≠ ∅ for all 2 ≤ i ≤ k, because otherwise the vertex vi

could be removed from the hyperedge F . For the special case of graphs, this means that we
assume Iv ∩ Iu ̸= ∅ for each {u, v} ∈ E, since otherwise we could simply remove the edge.

Mandatory vertices, probability to be mandatory. A vertex v is called mandatory if it
belongs to every feasible query set for the given realization. For example, if for some edge
{u, v}, vertex u has already been queried and its value wu belongs to the interval Iv, then v

is known to be mandatory. The following lemma was shown in [24] and fully characterizes
mandatory vertices.

▶ Lemma 2.1. A vertex v ∈ V is mandatory if and only if there is a hyperedge F ∈ E

with v ∈ F such that either (i) v is a minimum-weight vertex of F and wu ∈ Iv for
some u ∈ F \ {v}, or (ii) v is not a minimum-weight vertex of F and wu ∈ Iv for the
minimum-weight vertex u of F .

For a hyperedge F = {v1, . . . , vk}, where the vertices are again indexed by non-decreasing
left endpoints, it was shown in [16, Section 3] that, if Ivi ⊆ Iv1 for some 2 ≤ i ≤ k, then
v1 is mandatory for every realization. Thus, every algorithm can iteratively query all such
elements in a preprocessing step, without worsening the competitive ratio. In the remainder
of the paper, we assume w.l.o.g. that the instance under consideration is already preprocessed.

Similarly, if a hyperedge contains vertices u, v such that v has not been queried yet and
is the leftmost vertex, while a query of u has revealed that wu ∈ Iv, then it follows from
Lemma 2.1 that v is mandatory for every realization of the unqueried vertices. The final
stage of our algorithms will consist of querying mandatory vertices that are identified by this
criterion, until the instance is solved.

We denote by pv the probability that a vertex v is mandatory. Querying vertices v ∈ V

that have a high probability pv is a key element of our algorithms. For graphs, pv is easy
to compute as, by Lemma 2.1, v is mandatory iff wu ∈ Iv for some neighbor vertex u.
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Figure 1 Instance and mandatory probabilities used in the proof of Theorem 2.3.

Hence, pv = 1 −
∏

u:{u,v}∈E P[wu ̸∈ Iv]. For hypergraphs, however, we can show that the
computation of pv is #P-hard, even if all hyperedges have size 3. Luckily it is not difficult to
get a good estimate of the probabilities to be mandatory for hypergraphs using sampling.

▶ Lemma 2.2. There is a polynomial-time randomized algorithm that, given a hypergraph
H = (V, E), a vertex v ∈ V , and parameters ϵ, δ ∈ (0, 1), produces a value y such that
|y − pv| ≥ ϵ with probability at most δ. Its time complexity is O(|V | ln(1/δ)/ϵ2).

General lower bound. We have the following lower bound.

▶ Theorem 2.3. Every algorithm for the graph orientation problem has competitive ratio at
least 4

3 , even for uniform query costs and even if no restriction on the running time of the
algorithm is imposed.

Proof. Consider three vertices x, y, z, with Ix = (0, 2) and Iy = Iz = (1, 3), and uniform
query costs cx = cy = cz = 1. The only edges are {x, y} and {x, z}. The probabilities are
such that P[wx ∈ (1, 2)] = 1

2 and P[wy ∈ (1, 2)] = P[wz ∈ (1, 2)] = ϵ, for some 0 < ϵ ≪ 1
2 ;

see Figure 1. If wx ∈ (0, 1], which happens with probability 1
2 , querying x is enough. If

wx ∈ (1, 2) and wy, wz ∈ [2, 3), which happens with probability 1
2 (1 − ϵ)2, querying y and z

is enough. Otherwise, all three vertices must be queried. We have

E[OPT] = 1
2 · 1 + 1

2(1 − ϵ)2 · 2 + 1
2

(
1 − (1 − ϵ)2

)
· 3 = 2 − (1 − ϵ)2

2 ,

which tends to 3
2 as ϵ approaches 0. Since y and z are identical and we can assume that an

algorithm always queries first a vertex that it knows to be mandatory (if there is one), we
only have three possible decision trees to consider:
1. First query x; if wx ∈ (1, 2), then query y and z. The expected query cost is 2.
2. First query y. If wy ∈ (1, 2), then query x, and query z if wx ∈ (1, 2). If wy ∈ [2, 3), then

query z, and query x if wz ∈ (1, 2). The expected query cost is 1 + 3
2 ϵ + (1 − ϵ)(1 + ϵ),

which tends to 2 as ϵ approaches 0.
3. First query y. Whatever happens, query x, then query z if wx ∈ (1, 2). The expected

query cost is 5
2 , so this is never better than the previous options.

With either choice (even randomized), the competitive ratio tends to at least 4
3 as ϵ → 0. ◀

This lower bound can be adapted for a single hyperedge {x, y, z}. For arbitrary query
costs, it works even for a single edge {x, y}, by taking cx = 1 and cy = 2.

Witness sets, vertex cover instance, vertex cover-based algorithms. Another key concept
of our algorithms is to exploit witness sets [14, 25]. A subset W ⊆ V is a witness set if
W ∩ Q ̸= ∅ for all feasible query sets Q. The following lemma was shown in [40].

▶ Lemma 2.4. Let F = {v1, . . . , vk} be a hyperedge, and let v1 be the leftmost vertex of F .
Then {v1, vi} is a witness set for each 2 ≤ i ≤ k.
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The lemma implies that one can obtain a 2-competitive algorithm in the adversarial model
for the hyperedge orientation problem: For uniform query costs, it suffices to repeatedly query
witness sets of size 2 until the instance is solved, by a standard witness set argument [25].
For arbitrary query costs, this approach can be combined with the local ratio technique [9] to
obtain the same competitive ratio (in a similar way as done in [38] for the sorting problem).
Our goal is to achieve better competitive ratios in the stochastic setting. Motivated by
Lemma 2.4, we can now define the vertex cover instance.

▶ Definition 2.5. Given a hypergraph H = (V, E), the vertex cover instance of H is the
graph Ḡ = (V, Ē) with {v, u} ∈ Ē if and only if there is a hyperedge F ∈ E such that v, u ∈ F ,
v is leftmost in F and Iv ∩ Iu ̸= ∅. For the special case of a graph G instead of a hypergraph
H, it holds that Ḡ = G.

Since each edge of the vertex cover instance Ḡ is a witness set by Lemma 2.4, we can
observe that each feasible query set Q is a vertex cover of Ḡ. Using the vertex cover instance,
we can define a class of algorithms for the hypergraph orientation problem as follows: An
algorithm is vertex cover-based if it implements the following pattern:
1. Non-adaptively query a vertex cover V C of Ḡ;
2. Iteratively query mandatory vertices until the minimum-weight vertex of each hyperedge

is known: For each hyperedge F ∈ E for which the minimum weight is still unknown,
query the vertices in order of left endpoints until the minimum weight is found.

By definition of the second step, each vertex cover-based algorithm clearly orients each
hyperedge. Furthermore, Lemma 2.1 implies that each vertex queried in the last step is
indeed mandatory for all realizations that are consistent with the currently known information,
i.e., the weights of the previously queried vertices. For graphs, this is easy to see, and for
hypergraphs, this can be shown as follows: For a hyperedge F that isn’t solved after the
first step and has leftmost vertex v initially, the vertex cover V C has queried v or all other
vertices of F . In the latter case, v is the only unqueried vertex of F and Iv must contain the
precise weight of one of the other vertices, hence v is mandatory. In the former case, the
remaining candidates for being the minimum-weight vertex are (1) the vertex with leftmost
precise weight among those queried in the first step, and (2) the unqueried vertices whose
intervals contain that precise weight. It is then clear that the leftmost vertex is mandatory,
and querying it either solves the hyperedge or yields a situation of the same type.

All the algorithms we propose in this paper are vertex cover-based. We have the following
lower bounds for vertex cover-based algorithms.

▶ Theorem 2.6. No vertex cover-based algorithm has competitive ratio better than 3
2 for the

hypergraph orientation problem. This result holds even in the following special cases:
1. The graph has only a single hyperedge but the query costs are not uniform.
2. The query costs are uniform and the vertex cover instance Ḡ is bipartite.
3. The instance is a non-bipartite graph orientation instance with uniform query costs.

We remark that the second step of vertex cover-based algorithms must be adaptive: In
the full version we show that any algorithm consisting of two non-adaptive stages cannot
have competitive ratio o(log n), even for a single hyperedge with n vertices and uniform
query costs.

Bounds on E[OPT]. Let R be the set of all possible realizations and let OPT(R) for R ∈ R
be the optimal query cost for realization R. As each feasible query set Q must include a
vertex cover of Ḡ, the minimum weight of a vertex cover of Ḡ (using the query costs as
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weights) is a lower bound on the optimal query cost for each realization and, thus, on E[OPT].
This observation in combination with Lemma 2.1 also gives us a way to identify an optimal
query set for a fixed realization, by using the knowledge of the exact vertex weights.

▶ Observation 2.7. For a fixed realization R of an instance of the hypergraph orientation
problem, let M be the set of vertices that are mandatory (cf. Lemma 2.1), and let V CM be
a minimum-weight vertex cover of Ḡ[V \ M ]. Then M ∪ V CM is an optimal query set for
realization R.

Computing OPT(R) for a fixed and known realization R is NP-hard [24]. This extends
to the hypergraph orientation problem and the computation of E[OPT]: We can reduce from
the problem of computing OPT(R) by concentrating the probability mass of all intervals
onto the weights in realization R. The reduction of [24] in combination with [19] also implies
APX-hardness.

To analyze the performance of our algorithms, we compare the expected cost of the
algorithms to the expected cost of the optimal solution. By Observation 2.7, c(M) + c(V CM )
is the minimum query cost for a fixed realization R, where M ⊆ V is the set of mandatory
elements in the realization and V CM is a minimum-weight vertex cover for the subgraph
Ḡ[V \ M ] of the vertex cover instance Ḡ = (V, Ē) induced by V \ M . Thus, the optimal
solution for a fixed realization is completely characterized by the set of mandatory elements
in the realization. Using this, we can characterize E[OPT] as E[OPT] =

∑
M⊆V p(M) ·

c(M) +
∑

M⊆V p(M) · c(V CM ), where p(M) denotes the probability that M is the set of
mandatory elements. It follows that

∑
M⊆V p(M) · c(M) =

∑
v∈V pv · c(v), since both terms

describe the expected cost for querying mandatory elements, which leads to the following
characterization of E[OPT]:

E[OPT] =
∑
v∈V

pv · cv +
∑

M⊆V

p(M) · c(V CM ).

A key technique for our analysis is lower bounding E[OPT] by partitioning the op-
timal solution into subproblems and discarding dependencies between elements in different
subproblems.

▶ Definition 2.8. For a realization R and any subset S ⊆ V , let OPTS = minQ∈Q c(Q ∩ S),
where Q is the set of all feasible query sets for realization R.

▶ Lemma 2.9. Let S1, . . . , Sk be a partition of V . Then E[OPT] ≥
∑k

i=1 E[OPTSi
].

Proof. We start the proof by characterizing E[OPTSi
] for each i ∈ {1, . . . , k}. Let R ∈ R be

a realization in which M is the set of mandatory elements. Then OPTSi
needs to contain all

mandatory elements of Si, and resolve all remaining dependencies between vertices of Si, i.e.,
query a minimum-weight vertex cover V CSi

M for the subgraph Ḡ[Si \ M ]. Thus, it follows

E[OPTSi
] =

∑
v∈Si

pv · cv +
∑

M⊆V

p(M) · c(V CSi

M ). (1)
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By summing Equation (1) over all i ∈ {1, . . . , k}, we obtain the lemma:

k∑
i=1

E[OPTSi
] =

k∑
i=1

 ∑
v∈Si

pv · cv +
∑

M⊆V

p(M) · c(V CSi

M )


=

∑
v∈V

pv · cv +
∑

M⊆V

p(M) ·

 k∑
i=1

c(V CSi

M )


≤

∑
v∈V

pv · cv +
∑

M⊆V

p(M) · c(V CM ) = E[OPT],

where the second equality follows from S1, . . . , Sk being a partition. The inequality follows
from

∑k
i=1 c(V CSi

M ) being the cost of a minimum weighted vertex cover for a subgraph of
G[V \ M ], while c(V CM ) is the minimum cost for a vertex cover of the whole graph. ◀

For the case of arbitrary query costs, we will sometimes need to partition V in such a
way that a vertex v can be split into fractions that are in different parts of the partition. We
view each fraction as a copy of v, and the split is done in such a way that the query costs of
all copies of v add up to cv. Further, the probability distribution for being mandatory in the
resulting instance is such that either all copies of v are mandatory or none of them is, and
the former happens with probability pv. (A detailed discussion of this process can be found
in the full version.) We refer to the application of this operation to a vertex as a vertex split
and note that it can be applied repeatedly.

▶ Observation 2.10. Let OPT′ be the optimal solution for an instance that is created by
iteratively executing vertex splits. Then, E[OPT′] = E[OPT]. Furthermore, Lemma 2.9 also
applies to E[OPT′] and the modified instance.

3 A Threshold Algorithm for Orienting Hypergraphs

We present an algorithm for orienting graphs and its generalization to hypergraphs.

3.1 Orienting Graphs
We consider the graph orientation problem. As a subproblem, we solve a vertex cover problem.
This problem is NP-hard and 2-approximation algorithms are known [56]. For several special
graph classes, there are improved algorithms [39]. Using an α-approximation as a black box,
we give a competitive ratio between ϕ ≈ 1.618 (α = 1) and 2 (α = 2) as a function depending
on α.

Algorithm 1 Threshold.

Input: Instance G = (V, E), pv for each v ∈ V , parameter d ∈ [0, 1],
and an α-approximation black box for the vertex cover problem

1 Let M = {v ∈ V | pv ≥ d};
2 Solve (LP) for G[V \ M ] and let x∗ be an optimal basic feasible solution;
3 Let V1 = {v ∈ V | x∗

v = 1} and similarly V1/2, V0 ;
4 Use the α-approximation black box to approximate a vertex cover V C ′ for G[V1/2];
5 Query Q = M ∪ V1 ∪ V C ′; /* Q is a vertex cover of G */
6 Query the mandatory elements of V \ Q ;
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Algorithm 1 is parameterized by a threshold d ∈ [0, 1], which is optimized depending on
the approximation ratio α of the chosen vertex cover procedure. The algorithm executes a
preprocessing of the vertex cover instance by using the following classical LP relaxation, for
which each optimal basic feasible solution is half-integral [47]:

min
∑

v∈V cv · xv

s.t. xv + xu ≥ 1 ∀{u, v} ∈ E

xv ≥ 0 ∀v ∈ V

(LP)

▶ Theorem 3.1. Given an α-approximation with 1 ≤ α ≤ 2 for the vertex cover problem
(on the induced subgraph G[V1/2], see Line 4), Threshold with parameter d achieves a
competitive ratio of max{ 1

d , α + (2 − α) · d} for the graph orientation problem. Optimizing d

yields a competitive ratio of 1
2 (α +

√
8 − α(4 − α)).

Proof. Here, we show the result for uniform query costs. The generalization to arbitrary
query costs requires an additional technical step involving vertex splitting and is discussed
in the full version. Since Q is a vertex cover for G, querying it in Line 5 and resolving all
remaining dependencies in Line 6 clearly solves the graph orientation problem. Note that
V \ Q is an independent set in G, and thus the nodes in V \ Q can only be made mandatory
by the results of the queries to Q. Hence, it is known after Line 5 which nodes in V \ Q are
mandatory, and they can be queried in Line 6 in arbitrary order (or in parallel).

We continue by showing the competitive ratio of max{ 1
d , α + (2 − α) · d}. Algebraic trans-

formations show that the optimal choice for the threshold is d(α) = 2/(α +
√

8 − α(4 − α)).
The desired competitive ratio for Threshold with d = d(α) follows.

The algorithm queries set Q and all other vertices only if they are mandatory, hence

E[ALG] = |Q| +
∑

v∈V \Q

pv = |M | + |V1| + |V C ′| +
∑
v∈V0

pv +
∑

v∈V1/2\V C′

pv. (2)

The expected optimal cost can be lower bounded by partitioning and Lemma 2.9:

E[OPT] ≥ E[OPTM ] + E[OPTV1∪V0 ] + E[OPTV1/2 ]. (3)

In the remainder we compare E[ALG] with E[OPT] component-wise.
We can lower bound E[OPTM ] by

∑
v∈M pv using Equation (1). By definition of M , it

holds that E[OPTM ] ≥
∑

v∈M pv ≥ d · |M |. Thus,

|M | ≤ 1
d

· E[OPTM ]. (4)

Next, we compare |V1| +
∑

v∈V0
pv with E[OPTV1∪V0 ]. For this purpose, let G[V1 ∪ V0]

be the subgraph of G induced by V1 ∪ V0, and let G′[V1 ∪ V0] be the bipartite graph that
is created by removing all edges between elements of V1 from G[V1 ∪ V0]. It follows from
similar arguments as in [47, Theorem 2] that V1 is a minimum vertex cover of G′[V1 ∪ V0].
This allows us to apply the famous Kőnig-Egerváry theorem [52]. By the latter there is
a matching h mapping each v ∈ V1 to a distinct h(v) ∈ V0 with {v, h(v)} ∈ E. Denoting
S = {h(v) | v ∈ V1}, we can infer E[OPTV1∪V0 ] ≥ E[OPTV1∪S ] + E[OPTV0\S ].

Any feasible solution must query at least one endpoint of all edges of the form {v, h(v)}.
This implies E[OPTV1∪S ] ≥ |V1|. Since additionally ph(v) ≤ d for each h(v) ∈ S, we get∑

v∈V1

(
1 + ph(v)

)
≤ (1 + d) · |V1| ≤ (1 + d) · E[OPTV1∪S ]. (5)
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By lower bounding E[OPTV0\S ] with
∑

v∈V0\S pv and using (5), we get

|V1| +
∑
v∈V0

pv =
∑
v∈V1

(
1 + ph(v)

)
+

∑
v∈V0\S

pv (6)

≤ (1 + d) · E[OPTV1∪S ] + E[OPTV0\S ] ≤ (1 + d) · E[OPTV1∪V0 ].

Finally, consider the term |V C ′| +
∑

v∈V1/2\V C′ pv. Let V C∗ be a minimum cardinality
vertex cover for G[V1/2]. Then, it holds |V C∗| ≥ 1

2 · |V1/2|. This is, because in the optimal
basic feasible solution to the LP relaxation x∗, each vertex in V1/2 has a value of 1

2 . A vertex
cover with |V C∗| < 1

2 · |V1/2| would contradict the optimality of x∗. The following part of the
analysis crucially relies on |V C∗| ≥ 1

2 · |V1/2|, which is the reason why Threshold executes
the LP relaxation-based preprocessing before applying the α-approximation.

Now, the expected cost of the algorithm for the subgraph G[V1/2] is |V C ′| +
∑

v∈I′ pv ≤
|V C ′| + d · |I ′| with I ′ = V1/2 \ V C ′. Since |V C ′| ≥ |V C∗| ≥ 1

2 · |V1/2|, there is a tradeoff
between the quality of |V C ′| and the additional cost of d · |I ′|. If |V C ′| is close to 1

2 · |V1/2|,
then it is close to |V C∗| but, on the other hand, |I ′| then is close to 1

2 · |V1/2|, which means
that the additional cost d · |I ′| is high. Vice versa, if the cost for |V C ′| is high because it
is larger than 1

2 · |V1/2|, then |I ′| is close to zero and the additional cost d · |I ′| is low. We
exploit this tradeoff and upper bound |V C′|+d·|I′|

|V C∗| in terms of the approximation factor α

of the vertex cover approximation. Assume that the approximation factor α is tight, i.e.,
|V C ′| = α·|V C∗|. Since d ≤ 1, this is the worst case for the ratio |V C′|+d·|I′|

|V C∗| . (In other words,
if the approximation factor was not tight, we could replace α by the approximation factor
that is actually achieved and carry out the following calculations with that smaller value of
α instead, yielding an even better bound.) Using |V C ′| = α · |V C∗| and |V C∗| ≥ 1

2 · |V1/2|,
we can derive

|I ′| = |V1/2| − |V C ′| = |V1/2| − α · |V C∗| ≤ (2 − α) · |V C∗|.

For the cost of the algorithm for subgraph G[V1/2] we get

|V C ′| + d · |I ′| ≤ α · |V C∗| + d · (2 − α) · |V C∗| = (α + (2 − α) · d) · |V C∗|.

Since |V C∗| ≤ E[OPTV1/2 ], we get

|V C ′| + d · |I ′| ≤ (α + (2 − α) · d) · E[OPTV1/2 ]. (7)

Combining Equations (2), (4), (6) and (7), we can upper bound the cost of the algorithm:

E[ALG] = |M | + |V1| +
∑
v∈V0

pv + |V C ′| +
∑

v∈V1/2\V C′

pv.

≤ 1
d

· E[OPTM ] + (1 + d) · E[OPTV1∪V0 ] + (α + (2 − α) · d) · E[OPTV1/2 ]

≤ max
{

1
d

, (1 + d), (α + (2 − α) · d)
}

· E[OPT],

where the last inequality follows from the lower bound on OPT in (3). Observe that for
any d ∈ [0, 1] and α ∈ [1, 2], it holds that (α + (2 − α) · d) ≥ (1 + d). We conclude with
E[ALG] ≤ max{ 1

d , (α + (2 − α) · d)} · E[OPT], which implies the theorem. ◀

In the full version of the paper, we show that the analysis of Threshold is tight. To
benefit from a better approximation factor than α = 2 for solving the minimum vertex cover
problem, we would need to know in advance the specialized graph class on which we want
to solve this subproblem. In some cases, we can benefit from optimal or approximation
algorithms, e.g., using Threshold with the PTAS for planar graphs [10] allows us to achieve
a competitive ratio of at most 1.618 + ϵ, for any ϵ > 0, if the input graph is planar.
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3.2 Orienting Hypergraphs
▶ Theorem 3.2. Given an α-approximation with 1 ≤ α ≤ 2 for the vertex cover
problem (on the induced subgraph Ḡ[V1/2] of the vertex cover instance given by Defin-
ition 2.5, cf. Line 4), a modified version of the Threshold algorithm solves the hy-
pergraph orientation problem with arbitrary query costs with competitive ratio R =
1
2

(
α +

√
α2 + 4(2 − α)(1 + αϵ + (2 − α)ϵ2) + (4 − 2α)ϵ

)
with probability at least 1 − δ. Its

running time is upper bounded by the complexity of the sampling procedure and the vertex
cover black box procedure.

Proof. The modified algorithm works with the vertex cover instance Ḡ instead of the given
hypergraph H, following Definition 2.5. In Line 1, we use d(α) = 1/R + ϵ. In Line 6, we
iteratively query mandatory vertices until the instance is solved. In addition, we use a random
estimation Yv of pv, instead of the precise probability, using the procedure described in
Lemma 2.2 with parameters ϵ and δ′ such that 1 − δ = (1 − δ′)n. As a result, with probability
at least 1 − δ we have that for every vertex v, the estimation Yv has absolute error at most ϵ.
In case of this event we obtain the following bound on the cost (which is optimized for the
chosen value of d), namely E[ALG] ≤ max{ 1

d−ϵ , (1+d+ ϵ), (α+(2−α)(d+ ϵ))} ·E[OPT]. ◀

Sorting a set of elements is equivalent to determining, for each pair of elements, which of
the two has smaller weight. Hence, the problem of sorting multiple sets of elements with
uncertain weights is a special case of the graph orientation problem: For each set to be
sorted, the edge set of a complete graph on its elements is added to a graph, and the resulting
instance of the graph orientation problem is then equivalent to the given instance of the
sorting problem. We can show the following theorem.

▶ Theorem 3.3. For the special cases of orienting O(log |V |) hyperedges and sorting O(1)
sets, Threshold can be applied with α = 1 in polynomial running time.

4 Vertex Cover-Based Algorithms: Improved Results for Special Cases

Consider an arbitrary vertex cover-based algorithm ALG. It queries a vertex cover V C in
the first stage, and continues with elements of V \ V C if they are mandatory. Thus,

E[ALG] = c(V C) +
∑

v∈V \V C

pv · cv =
∑

v∈V C

(
pv · cv + (1 − pv) · cv

)
+

∑
v∈V \V C

pv · cv

=
∑
v∈V

pv · cv +
∑

v∈V C

(1 − pv) · cv.

Since the first term is independent of V C, ALG is the best possible vertex cover-based
algorithm if it minimizes

∑
v∈V C(1 − pv) · cv. We refer to this algorithm as BestVC.

To implement BestVC, we need the exact value pv, for all v ∈ V , and an optimal
algorithm for computing a weighted vertex cover. As mentioned in Section 2, the first
problem is #P-hard in hypergraphs, but it can be solved exactly in polynomial time for
graphs. The weighted vertex cover problem can be solved optimally in polynomial time for
bipartite graphs.

In general, BestVC has competitive ratio at least 1.5 (Theorem 2.6). However, we show
in the following that it is 4/3-competitive for two special cases. It remains open whether
BestVC still outperforms Threshold if the vertex cover is only approximated with a
factor α > 1.
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4.1 A Best Possible Algorithm for Orienting Bipartite Graphs
▶ Theorem 4.1. BestVC is 4

3 -competitive for the bipartite graph orientation problem.

Proof. In the full version of the paper, we show that BestVC is 4
3 -competitive for the

problem of orienting stars if both vertex cover-based algorithms (either querying the leaves
or the center first) have the same expected cost. In this proof, we divide the instance
into subproblems that fulfill these requirements, and use the result for stars to infer 4

3 -
competitiveness for bipartite graphs.

Let V C be a minimum-weight vertex cover (with weights cv · (1 − pv)) as computed by
BestVC in the first phase. By the Kőnig-Egerváry theorem (e.g., [52]), there is a function
π : E → R with

∑
{u,v}∈E π(u, v) ≤ cv · (1 − pv) for each v ∈ V . By duality theory, the

constraint is tight for each v ∈ V C, and π(u, v) = 0 holds if both u and v are in V C. Thus,
we can interpret π as a function that distributes the weight of each v ∈ V C to its neighbors
outside of V C.

For each v ∈ V C and u ∈ V \ V C, let λu,v := π(u,v)
(1−pu)·cu

denote the fraction of the
weight of u that is used by π to cover the weight of v. Moreover, for u ∈ V \ V C, let
τu := 1 −

∑
{u,v}∈E λu,v be the fraction of the weight of u that is not used by π to cover the

weight of any v ∈ V C. Then, we can write the expected cost of BestVC as follows:

E[BestVC] =
∑

v∈V C

(
cv +

∑
u∈V \V C

pu · λu,v · cu

)
+

∑
u∈V \V C

pu · τu · cu. (8)

Using Observation 2.10, we compare E[BestVC] with the expected optimum E[OPT′] for
an instance G′ = (V ′, E′, c′) that is created by splitting vertices. We modify the mandatory
distribution as in Section 2, which implies E[OPT] = E[OPT′]. We add the following copies:
1. For each v ∈ V C, we add a copy v′ of v to V ′ with c′

v′ = cv.
2. For all u ∈ V \ V C and v ∈ V C with λu,v > 0, we add a copy u′

v of u to V ′ with
c′

u′
v

= λu,v · cu.
3. For each u ∈ V \ V C with τu > 0, we add a copy u′ of u to V ′ with c′

u′ = τu · cu.
Let p′

v denote the probability of v being mandatory for instance G′. By definition of the
vertex split operation, we have pv = p′

u for each v ∈ V and each copy u ∈ V ′ of v. Further,
for each v ∈ V C, define H ′

v = {u′
v | u ∈ V with λu,v > 0}. By definition of H ′

v and G′, all
H ′

v are pairwise disjoint. Let H′ =
⋃

v∈V C

(
H ′

v ∪ {v′}
)
; then we can express E[BestVC] as

follows:

E[BestVC] =
∑

v∈V C

(
cv +

∑
u∈V \V C

pu · λu,v · cu

)
+

∑
u∈V \V C

pu · τu · cu

=
∑

v∈V C

(
c′

v′ +
∑

u∈H′
v

p′
u · c′

u

)
+

∑
u∈V ′\H′

p′
u · c′

u.

Similarly, we can lower bound E[OPT′] using Lemma 2.9:

E[OPT′] ≥
∑

v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

E[OPT′
{u}] ≥

∑
v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

p′
u · c′

u.

(9)

Since the term
∑

u∈V ′\H′ p′
u · c′

u shows up in both inequalities, it remains, for each v ∈ V C,
to bound c′

v′ +
∑

u∈H′
v

p′
u · c′

u in terms of E[OPT′
H′

v∪{v′}]. By definition of H ′
v, we have

(1 − p′
v′) · c′

v′ =
∑

u∈H′
v
(1 − p′

u) · c′
u, which implies

c′
v′ +

∑
u∈H′

v

p′
u · c′

u = p′
v′ · c′

v′ +
∑

u∈H′
v

c′
u. (10)
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The value E[OPT′
H′

v∪{v′}] corresponds to the expected optimum for the subproblem which
considers the subgraph induced by H ′

v ∪ {v′} (which is a star), uses p′
u as the mandatory

probability for each u ∈ H ′
v ∪ {v′}, and uses c′

u as the query cost of each u ∈ H ′
v ∪ {v′}. For

this subproblem, c′
v′ +

∑
u∈H′

v
p′

u ·c′
u corresponds to the expected cost of the vertex cover-based

algorithm that queries vertex cover {v′} in the first stage. Furthermore, p′
v′ · c′

v′ +
∑

u∈H′
v

c′
u

corresponds to the expected cost of the vertex-cover based algorithm that queries vertex
cover H ′

v in the first stage. In summary, we have a star orientation subproblem for which
both vertex cover-based algorithms (querying the leaves or the center first) have the same
expected cost (cf. Equation (10)). As a major technical step, we show that BestVC is
4
3 -competitive for such subproblems, which implies

c′
v′ +

∑
u∈H′

v

p′
u · c′

u ≤ 4
3 · E[OPT′

H′
v∪{v′}].

A corresponding lemma is proven in the full version. We remark that the lemma requires p′
v′

to be independent of each p′
u with u ∈ H ′

v; otherwise the subproblem does not correspond to
the star orientation problem. As the input graph is bipartite, such independence follows by
definition.

Using this inequality and Equation (9), we conclude that BestVC is 4/3-competitive.

E[BestVC] =
∑

v∈V C

(
c′

v′ +
∑

u∈H′
v

p′
u · c′

u

)
+

∑
u∈V ′\H′

p′
u · c′

u

≤ 4
3 ·

∑
v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

p′
u · c′

u ≤ 4
3 · E[OPT′] = 4

3 · E[OPT] ◀

4.2 An Almost Best Possible Algorithm for Orienting a Hyperedge
▶ Theorem 4.2. BestVC has a competitive ratio at most min{ 4

3 , n+1
n } for the hypergraph

orientation problem on a single hyperedge with n ≥ 2 vertices and uniform query costs. For a
hyperedge with only two vertices, the algorithm is 1.207-competitive.

Our analysis improves upon a (n + 1)/n-competitive algorithm by Chaplick et al. [16] in
case that the hyperedge has two or three vertices. Moreover, we show that this is near-optimal:
It is not hard to show a matching lower bound for two vertices and, due to Theorem 2.3 and
the theorem below, this is the best possible for three vertices, and in general the difference
between the upper and lower bounds is less than 4%.

▶ Theorem 4.3. Any algorithm for orienting a single hyperedge with n + 1 ≥ 2 vertices has
competitive ratio at least n2/(n2 − n + 1), even for uniform query costs.

Note that Theorem 4.2 is in contrast to the problem of orienting a hyperedge with arbitrary
query costs: In this setting, [16] showed that the algorithm is 1.5-competitive, which matches
the corresponding lower bound for vertex cover-based algorithms of Theorem 2.6.

5 Conclusion

In this paper, we present algorithms for the (hyper)graph orientation problem under stochastic
explorable uncertainty. It remains open to determine the competitive ratio of BestVC
for the general (hyper)graph orientation problem, and to investigate how the algorithm
behaves if it has to rely on an α-approximation to solve the vertex cover subproblem. In



E. Bampis, C. Dürr, T. Erlebach, M. S. de Lima, N. Megow, and J. Schlöter 10:15

this context, one can consider the resulting algorithm as a standalone algorithm, or as a
subroutine for Threshold. Our analysis suggests that, to achieve a competitive ratio better
than 1.5, algorithms have to employ more adaptivity; exploiting this possibility remains an
open problem. Finally, it would be interesting to characterize the vertex cover instances
arising in our Threshold algorithm. In addition to the relevance from a combinatorial
point of view, such a characterization may allow an improved α-approximation algorithm for
those instances.
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Abstract
Unlike the problem of deciding whether a digraph D = (V, A) has ℓ in-branchings (or ℓ out-
branchings) is polynomial time solvable, the problem of deciding whether a digraph D = (V, A) has
an in-branching B− and an out-branching B+ which are arc-disjoint is NP-complete. Motivated by
this, a natural optimization question that has been studied in the realm of Parameterized Complexity
is called Rooted k-Distinct Branchings. In this problem, a digraph D = (V, A) with two
prescribed vertices s, t are given as input and the question is whether D has an in-branching rooted
at t and an out-branching rooted at s such that they differ on at least k arcs. Bang-Jensen et
al. [Algorithmica, 2016 ] showed that the problem is fixed parameter tractable (FPT) on strongly
connected digraphs. Gutin et al. [ICALP, 2017; JCSS, 2018 ] completely resolved this problem
by designing an algorithm with running time 2O(k2 log2 k)nO(1). Here, n denotes the number of
vertices of the input digraph. In this paper, answering an open question of Gutin et al., we design a
polynomial kernel for Rooted k-Distinct Branchings. In particular, we obtain the following:
Given an instance (D, k, s, t) of Rooted k-Distinct Branchings, in polynomial time we obtain
an equivalent instance (D′, k′, s, t) of Rooted k-Distinct Branchings such that |V (D′)| ≤ O(k2)
and the treewidth of the underlying undirected graph is at most O(k). This result immediately
yields an FPT algorithm with running time 2O(k log k) + nO(1); improving upon the previous running
time of Gutin et al. For our algorithms, we prove a structural result about paths avoiding many
arcs in a given in-branching or out-branching. This result might turn out to be useful for getting
other results for problems concerning in-and out-branchings.
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1 Introduction

Let D = (V, A) be a digraph and r be a vertex of D. An out-branching (respectively,
in-branching) in D is a connected spanning subdigraph B+

r (respectively, B−
r ) of D in which

each vertex v ̸= r has precisely one entering (respectively, leaving) arc and r has no entering
(respectively, leaving) arc. The vertex r is called the root of B+

r (respectively, B−
r ). The

study of finding a spanning tree in an undirected graph or an out-branching in a digraph
satisfying specific properties, such as having at least k leaves, or having at least k internal
vertices [1, 4, 7, 10, 11, 13, 14, 18, 19, 22] has been at the forefront of research in parameterized
algorithms. This paper aims to study a problem of finding an in-branching and an out-
branching, in the given digraph, whose arc sets is disjoint on at least k arcs, in the realm of
Kernelization Complexity [21] and Parameterized Complexity [12,15,17,24].

A parameterized problem Π is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance of Π down to an
equivalent instance of Π whose size is bounded by a function f(k) of k. (Here, two instances
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are equivalent if both of them are either yes-instances or no-instances.) Such an algorithm is
called an f(k)-kernel for Π. If f(k) is a polynomial function of k, we say that the kernel is a
polynomial kernel. See [12,15,17,21,24] for more details.

In studying problems around finding edge-disjoint spanning trees, arc-disjoint in-
branchings, or arc-disjoint in-branchings, one of the most important results is due to Edmonds.
This classical result states that given a digraph D and a positive integer ℓ, we can test
whether D contains ℓ arc-disjoint out-branchings in polynomial time [16]. In contrast to this,
Thomassen proved that the problem of deciding whether a digraph contains an out-branching
B+

s and an in-branching B−
t which are arc-disjoint is NP-complete, even if s = t (the proof

is published in [2]). The problem remains NP-complete even for 2-regular digraphs [5] but
it is polynomial time solvable on tournaments [2], locally semicomplete digraphs [3] and
acyclic digraphs [6,9]. In fact, even deciding whether a digraph D contains an out-branching
which is arc-disjoint from some spanning tree in the underlying undirected graph remains
NP-complete [8].

In this paper, we consider the following parameterized version of the arc-disjoint in- and
out-branching problem by using a parameter k to measure how distinct a given pair B+

s , B−
t

are, where the measure is in terms of the number of arcs that belongs to B+
s but not to B−

t .
In particular, we study the following problem.

Rooted k-Distinct Branchings (R-k-DB) Parameter: k

Input: A digraph D = (V, A), two fixed vertices s, t ∈ V and an integer k.
Question: Does there exist an out-branching B+

s and an in-branching B−
t such

that |A(B+
s ) \ A(B−

t )| ≥ k?

Observe that the problem is NP-complete since it contains the arc-disjoint in- and
out-branching question as to the particular case when k is the number of vertices minus one.

Context of our Study. The problem R-k-DB has a rich history in the realm of Parameterized
Complexity. Bang-Jensen and Yeo [7] asked whether the problem would be FPT when s = t.
Answering this question in the affirmative, Bang-Jensen et al. [4] showed that the problem
is FPT when the input is a strongly connected digraph and asked whether the problem is
FPT on general digraphs. This was confirmed in affirmative by Gutin et al. [22], who showed
that the problem is solvable in time 2O(k2 log2 k)nO(1) time. A natural follow up question
that they ask is: Does R-k-DB admits a polynomial sized kernel? This open question is the
starting point of our work.

Our Results and Methods. We design a polynomial kernel for R-k-DB.

▶ Theorem 1.1. R-k-DB admits a polynomial kernel with O(k2) vertices.

A key ingredient in the work of Gutin et al. [22] is out-branchings with many leaves. A
vertex v is a leaf in the out-branching B+

s if no arc is leaving v in B+
s . If the input (D, s, t, k)

to the R-k-DB problem is such that D has an out-branching B+
s with at least k + 1 leaves,

then (D, s, t, k) is a “yes”-instance since every in-branching B−
t will have the property that no

arc of B−
t which leaves a vertex in L will be contained in B+

s , where L is the set of leaves of
B+

s . It was shown in [13,23] that the problem (parameterized by p) of deciding the existence
of an out-branching with at least p leaves is FPT. Furthermore, if the input is strongly
connected and has no out-branching B+

s with at least k + 1 leaves, then it has pathwidth
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O(k log k) and now a result from [4] implies that the Rooted k-Distinct Branchings
problem is FPT for strongly connected digraphs. When the input is not strongly connected,
the case is considerably more complicated to handle when following the approach used in [22].
Indeed, the result of Gutin et al. [22] could be viewed as an algorithm that obtains an
equivalent instance with treewidth of the underlying graph bounded by kO(1). Our approach
is very different, as we bound the size rather than a structural property.

We use a fundamentally different approach, based on a structural analysis of paths
avoiding many arcs of a fixed out-branching, to prove an O(k2)-vertex kernel for the R-k-DB
problem. In the whole analysis, we work with a fixed out-branching and see how an in-
branching can be built that avoids as many arcs of the given out-branching. In a step-by-step
procedure, we either obtain reduction rules to reduce our input or at the end, we do get an
in-branching and an out-branching that avoids k-arcs of each other. Finally, we argue that
the instance on which none of the reduction rules can be applied has at most O(k2) vertices.

We further look into our kernel and try to bound the treewidth of the underlying
undirected graph. In particular, given an instance (D, k, s, t) of R-k-DB, in polynomial time
we obtain an equivalent instance (D′, k′, s, t) of R-k-DB such that |V (D′)| ≤ O(k2) and the
treewidth of the underlying undirected graph is at most O(k). This result yields the FPT
algorithm by a standard dynamic programming approach over graphs of bounded treewidth.

▶ Theorem 1.2 (⋆). 1 R-k-DB admits an algorithm with running time 2O(k log k) + nO(1).

The running time obtained in Theorem 1.2 improves upon the running time of Gutin et
al. [22]. We conclude by saying that the structural result on so-called substitute paths of an
out-branching might be of independent interest and could find further applications.

2 Notation and Preliminaries

Given a digraph D = (V, A), we also use V (D) and A(D) to denote the vertex set and
the arc set of D, respectively. If it is clear from the context we simply use V and A,
respectively. Given a digraph D = (V, A) and an arc a = (u, v) ∈ A we call u the tail
of a and v the head of a. The vertices u and v are the endpoints of a. For a set of arcs
A′ ⊆ A the set of heads denoted H(A′) is the set of heads of the arcs in A′. That is,
H(A′) = {h|(t, h) ∈ A′ for some h, t ∈ V }. Similarly, we have the set of tails denoted T (A′),
which is defined as follows: T (A′) = {t|(t, h) ∈ A′ for some h, t ∈ V }. In a digraph D we
will denote a path from u to v as Pu,v. By Pu,v[x, y] we will denote the subpath of Pu,v

which goes from x to y. We will denote the path Pu,v[x, y] − {y} as Pu,v[x, y[ and the path
Pu,v[x, y]−{x} as Pu,v]x, y]. Given a path Pu,v and Pv,z we will describe the concatenation of
the paths Pu,v and Pv,z as Pu,z = Pu,vPv,z. For a vertex u ∈ V (D) and an arc (u, v) ∈ A(D)
we will often use the notation u ∈ D and (u, v) ∈ D respectively. For a vertex v ∈ V (D) we
denote the out-neighbors of v as N+(v) and the in-neighbors as N−(v). An out-branching
with a root r ∈ V is denoted B+

r . For a vertex u ∈ V (B+
r ) we say that v is parent of u

if (v, u) ∈ A(B+
r ). To indicate that v is parent of u we use the notation v = PB+

r
(u). We

denote the directed path from u to v in B+
r as B+

r [u, v] and we say that u is ancestor to v

in B+
r if the path B+

r [u, v] exists. An in-branching with a root r ∈ V is denoted B−
r . For a

vertex u ∈ V (B−
r ) we say that v is parent of u if (u, v) ∈ A(B−

r ). To indicate this we use the
notation v = PB−

r
(u). We denote the directed path from u to v in B−

r as B−
r [u, v] and we

say that u is ancestor to v in B−
r if the path B−

r [u, v] exists.

1 Proofs labeled with ⋆ is not included in this version.
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3 Backward Arcs, Crossing Arcs and Substitute-paths

In this section we initiate our structural analysis of substitute paths. Given an out-branching
B+

r in a digraph D = (V, A), we will work with the arcs in A(D) \ A(B+
r ). We therefore

divide these arcs into backward and crossing arcs.

▶ Definition 1. Given an out-branching B+
r in a digraph D = (V, A) an arc (u, v) ∈

A(D) \ A(B+
r ) is backward, if the path B+

r [v, u] exists, and crossing, if it is not backward.

In an out-branching B+
r the arc (u, v) ∈ A is backward if and only if v is an ancestor of

u. We say that a backward arc (u, v) for B+
r goes over a vertex p if p ∈ B+

r ]v, u]. It means
that a backward arc (u, v) ∈ B+

r always goes over u. Figure 1 shows an out-branching B+
r

together with crossing and backward arcs in B+
r .

Figure 1 The figure shows D = (V, A). An out-branching B+
r is shown in black, the crossing

arcs for B+
r are shown in green, and the backwards arcs are shown in blue.

▶ Definition 2. For an out-branching B+
r in a digraph D a backward arc (u, v) is irrelevant

with respect to B+
r if and only if every path from r to u in D contains v. A backward arc

which is not irrelevant is relevant.

Definition 2 implies the following.

▶ Observation 3. An arc a is irrelevant wrt 2 some out-branching B+
r if and only if a is not

contained in any out-branching B∗+
r , that is, a is irrelevant in any out-branching B∗+

r .

In the rest of this section we consider a fixed out-branching B+
r , unless stated otherwise.

▶ Lemma 3.1. It is possible to find the set of all relevant arcs and the set of all irrelevant
arcs for B+

r in polynomial time.

Proof. For any arc (u, v) ∈ A(D) \ A(B+
r ) it can clearly be determined in linear time if the

path B+
r [v, u] exists and, therefore, whether the arc is backward. For every backward arc

(u, v) ∈ A(D) we can also determine in polynomial time if there exists a path Pr,u in D

which does not contain v, e.g., by determine if a (r, u)-path exists in D − {v}. ◀

Given the set of relevant arcs wrt B+
r in D we can now define the following relation

between the relevant arcs and a vertex u ∈ V .

▶ Definition 4. Let R(u) be the set of those relevant arcs wrt B+
r which go over

u. The joint relevant arc set for u is (recursively) defined as the arc set J(u) =
R(u) ∪

(⋃
h∈H(R(u)) J(h)

)
.

2 We use wrt for an abbreviation of “with respect to”.
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Hence for every vertex u ∈ B+
r the joint relevant arc set for u is defined recursively as

the union of R(u) and the joint relevant arc sets of all the heads of R(u). Figure 2 shows a
joint relevant arc set of a vertex v in a out-branching B+

r . For notational purpose we let
H(u) denote the set H(J(u)).

Figure 2 The Figure shows D. A(B+
r ) is shown in yellow and J(v) is shown in blue.

▶ Lemma 3.2. For every vertex u ∈ V such that H(u) ̸= ∅, it holds that for the last vertex
x on B+

r [r, u] which is also in H(u) we have H(x) = H(u) − {x}.

In Figure 2 we have H(v) = {h1, h2, h3, h4}. Lemma 3.2 means that H(h4) = {h1, h2, h3}.
The following is the proof for Lemma 3.2.

Proof. Let u ∈ V be a vertex such that H(u) ̸= ∅ and let l = |H(u)|. Observe that for every
h ∈ H(u) it holds that h ∈ B+

r [r, u]. Now name the vertices in H(u) as h1, h2, · · · , hl such
that hj comes before hi on B+

r [r, u] if j < i. Let i be an integer in the range [1, l − 1]. Since
hi ∈ H(u) it holds that there exists a relevant arc (t, hi) which goes over either u or a head
hp ∈ H(u) where i < p ≤ l. Observe that hi+1 ∈ B+

r [hi, u] and hi+1 ∈ B+
r [hi, hj ] for j > i.

Hence (t, hi) goes over hi+1. Therefore, hi ∈ H(hi+1). By induction it means that for i > 0
we have {h1, h2, · · · , hi−1} ⊆ H(hi). Now observe that no backward arc with the head hj for
j ≥ i can go over hi as hj ∈ B+

r [hi, u]. Hence {hi, hi+1, · · · , hl} ∩ H(hi) = ∅. As hi ∈ H(u)
we have that J(hi) ⊆ J(u). Hence H(hi) ⊆ H(u). As a result H(hi) = {h1, h2, · · · , hi−1}.
For i = l we therefore have that H(hl) = {h1, h2, · · · , hl−1} = H(u) − {hl}. ◀

▶ Lemma 3.3. Let C be the set of crossing arcs wrt. to B+
r . Then for every v ∈ V we have

H(v) ⊆ H(u) for some arc (w, u) ∈ C, where it is possible that v = u.

Proof. Assume for contradiction that there exists a vertex x ∈ V such that H(x) ̸⊆ H(u)
for every arc (v, u) ∈ C where we set H(u) = ∅ if C = ∅. Among all such vertices choose x

such that |H(x)| is maximized. Recall that for every h ∈ H(x) we have h ∈ B+
r [r, x]. Now

let h be the last vertex on B+
r [r, x] which is also in H(x). Observe h ∈ H(x) and there are

no vertices in B+
r ]h, x] ∩ H(x). Therefore, there must exist an arc (t, h) ∈ R(x) which goes

over x, and since it is relevant there is a path Pr,t in D which does not contain h. As a
consequence, there is an arc (p, q) ∈ Pr,t which is either a backward arc or a crossing arc
such that it’s head is in Pr,t ∩ B+

r ]h, t]. Figure 3 shows two possible situations where the arc
(p, q) is contained in Pr,t.
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Figure 3 In the top left of the Figure a possible section of B+
r is shown in black. In the top right,

the path Pr,t is shown in blue and the arc (t, h) is shown in gray. The bottom left figure shows an
other possible section of B+

r and the bottom right figure shows the path Pr,tin blue and the arc
(t, h) in gray.

Observe that since q ∈ B+
r ]h, t] the arc (t, h) goes over q, implying that h ∈ H(q) and

therefore {h} ∪ H(h) ⊆ H(q). From Lemma 3.2 we have that H(h) = H(x) − {h}. Hence
H(x) ⊆ H(q). As we have assumed for contradiction that there is no crossing arc (v, u) such
that H(x) ̸⊆ H(u) it follows that the arc (p, q) can not be crossing. Hence the arc (p, q) must
be backward. Since (p, q) ∈ Pr,t the path Pr,t[r, p] does not contain q and, therefore, (p, q)
is relevant. Thus (p, q) ∈ R(p) and q ∈ H(p). We therefore have that {q} ∪ H(q) ⊆ H(p).
Hence {q} ∪ H(x) ⊆ H(p). But it means that |H(x)| < |H(p)| which contradicts that x was
chosen such that |H(x)| ≥ |H(p)|. ◀

3.1 Existence of Substitute-path for the Out-branching B+
r

Now we define a substitute-path for the out-branching B+
r in the digraph D = (V, A).

▶ Definition 5. Let u be a vertex in B+
r , then a substitute-path is a path Sr,u from r to u

in D such that

|J(u) ∩ A(Sr,u)| + |H(u) \ V (Sr,u)| ≥
⌈

|H(u)|
2

⌉
. (1)

Thus if there exists a substitute-path Sr,u to a vertex u in B+
r then Sr,u either contain at

most half of the vertices in H(u) or for each vertex from H(u) it contains more than the half
of the vertices in H(u) it also contain an arc from J(u). Let q be the number of vertices from
H(u) which are on a substitute-path Sr,u. It then follows that the number of arcs from J(u)
on Sr,u is at least q − ⌈ |H(u)|

2 ⌉. Figure 4 shows two substitute-paths in an out-branching.
The following result may be of independent interests. Theorem 3.1 means that every

vertex v ∈ V is reachable from r by a substitute-path.

▶ Theorem 3.1. For the out-branching B+
r there exists a substitute-path to every v ∈ V .
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Figure 4 To the left, the digraph D = (V, A) is shown. The arcs of the out-branching B+
r are

shown in yellow, the arcs in J(v) are blue, and the remaining arcs are black. In the middle and to
the right, two paths from r to v are shown. One of the paths is green, the other is shown in red.
Both paths are substitute-paths to v.

Proof. In this proof we will be modifying paths and, therefore, we will first consider two
claims which deals with these modifications.

▷ Claim 6. For an arbitrary path Pr,v in D the following inequality holds for every vertex
x ∈ V (Pr,v)

|J(v) ∩ A(Pr,v[r, x])| + |H(v) \ V (Pr,v[r, x])| (2)
≥ |J(v) ∩ A(Pr,v)| + |H(v) \ V (Pr,v)|.

Proof. As Pr,v[r, x] ⊆ Pr,v we clearly have that |J(v) ∩ A(Pr,v[r, x])| ≤ |J(v) ∩ A(Pr,v)|. Let
j = |J(v)∩A(Pr,v)|−|J(v)∩A(Pr,v[r, x])|. For every arc (t, h) ∈ J(v) which is also on the path
Pr,v it follows that h ∈ H(v) and h ∈ V (Pr,v). Thus, the set H(v) \ V (Pr,v[r, x]) contains at
least j vertices more than H(v)\V (Pr,v). That is, |H(v)\V (Pr,v[r, x])|−j ≥ |H(v)\V (Pr,v)|.
From this (2) follows. ◁

▷ Claim 7. Given a vertex v ∈ B+
r , and two paths Pr,x and Px,u in D which are disjoint on

the vertex set H(v) − {x} the following inequality holds for the walk W = Pr,xPx,u and for
every (r, u)-path P = Pr,xPx,u obtained from W by deleting cycles.

|J(v) ∩ A(W )| + |H(v) \ V (W )| (3)
≤ |J(v) ∩ A(P )| + |H(v) \ V (P )|.

Proof. If |J(v) ∩ A(W )| > |J(v) ∩ A(P )| then there must exist one or more cycles in W

which contain arcs from J(v). For each such cycle there must exist at least one vertex
z ∈ (V (Pr,x) ∩ V (Px,u)) − {x}. Since Pr,x and Px,u are disjoint on the set H(v) − {x} we
have that z ̸∈ H(v). It means that for every arc (t, h) ∈ J(v) contained in W but not in P

the head h is not in P either. Therefore, for j = |J(v) ∩ A(W )| − |J(v) ∩ A(P )| we have
|H(v) \ V (P )| − j ≥ |H(v) \ V (W )| and Claim 7 follows. ◁

We are now ready to prove that there exists a substitute-path to every v ∈ V . We will
prove this by induction over the cardinality of H(v) = H(J(v)). Clearly, |H(r)| = 0 since no
backwards arc goes over r. Hence there exists at least one vertex v ∈ V for which |H(v)| = 0.
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For every such vertex the path B+
r [r, v] is clearly a substitute-path by (1). Thus there exists

a substitute-path to every v ∈ V for which |H(v)| = 0. Now assume for some positive integer
i ≤ n that for every vertex v ∈ V where |H(v)| < i it holds that there exists a substitute-path
to v.

Let u ∈ V be a vertex for which |H(u)| = i. If no such vertex exists in B+
r then clearly

there exists a substitute-path to every vertex u ∈ V where |H(u)| = i. Hence assume that
u exists. Recall that H(u) ⊆ V (B+

r [r, u]). Denote the vertices in H(u) by h0, h1, . . . , hi−1
such that B+

r [r, u] = B+
r [r, h0]B+

r [h0, h1] · · · B+
r [hi−2, hi−1]B+

r [hi−1, u].

▷ Claim 8. H(hj) = {h0, h1, · · · , hj−1} for every j ≤ i − 1.

Proof. From Lemma 3.2 it follows that H(hi−1) = {h0, h1, · · · , hi−2}. Now the claim follows
from Lemma 3.2 by induction over j ≤ i − 1. ◁

Since hj ∈ B+
r [r, hi−1] for j ≤ i − 1 no backwards arc with head in hi−1 can go over hj .

As hi−1 ∈ H(u) this means that there exists a relevant arc which goes over u. Fix such an
arc (t, hi−1).

▷ Claim 9. If there exists a path Pr,t in D such that

|J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≥ ⌈ i

2⌉. (4)

then there is a substitute-path to u

Proof. Assume that there exists a path Pr,t such that |J(u)∩A(Pr,t)|+ |H(u)\V (Pr,t)| ≥ ⌈ i
2 ⌉.

Let x be the first vertex on Pr,t which is also on the path B+
r [hi−1, t]. If x = u then

the path Pr,t[r, u] will be a substitute-path to u as |J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≤
|J(u) ∩ A(Pr,t[r, u])| + |H(u) \ V (Pr,t[r, u])| by Claim 6. Therefore, we may assume that
x ̸= u. We will consider the two cases: x ∈ B+

r [hi−1, u] or x ∈ B+
r [u, t]. By claim 6 it holds

that

|J(u) ∩ A(Pr,t[r, x])| + |H(u) \ V (Pr,t[r, x])| (5)

≥ |J(u) ∩ A(Pr,t)| + |H(u) \ V (Pr,t)| ≥ ⌈ i

2⌉.

If x ∈ B+
r [hi−1, u] then for the walk W ′

r,u = Pr,t[r, x]B+
r [x, u] it clearly holds that |J(u) ∩

A(Pr,t[r, x])| + |H(u) \ V (Pr,t[r, x])| = |J(u) ∩ A(W ′
r,u)| + |H(u) \ V (W ′

r,u)|. For the path
P ′

r,u = Pr,t[r, x]B+
r [x, u] we therefore have by Claim 7 that |J(u)∩A(P ′

r,u)|+|H(u)\V (P ′
r,u)| ≥

|J(u)∩A(Pr,t[r, x])|+|H(v)\V (Pr,t[r, x])|. From (5) it therefore follows that |J(u)∩A(P ′
r,u)|+

|H(u) \ V (P ′
r,u)| ≥ ⌈ i

2 ⌉. Hence P ′
r,u is a substitute-path to u. Now consider the second case

where x ∈ B+
r [u, t]. Consider the (x, u)-walk P ′′

x,u = B+
r [x, t](t, hi−1)B+

r [hi−1, u] and observe
that J(u) ∩ A(P ′′

x,u) = (t, hi−1) and H(u) ∩ V (P ′′
x,u) = hi−1. It means that P ′′

x,u is disjoint
from H(u) − {hi−1}. As x is the first vertex on Pr,t which is on B+

r [hi−1, t] and x ∈ B+
r [u, t]

it holds that hi−1 ̸∈ Pr,t[r, x] and Pr,t[r, x] and P ′′
x,u are disjoint except in x. Now consider

the P ∗
r,u = Pr,t[r, x]P ′′

x,u and observe that

|J(u) ∩ A(P ∗
r,u)| + |H(u) \ V (P ∗

r,u)|
= |J(v) ∩ A(Pr,t[r, x])| + 1 + |H(v) \ V (Pr,t[r, x])| − 1
= |J(v) ∩ A(Pr,t[r, x])| + |H(v) \ V (Pr,t[r, x])|

From (5) it therefore follows that |J(u) ∩ A(P ∗
r,u)| + |H(u) \ V (P ∗

r,u)| ≥ ⌈ i
2 ⌉. Thus P ∗

r,u is a
substitute-path to u. ◁
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Now we prove that there always exists a path such that (4) holds. Recall by the definition
of a relevant arc, that the relevant arc (t, hi−1) goes over t and there exists a path Pr,t in D

such that hi−1 ̸∈ Pr,t. If |H(u) \ V (Pr,t)| = i then (4) clearly holds. Hence we may assume
that there exists a vertex hj ∈ H(u) ∩ V (Pr,t). Now let hl be the last such vertex on the
path Pr,t, that is, no vertex hj ∈ H(u) − {hl} is on the path Pr,t[hl, t]. Observe that since
Pr,t does not contain hi−1 we have

l ≤ i − 2 (6)

By Claim 8, |H(hj)| = j for every j ≤ i − 1. By the induction assumption it therefore
follows that there is a substitute-path Sr,hj to every hj ∈ H(u).

▷ Claim 10. For every substitute-path to hl, Sr,hl
, either there exists a vertex hj ∈ Sr,hl

such that j > l or (4) holds.

Proof. Assume that there exists a substitute-path Sr,hl
to hl such that there is no vertex

hj ∈ Sr,hl
for j > l. Observe that since Sr,hl

is a substitute-path it holds that |J(hl) ∩
A(Sr,hl

)| + |H(hl) \ V (Sr,hl
)| ≥ ⌈ l

2 ⌉. Now consider the walk W ′
r,t = Sr,hl

Pr,t[hl, t]. The path
Sr,hl

does not contain any heads hj ∈ H(u) for j > l and Pr,t[hl, t] does not contain any
heads hj ∈ H(u) for j ̸= l. Hence we can deduce that:

|J(u) ∩ A(W ′
r,t)| + |H(u) \ V (W ′

r,t)|
≥ |J(hl) ∩ A(Sr,hl

)| + |H(hl) \ V (Sr,hl
)| + |{hj |l < j < i}|

= |J(hl) ∩ A(Sr,hl
)| + |H(hl) \ V (Sr,hl

)| + i − l − 1

≥ ⌈ l

2⌉ + i − l − 1

From this and Claim 7 we have the following inequality for the path P ′
r,t = Sr,hl

Pr,t[hl, t].

|J(u) ∩ A(P ′
r,t)| + |H(u) \ V (P ′

r,t)| ≥ ⌈ l

2⌉ + i − l − 1 (7)

From (6) it follows that l ≤ i − 2 and since l ≥ 0 it also holds that i ≥ 2. These
observations together with (7) give us the following inequality.

|J(u) ∩ A(P ′
r,t)| + |H(u) \ V (P ′

r,t)| ≥ ⌈ l

2⌉ + i − l − 1 ≥ ⌈ i

2⌉

It means that P ′
r,t is a path making (4) true. Hence if (4) does not hold we may assume that

for every substitute-path Sr,hl
to hl there exists a j > l such that hj ∈ Sr,hl

. ◁

Let Sr,hj
be a substitute-path to hj ∈ H(u). If there exists a vertex hp ∈ Sr,hj

such that
p > j we will call the first vertex hp with p > j on the path Sr,hj

the first exceeding head.
Recall that we are proving that a path exists such that (4) holds. Assume for contradiction
that no such path exists. Thus by Claim 10 it follows that for every substitute-path Sr,hl

to hl there is a vertex hj ∈ Sr,hl
for j > l, that is, every substitute-path Sr,hl

will contain
a first exceeding head hj such that j > l. Now let k ≤ l be the smallest integer such
that for every substitute-path Sr,hk

the first exceeding head hj has j > l. Observe that l

fulfills this property and therefore k exists. Let S′
r,hk

be a substitute-path to hk and hj

the first exceeding head on this path. Observe that S′
r,hk

[r, hj ] is disjoint from the heads
{hk, hk+1, · · · , hj−1}. Therefore we have:

|J(hj) ∩ A(S′
r,hk

[r, hj ])| + |H(hj) \ V (S′
r,hk

[r, hj ])|
≥ |J(hk) ∩ A(S′

r,hk
)| + |H(hk) \ V (S′

r,hk
)| + |{hp|k ≤ p < j}|

≥ |J(hk) ∩ A(S′
r,hk

)| + |H(hk) \ V (S′
r,hk

)| + j − k (8)
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As S′
r,hk

is a substitute-path to hk and |H(hk)| = k we have that |J(hk)∩A(S′
r,hk

)|+ |H(hk)\
V (S′

r,hk
)| ≥ ⌈ k

2 ⌉. When we combine this with (8) we obtain the following inequality:

|J(hj) ∩ A(S′
r,hk

[r, hj ])| + |H(hj) \ V (S′
r,hk

[r, hj ])| ≥ ⌈k

2 ⌉ + j − k (9)

Now consider the (r, t)-path P ∗ = S′
r,hk

[r, hj ]B+
r [hj , t]. Recall that the path B+

r [hj , t] is
disjoint from every head hp for p < j and S′

r,hk
[r, hj ]. It therefore follow from (9) that.

|J(u) ∩ A(P ∗)| + |H(u) \ V (P ∗)|
≥ |J(hj) ∩ A(S′

r,hk
[r, hj ])| + |H(hj) \ V (S′

r,hk
[r, hj ])|

≥ ⌈k

2 ⌉ + j − k (10)

From (10) and the fact that l + 1 ≤ j we obtain the following inequality.

|J(u) ∩ A(P ∗)| + |H(u) \ V (P ∗)| ≥ l + 1 − ⌊k

2 ⌋ (11)

From the assumption that (4) does not hold it follows that |J(u) ∩ A(P ∗[r, t])| + |H(u) \
V (P ∗[r, t])| < ⌈ i

2 ⌉. Therefore, we have the following observation from (11).

▶ Observation 11. l + 1 − ⌊ k
2 ⌋ < ⌈ i

2 ⌉.

Recall that the path B+
r [r, h0] is a substitute-path to h0 and as every substitute-path to

hk has a first exceeding head hp such that p > l it must hold that k > 0. Furthermore, recall
that k was chosen as the smallest integer such that the first exceeding head hp on every
substitute-path to hk had p > l. Hence there exist a substitute-path S∗

r,hk−1
such that either

there is no exceeding head or for the first exceeding head hp it holds that k − 1 < p ≤ l. If
there is no exceeding head let p = k − 1 and otherwise let hp be the first exceeding head.
Consider S∗

r,hk−1
[r, hp]. Observe by Claim 6 and the fact that S∗

r,hk−1
is a substitute-path

that

|J(hk−1) ∩ A(S∗
r,hk−1

[r, hp])| + |H(hk−1) \ V (S∗
r,hk−1

[r, hp])| ≥ ⌈k − 1
2 ⌉

Now consider the (r, t)-walk W ′
r,t = S∗

r,hk−1
[r, hp]B+

r [hp, hl]Pr,t[hl, t]. Note that S∗
r,hk−1

[r, hp]
is disjoint from every head hq for q > p, B+

r [hp, hl] is disjoint from every head hq for q < p

and q > l, and furthermore Pr,t[hl, t] is disjoint from H(u) − {hl}. Hence:

|J(u) ∩ A(W ′)| + |H(u) \ V (W ′)| (12)
= |J(hk−1) ∩ A(S∗

r,hk−1
[r, hp])| + |H(hk−1) \ V ([S∗

r,hk−1
[r, hp])| + |{hq|l < q < i}|

= |J(hk−1) ∩ A(S∗
r,hk−1

[r, hp])| + |H(hk−1) \ V (S∗
r,hk−1

[r, hp])| + i − 1 − l

Consider the (r, t)-path P ′ = S∗
r,hk−1

[r, hp]B+
r [hp, hl]Pr,t[hl, t]. Then from (12), claim 7 and

the fact that S∗
r,hk−1

is a substitute-path to hk−1 we obtain the following:

|J(u) ∩ A(P ′])| + |H(u) \ V (P ′)|
≥ |J(u) ∩ A(W ′)| + |H(u) \ V (W ′)|

≥ ⌈k − 1
2 ⌉ + i − 1 − l (13)
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By the assumption that (4) does not hold we have |J(u) ∩ A(P ′)| + |H(u) \ V (P ′)| < ⌈ i
2 ⌉.

This combined with (13) gives us:

⌈ i

2⌉ > ⌈k − 1
2 ⌉ + i − 1 − l ⇔ l + 1 − ⌈k − 1

2 ⌉ > ⌊ i

2⌋ (14)

Combining Observation 11 with (14) and the fact that ⌈ k−1
2 ⌉ = ⌊ k

2 ⌋ we obtain the following
inequality:

⌊ i

2⌋ < l + 1 − ⌊k

2 ⌋ < ⌈ i

2⌉ (15)

Now observe that l + 1 − ⌊ k
2 ⌋ is an integer and from (15) we therefore have a contradiction.

Hence either the path P ∗ or the path P ′ makes (4) true. It means that there exists a path
making (4) true. Thus by Claim 9 there exists a substitute-path to u.

Recall that u was an arbitrary fixed vertex x ∈ V for which |H(x)| = i. Thus we can
conclude that for every vertex x ∈ V where |H(x)| = i there exists a substitute path to x.
This concludes the induction step over for every vertex x ∈ V where |H(x)| = i.Thus we
can conclude that for every vertex x ∈ V where |H(x)| = i for i ∈ [0, |V |] there exists a
substitute-path. As |H(x)| ≤ n for every x ∈ V , the proof is complete. ◀

3.2 Finding Desired Paths in Polynomial Time
We now obtain the following lemma about finding a substitute-path to a vertex v ∈ V .

▶ Lemma 3.4 (⋆). There exists a polynomial time algorithm which given an out-branching
B+

r in D = (V, A) and a vertex v ∈ V finds a substitute-path to v.

▶ Lemma 3.5 (⋆). For every vertex u ∈ V (B+
r ) there exists a path Pr,u from r to u such that

|R(u) ∩ A(Pr,u)| + |H(R(u)) \ V (Pr,u)| ≥
⌈

|H(R(u))|
2

⌉
(16)

and it can be found in polynomial time

▶ Lemma 3.6 (⋆). For every vertex v ∈ V (B+
r ) let Rv ∈ {J(v), R(v)}. If there exists a path

Pr,v such that

|Rv ∩ A(Pr,v)| + |H(Rv) \ V (Pr,v)| ≥
⌈

|H(Rv)|
2

⌉
(17)

then there exists an out-branching B̂+
r such that |Rv ∩ A(B̂+

r )| ≥
⌈

|H(Rv)|
2

⌉
, and B̂+

r can be
found in polynomial time.

4 Backward arcs, Crossing Arcs and Substitute-paths with respect to
In-branchings

For in-branchings we have similar definitions and results as we have for out-branchings. Given
a digraph D = (V, A) which contains a fixed in-branching B−

r we can create a corresponding
digraph D′ = (V, A′) and an out-branching B+

r by creating an arc (v, u) in A′ for each
arc (u, v) ∈ A. That is, the direction of the arcs in A are flipped. Observe that the in-
branching B−

r in D will correspond to a fixed out-branching B+
r in D′. Due to this one-to-one

correspondence all the results given in Section 3 regarding a fixed out-branching will be
turned into equivalent statements about a fixed in-branching.
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5 A kernel for Rooted k-Distinct Branchings

In this section we prove the existence of an O(k2)-vertex kernel for the problem Rooted
k-Distinct Branchings. The proof of the next lemma will give the desired Theorem 1.1.

▶ Lemma 5.1. Given an instance (D = (V, A), k, s, t) of R-k-DB; In polynomial time we
can either find a kernel (D′, k, s′, t′) such that |V (D′)| < 16k2 + 5k = O(k2) or determine
the answer to the instance.

Proof. In linear time it can be determined if an out-branching B+
s and an in-branching B−

t

exist. If one of these do not exist then clearly (D, k, s, t) is a no-instance. Hence assume
that both exist. At any time during the proof let C+, R+, and I+, respectively, denote the
crossing, relevant, and irrelevant arcs wrt.. B+

s . Similarly, let C−, R−, and I−, respectively,
denote the crossing, relevant, and irrelevant arcs wrt.. B−

t . Moreover, at all times during
the proof let F = A(D) \

(
A(B+

s ) ∪ A(B−
t )

)
be defined as the free arcs and at all times let

E+ = A(B+
s ) \ A(B−

t ), E− = A(B−
t ) \ A(B+

s ) denote the exclusive set, respectively, for
B+

s and B−
t . Note that |E+| = |E−|. Now we execute the following procedure.

▶ Procedure 5.1. Change B+
s and B−

t as follows until no longer possible or |E+| ≥ k.
1. If there exists an arc (u, v) ∈ F ∩C+ such that (PB+

s
(v), v) ̸∈ E+, then remove (PB+

s
(v), v)

from B+
s and insert the arc (u, v) into B+

s .
2. If there exists an arc (u, v) ∈ F ∩C− such that (u, PB−

t
(u)) ̸∈ E−, then remove (u, PB−

t
(u))

from B−
t and insert the arc (u, v) in to B−

t .

▶ Lemma 5.2 (⋆). Procedure 5.1 can be executed in polynomial time.

If we have not found a solution when Procedure 5.1 terminates, then we have

|E+| = |E−| < k. (18)

Since |E+| < k and we can not change B+
s further in Procedure 5.1 we have that for every

crossing arc (u, v) ∈ C+ either (u, v) ∈ A(B−
t ) or (pB+

s
(v), v) ∈ E+. As C+ is disjoint from

B+
s it follows that every arc (u, v) ∈ A(B−

t ) ∩ C+ is contained in E−. Hence there are less
than k such arcs. For the arcs (u, v) ∈ C+ where (pB+

s
(v), v) ∈ E+ there is less than k

different heads as |E+| < k. Therefore, there must be less than 2k different heads for the
crossing arcs of B+

s , that is, |H(C+)| < 2k. Similarly, we have that there are less than 2k

different tails of C−, that is, |T (C−)| < 2k.

▶ Observation 12. |H(C+)| < 2k and |T (C−)| < 2k

A vertex v ∈ V is a Type 1 vertex if it is the tail of an arc (v, u) ∈ R− ∪ C− and a Type
2 vertex if it is the head of an arc (u, v) ∈ R+ ∪ C+ Note that a vertex v ∈ V can be both a
Type 1 and a Type 2 vertex. Now we have the following reduction rule.

▶ Reduction Rule 5.1. As long as there exists an arc (u, v) ∈ A(B+
s ) ∩ A(B−

t ) such that u

is not a Type 1 vertex and v is not a Type 2 vertex contract (u, v) into one vertex.

▶ Lemma 5.3 (⋆). Reduction Rule 5.1 is safe and can be applied in polynomial time.

Let DR, B+
s and B−

t be the digraph and branchings that we have obtained after performing
Reduction 5.1. We now have the following lemma.

▶ Lemma 5.4. If |V (DR)| ≥ 16k2 + 5k then a solution exists.
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Proof. Assume |V (DR)| ≥ 16k2 + 5k. As B+
s is an out-branching we have |A(B+

s )| =
|V (DR)| − 1. For every arc (u, v) ∈ A(B+

s ) it holds that either (u, v) ̸∈ A(B−
t ), u is a Type 1

vertex or v is a Type 2 vertex. By (18) we see that |A(B+
s ) \ A(B−

t )| < k. It means that
|A(B+

s ) ∩ A(B−
t )| ≥ |V (DR)| − k ≥ 2 · (8k2 + 2k). For every arc (u, v) ∈ A(B+

s ) ∩ A(B−
t ) we

have that u is a Type 1 vertex or v is a Type 2 vertex. Hence we can conclude that either
there is 8k2 + 2k vertices of Type 1 or 8k2 + 2k vertices of Type 2 (or both). In the following
we will only explicitly give the proof that a solution exists if there are at least 8k2 +2k vertices
of Type 2 as the proof for a solution exists if there are at least 8k2 + 2k vertices of Type
1 will follow from the symmetry between B+

s , C+, R+, I+ and B−
t , C−, R−, I−. Assume

therefore that there are at least 8k2 + 2k vertices of Type 2. Recall that it means, there are
at least 8k2 + 2k different vertices which are heads of the arcs R+ ∪ C+. By Observation 12
there are less than 2k vertices which are heads of C+. Consequently, the number of vertices
which are heads of R+ must be larger than 8k2. Clearly, |H(R+)| = | ∪v∈V H(J(v))| and
we therefore have 8k2 ≤ |H(R+)| = | ∪v∈V H(J(v))|. By Lemma 3.3 we have that for every
v ∈ V it holds that H(J(v)) ⊆ H(J(u)) for some arc (v, u) ∈ C+. We therefore have that:
|

⋃
(v,u)∈C+

H(J(u))| = |
⋃

v∈V

H(J(v))| ≥ 8k2. By Observation 12 there are at most 2k heads

of the arcs in C+ so there must exist at least one arc (u, v) ∈ C+ such that |H(J(v))| ≥ 4k.
Fix (u, v) to be such an arc. By Theorem 3.1 there exist a substitute-path S[s, v] in D such
that |J(v) ∩ A(S[s, v])| + |H(J(v)) \ A(S[s, v])| ≥

⌈
|H(J(v))|

2

⌉
and therefore by from Lemma

3.6 there exists an out-branching B̂+
s such that |J(v) ∩ A(B̂+

s )| ≥
⌈

|H(J(v))|
2

⌉
≥ 2k. Observe

that B+
s is disjoint from J(v) and therefore if |J(v) ∩ A(B−

t )| ≥ k then B+
s and B−

t would
have been a solution. If |J(v) ∩ A(B−

t )| < k then |A(B̂+
s ) \ A(B−

t )| ≥ k and B̂+
s and B−

t is a
solution. Hence we conclude that if the number of different heads of R+ is larger than 4k2 a
solution exists. ◀

From Lemma 5.4 we can conclude that after applying Reduction Rule 5.1 it either holds
that we have a solution or |V (DR)| < 16k2 + 5k. In the first case we have a solution in the
latter we have a kernel of size O(k2). It therefore only remains to argue that the solution or
the kernel can be found in polynomial time. For an instance (D = (V, A), k, s, t) of R-k-DB
it is possible in polynomial time to decide if an out-branching B+

s and B−
t in D exists and

find them. By Claim 5.2, and Claim 5.3 we can execute the Procedure 5.1 and afterwards
apply Reduction Rule 5.1 in polynomial time. Furthermore, it is polynomial to decide if
the resulting digraph has at least 16k2 + 5k vertices and applying Lemma 5.4. Hence in
polynomial time we can either find a kernel with a vertex set of size less than 16k2 + 5k or
determine the answer to the instance. ◀

6 Conclusion

In this paper, we studied the problem of deciding if a digraph D = (V, A), contains an in-
and out-branching rooted at specific vertices s and t, such that the in- and out-branching are
distinct on at least k arcs. Before this paper, it was not known if the problem admitted a poly-
nomial kernel, and the best known complexity for solving the problem was 2O(k2 log2 k)nO(1).
We designed a polynomial kernel for the problem with O(k2) vertices and found an algorithm
with the complexity 2O(k log k) + nO(1). To obtain these results, we defined the concept of
substitute-paths in out- and in-branchings. This graph-theoretical concept might be useful for
obtaining other results on problems regarding in-and out-branchings. It is still open whether
there exists a kernel with O(k) vertices. We believe that using representative set approach
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applied for obtaining exact exponential time algorithm for finding a strongly connected
subgraph of a given digraph with minimum number of arcs [20], it seem possible to get an
algorithm for R-k-DB running in time 2O(k) + nO(1). Making this work seems an interesting
direction to pursue.
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12:2 Incremental Edge Orientation in Forests

1 Introduction

The general problem of maintaining low-out-degree edge orientations of graphs has been
widely studied and has found a broad range of applications throughout algorithms (see,
e.g., work on sparse graph representations [10], maximal matchings [7–9,18,20,26], dynamic
matrix-by-vector multiplication [20], etc.). However, some of the most basic and fundamental
versions of the graph-orientation problem have remained unanswered.

This paper considers the problem of incremental edge orientation in forests. Consider a
sequence of edges e1, e2, . . . , en−1 that arrive over time, collectively forming a tree. As the
edges arrive, one must maintain an orientation of the edges (i.e., to assign a direction to
each edge) so that no vertex ever has out-degree greater than O(1). The orientation can be
updated over time, meaning that orientations of old edges can be flipped in order to make
room for the newly inserted edges. The goal is achieve out-degree O(1) while flipping as few
edges as possible per new edge arrival.

Forests represent the best possible case for edge orientation: it is always possible to
construct an orientation with maximum out-degree 1. But, even in this seemingly simple
case, no algorithms are known that achieve better than O(log / log log n) edge flips per edge
insertion [20]. A central result of this paper is that, by using randomized and intentionally
non-greedy edge-flipping one can can do substantially better, achieving O(log log n) edges
flips per insertion.

A warmup: two simple algorithms
As a warmup let us consider two simple algorithms for incremental edge-orientation in forests.

The first algorithm never flips any edges but allows the maximum out-degree of each
vertex to be as high as O(log n). When an edge (u, v) is added to the graph, the algorithm
examines the connected components Tu and Tv that are being connected by the edge, and
determines which component is larger (say, |Tv| ≥ |Tu|). The algorithm then orients the
edge from u to v, so that it is directed out of the smaller component. Since the new edge is
always added to a vertex whose connected component at least doubles in size, the maximum
out-degree is ⌈log n⌉.

The second algorithm guarantees that the out-degree will always be 1, but at the cost
of flipping more edges. As before, when (u, v) is added the algorithm orients the edge from
u to v. If this increments the out-degree of u to 2, then the algorithm follows the directed
path P in Tu starting from u (and such that the edge (u, v) is not part of P ) until a vertex r
with out-degree 0 is reached. The algorithm then flips the edge orientations on P , which
increases the out-degree of r to be 1 and reduces the out-degree of u to be 1. Since every
edge that is flipped is always part of a connected component that has just at least doubled
in size, the number of times each edge is flipped (in total across all insertions) is at most
⌈log n⌉ and so the amortized time cost per insertion is O(log n).1

These two algorithms sit on opposite sides of a tradeoff curve. In one case, we have
maximum out-degree O(log n) and at most O(1) edges flipped per insertion, and in the other
we have maximum out-degree O(1) and at most O(log n) (amortized) flips per insertion. This
raises a natural question: what is the optimal tradeoff curve between the maximum out-degree
and the number of edges flipped per insertion?

1 By allowing for a maximum out-degree of 2, the bound of O(log n) on the number of edges flipped
can be improved from being amortized to worst-case. In particular, for any vertex v there is always a
(directed) path of length O(log n) to another vertex with out-degree 1 or less (going through vertices
with out-degree 2); by flipping the edges in such a path, we can insert a new edge at the cost of only
O(log n) flips.
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Our results
We present an algorithm for incremental edge orientation in forests that satisfies the following
guarantees with high probability in n:

the maximum out-degree never exceeds 3;
the maximum number of edges flipped per insertion is O(log log n);
the maximum time taken by any insertion is O(log n log log n);
and the amortized time taken (and thus also the amortized number of edges flipped) per
insertion is O(1).

An interesting feature of this result is that the aforementioned tradeoff curve is actually
quite different than it first seems: by increasing the maximum out-degree to 3 (instead of 2
or 1), we can decrease the maximum number of edges flipped per insertion all the way to
O(log log n).

In fact, a similar phenomenon happens on the other side of the tradeoff curve. For any ε,
we show that it is possible to achieve a maximum out-degree of logε n+ 1 while only flipping
O(ε−1) edges per insertion. Notably, this means that, for any positive constant c, one can
can achieve out-degree (log n)1/c with O(1) edges flipped per insertion.

A key idea in achieving the guarantees above is to selectively leave vertices with low
out-degrees “sprinkled” around the graph, thereby achieving an edge orientation that is
amenable to future edges being added. Algorithmically, the main problem that our algorithm
solves is that of high-degree vertices clustering in a “hotspot”, which could then force a single
edge-insertion to invoke a large number of edge flips.

Related work on edge orientations
The general problem of maintaining low-out-degree orientations of dynamic graphs has served
as a fundamental tool for many problems. Brodal and Fagerberg [10] used low-degree edge
orientations to represent dynamic sparse graphs – by assigning each vertex only O(1) edges
for which it is responsible, one can then deterministically answer adjacency queries in O(1)
time. Low-degree edge orientations have also been used to maintain maximal matchings
in dynamic graphs [7, 18,20,26], and this technique remains the state of the art for graphs
with low arboricity. Other applications include dynamic matrix-by-vector multiplication [20],
dynamic shortest-path queries in planar graphs [21], and approximate dynamic maximum
matchings [8, 9].

The minimum out-degree attainable by any orientation of a graph is determined by
the graph’s pseudo-arboricity α. As a result, the algorithmic usefulness of low out-degree
orientations is most significant for graphs that have low pseudo-arboricity. This makes
forests and pseudoforests (which are forests with one extra edge per component) especially
interesting, since they represent the case of α = 1 and thus always allow for an orientation
with out-degree 1.

Whereas this paper focuses on edge orientation in incremental forests (and thus also
incremental pseudoforests), past work has considered a slightly more general problem [7,
10, 18, 20], allowing for edge deletions in addition to edge insertions, and also considering
dynamic graphs with pseudo-arboricities α > 1. Brodal and Fagerberg gave an algorithm
that achieved out-degree O(α) with amortized running time that is guaranteed to be constant
competitive with that of any algorithm; they also showed that in the case of α ∈ O(1), it is
possible to achieve constant out-degree with amortized time O(1) per insertion and O(log n)
per deletion [10]. For worst-case guarantees, on the other hand, the only algorithm known to
achieve sub-logarithmic bounds for both out-degree and edges flipped per insertion is that of
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Kopelowitz et al. [20], which achieves O(log n/ log log n) for both, assuming α ∈ O(
√

log n).
In the case of incremental forests, our results allow for us to improve substantially on this,
achieving a worst-case bound of O(log log n) edges flipped per insertion (with high probability)
while supporting maximum out-degree O(1). An interesting feature of our algorithm is that
it is substantially different than any of the past algorithms, suggesting that the fully dynamic
graph setting (with α > 1) may warrant revisiting.

Our interest in the incremental forest case stems in part from its importance for a specific
application: Cuckoo hashing. As we shall now discuss, our results on incremental edge
orientation immediately yield a somewhat surprising result on Cuckoo hashing with dynamic
guarantees.

1.1 An Application to Cuckoo Hashing: From Static to Dynamic
Guarantees via Non-Greedy Eviction

A s-associative Cuckoo hash table [13,23,27,28] consists of n bins, each of which has
s slots, where s is a constant typically between 1 and 8 [23,27]. Records are inserted into
the table using two hash functions h1, h2, each of which maps records to bins. The invariant
that makes Cuckoo hashing special is that, if a record x is in the table, then x must reside in
either bin h1(x) or h2(x). This invariant ensures that query operations deterministically run
in time O(1).

When a new record x is inserted into the table, there may not initially be room in either
bin h1(x) or h2(x). In this case, x kicks out some record y1 in either h1(x) or h2(x). This,
in turn, forces y1 to be inserted into the other bin b2 to which y1 is hashed. If bin b2 also
does not have space, then y1 kicks out some record y2 from bin b2, and so on. This causes
what is known as a kickout chain. Formally, a kickout chain takes a sequence of records
y1, y2, . . . , yj that reside in bins b1, b2, . . . , bj , respectively, and relocates those records to
instead reside in bins b2, b3, . . . , bj+1, respectively, where for each record yi the bins bi and
bi+1 are the two bins to which h1 and h2 map yi. The purpose of a kickout chain is to free
up a slot in bin b1 so that the newly inserted record can reside there. Although Cuckoo
hashing guarantees constant-time queries, insertion operations can sometimes incur high
latency due to long kickout chains.

The problem of designing simple hash-function families for Cuckoo hashing has received
extensive attention [1, 4, 5, 11,14,15,25,27,30]. Several natural (and widely used) families
of hash functions are known not to work [11,14], and it remains open whether there exists
k = o(log n) for which k-independence suffices [24]. This has led researchers to design
and analyze specific families of simple hash functions that have low independence but
that, nonetheless, work well with Cuckoo hashing [1, 4, 5, 15, 25, 27, 30]. Notably, Cuckoo
hashing has served as one of the main motivations for the intensive study of tabulation hash
functions [1, 12,29–31].

Work on hash-function families for cuckoo hashing [1,4,5,15,25,27,30] has focused on
offering a static guarantee: for any set X of O(n) records, there exists (with reasonably
high probability) a valid 1-associative hash-table configuration that stores the records X.
This guarantee is static in the sense that it does not say anything about the speed with
which insertion and deletion operations can be performed.

On the other hand, if the hash functions are fully random, then a strong dynamic
guarantee is known. Panigrahy [28] showed that, using bins of size two, insertions can be
implemented to incur at most log log n+O(1) kickouts, and to run in time at most O(log n),
with high probability in n. Moreover, the expected time taken by each insertion is O(1).
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The use of bin sizes greater than one is essential here, as it gives the data structure
algorithmic flexibility in choosing which record to evict from a bin. Panigrahy [28] uses
breadth-first search in order to find the shortest possible kickout chain to a bin with a free
slot. The fact that the hash functions h1 and h2 are fully random ensures that, with high
probability, the search terminates within O(log n) steps, thereby finding a kickout chain of
length log log n+O(1).

If a family of hash functions has sufficiently strong randomness properties (e.g., the family
of [15]) then one can likely recreate the guarantees of [28] by directly replicating the analysis.
For other families of hash functions [1, 4, 5, 15, 25,27, 30], however, it is unclear what sort of
dynamic guarantees are or are not possible.

This raises a natural question: does there exist a similar dynamic guarantee to that of [28]
when the underlying hash functions are not fully random – in particular, if we know only
that a hash family H offers a static guarantee, but we know nothing else about the structure
or behavior of hash functions in H, is it possible to transform the static guarantee into a
dynamic guarantee?

Our results on Cuckoo hashing: a static-to-dynamic transformation
We answer this question in the affirmative by presenting a new algorithm, the Dancing-
Kickout Algorithm, for selecting kickout chains during insertions in a Cuckoo hash table.
Given any hash family H that offers a 1-associative static guarantee, we show that the
same hash family can be used to offer an O(1)-associative dynamic guarantee. In particular,
the Dancing-Kickout Algorithm supports both insertions and deletions with the following
promise: as long as the static guarantee for H has not failed, then with high probability, each
insertion/deletion incurs at most O(log log n) kickouts, has amortized time (and therefore
number of kickouts) O(1), and takes time at most O(log n log log n). We also extend our
results to consider families of hash functions H that offer relaxed static guarantees – that is,
our results still apply to families either make assumptions about the input set [25] or require
the use of a small auxiliary stash [4, 19].

Unlike prior algorithms, the Dancing-Kickout Algorithm takes a non-greedy approach
to record-eviction. The algorithm will sometimes continue a kickout chain past a bin that
has a free slot, in order to avoid “hotspot clusters” of full bins within the hash table. These
hotspots are avoided by ensuring that, whenever a bin surrenders its final free slot, the bin
is at the end of a reasonably long random walk, and is thus itself a “reasonably” random
bin. Intuitively, the random structure that the algorithm instills into the hash table makes it
possible for the hash functions from H to not be fully random.

The problem of low-latency Cuckoo hashing is closely related to the problem of incremental
edge orientation. In particular, the static guarantee for a Cuckoo hash table (with bins of
size one) means that the edges in a certain graph form a pseudoforest. And the problem
of dynamically maintaining a Cuckoo hash table (with bins of size O(1)) can be solved
by dynamically orienting the pseudoforest in order to maintain constant out-degrees. The
Dancing-Kickout algorithm is derived by applying our results for incremental edge orientation
along with several additional ideas to handle deletions.

In addition to maintaining n bins, the Dancing-Kickout Algorithm uses an auxiliary
data structure of size O(n). The data structure incurs at most O(1) modifications per
insertion/deletion. Importantly, the auxiliary data structure is not accessed during queries,
which continue to be implemented as in a standard Cuckoo hash table.

Our results come with an interesting lesson regarding the symbiotic relationship between
Cuckoo hashing and edge orientation. There has been a great deal of past work on Cuckoo
hashing that focuses on parameters such as associativity, number of hash functions, and

ESA 2021



12:6 Incremental Edge Orientation in Forests

choice of hash function. We show that a new dimension that also warrants attention: how to
dynamically maintain the table to ensure that a short kickout chain exists for every insertion.
Algorithms that greedily optimize any given operation (e.g., random walk and BFS) may
inadvertently structure the table in a way that compromises the performance of some later
operations. In contrast, the non-greedy approach explored in this paper is able to offer strong
performance guarantees for all operations, even if the hash functions being used are far from
fully random. The results in this paper apply only to 1-associative static guarantees, and are
therefore innately limited in the types of dynamic guarantees that they can offer (for example,
we cannot hope to support a load factor of better than 0.5). An appealing direction for future
work is to design and analyze eviction algorithms that offer strong dynamic guarantees in
hash tables with either a large associativity or a large number of hash functions – it would
be especially interesting if such guarantees could be used to support a load factor of 1 − q

for an arbitrarily small positive constant q.

Related work on low-latency hash tables
Several papers have used ideas from Cuckoo hashing as a parts of new data structures that
achieve stronger guarantees. Arbitman et al. [2] showed how to achieve a fully constant-time
hash table by maintaining a polylogarithmic-size backyard consisting of the elements whose
insertions have not yet completed at any given moment. Subsequent work then showed that,
by storing almost all elements in a balls-in-bins system and then storing only a few “overflow”
elements in a backyard Cuckoo hash table, one can construct a succinct constant-time hash
table [3].2

Whereas the focus of these papers [2, 3] is to design new data structures that build on
top of Cuckoo hashing, the purpose of our results is to consider standard Cuckoo hashing
but in the dynamic setting. In particular, our goal is to show that dynamic guarantees
for Cuckoo hashing do not have to be restricted to fully random hash-functions; by using
the Dancing-Kickout Algorithm for maintaining the Cuckoo hash table, any family of hash
functions that enjoys static guarantees can also enjoy dynamic guarantees.

2 An Algorithm with High-Probability Worst-Case Guarantees

This section considers the problem of incremental edge orientation in a forest. Let e1, . . . , en−1
be a sequence of edges between vertices in V = {v1, . . . , vn} such that the edges form a tree
on the vertices.

Our algorithm, which we call the Dancing-Walk Algorithm, guarantees out-degree at most
3 for each vertex, and performs at most O(log log n) edge-flips per operation. Each step of
the algorithm takes time at most O(log n log log n) to process. The algorithm is randomized,
and can sometimes declare failure. The main technical difficulty in analyzing the algorithm
is to show that the probability of the algorithm declaring failure is always very small.

We now describe the Dancing-Walk Algorithm. At any given moment, the algorithm
allows each vertex v to have up to two primary out-going edges, and one secondary
out-going edge. A key idea in the design of the algorithm is that, once a vertex has two
primary out-going edges, the vertex can volunteer to take on a secondary out-going edge
in order to ensure that a chain of edge flips remains short. But if vertices volunteer too

2 It is worth noting, however, that as discussed in [17], the data structure of [3] can be modified to use
any constant-time hash table in place of deamortized Cuckoo hashing.
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frequently in some part of the graph, then the supply of potential volunteers will dwindle,
which would destroy the algorithm’s performance. The key is to design the algorithm in a
way so that volunteering vertices are able to be useful but are not overused.

Consider the arrival of a new edge ei. Let v1 and v2 be the two vertices that ei connects,
and let T1 and T2 be the two trees rooted at v1 and v2, respectively. The algorithm first
determines which of T1 or T2 is smaller (for this description we will assume |T1| ≤ |T2|).
Note that, by maintaining a simple union-find data structure on the nodes, the algorithm
can recover the sizes of T1 and T2 each in O(log n) time.

The algorithm then performs a random walk through the (primary) directed edges of
T1, beginning at v1 (we call v1 the source vertex of the random walk). Each step of the
random walk travels to a new vertex by going down a random outgoing primary edge from
the current vertex. If the random walk encounters a vertex u with out-degree less than 2
(note that this vertex u may even be v1), then the walk terminates at that vertex. Otherwise,
the random walk continues for a total of c log log n steps, terminating at some vertex u with
out-degree either 2 or 3. If the final vertex u has out-degree 2, meaning that the vertex does
not yet have a secondary out-going edge, then the vertex u volunteers to take a secondary
out-going edge and have its out-degree incremented to 3. If, on the other hand, the final
vertex u already has out-degree 3, then the random walk is considered to have failed, and the
random walk is repeatedly restarted from scratch until it succeeds. The algorithm performs
up to d log n random-walk attempts for some sufficiently large constant d; if all of these fail,
then the algorithm declares failure.

Once a successful random walk is performed, all of the edges that the random walk traveled
down to get from v1 to u are flipped. This decrements the degree of v1 and increments the
degree of u. The edge ei is then oriented to be out-going from v1. The result is that every
vertex in the graph except for u has unchanged out-degree, and that u has its out-degree
incremented by 1.

In the rest of the section, we prove the following theorem:

▶ Theorem 1. With high probability in n, the Dancing-Walk Algorithm can process all of
e1, . . . , en−1 without declaring failure. If the algorithm does not declare failure, then each step
flips O(log log n) edges and takes O(log n log log n) time. Additionally, no vertex’s out-degree
ever exceeds 3.

For each edge et, let Bt be the binary tree in which the random walks are performed
during the operation in which et is inserted. In particular, for each internal node of Bt, its
children are the vertices reachable by primary out-going edges; all of the leaves in Bt are
either at depth c log log n, or are at smaller depth and correspond with a vertex that has
out-degree one or zero. Note that the set of nodes that make up Bt is a function of the
random decisions made by the algorithm in previous steps, since these decisions determine
the orientations of edges. Call the leaves at depth (c log log n) in Bt the potential volunteer
leaves. If every leaf in Bt is a potential volunteer leaf, then Bt can have as many as (log n)c

such leaves.
The key to proving Theorem 1 is to show with high probability in n, that for each step

t, the number of potential volunteer leaves in Bt that have already volunteered in previous
steps is at most (log n)c/2.

▶ Proposition 2. Consider a step t ∈ {1, 2, . . . , n − 1}. With high probability in n, the
number of potential volunteer leaves in Bt that have already volunteered in previous steps is
at most (log n)c/2.
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Assuming the high-probability outcome in Proposition 2, it follows that each random
walk performed during the t-th operation has at least a 1/2 chance of success. In particular,
the only way that a random walk can fail is if it terminates at a leaf of depth c log log n and
that leaf has already volunteered in the past. With high probability in n, one of the first
O(log n) random-walk attempts will succeed, preventing the algorithm from declaring failure.

The intuition behind Proposition 2 stems from two observations:
The Load Balancing Property: Each vertex v is contained in at most log n trees Bt.
This is because, whenever two trees T1 and T2 are joined by an edge et, the tree Bt is
defined to be in the smaller of T1 or T2. In other words, for each step t that a vertex v
appears in Bt, the size of the (undirected) tree containing v at least doubles.
The Sparsity Property: During a step t, each potential volunteer leaf in Bt has
probability at most d log n

logc n of being selected to volunteer.
Assuming that most steps succeed within the first few random-walk attempts, the two
observations combine to imply that most vertices v are never selected to volunteer.

The key technical difficulty comes from the fact that the structure of the tree Bt, as well
as the set of vertices that make up the tree, is partially a function of the random decisions
made by the algorithm in previous steps. This means that the set of vertices in tree Bt can
be partially determined by which vertices have or have not volunteered so far. In this worst
case, this might result in Bt consisting entirely of volunteered vertices, despite the fact that
the vast majority of vertices in the graph have not volunteered yet.

How much flexibility is there in the structure of Bt? One constraint on Bt is that it must
form a subtree of the undirected graph Gt = {e1, . . . , et−1}. This constraint alone is not
very useful. For example, if Gt is a (logc+1 n)-ary tree of depth c log log n, and if each node
in Gt has volunteered previously with probability 1/ logc n, then there is a reasonably high
probability that every internal node of Gt contains at least two children that have already
volunteered. Thus there would exist a binary subtree of Gt consisting entirely of nodes that
have already volunteered.

An important property of the Dancing-Walk Algorithm is that the tree Bt cannot, in
general, form an arbitrary subtree of Gt. Lemma 3 bounds the number of possibilities for Bt:

▶ Lemma 3. For a given sequence of edge arrivals e1, . . . , en−1, the number of possibilities
for tree Bt is at most (log n)2 logc n.

Proof. We will show that, for a given node v in Bt, there are only log n options for who each
of v’s children can be in Bt. In other words, Bt is a binary sub-tree of a (log n)-ary tree with
depth c log log n. Once this is shown, the lemma can be proven as follows. One can construct
all of the possibilities for Bt by beginning with the root node v1 and iteratively by adding
one node at a time from the top down. Whenever a node v is added, and is at depth less
than c log log n, one gets to either decide that the node is a leaf, or to select two children for
the node. It follows that for each such node v there are at most

(log n
2
)

+ 1 ≤ log2 n options
for what v’s set of children looks like. Because Bt can contain at most logc n− 1 nodes v
with depths less than c log log n, the total number of options for Bt is at most

(
log2 n

)logc n,
as stated by the lemma.

It remains to bound the number of viable children for each node v in Bt. To do this,
we require a stronger version of the load balancing property. The Strong Load Balancing
Property says that, not only is the number of trees Bt that contain v bounded by log n,
but the set of log n trees Bt that can contain v is a function only of the edge sequence
(e1, . . . , en−1), and not of the randomness in the algorithm.
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The Strong Load Balancing Property: For each vertex v, there is a set Sv ⊆ [n]
determined by the edge-sequence (e1, . . . , en−1) such that: (1) the set’s size satisfies
|Sv| ≤ log n, and (2) every Bt containing v satisfies t ∈ Sv.

The Strong Load Balancing Property is a consequence of the fact that, whenever a new edge
et combines two trees T1 and T2, the algorithm focuses only on the smaller of the two trees.
It follows that a vertex v can only be contained in tree Bt if the size of the (undirected)
tree containing v at least doubles during the t-th step of the algorithm. For each vertex v,
there can only be log n steps t in which the tree size containing v doubles, which implies the
Strong Load Balancing Property.

Consider a step t, and suppose that step t orients some edge e to be facing out from
some vertex v. Then it must be that the path from edge et to vertex v goes through e as its
final edge. In other words, for a given step t and a given vertex v, there is only one possible
edge e that might be reoriented during step t to be facing out from v. By the Strong Load
Balancing Property, it follows that for a given vertex v, there are only log n possibilities for
out-going edges e. This completes the proof of the lemma. ◀

Now that we have a bound on the number of options for Bt, the next challenge is to bound
the probability that a given option for Bt has an unacceptably large number of volunteered
leaves.

The next lemma proves a concentration bound on the number of volunteered vertices in
a given set. Note that the event of volunteering is not independent between vertices. For
example, if two vertices v and u are potential volunteer leaves during some step, then only
one of v or u can be selected to volunteer during that step.

▶ Lemma 4. Fix a sequence of edge arrivals e1, . . . , en−1, and a set S of vertices. The probabil-
ity that every vertex in S volunteers by the end of the algorithm is at most, O

(
n/(log(c−3)|S|)

)
.

Proof. For each step t ∈ {1, 2, . . . , n− 1}, define Ft to be the number of elements of S that
are potential volunteer leaves during step t. Define pt = Ft·d log n

logc n , where d log n is the number
of random-walk attempts that the algorithm is able to perform in each step before declaring
failure. By the Sparsity Property, the value pt is an upper bound for the probability that
any of the elements of S volunteer during step t. In other words, at the beginning of step t,
before any random-walk attempts are performed, the probability that some element of S
volunteers during step t is at most pt.

Note that the values of p1, . . . , pn−1 are not known at the beginning of the algorithm.
Instead, the value of pt is partially a function of the random decisions made by the algorithm
in steps 1, 2, . . . , t− 1. The sum

∑
t pt is deterministically bounded, however. In particular,

since each vertex s ∈ S can appear as a potential volunteer leaf in at most log n steps (by
the Load Balancing Property), the vertex s can contribute at most d log2 n to the sum

∑
t pt.

It follows that
∑

t pt ≤ |S|d log2 n
logc n .

Let Xt be the indicator random variable for the event that some vertex in S volunteers
during step t. Each Xt occurs with probability at most pt. The events Xt are not independent,
however, since the value of pt is not known until the end of step t − 1. Nonetheless, the
fact that

∑
t pt is bounded allows for us to prove a concentration bound on

∑
t Xt using the

following version of Azuma’s inequality [22].

▷ Claim 5. Let µ ∈ [0, n], and suppose that Alice is allowed to select a sequence of numbers
p1, p2, . . . , pk, pi ∈ [0, 1], such that

∑
i pi ≤ µ. Each time Alice selects a number pi, she wins

1 dollar with probability pi. Alice is an adaptive adversary in that she can take into account
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the results of the first i bets when deciding on pi+1. If X is Alice’s profit from the game,

Pr
[
X > (1 + δ)µ

]
≤ exp ((δ − ln(1 + δ)(1 + δ))µ) ,

for all δ > 0.

Applying Claim 5 to X =
∑

t Xt, with δ = logc n
d log2 n

− 1 and µ = |S|d log2 n
logc n (so that

(δ + 1)µ = |S|), we get that Pr[X > |S|] is at most

exp
(

|S| − |S| ln logc n

d log2 n

)
= O

(
exp

(
−|S| ln logc−3 n

))
= O

(
log−(c−3)|S| n

)
. ◀

Combining Lemmas 3 and 4, we can now prove Proposition 2.

Proof of Proposition 2. Consider a tree Bt. By Lemma 3, the number of options for Bt,
depending on the behavior of the algorithm in steps 1, 2, . . . , t− 1, is at most (log n)2 logc n.

For a given choice of Bt, there are at most
( logc n

1
2 logc n

)
≤ 2logc n ways to choose a subset S

consisting of logc n
2 of the potential volunteer leaves. For each such set of leaves S, Lemma 4

bounds the probability that all of the leaves in S have already volunteered by,

O
(

log−(c−3)|S| n
)

= O
(

log−(logc n)(c−3)/2 n
)
.

Summing this probability over all such subsets S of all possibilities for Bt, the probability
that Bt contains logc n

2 already-volunteered leaves is at most,

O
(

(log n)2 logc n · 2logc n · log−(logc n)(c−3)/2 n
)

= O

(
(2 log n)2 logc n

log(logc n)(c−3)/2 n

)
.

For a sufficiently large constant c, this is at most 1
nω(1) . The proposition follows by taking a

union bound over all t ∈ {1, 2, . . . , n− 1}. ◀

We conclude the section with a proof of Theorem 1

Proof of Theorem 1. Consider a step t in which the number of potential volunteer leaves
in Bt that have already volunteered is at most 1

2 logc n. The only way that a random walk
in step t can fail is if it lasts for c log log n steps (without hitting a vertex with out-degree
1 or 0) and it finishes at a vertex that has already volunteered. It follows that, out of the
logc n possibilities for a (c log log n)-step random walk, at most half of them can result in
failure. Since each random-walk attempt succeeds with probability at least 1/2, and since
the algorithm performs up to d log n attempts for a large constant d, the probability that
the algorithm fails on step t is at most 1

nd = 1
polyn

.
The above paragraph establishes that, whenever the search tree Bt contains at most

1
2 logc n potential volunteer leaves that have already volunteered, then step t will succeed
with high probability in n. It follows by Proposition 2 that every step succeeds with high
probability in n.

We complete the theorem by discussing the properties of the algorithm in the event
that it does not declare failure. Each step flips at most O(log log n) edges and maintains
maximum out-degrees of 3. Because each step performs at most O(log n) random-walk
attempts, these attempts take time at most O(log n log log n) in each step. Additionally,
a union-find data structure is used in order to allow for the sizes |T1| and |T2| of the two
trees being combined to be efficiently computed in each step. Because the union-find data
structure can be implemented to have worst-case operation time O(log n), the running time
of each edge-insertion remains at most O(log n log log n). ◀
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The tradeoff between edges flipped and out-degree
To conclude the section, we consider a modification of the Dancing-Walk Algorithm in which
nodes are permitted to have out-degree as large as k = logε n + 1 (instead of 3) for some
parameter ε. Rather flipping the edges in a random walk of length c log log n, the new
algorithm instead flips the edges in a random walk of length cε−1. The length of the random
walk is parameterized so that the number of potential volunteers |Dt| is still logc n, as was the
case before. The resulting algorithm yields the following result, which allows for a tradeoff
between edges flipped per insertion and maximum out-degree:

▶ Theorem 6. Consider the Dancing-Walk Algorithm with maximum out-degree k + 1. With
high probability in n, the algorithm can process all of e1, . . . , en−1 without declaring failure.
If the algorithm does not declare failure, then each step flips O(logk log n) edges and takes
O(log n logk log n) time. Additionally, no vertex’s out-degree ever exceeds k + 1.

The proof of Theorem 6 can be found in the extended version of the paper [6].

3 Achieving Constant Amortized Running Time

We now discuss how to modify the Dancing-Walk Algorithm to achieve a total running time
of X = O(n). The resulting algorithm, which we call the Rank-Based Dancing-Walk
Algorithm offers the following guarantee on top of those in Theorem 1:

▶ Theorem 7. To perform n− 1 edge insertions, the total time required by the Rank-Based
Dancing-Walk Algorithm is at most O(n) with high probability in n.

To simplify the discussion in this section, we focus here on the simpler problem of
bounding the expected total running time E[X]. The full proof of Theorem 7 can be found in
the extended version of the paper [6].

Although each random walk is permitted to have length as large as Θ(log log n), one
can easily prove that a random walk through a tree of m nodes expects to hit a node with
out-degree less than 2 within O(logm) steps. Recall that, whenever an edge et combines two
(undirected) trees T1 and T2, the ensuing random walks are performed in the smaller of T1 or
T2. The expected contribution to the running time X is therefore, O(min(log |T1|, log |T2|)).
That is, even though a given edge-insertion et could incur up to Θ(log n) random walks each
of length Θ(log log n) in the worst case, the expected time spent performing random walks is
no more than O(min(log |T1|, log |T2|)).

Let T denote the set of pairs (T1, T2) that are combined by each of the n − 1 edge
insertions. A simple amortized analysis shows that∑

(T1,T2)∈T

min (log |T1|, log |T2|) = O(n). (1)

Thus the time spent performing random walks is O(n) in expectation.
In addition to performing random walks, however, the algorithm must also compare |T1|

and |T2| on each edge insertion. But maintaining a union-find data structure to store the
sizes of the trees requires Ω(α(n, n)) amortized time per operation [16], where α(n, n) is the
inverse Ackermann function.

Thus, for the algorithm described so far, the maintenance of a union-find data structure
prevents an amortized constant running time per operation. We now describe how to modify
the algorithm in order to remove this bottleneck.
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Replacing size with combination rank
We modify the Dancing-Walk Algorithm so that the algorithm no longer needs to keep
track of the size |T | of each tree in the graph. Instead the algorithm keeps track of the
combination rank R(T ) of each tree T – whenever two trees T1 and T2 are combined by
an edge insertion, the new tree T3 has combination rank,

R(T3) =
{

max(R(T1), R(T2)) if R(T1) ̸= R(T2)
R(T1) + 1 if R(T1) = R(T2).

Define the Rank-Based Dancing-Walk Algorithm to be the same as the Dancing-
Walk Algorithm, except that the source vertex (i.e., the vertex from which the random walk
begins) is selected to be in whichever of T1 or T2 has smaller combination rank (rather than
smaller size).

The advantage of combination rank is that it can be efficiently maintained using a simple
tree structure. Using this data structure, the time to merge two trees T1 and T2 (running
the Dancing-Walk Algorithm with appropriately chosen source vertex) becomes simply
min(R(T1), R(T2)). This, in turn, can be upperbounded by O(min(log |T1|, log |T2|)). By (1),
the total time spent maintaining combination ranks of trees is O(n).

The other important feature of combination rank is that it preserves the properties of the
algorithm that are used to analyze correctness. Importantly, whenever a tree T is used for
path augmentation by an edge-insertion et, the combination rank of T increases due to that
edge insertion. One can further prove that the combination rank never exceeds O(log n),
which allows one to derive the Strong Load Balancing Property and the Preset Children
Property.

The disadvantage: longer random walks
The downside of using combination rank to select trees is that random walks can now form
a running-time bottleneck. Whereas the expected running time of all random walks was
previously bounded by (1), we now claim that it is bounded by,

∑
(T1,T2)∈T

({
log |T1| if R(T1) ≤ R(T2)
log |T2| if R(T2) < R(T1)

)
= O(n). (2)

We now justify this claim. The problem is that a tree T can potentially have very small
combination rank (e.g., O(1)) but very large size (e.g., Ω(n)). As a result, the summation
(1) may differ substantially from the summation (2).

Rather than bounding (2) directly, we instead examine the smaller quantity,

∑
(T1,T2)∈T

({
log |T1| −R(T1) if R(T1) ≤ R(T2)
log |T2| −R(T2) if R(T2) < R(T1)

)
= O(n). (3)

The difference between (2) and (3) is simply∑
(T1,T2)∈T

min (R(T1), R(T2)) = O(n),

meaning that an upper bound on (3) immediately implies an upper bound on (2).
The key feature of (3), however, is that it yields to a simple potential-function based

analysis. In particular, if we treat each vertex v as initially having Θ(1) tokens, and we treat
each tree combination (T1, T2) as incurring a cost given by the summand in (3), then one
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can show that every tree T always has at least Ω
(

|T |
2R(T )

)
tokens, which means that the total

number of tokens spent is O(n). This allows us to bound (3) by O(n), which then bounds
(2) by O(n), and implies a total expected running time of E[X] = O(n).

4 Dynamic Cuckoo Hashing

In this section we present the Dancing-Kickout Algorithm for maintaining a Cuckoo
hash table. For any family of hash functions H that provides a 1-associative static guarantee,
the Dancing-Kickout Algorithm offers a O(1)-associative dynamic guarantee using the same
hash-function family H.

We will state our results so that they also apply to Cuckoo hashing with a stash [4, 19].
A Cuckoo hash table with a stash of size s is permitted to store s elements outside of the
table in a separate list. Having a small stash has been shown by past work to significantly
simplify the problem of achieving high-probability static guarantees [4] – our results can be
used to make these guarantees dynamic.

Let h = (h1, h2) be a pair of hash functions mapping records to [n]. A set X of records is
h-viable if it is possible to place the records X into a 1-associative n-bin Cuckoo hash table
using hash functions h1 and h2.

Even if a set of records X is not h-viable, it may be that there is a set of s elements Y
for which X \ Y is h-viable. In this case, we say X is h-viable with a stash of size s.

Past static guarantees [1, 4, 5, 15, 25, 27,30] for a hash family H, have taken the following
form, where c ∈ (0, 1), p(n) ∈ poly(n), s ∈ O(1) are parameters: Every set of records X of
size cn has probability at least 1 − 1/p(n) of being h-viable with a stash of size s, where
h = (h1, h2) is drawn from H. In addition to considering guarantees of this type, a fruitful
line of work [25] has also placed additional restrictions on the set X of records (namely, that
X exhibits high entropy). In this section, we will state our results in such a way so that they
are applicable to all of the past variants of static guarantees that we are aware of.

Viability as a graph property
Define the Cuckoo graph G(X, h) for a set of records X and for a pair of hash functions
h = (h1, h2) to be the graph with vertices [n] and with (undirected) edges {(h1(x), h2(x)) |
x ∈ X}. The problem of configuring where records should go in the hash table corresponds to
an edge-orientation problem in G. In particular, one can think of each record x that resides
in a bin hi(x) as representing an edge (h1(x), h2(x)) that is oriented to face out of vertex
hi(x). A set of records X is h-viable if and only if the edges in G(X,h) can be oriented to so
that the maximum out-degree is 1.

Similarly, a set of records X is h-viable with a stash of size s if and only if there are s (or
fewer) edges that can be removed from the Cuckoo graph G(X,h) so that the new graph G′

can be oriented to have maximum out-degree 1.

Applying static guarantees to dynamic settings
In order to apply static guarantees in a dynamic setting, we define the notion of a sequence
of insert/delete operations satisfying a static guarantee.

For ε ∈ (0, 1) and for a hash-function pair h = (h1, h2), we say that a sequence Ψ =
⟨ψ1, ψ2, . . .⟩ of insert/delete operations is (ε, h)-viable with a stash of size s if the follow-
ing holds: for every subsequence of operations of the form Pi = ⟨ψiεn+1, ψiεn+2, . . . , ψ(i+1)εn⟩,
the set X of records that are present (at any point) during the operations Pi has the property
that X is h-viable with a stash of size s.
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The dynamic guarantees in this section will assume only that the sequence of operations
Ψ is (ε, h)-viable (with a stash of size s) for some known parameter ε ∈ (0, 1), and will make
no other assumptions about Ψ or the hash-function pair h = (h1, h2).

Note that the property of being (ε, h)-viable is a statement about the sets of records X
that are present during windows of εn operations. If the table is always filled to capacity
cn, for some c ∈ (0, 1), then the property of being (ε, h)-viable is a statement about sets
of (c+ ε)n records. Thus dynamic guarantees for tables on cn records can be derived from
static guarantees that apply to tables of (c+ ε)n records. By making ε smaller, one can close
the gap between the capacities for the static and dynamic guarantees – but as we shall see,
this also increases the constant in the algorithm’s running time.

Our dynamic guarantee
Formally, we say that an implementation of a k-associative Cuckoo hash table with
a stash of size s is an algorithm that maintains a Cuckoo hash table with n bins, each
of size k, and with a stash of size up to s. The implementation is given two hash functions
h1, h2, and every record x in the table must either be stored in one of the bins h1(x), h2(x)
or in the stash. The implementation is permitted to maintain an additional O(n)-space data
structure D for additional bookkeeping, as long as D is not modified by queries, and as long
as each insert/delete incurs at most O(1) writes to D.

We say that a Cuckoo hash table implementation satisfies the dynamic guarantee on
a sequence of operations Ψ, if:

Each insert/delete operation incurs O(log log n) kickouts and takes time O(log n log log n).
The amortized cost of each insert/delete operation is O(1).

The goal of this section will be to describe an implementation of Cuckoo hashing that
offers the dynamic guarantee (with high probability) as long as the underlying sequence of
operations Ψ is (ε, h)-viable. We call our implementation of Cuckoo hashing the Dancing-
Kickout Algorithm.

▶ Theorem 8. Let ε ∈ (0, 1) and s be constants (s may be 0). Let h = (h1, h2) be a pair of
hash functions. Let Ψ be a sequence of poly(n) insert/delete operations that is (ε, h)-viable
with a stash of size s.

With high probability in n, the Dancing-Kickout Algorithm implements an 8-associative
Cuckoo hash table with a stash of size s that satisfies the dynamic guarantee on Ψ.

Proof. We take the approach of starting with a weaker version of the theorem and then
working our way towards the full version. Initially we will consider only inserts, but no
deletes or stash. Then we will consider only inserts and a stash, but no deletes. Then we will
consider all of inserts, deletes, and a stash, but we will make what we call the full-viability
assumption, which is that the set X of all of records inserted and deleted by Ψ is h-viable.
Finally, we will show how to remove the full-viability assumption.

We begin by describing the Dancing-Kickout Algorithm in the case where Ψ consists of
only insertions (and no deletions). In this case, the algorithm only uses the first 4 slots in
each bin. We also begin with the simplifying assumption that the stash size s is 0.

The algorithm thinks of each record x as representing an edge (h1(x), h2(x)) in the
Cuckoo graph G. Since the set of records X being inserted is h-viable, it must be that G
can be oriented with out-degree 1. This means that each connected component in G is a
pseudotree (i.e., a tree with up to one additional edge added).
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In this case, the Dancing-Kickout Algorithm works as follows. Whenever an edge-insertion
connects two vertices from different connected components, the Dancing-Kickout Algorithm
simply uses the Rank-Based Dancing-Walk Algorithm to maintain an edge-orientation with
maximum out-degree 3. On the other hand, when an edge-insertion connects two vertices
v, u that are already in the same tree as one another (we call the edge (v, u) a bad edge),
the Dancing-Kickout Algorithm orients the edge arbitrarily and then disregards that edge in
all steps (i.e., the edge cannot be used as part of a random walk). Since G is a pseudoforest,
each vertex v is incident to at most one bad edge; it follows that the maximum out-degree in
the graph never exceeds 4. This, in turn, means that no bin in the Cuckoo hash table stores
more than 4 items.

The analysis of the Rank-Based Dancing-Walk algorithm ensures that the edge-insertions
involving good edges satisfy the dynamic guarantee with high probability in n (that is, each
operation takes time O(log n log log n), incurs O(log log n) edge flips, and takes amortized
time O(1)). The edge-insertions involving bad edges can be analyzed as follows. Note that
the time for the Rank-Based Dancing-Walk Algorithm to identify that an edge e = (v, u) is
bad is just the height of the rank tree containing v and u. Since combination ranks never
exceed O(log n), the time to identify a bad edge is never more than O(log n). Since each
rank-tree will have at most one bad edge identified in it (because each connected component
contains at most 1 bad edge), the total time spent identifying bad edges is at most the sum
of the depths of the rank trees (at the end of all edge insertions); this, in turn, is O(n) since
the depth of each rank tree is never more than the number of elements it contains. Thus the
operations in which bad edges are inserted do not cause the dynamic guarantee to be broken.

Now we describe what happens if Ψ still consists only of insertions, but a stash of size
s > 0 is used. In this case, the Dancing-Kickout Algorithm places an edge e = (v, u) in
the stash (i.e., the algorithm places the record x for which h1(x) = v and h2(x) = u in the
stash) if e is a bad edge and if both of the vertices v and u are already incident to bad
edges. On the other hand, if one of v or u is not already incident to a bad edge, then the
edge can be oriented out-going from that vertex (just as was the case without a stash). Call
an edge e super bad if, when e is inserted, there is already a bad edge in the connected
component containing e. Since Ψ is h-viable with a stash of size s, the number of super bad
edges is at most s.3 Because the Random-Walk Algorithm only stashes super bad edges,
the algorithm is guaranteed to never stash more than s records at a time. The running
time of the algorithm on non-super-bad edges is the same as in the case of no stash; on
the other hand, the s super bad edges can contribute s ·O(log n) = O(log n) in total to the
running time of the algorithm. Thus, with high probability, the Random-Walk Algorithm
still satisfies the dynamic guarantee.

Now we consider what happens if Ψ contains deletes in addition to inserts. To begin,
consider the special case where the set X of all records that Ψ ever inserts (including
those that are subsequently deleted) has the property that X is h-viable – we call this the
full-viability assumption. Under the full-viability assumption, deletes can be implemented
with tombstones, meaning that when a record is deleted it is simply marked as deleted
without actually being removed. In fact, the use of tombstones is not actually necessary.
This is because the analysis of the Rank-Based Dancing-Walk Algorithm for edge-orientation

3 To see this formally, note that there must be a set of at most s edges Y such that X \Y is a pseudoforest.
That is, without the edges Y there would be no super bad edges. On the other hand, one can verify
that placing each of the edges from Y back into the sequence of edges X \ Y adds at most |Y | super
bad edges, since each edge that is placed in can increase the number of super bad edges by at most 1.

ESA 2021



12:16 Incremental Edge Orientation in Forests

continues to work without modification even if edges in the graph disappear arbitrarily over
time, as long as all of the edges (including those that disappear) form a forest. Thus, in the
case where the full-viability assumption holds, we can simply implement deletes by removing
the appropriate record from the table, and then we can use the Dancing-Kickout algorithm
exactly as described so far. Since the Rank-Based Dancing-Walk Algorithm can handle
edges disappearing, it follows that the Dancing-Kickout algorithm still satisfies the dynamic
guarantee with high probability.

Finally, we consider what happens if Ψ contains both inserts and deletes, but without
making the full-viability assumption. So far, we have only used the first 4 slots of each
bin. We now incorporate into the algorithm slots 5, 6, 7, 8, and we modify the algorithm to
gradually rebuild the table in phases, where consecutive phases toggle between using only
slots 1, 2, 3, 4 or using only slots 5, 6, 7, 8; as we shall see, each phase is designed so that the
running-time of its operations can be treated as meeting the full-viability assumption.

In more detail, the algorithm performs gradual rebuilds as follows. The operations Ψ
are broken into phases P1, P2, . . . each consisting of εn operations. At the beginning of each
phase Pi where i is even (resp. i is odd), the hash table uses only the slots 1, 2, 3, 4 (resp.
5, 6, 7, 8) in each bin. During the phase of operations Pi, any new insertions are performed
with the Dancing-Kickout Algorithm using slots 5, 6, 7, 8 (resp. 1, 2, 3, 4). Also, during the
j-th operation in the phase Pi, the algorithm looks at bin j, takes any records in slots 1, 2, 3, 4
(resp. 5, 6, 7, 8), and reinserts those records into the hash table using slots 5, 6, 7, 8 (resp.
1, 2, 3, 4).4 Finally, deletes are implemented simply by removing the appropriate record x,
regardless of what slot that record may be in.

During a given phase Pi, the algorithm can be thought of as starting with a new empty
Cuckoo hash table (consisting in each bin of either the slots 1, 2, 3, 4 if i is odd or 5, 6, 7, 8
if i is even). Then over the course of Pi, one can think of the algorithm as performing not
only the operations in Pi, but also populating the new hash table with any elements that
were present at the beginning of the phase Pi (unless those elements are deleted before they
have a chance to be re-populated). Let X be the set of all records x that are placed into the
new hash table at some point during Pi (this includes both elements that operations in Pi

act on, as well as elements that are re-inserted due to the gradual rebuild during the phase).
By the (ε, h)-viability of Ψ, we know that X is h-viable. This means that phase Pi can be
analyzed as satisfying the full-viability assumption. Thus, with high probability in n, the
algorithm does not violate the dynamic guarantee during phase Pi. Since there are poly(n)
phases, it follows that, with high probability in n, the algorithm never violates the dynamic
guarantee. ◀
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Abstract
The k-center problem for a point set P asks for a collection of k congruent balls (that is, balls of
equal radius) that together cover all the points in P and whose radius is minimized. The k-center
problem with outliers is defined similarly, except that z of the points in P do need not to be
covered, for a given parameter z. We study the k-center problem with outliers in data streams in
the sliding-window model. In this model we are given a possibly infinite stream P = ⟨p1, p2, p3, . . .⟩
of points and a time window of length W , and we want to maintain a small sketch of the set P (t) of
points currently in the window such that using the sketch we can approximately solve the problem
on P (t).

We present the first algorithm for the k-center problem with outliers in the sliding-window model.
The algorithm works for the case where the points come from a space of bounded doubling dimension
and it maintains a set S(t) such that an optimal solution on S(t) gives a (1 + ε)-approximate
solution on P (t). The algorithm uses O((kz/εd) log σ) storage, where d is the doubling dimension
of the underlying space and σ is the spread of the points in the stream. Algorithms providing a
(1 + ε)-approximation were not even known in the setting without outliers or in the insertion-only
setting with outliers. We also present a lower bound showing that any algorithm that provides a
(1 + ε)-approximation must use Ω((kz/ε) log σ) storage.
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1 Introduction

Clustering is one of the most important tools to analyze large data sets. A well-known
class of clustering algorithms is formed by centroid-based algorithms, which include k-means
clustering, k-median clustering and k-center clustering. The latter type of clustering is the
topic of our paper. In the k-center problem one is given a set P of points from a metric space
and a parameter k, and the goal is to find k congruent balls (that is, balls of equal radius)
that together cover the points from P and whose radius is minimized. Note that the special
case k = 1 corresponds to the minimum-enclosing ball problem. Data sets in practice often
contain outliers, leading to the k-center problem with outliers. Here we are given, besides P

and k, a parameter z that indicates the allowed number of outliers. Thus the radius of the
balls in an optimal solution is given by

optk,z(P ) := the smallest radius ρ such that we can cover all points from P ,
except for at most z outliers, by k balls of radius ρ.
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13:2 k-Center Clustering with Outliers in the Sliding-Window Model

In this paper we study the k-center problem with outliers in data streams, where the
input is a possibly infinite stream P = ⟨p1, p2, . . .⟩ of points. The goal is to maintain a
solution to the k-center problem as the points arrive over time, without any knowledge of
future arrivals and using limited (sub-linear) storage. Since we cannot store all the points in
the stream, we cannot expect to maintain an optimal solution. Hence, the two main quality
criteria of a streaming algorithm are its approximation ratio and the amount of storage it
uses. We will study this problem in the sliding-window model. In this model we are given a
window length W and we are, at any time t, only interested in the points that arrived in
the time window (t−W, t]. Working in the sliding-window model is often significantly more
difficult than working in the standard (insertion-only) streaming model.

Previous work

Charikar et al. [6] were the first to study the metric k-center problem in data streams.
They developed an algorithm in the insertion-only model that computes an 8-approximation
for the k-center problem using Θ(k) space. Later McCutchen and Khuller [13] improved
the approximation ratio to 2 + ε at the cost of increasing the storage to O((k/ε) log(1/ε)).
McCutchen and Khuller also studied the k-center problem with z ⩾ 1 outliers, for which
they gave a (4 + ε)-approximation algorithm that requires O(kz/ε) space.

The above results are for general metric spaces. In spaces of bounded doubling dimension1

better bounds are possible. Indeed, Ceccarello et al. [3] gave a (3+ε)-approximation algorithm
for the k-center problem with z outliers, thus improving the approximation ratio (4 + ε) for
general metrics. Their algorithm requires O((k + z)(1/ε)d) storage, where d is the doubling
dimension of the underlying space (which is assumed to be a fixed constant).

The algorithms mentioned so far are deterministic. Charikar et al. [8] and Ding et
al. [10] studied sampling-based streaming algorithms for the Euclidean k-center problem
with outliers, showing that if one allows slightly more than z outliers then randomization
can reduce the storage requirements. Our focus, however, is on deterministic algorithms.

For the k-center problem in the sliding-window model, the only result we are aware of
is due to Cohen-Addad et al. [9]. They deal with the k-center problem in general metric
spaces, but without outliers, and they propose a (6 + ε)-approximation algorithm using
O((k/ε) log σ) storage, and a (4+ε)-approximation for the special case k = 2. Here σ denotes
(an upper bound on) the spread of the points in the stream; in other words, σ := ∆max/∆min,
where ∆max is an upper bound on the maximum distance and ∆min is a lower bound on the
minimum distance between any two distinct points. It is assumed that ∆max and ∆min are
known to the algorithm. They also prove that any algorithm for the 2-center problem with
outliers in general metric spaces that achieves an approximation ratio of less than 4 requires
Ω(W 1/3) space, where W is the size2 of the window. Table 1 gives an overview of the known
results on the k-center problem in the insertion-only and the sliding-window model.

While our main interest is in the k-center problem for k > 1, our results also apply
when k = 1. Hence, we also briefly discuss previous results for the 1-center problem.

1 The doubling dimension of a space X is the smallest number d such that any ball B in the space can be
covered by 2d balls of radius radius(B)/2.

2 Here the window size W is defined in terms of the number of points in the window, that is, the window
consists of the W most recent points. We define the window in a slightly more general manner, by
defining W to be the length (that is, duration) of the window. Note that if we assume that the i-th
point arrives at time t = i, then the two models are the same.
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Table 1 Results for the k-center problem with and without outliers in the insertion-only and the
sliding-window model. Bounds on the storage are asymptotic. In the papers where the metric space
has bounded doubling dimension or is Euclidean, the dimension d is considered a constant.

model metric space approx. storage outliers ref.
insertion-only general 8 k no [6]

general 2 + ε (k/ε) log(1/ε) no [13]
general 4 + ε kz/ε yes [13]

bounded doubling 3 + ε (k + z)/εd yes [3]
sliding window general 6 + ε (k/ε) log σ no [9]

bounded doubling 1 + ε (kz/εd) log σ yes here

For the 1-center problem in d-dimensional Euclidean space, streaming algorithms that
maintain an ε-kernel give a (1 + ε)-approximation. An example is the algorithm of Zarabi-
Zadeh [14] which maintains an ε-kernel of size O(1/ε(d−1)/2 log(1/ε)). Moreover, using
only O(d) storage one can obtain a 1.22-approximation for the 1-center problem without
outliers [2, 4]. For the 1-center problem with outliers, one can obtain a (1 + ε)-approximation
algorithm that uses z/εO(d) storage by the technique of Agarwal et al. [1]. Zarrabi-Zadeh
and Mukhopadhyay [15] studied the 1-center problem with z outliers in high-dimensional
Euclidean spaces, where d is not considered constant, giving a 1.73-approximation algorithm
that requires O(d3z) storage. Recently, Hatami anad Zarrabi-Zadeh [12] extended this result
to 2-center problem with z outliers, obtaining a (1.8+ε)-approximation using O(d3z2 +dz4/ε)
storage. None of the 1-center algorithms discussed above works in the sliding-window model.

A problem that is closely related to the 1-center problem is the diameter problem, where
the goal is to maintain an approximation of the diameter of the points in the stream. This
problem has been studied in the sliding-window model by Feigenbaum, Kannan, Zhang [11]
and later by Chan and Sadjad [5], who gave a (1+ε)-approximation for the diameter problem
(without outliers) in the sliding window model, using O((1/ε)(d+1)/2 log(σ/ε)) storage.

Our contribution

We present the first algorithm for the k-center problem with z outliers in the sliding-window
model. It works in spaces of bounded doubling dimension and yields a (1 + ε)-approximation.
So far a (1 + ε)-approximation was not even known for the k-center problem without outliers
in the insertion-only model. Our algorithm uses O((kz/εd) log σ) storage,3 where d is the
doubling dimension and σ is the spread, as defined above. Thus for the 1-center problem
we obtain a solution that uses O((z/εd) log σ) storage. This solution also works for the
diameter problem. Note that also for the 1-center problem with outliers (and the diameter
problem with outliers) an algorithm for the sliding-window model was not yet known. A
useful property of the sketch4 maintained by our algorithm for the k-center problem, is that
it can also be used for the k′-center problem for any k′ < k, as well as for the diameter
problem. As in the previous papers on the k-center problem (or the diameter problem) in the
sliding-window model [5, 9, 11], we assume that ∆max and ∆min (upper and lower bounds
on the maximum and minimum distance between any two points in the stream) are known
to the algorithm.

3 To correctly state the bound for the case z = 0 as well, we should actually write O((k(z + 1)/εd) log σ).
To keep the bound concise, we will just write O((kz/εd) log σ), however.

4 We use the word sketch even though we do not study how to compose the sketches for two separate
streams into a sketch for the concatenation of the stream, as the term sketch seems more appropriate
than data structure, for example.
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13:4 k-Center Clustering with Outliers in the Sliding-Window Model

As mentioned above, our algorithm provides a (1 + ε)-approximation. More precisely,
it maintains a set S(t) ⊂ P (t) such that computing an optimal solution for S(t) and then
suitably expanding the balls in the solution, gives a (1 + ε)-approximate solution for P (t).
Thus, to obtain a (1 + ε)-approximate solution for P (t) one needs to compute an optimal
(or (1 + ε′)-approximate, for a suitable ε′) solution for S(t). Depending on the underlying
space this can be slow, and it may be preferable to compute, say, a 2-approximation for S(t),
which would then give a (2 + ε)-approximation for P (t). The various options in Euclidean
spaces and general spaces of bounded doubling dimension are discussed in Section 2.3.

Our second contribution is a lower bound for the k-center problem with outliers in the
sliding-window model. Our lower bound shows that any algorithm that provides a (1 + ε)-
approximation must use Ω((kz/ε) log σ) storage. This matches our upper bound up to the
dependency on ε and d. The lower-bound construction uses points in R1, so it shows that
our algorithm is optimal in this case. The lower bound model is very general. It allows the
algorithm to store points, or weighted points, or balls, or whatever it wants so that it can
approximate an optimal solution for P (t) at any time t. The main condition is that each
object comes with an expiration time which corresponds to the expiration time of some point
in the stream, and that the algorithm can only change its state when an object expires or a
new object arrives; see Section 3 for details.

2 The algorithm

Let P := ⟨p1, p2, . . .⟩ be a possibly infinite stream of points from a metric space X of doubling
dimension d and spread σ, where d is considered to be a fixed constant. We denote the
arrival time of a point pi by tarr(pi). We say that pi expires at time texp(pi) := tarr(pi) + W ,
where W is the given length of the time window. To simplify the exposition, we assume that
all arrival times and departure times (that is, times at which a point expires) are distinct.
For a time t we define P (t) to be the set5 of points currently in the window. In other words,
P (t) := {pi : tarr(pi) ⩽ t < texp(pi)}. For a point q ∈ X and a parameter r ⩾ 0, we use
ball(q, r) to denote the ball with center q and radius r.

In the following we show how to maintain a sketch Γ(t) of P (t) for the k-center problem
with outliers. The idea behind our algorithm is as follows. Consider an optimal solution
for P (t) consisting of k balls B1, . . . , Bk of radius ρopt. Suppose we cover the points in each
ball Bi by a number of smaller balls of radius ερopt; we will call these mini-balls. Since
the underlying space has doubling dimension d, we can do this using O(1/εd) mini-balls for
each ball Bi. To obtain a (1 + ε)-approximation, we do not need to know all the points: it
suffices to keep z + 1 points in each mini-ball, since then we cannot designate all points in
the mini-ball as outliers. There are several challenges to overcome to make this idea work.
For instance, we do not know ρopt. Hence, we will develop an algorithm for the decision
version of the problem, which we will then apply “in parallel” to different possible values
for the optimal radius. But when ρ is much smaller than ρopt we have another challenge,
namely that there can be many outliers (which may need to be stored, because at some
later moment in time they may become inliers). Finally, since points arrive and expire, the
balls in an optimal solution move over time, which makes it hard to maintain the mini-balls
correctly. Below we show how to overcome these challenges.

5 We allow the same point from X to occur multiple times in the stream, so P (t) is actually a multi-set.
Whenever we refer to “sets” in the remainder of the paper we mean “multi-sets”. The distance ∆min is
defined with respect to distinct points, however.
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2.1 A sketch for the decision problem

Recall that for a set Q of points, optk,z(Q) denotes the smallest radius ρ such that we can
cover all points from Q, except for at most z outliers, by k balls of radius ρ, and that ∆min
and ∆max are bounds on the minimum and maximum distance between any two points in
the stream. Let ρ be a parameter with ∆min ⩽ ρ ⩽ ∆max. We will design a sketch Γ(t) and
a corresponding decision algorithm TryToCover with the following properties:

The sketch Γ(t) uses O(kz/εd) storage.

TryToCover either reports a collection C∗ of k balls of radius optk,z(P (t)) + 2ερ that
together cover all points in P (t) except for at most z outliers, or it reports no. In latter
case we have optk,z(P (t)) > 2ρ.

Our sketch Γ(t) is a tuple [τ(t),B(t),R(t)), Pout(t)], where τ is a timestamp, B(t) is a
collection of mini-balls, R(t) is a collection of so-called representative sets, and Pout(t) is a
set of outliers. We will maintain the following invariants.

(Inv-1) For any time t′ with t ⩽ t′ < τ(t) we are guaranteed that optk,z(P (t′)) > 2ρ. The
idea is that when we find k + z + 1 points with pairwise distances greater 2ρ, then we can
set τ to the expiration time of the oldest of these points, and we can delete this point (as
well as any older points) from the sketch.

(Inv-2) Each mini-ball B ∈ B(t) has radius ερ and the center of B, denoted by center(B), is
a point from the stream. Note that the center does not need to be a point from P (t).
The mini-balls in B(t) are well spread in the sense that no mini-ball contains the center
of any other mini-ball. In other words, we have dist(center(B), center(B′)) > ερ for any
two mini-balls B, B′ ∈ B(t).

(Inv-3) For each mini-ball B ∈ B(t) the set R(t) contains a representative set R(B) ⊆
B ∩ P (t), and these are the only sets in R(t). The representative sets R(B) are pairwise
disjoint, and each set R(B) contains at most z + 1 points. When |R(B)| = z + 1, we say
that the mini-ball B is full.

(Inv-4) Define Pin(t) :=
⋃

B∈B(t) R(B) and let S(t) := Pin(t) ∪ Pout(t) be the collection of
all points in our sketch. For any point pi ∈ P (t) \ S(t) – these are exactly the points
that have not yet expired but that have been discarded by the algorithm – we have (i)
texp(pi) ⩽ τ(t), and/or (ii) pi ∈ B for a mini-ball B ∈ B(t) that is full and such that all
points in R(B) arrived after pi.

(Inv-5) |B(t)| = O(k/εd) and |Pout(t)| ⩽ z.

At time t = 0, before the arrival of the first point, we have τ(t) = 0 and B(t) = R(t) =
Pout(t) = ∅. Since P (0) = ∅ this trivially satisfies the invariants. Before we prove that we
can maintain the sketch upon the arrival and departure of points, we present our decision
algorithm TryToCover and prove its correctness.
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13:6 k-Center Clustering with Outliers in the Sliding-Window Model

Algorithm 1 TryToCover(Γ(t)).

1: S(t)←
⋃

B∈B(t) R(B)
2: Compute optk,z(S(t)) and the corresponding collection C := {C1, . . . , Ck} of balls.
3: if t < τ(t) or optk,z(S(t)) > 2ρ then
4: Report no
5: else
6: Increase the radius of each ball Ci ∈ C by 2ερ.
7: Report the collection C∗ := {C∗

1 , . . . , C∗
k} of expanded balls.

In line 2 we compute an optimal solution on the point set S(t) How this can be done
depends on the underlying metric space and will be discussed in Section 2.3. The following
lemma establishes the correctness of the algorithm.

▶ Lemma 1. Algorithm TryToCover either reports a collection C∗ of k balls of radius
optk,z(P (t)) + 2ερ that together cover all points in P (t) except for at most z outliers, or it
reports no. In latter case we have optk,z(P (t)) > 2ρ.

Proof. First suppose the algorithm reports no. If this happens because t < τ(t) then
optk,z(P (t)) > 2ρ by (Inv-1). Otherwise, this happens because optk,z(S(t)) > 2ρ. But then
optk,z(P (t)) > 2ρ, because (Inv-3) implies that S(t) ⊆ P (t).

Now suppose the algorithm reports a collection C∗ := {C∗
1 , . . . , C∗

k} of balls. Let C be
the corresponding set of balls before they were expanded. Since C is an optimal solution for
S(t), the balls Ci have radius optk,z(S(t)) ⩽ optk,z(P (t)) and together they cover all points
in S(t) except for at most z outliers. Now consider a point pi ∈ P (t) \ S(t). To finish the
proof, we must show that pi is covered by one of the balls in C∗. To this end, first observe
that texp(pi) > t because pi ∈ P (t). Since TryToCover did not report no, this implies that
texp(pi) > τ(t). Hence, we can conclude from (Inv-4) that pi ∈ B for a mini-ball B ∈ B(t)
that is full. Thus R(B) contains z + 1 points, and since we allow only z outliers this implies
that at least one point from R(B) is covered by a ball Ci ∈ C. Because diam(B) = 2ερ, this
implies that pi must be covered by C∗

i , thus finishing the proof. ◀

Next we show how to update the sketch Γ(t).

Handling departures

When a point pj in one of our representative sets R(B) expires, we simply delete it from R(B),
and if R(B) then becomes empty we remove R(B) from R(t) and B from B(t). Similarly, if
pj was a point in Pout(t) we remove pj from Pout(t).

It is trivial to verify that (Inv-1)–(Inv-3) and (Inv-5) still hold for the updated sketch. To
see that (Inv-4) holds as well, consider a point pi ∈ P (t) \ S(t). The only reason for (Inv-4)
to be violated, would be when pi ∈ B for a mini-ball B that was full before the deletion of
pj but is no longer full after the deletion. However, (Inv-4) states that all points in R(B)
arrived after pi. Since pi did not yet expire, this means that the point pj that currently
expires cannot be a point from R(B).

Handling arrivals

The arrival of a point pj at time t := tarr(pj) is handled by Algorithm 2. We denote the
sketch just before the arrival by Γ(t−), and the updated sketch by Γ(t+).
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Algorithm 2 HandleArrival(Γ(t−), pj).

1. If pj lies in an existing mini-ball B ∈ B(t−) then add pj to R(B). If pj did not lie in an
existing mini-ball then add pj to Pout(t−).

2. Let Q := Pout(t−)∪
⋃

B∈B(t−) R(B) be the set of all points in the current sketch, including
the just inserted point. Sort the points in Q by decreasing arrival time, and let q1, q2 . . .

denote the sorted sequence of points – note that q1 is the newly inserted point pj . Let
Qi := {q1, . . . , qi} denote the set containing the first i points from Q. Find the largest
index i∗ such that the following holds:

The 3-approximation algorithm of Charikar et al. [7] for the k-center clustering
algorithm with z outliers, when run on Qi∗ , reports a collection B∗ of k balls of radius
at most 6ρ. (In fact, any other constant-factor approximation algorithm can be used if
we adjust the value 6ρ appropriately. For concreteness, we use the one by Charikar et
al.)

3. If Qi∗ ̸= Q (and so the point qi∗+1 exists) then set τ(t+) := max(τ(t−, texp(qi∗+1)).
Remove the points in Q \Qi∗ from the representative sets they are in; note that these
points all have expiration time at least τ(t+).

4. Let B∗ := {B1, . . . , Bk} be the balls in the solution reported for Qi∗ . Note that all points
from Qi∗ , except for at most z outliers, lie in a ball from B∗. The new set of mini-balls
and outliers is now computed as follows. Increase the radius of the balls in B∗ by ερ.
Denote the set of expanded balls by B∗

a. Add each mini-ball B ∈ B(t−) whose center lies inside a ball from B∗ to the set B(t+)
and add their representative sets to R(t+).

b. Let Z ⊂ Qi∗ be the set of points that are not in a representative set added to R(t+)
in Step 4a. Let Zin ⊆ Z be the points that lie inside a ball from B∗. Go over the
points in Zin one by one, in arbitrary order, and handle each point q as follows: If
there is a mini-ball in the current set B(t+) that contains q then add q to R(B) for an
arbitrary such mini-ball B; otherwise create a mini-ball B with center q and radius ερ,
set R(B) := {q} and add B to B(t+).

c. For all mini-balls B ∈ B(t+) such that |R(B)| > z+1, remove the oldest |R(B)|−(z+1)
points from R(B).

d. Set Pout(t+) := Z \Zin. Note that these are exactly the points from Qi∗ that have not
been added to a representative set

▶ Lemma 2. After the arrival of point pj has been handled, the invariants (Inv-1)–(Inv-5)
are restored.

Proof. (Inv-1) If τ(t+) = τ(t−) then obviously (Inv-1) still holds, so assume that τ is
updated by the algorithm in Step 3. Thus the algorithm of Charikar et al. [7] returned a
solution of radius more than 6ρ on Qi∗+1. Since the algorithm is a 3-approximation, this
means optk,z(Qi∗+1) > 2ρ. Because we sorted the points on expiration time, we must
have optk,z(P (t′)) > 2ρ for all t′ with t ⩽ t′ < texp(qi∗+1). Hence, (Inv-1) still holds.

(Inv-2) By construction, the mini-balls in B(t+) have radius ερ and are centered at a point
from the stream. The mini-balls from B(t−) are well spread by induction, so we only
need to prove that any mini-balls created in Step 4b are well spread. This is true because
we only create a new mini-ball when its center does not lie inside an existing mini-ball.

(Inv-3) The representative sets R(B) are disjoint by construction, and |R(B)| ⩽ z + 1 is
guaranteed by Step 4c. Hence (Inv-3) holds.
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(Inv-4) Take a point pi ∈ P (t+) \ S(t+) and assume texp(pi) > τ(t+). We have two cases.
The first case is that pi was discarded due to the arrival of pj . Then it was either
removed in Step 3, which implies texp(pi) ⩾ τ(t+); or it was removed in Step 4c, which
implies there is a full mini-ball B ∈ B(t+) such that all points in R(B) are newer
than pi. Hence, (Inv-4) holds for pi

The second case is that pi was already discarded earlier. We can assume that (Inv-4)
holds before the arrival of pj . If texp(pi) ⩽ τ(t−) then we also have texp(pi) ⩽ τ(t+)
and we are done. So assume that pi ∈ B for a mini-ball B ∈ B(t−) that was full and
such that all points in R(B) arrived after pi. If R(B) contained a point pi′ ∈ Q \Qi∗

then texp(pi) < texp(pi′) ⩽ τ(t+), and so (Inv-4) holds. If R(B) only contained points
from Qi∗ then we have two sub-cases.
The first sub-case is that B is still present in B(t+). Then B must still be full, because
R(B) only contained points from Qi∗ . Hence, (Inv-4) holds.
The second sub-case is that B is not present in B(t+). Thus its center must lie outside
all balls in B∗. But then the points in R(B), which are all in Qi∗ , are outside any ball
in B∗. But this is impossible, since |R(B)| = z + 1 and B∗ has only z outliers.

(Inv-5) All mini-balls in B(t+) have their center inside one of the k balls in B∗, which
have radius at most 6ρ. Moreover, the mini-balls in B(t+) have radius ερ and they are
well spread. Since the underlying space has doubling dimension d, this implies that
|B(t+)| = O(k/εd).
The outlier set Pout(t−) consists of the points from Qi∗ that lie outside the balls in B∗.
Hence, these points also lie outside the balls in B∗. Since B∗ is a valid solution to the
k-center problem with z outliers, there are at most z such points. Thus |Pout(t+)| ⩽ z. ◀

2.2 A sketch for the optimization problem
Above we presented a sketch for a decision version of the problem, for given parameters ρ

and ε. The sketch uses O(kz/εd) storage. We also gave an algorithmTryToCover that
either reports a collection C∗ of k balls of radius optk,z(P (t))+2ερ covering all points in P (t)
except at most z outliers, or that reports no. In latter case we know that optk,z(P (t)) > 2ρ.
To make the parameter ρ and ε explicit, we will from now on denote the sketch by Γρ,ε.

In the optimization version of the problem we wish to find k congruent balls of minimum
radius that together cover all points in P (t) except for at most z outliers. To obtain a (1 + ε)-
approximation for the optimization problem, for a given ε > 0, we maintain a sketch Γρi,ε/2
for every 0 ⩽ i ⩽ ⌊log σ⌋, where ρi := 2i ·∆min. We can then obtain a (1 + ε)-approximate
solution with the algorithm shown in Algorithm 3.

Algorithm 3 FindApproximateCenters(Γ(t)).

1: i← 0
2: repeat
3: answer ← TryToCover(Γρi,ε/2); i← i + 1
4: until answer ̸= no
5: if the radii of the balls in answer is less than ∆min then
6: Reduce the radii of the balls to zero
7: Report answer

We obtain the following theorem, whose proof can be found in the full version of the paper.
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▶ Theorem 3. The sketch above uses O((kz/εd) log σ) storage and that allows us to report
at any time t a collection C∗ of balls of radius at most (1 + ε) · optk,z(P (t)) covering all
points from P (t), except at most z outliers.

Our sketch for the k-center problem can also be used for the k′-center problem for k′ < k.
Moreover, a sketch for the k-center problem for k ⩾ 1 can be used for the diameter problem.
Recall that the diameter problem with outliers for the set P (t) asks for the value

diamz(P (t)) := min{diam(P (t) \Q) : |Q| = z},

that is, diamz(P (t)) is the smallest diameter one can obtain by deleting z outliers from P (t).
We say that an algorithm reports a (1 − ε)-approximation to diamz(P (t)) if it reports a
value D with (1− ε) · diamz(P (t)) ⩽ D ⩽ diamz(P (t)). The proof of the following theorem
is in the full version of the paper.

▶ Theorem 4. The sketch for the k-center problem with outliers as presented above can also
be used to provide a (1 + ε)-approximation for the k′-center problem with outliers, for any
1 ⩽ k′ ⩽ k. Moreover, it can be used to provide a (1− 2ε)-approximation for the diameter
problem with outliers.

Theorem 4 implies that there exists a sketch for the diameter problem with outliers in the
sliding-window model that gives a (1+ε)-approximation to diamz(P (t)) using O((z/εd) log σ)
storage, namely the sketch for the 1-center problem.

2.3 Time complexity
Above we focused on the storage used by our sketch, and on the approximation ratio it can
potentially provide. We now discuss the time complexity.

The algorithm that handles departures trivially runs in O(1) time. The most time-
consuming step in the algorithm that handles arrivals is Step 2, where we run the algorithm
of Charikar et al. [7] on a set of O(kz/εd) points. This takes O((kz/εd)3) time. Note that,
both for departures and arrivals, we need to execute the respective algorithms for each of
the log σ sketches Γρi,ε/2 we maintain.

The time needed for FindApproximateCenters is more interesting, since it calls
TryToCover, which is supposed to compute an optimal solution for the k-center problem
with outliers on a given set S(t) of O(kz/ε) points. It is routine to check that if TryToCover
would use a c-approximate solution on S(t), instead of an optimal solution, our final result
would be a c(1 + ε)-approximation. In d-dimensional Euclidean space we can solve the
k-center problem with outliers in time polynomial in n := |S(t)| (for constant k and d), as
follows: first generate all O(nd+1) potential centers – there are O(nd+1) potential centers
because the smallest enclosing ball of a given point set is defined by at most d + 1 points –
then generate all possible collections of k such centers, and then for each of the O(n(d+1)k)
such collections find the minimum radius ρ such that we can cover all except for z points. A
similar approach is possible for other metrics in Rd that are sufficiently well-behaved (such
as ℓp metrics, for instance).

For arbitrary metric spaces the situation is more tricky. The standard assumption, which
we also make, is that we can compute the distance between any two given points from the
metric space in O(1) time. Still, computing an optimal solution on the set S(t) can be quite
slow or perhaps even infeasible. For example, when an optimal center is a point from the
metric space that does not occur in the stream, then the algorithm may be unable to retrieve
this center. So unless we are in Euclidean space, or some other “well-defined” space, it
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seems most natural to define the underlying space as consisting of exactly the points in the
stream. Note that this can still be somewhat problematic, as it may require the algorithm to
use points that have already expired as centers for the current set S(t). These issues seem
unavoidable for any algorithm that maintains a sketch in the sliding-window model. Also
note that, using just the points in the current set P (t) as centers, one can always obtain
a 2-approximation to the optimal clustering. Invariant (Inv-4) thus implies that by using
the set S(t) as potential centers we can obtain a (2 + ε) approximation. Also note that the
optimal k-center clustering with z outliers on S(t), under the restriction that the centers
come from S(t), can be trivially computed in O(|S(t)|k+2) time.

The following theorem summarizes the performance of our sketch.

▶ Theorem 5. Consider the k-center problem with z outliers in the sliding-window model,
for streams of points from a space with doubling dimension d. Let ∆min and ∆max be given
(lower and upper) bounds on the minimum and maximum distance between any two points
in the stream, and let σ := ∆max/∆min be (an upper bound on) the spread of the stream.
Suppose we have a c-approximation algorithm for the static version of the problem that runs
in Tk,z(n) time on a set of n points. Then for any 0 < ε < 1 we can maintain a sketch with
the following properties:

The sketch uses O((kz/εd) log σ) storage.
Departures and arrivals can be handled in O(log σ) and O((kz/εd)3 log σ) time,
respectively.
At any time t, the algorithm can report a valid solution for P (t) of cost at most (1 + ε)c ·
optk,z(P (t)). The time needed to compute the solution is Tk,z(n), where n := O(kz/εd).

3 A lower bound

Above we presented a sketch of size O((kz/εd) log σ) that provides a (1 + ε)-approximation
for the k-center problem with z outliers in the sliding-window model. In this section we show
that this is tight, up to the dependency on d. In particular, we prove that any sketch giving
a (1 + ε)-approximation for the problem in R1 must use Ω((kz/ε) log σ) storage. In the full
paper we show that to obtain any constant approximation ratio, a sketch must use Ω(kz)
storage.

The lower-bound model

Our lower-bound is extremely simple and general. We allow the algorithm to store points,
or weighted points, or balls, or whatever it wants so that it can approximate an optimal
solution for P (t) at any time t. We only make the following assumptions. Let S(t) be the
collection of objects being stored at time t.

Each object in S(t) is accompanied by an expiration time, which is equal to the expiration
time of some point pi ∈ P (t).
Let pi ∈ P (t). If no object in S(t) uses texp(pi) as its expiration time, then no object in
S(t′) with t′ > t can use texp(pi) as its expiration time.
The solution reported by the algorithm is uniquely determined by S(t), and the algorithm
only modifies S(t) when a new point arrives or when an object in S(t) expires.
The algorithm is deterministic and oblivious of future arrivals. In other words, the set
S(t) is uniquely determined by the sequence of arrivals up to time t, and the solution
reported for P (t) is uniquely determined by S(t).
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Figure 1 The lower-bound construction for a (1 + ε)-approximate sketch. In the example, s = 3,
k = 3, ε = 1/2 and z = 2. (i) The initial configuration. (ii) Rotated view of the cluster containing p∗.

The storage used by the algorithm is defined as the number of objects in S(t). The algorithm
can decide which objects to keep in S(t) anyway it wants; it may even keep an unbounded
amount of extra information in order to make its decisions. The algorithm can also derive a
solution for P (t) in any way it wants, as long as the solution is valid and uniquely determined
by S(t). Clearly, the sketch from the previous section adheres to the model.

A lower bound for a (1 + ε)-approximate sketch

Let Alg be a (1 + ε′)-approximation algorithm, for some 0 < ε′ < 1, where we assume for
simplicity that 1/ε′ is an integer. The lower-bound instance, which consists of points in R1,
is as follows.

Let ε := ε′/8 and consider the configuration shown in Figure 1(i). The configuration
consists of k clusters C1, . . . , Ck, placed next to each other from left to right. Each cluster
Ci consists of s groups, G1

i , . . . , Gs
i , where s = Θ(log σ). Each group Gj

i consists of 1/ε

subgroups, Gj,1
i , . . . , G

j,1/ε
i . A subgroup Gj,ℓ

i consists of z + 1 points at distance 2j−1 apart;
the diameter of a subgroup – that is, the distance between its leftmost and rightmost point –
is thus 2j−1z. Subgroup Gj,ℓ

i is preceded by an empty interval of length 2j−1z. Hence, the
total diameter of the group Gi, including the empty interval preceding its leftmost subgroup,
is 2i−1z/ε. (The exception is G1, for which we do not count the empty interval preceding its
leftmost subgroup.) This brings the total diameter of a cluster to

L :=
s∑

j=1
2jz/ε− z/ε = (2s+1 − 3) · z/ε < 2s+1z/ε.

In between every two consecutive clusters there an an empty interval of length 2L.
The arrival order of the points in the configuration is as follows. The subgroups within a

cluster arrive from right to left, in a round-robin fashion over the clusters: in the first round
the subgroups G

s, 1
ε

k , . . . , G
s, 1

ε
1 arrive, in the second round the subgroups G

s, 1
ε −1

k , . . . , G
s, 1

ε −1
1

arrive, and so on. More formally, Gj,ℓ
i arrives before Gj′,ℓ′

i′ iff: j > j′ or (j = j′ and ℓ > ℓ′) or
(j = j′ and ℓ = ℓ′ and i > i′). This finishes the description of the initial part of the instance.
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Let t be the time at which the last point in the configuration arrives, let P (t) be the set
of all points in the clusters C1, . . . , Ck, and let S(t) be the set of objects stored by Alg. We
will argue that |S(t)| = Ω(kzs/ε), otherwise an adversary can continue the instance such
that at some time t′ in the future the algorithm does not give a (1 + ε)-approximation.

Consider the points in the subgroups Gj,ℓ
i with j > 1, except for the very first point

that arrived. Let Texp be the set of expiration times of these points. Note that |Texp| =
(k(z + 1)(s− 1)/ε)− 1. Suppose at least one of these expiration times, say the expiration
time of point p∗, is not used by any object in S(t). Let t−

p∗ and t+
p∗ be the times immediately

before and after texp(p∗), respectively. The conditions of the model imply that the algorithm
reports the same solution at times t−

p∗ and t+
p∗ . The adversary will now continue the scenario

in such that one of these answers is not sufficiently accurate, as described next.
Let Gj∗,ℓ∗

i∗ be the subgroup that p∗ belongs to. First, the adversary waits until all points
that arrived before p∗ have expired. The situation is then as follows: clusters Ci with i < i∗

consist of the subgroups up to G
(i)
j∗,ℓ∗ , while clusters Ci with i > i∗ are missing the last of

these subgroups. Cluster Ci∗ has the points up to point p∗ (which expires next) in Gj∗,ℓ∗

i∗ .
Before p∗ expires, the adversary now adds a new subgroup Gnew of z + 1 points to Ci. The
diameter of Gnew is zj∗−1z and its distance to Ci∗ is zj∗−1z as well; see Figure 1(ii). (The
construction has been rotated by 90 degrees in the figure, to make it fit.) In addition, the
adversary adds the points from G

(i)
j∗,ℓ∗ that have already expired back.

We now analyze optk,z(P (t−
p∗)). Since the distance between any two of the k clusters is

larger than the diameter of the clusters, and any cluster still contains at least z + 1 points
– the latter follows because j∗ > 1 – an optimal solution will use a separate ball for each
cluster. The largest cluster is Ci∗ , because Gnew was added to it. Since each subgroup in Ci∗

has z + 1 points and we can designate only z points as outliers, it is optimal to designate the
z rightmost points (topmost in Figure 1(ii)) from Gj∗,ℓ∗

i∗ as outliers and cover the remaining
points with a ball of diameter L∗ + 3 · 2j∗−1z, where

L∗ :=
j∗−1∑
j=1

2jz/ε− z/ε + 2ℓ∗ · 2j∗−1z =
(

2j∗
− 3

)
z/ε + ℓ∗2j∗

z <
(

2j∗+1
)

z/ε,

where the last inequality uses that ℓ∗ ⩽ 1/ε. Hence, optk,z(P (t−
p∗)) = (L∗ + 3 · 2j∗−1z)/2.

At time tp∗ the point p∗ expires, Hence, at time t+
p∗ the subgroup Gj∗,ℓ∗

i∗ has only z points,
which can all be designated as outliers. Hence, Ci∗ minus the outliers can be covered by a
ball of diameter L∗ + 2 · 2j∗−1z and so optk,z(P (t+

p∗)) = (L∗ + 2 · 2j∗−1z)/2.
Since the algorithm must report a valid solution at time t−

p∗ and it must report the same
solution at time t+

p∗ , the approximation ratio at time t+
p∗ is at least

optk,z(P (t−
p∗))

optk,z(P (t+
p∗))

⩾
L∗ + 3 · 2j∗−1z

L∗ + 2 · 2j∗−1z
= 1 + 2j∗−1z

L∗ + 2j∗z
> 1 + 2j∗−1z

2j∗+2z/ε
= 1 + ε/8

We conclude that any algorithm that gives a (1 + ε′)-approximation must store at least
k(z + 1)(s− 1)/(8ε′) objects in the worst case.

The spread of the point set used in the construction, including the subgroup Gnew, is6

σ = kL + (k − 1)2L + 2j∗
z < 3kL < 3k · 2s+1z/ε.

6 In our definition of spread, we are allowed to reuse points, since ∆min = 0 is defined as the minimum
distance between distinct points in the stream. We can also avoid reusing points in our lower-bound
scenario, without asymptotically influencing the spread of the points.
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If the spread is not too small, namely when σ ⩾ (3kz/ε)2, we have s ⩾ 1
2 log σ − 1. We

obtain the following theorem.

▶ Theorem 6. Let Alg be a (1 + ε)-approximation algorithm for the k-center problem
with z outliers in R1, with z ⩾ 1, that works in the model described above. For any
spread σ ⩾ (3kz/ε)2, there is a problem instance of spread σ that requires Alg to store
Ω((kz log σ)/ε) points.

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling and grating

coresets. Discret. Comput. Geom., 39(1-3):38–58, 2008. doi:10.1007/s00454-007-9013-2.
2 Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high

dimensions. Algorithmica, 72(1):83–98, 2015. doi:10.1007/s00453-013-9846-4.
3 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering

(with outliers) in mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB
Endow., 12(7):766–778, 2019. doi:10.14778/3317315.3317319.

4 Timothy M. Chan and Vinayak Pathak. Streaming and dynamic algorithms for minimum
enclosing balls in high dimensions. Comput. Geom., 47(2):240–247, 2014. doi:10.1016/j.
comgeo.2013.05.007.

5 Timothy M. Chan and Bashir S. Sadjad. Geometric optimization problems over sliding windows.
Int. J. Comput. Geom. Appl., 16(2-3):145–158, 2006. doi:10.1142/S0218195906001975.

6 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004. doi:10.1137/
S0097539702418498.

7 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proc. 12th Annual ACM-SIAM symposium on Discrete
Algorithms (SODA), pages 642–651. Society for Industrial and Applied Mathematics, 2001.

8 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In Proc. 35th Annual ACM Symposium on Theory of Computing (STOC),
pages 30–39, 2003. doi:10.1145/780542.780548.

9 Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-center
in sliding windows. In Proc. 43rd International Colloquium on Automata, Languages, and
Programming, (ICALP), volume 55 of LIPIcs, pages 19:1–19:12, 2016. doi:10.4230/LIPIcs.
ICALP.2016.19.

10 Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with
outliers and coreset construction. In Proc. 27th Annual European Symposium on Algorithms
(ESA), volume 144 of LIPIcs, pages 40:1–40:16, 2019. doi:10.4230/LIPIcs.ESA.2019.40.

11 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the
streaming and sliding-window models. Algorithmica, 41(1):25–41, 2005. doi:10.1007/
s00453-004-1105-2.

12 Behnam Hatami and Hamid Zarrabi-Zadeh. A streaming algorithm for 2-center with outliers
in high dimensions. Comput. Geom., 60:26–36, 2017. doi:10.1016/j.comgeo.2016.07.002.

13 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Proc. 11th and 12th International Workshop on
Approximation, Randomization and Combinatorial Optimization (APPROX and RANDOM),
volume 5171 of Lecture Notes in Computer Science, pages 165–178, 2008. doi:10.1007/
978-3-540-85363-3_14.

14 Hamid Zarrabi-Zadeh. Core-preserving algorithms. In Proceedings of the 20th Annual Canadian
Conference on Computational Geometry (CCCG), 2008.

15 Hamid Zarrabi-Zadeh and Asish Mukhopadhyay. Streaming 1-center with outliers in high
dimensions. In Proc. 21st Annual Canadian Conference on Computational Geometry (CCCG),
pages 83–86, 2009. URL: http://cccg.ca/proceedings/2009/cccg09_22.pdf.

ESA 2021

https://doi.org/10.1007/s00454-007-9013-2
https://doi.org/10.1007/s00453-013-9846-4
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.1016/j.comgeo.2013.05.007
https://doi.org/10.1016/j.comgeo.2013.05.007
https://doi.org/10.1142/S0218195906001975
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1145/780542.780548
https://doi.org/10.4230/LIPIcs.ICALP.2016.19
https://doi.org/10.4230/LIPIcs.ICALP.2016.19
https://doi.org/10.4230/LIPIcs.ESA.2019.40
https://doi.org/10.1007/s00453-004-1105-2
https://doi.org/10.1007/s00453-004-1105-2
https://doi.org/10.1016/j.comgeo.2016.07.002
https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1007/978-3-540-85363-3_14
http://cccg.ca/proceedings/2009/cccg09_22.pdf




Incremental SCC Maintenance in Sparse Graphs
Aaron Bernstein #

Rutgers University, New Brunswick, NJ, USA

Aditi Dudeja #

Rutgers University, New Brunswick, NJ, USA

Seth Pettie #

University of Michigan, Ann Arbor, MI, USA

Abstract
In the incremental cycle detection problem, edges are added to a directed graph (initially empty),
and the algorithm has to report the presence of the first cycle, once it is formed. A closely related
problem is the incremental topological sort problem, where edges are added to an acyclic graph,
and the algorithm is required to maintain a valid topological ordering. Since these problems arise
naturally in many applications such as scheduling tasks, pointer analysis, and circuit evaluation,
they have been studied extensively in the last three decades. Motivated by the fact that in many of
these applications, the presence of a cycle is not fatal, we study a generalization of these problems,
incremental maintenance of strongly connected components (incremental SCC).

Several incremental algorithms in the literature which do cycle detection and topological sort in
directed acyclic graphs, such as those by [7] and [16], also generalize to maintain strongly connected
components and their topological sort in general directed graphs. The algorithms of [16] and [7]
have a total update time of O(m3/2) and O(m · min{m

1/2, n
2/3}) respectively, and this is the state of

the art for incremental SCC. But the most recent algorithms for incremental cycle detection and
topological sort ([8] and [10]), which yield total (randomized) update time Õ(min{m

4/3, n2}), do
not extend to incremental SCC. Thus, there is a gap between the best known algorithms for these
two closely related problems.

In this paper, we bridge this gap by extending the framework of [10] to general directed graphs.
More concretely, we give a Las Vegas algorithm for incremental SCCs with an expected total update
time of Õ(m4/3). A key ingredient in the algorithm of [10] is a structural theorem (first introduced
in [8]) that bounds the number of “equivalent” vertices. Unfortunately, this theorem only applies to
DAGs. We show a natural way to extend this structural theorem to general directed graphs, and
along the way we develop a significantly simpler and more intuitive proof of this theorem.
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1 Introduction

In dynamic algorithms, our main goal is to maintain a key property of the graph while
an adversary makes changes in the graph in the form of edge insertions and deletions.
An algorithm is called incremental if it handles only insertions, decremental if it handles
only deletions and fully dynamic if it handles both insertions as well as deletions. For a
dynamic algorithm we hope to optimize the update time of the algorithm, which is the time
taken by the algorithm to adapt to the changes to the input and modify the results. For
incremental/decremental algorithms, one typically seeks to minimize the total update time
over the entire sequence of edge insertions/deletions.
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14:2 Incremental SCC Maintenance in Sparse Graphs

In this paper, we consider the problem of maintaining strongly connected components
in the incremental setting (incremental SCC). This is a generalization of the problems of
incremental cycle detection and topological sorting in directed acyclic graph, which find
application in pointer analysis, deadlock detection [4], circuit evaluation [3] and scheduling
tasks. In many of these applications, the presence of a cycle is not fatal, which motivates the
general problem of maintaining strongly connected components, as well as the topological
order of these components.

The problems of incremental cycle detection and topological sorting were first studied by
Katriel and Bodlaender [18], who gave the first non-trivial algorithm for these problems with
a total update time of O(min{m3/2 log n, m3/2 + n2 log n}). This bound was improved by Liu
and Chao [20] to O(m3/2 + m

√
n log n). Since then, these problems and incremental SCC

have been studied extensively (see for example [1, 2, 6, 16, 7, 13, 21]). Several algorithms
that do incremental cycle detection and topological sort maintenance in directed acyclic
graphs can be modified to get algorithms for incremental SCC. For example, the algorithm
of Haeupler, Kavitha, Mathew, Sen and Tarjan [16] is able to do cycle detection as well as
strongly connected component maintenance in O(m3/2) total update time. In an important
result, Bender, Fineman, Gilbert and Tarjan presented two algorithms for strongly connected
components, with total update times of O(n2 log n) and O(m · min{m1/2, n2/3}), for dense
and sparse graphs, respectively (see Table 1).

The two most recent algorithms in this area are limited to cycle detection and topological
sort: Bernstein and Chechik [8] gave a Las Vegas algorithm with an expected total update time
of O(m

√
n log n); Bhattacharya and Kulkarni [10] combined the balanced search approach of

[16] with the results of [8] to get an algorithm with a total expected runtime of Õ(m4/3). As
a result, there was still a gap between the best known algorithms for cycle detection and
topological sort (update time of Õ(min{m4/3, n2}) and for incremental SCC (update time of
Õ(min{m3/2, n2})). In this paper, we bridge the gap between these closely related problems.
More formally, we prove the following result.

▶ Theorem 1. There exists an incremental algorithm for maintaining strongly connected
components in directed graphs with expected total time Õ(m4/3), where m refers to the number
of edges in the final graph. The algorithm can also maintain the topological order of these
components.

Summary of Techniques. We obtain our results by extending the technique of [10] to the
case of general directed graphs. Both [8] and [10] detect cycles by doing a graph search after
the insertion of an edge (u, v). However, they reduce their search space by only exploring
“equivalent” vertices: vertices whose ancestor and descendant sets agree on a random subset
S of V . A key ingredient of the analysis is a structural theorem of [8] that bounds the total
number of equivalent pairs created by the sequence of insertions. However, their notion of
equivalent vertices only applies to acyclic directed graphs. Additionally, the proof of this
structural theorem (Lemma 3.2 and 3.5 of [8]) is rather unintuitive.

Our contributions are three-fold. We present a new proof of the structural theorem of [8],
which is significantly simpler and more intuitive. We also show a natural generalization of
this theorem to general directed graphs. Finally, we show how the framework of [10] can be
extended to maintain SCCs in general graphs, rather than just doing cycle detection and
topological sort in a DAG.

Related Problems. A closely related problem that has received a lot of attention is main-
taining strongly connected components in a decremental graph. This problem has been
widely studied (see e.g. [22, 19, 11, 9]) and a recent algorithm achieves near-optimal Õ(m)
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Table 1 Known Results for Incremental Cycle Detection, Topological Sort and SCC.

Reference Update Time Incremental SCC
[18] O(min{m

3/2 log n, m
3/2 + n2 log n}) No

[20] O(m3/2 + m
√

n log n) No
[2] O(n2.75) No
[6] Õ(n2) No
[16] O(m3/2) Yes
[7] O(m · min{m

1/2, n
2/3}), Õ(n2) Yes

[8] Õ(m
√

n) No
[10] Õ(m4/3) No

total expected update time [9]. Although the goal in both problems is to maintain SCCs,
the incremental and decremental versions have little overlap in terms of techniques. Another
related problem is that of maintaining single-source shortest paths in an incremental directed
graph. The current state-of-the-art for this problem is Õ(n2) in dense graphs [15] and
Õ(m

√
n + m7/5) in sparse ones [12].

2 Preliminaries

We consider the problem of maintaining strongly connected components in directed graphs
in the incremental setting. In this setting, we start with an empty graph, and directed edges
are added to the graph one at a time. We will let G refer to the current version of the graph,
and its vertex and edge sets are denoted as V and E respectively. We use m to denote the
total number of edges added to G and n to denote |V (G)|.

Consider two vertices u, v ∈ V . We say that the vertex u is an ancestor of v, and v is a
descendant of u if there is a path from u to v in G. We will say that u and v are related if
one is the ancestor of other. For u ∈ V , we use A(u) and D(u) to denote the current set of
ancestors and descendants of u. Consider any S ⊆ V , for u ∈ V , we use AS(u) to denote the
set A(u) ∩ S, and DS(u) to denote the set D(u) ∩ S. For any v ∈ V , we will use C(v) to
denote the strongly connected component containing v in the current graph G, and |C(v)|
will be the number of vertices contained in the component.

We will also use the following result due to Italiano [17] on single-source incremental
reachability.

▶ Lemma 2 ([17]). Given v ∈ V , there exists an algorithm that maintains A(v) and D(v) in
O(m) total time during the course of insertion of m edges.

We also use the following simplifying assumption by [8] (proved in the appendix of their
paper).

▶ Lemma 3 ([8]). We can assume that every vertex in the current graph G = (V, E) has
degree O(m/n).

Data Structures Used. To maintain the strongly connected components, we use the disjoint
set data structure of Tarjan [23]. This data structure stores the partition of the vertex set
into disjoint sets. In our case, these disjoint sets will be the strongly connected components.
Moreover, the disjoint sets are represented by a canonical element, which in this case will be
a vertex. Following operations are supported by this data structure.
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1. Find(x): Given a vertex x, return the canonical vertex of the component containing x.
2. Link(x, y): This operation joins the components whose canonical vertices are x and y.

The newly formed component’s canonical vertex is x.
This data structure supports any sequence of Find and Link operations in O(n log n) total
time plus O(1) time per operation. Our search and reordering operations will take Ω(n log n)
total time, so we can think of the Find and Link operations as being performed in O(1)
amortized time per operation.

Additionally, to maintain the topological ordering of the strongly connected component,
we use the ordered list data structure of [14] and [5], which supports the following operations
in O(1)-time.
1. Insert-Before(x, y): This operation inserts the vertex x before the vertex y in the

ordered list.
2. Insert-After(x, y): This operation inserts the vertex x after the vertex y in the ordered

list.
3. Delete(x): This operation deletes the vertex x from the current ordered list.
4. Order(x, y): This operation returns whether x appears before y in the ordering or not.
This data structure maintains the topological sort k of the strongly connected components
implicitly. We will use some additional data structures for our algorithm, that we will
mention when we discuss the algorithm.

3 Similarity

3.1 Previous Work
To bound the running time of their algorithm [8] introduced the notion of sometime-τ -similar
pairs. We briefly discuss their definition.

▶ Definition 4 ([8]). A pair of vertices u and v are said to be sometime-τ -similar if there is
a time t at which u is an ancestor of v, |A(u) ⊕ A(v)| ≤ τ , and |D(u) ⊕ D(v)| ≤ τ .

The total number of sometime-τ -similar pairs are Õ(nτ). Note that this bound is false
if we apply the same definition of similarity to the case of directed graphs with cycles. As
an example, consider the case where the entire graph is a cycle. For such a graph, by
Definition 4, we have O(n2) sometime-τ -similar pairs. So, a new definition of similarity is
needed. Moreover, their proof strategy also uses the final topological ordering of the graph.
Such an ordering is not possible in directed graphs with cycles. We overcome this by defining
another ordering that (like topological ordering) is consistent with the incremental updates
to the graph, but at the same time allows for strongly connected components.

3.2 A New Notion Of Similarity
▶ Definition 5. Consider u, v ∈ V . Let C(u) and C(v) denote the strongly connected
components containing u and v respectively, then u and v are called τ -similar in the current
graph G if u and v are related, |C(u)| ≤ τ , |C(v)| ≤ τ , and |A(u)⊕A(v)| ≤ τ , |D(u)⊕D(v)| ≤
τ . Vertices u and v are called sometime-τ -similar, if they are τ -similar at some point during
the course of m edge insertions.

▶ Remark 6. Consider any u, v ∈ V with C(u) = C(v). If |C(u)| ≥ τ + 1 then u and v are
not τ -similar in G. But if C(u) ≤ τ then they are τ -similar.

With this remark, we distinguish between two types sometime-τ -similar vertices.
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▶ Definition 7. We call u and v related-sometime-τ -similar if there is a time t when u and
v are τ -similar with C(u) ̸= C(v). On the other hand if there is a time t when u and v

are τ -similar and C(u) = C(v), then we call u and v equivalent-sometime-τ -similar. It is
possible for u, v to be both related-sometime-τ -similar and equivalent-sometime-τ -similar.

We show that the total number of sometime-τ -similar pairs are bounded.

▶ Theorem 8. The total number of sometime-τ -similar pairs are Õ(nτ).

Our proof will bound related-sometime-τ -similar pairs. It is easy to see that the number of
equivalent-sometime-τ -similar is O(nτ).

▶ Observation 9. A vertex v can only be equivalent-sometime-τ -similar to the first τ vertices
that join the same component as v. Thus, the total number of equivalent-sometime-τ -similar
pairs is O(nτ).

To prove Theorem 8 we need the following claim.

▷ Claim 10. There exists a fixed total order I on the vertices of G which satisfies the
following property:
1. Consider any u, v ∈ V . Let t1 be the first time u and v become related such that u is an

ancestor of v, then I(u) < I(v).

Note that if the final graph Gm is acyclic, then I is satisfied by the topological ordering.
We will show that it is possible to obtain an ordering that satisfies the above properties even
if the graph has a cycle.

3.3 Existence of A Fixed Total Order
In this subsection, we define an ordering I that satisfies Claim 10.

▶ Definition 11. We define a relation ≺ over the vertices of G: u ≺ v if and only if at some
time t, u is an ancestor of v and C(u) ̸= C(v).

We first note that ≺ is a strict partial order. We formally state and prove the following claim.

▷ Claim 12. The relation ≺ on the vertices of G is a strict partial order.

Proof. We need to show that ≺ is anti-symmetric and transitive. Anti-symmetry follows
from the fact that for each pair of vertices u and v, either u ⊀ v or v ⊀ u. Now suppose u ≺ v

and v ≺ w. Let t1 be the time at which u is an ancestor of v and C(u) ̸= C(v). Similarly, let
t2 be the time at which v is an ancestor of w and C(v) ̸= C(w). Without loss of generality,
assume that t2 ≥ t1. Observe that u is an ancestor of w at time t2. If C(u) = C(w), then
v ∈ C(w) at time t2 as well, which is a contradiction. So, at time t2, C(u) ̸= C(w). This
proves our claim. ◁

▶ Definition 13. We define I to be a linear extension of ≺. That is I is a total order
consistent with ≺: if u ≺ v, then I(u) < I(v).

Proof of Claim 10. We claim that I of Definition 13 satisfies Claim 10. Consider any two
vertices u and v, and let t1 be the time at which u and v first become related, with u being
an ancestor of v. Therefore at time t1, C(u) ̸= C(v), which implies that u ≺ v. Since I is
consistent with ≺, we know that I(u) < I(v). ◁
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3.4 Bounding the Number of Similar Pairs
In this section we will prove Theorem 8. From Observation 9, we conclude that it is sufficient
to show that the number of related-sometime-τ -similar pairs are at most O(nτ log n). We
first introduce some notation. Moving forward we will use I to denote an ordering that
satisfies Claim 10. We note that Theorem 8 can be obtained by combining the ordering I

satisfying Claim 10 with a modification of the proof of sometime-τ -similar pairs in a DAG
in Section 3 of [8]. However, even for the simpler case of DAGs, the proof in [8] requires a
long case analysis. In this paper we present a different approach to the proof we believe is
significantly simpler and more intuitive.

▶ Definition 14. Let u and v be a pair of related-sometime-τ -similar vertices. We denote it
using an ordered tuple (u, v) if I(u) < I(v).

▶ Definition 15. For a vertex v, we define Ai(v) to be the set of vertices u such that
(u, v) is a related-sometime-τ -similar pair, and I(v) − I(u) ∈ [2i, 2i+1). Similarly, we define
Di(v) to be the set of vertices w such that (v, w) is a related-sometime-τ -similar pair, and
I(w) − I(v) ∈ [2i, 2i+1).

▶ Definition 16. For a vertex v and a fixed i, we define the graph GD,i
v with the vertex set

Di(v) and the graph GA,i
v with the vertex set Ai(v) as follows.

1. Let u1, u2, · · · , uα be the vertices of Ai(v), where the vertices are ordered according to the
increasing order of the time at which they become related-τ -similar with v. For j < k, we
add an edge from uj to uk, if uj is an ancestor of uk when uk first becomes τ -similar to
v.

2. Let w1, w2, · · · , wβ be the vertices of Di(v), where the vertices are ordered according to
the increasing order of time at which they become related-τ -similar with v. For j < k, we
add an edge from wj to wk if wj is a descendant of wk when wk first becomes τ -similar
to v.

See Figure 1 for an illustration.

▷ Claim 17. Let (u, v) be a related-τ -similar pair such that I(v)−I(u) ∈ [2i, 2i+1). Consider
w ∈ Ai(v) and z ∈ Di(u), then I(w) < I(z).

Proof. Suppose I(z) < I(w). Note that I(u) < I(z), and I(w) < I(v). Consequently,
I(u) < I(z) < I(w) < I(v). Since I(z) − I(u) ≥ 2i, and I(v) − I(w) ≥ 2i, this implies that
I(v) − I(u) ≥ 2i+1, which contradicts our assumption that I(v) − I(u) ∈ [2i, 2i+1). ◁

▷ Claim 18. For a vertex v, consider any Ai(v) = {u1, · · · , uα}, where uj are ordered in the
increasing order of time at which they become related-τ -similar to v. Then the number of
edges in GA,i

v coming into uj is at least j − τ . Similarly, let Di(v) = {w1, · · · , wβ}, where the
vertices are ordered in the increasing order of time at which they become related-τ -similar
with v. Then the number of edges coming into wj in GD,i

v is at least j − τ .

Proof. Let t be the time at which (uj , v) become related-τ -similar. By t, for all i < j, (ui, v)
are related-τ -similar. If the in-degree of uj is at most j − τ − 1, then this implies that there
are at least τ + 1 vertices ui, i < j such that ui is not an ancestor of uj . However, these are
all ancestors of v at time t. This implies that |A(uj) ⊕ A(v)| ≥ τ + 1, contradicting the fact
that uj and v are related-τ -similar at time t. ◁

▶ Definition 19. For a vertex v, consider w ∈ Ai(v). We call w bad with respect to v if the
outdegree of w in GA,i

v is at most 2τ . Similarly, we call a vertex z ∈ Di(v) bad with respect
to v if the outdegree of z in GD,i

v is at most 2τ .
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Figure 1 We consider a related-τ -similar pair (u, v), where I(v) − I(u) ∈ [2i, 2i+1). All vertices
of Ai(v) appear before the vertices of Di(u).

▷ Claim 20. For any v, the total number of bad vertices in Ai(v) for any i is at most 6τ .
Similarly, the total number of bad vertices in Di(v) for any i is at most 6τ .

Proof. As before, let Ai(v) = {u1, u2, · · · , uα}. Let B = {uα−4τ+1, · · · , uα}. Let A ⊂
Ai(v) \ B be the set of vertices outside of B that are bad for v (see Figure 2 for an
illustration). We want to prove that |A| ≤ 2τ . This will give us the desired bound. Consider
any w ∈ B. There are at least |A| − τ edges from A to w. So, the total number of edges
going from A to B is at least 4τ(|A| − τ). The average outdegree of the vertices in A is at
least 4τ(|A|−τ)

|A| . Since the vertices in A are bad, we know that 4τ(|A|−τ)
|A| ≤ 2τ . This implies

that |A| ≤ 2τ . The proof for Di(v) is analogous. ◁

▶ Lemma 21. Let (u, v) be a related-sometime-τ -similar pair. Then, either u is bad for v or
v is bad for u.

Proof. Let I(v) − I(u) ∈ [2i, 2i+1). As before we consider Ai(v) = {u1, · · · , uα}, and let
Di(u) = {v1, · · · , vβ}. Assume that neither u is bad for Ai(v) nor v is bad for Di(u). This
implies that the number of edges going out of u and v in GA,i

v and GD,i
u , respectively, are at

least 2τ + 1. Consider the related-τ -similar pairs (u1, v), · · · , (uα, v) and (u, v1), · · · , (u, vβ).
Note that among these pairs one of (uα, v) or (u, vβ) are the last to become related-τ -similar.
Without loss of generality, assume it is (u, vβ). Since we assume that u is not bad with
respect to v, at the point when (uα, v) becomes related-τ -similar, u is an ancestor of at least
2τ + 1 vertices in u1, · · · , uα. Note that this claim also holds at the (later) time when (u, vβ)
become related-sometime-τ -similar. We call this set of vertices U . We now consider two
different cases:
1. If vβ is not an ancestor of at least τ + 1 vertices in U , then this contradicts the fact that

(u, vβ) is a related-τ -similar pair.
2. Suppose vβ is an ancestor of at least τ + 1 vertices in U . Consider any uj ∈ U . Observe

from Claim 17 that I(uj) < I(vβ). Since I satisfies Claim 10, we deduce that if vβ is an
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Figure 2 The vertices in green are the vertices of Ai(v) \ B that are bad for v. Since the vertices
in B are τ -similar to v, the total number of edges coming out of A and going into B is at least
4τ(|A| − τ).

ancestor of uj , then it lies in the same strongly connected component as uj . Since this
is true for all uj ∈ U , it follows that |C(vβ)| ≥ τ + 1, thus contradicting the fact that
(u, vβ) is related-τ -similar (see Definition 5). ◀

▶ Remark 22. Observe that when we are in the acyclic case, then we don’t have to deal with
the second case at all, since I corresponds to the topological ordering of the final graph Gm.

Proof of Theorem 8. Consider a related-τ -similar pair (u, v). We charge this pair to u if
v is bad for u, and we charge it to v if u is bad for v. From Lemma 21, we know that
each pair (u, v) is charged to either u or v. Finally, we observe that for any u, for a fixed
i, the total number of bad vertices in Di(u) or Ai(u) is at most 6τ each. Therefore, the
total charge on each vertex is at most 12τ log n (since i is at most log n). Since the total
number of vertices is n, we know that the total charge, and therefore the total number of
related-sometime-τ -similar pairs is at most O(nτ log n). ◀

4 Equivalence

Consider u, v ∈ V , observe that u and v lie in the same strongly connected component iff
A(u) = A(v) and D(u) = D(v). However, the sets A(u) and D(v) are expensive to maintain
for all vertices. Therefore, Bernstein and Chechik [8] defined a relaxed notion of equivalence
between vertices. We define a slightly different version that will be useful for our algorithm.

▶ Definition 23. (S-equivalence) Consider S which is created by including every vertex
v ∈ V independently with probability 12·log n/τ, where τ is a parameter to be defined by the
algorithm. Vertices u and v are called S-equivalent if they are related, AS(u) = AS(v), and
DS(u) = DS(v). For the analysis of our algorithm, it will be useful to distinguish between
two types of S-equivalence.
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1. Vertices x and y are Type 1 if they satisfy the above-mentioned condition and |C(x)| ≥ τ+1
or |C(y)| ≥ τ + 1.

2. Vertices x and y are Type 2 if they satisfy the above-mentioned condition and |C(x)| ≤ τ

and |C(y)| ≤ τ .

In [8], the algorithm samples a set S, and maintains a partition {Vi,j} of V , where
Vi,j = {u ∈ V s.t. |AS(u)| = i, |DS(u)| = j}. We define an ordering ≺∗ on these parts.

▶ Definition 24. We say that Vi,j ≺∗ Vk,l if either {i < k}, or {i = k and j > l} (note the
slightly unusual ordering, instead of j < l, we have j > l). For x ∈ V , we use V (x) to denote
partition Vi,j that contains x.

This partition has the following properties which were proved in [8] for directed acyclic
graphs, but extend to general directed graphs as well.

▶ Lemma 25. Let {Vi,j} be the partition of V maintained by the algorithm determined by
the sampled set S, then
1. If x and y are related, with x being an ancestor of y, then either V (x) ≺∗ V (y) or

V (x) = V (y).
2. Consider a strongly connected component C of the current graph G, then C ⊆ Vi,j for

some i, j.
3. If x and y are related, and V (x) = V (y), then x and y are S-equivalent.

Proof. We give a short proof of this lemma. If x is an ancestor of y, then A(x) ⊆ A(y), and
D(y) ⊆ D(x). In particular, AS(x) ⊆ AS(y) and DS(y) ⊆ DS(x). This immediately tells
us that |AS(x)| ≤ |AS(y)|, and |DS(y)| ≤ |DS(x)| and the first part of the claim follows.
Finally, consider any strongly connected component C, then for any x, y ∈ C, A(x) = A(y),
D(x) = D(y). This implies that AS(x) = AS(y), DS(x) = DS(y) and this proves the second
part of the claim. To see the third part, assume without loss of generality that x is an
ancestor of y, and V (x) = V (y). Note that AS(x) ⊆ AS(y), and since |AS(x)| = |AS(y)|,
we can conclude that AS(x) = AS(y). Similarly, we can deduce that DS(x) = DS(y), thus
proving that x and y are S-equivalent. ◀

Keeping in mind Lemma 25, for a component C, we define V (C) as the partition Vi,j

containing C. An important component of our algorithm is maintaining a topological sort
k of the strongly connected components. This topological sort k will be consistent with
the order ≺∗ of the partitions. That is, for strongly connected components C and C ′ with
V (C) ≺∗ V (C ′), k(C) < k(C ′). The existence of such a topological ordering is guaranteed
by Lemma 25. We will maintain a topological sort of the components by maintaining an
ordered list on the canonical vertices. The components are disjoint and each of them have a
unique canonical vertex. So, we will often use k(·) on canonical vertices as well.

The algorithms in [8] and [10] proceed by exploiting the notion of S-equivalence. This notion
enables them reduce the space of vertices that need to be explored to detect cycles (from
Lemma 25). Finally, they show that with high probability the total number of S-equivalent
pairs is bounded, and the runtime of the algorithm is proportional to this number. In order
to prove this claim, they show that S-equivalent pairs and sometime-τ -similar pairs are
related. We show that our notion of sometime-τ -similarity can be used to bound the number
of Type 2 S-equivalent pairs, instead of all S-equivalent pairs. It will be clear as we move
forward why this is sufficient.

Recall Definition 23 and Definition 5. We show the following lemma relating sometime-τ -
similar pairs and Type 2 S-equivalent pairs.
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▶ Lemma 26. Suppose S ⊆ V is obtained by including each x ∈ V independently with
probability 12·log n

τ . Suppose u and v are Type 2 S-equivalent, then with high probability, they
are sometime-τ -similar.

Observe that Theorem 8 and Lemma 26 together imply the following theorem:

▶ Theorem 27. Let S be sampled by including v ∈ V independently with probability 12·log n
τ .

Then, the total number of Type 2 S-equivalent pairs is at most Õ(nτ) with high probability.

We now proceed to prove Lemma 26.

Proof of Lemma 26. Note that by the statement of the lemma, u and v are related, |C(u)| ≤
τ , |C(v)| ≤ τ . We additionally want to show that |D(u) ⊕ D(v)| ≤ τ and |A(u) ⊕ A(v)| ≤ τ .
Without loss of generality, assume that |A(u)⊕A(v)| ≥ τ +1. Then, applying Chernoff bound,
we conclude that with probability at least 1 − O(1/n5) there is a vertex x ∈ A(u) ⊕ A(v)
that is included in S as well. This implies that u and v are not Type 2 S-equivalent.
Taking union bound over all Type 2 S-equivalent pairs, which are at most n2 in number,
we conclude that with probability at least 1 − O(1/n3) any Type 2 S-equivalent pair is also
sometime-τ -similar. ◀

5 The Algorithm

When an edge (u, v) is inserted, the algorithm updates the newly formed strongly connected
components, if any. Additionally, the algorithm maintains a topological sort k of the strongly
connected components. This will be achieved by using canonical vertices as a proxy for the
strongly connected components (see Section 2). These canonical vertices will be maintained
as an ordered list, and when we are required to reorder the strongly connected components,
the corresponding canonical vertices will be reordered. To achieve this, we follow the basic
framework of [10]. The algorithm to process the insertion of (u, v) proceeds in the following
phases.
1. Phase 1. This phase is responsible for maintaining reachability information to and from

S (using Lemma 2). Additionally, in this phase, the algorithm uses this reachability
information to update the sets Vi,j and to handle the case where the new SCC formed by
the insertion of (u, v) contains at least one vertex in S. If the algorithm finds such an
SCC, it terminates after Phase 1, i.e. it skips Phases 2 and 3.

2. Phase 2. This phase is responsible for handling small SCCs. In particular, it detects the
case when (u, v) creates a new SCC that does not contain any s ∈ S, as well as the case
where (u, v) creates no new SCC. The phase also links together the canonical vertices
corresponding to this new SCC (if any).

3. Phase 3. This phase updates the topological order of the strongly connected components
by reordering canonical vertices. Note that even if (u, v) creates no SCCs, Phase 3 may
need to do some reordering to ensure that k remains a valid topological order.

In the main body of the paper, we will describe Phases 2 and 3 and the subroutines used
in these phases. The correctness of these subroutines can be found in the full version of the
paper. Phase 1 is essentially the same as in the framework of [8], so we postpone the details
to the full version of the paper.
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5.1 Phase 1: Updating the partition {Vi,j} and Handling Large SCCs
In this section, we give an overview of Phase 1 and its guarantees. The detailed description
is in the full version of the paper. Using Lemma 2, we can maintain reachability to and
from every vertex in S in total time O(m|S|) over all edge insertions. This allows us to
maintain two additional piece of information. Recall the partition Vi,j from Section 4, and
note that every V (x) is determined entirely by AS(x) and DS(x). Thus, Phase 1 can use the
reachability information to/from S to maintain the partition Vi,j . Phase 1 can also use this
reachability information to detect any new SCCs that contain a vertex in S.

We now state these guarantees more formally. The following lemma is essentially identical
to the guarantees of [8], but is modified to handle SCCs.

▶ Lemma 28 ([8]). Consider the insertion of edge (u, v). Phase 1 has the following guarantees:
1. At the end of Phase 1, each set Vi,j is correct for the new version of the graph (the graph

with edge (u, v) inserted). The algorithm also updates the order of the strongly connected
components so that they are consistent with ≺∗.

2. If the insertion of (u, v) creates a new SCC that contains a vertex in S, then Phase
1 detects the new SCC, links the corresponding canonical vertices, and computes the
topological order of the resulting SCCs. The update procedure then terminates and does
not continue to Phase 2 or 3.

3. If the insertion of (u, v) does not create a new SCC that contains a vertex in S, then
Phase 1 does not create any new SCCs. In this case, after the end of Phase 1, the ordering
k on the canonical vertices is guaranteed to be a valid topological ordering of the canonical
vertices in G \ {(u, v)}. The algorithm then proceeds to Phases 2 and 3.

5.2 Phase 2: Detecting Small SCCs
The algorithm enters Phase 2 only if the newly inserted edge (u, v) does not create a new
SCC that contains a vertex of S; otherwise the algorithm to process (u, v) terminates after
Phase 1. We also remark that if the algorithm enters Phase 2, then with high probability
the size of the newly formed strongly connected component (if one exists) is at most τ . This
follows from an easy application of Chernoff bound: if the newly formed component has
size at least τ + 1, then with high probability, it contains a vertex of S, in which case the
algorithm terminates after Phase 1. Taking a union bound over all n2 edge insertions, we get
the following:

▶ Observation 29. If the algorithm enters Phase 2 while processing an edge (u, v), then with
high probability, the new strongly connected components formed by the addition of (u, v) (if
one exists) has size at most τ .

Additionally, recall that Phase 1 updates the partition set {Vi,j}, so we assume that once
we enter Phase 2 this partition already corresponds to the graph G (Lemma 28).

Previous Work. Our Phase 2 will be similar to the cycle detection algorithm of [10], but
we need to adapt it to find the newly formed strongly connected component. Previous
algorithms for finding SCCs such as the one by [16], proceed by implementing the cycle
detection algorithm, but running it only over the canonical vertices. However, our algorithm
will do a search over all vertices of the graph. We do this because sizes of the SCCs will be
relevant to the runtime of the algorithm, and they weren’t relevant in the case of [16].

We now give a brief outline of Phase 2: when an edge (u, v) is added to the graph, then
the algorithm first checks if k(Find(u)) < k(Find(v)). If this is the case, then there couldn’t
have been an existing path from v to u (due to Lemma 28). As a result, a new component
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containing u and v could not be formed. So, the algorithm doesn’t continue. To detect if a
new component is formed and to find all the vertices of this component, the algorithm does
alternate steps of forward and backward search. For this purpose, it maintains sets Fa and
Fd (to do forward search), Ba and Bd (to do backward search). For the forward search, Fa

and Fd are the vertices that are alive (yet to be explored), and dead (already explored). Sets
Ba and Bd are similarly defined for the backward search. When we encounter a vertex while
exploring in the forward direction, we add it to Fa. When all neighbors of a vertex v ∈ Fa

that are S-equivalent to v been added to Fa ∪ Fd, we add v to Fd. We add vertices to Ba

and Bd similarly. At all times, while exploring vertices in the forward direction, we want to
stay as close to v as possible, so we pick out a vertex x with minimum k(Find(x)) from Fa

to explore next. Similarly, while exploring in the backward direction, we want to stay as
close to u as possible, so we pick out the vertex y with maximum k(Find(y)) from Ba to
explore next in the backward direction. We refer the reader to Algorithms 1, 2, and 4 for
pseudocodes for Phase 2. We give the proof of correctness in the full version of the paper.
We briefly outline the proof of runtime.

▶ Lemma 30. The total runtime of Phase 2 is O(
√

m3τ/n).

Proof Sketch. Suppose we have process edge et and let ft denote the size of Fd after
FindComponent() has finished terminated. We observe that |Bd| = Θ(ft) as well, since
we do a balanced search. From Lemma 3 we conclude that the total update time of the
algorithm over m edge insertions is O(m/n

∑m
t=1 ft). The goal is to now bound

∑m
t=1 ft.

Consider x ∈ Fd and y ∈ Bd after FindComponent() has finished processing et. We
show that (x, y) is a newly formed related-τ -similar pair or equivalent-τ -similar pair. This
implies that

∑m
t=1 f2

t = Õ(nτ) (from Theorem 8). Using Cauchy-Schwarz, we know that∑m
t=1 ft = Õ(

√
mnτ). Thus the total runtime of Phase 2 is O(

√
m3τ/n). ◀

5.3 Phase 3: Sorting the Canonical Vertices
We enter this Phase only if there is no vertex of S in the newly created SCC, CN . After
Phase 1 and Phase 2, we know which canonical vertices have combined to give the newly
formed strongly connected component. We delete these canonical vertices from the ordered
list, and show how to reorder the list so that a topological sort on the canonical vertices is
maintained.

To update the topological ordering of the canonical vertices, we follow the framework of
[10]. We present it here for completeness, modifying their algorithm slightly to account for
the case where a cycle is created.

We will consider two cases, one where a new component is created and one where no new
component is created. Suppose no new component is created, and consider the sets Fd and
Bd, from the forward and backward searches after we have processed edge (u, v). Since we do
an ordered search, we know that all the vertices of a given component appear in a continuous
manner in Fd and Bd. Let Find(v), x1, · · · , xf be the canonical vertices corresponding to
the components appearing in Fd, with k(Find(v)) < k(x1) < · · · < k(xf ). Similarly, let
y1, y2, · · · , yb, Find(u) be the canonical vertices corresponding to the components appearing
in Bd, with k(y1) < k(y2) < · · · < k(yb) < k(Find(u)). We use the subroutine UpdateFor-
ward() and UpdateBackward() to update the ordered list (see Algorithm 3). This list
only consists of canonical vertices that represent different components.

We now describe how to reorder the vertices. In [10] two cases are considered, the first case
corresponds to when the algorithm terminates in conditions: Ba = ∅ or maxx∈Ba

k(Find(x)) <

maxy∈Fd
k(Find(y)). For this case, we use the subroutine UpdateForward(). The proof
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for the case when the algorithm terminates in conditions Fa = ∅ or minx∈Fa k(Find(x)) >

miny∈Bd
k(Find(y)) is analogous (we use a subroutine UpdateBackward()) and we omit

it here. We postpone the proof of correctness to the full version. We give a proof of the
runtime.

▶ Lemma 31. The total runtime of Phase 3 is O(
√

mnτ).

Proof sketch. For each x ∈ Fd and y ∈ Bd, the algorithm UpdateForward() puts Find(x)
and Find(y) in the correct position in the ordered list. This takes time O(1) per vertex in
Fd and Bd, giving a total runtime of O(

√
mnτ). ◀

When a new component CN is formed. If a new strongly connected component CN

is formed, and it doesn’t contain a vertex of S, then the algorithm still needs to reorder
some components. Assume without loss of generality that v is the canonical vertex of CN .
We first proceed to delete from the ordered list, all canonical vertices corresponding to the
components that combined to form CN . We define x1, x2, · · · xf ∈ Fd and y1, y2, · · · , yb ∈ Bd

as before except we exclude the canonical vertices that combined to form CN . Finally, if our
FindComponent() terminated in Ba = ∅ or maxx∈Ba

k(Find(x)) ≤ maxy∈Fd
k(Find(y)),

then we execute UpdateForward(), else if FindComponent() terminated in Fa = ∅ or
minx∈Fa

k(Find(x)) ≥ miny∈Bd
k(Find(y)), then we execute UpdateBackward(). The

proof of correctness can be found in the full version of the paper and is the same as in the
case when there is no new strongly connected component formed.

▶ Lemma 32. The total update time of our algorithm is Õ(m4/3).

Proof. The total time taken in Phase 1, 2 and 3 is at most Õ(mn/τ +
√

mnτ +
√

m3τ/n).
Substituting τ = n/m

1/3, we get the desired bound of Õ(m4/3). ◀

Algorithm 1 Explore-Forward(x).

1 Fa = Fa \ {x} and Fd = Fd ∪ {x}.
2 for x′ ∈ out(x) with V (x) = V (x′) do
3 if Find(x′) ∈ Fa ∪ Fd then
4 cycle = 1
5 if x′ /∈ Ba ∪ Bd then
6 add x′ to Ba.

Algorithm 2 Explore-Backward(x).

1 Ba = Ba \ {x} and Bd = Bd ∪ {x}.
2 for x′ ∈ in(x) with V (x) = V (x′) do
3 if Find(x′) ∈ Fa ∪ Fd then
4 cycle = 1
5 if x′ /∈ Ba ∪ Bd then
6 add x′ to Ba.
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Algorithm 3 UpdateForward().

1 Q = Fd.
2 x∗ = arg max{k(Find(x)) | x ∈ Q, x canonical}.
3 Q = Q \ C(x∗). // Since we are rearranging canonical vertices.
4 while Q ̸= ∅ do
5 x′ = arg maxx∈Q{k(Find(x))}.
6 Q = Q \ C(x′).
7 Insert-Before(Find(x′), x∗)
8 x∗ = Find(x′).
9 y∗ = Find(v).

10 Q = Bd.
11 while Q ̸= ∅ do
12 y′ = arg maxy∈Bd

k(Find(y)).
13 Q = Q \ C(y′).
14 Insert-Before(Find(y′), y∗)
15 y∗ = Find(y′).
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Algorithm 4 FindComponent(u, v).

1 if k(Find(u)) < k(Find(v)) then
2 return no.
3 Initialize cycle = 0 and min-heaps Fa = {v}, Ba = {u}, Fd = ∅, Bd = ∅.
4 if Find(u) = Find(v) or V (u) ̸= V (v) then
5 return no.
6 while Fa ̸= ∅ and Ba ̸= ∅ do
7 Let x = arg minx′∈Fa k(Find(x′)).
8 if k(Find(x)) > minz′∈Bd

k(Find(z′)) and cycle = 0 then
9 exit loop.

10 if k(Find(x)) > minz′∈Bd
k(Find(z′)) and cycle = 1 then

11 exit loop.
12 if k(Find(x)) = minz′∈Bd

k(Find(z′)) and cycle = 1 then
13 exit loop.
14 else
15 set status(x) = 1 and Explore-Forward(x).
16 Let y = arg maxy′∈Ba k(Find(y′)).
17 if k(Find(y)) < maxy′∈Fd

k(Find(y′)) and cycle = 0 then
18 exit loop.
19 if k(Find(y)) < maxy′∈Fd

k(Find(y′)) and cycle = 1 then
20 exit loop.
21 if k(Find(y)) = maxy′∈Fd

k(Find(y′)) and cycle = 1 then
22 exit loop.
23 else
24 set status(y) = 1 and Explore-Backward(y).

25 if cycle = 0 then
26 return no
27 if cycle = 1 then
28 if the algorithm ended in 12 (or 20) then
29 Let z∗ = arg minz′∈Bd

k(Find(z′)) (or z∗ = arg maxz′∈Fd
k(Find(z′))).

30 Do a DFS backwards from u, over the set of vertices x with status(x) = 1.
Mark those that reach some vertex in C(z∗) or C(v).

31 Do a DFS forwards from v, over the set of vertices x with status(x) = 1.
Mark those that reach some vertex in C(v) or C(z∗).

32 if If the algorithm ended in 10 (or 18) then
33 Do a forward DFS search from v, over the set of vertices x with

status(x) = 1, mark those that reach some vertex in C(u).
34 Let z be a marked canonical vertex.
35 for all canonical x ̸= z that is marked do
36 Link(z, x).
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Abstract
Suffix sorting is arguably the most fundamental building block in string algorithmics, like regular
sorting in the broader field of algorithms. It is thus not surprising that the literature is full of
algorithms for suffix sorting, in particular focusing on their practicality. However, the advances on
practical suffix sorting stalled with the emergence of the DivSufSort algorithm more than 10 years
ago, which, up to date, has remained the fastest suffix sorter. This article shows how properties of
Lyndon words can be exploited algorithmically to accelerate suffix sorting again. Our new algorithm
is 6–19% faster than DivSufSort on real-world texts, and up to three times as fast on artificial
repetitive texts. It can also be parallelized, where similar speedups can be observed. Thus, we make
the first advances in practical suffix sorting after more than a decade of standstill.
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1 Introduction & Related Work

Since its introduction [13] in 1990, the suffix array – storing the order of the lexicographically
sorted suffixes – has become one of the most important data structures in the field of string
processing. Its applications include text indexing, text compression, and in particular the
construction of the Burrows–Wheeler transformation.

From a theoretical point of view, the story is almost over: the suffix array can be
computed in asymptotically optimal O(n) time and using only O(1) additional words of
working space [9]1. However, the fast practical construction of the suffix array remains an
active topic of research. The efficiency of existing suffix sorters varies immensely [2], and
the worst-case time and space bounds do not accurately predict the real world performance.
In fact, the practically fastest and also highly memory efficient algorithm DivSufSort is not
amongst the linear time algorithms [6], and has remained on the top of the scoreboard ever
since its introduction more than a decade ago.

In 2016, Baier introduced the algorithm GSACA [4], which is the first to construct
the suffix array in linear time without using recursion. It utilizes properties of so-called
Lyndon words, which are strings that are lexicographically smaller than all of their proper

1 for integer alphabet [1, σ] with σ ≤ n
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suffixes (for example, artist is a Lyndon word; concert is not a Lyndon word because it is
lexicographically larger than its suffix cert). Conceptually, the algorithm consists of two
phases. Franek et al. showed that the first phase computes (a partially sorted version of) the
Lyndon array (a definition follows later), which is then used in the second phase to induce
the suffix array [8]. Despite its interesting theoretical properties, GSACA cannot compete
with the best suffix sorters in practice.

Our Contributions. We make the first advances on practical suffix sorting since the intro-
duction of DivSufSort more than a decade ago. Our starting point is the GSACA algorithm,
but we show how special properties of Lyndon words allow us to use fast integer sorting
algorithms for its two phases. As a result, we obtain an efficient algorithm that is also easy
to parallelize. Our sequential implementation is around 6–19% faster than DivSufSort on
real-world inputs, and up to three times as fast on artificial repetitive inputs. However, it
comes at the cost of a larger memory footprint (even though we still use much less space
than the original implementation of GSACA). Our parallelization scales well up to at least 16
cores, and on large inputs it is faster than Labeit’s parallel implementation of DivSufSort
[12], the currently fastest shared memory suffix sorter.

The rest of the paper is organized as follows: In Section 2 we introduce the definitions
and notation that we use throughout the paper. We explain our new version of GSACA
in Section 3, and give implementation details and a description of our parallelization in
Section 4. We conclude the paper with an experimental evaluation in Section 5.

2 Preliminaries

We write lg x for log2 x. For i, j ∈ N, we use the closed, half-open, and open interval notations
[i, j] = [i, j + 1) = (i− 1, j] = (i− 1, j + 1) to represent the set {x | x ∈ N ∧ i ≤ x ≤ j}. Our
analysis is performed in the word RAM model [10], where we can perform fundamental
operations (logical shifts, basic arithmetic operations etc.) on words of size w bits in constant
time. For the input size n of our problems we assume ⌈lg n⌉ ≤ w.

A string (also called text) over the alphabet Σ is a finite sequence of symbols from the
finite and totally ordered set Σ. We say that a string S has length n and write |S| = n, if S

is a sequence of exactly n symbols. The string of length 0 is called empty string and denoted
by ϵ. The i-th symbol of a string S is denoted by S[i], while the substring from the i-th
to the j-th symbol is denoted by S[i..j]. For i > j we define S[i..j] = ϵ. For convenience,
we use the interval notations S[i..j + 1) = S(i− 1..j] = S(i− 1..j + 1) = S[i..j]. The i-th
suffix of S is defined as Si = S[i..n], while the substring S[1..i] is called prefix of S. A
prefix or suffix of S is called proper, if and only if its length is at least 1 and at most n− 1.
Let S and T be two strings over Σ of lengths n and m, respectively. The concatenation
of S and T is denoted by ST . The length of the longest common prefix (LCP) between S

and T is defined as lcp(S, T ) = max{ℓ | ℓ ∈ [0, min(n, m)] ∧ S[1..ℓ] = T [1..ℓ]}. The longest
common extension (LCE) of indices i and j is the length of the LCP between Si and Sj ,
i.e. lce(i, j) = lcp(Si, Sj). The total order on Σ induces a total order on the set Σ∗ of
strings over Σ. Let S and T be strings over Σ, and let ℓ = lcp(S, T ). We say that S is
lexicographically smaller than T and write S ≺ T , if and only if either ℓ = n < m (i.e. S is a
prefix of T ) or ℓ < min(n, m)∧S[ℓ + 1] < T [ℓ + 1]. We write S ⪯ T to denote S ≺ T ∨S = T .

We can simplify the description of our algorithm with a special symbol $ /∈ Σ that is smaller
than all symbols from Σ. We say that S is null-terminated, if S[n] = $∧ ∀i ∈ [1, n) : S[i] ̸= $.

Lexicographical Ordering of Suffixes. The suffix array lexicographically orders the suffixes
of a string. To save space we only store the starting index of each suffix.
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▶ Definition 1 (Suffix Array). Given a string S of length n, its suffix array A is the unique
permutation of [1, n] that satisfies SA[1] ≺ SA[2] ≺ . . . ≺ SA[n]. The inverse suffix array A−1

is the inverse permutation of A, i.e. ∀i ∈ [1, n] : A−1[A[i]] = i.

Baier’s algorithm computes the suffix array by exploiting properties of Lyndon words. A
Lyndon word is a string that is lexicographically smaller than all of its proper suffixes, i.e. S

is a Lyndon word if and only if ∀i ∈ [2..n] : S ≺ Si [5]. The Lyndon array of S identifies the
longest Lyndon word starting at each text position.

▶ Definition 2 (Lyndon Array). Given a string S of length n, its Lyndon array λ is defined
by ∀i ∈ [1, n] : λ[i] = max{ℓ | ℓ ∈ [1, n − i + 1] ∧ S[i..i + ℓ) is a Lyndon word}. We write
wλ(i) = S[i..i + λ[i]) to denote the longest Lyndon word that starts at index i.

An important property of the Lyndon array is that it inherently encodes some information
about the lexicographical ordering of the suffixes.

▶ Lemma 3 ([7, Lemma 15]). Let S be a string of length n with Lyndon array λ, and let
i ∈ [1, n]. It holds λ[i] = ℓ if and only if

(i + ℓ ≤ n + 1) ∧ (i + ℓ ≤ n =⇒ Si ≻ Si+ℓ) ∧ (∀j ∈ (i, i + ℓ) : Si ≺ Sj).

We conclude the preliminaries by showing two relations between Lyndon words and the
lexicographical order of suffixes:

▶ Lemma 4. Let S be a string of length n, let λ be its Lyndon array, and let i, j ∈ [1, n] be
arbitrary indices. If wλ(i) ≺ wλ(j), then Si ≺ Sj.

Proof. If wλ(i) ≺ wλ(j), then wλ(j) is not a prefix of wλ(i). If also wλ(i) is not a prefix
of wλ(j), then the first mismatch between wλ(i) and wλ(j) determines the lexicographical
order of Si and Sj . Thus we only have to consider the case where wλ(j) = wλ(i)α for a
non-empty string α. Let S[i..i + λ[j]) = wλ(i)β, then it must hold β ≺ α and thus also
Si ≺ Sj . Otherwise, [5, Prop. 1.5] would imply that wλ(i)β is a Lyndon word. ◀

▶ Lemma 5. Let Si = αSj (with j = i + |α|) be a suffix of a string, where α is a Lyndon
word. It holds Si ≻ Sj ⇐⇒ wλ(i) = α. If Si ≺ Sj, then αwλ(j) is a Lyndon word.

Proof. Lemma 3 directly implies Si ≻ Sj ⇐⇒ wλ(i) = α. Assume Si ≺ Sj , then Lemma 4
implies wλ(j) ⪰ α. If wλ(j) = α, then due to Lemma 3 it holds Sj ≻ Sj+|α|, which leads
to the contradiction Si = αSj ≻ αSj+|α| = Sj . Thus it holds wλ(j) ≻ α, and [5, Prop. 1.3]
implies that αwλ(j) is a Lyndon word. ◀

3 Sequential Algorithm

We start by giving a high level description of Baier’s algorithm. For clarity, we write Â to
denote the not yet computed suffix array, i.e. an array that serves as preliminary storage
during the execution of the algorithm, and ultimately becomes the actual suffix array A. We
use the terms suffix and index interchangeably. The algorithm consists of three main steps.
For each step, we provide an example in Figure 1a.

Initialization: We sort and group the suffixes by their first symbol. The suffixes of each
group are stored in increasing index order in a consecutive interval of Â, and the order
of the intervals is determined by the rank of the starting symbols. In our example, the
order of the alphabet is $ < a < b < c. Thus, the leftmost group contains the suffixes
that start with $, followed by the group of suffixes that start with a, and so forth.

ESA 2021
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a b a b a c a b a b c a b a b a $a b a b a c a b a b c a b a b a $S =

6 1 4 1 2 1 5 1 3 2 1 2 1 2 1 1 1λ =

17 1 3 5 7 9 12 14 16 2 4 8 10 13 15 6 11Â =

G$ Ga Gb Gc

17 16 12 14 1 7 3 9 5 2 4 8 13 15 10 6 11Â =

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

$ a ab ababac ababc abac abc ac b bc c

17 16 14 12 1 7 3 9 5 15 13 2 8 4 10 11 6A =

(a) Baier’s algorithm. Initially, we group the indices by symbol (above the first dotted line). In the first
phase, we group the indices by longest Lyndon words (below the first dotted line). In the second phase,
we lexicographically sort the suffixes within each group (below the second dotted line).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∞ 3 ∞ 3 4 1 ∞ 3 5 2 1 ∞ 3 ∞ 3 ∞ ∞fgrp =

17 16 1 7 3 12 14 9 5 2 4 8 13 15 10 6 11Â =

$ a abab abc ac b bc c

Q = 〈1, 2, 1〉 〈2, 3, 1〉 〈3, 8, 2〉 = P〈16, 18, 1〉〈15, 16, 2〉〈10, 15, 1〉〈9, 10, 2〉〈8, 9, 3〉
bottom top bottomtop

(b) Data structures during Phase 1. The stack Q contains groups that we may still have to refine (left of
the red line). The stack P contains only final groups (right of the red line).

Figure 1 Baier’s algorithm and data structures used during Phase 1. The colored boxes represent
the group contexts, which are also exactly the longest Lyndon words in (a). (Best viewed in color.)

Phase 1: We refine the groups such that two suffixes Si and Sj belong to the same group
if and only if they share the longest Lyndon word wλ(i) = wλ(j). Again, the indices of
each group are stored in increasing order in a consecutive interval of Â. The order of the
groups is determined by the lexicographical order of the Lyndon words. In our example
it holds wλ(3) = abac ≺ abc = wλ(9), and thus the group containing index 3 is stored to
the left of the group containing index 9. From Lemma 4 follows that the grouping after
Phase 1 is compatible with the suffix array.

Phase 2: We lexicographically sort the suffixes within each group to obtain the suffix array.

Baier uses a special form of induced copying (see e.g. [11, 14]) for Phase 1 and 2, which
is elegant but results in a noncompetitive practical performance (see [4, Table 2] and [3,
Chapter 6]). In the remainder of this section we explain how to instead use integer sorting
for these phases, which allows a more efficient implementation of the algorithm. First, we
give a formal definition of the grouping structure.
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▶ Definition 6 (Suffix Grouping). A suffix grouping consists of an array Â and a list
G1, . . . , Gm of groups. A group with context α ∈ Σ+ is a triple ⟨ℓ, r, |α|⟩ with ℓ, r ∈ [1, n]
and ℓ < r, where the following 3 properties hold.
1. The interval Â[ℓ..r) contains exactly the elements of A[ℓ..r) in increasing (by text position)

order. We write i ∈ ⟨ℓ, r, |α|⟩ to denote ∃x ∈ [ℓ, r) : Â[x] = i.
2. All the suffixes share prefix α, i.e. ∀i ∈ ⟨ℓ, r, |α|⟩ : Si = αSi+|α|.
3. The context α is a Lyndon word.

The groups G1, . . . , Gm form a partition of Â as follows. Let Gi = ⟨ℓi, ri, |αi|⟩ be the i-th
group, then it holds ℓ1 = 1 and rm = n + 1. For i ∈ [2, n] it holds ℓi = ri−1. We write
Gi ≺ Gj ⇐⇒ i < j to denote that any suffix in Gi is lexicographically smaller than any
suffix in Gj, which also means that the context of Gi is lexicographically not larger than the
context of Gj. A group ⟨ℓ, r, |α|⟩ is called final if ∀i ∈ ⟨ℓ, r, |α|⟩ : wλ(i) = α.

As mentioned earlier, the initial suffix grouping partitions the suffixes by their first symbol,
which can be implemented as follows. We stably sort the array Â = [1, 2, . . . , n] in increasing
order, using key S[i] for entry i. After that, we determine the group borders with a simple
scan over the sorted suffixes. We store the groups on a stack Q, where the bottommost
element is the leftmost group, and the topmost element is the rightmost group.

3.1 Phase 1 with Integer Sorting
The goal of Phase 1 is to sort the group contexts lexicographically. To this end, we refine the
groups by splitting them into subgroups with possibly longer contexts. The general idea is as
follows. For any index i in a group Gk = ⟨ℓ, r, |α|⟩, let j = i + |α| be the position right after
the context. If Si ≻ Sj then wλ(i) = α (Lemma 5), and we place i into a final subgroup
with unchanged context α. If however Si ≺ Sj , then αwλ(j) is a Lyndon word (Lemma 5),
and we place i into a subgroup with context αwλ(j). We repeatedly refine the subgroups in
the same way, until all groups are final. At the point in time at which we refine the group
Gk = ⟨ℓ, r, |α|⟩, the data structures used by our Phase 1 algorithm are the following (see
Figure 1b for an example):

A stack Q contains groups G1, . . . , Gk that form a partition of Â[1..r). The groups are
stored in increasing lexicographical order (the bottommost group G1 is lex. smallest, the
topmost group Gk is lex. largest).
A stack P contains final groups F1, . . . , Fh that form a partition of Â[r..n]. The groups
are stored in decreasing lexicographical order (the bottommost group F1 is lex. largest,
the topmost group Fh is lex. smallest).
Together with the array Â, the groups G1, . . . , Gk, Fh, . . . , F1 are a suffix grouping
according to Definition 6.
A length-n array fgrp maps suffixes to their final groups. If ∃x ∈ [1, h] : i ∈ Fx, then
fgrp[i] = x. Otherwise, fgrp[i] =∞. Note that fgrp inherently encodes information about
the lexicographical order of suffixes due to ∀i, j ∈ [1, n] : fgrp[i] < fgrp[j] =⇒ Si ≻ Sj .

Now we describe Phase 1 in detail. The description is accompanied by pseudocode in
Algorithm 1. The algorithm takes the array Â and the stack Q from the initialization as input.
The stack P is initially empty, and all entries of fgrp are set to ∞ (lines 1–2). During the
execution of the algorithm, we may mark the groups on the stack Q as ready (indicating that
the group can easily be refined) or final (indicating that no further refinement is necessary).
Initially, all groups are unmarked. The refinement is performed in a simple loop. While the
stack Q is not empty, we pop the topmost group Gk = ⟨ℓ, r, |α|⟩ and process it (lines 3–4).
Depending on the marking of the group, there are three possible cases:
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Algorithm 1 Phase 1 with integer sorting.

Input: Initial suffix grouping represented by array Â and stack Q (all groups unmarked).
Output: Final suffix grouping represented by array Â and stack P .

1: P ← empty stack
2: for i ∈ [1, n] do fgrp[i]←∞
3: while Q is not empty do
4: ⟨ℓ, r, |α|⟩ ← Q.pop()
5: if ⟨ℓ, r, |α|⟩ is marked final ∨ ℓ = 1 then
6: P.push(⟨ℓ, r, |α|⟩)
7: for i ∈ [ℓ, r) do
8: fgrp[Â[i]]← |P |

9: else if ⟨ℓ, r, |α|⟩ is marked ready then
10: Stably sort Â[ℓ..r) in decreasing order,

using key fgrp[Â[i] + |α|] for entry Â[i].
11: ℓ′ ← ℓ

12: for i ∈ (ℓ, r) in increasing order do
13: if fgrp[Â[i− 1] + |α|] ̸= fgrp[Â[i] + |α|] then
14: Let β be the context of Ffgrp[Â[i−1]+|α|].
15: Q.push(⟨ℓ′, i, |αβ|⟩)
16: ℓ′ ← i

17: Let β be the context of Ffgrp[Â[r−1]+|α|].
18: Q.push(⟨ℓ′, r, |αβ|⟩)
19: else
20: for i ∈ [ℓ, r) in decreasing order do
21: if i < r − 1 ∧ Â[i + 1] = Â[i] + |α| then
22: if sg(Â[i + 1]) =∞ then sg(Â[i])←∞
23: else sg(Â[i])← sg(Â[i + 1]) + 1
24: else
25: if fgrp[Â[i] + |α|] =∞ then sg(Â[i])←∞
26: else sg(Â[i])← 1
27: Stably sort Â[ℓ..r) in decreasing order,

using key sg(Â[i]) for entry Â[i].
28: ℓ′ ← ℓ

29: while sg(Â[ℓ′]) =∞ do ℓ′ ← ℓ′ + 1
30: if ℓ′ > ℓ then Q.push(⟨ℓ, ℓ′, |α|⟩) marked final
31: for i ∈ (ℓ′, r) in increasing order do
32: if sg(Â[i− 1]) ̸= sg(Â[i]) then
33: Q.push(⟨ℓ′, i, |α|⟩) marked ready
34: ℓ′ ← i

35: Q.push(⟨ℓ′, r, |α|⟩) marked ready

finalfinal
groupgroup

readyready
groupgroup

unmarkedunmarked
groupgroup
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The group is marked final, or it is the group containing only the lexicographically smallest
suffix Sn = $ (which gets processed last). During an earlier processing step, we have
already ensured that ∀i ∈ Gk : wλ(i) = α. We simply push the group onto the final stack
P , which now contains |P | = h + 1 groups. We update the array fgrp accordingly by
assigning fgrp[i]← h + 1 for each index i ∈ Gk (lines 5–8).

The group is marked ready. During an earlier processing step, we have already ensured
that for each index i ∈ Gk, the index i + |α| is contained in a group that is lex-
icographically larger than Gk. Since all the lexicographically larger groups are fi-
nal, it holds fgrp[i + |α|] ̸= ∞. Particularly, for any two indices i, j ∈ Gk it holds
fgrp[i + |α|] > fgrp[j + |α|] =⇒ Si ≺ Sj and fgrp[i + |α|] < fgrp[j + |α|] =⇒ Si ≻ Sj .
We sort the interval Â[ℓ..r) in decreasing order, using key fgrp[i + |α|] for index i (line 10).
Indices that share the same key x form a subgroup Hx (we again determine the group
borders by scanning; lines 12–13). Let β be the context of the final group Fx, then αβ

becomes the context of subgroup Hx (lines 14–15 and 17–18). We push the subgroups
onto the stack Q in lexicographically increasing order. All subgroups are unmarked.

The group is unmarked. We have already seen that ready and final groups are relatively
easy to process. In this processing step, we split an unmarked group into at most one
final subgroup H∞, and possibly multiple ready subgroups H1, H2, . . . Hm (where m is
unknown in advance). The lexicographical order of subgroups is H∞ ≺ Hm ≺ . . . ≺ H1.
All subgroups have unchanged context α; the context extension only takes place when
processing the ready subgroups. The subgroup H∞ will contain exactly the indices
i ∈ Gk with wλ(i) = α. Lemma 4 implies that these suffixes are lexicographically smallest
amongst the suffixes in Gk. Consider any index i ∈ Gk, and let x be the smallest positive
integer such that i′ = i + x · |α| /∈ Gk. It is easy to see that Si = αxSi′ .

If i′ is in one of the lexicographically smaller groups G1, . . . , Gk−1, then Si ≻ Si′ and
simple properties of the lexicographical order imply Si ≻ Si+|α| ≻ Si+2|α| ≻ . . . ≻
Si+x|α|. It follows from Lemma 3 that wλ(i) = α, and we place i into subgroup H∞.
Note that if x > 1 and i ∈ H∞, then i + |α| ∈ H∞.
If i′ is in one of the lexicographically larger groups F1, . . . , Fh, then Si ≺ Si′ and simple
properties of the lexicographical order imply Si ≺ Si+|α| ≺ Si+2|α| ≺ . . . ≺ Si+x|α|. It
follows from Lemma 3 that λ[i] > |α|, and we place i into subgroup Hx. Note that if
x > 1 and i ∈ Hx, then i + |α| ∈ Hx−1. Thus Hx can be marked ready.
Now we show that in fact Hm ≺ Hm−1 ≺ . . . ≺ H1. Assume that we place two
indices i and j into subgroups Hx and Hy respectively. We have to show that
(x > y =⇒ Si ≺ Sj) and (x < y =⇒ Si ≻ Sj). If x > y, then Si = αySi+y·|α| and
Sj = αySj+y·|α|. Because of x > y it holds i + y · |α| ∈ Gk, while j + y · |α| is in one of
the lexicographically larger groups F1, . . . , Fh. Thus it holds Si+y·|α| ≺ Sj+y·|α| and
therefore also Si ≺ Sj . The proof of x < y =⇒ Si ≻ Sj works analogously.

As seen above, if both i and i + |α| are in Gk, then it holds i + |α| ∈ H∞ =⇒ i ∈ H∞
and i + |α| ∈ Hx−1 =⇒ i ∈ Hx. In such cases, we can easily compute i’s subgroup
from (i + |α|)’s subgroup. We only need an efficient way to check whether i + |α| ∈ Gk

actually holds. Conveniently, i + |α| ∈ Gk if and only if i and i + |α| are neighboring
entries in Â[ℓ..r). This is due to the fact that there cannot be a suffix Sj = αSj+|α| with
j ∈ (i, i + |α|) (otherwise α would have a proper prefix that is also a proper suffix, which
contradicts the definition of Lyndon words).
Lines 19–35 of Algorithm 1 describe our strategy for unmarked groups in technical detail.
First, we compute a key sg(Â[i]) for each i ∈ [ℓ, r) in decreasing order, indicating that we
place index Â[i] into subgroup Hsg(Â[i]). If for some index Â[i] it holds Â[i] + |α| ∈ Gk,
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i.e. if Â[i] and Â[i] + |α| are neighbors in Â[ℓ..r), then we compute Â[i]’s subgroup
from (Â[i] + |α|)’s subgroup as described above (lines 21–23). Otherwise, we inspect
fgrp[Â[i]+|α|] to decide whether we place Â[i] into subgroup H∞ or subgroup H1 (lines 24–
26). Finally, we rearrange Â[ℓ..r) according to the new subgroups (line 27). We push the
subgroups onto stack Q in increasing lexicographical order (once again computing the
group borders with a simple scan). If H∞ exists, then we mark it final (lines 29–30). All
other groups are marked ready (lines 31–35).

3.2 Phase 2 with Integer Sorting
In the second phase, we lexicographically sort each final group, and simultaneously compute
the inverse suffix array (see Algorithm 2). We proceed similarly to the first phase, using
the stack P and the array Â as input. First, we pop the topmost group of P (which is
the lexicographically smallest group containing only the special suffix Sn = $), and assign
A−1[1] = n (line 1). Then we sort the remaining groups in a simple loop. While P is not
empty, we pop the topmost group Fh = ⟨ℓ, r, |α|⟩ of the stack (lines 2–3) and lexicographically
sort it. At this point in time, we have already sorted the suffixes of all groups that are
lexicographically smaller than Fh because P contains the groups in lexicographical order (the
topmost group is the lexicographically smallest unsorted group). Therefore, when processing
Fh we have ∀i ∈ [1, ℓ) : A−1[A[i]] = i.

Since the group is final, it holds SÂ[i] ≻ SÂ[i]+|α| for each i ∈ [ℓ, r). Thus Â[i] + |α| either
was in one of the lexicographically smaller groups that we have already sorted, or it holds
Â[i] + |α| ∈ Fh. Ideally, we would simply sort Â[ℓ..r) using key A−1[Â[i] + |α|] for entry
Â[i]. However, if Â[i] + |α| ∈ Fh, then we have not computed A−1[Â[i] + |α|] yet. We solve
this problem by first rearranging Fh into subgroups H1 ≺ H2 ≺ . . . ≺ Hm, where subgroup
Hx contains the suffixes that have prefix αx, but not prefix αx+1 (the correctness of the
lexicographical order of these subgroups can be shown similarly to the order of subgroups for
unmarked groups in Phase 1). We assign the indices to the subgroups in decreasing order
(line 4). If Â[i] + |α| /∈ Fh (as before, this is the case if and only if Â[i] and Â[i] + |α| are
not neighbors in Â[ℓ..r)), then we place Â[i] into subgroup H1 (line 6). Otherwise, we have
already placed Â[i] + |α| into some subgroup Hx−1, and we place i into subgroup Hx (line 5).
After we have rearranged the indices according to the new grouping (line 7), we finally sort
each subgroup using key A−1[Â[i] + |α|] for entry Â[i] (lines 8–15). Whenever we sort a group,
we also update the inverse suffix array. Since no two indices Â[i] and Â[i] + |α| are in the
same subgroup, and due to the lexicographical order of subgroups, the required keys are
always available once they are needed.

4 Implementation Details

Our C++17 implementation of the algorithm is publicly available on GitHub2. In general, it
closely follows the description from Section 3. In this section, we discuss the choice of integer
sorters as well as other practical optimizations, including the parallelization of the algorithm.

Sequential Implementation. The main computational effort of the algorithm lies in integer
sorting, as well as in the computation of the keys prior to sorting. Finding the group borders
after sorting only requires simple sequential scans that are cache efficient and very fast in

2 https://github.com/jonas-ellert/gsaca-double-sort

https://github.com/jonas-ellert/gsaca-double-sort


N. Bertram, J. Ellert, and J. Fischer 15:9

Algorithm 2 Phase 2 with integer sorting.

Input: Final suffix grouping represented by array Â and stack P .
Output: Suffix array Â and inverse suffix array A−1.

1: P.pop(); A−1[1]← n;
2: while P is not empty do
3: ⟨ℓ, r, |α|⟩ ← P.pop()
4: for i ∈ [ℓ, r) in decreasing order do
5: if i < r − 1 ∧ Â[i + 1] = Â[i] + |α| then sg(Â[i])← sg(Â[i + 1]) + 1
6: else sg(Â[i])← 1
7: Stably sort Â[ℓ..r) in increasing order, using key sg(Â[i]) for entry Â[i].
8: ℓ′ ← ℓ

9: for i ∈ (ℓ, r) in increasing order do
10: if sg(Â[i− 1]) ̸= sg(Â[i]) then
11: Sort Â[ℓ′..i) in increasing order, using key A−1[Â[i] + |α|] for entry Â[i].
12: for j ∈ [ℓ′..i) do A−1[Â[i]]← i

13: ℓ′ ← i

14: Sort Â[ℓ′..r) in increasing order, using key A−1[Â[i] + |α|] for entry Â[i].
15: for j ∈ [ℓ′..r) do A−1[Â[i]]← i

practice. We use two different sorting algorithms. Whenever the keys are from a small
domain, we use a simple counting sort. This applies to the initialization (in practice we
assume the byte alphabet [0, 255]), the processing of unmarked groups in the first phase, and
the computation of subgroups in the second phase (Algorithm 1, line 27 and Algorithm 2,
line 7). In both of the latter cases, we simultaneously compute the keys and count their
frequencies. When refining ready groups in the first phase (Algorithm 1, line 10), and when
performing the final sorting in the second phase (Algorithm 2, lines 11 and 14), we use
MSD radix sort. We focus on speed and thus do not use an in-place variant of the sorter.
Therefore, apart from the space needed for the suffix array, one auxiliary array (for fgrp and
A−1), and the stacks, we need additional space linear in the size of the largest group that we
encounter.

We provide three versions DS1, DS3, and DSH of our sequential implementation that differ
only in the initialization (where DS stands for double sort because we reduced both phases to
integer sorting). The first version DS1 corresponds to the description in Section 3, i.e. we sort
the suffixes by their first symbol. The second version DS3 directly sorts the suffixes by their
first three symbols, resulting in smaller groups after the initialization (potentially resulting
in a smaller memory footprint). Finally, the version DSH directly sorts the suffixes using key
wλ(i) for suffix Si. However, if λ[i] > 8 then we use key wλ(i)[1..8]. Thus we immediately
place all suffixes with λ[i] < 8 into their correct final groups, skipping many refinement steps
and therefore accelerating Phase 1. The initialization of DSH consists of three steps.
Extract: We use a modification of Duval’s algorithm [5] to compute for each i ∈ [1, n] the

key x(i) = wλ(i), if λ[i] ≤ 8, or x(i) = wλ(i)[1..8] otherwise. We then use a hash table3

to check whether this is the first time we have seen key x(i). If it is, then we add the

3 We use an implementation of Robin Hood hashing by Martin Ankerl, see https://github.com/
martinus/robin-hood-hashing
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tuple ⟨x(i), i⟩ to the table. Otherwise, let j be the index where we first discovered key
x(i). We store Â[i] = j, indicating that we will place i into the same group as j.

Sort: We use comparison sorting to sort the tuples ⟨x(i), i⟩ by their first component.
Rearrange: We group the indices according to the sorted keys, and push the groups onto

the stack Q. If a group has context α with |α| < 8 then we mark it final.

Parallel Implementation. For our parallel algorithms we implemented the same ideas as
described in Section 3 using OpenMP for parallelization. We parallelized the counting sort
in the initialization as well as the processing of each suffix group in Phases 1 and 2. Because
processing a single suffix group consists mainly of integer sorting and sequential scans we can
parallelize them well in practice. We replace the sequential scans with parallel prefix sums.
For integer sorting we use ips4o [1]. In case we have to sort a range Â[ℓ..r) of elements
stably we sort Â[ℓ..r) by their keys, breaking ties by sorting elements with equal keys by
their entry Â[i]. Since for small suffix groups the overhead to process the group in parallel
is too high compared to the sequential implementation we use a threshold. If the size of a
suffix group is at most 1024, we switch to the sequential implementation (we performed a
preliminary evaluation to determine a value that performs well in practice).

Unfortunately, we cannot achieve a perfect speedup. We simply cannot process multiple
suffix groups in parallel because we heavily rely on processing them in decreasing lexico-
graphical order. For that reason the running time of our parallelization is still linear with
respect to the number of processed suffix groups (which is n in the worst case).

Similarly to our sequential implementation, we provide two different parallel versions
PDS1 and PDS2. In PDS1 we sort the suffixes in the initialization by their first symbol using
a parallel counting sort. In PDS2 we sort the suffixes by their first two symbols using ips4o.

5 Experimental Evaluation

We evaluated our algorithms on a number of real and artificial texts taken from the Pizza &
Chili text corpus4. In Table 1 we give an overview of the used texts. We divide the texts into
three different categories. Real texts (PC-Real) include english, dna, sources, proteins
and dblp.xml. They are good examples of texts that occur in real-world applications. Real
repetitive texts (PC-Rep-Real) include cere, einstein.en.txt, kernel and para. These
texts might still occur in real-world applications, but they are rather repetitive and thus
highly compressible. And lastly, artificial repetitive texts (PC-Rep-Art) include fib41, rs.13
and tm29. These texts were created artificially with the goal of repetitiveness in mind. All
the aforementioned texts are sufficiently short to compute the 32-bit suffix array. For our
weak scaling experiments we use a collection of larger texts (Large) that are summarized at
the bottom of Table 1. From each text we use a prefix of up to 16 GiB for our experiments,
which means that 32 bits are not sufficient to address the suffixes. Thus, we compute the
64-bit suffix array instead.

5.1 Experimental Setup and Results
We conducted our experiments on a Linux machine with an AMD EPYC 7452 processor (32
cores, 2.35 GHz, L1 32K, L2 512K, L3 16M) and 1 TB of RAM. The code was compiled
using GCC 7.5.0. We repeated all of our experiments five times and use the median as the

4 http://pizzachili.dcc.uchile.cl/

http://pizzachili.dcc.uchile.cl/
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Table 1 Texts from the Pizza & Chili text corpus and large texts. Apart from the text size n

and the alphabet size σ, we provide the number of suffix groups (SGs) and the average size of the
suffix groups that we process in Phase 1.

Category Text n (MiB) σ Count of SGs Avg. SG Size

PC-Real

english 1,024 237 102,640,785 40.72
dna 386 16 44,436,473 34.49
sources 202 230 27,961,111 28.92
proteins 1,024 27 144,323,711 28.62
dblp.xml 283 97 16,091,809 71.9

PC-Rep-Real

cere 440 5 10,585,469 174.06
einstein.en.txt 446 139 409,384 4,568.34
kernel 247 160 4,027,324 256.15
para 410 5 12,241,149 139.98

PC-Rep-Art
fib41 256 2 98 10,935,276.92
rs.13 207 2 197 4,400,958.45
tm29 256 2 194 5,534,751.23

Large
cc.txt 32,768 243 1,528,252,068 88.53
dna.txt 32,768 4 2,955,252,973 44.56
prot.txt 32,768 26 4,308,219,247 30.47
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constant amount of additional working space. (Best viewed in color.)
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Figure 3 Throughput and additional memory usage for each parallel algorithm on large texts.
The text size scales with the number of used threads (1GiB per thread). (Best viewed in color.)

final result. For the sequential experiments we compare our algorithms DS1, DS3, and DSH
with Baier’s original implementation of GSACA [4] and the currently fastest suffix sorter
DivSufSort [6]. For the weak scaling experiments we compare our parallel algorithms PDS1
and PDS2 with Labeit’s parallel implementation PDivSufSort of DivSufSort [12], and with
our sequential DS1 as a baseline to see how well our parallelization scales.

Sequential Results. For each of the categories PC-Real, PC-Rep-Real and PC-Rep-Art, we
averaged the running time and additional memory usage of the texts in each category. Before
computing the average, we normalized the running time for each algorithm to show how long
the algorithms take for 100 MiB of the input text. The additional memory is normalized
as well to show the additional memory usage for each byte in the input text. The results
for each category can be seen in Figure 2. Additionally, we provide a separate plot for dna,
which is one of the most relevant text types in practice.

All of our sequential algorithms are significantly faster than Baier’s original implementa-
tion. Our fastest sequential algorithm DSH is around twice as fast as Baier’s algorithm, and is
in each category even faster than DivSufSort (over 6% faster on PC-Real, over 19% faster on
PC-Rep-Real, and over three times as fast on PC-Rep-Art). On PC-Real and PC-Rep-Real,
the additional memory usage of our algorithms is much lower than Baier’s algorithm. Of
our new algorithms, DS3 has the lowest memory usage, but the running time is not as good
as DS1 and DSH. None of our algorithms comes close to the memory usage of DivSufSort,
which only uses a very small amount of constant additional memory.

Weak Scaling Results. Figure 3 shows the results of our weak scaling experiments. We
calculate for each text the throughput (text size divided by running time) in MiB/s and the
additional memory in bits/n for up to 16 threads. The input size grows proportionally to
the number of used threads, such that the input size is p GiB when using p threads. We do
not include results for more than 16 threads because otherwise the memory usage exceeds
the maximum amount of 500 GB memory that we can address on a single NUMA node, and
in some cases even the total memory of 1 TB (which is a limitation of our algorithms).
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On cc.txt and prot.txt, our parallel variants are significantly faster than PDivSufSort
for all input sizes. On dna.txt, the performance of all algorithms is similar. The memory
usage of PDS1 is up to five times as large as PDivSufSort and the memory usage of PDS2 is
up to four times as large as PDivSufSort on all input texts. The memory usage of DS1 is
on all input texts lower than PDS1. This is due to the fact that the sequential algorithm
uses 40-bit types for the additional arrays fgrp and A−1. The parallel algorithms however
use 64-bit types because the running time gets slower when using 40-bit types in parallel.
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Abstract
In this paper, we study the online Euclidean spanners problem for points in Rd. Given a set S

of n points in Rd, a t-spanner on S is a subgraph of the underlying complete graph G = (S,
(

S
2

)
),

that preserves the pairwise Euclidean distances between points in S to within a factor of t, that is
the stretch factor. Suppose we are given a sequence of n points (s1, s2, . . . , sn) in Rd, where point
si is presented in step i for i = 1, . . . , n. The objective of an online algorithm is to maintain a
geometric t-spanner on Si = {s1, . . . , si} for each step i. The algorithm is allowed to add new edges
to the spanner when a new point is presented, but cannot remove any edge from the spanner. The
performance of an online algorithm is measured by its competitive ratio, which is the supremum,
over all sequences of points, of the ratio between the weight of the spanner constructed by the
algorithm and the weight of an optimum spanner. Here the weight of a spanner is the sum of all
edge weights.

First, we establish a lower bound of Ω(ε−1 log n/ log ε−1) for the competitive ratio of any online
(1 + ε)-spanner algorithm, for a sequence of n points in 1-dimension. We show that this bound
is tight, and there is an online algorithm that can maintain a (1 + ε)-spanner with competitive
ratio O(ε−1 log n/ log ε−1). Next, we design online algorithms for sequences of points in Rd, for any
constant d ≥ 2, under the L2 norm. We show that previously known incremental algorithms achieve
a competitive ratio O(ε−(d+1) log n). However, if the algorithm is allowed to use additional points
(Steiner points), then it is possible to substantially improve the competitive ratio in terms of ε. We
describe an online Steiner (1 + ε)-spanner algorithm with competitive ratio O(ε(1−d)/2 log n). As
a counterpart, we show that the dependence on n cannot be eliminated in dimensions d ≥ 2. In
particular, we prove that any online spanner algorithm for a sequence of n points in Rd under the
L2 norm has competitive ratio Ω(f(n)), where limn→∞ f(n) = ∞. Finally, we provide improved
lower bounds under the L1 norm: Ω(ε−2/ log ε−1) in the plane and Ω(ε−d) in Rd for d ≥ 3.
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1 Introduction

We study the online Euclidean spanners problem for a set of points in Rd. Let S be a
set of n points in Rd. A t-spanner for a finite set S of points in Rd is a subgraph of the
underlying complete graph G = (S,

(
S
2
)
), that preserves the pairwise Euclidean distances

between points in S to within a factor of t, that is the stretch factor. The edge weights of
G are the Euclidean distances between the vertices. Chew [22, 23] initiated the study of
Euclidean spanners in 1986, and showed that for a set of n points in R2, there exists a spanner
with O(n) edges and constant stretch factor. Since then a large body of research has been
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devoted to Euclidean spanners due to its vast applications across domains, such as, topology
control in wireless networks [50], efficient regression in metric spaces [31], approximate
distance oracles [36], and many others. Moreover, Rao and Smith [48] showed the relevance
of Euclidean spanners in the context of other fundamental geometric NP-hard problems, e.g.,
Euclidean traveling salesman problem and Euclidean minimum Steiner tree problem. Many
different spanner construction approaches have been developed for Euclidean spanners over
the years, that each found further applications in geometric optimization, such as spanners
based on well-separated pair decomposition (WSPD) [17, 35], skip-lists [4], path-greedy and
gap-greedy approaches [3, 5], locality-sensitive orderings [21], and more. We refer to the
book by Narasimhan and Smid [47] and the survey of Bose and Smid [16] for a summary of
results and techniques on Euclidean spanners up to 2013.

Online Spanners. We are given a sequence of n points (s1, s2, . . . , sn), where the points
are presented one-by-one, i.e., point si is revealed at the step i, and Si = {s1, . . . , si} for
i = 1, . . . , n. The objective of an online algorithm is to maintain a geometric t-spanner Gi

for Si for all i. Importantly, the algorithm is allowed to add edges to the spanner when a
new point arrives, however is not allowed to remove any edge from the spanner.

The performance of an online algorithm ALG is measured by comparing it to the offline
optimum OPT using the standard notion of competitive ratio [14, Ch. 1]. The competitive
ratio of an online t-spanner algorithm ALG is defined as supσ

ALG(σ)
OPT(σ) , where the supremum

is taken over all input sequences σ, OPT(σ) is the minimum weight of a t-spanner for σ, and
ALG(σ) denotes the weight of the t-spanner produced by ALG for this input.

Computing a (1+ε)-spanner of minimum weight for a set S in Euclidean plane is known to
be NP-hard [20]. However, there exists a plethora of constant-factor approximation algorithms
for this problem in the offline model; see [3, 25, 26, 48]. Most of these algorithms approximate
the parameter lightness (the ratio of the spanner weight to the weight of the Euclidean
minimum spanning tree MST(S)) of Euclidean spanners, which in turn also approximates
the optimum weight of the spanner. We refer to Section 1.1 for a more detailed overview of
the parameter lightness.

Minimum spanning trees (MST) on n points in a metric space, which have no guarantee
on the stretch factor, have been studied in the online model. It is not difficult to show that a
greedy algorithm achieves a competitive ratio Θ(log n). The online Steiner tree problem was
studied by Imase and Waxman [39], who proved Θ(log n)-competitiveness for the problem.
Later, Alon and Azar [2] studied minimum Steiner trees for points in the Euclidean plane, and
proved a lower bound Ω(log n/ log log n) for the competitive ratio. Their result was the first
to analyse the impact of Steiner points on a geometric network problem in the online setting.
Several algorithms were proposed over the years for the online Steiner Tree and Steiner forest
problems, on graphs in both weighted and unweighted settings; see [1, 6, 10, 37, 46].

Online Steiner Spanners. An important variant of online spanners is when it is allowed
to use auxiliary points (Steiner points) which are not part of input sequence of points. It
turns out that Steiner points allow for substantial improvements over the bounds on the
sparsity and lightness of Euclidean spanners in the offline settings; see [12, 13, 42, 43]. In
the geometric setting, an online algorithm is allowed to add Steiner points and subdivide
existing edges with Steiner points at each time step. (This modeling decision has twofold
justification: It accurately models physical networks such as roads, canals, or power lines,
and from the theoretical perspective, it is hard to tell whether an online algorithm introduced
a large number of Steiner points when it created an edge/path in the first place). However,
the spanner must achieve the given stretch factor only for the input point pairs.
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(a) (b)

Figure 1 (a) An optimum 3
2 -spanner on three points with all edges of unit length. (b) After

inserting a fourth point at the center, the weight of the optimum 3
2 -spanner decreases.

It is easy to see that in this model the online spanners in 1-dimension could attain
optimum competitive ratio. However, it is unclear how it extends to higher dimensions as it
has been observed in the offline settings that it tends to be more difficult to achieve tight
bounds for Steiner spanners than their non-Steiner counterparts.

When the optimal Steiner spanner is lighter than OPT(Si) without Steiner points, the
adversary may decrease OPT(Si) by adding suitable Steiner vertices to Si; see Fig. 1. In
particular, OPT(Si) may or may not increase with i in the model without Steiner points,
but OPT(Si) monotonically increases in i when Steiner points are allowed.

1.1 Related Work
Dynamic Spanners. In applications, the data (modeled as points in Rd) changes over time,
as new cities emerge, new wireless antennas are built, and users turn their wireless devices on
or off. Dynamic models aim to maintain a geometric t-spanners for a dynamically changing
point set S; in a restricted insert-only model, the input consists of a sequence of point
insertions. In the dynamic model, the objective is design algorithms and data structures that
minimize the worst-case update time needed to maintain a t-spanner for S over all steps,
regardless of its weight, sparsity, or lightness. Notice that dynamic algorithms are allowed to
add or delete edges in each step, while online algorithms cannot delete edges. However, if
a dynamic (or dynamic insert-only) algorithm always adds edges for a sequence of points
insertions, it is also an online algorithm, and one can analyze its competitive ratio.

Arya et al. [4] designed a randomized incremental algorithm for n points in Rd, where
the points are inserted in a random order, and maintains a t-spanner of O(n) size and
O(log n) diameter. Their algorithm can also handle random insertions and deletions in
O(logd n log log n) expected amortized update time. Later, Bose et al. [15] presented an
insert-only algorithm to maintain a t-spanner of O(n) size and O(log n) diameter in Rd.
Fischer and Har-Peled [29] used dynamic compressed quadtrees to maintain a WSPD-based
(1+ε)-spanner for n points in Rd in expected O([log n+log ε−1] ε−d log n) update time. Their
algorithm works under the online model, too, however, they have not analyzed the weight of
the resulting spanner. Gao et al. [30] used hierarchical clustering for dynamic spanners in Rd.
Their DefSpanner algorithm is fully dynamic with O(log ∆) update time, where ∆ is the
spread1 of the set S. They maintain a (1 + ε)-spanner of weight O(ε−(d+1)∥MST (S)∥ log ∆),
and for a sequence of point insertions, DefSpanner only adds edges. As OPT ≥ ∥MST (S)∥,
DefSpanner can serve as an online algorithm with competitive ratio O(ε−(d+1) log ∆).

1 The spread of a finite set S in a metric space is the ratio of the maximum pairwise distance to the
minimum pairwise distance of points in S; and log ∆ ≥ Ω(log n) in doubling dimensions.
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Gottlieb and Roditty [32] studied dynamic spanners in more general settings. For every
set of n points in a metric space of bounded doubling dimension2, they constructed a (1 + ε)-
spanner whose maximum degree is O(1) and that can be maintained under insertions and
deletions in O(log n) amortized update time per operation. Later, Roditty [49] designed fully
dynamic geometric t-spanners with optimal O(log n) update time for n points in Rd. Very
recently, Chan et al. [21] introduced locality sensitive orderings in Rd, which has applications
in several proximity problems, including spanners. They obtained a fully dynamic data
structure for maintaining a (1 + ε)-spanners in Euclidean space with logarithmic update time
and linearly many edges. However, the spanner weight has not been analyzed for any of
these constructions. Dynamic spanners have been subject to investigation in abstract graphs,
as well. See [8, 9, 11] for some recent progress on dynamic graph spanners.

Lightness and sparsity are two natural parameters for Euclidean spanners. For a set
S of points in Rd, the lightness is the ratio of the spanner weight (i.e., the sum of all edge
weights) to the weight of the Euclidean minimum spanning tree MST (S). It is known that
greedy-spanner ([3]) has constant lightness; see [25, 26]. Later, Rao and Smith [48] in their
seminal work, showed that the greedy spanner has lightness ε−O(d) in Rd for every constant d,
and asked what is the best possible constant in the exponent. Then, the sparsity of a spanner
on S is the ratio of its size to the size of a spanning tree. Classical results [23, 24, 40, 53]
show that when the dimension d ∈ N and ε > 0 are constant, every set S of n points in
d-space admits an (1 + ε)-spanners with O(n) edges and weight proportional to that of the
Euclidean MST of S.

Dependence on ε > 0 for constant dimension d. The dependence of the lightness and
sparsity on ε > 0 for constant d ∈ N has been studied only recently. Le and Solomon [42]
constructed, for every ε > 0 and constant d ∈ N, a set S of n points in Rd for which any
(1+ε)-spanner must have lightness Ω(ε−d) and sparsity Ω(ε−d+1), whenever ε = Ω(n−1/(d−1)).
Moreover, they showed that the greedy (1 + ε)-spanner in Rd has lightness O(ε−d log ε−1). In
fact, Le and Solomon [42] noticed that Steiner points can substantially improve the bound on
the lightness and sparsity of an (1 + ε)-spanner. For minimum sparsity, they gave an upper
bound of O(ε(1−d)/2) for d-space and a lower bound of Ω(ε−1/2/ log ε−1). For minimum
lightness, they gave a lower bound of Ω(ε−1/ log ε−1), for points in the plane (d = 2) [42].
More recently, Bhore and Tóth [13] established a lower bound of Ω(ε−d/2) for the lightness
of Steiner (1 + ε)-spanners in Euclidean d-space for all d ≥ 2. Moreover, for points in the
plane, they established an upper bound of O(ε−1) [12].

1.2 Our Contributions
We present the main contributions of this paper, and sketch the key technical and conceptual
ideas used for establishing these results. (Refer to the technical sections for precise definitions,
complete proofs, and additional remarks.)

Points on a line. In Section 2 (Theorem 3), we establish a lower bound Ω(ε−1 log n/ log ε−1)
for the competitive ratio of any online algorithm for a sequence of points on the real line.
Moreover, we show that this bound is tight. We present an online algorithm that maintains
a (1 + ε)-spanner with competitive ratio O(ε−1 log n/ log ε−1).

2 A metric is said to be of a constant doubling dimension if a ball with radius r can be covered by at
most a constant number of balls of radius r/2.
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Our online algorithm is a 1-dimensional instantiation of hierarchical clustering, which
was used by Roditty [49] for dynamical spanners in doubling metrics. When a new point
si is “close” to a previous point sj , we add si to the “cluster” of sj , otherwise we open a
new cluster. The key question is to define when si is “close” to a previous point. Instead of
the closest points on the line, we find the shortest edge pq that contains si in the current
spanner, and say that si is “close” to p (resp., q) if ∥psi∥ ≤ ε

4 ∥pq∥ (resp., ∥qsi∥ ≤ ε
4 ∥pq∥).

The algorithm (and its analysis), does not explicitly maintain “clusters,” though. It is easy
to show, by induction, that ALG maintains a (1 + ε)-spanner. The main contribution is a
tight analysis of the competitive ratio. We partition the edges into buckets by weight, where
bucket Eℓ contains edges e of weight ε−(ℓ+1) < ∥e∥ ≤ ε−ℓ. The edges of the spanner will
form a laminar family (any edges are interior-disjoint or one contains the other); and the edge
weight decay by factors of at most (1 − ε

4 ) along the descending paths in the containment
poset. Since (1 − ε

4 )4/ε < 1
2 , we can show that the total weight of edges in a level decreases

by a factor of 1
2 after every ⌈5/ε⌉ levels. Thus, the sum of edge weights in a block of ⌈5/ε⌉

consecutive levels is O(ε−1OPT). This bound, applied to O(logε−1 n) = O(log n/ log ε−1)
buckets, proves the upper bound. The lower bound construction matches the upper bound
for each block of levels and for each bucket.

Euclidean d-space without Steiner points. In Section 3, we study the online Euclidean
spanners for a sequence of points in Rd. For constant d ≥ 2 and parameter ε > 0, we
show that the dynamic algorithm by Fischer and Har-Peled achieves, in the online model,
competitive ratio O(ε−(d+1) log n) for n points in Rd (Theorem 4 in Section 3.1), matching
the competitive ratio of DefSpanner by Gao et al. [30, Lemma 3.8].

The new competitive analysis of this algorithm is instrumental for extending the algorithm
and its analysis to online Steiner (1 + ε)-spanners (see below). We briefly describe a key
geometric insight. It is well known that for a, b ∈ Rd, any ab-path of weight at most
(1 + ε)∥ab∥ lies in an ellipsoid Bab with foci a ans b and great axes (1 + ε)∥ab∥. Summation
over disjoint ellipses gives a lower bound for OPT. Unfortunately, ellipsoids Bab for all
pairs ab ∈ S may heavily overlap. Recently, Bhore and Tóth [13, Lemma 3] proved that
any ab-path of weight at most (1 + ε)∥ab∥ must contain edge of total weight at least 1

2 ∥ab∥
that are “near-parallel” to ab (technically, they make an angle at most ε1/2 with ab); see
Fig. 4(right). By partitioning the edges of the unknown OPT spanner by both directions and
disjoint ellipsoids, we obtain a bound of ALG

OPT ≤ O(ε−(d+1) log n).

Euclidean d-space with Steiner points. When we are allowed to use Steiner points, we can
substantially improve the competitive ratio in terms of ε: We describe an algorithm with
competitive ratio O(ε(1−d)/2 log n) (Theorem 5 in Section 3.2).

The online Steiner algorithm adds a secondary layer to the non-Steiner algorithm: For
each edge ab of the non-Steiner spanner G1, we maintain a path of weight (1 + ε)∥ab∥ with
Steiner points; the stretch factor of the resulting Steiner spanner G2 is (1+ε)2 < (1+3ε). The
key idea is to reduce the weight to maintain buckets of edges of G1 that have roughly the same
direction and weight, and are nearby locations; and we construct a common Steiner network
N for them. Importantly, we can construct a “backbone” of the network N when the first
edge ab in a bucket arrives, and we have ∥N∥ ≤ O(ε(1−d)/2∥ab∥). When subsequent edges
a′b′ in the same bucket arrive, then we can add relatively short “connectors” to N so that it
also contains an a′b′-path of weight at most (1 + ε)∥a′b′∥. Thus N can easily accommodate
new paths in the online model. The key technical tool for constructing Steiner networks N

(one for each bucket) is the so-called shallow-light trees, introduced by Awerbuch et al. [7]
and Khuller et al. [41], and optimized in the geometric setting by Elkin and Solomon [28, 52].
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As a counterpart, we show (Theorem 7 in Section 4) that the dependence on n cannot
be eliminated in dimensions d ≥ 2. In particular, we prove that any (1 + ε)-spanner for
a sequence of n points in Rd, has competitive ratio Ω(f(n)) for some function f(n) with
limn→∞ f(n) = ∞. The lower bound construction consists of an adaptive strategy for the
adversary in the plane: The adversary recursively maintains a space partition and places
points in rounds so that the spanner constructed so far is disjoint from most of the ellipses
Bab that will contains the ab-paths for pairs of new points a, b. In order to control OPT,
the adversary maintains the property that OPTi is an x-monotone path γi after round i.
However, this requirement means that any new point must be very close to γi, and S will be
a set of almost collinear points. The core challenge of the Steiner spanner problem seems to
lie in the case of almost collinear points.

Higher dimensions under the L1-norm. Finally, in the full version of our paper we provide
improved lower bounds for points in Rd under the L1 norm (without Steiner points). We show
that for every ε > 0, under the L1 norm, the competitive ratio of any online (1 + ε)-spanner
algorithm Ω(ε−2/ log ε−1) in R2 and is Ω(ε−d) in Rd for d ≥ 3.

The adversary takes advantage of the non-monotonicity of OPT, mentioned above. In
round 1, it presents a point set S1 ∪ S2 for which any (1 + ε)-spanner (without Steiner points)
must contain a complete bipartite graph between S1 and S2; however the optimal Steiner
(1 + ε)-spanner for S1 ∪ S2 has much smaller weight. Then in round 2, the adversary presents
all Steiner points Ŝ1 ∪ Ŝ2 of an optimal Steiner (1 + ε)-spanner for S1 ∪ S2. The key insight
is that under the L1-norm (and for this particular point set), the optimal Steiner spanner for
S1 ∪S2 already contains Manhattan paths between any two points in S = (S1 ∪S2)∪(Ŝ1 ∪ Ŝ2),
and so it remains the optimum solution (without Steiner points) for the point set S.

We were unable to replicate this phenomenon under the L2-norm, where the current
best lower bound in Rd, for all d ≥ 1, derives from the 1-dimensional construction. In
particular, it is not sufficient to consider the Steiner ratio for (1 + ε)-spanners, defined as
the supremum ratio between the weight of the minimum (1 + ε)-spanner and the minimum
Steiner (1 + ε)-spanner of a finite point set in Rd. Under the L2-norm, this ratio is Θ(ε−1)
in the plane and Θ̃(ε(1−d)/2) in Rd for d ≥ 3 [12, 42, 44]. However, an optimal Steiner
(1 + ε)-spanner, need not achieve the desired 1 + ε stretch factor for the Steiner points.

2 Lower and Upper Bounds for Points on a Line

It is easy to analyze the one-dimensional case as the offline optimum network (OPT) for any
set of points in a line is a path from the leftmost point to the rightmost point; the stretch
factor of this path is always 1. (In contrast, in 2- and higher dimensions, the optimum
(1 + ε)-spanner is highly dependent on the distribution of points, which in turn may change
over time in the online model.)

Lower bound. The following adversarial strategy establishes a lower bound L(n) = Ω(ε−1)
for the competitive ratio; refer to Fig. 2 (left). Start with two points p0 = 0 and q0 = 1.
For the first two points, ALG must add a direct edge p0q0. Then the adversary successively
places points pi = i · ε

2 , for i = 1, . . . , n so that all points remain in the interval [0, 1
2 ]. Thus

the number of points is n = 2+⌊ε−1⌋. In each round, ALG must add the edge piq0, otherwise
any path between pi and q0 would have to make a detour via a point in {p0, . . . , pi−1}, and
so it would be longer than (1 + ε)∥piq0∥. Since ∥piq0∥ ≥ 1

2 , the weight of the network after
n − 2 iterations is at least ALG ≥ 1 + 1

2 (n − 2) ≥ 1 + 1
2 ⌊ε−1⌋. Combined with OPT = 1, this

yields a lower bound of Ω(ε−1) for the competitive ratio.
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ε/2

q0p0 p1 p2 p3 p4

ε/2 ε/2 ε/2

p1 p2 p3 p4p0 q0

Figure 2 Left: A sequence of n points (q0, p0, p1, p2, . . . , pn−2), for n = ⌈ε−1⌉, for which any
online (1 + ε)-spanner has weight Ω(ε−1OPT). For clarity, the edges are drawn as circular arcs, but
the weight of an edge pipj is ∥pipj∥ = |pi − pj |. Right: Iteration in each subinterval.

The adversary has placed only O(ε−1) points so far; this is the first stage of the strategy.
In subsequent stages, the adversary repeats the same strategy in every subinterval ab of
previous stage, as indicated in Fig. 2 (right). After stage j ≥ 1, we have ALG ≥ 1+ j

2 ⌊ε−1⌋ =
Ω(jε−1) and OPT = 1. The number of points placed in each stage increases by a factor of
Ω(ε−1), hence j = Θ(logε−1 n) = Θ(log n/ log ε−1). Overall, the competitive ratio is at least
ALG/OPT ≥ Ω(jε−1) = Ω(ε−1 log n/ log ε−1).

Upper bound. For proving a matching upper bound in one-dimension, we use the fol-
lowing online algorithm: For all i = 1, . . . , n, we maintain a spanning graph Gi on
Si = {s1, . . . , si} and the x-monotone path Pi between the leftmost and the rightmost
points in Si = {s1, . . . , si}. When point si, i ≥ 2, arrives, we proceed as follows (see Fig. 3).
If si is left (resp., right) of all previous points, we add an edge from si to the closest point in
Si−1 to both Pi−1 and Gi−1. Otherwise, let ab be the (unique) edge of Pi−1 that contains si,
and pq a shortest edge of Gi−1 that contains si. Clearly, we have Pi = Pi−1 − ab + asi + sib.
If min{∥psi∥, ∥siq∥} > ε

4 ∥pq∥, we add both asi and sib to Gi, that is, Gi = Gi−1 + asi + sib.
Otherwise, let Gi = Gi−1 + asi if ∥psi∥ ≤ ∥siq∥, or else Gi = Gi−1 + sib.

s2
s3 s10 s4

s6s7
s8

s9 s11 s12s1 s12 a bp q

G12 G13

s5

Figure 3 Left: The graph G12 for (s1, . . . , s11). Right: pq = s1s2 is the shortest edge of G11 that
contain s12. The algorithm adds edges as12 = s5s12 and s12b = s12s7.

We observe a few properties of Gi that are immediate from the construction: (P1) At the
time when edge e is added to Gi, then the interior of e does not contain any vertices. (P2)
The edges in Gi form a laminar set of intervals (i.e., any two edges are interior-disjoint, or
one contains the other). (P3) If e1, e2 are edges in Gi and e2 ⊂ e1, then ∥e2∥ ≤ (1 − ε

4 )∥e1∥.
We note that properties (P1)–(P3) are inherently 1-dimensional, as the edges are intervals in
R, and they do not seem to generalize to higher dimensions.
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▶ Lemma 1. For i = 1, . . . , n, the graph Gi is a (1 + ε)-spanner for Si.

The standard proof (by induction on n) is available in the full version of the paper.

▶ Lemma 2. For i = 1, . . . , n, we have ∥Gi∥ ≤ O(ε−1OPTi log i/ log ε−1).

Proof. We may assume w.l.o.g. that i = n, and let OPT = OPTn for brevity. Let E be
the edge set of Gn. The order in which ALG adds edges to E defines a (precedence) poset
on E. We partition E by weight as follows: Let β = ε−1; and for all ℓ ∈ Z, let Eℓ be the
set of edges e ∈ E with βℓ < ∥e∥ ≤ βℓ+1. Since ∥e∥ ≤ OPT for all e ∈ E, every edge is in
Eℓ for some ℓ ≤ logβ OPT. Furthermore, for all ℓ ≤ logβ(OPT/n2), the edges e ∈ Eℓ have
weight ∥e∥ ≤ OPT/n2, and so the total weight of these edges is less than OPT. It remains
to consider Eℓ for logβ(OPT/n2) ≤ ℓ ≤ logβ OPT, that is, for O(log n/ log ε−1) values of ℓ.

Let pq be an edge in Eℓ that is not contained in any previous edge in Eℓ. By property
(P2), the edges in Eℓ form a laminar family, and so pq does not overlap with any previous
edge in Eℓ; and pq contains any subsequent edge that overlaps with it. Let Eℓ(pq) be the set
of all edges in Eℓ that are contained in pq (including pq). We claim that

∥Eℓ(pq)∥ ≤ O(ε−1∥pq∥). (1)

Summation over all edges pq ∈ Eℓ that are not contained in previous edges in Eℓ implies
∥Eℓ∥ ≤ O(ε−1OPT). Summation over all ℓ ∈ Z then yields

∥E∥ =
∑
ℓ∈Z

∥Eℓ∥ =
⌈logβ OPT⌉∑

ℓ=⌊logβ(OPT/n2)⌋

∥Eℓ∥ + O(OPT) = O(ε−1 OPT logβ n).

To prove (1), consider the containment poset of Eℓ(pq). In fact, we represent the poset
as a rooted binary tree T : The root corresponds to pq, and edges e1, e2 ∈ Eℓ(pq) are in
parent-child relation iff e2 ⊂ e1, and there is no edge e′ ∈ Eℓ(pq) with e2 ⊂ e′ ⊂ e1. Each
level of T corresponds to interior-disjoint edges contained in ∥pq∥, so the sum of weight on
each level is at most ∥pq∥. The total weight of the first k = ⌈5ε−1⌉ levels is O(ε−1∥pq∥).

We claim that the total weight on level k = ⌈5ε−1⌉ is at most 1
2 ∥pq∥. We distinguish

between three types of nodes in the subtree of T between levels 0 and k: A branching node
has two children, a single-child node has one child, and a leaf has no children (in particular
all nodes in level k are considered leaves in this subtree). The nodes (leaves) at level k

correspond to interior-disjoint edges e ⊂ pq with ∥e∥ ≥ ε ∥pq∥ by the definition of Eℓ(pq).
Thus there are at most ⌊ε−1⌋ nodes at level k, hence there are less than ⌊ε−1⌋ branching
nodes. This implies that for any node e on level k, the descending path from the root pq to
e contains at least k − ⌊ε−1⌋ ≥ ⌈4ε−1⌉ single-child nodes.

For the purpose of bounding the total weight at level k, we can modify T , by incrementally
moving all single-child nodes below all branching nodes as follows. While there is an edge uv

in T , such that u is a branching node, and its parent v is a single-child node, we suppress u

and subdivide the two edges of T below u with new nodes v1 and v2. The weight along the
edge uv goes down by a factor of at most (1 − ε

4 ) by property (P3); we set the weights in the
modified tree such that the same decrease occurs along the edges uv1 and uv2. Then each
operation maintains property (P3), and the total weight at level k does not change. When
the while loop terminates, we obtain a full binary tree with a chain attached to each leaf.
As we argued above, each chain has length ⌊4/ε⌋ or more. The full binary tree does not
necessarily decrease the weight. Along each chain of ⌊4/ε⌋ or more single-child nodes, the
weight is cumulatively multiplied by a factor of at most (1 − ε

4 )⌈4/ε⌉ < 1
2 . Overall, the total

weight at level k = ⌈5ε−1⌉ is at most 1
2 ∥pq∥, as claimed.
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By induction, for every integer j ≥ 0, the total weight at level jk = j⌈5ε−1⌉ is at most
∥pq∥/2j . Consequently, the total weight of a block of k consecutive levels {jk+1, . . . , (j +1)k}
is at most k∥pq∥/2j . Overall, ∥Eℓ(pq)∥ =

∑
j≥0 k∥pq∥/2j = O(k∥pq∥) = O(ε−1 ∥pq∥), which

completes the proof of (1). ◀

We can summarize the discussion above in the following theorem.

▶ Theorem 3. For every ε > 0, the competitive ratio of any online algorithm for (1 + ε)-
spanners for a sequence of points on a line is Ω(ε−1 log n/ log ε−1). Moreover, there is an
online algorithm that maintains a (1+ε)-spanner with competitive ratio O(ε−1 log n/ log ε−1).

3 Upper Bounds for Spanners in Rd under the L2 Norm

We turn to online (1 + ε)-spanners in Euclidean d-space for d ≥ 2. The dynamic algorithm
DefSpanner by Gao et al. [30], based on hierarchical clustering, achieves O(ε−(d+1) log n)
competitive ratio in the online model. In Section 3.1, we recover the same bound with a new
analysis, where we refine the hierarchical clustering with a partition of the edges into buckets
of similar directions, locations, and weights. In Section 3.2, we extend the new analysis to
show that the competitive ratio improves to O(ε(1−d)/2 log n) if we are allowed to use Steiner
points. Our spanner algorithm replaces each bucket of “similar” edges with a Steiner network
using grids and shallow-light trees, for up to O(ε(1−d)/2) directions.

Preliminaries. Well-separated pair-decomposition (for short, WSPD) of a finite point set
S in a metric space is a classical tool for constructing (1 + ε)-spanners [19, 34, 47, 51]. It
is a collection of pairs {(Ai, Bi) : i ∈ I} such that for all i ∈ I, we have Ai, Bi ⊂ S and
max{diam(Ai), diam(Bi)} ≤ ε dist(Ai, Bi); and for every point pair {s, t} ⊂

(
S
2
)
, there is a

pair (Ai, Bi) such that Ai and Bi each contains precisely one of s and t. It was shown by
Callahan and Kosaraju [18] that if a graph G = (S, E) contains an edge between arbitrary
points in Ai and Bi, for all i ∈ I, then G is an (1 + O(ε))-spanner for S; see also [47, Ch. 9].

Dynamic spanners (including the fully dynamic algorithm by Roditty [49] and DefS-
panner by Gao et al. [30]) rely on WSPDs and hierarchical clustering. In Rd, hierarchical
clustering can be obtained by classical recursive space partitions such as quadtrees [27, Ch. 14].
Dynamic quadtrees and their variants have been studied extensively, due to their broad range
of applications; see [38, Ch. 2]. In general, dynamic quadtrees can handle both point insertion
and deletion operations. However, in the context of an online algorithm, where the points are
only inserted, note that no cell of the quadtree is ever deleted. We analyse the competitive
ratio of the dynamic incremental algorithm by Fischer and Har-Peled [29] that maintains an
(1 + ε)-spanner for n points in Euclidean d-space in expected O([log n + log ε−1] ε−d log n)
update time. However, they have not analyzed the ratio between the weight of the resulting
(1 + ε)-spanner and the minimum weight of an (1 + ε)-spanner.

3.1 Online Algorithm without Steiner Points
Online Algorithm. We briefly review the algorithm in [29] and then analyze the weight.
The input is a sequence of points (s1, s2, . . .) in Rd; the set of the first n points is denoted by
Sn = {si : 1 ≤ i ≤ n}. For every n, we dynamically maintain a quadtree Tn for Sn. Every
node of Tn corresponds to a cube. The root of Tn, at level 0, corresponds to a cube Q0 of
side length a0 = Θ(diam(Sn)). At every level ℓ ≥ 0, there are at most 2dℓ interior-disjoint
cubes, each of side length a0/2ℓ. A cube Q ∈ Tn is nonempty if Q ∩ Sn ̸= ∅. For every
nonempty cube Q, we select an arbitrary representative s(Q) ∈ Q ∩ Sn. At each level ℓ,
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16:10 Online Euclidean Spanners

let Eℓ be the set of all edges s(Q1)s(Q2) for pairs of cubes {Q1, Q2} on level ℓ such that
c1a0
ε 2ℓ ≤ ∥s(Q1)s(Q2)∥ ≤ c2a0

ε 2ℓ for some constants 0 < c1 < c2 that depend on d; see Fig. 4(left).
The algorithm maintains the spanner G = (Sn, E) where E =

⋃
ℓ≥0 Eℓ. A classical argument

by Callahan and Kosaraju [18] (see also [34, 47, 51]) shows that G is a (1 + ε)-spanner for Sn.

Q0

s(Q)

C1 C2

a

b

Bab

Figure 4 Left: Nonempty squares at level ℓ = 4 of a quadtree, each with a representative (red
dots). Point s(Q) is connected to all other representatives in the annulus between the concentric
circles C1 and C2 of radii c1/(ε 2ℓ) and c2/(ε 2ℓ). Right: Ellipse Bab with foci a and b, an ab-path
of weight (1 + ε)∥ab∥. The bold edges make an angle at most ε1/2 with ab.

▶ Theorem 4. For every constant d ≥ 2, parameter ε > 0, and a sequence of n ∈ N points in
Euclidean d-space, the competitive ratio of the online algorithm above is in O(ε−(d+1) log n).

Proof. For the set Sn of the first n points of a sequence in Rd, let G = (Sn, E) be the
(1+ε)-spanner produced by the online algorithm, and let G∗ = (Sn, E∗) be an (1+ε)-spanner
of minimum weight. We show that ∥G∥/∥G∗∥ = O(ε−(d+1) log n).

Short edges. Note that the weight of every edge in Eℓ ⊂ E at level ℓ is Θ(ε−1diam(Sn)/2ℓ),
since it connects representatives at Θ(ε−1diam(Sn)/2ℓ) distance apart. In particular, an
edge at any level ℓ ≥ 2 log n has weight at most O(ε−1diam(Sn)/n2); and the total weight of
these edges is O(ε−1diam(Sn)) ≤ O(ε−1OPT). It remains to bound the weight of the edges
on levels ℓ = 1, . . . , ⌊2 log n⌋. We consider each level separately.

Short edges. For every edge ab ∈ E, let Bab denote the ellipsoid with foci a and b, and
great axis of length (1 + ε)∥ab∥. Note that every ab-path of weight at most (1 + ε)∥ab∥ lies
in Bab. The set of directions of line segments in Rd is represented by a hemisphere of Sd−1.
The distance between two directions is measured by angles in the range [0, π). Recently,
Bhore and Tóth [13, Lemma 3] proved that every ab-path of weight at most (1 + ε)∥ab∥
contains edges of total weight at least 1

2 ∥ab∥ that make an angle at most ε1/2 with ab (i.e.,
they are near-parallel to ab); see Fig. 4(right).

Since G∗ is a (1 + ε)-spanner for Sn, it contains an ab-path of weight at most (1 + ε)∥ab∥
for every ab ∈ E. This path lies in the ellipsoid Bab, and contains edges of G∗ of weight at
least 1

2 ∥ab∥ and with direction with at most ε1/2 from ab. We next define suitable disjoint
sets of ellipsoids, in order to establish a lower bound on ∥G∗∥.
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Edge partition by directions. First, we partition the edge set Eℓ into subsets based on the
directions of the edges. We use standard volume argument to construct a homogeneous set of
directions. Let H ⊂ Sd−1 be the hemisphere of unit vectors in Rd, then the direction vector
of a line segment ab, denoted dir(ab), is a unique point in H . Consider a maximal packing of
H with (spherical) balls of radius 1

8 ε1/2. Since the spherical volume of H is Θ(1) and the
volume of each ball is Θ(ε(d−1)/2), the number of balls is K = Θ(ε(1−d)/2).

By doubling the radii of the spherical balls to 1
4 ε1/2, we obtain a covering of H with a

set of balls D = {Di : i = 1, . . . , K}. For each spherical ball Di ∈ D, denote by 2Di the
concentric ball of radius 1

2 ε1/2. By standard packing argument, the ball 2Di intersects only
O(1) balls in D (where d = O(1)). We can now define a partition Eℓ =

⋃K
i=1 Eℓ,i as follows:

let an ab ∈ Eℓ be in Eℓ,i if i is the smallest index such that dir(ab) ∈ Di. Now for every
i = 1, . . . , K, let E∗

i be the set of edges e∗ ∈ E∗ such that dir(e∗) ∈ 2Di. By construction,
every edge e∗ ∈ E∗ lies in O(1) sets E∗

i ; consequently
∑K

i=1 ∥E∗
i ∥ = Θ(∥G∗∥). Furthermore,

for every edge ab ∈ Eℓ,i, all edges in E∗ that make an angle at most ε1/2 with ab are in E∗
i .

Disjoint ellipsoids. For every i = 1, . . . , K, let Bℓ,i be the set of ellipsoids Bab with ab ∈ Eℓ,i.
We show that Bℓ,i contains a subset B′

ℓ,i of disjoint ellipsoids such that |B′
ℓ,i| ≥ Ω(εd+1|Bℓ,i|).

We claim that every ellipsoid in Bℓ,i intersects O(ε−(d+1)) other ellipsoids in Bℓ,i. We
make use of a volume argument. Let Mℓ = max{∥e∥ : e ∈ Eℓ}; and note that the side length
of every cube at level ℓ of the quadtree is Θ(ε Mℓ).

For every ellipsoid Bab ∈ Bℓ,i, the great axis has length (1 + ε)∥ab∥, and the d − 1 minor
axes each have length

√
(1 + ε)2 − 12∥ab∥ < 2ε1/2∥ab∥, where ∥ab∥ ≤ Mℓ. Hence Bab is

contained in a cylinder Cab of height (1 + ε)Mℓ whose base is a (d − 1)-dimensional ball
of diameter 2ε1/2Mℓ. Any other ellipsoid in Bℓ,i with great axis parallel to ab is contained
in a translate of Cab. If we rotate Bab about its center by an angle at most ε1/2, then its
orthogonal projection to the original great axis decreases, and the maximum distance from
the original great axis increases by at most ∥ab∥ 1+ε

2 sin ε1/2 < Mℓε
1/2. Consequently, every

ellipsoid in Bℓ,i is contained in a translated copy of 2Cab. Hence, every ellipsoid in Bℓ,i that
intersects Bab is contained in 3Cab. Every cube at level ℓ of the quadtree that intersects 3Cab

is contained in the Minkowski sum of 3Cab and such a cube, which is in turn contained in 4Cab.
Note that the volume of the cylinder 4Cab is O(ε(d−1)/2Md

ℓ ); while the volume of a cube at
level ℓ of the quadtree is Θ(εd Md

ℓ ). Therefore 4Cab contains O(ε(d−1)/2/εd) = O(ε−(d+1)/2)
such cubes. Recall that the algorithm maintains one representative from each cube, and the
edges ab ∈ Eℓ,i are pairs of representative. Thus O(ε−(d+1)/2) representatives in 4Cab can
form O(ε−(d+1)) pairs (i.e., edges, hence ellipsoids).

This completes the proof of the claim that every ellipsoid in Bℓ,i intersects O(ε−(d+1))
other ellipsoids in Bℓ,i. Hence the intersection graph of Bℓ,i is O(ε−(d+1))-degenerate; and
has an independent set B′

ℓ,i of size |B′
ℓ,i| ≥ Ω(εd+1|Bℓ,i|) = Ω(εd+1|Eℓ,i|).

Weight analysis. As noted above, all edges in Eℓ have length Θ(Mℓ). For every i = 1, . . . , K

and for every ellipsoid Bab ∈ Bℓ,i, we have ∥E∗
i ∩ Bab∥ ≥ 1

2 ∥ab∥ Ω(Mℓ). Summing over a set
of disjoint ellipsoids, we obtain

∥E∗
i ∥ ≥

∑
Bab∈B′

ℓ,i

∥E∗
i ∩ Bab∥ ≥

∑
Bab∈B′

ℓ,i

1
2∥ab∥

≥ |B′
ℓ,i| · 1

2 min{∥ab∥ : ab ∈ Eℓ,i}

≥ ε−(d+1)|Eℓ,i| · Ω(Mℓ) = Ω(ε−(d+1)∥Eℓ,i∥).
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Summation over all directions i = 1, . . . , K yields

∥G∗∥ = Θ
(

K∑
i=1

∥E∗
i ∥

)
≥ Ω

(
K∑

i=1
ε−(d+1)∥Eℓ,i∥

)
= Ω(ε−(d+1)∥Eℓ∥).

Finally, summation over all ℓ ≥ 1 yields

∥E∥ =
∑
ℓ≥1

∥Eℓ∥ ≤
⌊2 log n⌋∑

ℓ=1
∥Eℓ∥ +

∑
ℓ>⌊2 log n⌋

∥Eℓ∥ ≤ ε−(d+1)∥G∗∥ log n + ε−1∥G∗∥,

as required. ◀

3.2 Online Algorithm with Steiner Points
When Steiner points are allowed, we can substantially improve the competitive ratio in terms
of ε. We describe an algorithm with competitive ratio O(ε(1−d)/2 log n). As a counterpart,
we show in Section 4 that the dependence on n is unavoidable in dimensions d ≥ 2; it remains
an open problem whether the dependence on ε is necessary.

▶ Theorem 5. For every ε > 0, an online algorithm can maintain, for a sequence of n ∈ N
points in the plane, a Euclidean Steiner (1 + ε)-spanner of weight O(ε−1/2 log n) · OPT.

Proof. Our online algorithm has two stages: A1 and A2. Algorithm A1 is the same as in
Section 3.1, it maintains a quadtree Tn for the point set Sn, and a “primary” (1 + ε)-spanner
G1 without Steiner points. Algorithm A2 maintains a Steiner (1 + 3ε)-spanner G2 as follows:
for each edge ab in G1, it creates an ab-path of length (1 + ε)∥ab∥ using Steiner points in
G2. Importantly, algorithm A2 can bundle together “similar” edges of G1, and handle them
together using shallow-light trees [52].

In particular, we partition the space of all possible edges of G1 into buckets (edges with
similar directions, locations, and weights). For each bucket U , when algorithm A1 inserts the
first edge ab ∈ U into G1, then algorithm A2 creates a “backbone” Steiner tree T = T (U) of
weight O(∥ab∥), which contains an ab-path of length at most (1 + ε)∥ab∥. For any subsequent
edge a′b′ ∈ U , is suffices to add paths from a′ and b′ to T , of weight O(ε ∥ab∥), to obtain
a′b′-path of length at most (1 + ε)∥a′b′∥. Overall, between any two points si, sj ∈ S, the
primary spanner contains a path of weight at most (1 + ε)∥sisj∥, and G2 contains an Steiner
path of weight at most (1 + ε)2∥sisj∥ < (1 + 3ε)∥sisj∥, as claimed.

It remains to define the buckets U , the backbone T (U) for the first edge in U , and
the “connectors” added for each subsequent edge in U . We first describe the algorithm in
the plane, where we establish a competitive ratio O(ε−1/2 log n), and then generalize the
construction to higher dimensions.

Buckets. We define buckets for all potential edges in the primary spanner G1. We analyze
a single level ℓ of the quadtree T . Without loss of generality, assume that the side length of
all quadtree cubes in level ℓ have unit length, hence the weight of every edge in Eℓ is Θ(ε−1).

In Section 3.2, we have covered the set H ⊂ S1 of directions with a set D = {Di : i =
1, . . . K} of balls of diameter ε1/2. For each ball in D, we define a set of buckets. Let D ∈ D,
and let L be a line such that dir(L) corresponds to the center of D; refer to Fig. 5(left).
Partition the plane into parallel strips of width 1

2 ε1/2 by a set of lines parallel to L; and
partition each strip further into rectangles of height 2ε−1. By scaling up the rectangles by
a factor of 2, we obtain a covering of the square Q0 with a set R of 4ε−1 × ε1/2 rectangles
such that each point is covered by O(1) rectangles in R.
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For each rectangle R ∈ R, we create a bucket U comprising all edges ab ∈ Eℓ such that
ab ⊂ R and dir(ab) ∈ D (hence ∠(dir(ab), dir(L)) ≤ ε1/2). Note that every edge ab ∈ Eℓ lies
in at least one and at most O(1) buckets.

Q0

R

G(U)

R

L(U)

L

r

L(U)

Figure 5 Left: The overlay the the quadtree with a partition of R2 into 1
2 ε−1/2 × 2ε−1 rectangles

aligned with L. Top-Right: A rectangle R ∈ R, the median L(U), the grid G(U), and the partition of
R into ε−1/2×ε−1/2 squares. Bottom-Right: A shallow-light tree between a side of an 1

2 ε−1/2× 1
2 ε−1/2

square and a source r ∈ L(U).

Backbones and Connectors. Let U be a bucket defined above for a rectangle R ∈ R. Let
L(U) denote the median of the rectangle R parallel to L. When the primary algorithm
A1 inserts the first edge ab ∈ U into G1, then Algorithm A2 constructs a unit grid graph
G(U), formed by a subdivision of R into unit squares; see Fig. 5(top-right). Since R is
a 4ε−1 × ε−1/2 rectangle, ∥G(U)∥ = O(ε−3/2). Furthermore, we partition R into 4ε−1/2

squares of side length ε−1/2. For each such square, we insert two shallow-light trees [52]
between the two sides of the square orthogonal to L and two points in L(U) at distance ε−1

from the square on either side; Fig. 5(bottom-right). The weight of each shallow-light tree is
O(ε−1) [52], and so the combined weight of O(ε−1/2) shallow-light trees is O(ε−3/2). The
grid G(U) together with the shallow-light trees forms the backbone for the bucket U in G2.

We add connector edges between a (resp., b) and the four corners of unit square of the
grid G(U) that contains it. For any subsequent edge a′b′ ∈ U that algorithm A1 inserts into
G1, the backbone does not change, we only add connectors between a′ (resp., b′) and the
four corners of the unit square in G(U) that contains it. The weight of the four connectors is
O(1) per point. Since area(R) = Θ(ε−3/2), then R intersects at most O(ε−3/2) unit squares
of the quadtree at level ℓ, and so the total weight of all connectors is O(ε−3/2), as well.

Stretch analysis. Suppose algorithm A1 inserts an edge cd into G1. As noted above, cd lies
in Θ(1) buckets; refer to Fig. 6. Suppose bucket U contains cd; and in the partition of the
rectangle R = R(U), the endpoint c (d) lies squares Rc (Rd) of side length ε−1/2, associated
with shallow-light trees rooted at rc (rd). Then G2 contains a cd-path comprised of: (i)
connectors from c and d, resp., to the closest point in the grid G(U); (ii) paths in G(U) from
the connectors to the boundary of squares Rc and Rd, (iii) paths along the shallow-light
trees to the roots rc, rd ∈ L(U), and (iv) the line segment rcrd in G(U). The weight of
each connector in (i) is at most 2

√
2, which is bounded by O(ε)∥cd∥ since ∥cd∥ = Θ(ε−1).

The edges in (ii) and (iv) are parallel to L, hence they make an angle less than ε1/2 with
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cd. Finally, consider the two subpaths in part (iii) in shallow-light trees: The line segment
between the two endpoints of each such subpath makes an angle less than ε1/2 with L, hence
less than 2ε1/2 with cd; and the weight of a root-to-leaf path in a shallow-light tree is a
(1 + ε)-approximation of the straight-line segment between its endpoints. Overall, the total
weight of the cd-path described above is (1 + O(ε))∥cd∥, as required.

L(U)

R

c

d

Rc Rd

rc rd

Figure 6 A cd-path in the Steiner spanner G2.

For every point pair a, b ∈ Sn, the primary graph G1 contains an ab-path P = (p0, . . . , pm)
of length ∥P∥ ≤ (1+ε)∥ab∥, since G1 is a (1+ε)-spanner. We have shown that for every edge
pi−1pi of G1, the Steiner spanner G2 contains a pi−1pi-path of weight (1+O(ε))∥pi−1pi∥. The
concatenation of these paths yields an ab-path in G2, of weight

∑m
i=1(1 + O(ε))∥pi−1pi∥ =

(1 + O(ε))∥P ∥ = (1 + O(ε))(1 + ε)∥ab∥ = (1 + O(ε))∥ab∥.

Competitive Analysis. Denote by Eℓ the set of edges of G2 added at level ℓ = 1, . . . , 2 log n,
and let bℓ be the number of nonempty buckets at level ℓ. We have seen that for each
nonempty bucket at level ℓ, Eℓ contains a subgraph of weight O(ε−3/2diam(Sn)/2ℓ); hence
∥Eℓ∥ ≤ O(bℓ · ε−3/2diam(Sn)/2ℓ).

Let G∗ = (Sn, E∗) the a Euclidean Steiner (1 + ε)-spanner for Sn of minimum weight
OPT. Consider a nonempty bucket U associated with a line L and a rectangle R(U). Since U

is nonempty, there is an edge ab ∈ U in G1. Recall that ab ∈ R and ∠(dir(ab), dir(L)) ≤ ε1/2.
Since G∗ is a (1 + ε)-spanner, it contains an ab-path Pab of weight at most (1 + ε)∥ab∥.
As noted in Section 3.1, Pab lies in the ellipse Bab, and contains edges of weight at least
1
2 ∥ab∥ that make an angle at most ε1/2 with ab. All points in the ellipse Bab are at
distance less than ε1/2 from the the line segment ab. The segment ab lies in the 4ε−1 × ε1/2

rectangle R(U). Thus we have Pab ⊂ Bab ⊂ 2R(U), and so 2R(U) contains edges of G∗ of
weight 1

2 ∥ab∥ = Ω(ε−1diam(Sn)/2ℓ) whose directions are within 2ε1/2 from L; denote by
E∗(U) ⊂ E∗ the set of these edges. By construction, each edge e∗ of G∗ lies in E∗(U) for
only O(1) buckets. Indeed, there are O(1) lines L′ with ∠(dir(L), dir(L)) ≤ 2ε1/2), and for
each such direction L′, every point in R2 lies in O(1) rectangles 2R(U ′) aligned with L′. We
conclude that OPT = ∥G∗∥ = Ω(bℓ · ε−1diam(Sn)/2ℓ). This implies ∥Eℓ∥/OPT ≤ O(ε−1/2)
for ℓ = 1, . . . , 2 log n. Summation over all levels yields

ALG
OPT =

∑∞
ℓ=1 ∥Eℓ∥
OPT ≤

2 log n∑
ℓ=1

O(ε−1/2) + O(1) = O(ε−1/2 log n),

as claimed. ◀

Generalization to Rd. Our algorithm and its analysis generalize to Euclidean d-space.

▶ Theorem 6. For every ε > 0, an online algorithm can maintain, for a sequence of n ∈ N
points in Rd, a Euclidean Steiner (1 + ε)-spanner of weight O(ε(1−d)/2 log n) · OPT.

The proof is analogous to that of Theorem 5. The bottleneck of the competitive analysis
is the size of the unit grids G(U) which is Θ(ε−(d+1)/2) in Rd, and it is contrasted with a
path of weight Ω(ε−1) in OPT. Similarly to Section 3.1, we choose a homogeneous set D of
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Θ(ε(1−d)/2) directions. For each direction L ∈ D, we construct a tiling of Rd with congruent
hyper-rectangles aligned with L of dimensions ε−1 × ε−1/2 × . . . ε−1/2. Refer to the full paper
for all further details.

4 Lower Bound with Steiner Points

Recall that when Steiner points are allowed, the algorithm may subdivide existing edges
with Steiner points. It follows that the in one-dimension, an online algorithm can maintain a
Hamiltonian path on Sn, which is the minimum (1 + ε) spanner for all ε ≥ 0. This property
carries over to Euclidean Steiner 1-spanners (i.e., the case ε = 0), where we need to maintain
the complete straight-line graph on n points. However, we show that for ε > 0 in dimensions
d ≥ 2, the competitive ratio of an online algorithm with Steiner points must depend on n.

▶ Theorem 7. For every ε > 0, the competitive ratio of any online algorithm that maintains
a Euclidean Steiner (1 + ε)-spanner for a sequence of n points in Rd is Ω(f(n)) for some
function f(n) such that limn→∞ f(n) = ∞.

Proof. We describe and analyze an adversarial strategy for placing points in the plane in
stages. In stage 1, the adversary places two points at s = (0, 0) and t = (1, 0), both on the
x-axis. In subsequent stages, new points are arranged so that the optimum solution remains
an x-monotone path of length at most 1 + ε at all times.

Let us denote by Ai the points placed in stage i. At the end of stage i, adversary
constructs the point set Ai+1 based on the current (1 + ε)-spanner built by the algorithm
ALG, and then placed the points in Ai+1 in an arbitrary order. The objective is that in each
stage, ALG has to add new edges of total weight at least 1/2. Since OPT ≤ 1 + ε at all
times, and ALG ≥ 1

2 (i + 1) after i stages, the competitive ratio goes to infinity.
We describe stage 2 in more detail; subsequent stages are similar; see Fig. 7. At the

end of stage 1, our point set is A1 = {s = (0, 0), t = (1, 0)}, the optimal spanner is a single
edge of unit weight, and ALG has constructed a Euclidean Steiner (1 + ε)-spanner G1 for
A1. Let k1 = ⌈∥G1∥⌉. The adversary considers 2k1 + 1 circular arcs between s ad t, each of
weight at most 1 + ε

2 . The arcs define 2k1 interior-disjoint bounded regions. Let R1 be a
region that minimizes the weight ∥G1 ∩ R1∥, in particular, ∥G1 ∩ R1∥ ≤ 1

2k1
∥G1∥ ≤ 1

2 . In
the interior of R1, let γ1 be another circular arc between s and t, of weight ∥γ1∥ ≤ 1 + ε

2 ;
and let A2 = {t1, . . . , tN } be a set of points along γ1, labeled in x-monotone increasing order
with the following properties: (1) For every i = 1, . . . , N − 1, the ellipse Bi with foci ti and
ti+1, and great axis (1 + ε)∥titi+1∥ lies entirely in R1; and (2) the weight of the x-monotone
path (t1, t2, . . . , tN ) is at least 1.

s

R1 R1 R2

t s t s t

Figure 7 Left: For A1 = {s, t}, ALG constructs a (1+ε)-spanner G1 (red). Five circular arcs define
four regions; region R1 satisfies ∥G1 ∩ R1∥ ≤ 1

4 ∥G1∥. In stage 2, the adversary presents points A2 in
R1 Middle: The algorithm augments G1 to G2. Right: Region R2 satisfies ∥G2 ∩ R2∥ ≤ 1

2k2
∥G2∥.

In stage 2, the adversary presents the points in A2 in an arbitrary order. By the end
of stage 2, ALG augments G1 to a Euclidean Steiner (1 + ε)-spanner G2 for A1 ∪ A2. In
particular, for every i = 1, . . . , N − 1, the graph G2 contains a titi+1-path of length at most
(1 + ε)∥titi+1∥, which lies in the ellipse Ei, hence in the interior of the region R1. The part of
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the path between the vertical lines passing through ti and ti+1 has weight at least ∥titi+1∥.
Since these parts are disjoint, the total weight all N − 1 paths is lat least

∑N−1
i=1 ∥titi+1∥ ≥ 1.

Consequently, ∥G2 ∩ R1∥ ≥ 1. Since we had ∥G1 ∩ R1∥ ≤ 1
2 , ALG must have added new

edges of weight at least 1
2 in stage 2, as claimed.

In phase i + 1, in general, let ki = ⌈∥Gi∥⌉. Label the points in the current point set
S =

⋃i
j=1 Aj by s0, . . . , sn in x-monotone order, and assume that the x-monotone path

spanned by S has weight OPT = 1 + (1 − 1
2i )ε. For all segments sjsj+1, we consider 2ki + 1

x-monotone circular arcs such that the total weight of any concatenation of the circular arcs
from s = s0 to t = sn is at most 1 + (1 − 1

2i+1 )ε. For each segment sjsj+1, we choose one of
2ki regions that has a minimum-weight intersection with Gi, and let Ri be the union of these
regions. Note that ∥Gi ∩ Ri∥ ≤ 1

2ki
∥Gi∥ ≤ 1

2 . Let γi be an st-path γi that connects the
points s0, . . . , sn via circular arcs in the region Ri, and has weight at most 1 + (1 − 1

2i+1 )ε.
Now the adversary can choose a finite point set Ai+1 = {t1, . . . , tN } along γi with properties
(1)–(2) above. This completes the description of the adversarial strategy.

Similarly to stage 2, when ALG augments Gi to a Euclidean Steiner (1 + ε)-spanner Gi+1
for
⋃i+1

j=1 Aj , he must add new edges of weight at least 1
2 in the region Ri. It follows that the

competitive ratio for any online algorithm goes to infinity as n goes to infinity. ◀

5 Conclusions

We have studied online spanners for sequences of points in Rd, in fixed dimensions d ≥ 1, under
L2 and L1 norms. We established a tight bound of Θ(ε−1 log n/ log ε−1) for the competitive
ratio of any online (1 + ε)-spanner algorithms on a real line (Theorem 3). However it remains
an open problem to close the gap between the lower and upper bounds in Rd, for d ≥ 2.
Under the L2 norm, previously known algorithms achieve competitive ratio O(ε−(d+1) log n)
(Theorem 4). The best lower bound we are aware of holds for d = 1. It is unclear whether
the lower bound can be improved to ε−ω(d) log n for d ≥ 2.

Next, we have showed that, if an online algorithm is allowed to use Steiner points, it can
achieve a substantially better competitive ratio in terms of ε, namely O(ε(1−d)/2 log n), for a
sequence of n points in Rd and any constant d ≥ 2, under the L2 norm (Theorem 6). As
a counterpart, we proved that any online spanner algorithm for a sequence of n points in
Rd under L2 norm has competitive ratio Ω(f(n)), where limn→∞ f(n) = ∞ (Theorem 7). It
remains an open problem whether the competitive ratio depends on ε for Euclidean Steiner
spanners. Another open problem is whether the factor log n in the upper bounds can be
reduced, e.g., to log n/ log log n; similar to the work by Alon and Azar [2] who established
such a lower bound for Euclidean minimum Steiner trees (EMST) for n points in R2.

We have established a lower bound Ω(ε−d) for the competitive ratio under the L1-norm in
Rd. It is unclear whether it can be improved by a log n factor in dimensions d ≥ 2. Designing
online algorithms that match these bounds under the L1 norm is left for future research.

In online spanner algorithms, the decisions are irrevocable, which means that once an
edge is added to the spanner by an online algorithm, it can never be deleted. However, if
some of the decisions are reversible, better bounds may be possible. This model is commonly
known as online algorithms with recourse [33, 39, 45]. In 1-dimension, for instance, an
optimum spanner is just a monotone path connecting the points in linear order, and any
online algorithm that is allowed to remove at least one edge at per iteration can maintain
such a path. In higher dimensions, however, it is unclear whether a O(1)-approximation of
the minimum-weight (1 + ε)-spanner can be maintained with O(ε−d+1) recourse.
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The input to the distant representatives problem is a set of n objects in the plane and the goal is to
find a representative point from each object while maximizing the distance between the closest pair
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1 Introduction

The distant representatives problem was first introduced by Fiala et al. [17]. The name is
a play-on-words on the term “distinct representatives” from Philip Hall’s classic work on
bipartite matching [21]. The input is a set of geometric objects in a metric space. The goal
is to choose one “representative” point in each object such that the points are distant from
each other – more precisely, the objective is to maximize the distance between the closest
pair of representative points. In the decision version of the problem, we are given a bound δ

and the question is whether we can choose one representative point in each object such that
the distance between any two points is at least δ.

The distant representatives problem has applications to map labelling and data
visualization. To attach a label to each object, we can find representative points that
are at least distance δ apart, and label each object with a ball of diameter δ (a square in
L∞) centred at its representative point.

The distant representatives problem is closely related to dispersion and packing problems.
When all the objects are copies of a single object, the distant representatives problem becomes
the dispersion problem: to choose k points in a region R to maximize the minimum distance
between any two chosen points [3]. Equivalently, the problem is to pack k disjoint discs
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(in the chosen metric) of diameter δ into an expanded region and maximize δ. The distant
representatives problem is also related to problems of “imprecise points” where standard
computational geometry problems are solved when each input point is only known to lie
within some small region [28].

There is a polynomial time algorithm for the distant representatives problem when the
objects are segments on a line [32]. This result comes from the scheduling literature – each
representative point is regarded as the centre-point of a unit length job. However, as shown
by Fiala et al. [17], the decision version of distant representatives becomes NP-hard in 2D
when the objects are unit discs for the L2 norm or unit squares for the L∞ norm.

Cabello [5] was the first to consider the optimization version of the distant representatives
problem. He gave polynomial time approximation algorithms for the cases in 2D where the
objects are squares under the L∞ norm, or discs under the L2 norm. The squares/discs may
intersect and may have different sizes. His algorithms achieve an approximation factor of 2
in L∞ and 8

3 in L2, with an improvement to 2.24 if the input discs are disjoint. A main idea
in his solution is an “approximate-placement” algorithm that chooses representative points
from a fine-enough grid using a matching algorithm; small squares/discs that do not contain
grid points are handled separately. Cabello noted that the NP-hardness proof of Fiala et
al. [17] can be modified to prove that there is no polynomial time approximation scheme
(PTAS) for these problems unless P=NP. However, no one has given exact lower bounds on
the approximation factors that can be achieved in polynomial time.

Our Results

We consider the distant representatives problem for axis-parallel rectangles in the plane.
Rectangles are more versatile than squares or circles in many applications, e.g., for labelling
rectangular Euler or Venn diagrams [29].

We give polynomial time approximation algorithms to find representative points for the
rectangles such that the distance between any two representative points is at least 1/f times
the optimum. The approximation factors f are given in Table 1 for the L1, L2, and L∞
norms. Since rectangles are not fat objects [8], Cabello’s approach of discretizing the problem
by choosing representative points from a grid does not extend. Instead, we introduce a new
technique of “imprecise discretization” and choose representative points from 1-dimensional
shapes (e.g., +-shapes) arranged in a grid. After that, our plan is similar to Cabello’s. First
we solve an approximation version of the decision problem – to find representative points so
long as the given distance δ is not too large compared to the optimum δ∗. Then we perform
a search to find an approximation to δ∗. Unlike previous algorithms which use the real-RAM
model, we use the word-RAM model, and thus must address bit complexity issues.

We accompany these positive results with lower bounds on the approximation factors
that can be achieved in polynomial time (assuming P ̸= NP). The lower bounds are shown
in Table 1. They apply even in the special case of horizontal and vertical line segments in
the plane. The results are proved via gap-producing reductions from Monotone Rectilinear
Planar 3-SAT [10]. These are the first explicit lower bounds on approximation factors for
the distant representatives problem for any type of object.

Finally, we consider the even more special case of unit-length horizontal line segments,
and the decision version of distant representatives. This is even closer to the tractable case of
line segments on a line. However, Roeloffzen in his Master’s thesis [30] proved NP-hardness
for the L2 norm. We give a more careful proof that takes care of bit complexity issues, and
we show that the problem is NP-complete in the L1 and L∞ norms.
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Table 1 Bounds on polynomial time approximation factors for the distant representatives problem
for axis-aligned rectangles in the plane. A lower bound of x means that an approximation factor
less than x implies P = NP. (For other Lp norms, there are some constant factors, but we have not
optimized them.)

L1 L2 L∞

upper bound 5
√

34 ≈ 5.83 6
lower bound 1.5 1.4425 1.5

For our algorithms and our hardness results, we must deal with bit complexity issues. For
rectangles under the L1 and L∞ norms, we show that both the optimum value δ∗ and the
coordinates of an optimum solution have polynomially-bounded bit complexity. In particular,
the decision problems lie in NP. The L2 norm remains more of a mystery, and the decision
problem can only be placed in ∃R (for an explanation of this class, see [6]).

Background

In one dimension, the decision version of the distant representatives problem for intervals
on a line was solved by Barbara Simons [32], as a scheduling problem of placing disjoint
unit jobs in given intervals. To transform the decision version of distant representatives
to the scheduling problem, scale so δ = 1, then expand each interval by 1/2 on each side.
The midpoints of the unit jobs provide the desired solution. Simons’s decision algorithm
was speeded up to O(n log n) by Garey et al. [20]. The optimum δ∗ can be found using a
binary search – in fact there is a discrete set of O(n3) possible δ∗ values, which provides
an O(n3 log n) algorithm. (We see how to improve this to O(n2 log n) but we are not aware
of any published improvement.) There has been recent work on the online version of the
problem [9]. The (offline) problem is easier when the intervals are disjoint. More generally, the
problem is easier when the ordering of the representative points is specified, or is determined
– for example if no interval is contained in another then there is an optimum solution where
the ordering of the representative points is the same as the ordering of the interval’s left
endpoints. This “dispersion problem for ordered intervals” can be solved in linear time [26].
In a companion paper to this one, we improved this to a simpler algorithm using shortest
paths in a polygon that solves the harder problem of finding the lexicographic maximum list
of distances between successive pairs [4].

Cabello [5] gave polynomial time approximation algorithms for the distant representatives
problem for balls in the plane, specifically for squares in L∞ and for discs in L2, with
approximation factors of 2 and 8

3 = 2.66̇, respectively. For disjoint discs in L2 he improved the
approximation factor to 2.24. Dumitrescu and Jiang [14] further improved the approximation
factor for disjoint discs to 1.414 (= 1/.707) by adding LP-based techniques to Cabello’s
approach. They also considered the case of unit discs, where they gave an algorithm with
approximation factor 2.14 (= 1/.4674). For disjoint unit discs they gave a very simple
algorithm with approximation factor 1.96 (= 1/.511). In a follow-up paper Dumitrescu
and Jiang [15] gave bounds on the optimum δ∗ for balls and cubes in L2 depending on the
minimum area of the union of subsets of k objects – these results have the flavour of Hall’s
classic condition for the existence of a set of distinct representatives.

The geometric dispersion problem (when all objects are copies of one object) was studied by
Bauer and Fekete [3]. They considered the problem of placing k points in a rectilinear polygon
with holes to maximize the min L∞ distance between any two points or between a point
and the boundary of the region. Equivalently, the problem is to pack k as-large-as-possible
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17:4 Distant Representatives for Rectangles in the Plane

identical squares into the region. They gave a polynomial time 3/2-approximation algorithm,
and proved that 14/13 is a lower bound on the approximation factor achievable in polynomial
time. By contrast, if the goal is to pack as many squares of a given size into a region, the
famous shifting-grid strategy of Hochbaum and Maas [23] provides a PTAS. Bauer and Fekete
use this PTAS to design an approximate decision algorithm for their problem.

It is NP-hard to decide whether a square can be packed with given (different sized)
squares [25] or discs [11]. For algorithmic approaches, see the survey [22]. There is a vast
literature on the densest packing of equal discs/squares in a region (e.g. a large circle or
square) – see the book [33].

Many geometric packing problems suffer from issues of bit complexity. In particular, there
are many packing problems that are not known to lie in NP (e.g., packing discs in a square [11]).
This issue is addressed in a recent general approach to geometric approximation [16]. Another
direction is to prove that packing problems are complete for the larger class ∃R (existential
theory of the reals) [1].

The distant representatives problem is closely related to problems on imprecise points,
where each point is only known to lie within some ε-ball, and the worst-case or best-case
representative points, under various measures, are considered. Many geometric problems on
points (e.g., convex hulls, spanning trees) have been explored under the model of imprecise
points [7, 13,27,28].

As mentioned above, the distant representatives problem has application to labelling and
visualization, specifically it provides a new approach to the problem of labelling (overlapping)
rectangular regions or line segments. Most map labelling research is about labelling point
features with rectangular labels of a given size, and the objective is to label as many of the
points as possible [18]. There is a small body of literature on labelling line features [12,36],
and even less on labelling regions, except by assuming a finite pre-specified set of label
positions [34].

Definitions and Preliminaries

Suppose we are given a set R of n axis-aligned rectangles in 2D. In the distant representatives
problem, the goal is to choose a point p(R) ∈ R for each rectangle R in R so as to
maximize the minimum pairwise distance between points, i.e., we want to maximize
minR,R′∈R dℓ(p(R), p(R′)), where dℓ is the distance-function of our choice. We consider
here ℓ = 1, 2, ∞, i.e., the L1-distance, the Euclidean L2-distance and the L∞-distance. We
write δ∗

ℓ for the maximum such distance for ℓ ∈ {1, 2, ∞}, and omit “ℓ” when it is clear from
the context.

In the decision version of the distant representatives problem, we are given not only the
rectangles but also a value δ, and we ask whether there exists a set of representative points
that have pairwise distances at least δ.

2 Approximating the decision problem

In this section we give an algorithm that takes as input a set R of axis-aligned rectangles,
and a value δ and finds a set of representative points of distance at least δ apart so long as
δ is at most some fraction of the optimum, δ∗, for this instance. Let n = |R| and suppose
that the coordinates of the rectangle corners are even integers in the range [0, D] (which
guarantees that the rectangle centres also have integer coordinates).

The idea of the algorithm is to overlay a grid of blocker-shapes on top of the rectangles as
shown in Figure 1, while ensuring that any two blocker-shapes are distance at least δ apart.
The hope is to use a matching algorithm to match every rectangle to a unique intersecting
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blocker-shape. Then, if rectangle R is matched to blocker-shape B, we choose any point
in R ∩ B as the representative point for B, which guarantees distance at least δ between
representative points since the blocker-shapes are distance at least δ apart. The flaw in
this plan is that there may be small rectangles that do not intersect a blocker shape. To
remedy this, we represent a small rectangle by its centre point, and we eliminate any nearby
blocker-shapes before running the matching algorithm.

For the L1 and L∞ norms we assume that δ is given as a rational number with at most t

digits in the numerator and denominator. Because we are using the word-RAM model where
we cannot compute square roots, we will work with δ2 for the L2 norm. Thus, for the L2
norm, we assume that we are given δ2 as a rational number with at most t digits in the
numerator and denominator. The bit size of the input is Θ(n log D + t). Similarly, for L2,
any output representative point (x, y) will be given as (x2, y2). With these nuances of input
and output, we express the main result of this section as follows:

▶ Theorem 1. There exists an algorithm Placement(δ) that, given input ℓ ∈ {1, 2, ∞},
rectangles R, and δ > 0, either finds an assignment of representative points for R of
Lℓ-distance at least δ, or determines that δ > δ∗

ℓ /fℓ. Here f1 = 5, f2 =
√

34 ≈ 5.83, f∞ = 6.
The run-time of the algorithm is O(n2 log n) in the word RAM model, i.e., assuming we

can do basic arithmetic on numbers of size O(log D + t) in constant time.

To describe our algorithm, we think of overlaying the D×D bounding box of the rectangles
with a grid of horizontal and vertical lines such that the diagonal distance across a square of
the grid is δ. This means that grid lines are spaced γℓ apart, where γ1 = δ/2, γ2 = δ/

√
2,

and γ∞ = δ. For L2 we will work with γ2
2 = δ2/2 which is rational. Note that the algorithm

does not explicitly construct the grid. Number the grid lines from left to right and bottom
to top, and identify a grid point by its two indices. Note that the number of indices is D/γℓ,
so the size of each index is O(log D + t). We imagine filling the grid with blocker-shapes,
where the chosen shape depends on the norm Lℓ that is used – see Figure 1.

For ℓ = 1, 2, we use +-shapes. Each +-shape consists of the four incident grid-segments
of one anchor grid-point, where (i, j) is the anchor of a +-shape iff i is even and i ≡ j

mod 4.
For ℓ = ∞, we use L-shapes. Each L-shape consists of the two incident grid-segments
above and to the right of one anchor grid-point, where (i, j) is the anchor of an L-shape
iff i ≡ j mod 3.

Observe that, by our choice of grid size γℓ, any two blocker shapes are distance δ or more
apart in the relevant norm.

Algorithm Placement(δ)

We now give the rough outline of our algorithm to compute a representative point p(R)
for each rectangle R. The details of how to implement each step are given later on. Our
algorithm consists of the following steps:
1. Partition the input rectangles into small and big rectangles. Roughly speaking, a rectangle

is big if it intersects a blocker-shape, but we give a more precise definition below to deal
with intersections on the boundary of the rectangle.

2. For any small rectangle r, let p(r) be the centre of r, i.e., the point where the two
diagonals of r intersect each other.

3. If two points p(r), p(r′) of two small rectangles r, r′ have Lℓ-distance less than δ, then
declare that δ∗ < fℓδ, and halt.
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17:6 Distant Representatives for Rectangles in the Plane

Figure 1 Grids and blocker-shapes. We indicate in each a big and a small rectangle (shaded
blue) and some cavities (hatched pink). Small rectangles are contained in cavities. (Left) The grid
of +-shapes for the L1 and L2 norms, with two long cavities and two square cavities. (Right) The
grid of L-shapes for the L∞-norm with two long cavities.

4. Find all the blocker-shapes that are owned by small rectangles, where a blocker-shape B

is owned by a small rectangle r if p(r) has distance strictly less than δ to some point of B.
For L2 we will enlarge ownership as follows: B is owned by r if d1(p(r), B) <

√
2δ. To

justify that this enlarges ownership, note that d1(p, q) ≤
√

2d2(p, q) so d2(p(r), B) < δ

implies d1(p(r), B) <
√

2δ.
5. Define a bipartite graph H as follows. On one side, H has a vertex for each big rectangle,

and on the other side, it has a vertex for each blocker-shape that is not owned by a small
rectangle. Add an edge whenever the rectangle intersects the blocker-shape.

6. Construct a subgraph H− of H as follows. For any big rectangle, if it has degree more
than n in H, then arbitrarily delete incident edges until it has degree n. Also delete any
blocker-shape that has no incident edges.

7. Compute a maximum matching M in H−. We say that it covers all big rectangles if
every big rectangle has an incident matching-edge in M .

8. If M does not cover all big rectangles, then declare that δ∗ < fℓδ and halt.
9. For each big rectangle R let B be the blocker-shape that R is matched to, and let p(R)

be an arbitrary point in B ∩ R. (This exists since (B, R) was an edge.)
10. Return the set {p(R)} (for both big and small rectangles R) as an approximate set of

distant representatives.

We now define big rectangles more precisely. The intuition is that a rectangle is big if
it intersects a blocker shape even if δ is decreased by an infinitesimal amount. Note that,
as δ decreases, the blocker-shapes change position and size continuously. More formally, a
rectangle is big with respect to δ if there is some ε0 > 0 such that for all ε, 0 ≤ ε < ε0, there
is a point in the (closed) rectangle and in a blocker-shape (for the blocker-shapes at δ − ε).
The reason for this definition is so the set of big rectangles remains the same if δ is decreased
by an infinitesimal amount, a property that becomes relevant when we use the Placement
algorithm to approximately solve the optimization version of distant representatives.

For implementation details and the correctness proof, we need one more definition. A
cavity is a closed maximal axis-aligned rectangular region with no points of blocker shapes
in its interior. We distinguish a square cavity, which is a 2 × 2 block of grid squares (only
possible for +-shapes), and a long cavity which lies between two consecutive grid lines. For
+-shapes a long cavity is a 1 × 4 or 4 × 1 block of grid squares, and for L-shapes, a long
cavity is a 1 × 3 or 3 × 1 block of grid squares. Observe that any small rectangle is contained
in a cavity.
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Implementation and Runtime. In order to implement the algorithm efficiently we discuss:
How to test whether a rectangle is big/small.
How to find the blocker shapes owned by a small rectangle.
How to construct H−.
How to efficiently compute the matching.

We first show how to find which grid square contains a given point. Identify a grid square
by the indices of its lower left grid point. Given a point (x, y) in the plane (e.g., a corner of
an input rectangle) the vertical grid line just before x has index i where iγℓ ≤ x < (i + 1)γℓ

so i = ⌊x/γℓ⌋. For ℓ = 1, i = ⌊2x/δ⌋. For ℓ = ∞, i = ⌊x/δ⌋. For ℓ = 2, i is the largest
natural number such that i2 ≤ 2x2/δ2, i.e., i is the integer square root of ⌊2x2/δ2⌋. The
integer square root of a number with O(log D + t) bits can be found in time O(log D + t) on
a word RAM.

We apply the above procedure O(n) times to find the grid squares of all the rectangles’
corners and centres. Using the differences and parities of the indices of the grid squares
containing the corners, we can test if a rectangle contains points of blocker shapes in its
interior or on its boundary. From this, we can test if a rectangle is big or small in constant
time. (Note that our complicated rule is really just testing boundary conditions.)

Each small rectangle r owns a constant number of blocker shapes and these can be found
by testing a constant number of grid squares that are near p(r).

Next we show how to construct the bipartite graph H− and compute a maximum matching.
Note that blocker-shapes, which form one vertex set of H−, are specified using O(log D + t)
bits each, although we do not write that in our run-time bounds. To construct H− we first
build a dictionary for the O(n) blocker-shapes owned by small rectangles. Then for each big
rectangle R, enumerate blocker-shapes intersecting R in arbitrary order until we have found
n that are not owned by a small rectangle, or until we have found all of them, whichever
happens first. The run-time for this step is O(n2 log n) which will in fact be the bottleneck
in our runtime. The graph H− has O(n2) vertices and edges.

To find the maximum matching in H−, we can use the standard algorithm by Hopcroft
and Karp [24] which has run-time O(

√
ν|E|), where ν is the size of the maximum matching [31,

Theorem 16.5]. We have ν ≤ n and |E| = O(n2), so the run-time to find the matching is
O(n2.5). With appropriate further data structures the runtime of computing the matching can
be reduced to O(n

√
n log n); see the full version. Therefore the runtime becomes O(n2 log n).

Correctness

The algorithm outputs either a set of points or a declaration that δ∗
ℓ < fℓδ. We first show

that the algorithm is correct if it outputs a set of points.

▶ Lemma 2. If the algorithm returns a point-set, then the Lℓ-distance between any two
points chosen by the algorithm is at least δ.

Proof. For two small rectangles r, r′, this holds since we test dℓ(p(r), p(r′)) explicitly. For any
two big rectangles R, R′, the two assigned points p(R) and p(R′) lie on different blocker-shapes,
and hence have distance at least δ. For any big rectangle R and small rectangle r, point p(R)
lies on a blocker-shape that is not owned by r, so the blocker shape, and hence p(R), has
distance at least δ from p(r). ◀

If the algorithm does not output a set of points, then it outputs a declaration that δ is too
large compared to the optimum δ∗, viz., δ∗

ℓ < fℓδ. This declaration is made either in Step 3
because the points chosen for small rectangles are too close, or in Step 8 because no matching
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17:8 Distant Representatives for Rectangles in the Plane

is found. We must prove correctness in each case, Lemma 3 for Step 3, and Lemma 4 for Step
8. In the remainder of this section we let p∗(R), R ∈ R denote an optimum set of distant
representatives, i.e., p∗(R) is a point in R and every two such points have Lℓ-distance at
least δ∗

ℓ .

▶ Lemma 3. If two points p(r), p(r′) of two small rectangles r, r′ have distance less than δ,
then δ∗

ℓ < fℓδ.

Proof. We first show that for any small rectangle r, points p∗(r) and p(r) are close together,
specifically, dℓ(p∗(r), p(r)) ≤ 2.5γℓ. Because L1-distance dominates L2 and L∞-distances, it
suffices to prove that d1(p∗(r), p(r)) ≤ 2.5γℓ. Any small rectangle is contained in a cavity.
The L1 diameter of a cavity (i.e., the maximum distance between any two points in the
cavity) is at most 5γℓ – it is 5γℓ for a long cavity with +-shapes; 4γℓ for a square cavity with
+-shapes; and 4γℓ for a long cavity with L-shapes. This implies that any point of r is within
distance 2.5γℓ from p(r), the centre of rectangle r.

Now consider two small rectangles r and r′ with dℓ(p(r), p(r′)) < δ. We will bound the
distance between p∗(r) and p∗(r′) by applying the triangle inequality:

dℓ(p∗(r), p∗(r′)) ≤ dℓ(p∗(r), p(r)) + dℓ(p(r), p(r′)) + dℓ(p(r′), p∗(r′)) < 2.5γℓ + δ + 2.5γℓ = δ + 5γℓ.

Plugging in the values γ1 = δ/2, γ2 = δ/
√

2, and γ∞ = δ, we obtain bounds of 3.5δ,
(1 + 5/

√
2)δ ≈ 4.5δ, and 6δ, respectively. Since f1 = 5, f2 ≈ 5.8, and f∞ = 6, these bounds

are at most fℓδ in all three cases. Thus δ∗ < fℓδ, as required. ◀

▶ Lemma 4. If there is no matching M in H− that covers all big rectangles, then δ∗
ℓ < fℓδ.

Proof. We prove the contrapositive, using the following plan. Take an optimal set of distant
representatives, p∗(R), R ∈ R with Lℓ-distance δ∗

ℓ ≥ fℓδ. For any big rectangle R, we “round”
p∗(R) to a point b(R) that is in R and on a blocker-shape B(R). More precisely, we define
b(R) to be a point that is in R, on a blocker-shape, and closest (in Lℓ distance) to p∗(R). In
case of ties, choose b(R) so that the smallest rectangle containing p∗(R) and b(R) is minimal
(this is only relevant in L∞). Break further ties arbitrarily. Observe that b(R) exists, since a
big rectangle contains blocker-shape points. Define B(R) to be the blocker-shape containing
b(R).

By Lemma 5 (stated below) the pairs R, B(R) form a matching in H that covers all
big rectangles. We convert this to a matching in H− by repeatedly applying the following
exchange step. If big rectangle R is matched to a blocker shape B(R) that is not in H−, then
R has degree exactly n in H−. Not all its n neighbours can be used in the current matching
since there are at most n − 1 big rectangles other than R. So change the matching-edge at R

to go to one of the unmatched neighbours in H− instead. ◀

▶ Lemma 5. Let R be a big rectangle and let B = B(R). If δ∗ ≥ fℓδ then (1) no other big
rectangle R′ has B(R′) = B, and (2) no small rectangle owns B.

The general idea to prove this lemma is to show that either type of collision (B(R) = B(R′)
or B(R) owned by r) gives points p∗ that are “close together”, where close together means
in a ball of appropriate radius centred at the anchor of B(R).

Let Cℓ(B) be the open Lℓ-ball centred at the anchor of B and with diameter fℓδ. See
Figure 2 and note that the diameter of the ball in the appropriate metric is:

f1δ = 5δ = 10(δ/2) = 10γ1 f2δ =
√

34δ =
√

68(δ/
√

2) =
√

68γ2 f∞δ = 6δ = 6γ∞

We need a few claims localizing p∗(R) relative to b(R):
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a

b

X

Figure 2 A blocker shape B (heavy black) and Cℓ(B), the Lℓ-ball of diameter fℓδ centred at B’s
anchor (dashed green) which is a diamond for L1 (left), a circle for L2 (left), and a square for L∞

(right). The long cavities that touch B are shaded gray. If a small rectangle r owns B, then p(r) lies
in C′ (in cyan), and r is contained in the union of the gray and blue-hatched regions.

▷ Claim 6. For any big rectangle R, the points b(R) and p∗(R) lie in one long cavity.

Proof. Let T be the rectangle with corners p∗(R) and b(R). By definition of b(R), there are
no points of blocker-shapes in or on the boundary of T except b(R). Thus T is contained in
a cavity. Furthermore, if T is contained in a square cavity, then we claim that T does not
contain the central grid point of the square cavity in its interior (otherwise b(R) could not
be the unique point of a blocker shape in T , see Figure 1). Thus T is contained in a long
cavity. ◁

▷ Claim 7. Let B be a blocker shape. Let R be a big rectangle with B(R) = B. Then p∗(R)
is contained in the ball Cℓ(B).

Proof. By the previous lemma, p∗(R) lies in a long cavity that contains a point of B. From
Figure 2 we see that any long cavity that contains a point of B lies inside the closed ball
Cℓ(B). Furthermore, note that if p∗(R) lies on the boundary of the ball, then it lies on a
different blocker shape, contrary to B(R) = B. Thus p∗(R) is contained in Rℓ(B). ◁

▷ Claim 8. Let B be a blocker shape. Let r be a small rectangle that owns B. Then p∗(r)
is contained in the ball Cℓ(B).

Proof. Recall that p(r) is the centre of r, and that, by the definition of ownership, for
ℓ = 1, ∞ we have dℓ(p(r), B) < δ, and for ℓ = 2 we have d1(p(r), B) <

√
2δ. Such points p(r)

lie in the open region C ′ drawn in cyan in Figure 2. Here C ′ is the Minkowski sum of an
open ball with B where we use an L1-ball of radius δ for ℓ = 1, an L1-ball of radius

√
2δ for

ℓ = 2 and an L∞-ball of radius δ for ℓ = ∞.
We next show that r is contained in the ball Cℓ(B). For ℓ = ∞, r must lie in a long

cavity intersecting C ′, i.e. in the open shaded gray region, thus in C∞(B).
For ℓ = 1, 2, r is contained in a cavity that intersects C ′. The union of the cavities that

intersect C ′ consists of the grey and blue-hatched region plus the grid square X and its
symmetric counterparts. But observe that a small rectangle that contains points of X has a
centre outside C ′. Therefore r is contained in Cℓ(B). ◁

Proof of Lemma 5. Let R be a big rectangle and let B = B(R). By Claim 7, p∗(R) lies in
Cℓ(B). If there is another big rectangle R′ with B(R′) = B, then p∗(R′) also lies in Cℓ(B).
If there is a small rectangle r that owns B, then by Claim 8, p∗(r) lies in Cℓ(B).

In either case, the distance between p∗(R) and the other p∗ point is less than fℓδ, since
that is the diameter of Cℓ(B). Thus δ∗ < fℓδ. ◀
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3 Approximating the optimization problem

In this section we use Placement to design approximation algorithms for the optimization
version of the distant representatives problem for rectangles:

▶ Theorem 9. There is an fℓ-approximation algorithm for the distant representatives problem
on rectangles in the Lℓ-norm, ℓ = 1, 2, ∞ with run time O(n2(log n)2) for L∞ and run time
O(n2 polylog(nD)) for L1 and L2. Here (as before) f1 = 5, f2 =

√
34 ≈ 5.83, f∞ = 6.

One complicating factor is that Placement is not monotone, i.e., it may happen that
Placement fails for a value δ but succeeds for a larger value δ′. We note that Cabello’s
algorithm [5] behaves the same way. We deal with L∞ in Section 3.1 and with L1 and L2 in
Section 3.2.

We need some upper and lower bounds on δ∗. Note that if the input contains two
rectangles that are single identical points, then δ∗ = 0. Since this is easily detected, we
assume from now on that no two input rectangles are single identical points.

▷ Claim 10. We have 1/n ≤ δ∗ ≤ 2D.

Proof. The upper bound is obvious. For the lower bound, place a grid of points distance
1
n apart. All rectangles with non-zero dimensions will intersect at least n + 1 points, and
single-point rectangles will hit one point. Since no two single-point rectangles are identical,
they can be matched to the sole grid point that overlaps the rectangle. The remaining
rectangles can be matched trivially. ◁

Note that a solution with distance at least 1
n can be found easily, following the steps above.

3.1 Optimization problem for L∞

For the L∞ norm we use the following result about the possible optimum values; a proof is
in the full version.

▶ Lemma 11. In L∞, δ∗
∞ takes on one of the O(n3) values of the form (t − b)/k where

k ∈ {1, . . . , n} and t, b are rectangle coordinates.

Let ∆ be the set of O(n3) values from the lemma. We can compute the set ∆ in
O(n3) time and sort it in O(n3 log n) time. Say ∆ = {d1, d2, . . . , dN } in sorted order, and
set ci := di/f∞. Because of non-monotonicity, we cannot efficiently find the maximum
ci for which Placement succeeds. Instead, we use binary search to find i such that
Placement(ci) succeeds but Placement(ci+1) fails. Therefore δ∗

∞ < f∞ci+1 = di+1 which
implies that δ∗

∞ ≤ di = f∞ci and the representative points found by Placement(ci) provide
an f∞-approximation.

To initialize the binary search, we first run Placement(cN ), and, if it succeeds, return
its computed representative points since they provide an f∞-approximation of the optimum
assignment. Also note that Placement(c1) must succeed – if it fails then δ∗

∞ < f∞c1 = d1,
which contradicts δ∗

∞ ∈ ∆. Thus we begin with the interval [1, N ] and perform binary
search on within this interval to find a value i such that Placement(ci) succeeds but
Placement(ci+1) fails.

We can get away with sorting just the O(n2) numerators and performing an implicit
binary search, to avoid the cost of generating and sorting all of ∆. Let t be the sorted array
of O(n2) numerators, which takes O(n2 log n) time to generate and sort. The denominators
are just [n], so there is no need to generate and sort it explicitly. Define the implicit sorted
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matrix a, where a[r, c] = t[r]/(n − c), for 0 ≤ r ≤ |t| − 1, 0 ≤ c ≤ n − 1. Each entry of a

can be computed in O(1) time. Since the matrix is sorted, the matrix selection algorithm of
Frederickson and Johnson [19] can be used to get an element of ∆ at the requested index in
O(n log n) time. Using selection, one can perform the binary search on ∆ implicitly. While
accessing elements of ∆ takes more time, it is still less than the time to call Placement on
the element accessed. Each iteration of the binary search is dominated by the runtime of
Placement, so the total runtime is O(n2(log n)2). This proves Theorem 9 for L∞.

3.2 Optimization problem for L1 and L2

In this section we give an approximation algorithm for the optimization version of distant
representatives for rectangles in the L1 and L2 norms. Define a critical value to be a right
endpoint of an interval where Placement succeeds. See Figure 3.

We use the following results whose proofs can be found below.

▶ Lemma 12. Placement succeeds at critical values, i.e., the intervals where Placement
succeeds are closed at the right. Furthermore, a critical value provides an fℓ-approximation.
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Figure 3 An illustration of critical values.

Thus our problem reduces to finding a critical value.

▶ Lemma 13. The Placement algorithm can be modified to detect critical values.

▶ Lemma 14. In L1 any critical value δ is a rational number with numerator and denominator
at most 4Dn. In L2 for any critical value δ, δ2 is a rational number with numerator and
denominator at most 8D2n2.

Based on these lemmas, we use continued fractions to find a critical value. We need the
following properties of continued fractions.
1. A continued fraction has the form a0 + 1

a1+ 1
a2+··· 1

ak

, where the ai’s are natural numbers.

2. Every positive rational number a
b has a continued fraction representation. Furthermore,

the number of terms, k, is O(log(max{a, b})). This follows from the fact that computing
the continued fraction representation of a

b exactly parallels the Euclidean algorithm;
see [2, Theorem 4.5.2] or the wikipedia page on the Euclidean algorithm [35]. For the
same reason, each ai is bounded by max{a, b}.

3. Suppose we don’t know a
b explicitly, but we know some bound G such that a, b ≤ G,

and we have a test of whether a partial continued fraction is greater than, less than, or
equal to a

b . Then we can find the continued fraction representation of a
b as follows. For

i = 1 . . . log G, use binary search on [2..G] to find the best value for ai. Note that the
continued fraction with i terms is increasing in ai for even i and decreasing for odd i,
and we adjust the binary search correspondingly. In each step, we have a lower bound
and an upper bound on a

b and the step shrinks the interval. If the test runs in time T ,
then the time to find the continued fraction for a

b is O(T (log G)2), plus the cost of doing
arithmetic on continued fractions (with no T factor).
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Algorithm for L1, L2. Run the continued fraction algorithm using Placement (enhanced
to detect a critical value) as the test. The only difference from the above description is that
we do not have a specific target a

b ; rather, our interval contains at least one critical value and
we search until we find one. At any point we have two values bl and bu both represented as
continued fractions, where Placement succeeds at bl and fails at bu, so there is at least one
critical value between them. We can use the initial interval [1/n, 2D]. To justify this, note
that if Placement( 1

n ) fails , then fℓ/n > δ∗ by Theorem 1, so we get an fℓ-approximation
by using the representative points for δ = 1

n (see the remark after Claim 10).
For the runtime, we use the bound O(T (log G)2) from point 3 above, plugging in T =

O(n2 log n) for Placement and the bounds on G from Lemma 14, to obtain a runtime of
O(n2polylog(nD)), which proves Theorem 9 for L1 and L2.

The run-time for Theorem 9 can actually be improved to O(n2(log n)2) (i.e., without
the dependence on log D) with an approach that is very specific to the problem at hand
(and similar to Cabello’s approach). The details are complicated for such a relatively small
improvement and hence omitted here.

Missing proofs. For space reasons we can here only give the briefest sketch of the proofs
of Lemmas 12, 13, and 14; details are in the full version. A crucial ingredient is to study
what must have happened if Placement(δ) goes from success to failure (when viewing its
outcome as a function that changes over time δ).

▶ Observation 15. Assume Placement(δ) succeeds but Placement(δ′) fails for some
δ′ > δ. Then at least one of the following events occurs as we go from δ to δ′:
1. the set of small/big rectangles changes,
2. the distance between the centres of two small rectangles equals δ̂ for some δ ≤ δ̂ < δ′,
3. the set of blocker-shapes owned by a small rectangle increases,
4. the set of blocker-shapes intersecting a big rectangle decreases.

Roughly speaking, Lemma 12 can now be shown by arguing that such events do not
happen in a sufficiently small time-interval before Placement fails (hence the intervals
where it fails are open on the left). Lemma 14 holds because there necessarily must have
been an event at time δ, and we can analyze the coordinates when events happen. Finally
Lemma 13 is achieved by running Placement at time δ and also symbolically at time δ + ε.

4 Hardness results

In this section we outline NP-hardness and APX-hardness results for the distant
representatives problem. For complete details see the full version of the paper. We first show
that, even for the special case of unit horizontal segments, the decision version of the problem
is NP-complete for L1 and L∞ and NP-hard for L2 (where bit complexity issues prevent
us from placing the problem in NP). This L2 result was proved previously by Roeloffzen in
his Master’s thesis [30, Section 2.3] but we add details regarding bit complexity that were
missing from his proof.

Next, we enhance our reductions to “gap-producing reductions” to obtain lower bounds
on the approximation factors that can be achieved in polynomial time. Since our goal is to
compare with our approximation algorithms for rectangles, we consider the more general
case of horizontal and vertical segments in the plane (not just unit horizontals). Our main
result is that, assuming P ̸= NP, no polynomial time approximation algorithm achieves a
factor better than 1.5 in L1 and L∞ and 1.4425 in L2.
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Our reductions are from the NP-complete problem Monotone Rectilinear Planar 3-SAT [10]
in which each clause has either three positive literals or three negative literals, each variable
is represented by a thin vertical rectangle at x-coordinate 0, each positive [negative] clause
is represented by a thin vertical rectangle at a positive [negative, resp.] x-coordinate, and
there is a horizontal line segment joining any variable to any clause that contains it. See
Figure 4(a) for an example instance of the problem. For n variables and m clauses, the
representation can be on an O(m) × O(n + m) grid.

4.1 NP-hardness
▶ Theorem 16. The decision version of the distant representatives problem for unit horizontal
segments in the L1, L2 or L∞ norm is NP-hard.

Lemma 11 implies that the decision problem lies in NP for the L∞ norm, even for
rectangles. In the full version we show the same for L1, and we discuss the bit complexity
issues that prevent us from placing the decision problem in NP for the L2 norm.

For our reduction from Monotone Rectilinear Planar 3-SAT we first modify the
representation so that each clause rectangle has fixed height and is connected to its three
literals via three “wires” – the middle one remains horizontal, the bottom one bends to
enter the clause rectangle from the bottom, and the top one bends twice to enter the clause
rectangle from the far side. See Figure 4(b). Each wire is directed from the variable to the
clause, and represents a literal. The representation is still on an O(m) × O(n + m) grid.

To complete the reduction to the distant representatives problem we replace the rectangles
with variable and clause gadgets constructed from unit horizontal intervals, and also implement
the wires using such intervals. The details, which can be found in the full version of the
paper, depend on the norm Lℓ, ℓ = 1, 2, ∞. We also set a value of δℓ to obtain a decision
problem that asks if there is an assignment of a representative point to each interval that is
valid, i.e., such that no two points are closer than δℓ. We set δ1 = 2, δ2 = 13

5 , and δ∞ = 1
2 .

An example of the construction for L1 (with δ1 = 2) is shown in Figure 4(c).
For the L2 norm, the bit complexity issue missed in Roeloffzen’s reduction [30, Section

2.3] is that the interval endpoints and their distances must have polynomially-bounded bit
complexity. We resolve this by using Pythagorean triples (see Figure 5(a)).

4.2 APX-hardness
In this section, we prove hardness-of-approximation results for the distant representatives
problem on horizontal and vertical segments in the plane. Specifically, we prove lower bounds
on the approximation factors that can be achieved in polynomial time, assuming P ̸= NP.

▶ Theorem 17. For ℓ = 1, 2, ∞, let gℓ be the constant shown in Table 2. Suppose P ̸= NP .
Then, for the Lℓ norm, there is no polynomial time algorithm with approximation factor less
than gℓ for the distant representatives problem for horizontal and vertical segments.

Table 2 Best approximation ratios that can be achieved unless P=NP.

L1 L2 L∞

lower bound g1 = 1.5 g2 = 1.4425 g∞ = 1.5
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Figure 4 (a) An instance of Monotone Rectilinear Planar 3-SAT. (b) The modified representation
used for our NP-hardness proofs, with wires from variable to clause gadgets. (c) A detail of our
NP-hardness construction for clause C1 = x1 ∨ x2 ∨ x3 in the L1 norm showing how the truth-value
setting x1 = False, x2 = True, x3 = False, permits representative points (shown as red dots) at
distance at least δ1 = 2.

We prove Theorem 17 using a gap reduction. This standard approach is based on the fact
that if there were polynomial time approximation algorithms with approximation factors
better than gℓ then the gap versions of the problem (as stated below) would be solvable in
polynomial time. Thus, proving that the gap versions are NP-hard implies that there are no
polynomial time gℓ-approximation algorithms unless P=NP.

Recall that δ∗
ℓ is the max over all assignments of representative points, of the min distance

between two points.

Gap Distant Representatives Problem.
Input: A set I of horizontal and vertical segments in the plane.
Output:

YES if δ∗
ℓ (I) ≥ 1;

NO if δ∗
ℓ (I) ≤ 1/gℓ;

and it does not matter what the output is for other inputs.

To prove Theorem 17 it therefore suffices to prove:

▶ Theorem 18. The Gap Distant Representatives problem is NP-hard.

This is proved via a reduction from Monotone Rectilinear Planar 3-SAT, much like in
the previous section. The gadgets are simpler because we can use vertical segments, but we
must prove stronger properties. Given an instance Φ of Monotone Rectilinear Planar 3-SAT
we construct in polynomial time a set of horizontal and vertical segments I such that:

▷ Claim 19. If Φ is satisfiable then δ∗
ℓ (I) = 1.

▷ Claim 20. If Φ is not satisfiable then δ∗
ℓ (I) ≤ 1/gℓ.

Thus a polynomial time algorithm for the Gap Distant Representatives problem yields
a polynomial time algorithm for Monotone Rectilinear Planar 3-SAT. We give some of the
reduction details, but defer the proofs of the claims to the full version.
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Reduction details

We reduce directly from Monotone Rectilinear Planar 3-SAT.

(a) (b) (c)

12

13513

xi

x1

x2

x3

C1

false

true

false

xi

Figure 5 (a) A variable gadget for NP-hardness for L2, based on Pythagorean triple 5, 12, 13.
To achieve δ = 13 the representative point for the variable interval (in cyan) is forced to the left
(true) or the right (false) in which case intervals on the right are also forced. (b) A clause gadget for
the APX-hardness reduction, with three horizontal wires attached. For clarity, segments are not
drawn all the way to their endpoints. Wires x1 and x2 are in the false setting and wire x2 is in
the true setting, which allows the representative point for C1 to be placed where the x2 wire meets
it, while keeping representative points at least distance 1 apart. (c) The basic splitter gadget for
APX-hardness for L∞ placed on the half grid and showing two wires extending left and two right.
The variable segment (in thick cyan) for the variable xi has its representative point (the large red
dot) at the right, which is the false setting. The representative points shown by large red/yellow
dots are distance at least 1 apart in L∞.

Wire. A wire is a long horizontal segment with 0-length segments at unit distances along it,
except at its left and right endpoints. See Figure 5(b). The representative point for a 0-length
segment must be the single point in the segment (shown as small red dots in the figure). As
before, a wire is directed from the variable gadget to the clause gadget. We distinguish a
“false setting” where the wire has its representative point within distance 1 of its forward end
(at the clause gadget) and a “true setting” where the wire has its representative point within
distance 1 of its tail end (at the variable gadget).

Clause gadget. A clause gadget is a vertical segment. Three wires corresponding to the
three literals in the clause meet the vertical segment as shown in Figure 5(b). There are
0-length segments at unit distances along the clause interval except where the three wires
meet it.

Variable gadget. A variable segment has length 3, with two 0-length segments placed 1
and 2 units from the endpoints. A representative point in the right half corresponds to a
false value for the variable, and a representative point in the left half corresponds to a true
value. In order to transmit the variable’s value to all the connecting horizontal wires we
build a “splitter” gadget. The basic splitter gadget for L∞ is shown in Figure 5(c). The
same splitter gadget works for the other norms but we can improve the lower bounds using
modified splitter gadgets as described in the full version.
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5 Conclusions

We gave good approximation algorithms for the distant representatives problem for rectangles
in the plane using a new technique of “imprecise discretization” where we limit the choice of
representative points not to a discrete set but to a set of one-dimensional “shapes”. This
technique may be more widely applicable, and can easily be tailored, for example by using a
weighted matching algorithm to prefer representative points near the centres of rectangles.

We also gave the first explicit lower bounds on approximation factors that can be achieved
in polynomial time for distant representatives problems.

Besides the obvious questions of improving the approximation factors, the run-times, or
the lower bounds, we mention several other avenues for further research.

1. Is the distant representatives problem for rectangles in L2 hard for existential theory of
the reals? Recently, some packing problems have been proved ∃R-complete [1], but they
seem substantially harder.

2. Is there a good [approximation] algorithm for any version of distant representatives for a
lexicographic objective function. For example, suppose we wish to maximize the smallest
distance between points, and, subject to that, maximize the second smallest distance, and
so on. Or suppose we ask to lexicographically maximize the sorted vector consisting of
the n distances from each chosen point to its nearest neighbour. For the case of ordered
line segments in 1D there is a linear time algorithm to lexicographically minimize the
sorted vector of distances between successive pairs of points [4]. It is an open problem to
extend this to unordered line segments.

3. What about weighted versions of distant representatives? Here each rectangle R has a
weight w(R), and rather than packing disjoint balls of radius δ we pack disjoint balls of
radius w(R)δ centred at a representative point p(R) in R. Again, there is a solution for
ordered line segments in 1D [4].
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Abstract
Given a graph with a distinguished source vertex s, the Single Source Replacement Paths (SSRP)
problem is to compute and output, for any target vertex t and edge e, the length d(s, t, e) of a
shortest path from s to t that avoids a failing edge e. A Single-Source Distance Sensitivity Oracle
(Single-Source DSO) is a compact data structure that answers queries of the form (t, e) by returning
the distance d(s, t, e). We show how to deterministically compress the output of the SSRP problem
on n-vertex, m-edge graphs with integer edge weights in the range [1, M ] into a Single-Source DSO
that has size O(M1/2n3/2) and query time Õ(1). We prove that the space requirement is optimal
(up to the word size). Our techniques can also handle vertex failures within the same bounds.

Chechik and Cohen [SODA 2019] presented a combinatorial, randomized Õ(m
√

n + n2) time
SSRP algorithm for undirected and unweighted graphs. We derandomize their algorithm with the
same asymptotic running time and apply our compression to obtain a deterministic Single-Source
DSO with Õ(m

√
n +n2) preprocessing time, O(n3/2) space, and Õ(1) query time. Our combinatorial

Single-Source DSO has near-optimal space, preprocessing and query time for unweighted graphs,
improving the preprocessing time by a

√
n -factor compared to previous results with o(n2) space.

Grandoni and Vassilevska Williams [FOCS 2012, TALG 2020] gave an algebraic, randomized
Õ(Mnω) time SSRP algorithm for (undirected and directed) graphs with integer edge weights in
the range [1, M ], where ω < 2.373 is the matrix multiplication exponent. We derandomize it for
undirected graphs and apply our compression to obtain an algebraic Single-Source DSO with Õ(Mnω)
preprocessing time, O(M1/2 n3/2) space, and Õ(1) query time. This improves the preprocessing time
of algebraic Single-Source DSOs by polynomial factors compared to previous o(n2)-space oracles.

We also present further improvements of our Single-Source DSOs. We show that the query time
can be reduced to a constant at the cost of increasing the size of the oracle to O(M1/3 n5/3) and
that all our oracles can be made path-reporting. On sparse graphs with m = O

(
n5/4−ε

M7/4

)
edges, for

any constant ε > 0, we reduce the preprocessing to randomized Õ(M7/8 m1/2 n11/8) = O(n2−ε/2)
time. To the best of our knowledge, this is the first truly subquadratic time algorithm for building
Single-Source DSOs on sparse graphs.
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1 Introduction

One of the basic problems in computer science is the computation of shortest paths and
distances in graphs that are subject to a small number of transient failures. We study two
central problems of this research area on undirected graphs G with n vertices and m edges,
namely, the Single-Source Replacement Paths (SSRP) problem and Single-Source Distance
Sensitivity Oracles (Single-Source DSOs).

The SSRP Problem. In the SSRP problem, we are given a graph G with a fixed source
vertex s and are asked to compute, for every vertex t and edge e, the replacement distance
d(s, t, e), which is the length of the shortest s-t-path in the graph G − e, obtained by dropping
the edge e. By first computing any shortest path tree for G rooted at s, one can see that
there are only O(n2) relevant distances d(s, t, e), namely, those for which e is in the tree.

Chechik and Cohen [10] presented an Õ(m
√

n +n2) time1 combinatorial2 SSRP algorithm
for unweighted graphs. They also showed that the running time cannot be improved by
polynomial factors, assuming that any combinatorial algorithm for Boolean Matrix Multipli-
cation (BMM) on n × n matrices containing m 1’s requires mn1−o(1) time. Gupta et al. [21]
simplified the SSRP algorithm and generalized it to multiple sources. For a set of σ sources,
they presented a combinatorial algorithm that takes Õ(m

√
nσ + σn2) time. Grandoni and

Vassilevska Williams [17, 18] gave an algorithm for both directed and undirected graphs with
integer edge weights in the range [1, M ] that uses fast matrix multiplications and runs in
Õ(Mnω) time, where ω < 2.37286 is the matrix multiplication exponent [2, 25, 35]. We are
only concerned with positive integer weights, but it is worth noting that SSRP with weights
in [−M, M ] is strictly harder, modulo a breakthrough in Min-Plus Product computation,
with a current best running time of O(M0.8043 n2.4957) as shown by Gu et al. [20].

All the SSRP algorithms above are randomized, it is an interesting open problem whether
they can be derandomized in the same asymptotic running time.

Single-Source DSOs. A Distance Sensitivity Oracle (DSO) is a data structure that answers
queries (u, v, e), for vertices u, v and edge e, by returning the replacement distance d(u, v, e),
A Single-Source DSO, with fixed source s, answers queries (t, e) with d(s, t, e).

Of course, any SSRP algorithm gives a Single-Source DSO by just tabulating the whole
output in O(n2) space, the replacement distances can then be queried in constant time.
However, the space usage is far from optimal. Parter and Peleg [29] developed a deterministic
algorithm that computes an O(n3/2) size subgraph of G containing a breadth-first-search
tree of G − e for every failing edge e. The subgraph can also be thought of as a Single-Source
DSO with O(n3/2) space and query time. Bilò et al. [7] presented a Single-Source DSO of
the same size with Õ(

√
n ) query time and Õ(mn) preprocessing time. Gupta and Singh [22]

later designed a randomized Single-Source DSO of Õ(n3/2) size, Õ(mn) preprocessing time,3
but with a better Õ(1) query time. The results in the latter two works generalize to the case
of σ sources in such a way that the time and size scale by o(σ) factors.

For the case of σ = n sources, that is, general (all-pairs) DSOs, Bernstein and Karger [5, 6]
designed an oracle taking Õ(n2) space with constant query time, even for directed graphs with
real edge weights. The space was subsequently improved to O(n2) by Duan and Zhang [16],

1 For a non-negative function f = f(n), we use Õ(f) to denote O(f · polylog(n)).
2 The term “combinatorial algorithm” is not well-defined, and is often interpreted as not using any

matrix multiplication. Arguably, combinatorial algorithms can be considered efficient in practice as the
constants hidden in the matrix multiplication bounds are rather high.

3 The authors of [22] do not report the preprocessing time, but it can be reconstructed as Õ(mn).
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which is optimal [34]. The combinatorial Õ(mn) time preprocessing for building the DSOs is
conditionally near-optimal as it matches the best known bound (up to polylogarithmic factors)
for the simpler problem of finding the All-Pairs Shortest Paths (APSP). The conditional lower
bound in [10], stating that there exists no combinatorial algorithm solving the undirected
SSRP problem with real edge weights in O(mn1−ε) time for any positive ε > 0, unless there
is a combinatorial algorithm for the APSP problem in O(mn1−ε) time, also implies that
there exists no Single-Source DSO with Õ(1) query time and O(mn1−ε) preprocessing time
for real edge weights. Therefore, the DSOs in [6, 16], are also conditionally near-optimal for
the single source case with real edge weights.

Several algebraic all-pairs DSOs with subcubic preprocessing time have been developed in
the last decade for graphs with integer edge weights in [1, M ] [9, 11, 17, 30, 37]. Very recently,
Gu and Ren [19] presented a randomized DSO achieving a O(Mn2.5794) preprocessing
time with O(1) query time, improving upon the one by Ren [30, 31] with an Õ(Mn2.6865)
preprocessing time. Those DSOs can also be used in the single-source case, but the requirement
to store the information for all pairs forces them to take Ω(n2) space [34]. The algebraic
SSRP algorithm in [18], seen as a data structure, has a better preprocessing time than any
known (general) DSO but also takes O(n2) space, which we have seen to be wasteful.

We are not aware of an algebraic Single-Source DSO that simultaneously achieves o(n2)
space and has a better preprocessing time than their all-pairs counterparts. It is interesting
whether we can construct space-efficient oracles faster when focusing on a single source.

Additional results on replacement paths and DSOs (for single or multiple failures and
directed graphs) can be found in [3, 9, 12, 13, 14, 15, 18, 23, 24, 26, 27, 28, 32, 36]. The
most efficient Single-Source DSOs in their respective settings are shown in Table 1 below.

1.1 Our Contribution
We research SSRP algorithms, Single-Source DSO data structures, and the connection
between the two. Our first contribution is presented in Section 5. We derandomize the
near-optimal combinatorial SSRP algorithm of Chechik and Cohen [10] for undirected,
unweighted graphs and the algebraic algorithm of Grandoni and Vassilevska Williams [17, 18]
for undirected graphs with integer weights in the range [1, M ]. (The second algorithm can be
found in the full version.) Both deterministic algorithms have the same asymptotic runtime
as their randomized counterparts.

▶ Theorem 1. There is a deterministic, combinatorial SSRP algorithm for undirected,
unweighted graphs running in time Õ(m

√
n + n2) and a deterministic, algebraic SSRP

algorithm for undirected graphs with integer weights in the range [1, M ] running in Õ(Mnω).

We present in Section 3 a deterministic reduction from the problem of building a Single-
Source DSO to SSRP on undirected graphs with small integer edge weights.

▶ Theorem 2. Let G be an undirected graph with integer edge weights in the range [1, M ] and
let s be the source vertex. Suppose we are given access to a shortest path tree Ts of G rooted
in s and all values d(s, t, e) for vertices t of G and edges e in Ts. There is a deterministic,
combinatorial algorithm that in time O(n2) builds a Single-Source DSO of size O(M1/2 n3/2)
with Õ(1) query time. The same statement holds for vertex failures if instead we are given
access to the values d(s, t, v) for all vertices t and v of G

The algorithm does not require access to the graph G itself. As there can be up to O(n2)
relevant distances d(s, t, e), the running time is linear in the input. If the algorithm addition-
ally has access to G and is given O(m

√
Mn + n2) time, the Single-Source DSO also reports

the replacement paths P (s, t, e) in time Õ(1) per edge. The query time of the oracle can be
improved to O(1) at the cost of increasing the size of the oracle to O(M1/3 n5/3).

ESA 2021
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Plugging the deterministic SSRP algorithms of Theorem 1 into our reduction of Theorem 2,
gives the following Single-Source DSOs as corollaries.

▶ Theorem 3. There is a deterministic, combinatorial Single-Source DSO for undirected,
unweighted graphs taking O(n3/2) space, with Õ(m

√
n + n2) preprocessing time, and Õ(1)

query time. There is a deterministic, algebraic Single-Source DSO for undirected graphs with
integer weights in the range [1, M ] taking O(M1/2 n3/2) space, with Õ(Mnω) preprocessing
time, and Õ(1) query time.

When comparing the results with other Single-Source DSO with o(n2) space, the prepro-
cessing time of our combinatorial solution is better by a factor of

√
n compared to previous

oracles [7, 22]. The preprocessing time of the algebraic part of Theorem 3 improves (ignoring
polylogarithmic factors) by a factor of n2.5794−ω > n0.2 over the current best algebraic (all-
pairs) DSO [19]. See Table 1 for more details. In fact, we combine the efficient preprocessing
of SSRP algorithms (seen as DSOs) with a compression scheme that achieves nearly-optimal
space. To the best of our knowledge, Theorem 3 presents the first algebraic Single-Source
DSO with o(n2) space that achieves a better performance than any all-pairs DSO. It is also
the first space-efficient Single-Source DSO for graphs with small integer weights.

We further study lower bounds for Single-Source DSOs. Note that given an oracle whose
preprocessing time is P and query time is Q, one can solve the SSRP problem in time
P + n2 · Q by building the DSO and running the queries (t, e) for every t ∈ V, e ∈ E(Ts).
Therefore, if n2 · Q = O(P ), the mn1/2−o(1) + Ω(n2) conditional4 time-lower bound for the
SSRP problem [10], obtained by a reduction from BMM, implies the same lower bound for
P . The preprocessing of our combinatorial oracle in Theorem 3 is thus nearly optimal. We
further investigate how much a Single-Source DSO can be compressed. In contrast to [10],
we obtain an unconditional space-lower bound using an argument from information theory.

▶ Theorem 4. Any Single-Source DSO must take Ω(min{M1/2 n3/2, n2}) bits of space on at
least one O(n)-vertex graph with integer edge weights in the range [1, M ].

A small gap remains between Theorems 2 and 4 as the space is bounded at Ω(M1/2 n3/2)
bits, while the oracle takes this many machine words. Nevertheless, it shows that on dense
graphs our Single-Source DSOs in Theorem 3 have near-optimal space.

The Single-Source DSOs presented above all have Ω(n2) preprocessing time, which cannot
be avoided for graphs with m = Ω(n3/2), assuming the BMM conjecture. SSRP algorithms
require Ω(n2) time simply to output the solution. It is not clear whether this lower bound
also applies to Single-Source DSO on sparse graphs. We partially answer this question
negatively by developing a truly subquadratic, randomized Single-Source DSO in Section 6.
We use new algorithmic techniques and structural properties of independent interest.

▶ Theorem 5. There is a randomized Single-Source DSO taking O(M1/2 n3/2) space that has
Õ(1) query time w.h.p.5 The oracle also reports a replacement path in Õ(1) time per edge
w.h.p. On graphs with m = O(M3/4 n7/4) edges, the preprocessing time is Õ(M7/8 m1/2 n11/8).
If the graph is sparse, meaning m = O(n5/4−ε/M7/4) for any ε > 0, this is Õ(n2−ε/2).

1.2 Comparison with Previous Work
Table 1 shows a comparison of the most efficient Distance Sensitivity Oracles in their respective
setting, as well as the results presented in this work. We distinguish four dimensions of
different problem types.

4 The Ω(n2) term is unconditional and stems from the size of the output, see [10].
5 An event occurs with high probability (w.h.p.) if it has probability at least 1 − n−c for some c > 0.
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Table 1 Comparison of results. †The preprocessing time is for graphs with m = O(M3/4n7/4).

Preprocessing time Space Query time Setting Reference

Õ(mn) O(n2) O(1) D C W Ap [6, 16]
Õ(Mn2.5794) Õ(n2) O(1) R A I Ap [19]

Õ(mn1/2 + n2) O(n2) O(1) R C U Ss [10]
Õ(Mnω) O(n2) O(1) R A I Ss [18]
Õ(mn) Õ(n3/2) Õ(n1/2) D C U Ss [7]
Õ(mn) Õ(n3/2) Õ(1) R C U Ss [22]

Õ(mn1/2 + n2) O(n5/3) O(1) D C U Ss Lemma 10
Õ(mn1/2 + n2) O(n3/2) Õ(1) D C U Ss Theorem 3
Õ(Mnω) O(M1/3 n5/3) O(1) D A I Ss Lemma 10
Õ(Mnω) O(M1/2 n3/2) Õ(1) D A I Ss Theorem 3
Õ(M7/8 m1/2 n11/8)† O(M1/2n3/2) Õ(1) R C I Ss Theorem 5

1. Randomized (R) vs. deterministic (D),
2. Combinatorial (C) vs. algebraic (A),
3. Unweighted (U) vs. real weights (W) vs. integer weights in [1, M ] (I),
4. All-Pairs (Ap) vs. single-source (Ss).

Our deterministic, combinatorial Single-Source DSO from Theorem 3 has near-optimal space,
preprocessing and query time for dense graphs. It improves the preprocessing time of the
randomized DSOs by Bernstein and Karger [6], Bilò et al. [7], and Gupta and Singh [22] by a
factor of O(

√
n ). When viewing the randomized SSRP algorithm of Chechik and Cohen as

an oracle, our solution has the same preprocessing time but reduces the space requirement,
by an near-optimal factor of O(n1/3) while increasing the query time to only Õ(1).

Our algebraic combinatorial Single-Source DSO from Theorem 3 has near-optimal space
and query time for dense graphs, its preprocessing time improves over the randomized,
algebraic DSOs of Chechick and Cohen [11], Ren [30, 31], as well as Gu and Ren [19] by
a factor of Õ(n2.5794−ω). It has the same preprocessing time as the SSRP algorithm by
Grandoni and Vassilevska Williams [18], but compresses the output to O(M1/2 n3/2) space.

Our Single-Source DSO from Lemma 10 even achieves constant query time at the expense
of larger O(n5/3) (respectively, O(M1/3 n5/3)) space. All of our oracles can handle vertex
failures and are path-reporting, the query time then corresponds to the time needed per edge
of the replacement path. In Theorem 5, we also obtain Single-Source DSO with subquadratic
preprocessing time for sparse graphs.

1.3 Techniques
Multi-stage derandomization. To derandomize the SSRP algorithms, we extend the tech-
niques by Alon, Chechik, and Cohen [3] to identify a small set of critical paths we need to
hit. In [3], a single set of paths was sufficient, we extend this to a hierarchical multi-stage
framework. The set of paths in each stage depends on the hitting set found in the previous
ones. For example, a replacement path from s to t avoiding the edge e decomposes into two
shortest paths P (s, q) and P (q, t) in the original graph for some unknown vertex q, see [1].
It is straightforward to hit all of the components P (s, q). We then use this hitting set in a
more involved way to find sets of vertices that also intersect all of the subpaths P (q, t).

ESA 2021
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Versatile compression. The key observation of our reduction to SSRP is that any shortest
s-t-path can be partitioned into O(

√
Mn ) segments such that all edges in a segment have

the same replacement distance. Gupta and Singh [22] proved this for unweighted graphs.
However, it is not obvious how to generalize their approach to the weighted case. We give
a simpler proof in the presence of small integer weights, which immediately transfers also
to vertex failures. We further show how to extend this to multiple targets and even reuse
it to obtain the subquadratic algorithm on sparse graphs. In [22], a randomized oracle
was presented that internally uses the rather complicated data structures of Demetrescu et
al. [14]. We instead give a deterministic construction implementable with only a few arrays.
Unfortunately, the compression scheme crucially depends on the graph being undirected.

Advanced search for replacement paths. The randomized algorithm building the DSO in
subquadratic time for sparse graphs needs to find the O(

√
Mn ) segments partitioning the

s-t-path. Naively, this takes O(n) time per target vertex t as we need to explore the whole
path for potential segment endpoints and do not know the corresponding replacement paths
in advance. We use standard random sampling to hit all such replacements paths with only a
few vertices and exploit the path’s monotonicity properties to develop more advanced search
techniques. This reduces the time needed per target to O(n1−ε), after some preprocessing.
The analysis uses the fact that entire subpaths can be discarded without exploration.

Open problems. Our compression scheme and the randomized, subquadratic Single-Source
DSO on sparse graphs can also handle vertex failures rather than only edge failures. It
remains an open question whether one can obtain efficient deterministic SSRP algorithms
in the vertex-failure scenario. If an analog of Theorem 1 held for vertex failures, then
Theorem 2 would directly transfer the extension also to the DSOs of Theorem 3. Another
interesting open question is whether there is a Single-Source DSO with deterministic, truly
subquadratic time preprocessing on graphs with m = O(n3/2−ε) edges. Can one obtain
better Single-Source DSOs, and prove matching lower bounds, for sparse graphs?

2 Preliminaries

We let G = (V, E, w) denote the undirected, edge-weighted base graph on n vertices and
m edges, and tacitly assume m ⩾ n. The weights w(e), e ∈ E, are integers in [1, M ] with
M = poly(n). For an undirected, weighted graph H, we denote by V (H) the set of its
vertices, and by E(H) edge set of its edges. We write e ∈ H for e ∈ E(H) and v ∈ H for
v ∈ V (H). Let P be a simple path in H. The length or weight w(P ) of P is

∑
e∈E(P ) w(e).

For u, v ∈ V (H), we denote by PH(u, v) a shortest path (one of minimum weight) from u to
v. If a particular shortest path is intended, this will be made clear from the context. The
distance of u and v is dH(u, v) = w(PH(u, v)). We drop the subscript when talking about
the base graph G. The restriction on the maximum weight M allows us to store any graph
distance in a single machine word on O(log n) bits. Unless explicitly stated otherwise, we
measure space complexity in the number of words.

Let x, y ∈ V (P ) be two vertices on the simple path P . We denote by P [x..y] the subpath
of P from x to y. Let P1 = (u1, . . . , ui) and P2 = (v1, . . . , vj) be two paths in H. Their
concatenation is P1 ◦ P2 = (u1, . . . , ui, v1, . . . , vj), provided that ui = v1 or {ui, v1} ∈ E(H).

Fix some source vertex s ∈ V in the base graph G. For any target vertex t ∈ V and edge
e ∈ E, we let P (s, t, e) denote a replacement path for e, that is, a shortest path from s to
t in G that does not use the edge e. Its weight d(s, t, e) = w(P (s, t, e)) is the replacement
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distance. Given a specific shortest path P (s, t) in G and a replacement path P (s, t, e), we can
assume w.l.o.g. that the latter is composed of the common prefix that it shares with P (s, t),
the detour part which is edge-disjoint from P (s, t), and the common suffix after P (s, t, e)
remerges with P (s, t). All statements apply to vertex failures as well.

3 Using SSRP to Build Single-Source DSOs

In this section, we prove Theorem 2. We describe how to deterministically reduce the task of
building a Single-Source DSO to computing the replacement distances in the SSRP problem.
Recall that we assume we are given a shortest path tree Ts of the base graph G rooted in
the source s. This does not loose generality as we could as well compute it in time O(m) via
Thorup’s algorithm [33]. However, the tree Ts focuses our attention to the O(n2) relevant
replacement distances in G. The failure of an edge e can only increase the distance from
s to some target t if e lies on the s-t-path P (s, t) in Ts. Given a query (e, t), we can thus
check whether e is relevant for t in O(1) time using a lowest common ancestor (LCA) data
structure of size O(n) [4]. If the maximum weight M is larger than n, we are done as we store
the relevant replacement distances, original graph distances, and the LCA data structure.

However, for M ⩽ n, there are more space-efficient solutions. Using time O(n2), that
is, linear in the number of relevant distances, we compress the space needed to store them
down to O(M1/2 n3/2) while increasing the query time only to Õ(1). This scheme also allows
several extensions, namely, handling vertex failures, reporting fault-tolerant shortest path
trees, or retaining constant query time by using slightly more space. We first give an overview
of the reduction. Suppose we have a set of pivots D ⊆ V such that any s-t-path P (s, t) in Ts

has at least one element of D among its last
√

n vertices. For a target t, let x be the pivot
on P (s, t) that is closest to t. We distinguish three cases depending on the failing edge e.

Near case. The edge e belongs to the near case if it is on the subpath P (s, t)[x..t] from
the last pivot to the target. We construct a data structure to quickly identify those edges
It is then enough to store the associated replacement distances explicitly.
Far case I. The edge e belongs to the far case I if it is on the subpath P (s, t)[s..x] and
there is a replacement path for e that uses the vertex x. We handle this by storing a
linear number of distances for every pivot in D.
Far case II. We are left with edges e on P (s, t)[s..x] for which no replacement path uses x.
We show that there are only O(M1/2 n3/2) many different replacement distances of this
kind. We can find the correct distance in Õ(1). This is the only case with a quadratic
running time, space requirements depending on M , and a super-constant query time. We
also show how to avoid the latter at the expense of a higher space complexity.

Near case. We first describe how to obtain the set D. We also take D to denote a
representing data structure. That is, for all t ∈ V , D[t] shall denote the last pivot on the
path P (s, t) in Ts. A deterministic greedy algorithm efficiently computes a small sets D.

▶ Lemma 6. There exists a set D ⊆ V with |D| ⩽
√

n , computable in time Õ(n), such that
every s-t-path in Ts contains a pivot in D among its last

√
n vertices. In the same time, we

can compute a data structure taking O(n) space that returns D[t] in constant time.

Let x = D[t] be the pivot assigned to t. An edge e belongs to the near case with respect
to t if it lies on P (x, t) = P (s, t)[x..t]. Observe that P (x, t) has less than

√
n edges. We

store d(s, t, e) for the near case in an array with (t, e) as key. With access to the distances,
the array can be computed in O(n3/2) total time and space. Consider a query (t, e) such
that e has already been determined above to be on the path P (s, t). The edge e = {u, v}
thus belongs to the near case iff D[u] = D[v] = x. If so, we look up d(s, t, e) in the array.
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Far case I. We say a query (t, e) belongs to the far case if e is on the subpath P (s, x) =
P (s, t)[s..x]. These are the queries not yet handled by the process above. Note that
d(s, t, e) ⩽ d(s, x, e) + d(x, t) holds for all queries in the far case. If a replacement path
P (s, x, e) exists, P (s, x, e) ◦ P (s, t)[x..t] is some s-t-path that avoids e whose length is the
right-hand side; otherwise, we have d(s, x, e) = ∞ and d(s, t, e) ⩽ d(s, x, e) + d(x, t) holds
vacuously. We split the far case depending on the existence of certain replacement paths.
Recall that we can assume that any replacement path consists of a common pre- and suffix
with the original path P (s, t) and a detour that is edge-disjoint from P (s, t). We let (t, e)
belong to the far case I if e is on P (s, x) and there is a replacement path P (s, t, e) that
uses the vertex x. It is readily checked that for a query in the far case this holds iff
d(s, t, e) = d(s, x, e) + d(x, t). Otherwise, that is, if no replacement path P (s, t, e) uses x or,
equivalently, d(s, t, e) < d(s, x, e) + d(x, t), the query is said to be in the far case II.

It takes too much space to store the replacement distances for all edges in the far case, or
memorize which edge falls in which subcase. Instead, we build two small data structures
and, at query time, compute two (potentially different) distances. We show that always
the smaller one is correct, which we return as the final answer. First, for every pivot
x ∈ D and edge e ∈ P (s, x), we store the replacement distance d(s, x, e). Since |D| ⩽

√
n

and |E(P (s, x))| ⩽ n, we can do so in O(n3/2) time and space. Given a query (t, e) in
the far case, we access the storage corresponding to D[t] = x, retrieve d(s, x, e), and add
d(x, t) = d(s, t) − d(s, x). This gives the first candidate distance. It may overestimate
d(s, t, e), namely, if e belongs to the far case II.

Far case II. This case is more involved than the previous. We make extensive use of what
we call break points. Let e1, . . . , ek be the edges of P (s, t)[s..x] in the far case II (w.r.t. t) in
increasing distance from s. We then have d(s, t, e1) ⩾ . . . ⩾ d(s, t, ek). This is due to the fact
that any replacement path P (s, t, ei) avoids the whole subpath starting with ei and ending
in x. Its length is thus at least the replacement distance for any ej , j ⩾ i. Let ui be vertex
of ei that is closer to s. We say ui is a break point if d(s, t, ei) > d(s, t, ei+1). A break point
is the beginning of a segment in which the edges in the far case II have equal replacement
distance. We show that there are only O(

√
Mn ) break points/replacement distances.

For the analysis, we let the edges choose a representative replacement path. They do so
one after another in the above order. Edge ei first checks whether one of its replacement
paths has previously been selected by an earlier edge eh, h < i. If so, it takes the same
one; otherwise, it chooses a possible replacement path arbitrarily. Let R denote the set of
representatives and let R ∈ R. We define zR to be the first vertex on the detour part of R.
The vertices zR, R ∈ R, are also important for the subquadratic algorithm in Section 6.

▶ Lemma 7. Edges ei and ej that belong to the far case II choose the same representative
iff d(s, t, ei) = d(s, t, ej). All representatives have different lengths and |R| equals the number
of break points. Let R, R′ ∈ R be such that R′ is the next shorter representative after R. We
have d(s, zR) < d(s, zR′) and all edges represented by R lie on the subpath P (s, t)[zR..zR′ ].
There is exactly one break point on P (s, t)[zR..zR′ ], the one corresponding to length w(R).

Proof. Edges with different replacement distances have disjoint sets of replacement paths to
choose from. Now suppose the replacement distances d(s, t, ei) = d(s, t, ej) are equal. Without
loosing generality, the edge ej , j ⩾ i, is further away from s and selects its representative
after ei. The representative replacement path R for edge ei also avoids ej since it does not
remerge with P (s, t) prior to pivot x. As the distances d(s, t, ej) = d(s, t, ei) = w(R) are the
same, R is in fact a replacement path for ej and is selected again as representative. The
assertions of the different lengths and the total number of representatives easily follow.
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Let R ∈ R be a representative replacement path. The first vertex zR of its detour part
must be closer to s than all edges it represents as R avoids them. Let e∗ be the edge closest
to s that belongs to the far case II and is represented by R. The break point u∗ starting the
segment with replacement distance w(R) is thus the vertex of e∗ that is closer to s.

Let now R′ ∈ R be the next shorter representative after R. If we had d(s, zR′) ⩾ d(s, zR),
then R′ would be a path that avoids e∗ and has length w(R′) < w(R) = d(s, t, e∗) strictly
smaller than the replacement distance, a contradiction. Reusing the same arguments as
before, we also get that the break point corresponding to w(R′) lies after zR′ and that
the break point u∗ ∈ e∗ cannot lie below zR′ (on subpath P (s, t)[zR′ ..t]). In summary, the
subpath P (s, t)[zR..zR′ ] contains exactly one break point, namely, u∗. ◀

It is left to prove that |R| = O(
√

Mn ). The following lemma is the heart of our
compression scheme. It simplifies and thereby generalizes a result by Gupta and Singh [22]
for unweighted undirected graphs. The argument we use is versatile enough to not only
cover integer-weighted graphs, it extends to vertex failures as well (Lemma 9). A similar
idea also allows us to design an oracle with constant query time (Lemma 10) and the
subquadratic preprocessing algorithm on sparse graphs (Theorem 5). Unfortunately, the
argument crucially depends on the graph being undirected. New techniques are needed to
compress the fault-tolerant distance information in directed graphs.

▶ Lemma 8. The number of representatives for edges on P (s, t) is |R| ⩽ 3
√

Mn .

Proof. All representatives are of different length by Lemma 7. Also, they have length at
least d(s, t), the weight of the original s-t-path P . Hence, there are only 2

√
Mn many of

length at most d(s, t) + 2
√

Mn . We now bound the number of long representatives, which
are strictly longer than that. Let R be a long representative. Its detour part is longer than
2
√

Mn , whence it must span at least 2
√

n/M vertices. Consider the path on the first√
n/M vertices of the detour starting in zR, we call it StubR. If StubR does not intersect

with StubR′ for any other long R′ ∈ R, R′ ̸= R, there can only be n/(
√

n/M ) =
√

Mn

stubs in total and thus as many long representatives.
To reach a contradiction, assume the stubs of R and R′ intersect. Let e be an edge

represented by R and y ∈ V (StubR)∩V (StubR′) a vertex on both stubs. W.l.o.g. R′ is strictly
shorter than R and thus zR′ comes behind zR on the path P and e is on P [zR..zR′ ] (Lemma 7).
Note that w(StubR), w(StubR′) ⩽

√
Mn . Therefore, the path P ∗ = P [s..zR] ◦ R[zR..y] ◦

R′[y..zR′ ] ◦ P [zR′ ..t] avoids e and has length w(P ∗) ⩽ d(s, t) + w(R[zR..y]) + w(R′[y..zR′ ]) ⩽
d(s, t) + 2

√
Mn < w(R). This is a contradiction to R being the representative of e. ◀

Observe how the argument in the proof above depends on the fact that we can traverse the
segment R′[zR′ ..y] ⊆ StubR′ in both directions. When following R′ from s to t, we visit zR′

prior to y, while for P ∗ it is the other way around. This is not necessarily true in a directed
graph. Indeed, one can construct examples that have a directed path on Ω(n) edges in which
each of them has its own replacement distance.

With access to the replacement distances, all break points can be revealed by a linear scan
of the path P (s, t) in time O(n). Let zi1 , . . . , zi|R| be the break points ordered by increasing
distance to the source s and ei1 , . . . , ei|R| the corresponding edges. For the data structure,
we compute an ordered array of the original distances d(s, zi1) < · · · < d(s, zi|R|) associated
with the replacement distances d(s, t, eij

), taking O(
√

Mn ) space. Let (e, t) be a query with
e = {u, v}. We compute the index j = arg max1⩽k⩽|R| {d(s, zik

) ⩽ d(s, u)}, with a binary
search on the array in O(log n) time and retrieve d(s, t, eij

) as the second candidate distance.
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The edge e lies on the subpath P (s, t)[zij ..zij+1 ] (respectively, on P (s, t)[zi|R| ..x] if j = |R|).
It thus has replacement distance at most d(s, t, eij

). If e belongs to the far case II, the
second candidate distance is exact and (strictly) smaller than the first one d(s, x, e) + d(x, t);
otherwise, the first candidate is smaller (or equal) and correct.

Scaling this solution to all targets t ∈ V gives a total space requirement of O(M1/2 n3/2).
However, the preprocessing time is O(n2), dominated by the linear scans for each target.

3.1 Extensions
There are several possible extensions for our Single-Source DSO. While the transfer to
vertex failures comes for free, reducing the query time to a constant, making the oracle
path-reporting, or returning the whole fault-tolerant shortest path tree incurs additional costs
of a higher space requirement or preprocessing time, respectively. We still assume the setting
of Theorem 2, i.e., oracle access to the replacement distances for failing edges/vertices.

Vertex failures. The solutions for the near case, and far case I hold verbatim also for vertex
failures. A vertex on the path P (s, t)[s..x], except s itself, belongs to the far case II iff it
satisfies d(s, t, v) < d(s, t, x) + d(x, t). Let RV be the sets of representatives, now chosen
by the vertices. The advantage of the proof of Lemma 8 is that it easily transfers to vertex
failures. While the stubs of the detours may no longer be unique, they now intersect at most
one other stub and identify pairs of representatives.

▶ Lemma 9. The number of representatives for vertices on P (s, t) is |RV | ⩽ 5
√

Mn .

Constant query time. If we could query the break point of an edge in the far case II in O(1)
time, our Single-Source DSO had a constant overall query time. However, since the break
points also depend on the target t, hard-coding them would yield a O(n2) space solution,
which is wasteful for M = o(n). Instead, we improve the analysis in Lemma 8. It hardly
made any use of the fact that the pivot x is among the last

√
n vertices on the s-t-path

in Ts and considered only a single target. We now strike a balance between selecting more
pivots and grouping targets with the same assigned pivot together.

▶ Lemma 10. There is an algorithm that, when given oracle access to the replacement
distances for failing edges (vertices), preprocesses in O(n2) time a Single-Source DSO for
edge (vertex) failures taking O(min{M1/3 n5/3, n2}) space and having constant query time.

Path-reporting oracles. We can adapt our Single-Source DSOs to also report the replacement
paths using the same space. However, to do so it is not enough to have access to the
replacement distances as the paths depend on the structure of G. Also, making the oracle
path-reporting increases in preprocessing time, which now also depends on m.

▶ Lemma 11. With access to G, there is a path-reporting Single-Source DSO for edge (vertex)
failures with O(min{m

√
Mn , mn}+n2) preprocessing time and either O(min{M1/2 n3/2, n2})

space and Õ(1) query time per edge, or O(min{M1/3 n5/3, n2}) space and O(1) query time.

Fault-tolerant shortest path tree oracles. We are going one step further in the direction
of fault-tolerant subgraphs, see for example [8, 29]. We enable our oracle to report, for any
failing edge or vertex, the whole fault-tolerant single-source shortest path tree. Compared to
the path-reporting version, we make sure to return every tree edge only once.



D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:11

▶ Lemma 12. With access to G, there is a data structure with O(min{m
√

Mn , mn} + n2)
preprocessing time, taking O(min{M1/2 n3/2, n2}) space that, upon query e ∈ E (respectively,
v ∈ V ), returns a shortest path tree for G − e (respectively, G − v) rooted in s in time O(n).

4 Space Lower Bound

We now present an information-theoretic lower bound showing that the space of the Single-
Source DSO resulting from our reduction is optimal up to the word size.

▶ Theorem 4. Any Single-Source DSO must take Ω(min{M1/2 n3/2, n2}) bits of space on at
least one O(n)-vertex graph with integer edge weights in the range [1, M ].

Proof. Let M ′ = min{M, n}. We give an incompressibility argument in that we show that
one can store any binary n × n matrix X across

√
n/M ′ Single-Source DSOs. Not all of

them can use only o(
√

M ′ n3/2) bits of space as otherwise this would compress X to o(n2)
bits. We create graphs G1, G2, . . . , G√

n/M ′ . Each of them has O(n) vertices and maximum
edge weight M . The graph Gk will be used to store the

√
M ′n rows of X with indices from

(k − 1)
√

M ′n + 1 to k
√

M ′n .
We first describe the parts that are common to all of the Gk. Let A = {a1, . . . , an}

and B = {b1, . . . , bn} be two sets of n vertices each, we connect ai and bj by an edge of
weight 1 iff X[i, j] = 1. There are no other edges between A and B. We also add a path
P = (v1, . . . , v√

M ′n ) all of whose edges have weight 1. The vertex s = v√
M ′n is the source

in each graph. Also, let {v0, v1} be an edge of weight M , it serves to raise the maximum
edge weight to M , if needed. Specifically in Gk and for each 1 ⩽ i ⩽

√
M ′n , we connect the

vertex vi with a(k−1)
√

M ′n +i by a path Pk,i of total weight 2i − 1. Due to the edge weights,
we can make the path Pk,i so that it uses at most 2i/M ′ edges and thus so many new vertices.
In total, Gk has at most 2n + (

√
M ′n + 1) +

∑√
M ′n

i=1
2i

M ′ = O(n) vertices due to M ′ ⩽ n.
Let ei denote the edge {vi−1, vi} on P . We claim that X[(k−1)

√
M ′n + i, j] = 1 if

and only if the replacement distance in Gk is dGk
(v√

M ′n , bj , ei) =
√

M ′n + i. We assume
k = 1, larger k follow in the same fashion. Observe that one has to go through a vertex in
A′ = {ai, ai+1, . . . , a√

M ′n } to reach bj from the source s = v√
M ′n . Conversely, A′ is the

only part of A that is reachable from s in G1 − ei without using any vertex of B.
If there is no replacement path from s to bj avoiding ei, we have dG1(s, bj , ei) = ∞ and

X[i′, j] = 0 for all i ⩽ i′ ⩽
√

M ′n , as desired. Let thus P (s, bj , ei) be a replacement path and
further ai∗ its first vertex that is in A (the one closest to the source s). Therefore, i∗ ⩾ i and
P (s, bj , ei) has the form (v√

M ′n , . . . , vi∗) ◦ P1,i∗ ◦ P ′ for some ai∗-bj-path P ′. It holds that
dG1(v√

M ′n , bj , ei) = (
√

M ′n − i∗)+(2i∗ −1)+w(P ′) =
√

M ′n + i∗ −1+w(P ′) ⩾
√

M ′n + i.
Equality holds only if i∗ = i and w(P ) = 1, thus ai must be a neighbor of bj and X[i, j] = 1
follows; otherwise, the replacement distance is strictly larger. ◀

5 Derandomizing Single-Source Replacement Paths Algorithms

In this section, we derandomize the combinatorial Õ(m
√

n + n2) time algorithm for SSRP
of Chechik and Cohen [10] obtaining the same asymptotic running time. In the full version,
we also derandomize the algebraic SSRP algorithm of Grandoni and Vassilevska Williams.
When combined with the reduction of Section 3, they give deterministic Single-Source DSOs.

Suppose the base graph G = (V, E) is unweigted. It follows from a result by Afek et al. [1,
Theorem 1] that for every target t ∈ V , edge e ∈ E, and replacement path P (s, t, e) in G − e,
there exists a vertex q on P (s, t, e) such that both subpaths P (s, t, e)[s..q] and P (s, t, e)[q..t]
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are shortest paths in the original graph G. Computing the vertex q directly for each pair
(t, e) is too expensive. Instead, the algorithm in [10] employs a random hitting set for the
subpaths. The only randomization used in [10] is to sample every vertex independently with
probability O((log n)/

√
n ) to create a set B ⊆ V of so-called pivots. The set B contains

Õ(
√

n ) such pivots w.h.p. The correctness of the algorithm relies on the following important
property. With high probability, there exists a vertex x ∈ B ∪ {s} before q on P (s, t, e) and
a vertex y ∈ B ∪ {t} after q such that the subpath of P (s, t, e)[x..y] has length only Õ(

√
n ).

Here, we describe how to compute the set B deterministically with the same properties. We
defer the proof of correctness of the algorithm to the full version.

We derandomize the vertex selection using an approach similar to the one of Alon,
Chechik, and Cohen [3]. Given paths D1, . . . , Dk, where each contains at least L vertices,
the folklore greedy algorithm constructs a hitting set of size Õ(n/L), by iteratively covering
the maximum number of unhit paths, in Õ(kL) time. The challenge is to quickly compute a
suitable set of paths. We construct three systems of path L1, L2, and L3 to obtain B.

We prepare some notation. For a rooted tree T , a vertex v ∈ V (T ), and an integer
parameter L ⩾ 0, let LastT,L(v) be the subpath containing the last L edges of the path in
the tree T from the root to v, or the whole path if it has length less than L. Let |LastTs,L(v)|
denote the number of edges on the path.

Paths L1 and hitting set B1. Set L1 contains the last
√

n /2 edges of every path in Ts,
L1 = {LastTs,

√
n /2(v) | v ∈ V, |LastTs,

√
n /2(v)| =

√
n /2}. As an alternative, we can also

use Lemma 6 to compute in Õ(n) time a deterministic hitting set B1 for L1 of size 2
√

n .
Paths L2 and hitting set B2. We run a breadth-first search from every vertex x ∈ B1
to compute the shortest paths trees Tx rooted in x, and define the second set to be L2 =
{LastTx,

√
n /2(y) | x ∈ B1, y ∈ V, |LastTx,

√
n /2(y)| =

√
n /2} Greedy selection computes a

hitting set B2 for L2 of size Õ(
√

n ) in total time Õ(n2).

Before we can define L3, we need additional notation. Let e = {u, v} be an edge in Ts

such that u is closer to s than v and let Ts,v be the subtree of Ts rooted in v. Let further
Ge = (Ve, Ee, we) be a weighted graph such that Ve contains s and the vertices x ∈ V (Ts,v)
with d(s, x) ⩽ d(s, v) + 4

√
n . The edges of Ge that are inside of Ts,v are the same as in G,

and additionally every shortest path P (s, x) from s to every vertex x ∈ Ve such that P (s, x)
passes only through vertices outside of Ve (except for its first vertex s and its last vertex
x ∈ Ve) is replaced with a shortcut edge (s, x) whose weight is equal to the length d(s, x)
of the corresponding shortest path P (s, x), preserving the original paths distances (using
weights). The SSRP algorithm in [10] computes Dijkstra’s algorithm from s in each Ge. We
let TGe

denote the resulting shortest path tree.

Paths L3 and hitting set B3. The third set L3 := {LastTGe ,
√

n /2(x) | x ∈ V, e ∈ E(Ts),
|LastTGe ,

√
n /2(x)| =

√
n /2} contains O(n3/2) paths as every vertex x ∈ V belongs to at

most 4
√

n graphs Ge. We thus get a hitting set B3 of size Õ(
√

n ) in time Õ(n2).
The deterministic set B = B1 ∪ B2 ∪ B3 can then be used as pivots in the SSRP algorithm.

6 Subquadratic Preprocessing on Sparse Graphs

Finally, we show how to obtain a Single-Source DSO with subquadratic preprocessing at
least on sparse graphs. In order to prove Theorem 5, we present an algorithm running in
time Õ(M7/8 m1/2 n11/8 + M1/8 m3/2

n3/8 ). If m = O(M3/4 n7/4), then the dominating term is
Õ(M7/8 m1/2 n11/8). If the graph even satisfies m = O(n5/4−ε/M7/4) for any ε > 0, then
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the preprocessing time is Õ(n2−ε/2). We explain the main part of the randomized algorithm
that allows us to design the Single-Source DSO. The algorithm is easily adaptable to deal
with vertex failures as well. The proofs and some of the technical details are deferred to the
full version due to the lack of space. In the following, we assume that the graph is indeed
sparse, that is, m = O(n5/4−ε/M7/4). The next sampling lemma is folklore, see e.g. [18, 32].

▶ Lemma 13. Let H be a graph with n vertices, c > 0 a positive constant, and L such that
L ⩾ c ln n. Define a random set R ⊆ V by sampling each vertex to be in R independently
with probability (c ln n)/L. Then, with probability at least 1 − 1

nc , the size of R is Õ(n/L).
Let further P be a set of ℓ simple paths in H, each of which spans at least L vertices. Then,
with probability at least 1 − ℓ

nc , we have V (P ) ∩ R ̸= ∅ for every P ∈ P.

We employ random sampling to hit one shortest path on at least L = n11/8

M1/8 m1/2 edges for
every pair of vertices. Any vertex is included in the set R of random pivots independently
with a probability of (3 ln n)/L. We also include the source s in R to hit all short s-t-paths.
By Lemma 13, we have |R| = Õ(n/L) = Õ

(
M1/8 m1/2

n3/8

)
w.h.p. Randomization is used here

since it takes too long to handle the O(n2) paths explicitly.
We additionally construct a set D of (possibly different, regular) pivots that are used to

classify replacement paths into near case, far case I, and far case II similar to Section 3. The
set D is computed deterministically using Lemma 6, where we select a pivot every

√
n levels.

For a target vertex t ≠ s, the proper pivot of t shall be that pivot x ∈ D on the path P (s, t)
in Ts that is closest to t but satisfies d(x, t) ⩾ 4ML, or x = s if there is no such pivot. We
let D1[t] denote the proper pivot of t and D2[t] = D1[D1[t] ], provided that D1[t] ̸= s.

For every random pivot χ ∈ R and every edge e on the path P (s, χ), we compute d(s, χ, e)
in Õ(m) time per pivot using the algorithm of Malik, Mittal, and Gupta [26]. In the same
time bound, we also get the vertex of P (s, χ) at which P (s, χ, e) diverges and we assume
that P (s, χ, e) represents the path that diverges from P (s, χ) at a vertex that is as close as
possible to s.6 For each pivot x ∈ D and every e on P (s, x), we also compute d(s, x, e). This
takes total time Õ(m(|D| + |R|)) = Õ

(
mn1/2 + M1/8 m3/2

n3/8

)
= Õ

(
m1/2 n9/8−ε/2

M7/8 + M1/8 m3/2

n3/8

)
and allows us to answer replacement distance queries in O(1) time if the target is in D ∪ R.

We are left to handle non-pivot targets. Fix a t ∈ V \(D ∪ R) and let x1 = D1[t], and
x2 = D2[t]. We use similar cases as before.

Near case. The edge e is on P (s, t)[x2..t] = P (x2, t).
Far case I. The edge e is on P (s, t)[s..x2] = P (s, x2) and there is a replacement path
P (s, t, e) that passes through x2.
Far case II. The edge e is on P (s, x2) and there is no replacement path P (s, t, e) that
passes through x2.

In the remainder, we show how to efficiently compute the replacement distances in the far
case II as previously this was the only case with quadratic run time. The technical details of
the near case are reported in full version. A shortest path tree of G and the replacement
distances to targets in D are enough to handle the far case I, see Section 3.

Since in the far case II the pivot x2 lies on P (s, t), we can assume P (s, t) to have length
d(s, t) ⩾ d(x2, t) ⩾ 4ML and at least 4L edges. In the following, we use different indexing
schemes pointing to objects and distances related to P (s, t), all of them are ordered from the
source s to pivot x2. First, we denote by R1, . . . , Rk the k representative replacement paths

6 The replacement path P (s, χ, e) computed in [26] is obtained as the concatenation of a subpath P (s, u)
of Ts, an edge {u, v} of G − e, and a subpath P (v, χ) in Tχ (the shortest paths tree of G rooted at χ).
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for edges in the far case II. We have k ⩽ 3
√

Mn by Lemma 8. Let the distinguished edge
e∗

ℓ ∈ P (s, t) be the one that is closest to s such that Rℓ represents e∗
ℓ , i.e., Rℓ is a replacement

path in G − e∗
ℓ and we fall in far case II. Set dℓ = w(Rℓ). As no replacement path from s

to t for edge e∗
ℓ uses vertex x2, we have dℓ < d(s, x2, e∗

ℓ ) + d(x2, t). The distinguished edges
e∗

1, . . . , e∗
k are ordered by increasing distance from s, this implies d1 > · · · > dk for their

replacement distances, see Section 3. Furthermore, let N be the number of all edges (of the
far cases I and II) on the path P (s, x2) = (e1, e2, . . . , eN ), seen in order from s to x2. This
way, we identify P (s, x2) with the interval [1, N ], an index j ∈ [1, N ] stands for the j-th edge
ej on P (s, x2). With a slight abuse of notation, we also say that ej ∈ [a, b] in case j ∈ [a, b].

We employ the random pivots to efficiently compute all the k pairs (dℓ, e∗
ℓ ) w.h.p. The

key idea is that, for each failing edge e on P (s, x2), there exists w.h.p. a random pivot χ ∈ R

such that d(χ, t) ⩽ ML and d(s, t, e) = d(s, χ, e) + d(χ, t) simultaneously hold. To see this,
recall that any replacement path P (s, t, e) has at least 4L edges and let y be the vertex such
that P (s, t, e)[y..t] consists of the last L of them. We claim that P (s, t, e)[y..t] is in fact a
shortest path in G. Assume there were a shorter y-t-path, then it must contain e and have
length at least d(x2, t) ⩾ 4ML, a contradiction. Therefore, some shortest y-t-path in G has
at least L edges and is thus hit by a random pivot χ w.h.p., which gives the equality. Any
reference to high probability refers to this fact. We use it to design a recursive algorithm
that finds the pairs (dℓ, e∗

ℓ ) w.h.p. in time O(|R|M3/4 n3/4) = Õ(M7/8 m1/2 n3/8) per target.
Recall that we view P (s, x2) as [1, N ]. When exploring a subinterval [a, b], the algorithm

searches for a pair (dℓ, e∗
ℓ ) with a distinguished edge e∗

ℓ ∈ [a, b]. The algorithm knows both an
upper bound ∆[a,b] and a lower bound δ[a,b] on the admissible values for dℓ. More precisely,
∆[a,b] + 1 corresponds w.h.p. to the smallest possible value dℓ′ such that e∗

ℓ′ ∈ [1, a−1] (the
lower the index, the higher is dℓ′); similarly, δ[a,b] − 1 is the the largest possible value dℓ′ for
e∗

ℓ′ ∈ [b+1, N ]. In the beginning, we set ∆[1,N ] = ∞, δ[1,N ] = 0 and the algorithm explores
the entire interval [1, N ]. It terminates when there are no more unexplored subintervals.

We now describe the search for dℓ with e∗
ℓ ∈ [a, b]. We assume a ⩽ b and δ[a,b] ⩽ ∆[a,b] as

otherwise no such pair exists. Set µ = maxj∈[a,b]{d(s, x2, ej)+d(x2, t)}. The algorithm keeps
searching in the interval only if µ > δ[a,b]. Indeed, if µ ⩽ δ[a,b], we know for sure that such a
pair does not exist as there must be a replacement path (of type far case I) that passes through
vertex x2. We first compute the largest index j ∈ [a, b] for which µ = d(s, x2, ej) + d(x2, t).
We do so by employing a range minimum query (RMQ) data structure to support such
queries in constant time after an O(N) = O(n) time preprocessing [4]. Observe that the
same data structure can be reused for all the target vertices t′ for which D2[t′] = x2. It
is enough that it stores the values d(s, x2, e), instead of d(s, x2, e) + d(x2, t). The former
distances are independent of the considered target and we already computed them above.
We use only O(|D|) RMQ data structures, which we prepare in O(n|D|) = O(n3/2) time.

In the following, we assume µ > δ[a,b]. We select a candidate replacement path for ej by
choosing the shortest one that runs through a random pivot in O(|R|) time via brute-force
search in the data we computed above for the targets in R. Ties are broken in favor of the
replacement path P (s, χ, ej) that diverges from P (s, x2) at the vertex that is closest to s.
Let δ = minχ∈R

{
d(s, χ, ej) + d(χ, t)

}
be the length of such a replacement path, w.h.p. it is

the actual replacement distance P (s, t, ej). Let further χj be the minimizing random pivot,
and zj the vertex of P (s, x2) at which P (s, χj , ej) diverges. We check whether δ < µ and
δ ⩽ ∆[a,b] holds. If either of the two conditions is violated, then there is no need to keep
searching in the interval [a, j], as shown in the next lemma. In this case, the algorithm makes
a recursive call on the lower interval [j+1, b] (the one with smaller replacement distances)
by setting ∆[j+1,b] = ∆[a,b] and δ[j+1,b] = δ[a,b]. We say that the search was unsuccessful.
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▶ Lemma 14. If δ ⩾ µ or δ > ∆[a,b], then, w.h.p. we have e∗
ℓ ̸∈ [a, j] for all ℓ ∈ [k].

Suppose the search is successful, that is, δ < µ and δ ⩽ ∆[a,b]. We then use binary
search techniques7 to compute in O(log n) time the smallest index i ∈ [a, j] for which the
edge ei lies on the subpath P (s, x2)[zj ..x2] and δ < d(s, x2, ei) + d(x2, t) holds. The case
i = j is possible. The condition on ei is such that P (s, χj , ej) also avoids ei, which implies
d(s, t, ei) ⩽ δ < d(s, x2, ei) + d(x2, t). The edge ei must belong to the far case II w.r.t. target
t. We show that in fact (δ, ei) is w.h.p. the sought pair with e∗

ℓ ∈ [a, j] and minimum dℓ.

▶ Lemma 15. Let ℓ ∈ [k] be maximal such that e∗
ℓ ∈ [a, j]. Then, w.h.p. δ = dℓ and ei = e∗

ℓ .

The algorithm outputs (δ, ei) and recurses on the lower interval [j+1, b] with new bounds
∆[j+1,b] = δ − 1 and δ[j+1,b] = δ[a,b], as well as on the upper interval [a, i−1], with ∆[a,i−1] =
∆[a,b] and δ[a,i−1] = δ + 1. This is justified since the edges in [i, j] that belong to the far case
II are w.h.p. precisely the ones represented by the path Rℓ of length dℓ = δ.

The time needed for one target t is proportional (up to a log-factor) to the number
of random pivots and the overall number of searches. There are k = O(

√
Mn ) successful

searches by Lemma 8. The following lemma bounds the number of unsuccessful searches.

▶ Lemma 16. The number of unsuccessful searches for a single target vertex is O(M3/4 n3/4).

The algorithm computes w.h.p. all pairs for one target vertex in time Õ(|R|M3/4 n3/4) =
Õ(M7/8 m1/2 n3/8), scaling this to all targets gives Õ(M7/8 m1/2 n11/8).
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Abstract
We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free
multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal
degree by providing a bijection between their edges. Synchronized Planarity then asks whether
the graph admits a crossing-free embedding into the plane such that the orders of edges around
synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can
be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language
that lets us easily formulate several constrained planarity problems as instances of Synchronized
Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the
most efficient previously known algorithm has an upper bound of O

(
n8)

.
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1 Introduction

A graph is planar if it admits an embedding into the plane that has no edge crossings.
Planarity is a well-studied concept that facilitates beautiful mathematical structures [20, 9],
allows for more efficient algorithms [19], and serves as a cornerstone in the context of
network visualization [26]. It is not surprising that various generalizations, extensions, and
constrained variants of the Planarity problem have been studied [24]. Examples are Clus-
tered Planarity, where the embedding has to respect a laminar family of clusters [22, 8];
Constrained Planarity, where the orders of edges incident to vertices are restricted,
e.g., by PQ-trees [6]; and Simultaneous Planarity, where two graphs sharing a common
subgraph must be embedded such that their embeddings coincide on the shared part [5].

For planar embeddings, there is the important notion of rotation. The rotation of a vertex
is the counter-clockwise cyclic order of incident edges around it. Many of the above planarity
variants come down to the question whether there are embeddings of one or multiple graphs
such that the rotations of certain vertices are in sync in a certain way. Inspired by this
observation, by the Atomic Embeddability problem [15], and by the cluster decomposition
tree (CD-tree) [8], we introduce a new planarity variant. Synchronized Planarity has a
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loop-free multi-graph together with two types of synchronization constraints as input. Each
Q-constraint is given as a subset of vertices together with a fixed reference rotation for each
of these vertices. The Q-constraint is satisfied if and only if either all these vertices have
their reference rotation or all these vertices have the reversed reference rotation. Vertices
appearing in Q-constraints are called Q-vertices and all remaining vertices are P-vertices.1 A
P-constraint between two P-vertices u and v defines a bijection between the edges incident to
u and v. It is satisfied if and only if u and v have the opposite rotation under this bijection.
We require that the P-constraints form a matching, that is, no vertex appears in more than
one P-constraint. The decision problem Synchronized Planarity now asks whether the
given graph can be embedded such that all Q- and all P-constraints are satisfied.

Synchronized Planarity serves as a powerful modeling language that lets us express
various other planarity variants using simple linear-time reductions. Specifically, we provide
such reductions for Clustered Planarity, Atomic Embeddability, Partially PQ-
constrained Planarity, and Simultaneous Embedding with Fixed Edges with a
connected shared graph (Connected SEFE). Our main contribution is an algorithm that
solves Synchronized Planarity, and thereby all the above problems, in quadratic time.

1.1 Technical Contribution
Our result impacts different planarity variants that have been studied previously. Before
discussing them individually in the context of previous publications, we point out a common
difficulty that has been a major barrier for all of them, and briefly sketch how we resolve it.

Consider the following constraint on the rotation of a single vertex. Assume its incident
edges are grouped and we only allow orders where no two groups alternate, that is, if e1, e2 are
in one group and e3, e4 are in a different group, then the circular subsequence e1, e3, e2, e4 and
its inverse are forbidden. Such restrictions have been called partition constraints before [8],
and they naturally emerge at cut-vertices where each incident 2-connected component forms
a group. A single partition constraint is not an issue by itself, but it becomes difficult to
deal with in combination with further restrictions. This is why cut-vertices and disconnected
clusters are a major obstacle for SEFE [5] and Clustered Planarity [8], respectively.

The same issues appear for Synchronized Planarity, when we have a cut-vertex
v that is involved in P-constraints, that is, its rotation has to be synchronized with the
rotation of a different vertex u. We deal with these situations as follows, depending on
whether u is also a cut-vertex or not. If not, it is rather well understood which embedding
choices impact the rotation of u and we can propagate this from u to v.2 This breaks the
synchronization of u and v down into the synchronization of smaller embedding choices. This
is a well-known technique that has been used before [6, 17]. If u is also a cut-vertex, we are
forced to actually deal with the embedding choices emerging at cut-vertices. This is done
by “encapsulating” the restrictions on the rotations of u and v that are caused by the fact
that they are cut-vertices. All additional restrictions coming from embedding choices in the
2-connected components are pushed away by introducing additional P-constraints. After
this, the cut-vertices u and v have very simple structure, which can be resolved by essentially
joining them together. This procedure is formally described in Section 3.2 and illustrated in
Figures 2 and 3.

1 The names are based on PQ-trees, where Q- and P-nodes have fixed and arbitrary rotation, respectively.
2 We can also do this if v is not a cut-vertex.
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This solution can be seen as combinatorial perspective on the recent breakthrough result
by Fulek and Tóth [15], who resolved the cut-vertex issue by applying an idea coming from
Carmesin’s work [10]. While Carmesin works with 2-dimensional simplicial complexes, Fulek
and Tóth achieve their result by transferring Carmesin’s idea to the setting of topological
graphs on surfaces and combining it with tools from their work on thickenability. Our
work transfers the problem and its solution back to an entirely combinatorial treatment of
topological graphs in the plane. This further simplification allows us to more clearly highlight
the key insight that makes the algorithm tick and at the same time provides access to a
wide range of algorithmic tools for speeding up the computations. Due to space constraints,
proofs of statements marked with a star are only given in the full version.

1.2 Related Work
Clustered Planarity was first considered by Lengauer [22] and later rediscovered by
Feng et al. [13]. In both cases, the authors give polynomial-time algorithms for the case that
each cluster induces a connected graph. The complexity of the general problem that allows
disconnected clusters has been open for 30 years. In that time, many special cases have
been shown to be polynomial-time solvable [3, 11, 14, 16] before Fulek and Tóth [15] recently
settled Clustered Planarity in P. The core ingredient for this is their O(n8) algorithm
for the Atomic Embeddability problem. It has two graphs G and H as input. Roughly
speaking, H describes a 3-dimensional molecule structure with atoms represented by spheres
and connections (a.k.a. pipes) represented by cylinders. The other graph G comes with a
map to the molecule structure that maps each vertex to an atom such that two neighboring
vertices lie on the same atom or on two atoms connected by a pipe. Atomic Embeddability
then asks whether G can be embedded onto the molecule structure such that no edges cross.

Atomic Embeddability has been introduced as a generalization of the Thickenability
problem that appears in computational topology [1]. It can be shown that Atomic Em-
beddability and Thickenability are linear-time equivalent [15]. Thus, the above O(n8)
algorithm for Atomic Embeddability also solves Thickenability and Synchronized
Planarity. In a preprint, Carmesin [10] proves a Kuratowski-style characterization of
Thickenability, which he claims yields a quadratic algorithm as a byproduct. While it is
believable that the running time of his algorithm is polynomial, a detailed runtime analysis
is missing. In light of this, we only compare our algorithm to the O(n8)-algorithm by Fulek
and Tóth. For a detailed comparison of their solution to Atomic Embeddability and our
solution to Synchronized Planarity, we refer to the full version.

To finally solve Clustered Planarity, Fulek and Tóth [15] use the reduction of Cortese
and Patrignani [12] to Independent Flat Clustered Planarity, which they then
reduce further to Thickenability. The last reduction to Thickenability is based on a
combinatorial characterization of Thickenability by Neuwirth [23], which basically states
that multiple graphs have to be embedded consistently, that is, such that the rotation is
synchronized between certain vertex pairs of different graphs. Via the reduction from Con-
nected SEFE to Clustered Planarity given by Angelini and Da Lozzo [2], the above
result extends to Connected SEFE, which was a major open problem in the context of
simultaneous graph representations [7]. We flatten this chain of reductions by giving a simple
linear reduction from each of the problems Connected SEFE, Clustered Planarity, and
Atomic Embeddability to Synchronized Planarity, yielding quadratic-time algorithms
for all of them. Due to space constraints, the reductions are only given in the full version.
Moreover, the problem Partially PQ-constrained Planarity, for which we also give a
linear reduction to Synchronized Planarity, has been solved in polynomial time before,
but only for biconnected graphs [6] and in the non-partial setting where either all or none of
the edges of a vertex are constrained [17].
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2 Preliminaries

A partition of a base set X is a grouping of its elements into non-empty subsets, the cells,
so that every element is contained in exactly one cell. We assume a set implementation
allowing constant-time insertion and removal of elements, such as doubly-linked lists with
pointers stored with the elements. When referring to graphs, we generally mean loop-free
multi-graphs. A (multi-)star consists of a center vertex connected by multiple, possibly
parallel, edges to its ray vertices. A k-wheel is a k-cycle, where each node is also connected
to an additional central node. Furthermore, we assume a graph representation that allows
efficient manipulation, such as an adjacency list with doubly-linked lists.

Drawings, Embeddings and Cyclic Orders. A (topological) drawing Γ of a graph is a
mapping of every vertex v to a point pv ∈ R2 in the plane and a mapping of every edge {u, v}
to a Jordan arc having pu and pv as endpoints. A drawing uniquely defines cyclic orders
of edges incident to the same vertex. Drawings with the same cyclic orders are considered
equivalent, their equivalence class is called (combinatorial) embedding. For an embedding E ,
we use E(u) to denote the cyclic order of the edges incident to u as given by E , which is
also called the rotation of u. For a (cyclic) order σ = ⟨x1, . . . , xk⟩ of k elements, we use
σ = ⟨xk, . . . , x1⟩ to denote its reversal.

The Synchronized Planarity Problem. An instance is a tuple I = (G,P,Q, ψ), where
1. G = (P ∪Q,E) is a (loop-free) multi-graph with P-vertices P and Q-vertices Q,
2. Q is a partition of Q,
3. ψ is a mapping that assigns a rotation to each Q-vertex, and
4. P is a set of triples (u, v, φuv), where u and v are P-vertices of the same degree, φuv is a

bijection between their incident edges, and each P-vertex occurs at most once in P.
We call the triples ρ = (u, v, φuv) in P pipes. Pipes are not directed and we identify (u, v, φuv)
and (v, u, φvu) with φvu = φ−1

uv . We also define deg(ρ) = deg(u) = deg(v). If two P-vertices
are connected by a pipe, we call them matched; all other P- and Q-vertices are unmatched.

The planar embedding E of G satisfies the cell X ∈ Q if it is either E(v) = ψ(v) for all
v ∈ X or E(v) = ψ(v) for all v ∈ X. We say that the embedding satisfies the Q-constraints
if it satisfies all cells, that is, vertices in the same cell of the partition Q are consistently
oriented. The embedding E satisfies the pipe ρ = (u, v, φuv) if φuv(E(u)) = E(v), that is,
they have opposite rotations under the bijection φuv. We say that the embedding satisfies
the P-constraints if it satisfies all pipes. The embedding E is called valid if it satisfies the
P-constraints and the Q-constraints. The problem Synchronized Planarity asks whether
a given instance I = (G,P,Q, ψ) admits a valid embedding.

PQ-Trees and Embedding Trees. A PQ-tree represents a set of circular orders of its leaves
by partitioning its inner nodes into two classes: For Q-nodes the rotation of incident edges
is fixed up to reversal, for P-nodes, this order can be chosen arbitrarily. Rooted PQ-trees
have initially been studied by Booth and Lueker [9]. There is an equivalence between rooted
and unrooted PQ-trees [21], where the latter are also called PC-trees [25]. We thus do not
distinguish them and simply use the term PQ-trees. Note that a P-node with three or less
neighbors allows the same permutations as a Q-node of the same degree. We thus assume
P-nodes to have degree at least 4. We consider a PQ-tree trivial if it consists of a single
inner P-node (with at least four leaves). Otherwise, it consists of a single Q-node with at
least two leaves, or it contains at least two inner nodes, all of which have degree at least 3.



T. Bläsius, S. D. Fink, and I. Rutter 19:5

For a vertex of a planar biconnected graph, all rotations induced by planar embeddings
can efficiently be represented by a PQ-tree [9]. This PQ-tree is also called the embedding
tree of the respective node. In the context of Synchronized Planarity, we assume that
the embedding tree of a vertex does not allow rotations that would result in a Q-vertex v

having any other rotation than its default ordering ψ(v) or its reverse ψ(v). To ensure this,
we can subdivide each edge incident to v and connect each pair of two of the new nodes if the
edges they subdivide are consecutive in the cyclic order ψ(v) [17]. Note that this generates
a k-wheel with center v and that there are exactly two planar rotations of the center of a
wheel, which are the reverse of each other. We always generate the embedding trees based
on the graph where each Q-vertex in G is temporarily replaced with its respective wheel.

Connected Components. A separating k-set is a set of k vertices whose removal increases the
number of connected components. Separating 1-sets are called cut-vertices, while separating
2-sets are called separation pairs. A connected graph is biconnected if it does not have a
cut-vertex. A biconnected graph is triconnected if it does not have a separation pair. Maximal
biconnected subgraphs are called blocks. A vertex that is not a cut-vertex and thus resides
within an unique block is called block-vertex.

Hopcroft and Tarjan [20] define a graph decomposition into triconnected components,
also called SPQR-tree [4], where the components come in three shapes: bonds consist of two
pole vertices connected by multiple parallel edges, polygons consist of a simple cycle, and
rigids, whose embeddings are unique up to reflection. Each edge of these components is either
real, representing a single edge of the original graph, or virtual, representing a subgraph.

Every planar embedding of a biconnected planar graph can be obtained from an arbitrary
planar embedding by flipping its rigids and reordering the parallel edges in its bonds [20].
The decomposition can be computed in linear time [18] and can be used to compute the
embedding trees in linear time [6, Section 2.5].

Splits and Joins of Graphs and Embeddings. Let G = (V,E) be a graph. We call a
partition C = (X,Y ) of V into two disjoint cells a cut of G. The edges E(C) that have
their endpoints in different cells are called cut edges. The split of G at C = (X,Y ) is the
disjoint union of the two graphs obtained by contracting X and Y to a single vertex x and y,
respectively (keeping possible multi-edges); see Figure 1. Note that the edges incident to x
and y are exactly the cut edges, yielding a natural bijection φxy between them. Conversely,
given two graphs G1 = (V1, E1), G2 = (V2, E2) and vertices x ∈ V1, y ∈ V2 together with
a bijection φxy between their incident edges, their join along φxy is the graph G = (V,E),
where V = V1 ∪ V2 \ {x, y} and E contains all edges of E1 ∪E2 that are not incident to x or
y, and for each edge e = ux incident to x, E contains an edge uv, where v is the endpoint
of φxy(e) distinct from y; see Figure 1. Observe that split and join are inverse operations.

We say that a planar embedding E of a graph G respects a cut C = (X,Y ) if and only if
for a topological planar drawing Γ of G with embedding E there exists a closed curve γ such
that (i) γ separates X from Y , (ii) γ crosses each edge in E(C) in exactly one point, and
(iii) γ does not cross any edge in E \ E(C); see Figure 1. We say that γ represents C in Γ.

If E respects C, a split at C preserves E as follows. Let G1 and G2 be the graphs resulting
from splitting G at C and let x ∈ V1 and y ∈ V2 such that φxy identifies their incident edges.
Let Γ be a topological planar drawing with embedding E and let γ be a curve in Γ that
represents C in Γ. We obtain planar drawings Γ1 and Γ2 of G1 and G2 by contracting to
a single point the side of γ that contains V2 and V1, respectively. We denote by E1 and E2
the corresponding combinatorial embeddings of G1 and G2. Note that by construction for
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x y
V2V1

V
join

split
XY

γ

Figure 1 Joining and splitting two graphs at x ∈ V1 and y ∈ V2. The bijection φxy between their
incident edges is shown as follows: the two bold edges at the bottom are mapped to each other. The
other edges are mapped according to their order following the arrow upwards (i.e. clockwise for x

and counter-clockwise for y).

each vertex of V1 \ {x} the rotations in E and E1 coincide, and the same holds for vertices
of V2 \ {y} in E and E2. Moreover, the rotations E1(x) and E2(y) are determined by the
order in which the edges of E(C) cross γ, and therefore they are oppositely oriented, that is,
φxy(E1(x)) = E2(y). We call embeddings E1 and E2 with this property compatible with φxy.

Conversely, we can join arbitrary embeddings E1 of G1 and E2 of G2 that are compatible
with φxy by assuming that x and y lie on the outer face, removing x and y from the
embeddings, and connecting the resulting half-edges according to φxy. The result is a planar
embedding E where for each vertex v ∈ Vi \ {x, y} it is E(v) = Ei(v) for i = 1, 2.

▶ Lemma 1 (∗). Let G = (V,E) be a planar graph and let (X,Y ) be a cut of G such that X
and Y induce connected subgraphs of G. Then every planar embedding of G respects (X,Y ).

▶ Lemma 2 (∗). Every planar embedding of a bipartite graph G = (A∪B,E) respects (A,B).

3 The Synchronized Planarity Problem

We give an algorithm for solving Synchronized Planarity for graphs with n vertices
and m edges in O(m2) time. Without loss of generality, we assume that G has no isolated
vertices and thus m ∈ Ω(n). Furthermore, we assume the input graph G to be planar.

3.1 High-Level Algorithm
Our approach hinges on three main ingredients. The first are the three operations Encap-
sulateAndJoin, PropagatePQ, and SimplifyMatching, each of which can be applied to
pipes that satisfy certain conditions. If an operation is applicable, it produces an equivalent
instance I ′ of Synchronized Planarity in linear time. Secondly we show that if none of
the operations is applicable, then I has no pipes, and we give a simple linear-time algorithm
for computing a valid embedding in this case. The third ingredient is a non-negative potential
function ϕ for instances of Synchronized Planarity. We show that it is upper-bounded
by 2m, and that each of the three operations decreases it by at least 1.

Our algorithm is therefore extremely simple; namely, while the instance still has a pipe,
apply one of the operations to decrease the potential. Since the potential function is initially
bounded by 2m, at most 2m operations are applied, each taking O(m) time. We will show
that the resulting instance without pipes has size O(m2) and can be solved in linear time,
thus the total running time is O(m2).

Conversion of small-degree P-vertices. The main difficulty in Synchronized Planarity
stems from matched P-vertices. However, P-vertices of degree up to 3 behave like Q-vertices
in the sense that their rotations are unique up to reversal. Throughout this paper, we
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Figure 2 A matched cut-vertex (a) and the result of encapsulating it (b).

(a) (b) (c)

Figure 3 Two (encapsulated) matched cut-vertices (a). Depending on the mapping φ, any
bipartite graph can result from joining them. For example, the graph (b) can result, which is
isomorphic to the square grid graph shown in (c).

implicitly assume that P-vertices of degree less than 4 are converted into Q-vertices, also
converting a pipe of degree less than 4 into a Q-constraint; see the full version for additional
details. We therefore assume without loss of generality that P-vertices, and in particular
pipes, have degree at least 4.

3.2 The EncapsulateAndJoin Operation

The purpose of the EncapsulateAndJoin operation is to communicate embedding restrictions
between two matched cut-vertices in two steps: First we encapsulate the cut-vertices into
their own independent star components, also disconnecting their incident blocks from each
other. In the second step, we join the stars. Figures 2 and 3 show an example.

For an instance I = (G,P,Q, ψ) of Synchronized Planarity, let ρ = (u, v, φuv) be a
pipe matching two cut-vertices u, v of two (not necessarily distinct) connected components
Cu, Cv of G. Operation EncapsulateAndJoin (ρ, I) can be applied resulting in an instance
I ′ = (G′,P ′,Q′, ψ′) using the following two steps. We first preprocess both cut-vertices to
encapsulate them into their own separate star components. Let C1, . . . , Ck be the connected
components of Cu − u. We split Cu along the cuts (V (Ci), V \ V (Ci)) for i = 1, . . . , k.
We denote the vertices resulting from the split along (V (Ci), V \ V (Ci)) as ui and u′

i,
where ui results from contracting V \ V (Ci) and u′

i results from contracting V (Ci). Note
that, after all splits, u is the center of a star C ′

u whose ray vertices are the u′
i. We add

the pipes (ui, u
′
i, φuiu′

i
) for i = 1, . . . , k; see Figure 2. The same procedure is also applied

to v, resulting in an intermediate instance I∗. In the second step, we join the connected
components C ′

u and C ′
v at u and v along the mapping φuv of ρ into a component Cuv. We

also remove the pipe ρ from I∗; all other parts of the instance remain unchanged. Figure 3
shows a possible result of joining two stars.
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Figure 4 A block-vertex u matched with vertex v (a); the bijection φuv maps the bold edge of u

to the bold edge of v, the remaining edges are mapped according to their order, clockwise around
u and counter-clockwise around v. The result of applying PropagatePQ (u, I) (b). Note that the
second inserted tree T ′

u is mirrored with respect to Tu. Q-vertices and -nodes are drawn as squares
while P-vertices and -nodes are drawn as disks.

▶ Lemma 3. Applying EncapsulateAndJoin to a pipe ρ yields an equivalent instance in
O(deg(ρ)) time.

Proof. By Lemma 1, a valid embedding E of an instance I respects each of the cuts
(V (Ci), V \V (Ci)) for i = 1, . . . , k, yielding a planar embedding E∗ of I∗. By construction, it
is E∗(ui) = E∗(u′

i) for i = 1, . . . , k, that is, each new pipe (ui, u
′
i, φuiu′

i
) is satisfied and E∗ is

a valid embedding of I∗. Conversely, if E∗ is a valid embedding of I∗, we can join ui with u′
i

for i = 1, . . . , k to obtain a valid planar embedding E of I, as the pipe (ui, u
′
i, φuiu′

i
) ensures

that E∗ is compatible with φuiu′
i
. The same applies to Cv.

If E∗ is a valid embedding for I∗, it satisfies the pipe (u, v, φuv) and we can join the
embedding at u and v via φuv to obtain a planar embedding E ′ of G′. Since the rotations
of vertices different from u, v are unaffected, E ′ is valid for I ′. Conversely, assume that E ′

is a valid embedding for I ′. Note that joining two stars at their centers yields a bipartite
graph consisting of the rays of the former stars. Thus Cuv is bipartite, and by Lemma 2
every embedding respects the cut of the bipartition. Thus, we can split E ′ and obtain a valid
embedding of I∗.

As the operation affects exactly the edges incident to u and v and potentially creates a
new structure with size proportional to their number, its running time is linear in the degree
of the affected pipe. ◀

Observe that this operation replaces a pipe and two cut-vertices by smaller pipes and
smaller cut-vertices, respectively. Through multiple applications of EncapsulateAndJoin we
can thus step by step decrease the degree of cut-vertex-to-cut-vertex pipes, until there are
none left in the instance. Note that EncapsulateAndJoin can yield an arbitrary bipartite
component. If the component is non-planar, we abort and report a no-instance.

3.3 The PropagatePQ Operation

The operation PropagatePQ communicates embedding restrictions of a biconnected compo-
nent across a pipe. These restrictions are represented by the embedding tree of the matched
P-vertex of interest. Both endpoints of the pipe are replaced by copies of this tree. To ensure
that both copies are embedded in a compatible way, we synchronize their inner nodes using
pipes and Q-constraints; see Figure 4.
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For an instance I = (G,P,Q, ψ) of Synchronized Planarity, let u be a block-vertex
matched by a pipe ρ = (u, v, φuv). If the embedding tree Tu of u is non-trivial (i.e., it not
only consists of a single P-node), then the operation PropagatePQ (u, I) can be applied,
resulting in an instance I ′ = (G′,P ′,Q′, ψ′) as follows. We turn the PQ-tree Tu into a tree Tu

by interpreting Q-nodes as Q-vertices and P-nodes as P-vertices. To construct G′ from G, we
replace u with Tu by reconnecting the incident edges of u to the respective leaves of Tu. We
also replace v by a second copy T ′

u of Tu by reconnecting an edge e incident to v to the leaf
of T ′

u that corresponds to φvu(e). For a vertex α of Tu we denote the corresponding vertex of
T ′

u by α′. For an edge αβ of Tu we define φTuT ′
u
(αβ) = α′β′. For each Q-vertex α of Tu, we

define ψ′(α) according to the rotation of the corresponding Q-node in Tu. For the Q-vertex
α′ of T ′

u, we define ψ′(α′) = φTuT ′
u
(ψ′(α)). For all other Q-vertices of I, ψ′ coincides with

ψ. We define the partition Q′ = Q ∪ {{α, α′} | α is a Q-vertex of Tu}. For each P-vertex α
of Tu, we define a pipe ρα = (α, α′, φαα′) with φαα′(e) = φTuT ′

u
(e) for each edge e incident

to α. Finally, we define the matching P ′ = (P \ {ρ}) ∪ {ρα | α is a P-vertex of Tu}.

▶ Lemma 4 (∗). Applying PropagatePQ to a block-vertex u with a non-trivial embedding
tree yields an equivalent instance. If the embedding tree Tu is known, operation PropagatePQ
runs in O(deg(u)) time.

Note that the tree T ′
u inserted instead of v may not be compatible with the rotations of v.

In this case, the component becomes non-planar, potentially causing the later generation of
an embedding tree to fail. We can then immediately report a no-instance.

Observe that since we assume Tu to be non-trivial, the degrees of all P-vertices in Tu and
T ′

u are strictly smaller than the degree of u. Thus, by repeatedly applying PropagatePQ, we
eventually arrive at an equivalent instance where all matched block-vertices have a trivial
embedding tree. Also note that if Tu consists of a single Q-node, PropagatePQ effectively
replaces the affected pipe by two Q-vertices in the same partition. The case where Tu is
trivial and thus consists of a single P-node is handled by the next operation.

3.4 The SimplifyMatching Operation
The remaining operation is SimplifyMatching, which is used to resolve pipes where one
side has no restrictions to be communicated to the other side. This is the case when one of
the two matched vertices is a pole of a bond that allows arbitrary rotation. We distinguish
three cases: i) bonds where one pole can always mimic the rotation of the other, ii) bonds
where the pipe synchronizes one pole with the other (similar to the toroidal instances of
Fulek and Tóth [15]), and iii) bonds that link two distinct pipes.

For an instance I = (G,P,Q, ψ) of Synchronized Planarity, let u be a block-vertex
of G whose embedding tree is trivial and that is matched by a pipe ρ. Then, its embedding is
determined by exactly one triconnected component µ, which is a bond.3 Thus u is the pole
of bond µ, and we call the vertex v that is the other pole of µ the partner of u. If v is either
unmatched or a block-vertex with a trivial embedding tree, the operation SimplifyMatching
(u, I) can be applied, resulting in an instance I ′ = (G′,P ′,Q′, ψ′) as follows. Note that, due
to the temporary replacement of Q-vertices by wheels when computing the embedding trees,
v cannot be a Q-vertex, as that would make the PQ-tree of u contain a Q-node.

(i) If v is an unmatched P-vertex (Figure 5a), I ′ is obtained from I by removing ρ.

3 as a second bond would cause another P-node in the embedding tree, a rigid would cause a Q-node and
polygons do not affect the embedding trees [6, Section 2.5]
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Figure 5 The three cases of the SimplifyMatching operation. In Case i (a) and Case ii (b), the
pipe ρ is removed. In Case iii (c) the pipes ρ, ρ′ are replaced by pipe ρ⋆.

(ii) If ρ matches u with v, it connects the two poles of the bond µ (Figure 5b). Note that
the embedding trees of u and v both contain a P-node of the same degree representing
µ and the pipe now requires both u and v to have the same degree. Thus, as u has a
trivial embedding tree, v also has a trivial embedding tree. The rotation of the vertices
is thus exclusively determined by the embedding of the bond and there are bijections δu

and δv between the edges incident to u and v, respectively, and the virtual edges within
the bond. We now check that these bijections are compatible with the bijection φuv

given by the pipe. Let δvu = δ−1
u ◦ δv be a bijection between the edges incident to v and

the edges incident to u, and let π = φuv ◦ δvu be a permutation of the edges incident
to v. If all cycles of π have the same length, I ′ is obtained from I by removing ρ.4
Otherwise, I is an invalid instance and we set I ′ to a trivial no-instance.

(iii) If v is matched with a P-vertex v′ ̸= u via pipe ρ′ = (v, v′, φvv′), let u′ be the
other endpoint of ρ = (u, u′, φuu′). We remove ρ and ρ′ and add the new pipe
ρ∗ = (u′, v′, φu′v′) with φu′v′ = φvv′ ◦ δuv ◦ φu′u; see Figure 5c.

▶ Lemma 5 (∗). Applying SimplifyMatching to a block-vertex u with a trivial embedding
tree yields an equivalent instance in O(deg(u)) time.

3.5 Reduced and Pipe-Free Instances
With our exposition of the fundamental operations complete, we now study how to solve
instances where none of those operations can be applied. We call such instances reduced.

▶ Lemma 6. An instance is reduced if and only if it contains no pipes.

Proof. Obviously, a pipe-free instance is reduced. Conversely, consider a reduced instance I.
Assume, for the sake of contradiction, that I contains a pipe. We now show that this implies
that one of the operations is applicable, that is, I is not reduced.

Assume that I contains no matched cut-vertices and thus all matched vertices are block-
vertices. If there is a matched P-vertex with a non-trivial embedding tree, PropagatePQ can
be applied. Otherwise, all matched P-vertices are block-vertices with trivial embedding trees
and SimplifyMatching can be applied.

Now let u be a matched cut-vertex of maximum degree that is matched to a vertex v

by a pipe ρ. If v is also a cut-vertex, we can apply EncapsulateAndJoin. If v is a
block-vertex with a non-trivial embedding tree, we can apply PropagatePQ. Therefore, v
must be a block-vertex with a trivial embedding tree. Now we can apply SimplifyMatch-
ing, unless the partner pole v′ of v is a matched cut-vertex. This is however excluded,

4 If all cycles of π have the same length, π is order preserving and it is π(O) = O for any sequence O. See
[6, Lemma 2.2] or the proof to the following Lemma 5 in the full version for more details.
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since deg(u) = deg(v) < deg(v′), contradicting the maximality of deg(u). The last inequality
follows from the fact that deg(v) ≤ deg(v′) already holds in the block of G that contains v
and v′, but as v′ is a cut-vertex, it has at least one neighbor outside that block. ◀

To solve instances without pipes in linear time, note that a planar embedding of such
an instance is valid if and only if it satisfies the Q-constraints. As Q-vertices only have a
binary choice for their rotation, it is relatively easy to synchronize them via a 2-SAT formula.
Linear-time algorithms follow from, e.g., [6], and can also be obtained from techniques similar
to those used by Fulek and Tóth [15] for cubic graphs. For the sake of completeness, we
present a self-contained solution in the full version.

▶ Lemma 7 (∗). An instance of Synchronized Planarity without pipes can be solved in
O(m) time. A valid embedding can be computed in the same time, if it exists.

3.6 Finding a Reduced Instance
As mentioned above, we exhaustively apply the operations EncapsulateAndJoin, Propa-
gatePQ, and SimplifyMatching. We claim that this algorithm terminates and yields a
reduced instance after a polynomial number of steps. The key idea is that the operations
always make progress by either reducing the number of pipes, or by splitting pipes into pipes
of smaller degree. This suggests that, eventually, we arrive at an instance without pipes.
However, there are two caveats. First, the encapsulation in the first step of Encapsulate-
AndJoin creates new pipes and thus has the potential to undo progress. Second, the smaller
pipes resulting from splitting a pipe with PropagatePQ might cause further growth of the
instance, potentially causing a super-polynomial number of steps.

We resolve both issues by using a more fine-grained measure of progress in the form
of a potential function. To overcome the first issue, we show that for each application of
EncapsulateAndJoin, the progress that is undone in the first step is outweighed by the
progress made through the following join in the second step. Similarly, for the second issue,
we show that the sum of the parts is no bigger than the whole when splitting pipes.

As P-vertices of degree 3 or less are converted to Q-vertices (see Section 3.1), we use
deg*(u) = deg*(v) = deg*(ρ) = max{deg(x) − 3, 0} to denote the number of incident edges
that keep a P-vertex u (and also the other endpoint v of its pipe ρ = (u, v, φuv)) from
becoming converted to a Q-vertex. We also partition the set of all pipes P into the two cells
PCC and PB = P \ PCC , where PCC contains all pipes where both endpoints are cut-vertices.
We define the potential of an instance I as Φ(I) =

∑
ρ∈PB

deg*(ρ) +
∑

ρ∈PCC
(2 deg*(ρ) − 1).

We show that the operations always decrease this potential.

▶ Lemma 8 (∗). For an instance I = (G,P,Q, ψ) of Synchronized Planarity and an
instance I ′ = (G′,P ′,Q′, ψ′) that results from application of either EncapsulateAndJoin,
PropagatePQ or SimplifyMatching to I, the following three properties hold:

(i) The potential reduction ∆Φ = Φ(I) − Φ(I ′) is at least 1.
(ii) The number of nodes added to the graph satisfies ∆V = |V (G′)| − |V (G)| ≤ 2 · ∆Φ + 12.
(iii) If the operation replaces a connected component C by one or multiple connected compo-

nents, then each such component C ′ satisfies ∆E(C) = |E(C ′)| − |E(C)| ≤ 2 · ∆Φ.

Proof Sketch. We now analyze the effects of EncapsulateAndJoin on these three measures.
The operations PropagatePQ and SimplifyMatching are discussed in the full version.

Operation EncapsulateAndJoin (ρ, I) in the first step encapsulates both cut-vertices u, v
to their own star components. For each block incident to u, this introduces two new vertices
that are connected by a new pipe. Let d1, . . . , dk be the degrees of the k ≥ 2 ray vertices of
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u after the encapsulation. As one end of the added pipes is a block-vertex, the potential is
increased by

∑k
i=1 max{di − 3, 0}. Likewise, the pipes of the k′ rays with degrees d′

1, . . . , d
′
k′

around v increase the potential by
∑k′

i=1 max{d′
i−3, 0}. Using deg(ρ) =

∑k
i=1 di =

∑k′

i=1 d
′
i =

D ≥ 3 it is deg*(ρ) = max{D− 3, 0} = D− 3. In the second step, removing ρ connecting two
cut-vertices together with its endpoints reduces the potential by 2 deg*(ρ) − 1 and we thus
get ∆Φ = 2 · (D − 3) − 1 −

∑k
i=1 max{di − 3, 0} −

∑k′

i=1 max{d′
i − 3, 0}. In the full version,

we show that this yields ∆Φ ≥ 1 as claimed by (i). As the encapsulation generates two
vertices for each ray and the join removes two vertices, we have ∆V = 2k + 2k′ − 2. We also
show that claim (ii) holds as ∆V ≤ 2 · (∆Φ + 6). In the first step of EncapsulateAndJoin,
two new components with deg(u) = deg(v) edges each are added, which are then combined
in the second step, yielding a new component with

∑k
i=1 di edges. This is no larger than the

components of u or v as required for (iii). ◀

With this lemma, we know that each step decreases the potential by at least 1 with-
out growing the graph too much. As each vertex contributes at most twice its degree,
initially Φ(I) ≤ 2m. This can then be used to bound the size of instances resulting from
applying multiple operations consecutively and finally to bound the time required to find a
solution for an instance.

▶ Theorem 9 (∗). Synchronized Planarity can be solved in O(m2) time.

Proof Sketch. By Lemma 8 the potential function decreases with each applied operation.
As initially Φ(I) ≤ 2m, a reduced instance I ′ is reached after k ≤ 2m operations. It can be
shown that each connected component of I ′ has O(m) edges, allowing an embedding tree to
be computed in O(m) time. Each of the k operations runs in linear time once the PQ-tree it
requires is available. In total, it thus takes O(m2) time to reach a reduced instance. As its
size is also in O(m2), Lemma 7 can be applied to find a solution in O(m2) time. ◀

4 Conclusion

We have given a quadratic-time algorithm for Synchronized Planarity, which improves
the previous O(n8)-time algorithm for the linear-time equivalent problem Atomic Embed-
dability [15]. Similar to Goldberg and Tarjan’s push-relabel algorithm, it relies on few and
simple operations that can be applied pretty much in an arbitrary order. This highlights
where and how progress is made and thereby clearly exposes key ideas that also underlie the
algorithm for Atomic Embeddability. For a direct comparison of the approaches, we refer
to the full version.

The applications of Synchronized Planarity include solving Clustered Planarity,
Atomic Embeddability, Connected SEFE and Partially PQ-constrained Pla-
narity in quadratic time, thanks to linear-time reductions to Synchronized Planarity
for all of them described in the full version. This improves over the previously fastest
algorithms via the O(n8)-time algorithm for Atomic Embeddability. In the case of Con-
nected SEFE the reduction used in [15] includes a quadratic blowup and therefore yields
an O(n16)-algorithm. Our direct linear-time reduction leads to a quadratic algorithm.
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Abstract
Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One
way to deal with its computational hardness, is to trade the qualitative performance of an algorithm
(allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is
a gap between theory and practice when it comes to understanding this tradeoff. On the one hand,
it is known that it is NP-hard to approximate a minimum vertex cover within a factor of

√
2. On

the other hand, a simple greedy algorithm yields close to optimal approximations in practice.
A promising approach towards understanding this discrepancy is to recognize the differences

between theoretical worst-case instances and real-world networks. Following this direction, we
close the gap between theory and practice by providing an algorithm that efficiently computes
nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that
closely resembles real-world networks in terms of degree distribution, clustering, and the small-world
property. More precisely, our algorithm computes a (1 + o(1))-approximation, asymptotically almost
surely, and has a running time of O(m log(n)).

The proposed algorithm is an adaption of the successful greedy approach, enhanced with a
procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to
introduce a parameter that can be used to tune the tradeoff between approximation performance and
running time. Our empirical evaluation on real-world networks shows that this allows for improving
over the near-optimal results of the greedy approach.
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1 Introduction

A vertex cover of a graph is a subset of the vertices that leaves the graph edgeless upon
deletion. Since the problem of finding a smallest vertex cover is NP-complete [19], there are
probably no algorithms that solve it efficiently. Nevertheless, the problem is highly relevant
due to its applications in computational biology [1], scheduling [13], and internet security [14].
Therefore, there is an ongoing effort in exploring methods that can be used in practice [2, 3],
and while they often work well, they still cannot guarantee efficient running times.
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A commonly used approach to overcoming this issue are approximation algorithms. There,
the idea is to settle for a near-optimal solution while guaranteeing an efficient running time.
For the vertex cover problem, a simple greedy approach computes an approximation in linear
time by iteratively adding the vertex with the largest degree to the cover and removing it
from the graph. In general graphs, this algorithm, which we call standard greedy, cannot
guarantee a better approximation ratio than log(n), i.e., there are graphs where it produces
a vertex cover whose size exceeds the one of an optimum by a factor of log(n). This can
be improved to a 2-approximation using a simple linear-time algorithm. The best known
polynomial time approximation reduces the factor to 2 − Θ(log(n)−1/2) [18]. However, there
is reason to believe that it is NP-hard to approximate an optimal vertex cover within a factor
of 2 − ε for all ε > 0 [20] and it is proven that finding a

√
2-approximation is NP-hard [26].

Therefore, it is very surprising that the standard greedy algorithm not only beats the
2-approximation on autonomous systems graphs like the internet [25], it also performs well
on many real-world networks, obtaining approximation ratios that are very close to 1 [11].
So the theoretical bounds do not match what is observed in practice. One approach to
explaining this discrepancy is to consider the differences between the examined instances.
Theoretical bounds are often obtained by designing worst-case instances. However, real-world
networks rarely resemble the worst case. More realistic statements can be obtained by making
assumptions about the solution space [4, 9], or by restricting the analysis to networks with
properties that are observed in the real world.

Many real networks, like social networks, communication networks, or protein-interaction
networks, are considered to be scale-free. Such graphs feature a power-law degree distribution
(only few vertices have high degree, while many vertices have low degree), high clustering
(two vertices are likely to be adjacent if they have a common neighbor), and a small diameter.

Previous efforts to obtain more realistic insights into the approximability of the vertex cover
problem have focused on networks that feature only one of these properties, namely a power-
law degree distribution [10, 16, 28]. With this approach, guarantees for the approximation
factor of the standard greedy algorithm were improved to a constant, compared to log(n)
on general graphs [10]. Moreover, it was shown that it is possible to compute an expected
(2 − ε)-approximation for a constant ε, in polynomial time on such networks [16] and this was
later improved to about 1.7 depending on properties of the distribution [28]. However, it was
also shown that even on graphs that have a power-law degree distribution, the vertex cover
problem remains NP-hard to approximate within some constant factor [10]. This indicates,
that focusing on networks that only feature a power-law degree distribution, is not sufficient
to explain why vertex cover can be approximated so well in practice.

The goal of this paper is to close this gap between theory and practice, by considering a
random graph model that features all of the three mentioned properties of scale-free networks.
The hyperbolic random graph model was introduced by Krioukov et al. [21] and it was shown
that the graphs generated by the model have a power-law degree distribution and high
clustering [17], as well as a small diameter [24]. Consequently, they are good representations
of many real-world networks [8, 15, 27]. Additionally, the model is conceptually simple,
making it accessible to mathematical analysis. Therefore, it has proven to be a useful
framework to theoretically explain why algorithms work well in practice [6]. In fact, it has
been shown that the vertex cover problem can be solved exactly in polynomial time on
hyperbolic random graphs, with high probability [5]. However, we note that the degree of
the polynomial is unknown and on large networks even quadratic algorithms are not efficient
enough to obtain results in a reasonable amount of time.
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In this paper, we link the success of the standard greedy approach to structural properties
of hyperbolic random graphs, identify the parts of the graph where it does not behave
optimally, and use these insights to derive a new approximation algorithm. On hyperbolic
random graphs, this algorithm achieves an approximation ratio of 1 + o(1), asymptotically
almost surely, and maintains an efficient running time of O(m log(n)), where n and m denote
the number of vertices and edges in the graph, respectively. Since the average degree of
hyperbolic random graphs is constant [17], this implies a quasi-linear running time on such
networks. Moreover, we introduce a parameter that can be used to tune the tradeoff between
approximation quality and running time of the algorithm, facilitating an improvement over
the standard greedy approach. While our algorithm depends on the coordinates of the vertices
in the hyperbolic plane, we propose an adaption of it that is oblivious to the underlying
geometry and compare its approximation performance to the standard greedy algorithm on a
selection of real-world networks. On average our algorithm reduces the error of the standard
greedy approach to less than 50%. The evaluation of our experiments can be found in the
full version of the paper [7].

2 Preliminaries

Let G = (V, E) be an undirected graph. We denote the number of vertices and edges in G

with n and m, respectively. The number of vertices in a set S ⊆ V is denoted by |S|. The
neighborhood of a vertex v is defined as N(v) = {w ∈ V | {v, w} ∈ E}. The size of the
neighborhood, called the degree of v, is denoted by deg(v) = |N(v)|. For a subset S ⊆ V , we
use G[S] to denote the induced subgraph of G obtained by removing all vertices in V \ S.

The Hyperbolic Plane. After choosing a designated origin O in the two-dimensional hyper-
bolic plane, together with a reference ray starting at O, a point p is uniquely identified by its
radius r(p), denoting the hyperbolic distance to O, and its angle (or angular coordinate) φ(p),
denoting the angular distance between the reference ray and the line through p and O. The
hyperbolic distance between two points p and q is given by

dist(p, q) = acosh(cosh(r(p)) cosh(r(q)) − sinh(r(p)) sinh(r(q)) cos(∆φ(p, q))),

where cosh(x) = (ex + e−x)/2, sinh(x) = (ex − e−x)/2 (both growing as ex/2 ± o(1)), and
∆φ(p, q) = π − |π − |φ(p) − φ(q)|| denotes the angular distance between p and q. If not stated
otherwise, we assume that computations on angles are performed modulo 2π.

In the hyperbolic plane a disk of radius r has an area of 2π(cosh(r)−1) and circumference
2π sinh(r). Thus, the area and the circumference of such a disk grow exponentially with its
radius. In contrast, this growth is polynomial in Euclidean space.

Hyperbolic Random Graphs. Hyperbolic random graphs are obtained by distributing n

points independently and uniformly at random within a disk of radius R and connecting
any two of them if and only if their hyperbolic distance is at most R. See Figure 1 (left)
for an example. The disk radius R (which matches the connection threshold) is given by
R = 2 log(n) + C, where the constant C ∈ R depends on the average degree of the network,
as well as the power-law exponent β = 2α + 1 (for α ∈ (1/2, 1)). The coordinates of the
vertices are drawn as follows. For vertex v the angular coordinate, denoted by φ(v), is drawn
uniformly at random from [0, 2π) and the radius of v, denoted by r(v), is sampled according
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to the probability density function α sinh(αr)/(cosh(αR) − 1) for r ∈ [0, R]. Thus,

f(r, φ) = 1
2π

α sinh(αr)
cosh(αR) − 1 = α

2π
e−α(R−r)(1 + Θ(e−αR − e−2αr)) (1)

is their joint distribution function for r ∈ [0, R]. For r > R, f(r, φ) = 0.
We denote areas in the hyperbolic disk with calligraphic capital letters. The set of vertices

in an area A is denoted by V (A). The probability for a given vertex to lie in A is given by
its measure µ(A) =

∫
A f(r, φ) dφ dr. The hyperbolic distance between two vertices u and v

increases with increasing angular distance between them. The maximum angular distance
such that they are still connected by an edge is bounded by [17, Lemma 6]

θ(r(u), r(v)) = 2e(R−r(u)−r(v))/2(1 + Θ(eR−r(u)−r(v))). (2)

Hyperbolic Random Graphs with an Expected Number of Vertices. While the positions of
the vertices in a hyperbolic random graph are sampled independently of each other, stochastic
dependencies are introduced once the positions of some vertices are known. For example,
if all vertices lie in an area A, the probability for a vertex to lie outside of A is 0. When
these dependencies are hard to deal with (which we mention explicitely), we resort to a
slightly different hyperbolic random graph model, where the positions are sampled using an
inhomogeneous Poisson point process. The result of this process is a hyperbolic random graph
with n vertices in expectation. There, the number of vertices in disjoint areas are independent
random variables. Probabilistic statements for this model can then be translated back to
the original hyperbolic random graph model with a small penalty in certainty. A detailed
explanation can be found in the full version of the paper [7].

Probabilities. Since we are analyzing a random graph model, our results are of probabilistic
nature. To obtain meaningful statements, we show that they hold with high probability (with
probability 1 − O(n−1)), or asymptotically almost surely (with probability 1 − o(1)). The
following Chernoff bound can be used to show that certain events occur with high probability.

▶ Theorem 1 (Chernoff Bound [12, Theorem 1.1]). Let X1, . . . , Xn be independent random
variables with Xi ∈ {0, 1} and let X be their sum. Then, for ε ∈ (0, 1)

Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2/3·E[X].

Usually, it suffices to show that a random variable does not exceed an upper bound. The
following corollary shows that a bound on the expected value suffices to obtain concentration.

▶ Corollary 2. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}, let X be
their sum, and let f(n) be an upper bound on E[X]. Then, for ε ∈ (0, 1)

Pr[X ≥ (1 + ε)f(n)] ≤ e−ε2/3·f(n).

Moreover, the following lemma can often be used to simplify error terms.

▶ Lemma 3 ([22, Lemma 2.3]). Let x ∈ R with x = ±o(1). Then, 1/(1 + x) = 1 − Θ(x).
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3 An Improved Greedy Algorithm

Previous insights about solving the vertex cover problem on hyperbolic random graphs are
based on the fact that the dominance reduction rule reduces the graph to a remainder of
simple structure [5]. This rule states that a vertex u can be safely added to the vertex cover
(and, thus, be removed from the graph) if it dominates at least one other vertex, i.e., if there
exists a neighbor v ∈ N(u) such that all neighbors of v are also neighbors of u.

On hyperbolic random graphs, vertices near the center of the disk dominate with high
probability [5, Lemma 5]. Therefore, it is not surprising that the standard greedy algorithm
that computes a vertex cover by repeatedly taking the vertex with the largest degree achieves
good approximation rates on such networks: Since high degree vertices are near the disk
center, the algorithm essentially favors vertices that are likely to dominate and can be safely
added to the vertex cover anyway.

On the other hand, after (safely) removing high-degree vertices, the remaining vertices all
have similar (small) degree, meaning the standard greedy algorithm basically picks the vertices
at random. Thus, in order to improve the approximation performance of the algorithm, one
has to improve on the parts of the graph that contain the low-degree vertices. Based on this
insight, we derive a new greedy algorithm that achieves close to optimal approximation rates
efficiently. More formally, we prove the following main theorem.

▶ Theorem 4. Let G be a hyperbolic random graph on n vertices. Given the radii of the
vertices, an approximate vertex cover of G can be computed in time O(m log(n)), such that
the approximation ratio is (1 + o(1)) asymptotically almost surely.

Consider the following greedy algorithm that computes an approximation of a minimum
vertex cover on hyperbolic random graphs. We iterate the vertices in order of increasing
radius. Each encountered vertex v is added to the cover and removed from the graph. After
each step, we then identify the connected components of size at most τ log log(n) in the
remainder of the graph, solve them optimally, and remove them from the graph as well. The
constant τ > 0 can be used to adjust the tradeoff between quality and running time.

This algorithm determines the order in which the vertices are processed based on their
radii, which are not known for real-world networks. However, in hyperbolic random graphs,
there is a strong correlation between the radius of a vertex and its degree [17]. Therefore,
we can mimic the considered greedy strategy by removing vertices with decreasing degree
instead. Then, the above algorithm represents an adaption of the standard greedy algorithm:
Instead of greedily adding vertices with decreasing degree until all remaining vertices are
isolated, we increase the quality of the approximation by solving small components exactly.

4 Approximation Performance

To analyze the performance of the above algorithm, we utilize structural properties of
hyperbolic random graphs. While the power-law degree distribution and high clustering are
modelled explicitly using the underlying geometry, other properties of the model, like the
logarithmic diameter, emerge as a natural consequence of the first two. Our analysis is based
on another emerging property: Hyperbolic random graphs decompose into small components
when removing high-degree vertices.

More formally, we proceed as follows. We compute the size of the vertex cover obtained
using the above algorithm, by partitioning the vertices of the graph into two sets: VGreedy
and VExact, denoting the vertices that were added greedily and the ones contained in small
separated components that were solved exactly, respectively (see Figure 1 (left)). Clearly, we
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γ

ρ

Figure 1 (Left) A hyperbolic random graph with 1942 vertices, average degree 7.7, and power-law
exponent 2.6. The vertex sets VGreedy and VExact are shown in red and blue, respectively. The
dashed line shows a possible threshold radius ρ. (Right) The disk is divided into sectors of equal
width γ. Consecutive non-empty sectors form a run (grey). Narrow runs (light grey) consist of few
sectors. Wide runs (dark grey) consist of many sectors. Each dark grey sector is a widening sector.

obtain a valid vertex cover for the whole graph, if we take all vertices in VGreedy together
with a vertex cover CExact of G[VExact]. Then, the approximation ratio is given by the
quotient δ = (|VGreedy| + |CExact|)/|COPT|, where COPT denotes an optimal solution. Since
all components in G[VExact] are solved optimally and since any minimum vertex cover for
the whole graph induces a vertex cover on G[V ′] for any vertex subset V ′ ⊆ V , it holds that
|CExact| ≤ |COPT|. Consequently, it suffices to show that |VGreedy| ∈ o(|COPT|) in order to
obtain the claimed approximation factor of 1 + o(1).

To bound the size of VGreedy, we identify a time during the execution of the algorithm at
which only few vertices were added greedily, yet, the majority of the vertices were contained
in small separated components (and were, therefore, part of VExact), and only few vertices
remain to be added greedily. Since the algorithm processes the vertices by increasing radius,
this point in time can be translated to a threshold radius ρ in the hyperbolic disk (see
Figure 1). Therefore, we divide the hyperbolic disk into two regions: an inner disk and an
outer band, containing vertices with radii below and above ρ, respectively. The threshold ρ

is chosen such that a hyperbolic random graph decomposes into small components after
removing the inner disk. When adding the first vertex from the outer band, greedily, we can
assume that the inner disk is empty (since vertices of smaller radii were chosen before or
removed as part of a small component). At this point, the majority of the vertices in the
outer band were contained in small components, which have been solved exactly. Therefore,
we obtain a valid upper bound on |VGreedy|, by counting the total number of vertices in
the inner disk and adding the number of vertices in the outer band that are contained in
components that are not solved exactly (i.e., components whose size exceeds τ log log(n)). In
the following, we show that both numbers are sublinear in n with high probability. Together
with the fact that an optimal vertex cover on hyperbolic random graphs, asymptotically
almost surely, contains Ω(n) vertices [10], this implies |VGreedy| ∈ o(|COPT|).

The main contribution of our analysis is the identification of small components in the
outer band, which is done by discretizing it into sectors, such that an edge cannot extend
beyond an empty sector (see Figure 1 (right)). The foundation of this analysis is the delicate
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interplay between the angular width γ of these sectors and the threshold ρ that defines the
outer band. Recall that ρ is used to represent the time in the execution of the algorithm at
which the graph has been decomposed into small components. For our analysis we assume
that all vertices seen before this point (all vertices in the inner disk) were added greedily.
Therefore, if we choose ρ too large, we overestimate the actual number of greedily added
vertices by too much. As a consequence, we want to choose ρ as small as possible. However,
this conflicts our intentions for the choice of γ and its impact on ρ. Recall that the maximum
angular distance between two vertices such that they are adjacent increases with decreasing
radii (Equation (2)). Thus, in order to avoid edges that extend beyond an angular width
of γ, we need to ensure that the radii of the vertices in the outer band are sufficiently large.
That is, decreasing γ requires increasing ρ. However, we want to make γ as small as possible,
in order to get a finer granularity in the discretization and, with that, a more accurate
analysis of the component structure in the outer band. Therefore, γ and ρ need to be chosen
such that the inner disk does not become too large, while ensuring that the discretization is
granular enough to accurately detect components whose size depends on τ and n. To this
end, we adjust the angular width of the sectors using a function γ(n, τ), which is defined as

γ(n, τ) = log(τ log(2)(n)/(2 log(3)(n)2)),

where log(i)(n) denotes iteratively applying the log-function i times on n (e.g., log(2)(n) =
log log(n)), and set

ρ = R − log(π/2 · eC/2γ(n, τ)),

where R = 2 log(n) + C is the radius of the hyperbolic disk.
In the following, we first show that the number of vertices in the inner disk is sublinear,

with high probability, before analyzing the component structure in the outer band. This
is mainly done by considering the random variables that denote the numbers of vertices in
certain areas of the disk. We give proofs for their expected values throughout the paper.
Tight concentration bounds can then be obtained using the previously mentioned Chernoff
bound or, when the considered random variables are more involved, the method of (typical)
bounded differences. These proofs can be found in the full version of the paper [7].

4.1 The Inner Disk
The inner disk I contains all vertices whose radius is below the threshold ρ. The number of
them that are added to the cover greedily is bounded by the number of all vertices in I.

▶ Lemma 5. Let G be a hyperbolic random graph on n vertices with power-law exponent
β = 2α + 1. With high probability, the number of vertices in I is in O(n · γ(n, τ)−α).

Proof. We start by computing the expected number of vertices in I and show concentration
afterwards. To this end, we first compute the measure µ(I). The measure of a disk of radius r

that is centered at the origin is given by e−α(R−r)(1 + o(1)) [17, Lemma 3.2]. Consequently,
the expected number of vertices in I is

E[|V (I)|] = nµ(I) = O(ne−α(R−ρ)) = O(ne−α log(π/2·eC/2γ(n,τ))) = O
(
n · γ(n, τ)−α

)
.

Since γ(n, τ) = O(log(3)(n)), this bound on E[|V (I)|] is ω(log(n)), and we can apply the
Chernoff bound in Corollary 2 to conclude that |V (I)| = O

(
n · γ(n, τ)−α

)
holds with

probability 1 − O(n−c) for any c > 0. ◀
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Since γ(n, τ) = ω(1), Lemma 5 shows that, with high probability, the number of vertices
that are greedily added to the vertex cover in the inner disk is sublinear. Once the inner disk
has been processed and removed, the graph has been decomposed into small components
and the ones of size at most τ log log(n) have already been solved exactly. The remaining
vertices that are now added greedily belong to large components in the outer band.

4.2 The Outer Band
To identify the vertices in the outer band that are contained in components whose size exceeds
τ log log(n), we divide it into sectors of angular width γ = θ(ρ, ρ) = π · γ(n, τ)/n · (1 + o(1)),
where θ(ρ, ρ) denotes the maximum angular distance between two vertices with radii ρ to
be adjacent (see Equation (2)). This division is depicted in Figure 1 (right). The choice
of γ (combined with the choice of ρ) has the effect that an edge between two vertices in the
outer band cannot extend beyond an empty sector, i.e., a sector that does not contain any
vertices, allowing us to use empty sectors as delimiters between components. To this end, we
introduce the notion of runs, which are maximal sequences of non-empty sectors (grey in
Figure 1 (right)). While a run can contain multiple components, the number of vertices in it
denotes an upper bound on the combined sizes of the components that it contains.

To show that there are only few vertices in components whose size exceeds τ log log(n),
we bound the number of vertices in runs that contain more than τ log log(n) vertices. For a
given run this can happen for two reasons. First, it may contain many vertices if its angular
interval is too large, i.e., it consists of too many sectors. This is unlikely, since the sectors
are chosen sufficiently small, such that the probability for a given one to be empty is high.
Second, while the angular width of the run is not too large, it contains too many vertices
for its size. However, the vertices of the graph are distributed uniformly at random in the
disk, making it unlikely that too many vertices are sampled into such a small area. To
formalize this, we introduce a threshold w and distinguish between two types of runs: A
wide run contains more than w sectors, while a narrow run contains at most w sectors. The
threshold w is chosen such that the probabilities for a run to be wide and for a narrow run to
contain more than τ log log(n) vertices are small. To this end, we set w = eγ(n,τ) · log(3)(n).

In the following, we first bound the number of vertices in wide runs. Afterwards, we
consider narrow runs that contain more than τ log log(n) vertices. Together, this gives an
upper bound on the number of vertices that are added greedily in the outer band.

4.2.1 Wide Runs
We refer to a sector that contributes to a wide run as a widening sector. In the following,
we bound the number of vertices in all wide runs in three steps. First, we determine the
expected number of all widening sectors. Second, based on the expected value, we show that
the number of widening sectors is small, with high probability. Finally, we make use of the
fact that the area of the disk covered by widening sectors is small, to show that the number
of vertices sampled into the corresponding area is sublinear, with high probability.

Expected Number of Widening Sectors. Let n′ denote the total number of sectors and
let S1, . . . , Sn′ be the corresponding sequence. For each sector Sk, we define the random
variable Sk indicating whether Sk contains any vertices, i.e., Sk = 0 if Sk is empty and Sk = 1
otherwise. The sectors in the disk are then represented by a circular sequence of indicator
random variables S1, . . . , Sn′ , and we are interested in the random variable W that denotes
the sum of all runs of 1s that are longer than w. In order to compute E[W ], we first compute
the total number of sectors, as well as the probability for a sector to be empty or non-empty.
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▶ Lemma 6. Let G be a hyperbolic random graph on n vertices. Then, the number of sectors
of width γ = θ(ρ, ρ) is n′ = 2n/γ(n, τ) · (1 ± o(1)).

Proof. Since all sectors have equal angular width γ = θ(ρ, ρ), we can use Equation (2) to
compute the total number of sectors as n′ = 2π/θ(ρ, ρ) = πe−R/2+ρ(1 ± Θ(eR−2ρ))−1. By
substituting ρ = R − log(π/2 · eC/2γ(n, τ)) and R = 2 log(n) + C, we obtain

n′ = πeR/2

π/2 · eC/2γ(n, τ)
(1 ± Θ(e−Rγ(n, τ)2))−1 = 2n/γ(n, τ) · (1 ± Θ((γ(n, τ)/n)2))−1.

It remains to simplify the error term. Note that γ(n, τ) = O(log(3)(n)). Consequently, the
error term is equivalent to (1 ± o(1))−1. Finally, it holds that 1/(1 + x) = 1 − Θ(x) is valid
for x = ±o(1), according to Lemma 3. ◀

▶ Lemma 7. Let G be a hyperbolic random graph on n vertices and let S be a sector of
angular width γ = θ(ρ, ρ). For sufficiently large n, the probability that S contains at least
one vertex is bounded by

1 − e−γ(n,τ)/4 ≤ Pr[V (S) ̸= ∅] ≤ e
−
(

e−γ(n,τ)
)
.

We are now ready to bound the expected number of widening sectors, i.e., sectors that
are part of wide runs. To this end, we aim to apply the following lemma.

▶ Lemma 8 ([23, Proposition 4.31]). Let S1, . . . , Sn′ denote a circular sequence of independent
indicator random variables, such that Pr[Sk = 1] = p and Pr[Sk = 0] = 1 − p = q, for all
k ∈ {1, . . . , n′}. Furthermore, let W denote the sum of the lengths of all success runs of
length at least w ≤ n′. Then, E[W ] = n′pw(wq + p).

We note that the indicator random variables S1, . . . , S′
n are not independent on hyperbolic

random graphs. To overcome this issue, we compute the expected value of W on hyperbolic
random graphs with n vertices in expectation (see Section 2) and subsequently derive a
probabilistic bound on W for hyperbolic random graphs.

▶ Lemma 9. Let G be a hyperbolic random graph with n vertices in expectation and let W

denote the number of widening sectors. Then,

E[W ] ≤ 21/4 · τ3/4 · n

γ(n, τ) · log(2)(n)1/4 · log(3)(n)1/2
(1 ± o(1)).

Proof. A widening sector is part of a run of more than w = eγ(n,τ) · log(3)(n) consecutive non-
empty sectors. To compute the expected number of widening sectors, we apply Lemma 8. To
this end, we use Lemma 6 to bound the total number of sectors n′ and bound the probability
p = Pr[Sk = 1] (i.e., the probability that sector Sk is not empty) as p ≤ exp(−(e−γ(n,τ))), as

1 The original statement has been adapted to fit our notation. We use n′, w, and W to denote the total
number of random variables, the threshold for long runs, and the sum of their lengths, respectively.
They were previously denoted by n, k, and S, respectively. In the original statement s = 0 indicates that
the variables are distributed independently and identically, and c indicates that the sequence is circular.
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well as the complementary probability q = 1 − p ≤ e−γ(n,τ)/4 using Lemma 7. We obtain

E[W ] = n′p(w+1)((w + 1)q + p)

≤ 2n

γ(n, τ) (1 ± o(1)) · e
−
(

(w+1)e−γ(n,τ)
)

·
(

(w + 1)e− γ(n,τ)
4 + 1

)
≤ 2n

γ(n, τ)e

(
−eγ(n,τ) log(3)(n)e−γ(n,τ)

) (
(eγ(n,τ) log(3)(n) + 1)e− γ(n,τ)

4 + 1
)

(1 ± o(1))

= 2ne3/4·γ(n,τ) log(3)(n)
γ(n, τ) · log(2)(n)

(
1 + 1

eγ(n,τ) log(3)(n)
+ 1

e3/4·γ(n,τ) log(3)(n)

)
(1 ± o(1)).

Since γ(n, τ) = ω(1), the first error term can be simplified as (1 + o(1)). Additionally, we
can substitute γ(n, τ) = log(τ log(2)(n)/(2 log(3)(n)2)) to obtain

E[W ] ≤ 21/4 τ3/4 · n · log(3)(n)
γ(n, τ) · log(2)(n)

· log(2)(n)3/4

log(3)(n)3/2
· (1 ± o(1)).

Further simplification then yields the claim. ◀

Concentration Bound on the Number of Widening Sectors. Lemma 9 bounds the expected
number of widening sectors and it remains to show that this bound holds with high probability.
To this end, we first determine under which conditions the sum of long success runs in a
circular sequence of indicator random variables can be bounded with high probability in
general. Afterwards, we show that these conditions are met for our application.

▶ Lemma 10. Let S1, . . . , Sn′ denote a circular sequence of independent indicator random
variables and let W denote the sum of the lengths of all success runs of length at least
1 ≤ w ≤ n′. If g(n′) = ω(w

√
n′ log(n′)) is an upper bound on E[W ], then W = O(g(n′))

holds with probability 1 − O((n′)−c) for any constant c.

▶ Lemma 11. Let G be a hyperbolic random graph on n vertices. Then, with probability
1 − O(n−c) for any constant c > 0, the number of widening sectors W is bounded by

W = O

(
τ3/4 · n

γ(n, τ) · log(2)(n)1/4 · log(3)(n)1/2

)
.

Number of Vertices in Wide Runs. Let W denote the area of the disk covered by all
widening sectors. By Lemma 11 the total number of widening sectors is small, with high
probability. As a consequence, W is small as well and we can derive that the size of the vertex
set V (W) containing all vertices in all widening sectors is sublinear with high probability.

▶ Lemma 12. Let G be a hyperbolic random graph on n vertices. Then, with high probability,
the number of vertices in wide runs is bounded by

|V (W)| = O

(
τ3/4 · n

log(2)(n)1/4 · log(3)(n)1/2

)
.

It remains to bound the number of vertices in large components contained in narrow runs.
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4.2.2 Narrow Runs
In the following, we differentiate between small and large narrow runs, containing at most
and more than τ log log(n) vertices, respectively. To obtain an upper bound on the number N

of vertices in all large narrow runs, we determine the area N of the disk that is covered by
them. We start by computing the expected number of vertices contained in a single narrow
run from which we can derive that the probability for a narrow run to be large is low.

Expected Number of Vertices in Large Narrow Runs.

▶ Lemma 13. Let G be a hyperbolic random graph on n vertices and let R be a narrow run.
Then, E[|V (R)|] ≤ 1/2 · eγ(n,τ) log(3)(n)γ(n, τ)(1 ± o(1)).

Proof. A narrow run consists of at most w = eγ(n,τ) log(3)(n) sectors. Since the angular
coordinates of the vertices are distributed uniformly at random and since we partitioned the
disk into n′ disjoint sectors of equal width, we can derive an upper bound on the expected
number of vertices in R as E[|V (R)|] ≤ nw/n′. As n′ = 2n/γ(n, τ)(1 ± o(1)) according to
Lemma 6, we have

E[|V (R)|] ≤ 1/2 · eγ(n,τ) log(3)(n)γ(n, τ)(1 ± o(1))−1.

Since 1/(1 + x) = 1 − Θ(x) for x = ±o(1) (Lemma 3), we obtain the claimed bound. ◀

Using this upper bound, we can bound the probability that the number of vertices in a
narrow run exceeds the threshold τ log log(n) by a certain amount.

▶ Lemma 14. Let G be a hyperbolic random graph on n vertices and let R be a narrow run.
For k > τ log log(n) and n large enough, it holds that Pr[|V (R)| = k] ≤ e−k/18.

We are now ready to compute the expected number of vertices in all large narrow runs.

▶ Lemma 15. Let G be a hyperbolic random graph. Then, the expected number of vertices
in all large narrow runs is bounded by

E[N ] = O

(
τ · n · log(2)(n)

γ(n, τ) log(n)τ/18

)
.

Proof. Let n′′ denote the total number of narrow runs. We can compute the number of
vertices in all large narrow runs, by summing over all narrow runs R1, . . . , Rn′′ and discarding
the ones that are not large. That is,

N =
n′′∑
i=1

|V (Ri)| · 1|V (Ri)|>τ log(2)(n).

Consequently, the expected value of N is given by

E[N ] =
n′′∑
i=1

E
[
|V (Ri)| · 1|V (Ri)|>τ log(2)(n)

]
=

n′′∑
i=1

n∑
k=τ log(2)(n)+1

k · Pr[|V (Ri)| = k].

Lemma 14 gives a valid upper bound on Pr[|V (Ri)| = k] for all i ∈ {1, . . . , n′′}. Furthermore,
the number of narrow runs n′′ is bounded by the number of sectors n′. Therefore, we obtain

E[N ] ≤ n′
n∑

k=τ log(2)(n)+1

k · e−k/18.
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To get an upper bound, we replace the sum with an integral, which yields

E[N ] ≤ n′
∫ n

τ log(2)(n)
ke− k

18 dk

≤ n′
[
18e−τ/18 log(2)(n)(τ log(2)(n) + 18) − 18e−n/18(n + 18)

]
≤ 18n′ · τ log(2)(n) + 18

log(n)τ/18 ,

where the last inequality holds since e−n/18(n+18) ≥ 0. Substituting n′ = 2n/γ(n, τ)(1±o(1))
(Lemma 6) and more simplification yield the claim. ◀

Concentration Bound on the Number of Vertices in Large Narrow Runs. To show that
the actual number of vertices in large narrow runs is not much larger than the expected value,
we apply the method of typical bounded differences [29]. (See the full version of the paper
for a detailed explanation [7].) To this end, we consider N as a function of the positions of
the vertices and bound the effect that changing a single position can have on this function.
It is easy to see, that this effect is the largest, when the change splits a wide run R into two
large narrow runs. If R contained a lot of vertices, the impact on N is large. However, since
the vertices are distributed uniformly, it is very unlikely that a run that can be split into two
narrow runs contains many vertices.

▶ Lemma 16. Let G be a hyperbolic random graph. Then, each run of length at most 2w + 1
contains at most O(log(n)) vertices with probability 1 − O(n−c) for any constant c.

The method of typical bounded differences now allows us to focus on this case and to milden
the impact of the worst case changes as they occur with small probability. Consequently, we
can show that the number of vertices in large narrow runs is sublinear with high probability.

▶ Lemma 17. Let G be a hyperbolic random graph. Then, with high probability, the number
of vertices in large narrow runs is bounded by

N = O

(
τ · n · log(2)(n)

γ(n, τ) log(n)τ/18

)
.

4.3 The Complete Disk
In the previous subsections we determined the number of vertices that are greedily added
to the vertex cover in the inner disk and outer band, respectively. Before proving our main
theorem, we are now ready to prove a slightly stronger version that shows how the parameter τ

can be used to obtain a tradeoff between approximation performance and running time.

▶ Theorem 18. Let G be a hyperbolic random graph on n vertices with power-law exponent
β = 2α + 1 and let τ > 0 be constant. Given the radii of the vertices, an approximate vertex
cover of G can be computed in time O(m log(n)τ + n log(n)), such that the approximation
factor is (1 + O(γ(n, τ)−α)) asymptotically almost surely.

Proof. Running Time. We start by sorting the vertices of the graph in order of increasing
radius, which can be done in time O(n log(n)). Afterwards, we iterate them and perform the
following steps for each encountered vertex v. We add v to the cover, remove it from the
graph, and identify connected components of size at most τ log log(n) that were separated by
the removal. The first two steps can be performed in time O(1) and O(deg(v)), respectively.
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Identifying and solving small components is more involved. Removing v can split the graph
into at most deg(v) components, each containing a neighbor u of v. Such a component can
be identified by performing a breadth-first search (BFS) starting at u. Each BFS can be
stopped as soon as it encounters more than τ log log(n) vertices. The corresponding subgraph
contains at most (τ log log(n))2 edges. Therefore, a single BFS takes time O(log log(n)2).
Whenever a component of size at most nc = τ log log(n) is found, we compute a minimum
vertex cover for it in time 1.1996nc · n

O(1)
c [30]. Since n

O(1)
c = O((e/1.1996)nc), this running

time is bounded by O(enc) = O(log(n)τ ). Consequently, the time required to process each
neighbor of v is O(log(n)τ ). Since this is potentially performed for all neighbors of v, the
running time of this third step can be bounded by introducing an additional factor of deg(v).
We then obtain the total running time T (n, m, τ ) of the algorithm by summing the running
times of all three steps over all vertices, which yields

T (n, m, τ) =
∑
v∈V

O(1) + O(deg(v)) + deg(v) · O(log(n)τ )

= O

log(n)τ ·
∑
v∈V

deg(v)

 = O(m log(n)τ ).

Approximation Ratio. As argued before, we obtain a valid vertex cover for the whole
graph, if we take all vertices in VGreedy together with a vertex cover CExact of G[VExact]. The
approximation ratio of the resulting cover is then given by the quotient

δ = |VGreedy| + |CExact|
|COPT|

,

where COPT denotes an optimal solution. Since all components in G[VExact] are solved
optimally and since any minimum vertex cover for the whole graph induces a vertex cover
on G[V ′] for any vertex subset V ′ ⊆ V , it holds that |CExact| ≤ |COPT|. Therefore, the
approximation ratio can be bounded by δ ≤ 1 + |VGreedy|/|COPT|. To bound the number of
vertices in VGreedy, we add the number of vertices in the inner disk I, as well as the numbers
of vertices in the outer band that are contained in the area W that is covered by wide runs
and the area N that is covered by large narrow runs. That is,

δ ≤ 1 + |V (I)| + |V (W)| + |V (N )|
|COP T |

.

Upper bounds on |V (I)|, |V (W)|, and |V (N )| that hold with high probability are given by
Lemmas 5, 12, and 17, respectively. Furthermore, it was previously shown that the size of
a minimum vertex cover on a hyperbolic random graph is |COP T | = Ω(n), asymptotically
almost surely [10, Theorems 4.10 and 5.8]. We obtain

δ = 1 + O

(
1

γ(n, τ)α
+ τ3/4

log(2)(n)1/4 · log(3)(n)1/2
+ τ · log(2)(n)

γ(n, τ) log(n)τ/18

)
.

Since γ(n, τ) = O(log(3)(n)), the first summand dominates asymptotically. ◀

▶ Theorem 4. Let G be a hyperbolic random graph on n vertices. Given the radii of the
vertices, an approximate vertex cover of G can be computed in time O(m log(n)), such that
the approximation ratio is (1 + o(1)) asymptotically almost surely.

Proof. By Theorem 18 we can compute an approximate vertex cover in time O(n log(n) +
m log(n)τ ), such that the approximation factor is 1 + O(γ(n, τ)−α), asymptotically almost
surely. We obtain the claimed bound on the running time by choosing τ = 1. Furthermore,
since γ(n, 1) = ω(1) and α ∈ (1/2, 1), the resulting approximation factor is (1 + o(1)). ◀
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Abstract
We study the maximum-flow/minimum-cut problem on scale-free networks, i.e., graphs whose degree
distribution follows a power-law. We propose a simple algorithm that capitalizes on the fact that
often only a small fraction of such a network is relevant for the flow. At its core, our algorithm
augments Dinitz’s algorithm with a balanced bidirectional search. Our experiments on a scale-free
random network model indicate sublinear run time. On scale-free real-world networks, we outperform
the commonly used highest-label Push-Relabel implementation by up to two orders of magnitude.
Compared to Dinitz’s original algorithm, our modifications reduce the search space, e.g., by a factor
of 275 on an autonomous systems graph.

Beyond these good run times, our algorithm has an additional advantage compared to Push-
Relabel. The latter computes a preflow, which makes the extraction of a minimum cut potentially
more difficult. This is relevant, for example, for the computation of Gomory-Hu trees. On a social
network with 70 000 nodes, our algorithm computes the Gomory-Hu tree in 3 seconds compared to
12 minutes when using Push-Relabel.
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1 Introduction

The maximum flow problem is arguably one of the most fundamental graph problems that
regularly appears as a subtask in various applications [2, 29, 32]. The go-to general-purpose
algorithm for computing flows in practice is the highest-label Push-Relabel algorithm by
Cherkassky and Goldberg [11], which is also part of the boost graph library [30]. Beyond
that, the BK-algorithm by Boykov and Kolmogorov [8] or its later iteration [17] should be
used for instances appearing in computer vision. Our main goal in this paper is to provide
a flow algorithm tailored towards scale-free networks. Such networks are characterized by
their heavy-tailed degree distribution resembling a power-law, i.e., they are sparse with few
vertices of comparatively high degree and many vertices of low degree.

At its core, our algorithm is a variant of Dinitz’s algorithm [13], which is an augmenting
path algorithm that iteratively increases the flow along collections of shortest paths in the
residual network. In each iteration, at least one edge on every shortest path gets saturated,
thereby increasing the distance between source and sink in the residual network. To exploit
the structure of scale-free networks, we make use of the facts that, firstly, shortest paths tend
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to span only a small fraction of such networks, and secondly, a balanced bidirectional breadth
first search is able to find the shortest paths very efficiently [7, 6]. Using a bidirectional
search to compute shortest paths in Dinitz’s algorithm directly translates this efficiency to
the first iteration, as the residual network initially coincides with the flow network. Though
the structure of the residual network changes in later iterations, our experiments show that
the run time improvements achieved by using a bidirectional search remain high.

Scaling experiments with geometric inhomogeneous random graphs (GIRGs)1 [9] indicate
that the flow computation of our algorithm runs in sublinear time. In comparison, previous
algorithms (Push-Relabel, BK, and unidirectional Dinitz) require slightly super-linear time.
This is also reflected in the high speedups we achieve on real-world scale-free networks.

With the flow computation itself being so efficient, the total run time for computing
the maximum flow for a single source-sink pair in a scale-free network is heavily dominated
by loading the graph and building data structures. Thus, our algorithm is particularly
relevant when we have to compute multiple flows in the same network. This is, e.g., the case
when computing the Gomory-Hu tree [20] of a network. The Gomory-Hu tree is a compact
representation of the minimum s-t cuts for all source-sink pairs (s, t). It can be computed
with Gusfield’s algorithm [21] using n − 1 flow computations in a network with n vertices.
Using our bidirectional flow algorithm as the subroutine for flow computations in Gusfield’s
algorithm lets us compute the Gomory-Hu tree of, e.g., the soc-slashdot instance with
70 k nodes and 360 k edges in only 2.6 s. In this context, we observe that the Push-Relabel
algorithm is also very efficient in computing the flow values by computing a preflow. However,
converting this to a flow or extracting a cut from it takes significantly more time.

Contribution. Our findings can be summarized in the following main contributions.
We provide a simple and efficient flow-algorithm that significantly outperforms previous
algorithms on scale-free networks.
It’s efficiency on non-scale-free instances makes it a potential replacement for the Push-
Relabel algorithm for general-purpose flow computations.
Our algorithm is well suited to compute the Gomory-Hu tree of large instances.
In contrast to previous observations [11, 12], situations exist where computing a flow with
the Push-Relabel algorithm is significantly more expensive than computing a preflow.

Related Work. We briefly discuss only the work most related to our result. For a more
extensive overview on the topic of flows, we refer to the survey by Goldberg and Tarjan [19].

Our algorithm is based on Dinitz’s Algorithm [13], which belongs to the family of
augmenting path algorithms originating from the Ford-Fulkerson algorithm [16]. Augmenting
path algorithms use the residual network to represent the remaining capacities and iteratively
increase the flow by augmenting it with paths from source to sink in the residual network,
until no such path exists. At every point in time, a valid flow is known and at the end of
execution, non-reachability in the residual network certifies maximality.

From this perspective, the Push-Relabel algorithm [18] does the reverse. At every point in
time, the sink is not reachable from the source in the residual network, thereby guaranteeing
maximality, while the object maintained throughout the algorithm is a so-called preflow and
the algorithm stops once the preflow is actually a flow. This is achieved using two operations

1 GIRGs are a generative network model closely related to hyperbolic random graphs [25]. They resemble
real-world networks in regards to important properties such as degree distribution, clustering, and
distances.
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push and relabel; hence the name. Different variants of the Push-Relabel algorithm mainly
differ with regards to the order in which operations are applied. A strategy performing well
in practice is the highest-label strategy [11]. The extensive empirical study by Ahuja et
al. [1] on ten different algorithms shows that the highest-label Push-Relabel algorithm indeed
performs the best out of the ten. The only small caveat with these experiments is the fact
that they are based on artificial networks that are specifically generated to pose difficult
instances. Our experiments show that the structure of the instance matters in the sense
that it impacts different algorithms differently; potentially yielding different rankings on
different types of instances. The so-called pseudoflow algorithm by Hochbaum [23] was later
shown to slightly outperform (low single-digit speedups on most instances) the highest-label
Push-Relabel algorithm; again based on artificial instances [10].

Boykov and Kolmogorov [8] gave an algorithm tailored specifically towards instances that
appear in computer vision; outperforming Push-Relabel on these instances. It was later
refined by Goldberg et al. [17]. Most related to our studies is the work by Halim et al. [22]
who developed a distributed flow algorithm for MapReduce on huge social networks.

2 Network Flows and Dinitz’s Algorithm

Network Flows. A flow network is a directed graph G = (V, E) with source and sink vertices
s, t ∈ V , and a capacity function c : V × V → N with c(u, v) = 0 if (u, v) ̸∈ E. A flow f on
G is a function f : V × V → Z satisfying three constrains: (I) capacity f(u, v) ≤ c(u, v) (II)
asymmetry f(u, v) = −f(v, u) and (III) conservation

∑
v∈V f(u, v) = 0 for u ∈ V \ {s, t}.

We call an edge (u, v) ∈ E saturated if f(u, v) = c(u, v). Denote the value of a flow f as∑
v∈V f(s, v). The maximum flow problem, max-flow for short, is the problem of finding a

flow of maximum value.
Given a flow f in G, we define a network Gf called the residual network. Gf has the same

set of nodes and contains the directed edge (u, v) if f(u, v) < c(u, v). The capacity c′ of edges
in Gf is given by the residual capacity in the original network, i.e., c′(u, v) = c(u, v) − f(u, v).
An s-t path in Gf is called an augmenting path.

Dinitz’s Algorithm. Let ds(v) be the distance from s to vertex v in Gf . We define a
subgraph of Gf called the layered network by restricting the edge set to edges (u, v) of Gf

for which ds(u) + 1 = ds(v), i.e., edges that increase the distance to the source. We call
a flow blocking if every s-t path contains at least one edge that is saturated by this flow,
i.e., there is no augmenting path.

Dinitz’s algorithm (see Algorithm 1) groups augmentations into rounds. It augments a set
of edges that constitutes a blocking flow of the layered network in each round. One can find
such a set of edges by iteratively augmenting s-t paths in the layered network until source
and sink become disconnected. After augmenting a blocking flow, the distance between the
terminals in the residual network strictly increases.

Algorithm 1 Dinitz’s Algorithm.

1 while s-t path in residual network do
2 build layered network
3 while s-t path in layered network do
4 augment flow with s-t path

ESA 2021
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Asymptotic Running Time. To better understand how our modifications impact the run
time, we briefly sketch how Dinitz running time of O(n2m) is obtained. Since ds(t) increases
each round, the number of rounds is bounded by n − 1. Each round consists of two stages:
building the layered network and augmenting a blocking flow. The layered network can be
constructed in O(m) using a breadth-first search (BFS). Finding the blocking flow is done
with a repeated graph traversal, usually using a depth-first search (DFS). The number of
found paths is bounded by m, because each found path saturates at least one edge, removing
it from the layered network. A single DFS can be done in amortized O(n) time as follows.
Edges that are not part of an s-t path in the layered network do not need to be looked at
more than once during one round. This is achieved by remembering for each node which
edges of the layered network were already found to have no remaining path to the sink.
Each subsequent DFS will start where the last one left off. Thus, per round, the depth-first
searches have a combined search space of O(m), while each individual search additionally
visits the nodes on one s-t path which is O(n).

Practical Performance. In our experiments ds(t) remains mostly below 10, implying that
the number of rounds is significantly lower than n−1. Also, the number of found augmenting
paths during one rounds is far below m. In unweighted networks, for example, a DFS
saturates all edges of the found path resulting in a bound of O(m) to find a blocking flow.
Dinitz’s algorithm has a tight upper bound of O(n2/3m) in unweighted networks [14, 24].

3 Improving Dinitz on Scale-Free Networks

We adapt a common Dinitz implementation2 to exploit the specific structure of scale-free
networks. We achieve a significant speedup by using the fact that a flow and cut respectively
often depend only on a small fraction of the network. The following three modifications each
tackle a performance bottleneck.

Bidirectional Search. Recently, sublinear running time was shown for balanced bidirectional
search in a scale-free network model [6, 7]. We use a bidirectional breadth-first-search to
compute the distances that define the layered network during each round of Dinitz’s algorithm.
A forward search is performed from the source and a backward search from the sink, each
time advancing the search that incurs the lower cost to advance one layer. A shortest s-t
path is found when a vertex is discovered that was already seen from the other direction.
Note that, for our purpose, the bidirectional search has to finish the current layer when such
a vertex is discovered, because all shortest paths must be found. Figure 1 visualizes the
difference in explored vertices between a normal and a bidirectional BFS. The augmentations
with DFS are restricted to the visited part of the layered network, meaning the search space
of the BFS plus the next layer.

The distance labeling obtained by the bidirectional BFS requires a change to the DFS.
The purpose of the layered network is to contain all edges on shortest s-t paths. The DFS
identifies edges (u, v) of the layered network by checking if they increase the distance from
the source, i.e., ds(u) + 1 = ds(v). However, we no longer obtain the distances from the
source for all relevant vertices. For vertices processed by the backward search, distances
to the sink dt(v) are known instead. To resolve the problem, we allow edges that either
increase distance from the source or decrease distance to the sink, i.e., ds(u) + 1 = ds(v)

2 https://cp-algorithms.com/graph/dinic.html

https://cp-algorithms.com/graph/dinic.html
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ts ts

Figure 1 Search space of a breadth-first search from a source s to a sink t unidirectional (left) and
bidirectional (right). The blue area represents the vertices that are explored, i.e., whose outgoing
edges were scanned, by the forward search and the green area the backward search. In the gray area
are vertices that are seen during exploration of the last layer, but not yet explored. Vertices in the
intersection of the upcoming layers of the backward and forward search are marked orange.

or dt(u) − 1 = dt(v). This deviates from the definition of the layered network. But since
edges on shortest s-t paths must both, increase the distance from the source and decrease
the distance to the sink, we do not miss any relevant edges.

Time Stamps. The bidirectional search reduces the search space of the breadth-first search
and depth-first search substantially, potentially to sublinear. The initialization, however, still
requires linear time. It includes distances from the source and to the sink and one progress
counter per node for the augmentations. To avoid the linear initializations, we introduce
time stamps to indicate if a vertex was seen during the current round. The initialization of
distances and counters is done lazily as vertices are discovered during the BFS.

Skip Next Forward Layer. The DFS proceeds along edges outgoing from the last forward
search layer independent from the target vertex being seen only by the forward search (gray
in Figure 1) or also by the backward search (orange in Figure 1). However, the former type
of vertex cannot be part of a shortest s-t path. By saving the number of explored layers of
the forward search we can avoid the exploration of such vertices, thus limiting the DFS to
vertices colored blue, green, or orange in Figure 1. With this optimization, the combined
search space during augmentation (lines 3,4 in Algorithm 1) is almost limited to the search
space of the BFS. The only additional edges that are visited originate from the intersection
of the forward and backward search.

4 Experimental Evaluation

In this section, we investigate the performance of our algorithm DinitzOPT. First, we compare
it to established approaches on real-world networks in Section 4.1. We additionally examine
the scaling behavior and how the comparison is affected by problem size, i.e., is there an
asymptotic improvement over other algorithms? Then, Section 4.2 evaluates to which extent
the different optimizations contribute to better run times and search space. In Section 4.3
we analyze the algorithms in a specific application (Gomory-Hu trees) and compare their
usability beyond the speed of the actual flow computation. To this end, we test three different
approaches to obtain a cut with the Push-Relabel algorithm.

ESA 2021
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Figure 2 Runtime comparison of flow computations. The 20 computed flows per instance are
divided into low and high terminal pairs. For low, the terminal degree is between 0.75 and 1.25
times the average degree. For high, it is between 10 and 100 times the average degree. Pairs are
chosen uniformly at random from all vertices with the respective degree.

4.1 Runtime Comparison

In this section we compare our new approach to three existing algorithms: Dinitz [13],
Push-Relabel [18], and the Boykov-Kolmogorov (BK) algorithm [8]. We modified their
respective implementations to support our experiments. This also includes some minor
performance-relevant changes listed in the long version of the paper along with further details
on the datasets [5]. The experiments include two synthetic and eight real-world networks. All
networks are undirected and all but visualize-us and actors are unweighted. We restrict
our experiments in this section to the flow computation only excluding, e.g., loading times
and resetting flow values between runs. For Push-Relabel we only measure the computation
of the preflow, which is sufficient to determine the value of the flow/cut. Figure 2 shows the
resulting run times. For this plot, the terminals were chosen uniformly at random from the
set of vertices with degree close to the average (low) or considerably higher degree (high).

One can see that Dinitz and Push-Relabel display comparable times while BK is slightly
slower on most large instances. DinitzOPT consistently outperforms the other algorithms
by one to three orders of magnitude. The variance is also higher for DinitzOPT with low
pairs approximately one order of magnitude faster on average than high pairs. This is best
seen in the girg100000 instance and suggests that DinitzOPT is able to better exploit easy
problem instances. For all other algorithms the effect of the terminal degree on the run time
is barely noticeable. Another observation is that all algorithms display drastically lower run
times than their respective worst-case bounds would suggest.

The times in our experiments are close to what one might expect from linear algorithms.
For example, Dinitz computes a flow on the as-skitter instance in one second. Considering
the tight O(mn2/3) bound in unweighted networks and assuming the throughput per second
to be around 108 – which is a generous guess for graph algorithms – would result in an
estimate of 30 minutes per flow. In contrast to our results, earlier studies found Dinitz to be
slower than Push-Relabel and both algorithms clearly super-linear on a series of synthetic
instances [1]. However, these synthetic instances exhibit specifically crafted hard structures
that are placed between designated source and sink vertices. These instances thus present
substantially more challenging flow problems.

Effect of the Terminal Degree. In the following, we discuss the effect of terminal degree
and structure of the cut on the run time of Dinitz and DinitzOPT. Note that the terminal
degree is an upper bound on the size of the cut in unweighted networks. Moreover, the
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103 104 105 106

Number of Nodes

10 2

10 1

100

101

102

103

Ti
m

e 
[m

s]

Dinitz
DinitzBi
DinitzStamp
DinitzOPT
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Figure 3 (a) The average time per flow over multiple GIRGs and terminal pairs. (b) This plot
differs from Figure 3a only in the set of displayed algorithms.

terminal degree in our experiments is based on the average degree, which is assumed to be
constant in many real-world networks [3]. Thus, the O(mC) bound for augmenting path
based algorithms, with C being the size of the cut, implies not only a linear bound for
the eight unweighted networks in our experiments, but would also explain faster low pairs.
Surprisingly, DinitzOPT exploits low terminal degrees much more than Dinitz. Another
explanation for faster low pairs is that many cuts are close around one terminal, which is
consistent with previous observations about cuts in scale-free networks [27, 31]. Moreover,
Dinitz tends to perform well when the source side of the cut is small [28]. Although this
does not fully explain why DinitzOPT is more sensitive to the terminal degree, we observe
in Section 4.3 that Dinitz slows down massively when the source degree is high, even with
low sink degree. Since DinitzOPT always advances the side with smaller volume during
bidirectional search it does not matter which terminal has the higher degree.

Scaling. We perform additional experiments to analyze the scaling behavior of the al-
gorithms. Since real networks are scarce and fixed in size, we generate synthetic networks to
gradually increase the size while keeping the relevant structural properties fixed. Geomet-
ric Inhomogeneous Random Graphs (GIRGs) [9], a generalization of Hyperbolic Random
Graphs [25], are a scale-free generative network model that captures many properties of
real-world networks. The efficient generator [4] allows us to benchmark our algorithms on
differently sized networks with similar structure. Figure 3a and Figure 3b show the results.

We measure the run time over a series of GIRGs with the number of nodes growing
exponentially from 1000 to 1 024 000 with 10 iterations each. In each iteration, we sample
a new random graph with average degree 10, power-law exponent 2.8, dimension 1, and
temperature 0. The run time for each algorithm is then averaged over 10 uniform random
pairs of vertices with degree between 10 and 20. Standard deviation is shown as error bars.
The lower half of the symmetric error bars seems longer due to the log-axis. We add a
quadratic and two linear functions in Figure 3a. Figure 3b shows the functions n0.88 and
n0.7 representing the theoretical upper bound and previously observed typical run times,
respectively, for the bidirectional search on hyperbolic random graphs with the chosen
power-law exponent [6].

Dinitz, Push-Relabel and BK show a near-linear running time. Compared to the linear
functions in Figure 3a, Dinitz and Push-Relabel seem to scale slightly worse than linear, while
DinitzOPT scales better than linear. In a construction with super-sink and super-source, a
similar scaling was observed for Push-Relabel on the Yahoo Instant Messenger graph [26].
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Table 1 Total run times and search space of visited edges for the five intermediate versions of
our Dinitz implementation during the computation of 1000 flows in as-skitter. Terminals are
chosen like low pairs in Figure 2. The first seven columns show times in seconds accumulated over
all flow computations. BUILD is the construction of the residual network that is reused for all
flow computations, RESET means clearing flow on edges between computations, INIT includes
initialization of distances and counters per round, BFS and DFS refer to the respective subroutines,
FLOW is the summed time during flow computations (sum of BFS, DFS, INIT), and TOTAL is the
run time of the whole application including reading the graph from file. The last three columns
contain the search space relative to the number of edges in the graph in percent. Search space
columns for BFS and DFS are per round, while the FLOW column lists the search space per flow,
e.g., Dinitz visits on average 65.66% of all edges per BFS and every edge is visited about 5.58 times
on average in one flow computation.

MaxFlow Search Space [%]

BUILD RESET INIT BFS DFS FLOW TOTAL BFS DFS FLOW

Dinitz 0.50 56.79 14.87 405.46 426.80 847.13 904.85 65.66 63.64 558.04
DinitzBi 0.55 58.15 21.02 2.78 8.94 32.73 91.82 0.26 1.87 8.38
DinitzReset 0.50 | 20.73 2.47 8.01 31.20 32.06 0.26 1.87 8.38
DinitzStamp 0.55 | | 2.51 10.30 12.81 13.72 0.26 1.87 8.38
DinitzOPT 0.55 | | 2.40 1.06 3.46 4.22 0.26 0.20 2.03

4.2 Optimizations in Detail
Instead of considering all combinations of optimizations, we individually add them in a
specific order, such that the next change always tackles a performance bottleneck. In fact,
additional benchmarks reveal that the current optimization speeds up the computation more
than enabling all other remaining changes together. The four incrementally more optimized
versions of the algorithm are: DinitzBi, DinitzReset, DinitzStamp, and DinitzOPT.

Experimental Setup. The experiments and benchmarks in this section consider 1000 uniform
random terminal pairs close to the average degree on the as-skitter instance. The average
distance between source and sink in the initial network is 4.2. The average number of rounds
until a maximum flow is found is 4.8, where the last round runs only the BFS to verify that
no augmenting path exists. Only counting rounds before the last round, 2.9 units of flow
are found on average per round. Out of the 1000 cuts, 882 have value equal to the degree
of the smaller terminal. Table 1 shows profiler results and search space for Dinitz and the
optimized versions of the algorithm. Figure 4 compares the search space with and without
bidirectional search.

Bidirectional Search. Dinitz takes 15 minutes to compute the 1000 flows and the search
space per flow is more than five times the number of edges on average. Almost all of that
time is spent in BFS or DFS. The bidirectional Dinitz reduces the flow-time from 14 minutes
to 30 seconds, an improvement by a factor of 25.

The search space is reduced by factors of 252 for BFS, 34 for DFS, and 67 per flow. It is
interesting to note, that the search space of BFS during the last round of each flow changes
even more. In this round the BFS will find no s-t path. The bidirectional search visits 39
edges on average, while the normal breadth-fist-search visits 44% of the graph. This not only
emphasizes that the cuts are close around one terminal, but also shows that the bidirectional
search heavily exploits this structure.

The run time does not fully reflect this drastic reduction in search space, because DFS and
BFS no longer dominate the flow computation. The initialization time per round increased
by 50%, which can be explained by the additional distance label per node to store the
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Figure 4 Average number of edges visited per flow computation for the terminal pairs used in
Table 1, partitioned as in Figure 1. Forward/Backward Search represent the edges explored by the
respective search. Next Forward/Backward Layer denote the edges that would be explored in the
next step of the BFS. Edges in the Intersection originate from vertices in both upcoming BFS-layers.
The BFS and DFS bars show the edges that are actually visited by the algorithm. The shaded area
indicates the edges skipped by our last optimization (from DinitzStamp to DinitzOPT in Table 1)
and is excluded in the sum on the right.

distance to the sink (now 3 ints instead of 2). Although the initialization is a simple linear
operation in the number of nodes, it takes twice as long as BFS and DFS combined. The
real bottleneck, however, is to reset the flow values between computations. RESET takes
almost a full minute which is twice as long as computing the flows.

Reset flow between computations. Between flow computations, the residual capacity of
all edges has to be reset before another flow can be found. After changing the BFS to a
bidirectional search, resetting the flow on all edges between computations dominates the
run time. To reduce the time of our benchmarks, and to make the code more efficient in
situations where multiple flows are computed in the same network, we address this bottleneck.
Instead of explicitly resetting flow values for all edges, we remember the edges that contain
flow and reset only those. This change is not mentioned in Section 3 because it does not
speed up a single flow computation.

This change reduces the time for RESET to the point that it is no longer detected by the
profiler, while other operations are not affected. The total time to compute all 1000 flows is
thus three times lower with the flow computation making up for almost all spent time. The
slowest part of the flow computation itself is still the initialization with 21 of the 31 seconds.

Time Stamps. The distance labels and counters per node are initialized each round. Using
time stamps eliminates the need for initialization while adding a small overhead to DFS. The
flow computation gets 2.4 times faster with 13 seconds instead of 31. After introducing the
time stamps, the DFS is the new bottleneck and makes up for about 80% of flow time.

Skip Next Forward Layer. This change prevents the DFS from visiting vertices beyond the
last layer of the forward search that are not also seen by the backwards search. In Figure 4
the skipped part is shaded. This optimization reduces the average search space for DFS
during one round from almost 2% of all edges to just 0.2%. The improvement in search space
is reflected by the profiler results. DFS is sped up from 10 seconds to just one second, which
is faster than the BFS. The resulting time to compute all 1000 flows is 3.46 seconds, which is
only 7 times slower than building the adjacency list in the beginning. In total, the time to
compute the flows with the optimized Dinitz is 245 times faster than the unmodified Dinitz.
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Figure 5 Runtime comparison of flow computations. The 10 terminal pairs per instance are
uniformly chosen out of the n − 1 cuts required by Gusfield’s algorithm.

4.3 Gomory-Hu Trees

In the last sections we observed that heterogeneous network structure yields easy flow
problems that can be solved significantly faster than the construction of the adjacency list.
This performance becomes important in applications that require multiple flows to be found
in the same network. Gomory-Hu trees [20] fit this setting and have applications in graph
clustering [15]. A Gomory-Hu tree (GH-tree) of a network is a weighted tree on the same set
of vertices that preserves minimum cuts, i.e., each minimum cut between any two vertices s

and t in the tree is also a minimum s-t cut in the original network. Thus, they compactly
represent s-t cuts for all vertex pairs of a graph. For the construction of a GH-tree, we use
Gusfield’s algorithm [21] that requires n − 1 cut-oracle calls in the original graph.

In this section we evaluate the performance of max-flow algorithms for the construction of
Gomory-Hu trees in heterogeneous networks. We will see that the terminal pairs required for
Gusfield’s algorithm yield easier flow problems than uniform random pairs. DinitzOPT is able
to make use of this easy structure to achieve surprisingly low run times, so is Push-Relabel
when only considering the computation of the flow value. However, we find that the need to
extract the source side of the cut hinders Push-Relabel to benefit from this performance.

Flow Computation on Gusfield Pairs. Figure 5 shows the same networks and algorithms
as in Figure 2 but with terminal pairs sampled out of the n − 1 flow computations needed by
Gusfield’s algorithm. The run times for all algorithms except the BK-Algorithm have high
variance and are spread over up to four orders of magnitude for the larger instances. Although
results for different terminal pairs vary greatly, BK seems to be the slowest algorithm followed
by Dinitz. DinitzOPT and PR have comparable but significantly lower run times than the
other algorithms. For example, 6 out of the 10 gh pairs measured for the soc-slashdot
instance are solved by DinitzOPT and Push-Relabel faster than one microsecond which is the
precision of our measurements. This suggests, that these algorithms are more sensitive to the
varying difficulty of the flow computations for gh pairs. Our speedup over the Push-Relabel
algorithm on gh pairs is not as pronounced as for the random pairs in Section 4.1. On the
dogster instance PR is even faster than DinitzOPT.

To further investigate why gh pairs are this easy to solve, we analyze a complete run of all
pairs needed by Gusfield’s algorithm on the soc-slashdot instance. In Gusfield’s algorithm
each vertex is the source once, thus the average degree of the source is the average degree
of the graph (10.24). In contrast, the average degree of the sink is ca. 1500, which hinders
the benefit of bidirectional search. Uni-directional Dinitz slows down by a factor of 15 when
computing the flows with switched terminals. The average distance between two vertices



T. Bläsius, T. Friedrich, and C. Weyand 21:11

in the original network is 4.16, but interestingly here the average distance from source to
sink is 1.78. Out of the 70 k flow computations, 56 k are trivial cuts around one terminal.
Computing a flow for a single s-t pair takes 2.76 rounds on average with the last round only
to confirm that the flow is optimal.

DinitzOPT and Push-Relabel are both extremely fast on gh pairs. DinitzOPT takes 2.5
seconds to compute all n = 70 k required flows, while PR needs 5 seconds. To obtain the 5
seconds for PR we exclusively measured the preflow computation, but PR is not limited by
the time to compute the preflow. Actually, the entire computation of the Gomory-Hu tree
on the soc-slashdot instance takes 12 minutes with Push-Relabel and 2.6 seconds with
DinitzOPT. Instead of being caused by the Gusfield logic – which actually makes up less
than 3% of the run time when using DinitzOPT as oracle – the bottleneck when using PR
as a cut oracle is not the flow computation, but initialization and extracting the cut. The
drastic difference in run time is in part due to the optimizations we added to DinitzOPT to
reduce time between flow computations, while the Push-Relabel implementation recreates
the auxiliary data structures, except the adjacency list, before each flow. However, in the
following we will see that a large amount of Push-Relabels run time is actually necessary to
extract the cuts for Gusfield’s algorithm.

Computing Cuts with Push-Relabel. In Gusfield’s algorithm we have to iterate over all
vertices in the source-side of the cut. For Dinitz algorithm we can obtain a cut by doing a
BFS from the source. However, the PR algorithm only computes a preflow. We outline the
following three approaches to extract the cut and show that each has major drawbacks.

Convert. Compute a preflow, convert it into a flow, then run BFS from the source.
T-Side. Compute a preflow, run BFS backwards from the sink, then take complement.
Swap. Compute a preflow from sink to source, then run BFS backwards from the source.

The most straightforward way to get a cut from a preflow is to convert it into a flow.
Then, as for Dinitz, one partition of a min-cut can be identified by reachability from the
source in the residual network. In previous works, the conversion from preflow to flow makes
up only a small fraction of the running time [11, 12]. For Gusfield pairs, however, Figure 6
shows that the conversion highly dominates the computation of the preflow. Only about 5
seconds of the 12 minutes of the complete run are spent in preflow computation.

To circumvent the conversion, we use the observation that one can obtain a cut directly
from the preflow by finding all sink-reaching vertices in the residual network. Since Gusfield
requires the source-side of the cut, the complement of the found set of vertices can be used.
Unfortunately, doing the backward search from the sink is even more expensive than the
conversion. An explanation for this is the large sink side of the cut. Using this T-side
approach to identify the cut for DinitzOPT takes 4.5 minutes which is a factor 100 slower
than identifying the cut via the source-side for DinitzOPT.

Making use of the fact that the source side of the cut is much smaller than the sink side,
the drawbacks of the previous approach can be avoided in undirected networks by computing
the preflow from sink to source. A cut can then be extracted by determining the vertices
that can reach the original source in the residual network. The drawback of this method is
that the preflow computation slows down massively from 5s to 47 minutes.

In conclusion, the convert approach is the fastest with just above 12 minutes followed
by T-side with 18 minutes and swap with almost an hour. However, all three methods
perform significantly worse than DinitzOPT, not because PR flow computations are slow,
but both methods to avoid the four minutes run time of preflow-conversion imply even worse
performance cost; either due to a breadth-first search that has to traverse almost the whole
graph (T-side) or due to significantly slower preflow computations (Swap).
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Figure 6 Distribution of spent time during Gusfield’s algorithm on the soc-slashdot instance with
three approaches to use the Push-Relabel algorithm as a min-cut oracle. We split the measurements
into initialization, preflow, conversion, and cut identification. The time overhead for measurement,
logging, and the logic of Gusfield’s algorithm is included in the numbers on the right but excluded
in the bars.

5 Conclusion

We presented a modified version of Dinitz’s algorithm with greatly improved run time and
search space on real-world and generated scale-free networks. The scaling behavior appears
to be sublinear, which matches previous theoretical and empirical observations about the
running time of balanced bidirectional search in scale-free random networks. While these
theoretical bounds apply during the first round of our algorithm, it is still unknown whether
the analysis can be extended to account for the changes in the residual network. Our
experiments, however, indicate that the search space remains small in subsequent rounds.

We observe that the low diameter and heterogeneous degree distribution lead to small and
unbalanced cuts that our algorithm finds very efficiently. The flow computations required to
compute a Gomory-Hu tree are even easier, making usually insignificant parts of the tested
algorithms be a bottleneck. For example, the preflow conversion leads to Push-Relabel being
greatly outperformed by our algorithm in this setting.
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Abstract
We consider the problem of posting prices for unit-demand buyers if all n buyers have identically
distributed valuations drawn from a distribution with monotone hazard rate. We show that even
with multiple items asymptotically optimal welfare can be guaranteed.

Our main results apply to the case that either a buyer’s value for different items are independent
or that they are perfectly correlated. We give mechanisms using dynamic prices that obtain a
1−Θ

(
1

log n

)
-fraction of the optimal social welfare in expectation. Furthermore, we devise mechanisms

that only use static item prices and are 1 − Θ
( log log log n

log n

)
-competitive compared to the optimal

social welfare. As we show, both guarantees are asymptotically optimal, even for a single item and
exponential distributions.
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1 Introduction

Posting prices is a very simple way to de-centralize markets. One assumes that buyers arrive
sequentially. Whenever one of them arrives, a mechanism offers a menu of items at suitably
defined prices. The buyer then decides to accept any offer, depending on what maximizes her
own utility. Such a mechanism is incentive compatible by design, usually easy to explain and
can be implemented online. For this reason, there is a large interest in understanding what
social welfare and revenue can be guaranteed in comparison to mechanisms that optimize
the respective objective.

Let us consider the following setting: There is a set of m heterogeneous items M , each of
which we would like to be allocated to one of n buyers. Each buyer i has a private valuation
function vi : 2M → R≥0. We assume that valuation functions are unit-demand. That is,
vi(S) = maxj∈S vi({j}), meaning that the value a buyer associates to a set is simply the
one of the most valuable item in this set. Let SWopt = maxallocations (S1, . . . , Sn)

∑n
i=1 vi(Si)

denote the optimal (offline/ex-post) social welfare. Note that this optimal solution is nothing
but the maximum-weight matching in a bipartite graph in which all buyers and items
correspond to a vertex each and an edge between the vertices of buyer i and item j has
weight vi({j}).
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To capture the pricing setting, we assume that the functions v1, . . . , vn are unknown a
priori; all of them are drawn independently from the same, publicly known distribution. For
every item, one can either set a static item price or change the prices dynamically over time.
Buyers arrive one-by-one and each of them chooses the set of items that maximizes her utility
given the current prices among the remaining items. Static prices have the advantage that
they are easier to explain and thus give easier mechanisms. However, dynamic prices can
yield both higher welfare and revenue because they can be adapted to the remaining supply
and the remaining number of buyers to appear.

Coming back to the interpretation of a bipartite matching problem, a posted-prices
mechanism corresponds to an online algorithm, where the buyers correspond to online
vertices and the items correspond to offline vertices. However, not every online algorithm
necessarily corresponds to a posted-prices mechanism: There might not be item prices such
that the choices of the algorithm correspond to the ones by a buyer maximizing their utility.

We would like to understand which fraction of the optimal (offline/ex-post) welfare
posted-prices mechanisms can guarantee. The case of a single item is well understood via
prophet inequalities from optimal stopping theory. Let us call a posted-prices mechanism
β-competitive (with respect to social welfare) if its expected welfare E [SWpp] is at least
βE [SWopt]. For a static price and a single item, the best such guarantee is β = 1 − 1

e ≈ 0.63
[11, 15]; for dynamic pricing and a single item, it is β ≈ 0.745 [1, 11]. There are a number of
extensions of these results to multiple items (see Section 1.3 for details), also going beyond
unit-demand valuations, many of which are O(1)-competitive.

The competitive ratios of β = 1 − 1
e ≈ 0.63 and β ≈ 0.745 are optimal in the sense

that there are distributions and choices of n such that no better guarantee can be obtained.
Importantly, they are still tight when imposing a lower bound on n. That is, even for large n,
there is a distribution such that if all values are drawn from this distribution the respective
bound cannot be beaten.

1.1 Distributions with Monotone Hazard Rate
In this paper, we strengthen previous results by restricting the class of distributions to
ones with monotone hazard rate. The single-item case is defined as follows. Consider
a probability distribution on the reals with probability density function (PDF) f and
cumulative distribution function (CDF) F , its hazard rate h is defined by h(x) = f(x)

1−F (x)
for x with F (x) < 1. It has a monotone hazard rate (MHR) – more precisely, increasing
hazard rate – if h is a non-decreasing function. It has become a common and well-studied
approach to model buyer preferences by MHR distributions. One of the reasons is that many
standard distributions exhibit a monotone hazard rate such as, for example, uniform, normal,
exponential and logistic distributions. (For a much more extensive list see [25].) Furthermore,
the monotone hazard rate of distributions is also preserved under certain operations; for
example, order statistics of MHR distributions also have an MHR distribution. Additionally,
every MHR distribution is regular in the sense that its virtual value function [8, 24] is
increasing.

We generalize results to multiple items and consider two fundamental settings. On the
one hand, we consider independent item valuations, i.e. vi,j ∼ Dj is an independent draw
from a distribution Dj . In other words, the value of item j is independent of the value of
item j′ and both values are drawn from (possibly different) MHR distribution as defined
above. On the other hand, we assume correlated values for items via the notion of separable
item valuations, which are common in ad auctions [14, 27]: Each buyer has a type ti ≥ 0
and each item has an item-dependent multiplier αj where now vi,j = αj · ti. Again, ti ∼ D
and D is a distribution with monotone hazard rate. We note that this case subsumes and
extends the case of k identical items.
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As we show, in these cases, asymptotically optimal welfare can be guaranteed. That is, if
n grows large, the social welfare when suitably choosing prices is within a 1 − o(1) factor of
the optimum, where the o(1) term is independent of the distribution as long as its marginals
satisfy the MHR property. Stated differently, there is a sequence (βn)n∈N with βn → 1 for
n → ∞ such that for every number of buyers n there exists a posted-prices mechanism that
takes any distribution with MHR as input and guarantees E [SWpp] ≥ βnE [SWopt]. As
pointed out before, such a result does not hold for arbitrary, non-MHR distributions. Even
with a single item, the limit is then upper-bounded by ≈ 0.745.

A similar effect has already been observed by Giannakopoulos and Zhu [17]. They show
that the revenue of static pricing for a single item with MHR distributions asymptotically
reaches the optimal revenue. In contrast, our results concern welfare. Still, some of our
results also have implications for revenue, either because we bound the revenue or because
one could apply the results to virtual values.

1.2 Our Results and Techniques
We design mechanisms for both independent and separable item valuations. The ones using
dynamic prices ensure a

(
1 −O

(
1

log n

))
-fraction of the expected optimal social welfare. The

ones using static prices guarantee a
(

1 −O
(

log log log n
log n

))
-fraction. We also show that these

guarantees are best possible, even in the case of only a single item. Note that the bounds
are independent of the number of items m, which may also grow in the number of buyers n.

Independent Valuations (Section 3)

The technically most interesting result is the one on dynamic pricing when values are
independent across items. The idea is to set prices so that the offline optimum is mimicked.
If item j is allocated in the optimal allocation with probability qj , then we would like it to be
sold in every step with an ex-ante probability of qj

n . However, analyzing such a selling process
is still difficult because items are incomparable and bounds for MHR distributions cannot
be applied directly to draws from multiple distributions, which are not necessarily identical.
To bypass this problem, we introduce a reduction that allows us to view item valuations
not only as independent but also as identically distributed. To this end, we compare the
selling process of our mechanism to a hypothetical setting, in which buyers do not make
their decisions based on the actual utility but in quantile space. We observe that the revenue
of both is identically distributed and utility is maximized in the former mechanism. As a
consequence, the welfare obtained by the quantile allocation rule is a feasible lower bound
on the welfare of the sequential posted-prices mechanism. Only afterwards, we can apply a
concentration bound due to the MHR restriction.

The idea of our mechanism using static prices is to set prices suitably high in order to
bound the revenue of our mechanism with a sufficient fraction of the optimum. While all other
bounds apply for any number of items m, this bound unfortunately requires m ≤ n

(log log n)2 .
We leave it as an open problem to extend the result for larger number of items.

Separable Valuations (Section 4)

Our way of setting dynamic prices in the case of separable valuations is similar to the
approach in independent valuations. This setting is even a little simpler because we can
assume without loss of generality that there are as many items as buyers. Our pricing
strategy ensures that in each step each item is sold equally likely as well as one item is sold

ESA 2021
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for sure. In the analysis, we observe that we match a buyer and an item if the quantile of the
buyer’s value is in a specific range. Now, the MHR property comes into play which allows to
bound quantiles of the distribution in a suitable way.

In the static case, to lower-bound the welfare of our mechanism, we compare it to the
one of the VCG mechanism [10, 18, 28] which maximizes social welfare. To this end, we
split social welfare in revenue and utility and bound each quantity separately. That is, we
relate the revenue and the sum of buyer utilities of our posted-pricing mechanism to the
ones of the VCG mechanism. For the revenue, we set prices fairly low to ensure that we
sell all items with reasonably high probability. Still, these prices are high enough to use the
MHR property and derive a suitable lower bound of the prices. The utility comparison is
more complicated, we solve this issue by an unusual application of the equality of expected
revenue and virtual welfare due to Myerson [24].

Optimality (Section 5)

The achieved bounds on the competitive ratio are optimal for both dynamic as well as static
pricing. We show this by considering the single-item case with an exponential distribution,
which is a special case of both independent and separable valuations. For dynamic prices, we
use the correspondence to a Markov decision process showing that no online algorithm is
better than 1 − Ω

(
1

log n

)
-competitive. Then we also show that the competitive ratio cannot

be better than 1 − Ω
(

log log log n
log n

)
for any choice of a static price by writing out the expected

social welfare explicitly.

Subadditive Valuations (Section 6)

We also demonstrate that our techniques are applicable beyond unit-demand settings by
giving mechanisms for the more general class of subadditive valuation functions. Our dynamic
pricing mechanism is 1 −O

(
1+log m

log n

)
-competitive for subadditive buyers. We complement

this by a static pricing mechanism which is 1 − O
(

log log log n
log n + log m

log n

)
-competitive. Both

guarantees can be derived by showing that the revenue of the posted pricing mechanism is at
least as high as the respective fraction of the optimal social welfare. As a consequence, these
bounds directly imply the competitive ratios for welfare and revenue. For small m, these
bounds are again tight by our optimality results. Obtaining tight bounds for large m still
remains an open problem.

1.3 Further Related Work
As mentioned already, our setup restricted to a single item is highly related to prophet
inequalities. Prophet inequalities have their origin in optimal stopping theory, dating back
to the 1970s [22]. Only much later they were considered as a tool to understand the loss
by posting prices as opposed to using other mechanisms. In this context, Samuel-Cahn’s
result [26] then got the interesting interpretation that posting an appropriately chosen static
price for an item is 1

2 -competitive for any buyer distributions; different buyers may even be
drawn from different distributions. This guarantee is optimal, even for dynamic pricing.

Improvements for the single-item case are only possible by imposing further assumptions.
Most importantly, this concerns the case that all buyer values are drawn from the same
distribution. While already discussed by Hill et al. [20], this problem has been solved only
very recently by devising an ≈ 0.745-competitive mechanism that relies on dynamic pricing
[1, 11]. By using static pricing, one cannot be better than 1 − 1

e ≈ 0.63-competitive [11, 15].
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Better guarantees can also be achieved by assuming that multiple, identical items are for
sale. In this case, one can use concentration results. The respective competitive ratios tend
to 1 for a growing number of item copies. Hajiaghayi et al. [19] gave the first guarantee for
such a setting, Alaei [2] later improved it to tightness.

For identical regular distributions, all of the above results also apply to welfare as well as
revenue maximization because the prices can be imposed in the space of the virtual valuation
[24]; also see the work by Chawla et al. [9]. Also impossibility results transfer [12].

When it comes to multiple, heterogeneous items, there is a significant difference between
welfare and revenue maximization because Myerson’s characterization does not apply any-
more. For welfare maximization, Feldman et al. [16] show that static item prices still yield
a competitive ratio of 1

2 even for XOS valuations and not necessarily identically distrib-
uted buyer valuations. Concerning subadditive valuation functions, Zhang [29] gives a
O(logm/ log logm)-competitive prophet inequality, Dütting et al. [13] show how to obtain a
competitive ratio of O(log logm). The only improvement for identically distributed buyers is
to 1 − 1

e for unit-demand buyers based on dynamic pricing [15]. Among others, Chawla et
al. [7] considered a combinatorial generalization of such a setting with many item copies (see
Lucier’s survey [23] on a broader overview of combinatorial generalizations).

For revenue maximization, one usually imposes the additional assumption that items
are independent. This makes it possible to also apply prophet inequalities on the sequence
of items rather than buyers and thus maximize revenue for unit-demand buyers via posted
prices [8, 9]. Cai and Zhao [6] consider more general XOS and subadditive valuations and
apply a duality framework instead. They design a posted-prices mechanism with an entry
fee that gives an O(1) or O(logm) approximation to the optimal revenue. In Dütting et
al. [13], the approximation of the optimal revenue for subadditive valuations is improved to
O(log logm).

There are surprisingly few results on pricing and prophet inequalities that derive better
guarantees by imposing additional assumptions on the distribution. Babaioff et al. [4]
consider the problem of maximizing revenue when selling a single item to one of n buyers
drawn i.i.d. from an unknown MHR distribution with a bounded support [1, h]. If n is large
enough compared to h, they get a constant-factor approximation to the optimal revenue using
dynamic posted prices. Note that in contrast, in our paper, we assume to know the underlying
distributions perfectly. Giannakopoulos and Zhu [17] consider revenue maximization in the
single-item setting with valuations drawn independently from the same MHR distribution.
They show that by offering the item for the same static price to all bidders one can achieve
asymptotically optimal revenue. More precisely, one of their main results is that one gets
within a factor of 1 −O

( ln ln n
ln n

)
. While they claim this result is “essentially tight”, we show

that the best factor is indeed 1 − Θ
( ln ln ln n

ln n

)
because it is a special case of our results (see

Section 6). It is not clear, how one could apply their result to welfare maximization as the
MHR property is not preserved when moving between virtual and actual values. Furthermore,
their results do not admit any apparent generalization to multiple items. Jin et al. [21] also
consider revenue maximization in the single-item setting with identical and independent
MHR values but in a non-asymptotic sense, providing a bound for every n.

2 Preliminaries

We consider a setting of n buyers N and a set M of m items. Every buyer has a valuation
function vi : 2M → R≥0 mapping each bundle of items to the buyer’s valuation. We assume
buyers to be unit-demand, that is vi(S) = maxj∈S vi,j . The functions v1, . . . , vn are unknown

ESA 2021
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a priori but all drawn independently from the same, publicly known distribution D. Let Dj

be the marginal distribution of vi,j , which is the value of a buyer for being allocated item j.
We assume that Dj is a continuous, real, non-negative distribution with monotone hazard
rate. That is, let Fj be the cumulative distribution function of Dj and fj its probability
density function. The distribution’s hazard rate is defined as hj(x) = fj(x)/(1 − Fj(x)) for
all x such that Fj(x) < 1. We assume a monotone hazard rate, which means that hj is a
non-decreasing function. Equivalently, we can require x 7→ log(1 − Fj(x)) to be a concave
function.

We design posted-prices mechanisms. That is, the buyers arrive one by one in order
1, . . . , n. In the i-th step, buyer i arrives and has the choice between all items which have not
been allocated so far. Let M (i) denote this set of available items. The mechanism presents
the i-th buyer a menu of prices p(i)

j for all items j ∈ M (i). The buyer then picks the item
ji ∈ M (i) which maximizes her utility vi,ji

−p
(i)
ji

if positive1. Buyer i and item ji are matched
immediately and irrevocably. If buyer i has negative utility for all items j ∈ M (i), then
buyer i does not buy any item and remains unmatched. Generally, the prices for buyer i
may depend arbitrarily on M (i) and the distribution D. We call prices static if there are
p1, . . . , pm such that p(i)

j = pj for all i and all j.
Fix any posted-prices mechanism and let ji denote the item allocated to buyer i (set

ji =⊥ if i remains unmatched in the mechanism). The expected social welfare of the
mechanism is given by E [

∑n
i=1 vi,ji

] =: E [SWpp]. In comparison, let the social welfare
maximizing allocation assign item j∗

i to buyer i. Its expected social welfare is therefore given
by E

[∑n
i=1 vi,j∗

i

]
=: E [SWopt].

We call a posted-prices mechanism β-competitive if it ensures that the expected social
welfare of its allocation is at least a β-fraction of the expected optimal social welfare. That
is, for any choice of distribution,

E [SWpp] = E
[

n∑
i=1

vi,ji

]
≥ βE

[
n∑

i=1
vi,j∗

i

]
= βE [SWopt] .

3 Asymptotically Tight Bounds for Independent Valuations

In this section, we show how to derive bounds if the buyers’ values are independent across items.
That is, each vi,j ∼ Dj is drawn independently from a distribution with monotone hazard
rate. This is a standard assumption when considering multiple items [8, 9]. As a consequence,
the distribution over valuations is a product distribution vi = (vi,1, . . . , vi,m) ∼ D =

∏n
j=1 Dj

for any i ∈ N and every Dj satisfies the MHR condition.

3.1 Dynamic prices
We first consider the case of dynamic pricing mechanisms. Without loss of generality, we can
assume that m ≥ n. If we have less items than buyers, i.e. m < n, we can add dummy items
with value 0 to ensure m = n. Matching i to one of these dummy items in the mechanism
then corresponds to leaving i unmatched. Observe that technically a point mass on 0 is not
a MHR distribution. However, all relevant statements still apply.

1 We can assume that any buyer is buying at most one item as buyers are unit-demand. Hence, no buyer
can increase utility by buying a second (lower valued) item.
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Our mechanism is based on a pricing rule which balances the probability of selling a
specific item. To this end, let M (i) be the set of remaining items as buyer i arrives. We
determine dynamic prices such that one item is allocated for sure in every step. Therefore,
always |M (i)| = m − i + 1. We can now define q(i)

j to be the probability that item j is
allocated in the “remaining” offline optimum on M (i) and n− i+ 1 buyers if j ∈ M (i) and 0
else. In other words, if j ∈ M (i), q(i)

j is the probability that item j is allocated in the offline
optimum constrained to buyers 1, . . . , i− 1 receiving the items from M \M (i). The prices

(p(i)
j )j∈M(i) are now chosen such that buyer i buys item j with probability q

(i)
j

n−i+1 and one
item is allocated for sure. To see that such prices exist, observe the following: fix any price
vector x = (xj)j∈M(i) and denote by r(i)

j (x) = Pr
[
i buys item j at prices x

∣∣M (i)]. As the
random variables vi,j are continuous and independent, the probability that buyer i buys item
j at prices x given the current set of items M (i) is continuous in xj . Hence, we can consider
the mapping

(
ϕ(i)(x)

)
j

= n−i+1
q

(i)
j

· r(i)
j (x) · xj for any j ∈ M (i) which is also continuous and

hence, by the use of Brouwer’s fixed point theorem2 has our desired price vector (p(i)
j )j∈M(i)

as fixed point. This allows us to state the following theorem.

▶ Theorem 1. The posted-prices mechanism with dynamic prices and independent item-
valuations is 1 −O

(
1

log n

)
-competitive with respect to social welfare.

Note that in the case m ≤ n we will always have q(i)
j = 1 for j ∈ M (i). This significantly

simplifies the argument. The proof for the general case can be found in the full version of
the paper. Here, we give a sketch with the major steps and key techniques.

In order to bound the social welfare obtained by the posted-prices mechanism, we
consider the following quantile allocation rule. For any j ∈ M (i) with q

(i)
j > 0, compute

R
(i)
j := Fj(vi,j)

1
q

(i)
j and allocate buyer i the item j which maximizes R(i)

j . Observe that by
this definition for any i, any j and any t ∈ [0, 1],

Pr
[
R

(i)
j ≤ t

]
= Pr

[
Fj(vi,j) ≤ tq

(i)
j

]
= tq

(i)
j ,

as Fj(vi,j) ∼ Unif[0, 1]. In particular, note that for q(i)
j = 1, this is exactly the CDF of a

random variable drawn from Unif[0, 1]. Define indicator variables Xi,j which are 1 if buyer i
is allocated item j in the quantile allocation rule. Then, we can observe the following.

▶ Observation 2. It holds

Pr
[
Xi,j = 1

∣∣∣M (i)
]

=
q

(i)
j

n− i+ 1 .

Note that by this, the probability of allocating item j in step i via the quantile allocation
rule is q

(i)
j

n−i+1 , exactly as in the posted-prices mechanism.

Proof. We allocate item j in the quantile allocation rule if R(i)
j ≥ R

(i)
j′ for any j′ ∈ M (i).

For fixed M (i), also the values of q(i)
j are fixed. Hence, we can use independence of the vi,j

2 In addition, we can use that prices x = (xj)j∈M(i) are always bounded by 0 ≤ xj ≤ F −1
j

(
1 −

q
(i)
j

n−i+1

)
to get a convex and compact set of price vectors.
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variables to compute:

Pr
[
Xi,j = 1

∣∣∣M (i)
]

= Pr
[
max
j′ ̸=j

R
(i)
j′ ≤ R

(i)
j

∣∣∣∣M (i)
]

=
∫ 1

0
Pr
[
max
j′ ̸=j

R
(i)
j′ ≤ t

∣∣∣∣M (i)
]
q

(i)
j tq

(i)
j

−1dt

=
∫ 1

0

∏
j′ ̸=j

Pr
[
R

(i)
j′ ≤ t

∣∣∣M (i)
]
q

(i)
j tq

(i)
j

−1dt

=
∫ 1

0

∏
j′ ̸=j

t
q

(i)
j′

 q
(i)
j tq

(i)
j

−1dt

= q
(i)
j

∫ 1

0
t(n−i+1)−1dt =

q
(i)
j

n− i+ 1 ,

where we use that
∑

j∈M(i) q
(i)
j = n− i+ 1 for any value of i. ◀

Now, the crucial observation is that the expected contribution of any buyer to the social
welfare in the posted-prices mechanism is at least as large as under the quantile allocation
rule. To see this, fix buyer i and split buyer i’s contribution to the social welfare into
revenue and utility. Concerning revenue, note that in both cases the probability of selling
any item j to buyer i is equal to q

(i)
j

n−i+1 and we allocate one item for sure. So, the expected
revenue is identical. Further, since we maximize utility in the posted-prices mechanism, the
achieved utility is always at least the utility of the quantile allocation rule. So, overall, we
get E [SWquantile] ≤ E [SWpp].

Now, we aim to control the distribution of vi,j given that Xi,j = 1 in order to get access
to the value of an agent being allocated an item in the quantile allocation rule. To this end,
we use the following lemma.

▶ Lemma 3. For all i, j and M (i), we have

Pr
[
vi,j ≤ t

∣∣∣ Xi,j = 1,M (i)
]

= Fj(t)
n−i+1

q
(i)
j

Proof. Observe that in the vector
(
R

(i)
j

)
j∈M(i)

, we choose j to maximize R(i)
j . Now, for any

value vi,j′ , we consider the following transform ψj : For any j′ ∈ M (i), define

ψj(vi,j′) := F−1
j

((
R

(i)
j′

)q
(i)
j

)
.

Observe that for j′ = j, we get that

ψj(vi,j) = F−1
j

((
R

(i)
j

)q
(i)
j

)
= F−1

j

(Fj(vi,j)
1

q
(i)
j

)q
(i)
j

 = F−1
j (Fj(vi,j)) = vi,j .

Further, we can compute the CDF as

Pr [ψj(vi,j′) ≤ t] = Pr
[
F−1

j

((
R

(i)
j′

)q
(i)
j

)
≤ t

]
= Pr

[
R

(i)
j′ ≤ Fj(t)

1
q

(i)
j

]

= Pr

Fj′(vi,j′) ≤ Fj(t)

q
(i)
j′

q
(i)
j

 = Fj(t)

q
(i)
j′

q
(i)
j ,
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where in the last step, we used that Fj′(vi,j′) ∼ Unif[0, 1]. As a consequence,

Pr
[
vi,j ≤ t

∣∣∣ Xi,j = 1,M (i)
]

= Pr
[
ψj(vi,j) ≤ t

∣∣∣ ψj(vi,j) > ψj(vi,j′) for j ̸= j′,M (i)
]

= Pr
[

max
j′∈M(i)

(ψj(vi,j′)) ≤ t

∣∣∣∣M (i)
]

=
∏

j′∈M(i)

Pr [ψj(vi,j′) ≤ t] =
∏

j′∈M(i)

Fj(t)

q
(i)
j′

q
(i)
j

= Fj(t)

∑
j′∈M(i) q

(i)
j′

q
(i)
j = Fj(t)

n−i+1

q
(i)
j . ◀

For integral values of n−i+1
q

(i)
j

(in particular q(i)
j = 1), observe that this is exactly the CDF

of the maximum of n−i+1
q

(i)
j

independent draws from distribution Fj .
For the remainder of the proof sketch, let us restrict to the case that m = n. Observe that

in this special case, we have that all q(i)
j = 1, so the probability in the quantile allocation

rule of allocating any item j ∈ M (i) in Observation 2 simplifies to 1
n−i+1 . Therefore,

E [vi,jXi,j ] = n− i+ 1
n

· 1
n− i+ 1 · E [vi,j | Xi,j = 1] = 1

n
E [vi,j | Xi,j = 1] .

Observe that this argument looks rather innocent in the special case of m = n, but requires
a much more careful treatment in the general variant: The probabilities q(i)

j are random
variables themselves depending on the set M (i). Hence, the calculation can not directly be
extended and a more sophisticated argument needs to be applied. In addition, by the above
considerations on the quantile allocation rule via Lemma 3, we have that E [vi,j | Xi,j = 1] =
E
[
maxi′∈[n−i+1] vi′,j

]
in the special case of m = n. Therefore, we can now simply apply

Lemma 4 (see below) to get

E [vi,jXi,j ] = 1
n

E [vi,j | Xi,j = 1] = 1
n

E
[

max
i′∈[n−i+1]

vi′,j

]
≥ 1
n

· Hn−i+1
Hn

· E
[

max
i′∈[n]

vi′,j

]
Note that we take the maximum over i.i.d. random variables. As a consequence, we can
conclude by basic calculations:

E [SWpp] ≥ E [SWquantile] =
n∑

i=1

n∑
j=1

E [vi,jXi,j ] ≥ 1
n

n∑
i=1

n∑
j=1

Hn−i+1
Hn

E
[

max
i′∈[n]

vi′,j

]

=
∑n

i=1 Hn−i+1
nHn

n∑
j=1

E
[

max
i′∈[n]

vi′,j

]
=
(

1 −O

(
1

log n

)) n∑
j=1

E
[

max
i′∈[n]

vi′,j

]

≥
(

1 −O

(
1

log n

))
E [SWopt]

Observe that in the general version, comparing to
∑n

j=1 E
[
maxi′∈[n] vi′,j

]
is a far too

strong benchmark. Therefore, we consider an ex-ante relaxation of the offline optimum. As a
new technical tool, we introduce in Lemma 5 (see below) an appropriate bound which allows
to lower bound the expected maximum of k draws from an MHR distribution by a suitable
fraction of E

[
vi,j

∣∣ vi,j ≥ F−1 (1 − q)
]

for any choice of q ∈ [0, 1]. Applying this, we can
lower bound the expected contribution of any item j to the quantile welfare by a suitable
fraction of its contribution to the offline optimum.
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We conclude by giving the lemmas which were used in the proof. First, let us restate a
useful lemma from Babaioff et al. [4]. It allows to compare the expectation of the maximum
of n and n′ ≤ n draws from independent and identically distributed random variables, if the
distribution has a monotone hazard rate.

▶ Lemma 4 (Lemma 5.3 in [4]). Consider a collection (Xi)i of independent and identically
distributed random variables with a distribution with monotone hazard rate. Then, for any
n′ ≤ n, we have

E
[
maxi∈[n′] Xi

]
E
[
maxi∈[n] Xi

] ≥ Hn′

Hn
≥ log n′

log n .

In addition, we make use of the following lemma which is used in order to make a suitable
comparison to the ex-ante relaxation.

▶ Lemma 5. Let z ∈ [0, 1] and k ∈ N. Further, let D be a distribution with monotone
hazard rate with CDF F , let X, (Yi)i ∼ D be independent and identically distributed. For
α ≥ 1+ln( 1

z )
Hk

, α ≥ 1, and αk ≤ 1
z , we have E

[
X
∣∣ X ≥ F−1 (1 − z)

]
≤ αE

[
maxi∈[k] Yi

]
.

The proof of this lemma can be found in the full version of the paper.

3.2 Static prices
Next, we would like to demonstrate how to use static prices. We consider the case that the
number of items m is upper bounded by n

(log log n)2 . We set the price for item j to

pj = F−1
j (1 − q) , where q = log log n

n
,

which allows us to state the following theorem.

▶ Theorem 6. The posted-prices mechanism with static prices and independent item-
valuations is 1 −O

(
log log log n

log n

)
-competitive with respect to social welfare.

As before, we defer the proof of this theorem to the full version of the paper and give
a quick sketch here: First, observe that we can bound the probability of selling item j to
buyer i by the probability of the event that buyer i has only non-negative utility for this
item. This implies a bound on the probability of selling item j in our mechanism. Finally,
we combine this with a lower bound on the price pj and hence are able to bound the revenue
(and thus the welfare) obtained by our mechanism. Observe that our guarantee only applies
if the number of items m is bounded by n

(log log n)2 . We leave the extension to the general
case as an open problem. As a first step, one could try to derive a suitable bound on the
utility of agents in order to extend the result.

4 Asymptotically Tight Bounds for Separable Valuations

Let us now come to separable valuations, which are common in ad auctions [14, 27]. That is,
in order to determine buyer i’s value for item j, let each buyer i have a type vi ≥ 0 and let
each item have an item-dependent multiplier αj which can be interpreted as a click through
rate in online advertising. Buyer i’s value vi,j for being assigned item j is given by αj · vi.
Without loss of generality, we assume that α1 ≥ α2 ≥ . . . and that m = n. The former can
be ensured by reordering the items; the latter by adding items with αj = 0 or removing all
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items j ∈ M with j > n respectively. Observe that in the case of m > n, items of index larger
than n are not matched in either the optimum, nor is it beneficial to match one of these
items and leave an item j ≤ n unmatched. Note that this correlated setting also contains
the single-item scenario as a special case since it can be modeled by α1 = 1, α2 = . . . = 0.
More generally, k identical items can be modeled by α1 = . . . = αk = 1, αk+1 = . . . = 0.

The types v1, . . . , vn ≥ 0 are non-negative, independent and identically distributed random
variables with a continuous distribution satisfying the MHR condition. Let ji denote the
item allocated to buyer i and ji = m+ 1 if buyer i is not allocated any item where αm+1 = 0.
We can specify the expected social welfare of the matching computed by the mechanism as
E [
∑n

i=1 αjivi] =: E [SWpp].
Additionally, the structure of the optimal matching can be stated explicitly. Given any

type profile v = (v1, . . . , vn), we let v(k) denote the k-th highest order statistics. That is, v(k)
is the largest x such that there are at least k entries in v whose value is at least x. Denote its
expectation by E

[
v(k)

]
= µk. The allocation that maximizes social welfare assigns item 1 to

a buyer of type v(1), item 2 to a buyer of type v(2) and so on. Hence, the expected optimal
social welfare is given by E [SWopt] = E

[∑m
j=1 αjv(j)

]
=
∑m

j=1 αjµj .

4.1 Dynamic prices
First, we focus on posted-prices mechanisms with dynamic prices. Consider step i and buyer
i arrives. Let M (i) be the set of remaining items at this time. Our choice of prices ensures
that in each step one item is allocated. Therefore, always |M (i)| = n− i+ 1.

We choose prices (p(i)
j )j∈M(i) with the goal that each item is allocated with probability

1
n−i+1 . To this end, let M (i) = {ℓ1, . . . , ℓn−i+1} with ℓ1 < ℓ2 < . . . < ℓn−i+1 and set

p
(i)
j =

∑
k:j≤ℓk≤n−i

(αℓk
− αℓk+1)F−1

(
1 − k

n− i+ 1

)
.

Given this pricing scheme, we can state the following theorem.

▶ Theorem 7. The posted-prices mechanism with dynamic prices and separable valuations is
1 −O

(
1

log n

)
-competitive with respect to social welfare.

The proof can be found in the full version of the paper. First, observe that in principle,
buyers will be indifferent between two items j and j′ if αj = αj′ . As these items are
indistinguishable for later buyers anyway and new prices will be defined, we can assume that
ties are broken in our favor. That is why we can assume that buyer i will prefer item ℓk if
and only if F−1

(
1 − k

n−i+1

)
≤ vi < F−1

(
1 − k−1

n−i+1

)
.

Using a suitable lower bound for F−1
(

1 − k
n−i+1

)
via the MHR property, we get a lower

bound for the value vi,j if i is matched to j. To this end, we compare quantiles of MHR
distributions to the respective order statistics. As stated before, by Section 5, the competitive
ratio is optimal.

4.2 Static prices
When restricting to the case of static prices, we define probabilities qj having the interpretation
that a buyer drawn from the distribution has one of items 1, . . . , j as their first choice. For
technical reasons, we discard items m̂ + 1, . . . , n for m̂ = n − n5/6 by setting pj = ∞ for
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these items. For j ≤ m̂, we set prices

pj =
n∑

k=j

(α′
k − α′

k+1)F−1(1 − qk) , where qk = min
{
k

n
2 log log n, k

n
+
√

log n
n

}
,

where α′
k = αk for k ≤ m̂ and 0 otherwise.

Note the similarity of this price definition to the payments when applying the VCG
mechanism. There, the buyer being assigned item j has to pay

∑n
k=j(α′

k − α′
k+1)v(k+1).

▶ Theorem 8. The posted-prices mechanism with static prices and separable valuations is
1 −O

(
log log log n

log n

)
-competitive with respect to social welfare.

The proof of this theorem can be found in the full version of the paper. The general steps
are as follows. We first show that our prices are fairly low, meaning that the probability of
selling all items 1, . . . , m̂ is reasonably high. Having this, we decompose the social welfare
into utility and revenue. The revenue of our mechanism is bounded in terms of the VCG
revenue. To this end, we use that our pricing rule is quantile-based and exploit that the
quantiles of any MHR distributions are lower-bounded by suitable fractions of expected order
statistics. Talking about utility, we use a link to Myerson’s theory and virtual values in order
to achieve our desired bound. Again, by Section 5, the competitive ratio is asymptotically
tight.

5 Asymptotically Upper Bounds on the Competitive Ratios

Our competitive ratios are asymptotically tight. In this section we provide matching upper
bounds showing optimality. To this end, we consider the case of selling a single item with
static and dynamic prices respectively. In any of the two cases, we can achieve asymptotic
upper bounds on the competitive ratio of posted prices mechanisms which match our results
from the previous sections. In particular, we prove that these bounds hold for any choice of
pricing strategy.

5.1 Dynamic prices
We consider the guarantee of our dynamic-pricing mechanisms first. Even with a single item
and types drawn from an exponential distribution, the best competitive ratio is 1 − Ω

(
1

log n

)
.

We simplify notation by omitting indices when possible.
▶ Proposition 9. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn i.i.d.
from the exponential distribution with rate 1, i.e., v1, . . . , vn ∼ Exp(1). For all dynamic
prices, the competitive ratio of the mechanism picking the first vi with vi ≥ p(i) is upper
bounded by 1 − Ω

(
1

log n

)
.

In order to prove Proposition 9, we use that the expected value of the optimal offline
solution (the best value in hindsight) is given by E

[
maxi∈[n] vi

]
= Hn [3]. Therefore, it

suffices to show that the expected value of any dynamic pricing rule is upper bounded by
Hn − c for some constant c > 0.

To upper-bound the expected social welfare of any dynamic pricing rule, we use the fact
that this problem corresponds to a Markov decision process and the optimal dynamic prices
are given by3

p(n) = 0 and p(i) = E
[
max{vi+1, p

(i+1)}
]

for i < n .

3 To the best of our knowledge, this is a folklore result.
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Furthermore, p(0) is exactly the expected social welfare of this mechanism. Therefore, the
following lemma with k = n directly proves our claim.

▶ Lemma 10. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn i.i.d. from
the exponential distribution Exp(1). Moreover, let p(n) = 0 and p(i) = E

[
max{vi+1, p

(i+1)}
]

for i < n. Then, we have p(n−k) ≤ Hk − 1
8 for all 2 ≤ k ≤ n.

The proof via induction over k can be found in the full version of the paper.

5.2 Static prices

For static pricing rules, we show that any mechanism is 1 − Ω
(

log log log n
log n

)
-competitive.

Again, this bound even holds for a single item and the valuations being drawn from an
exponential distribution.

▶ Proposition 11. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn i.i.d.
from the exponential distribution with rate 1, i.e., v1, . . . , vn ∼ Exp(1). For all static prices
p ∈ R≥0 the competitive ratio of the mechanism picking the first vi with vi ≥ p is upper
bounded by 1 − Ω

(
log log log n

log n

)
.

The proof of Proposition 11 can be found in the full version of the paper. The idea is as
follows. The expected welfare obtained by the static-price mechanism using price p is given
by E [SWpp] = E [v | v ≥ p] · Pr [∃i : vi ≥ p] = (p + 1) ·

(
1 − (1 − e−p)n). This has to be

compared to the expected value of the optimal offline solution (the best value in hindsight),
which is given by E

[
maxi∈[n] vi

]
= Hn [3].

6 Extensions to Subadditive Buyers and Revenue Considerations

In this section, we illustrate that the same style of mechanisms used for unit-demand buyers
in principle is also applicable for subadditive buyers. A valuation function vi is subadditive
if vi(S ∪ T ) ≤ vi(S) + vi(T ) for any S, T ⊆ M . This generalizes unit-demand functions
considered so far in this paper. Instead of being interested in only a single-item, each buyer
now has a subadditive valuation function over item bundles and can thus be interested in
multiple items.

To generalize the MHR property, we assume that the subadditive valuation functions are
drawn from distributions with MHR marginals. That is, vi ∼ D and we assume that vi ({j})
has a marginal distribution with monotone hazard rate. Buyers arrive online and purchase
the bundle of items which maximizes the buyer’s utility.

We can construct a dynamic-pricing mechanism which is 1 − O
(

1+log m
log n

)
-competitive.

For a detailed explanation, we refer to the full version of the paper. The general approach
is to split the set of buyers in subgroups of size

⌊
n
m

⌋
and sell each item to one of these

groups. For the k-th buyer in every group, the price for the item in question is set to

p
(k)
j = F−1

j

(
1 − 1

⌊ n
m ⌋−k+1

)
, where F−1

j denotes the quantile function of the marginal

distribution of vi ({j}). Using techniques similar to the ones in the unit-demand case allows
to bound the revenue of the posted-prices mechanism by the desired fraction of the optimal
social welfare. Hence, the argument directly implies the respective bounds for welfare and
revenue.

In the static pricing environment, our results can be extended to a mechanism which
is 1 − O

(
log log log n

log n + log m
log n

)
-competitive for subadditive buyers. Details can be found in

the full version. As before, let F−1
j be the quantile function of the marginal distribution of
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vi ({j}). Setting fairly low prices of pj = F−1
j (1 − q) for q = m log log n

n ensures that we sell all
items with a suitably high probability. Afterwards, we can apply the same bounds for MHR
distributions as in the previous sections in order to bound the revenue of the mechanism
with the respective fraction of the optimal social welfare. Again, this directly implies the
mentioned competitive ratio for welfare as well as revenue, as the revenue of any individually
rational mechanism is upper-bounded by the corresponding social welfare.

Note that the guarantees now depend on the number of items m. To make them
meaningful, we need m = o(n). This makes them significantly worse than the ones we obtain
for unit-demand functions with a much more careful treatment. However, they are stronger
in one aspect, namely that in both cases we bound the revenue of the mechanism in terms of
the optimal social welfare. In particular, this means that they are also approximations of the
optimal revenue. Interestingly, the optimality results from Section 5 also transfer.
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Abstract
Staged self-assembly has proven to be a powerful abstract model of self-assembly by modeling
laboratory techniques where several nanoscale systems are allowed to assemble separately and then
be mixed at a later stage. A fundamental problem in self-assembly is Unique Assembly Verification
(UAV), which asks whether a single final assembly is uniquely constructed. This has previously been
shown to be Πp

2-hard in staged self-assembly with a constant number of stages, but a more precise
complexity classification was left open related to the polynomial hierarchy.

Covert Computation was recently introduced as a way to compute a function while hiding the
input to that function for self-assembly systems. These Tile Assembly Computers (TACs), in a
growth only negative aTAM system, can compute arbitrary circuits, which proves UAV is coNP-hard
in that model. Here, we show that the staged assembly model is capable of covert computation using
only 3 stages. We then utilize this construction to show UAV with only 3 stages is Πp

2-hard. We then
extend this technique to open problems and prove that general staged UAV is PSPACE-complete.
Measuring the complexity of n stage UAV, we show Πp

n−1-hardness. We finish by showing a Πp
n+1

algorithm to solve n stage UAV leaving only a constant gap between membership and hardness.
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1 Introduction

The Staged Self-Assembly model was designed as an extension to the standard hierarchical
model of tile self assembly that mimics the abilities of scientists in the lab to control the
assembly process by mixing test tubes. The additional features in this model allow for more
efficient tile complexity, but increased complexity of certain verification problems.

We use the concept of Covert Computation, a requirement of a computational system
stipulating that the input and computational history of the computation be hidden in the
final output of the system, within the context of Staged Self-assembly, an extension to tile
self-assembly that allows for basic operations such as mixing self-assembly batches over a
sequence of distinct stages. We use this connection to resolve open questions regarding the
complexity of the Unique Assembly Verification (UAV) problem within staged self-assembly-
the problem of whether a given system uniquely produces a specific assembly. The importance
of this work stems from the fundamental nature of the UAV problem, along with the natural
and experimentally motivated Staged Self-Assembly model. Further, the novel approach by
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which our results are obtained, by way of designing Covert Computation systems in Staged
Self-Assembly, may be of independent interest as it shows how to utilize Staged Self-Assembly
to implement general purpose computing systems with strong guarantees that might be
useful for cryptography or have applications for privacy within biomedical computation.

Staged Self-Assembly. The Staged Self-Assembly model [1, 6, 7, 8, 9, 10, 11, 14, 18] is
a generalization of the (2-handed) tile assembly model [4] where particles are modeled by
4-sided Wang tiles which nondeterministically combine based on the affinity of tile edges. Tile
self-assembly is a well-studied mathematical abstraction used in the study of self-assembly
systems with algorithmically complex behavior, and enjoys experimental success through a
DNA implementation [19]. In order to add the basic functionality of what an experimentalist
with a set of test tubes could execute [17], the staged model extends tile self-assembly by
allowing assembly to occur in multiple separate bins, and for the contents of these bins to be
either combined or split into a new set of bins after each one of a given sequence of stages.

Covert Computation. Tile self-assembly can be used as a model of computation in which
tiles attach to an input seed structure to grow a final output structure encoding the result of
the computation. This basic paradigm is one of most promising avenues for the development
of nanoscale molecular computing systems (see [19] for recent experimental work using DNA
tiles to implement 6-bit circuits). The authors in [5] recently proposed a new constraint
on such computing systems termed Covert Computation. A covert computation system
computes a function with the additional constraint that the output assembly provides no
information about either the original input or the computational history, beyond the actual
output of the computed function. This is a particularly daunting self-assembly problem
since the output is provided in the form of a self-assembled structure that encodes the exact
geometric location of every placed tile. In previous methods of tile self-assembly computation,
the entire computational history and original input are easily interpreted from the final
output assembly. However, while the output assembly specifies the location of each placed
tile, the result of the computation can be a function of not just these tile locations, but also
of the order in which these tiles are placed, which is the technique exploited in [5]. This
concept provides a useful technique for proving complexity results, and we use it here to
show PSPACE-completeness of verifying unique assembly in staged self-assembly.

Unique Assembly Verification. One well-studied problem in tile self-assembly is the Unique
Assembly Verification (UAV) problem which asks if a given system uniquely produces a given
assembly. This problem was shown to be solvable in polynomial time in the Abstract Tile
Assembly Model [2]. The addition of negative interactions and detachment of tiles makes
the UAV problem undecidable [12], while growth-only systems with no detachments are
coNP-complete [5]. The UAV problem in the 2-Handed Assembly Model was first studied
in [4] where coNP membership was shown with coNP-completeness in the third dimension.
The problem was also shown to be coNP-complete with a variable temperature [15], but
constant temperature UAV in the 2HAM is still open. In the staged assembly model, initial
investigation in [16] showed coNP-hardness using four stages and Πp

2-hardness for seven stages.
They also showed membership in PSPACE with a conjecture of PSPACE-completeness.

Our Results. In this paper, we introduce the concept of covert computation in the context
of staged self-assembly for the purpose of establishing the complexity of unique assembly
verification within the model. First, we show that staged self-assembly is capable of covert
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Table 1 Complexities of Unique Assembly Verification in the Staged Assembly Model with respect
to the number of stages n. Our results are in bold. ∗This result uses the temperature as an input
parameter/variable for the problem. All other results are true even with a constant temperature.

Stages Membership Hardness
1 (2HAM) coNP In [4] coNP-complete∗ In [15]

2 Πp
3 Thm. 19 coNP-hard∗ In [15]

3 Πp
4 Thm. 19 Πp

2-hard Thm. 6
n > 3 Πp

n+1 Thm. 19 Πp
n−1-hard Thm. 12

General PSPACE In. [16] PSPACE-complete Thm. 10

computation even when limited to three stages. Next, we use this fact to show UAV is
PSPACE-complete in staged self-assembly, resolving the open problem from [16]. Along the
way, we improve on some results from [16]: we show that UAV is Πp

2-hard with just three
stages, improving on the previous hardness result requiring seven stages. We then generalize
this result to show that for n stages, UAV is Πp

n−1-hard, but yields a Πp
n+1 algorithm, leaving

only a gap of two in levels between membership and hardness for this problem. An overview
of our results and known results related to UAV is shown in Table 1.

2 Preliminaries

We first provide definitions for the staged self-assembly model and covert computation.

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set Σ.
Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).

Configurations, bond graphs, and stability. A configuration is a partial function A : Z2 → T

for some set of tiles T , i.e. an arrangement of tiles on a square grid. For a given configuration A,
define the bond graph GA to be the weighted grid graph in which each element of dom(A) is
a vertex, and the weight of the edge between a pair of tiles is equal to the strength of the
coincident glue pair. A configuration is said to be τ -stable for positive integer τ if every edge
cut of GA has strength at least τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈ Z2, A + u⃗ denotes
the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For two configurations A and B,
B is a translation of A, written B ≃ A, provided that B = A + u⃗ for some vector u⃗. For
a configuration A, the assembly of A is the set Ã = {B : B ≃ A}. An assembly Ã is a
subassembly of an assembly B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and
B ∈ B̃ such that A ⊆ B. An assembly is τ -stable provided the configurations it contains
are τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist
A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is τ -stable.

Two-handed assembly and bins. We define the assembly process in terms of bins. A bin
is an ordered tuple (S, τ) where S is a set of initial assemblies and τ is a positive integer
parameter called the temperature. For a bin (S, τ), the set of produced assemblies P ′

(S,τ) is
defined recursively as follows:
1. S ⊆ P ′

(S,τ).
2. If A, B ∈ P ′

(S,τ) are τ -combinable into C, then C ∈ P ′
(S,τ).
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Figure 1 (a) A 2HAM example that uniquely builds a 2 × 3 rectangle. The top 4 tiles in the tile
set all combine with strength-2 glues building the ‘L’ shape. The tile with blue and purple glues
needs two tiles to cooperatively bind to the assembly with strength 2. All possible producibles are
shown with the terminal assembly highlighted. (b) A simple staged self-assembly example. The
system has 3 bins and 3 stages, as shown in the mixgraph. There are three tile types in our system
that we assign to bins as desired. From each stage only the terminal assemblies are added to the
next stage. The result of this system is the assembly shown in the bin in stage 3.

A produced assembly is terminal provided it is not τ -combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). Intuitively,
P ′

(S,τ) represents the set of all possible assemblies that can self-assemble from the initial set
S, whereas P(S,τ) represents only the set of supertiles that cannot grow any further. The
assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′

(S,τ) there exists a corresponding
y ∈ P(S,τ) such that x ⊑ y. Thus unique production implies that every producible assembly
can be repeatedly combined with others to form an assembly in P(S,τ).

Staged assembly systems. An r-stage b-bin mix graph Mr,b is an acyclic r-partite digraph
consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form (mi,j , mi+1,j′)
for some i, j, j′. A staged assembly system is a 3-tuple ⟨Mr,b, {T1, T2, . . . , Tb}, τ⟩ where Mr,b

is an r-stage b-bin mix graph, Ti is a set of tile types, and τ is an integer temperature
parameter.

Given a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a corresponding
bin (Ri,j , τ) where Ri,j is defined as follows:
1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

( ⋃
k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τ)

)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj , and each bin in any
subsequent stage receives an initial set of assemblies consisting of the terminally produced
assemblies from a subset of the bins in the previous stage as indicated by the edges of the
mix graph.1 The output of the staged system is the union of all terminal assemblies from
each of the bins in the final stage.2 We say this set of output assemblies is uniquely produced
if each bin in the staged system uniquely produces its respective set of terminal assemblies.

1 The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Since our systems may have super-constant tile complexity, we restrict
tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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Covert Computation. Tile assembly computers were first defined in [5, 13] with respect
to the aTAM. We provide formal definitions of both Tile Assembly Computers and Covert
Computation with respect to the Staged Self-Assembly model.

A Staged Tile Assembly Computer (STAC) for a function f consists of a staged self-
assembly system, and a format for encoding the input into tiles sets and a format for reading
the output from the terminal assembly. The input format is a specification for what set of
tiles to add to a specific bin in the first stage. Each bit of the input must be mapped to
one of two sets of tiles for the respective bit position: a tile set representing “0”, or tile set
representing “1”. The input set for the entire string is the union of all these tile sets. Our
staged self assembly system, with the set of tiles needed to build the input seed added in
a designated bin, is our final system which performs the computation. The output of the
computation is the terminal assembly the system assembles. To interpret what bit-string is
represented by the assembly, a second output format specifies a pair of sub-assemblies and
locations for each bit. An assembly that represents a bitstring is created by the union of
each sub-assembly represented by each bit.

For a STAC to covertly compute f , the STAC must compute f and produce a unique
assembly for each possible output of f . Thus, for all x such that f(x) = y, a covert STAC
that computes f produces the same output assembly representing output y for each possible
input x, making it impossible to determine which input value x was provided to the system.

Input Template. An n-bit input template over tile set T is a sequence of ordered pairs of
tile sets over T : I = (I0,0, I0,1), . . . , (In−1,0, In−1,1). For a given n-bit string b = b0, . . . , bn−1
and n-bit input template I, the input tile set for b with respect to I is the set I(b) =

⋃
i Ii,bi

.

Output Template. An n-bit output template over tile set T is a sequence of ordered pairs
of configurations over T : O = (C0,0, C0,1), . . . , (Cn−1,0, Cn−1,1). For a given n-bit string
x = x0, . . . , xn−1 and n-bit output template O, the representation of x with respect to O is
O(x) = the assembly of

⋃
i Ci,xi

. A template is valid for a temperature parameter τ ∈ Z+ if
this union never contains overlaps for any choice of x, and is always τ -stable. An assembly
B ⊇ O(x), which contains O(x) as a subassembly, is said to represent x as long as O(d) ⊈ B

for any d ̸= x.

Function Computing Problem. A staged tile assembly computer (STAC) is an ordered
triple ℑ = (Γ, I, O) where Γ = (M, {∅, T2, . . . , Ti}, τ) is a staged self assembly system, I is
an n-bit input template, and O is a k-bit output template. A STAC is said to compute
function f : Zn

2 → Zk
2 if for any x ∈ Zn

2 and y ∈ Zk
2 such that f(x) = y, then the staged

self assembly system Γℑ,x = (M, {I(x), T2, . . . , Ti}, τ) uniquely assembles a set of assemblies
which all represent y with respect to template O.

Covert Computation. A STAC covertly computes a function f(x) = y if 1) it computes
f , and 2) for each y, there exists a unique assembly Ay such that for all x, where f(x) = y,
the system Γℑ,x = (M, {I(x), T1, . . . , Ti}, τ) uniquely produces Ay. In other words, Ay is
determined by y, and every x where f(x) = y has the exact same final assembly.

3 Covert Computation in Staged Self-assembly

Here, we demonstrate covert computation in the staged assembly model. This construction
creates a logic circuit using a 3-stage temperature-2 system with a number of bins polynomial
in the size of the circuit. We consider only circuits made up of functionally universal NAND
gates, but these techniques could be used to create any 2-input gate.
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Figure 2b shows a basic overview of the mixgraph used for the covert computation
implementation. The method requires three stages with a polynomial number of mixing bins.

In the first stage, we assemble the components needed to perform the computation. These
include an Input Assembly, which encodes the input to the function, Gate Assemblies,
which act as individual gates and perform the computation via their attachment rules
and geometry, and additional assemblies which are used to help “clean up” our circuit
and covertly get the output.
In stage two, the input assembly and gate assemblies are added to a single bin along
with a test tile. The gate assemblies will begin to attach to the input assembly creating
a Circuit Assembly. Once the computation is complete, the test tile can attach to the
circuit assembly if and only if the output is true. The circuit assembly is terminal in this
bin and will be passed to the final stage.
The final stage adds additional assemblies to the bin along with most of the tile set as
single tiles (not shown in figure). The additional assemblies read the output of the circuit
and it grows into one of the output templates. The Output Frame searches for the test
tile representing the output of the circuit. The single tiles fill in any spaces left in the
circuit assembly that would show the computation history, thereby turning the assembly
into the output template. This requires a linear number of additional bins in the first
and second stage to store these single tiles while mixing takes place in other bins.

For our circuit assembly we implement Planar Logic Circuits with only NAND gates. An
example circuit and an assembly showing how the gates are laid out are shown in Figure 2a.
Wires are represented by 2 × 3 blocks of tiles shown in blue in the image. Input and Gate
assemblies contain a subset of the tiles in each block we call arms which represent the values
being passed along the wires. The input assembly is a comb-like structure that is designed
so that each input bit reaches the gate it is used at (Figure 3a). For each NAND gate in
the circuit we have 4 different assemblies, one for each possible input to the gate. A gate
assembly can cooperatively bind to the input assembly if the variable values match. The gate
assembly has a third arm that represents the output. This allows the next gate assembly to
attach, which continues propagating until the computation is done and the circuit assembly
is complete. We now cover the construction in detail by stage.

3.1 First Stage - Assembly Construction
Each bin in the first stage will individually create the assemblies that will come together in
the next stage. For an n-input k-gate NAND logic circuit (considering crossovers as three
XOR gates [5]), we have an input assembly, 4k gate assemblies, and a constant number of
other assemblies that will be used in the final stage. Here we will describe the details of the
individual assemblies created in addition to the arms, which function as wires in our system.

Input. For each bit of the input we have two possible input bit assemblies (Figure 3a).
The value of the bit determines which tiles will be added to create that input bit assembly
in the first stage. Figure 3a shows the selected assemblies that come together to form the
input assembly shown in Figure 3b. Each subassembly has a domino which we call an “arm”
representing the corresponding bit value. The shape of these assemblies depends on the gates
to which they input because the arm of the assembly must reach the location of the gate it
inputs to. The last input bit assembly also contains an extra set of tiles that reach the final
output gate with a strength-1 glue on its north end and two glues on it’s east to allow for
the test tile and output frame to attach.
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Figure 2 (a) Simple 3-input logic circuit using 2 NAND gates, and the high-level abstraction
of the circuit assembly showing the input variables and gates highlighted as blocks. Blue blocks
are the sections of the assemblies we call Arms that function as wires in the systems. (b) (1) Our
input assembly and gate assemblies are constructed in separate bins. (2) Gate assemblies attach to
the input assembly forming a circuit assembly. (3) Unused gates are terminal in the second stage.
(4) This circuit evaluates to true, so the test tile will be able to attach. (5) Gate assemblies in this
stage grow into a circuit using single tiles. (6) Single tiles fill in open spots in the circuit assembly
to hide the history. The additional assemblies are used to reach the output template.

Arms. We describe assemblies as having input or output arms which function as the wires
of our circuit. Arms are vertical dominoes that represent bit values, with their location on
the assembly representing the bit having a value 0 or 1 (Figure 4a). The output arm being
in the left position represents a bit value of 0, with the right position representing 1. The
locations of input arms are complementary (right represents 0, left represents 1) to the output
arms. These arms have a glue on the second tile on the inner side. An input arm will attach
to an output arm to “read” the bit (Figure 4b) if they represent the same wire and the same
value. This glue is a strength-1 glue, so the assembly must attach cooperatively elsewhere in
the assembly. Another key feature of these arms is the ability to hide the information passed
through by adding single tiles in a later stage. The spaces left by the attachment may be
filled by single tiles which results in an assembly which looks like Figure 4c where the value
passed cannot be read. This feature will be used in the final stage of our system.

Gates. For each gate we create four assemblies with each representing one of the valid
input/output combinations of the desired logic gate. Each gate assembly has two input arms
and one output arm. We encode the logic gate by placing the output arm in the column
representing the output of the gate when input with the bits represented by the input arms
(Figure 3c). This assembly has strength-1 glues on each of its arms. The shape of each gate
is dependent on the layout of the circuit since the output arm needs to reach to the next
gate. In the case a gate has a fan out (outputs to multiple gates) a gate assembly may have
multiple output arms which share arm position. We will refer to the final gate of the circuit
as the output gate. It does not contain an output arm but instead contains a flag tile to
represent an output of false, or no flag tile to represent an output of true which can be seen
in Figure 3d. The flag tile also contains a strength-1 glue on it’s south edge which allows for
the test tile to attach.

3.2 Second Stage - Computation
In the second stage there is a single bin where the circuit assembly is created. In this stage
the input assembly and the gate assemblies are mixed together to compute the encoded
circuit. The computation starts by attaching gates to the input assembly to begin to build
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Figure 3 (a) Possible input bit assemblies for a 3 bit function. Solid lines between tiles indicate
a strength 2 glue between the tiles. Small boxes indicate a strength 1 glue. For each bit we select
either the left or the right assembly based on the value of the bit and add those tiles to our input
bin in the First Stage. Lighter tiles are not used. (b) The input assembly that is constructed in the
First Stage. The last input bit assembly contains an extra column of tiles that reaches to where the
output gate will be for cooperative attachment of the test tile. (c) 4 gate assemblies, one for each
possible input combination of a NAND gate. Glues are labeled to match the wires of the NAND
gate. (d) Output gates. True output gates contain a flag tile (white).
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Figure 4 (a) Information being passed along a wire is represented by the position of a domino
called an arm. Output arms represent a signal of “1” of “0” by being in the left or right position,
respectively. Input arms read bit values and have complimentary arm placement to allow for
attachment. (b) Information is passed by attachment. Another assembly may attach if the arms
have matching glues (they represent the same wire) and they have complementary arms (represent
the same bit value). (c) In the final stage we add additional tiles to hide the information that was
passed along a wire.

the circuit assembly. Once both inputs to a gate are present on the circuit assembly, the
next gate assembly can cooperatively attach to the circuit assembly since each arm has an
attachment strength of 1 as seen in Figure 5a. In this stage we also add the test tile. If the
output of the circuit is true, the flag tile can attach as in Figure 5c. If the output is false,
the terminal circuit assembly can be seen in Figure 5b. The test assembly is not able to
attach to the circuit assembly in this case and will be terminal. We note that at this point it
is possible to read the output of the circuit by checking the terminal assemblies, however the
computation history can still be read so the covert computation is not complete and we need
an additional stage.

3.3 Third Stage - Clean Up
In the third stage we hide the computational history and get the output of the computation.
The output template (Full Circuit Assembly) is shown in Figure 5d, which is a circuit
assembly with all open spaces in its arm filled in (computation history is hidden) and the
additional assemblies attached. The additional assemblies are the Output Frame, which the
test tile may attach to, the test domino, which attaches to a circuit assembly but not to the
output frame, the blocking tile, which turns a test tile into a test domino, and all single tiles
used in the circuit assembly other than the test tile. The difference between the true and
false output templates is the inclusion/exclusion of the test tile within the Output Frame.
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(a) (b) (c) (d)

Figure 5 (a) A NAND gate assembly representing input: “10” and output: “1” attaching to
the input assembly in the Second Stage. (b) False Output Gates which do not contain a flag tile
can attach to the circuit if the output is false. This assembly is terminal in the second bin. (c)
True Output Gates have an additional flag tile (white) that allows for the test tile (red) to attach
cooperatively to the input assembly and the True Output Gate. (d) Single tiles fill in the spaces left
by the arms and the output frame attaches forming our target assembly. If there is a flag tile in the
output frame the output of this circuit is true. Otherwise, the output is false.

▶ Theorem 1. For any function f computed by an n-input boolean circuit with k gates, there
exists a 3-stage O(n2 + k2) bin, temperature-2 staged tile assembly computer that covertly
computes f with an output template size of O(n2 + k2).

Proof. Given any boolean circuit c, we create gate assemblies for each gate. Given the input
to this circuit we create input assemblies that encode the input. In the second stage input
assemblies start attaching together to form a circuit assembly. Once two inputs to a gate
have attached the gate assembly computing the output of that gate is able to attach. Two
gate assemblies cannot attach away from the circuit assembly. There only exist strength-1
glues on the outer edges of a gate assembly, thus a gate can only attach to another assembly
with a cooperative bind at each arm. This ensures gates only attach once both inputs are
present, and forces the circuit to assemble in the correct order. In the second stage we add in
the test tile. This test tile may only attach to a circuit assembly that has a flag tile attached.
The flag tile is only present on output gates that evaluate to true so the test tile may attach
if and only if the circuit evaluates to true. The test tile is terminal otherwise.

In the final bin we add in single tiles to hide the input to the circuit and the inputs to
each gate. As explained above each assembly input to this bin will grow into a full circuit
assembly. This full circuit assembly will grow into one of our two output frames. The output
frame is a full circuit assembly with the output frame attached. The output frame contains
a test tile for false and is empty for true. The terminal assembly of our staged system will
have a test tile in the output frame if and only if the circuit evaluated to false which is one
of our output frames. If the circuit evaluates to true the test tile will not be present.

This system uses a polynomial number of bins in the first and second stage and a single
bin the final stage. The number of bins in the first and second stage are bounded by the
size of our tile set since we need individual bins to store each tile so they do not combine
before the final stage. The max size of a gate assembly is O(max(n, k)) since in the worst
case a gate needs to stretch across the whole circuit. The same bound applies to input bit
assemblies. Therefore the size of the system (the number of tile types + the size of the mix
graph) is O(n2 + k2) ◀
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Figure 6 A high level overview of the staged system created from an instance of ∀∃SAT. (a)
An input assembly is created for every possible input to ϕ and is evaluated using the computation
technique from Section 3. (b) A test assembly is created for every possible input to X. (c) Test
assemblies can attach to a true circuit assembly with the same assignment to X. Blank test assemblies
attach to any circuit. (d) Terminal assemblies are passed to the next stage, including unmatched
test assemblies if any exist. (e) In this stage we add the domino and square assemblies, as well as
every other single tile of the target assembly. (f) Any unmatched test assembly will grow into an
incomplete target assembly since it cannot attach to the square assembly. These incomplete target
assemblies are terminal, meaning the UAV instance is false.

4 Unique Assembly Verification

We now utilize covert computation to show that the open problem of Unique Assembly
Verification in staged self assembly is PSPACE-complete. We start by showing UAV with
3 stages is Πp

2-hard. We then show how to extend this construction to show that general
staged UAV is PSPACE-complete. With some adjustments the same concept is used to show
that when limiting the system to n stages, the problem of UAV is Πp

n−1-hard.

▶ Problem 2 (Staged Unique Assembly Verification). Given a staged system Γ and an assembly
A, does Γ uniquely assemble A?

4.1 3-stage UAV is Πp
2-hard

We modify the covert computation construction to provide a reduction from ∀∃SAT. Given an
instance of ∀∃SAT, we create a 3-stage temperature-2 staged system that uniquely produces
a target assembly iff the given instance of ∀∃SAT is true. The reduction uses the same
high-level idea as [16] and [3]. The process begins with the construction of an assembly for
every input to the ∀∃SAT formula. Circuit assemblies build from these inputs and are flagged
as true or false, while encoding a partial assignment through their geometry. Separate “test”
assemblies are constructed that also encode a partial assignment to the same variables, which
attach to true circuit assemblies with matching assignments. The systems uniquely assembles
a target assembly if for all test assemblies there exists a compatible true circuit assembly for
it to attach to. See Figure 6 for a visual overview of the created system.

▶ Problem 3 (∀∃SAT). Given an n-bit boolean formula ϕ(x1, x2...xn) with the inputs divided
into two sets X and Y , for every assignment to X, does there exist an assignment to Y such
that ϕ(X, Y ) = 1?
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Figure 7 (a) Input bit assemblies for variables in X with geometry on the left reflecting the bit
value. (b) An example initial circuit assembly for input x1 = 1, x2 = 0, x3 = 0. The geometry on
the left side of the assembly represents the assignment of X. (c) Separately built test bit assemblies
nondeterministically attach to build one test assembly for every assignment to variables in X. (d)
The blank test assembly is composed of the same base but has no protruding arms.

4.1.1 First Stage
Input and Gate Assemblies. In the first stage an input bit assembly for both assignments
to every variable x1, . . . , xn is built in its own bin (2n bins in total). Input bit assemblies
have the same structure as in the covert computation construction, except that input bit
assemblies representing bits in X also have a horizontal row of tiles on the left of the frame
that reflects the bit value. Figure 7a shows this modification to the input bit assemblies.
The bit assemblies representing variable xn no longer has additional tiles that attach to the
test tile used in section 3. The input bit assemblies representing variable x|X|+1 have an
additional 2 tiles attached, which are used to attach to the test assembly. Gate Assemblies
are built in the same way described in Section 3.

Test Assemblies. Similar to the input bit assemblies, two test bit assemblies are constructed
for every variable in X. A test bit assembly is a column of connected tiles, with a horizontal
row of 3 tiles extending to the right, the position of this row represents an assignment “0” or
“1”. An example test assembly building from separate test bit assemblies is shown in Figure
7c. A test assembly is composed of |X| test bit assemblies. Test assemblies have additional
geometry that allow them to attach to a circuit assembly.

4.1.2 Second Stage
In the second stage the input bit assemblies will attach together nondeterministically to form
2n unique input assemblies. The “1” and “0” input bit assembly exist for every variable, so
the nondeterministic nature of the model allows for the construction of an input assembly
for every possible input to the circuit. From this input assembly, computation will begin as
described in the covert section. There will exist a circuit assembly for each of the 2n possible
inputs, and each will be flagged as true or false, represented by the existence of a flag tile on
the output gate. We call a circuit assembly that contains the flag tile a true circuit assembly.

Test Assemblies. Test bit assemblies nondeterministically combine in this stage to create a
unique test assembly for every assignment to variables in X, with its assignment encoded
in its geometry. A test assembly can cooperatively bind to a true circuit assembly (with
the same assignment to X) by having glue strength with the output flag tile and the input
assembly (Figure 8b). A test assembly has its assignment encoded in its geometry in a
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Figure 8 (a) A test assembly (left) and a true circuit assembly that represent the same assignment
to variables in X (In this construction true assemblies contain the flag tile). (b) A test assembly
attaching to true circuit assembly with a matching assignment to X. (c) A test assembly that is
geometrically blocked from attaching to a true circuit assembly due to having a different assignment
to X. The red circled area shows the point of overlap.

complementary fashion to that of a circuit assembly. This ensures that a test assembly is
geometrically blocked from attaching to a circuit assembly that encodes a different assignment
to X (Figure 8c). If there are no true circuit assemblies with the assignment x to X, the
test assembly that represents that assignment of x will be terminal in the second stage. We
refer to these as unmatched test assemblies.

▶ Lemma 4. Let tx be the test assembly representing the assignment x to the variables in
X. tx is unmatched (terminal in the second stage) if and only if for all assignments y to the
variables in Y (ϕ(x, y) = 0).

Proof. True circuit assemblies are the only assemblies which have the necessary glue types
to attach to tx. The remaining question is whether a true circuit assembly exists which
represents a compatible assignment. tx can attach to any true circuit assembly with a
matching assignment to X, regardless of that circuit’s assignment to Y . It follows that
if there exists an assignment y to Y such that ϕ(x, y) = 1, then tx is not terminal. The
negation of which is ∀y(ϕ(x, y) = 0), then tx is terminal. ◀

4.1.3 Third Stage
The third stage utilizes a single bin that all assemblies are combined in. Nearly all single tiles
of the target assembly are added. Four single tiles are specifically excluded, and instead two
subassemblies are added in. This is done carefully to ensure the following property: every
assembly except unmatched test assemblies from the second stage will grow to the target
assembly. Our target assembly contains a circuit assembly attached to a test assembly with
every empty spot filled in. At the point where a test assembly attaches a the circuit assembly,
a domino assembly is attached completing the target assembly as seen in Figure 9a.

▶ Lemma 5. Let A be the set of initial assemblies in the sole bin in the third stage. For all
assemblies a ∈ A, a will grow to the target assembly iff a is not an unmatched test assembly.

Proof. All individual tiles of the target assembly are added into the last stage, with the
exception of four withheld tiles: the two tiles where the test assembly and input assembly
meet, and the two tiles below that (tiles A, B, C, D in Fig. 9a). Instead of these four tiles,
two assemblies are added that we refer to as the square and domino (Fig. 9b). These two
assemblies perform the function of allowing every initial assembly besides unmatched test
assemblies to grow into the target assembly. True circuit assemblies with test assemblies
attached will have their empty spaces filled by single tiles, and the domino assembly will
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Figure 9 (a) An example target assembly. The area boxed in red shows where the test assembly
meets the input assembly (A, B), and the adjacent domino (C, D). The four tile types A, B, C, D

are not added in individually at the third stage. (b) The two additional assemblies that are added
in at the third stage, composed of the same four tile types. (c) The square assembly is geometrically
blocked from attaching to an assembly that grew from an unmatched test assembly, as they both
contain tile A.

attach. Unused gates will grow to a near-complete circuit, attach to the square assembly, and
then continue to grow to the target assembly. True and False Circuit Assemblies with blank
test assemblies attached already contain the four withheld tiles, so will grow to the target by
attaching to all necessary single tiles. Unmatched test assemblies that did not attach to a
true circuit assembly can grow to a near complete target assembly, however, it will never
acquire tile B (Fig. 9a), as it could only achieve this by attaching to the square assembly.
They both contain tile A, making it geometrically blocked from doing so (Fig. 9c). ◀

▶ Theorem 6. UAV in the Staged Assembly Model with three stages is Πp
2-hard with τ = 2.

Proof. Given an instance of ∀∃SAT, the reduction provides an instance of a 3-stage
temperature-2 UAV instance which is true if and only if the instance of ∀∃SAT is true.

If the instance of ∀∃SAT is true, then for all assignments x to X, there exists an assignment
y to Y with ϕ(x, y) = 1. By Lemma 4, this implies there will be no unmatched test assemblies.
By Lemma 5, every assembly that is not an unmatched test assembly or grown from an
unmatched test assembly will grow into the target assembly in the third stage. Thus, the
system uniquely produces the target assembly. If the ∀∃SAT instance is false, then there
exists an assignment x to X, s.t. for all assignments y to Y , ϕ(x, y) = 0. By Lemma 4, a
test assembly representing assignment x would be unmatched, and by Lemma 5, unable to
grow into the target assembly. Thus, this UAV instance is false. ◀

4.2 Staged UAV is PSPACE-hard
In this section, we explain at a high level how the reduction is extended to reduce from
TQBF with n quantifiers over nvariables to temperature-2 O(n)-stage UAV, showing that
Staged UAV is PSPACE-Hard.

▶ Problem 7 (TQBF ). Given a boolean formula ϕ with n variables x1, . . . , xn, is it true
that ∀x1∃x2 . . . ∀xn(ϕ(x1, . . . , xn) = 1)?

We utilize the same technique used in section 4.1 which reduced from ∀∃SAT, a special
case of TQBF limited to only 2 quantifiers, but adapt the technique to work with a QBF
with n quantifiers ∀x1∃x2 . . . ∀xn(ϕ(x1, . . . , xn) = 1). In the 3rd stage, instead of adding
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Figure 10 An example mix graph for an instance of TQBF with 4 variables. (a) Test bit
assemblies combine into T2 test assemblies. Circuit assemblies evaluate every input. (b) T2 test
assemblies attach to compatible (matching partial assignment) true circuits. Any unmatched T2

assemblies are passed to the next stage. (c) T3 test assemblies are added in and attach to compatible
T2 test assemblies. (d) Any unmatched T3 assemblies are passed to the next stage. (e) T4 test
assemblies are added and attach to compatible T3 test assemblies. (f) The existence of an unmatched
T4 assembly directly corresponds to the truth of the TQBF instance.

in single tiles to “clean up”, we add in a second set of test assemblies that represent an
assignment with one less variable in the next stage and are complementary in their geometry.
These new test assemblies then attach to previous test assemblies that were terminal in
the previous stage with matching partial assignments. This process computes an additional
quantifier. We can then repeat this process of adding in complementary sets of test assemblies
for the number of quantifiers required. In the final stage, if a test assembly from the final
set couldn’t find a complementary test assembly to attach to, the instance of TQBF is false,
and that test assembly is prevented from growing to the target assembly. This allows the
truth of instance of staged UAV to correspond to the truth of the QBF. See Figure 10 for a
depiction of the mix graph. We now show how in a certain stage the existence of a terminal
test assembly relates to the truth of a statement about the boolean formula.

In total the system will have n + 1 stages, and n − 1 sets of test assemblies will be added
(denoted T2, . . . , Tn). The set Ts will be mixed in at stage s. The first set T2 represents an
assignment to x1, . . . , xn−1, and each consecutive set represents one less variable than the
set before it, i.e., a test assembly ts ∈ Ts represents a partial assignment to x1, . . . , xn−s−1.
The sets alternate between type L and R, which correlates to the direction the arms face
(Compare T3 and T4 in Figure 10). We build all these sets of test assemblies using the same
method in the first stage, and pass them along through “helper” bins until they are needed.

▶ Lemma 8. Let TERM(A, b) ⇐⇒ (Assembly A is terminal in bin b). Let a be
the number of variables the test assemblies in Ts represent (a = n − s + 1). Let
ts(x1, . . . , xa) be the test assembly ts ∈ TS that represents partial assignment x1, . . . , xa.
In the staged system SP created from an instance of TQBF P over n variables: ∀s ∈
{1, . . . , n}(TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) = y)). If s

is even, y = 0 and Q = ∀, and y = 1, Q = ∃ otherwise.

▶ Lemma 9. In the staged system SP created from an instance of TQBF P over n variables,
in bin bn+1 in stage n + 1, let A be the set of initial assemblies in bn+1. For all a ∈ A, a

will grow to the target assembly if and only if a is not an unmatched test assembly tn ∈ Tn.
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▶ Theorem 10. Unique Assembly Verification in the Staged Assembly Model is PSPACE-
complete with τ = 2.

Proof. Given an instance of TQBF P over n variables/quantifiers, the reduction provides
an instance of n + 1-stage τ = 2 UAV that is true if and only if P is true. If P is true,
then in stage n + 1, every producible assembly grows into the target assembly. Since n is
always even, by Lemma 8, for a bin bn in stage n, an assembly tn ∈ Tn representing an
assignment x1 is terminal in bin bn if ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 0). If P is true, then
the statement ∀x1∃x2∀x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 1) is true, and therefore no unmatched
tn ∈ Tn will be passed into bn+1. By Lemma 9, every initial assembly in bn+1 that is not
some tn ∈ Tn grows into the target assembly. Therefore, the target assembly is uniquely
assembled if the instance of TQBF is true. If P is false, then there exists an assignment to
x1 such that ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 0). By Lemma 8, some test assembly tn ∈ Tn

will be terminal and passed into bin bn+1. By Lemma 9, any tn ∈ Tn will not grow into the
target assembly. Thus, the instance of staged UAV is false. ◀

4.3 n-Stage Hardness
We now show how the reduction can be used to show hardness for n-stage UAV. We reduce
from the boolean satisfiability problem for Πp

n, which is a quantified boolean formula with n

quantifiers (starting with universal) and n − 1 alternations. We show an instance of Πp
n-SAT

can be reduced to n + 1-stage τ = 3 UAV.

▶ Problem 11 (Πp
n − SAT ). Given a boolean formula ϕ with variables partitioned into n

sets X1, . . . , Xn, is it true that ∀X1∃X2 . . . QnXn(ϕ(X1, . . . , Xn)).

▶ Theorem 12. For all n > 1, UAV in the Staged Assembly Model with n stages is Πp
n−1-hard

with τ = 2.

Proof. The system functions nearly identically to the previous reduction. However, if n

is odd, the output gate assemblies will now contain the flag tile if they represent a false
output, rather than true. Each consecutive test assembly added now represents one less set
of variables, rather than just one less variable.

If n is even, the system acts in the way previously described. If n is odd, then by Lemma 8
any tn ∈ Tn representing an assignment to X1 is terminal if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) =
1). However, since we modified the output assemblies to contain the flag tile if they represent
a false output, they are now terminal if the statement is true for the negation of ϕ. Therefore
any tn representing X1 is terminal if and only if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) = 0). In
bin bn+1 all assemblies besides any tn grow to the target assembly in the same way. ◀

4.4 UAV Membership
In this section, we improve on previous work and show that an n-stage UAV problem is in
Πp

n+1. We use a similar method as [16], by defining three subproblems that are solved as
subroutines of a UAV algorithm. However, these subproblems differ from previous work as
we make some assumptions about our input. We first define bounded bins and systems, then
define the three subproblems, and show their complexity. However, due to space constraints,
the proofs have been omitted.

▶ Definition 13 (Bounded). Given a bin b = (S, τ) in a staged system where S is the set of
initial assemblies and τ is the temperature. Let Pb be the set of producible assemblies in bin
b. The bin is bounded by an integer k ∈ Z+ if for each a ∈ Pb, |a| ≤ k. A staged system is
bounded if all bins are bounded by some k.
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Table 2 Complexity of these problems in 1 stage (2HAM) and in s stages.

Stages UAV BPROD BTERM BBIN
1 Πp

1 Σp
0 Πp

1 Πp
1

s Πp
s+1 Σp

s Πp
s Πp

s

Algorithm 1 Staged Unique Assembly Verification Membership Algorithm.

Data: Given a staged system Γ with n stages, and an Assembly A.
Result: Does Γ uniquely assemble A and is Γ bounded?
for each stage s′ starting with s′ = 1 do

for each bin b in stage s′ do
if Not BBINs′(Γ, |A|, b′) then reject;

for each bin b in stage n do
if Not BPRODn(Γ, |A|, b, A) then reject;
if Not BTERMn(Γ, |A|, b, A) then reject;

Nondeterministically select an assembly B with |B| ≤ |A|;
for each bin b′ in stage n do

if BPRODn(Γ, |A|, b′, B) then
if BTERMn(Γ, |A|, b′, B) then reject;

accept;

▶ Problem 14 (Bounded Producibility (BPRODs)). Given a bounded staged system Γ, an
integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A

producible in b?

▶ Problem 15 (Bounded Terminal Assembly with producibility promise (BTERMs)). Given a
bounded staged system Γ, an integer k (described in unary), a bin b in stage s bounded by k,
and an assembly A ∈ Pb, is A terminal in b?

▶ Problem 16 (Bounded Bin (BBINs)). Given a staged system Γ, a bin b in stage s, an
integer k (described in unary), assuming all bins in stages before s are bounded by k, is b

bounded by k?

▶ Lemma 17. For a bin b in stage s of a staged self-assembly system,
the Bounded Producibility problem is in Σp

s,
the Bounded Terminal Assembly problem with producibility promise is in Πp

s, and
the Bounded Bin problem is in Πp

s

4.5 UAVn Membership
We now present a co-nondeterministic algorithm using oracles for the previous problems to
solve UAV. For clarity, we use an alternate but equivalent definition of UAV. We provide
Algorithm 1 that uses oracles to solve the subproblems presented above.

▶ Problem 18 (Staged Unique Assembly Verification). Given a staged tile-assembly system Γ
and an assembly A, is Γ bounded by |A|, and for each bin in the last stage, is A the only
terminal assembly?

▶ Theorem 19. The n-stage Unique Assembly Verification problem in the staged assembly
model is in Πp

n+1.
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5 Conclusion

In this paper we answered an open problem from [16] by showing the Unique Assembly
Verification problem in the Staged Self-Assembly Model is PSPACE-complete. To show this,
we utilized a construction capable of covert computation and extended it to show Πp

2-hardness
of UAV with three stages. We then extended this reduction to show PSPACE-completeness.
This reduction is also used to show Πp

s−1-hardness with s stages.
Several important directions for future work remain open. We use three stages to perform

covert computation. Is the 2HAM alone capable of covert computation? If not, what is the
lower bound on the number of stages needed? If so, can the construction be used to solve
the open problem of UAV in that model? This might also mean fewer stages are needed for
our results in the staged model. The two known hardness results for 2HAM utilize either
one step into the third dimension or a variable temperature. Perhaps stronger results in the
staged assembly model can be obtained with one of these variants.
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Abstract
Afshani, Barbay and Chan (2017) introduced the notion of instance-optimal algorithm in the order-
oblivious setting. An algorithm A is instance-optimal in the order-oblivious setting for a certain
class of algorithms A if the following hold:

A takes as input a sequence of objects from some domain;
for any instance σ and any algorithm A′ ∈ A, the runtime of A on σ is at most a constant factor
removed from the runtime of A′ on the worst possible permutation of σ.

If we identify permutations of a sequence as representing the same instance, this essentially states
that A is optimal on every possible input (and not only in the worst case).

We design instance-optimal algorithms for the problem of reporting, given a bichromatic set of
points in the plane S, all pairs consisting of points of different color which span an empty axis-aligned
rectangle (or reporting all points which appear in such a pair). This problem has applications for
training-set reduction in nearest-neighbour classifiers. It is also related to the problem consisting of
finding the decision boundaries of a euclidean nearest-neighbour classifier, for which Bremner et al.
(2005) gave an optimal output-sensitive algorithm.

By showing the existence of an instance-optimal algorithm in the order-oblivious setting for this
problem we push the methods of Afshani et al. closer to their limits by adapting and extending them
to a setting which exhibits highly non-local features. Previous problems for which instance-optimal
algorithms were proven to exist were based solely on local relationships between points in a set.
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1 Introduction

In the theoretical study of algorithms one often quantifies the performance of an algorithm
in terms of the worst case or average running time over a distribution of inputs of a given
size. Sometimes, more precise statements can be made about the speed of an algorithm on
certain instances by expressing the running time in terms of some parameter depending on
the input. One class of such algorithms are the so-called output-sensitive algorithms, where
the parameter is the size of the output. In computational geometry, a classical example is
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computing the convex hull of a set of n points in the plane in O(n log h) time, where h is
the size of the convex hull [15, 5]. More recently, Afshani et. al. [1] introduced a specific
notion of instance optimality in the order-oblivious setting and designed algorithms with this
property for different problems on point sets. Roughly speaking, an algorithm is instance
optimal in a certain class of algorithms A if on any input sequence S, its performance on
S is at most a constant factor removed from the best performance of any algorithm in
A on S. In the order-oblivious setting, performance is defined as the worst-case runtime
over all permutations of the input sequence (the motivation behind this will be made clear
below). A common characteristic of most problems solved in [1] is that they are based
around local relations between points in S, in the sense that the relation between two points
p, q ∈ S depends solely on their coordinates and not on those of any other point in S. This
is important because it allows one to decompose certain queries into independent queries on
a partition of S. In this paper we push these methods closer to their limits by adapting and
applying them to a problem which does not fit in this framework.

The studied problem. Here we consider the following problem: given a set S of points n in
the plane with distinct x and y coordinates, each colored red or blue, report the red/blue
pairs of points such that the rectangles they span contain no point of S in their interior. This
again has applications to machine learning and more specifically nearest-neighbour classifiers.
Indeed, by solving this problem and discarding all points which do not not appear in such a
pair, we obtain a (possibly much smaller) set of points where for any point y in the plane, the
color of its nearest neighbour is the same as in the original set of points for the L1 distance
(as pointed out in [10], where this problem was perhaps first studied). This remains true
even when a priori unknown (and possibly non-linear) scalings might be applied to the x

and y axis after this preprocessing step. In fact, the resulting set of points consists of exactly
those necessary for this to hold, so this constitutes an optimal reduction of the training set
in that sense. Note that this problem does not fit in the general framework of [1], as whether
two point span an empty rectangle depends on the position of all other points.

Related works. Pairs of points spanning empty rectangles and the corresponding graphs
have been studied at numerous occasions in the past, under various names. They are called
rectangular influence graphs in [10], which discusses applications to data clustering and
classification. In [9] a similar relation is called direct dominance, and a worst-case optimal
algorithm to report all pairs of related points is given. This algorithm runs in O(n log n + h)
time, where h is the size of the output. A straightforward adaptation yields an algorithm
with the same running time for the bichromatic problem studied here. In [18] this relation is
called rectangular visibility and a different algorithm with the same running time is given as
well as algorithms for the dynamic query setting. The expected size of a largest independent
set in this graph is studied in [7] (where they call such graphs Delaunay graphs with respect
to rectangles). Generalizations and variations of this type of relation between points have
also been widely studied [17, 16, 4, 2, 11, 14, 13, 19, 8]. Another problem of note which is
closely related to the one we study here is the following: given a set S of n points in the
plane, each colored red or blue, compute the subset of edges of the Voronoï diagram of S

which are adjacent to both a site corresponding to a blue point and a site corresponding to a
red point. This problem has some relevance to machine learning as we can equivalently state
it as finding the boundaries of a nearest-neighbour classifier with two classes in the plane. A
third formulation is finding the pairs of red and blue points such that there is an empty disk
whose boundary passes through both. In [3], Bremner et. al. show that this problem can



J. Cardinal, J. Dallant, and J. Iacono 24:3

be solved in output-sensitive optimal O(n log h) time, where h is the size of the output. It
is an interesting open problem to find instance-optimal algorithms for this problem in the
order-oblivious setting (or prove that no such algorithm exists).

Paper organization. In Section 2 we motivate and state more precisely the notion of
instance-optimality we work with in this paper. In Section 3 we define the problem formally
and give an instance lower bound in the order-oblivious model by adapting the adversarial
argument of [1]. The key new ingredients are a new definition of safety and a way to deal
with the fact that here the adversary cannot necessarily change the expected output of the
algorithm by moving a single point inside a so-called non-safe region. In Section 4 we give
an algorithm and prove that its runtime matches the lower bound. The main observation
which makes this work is that while the algorithms in [1] require the safety queries to be
decomposable (which they are not here), we can afford to do some preprocessing to make
them behave as if they were decomposable, as long as the amount of work done stays within a
constant of the lower bound. In section 5 we mention that when competing against algorithms
which can do linear queries, instance-optimality in the order-oblivious setting is impossible.
Some details and proofs have been left out of this version and can be found in the full
paper [12].

2 Instance optimality in the order-oblivious setting and model of
computation

Ideally, we would like to consider a very strong notion of optimality, where an algorithm
is optimal if on every instance its runtime is at most a constant factor removed from the
algorithm with the smallest runtime on that particular instance. There is an obvious flaw
with this definition, as for every instance we can have an algorithm “specialized” for that
instance, which simply checks if the input is the one it is specialized for then returns the
expected output without any further computation when it is the case (and spends however
much time it needs to compute the correct output otherwise). For problems which are
not solvable in linear time in the worst-case, this prohibits the existence of such optimal
algorithms. One way to get around this issue in some cases and get a meaningful notion of
instance-optimality is the following, taken from [1].

▶ Definition 1. Consider a problem where the input consists of a sequence of n elements from
a domain D. Consider a class A of algorithms. A correct algorithm refers to an algorithm
that outputs a correct answer for every possible sequence of elements in D. For a set S of
n elements in D, let TA(S) denote the maximum running time of A on input σ over all n!
possible permutations σ of S. Let OPT(S) denote the minimum of TA′(S) over all correct
algorithms A′ ∈ A. If A ∈ A is a correct algorithm such that TA(S) ≤ O(1) · OPT(S) for
every set S, then we say A is instance-optimal in the order-oblivious setting.

By measuring the performance of an algorithm on an instance as the maximum runtime
over all permutations of the instance elements, the algorithm can no longer take advantage
of the order in which the input elements are presented. In particular, simply checking if the
input is a specific sequence is no longer a good strategy. Here, the domain D consists of all
points in the plane, colored red or blue. An instance is a sequence of points, no two sharing the
same x or y coordinate. However, we really want to consider this sequence as a set of points,
as the order in which the points are presented does not change the instance conceptually.
Thus, it makes sense for us to consider a performance metric for which algorithms cannot
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take advantage of this order. For the class of algorithms A, we will consider algorithms
in a restricted real RAM model where the input can only be accessed through comparison
queries. That is, the algorithms can compare the x or y coordinates of two points but not,
for example, evaluate arbitrary arithmetic expressions on these coordinates. We refer to
such algorithms as comparison-based algorithms. The lower bound works even for a stronger
model of computation, comparison-based decision trees (assuming at least a unit cost for
every point returned in the output). We could also allow the comparison of the x coordinate
of a point with the y coordinate of another without changing any of the results of this paper.

3 Lower-bound for comparison-based algorithms in the order-oblivious
setting

Some basic notations and definitions

Throughout this section we consider a set S of n red and blue points in the plane. We
assume that S is non-degenerate, in the sense that no two points in S share the same x or y

coordinate (in particular, all points are distinct). If p is a point, we will denote its x and y

coordinates as x(p) and y(p) respectively and its color as c(p).

▶ Definition 2. A point p dominates q ̸= p if x(p) ≥ x(q) and y(p) ≥ y(q). A point is
maximal (resp. minimal) in S if is dominated by (resp. dominates) no point in S.

▶ Definition 3 (Visible and participating points). Let p, q be two points in S. We say that q is
visible from p in S (or that p sees q in S) if the axis-aligned box spanned by p and q contains
no point of S in its interior. We say that p ∈ S participates in S if it is visible from a point
in S of the opposite color. We will omit the set S when it is clear from context.

The problems we want to solve can thus be restated as follows.

▶ Problem 4 (Reporting participating points). Report all points which participate in S.

▶ Problem 5 (Reporting red-blue pairs of visible points). Report all red-blue pairs of points
(p, q) such that p and q see each other in S.

The following definitions will also be useful for us.

▶ Definition 6. We call the set of minimal points of S the NE-minimal-set of S (for “North-
East-minimal set”). The NW-minimal-set, SE-minimal-set and SW-minimal-set of S are
defined symmetrically (see Figure 1). In particular, the SE-minimal set of S is the set of
maximal points in S.

▶ Definition 7. Let B be an axis-aligned box. We denote the x coordinate of the right
boundary (resp. left boundary) of B as xmax(B) (resp. xmin(B)). We denote the y coordinate
of the top boundary (resp. bottom boundary) of B as ymax(B) (resp. ymin(B)).

The cross of B, denoted as cross(B) is the set of points p in the plane such that
xmin(B) ≤ x(p) ≤ xmax(B) or ymin(B) ≤ y(p) ≤ ymax(B).

The quadrants of B are the connected components of R2 \ cross(B). We call the four
components the NE-quadrant, NW-quadrant, SE-quadrant and SW-quadrant, denoted as
NE(B), NW(B), SE(B) and SW(B) respectively (see Figure 2).

All boxes we consider are axis-aligned boxes in the plane. For ease of exposition, we
assume that all boxes we consider have no point of S on the boundaries of their four quadrants.
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Figure 1 A set of points S and the four minimal-sets of S. No point in the shaded regions can
appear on the corresponding minimal-sets.

Figure 2 The four quadrants of an axis-
aligned box B. The shaded region corres-
ponds to cross(B). Figure 3 A red-safe box B.

Lower Bound

We prove an entropy-like lower bound on the number of comparisons which have to be done
to solve the problems of reporting participating points in the order-oblivious setting. The
proof and terminology are largely inspired from the lower bound proofs in [1] but some
additional arguments, which we underline later, are required. We need a few definitions in
order to state our lower bound.

▶ Definition 8. An axis-aligned box B is red-cross-safe (resp. blue-cross-safe) for S if
all points in S ∩ cross(B) are red (resp. blue). It is cross-safe if it is red-cross-safe or
blue-cross-safe.

It is red-safe if it is red-cross-safe and the NE-minimal (resp. NW-minimal, SE-minimal,
SW-minimal) set of S ∩NE(B) (resp. S ∩NW(B), S ∩SE(B), S ∩SW(B)) is red (see Figure
3). We define blue-safe boxes similarly. A box is safe if it is red-safe or blue-safe.

A subset S′ ∈ S has one of these properties if it can be enclosed by a box with the property.

Notice that if a subset S′ ∈ S is safe, then no point in in S′ participates in S. Thus, in
an intuitive sense, a partition of non-participating points into safe subsets can be seen as a
certificate for the fact that these points do not participate. The minimal entropy of such a
partition is then the minimal amount of information required to encode such a certificate.

ESA 2021
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▶ Definition 9. A partition Π of S is respectful if every member Sk ∈ Π is a singleton
or a safe subset of S. The entropy of a partition Π is H(Π) :=

∑
Sk∈Π

|Sk|
n log n

|Sk| . The
structural entropy H(S) of S is the minimum of H(Π) over all respectful partitions Π of S.

We can now state our lower bound:

▶ Theorem 10. For the problem of reporting participating points in the order-oblivious
comparison-based model, OPT(S) ∈ Ω(n(H(S) + 1)). Consequently, for reporting red-blue
pairs of visible points, OPT(S) ∈ Ω(n(H(S) + 1) + h), where h is the size of the output.

The proof is similar to what can be found in [1]. In their case however, if a point can be moved
anywhere inside a non-safe box then it can be moved in a way that changes the expected
output of the algorithm. In our case, we can do something similar but sometimes need to
move multiple points to affect the expected output (but a constant number are enough). We
use a simple argument about the maximum number of chips which can be placed on a tree
in a constrained way to show that this has no impact on the lower bound. The full proof,
which is too long for this version of the paper, can be found in the full paper [12]. From this
lower bound one can also deduce that the existence of an instance-optimal algorithm in the
order-oblivious setting for reporting participating points implies the existence of such an
algorithm for reporting red-blue pairs of visible points (using known results about worst-case
optimal algorithms). Thus, we will focus on the former problem from now on.

4 Instance optimal comparison-based algorithm in the order-oblivious
setting

In this section we present a comparison-based algorithm for reporting participating points
with a runtime matching the lower bound we saw in the previous section (note that worst-case
optimal O(n log n + h) algorithms are easy to obtain by the method of [9]). Once again,
the main algorithm will be very similar to what is done in [1], however their results do not
directly apply here. The main difficulty in adapting their algorithm to our case is that the
relation we consider here is not decomposable. More precisely, if we know that some point p

does or does not participate in S′ and S′′, we cannot use this to decide if p participates in
S′ ∪ S′′. The bulk of the work here will thus be to preprocess the set S in order to make the
safety tests decomposable, while keeping our preprocessing time within O(n(H(S) + 1)).

4.1 The main algorithm
Before we go into detail about how to preprocess the points let us see how, if we can build the
right data structure, we can use it to report the participating points in S in O(n(H(S) + 1))
time. We will need the following definition and observations:

▶ Definition 11. Let S be a set of red and blue points. A subset S′ ⊂ S conforms with S if
it contains all points which participate in S.

▶ Observation 12. Let S be a set of of red and blue points and let S′ be a subset which
conforms with S. Then an axis-aligned box is safe for S if and only if it is safe for S′.
Moreover, a point participates in S if and only if it participates in S′.

▶ Observation 13. If B is a safe box for S, then any sub-box of B is safe for S.

▶ Observation 14. Let p be a point in S and let B be some axis-aligned box bounding p. If
B is safe, then p does not interact in S.
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We have the following algorithm and theorem, adapted from [1], where δ is a constant to
be chosen later:

Algorithm 1 Reporting participating points.

Input: A point set S of size n

1 Set Q = S.
2 for j = 0, 1, . . . ⌊log(δ log n)⌋ do
3 Partition the points in Q using a kd-tree to get rj = 22j subsets Q1, . . . , Qrj

of
size at most ⌈|Q|/rj⌉, along with corresponding bounding boxes B1, . . . , Brj .

4 for i = 0, 1, . . . , rj do
5 if Bi is safe for Q then
6 Prune all points in Qi from Q.

7 Solve the reporting problem for the remaining set Q directly in O(|Q| log |Q|) time.

▶ Theorem 15. Let S be a set of n points in general position. Suppose we have preprocessed
S such that for any subset S′ ⊂ S containing all points which participate in S we can test
if an axis-aligned box is safe for S′ in O(n1−α) time, plus the cost of a constant number of
range-emptiness queries on S′.
Then Algorithm 1 can report all points which participate in S in O(n(H(S) + 1)) time.

We reiterate the proof for the sake of completeness and to underline how Observation 12 and
our additional assumptions on preprocessing factor into it:

Proof. By Observation 12 and Observation 14, we only ever prune points which do not
participate in the original set S and we never modify which points participate among those
that remain. Thus the algorithm invoked at line 6 will compute the correct output.

By assumption, testing a box for safety in Q can be done in O(n1−α) time plus the
cost of a constant number of range-emptiness queries on Q. Using a simple and ingenious
trick by T. Chan [6], we can perform r orthogonal range emptiness queries on a set of
size m in O(m log r + rO(1)) time. Thus, the rj tests of lines 3 and 4 can be done in
O(|Q| log rj + r

O(1)
j + rjn1−α) time. As rj < nδ, by taking δ small enough the r

O(1)
j + rjn1−α

term can be made sublinear. As the outer loop of the algorithm is only executed O(log(log n))
times the total contribution of these terms over the whole algorithm can also be made
sublinear and thus negligible. Line 2 can be done in O(|Q| log rj) time by the classical
recursive algorithm to compute kd-trees.

Now let nj be the number of points in Q just after iteration j. The runtime of the algorithm
is in O(

∑
j nj log rj+1). This includes the final step at line 6, as for j = ⌊log(δ log n)⌋ (i.e. after

the last iteration of the outer loop) we have O(|Q| log |Q|) ⊂ O(nj log n2δ) = O(nj log rj+1).
Let Π be a respectful partition of S and consider Sk ∈ Π. At iteration j all subsets Qi lying
entirely inside the bounding box of Sk are pruned by Observation 13. Since the bounding box
of Sk intersects at most O(√rj) cells of the kd-tree, the number of points in Sk remaining
after iteration j is min{|Sk|, O(√rj · n/rj)} = min{|Sk|, O(n/

√
rj)}. The Sk’s cover the

entire point set so by double summation we have:
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Figure 4 A cell of red points and the corresponding box B. The relevant points are indicated by
arrows. The box point is indicated by a cross.

∑
j

nj log rj+1 ≤
∑

j

∑
k

min
{

|Sk|, O
(

n/
√

22j
)}

· 2j+1

=
∑

k

∑
j

min
{

|Sk|, O
(

n/22j−1
)}

· 2j+1

∈ O

∑
k

∑
j≤log(2 log(n/|Sk|))

|Sk| · 2j +
∑

j>log(2 log(n/|Sk|))

n · 2j/22j−1


∈ O

(∑
k

|Sk|(log(n/|Sk|) + 1)
)

= O(n(H(S) + 1)). ◀

4.2 Cross-safety tree
In order to solve our problem instance-optimally (in the order-oblivious comparison-based
model), we want to design a data-structure which allows us to quickly test if a given axis
aligned box B is safe for S. To make the presentation clearer, we focus on testing if B

is red-cross-safe and the NE-minimal-set of NE(B) ∩ S is red. This can then be repeated
symmetrically for NW(B), SE(B) and SW(B) to test if B is red-safe (and similarly for testing
if B is blue-safe). We will see how to build and query the following data structure:

▶ Definition 16. A cross-safety tree TS on S is a recursive partitioning on the plane similar
to a kd-tree where we stop subdividing the points once we have reached a cross-safe subset of
points. The root of TS corresponds to S. If S is not cross-safe, we split the points around
a vertical line L such that the two open halfplanes defined by L partition S into two sets
S1 and S2 of size at most ⌈|S|/2⌉. The children of the root will then correspond to S1 and
S2. For every newly created node we repeat the procedure, partitioning the set of points by
median x coordinates at even levels of the tree and median y coordinates at odd levels, until
the points contained are a cross-safe subset of S.

The cell of a point p, denoted as Cp is the the subset of points contained in the same leaf
as p. A cell of TS is red (resp. blue) if the points it contains are red (resp. blue).

The box of a point p, denoted as Bp is the smallest axis-aligned box containing all points
in Cp (slightly extended to enforce our assumption of only considering boxes for which there
are no points on the boundary of their four quadrants). A box of TS is red (resp. blue) if the
points it contains are red (resp. blue).

The box-point of p is the top-right point of the box of p, and has the same color as p.
A point is relevant if it has the minimum x or y coordinate among all points in its box

(or equivalently, in its cell).
(See Figure 4 for an illustration of these definitions.)
Each node u in the tree stores:
The set of point it contains, which we denote as Pu.
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The smallest axis-aligned bounding box of Pu, which we denote as Bu.
The red box-points of minimum x and y coordinates among all box-points associated with
a red point in Pu.
The subset of all relevant blue points in the minimal set of Pu, sorted by x-coordinate.

Note that if the points in a minimal set are sorted by x coordinate then they are also
sorted (in reverse order) by y coordinate.

4.3 Querying a cross-safety tree
Before we see how to build a cross-safety tree on S efficiently, let us see how we make queries
on a node u of TS . A query consists of a lower range RL = [xL, +∞] × [yL, +∞] and an
upper range RU = [−∞, xU ] × [−∞, yU ] such that RL ∩ RU ̸= ∅ and neither the boundaries
of RL nor RU intersect any blue box of TS . It returns:

rxu, the minimum x-coordinate of any red box-points associated with a red point in
Pu ∩ RL (set to +∞ if there are no red points in Pu ∩ RL).
ryu, the minimum y-coordinate of any red box-points associated with a red point in
Pu ∩ RL (set to +∞ if there are no red points in Pu ∩ RL).
bxu, the minimum x-coordinate of any blue points in the minimal set of Pu ∩ RL ∩ RU

(set to +∞ if there are no blue points in the minimal set of Pu ∩ RL ∩ RU ).
byu, the minimum y-coordinate of any blue points in the minimal set of Pu ∩ RL ∩ RU

(set to +∞ if there are no blue points in the minimal set of Pu ∩ RL ∩ RU ).

Observe the following:

▶ Observation 17. If a horizontal or vertical line passes through a red point then it does not
intersect any blue-cross-safe box. The same applies when “red” and “blue” are swapped.

▶ Observation 18. Let B be a red-cross-safe box. Then all points in B dominate (resp. are
dominated by) the same subset of blue points in S. The same applies when “red” and “blue”
are swapped.

We will need a few additional lemmas.

▶ Lemma 19. The points corresponding to bxu and byu are relevant points of TS.

Proof. Let P = Pu ∩ RL ∩ RU , and suppose there is a blue point on the minimal set of P .
Let p be the leftmost point in P which does not dominate any red point in P . Suppose that
bxu is not equal to x(p). The only way this can happen is if p is not on the minimal set of
P , meaning that there is a blue point q which is dominated by p (as p does not dominate
any red point). In particular, q lies to the left of p. By definition of p, q thus dominates a
red point. But if q dominates a red point and p dominates q, then p dominates a red point,
which contradicts the definition of p. Thus bxu = x(p). Moreover, if p does not dominate
any red point, then no point in its box dominates a red point, as the box is blue-cross-safe.
Because the boundaries of RL and RU do not intersect any blue box, the whole box of p is
contained in P . Thus, by definition of p, it is the leftmost point in its box and it is relevant.
The same reasoning shows that byu is the y coordinate of a relevant point. ◀

▶ Lemma 20. If the bounding box Bu of points in Pu lies entirely in RL, then we can return
the necessary information in O(log n) time.
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Proof. In this case, rxu and ryu are already stored in the node, so we can return them in
constant time. By Lemma 19, the point giving bxu is the relevant blue point with minimum
x coordinate among all blue points in the minimal set of Pu ∩ RU . This is also the relevant
blue point with maximum y coordinate among all blue points in the minimal set of Pu ∩ RU .

We can do a binary search through the relevant blue points in the minimal set of Pu

to find the point p below the line y = yU with maximum y coordinate. If this point is
not in RU (because x(p) > xU ) then no relevant blue point in the minimal set of Pu is in
RU , as all other relevant blue points q in the minimal set of Pu with y(q) ≤ yU will have
x(q) > x(p) > xU . In this case we set bxu to +∞. Otherwise bxu = x(p).

We can find byu similarly with a single binary search. ◀

▶ Lemma 21. If u is not a leaf of TS and Bu intersects the boundary of RL, then we can
return the necessary information after querying the children of u with the same lower range
RL (but possibly different upper ranges) and a constant amount of additional work.

Proof. Suppose without loss of generality that the children of u split Pu by a vertical line
(the situation for a horizontal line is similar). Let v be the child corresponding to the left
half-plane and w the one corresponding to the right half-plane. Let us focus on computing
bxu, as this is the one requiring the most care.

Querying v with the same RL and RU returns some values rxv, ryv, bxv and byv. A
blue point p on the minimal set of Pw ∩ RL ∩ RU is a blue point on the minimal set of
Pu ∩ RL ∩ RU if and only if y(p) ≤ byv and p does not dominate any red point in Pv ∩ RU .
By Observation 18 this is equivalent to saying that y(p) ≤ byv and y(p) ≤ ryv.

Thus we can compute bxu by setting R′
U = [−∞, xU ] × [−∞, min{yU , ryv}], querying w

with RL and R′
U to get values rxw, ryw, bxw and byw, then setting bxu = min{bxv, bxw}.

Notice that by Observation 17, we are allowed to query w with R′
U as its boundary does

not intersect any blue box of TS . It is then easy to see that rxu = min{rxv, rxw}, ryu =
min{ryv, ryw} and byu = min{byv, byw}. ◀

▶ Lemma 22. If u is a leaf of TS and Bu intersects the lower boundary or the left boundary
of RL but not both simultaneously, then we can return the necessary information in constant
time.

Proof. In this case, we know that Bu is a red box, as by assumption the boundary of RL

does not intersect any blue box of TS . Thus Bu contains no blue points and we know
bxw = byw = +∞. Suppose without loss of generality that Bu intersects the left boundary
of RL. Then the rightmost point of Bu is in RL, and thus Pu ∩ RL is non-empty. Because
all points in Pu have the same box-point p = (px, py), we have rxu = px and ryu = py. ◀

▶ Lemma 23. If u is a leaf of TS and Bu intersects both the lower boundary and the left
boundary of RL, then we can return the necessary information after a single orthogonal
range-emptiness test.

Proof. Again, we know that Bu is a red box and all points in Pu have the same box point
p = (px, py). To know if we need to set rxu = ryu = +∞ or rxu = px and ryu = py, we
simply need to test if there is a (necessarily red) point in Bu ∩ RL. This requires a single
range-emptiness test. ◀

By applying the relevant result among Lemmas 20, 21, 22 and 23 recursively we get:

▶ Theorem 24. We can query the root of a cross-safety tree TS in O(
√

n log n) time plus
the cost of a single range-emptiness test.
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As a corollary, we get:

▶ Corollary 25. Let B be an axis aligned box. We can query a cross-safety tree TS to test if
B is red-NE-safe for S in O(

√
n log n) time plus the cost of a constant number of orthogonal

range-emptiness tests on S.

Proof. With two orthogonal range-emptiness queries on the blue points of S and one on the
red points of S we can test if B contains at least one red point and cross(B) contains only
red points (that is, test if B is red-cross-safe for S). If B is not red-cross-safe for S we can
immediately return “No”. We assume from now on that it is.

Let RL be the range corresponding to NE(B), and let RU = [−∞, +∞] × [−∞, +∞].
Because R is red-cross-safe, it is easy to see that the boundary of RL does not intersect any
blue box of TS (this is also trivially true for RU ). Thus, we can query the root u of TS with
RL and RU to get the x coordinate bxu of the blue point with minimum x coordinate among
all blue points on the minimal set of NE(B) ∩ S, or +∞ if no such point exists. In particular,
this allows us to test if such a point exists. ◀

We also have the following:

▶ Lemma 26. Let S′ ⊂ S be a subset which conforms with S and let B be an axis-aligned
box. If S′ ∩ B ̸= ∅, then we can replace all orthogonal range-emptiness tests on S with the
same tests on S′ in the procedure described in Corollary 25 (including the tests done while
querying TS) without affecting the outcome.

Proof. If there are both red and blue points in S ∩ cross(B), then at least one of these blue
points participates in S. Because S′ conforms with S, this blue point is also in S′, so S′ is
not red-cross-safe. The converse is trivially true. Thus, the initial three range-emptiness
tests return the same results on S and S′.

Now consider the query done on TS . If the corner of the lower range RL does not intersect
a red leaf box of TS , then no range-emptiness test is performed and the claim holds. Now
suppose RL intersects a red leaf box B of TS . Let S′′ be the set of points in S where we
remove all points in S ∩ B ∩ RL which are not in S′ ∩ B ∩ RL. Notice that by replacing the
range-emptiness query on S with one on S′, the procedure behave exactly like querying a
cross-safety tree on S′′. Because S′ ⊂ S′′ ⊂ S we know that S′′ conforms with S and thus
by Observation 12 the claim holds. ◀

Thus, this data-structure fits the prerequisites of Theorem 15, and we can use it to get
an algorithm solving the problem in O(n(H(S) + 1)) time after having built it. The only
missing ingredient to get an instance-optimal algorithm is building the data-structure within
the same asymptotic runtime. We show in the following section that we can indeed do this.

4.4 Construction in O(n(H(S) + 1)) time
Rather than focusing on constructing the cross-safety tree specifically, we start with a bit
more general setting.

▶ Theorem 27. Let S be a set of points. Let C be a property on axis-aligned bounding boxes
of the plane such that for boxes B2 ⊂ B1, if C(B1) is true then C(B2) is true. (Note that C

can depend on S).
A partition Π of S is C-respectful if every set in Π is a singleton or can be enclosed by

an axis aligned bounding box B such that C(B) is true.
Let HC(S) be the minimum of H(Π) over all C-respectful partitions of S.
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If property C(B) can be tested in O(|S ∩ B|) time when given access to S ∩ B, then a
kd-tree T C

S with stopping condition C on the leaves can be built in O(n(HC(S) + 1)) time.
This remains true if for each node in the tree we do an additional linear amount of work

(in the number of points considered at that node).

The proof is similar in spirit to that of Theorem 15, although simpler.

Proof. Consider the classical top-down recursive approach to construct a kd-tree on S (with
linear-time median, selection), where we stop subdividing points once we have reached a
bounding-box B with property C. Consider any C-respectful partition Π of S. Let Sk ∈ Π
and let Bk be a corresponding bounding box with the property C. At the j’th level of the
recursion, we have partitioned the plane into O(2j) boxes each containing at most

⌈
n/2j

⌉
points still to be considered. Any box B of T C

S which is entirely contained in Bk has property
C and can be set as a leaf. In other words the box B does not need to be recursed on
and the points in B ∩ S are not considered at level j or lower. Because Bk intersects at
most O(

√
2j) boxes of T C

S at level j, the number of points in Sk to consider at level j is
min{|Sk|, O(

√
2j · n/2j)} = min{|Sk|, O(n/

√
2j)}. At each level, the amount of work to be

done is linear in the number of points to consider. The Sk’s cover the entire point set so by
double summation we get that the runtime is in

O

∑
j

∑
k

min
{

|Sk|, n/
√

2j
} = O

∑
k

∑
j

min
{

|Sk|, n/
√

2j
}

= O

∑
k

∑
j≤2 log(n/|Sk|)

|Sk| +
∑

j>2 log(n/|Sk|)

n/
√

2j


= O

(∑
k

|Sk|(log(n/|Sk|) + 1)
)

⊂ O (n(HC(S) + 1)) . ◀

Note that the proof generalizes easily to any constant dimension d > 0. We can apply
this theorem to get the following (omitted proofs can be found in the full paper [12]):

▶ Lemma 28. A set of points S can be preprocessed in O(n(H(S) + 1)) time so that for any
subset Sk ⊂ S, we can test if all points in Sk lie in a common vertical slab containing only
points of S of the same color in O(Sk) time.

Which in turn implies:

▶ Theorem 29. A cross-safety tree on S can be constructed in O(n(H(S) + 1)).

Finally, putting this together with 26 and Theorem 15 we get the main result.

▶ Theorem 30. All points participating in S can be reported in O(n(H(S) + 1)) time. In
other words, there is an instance-optimal algorithm for this problem in the order-oblivious
comparison-based model.

One thing to note here is that while this guarantees that the algorithm is optimal with
respect to any parameter of the instance which does not depend on the order of the input
points, it is not immediately obvious that it runs in O(n log h) time, where h is the number
of points to report (we only know that if there is an algorithm in the comparison-based
model running within this time bound, then so does ours). The following results shows that
the runtime of our algorithm is indeed within this bound.
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Figure 5 Type of instance considered in the impossibility proof.

▶ Theorem 31. Let S be an instance of the Reporting participating points problem and let h

be the number of points which participate in S. Then n(H(S) + 1) ∈ O(n log h).

5 Instance-optimality is impossible with linear queries

In the previous section, we have shown that there is a comparison-based algorithm to report
participating points which is instance-optimal in the order-oblivious runtime against all
comparision-based algorithm solving the problem. We also show that if we “compete” against
algorithms which can do queries of the form x(p) − x(q) ≥ y(p) − y(q), then such a result
is no longer possible, even if we allow our algorithm to be in a much stronger model of
computation, such as algebraic computation trees. The full proof, in which we consider
instences of the type illustrated in Figure 5, can be found in the full paper [12]. One caveat
of this proof is that it relies on special instances with linear degeneracies (three points can be
collinear). It is not clear if instance-optimality is possible when restricted to non-degenerate
instances.
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Abstract
We consider the problem of maintaining an approximate maximum independent set of geometric
objects under insertions and deletions. We present a data structure that maintains a constant-factor
approximate maximum independent set for broad classes of fat objects in d dimensions, where d

is assumed to be a constant, in sublinear worst-case update time. This gives the first results for
dynamic independent set in a wide variety of geometric settings, such as disks, fat polygons, and
their high-dimensional equivalents.

Our result is obtained via a two-level approach. First, we develop a dynamic data structure which
stores all objects and provides an approximate independent set when queried, with output-sensitive
running time. We show that via standard methods such a structure can be used to obtain a dynamic
algorithm with amortized update time bounds. Then, to obtain worst-case update time algorithms,
we develop a generic deamortization scheme that with each insertion/deletion keeps (i) the update
time bounded and (ii) the number of changes in the independent set constant. We show that such a
scheme is applicable to fat objects by showing an appropriate generalization of a separator theorem.

Interestingly, we show that our deamortization scheme is also necessary in order to obtain worst-
case update bounds: If for a class of objects our scheme is not applicable, then no constant-factor
approximation with sublinear worst-case update time is possible. We show that such a lower bound
applies even for seemingly simple classes of geometric objects including axis-aligned rectangles in
the plane.
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1 Introduction

Dynamic algorithms for classic NP-hard optimization problems is a quite active research
area and major progress has been achieved over the last years (see [1, 9–11,27]). For such
problems, typically improved performance can be achieved when their geometric versions are
considered, i.e., when the input has a certain geometric structure. As a result, a very recent
line of research considers dynamic algorithms for well-known algorithmic problems in the
geometric setting [3,12,18,21,29]. In this work, we continue this investigation by considering
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the geometric version of the Maximum Independent Set problem; some of our results improve
upon the previous (very recent) work of Henzinger et al. [29] and Bhore et al. [12] and some
others provide the first dynamic data structures for various geometric instances.

Static Independent Set

In the maximum independent set problem, we are given a graph G = (V, E) and we aim to
produce a subset I ⊆ V of maximum cardinality, such that no two vertices in I are adjacent.
This is one of the most well-studied algorithmic problems. It is well-known to be NP-complete
and hard to approximate: no polynomial time algorithm can achieve an approximation factor
n1−ϵ, for any constant ϵ > 0, unless P=NP [28, 36].

(Static) Geometric Independent Set

In the geometric version of the maximum independent set problem, the graph G is the
intersection graph of a set V of geometric objects: each vertex corresponds to an object, and
there is an edge between two vertices if and only if the corresponding objects intersect.

Besides the theoretical interest, the study of independent sets of geometric objects such
as axis-aligned squares, rectangles or disks has been motivated by applications in various
areas such as VLSI design [30], map labeling [4, 35] and data mining [8, 31].

For most classes of geometric objects, the problem remains NP-hard. A notable exception
is the case where all objects are intervals on the real line (the well-known interval scheduling
problem), where the optimal solution can be computed in polynomial time using a folklore
greedy algorithm [25]. However, even the simplest 2d-generalization to axis-aligned unit
squares is NP-hard [24]. As a result, most of the related work has focused on developing
PTASs for certain versions of geometric independent set. This has been achieved for various
types of objects such as squares, hypercubes, fat objects and pseudodisks [15,16,23,30].

A substantially harder setting is the when the geometric objects are arbitrary (axis-
aligned) rectangles in the plane: Despite the intense interest (see [2, 20]), no PTAS is known.
Until very recently the best known approximation factor was O(log log n) [13, 14]; in 2021, a
O(1)-approximation was claimed [33].

Dynamic Geometric Independent Set

In the dynamic version of geometric independent set, V is a class of geometric objects (for
instance squares in the plane) and we maintain a set S ⊆ V of active objects. Objects of V

may be inserted in S and deleted from S over time and the goal is to maintain a maximum
independent set1 of S, while keeping the time to implement the changes (the update time)
sublinear on the size of the input.

Previous Work

Most previous work dates from 2020 onwards. The only exception is the work of Gavruskin
et al. [26] who considered the very special case of intervals where no interval is fully contained
in any other interval. The study of this area was revitalized by a paper of Henzinger,
Neumann and Wiese in SoCG’20 [29]. They presented deterministic dynamic algorithms
with approximation ratio (1 + ϵ) for intervals and (1 + ϵ) · 2d for d-dimensional hypercubes,

1 This problem should not be confused by the related, but very different, maximal independent set
problem, where the goal is to maintain an inclusionwise maximal independent set subject to updates
on the edges (and not the vertices). This problem has been studied in the dynamic setting, with a
remarkable recent progress after a sequence of breakthrough results [5–7,19].
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under the assumption that all objects are contained in [0, N ]d and each of their edges has
at least unit length. Their update time was polylogarithmic in both n and N , but N could
be unbounded in n. Furthermore, they showed that no (1 + ϵ)-approximation scheme with
sublinear update time is possible, unless the Exponential Time Hypothesis fails.

Subsequently Bhore et al. [12] obtained the first results for dynamic geometric independent
set without any assumption on the input. For intervals, they presented a dynamic (1 + ϵ)-
approximation with logarithmic update time; this was recently simplified and improved by
Compton et al. [21]. For squares, [12] presented a randomized algorithm with expected
approximation ratio roughly 212 (generalizing to roughly 22d+5 for d-dimensional hypercubes)
with amortized update time O(log5 n) (generalizing to O(log2d+1) for hypercubes).

Our Results

In this work we obtain the first dynamic algorithms for fat objects (formally defined in
Section 2) in fixed dimension d with sublinear worst-case update time. The precise bounds
on the approximation ratio and the update time depend on the fatness constant and the
running time for worst-case range query structures for each family of objects. However, the
results follow from a generic approach, applicable to all those classes of objects.

▶ Theorem 1. There exists a deterministic data structure for maintaining a O(1)-approximate
independent set of a collection of fat objects, with sublinear worst-case update time, that
reports O(1) changes in the independent set per update. In particular, it achieves the following
approximation ratios and worst-case update times, for any constant 0 < ϵ ≤ 1/4:

(4 + ϵ)-approximation with O(n3/4) update time for axis-aligned squares in the plane.
(5 + ϵ)-approximation with Õ(n3/4) update time for disks in the plane2

(2d + ϵ)-approximation with O(n1− 1
2d ) update time for d-dimensional hypercubes.

O(1)-approximation with O(n1− 1
2dk ) update time for fat objects which are unions of k

(hyper)rectangles
O(1)-approximation with Õ(n1− 1

d(d+1) ) update time for fat simplices in d dimensions.
O(1)-approximation with Õ(n1− 1

d(d+1)k ) update time for fat objects which are unions of k

simplices in d dimensions.
O(1)-approximation with Õ(n1− 1

d+2 ) update time for balls in d dimensions.

This result gives the first dynamic algorithms with sublinear update time for all the
aforementioned classes of objects, apart from d-dimensional hypercubes. Moreover, for
hypercubes our result is the first with sublinear worst-case update time bounds without
assumptions on the input; it also achieves the same approximation ratio as [29], which is the
best known for any dynamic setting.

In fact, it seems hard to significantly improve our result on any aspect: First, for the
approximation factor, as mentioned above, Henzinger, Neumann and Wiese [29] proved
that (under the Exponential Time Hypothesis) one cannot maintain a (1 + ϵ)-approximate
maximum independent set of hypercubes in d ≥ 2 dimensions with update time nO((1/ϵ)1−δ)

for any δ > 0; therefore the only potential improvement in the approximation ratio is by
small constant factors. Moreover, the update time we obtain is essentially the time required
for detecting intersections between objects in a range query data structure. Fatness of the
objects is a sensible condition for achieving such results: we prove that for (nonfat) rectangles,
ellipses, or arbitrary polygons, no dynamic approximation in sublinear worst-case update
time is possible. Finally, we emphasize the remarkable additional property that the number
of changes reported per update is always constant.

2 Throughout this paper, Õ suppresses polylogarithmic factors.
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To obtain the result of Theorem 1 we develop a generic method to obtain dynamic
independent set algorithms and show how to apply it for fat objects. Our method uses a
combination of several components. The first is a data structure which stores all objects,
supports insertions and deletions in sublinear f(n) time and, when queried, returns a
β-approximate independent set with output-sensitive running time. The second main
component is a generic transformation of such a data structure into a dynamic algorithm with
approximation factor β + ϵ and amortized update time O(f(n)). This is done by periodically
updating the solution using the data structure. Then, we apply a generic deamortization
scheme, involving what we call a MIX function, a generic way to switch “smoothly” from
one solution to another. We design such a MIX function for fat objects using geometric
separators.

2 Overview

Notation

In what follows, V is a class of geometric objects, such as squares in the plane, and we
consider a finite set S ⊆ V . A subset of S is a maximum independent set (MIS) of S if all its
objects are pairwise disjoint and it has maximum size over all sets with this property. We
use OPT to denote the size of a maximum independent set. We use n to denote |S|, unless
otherwise specified. We say that I is a β-approximate MIS if its size is at least β OPT, for a
constant 0 < β ≤ 1 3.

The problem we study is to maintain an approximate MIS set I under a sequence of
insertions and deletions in S, which we call generically an update, starting from an empty
set. This can be expressed as implementing a single operation ∆ = Update(u), where u is
the object to be inserted or deleted, and ∆, the update set, is the set of objects that change
in the approximate MIS I, presented as the symmetric difference from the previous set. In
general we will use subscripts to express variables’ states after the indicated update, and
unsubscripted versions for the current state. Using the operator ⊕ to denote the symmetric
difference, we therefore have Si := ⊕i

j=1{uj} and Ii := ⊕i
j=1∆j . We say that Update is

a β-approximate MIS algorithm if Ii is always a β-approximate MIS of Si. We adopt the
convention that the update set ∆i is always returned explicitly and thus the running time of
an update ui is at least the size of the returned update set, |∆i|.

We begin with a simple yet crucial observation about MIS.

▶ Fact 2. The size of a MIS can change by at most one with every update:
| OPTi − OPTi−1 | ≤ 1.

Note that this fact does not hold for the weighted version of the MIS problem. Also note
that this does not say that it is possible to have an update algorithm with an update set ∆i

with cardinality always at most 1; this fact bounds how the size of a MIS can change after
an update, and not the content. In fact, it is easy to produce examples where |∆i| must be
2, even for intervals (e.g. u1 = [1, 4], u2 = [2, 3], u3 = [1, 4]). However, it does leave open
the possibility to have an update operation returning constant-size update sets, which is
something we will achieve for the classes of geometric objects we consider.

3 Note that while stating the main result in Theorem 1, we used the convention that the approximation
ratio is > 1. This is done mainly for aesthetical reasons, making the result easier to parse. From
now on, we assume β < 1; it is easy to see that this is equivalent to a data structure achieving a
(1/β)-approximation in the language of Theorem 1.
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Overview

Our goal is thus to develop a general method for dynamic approximate MIS that has efficient
worst-case running times and small update set sizes for various classes of geometric objects.
We identify two ingredients that are needed:
β-dynamic independent set query structure (β-DISQS): This an abstract data type for

maintaining a set S of n objects, in which one can insert or delete an object in time f(n),
and obtain a β-approximate MIS of the current set S in output-sensitive time kf(n) if
the set returned has size k.

MIX algorithm: A MIX algorithm receives two independent sets S1 and S2 whose sizes sums
to n as input, and smoothly transitions from S1 to S2 by adding or removing one element
at a time such that at all times the the intermediate sets are an independent sets of size
at least min(|S1|, |S2|) − o(n). The running time of the MIX algorithm is said to be γ(n)
if the entire computation takes time nγ(n).

The plan of the paper is as follows.

Section 3: Amortized Update Time

In this section, we prove that the first ingredient, the β-DISQS, is sufficient to obtain a
(β − ϵ)-approximate dynamic MIS algorithm with O(f(n)) amortized update time for any
ϵ > 0. This is presented as Theorem 4. We note that this is a bit of a “folklore” algorithm
that essentially does nothing more than periodically querying the β-DISQS.

Section 4: Worst-case Update time

The second ingredient, MIX, is vital to deamortizing: In Section 4, we show that a DISQS
and a MIX together are sufficient to produce a data structure which for any constant ϵ > 0
maintains an approximate MIS of size at least (β−ϵ) OPT −o(OPT), has a worst-case running
time of O(f(n) + γ(n) + log n), and whose Update operation returns a constant-sized update
set; this is presented as Theorem 7. We also show in that the non-existence of a MIX function
implies the impossibility of a approximate MIS data structure with sublinear update set size,
hence sublinear worst-case running time, and that this impossibility holds for rectangles and
other classes of nonfat objects (Theorem 8 and Lemma 9).

Given this generic scheme developed, to prove our main result, it remains to show that
fat objects have a MIX function and a DISQS. This is the content of Sections 5 and 6.

Section 5: Existence of a MIX function for fat objects

We show in Lemma 13 that for fat objects in any constant dimension a MIX algorithm always
exists with γ(n) = O(log n). This is achieved via geometric separators [34].

Section 6: Existence of β-DISQS for fat objects

Last, we show that obtaining a β-DISQS is possible for many types of fat objects using variants
of standard range query data structures (kd-trees for orthogonal objects and partition trees
for non-orthogonal objects such as disks, triangles or general polyhedra) with the running
time f(n) matching the query time of such structures. The result is based on a simple greedy
algorithm for the MIS problem on fat objects [22, 32], yielding an approximation factor β

that only depends on the fatness constant.
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3 Dynamization

In this section we define formally the β-dynamic independent set query structure (β-DISQS)
and show that its existence implies a dynamic independent set algorithm with approximation
ratio β − ϵ and sublinear amortized update time.

▶ Definition 3. A β-dynamic independent set query structure (β-DISQS) is a data structure
that maintains a set S whose size is denoted as n and supports the following operations:

Update(u): Insert or remove u, so that S becomes S ⊕ u.
Query: Returns a β-approximate MIS of S

We say that the running time of a DISQS is f(n) if Update takes time f(n) and if Query
returns a set of size k in time kf(n). We require f(n) to be sublinear.

We now show that a β-DISQS is sufficient to give a approximate MIS data structure with
an amortized running time, with a loss of only ϵ in the approximation factor for any ϵ > 0.
The intuition is simple, pass through the update operations to the DISQS and periodically
replace the approximate MIS seen by the user by querying the DISQS. The only subtlety
is to immediately remove any items from the approximate MIS that have been deleted in
order to keep the approximate MIS valid. This simple transformation is likely folklore, but
we work out the details in the full version of this paper for completeness.

▶ Theorem 4. Given a β-DISQS with sublinear running time f(n) for an independent set
problem and a ϵ > 0 there is a fully dynamic data structure to maintain a (1−ϵ)·β-approximate
independent set that runs in O

( 1
ϵ f(n) + log n

)
amortized time per operation.

4 Deamortization

In this section we present our deamortization technique. In particular, we describe a procedure,
which we call MIX, which if exists, is used to transform a β-DISQS into a deterministic
dynamic algorithm for with worst-case update time guarantees and update set size bounds.
We also show that if a MIX does not exist for an independent set problem, then no sublinear
worst-case update time guarantees are possible.

MIX function

We now define our main ingredient for deamortization, which essentially says that we can
smoothly switch from one solution to another, by adding or removing one item at a time:

▶ Definition 5 (MIX function). Given two solution sets A and B, let MIX(A, B, i), for
i ∈ [0, |A| + |B|] be a set where:

MIX(A, B, i) is always a valid solution
MIX(A, B, 0) = A

MIX(A, B, |A| + |B|) = B

| MIX(A, B, i)| ≥ min(|A|, |B|) − Γ(|A| + |B|), for some Γ(|A| + |B|) = o(|A| + |B|).
MIX(A, B, i) and MIX(A, B, i + 1) differ by one item.

Given this purely combinatorial definition, we define a MIX algorithm as follows.

▶ Definition 6. A MIX algorithm with running time γ(n) is a data structure such that
1. It is initialized with A, B, i = 0 and it has a single operation Advance which advances i

and reports the single element in the symmetric difference MIX(A, B, i)⊕MIX(A, B, i−1).
2. The initialization plus |A|+|B| calls to Advance run in total time (|A|+|B|)·γ(|A|+|B|).
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The rest of this section is organized as follows. In 4.1 we show that given a β-DISQS
and a MIX function for an independent set problem, we can produce a dynamic algorithm
with worst-case update time guarantees and approximation ratio arbitrarily close to β. In
4.2, we show the necessity of MIX function; in other words, we show that if there does not
exist a MIX function for an independent set problem, then no deterministic algorithms with
worst-case update time guarantees exist.

4.1 Dynamic algorithm with worst-Case update time
We now present our main theorem. As we discuss next, the intuition expands upon that for
Theorem 4, that in addition to periodically using the β-DISQS to get a new solution, the
MIX slowly transitions between the two previous solutions reported by the β-DISQS. Our
result is the following.

▶ Theorem 7. Given a β-DISQS with running time f(n) for an independent set problem, a
γ(n)-time MIX algorithm with nondecreasing Γ(n) = o(n), and an 0 < ϵ < 1/4, there is a fully
dynamic data structure to maintain an independent set of size at least (β − ϵ) OPT −o(OPT).
The data structure runs in Oϵ,β(f(n) + γ(n) + log n) worst-case time per operation, where
n is the current number of objects stored, and reports a Oϵ(1) number of changes in the
independent set per update.

High-level description

We saw in the previous section how to obtain an amortized update time algorithm by splitting
the update sequence into rounds and query the DISQS at the end of each round to recompute
an approximate MIS. Let Îk be the independent set produced by the DISQS at the end of
round k. At a high-level, the main task is to deamortize the computation of Îk: we can not
afford computing it during one step. Instead, we compute Îk gradually during round k + 1,
making sure that the running time per step is bounded. Îk is eventually computed by the end
of round k + 1. At this point, we would like to have Îk (discarding elements deleted during
round k + 1) as our output independent set; however this can not be done immediately, since
Îk might be very different from Îk−1. For that reason, the switch from Îk−1 to Îk is done
gradually using the MIX function during round k + 2. After all, our algorithm uses Îk as its
independent set at the end of round k + 2.

It follows that the independent set reported to the user is a combination of DISQS queries
3 or 2 rounds in the past. We show that by appropriately choosing the lengths of the rounds
depending on the sizes of the independent sets, this lag affects the approximation factor by
an additive ϵ.

Proof of Theorem 7. We group the updates ui into rounds, and use rk to indicate that urk

is the last update of round k. Let Îk be the independent set output by the β-DISQS (if
queried) at time rk, i.e., at the end of kth round. The length of the kth round, Rk = rk −rk−1
is defined to be Rk := max{1, ⌊ϵ · |Îk−2|⌋} updates.

For convenience, we define the following functions for any 0 < ϵ < 1/4:

g(ϵ) = 1 +
√

1 − 4ϵ

2 h(ϵ) = 3 −
√

1 − 4ϵ

2 ϕ(ϵ) = 16h2(ϵ)
ϵ · β · g3(ϵ)

Note that g(ϵ) = 1 − ϵ − O(ϵ2) and h(ϵ) = 1 + ϵ + O(ϵ2). Note also that g(ϵ) ∈ (1/2, 1) and
in particular g(ϵ) → 1 as ϵ → 0. Similarly, h(ϵ) ∈ (1, 3/2) and h(ϵ) → 1 as ϵ → 0.
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Our Data Structures and Operations

Our overall structure contains a β-DISQS and a MIX algorithm. We also maintain the
current active set of objects Si and our approximate independent set Ii explicitly in a binary
search tree; we refer to simply as S and I, each stored according to some total order on the
objects4. We maintain the invariant that at the beginning of round k, the DISQS stores the
set of objects Srk−2 . Also, our structure stores Îk−3 and Îk−2.

To execute update operations in round k, the following are performed:
Running MIX slowly: During round k we use MIX to transition from Îk−3 to Îk−2. This

is done by initializing MIX with Îk−3 and Îk−2 and repeatedly running the Advance
operation. After each update, we continue running MIX where we left off and continue
until either ϕ(ϵ) · γ

(
|Îk−3| + |Îk−2|

)
time has passed or if ϕ(ϵ) calls to Advance have

been performed.
Operation archiving: All updates are placed into a queue Q as they arrive. This will ensure

that the DISQS will take into account all updates of previous rounds. Moreover, if an
update ui deletes an element v of S, we wish to report it as being deleted. To do so we
set a variable ∆DEL

i = {v}, and otherwise ∆DEL
i = ∅.

Interaction with the DISQS: During round k, we want to use the DISQS in order to compute
the set Îk−1. To do that, we first perform to the DISQS all updates of round k − 1 one by
one and remove them from Q. This way, DISQS stores the set Srk−1 . Then, we perform
a query to the DISQS, to get Îk−1. In each update of the round

(
1 + 2h(ϵ)

βϵ

)
f(n) time is

spent on executing these operations.
Maintaining S: We store S in a binary search tree based on some total ordering of the

objects. For each update ui, we search for ui in S and remove it if it is there, and add it
if it is not, to maintain S = Si = Si−1 ⊕ {ui}.

Output: After each update, we report the symmetric difference ∆ between previous and
current independent set to the user. Let ∆MIX

i be the union of the items returned by
the Advance operation of the MIX algorithm during the execution of update ui. We
combine ∆MIX

i and ∆DEL
i , and before returning, we remove any items that would result

in the insertion into Ii of items that are not in S.

Roadmap

We need to argue about (i) correctness, (ii) running time, (iii) approximation ratio and (iv)
feasibility of our algorithm, i.e., that during each round the computation of MIX and DISQS
have finished before the round ends. Due to space limitations, we provide a brief sketch here
and defer the formal proofs to the full version.

Correctness

It is easy to see that the algorithm described above always outputs an independent set to
the user: During current round t, the user always sees MIX(Ît−3, Ît−2, j) for some j, with
perhaps some items that have been deleted in round t − 1 or the current round removed.
MIX is by definition an independent set at every step as in any subset of it, so the user
always sees an independent set.

4 Instead of a tree one could use a hash table, which would remove the additive logarithmic term from
the update time, at the expense of randomization. However this will not improve our overall result,
since functions γ(n) and f(n) are at least logarithmic in our application (see sections 5,6); therefore the
logarithm can be absorbed while keeping the result deterministic.
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Bound on update set size

The update set returned is a subset of ∆MIX
i ∪∆DEL

i , as insertions of ∆MIX
i might be removed

if the items are no longer in S. The size of ∆MIX
i is at most ϕ(ϵ) by construction; the set

∆DEL
i contains at most one element. Therefore,

∆ ≤ ϕ(ϵ) + 1 = 16h2(ϵ)
ϵ · β · g3(ϵ) + 1 ≤ 16

ϵ · β
· (3/2)2

(1/2)3 + 1 = O

(
1

ϵ · β

)
= Oϵ,β(1) (1)

Running time

The formal proof is located in the full version. Briefly, MIX takes time ϕ(ϵ)·γ
(

|Îk−3| + |Îk−2|
)

.
It is easy to show that |Îk−3| + |Îk−2| ≤ 2 OPT

g3(ϵ) ≤ 16n. Using that γ is sublinear, we

get that ϕ(ϵ) · γ
(

|Îk−3| + |Îk−2|
)

= Oϵ(γ(n)). DISQS works for time (1 + 2h(ϵ)
β·ϵ )f(n) =

Oϵ,β(f(n)). Last, operations for checking if update elements are still in S require time
O(|∆MIX

i ∪ ∆DEL
i | · log n) = Oϵ,β(log n), due to (1).

Approximation ratio and feasibility

The proofs of approximation ratio and feasibility are simple but technical, and deferred to the
full version. At a high level, the main idea is that the size of each round is carefully chosen
such that, combined with Fact 2, the approximation factor β of the DISQS worsens just by
an additive ϵ term due to the delayed updates and allows the DISQS and MIX operation to
complete during the round. ◀

4.2 Necessity of the MIX function
▶ Theorem 8. Suppose for any n, there are independent sets A and B of size n such there
is no MIX function with Γ(n) ≤ (1 − β)n for all A′ ⊆ A and B′ ⊆ B, where |A′|, |B′| ≥ βn.
Then there is no (β + ϵ)-approximate dynamic MIS algorithm that reports at most o(n)
changes in the independent set per update, for any ϵ > 0.

Proof. Let δ(n) = o(n) and suppose there is a (β − ϵ)-approximate MIS algorithm that
reports δ(n) changes per update in the worst case. Insert A in to the data structure. Then
insert B and delete A. This is |A| + |B| update operations. At all times the independent
set is at least (β − ϵ)n, and there are at most δ(n) changes per update operation. We could
transform this into a MIX function by taking the at most δ(n) changes from update and
report each change one at a time, first deletes and then inserts; thus at each step of the
resultant MIX, their independent set is at least (β + ϵ)n − δ(n) which is at least βn for
sufficiently large n ◀

We can apply this to the case of rectangles in the plane, where we show that with a
non-trivial worst-case performance of o(n) changes in the independent set per operation, it
is impossible to have an β-approximate MIS for any β > 0.

▶ Lemma 9. There is no MIX function for rectangles with Γ(n) < n. Thus from Theorem 8,
for any β > 0, there is no β-approximate dynamic MIS algorithm that reports at most o(n)
changes in the independent set per update.

Proof. This is equivalent to saying that there are sets of rectangles A and B such that for
any MIX function, there is an i such that MIX(A, B, i) = ∅. Consider sets of rectangles A

and B, each of size n, in the form of a grid such that A are horizontally thin and disjoint, B
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are vertically thin and disjoint, and every rectangle of A intersects all rectangles of B. In a
MIX function, starting from A, one can not add a single element from B until all elements
of A have been removed. ◀

This construction works for any class of objects for such a generalized “hashtag” construc-
tion is possible, which includes any class of shapes which are connected and where for any
rectangle, there is a shape in the class that has that rectangle as its minimum orthogonal
bounding rectangle. This includes natural classes of shapes without fatness constraints, such
as triangles, ellipses, polygons, etc.

5 A MIX algorithm for fat objects

Fat objects

There are many possible definitions of fat objects in Euclidean space, we use the following
one from [15]. Define the center and size of an object to be the center and side length of one
of its minimal enclosing hypercube.

▶ Definition 10. A collection S of (connected) objects is f -fat, for a constant f , if for any
size-r box R, there are f points such that every object that intersects R and has size at least
r contains one of the chosen points.

This implies that any box can only intersect f disjoint objects of size larger than the box.
Throughout the whole section, f and the dimension d are considered to be constant.

We will develop and use a variant of the rectangle separator theorem of Smith and
Wormald [34]. We first state the classic version, and then prove the variant we need. Our
proofs are straightforward adaptations of those in [34].

▶ Lemma 11 (Smith and Wormald [34]). For any set S of disjoint squares objects in the
plane, there is a separating rectangle R that such if we partition S into SIN, SOUT and
SON based on whether each object lies entirely inside R, entirely outside R, or intersects R,
SIN ≤ 2

3 |S|, SOUT ≤ 2
3 |S| and SON = O(

√
|S|).

What we need differs from this in that we have two sets of fat objects, in each set the
objects are disjoint but intersection is allowed between the two sets, and we want to have
the separator intersect with an order-square-root number of objects in each set. However we
require the separator to be balanced with respect to the first set only; it is not possible to
require balance with respect to both sets. We state the separator theorem here, the proof is
in the full version.

▶ Lemma 12. Let S1 and S2 be two sets of disjoint f-fat objects in d-dimensions. Let
n = |S1| + |S2|. We can compute a hypercube s and sets SIN

1 , SIN
2 , SOUT

1 , SOUT
2 with the

following properties in time O(d · n) = O(n):
The hypercube s intersects O(n1− 1

d ) objects of S1 ∪ S2.
SIN

1 ⊆ S1, SIN
2 ⊆ S2, SOUT

1 ⊆ S1, SOUT
2 ⊆ S2

All objects in SIN
1 and SIN

2 lie entirely inside s

All objects in SOUT
1 and SOUT

2 lie entirely outside s

|SIN
1 | ≤ 4d−1

4d |S1|
|SOUT

1 | ≤ 4d−1
4d |S1|
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▶ Lemma 13. Fat objects in constant dimension d have a MIX algorithm with running time
γ(n) = O(log n): Given independent sets of fat objects S1 and S2, there is a MIX from S1 to S2
whose size is always at least min(|S1|, |S2|)−Γ(|S1|+|S2|), with Γ(n) = O(n1− 1

d log n) = o(n).
The total running time of initializing the algorithm with S1 and S2 and performing all steps
of MIX is O((|S1| + |S2|) · log(|S1| + |S2|)).

Proof. We compute the separator s from Lemma 12. Let SIN
1 , SOUT

1 , Ss
1 SIN

2 , SOUT
2 , Ss

2 ,
denote partition of S1 and S2 into parts that are completely inside the separator, completely
outside, and those that intersect the separator, respectively.

Main Idea. The main idea is the following: First, we will remove all objects of Ss
1 . Then

the remaining objects of S1 would be either completely inside s or completely outside S.
We will use recursively the MIX function in both sides to switch from SIN

1 to SIN
2 and from

SOUT
1 to SOUT

2 respectively. At the end we will add Ss
2 .

Applying the recursion carefully. Recall that our goal is twofold: First, minimize the
running time of MIX, second, make sure that at each step the size of the current set is
at large as possible. Formally, minimize both γ(n) and Γ(n), which should be definitely
sublinear, and as small as possible. Note that towards the second goal, i.e., keeping the set
size as high as possible at all times, the sets used to apply the first recursive call of MIX
matter: should we start from switching from SIN

1 to SIN
2 or from SOUT

1 to SOUT
2 ? We want

to make the choice that leads to the largest independent set at the intermediate step when
only one of the two recursive calls has been applied.

We denote a and b the sides of separator (IN and OUT) so that |Sa
1 | + |Sb

2| ≤ |Sb
1| + |Sa

2 |
holds. As min(w + x, y + z) ≤ max(w + z, x + y):

|Sb
1| + |Sa

2 | = max(|Sb
1| + |Sa

2 |, |Sa
1 | + |Sb

2|) ≥ min(|Sa
1 | + |Sb

1|, |Sa
2 | + |Sb

2|). (2)

This way, at the intermediate step when we have mixed only one side, the set size will not
be smaller than the beginning or the end of the mix operation.

Formal Description. The MIX function then proceeds as follows:
1. Start with S1.
2. Remove the elements of Ss

1 , one at a time, to give Sa
1 ∪ Sb

1.
3. Recursively MIX Sa

1 to Sa
2 .

4. Now we have Sa
2 ∪ Sb

1.
5. Recursively MIX Sb

1 to Sb
2. At the end of this process we will have Sb

2 ∪ Sb
2.

6. Add the elements of Ss
2 , one at a time.

7. We finish with Sa
2 ∪ Sb

2 ∪ Ss
2 = S2.

The base case is when one of the two sets is empty, and the MIX proceeds in the obvious way
by deleting all elements of S1 if S2 is empty, or inserting all elements of S2 if S1 is empty. In
such a case the lemma holds trivially as min(|S1|, |S2|) is zero.

We need to argue that at all times this process generates a set that is an independent set
of the claimed size.

Always an independent set. In steps 1-2 we always have a subset of S1, which is an
independent set, the same holds in steps 6-7 with respect to S2. In step 4, Sa

2 ∪ Sb
1 is

independent as each of the sets are independent and all of the objects on each set are entirely
on opposite sides of the separating rectangle s. Steps 3 and 5 hold by induction, and that
the part we are recursively MIXing and the part that is unchanged are entirely on opposite
sides of the separating rectangle.

ESA 2021



25:12 Worst-Case Efficient Dynamic Geometric Independent Set

Size bound. Let MIXmin(S1, S2, n) be the smallest size of the independent set during the
running of the MIX function from S1 to S2, and where n is an upper bound on |S1| + |S2|.
Then we can directly express MIXmin as a recurrence, taking the minimum of each step of
the algorithm:

MIXmin(S1, S2, n) = min(|S1|, |Sa
1 | + |Sb

1|, MIXmin(|Sa
1 |, |Sa

2 |, n) + |Sb
1|, |Sa

2 | + |Sb
1|,

|Sa
2 | + MIXmin(|Sb

1|, |Sb
2|, n), |Sa

2 | + |Sb
2|, |S2|)

We will prove that

MIX(S1, S2, n) ≥ min(|S1|, |S2|) − (log 4d

4d−1
|S1|) · n1− 1

d (3)

which implies the claim of this lemma. The details of this inductive proof are given in the
full version. It follows exactly the intuition that (i) the only loss in the MIX function is the
separators at each level of the recursion, (ii) there are logarithmic levels of the recursion and
(iii) the size of the separators in each level are O(n1−1/d). Some care must be taken, since
the separators are only balanced for one of the two sets.

Running time. The running time is given by the recursion:

T (S1, S2) =


|S1| if S2 = ∅
|S2| if S1 = ∅
T (Sa

1 , Sa
2 ) + T (Sb

1, Sb
2) + O(|S1| + |S2|) otherwise

where the additive term in the last case is dominated by the time needed to compute the
separator (Lemma 12) which is O(d · (|S1| + |S2|)) = O(|S1| + |S2|), since d is assumed to be
constant.

Recall |Sa
1 |, |Sa

2 | ≤ 4d

4d−1 S1, Sa
1 and Sb

1 are disjoint subsets of S1, and Sa
2 and Sb

2 are
disjoint subsets of S2. Hence the recursion depth is logarithmic in |S1| and each item from
S1 and S2 is passed to at most one of the recursive terms.

Thus the running time is O((|S1| + |S2|) log |S1|). As the running time is defined to be
(|S1| + |S2|) · γ(|S1| + |S2|), we have γ(|S1| + |S2|) ≤ log(|S1| + |S2|).

Remark. We note the effect of the running time of the separator algorithm (Lemma 12) on
the running time of the MIX algorithm: If the running time was O(nc) for some constant c,
then the additive term in the recursion would have increase to O((|S1| + |S2|)c), leading to
γ(n) = nc−1 · log n; such a running time would be sublinear only for c < 2; here, by achieving
c = 1, we get the fastest possible running time which implies the polylogarithmic running
time for MIX for fat objects. ◀

6 DISQS for fat objects

In this section, we define DISQS for various classes of geometric objects. First observe
that for intervals, a 1-DISQS with running time O(log n) follows from the classic greedy
algorithm [25]. By storing the intervals in an augmented binary search tree, one can insert
and delete intervals as well as answer queries of the form “What is the interval entirely to
the right of x with the leftmost right endpoint?” As intervals are fat, this implies a (1 − ϵ)
approximate MIS algorithm with running time O( 1

ϵ log n). This in not new, in the past year
a complicated structure via local exchanges appeared in [12] and soon after a much simpler
method [21] using a local rebuilding was obtained; we obtain this as part of our more general
scheme for fat objects.
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We now focus on developing DISQS for fat objects. This involves two ideas. First, we
use a simple greedy offline algorithm that computes an constant-approximate MIS for fat
objects. Then we combine this algorithm with a range searching data structure to implement
the greedy choice.

A greedy offline approximation algorithm

Given a collection of fat objects, we consider the independent set obtained by sorting them
by size, from the smallest to the largest, and adding them greedily to the independent set,
provided they do not intersect anything added previously. We refer to this algorithm as the
greedy algorithm. It was considered in particular by Chan and Har-Peled [17], but was known
in special cases before [22]. From the definition of f -fat objects, every successive object
returned by the algorithm can intersect at most f disjoint objects that are larger. Hence
this simple algorithm yields a constant-factor approximation algorithm for fat objects.

▶ Lemma 14. For f-fat objects in dimension d, the greedy algorithm returns an 1/f-
approximate MIS.

We need to implement this greedy method as the query of a DISQS; that is, it should support
insertion and deletion of objects, and the running time of the greedy algorithm must be
output-sensitive. This can be done with a slight variation of classic range intersection query
structures, where we can insert and delete objects, mark or unmark objects that intersect a
given query, and return the largest unmarked object. Thus each item returned by the greedy
algorithm is reported after a constant number of range intersection query operations.

The DISQS data structures thus have running times that match those of the underlying
range intersection query structures when the query ranges are from the same family of objects
as the objects stored: O(n1− 1

2d ) for hyperrectangles, using kd-trees, Õ(n1− 1
d+2 ) for disks and

Õ(n1− 1
d(d+1) ) for simplices, using partition trees; see the full version for more details.

Summary

The range intersection queries (details in the full version) combined with the greedy algorithm
(Lemma 14) gives a DISQS whose running time depends on the range intersection queries,
and whose approximation radio is the inverse of the fatness constant. From Lemma 13 fat
objects have a MIX algorithm. Given the MIX, DISQS, and constant ϵ > 0, Theorem 7 yields
a dynamic MIS structure, with worst-case update time depending on the range intersection
queries, approximation ratio within ϵ of that from the fatness, and with only a constant-size
update set per operation. Putting all these pieces together yields Theorem 1.
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Abstract
We introduce the balanced crown decomposition that captures the structure imposed on graphs by
their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in
various application areas, where the non-local nature of the connectivity condition usually results
in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a
crown decomposition and a balanced partition which makes it applicable to graph editing as well as
graph packing and partitioning problems. We illustrate this by deriving improved approximation
algorithms and kernelization for a variety of such problems.

In particular, through this structure, we obtain the first constant-factor approximation for the
Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted
graph into k connected components of approximately equal weight. We derive a 3-approximation
for the two most commonly used objectives of maximizing the weight of the lightest component or
minimizing the weight of the heaviest component.
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1 Introduction

Connected subgraphs are one of the most natural structures to encode aspects of a practical
task, modeled as a graph problem. On the one side, such subgraphs represent structures
we seek to discover, such as territories for postal delivery and similar districting problems
(see e.g. the survey [22]). From another perspective, the structures of interest could be
operations that scatter a graph into small connected components; a structure e.g. used to
model vulnerability in network security (see e.g. the survey [2]). Partitioning a graph into
connected components of a given size is also used as a model for task allocation to robots [43].
From an algorithmic perspective, connectivity is a non-local requirement which makes it
particularly challenging. We introduce a graph structure that can be used to design efficient
algorithms for a broad class of problems involving connected subgraphs of a given size.

© Katrin Casel, Tobias Friedrich, Davis Issac, Aikaterini Niklanovits, and Ziena Zeif;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Katrin.Casel@hpi.de
https://orcid.org/0000-0001-6146-8684
mailto:Tobias.Friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:Davis.Issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:Aikaterini.Niklanovits@hpi.de
https://orcid.org/0000-0002-4911-4493
mailto:Ziena.Zeif@hpi.de
https://orcid.org/0000-0003-0378-1458
https://doi.org/10.4230/LIPIcs.ESA.2021.26
https://arxiv.org/abs/2011.04528
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Balanced Crown Decomposition for Connectivity Constraints

One useful structure to derive information about connected subgraphs is a connected
partition, defined as follows. Given a graph G = (V, E), a connected partition of G is a
partition V1, . . . , Vk of V such that the graph induced by the vertex set Vi is connected
for each 1 ≤ i ≤ k, where k ∈ N is the size of the partition. Often, we are not interested
in just any connected partition but in those that have the additional property of being
balanced. Informally speaking, a connected partition is considered balanced if the sets Vi

have approximately equal cardinality. There are several measures to assess the quality of a
balanced connected partition (BCP for short), with the two most commonly used objectives
being to maximize min1≤i≤k |Vi| or to minimize max1≤i≤k |Vi|, as first introduced for trees
in [30] and [25], respectively. Despite extensive studies on these problems for the past 40
years, see e.g. [7, 30, 32, 35, 37, 38, 39] the best known approximation ratio for the Min-Max
objective depends on the number of sets k [11]. For the Max-Min objective not even such a
result is known; only for the cases with k restricted to 2 or 3, there exist approximations
with ratio 4

3 [12] and 5
3 [8], respectively. Deriving an approximation with a ratio independent

of k seems to require a new strategy.
Helpful structures for both of the objectives Max-Min and Min-Max, as a sort of com-

promise, are BCP’s such that λl ≤ |Vi| ≤ λr for some fixed bounds λl, λr. We call this
compromise structure [λl, λr]-CVP (connected vertex partition), and it is one ingredient of
balanced crown decomposition, the main structural object that we present. In the case that
no [λl, λr]-CVP exists for a graph, we can learn something about its structure. In particular,
our balanced crown decomposition theorem (Theorem 7) shows that for any k, λ > 0, the
non-existence of a [λ, 3λ − 3]-CVP implies the existence of a vertex set H ⊆ V of cardinality
at most k that disconnects at least one component of size less than λ from G. Such sets H

are in a sense the dual of balanced connected partitions.
Small subsets of vertices that disconnect a graph are usually called vertex separators, and

they are one of the most powerful tools for designing efficient graph algorithms. In a sense,
they are the base requirement of successful divide-and-conquer strategies for graph problems.
This generality and their wide applicability has made the study of separators a rich and
active research field, see e.g. the book by Rosenberg and Heath [31], or the line of research
initialized by the seminal paper of Lipton and Tarjan [27] on separators in planar graphs.
Numerous different types of separator structures emerged over the past couple of decades.
In the context of connectivity problems, the separator structures of particular interest are
crown decompositions; a classical tool to derive kernelizations in the field of parameterized
complexity. We refer to chapter 4 of the book on kernelization [18] for more details on crown
decompositions and their applications.

Crown decomposition was introduced as a generalization of Hall’s Theorem in [13]. More
precisely, a crown decomposition of a graph G = (V, E) is a partition of V into three sets H

(head), C (crown) and R (royal body), such that H separates C from R, C is an independent
set in G, and there exists a matching of size |H| among the edges E ∩ (H × C). Notice that
the set H is the separator set, and the property of C being an independent set can be seen as
H splitting connected components of size 1 from the graph. The condition of the matching
from H into C models a trade-off between the size of the separator and the amount of small
sets that are separated. Different versions of crown decompositions have been introduced in
the literature, adjusting the structure to specific application scenarios.

The structure of particular interest to us is the q-Weighted Crown Decomposition in-
troduced by Xiao [40]. Here, the crown C is no longer an independent set, but has the
restriction that each connected component in it has size at most q (generalizing the notion
of independent set for q = 1); and there exist an assignment of connected components of
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the crown to the head such that each vertex in the head is assigned at least q vertices. This
assignment generalizes the notion of matching in the original crown decomposition. Such a
weighted crown decomposition can be derived using the Expansion Lemma as stated in [17,
Chapter 5.3], and its generalization to the Weighted Expansion Lemma as given in slightly
different forms in [24] and [40]. The expansions derived by these lemmas can be thought
of as bipartite analogues of the crown decomposition. Formally, given a bipartite graph
G = (A, B, E), a q-(Weighted) Expansion is given by sets H ⊆ A and C ⊆ B such that the
neighborhood of C is contained in H and an assignment f : C → H such that the number
(resp. weight, in the vertex-weighted case) of vertices assigned to each vertex in H is at least q

(resp. q − W + 1 where W is the largest weight). Both Kumar and Lokshtanov [24] and
Xiao [40] use their respective Weighted Expansion Lemma to derive kernels for Component
Order Connectivity, a version of the editing problem that we also consider in a more
general form under the name W -Weight Separator.

To create our new structure balanced crown decomposition, we combine balanced connected
partitions and crown decompositions to derive a tool that has the advantages of both of the
individual structures. Essentially, it is a weighted crown decomposition with the additional
property that the body has a balanced connected partition. Also, note that we allow a more
generalized version of weighted crown decomposition than Xiao [40], by considering weighted
vertices. Formally, we consider vertex-weighted graphs G = (V, E, w) with integer-weights
w : V → N. For simplicity we use w(V ′) =

∑
v∈V ′ w(v) for the weight of a subset V ′ ⊆ V .

We show that balanced crown decompositions have applications for various kinds of
problems involving connectivity constraints. Specifically we discuss for the three types editing,
packing and partitioning the following problems on input G = (V, E, w) and k, W ∈ N:
Max-Min (Min-Max) BCP: Decide if there exists a connected partition V1, . . . , Vk of V

such that w(Vi) ≥ W (resp. w(Vi) ≤ W ) for each i ∈ [k]; usually stated as optimization
problem to maximize/minimize W .

W -weight Separator: Decide if there exists a set S ⊆ V with |S| ≤ k whose removal
from G yields a graph with each connected component having weight less than W .

W -weight Packing: Decide if there exist k pairwise disjoint sets V1, . . . , Vk ⊆ V with
w(Vi) ≥ W , such that the graph induced by Vi is connected, for each i ∈ [k].

We remark that the problems W -weight Separator and W -weight Packing have
been studied mostly on the unweighted versions, also known as Component Order
Connectivity and Tr-Packing, respectively.

For all results of this paper, we consider the RAM model of computation with word size
O(log(|V | + maxv∈V w(v))). All our algorithms are polynomial w.r.t. the encoding of input.

Lastly, we point out that this short version of the paper contains only a summary of
how to compute a balanced crown decomposition and its applications. Here we provide
descriptions of the algorithms used and proof sketches about the results achieved through
this structure. For technical details and complete proofs, we refer to the full version of the
paper.

1.1 Our Contribution
Our main contributions can be summarized as follows:
1. Balanced Crown Decomposition (BCD): The main contribution of our paper is a

new crown decomposition tailored for problems with connectivity constraints. Our novel
addition over previous crown decompositions is that we also give a partition of the body
into connected parts of roughly similar size. More precisely, we divide the graph into
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C, H, and R such that C, H, R is a weighted-crown decomposition and also a [λ, 3λ]-CVP
is given for R. Definition 6 gives the formal definition of BCD, and Theorem 7 gives our
main result about computing BCD. We believe that apart from the applications used in
this paper, BCD will find applications for other problems with connectivity constraints.

2. Balanced Expansion: We also give a novel variation of the expansion lemma, which is an
important constituent of our algorithm for BCD. Given a bipartite graph G = (A, B, E),
we give an expansion with H ⊆ A, C ⊆ B, with the addition that the expansion f while
being a weighted q-expansion from C to H , now also maps B\C to neighbors in A\H such
that only a bounded weight is assigned to each vertex in A\H . See Definition 1 for a more
formal definition and Theorem 2 for our result on computing balanced expansion. Apart
from its usage here to compute BCD, the balanced expansion could be of independent
interest, given the significance of the Expansion Lemma in parameterized complexity.

3. Approximation algorithms for BCP: Using BCD, we give 3-approximation algorithms
for both Max-Min and Min-Max BCP. These are the first constant approximations for
both problems in polynomial time for a general k. Recall that despite numerous efforts in
the past 40 years, only a k/2-approximation for Min-Max BCP [11], and constant-factor
approximations for the particular cases of k = 2, 3 for Max-Min BCP [12, 8] were known.

4. Improved Kernels for W-weight separator and packing: BCD directly gives a
3kW -kernel for both of the problems improving over the previous best polynomial time
kernels of size 9kW [40] and O(kW 3) [9]. Especially, we get the same improvements for
the unweighted versions Component Order Connectivity and Tr-Packing.

5. Faster algorithms for Expansion: Our algorithm for Balanced Expansion, also gives
an alternative flow-based method for computing the standard (weighted) expansion. Our
algorithm can compute a (weighted) expansion in O(|V ||E|) surpassing the previous best
runtimes of O(|V |1.5|E|) and O(|E||V |1.5W 2.5) [18, Chapter 5.3] (here W is the largest
weight) for unweighted and weighted expansion, respectively. In particular, for weighted
expansion, our runtime does not depend on the weights and is the first algorithm that
runs in time polynomial w.r.t. the length of the input-encoding. The improvement in
runtime may turn out to be useful to speed up kernelizations for other problems.

1.2 Related work
Both variants of BCP were first introduced for trees, where Max-Min BCP and Min-Max
BCP are introduced in [30] and [25], respectively. For this restriction to trees, a linear
time algorithm was provided for both variants in [19]. For both variants of BCP, a ∆T -
approximation is given in [3] where ∆T is the maximal degree of an arbitrary spanning tree
of the input graph; for Max-Min BCP the result holds only when the input is restricted
to weights with maxv∈V w(v) ≤ w(G)

∆k . Also, although not explicitly stated, a (1 + ln (k))-
approximation in O

(
nk

)
time for Min-Max BCPk follows from the results in [10]. With

respect to lower bounds, it is known that there exists no approximation for Max-Min BCP
with a ratio below 6/5, unless P ̸= NP [7]. For the unweighted case, i.e. w ≡ 1, the best
known result for Min-Max BCP is the k

2 -approximation for every k ≥ 3 given in [11].
Balanced connected partitions are also studied for particular cases of k, denoted BCPk.

The restriction BCP2, i.e. balanced connected bipartition, is already be NP-hard [5]. On the
positive side, a 4

3 -approximation for Max-Min BCP2 is given in [12], and in [11] this result is
used to derive a 5

4 -approximation for Min-Max BCP2. For tripartition, approximations for
Max-Min BCP3 and Min-Max BCP3 with ratios 5

3 and 3
2 , respectively, are given in [8].

BCP in unit-weighted k-connected graphs can be seen as a special case of the Győri-
Lovász Theorem (independently given by Győri [20] and Lovász [28]). It states that for any
k-connected graph G = (V, E) and integers n1, . . . , nk with n1 + · · · + nk = |V |, there exists
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a connected partition V1, . . . , Vk of V with |Vi| = ni for all i ∈ [k]. Moreover, it is possible
to fix vertices v1, . . . , vk and request vi ∈ Vi for all i ∈ [k]. The Győri-Lovász Theorem is
extended to weighted directed graphs in [10] and Győri’s original proof is generalized to
weighted undirected graphs in [6]. Polynomial algorithms to also compute such connected
partitions are only known for the particular cases k = 2, 3, 4 [32, 35, 21] and all k ≥ 5 are
still open. A restricted case of BCP where the partitions are allowed to differ only by a size
of one, has been studied from the FPT viewpoint [15].

W -weight Separator occurs in the literature under different names. The unweighted
version is studied under the names p-Size Separator [40] or ℓ-Component Order Connectivity
(COC) [14, 24]; where p, ℓ = W −1 translate this to our definition of W -weight Separator
with unit weights. In [14] a weighted version of COC denoted by Weighted Component Order
Connectivity (wCOC) is introduced. This problem differs from our W -weight Separator
by searching for a set S with w(S) ≤ k instead of |S| ≤ k.

Note that W -weight Separator with W = 2 and unit weights yields the classical
problem Vertex Cover. This in particular shows that W (alone) is not a suitable
parameter from the FPT viewpoint. Further, W -weight Separator is W[1]-hard for
parameter k, even when restricted to split graphs [14]. These lower bounds lead to studying
parameterization by W + k. Stated with ℓ = W − 1, a kernel of size 9kℓ is given in [40].
Also [24] derives a kernel of size 2kℓ in time O

(
|V |ℓ

)
. Both of these results are for unit

weights. An O
(
kℓ(k + ℓ)2)

weight kernel for the related problem w-COC is given in [14].
For W = 3 and unit weights, W -weight Separator corresponds to Vertex Cover

P3 or 3-path Vertex Cover (see e.g. [34] and [4]), first studied by Yannakakis [42] under
the name Dissociation Number. The best known kernel for this problem is of size 5k

and given in [41]. W -weight Packing with unit weights is equivalent to Tr-Packing with
r = W + 1, where Tr is a tree with at least r edges, as defined in [9]; note that any connected
component with at least W vertices has at least r − 1 edges, and any tree with r − 1 edges
has exactly W vertices. The best known kernel for this problem is of size O

(
kW 3)

by [9].
W -weight Packing is also studied for particular values of W . The case W = 2 with

unit weights is equivalent to the Maximum Matching problem; note that a matching of size
k can be derived from a solution V1, . . . , Vk for 2-weight Packing by choosing arbitrarily
any edge in a set Vi with |Vi| > 2. In a similar way, the particular case of W = 3 is a problem
studied under the names P2-packing or Packing 3-Vertex Paths (see e.g [36] and [23]).
A 5k kernel for this problem is given in [26].

2 Balanced Expansion

In this section we introduce a balanced generalization of weighted expansions that we call
balanced expansion.

Balanced expansion extends the existing weighted expansion structures and is one of
the ingredients to derive our main BCD structure in the next section. Like the weighted
expansion, it is a structure on bipartite graphs. We write G = (A ∪ B, E, w) for bipartite
vertex-weighted graphs, where w : A ∪ B → N is its weight function. See Figure 1 for an
illustration of this structure.
▶ Definition 1 (balanced expansion). Let G = (A ∪ B, E, w) be a bipartite vertex-weighted
graph, where wB

max = maxb∈B w (b). For q ∈ N0, a partition A1 ∪ A2 of A and f : B → A,
the tuple (A1, A2, f, q) is called a balanced expansion if:

1. w (a) + w
(
f−1 (a)

) {
≥ q − wB

max + 1, a ∈ A1

≤ q + wB
max − 1, a ∈ A2

2. f (b) ∈ N (b)
3. N

(
f−1 (A1)

)
⊆ A1
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B A }
A1

}
A2

s t

B A

w(b) q − w(a)

w(b)

Figure 1 Left: Balanced expansion for w(b) = 1 for all b ∈ B, q = 2 and assignment f depicted
with bold edges. Right: Flow network embedding of the graph on the left.

Our main result of this section is the following theorem.

▶ Theorem 2 (balanced expansion). Consider a vertex-weighted bipartite graph G =
(A ∪ B, E, w) with no isolates in B, and q ≥ maxb∈B w (b) = wB

max. A balanced expansion
(A1, A2, f, q) for G can be computed in O (|V | |E|) time. Furthermore, if w (A)+w (B) ≥ q|A|,
then A1 ̸= ∅.

As intermediate structure we use a fractional version of the balanced expansion where we
partially assign weights from vertices of B to vertices of A encoded as edge weights.

▶ Definition 3 (fractional balanced expansion). Let G = (A ∪ B, E, w) be a bipartite vertex-
weighted graph. For q ∈ N0, a partition A1 ∪ A2 of A and g : E → N0, the tuple (A1, A2, g, q)
is called fractional balanced expansion if:

1. w (a) +
∑

b∈B g (ab)
{

≥ q, a ∈ A1

≤ q, a ∈ A2
2. ∀b ∈ B :

∑
a∈A g (ab) ≤ w (b) (capacity)

3. N (BU ∪ BA1) ⊆ A1 (separator)
where Ba := {b ∈ B | g (ab) > 0} for a ∈ A, BA′ :=

⋃
a∈A′ Ba for A′ ⊆ A and BU :={

b ∈ B |
∑

a∈A g (ab) < w (b)
}

We prove a fractional version of our result first in the following lemma.

▶ Lemma 4 (fractional balanced expansion). Given a vertex-weighted bipartite graph G =
(A ∪ B, E, w) with no isolated vertices in B and q ∈ N0, a fractional balanced expansion
(A1, A2, g, q) can be computed in O (|V | |E|). Also, if w (A) + w (B) ≥ q|A|, then A1 ̸= ∅.

Proof Sketch. The main idea is to embed G to a capacitated flow network in a standard
way (see Figure 1). We construct a network H = (A ∪ B ∪ {s, t} ,

−→
E , c). To obtain H from G,

add source s and sink t, and arcs −→
E with a capacity function c : −→

E → N defined as follows.
For every b ∈ B, add an arc

−→
sb with capacity w (b) and for every a ∈ A, add an arc −→

at with
capacity q − w (a). Moreover, transform every edge ab ∈ E to an arc

−→
ba with capacity w (b).

We compute a max flow f : −→
E → N and define the saturated vertices A′ ⊆ A as a ∈ A

with f(−→at) = c(−→at). We now gradually build the sets A1 and A2. The vertices of A′ are
potential vertices for A1 while the unsaturated vertices are immediately added to A2. We
define F :=

∑
−→e ∈δ−(t) f(−→e ) as the flow value, where δ−(v) denotes the incoming, and δ+(v)

the outgoing arcs for v ∈ V (G). The final selection of A1 follows by individually increasing
the capacity by one for each −→

at for a ∈ A′, and checking whether the flow value increases
by computing a new max flow fa with the increased capacity of −→

at. Let Fa be the flow
value when the capacity of −→

at is increased by one. If Fa > F , then the vertex is added to
A1, otherwise it is added to A2. The intuition behind this selection can be explained as



K. Casel, T. Friedrich, D. Issac, A. Niklanovits, and Z. Zeif 26:7

follows: first observe that each b ∈ B that has an edge ba2 to some a2 ∈ A2 is saturated,
i.e.

∑
−→e ∈δ+(b) f(−→e ) = w(b). Otherwise, we could route an additional unit of flow from b to

a2 either in f or in fa2 , giving a contradiction to the fact that a2 ∈ A2. Consequently, every
unsaturated b ∈ B is adjacent only to A1. The second observation is that there are no b ∈ B

with f(
−→
ba1) > 0 and ba2 ∈

−→
E for a1 ∈ A1 and a2 ∈ A2. If such a b exist, we show that we

can route an extra unit of flow from b to a2 either in f or fa2 . The idea is that we could
reroute one unit of flow from

−→
ba1 to

−→
ba2 creating a vacuum for one unit of incoming flow in

a1. Since fa1 routed one unit flow more than f , we could use a similar flow routing as in
fa1 to fill this vacuum, thus contradicting the maximality of either f or fa2 . As a result, all
vertices added to A1 have the desired exclusive neighborhood in B encoded by f . Finally, in
order to derive g we convert the flow arc values of f to edge weights for g. Note that the
required upper bound on the assignment of A2 follows from the capacities of the arcs from A

to t, and the required lower bound on the assignment of A1 follows from the vertices in A1
being saturated. Regarding running time, we remark that it is sufficient to find one max-flow
f at the beginning and then computing each fa with only one augmenting flow step. The
max-flow f can be computed in O (|V | |E|) time using the algorithm by Orlin [29]. ◀

Proof Sketch of Theorem 2. Once we have the fractional balanced expansion g, our first
step is modifying the edge weights g such that the edge-weighted graph G′ := (V, {ab ∈
E|g(a, b) > 0}, g) becomes a forest, without changing the sum

∑
b∈N(a) g(a, b) for any a ∈ A

and at the same time ensuring that
∑

a∈N(b) g(a, b) ≤ w(b) for all b ∈ B. This is possible
through a standard cycle canceling process. Now consider the trees in this forest. The trees
intersecting A1 are disjoint from the trees intersecting A2 due to the separation property of
the balanced fractional expansion. For a tree T intersecting A1, we allocate each b ∈ V (T )∩B

completely to its parent in T . This way, any a ∈ V (T ) ∩ A1 loses at most the assignment
from its parent and hence its assignment decreases by at most wB

max − 1 as required. Now
consider a tree T intersecting A2. If a b ∈ V (T ) ∩ B is a leaf of T its assignment has to be
non-fractional, so it can be completely assigned to its parent a and deleted from the tree.
This way, all leafs can be assumed to be from A2. We then allocate each b ∈ V (T ) ∩ B to
one of its children, and thus to every a ∈ V (T ) ∩ A2 at most the assignment from its parent
is added, and hence the assignment increases by at most wB

max − 1 as required. ◀

Before moving to BCD, we formally state the aforementioned implication of the results in
this section on the runtime of computing (non-balanced) expansions.

▶ Lemma 5 (Weighted Expansion Lemma). Let G = (A ∪ B, E) be a bipartite graph without
isolated vertices in B, w : B → {1, . . . , W }, and q ∈ N0. A q-weighted expansion (f, H, C) in
G can be computed in time O (|A ∪ B| |E|). Furthermore, if w (B) ≥ q|A| then H ̸= ∅.

3 Balanced Crown Decomposition

In this section we introduce our combination of balanced connected partition and crown
decomposition that we call balanced crown decomposition, formally defined as follows (see
also Figure 2 for an illustration).

▶ Definition 6. A λ-balanced crown decomposition (λ-BCD) of a vertex-weighted graph
G = (V, E, w) is a tuple (C, H,R, f), where {H, C, R} is a partition of V , the set R is a
partition of R, and f : CC(C) → H where CC(C) is the set of connected components of G[C],
such that:
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26:8 Balanced Crown Decomposition for Connectivity Constraints

1. there are no edges from C to R

2. w(Q) < λ for each Q ∈ CC(C)
3. f(Q) ∈ N(Q) for each Q ∈ CC(C)
4. w(h) + w(f−1(h)) ≥ λ for each h ∈ H


(weighted crown dec.)

5. G[R′] is connected and λ ≤ w(R′) ≤ 3λ − 3 for each R′ ∈ R.

Our novel contribution is condition 5, that gives a balanced connected partition of the
body. Without this condition, the structure is same as the weighted crown decomposition [40].
Observe that if there is a connected component of weight less than λ in G, then there is no
λ-balanced crown decomposition for G. In the applications of BCD, such small components
in the input are usually removed through some form of preprocessing.

We point out that the ratio 3 between the upper and lower bound in condition 5 of BCD
is not arbitrary, but the best possible, since we want to ensure the existence of this structure
in case all connected components have weight at least λ. A simple tight example is a triangle
with each vertex having a weight of λ − 1; here, C = H = ∅ is the only possibility and hence
R = {V } is the only possible partition of R = V .

R
H

C

< λ

λ ≤ ≤ 3λ − 3

Figure 2 λ-balanced crown decomposition.

The main structural result of the paper is the following.

▶ Theorem 7 (Balanced Crown Decomposition Theorem). Let G = (V, E, w) be a vertex-
weighted graph and λ ∈ N, such that each connected component in G has weight at least λ. A
λ-balanced crown decomposition (C, H,R, f) of G can be computed in O

(
k2 |V | |E|

)
time,

where k = |H| + |R| ≤ min {w(G)/λ, |V |}.

The proof of this result is very technical and we therefore here only give a very high-level
overview of the ideas. Observe that the condition |H| + |R| ≤ min {w(G)/λ, |V |} holds, since{

{h} ∪ f−1(h) : h ∈ H
}

∪ R is a partition of the vertices with each part having weight at
least λ. This bound is also used to track our progress in our BCD algorithm. We maintain
a set H that can be thought of as a potential head (not necessarily a separator), a set of
connected components of weight smaller than λ (some of them assigned to vertices in H by
a partial assignment f) which can be thought of as a potential crown, and a remaining body
that is packed according to condition 5.

To easily talk about condition 5 in the following, we say U is a connected packing in
V ′ ⊆ V , if for every U ∈ U we have U ⊆ V ′, U induces a connected subgraph in G and⋂

U∈U U = ∅. We say U is an [a, b]-connected packing of V ′ if w(U) ∈ [a, b] for every U ∈ U
and that U is maximal if the remaining graph does not have a connected component of weight
at least a. Recall that we say U is a CVP or [a, b]-CVP of V ′ if additionally

⋃
U∈U U = V ′

holds, and observe that condition 5 asks for a [λ, 3λ − 3]-CVP of the body R.
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Proof Sketch of Theorem 7. Let G = (V, E, w) be a vertex-weighted graph and λ ∈ N such
that each connected component of G has weight at least λ. We reduce G by deleting all
vertices of weight more than λ and all connected components of size smaller than λ that occur
after this deletion. Suppose we have a λ-BCD for the reduced graph, then a λ-BCD of G

can be built by adding the deleted heavy vertices to the head, the deleted small components
to the crown and assigning (by the function f in the definition of λ-BCD) each of these
components arbitrarily to a heavy vertex it is adjacent to. Thus, we can assume that every
vertex has weight at most λ. See Figure 3 for an illustration of the structures arising below.

We start with a maximal [λ, 2λ]-connected packing of G which is obtained greedily (slight
deviation from the main proof to provide better intuition). Let R = {R1, R2, · · · } be this
packing, C be the vertices not in the packing, and let CC(C) = {C1, C2, · · · } be the connected
components of G[C]. Note that by the maximality of the packing, w(Ci) < λ for all i. Think
of R as the current body and C as the current crown, and the head is empty in the beginning.
Note that at this point we do not ensure that there are no edges between crown and body.
If C is empty then we already have a λ-BCD (with empty crown and head). Also, if we
can somehow assign each Ci to some adjacent Ri such that each Ri is assigned weight at
most 3λ (including its own weight), then we have also built a λ-BCD (with empty crown and
head). Assuming neither of these cases hold, there has to exist an Ri such that its weight
plus the weight of the neighborhood in the crown part is at least 3λ; recall that we assumed
that all connected components of G have weight at least λ, so each Cj is connected to at
least one component in R. We call the subgraph induced by Ri together with all Cj that are
connected to it the effective neighborhood of Ri, and its weight the effective weight of Ri.

In case we have not found a λ-BCD yet, we pick an Ri with effective weight at least 3λ and
use the following fact derived from the famous results of Tarjan [33, 16]: for any connected
graph of total weight at least 3λ and largest vertex weight at most λ, we can efficiently
either find a partition of it into two connected subgraphs of weight at least λ each, or find a
cut-vertex that cuts the graph into components each of weight less than λ. If the effective
neighborhood is divided into two, we take each of the two parts into the body and remove
Ri, thus increasing the body size by one. In the other case, that is, if we find a cut-vertex c,
then we add c to the head and the components of Ri \ {c} (each having weight less than λ)
to the crown CC(C). We assign with a partial function f : CC(C) → H some of these
components that we just added to CC(C) to c such that c is assigned a total weight of at
least 3λ (including weight of c). The reason for assigning 3λ when we only require λ by the
definition of BCD, will become clear in the following. The new components added to the
crown could have edges to the old components there and hence can merge with these. If
at any point it happens that there is a component of weight at least λ in the crown, then
we immediately add it to the body. This could cause some head vertex to loose some of its
assignment, but since it had 3λ assigned to it, an assignment of at least λ remains. This is
because we ensure that the part we move to the body can have weight at most 2λ, as we
move it immediately as the weight is at least λ, and each addition is by steps of less than λ.

We repeat this process of picking an effective neighborhood of an Ri and dividing or
cutting it. We point out that when we calculate effective neighborhoods and weights, we
do not consider the crown parts that are already assigned by f . This process continues
until the effective weights of all sets Ri are less than 3λ. We claim that the reason why we
have not arrived at a λ-BCD yet could only be that there are crown parts that do not have
edges to the body (we call them private components) and not assigned by f , while there are
also crown parts that have edges to the body (non-private components) and assigned by f .
Note that if there are no unassigned private components, we can merge all unassigned crown
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parts with some set in the body and create a [λ, 3λ]-CVP given by the Ri’s and the sets
{v} ∪ f−1(v). Note that since the effective weights were lighter than 3λ, the body parts after
the merging are lighter than 3λ. Also, if f does not assign any non-private components, we
can assign unassigned private components to arbitrary neighbors in H, and merge unassigned
non-private components to body obtaining a λ-BCD.

We modify the assignment f to switch non-private with private components in the best
way possible. For this we use the balanced expansion Theorem 2. We build the bipartite
graph where the set A are the head vertices, and the set B are the private crown components
each contracted into a single vertex. Theorem 2 with expansion parameter 2λ then gives
us sets A′ ⊆ A and B′ ⊆ B and an assignment f ′ such that w({a′} ∪ f ′−1(a′)) ≥ λ for all
a′ ∈ A′ and w({a} ∪ f ′−1(a)) ≤ 3λ for all a ∈ A \ A′, and the crown components in B′ are
completely assigned to A′ and do not have neighbors in A \ A′. Note that since B was the
set of private components, the components B′ do not have neighbors in the body either.
Now augment f ′ by assigning to A \ A′ also enough non-private components such that they
have an assignment of at least 3λ each. This is possible since each vertex in A \ A′ has an
assignment of 3λ by f which did not use any components from B′ (as there are no edges
from B′ to A \ A′). Note that this augmentation of f ′ needs to be done carefully since the
private components could be assigned by the balanced expansion differently than by f .

By f ′ all private components are now assigned to the head, but there could still be
non-private ones assigned as well. But now, if the effective weight of each Ri is at most 3λ,
we can add the unassigned crown parts to sets in R, and thus create a λ-BCD: A′ with its
assignment by f ′ are head and crown, and R plus the sets {a} ∪ f ′−1(a) with a ∈ A \ A′ are
a [λ, 3λ]-CVP of the body. Thus, if we are not successful, there exists an Ri with effective
weight more than 3λ and we continue by dividing or cutting it. Note that we can proceed
with f ′ replacing f although some head vertices (from what was A′ in the balanced expansion)
might only have weight λ assigned to them (and not 3λ), because the crown parts assigned
to them are private and hence do not interfere with the further process.

To analyse the run time, we estimate how often we divide or cut a set Ri; note that each
such step can be performed in O(|V ||E|). Throughout our algorithm, the value |H| + |R|
is non-decreasing, and upper bounded by k. Every time we divide some Ri, we increase
|H| + |R|, hence this happens at most k times. Every time we cut some Ri we increase |H|
by one. Since |H| is also upper bounded by k, and we are careful not to decrease |H| with
the balancing step in-between cut steps, we arrive at a total of at most k2 divide or cut steps.

One pitfall here is that after applying the balanced expansion one might be tempted
to just take A′ and its assignment via f ′ into head and crown respectively, delete it, and
start over on the rest of the graph. The problem with this is that we are not guaranteed
to find a non-empty set A′ (since the private components might not have weight at least
λ|A|). The way we augment f ′, we ensure that we retain the preliminary crown, head and
body structure, and with this especially the value |H|, and can split up another Ri to either
increase |H| or |H| + |R|. Further, the reason why we cannot use the standard weighted
expansion lemma here is that we would need a lower bound of at least λ|A| on the weight of
B for this. We cannot ensure that the private components of the crown alone have a weight
of at least λ|A|, since we also used the non-private components for the assignment f .

One detail that we did not mention so far is that it is not possible to assign exactly 3λ

to each head vertex. Since the step size we can guarantee is only λ, we might have to
assign (4λ − 1) in order to get a value of at least 3λ. Recall that we assign a collection of
components of weight less than λ. Without further work, this only yields an upper bound of
4λ instead of 3λ for the packing of the body, worsening the quality of our structure (we for
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example would only get a 4- instead of a 3-approximation for the BCP problems). For this
improvement from 4 to 3, we maintain a “last component” as a special assignment. (This is
called g′-assignment in the full proof). The details of how we make use of this special second
assignment is rather technical, and to some extent complicates the proof. If one is satisfied
with a bound of 4λ for the body, this complication is not necessary.

Another technical detail we skipped is that in the assignment f we maintain, the crown
parts we map may not be whole sets in CC(C) (connected components induced by crown
vertices). They are connected, but can be subgraphs of some Ci ∈ CC(C). We call such
subgraphs sub-components. Different sub-components of some Ci can be assigned to different
heads. Also, for a Ci some of its sub-components can be assigned while others are not. For
our structure to converge to a λ-BCD, sub-components have to be classified as private or
non-private based on the set CC(C) they are a part of, so it can happen that a sub-component
is non-private but has no edge to the body. Whenever we make the move from crown to body,
we therefore have to do a merging of some sub-components such that for each Ci ∈ CC(C)
either all its sub-components are assigned to the head or none of them are. ◀

R1

R2

R

≥ λ

H
CC(C)

< λ

private components

Figure 3 Illustration of a possible intermediate stage in the proof of Theorem 7. Colors represent
the partial assignment f , e.g., the two blue-colored sub-components are assigned to the blue vertex
in H. Thick lines are edges that go from the sets of the body to their effective neighborhoods.

4 Applications of Balanced Crown Decomposition

In this section we present some applications of the balanced crown decomposition.
For the problems W -weight Separator and W -weight Packing we immediately

get the following theorems by reducing an instance (G, k, W ) by first finding a W -BCD
(C, H,R, f) of G, and then applying the standard crown reduction rule that removes the
head H and crown C from G. We emphasize that the balanced connected partition of the
body is crucial to obtain the kernel sizes. These are the first kernels for vertex-weighted
graphs, while also improving the state-of-the-art results for the unweighted cases.

▶ Theorem 8. W -weight Separator admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.

▶ Theorem 9. W -weight Packing admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.
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For the optimization variant of the W -weight Packing problem, i.e. maximizing the
size of packing, the fact that the partition R is a solution also gives a 3-approximation; to
the best of our knowledge, the first approximation result for the problem.

▶ Theorem 10. A 3-approximation for the optimization problem of W -weight Packing
can be computed in O

(
k∗2|V | |E|

)
, where k∗ denotes the optimum value.

To better sketch the ideas for our results for the BCP problems, we denote by I-CVPk for
an interval I, a CVP with k parts where each part has a weight in I. We derive the following
result for Max-Min BCP, which is the first constant approximation for this problem.

▶ Theorem 11. A 3-approximation for the Max-Min BCP problem can be computed in
O

(
log (X∗) k2|V | |E|

)
, where X∗ denotes the optimal value.

Proof. Let (G, k) be an instance of Max-Min BCP. For any value X, using BCD, we
show how to either obtain an [X/3, ∞)-CVPk, or report that X > X∗. Once we have this
procedure in hand, a binary search can be used to obtain an [X∗/3, ∞)-CVPk.

We first obtain a λ-BCD (C, H,R, f) of G with λ = ⌈X/3⌉. If |H| + |R| ≥ k, we output
a [X/3, ∞)-CVPk given by the body and the assignment to head vertices (if this gives more
than k sets, arbitrarily merge some until there are only k). If |H| + |R| < k, then we report
that X > X∗. To see that this is correct, assume towards contradiction that X ≤ X∗, and
consider an optimal solution S∗ = {S∗

1 , . . . , S∗
k}. Then in the λ-BCD we computed, we know

that w(R) < X for every R ∈ R and w(C ′) < X for every C ′ ∈ CC(C). Observe that then
no C ′ ∈ CC(C) or a subset of it can be a set in S∗, since w(S∗

i ) ≥ X∗ ≥ X for every S∗
i ∈ S.

From the separator properties of H and that the fact that each S∗
i ∈ S is connected, we

obtain that any set in S∗ containing vertices from C also has to contain at least one vertex
from H. Thus, we can derive that the cardinality of S∗

H = {S∗
i ∈ S∗|S∗

i ∩ (C ∪ H) ̸= ∅}
is at most |H|. Also, |S∗ \ S∗

H | ≤ w(V (R))/X∗ ≤ w(V (R))/X ≤ |R|. Thus it follows that
|S∗| ≤ |H| + |R| < k, a contradiction. ◀

The last problem that we consider as application of the balanced crown decomposition is
the Min-Max BCP problem, where we also provide the first constant approximation result.

▶ Theorem 12. A 3-approximation for the Min-Max BCP problem can be computed in time
O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

, where X∗ denotes the optimum value
and wmax = maxv∈V w(v) the maximum weight of a vertex.

Proof. Achieving this requires several technical steps after having a balanced crown decom-
position in hand, including a second use of the balanced expansion. Let (G, k) be an instance
of Min-Max BCP and let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution. Let (C, H,R, f)

be a λ-BCD of G. Similar to the Max-Min case we try to make a comparison between
S∗ and the vertex decomposition C, H and V (R). The main issue is that, in contrast to
the Max-Min case, an optimal solution can (and sometimes has to) build more than |H|
sets from the vertices in H ∪ C. With the connectivity constraints, this means that some
components in G[C] are in fact a set in the optimal partition. Hence, when computing an
approximate solution from a balanced crown decomposition, we have to also choose some
components from G[C] to be sets, while others are combined with some vertex in H. In
order to make the decision of where to place the components in G[C], we compute a min-cost
flow using the algorithm from [1] on a network that models the options for components
in G[C] to either be sets or be combined with some vertex in H. A partial embedding of
{S∗

i ∈ S∗|S∗
i ∩ (C ∪ H) ̸= ∅} to this cost-flow network allows a comparison with the resulting
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partition of C ∪ H. The balanced weight properties of R then yield a comparison with
the whole set S∗. With the additional use of a min cost-flow network, our balanced crown
structure can be used to estimate the optimal objective value and again enables a binary
search for an approximate solution. ◀
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All-Pairs Shortest Paths for Real-Weighted
Undirected Graphs with Small Additive Error
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Abstract
Given a graph with n vertices and real edge weights in [0, 1], we investigate an approximate version
of the standard all-pairs shortest paths (APSP) problem where distances are estimated with additive
error at most ε. Yuster (2012) introduced this natural variant of approximate APSP, and presented
an algorithm for directed graphs running in Õ(n(3+ω)/2) ≤ O(n2.687) time for an arbitrarily small
constant ε > 0, where ω denotes the matrix multiplication exponent. We give a faster algorithm for
undirected graphs running in Õ(n(3+ω2)/(ω+1)) ≤ O(n2.559) time for any constant ε > 0. If ω = 2,
the time bound is Õ(n7/3), matching a previous result for undirected graphs by Dor, Halperin, and
Zwick (2000) which only guaranteed additive error at most 2.
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1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most well-known problems in
algorithm design, and plays a central role in the study of fine-grained complexity. Only small
(subpolynomial) speedups over the textbook cubic-time algorithms are known for arbitrary
real-weighted dense graphs [6, 8, 13, 21], and it has been conjectured that there are no truly
subcubic algorithms [20]. If faster running time is desired, one thus turns to approximation
algorithms.

To this end, Zwick [23] described an O(nω log wmax
wmin

)-time algorithm with approximation
factor 1 + ε for any constant ε > 0, for any (directed or undirected) graph with positive
real edge weights, where n is the number of vertices, wmin and wmax denote the minimum
and maximum edge weight, and ω < 2.373 is the matrix multiplication exponent [2, 11].
For every pair of vertices u and v, the algorithm computes a value D̃[u, v] such that
D[u, v] ≤ D̃[u, v] ≤ (1 + ε)D[u, v], where D[u, v] denotes the distance (i.e., the shortest-path
weight) from u to v.

While multiplicative approximation is natural, in this paper we are interested in an even
stronger form of approximation, where we want small additive error bounded by εwmax.
More precisely, for every u and v, we seek a value D̃[u, v] such that D[u, v] ≤ D̃[u, v] ≤
D[u, v] + εwmax. To see how this can yield a much better estimate, imagine the case when
the distance D[u, v] is large; a (1 + ε)-factor approximation may differ from the true value
by εD[u, v], which could be much bigger than ε times the maximum weight of a single edge.1

From now on, we assume wmax = 1, without loss of generality, by rescaling. In other
words, we assume that all edge weights lie in [0, 1] and we tolerate additive error at most ε.

1 In fact, we can achieve additive error at most O(εwmax[u, v]), where wmax[u, v] denotes the weight of
the longest edge in a shortest path from u to v, by guessing a value w ∈ [wmax[u, v]/2, wmax[u, v]] and
removing all edges of weight exceeding w from the graph; O(log wmax

wmin
) guesses of w suffice.
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Figure 1 Tradeoffs between additive error and running time for approximate APSP in undirected
real-weighted graphs. The blue part indicates the new result using the current matrix multiplication
bound ω < 2.373; the red part indicates the new result if ω = 2.

This form of additive approximation was first considered by Yuster [22], who gave an
algorithm running in Õ(n(3+ω)/2) ≤ O(n2.687) time2 for any constant additive error ε > 0.
If ω = 2, the time bound is Õ(n2.5). For arbitrary (dense) directed graphs, this would be
difficult to improve, since approximate APSP with additive error at most c for any constant
c is at least as hard as exact unweighted APSP, for which the current best algorithm by
Zwick [23] has exponent 2.5 when ω = 2 and is conjectured to be near optimal [9]. However,
a question remains as to whether an improved result for approximate APSP with additive
error ε is possible for undirected graphs (for which Õ(nω)-time algorithms are known for
exact unweighted APSP [15, 19]).

For unweighted undirected graphs, the seminal work by Aingworth, Chekuri, Indyk,
and Motwani [1] described combinatorial algorithms for approximate APSP achieving O(1)
additive error without using fast matrix multiplication. Subsequent improvements were
described by Dor, Halperin, and Zwick [12]: in particular, for dense graphs, the best results
were an Õ(n7/3)-time algorithm with additive error at most 2, and an Õ(n2+2/(3k−2))-time
algorithm with additive error at most k for any even constant k > 2. As noted in Dor et
al.’s paper, these algorithms for unweighted undirected graphs can actually be extended to
weighted undirected graphs with arbitrary real edge weights in [0, 1]. However, none of these
results achieve additive error below 2. In fact, approximate undirected APSP with additive
error strictly below 2 is at least as hard as Boolean matrix multiplication (by considering
tripartite graphs with unit edge weights), thus ruling out combinatorial algorithms for
arbitrarily small ε.

New result. Our main result is a new algorithm for undirected real-weighted graphs
with additive error ε. The algorithm uses fast matrix multiplication and achieves running
time Õ(n(3+ω2)/(ω+1)) ≤ O(n2.559). This improves Yuster’s O(n2.689)-time directed-graph
algorithm. Furthermore, if ω = 2, our time bound becomes Õ(n7/3), which improves Yuster’s
Õ(n2.5) bound and also matches Dor, Halperin, and Zwick’s time bound for additive error 2
while making the additive error an arbitrarily small constant ε. (See Figure 1.)

Other related work. Other formulations of approximate APSP have been studied in the
literature. For example, Bringmann, Künnemann, and Wegrzycki [5] revisited multiplicative
approximation, but in a setting where wmax

wmin
may be large (Zwick’s approximation algo-

rithm [23] works well only when this ratio is bounded). On the other hand, Roditty and

2 The Õ notation hides logO(1) n factors. Factors dependent on ε are also suppressed, for simplicity, but
they will all be polynomial in 1/ε.
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Shapira [18] gave results (recently improved by Chan, Vassilevska Williams, and Xu [9]) on
approximate APSP for unweighted directed APSP that achieved sublinear additive error
bounded by D[u, v]p for a given constant p < 1; the guarantee is stronger than 1 + ε mul-
tiplicative approximation as D[u, v] gets larger, but is not as strong as constant additive
error.

In the literature on graph spanners, there have also been many results for unweighted
undirected graphs with constant additive errors [1, 4, 10].

Our time bound appears unusual among algorithms in the literature that rely on fast
matrix multiplication. Coincidentally, Grandoni et al. [16] gave a matrix-multiplication-based
algorithm for an entirely different problem (all-pairs lowest common ancestors in DAGs)
with a time bound that is also Õ(n7/3) if ω = 2 (though their exponent got below 2.5 under
the current matrix multiplication bound). For our result, n7/3 is a natural barrier, since
even with additive error 2, the current best algorithm by Dor, Halperin, and Zwick [12] still
requires Õ(n7/3) time.

Techniques. To see why the additive approximation problem is challenging for real-weighted
graphs, consider the standard idea of rounding edge weights and rescaling to turn them into
integers. To guarantee additive error at most a constant ε, since a shortest path may require
Θ(n) edges in the worst case, one would need to round edge weights to multiples of ε/n, and
the rescaled integers could then be Θ(n); unfortunately, APSP (or min-plus product) for
integer input of that magnitude still requires near cubic time under the current state of the
art.

Yuster’s previous algorithm for directed graphs [22] is based on an approach by Zwick [23]
(originally for exact small-edge-weighted APSP), which divides into two cases: paths that
use a few edges (i.e., hops) vs. paths that use many edges. For shortest paths with less
than L edges, the aforementioned rounding approach reduces the problem to computing
min-plus products for small integers bounded by O(L), which reduces to standard matrix
multiplication on Õ(L)-bit numbers. On the other hand, for shortest paths with more than
L edges, there exists a small hitting set (also called a “bridging set”) with Õ(n/L) vertices,
and we can run a single-source/single-sink algorithm from/to each such vertex. Finally, the
parameter L is chosen (near

√
n if ω = 2) to balance cost.

To improve the running time, we combine this approach with Aingworth et al.’s ap-
proach [1] (which Dor et al.’s algorithm [12] builds upon). Aingworth et al.’s approach divides
into two cases differently: vertices with low degree vs. vertices with high degree. Low-degree
vertices are less expensive because the number of incident edges is small. On the other
hand, for high-degree vertices, there exists a small dominating set, and so these vertices can
be covered by a small number of “clusters”; sources in the same cluster are close together,
and so distances from one fixed source s give us a good approximation (with O(1) additive
error) to distances from other sources in the same cluster (since the graph is undirected).
To reduce the additive error from O(1) to O(ε), we need a number of further ideas. We
will use min-plus products at each layer of the BFS tree from s. To make the error sum to
O(ε), we will set the error tolerance at each layer to be proportional to the size of the layer
(roughly εni/n if the i-th layer has size ni, as we will describe in Section 4). Bounding the
total running time requires some care, since the min-plus products are done to matrices of
different dimensions at the different layers.

The general plan shares some similarity with an exact combinatorial APSP algorithm
by Chan [7] for sparse undirected unweighted graphs, which also modifies Aingworth et
al.’s algorithm and simulates BFS to compute distances from multiple sources in a cluster.
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However, what makes our algorithm interesting is the combination of Aingworth et al.’s
approach with fast matrix multiplication. (A recent algorithm by Chan, Vassilevska Williams,
and Xu [9] for a different problem – all-pairs lightest shortest paths for undirected small-
weighted graphs – also combines Aingworth et al.’s approach with matrix multiplication, but
does not involve approximation nor real weights. Our algorithm here is more elaborate.)

2 Preliminaries

Given two matrices A and B, we let A ⋆ B denote the min-plus product, i.e., (A ⋆ B)[u, v] =
minz(A[u, z] + B[z, v]).

Let M(n1, n2, n3) denote the time complexity for computing the standard product of an
n1 × n2 and an n2 × n3 matrix.

Let M⋆(n1, n2, n3 | ℓ) denote the time complexity for computing the min-plus product of
an n1 × n2 and an n2 × n3 matrix, where all the matrix entries are from {0, 1, . . . , ℓ, ∞}. As
is well known [3], M⋆(n1, n2, n3 | ℓ) ≤ Õ(ℓ · M(n1, n2, n3)).

3 Small Distances

We begin with a lemma on computing small distances, which will be useful later. Yuster [22]
has already observed how to solve the problem for paths with small number of edges, but our
lemma is more challenging, since a path with small weight could still have a large number of
hops.

▶ Lemma 1. Given a directed or undirected graph G = (V, E) with n vertices and real edge
weights in [0, 1], and given β > ε, we can approximate all distances that are at most β, with
additive error O(ε), in Õ((β/ε)nω) time.

Proof. We use a form of repeated squaring: loosely speaking, we recursively solve the
problem for β/2 and compute the min-plus product of the resulting matrix with itself. The
additive error ε needs to be roughly halved in the recursive call, but luckily the ratio β/ε

stays roughly the same.
Let δ > 0 be a parameter to be set later. Let βmin be the smallest edge weight. Assume

that β > ε. For every u, v ∈ V , we will compute D̃(β,ε)[u, v], an approximation to D[u, v]
with additive error at most ε, provided that D[u, v] ≤ β. (More precisely, if D̃(β,ε)[u, v] ̸= ∞,
it is a valid approximation; and if D[u, v] ≤ β, then it is guaranteed that D̃(β,ε)[u, v] ̸= ∞.)

To compute D̃(β,ε):
1. First recursively compute D′ = D̃(β/2,(1−δ)ε/2). Round the entries in D′ (upward) to

multiples of δε/3.
2. Let A′[u, v] be w(u, v) rounded (upward) to a multiple of δε/3. If A′[u, v] > β, reset

A′[u, v] = ∞.
3. Set D̃(β,ε) = D′ ⋆ A′ ⋆ D′. If D̃(β,ε)[u, v] > β + ε, reset D̃(β,ε)[u, v] = ∞.

Correctness follows since any path with weight at most β can be expressed as π1eπ2,
where each of π1 and π2 is a subpath with weight at most β/2, and e is a single edge (the
“median”). The additive error is bounded by 2(1 − δ)ε/2 + δε/3 + δε/3 + δε/3 = ε.

Since the finite entries of D′ and A′ after rescaling are integers bounded by O( β
δε ), these

min-plus products take O(M⋆(n, n, n | β
δε )) = Õ( β

δε nω) time. The total time satisfies the
recurrence

T (β, ε) = T (β/2, (1 − δ)ε/2) + Õ( β
δε nω),

which yields T (β, ε) = Õ( β
δε ( 1

1−δ )log(β/βmin)nω).
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We may assume that β ≤ n and βmin ≥ ε/n, since we can initially round edge weights
to multiples of ε/n. We set δ = 1/ log(β/βmin) = Ω(1/ log(n/ε)), so that ( 1

1−δ )log(β/βmin) is
bounded by a constant. ◀

4 Multiple Sources

Next, we solve the subproblem of approximating shortest paths from multiple sources in a
close-knit “cluster” of vertices S ⊆ V . (To optimize the final running time, we find it useful
to separate out a preprocessing stage that does not depend on S.)

▶ Lemma 2. Given an undirected graph G = (V, E) with n vertices and real edge weights
in [0, 1] ∪ {∞}, and a parameter B, we can preprocess in Õ((1/ε)Bnω) time, so that: given
a subset S ⊆ V of size O(n/t) where every pair of vertices in S have distance at most an
integer constant c, we can approximate the distances for all pairs in S × V with additive
error O(ε), in Õ((1/ε)(nω/Bω−2 + nω/tω−2)) time.

Proof. Let ε′ = ε/ log n. Fix a vertex s ∈ S. We first compute all distances from s in O(n2)
time by Dijkstra’s algorithm. Let Vi = {v ∈ V : D[s, v] ∈ [i, i + 1)}. For any interval I, let
VI =

⋃
i∈I Vi. Let ni = |V[i−2c−3,i+2c+3]|; note that

∑
i ni = O(n).

We describe an algorithm to compute a partial matrix D̃ of approximate distances. For
subsets S1, S2 ⊆ V , let D̃(S1, S2) denote the submatrix of D̃ containing only entries for
(u, v) ∈ S1 × S2.

Step 0. For each i, we compute D̃(Vi−1, Vi) by applying Lemma 1 to approximate distances
between all u ∈ Vi−1 and all v ∈ Vi that are bounded by 2c + 1, in the subgraph induced
by V[i−2c−3,i+2c+3] (which has size O(ni)), with additive error O( ε′ni

n ). (More precisely, for
u ∈ Vi−1 and v ∈ Vi, if D̃[u, v] ̸= ∞, then the computed value D̃[u, v] is a valid approximation;
and if u and v have distance at most 2c + 1 in the induced subgraph, then it is guaranteed
that D̃[u, v] ̸= ∞.) For all i with ni ≤ n/B, the total running time is

Õ

(∑
i

n
ε′ni

· nω
i

)
= Õ

(∑
i

n
ε′ · nω−1

i

)

≤ Õ

(∑
i

n
ε′ · (n/B)ω−2 · ni

)
= Õ( n

ε′ · (n/B)ω−2 · n) = Õ((1/ε′)nω/Bω−2).

In the case when ni > n/B, we apply Lemma 1 instead to the original graph with additive
error O(ε′/B), which is at least as good as O( ε′ni

n ), in Õ((1/ε′)Bnω) time – note that this
can be done just once during preprocessing.

Step 1. For i = 0, . . . , c, we compute D̃(S, Vi) by using Lemma 1 to approximate all
distances bounded by O(c), with additive error O(ε′).

For each i = c+1, . . . , t, we compute D̃(S, Vi) by taking the min-plus product D̃(S, Vi−1)⋆

D̃(Vi−1, Vi), with additive error O( ε′ni

n ). We do the following filtering step: for each entry
D̃[x, y] just computed, if D̃[x, y] ̸∈ D[s, y] − D[s, x] ± (2c + O(ε)), reset D̃[x, y] = ∞. Because
of the filtering step, for all u ∈ S, z ∈ Vi−1, and v ∈ Vi, we have D̃[u, z] ∈ i ± O(c) if it is
finite, and D̃[z, v] ∈ O(c) if it is finite. Thus, in computing D̃(S, Vi−1) ⋆ D̃(Vi−1, Vi), we can
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make the matrix entries lie in O(c) by shifting. We can then round entries to multiples of
n

ε′ni
. So, the total time to compute the products for all i = c + 1, . . . , t is

Õ

(
t∑

i=1
M⋆(n/t, ni, ni | n

ε′ni
)
)

≤ Õ

(
t∑

i=1

n
ε′ni

· M(n/t, ni, ni)
)

≤ Õ

(
t∑

i=1

n
ε′ni

· ( n/t
ni

nω
i + ( ni

n/t )2(n/t)ω)
)

= Õ

(
1
ε′

t∑
i=1

((n2/t)nω−2
i + (nω−1/tω−2)ni)

)
≤ Õ( 1

ε′ · ((n2/t)nω−2t3−ω + (nω−1/tω−2)n))
= Õ((1/ε′)nω/tω−2).

Step 2. Now, assume that D̃(S, Vi) has been computed for all i = 0, . . . , ℓ/2 for a given
ℓ ≥ 2t. We will compute D̃(S, Vi) for all i = ℓ/2 + 1, . . . , ℓ. First pick an i0 ≤ ℓ/2 with
|Vi0 | = O(n/ℓ). For each i = i0 + 1, . . . , ℓ, we compute D̃(Vi0 , Vi) by taking the min-plus
product D̃(Vi0 , Vi−1) ⋆ D̃(Vi−1, Vi), with additive error O( ε′ni

n ). Do the filtering step as
before. Because of the filtering step, for all u ∈ Vi0 , z ∈ Vi−1, and v ∈ Vi, we have
D̃[u, z] ∈ i − i0 ± O(c) if it is finite, and D̃[z, v] ∈ O(c) if it is finite. By a similar analysis,
the total time to compute these products for i = i0 + 1, . . . , ℓ is upper-bounded by

Õ

(
ℓ∑

i=1
M⋆(n/ℓ, ni, ni | n

ε′ni
)
)

≤ Õ((1/ε′)nω/ℓω−2) ≤ Õ((1/ε′)nω/tω−2).

Finally, we compute D̃(S, V(ℓ/2,ℓ]) by taking the min-plus product D̃(S, Vi0) and
D̃(Vi0 , V(ℓ/2,ℓ]) with additive error O(ε′). Do the filtering step as before. Because of the
filtering step, for all u ∈ S, z ∈ Vi0 , and v ∈ V(ℓ/2,ℓ], we have D̃[u, z] ∈ i0 ± O(c) if it is finite,
and D̃[z, v] ∈ D[s, v] − i0 ± O(c) if it is finite. We can again make the matrix entries lie in
O(c) by shifting. This product takes time

Õ(M⋆(n/t, n/ℓ, n | 1/ε′)) ≤ Õ((1/ε′)M(n/t, n/t, n))
≤ Õ((1/ε′)t(n/t)ω) = Õ((1/ε′)nω/tω−1).

We repeat the above for all ℓ ≥ 2t that are powers of 2.

Correctness. For every u ∈ S and v ∈ V , we claim that D̃[u, v] approximates D[u, v] with
additive error O(ε). To see this, let π be the shortest path from u to v. For any subpath
of π, say, from x to y, we have D[x, y] = D[u, y] − D[u, x] ∈ D[s, y] − D[s, x] ± 2c, since
D[s, u] ≤ c and the graph is undirected (this justifies the filtering step). If u ∈ S and
v ∈ Vi with i > c, then π must pass through a vertex z ∈ Vi−1. For every node z′ in the
subpath from z to v, D[z, z′] ≤ D[u, v] − D[u, z] ≤ D[s, v] − D[s, z] + 2c ≤ 2c + 2, and
D[s, z′] ∈ D[s, z] ± D[z, z′] ∈ i ± (2c + 3), so the subpath lies in the subgraph induced by
V[i−2c−3,i+2c+3]. It follows that the total additive error in Step 1 is O(

∑
i

ε′ni

n ) = O(ε′). The
analysis of Step 2 is similar: if u ∈ S and v ∈ Vi with i > ℓ/2, then π must pass through
a vertex u′ ∈ Vi0 , and the subpath from u′ to v must pass through a vertex z ∈ Vi−1. The
overall additive error is bounded by O(ε′ log n) = O(ε). ◀
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5 Overall Algorithm

Our overall algorithm employs a careful combination of Aingworth et al.’s technique [1]
involving low- vs. high-degree vertices, and Zwick’s technique [23] involving short vs. long
paths, and a judicious choice of several parameters to balance cost.

Let B, L, and t be parameters to be set later. Let Vhigh be the set of all vertices of degree
more than n/t, and Vlow be the set of all vertices of degree at most n/t.

Phase 1. We will first compute an approximation D̃[u, v] to D[u, v] for all u ∈ Vhigh and
v ∈ V , as follows:

Let X ⊆ V be a dominating set for Vhigh, such that every vertex in Vhigh is in the
(closed) neighborhood of some vertex in X. As noted by Aingworth et al. [1], there exists
such a dominating set of size Õ(t), and it can be found easily by random sampling, or
deterministically by a greedy algorithm.

Consequently, we can cover Vhigh by Õ(t) groups of vertices, such that vertices of each
group have distance at most 2 from each other, by taking the neighborhoods of the vertices
of X. We may assume that these groups are disjoint (for example, by removing from the i-th
group those vertices that appear in the first i − 1 groups). Furthermore, we may assume that
every group has size O(n/t) (by subdividing the groups, which only increases the number
of groups by O(t)). For each group S, we apply Lemma 2 (with c = 2). The total time
of these Õ(t) invocations of the lemma is Õ(t · (1/ε)nω/Bω−2), assuming that B ≤ t, after
Õ((1/ε)Bnω)-time preprocessing.

Phase 2. Let R ⊆ V be a subset of vertices that hits all shortest paths with at least L

edges. As shown by Zwick [23], there exists such a hitting set of size Õ(n/L), and it can be
found by random sampling, or deterministically. We will next compute an approximation
D̂[u, v] to D[u, v] for all u ∈ R and v ∈ V as follows:

Fix u ∈ R. Define a graph Gu containing all edges xy with x ∈ Vlow or y ∈ Vlow; for
each z ∈ Vhigh, we add an extra edge uz with weight D̃[u, z], which has been computed in
Phase 1. Then the distance from u to v in Gu approximates the distance in G (because if
⟨u1, . . . , uk⟩ is a shortest path in G with u1 = u, and i is the largest index with ui ∈ Vhigh,
then ⟨u1, ui, . . . , uk⟩ is a path in Gu). We run Dijkstra’s algorithm on Gu from the source
u. Since Gu has O(n2/t) edges, this takes Õ(n2/t) time per u. The total over all u ∈ R is
Õ((n/L) · (n2/t)) = Õ(n3/(tL)).

Phase 3. We now approximate D[u, v] for all u, v ∈ V as follows.
For (u, v) with D[u, v] ≤ L, we use Lemma 1, which takes Õ((1/ε)Lnω) time.
For (u, v) with D[u, v] > L, recall that we have computed D̂(V, R) from Phase 2. For

u ∈ V and z ∈ R, let D′[u, z] = D̂[u, z] if D̂[u, z] ≤ L + O(ε), and D′[u, z] = ∞ otherwise.
For z ∈ R and v ∈ V , let D′′

a [z, v] = (D̂[z, v] + a) mod 10L. Compute the min-plus product
D′(V, R) ⋆ D′′

a(R, V ) with additive error O(ε) for a = 0 and for a = 5L. Since the finite
entries after rescaling are integers bounded by O(L/ε), this takes Õ(M⋆(n, n/L, n | L/ε)) ≤
Õ((1/ε)Lnω) time. For each (u, v), we remember which z gives the minimum for the two
products, and take the one with the smaller D̂[u, z] + D̂[z, v] among the two.

To justify correctness, consider a pair u, v with D[u, v] ≥ L. Consider a shortest path π

from u to v. There exists a vertex z∗ ∈ R among the first L vertices in π. Thus, D[u, z∗] ≤ L.
Furthermore, among all z ∈ R with D[u, z] ≤ L + O(ε), we have D[z, v] lying in an interval
I of length 2L + O(ε), since the graph is undirected. For either a = 0 or a = 5L, the shifted
interval I + a would be completely contained in [L, 9L] modulo 10L, and so the minimum of
D̂[u, z] + D̂[z, v] would be correctly computed, with additive error O(ε) + O(ε) = O(ε).
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Total time. The overall running time (ignoring poly(1/ε) factors) is

Õ(Bnω + tnω/Bω−2 + n3/(tL) + Lnω).

Choosing t = Bω−1 and L = B (noting that indeed B ≤ t) gives Õ(Bnω + n3/Bω). Finally,
choosing B = n(3−ω)/(ω+1) gives Õ(nω+(3−ω)/(ω+1)) = O(n(3+ω2)/(ω+1)) = O(n2.559).

Standard techniques for generating witnesses for matrix products can be applied to
recover the approximate shortest paths [14, 23].

▶ Theorem 3. Given an undirected graph with n vertices and real edge weights in [0, 1], we can
solve the approximate APSP problem with additive error O(ε) in Õ(n(3+ω2)/(ω+1)) = O(n2.559)
time, for any constant ε > 0.

6 Final Remarks

It remains open whether an Õ(n2)-time algorithm for undirected real-weighted graphs is
possible if ω = 2, even with a large constant additive error.

Under the current bounds on matrix multiplication, could our O(n2.559) result be further
improved? At the moment, we don’t know how to use rectangular matrix multiplication
to speed up our algorithm. And we don’t know either how to use rectangular matrix
multiplication to speed up Yuster’s O(n2.687)-time algorithm for directed graphs [22] (ideally,
to match up with Zwick’s unweighted exact APSP algorithm [23], which has running time
O(n2.529) via the latest bounds on rectangular matrix multiplication [17]).
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Abstract
In the colored orthogonal range reporting problem, we want a data structure for storing n colored
points so that given a query axis-aligned rectangle, we can report the distinct colors among the
points inside the rectangle. This natural problem has been studied in a series of papers, but most
prior work focused on the static case. In this paper, we give a dynamic data structure in the 2D case
which can answer queries in O(log1+o(1) n + k log1/2+o(1) n) time, where k denotes the output size
(the number of distinct colors in the query range), and which can support insertions and deletions
in O(log2+o(1) n) time (amortized) in the standard RAM model. This is the first fully dynamic
structure with polylogarithmic update time whose query cost per color reported is sublogarithmic
(near

√
log n). We also give an alternative data structure with O(log1+o(1) n + k log3/4+o(1) n) query

time and O(log3/2+o(1) n) update time (amortized). We also mention extensions to higher constant
dimensions.
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1 Introduction

Range searching is one of the most fundamental data structure problems studied in computa-
tional geometry. Motivated by applications in databases and information retrieval, many
researchers [5, 6, 7, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34]
have investigated a natural colored variant of range searching (also called “categorical”, or
“generalized”, range searching):

Given a set of n points where each point is assigned a color (or “category”), we want
to quickly report the distinct colors of the points inside a query range.

The query time should depend on the output size k, i.e., the number of distinct colors in the
range (which could be much smaller than the number of points in the range). In this paper,
we focus on the basic case of 2D orthogonal query ranges, i.e., axis-aligned rectangles.

A long series of work have studied this colored orthogonal range reporting problem, which
turns out to be more challenging than the traditional uncolored problem; see Table 1 for
a quick summary. Throughout the paper, we assume the standard word RAM model of
computation.

All these prior papers addressed primarily static data structures, and surprisingly, not
much progress has been made on the equally fundamental dynamic problem, where insertions
and deletions of points are allowed.
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28:2 Dynamic Colored Orthogonal Range Searching

Table 1 Static data structures for colored 2D orthogonal range reporting. (Coordinates are
assumed to be integers bounded by U .)

space query time
Janardan & Lopez (’93) [21] O(n log n) O(log2 n + k)

O(n log2 n) O(log n + k)
Gupta, Janardan, & Smid (’95) [17] O(n log2 n) O(log n + k)
Agarwal et al. (ESA’02) [1] O(n log2 n) O(log log U + k)
Mortensen (’03) [27] O(n log n log log n) O(log2 log U + k)

O(n log n) O(log n log2 log n + k)
Shi & JaJa (’05) [34] O(n log n) O(log n + k)
Larsen & van Walderveen (SODA’13) [25] O(n log n) O(log log U + k)
Nekrich (PODS’12) [30] O(n log n) O(log log U + k)
Chan and Nekrich (SODA’20) [7] O(n log3/4+ε n) O(log log U + k)

Known dynamic colored results. The 1D dynamic colored range reporting problem – in
which query ranges are intervals – can be easily reduced to 2D uncolored 3-sided range
reporting (e.g., see the survey [16, Section 1.3.1]), and so by “textbook” range trees [11, 33],
the problem can be solved with O(log n + k) query time and O(log2 n) update time, or
by incorporating dynamic fractional cascading [26], O(log n log log n + k) query time and
O(log n log log n) update time. By using the current best results of Chan and Tsakalidis [9]
on dynamic 2D uncolored range searching, the query time improves to O( log n

log log n + k) and
the update time improves to O(log1/2+ε n) (amortized) for an arbitrarily small constant
ε > 0. (For dynamic 2D uncolored range searching, a lower bound of Ω( log n

log log n + k) query
time is known [2] for data structures with polylogarithmic update time; and

√
log n update

time has also been recognized as a barrier that would be difficult to break with existing
techniques [9].)

Straightforwardly, the dynamic 2D colored range reporting can be reduced dynamic 1D
colored range reporting, by using a range tree on the x-coordinates, with a logarithmic-factor
increase in both the query and update time. This implies a 2D colored data structure with
O( log2 n

log log n + k log n) query time and O(log3/2+ε n) update time. Notice the extra logarithmic
factor in the O(k log n) term of the query cost: as the query range is decomposed into
O(log n) sub-ranges, the same color may discovered O(log n) times with this approach.

Alternatively, it is known (e.g., see [16, Section 3.4]) that a colored range reporting query
can be reduced to O(k log n) number of uncolored range emptiness queries, by using a range
tree on the colors. This simple reduction works in the dynamic setting, with update time
increased by a logarithmic factor. By Chan and Tsakalidis’s result [9] on dynamic uncolored
range emptiness, this implies a different dynamic 2D colored data structure with O(k log2 n

log log n )
query time and O(log3/2+ε n) update time, which is no better than the above.

Known static methods managed to avoid extra logarithmic factors in the k term (as can
be seen in Table 1), but these methods do not adapt well to the dynamic setting. Some
results were known in the insertion-only case [17], but it is open whether there exists a fully
dynamic data structure with O(polylog n + k) query time and O(polylog n) update time for
2D colored orthogonal range reporting.1

1 However, it is not difficult to obtain O( log n
log log n + k) query time with O(nε) update time, by modifying

the reduction from 2D colored to 1D colored to use a larger fan-out nε′
.
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New dynamic colored result. We make progress towards this open problem by presenting
a new data structure for dynamic 2D colored orthogonal range reporting with O(log n +
k log1/2+o(1) n) query time and O(polylog n) update time. The query cost per reported color
is thus sublogarithmic (log1/2+o(1) n).

Interestingly, this improved query time bound is obtained using an approach similar to
that in Chan and Pătraşcu’s O(n

√
log n)-time inversion-counting algorithm [8], or in other

known data structures with “fractional-power-of-log” update times [8, 9, 10, 28, 36]. As
reinterpreted in Chan and Tsakalidis’ framework [9], the approach roughly involves two
parts: (i) the design of micro-structures for small input (of size near 2

√
log n), which uses bit

packing tricks; and (ii) the design of macro-structures, which uses more traditional range
trees but with larger fan-out (also near 2

√
log n) to reduce the tree depth. What is novel in

our application is that the
√

log n factor appears in the k term of the query cost – we will
apply bit packing to the query’s output list of colors in the micro-structures. In addition, we
follow an idea from Chan and Nekrich’s static data structure for colored range reporting [7]:
first solve a “capped” version of the problem, where the number of reported colors k is
promised to be upper-bounded by some parameter K0, and then extend the solution to
general k by building a range tree on the colors. The overall method is conceptually not
complicated, as explained in Section 2.

Improving the update time. In its simplest version, our data structure has O(log3+o(1) n)
update time. In Section 3, by combining with the more sophisticated techniques in Chan
and Tsakalidis’ work on dynamic uncolored orthogonal range searching [9], we further
reduce the update time to O(log2+o(1) n), while keeping roughly the same query time
O(log1+o(1) n + k log1/2+o(1) n). These bounds are amortized.

Alternative result. In Section 4, by using a different micro-structure, we also describe
an alternative data structure which further lowers the update time to O(log3/2+o(1) n),
although the query time is increased to O(log1+o(1) n + k log3/4+o(1) n). Still, compared
to the aforementioned prior result with O( log2 n

log log n + k log n) query time and O(log3/2+ε n)
update time, we get a strictly better query time bound while keeping the same update time.

Higher dimensions. Our approach can also be extended to higher dimensions. In Section 5,
we show how to answer colored orthogonal range reporting queries in a constant dimension
d in O(logd−1 n + k logd−2+1/d+o(1) n) time, while supporting updates in O(polylog n) time.
The logd−2+1/d n factor is intriguingly similar to Chan and Pătraşcu’s bound on d-dimensional
(uncolored) orthogonal range counting [8].

Computational model. We work with the standard w-bit word RAM model of computation,
with w = Ω(log n). On occasion, we assume that certain nonstandard word operations take
unit time. This assumption may be removed by simulating such operations via table lookup,
after an initial preprocessing of the table in 2O(w) time, the cost of which is negligible since
we will eventually set w = δ log n for a sufficiently small constant δ > 0.

2 First Method

In this section, we present our first method for 2D colored orthogonal range reporting,
achieving roughly O(log n + k

√
log n) query time with polylogarithmic update time.
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We begin by solving the case of 3-sided query ranges, i.e., rectangles that are unbounded
on one side, w.l.o.g., from below. The colored 3-sided problem is already challenging (and, in
fact, so is 2-sided). The general idea is to build the data structure in two stages. First, in
Section 2.1 we design a micro-structure to solve the problem for small input size, in which
case the colors can be encoded in much fewer bits than log n and we can apply bit packing
tricks. In Sections 2.2–2.3 we then use this micro-structure to build a macro-structure, solving
the 3-sided problem for large input size. Finally, in Section 2.4, we note how the original
4-sided problem can be reduced to the 3-sided problem, without increasing the query time
(though the update time is increased by an extra logarithmic factor).

2.1 3-Sided Micro-Structure
Our micro-structure is obtained by modifying the binary range tree and incorporating bit
packing techniques.

▶ Lemma 1. Given a set of at most s points in 2D, there is a data structure for colored
3-sided range reporting with

query time Q3(s, k) = O(log s + (k log k log2+o(1) s)/w + k), and
amortized update time U3(s) = O(log1+o(1) s).

Proof. Since there are at most s points and thus at most s colors, we can map each color
to an integer in {1, . . . , s}. This enables us to pack w/ log s colors into a single word. The
mapping can be stored in a “color translation” table of s entries, so that we can translate
each mapped color back to its original color in constant time. In an insertion of a point with
a new color, we can simply map its color to the next unused integer.

The micro-structure takes the form of a binary range tree. At each node, we divide the
plane into two vertical slabs, each with roughly half the number of points, such that each
child node stores a recursive data structure for one of the slabs. For each slab σ, we store a
list Lσ of all points in σ, sorted by the y-coordinates. In addition, we store a sublist L′

σ that
contains the lowest point of each color in Lσ, also sorted by y. Using a colored predecessor
search structure [28, Theorem 14], which has O(log2 log s) update time, for any given point,
we can find the predecessor in Lσ and L′

σ in O(log2 log s) time, given its predecessor in Lτ

of the parent slab τ ; we can also find the predecessor of a specific color in O(log2 log s) time.
When a point p is inserted to Lσ, if p has no predecessor of the same color, we insert

it to L′
σ and delete its colored successor (if one exists) from L′

σ. When a point p is deleted
from Lσ, if p is in L′

σ, we delete it and insert its colored successor to L′
σ.

By bit packing, we store the list of colors in Lσ in a sequence of words, each containing
between w/(2 log s) and w/ log s colors. During an insertion, when the number of elements
in a word exceed w/ log s, we split the word into two. During a deletion, when the number
of elements in a word drops below w/(2 log s), we merge the word with its successor in the
sequence, and if the number of elements in the merged word exceeds w/ log s, we split it.
This takes constant time (using standard word operations such as shifts).

We can ensure that the range tree has O(log s) height, for example, by known weight-
balancing techniques [4]. The overall update time is thus O(log s log2 log s).

For a given 3-sided query range q, if q intersects only one slab, then we recurse in that
slab; otherwise, we make a recursive 2-sided query in each slab. Given a 2-sided query range
q open to the left, if the vertical side of q intersects the left slab, then we recurse in the
left slab; otherwise, we report all distinct colors in the left slab σ by scanning its sublist L′

σ

from the bottom and extracting a prefix, and then recurse in the right slab. We can handle
2-sided query ranges open to the right symmetrically.
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Each color is reported only once at each level, and therefore is reported O(log s) times
over the recursion. Thus, the combined list of reported colors requires O(k log s · log s) bits
and can be represented in O(1 + (k log2 s)/w) words. We then remove duplicate colors by
sorting and performing a linear scan. A bit-packed version of mergesort on m elements takes
time O(log m) times the number of words (using possibly nonstandard word operations).
Thus, the cost is O(log s + (1 + (k log2 s)/w) · log(k log s)) = O(log s + (k log k log2+o(1) s)/w).
Afterwards, we spend O(k) time to translate the output colors. ◀

2.2 3-Sided Capped Macro-Structure
Next, we present our macro-structure for large input. We first solve the K0-capped problem.
Here, the number of colors in the query range is promised to be smaller than a given fixed
value K0, i.e., k ≤ K0.

▶ Lemma 2. Fix a value K0 ≤ 2
√

w. Given n points in 2D, there is a data structure for
colored 3-sided K0-capped range reporting with

query time O(log n + (k log K0 log1+o(1) n)/
√

w + k) ≤ O(log n + k log K0 log1/2+o(1) n);
amortized update time O(log1+o(1) n).

Proof. We will still use a variant of the range tree, but with a much larger fan-out s to be
set later. At each node, the plane is divided into s vertical slabs, each with about 1/s of the
points. For each slab σ, among the lowest point of each color, we only take the K0 lowest
ones. We replace the x-coordinates of these points with that of the left side of σ. We then
store all sK0 such points across all slabs in the micro-structure from Lemma 1, with U3(sK0)
update time and Q3(sK0, k) query time. We maintain colored predecessor search structures
at each node as before. We can ensure that the range tree has O(logs n) height, by known
weight-balancing techniques [4].

For a given 3-sided query range q, we identify the child slabs σ1 and σ2 containing the
two vertices of q, answer a query for the micro-structure for q − σ1 − σ2, and then recurse in
σ1 and σ2. We make O(logs n) queries on the micro-structures along two paths of the tree,
so the query time is

Q′
3(n, k) = O(Q3(sK0, k) logs n) = O

(
log(sK0) + k

log k log2+o(1)(sK0)
w

+ k

)
· logs n.

For each update, we make O(logs n) updates on the micro-structures along a path of the
tree, so the update time is

U ′
3(n) = O(U3(sK0) logs n + logs n log2 log n) = O((log1+o(1)(sK0) + log2 log n) logs n).

Setting s = 2
√

w and recalling that K0 ≤ 2
√

w, we obtain Q′
3(n, k) = O(log n +

(k log k log1+o(1) n)/
√

w + k) and U ′
3(n) = O(log1+o(1) n). ◀

Remark. If k ≥ K0, the algorithm may or may not succeed in reporting all k distinct
colors. It is actually possible to pre-check whether the algorithm will succeed, in O(log n)
time (without paying the O((k log K0 log1+o(1) n)/

√
w + k) cost): In the data structure from

Lemma 2, recall that in each slab we store the lowest K0 points of distinct colors in a
micro-structure. We mark the K0-th lowest point with a special color. In the micro-structure
from Lemma 1, in each Lσ, we maintain the lowest special point. If the query algorithm
wants to report a prefix of L′

σ, we check that the lowest special point is not in the query
range (otherwise the algorithm would fail). We also check that the K0-th lowest point of L′

σ

is not in the query range. The cost of pre-checking is O(logs n · log(sK0)) = O(log n).
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2.3 From Capped to Uncapped
We now remove the assumption k < K0, to obtain a complete solution to the 3-sided problem:

▶ Theorem 3. Given n points in 2D, there is a data structure for colored 3-sided range
reporting with

query time O(log n + (k log1+o(1) n)/
√

w + k) ≤ O(log n + k log1/2+o(1) n), and
amortized update time O(log2+o(1) n).

Proof. We use a range tree on the colors, as in Chan and Nekrich’s static colored method [7,
proof of Theorem 2.3], with fan-out f . At each node we store its point set in the capped
data structure from Lemma 2. The color class is partitioned into f color subclasses, each
with roughly equal number of colors. Each child of a node corresponds to one of these
subclasses. We can ensure that the range tree has O(logf n) height, by known weight-
balancing techniques [4].

To answer a query, at each node we first pre-check whether the query will succeed, as in
the Remark after Lemma 2.2 If so, we query the capped structure from Lemma 2 at the
node and finish the query. Otherwise, we recurse in all f children.

Whenever we recurse in the children of a node, the node must contain ≥ K0 colors in
the query range. Thus, the number of recursive calls per level is O(fk/K0), so the total
number of recursive calls is O((fk/K0) logf n), excluding the root. Thus, the total cost of
pre-checking is O((fk/K0) logf n · log n). The total query time spent on capped structures is
O(((fk/K0) logf n + 1) · log n + (k log K0 log1+o(1) n)/

√
w + k).

For each update, we make O(logf n) updates to the capped structures along a path of
the tree, so the total update time is O(logf n · log1+o(1) n).

Setting f = 2 and K0 = log2 n yields query time O(log n + (k log1+o(1) n)/
√

w + k) and
update time O(log2+o(1) n). ◀

2.4 From 3-Sided to 4-Sided
By building a standard binary range tree where each node stores the 3-sided structure from
Theorem 3, we can reduce a 4-sided query to two 3-sided queries. The query time remains
the same, and the update time increases by a logarithmic factor. This immediately yields
the following result:

▶ Corollary 4. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

query time O(log n + k log1/2+o(1) n), and
amortized update time O(log3+o(1) n).

3 Improving the 4-Sided Update Time

In this section, we apply more advanced techniques to improve the update time for 4-sided
queries to O(log2+o(1) n), which matches our 3-sided update time, avoiding the logarithmic-
factor penalty in going from 3-sided to 4-sided.

Chan and Tsakalidis [9] proposed a framework for transforming micro-structures into
macro-structures for uncolored range searching. We observe that their transformation works
for the capped colored problem as well, with minor modifications. Our improved colored

2 Chan and Nekrich [7] originally suggested some nontrivial approximate range counting approach to do
the pre-checking, which we have bypassed.
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result then follows by combining this transformation with our 3-sided micro-structure from
Section 2.1, and with the known transformation of capped to uncapped structures used in
Section 2.3.

In more details, Chan and Tsakalidis started with a technique of Mortensen [28, The-
orem 1], which they dubbed the van Emde Boas transformation, for converting a micro-
structure to a data structure for solving the narrow grid case, where input points have a
small number of distinct x-coordinates. The conversion increases time bounds by only log log
factors, and is achieved by a recursion similar to van Emde Boas trees [35]. We observe that
a similar transformation holds for the capped colored range reporting problem, if the cap K0
is not too big. The statement below is adapted from Chan and Tsakalidis [9, Lemma 4]. In
this section, 3-sided query ranges are unbounded from the left or the right (instead of from
below).

▶ Lemma 5. Fix K0. Let X be a set of O(s) values. Given a dynamic data structure for
colored j-sided range reporting (j ∈ {3, 4}) on s′ points in X × R with query time Qj(s, s′, k)
and update time Uj(s, s′) (amortized), there is a data structure for colored j-sided K0-capped
range reporting on n points in X × R with (amortized)

query time Qj(s, n, k) = O
(
Qj(s, (sK0)O(1), k) log log n

)
, and

update time Uj(s, n) = O
(
Uj(s, (sK0)O(1)) log2 log n

)
.

If the given data structure supports updates to X in UX(s) time and this update procedure
depends solely on X (and not the point set), the new data structure can support updates to
X in UX(s) time.

The proof is a straightforward modification of the previous proof [28, 9]. (Basically,
whenever in the uncolored solution we refer to the topmost/bottommost point, we now
consider the K0 topmost/bottommost points of distinct colors – this explains why the
number of points in the micro-structures goes up from sO(1) to (sK0)O(1).)

Next, Chan and Tsakalidis [9, Lemma 7] described a way to convert a narrow-grid
structure into a data structure for the general case. This transformation, which they dubbed
the (first) range tree transformation, uses standard range trees with fan-out s. We observe
that the same transformation works for the capped colored problem:

▶ Lemma 6. Fix K0. Given a family of data structures D(i)
j (i ∈ {1, . . . , logs n}) for dynamic

colored j-sided K0-capped range reporting (j ∈ {3, 4}) on n points in X × R (|X| = O(s))
with query time Q

(i)
j (s, n, k) update time U

(i)
j (s, n) (amortized), where updates to X take

UX(s) time, there is a data structure for colored 4-sided K0-capped range reporting on n

points in the plane with the following query and update time (amortized):

Q′
4(n, k) = O

(
max

i
Q

(i)
4 (s, n, k) + max

i
Q

(i)
3 (s, n, k) logs n + logs n log2 log n

)
U ′

4(n) = O

logs n∑
i=1

(U (i)
4 (s, n) + U

(i)
3 (s, n)) +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 log n

 .

The proof of the above requires essentially no change in the previous proof [9].
We are now ready to put together our new improved data structure. We set K0 = s. Our

colored 3-sided method in Theorem 3 gives

Q3(s, sO(1), k) = O(log s + (k log1+o(1) s)/
√

w + k)

U3(s, sO(1)) = O(log2+o(1) s).
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The known colored 4-sided method mentioned in the introduction gives

Q4(s, sO(1), k) = O( log2 s
log log s + k log s)

U4(s, sO(1)) = O(log3/2+ε s).

(Actually, a weaker bound of U4(s, sO(1)) = O(log2+o(1) s) suffices.) In both of these methods,
UX(s) = 0. Applying Lemmas 5–6 (with Q

(i)
4 = Q4 and Q

(i)
3 = Q3 for all i) yields

Q′
4(n, k) = O

(
log2 s

log log s + k log s + (log s + (k log1+o(1) s)/
√

w + k) logs n
)

· log2 log n

U ′
4(n) = O(log2+o(1) s logs n) · log2 log n.

Setting s = 2
√

log n gives

Q′
4(n, k) = O(log1+o(1) n + k log1/2+o(1) n)

U ′
4(n) = O(log3/2+o(1) n).

All this is for the K0-capped problem with K0 = s = 2
√

log n. Finally, we solve the
general uncapped problem by the color range tree technique in Section 2.3. As in the Remark
after Lemma 2, it is possible to pre-check whether the query will succeed, in O(log1+o(1) n)
time (without paying the O(k log1/2+o(1) n) cost); the modification is straightforward (see
the Appendix regarding the van Emde Boas transformation). As in the proof of Theorem 3,
by using a range tree on colors with fan-out f , the overall query time is O(((fk/K0) logf n +
1) · log1+o(1) n + k log1/2+o(1) n), and the overall update time is O(logf n log3/2+o(1) n).

By setting f =
√

K0 for example, the query time remains O(log1+o(1) n + k log1/2+o(1) n)
and the update time becomes O(log2+o(1) n).

▶ Theorem 7. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

query time O(log1+o(1) n + k log1/2+o(1) n), and
amortized update time O(log2+o(1) n).

4 Alternative Method

We now describe an alternative method that has smaller update time O(log3/2+o(1) n), though
the query time is increased to O(log1+o(1) n + k log3/4+o(1) n).

The solution uses a different micro-structure, given in the lemma below, which works
directly for the general 4-sided case. Its main advantage is that it has constant amortized
update time when the input size s is sufficiently small (around 2log1/4 n). It is a colored
variant of a micro-structure for uncolored 4-sided queries by Chan and Tsakalidis [9, Lemma
5(ii) and Lemma 6].

▶ Lemma 8. Fix a parameter w̄ ≤ w with w̄ = Ω(log s). Given a set of at most s points
in a universe X × Y with |X|, |Y | = sO(1), and there is a data structure for 4-sided colored
range reporting with

amortized query time O(log2 s + (k log3+o(1) s)/w̄ + k), and
amortized update time O(1 + (log4 s)/w̄).

In addition, it supports:
updates to Y in O(log2 log n) time, and
updates to X in 2O(w̄) time, where the update procedure depends solely on X (and not
the point set).



T. M. Chan and Z. Huang 28:9

Proof. Recall that colors can be mapped to (log s)-bit integers, as noted in the first paragraph
of the proof of Lemma 1.

We follow the approach by Chan and Tsakalidis [9, Lemma 5(ii)] and mimick an external-
memory data structure with block size B := δw̄/ log s for a sufficiently small constant δ. A
block of B points can be encoded in O(δw̄) bits and can thus be packed in a single word.

The well-known buffer tree of Arge [3] is a 1D external-memory data structure with
subconstant (O( 1

B logB s)) amortized update cost. For their 4-sided uncolored micro-structure,
Chan and Tsakalidis suggested an analogous buffered version of the binary range tree in 2D,
which has amortized update cost O( 1

B log2 s) = O((log3 s)/w̄). Our solution in the colored
setting is similar.

Roughly speaking, in the primary 2D range tree, each node corresponds to a canonical
horizontal slab and stores a secondary tree, which is a 1D range tree of the points in the
corresponding canonical horizontal slab. In a secondary tree, each node corresponds a
canonical rectangle. In the buffered version, each node of the primary tree and secondary
trees holds a buffer of up to B update requests that are yet to be processed.

We will not re-explain all the details of the buffered 2D range tree, but just describe
the main changes needed for the colored problem: For each node ν of a secondary tree, we
additionally maintain a sorted list Lν of the distinct colors appearing in the corresponding
canonical rectangle, along with the multiplicity of these colors. We also hold a buffer Zν

of (a possibly large number of) of update requests yet to be processed at ν. Updates in
ν are handled lazily, by just appending the requests to the buffer Zν . We postpone the
work of actually updating Lν to querying. When a query wants to report the colors in a
node ν, we sort Zν by color and perform a linear scan to update Lν . Let ℓν and zν be the
number of elements in Lν and Zν . The lists Lν and Zν can be packed in O((ℓν log s)/w) and
O(zν log s)/w̄) words respectively. By a bit-packed version of mergesort, sorting Zν takes
time O((zν log s)/w̄) · log s. Since an update leads to update requests in the buffers Zν of
O(log2 s) nodes ν, we can assign an amortized cost of O((log4 s)/w̄) per update to cover this
sorting cost. Scanning Lν takes time O((ℓν log s)/w). Now, ℓν is bounded by the number of
colors reported in ν during the previous query that involves ν. Since a query visits O(log2 s)
nodes, we can assign an amortized cost of O((k log3 s)/w) per query with output size k to
cover this scanning cost.

In a query, we report the colors in the sorted list Lν for O(log2 s) nodes ν. The combined
list of reported colors has O(k log2 s) colors and requires O((k log3 s)/w̄) words. We remove
duplicate colors by merging these O(log2 s) sorted lists. This multi-way merging can be done
in O(log log s) rounds, each taking time linear in the number of words. Thus, the cost is
O((k log3+o(1) s)/w̄). Afterwards, we spend O(k) time to translate the output colors.

Updates to X and Y can be handled using the same ideas by Chan and Tsakalidis [9,
Lemma 6]. ◀

We can now put together the new data structure by combining the new micro-structure
with Chan and Tsakalidis’ framework [9], via the van Emde Boas transformation and range
tree transformation, as we have described in Section 3.

As before, we set K0 = s. For each j ∈ {3, 4} and each i ∈ {1, . . . , logs n}, we apply
Lemma 8 with the choice w̄ = δi log s to get

Q
(i)
j (s, sO(1), k) = O(log2 s + (k log2+o(1) s)/i + k)

U
(i)
j (s, sO(1)) = O(1 + (log3+o(1) s)/i)

U
(i)
X (s) = sO(δi).

ESA 2021
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Applying Lemmas 5–6 and noting that
∑logs n

i=1 1/i = O(log logs n) yields

Q′
4(n, k) = O

(
log2 s logs n + k log2+o(1) s + k logs n

)
· log3 log n

U ′
4(n) = O(logs n + log3+o(1) s) · log3 log n.

Setting s = 2log1/4 n gives

Q′
4(n, k) = O(log5/4+o(1) n + k log3/4+o(1) n)

U ′
4(n) = O(log3/4+o(1) n).

All this is for the K0-capped problem with K0 = s = 2log1/4 n. Finally, we solve the
general uncapped problem by using the color range tree technique in Section 2.3. As before,
it is possible to pre-check whether the query will succeed, in O(log5/4+o(1) n) time (without
paying the O(k log3/4+o(1) n) cost). The overall query time is then O(((fk/K0) logf n + 1) ·
log5/4+o(1) n + k log3/4+o(1) n), and the overall update time is O(logf n log3/4+o(1) n).

By setting f =
√

K0 for example, the query time remains O(log5/4+o(1) n+k log3/4+o(1) n)
and the update time becomes O(log3/2+o(1) n).

The term O(log5/4+o(1) n) dominates the query time bound only when k ≪
√

log n, but
in this case, we can switch to the method in Section 3, which solves the problem for an even
bigger cap 2

√
log n with a better query time O(log1+o(1) n + k log1/2+o(1) n) while keeping

update time O(log3/2+o(1) n).

▶ Theorem 9. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

amortized query time O(log1+o(1) n + k log3/4+o(1) n), and
amortized update time O(log3/2+o(1) n).

5 Higher Dimensions

We now point out a generalization of the method in Section 2 to higher dimensions.
First, it is straightforward to generalize the micro-structure from Lemma 1 (here, a

(2d − 1)-sided range is unbounded along the d-th axis):

▶ Lemma 10. Given a set of at most s points in a constant dimension d, there is a data
structure for colored (2d − 1)-sided range reporting with

query time Q2d−1(s, k) = O(logd−1 s + (k log k logd+o(1) s)/w + k), and
amortized update time U2d−1(s) = O(logd−1+o(1) s).

We generalize the capped macro-structure from Lemma 2:

▶ Lemma 11. Fix a value K0 ≤ 2w1/d . Given n points in a constant dimension d, there is a
data structure for colored (2d − 1)-sided K0-capped range reporting with

query time O(logd−1 n + k log K0 logd−2+1/d+o(1) n);
amortized update time O(logd−1+o(1) n).

Proof. For each j ∈ {0, . . . , d − 1}, define Pj to be the (capped) subproblem in d dimensions
which the first j coordinates of all points come from a set X of O(s) values.

Following the proof of Lemma 2 of using a range tree but along the j-th axis, we can
reduce problem Pj to problem Pj+1 at the expense of increasing the query and update time
by one O(logs n) factor.
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We solve problem Pd−1 directly: Points lie on O(sd−1) vertical lines. For each such
vertical lines, among the lowest point of each color, we only take the K0 lowest points, and
store all these O(sd−1K0) points in the micro-structure from Lemma 10.

Thus, the original problem P0 can be solved with query and update time

Q′
2d−1(n, k) = O(Q2d−1(sd−1K0, k) · (logs n)d−1)

= O

(
logd−1(sK0) + k

log k logd+o(1)(sK0)
w

+ k

)
· (logs n)d−1

U ′
2d−1(n, K) = O(U2d−1(sd−1K0, k) · (logs n)d−1) = O(logd−1+o(1)(sK0)) · (logs n)d−1.

Setting s = 2w1/d and recalling that K0 ≤ 2w1/d , we obtain Q′
2d−1(n, k) = O(logd−1 n +

(k log k logd−1+o(1) n)/w1−1/d + k) and U ′
2d−1(n) = O(logd−1+o(1) n). ◀

We can solve the general uncapped problem by using the color range tree technique in
Section 2.3 (invoking the capped structure with K0 polylogarithmic). The update time is
increased by a logarithmic factor:

▶ Theorem 12. Given n points in a constant dimension d, there is a data structure for
colored (2d − 1)-sided range reporting with

query time O(logd−1 n + k logd−2+1/d+o(1) n), and
amortized update time O(logd+o(1) n).

Finally, as in Section 2.4, general (2d)-sided queries can be reduced to (2d − 1)-sided
queries, with another logarithmic-factor increase in the update time:

▶ Corollary 13. Given n points in a constant dimension d, there is a data structure for
colored (2d − 1)-sided range reporting with

query time O(logd−1 n + k logd−2+1/d+o(1) n), and
amortized update time O(logd+1+o(1) n).

6 Final Remarks

All the extra logo(1) n factors are (log log n)O(1). In the 2D query time bound of Corollary 4,
the O(log n) first term is likely improvable slightly to O( log n

log log n ) (to match known lower
bounds), by increasing the fan-out from 2 to logδ n in the proof of Lemma 1.

The main open question is whether O(polylog n + k) query time is achievable with
O(polylog n) update time in 2D.

In higher dimensions, we have not tried to optimize the number of logarithmic factors
in the update time, but the ideas in Section 3 should help. A more intriguing question is
whether O(polylog n + k logd−2−δ n) query time is achievable with O(polylog n) update time.
Even for the static problem, we do not know how to get O(polylog n + k) query time with
O(n polylog n) space; current techniques only give O(polylog n + k logd−3 n) query time [7].
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Abstract
We introduce and study ℓp-norm-multiway-cut: the input here is an undirected graph with
non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set
into k parts each containing exactly one terminal so as to minimize the ℓp-norm of the cut values
of the parts. This is a unified generalization of min-sum multiway cut (when p = 1) and min-max
multiway cut (when p = ∞), both of which are well-studied classic problems in the graph partitioning
literature. We show that ℓp-norm-multiway-cut is NP-hard for constant number of terminals
and is NP-hard in planar graphs. On the algorithmic side, we design an O(log2 n)-approximation
for all p ≥ 1. We also show an integrality gap of Ω(k1−1/p) for a natural convex program and an
O(k1−1/p−ϵ)-inapproximability for any constant ϵ > 0 assuming the small set expansion hypothesis.
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1 Introduction

multiway-cut is a fundamental problem in combinatorial optimization with both theoretical
as well as practical motivations. The input here is an undirected graph G = (V, E) with non-
negative edge weights w : E → R+ along with k specified terminals T = {t1, t2, . . . , tk} ⊆ V .
The goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for
each i ∈ [k] so as to minimize the sum of the cut values of the parts, i.e., the objective
is to minimize

∑k
i=1 w(δ(Pi)), where δ(Pi) denotes the set of edges with exactly one end-

vertex in Pi and w(δ(Pi)) :=
∑

e∈δ(Pi) w(e). On the practical side, multiway-cut has
been used to model file-storage in networks as well as partitioning circuit elements among
chips – see [14, 22]. On the theoretical side, multiway-cut generalizes the min (s, t)-cut
problem which is polynomial-time solvable. In contrast to min (s, t)-cut, multiway-cut
is NP-hard for k ≥ 3 terminals [14]. The algorithmic study of multiway-cut has led
to groundbreaking rounding techniques and integrality gap constructions in the field of
approximation algorithms [2, 4–7,12,16,17,21] and novel graph structural techniques in the
field of fixed-parameter algorithms [18]. It is known that multiway-cut does not admit a
(1.20016−ϵ)-approximation for any constant ϵ > 0 assuming the Unique Games Conjecture [4]
and the currently best known approximation factor is 1.2965 [21].

Motivated by its connections to partitioning and clustering, Svitkina and Tardos [22]
introduced a local part-wise min-max objective for multiway-cut– we will denote this
problem as min-max-multiway-cut: The input here is the same as multiway-cut while the
goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for each i ∈ [k] so
as to minimize maxk

i=1 w(δ(S)). We note that multiway-cut and min-max-multiway-cut
differ only in the objective function – the objective function in multiway-cut is to minimize

© Karthekeyan Chandrasekaran and Weihang Wang;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
https://karthik.ise.illinois.edu/
https://orcid.org/0000-0002-3421-7238
mailto:weihang3@illinois.edu
https://doi.org/10.4230/LIPIcs.ESA.2021.29
https://arxiv.org/abs/2106.14840
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 ℓp-Norm Multiway Cut

the sum of the cut values of the parts while the objective function in min-max-multiway-cut
is to minimize the max of the cut values of the parts. min-max-multiway-cut can be
viewed as a fairness inducing multiway cut as it aims to ensure that no part pays too much in
cut value. Svitkina and Tardos showed that min-max-multiway-cut is NP-hard for k ≥ 4
terminals and also that it admits an O(log3 n)-approximation. Bansal, Feige, Krauthgamer,
Makarychev, Nagarajan, Naor, and Schwartz subsequently improved the approximation
factor to O(

√
log n log k) (which is O(log n)) [3].

In this work, we study a unified generalization of multiway-cut and min-max-multiway-
cut that we term as ℓp-norm-multiway-cut: In this problem, the input is the same as
multiway-cut, i.e., we are given an undirected graph G = (V, E) with non-negative edge
weights w : E → R+ along with k specified terminal vertices T = {t1, t2, . . . , tk} ⊆ V . The
goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with ti ∈ Pi for each i ∈ [k]
so as to minimize the ℓp-norm of the cut values of the k parts – formally, we would like to
minimize k∑

i=1

 ∑
e∈δ(Pi)

w(e)

p
1
p

.

Throughout, we will consider p ≥ 1. We note that ℓp-norm-multiway-cut for p = 1
corresponds to multiway-cut and for p =∞ corresponds to min-max-multiway-cut. We
emphasize that ℓp-norm-multiway-cut could also be viewed as a multiway cut that aims
for a stronger notion of fairness than multiway-cut but a weaker notion of fairness than
min-max-multiway-cut. For k = 2 terminals, ℓp-norm-multiway-cut reduces to min
(s, t)-cut for all p ≥ 1 and hence, can be solved in polynomial time.

1.1 Our Results
We begin by remarking that there is a fundamental structural difference between multiway-
cut and ℓp-norm-multiway-cut for p > 1 (i.e., between p = 1 and p > 1). The optimal
partition to multiway-cut satisfies a nice structural property: assuming that the input
graph is connected, every part in an optimal partition for multiway-cut will induce a
connected subgraph. Consequently, multiway-cut is also phrased as the problem of deleting
a least weight subset of edges so that the resulting graph contains k connected components
with exactly one terminal in each component. However, this nice structural property does
not hold for ℓp-norm-multiway-cut for p > 1 as illustrated by the example in Figure 1.
We remark that Svitkina and Tardos made a similar observation suggesting that the nice
structural property fails for min-max-multiway-cut, i.e., for p = ∞ – in contrast, our
example in Figure 1 shows that the nice structural property fails to hold for every p > 1.

We now discuss our hardness results for ℓp-norm-multiway-cut.

▶ Theorem 1. We have the following hardness results for ℓp-norm-multiway-cut.
1. ℓp-norm-multiway-cut is NP-hard for every p > 1 and every k ≥ 4.
2. ℓp-norm-multiway-cut in planar graphs is NP-hard for every p > 1.

We note that the case of p = 1 and p =∞ are already known to be hard: multiway-cut
is NP-hard for k = 3 terminals and is NP-hard in planar graphs when k is arbitrary (i.e.,
when k is not a fixed constant) [14]; min-max-multiway-cut is NP-hard for k = 4 terminals
and is NP-hard in trees when k is arbitrary [22]. Our NP-hardness in planar graphs result
also requires k to be arbitrary.
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Figure 1 An example where the unique optimum partition for ℓp-norm-multiway-cut for
k = 5 induces a disconnected part for every p > 1. The edge weights are as shown with a :=
8p/(p−1) and the set of terminals is {u1, v1, v2, v3, v4}. A partition that puts u2 with one of the
terminals in {v1, v2, v3, v4} (and isolates the remaining terminals) has ℓp-norm objective value
((3a + 3)p + 3(3a + 2)p + 4p)1/p and the partition that puts u2 with u1 (and isolates the remaining
terminals) has ℓp-norm objective value (4(3a + 2)p + 8p)1/p – the latter is strictly cheaper by the
choice of a.

Given that the problem is NP-hard, we focus on designing approximation algorithms. We
show the following result:

▶ Theorem 2. There exists a polynomial-time O(log1.5 n log0.5 k)-approximation for ℓp-
norm-multiway-cut for every p ≥ 1, where n is the number of vertices and k is the number
of terminals in the input instance.

We note that our approximation factor is O(log2 n) since k ≤ n. While it might be
tempting to design an approximation algorithm by solving a convex programming relaxation
for ℓp-norm-multiway-cut and rounding it, we rule out this approach: the natural convex
programming relaxation has an integrality gap of Ω(k1−1/p) – see Section 4. Hence, our
approach for the approximation algorithm is not based on a convex program but instead
based on combinatorial techniques.

For comparison, we state the currently best known approximation factors for p = 1 and
p =∞: multiway-cut admits a 1.2965-approximation via an LP-based algorithm [21] and
min-max-multiway-cut admits an O(

√
log n log k)-approximation based on a bicriteria

approximation for the small-set expansion problem [3].
As a final result, we show that removing the dependence on the number n of vertices

in the approximation factor of ℓp-norm-multiway-cut is hard assuming the small set
expansion hypothesis [20]. In particular, we show that achieving a (k1−1/p−ϵ)-approximation
for any constant ϵ > 0 is hard. We note that there is a trivial O(k1−1/p)-approximation for
ℓp-norm-multiway-cut.

1.2 Outline of techniques

We briefly outline the techniques underlying our results.

ESA 2021
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Hardness results

We show hardness of ℓp-norm-multiway-cut for k = 4 terminals by a reduction from the
graph bisection problem. Our main tool to control the ℓp-norm objective in our hardness
reduction is the Mean Value Theorem and its consequences. In order to show NP-hardness of
ℓp-norm-multiway-cut in planar graphs, we reduce from the 3-partition problem. We do a
gadget based reduction where the gadget is planar. We note that the number of terminals in
this reduction is not a constant and is Ω(n), where n is the number of vertices. Once again,
we rely on the Mean Value Theorem and its consequences to control the ℓp-norm objective
in the reduction. We mention that the starting problems in our hardness reductions are
inspired by the hardness results shown by Svitkina and Tardos for min-max-multiway-cut:
they showed that min-max-multiway-cut is NP-hard for k = 4 terminals by a reduction
from the graph bisection problem and that min-max-multiway-cut is NP-hard in trees by
a reduction from the 3-partition problem. We also use these same starting problems, but our
reductions are more involved owing to the ℓp-norm nature of the objective.

Approximation algorithm

For the purposes of the algorithm, we will assume knowledge of the optimum value, say OPT
– such a value can be guessed within a factor of 2 via binary search. Our approximation
algorithm proceeds in three steps. We describe these three steps now.

In the first step of the algorithm, we obtain a collection S of subsets of the vertex set
satisfying four properties: (1) each set S in the collection S has at most one terminal, (2)
the ℓp-norm of the cut values of the sets in the collection raised to the pth power is small,
i.e.,

∑
S∈S w(δ(S))p = (βp log n)OPTp where β = O(

√
log n log k), (3) the number of sets

in the collection S is O(k log n), and (4) the union of the sets in the collection S is V . We
perform this first step via a multiplicative updates method. For this, we use a bicriteria
approximation algorithm for the unbalanced terminal cut problem which was given by Bansal
et al [3] (see Section 2 for a description of the unbalanced terminal cut problem and the
bicriteria approximation).

Although property (2) gives a bound on the ℓp-norm of the cut values of the sets in
the collection S relative to the optimum, the collection S does not correspond to a feasible
multiway cut: recall that a feasible multiway cut is a partition P = (P1, . . . , Pk) of the vertex
set where each Pi contains exactly one terminal. The objective of the next two steps is to
refine the collection S to achieve feasibility without blowing up the ℓp-norm of the cut values
of the parts.

In the second step of the algorithm, we uncross the sets in the collection S to obtain
a partition Q without increasing the cut values of the sets. We crucially exploit the
posimodularity property of the graph cut function to achieve this: posimodularity implies
that for all subsets A, B ⊆ V of vertices, either w(δ(A)) ≥ w(δ(A − B)) or w(δ(B)) ≥
w(δ(B − A)). We iteratively consider all pairs of crossing subsets A, B in the collection
S and replace A with A − B if w(δ(A)) ≥ w(δ(A − B)) or replace B with B − A if
w(δ(B)) ≥ w(δ(B − A)). The outcome of this step is a partition Q of the vertex set V

satisfying three properties: (i) each part Q in the partition Q has at most one terminal, (ii)
the ℓp-norm of the cut values of the parts in the partition Q raised to the pth power is still
small, i.e.,

∑
Q∈Q w(δ(Q))p = (βp log n)OPTp, and (iii) the number of parts in the partition

Q is O(k log n).
Once again, we observe that the partition Q at the end of the second step may not

correspond to a feasible multiway cut: we could have more than k parts in Q with some of the
parts having no terminals. We address this issue in the third step by a careful aggregation.
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For the third step of the algorithm, let Qi be the part in Q that contains terminal ti –
we have k such parts by property (i) – and let R1, . . . , Rt be the remaining parts in Q that
contain no terminals. We will aggregate the remaining parts of Q into the k parts Q1, . . . , Qk

without blowing up the ℓp-norm of the cut value of the parts. By property (iii), the number
of remaining parts t is O(k log n). We create k disjoint buckets B1, . . . , Bk where Bi contains
the union of O(log n) many parts among R1, . . . , Rt. Finally, we merge Bi with Qi. This
results in a partition P = (Q1 ∪B1, . . . , Qk ∪Bk) of V with terminal ti being in the ith part
Qi ∪Bi. The key now is to control the blow-up in the pth power of the ℓp-norm of the cut
values of the parts in P : we bound this by a O(logp−1 n)-factor relative to the pth power of
the ℓp-norm of the cut values of the parts in Q via Jensen’s inequality; while using Jensen’s
inequality, we exploit the fact that each bucket contained O(log n) many parts. Consequently,
using property (ii), the ℓp-norm objective value of the cut values of the parts in the partition
P raised to the pth power is still small – we show that

∑
P ∈P w(δ(P ))p = βp logp nOPTp

and hence, we have an approximation factor of O(β log n).
The first step of our algorithm is inspired by the O(log n)-approximation algorithm for

min-max-multiway-cut due to Bansal et al [3] – we modify the multiplicative weights
update method and adapt it for ℓp-norm-multiway-cut. Our second and third steps differ
from that of Bansal et al. We mention that the second and third steps of our algorithm can
be adapted to achieve an O(β log n)-approximation factor for ℓp-norm-multiway-cut for
p =∞, but the resulting approximation factor is only O(log2 n) which is weaker than the
O(log n)-factor achieved by Bansal et al. The additional loss of log n-factor in our algorithm
comes from the third step (i.e., the aggregation step). The aggregation step designed in [3]
is randomized and saves the log n-factor in expectation, but it does not generalize to ℓp-
norm-multiway-cut. As mentioned before, the second step of our algorithm relies on
posimodularity. The posimodularity property of the graph cut function has been used in
previous works for min-max-multiway-cut in an implicit fashion by a careful and somewhat
tedious edge counting argument [3, 22]. We circumvent the edge counting argument here by
the clean posimodularity abstraction. Moreover, the posimodularity abstraction makes the
counting considerably easier for our more general problem of ℓp-norm-multiway-cut.

1.3 Related Work
ℓp-norm-multiway-cut can be viewed as a fairness inducing objective in the context of
multiway partitioning problems. Recent works have proposed and studied various fairness
inducing objectives for graph cuts and partitioning that are different from ℓp-norm-multiway-
cut. We briefly discuss these works here. All of the works mentioned in this subsection
consider a more general problem known as correlation clustering – we discuss these works by
specializing to cut and partitioning problems since these specializations are the ones related
to our work.

Puleo and Milenkovic [19] introduced a local vertex-wise min-max objective for min (s, t)-
cut – here, the goal is to partition the vertex set V of the given edge-weighted undirected
graph into two parts (S, V \ S) each containing exactly one of the terminals in {s, t} so as
to minimize maxv∈V w(δ(v) ∩ δ(S)). The motivation behind this objective is that the cut
should be fair to every vertex in the graph, i.e., no vertex should pay a lot for the edges in
the cut. A result of Chvátal [13] implies that this problem is (2− ϵ)-inapproximable for every
constant ϵ > 0. Charikar, Gupta, and Schwartz [10] gave an O(

√
n)-approximation for this

problem. Reducing the approximability vs inapproximability gap for this problem remains
an intriguing open problem. Kalhan, Makarychev, and Zhou [15] considered an ℓp-norm
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version of the objective where the goal is to minimize (
∑

v∈V w(δ(v) ∩ δ(S))p)1/p and gave
an O(n

1
2 − 1

2p log
1
2 − 1

2p n)-approximation, thus interpolating the best known results for p = 1
and p =∞.

Ahmadi, Khuller, and Saha [1] introduced a min-max version of multicut: the input
consists of an undirected graph G = (V, E) with edge weights w : E → R+ along with source-
sink terminal pairs (s1, t1), . . . , (sk, tk). The goal is to find a partition P = (P1, . . . , Pr)
of the vertex set with all source-sink pairs separated by the partition so as to minimize
maxi∈[r] w(δ(Pi)). We emphasize that the number of parts here – namely, r – is not
constrained by the input and hence, could be arbitrary. Ahmadi, Khuller, and Saha gave an
O(
√

log n max{log k, log T})-approximation for this problem, where T is the number of parts
in the optimal solution. Kalhan, Makarychev, and Zhou [15] improved the approximation
factor to 2 + ϵ.

Organization

We begin with preliminaries in Section 2. We present the complete details of our approxim-
ation algorithm and prove Theorem 2 in Section 3. We discuss a convex program and its
integrality gap in Section 4. Due to space limitations, the proofs of the rest of the results
appear in the complete version of this work [9]. We conclude with a few open problems in
Section 5.

2 Preliminaries

We start with notations that will be used throughout. Let G = (V, E) be an undirected
graph with edge weight function w : E → R+ and vertex weight function y : V → R+.
For every subset S ⊆ V , we use δG(S) to denote the set of edges that have exactly one
end-vertex in S (we will drop the subscript G when the graph is clear from context), and
we write w(δ(S)) :=

∑
e∈δ(S) w(e). Moreover, we will use y(S) to refer to

∑
v∈S y(v). We

will denote an instance of ℓp-norm-multiway-cut by (G, w, T ), where G = (V, E) is the
input graph, w : E → R+ is the edge weight function, and T ⊆ V is the set of terminal
vertices. We will call a partition P̃ = (P1, . . . , Pr) of the vertex set to be a multiway cut if
r = k and ti ∈ Pi for each i ∈ [k] and denote the ℓp-norm of the cut values of the parts (i.e.,
(
∑k

i=1 w(δ(Pi))p)1/p) as the ℓp-norm objective value of the multiway cut P̃.
We note that the function µ : R → R defined by µ(x) := xp is convex for every p ≥ 1.

We will use Jensen’s inequality as stated below in our approximation algorithm as well as
our hardness reductions.

▶ Lemma 3 (Jensen). Let µ : R→ R be a convex function. For arbitrary x1, . . . , xt ∈ R, we
have

µ

(
1
t

t∑
i=1

xi

)
≤ 1

t

t∑
i=1

µ(xi).

Our algorithm relies on the graph cut function being symmetric and submodular. We
recall that the graph cut function f : 2V → R+ is given by f(S) := w(δ(S)) for all S ⊆ V .
Let f : 2V → R+ be a set function. The function f is symmetric if f(S) = f(V \ S) for all
S ⊆ V , submodular if f(A)+f(B) ≥ f(A∩B)+f(A∪B) for all A, B ⊆ V , and posimodular
if f(A) + f(B) ≥ f(A−B) + f(B −A) for all A, B ⊆ V . Symmetric submodular functions
are also posimodular (see Proposition 4) – this fact has been used implicitly [3, 22] and
explicitly [8, 11] before.
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▶ Proposition 4. Symmetric submodular functions are posimodular.

Proof. Let f : 2V → R be a symmetric submodular set function on a set V , and let A, B ⊆ V

be two arbitrary subsets. Then, we have

f(A) + f(B) = f(V −A) + f(B) ≥ f((V −A) ∪B) + f((V −A) ∩B)
= f(V − (A−B)) + f(B −A) = f(A−B) + f(B −A).

In the above, the first and last equations follow by symmetry and the inequality follows by
submodularity. ◀

Our algorithm for ℓp-norm-multiway-cut relies on an intermediate problem, namely
the Unbalanced Terminal Cut problem that we introduce now. In Unbalanced Terminal Cut
(UTC), the input (G, w, y, τ, T ) consists of an undirected graph G = (V, E), an edge weight
function w : E → R+, a vertex weight function y : V → R+, a real value τ ∈ [0, 1], and a set
T ⊆ V of terminal vertices. The goal is to compute

UTC(G, w, y, τ, T ) := min {w(δ(S)) : S ⊆ V, y(S) ≥ τ · y(V ), |S ∩ T | ≤ 1} .

Bansal et al. gave a bicriteria approximation for UTC that is summarized in the theorem
below.

▶ Theorem 5. [3] There exists an algorithm UTC-BICRIT-ALGO that takes as input
(G, w, y, τ, T ) consisting of an undirected graph G = (V, E), an edge weight function w : E →
R+, a vertex weight function y : V → R+, a number τ ∈ [0, 1], and a set T ⊆ V of terminal
vertices and runs in polynomial time to return a set S ⊆ V such that
1. |S ∩ T | ≤ 1,
2. y(S) = Ω(τ)y(V ), and
3. w(δ(S)) ≤ αUTC(G, w, y, τ, T ), where α = O(

√
log n log(1/τ)) and n = |V |.

3 Approximation Algorithm

Let OPT be the optimal ℓp-norm objective value of a multiway cut in the given instance. For
the purposes of the algorithm, we will assume knowledge of a value D such that D ≥ OPTp –
such a value can be guessed via binary search.

Our approximation algorithm to prove Theorem 2 involves three steps. In the first step
of the algorithm, we will obtain a collection S of O(k log n) sets whose union is the vertex
set V such that each set in the collection has at most one terminal, the cut value of each set
is not too large relative to D, and the ℓp-norm of the cut values of the sets in the collection
is within a polylog(n) factor of D (see Lemma 6). Although the collection S has low ℓp-norm
value relative to D, the collection S may not be a feasible multiway cut. In the second step
of the algorithm, we uncross the sets in the collection S without increasing the ℓp-norm of
the cut values of the sets in the collection (see Lemma 10). After uncrossing, we obtain a
partition, but we could have more than k sets. We address this in our third step, where
we aggregate parts to ensure that we obtain exactly k parts (see Lemma 11). We rely on
Jensen’s inequality to ensure that the aggregation does not blow-up the ℓp-norm of the cut
values of the sets in the partition.

We begin with the first step of the algorithm in Lemma 6.

▶ Lemma 6. There exists an algorithm that takes as input an undirected graph G = (V, E),
an edge weight function w : E → R+, k distinct terminal vertices T := {t1, . . . , tk} ⊆ V and
a value D > 0 such that there exists a partition (P ∗

1 , . . . , P ∗
k ) of V with ti ∈ P ∗

i for all i ∈ [k]
and

∑k
i=1 w(δ(P ∗

i ))p ≤ D, and runs in polynomial time to return a collection of sets S ⊆ 2V

that satisfies the following:
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1. |S ∩ T | ≤ 1 and w(δ(S)) ≤ β(2D)1/p for every S ∈ S,
2.
∑

S∈S w(δ(S))p = βp(log n)D, and
3. |S| = O(k log n) and |{S ∈ S : v ∈ S}| ≥ log n for each v ∈ V ,
where β = O(

√
log n log k).

Proof. We will use Algorithm 1 to obtain the desired collection S. We will show the
correctness of Algorithm 1 based on Claims 7, 8 and 9.

Algorithm 1 Multiplicative weights update.

Initialize t ← 1, S ← ∅, y1(v) = 1 for each v ∈ V , Y 1 =
∑

v∈V y1(v) and
β = O(

√
log n log k)

while Y t > 1
n do

for i = 1, 2, . . . , log(2k) do
Execute UTC-BICRIT-ALGO(G, w, yt, 2−i, T ) to obtain a subset St(i) ⊆ V

if w(δ(St(i))) ≤ β( 4D
2i )1/p then

Set St = St(i) and BREAK
end if

end for
S ← S ∪ {St}.
for v ∈ V do

Set yt+1(v) =
{

yt(v)/2 if v ∈ St,

yt(v) if v ∈ V \ St.

end for
Set Y t+1 =

∑
v∈V yt+1(v).

Set t← t + 1.
end while
Return S

Our first claim will help in showing that the set St added in each iteration of the while
loop satisfies certain nice properties.

▷ Claim 7. For every iteration t of the while loop of Algorithm 1, there exists i ∈
{1, 2, . . . , log(2k)} such that the set St(i) satisfies the following conditions:
1. |St(i) ∩ T | ≤ 1,
2. yt(St(i)) = Ω( Y t

2i ), and
3. w(δ(St(i))) ≤ β( 4D

2i )1/p.

Proof. We have that
∑k

i=1 yt(P ∗
i ) = yt(V ) and

k∑
i=1

w(δ(P ∗
i ))p ≤ D.

Let L be the subset of indices of parts for which the cut value is relatively low:

L :=
{

j ∈ [k] : w(δ(P ∗
j ))p ≤

2yt(P ∗
j )

Y t
·D
}

.

It follows that∑
j∈[k]\L

yt(P ∗
j ) <

∑
j∈[k]\L

w(δ(P ∗
j ))pY t

2D
≤ Y t

2
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and hence,

∑
j∈L

yt(P ∗
j ) = Y t −

∑
j∈[k]\L

yt(P ∗
j ) > Y t − Y t

2 = Y t

2 .

Since |L| ≤ k, there exists an index q ∈ L such that yt(P ∗
q ) > Y t/(2k). Let us fix i0 to

be an integer such that yt(P ∗
q ) ∈ (Y t · 2−i0 , Y t · 2−i0+1]. Then, we must have i0 ≤ log(2k).

We note that the set P ∗
q satisfies |P ∗

q ∩ T | = 1 and yt(P ∗
q ) > Y t/(2k) = yt(V )/(2k). This

implies P ∗
q is feasible to the UTC problem on input (G, w, yt, 1/2i0 , T ). Therefore, according

to Theorem 5, the set St(i0) has the following properties: Firstly, |St(i0) ∩ T | ≤ 1. Secondly,
yt(St(i0)) = Ω(1/2i0)yt(V ) = Ω(Y t/2i0). Finally,

w(δ(St(i0))) = O(
√

log n log(2k)) ·UTC
(

G, w, yt,
1

2i0
, T

)
= O(

√
log n log k) · w(δ(P ∗

q ))

= O(
√

log n log k) ·
(2yt(P ∗

q )
Y t

·D
) 1

p

= O(
√

log n log k) ·
(

2 · Y t · 2−i0+1

Y t
·D
) 1

p

= O(
√

log n log k) ·
(

4D

2i0

) 1
p

.

This completes the proof of Claim 7. ◁

For the rest of the proof, we will use the following notation: In the t’th iteration of the
while loop of Algorithm 1, we will fix it ∈ {1, 2, . . . , log(2k)} to be the integer such that
St = St(it). We will use ℓ to denote the total number of iterations of the while loop. For
each v ∈ V , We define Nv := |{t ∈ [ℓ] : v ∈ St}| to be the number of sets in the collection S
that contain the vertex v.

We observe that for each v ∈ V , we have yℓ+1(v) = 2−Nv . Claim 7 and Theorem 5
together imply that the t’th iteration of the while loop leads to a set St being added to the
collection S such that
1. |St ∩ T | ≤ 1,
2. yt(St) = Ω( Y t

2it
), and

3. w(δ(St)) ≤ β( 4D
2it

)1/p.

Our next claim shows that the number of iterations of the while loop executed in Algorithm
1 is small. Moreover, the union of the sets in the collection S is the vertex set V .

▷ Claim 8. The number of iterations ℓ of the while loop satisfies ℓ = O(k log n). Moreover,
Nv ≥ log n for each v ∈ V .

Proof. Upon termination of Algorithm 1, we must have Y ℓ+1 ≤ 1/n. Combining with the
earlier observation that yℓ+1(v) = 2−Nv for every v ∈ V , we have that

2−Nv = yℓ+1(v) ≤ Y ℓ+1 ≤ 1
n

,

which implies that Nv ≥ log n for every v ∈ V .
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It remains to show that ℓ = O(k log n). Consider the tth iteration of the while loop for an
arbitrary t ∈ [ℓ]. By property 2 of the set St stated above, we have that yt(St) ≥ cY t/2it ≥
cY t/(2k) for some constant c > 0. Consequently,

Y t+1 = Y t − yt(St)
2 ≤ Y t − cY t

4k
=
(

1− c

4k

)
Y t.

Due to the termination condition of the while loop, we know that Y ℓ > 1/n. Hence,

1
n

< Y ℓ ≤
(

1− c

4k

)ℓ−1
Y 1 =

(
1− c

4k

)ℓ−1
n ≤ exp

(
−c(ℓ− 1)

4k

)
n.

Therefore, c(ℓ−1)
4k = O(log n) which implies that ℓ = O(k log n). This completes the proof of

Claim 8. ◁

The next claim bounds the ℓp-norm of the cut values of the sets in the collection S.

▷ Claim 9. The collection S returned by Algorithm 1 satisfies
∑

S∈S w(δ(S))p = O(βp log n)·
D.

Proof. Consider the tth iteration of the while loop for an arbitrary t ∈ [ℓ]. By property
3 of the set St stated above, we have that w(δ(St)) ≤ β(4D/2it)1/p and consequently,
2it ≤ 4Dβp · w(δ(St))−p. Moreover, by property 2 of the set St stated above, we have that
yt(St) ≥ cY t/2it for some constant c > 0. Hence,

yt(St) ≥ cY t

2it
≥ cY t · w(δ(St))p

βp · 4D
.

Therefore,

Y t+1 = Y t − yt(St)
2 ≤

(
1− c · w(δ(St))p

βp · 8D

)
Y t.

Using the fact that Y ℓ > 1/n, we observe that

1
n

< Y ℓ ≤ Y 1 ·
ℓ−1∏
t=1

(
1− c · w(δ(St))p

βp · 8D

)
= n ·

ℓ−1∏
t=1

(
1− c · w(δ(St))p

βp · 8D

)

≤ n ·
ℓ−1∏
i=1

exp
(
−c · w(δ(St))p

βp · 8D

)
= n · exp

(
−

c ·
∑ℓ−1

i=1 w(δ(St))p

βp · 8D

)
.

This implies that c·
∑ℓ−1

i=1
w(δ(St))p

βp·8D = O(log n), and hence
∑ℓ−1

i=1 w(δ(St))p = O(βp log n) ·D.
In the ℓ’th iteration of the while loop, we have w(δ(Sℓ)) ≤ β(4D/2iℓ)1/p by property

3 of the set St stated above and hence w(δ(Sℓ))p ≤ βp · 4D/2iℓ ≤ O(βpD). Consequently,∑ℓ
i=1 w(δ(St))p = O(βp log n) ·D. This completes the proof of Claim 9. ◁

We now show correctness of our algorithm to complete the proof of Lemma 6. Firstly,
we note that every S ∈ S satisfies |S ∩ T | ≤ 1 by property 1 of the set St stated above.
Moreover, we have w(δ(S)) ≤ β(4D/2i)1/p ≤ β(2D)1/p, which implies conclusion 1 in Lemma
6. Secondly, Conclusion 2 in Lemma 6 is implied by Claim 9. Finally, conclusion 3 of Lemma
6 is implied by Claim 8 because each iteration of the while loop adds exactly one new set to
the collection S.

We now bound the run time of Algorithm 1. Each iteration of the while loop takes
polynomial time due to Theorem 5, and the number of iterations of the while loop is O(k log n).
This implies that the total run time of Algorithm 1 is indeed polynomial in the size of the
input. ◀
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The collection S that we obtain in Lemma 6 may not be a partition. Our next lemma
will uncross the collection S obtained from Lemma 6 to obtain a partition without increasing
the cut values of the sets.

▶ Lemma 10. There exists an algorithm that takes as input a collection S ⊆ 2V of subsets
of vertices satisfying the conclusions in Lemma 6 and runs in polynomial time to return a
partition Q̃ of V such that
1. |Q ∩ T | ≤ 1 for each Q ∈ Q̃,
2.
∑

Q∈Q̃ w(δ(Q))p ≤
∑

S∈S w(δ(S))p, and
3. the number of parts in Q̃ is O(k log n).

Proof. For convenience, we will define f : 2V → R+ by f(S) := w(δ(S)) for all S ⊆ V . We
will use Algorithm 2 to obtain the desired partition Q̃ of V .

Algorithm 2 Uncrossing.

Initialize Q̃ ← S
while there exist distinct sets A, B ∈ Q̃ such that A ∩B ̸= ∅ do

if f(A) ≥ f(A−B) then
Set A← A−B

else
Set B ← B −A

end if
end while
Return Q̃

We now prove the correctness of Algorithm 2. We begin by observing that Algorithm 2
indeed outputs a partition of the vertex set: Firstly, the while loop enforces that the output
Q̃ satisfies A ∩B = ∅ for all distinct A, B ∈ Q̃. Secondly, during each iteration of the while
loop, the set

⋃
Q∈Q̃ Q remains unchanged: In the iteration of the while loop that uncrosses

A, B ∈ Q̃, let A′ and B′ denote the updated sets at the end of the while loop, respectively.
Then we must have A′ ∪B′ = (A−B) ∪B = A ∪B or A′ ∪B′ = A ∪ (B −A) = A ∪B. In
either case, since A′ ∪ B′ = A ∪ B, the set

⋃
Q∈Q̃ Q remains unchanged after the update.

Therefore, we have
⋃

Q∈Q̃ Q =
⋃

S∈S S. We recall that
⋃

S∈S S = V by conclusion 3 of
Lemma 6. Hence, Q̃ is indeed a partition of V .

Furthermore, each set Q in the output Q̃ is a subset of some set S ∈ S. This implies
|Q ∩ T | ≤ |S ∩ T | ≤ 1, thus proving the first conclusion.

To prove the second conclusion, we use posimodularity of f as shown in Proposition 4.
Namely, for every A, B ⊆ V ,

f(A) + f(B) ≥ f(A−B) + f(B −A).

Therefore, at least one of the following two hold: either f(A) ≥ f(A−B) or f(B) ≥ f(B−A).
This implies that, by the choice of the algorithm,

∑
Q∈Q̃ f(Q)p does not increase.

To see the third conclusion, we note that after each iteration of the while loop, the size
of Q̃ is unchanged. Therefore, at the end Algorithm 2, we have |Q̃| = |S| = O(k log n) by
Lemma 6.

Finally, we bound the run time as follows. At initialization, there are O((k log n)2) pairs
(A, B) ∈ Q̃2 such that A ∩B ̸= ∅. After each iteration of the while loop, the number of such
pairs decreases by at least 1. Therefore, the total number of iterations of the while loop is
O((k log n)2). Hence, Algorithm 2 indeed runs in polynomial time. ◀
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The partition Q̃ that we obtain in Lemma 10 may contain more than k parts and hence,
some of the parts may not contain any terminals. Our next lemma will aggregate the parts
in Q̃ from Lemma 10 to obtain a k-partition that contains exactly one terminal in each part
while controlling the increase in the ℓp-norm of the cut value of the parts.

▶ Lemma 11. There exists an algorithm that takes as input a partition Q̃ of V satisfying the
conclusions in Lemma 10 and runs in polynomial time to return a partition (P1, P2, . . . , Pk)
of V such that
1. ti ∈ Pi for each i ∈ [k], and
2.
∑k

i=1 w(δ(Pi))p = O((β log n)p) ·D.

Proof. We will use Algorithm 3 on input P̃ to obtain the desired partition.

Algorithm 3 Aggregating.

Let F = {Q ∈ Q̃ : Q ∩ T = ∅}.
Let P ′ = {Q ∈ Q̃ : Q ∩ T ̸= ∅} = {Q′

1, . . . , Q′
k}, where ti ∈ Q′

i for each i ∈ [k].
Partition the sets in F into k buckets B1, . . . , Bk such that |Bi| = O(log n) for each i ∈ [k]
(arbitrarily).
for i = 1, 2, . . . , k do

Set Pi ← Q′
i ∪
(⋃

A∈Bi
A
)

end for
Return (P1, . . . , Pk).

The run time of Algorithm 3 is linear in its input size. We now argue the correctness.
We note that the third step in Algorithm 3 is possible because |F| ≤ |Q̃| = O(k log n).

Since |Q ∩ T | ≤ 1 for each Q ∈ Q̃, the tuple (P1, . . . , Pk) returned by Algorithm 3 is
indeed a partition of V satisfying ti ∈ Pi for all i ∈ [k]. We will now bound

∑k
i=1 f(Pi)p,

where f : 2V → R+ is given by f(S) := w(δ(S)) for all S ⊆ V . We have that
k∑

i=1
f(Pi)p =

k∑
i=1

f

(
Q′

i ∪

( ⋃
A∈Bi

A

))p

≤
k∑

i=1

(
f(Q′

i) +
∑

A∈Bi

f(A)
)p

.

Since the number of sets in Bi is O(log n), we have the following using Jensen’s inequality
(Lemma 3) for each i ∈ [k]:(

f(Q′
i) +

∑
A∈Bi

f(A)
)p

≤ (|Bi|+ 1)p−1

(
f(Q′

i)p +
∑

A∈Bi

f(A)p

)

= O(logp−1 n)
(

f(Q′
i)p +

∑
A∈Bi

f(A)p

)
.

Hence,
k∑

i=1
f(Pi)p =

k∑
i=1

O(logp−1 n)
(

f(Q′
i)p +

∑
A∈Bi

f(A)p

)
= O(logp−1 n)

∑
Q∈Q̃

f(Q)p

= O(logp−1 n)
∑
S∈S

f(S)p = βpO(logp n)D.

The last but one equality above is due to conclusion 2 of Lemma 10bbb and the last
equality is due to conclusion 2 of Lemma 6. Hence,

∑k
i=1 w(δ(Pi))p =

∑k
i=1 f(Pi)p =

O((β log n)p)D. ◀
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Lemmas 6, 10, and 11 together lead to an algorithm that takes as input an undirected
graph G = (V, E), an edge weight function w : E → R+, k distinct terminal vertices
T := {t1, . . . , tk} ⊆ V , and a value D > 0 such that there exists a partition (P ∗

1 , . . . , P ∗
k ) of

V with ti ∈ P ∗
i for all i ∈ [k] such that

∑k
i=1 w(δ(P ∗

i ))p ≤ D, and runs in polynomial time
to return a multiway cut P = (P1, . . . , Pk) such that(

k∑
i=1

w(δ(Pi))p

) 1
p

= (O((β log n)p)D)
1
p = O(β log n)D

1
p = O(log1.5 n log0.5 k)D

1
p .

In order to prove Theorem 2, we may use binary search to guess D ∈ [OPTp, (2OPT)p]
and run the above algorithm to obtain a multiway cut P = (P1, . . . , Pk) such that(

k∑
i=1

w(δ(Pi))p

) 1
p

= O(log1.5 n log0.5 k)D
1
p = O(log1.5 n log0.5 k)OPT.

This completes the proof of Theorem 2.

4 Convex program and integrality gap

The following is a natural convex programming relaxation for ℓp-norm-multiway-cut on
instance (G, w, T ) where T = {t1, . . . , tk} are the terminal vertices (the objective function
can be convexified by introducing additional variables and constraints):

Minimize
(

k∑
i=1

(∑
uv∈E

w(uv) · |x(u, i)− x(v, i)|
)p)1/p

subject to (1)

k∑
i=1

x(v, i) = 1 ∀v ∈ V,

x(ti, i) = 1 ∀i ∈ [k],
x(v, i) ≥ 0 ∀v ∈ V, ∀i ∈ [k].

▶ Lemma 12. The convex program in (1) has an integrality gap of at least k1−1/p/2.

Proof. Consider the star graph that has k leaves {t1, . . . , tk} and a center vertex v with
all edge weights being 1. Let the terminal vertices be the k leaves. The optimum ℓp-norm
objective value of a multiway cut is

((k − 1)p + k − 1)
1
p ,

and it corresponds to the partition ({t1, v}, {t2}, {t3}, . . . , {tk}). A feasible solution to the
convex program (1) is given by x(v, i) = 1/k for all i ∈ [k], which yields an objective of(

k ·
(

k − 1
k

+ (k − 1) · 1
k

)p) 1
p

= 2k − 2
k

· k
1
p .

This results in an integrality gap of at least

((k − 1)p + k − 1)
1
p

2k−2
k · k

1
p

≥ k − 1
2k−2

k · k
1
p

= k1− 1
p

2 . ◀

Bansal et al. give an SDP relaxation for min-max-multiway-cut and show that the star
graph has an integrality gap of Ω(k) for this SDP relaxation. This SDP relaxation can be
generalized in a natural fashion to ℓp-norm-multiway-cut. The star graph still exhibits an
integrality gap of Ω(k1−1/p) for the generalized SDP relaxation for ℓp-norm-multiway-cut.
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5 Conclusion

In this work, we introduced ℓp-norm-multiway-cut for p ≥ 1 as a unified generalization of
multiway-cut and min-max-multiway-cut. We showed that ℓp-norm-multiway-cut
is NP-hard for constant number of terminals or in planar graphs for every p ≥ 1. The
natural convex program for ℓp-norm-multiway-cut has an integrality gap of Ω(k1−1/p)
and the problem is (k1−1/p−ϵ)-inapproximable for any constant ϵ > 0 assuming the small
set expansion hypothesis, where k is the number of terminals in the input instance. The
inapproximability result suggests that a dependence on n in the approximation factor is
unavoidable if we would like to obtain an approximation factor that is better than the trivial
O(k1−1/p)-factor. On the algorithmic side, we gave an O(

√
log3 n log k)-approximation (i.e.,

an O(log2 n)-approximation), where n is the number of vertices in the input graph. Our
results suggest that the approximability behaviour of ℓp-norm-multiway-cut exhibits a
sharp transition from p = 1 to p > 1. Our work raises several open questions. We mention a
couple of them: (1) Can we achieve an O(log n)-approximation for ℓp-norm-multiway-cut
for every p ≥ 1? We recall that when p =∞, the current best approximation factor is indeed
O(log n) [3]. (2) Is there a polynomial-time algorithm for ℓp-norm-multiway-cut for any
given p that achieves an approximation factor that smoothly interpolates between the best
possible approximation for p = 1 and the best possible approximation for p =∞ – e.g., is
there an O(log1−1/p n)-approximation?
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Abstract
In the classic longest common substring (LCS) problem, we are given two strings S and T , each of
length at most n, over an alphabet of size σ, and we are asked to find a longest string occurring as a
fragment of both S and T . Weiner, in his seminal paper that introduced the suffix tree, presented
an O(n log σ)-time algorithm for this problem [SWAT 1973]. For polynomially-bounded integer
alphabets, the linear-time construction of suffix trees by Farach yielded an O(n)-time algorithm
for the LCS problem [FOCS 1997]. However, for small alphabets, this is not necessarily optimal
for the LCS problem in the word RAM model of computation, in which the strings can be stored
in O(n log σ/ log n) space and read in O(n log σ/ log n) time. We show that, in this model, we can
compute an LCS in time O(n log σ/

√
log n), which is sublinear in n if σ = 2o(

√
log n) (in particular,

if σ = O(1)), using optimal space O(n log σ/ log n).
We then lift our ideas to the problem of computing a k-mismatch LCS, which has received

considerable attention in recent years. In this problem, the aim is to compute a longest substring of S

that occurs in T with at most k mismatches. Flouri et al. showed how to compute a 1-mismatch LCS
in O(n log n) time [IPL 2015]. Thankachan et al. extended this result to computing a k-mismatch
LCS in O(n logk n) time for k = O(1) [J. Comput. Biol. 2016]. We show an O(n logk−1/2 n)-time
algorithm, for any constant integer k > 0 and irrespective of the alphabet size, using O(n) space as
the previous approaches. We thus notably break through the well-known n logk n barrier, which
stems from a recursive heavy-path decomposition technique that was first introduced in the seminal
paper of Cole et al. [STOC 2004] for string indexing with k errors.
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1 Introduction

In the classic longest common substring (LCS) problem, we are given two strings S and T ,
each of length at most n, over an alphabet of size σ, and we are asked to find a longest string
occurring as a fragment of both S and T . The problem was conjectured by Knuth to require
Ω(n log n) time until Weiner, in his seminal paper introducing the suffix tree [62], showed
that the LCS problem can be solved in O(n) time when σ is constant via constructing the
suffix tree of string S#T , for a sentinel letter #. Later, Farach showed that if σ is not
constant, the suffix tree can be constructed in linear time in addition to the time required
for sorting its letters [33]. This yielded an O(n)-time algorithm for the LCS problem in the
word RAM model for polynomially-bounded integer alphabets. While Farach’s algorithm
for suffix tree construction is optimal for all alphabets (the suffix tree by definition has size
Θ(n)), the same does not hold for the LCS problem. We were thus motivated to answer the
following basic question:

Can the LCS problem be solved in o(n) time when log σ = o(log n)?

We consider the word RAM model and assume an alphabet [0, σ). Any string of length n

can then be stored in O(n log σ/ log n) space and read in O(n log σ/ log n) time. Note that if
log σ = Θ(log n), one requires Θ(n) time to read the input. We answer this basic question
positively when log σ = o(

√
log n):

▶ Theorem 1. Given two strings S and T , each of length at most n, over an alphabet [0, σ),
we can solve the LCS problem in O(n log σ/

√
log n) time using O(n/ logσ n) space.

We also consider the following generalisation of the LCS problem that allows mismatches.

k-Mismatch Longest Common Substring (k-LCS)
Input: Two strings S and T , each of length at most n, over an integer alphabet and an
integer k > 0.
Output: A pair S′, T ′ of substrings of S and T , respectively, with Hamming distance
(i.e., number of mismatches) at most k and maximal length.

Flouri et al. presented an O(n log n)-time algorithm for the 1-LCS problem [35]. (Earlier
work on this problem includes [6].) This was generalised by Thankachan et al. [59] to an
algorithm for the k-LCS problem that works in O(n logk n) time if k = O(1). Both algorithms
use O(n) space. In [24], Charalampopoulos et al. presented an O(n + n logk+1 n/

√
ℓ)-time

algorithm for k-LCS with k = O(1), where ℓ is the length of a k-LCS. For general k, Flouri et
al. presented an O(n2)-time algorithm that uses O(1) additional space [35]. Grabowski [40]
presented two algorithms with running times O(n((k + 1)(ℓ0 + 1))k) and O(n2k/ℓk), where
ℓ0 and ℓk are, respectively, the length of an LCS of S and T and the length of a k-LCS of S

and T . Abboud et al. [1] employed the polynomial method to obtain a k1.5n2/2Ω(
√

log n/k)-
time randomised algorithm. In [49], Kociumaka et al. showed that, assuming the Strong
Exponential Time Hypothesis (SETH) [45, 46], no strongly subquadratic-time solution for
k-LCS exists for k = Ω(log n). The authors of [49] additionally presented a subquadratic-time
2-approximation algorithm for k-LCS for general k.

Analogously to Weiner’s solution to the LCS problem via suffix trees, the algorithm of
Thankachan et al. [59] builds upon the ideas of the k-errata tree, which was introduced
by Cole et al. [29] in their seminal paper for indexing a string of length n with the aim of
answering pattern matching queries with up to k mismatches. For constant k, the size of the
k-errata tree is O(n logk n). (Note that computing a k-LCS using the k-errata tree directly
is not straightforward as opposed to computing an LCS using the suffix tree.)
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We show the following result, breaking through the n logk n barrier, for any constant
integer k > 0 and irrespective of the alphabet size. Recall that, in the word RAM, the letters
of S and T can be renumbered in O(n log log n) time [42] so that they belong to [0, σ).

▶ Theorem 2. Given two strings S and T , each of length at most n, over an integer alphabet
and a constant integer k > 0, the k-LCS problem can be solved in O(n logk−1/2 n) time using
O(n) space.

Notably, on the way to proving the above theorem, we improve upon [24] by showing
an O(n + n logk+1 n/ℓ)-time algorithm for k-LCS with k = O(1), where ℓ is the length of a
k-LCS. (Our second summand is smaller by a

√
ℓ multiplicative factor compared to [24].)

Our Techniques

At the heart of our approaches lies the following Two String Families LCP Problem.
(Here, the length of the longest common prefix of two strings U and V is denoted by
LCP(U, V ); see Preliminaries for a precise definition of compacted tries.)

Two String Families LCP Problem
Input: Compacted tries T (F1), T (F2) of F1, F2 ⊆ Σ∗ and two sets P, Q ⊆ F1 × F2,
with |P|, |Q|, |F1|, |F2| ≤ N .
Output: The value
maxPairLCP(P , Q) = max{LCP(P1, Q1) + LCP(P2, Q2) : (P1, P2) ∈ P , (Q1, Q2) ∈ Q}.

This abstract problem was introduced in [24]. Its solution, shown in the lemma below, is
directly based on a technique that was used in [19, 31] and then in [35] to devise an O(n log n)-
time solution for 1-LCS. In particular, Lemma 3 immediately implies an O(n log n)-time
algorithm for 1-LCS.

▶ Lemma 3 ([24, Lemma 3]). The Two String Families LCP Problem can be solved in
O(N log N) time and O(N) space.1

In the algorithm underlying Lemma 3, for each node v of T (F1) we try to identify a
pair of elements, one from P and one from Q, whose first components are descendants of
v and the LCP of their second components is maximised. The algorithm traverses T (F1)
bottom-up and uses mergeable height-balanced trees with O(N log N) total merging time to
store elements of pairs; see [20].

An o(N log N) time solution to the Two String Families LCP Problem is not known
and devising such an algorithm seems difficult. The key ingredient of our algorithms is an
efficient solution to the following special case of the problem. We say that a family of string
pairs P is an (α, β)-family if each (U, V ) ∈ P satisfies |U | ≤ α and |V | ≤ β.

▶ Lemma 4. An instance of the Two String Families LCP Problem in which P and Q
are (α, β)-families can be solved in time O(N(α + log N)(log β +

√
log N)/ log N) and space

O(N + Nα/ log N).

The algorithm behind this solution uses a wavelet tree of the first components of P ∪ Q.

1 The original formulation of [24, Lemma 3] does not include a claim about the space complexity. However,
it can be readily verified that the underlying algorithm, described in [31, 35], uses only linear space.
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Solution to LCS. For the LCS problem, we design three different algorithms depending
on the length of the solution. For short LCS (≤ 1

3 logσ n), we employ a simple tabulation
technique. For long LCS (≥ log4 n), we employ the technique of Charalampopoulos et al. [24]
for computing a long k-LCS, plugging in the sublinear longest common extension (LCE) data
structure of Kempa and Kociumaka [47]. Both of these solutions work in O(n/ logσ n) time.

As for medium-length LCS, let us first consider a case when the strings do not contain
highly periodic fragments. In this case, we use the string synchronising sets of Kempa
and Kociumaka [47] to select a set of O( n

τ ) anchors over S and T , where τ = Θ(logσ n),
such that for any common substring U of S and T of length ℓ ≥ 3τ − 1, there exist
occurrences S[iS . . jS ] and T [iT . . jT ] of U , for which we have anchors aS ∈ [iS , jS ] and
aT ∈ [iT , jT ] with aS − iS = aT − iT ≤ τ . For each anchor a in S, we add a string pair
((S[a − τ . . a))R, S[a . . a + β)) to P (and similarly for T and Q). This lets us apply Lemma 4
with N = O(n/τ), α = O(τ), and β = O(log4 n). In the periodic case, we cannot guarantee
that aS − iS = aT − iT is small, but we can obtain a different set of anchors based on
maximal repetitions (runs) that yields multiple instances of the Two String Families
LCP Problem, which have extra structure leading to a linear-time solution.

Solution to k-LCS. In this case we also obtain a set of O(n/ℓ) anchors, where ℓ is the
length of k-LCS. If the common substring is far from highly periodic, we use a synchronising
set for τ = Θ(ℓ), and otherwise we generate anchors using a technique of misperiods that was
initially introduced for k-mismatch pattern matching [18, 26]. Now the families P, Q need
to consist not simply of substrings of S and T , but rather of modified substrings generated
by an approach that resembles k-errata trees [29]. This requires combining the ideas of
Thankachan et al. [59] and Charalampopoulos et al. [24]; this turns out to be technically
challenging in order to stay within linear space. We apply Lemma 3 or Lemma 4 depending
on the length ℓ, which allows us to break through the n logk n barrier for k-LCS.

Other Related Work

A large body of work has been devoted to exploiting bit-parallelism in the word RAM model
for string matching [7, 57, 55, 36, 37, 48, 14, 21, 9, 15, 11, 17, 39, 12, 16].

Other results on the LCS problem include the linear-time computation of an LCS of
several strings over an integer alphabet [43], trade-offs between the time and the working
space for computing an LCS of two strings [13, 50, 56], and the dynamic maintenance of
an LCS [2, 3, 25]. Very recently, a strongly sublinear-time quantum algorithm and a lower
bound for the quantum setting were shown [38]. The k-LCS problem has also been studied
under edit distance and subquadratic-time algorithms for k = o(log n) are known [58, 4].

The problem of indexing a string of length n over an alphabet [0, σ) in sublinear time in
the word RAM model, with the aim of answering pattern matching queries, has attracted
significant attention. Since by definition the suffix tree occupies Θ(n) space, alternative
indexes have been sought. The state of the art is an index that occupies O(n log σ/ log n)
space and can be constructed in O(n log σ/

√
log n) time [47, 53]. Interestingly, the running

time of our algorithm (Theorem 1) matches the construction time of this index. Note that, in
contrast to suffix trees, such indexes cannot be used directly for computing an LCS. Intuitively,
these indexes sample suffixes of the string to be indexed, and upon a pattern matching query,
they have to treat separately the first O(logσ n) letters of the pattern.

As for k-mismatch indexing, for k = O(1), a k-errata tree occupies O(n logk n) space, can
be constructed in O(n logk+1 n) time, and supports pattern matching queries with at most k

mismatches in O(m+logk n log log n+occ) time, where m is the length of the pattern and occ
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is the number of the reported pattern occurrences. Other trade-offs for this problem, in which
the product of space and query time is still Ω(n log2k n), were shown in [23, 60], and solutions
with O(n) space but Ω(min{n, σkmk−1})-time queries were presented in [22, 27, 44, 61].
More efficient solutions for k = 1 are known (see [10] and references therein). Cohen-Addad
et al. [28] showed that, under SETH, for k = Θ(log n) any indexing data structure that can
be constructed in polynomial time cannot have O(n1−δ) query time, for any δ > 0. They
also showed that in the pointer machine model, for k = o(log n), exponential dependency on
k either in the space or in the query time cannot be avoided (for the reporting version of the
problem). We hope that our techniques can fuel further progress in k-mismatch indexing.

2 Preliminaries

Strings. Let T = T [1]T [2] · · · T [n] be a string (or text) of length n = |T | over an alphabet
Σ = [0, σ). The elements of Σ are called letters.

By ε we denote the empty string. For two positions i and j of T , we denote by T [i . . j] the
fragment of T that starts at position i and ends at position j (the fragment is empty if i > j).
A fragment of T is represented using O(1) space by specifying the indices i and j. We define
T [i . . j) = T [i . . j−1] and T (i . . j] = T [i+1 . . j]. The fragment T [i . . j] is an occurrence of the
underlying substring P = T [i] · · · T [j]. We say that P occurs at position i in T . A prefix of T

is a fragment of T of the form T [1 . . j] and a suffix of T is a fragment of T of the form T [i . . n].
We denote the reverse string of T by T R, i.e., T R = T [n]T [n − 1] · · · T [1]. By UV we denote
the concatenation of two strings U and V , i.e., UV = U [1]U [2] · · · U [|U |]V [1]V [2] · · · V [|V |].

A positive integer p is called a period of a string T if T [i] = T [i + p] for all i ∈ [1, |T | − p].
We refer to the smallest period as the period of the string, and denote it by per(T ). A string
T is called periodic if per(T ) ≤ |T |/2 and aperiodic otherwise. A run in T is a periodic
substring that cannot be extended (to the left nor to the right) without an increase of its
shortest period. All runs in a string can be computed in linear time [8, 51, 32].

▶ Lemma 5 (Periodicity Lemma (weak version) [34]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

Tries. Let M be a finite set containing m > 0 strings over Σ. The trie of M, denoted
by R(M), contains a node for every distinct prefix of a string in M; the root node is ε;
the set of leaf nodes is M; and edges are of the form (u, α, uα), where u and uα are nodes
and α ∈ Σ. The compacted trie of M, denoted by T (M), contains the root, the branching
nodes, and the leaf nodes of R(M). Each maximal branchless path segment from R(M) is
replaced by a single edge, and a fragment of a string M ∈ M is used to represent the label of
this edge in O(1) space. The best known example of a compacted trie is the suffix tree [62].
Throughout our algorithms, M always consists of a set of substrings or modified substrings
with k = O(1) modifications (see Section 5 for a definition) of a reference string. The value
val(u) of a node u is the concatenation of labels of edges on the path from the root to u,
and the string-depth of u is the length of val(u). The size of T (M) is O(m). We use the
following well-known construction (cf. [30]).

▶ Lemma 6. Given a sorted list of N strings and the longest common prefixes between pairs
of consecutive strings, the compacted trie of the strings can be constructed in O(N) time.

Packed strings. We assume the unit-cost word RAM model with word size w = Θ(log n)
and a standard instruction set including arithmetic operations, bitwise Boolean operations,
and shifts. We count the space complexity of our algorithms in machine words used by the
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algorithm. The packed representation of a string T over alphabet [0, σ) is a list obtained by
storing Θ(logσ n) letters per machine word thus representing T in O(|T |/ logσ n) machine
words. If T is given in the packed representation we simply say that T is a packed string.

String synchronising sets. Our solution uses the string synchronising sets introduced
by Kempa and Kociumaka [47]. Informally, in the simpler case that T is cube-free, a τ -
synchronising set of T is a small set of synchronising positions in T such that each length-τ
fragment of T contains at least one synchronising position, and the leftmost synchronising
positions within two sufficiently long matching fragments of T are consistent.

Formally, for a string T and a positive integer τ ≤ 1
2 n, a set A ⊆ [1, n − 2τ + 1] is a

τ -synchronising set of T if it satisfies the following two conditions:
1. If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.

2. For i ∈ [1, n − 3τ + 2], A ∩ [i, i + τ) = ∅ if and only if per(T [i . . i + 3τ − 2]) ≤ 1
3 τ .

▶ Theorem 7 ([47, Proposition 8.10, Theorem 8.11]). For a string T ∈ [0, σ)n with σ = nO(1)

and τ ≤ 1
2 n, there exists a τ -synchronising set of size O(n/τ) that can be constructed in O(n)

time or, if τ ≤ 1
5 logσ n, in O(n/τ) time if T is given in a packed representation.

As in [47], for a τ -synchronising set A, let succA(i) := min{j ∈ A ∪ {n − 2τ + 2} : j ≥ i}.

▶ Lemma 8 ([47, Fact 3.2]). If p = per(T [i . . i + 3τ − 2]) ≤ 1
3 τ , then T [i . . succA(i) + 2τ − 1)

is the longest prefix of T [i . . |T |] with period p.

▶ Lemma 9 ([47, Fact 3.3]). If a string U with |U | ≥ 3τ − 1 and per(U) > 1
3 τ occurs at

positions i and j in T , then succA(i) − i = succA(j) − j ≤ |U | − 2τ .

A τ -run R is a run of length at least 3τ − 1 with period at most 1
3 τ . The Lyndon root

of R is the lexicographically smallest cyclic shift of R[1 . . per(R)]. A proof of the following
lemma resembles an argument given in [47, Section 6.1.2]; its proof can be found in the full
version of this paper.

▶ Lemma 10. For a positive integer τ , a string T ∈ [0, σ)n contains O(n/τ) τ -runs.
Moreover, if τ ≤ 1

9 logσ n, given a packed representation of T , we can compute all τ -runs in
T and group them by their Lyndon roots in O(n/τ) time. Within the same complexities, for
each τ -run, we can compute the two leftmost occurrences of its Lyndon root.

▶ Theorem 11 ([47, Theorem 4.3]). Given a packed representation of a string T ∈ [0, σ)n

and a τ -synchronising set A of T of size O(n/τ) for τ = O(logσ n), we can compute in
O(n/τ) time the lexicographic order of all suffixes of T starting at positions in A.

We often want to preprocess T to be able to answer queries LCP(T [i . . n], T [j . . n]) [52].
For this case, there exists an optimal data structure that applies synchronising sets.

▶ Theorem 12 ([47, Theorem 5.4]). Given a packed representation of a string T ∈ [0, σ)n,
LCP queries on T can be answered in O(1) time after O(n/ logσ n)-time preprocessing.

3 Sublinear-Time LCS

We provide different solutions depending on the length ℓ of an LCS. Lemmas 13, 14, and 17
directly yield Theorem 1.

The proof of the following lemma, for the case where an LCS is short, i.e., of length
ℓ ≤ 1

3 logσ n, uses tabulation and can be found in the full version of this paper.
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▶ Lemma 13. The LCS problem can be solved in O(n/ logσ n) time if ℓ ≤ 1
3 logσ n.

The proof of the following lemma, for the case where an LCS is long, i.e., of length
ℓ = Ω( log4 n

log2 σ
), uses difference covers and the O(N log N)-time solution to the Two String

Families LCP Problem. This proof closely follows [24] and can be found in the full version
of this paper.

▶ Lemma 14. The LCS problem can be solved in O(n/ logσ n) time if ℓ = Ω( log4 n
log2 σ

).

Solution for medium-length LCS. We now give a solution to the LCS problem for ℓ ∈
[ 1

3 logσ n, 2
√

log n]. We first construct three subsets of positions in S$T , where $ ̸∈ Σ, of size
O(n/ logσ n) as follows. For τ = ⌊ 1

9 logσ n⌋, let AI be a τ -synchronising set of S$T . For
each τ -run in S$T , we insert to AII the starting positions of the first two occurrences of
the Lyndon root of the τ -run and to AIII the last position of the τ -run. The elements of
AII and AIII store the τ -run they originate from. Finally, we denote AS

j = Aj ∩ [1, |S|] and
AT

j = {a − |S| − 1 : a ∈ Aj , a > |S| + 1} for j = I, II , III . The following lemma shows that
there exists an LCS of S and T for which AI ∪ AII ∪ AIII is a set of anchors that satisfies
certain distance requirements.

▶ Lemma 15. If an LCS of S and T has length ℓ ≥ 3τ , then there exist positions iS ∈ [1, |S|],
iT ∈ [1, |T |], a shift δ ∈ [0, ℓ), and j ∈ {I, II , III } such that S[iS . . iS + ℓ) = T [iT . . iT + ℓ),
iS + δ ∈ AS

j , iT + δ ∈ AT
j , and

if j = I, then δ ∈ [0, τ);
if j = II , then S[iS . . iS + ℓ) is contained in the τ -run from which iS + δ ∈ AS originates;
if j = III , then δ ≥ 3τ −1 and S[iS . . iS +δ] is a suffix of the τ -run from which iS +δ ∈ AS

originates.

Proof. By the assumption, there exist iS ∈ [1, |S|] and iT ∈ [1, |T |] such that S[iS . . iS +ℓ) =
T [iT . . iT + ℓ). Let us choose any such pair (iS , iT ) minimising the sum iS + iT . We have
the following cases.
1. If per(S[iS . . iS + 3τ − 2]) > 1

3 τ , then, by the definition of a τ -synchronising set, in this
case there exist some elements aS ∈ AS

I ∩ [iS , iS + τ) and aT ∈ AT
I ∩ [iT , iT + τ). Let us

choose the smallest such elements. By Lemma 9, we have aS − iS = aT − iT .
2. Else, p = per(S[iS . . iS + 3τ − 2]) ≤ 1

3 τ . We have two subcases.
a. If p = per(S[iS . . iS + ℓ)), then, by the choice of iS and iT there exists a τ -run RS in

S that starts at position in (iS − p . . iS ] and a τ -run RT in T that starts at position
in (iT − p . . iT ]. Moreover, by Lemma 5, both runs have equal Lyndon roots. For each
X ∈ {S, T }, let us choose aX as the leftmost starting position of a Lyndon root of
RX that is ≥ iX . We have aS − iS = aT − iT ∈ [0, 1

3 τ). Each position aX will be the
starting position of the first or the second occurrence of the Lyndon root of RS , so
aS ∈ AS

II and aT ∈ AT
II .

b. Else, p ̸= per(S[iS . . iS + ℓ)). We have d = min{b ≥ p : S[iS + b] ̸= S[iS + b − p]} < ℓ

(and d ≥ 3τ − 1). In this case, aS = iS + d − 1 and aT = iT + d − 1 are the
ending positions of τ -runs with period p in S and T , respectively, so aS ∈ AS

III and
aT ∈ AT

III . ◀

Case j = I from the above lemma corresponds to the Two String Families LCP
Problem with P and Q being (τ, 2

√
log n)-families. Let us introduce a variant of the Two

String Families LCP Problem that intuitively corresponds to the case j ∈ {II , III }. A
family of string pairs P is called a prefix family if there exists a string Y such that, for each
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(U, V ) ∈ P , U is a prefix of Y . We arrive at this special case with first components of P and
Q being prefixes of some cyclic shift of a power of a (common) Lyndon root of τ -runs. The
proof of the following lemma can be found in the full version of this paper.

▶ Lemma 16. An instance of the Two String Families LCP Problem in which P ∪ Q
is a prefix family can be solved in O(N) time.

We are now ready to state the main result of this subsection.

▶ Lemma 17. The LCS problem can be solved in O(n log σ/
√

log n) time using O(n/ logσ n)
space if ℓ ∈ [ 1

3 logσ n, 2
√

log n].

Proof. Recall that τ = ⌊ 1
9 logσ n⌋. The set of anchors A = AI ∪ AII ∪ AIII consists of a

τ -synchronising set and of O(1) positions per each τ -run in S$T . Hence, |A| = O(n/τ) and
A can be constructed in O(n/τ) time by Theorem 7 and Lemma 10.

We construct sets of pairs of substrings of X = S$1T $2SR$3T R. First, for ∆ = ⌊2
√

log n⌋:

PI = {((S[a − τ . . a))R, S[a . . a + ∆)) : a ∈ AS
I }.

Then, for each group G of τ -runs in S and T with equal Lyndon root, we construct the
following set of string pairs:

PG
II = {((S[x . . a))R, S[a . . y)) : a ∈ AS

II that originates from τ -run S[x . . y] ∈ G}.

We define the tail of a τ -run S[i . . j] with period p and Lyndon root S[i′ . . i′ + p) as
(j + 1 − i′) mod p (and same for τ -runs in T ). For each group of τ -runs in S and T with
equal Lyndon roots, we group the τ -runs belonging to it by their tails. This can be done in
O(n/τ) time using tabulation, since the tail values are up to 1

3 τ . For each group G of τ -runs
in S and T with equal Lyndon root and tail, we construct the following set of string pairs:

PG
III = {((S[x . . y))R, S[y . . |S|]) : S[x . . y] ∈ G}.

Simultaneously, we create sets QI , QG
II and QG

III defined with T instead of S.
Now, it suffices to output the maximum of maxPairLCP(PI , QI), maxPairLCP(PG

II , QG
II ),

and maxPairLCP(PG
III , QG

III ), where G ranges over groups of τ -runs. Computing any indi-
vidual maxPairLCP value can be expressed as an instance of the Two String Families
LCP Problem provided that all the first and second components of families are represented
as nodes of compacted tries. We will use Lemma 6 to construct these compacted tries. LCP
queries can be answered efficiently due to Theorem 12, so it suffices to be able to sort all
the first and second components of each pair of string pair sets lexicographically. Each of
the sets PI , QI can be ordered by the second components using Theorem 11 since AI is a
τ -synchronising set, and by the first components with easy preprocessing using the fact that
the number of possible τ -length strings is στ = O(n1/9). In a set PG

II , both all first and all
second components are prefixes of a single string (a power of the common Lyndon root).
Hence, they can be sorted simply by comparing their lengths. This sorting is performed
simultaneously for all the families PG

II , QG
II in O(n/τ) time via radix sort. Finally, to sort the

second components of the sets PG
III QG

III , instead of comparing strings of the form S[y . . |S|]
(and same for T ), we can equivalently compare strings S[y − 2τ + 1 . . |S|] which are known
to start at positions from a τ -synchronising set by Lemma 8. This sorting is done across all
groups using radix sort and Theorem 11. The correctness follows by Lemma 15.
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Finally, we observe that (PI , QI) is a (τ, ∆)-family of size N = O(n/τ), and thus
maxPairLCP(PI , QI) can be computed in O(n log σ/

√
log n) time and O(n/ logσ n) space

using Lemma 4. On the other hand, (PG
II , QG

II ) and (PG
III , QG

III ) are prefix families of total
size O(n/τ), so the corresponding instances of the Two String Families LCP Problem
can be solved in O(n/ logσ n) total time using Lemma 16. ◀

4 Proof of Lemma 4 via Wavelet Trees

Wavelet trees. For an arbitrary alphabet Σ, the skeleton tree for Σ is a full binary tree T
together with a bijection between Σ and the leaves of T . For a node v ∈ T , let Σv denote
the subset of Σ that corresponds to the leaves in the subtree of v.

The T -shaped wavelet tree of a string T ∈ Σ∗ consists of bit vectors assigned to internal
nodes of T (inspect Figure 1(a)). For an internal node v with children vL and vR, let
Tv denote the maximal subsequence of T that consists of letters from Σv; the bit vector
Bv[1 . . |Tv|] is defined so that Bv[i] = 0 if Tv[i] ∈ ΣvL

and Bv[i] = 1 if Tv[i] ∈ ΣvR
.

T = 12 7 11 15 9 6 4 0 1 2 10 3 13 5 8 14

1011100000101011

11100001 10100101

0011 1100 1010 0101

01 01 01 10 10 10 01 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Standard skeleton tree with |T | = σ = 16.

u1 u2 u3 u4 u5 u6

v

v

u1 u2

u3

u4

u5

u6

(b) Binarisation with height O(α + log N).

Figure 1 (a) Let v be left child of the root node. Then Σv = {0, 1, . . . , 7}, Tv = 7, 6, 4, 0, 1, 2, 3, 5
and so Bv = 11100001: 7, 6, 4, 5 belong to the right subtree of v and 0, 1, 2, 3 to the left. (b) For
each i, let the size of the subtree rooted at ui be 2i. The binarisation from [5] leads to height
O(α + log N), favouring heavier children.

Wavelet trees were introduced in [41], whereas efficient construction algorithms were
presented in [54, 5].

▶ Theorem 18 (see [54, Theorem 2]). Given the packed representation of a string T ∈ [0, σ)n

and a skeleton tree T of height h, the T -shaped wavelet tree of T takes O(nh/ log n + σ) space
and can be constructed in O(nh/

√
log n + σ) time.

Wavelet trees are sometimes constructed for sequences T ∈ M∗ over an alphabet M ⊆ Σ∗

that itself consists of strings (see e.g. [47]). In this case, the skeleton tree T is often chosen
to resemble the compacted trie of M. Formally, we say that a skeleton tree T for M is
prefix-consistent if each node v ∈ T admits a label val(v) ∈ Σ∗ such that:

if v is a leaf, then val(v) is the corresponding string in M;
if v is a node with children vL, vR, then, for all leaves uL, uR in the subtrees of vL and
vR, respectively, the string val(v) is the longest common prefix of val(uL) and val(uR).

Observe that if M ⊆ {0, 1}α for some integer α, then the compacted trie T (M) is a
prefix-consistent skeleton tree for M. For larger alphabets, we binarise T (M) as follows:

▶ Lemma 19. Given the compacted trie T (M) of a set M ⊆ Σα, a prefix-consistent skeleton
tree of height O(α + log |M|) can be constructed in O(|M|) time, with each node v associated
to a node v′ of T (M) such that val(v) = val(v′).
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Proof. We use [5, Corollary 3.2], where the authors showed that any rooted tree of size m and
height h can be binarised in O(m) time so that the resulting tree is of height O(h + log m);
see Figure 1(b). For T (M), we obtain height O(α + log |M|) and time O(|M|). ◀

▶ Lemma 4. An instance of the Two String Families LCP Problem in which P and Q
are (α, β)-families can be solved in time O(N(α + log N)(log β +

√
log N)/ log N) and space

O(N + Nα/ log N).

Proof. By traversing T (F2) we can compute in O(N) time a list R being a union of sets
P and Q in which the second components are ordered lexicographically. We also store a
bit vector G of length |R| that determines, for each element of R, which of the sets P, Q
it originates from. We construct the wavelet tree of the sequence of strings being the first
components of pairs from R using Theorem 18 and the skeleton tree from Lemma 19. Before
the wavelet tree is constructed, we pad each string with a letter $ ̸∈ Σ to make them all of
length α; we will ignore the nodes of the wavelet tree with a path-label containing a $.

For a sublist X = (U1, V1), . . . , (Um, Vm) of R, by LCPs(X ) we denote the representation
of the list 0, LCP(V1, V2), . . . , LCP(Vm−1, Vm) as a packed string over alphabet [0, β] in space
O(N/ logβ N). Together with each LCPs(X ) we also store the bit vector G(X ) of origins
of elements of X without increasing the complexity. The list LCPs(R) can be computed in
O(N) time when constructing R. For each node v of the wavelet tree, we wish to compute
Lv = LCPs(Rv), where Rv is the sublist of R composed of elements whose first component is
in the leaf list Σv of v. We will construct the lists LCPs(Rv) without actually computing Rv.

Computation of LCPs lists. The lists are computed recursively using the bit vectors from
the wavelet tree. Assume we have computed Lu and wish to compute Lv for the left child v

of u – the computations for the right child are symmetric.
Let c ∈ (0, 1) be a constant. Let us partition Lu into blocks of λ = max(1, ⌊c logβ N⌋)

LCP values. We will process the blocks in order, constructing Lv. Each block of Lu can
be represented in a single word and this representation can be extracted from the packed
representation of Lu in O(1) time. For each block W = Lu(aλ . . (a+1)λ], we retrieve in O(1)
time the corresponding block D = Bu(aλ . . (a + 1)λ] in the bit vector from the wavelet tree.
Further, we store µa = min Lv(pa . . aλ], where pa = max{i ∈ [0, aλ) : i = 0 or Bu[i] = 0}.
Let us show how, given W , D and µa, we can determine µa+1 and the chunk of Lv that
corresponds to i ∈ [1, λ] such that D[i] = 0. The calculations are based on the following
well-known fact.

▶ Fact 20. If U1, U2, U3 are strings such that U1 ≤ U2 ≤ U3, then we have LCP(U1, U3) =
min(LCP(U1, U2), LCP(U2, U3)).

For each i ∈ [1, λ] such that D[i] = 0, in increasing order, if a previous position j with
D[j] = 0 exists, then min W (i′ . . i] should be appended to Lv, where i′ is the predecessor
of i satisfying D[i′] = 0, and otherwise min({µa} ∪ W [1 . . i]) should. Then, for the last
position i ∈ [1, λ] such that D[i] = 0, µa+1 = min W (i . . λ], and if no such position exists,
then µa+1 = min({µa} ∪ W [1 . . λ]).

If λ = 1, the calculations can be performed in O(1) time. Otherwise, we make use of
preprocessing: for every possible combination of (W, D, µa), i.e., up to 2c log N + log β <

3c log N bits, precompute the block to be appended to Lv and µa+1, i.e., up to c log N+log β <

2c log N bits. We can choose c > 0 small enough to make the preprocessing O(N1−ε) for
some ε > 0. Thus, the computation takes O(|Lu|/λ) time. Within this time, we can also
populate the bit vector of origins for v.
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Application of LCPs lists. For each node u of the wavelet tree, we must extract the maximum
LCP between suffixes of different origins, add the string-depth |val(u)|, and compare the result
with the stored candidate. The former can be computed in O(|Lu|/ logβ N) time as follows.
Due to Fact 20, the answer will be the LCP between a pair of second components of consecutive
elements of Ru that originate from different sets, i.e. max{Lu[i] : i ∈ [2, |Ru|], G(Ru)[i − 1] ̸=
G(Ru)[i]}. We can cover all pairs of consecutive elements of Lu using Θ(1 + |Lu|/ logβ N)
blocks of max(2, ⌊c logβ N⌋) LCP values. Each such block, augmented with its corresponding
bit vector of origins, consists of at most 2c log N bits. We can thus precompute all possible
answers in O(N1−ϵ) time, and then process each node u in Θ(1 + |Lu|/ logβ N) time.

Time complexity. The wavelet tree can be built in O(Nh/
√

log N) time using space
O(Nh/ log N) by Theorem 18, where h = O(α + log N). Computing LCPs for children of a
single node u takes O(1 + |Lu|/ logβ N) time; over all nodes, this is O(Nh log β/ log N). ◀

5 Faster k-LCS

In this section, we outline our O(n logk−1/2 n)-time algorithm for the k-LCS problem with
k = O(1), that underlies Theorem 2. For simplicity, we focus on computing the length
of a k-LCS; an actual pair of strings forming a k-LCS can be recovered easily from our
approach. If the length of an LCS of S and T is d, then the length of a k-LCS of S and T is
in [d, (k + 1)d + k]. Below, we show how to compute a k-LCS provided that it belongs to an
interval (ℓ/2, ℓ] for a specified ℓ; it is sufficient to call this subroutine O(log k) = O(1) times.

Similarly to our solutions for long and medium-length LCS, we first distinguish anchors
AS ⊆ [1, |S|] in S and AT ⊆ [1, |T |] in T , as summarised in the following lemma.

▶ Lemma 21. Consider an instance of the k-LCS problem for k = O(1) and let ℓ ∈ [1, n]. In
O(n) time, one can construct sets AS ⊆ [1, |S|] and AT ⊆ [1, |T |] of size O( n

ℓ ) satisfying the
following condition: If a k-LCS of S and T has length ℓ′ ∈ (ℓ/2, ℓ], then there exist positions
iS ∈ [1, |S|], iT ∈ [1, |T |] and a shift δ ∈ [0, ℓ′) such that iS + δ ∈ AS, iT + δ ∈ AT , and the
Hamming distance between S[iS . . iS + ℓ′) and T [iT . . iT + ℓ′) is at most k.

Proof. As in [26], we say that position a in a string X is a misperiod with respect to a substring
X[i . . j) if X[a] ̸= X[b], where b is the unique position such that b ∈ [i, j) and (j − i) | (b − a);
for example, j − i is a period of X if and only if there are no misperiods with respect to
X[i . . j). We define the set LeftMisperk(X, i, j) as the set of k maximal misperiods that are
smaller than i and RightMisperk(X, i, j) as the set of k minimal misperiods that are not
smaller than j. Either set may have fewer than k elements if the corresponding misperiods do
not exist. Further, let us define Misperk(X, i, j) = LeftMisperk(X, i, j) ∪ RightMisperk(X, i, j)
and Misper(X, i, j) =

⋃∞
k=0 Misperk(X, i, j).

Similar to Lemma 15, we construct three subsets of positions in Y = #S$T , where
#, $ ̸∈ Σ. For τ = ⌊ℓ/(6(k + 1))⌋, let AI be a τ -synchronising set of Y . Let Y [i . . j] be a
τ -run with period p and assume that the first occurrence of its Lyndon root is at a position
q of Y . Then, for Y [i . . j], for each x ∈ LeftMisperk+1(Y, i, i + p), we insert to AII the two
smallest positions in [x + 1, |Y |] that are equivalent to q (mod p). Moreover, we insert to
AIII the positions in Misperk+1(Y, i, i + p). Finally, we denote A = AI ∪ AII ∪ AIII , as well
as AS = {a − 1 : a ∈ A ∩ [2, |S| + 1]} and AT = {a − |S| − 2 : a ∈ A ∩ [|S| + 3, |Y |]}. The
proof of the following claim, that can be found in the full version of this paper, resembles
that of Lemma 15.

▷ Claim 22. The sets AS and AT satisfy the condition stated in Lemma 21.
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It remains to show that the sets AS and AT can be constructed efficiently. A τ -
synchronising set can be computed in O(n) time by Theorem 7 and all the τ -runs, together
with the position of the first occurrence of their Lyndon root, can be computed in O(n)
time [8]. After an O(n)-time preprocessing, for every τ -run, we can compute the set of the
k + 1 misperiods of its period to either side in O(1) time; see [26, Claim 18]. ◀

The next step in our solutions to long LCS and medium-length LCS was to construct
an instance of the Two String Families LCP Problem. To adapt this approach, we
generalise the notions of LCP and maxPairLCP so that they allow for mismatches. By
LCPk(U, V ), for k ∈ Z≥0, we denote the maximum length ℓ such that U [1 . . ℓ] and V [1 . . ℓ]
are at Hamming distance at most k.

▶ Definition 23. Given two sets U , V ⊆ Σ∗ × Σ∗ and two integers k1, k2 ∈ Z≥0, we define
maxPairLCPk1,k2(U , V) = max{LCPk1(U1, V1) + LCPk2(U2, V2) : (U1, U2) ∈ U , (V1, V2) ∈ V}.

Note that maxPairLCP(U , V) = maxPairLCP0,0(U , V).
By Lemma 21, if a k-LCS of S and T has length ℓ′ ∈ (ℓ/2, ℓ], then

ℓ′ = kmax
k′=0

maxPairLCPk′,k−k′(U , V), for U = {((S[a − ℓ . . a))R, S[a . . a + ℓ)) : a ∈ AS},

V = {((T [a − ℓ . . a))R, T [a . . a + ℓ)) : a ∈ AT }.

Here, k′ bounds the number of mismatches between S[iS . . iS +δ) and T [iT . . iT +δ), whereas
k − k′ bounds the number of mismatches between S[iS + δ . . iS + ℓ′) and T [iT + δ . . iT + ℓ′).
The following theorem, whose full proof can be found in the full version of this paper, is
the most technical part of our contribution, and allows for efficiently computing the values
maxPairLCPk′,k−k′(U , V).

▶ Theorem 24. Consider two (ℓ, ℓ)-families U , V of total size N consisting of pairs of
substrings of a given length-n text. For any non-negative integers k1, k2 = O(1), the value
maxPairLCPk1,k2(U , V) can be computed:

in O(n + N logk1+k2+1 N) time and O(n + N) space if ℓ > log3/2 N ,
in O(n + Nℓ logk1+k2−1/2 N) time and O(n + Nℓ/ log N) space if log N < ℓ ≤ log3/2 N ,
in O(n + Nℓk1+k2

√
log N) time and O(n + N) space if ℓ ≤ log N .

Proof Outline. We reduce the computation of maxPairLCPk1,k2(U , V) into multiple com-
putations of maxPairLCP(U ′, V ′) across a family P of pairs (U ′, V ′) with U ′, V ′ ⊆ Σ∗ × Σ∗.
Each pair (U ′

1, U ′
2) ∈ U ′ is associated to a pair (U1, U2) ∈ U , with the string U ′

i represented
as a pointer to the source Ui and up to ki substitutions needed to transform Ui to U ′

i .
Similarly, each pair (V ′

1 , V ′
2) ∈ V ′ consists of modified strings with sources (V1, V2) ∈ V. In

order to guarantee maxPairLCPk1,k2(U , V) = max(U ′,V′)∈P maxPairLCP(U ′, V ′), we require
LCP(U ′

i , V ′
i ) ≤ LCPki

(Ui, Vi) for every (U ′
1, U ′

2) ∈ U ′ and (V ′
1 , V ′

2) ∈ V ′ with (U ′, V ′) ∈ P and
that, for every (U1, U2) ∈ U and (V1, V2) ∈ V, there exists (U ′, V ′) ∈ P with (U ′

1, U ′
2) ∈ U ′

and (V ′
1 , V ′

2) ∈ V ′, with sources (U1, U2) and (V1, V2), respectively, such that LCP(U ′
i , V ′

i ) =
LCPki

(Ui, Vi). Our construction is based on a technique of [59] which gives an analogous
family for two subsets of Σ∗ (rather than Σ∗ × Σ∗) and a single threshold: We apply the
approach of [59] to Ui = {Ui : (U1, U2) ∈ U} and Vi = {Vi : (V1, V2) ∈ V} with threshold ki,
and then combine the two resulting families Pi to derive P.

Strengthening the arguments of [59], we show that each string Fi ∈ Ui ∪ Vi is the source
of O(1) modified strings F ′

i ∈ U ′
i ∪ V ′

i for any single (U ′
i , V ′

i) ∈ Pi and O(min(ℓ, log N)ki)
modified strings across all (U ′

i , V ′
i) ∈ Pi. This allows bounding the size of individual sets
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(U ′, V ′) ∈ P by O(N) and the overall size by O(N min(ℓ, log N)k1+k2). In order to efficiently
build the compacted tries required at the input of the Two String Families LCP Problem,
the modified strings F ′

i ∈ U ′
i ∪ V ′

i are sorted lexicographically, and the two derived linear
orders (for i ∈ {1, 2}) are maintained along with every pair (U ′, V ′) ∈ P. Overall, the family
P is constructed in O(n + N min(ℓ, log N)k1+k2) time and O(n + N) space.

The resulting instances of the Two String Families LCP Problem are solved using
Lemma 3 (if ℓ > log3/2 N) or Lemma 4 otherwise; note that U ′, V ′ are (ℓ, ℓ)-families. ◀

Recall that the algorithm of Theorem 24 is called k + 1 = O(1) times, always with
N = |AS |+ |AT | = O(n/ℓ). Overall, the value maxk

k′=0 maxPairLCPk′,k−k′(U , V) is therefore
computed in O(n logk−1/2 n) time and O(n) space in each of the following cases:

in O(n + n
ℓ logk+1 N) = O(n logk−1/2 n) time and O(n + n

ℓ ) = O(n) space if ℓ > log3/2 N ;
in O(n + n

ℓ ℓ logk−1/2 N) = O(n logk−1/2 n) time and O(n + n
ℓ ℓ/ log N) = O(n) space if

log N < ℓ ≤ log3/2 N ;
in O(n + n

ℓ ℓk
√

log N) = O(n logk−1 n) time and O(n + n
ℓ ) = O(n) space if ℓ ≤ log N .

Accounting for O(n) time and space to determine the length d of an LCS between S and
T , and the O(log k) values ℓ that need to be tested so that that the intervals (ℓ/2, ℓ] cover
[d, (k + 1)d + k], this concludes the proof of Theorem 2.

Moreover, the three cases yield the following complexities: O(n + n
ℓ logk+1 n) if ℓ >

log3/2 N , O(n logk−1/2 n) = O( n
ℓ logk+1 n) if log N < ℓ ≤ log3/2 N , and O(n logk−1 n) =

O( n
ℓ logk+1 n) if ℓ ≤ log N , which gives an O(n + n

ℓ logk+1 n)-time solution for any ℓ, thus
improving [24] for k = O(1).
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Abstract
In this paper, we study feature cross search as a fundamental primitive in feature engineering. The
importance of feature cross search especially for the linear model has been known for a while, with
well-known textbook examples. In this problem, the goal is to select a small subset of features,
combine them to form a new feature (called the crossed feature) by considering their Cartesian
product, and find feature crosses to learn an accurate model. In particular, we study the problem of
maximizing a normalized Area Under the Curve (AUC) of the linear model trained on the crossed
feature column.

First, we show that it is not possible to provide an n1/ log log n-approximation algorithm for
this problem unless the exponential time hypothesis fails. This result also rules out the possibility
of solving this problem in polynomial time unless P = NP. On the positive side, by assuming
the naïve Bayes assumption, we show that there exists a simple greedy (1 − 1/e)-approximation
algorithm for this problem. This result is established by relating the AUC to the total variation of
the commutator of two probability measures and showing that the total variation of the commutator
is monotone and submodular. To show this, we relate the submodularity of this function to the
positive semi-definiteness of a corresponding kernel matrix. Then, we use Bochner’s theorem to
prove the positive semi-definiteness by showing that its inverse Fourier transform is non-negative
everywhere. Our techniques and structural results might be of independent interest.
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1 Introduction

Feature engineering is one of the most fundamental problems in machine learning and
it is the key to all supervised learning models. In feature engineering, we start with a
collection of features (a.k.a., raw attributes) and turn them into a new set of features, with
the purpose of improving the accuracy of the learning model. This is often done by some
basic operations, such as removing irrelevant and redundant features (studied as feature
selection [10, 32, 33, 26, 11, 25, 18]), combining features (a.k.a., feature cross [30, 20]) and
bucketing and compressing the vocabulary of the features [2, 7, 28, 1].
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Finding an efficient set of features to combine (i.e., cross) is one of the main primitives
in feature engineering. Let us start with a text book example to show the importance of
feature cross for the linear model. Consider a model with two features, language, which can
be English or Spanish, and country, which can be Mexico or Scotland. Say if English appears
with Scotland, or if Spanish appears with Mexico, the label is 1. Otherwise the label is 0.
It is easy to see that in this case there is no linear model using these two features with a
nontrivial accuracy (i.e., the best model matches the label with probability 1/2). By crossing
these two features, we get a new feature with four possible values (English, Mexico), (English,
Scotland), (Spanish, Mexico), (Spanish, Scotland). Now, a linear model based on this new
feature can perfectly match the label. This is a well-known concept in feature engineering.

Unlike feature selection and vocabulary compression, and despite the importance of feature
cross search in practice, this problem is not well studied from a theoretical perspective. While
some heuristics and exponential-time algorithms have been developed for this problem (e.g.,
[30, 20]), the complexity of designing approximation algorithms for this problem is not
studied. This might be due to the complex behavior of crossing features on the accuracy
of the learning models. In this work, we provide a simple formulation of this problem, and
initiate a theoretical study.

Let us briefly define the problem as follows and defer the formal definition of the problem
to a later section: Given a set of n features, and a number k, compute a set of at most
k features out of n features and combine these k features such that the accuracy of the
optimum linear model on the combined feature is maximized. To measure the accuracy we
use normalized Area Under the Curve (AUC). The bound k is to avoid over fitting.2 This
is a very basic definition for the feature cross search problem and can be considered as a
building block in feature engineering. In fact, as we discuss later in the paper, it is still hard
to design algorithms for this basic problem.

First, we show that there is no n1/ log log n-approximation algorithm for feature cross
search unless the exponential time hypothesis fails. Our hardness result also implies that
there does not exist a polynomial-time algorithm for feature cross search unless P = NP. It
is easy to extend these hardness results to other notions of accuracy such as probability of
matching the label. Obviously, this hardness result holds for any extension of the problem as
well.

In fact, often, the real world inputs are not adversarially constructed. Usually, the inputs
follow some structural properties that allow simple algorithms to work efficiently. With this
intuition in mind, to complement our hardness result, for features under the naïve Bayes
assumption [22, 29, 9], we provide a (1 − 1/e)-approximation algorithm that only needs
polynomially many function evaluations. We further discuss and justify this assumption in
Section 1.1.

In Section 1.1, we define the problem formally and present our results as well as an overview
of our techniques. In Section 2, we provide the preliminary definitions and observations that
will be used later in the proofs. In Section 3, we present our hardness results. We relate
the maximum AUC to the log-likelihood ratio and the total variation of the commutator
of two probability distributions in Section 4. Section 5 establishes the monotonicty and
submodularity of the maximum AUC as a set function. This section forms the most technical
part of the paper. In Section 6 we present other related works. Finally, Section 7 concludes
the paper.

2 In practice this number is chosen by tracking the accuracy of the model on the validation data. However,
this is out of the scope of this paper.
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1.1 Problem Statement and Our Contributions
We start with some definitions necessary to present our results, and then, we present our
contributions. Assume that the dataset comprises n = |U | categorical feature columns and a
binary label column, where U is the set of all feature columns. Let the random variable Xi

denote the value of the i-th feature column (i ∈ U) and C ∈ {0, 1} be the value of the binary
label. The random variables X1, . . . , X|U |, C follow a joint distribution D. Additionally, we
assume that the support of the random variable Xi is a finite set Vi ⊆ N. The set Vi is also
known as the vocabulary of the i-th feature column. If A ⊆ U is a set of feature columns, we
write VA for

∏
a∈A Va and write XA for (Xa|a ∈ A), where (Xa|a ∈ A) is a vector indexed by

a ∈ A (for example, if A = {1, 2, 4}, the vector XA is a 3-dimensional vector (X1, X2, X4).
Suppose that we focus on a set of feature columns and temporarily ignore the remaining

feature columns. In other words, we consider the dataset modeled by the distribution of
(XA, C). Let R = R∪ {−∞, +∞} denote the set of extended real numbers. Given a function
σ : VA → R that assigns a score to each possible value of XA, and given a threshold τ , we
predict a positive label for XA if σ(XA) > τ and predict a negative label if σ(XA) < τ .
If σ(XA) = τ , we allow for predicting a positive or negative label at random. Let TPR
and FPR denote the true and false positive rate of this model given a certain decision rule,
respectively. Note that both true and false positive rates lie in [0, 1]. If one varies τ from −∞
to ∞ while fixing the score function σ, a curve that consists of the collection of achievable
points (FPR, TPR) is produced and the curve resides in the square [0, 1] × [0, 1]. The area
under the curve (AUC) [4] is then defined as the area of the region enclosed by this curve,
and the two lines FPR = 1 and TPR = 0.

An equivalent definition is that AUC is roughly the probability that a random positive
instance has a higher score (in terms of σ) than a negative instance (we say roughly because
in Definition 1, we have to be careful about tiebreaking, i.e., the second term).

▶ Definition 1 (Area under the curve (AUC) [4]). Given a set of feature columns A and a
function σ : VA → R, the area under the curve (AUC) of A and σ is

AUCσ(A) = Pr[σ(X+
A ) > σ(X−

A )|C+ = 1, C− = 0] + 1
2 Pr[σ(X+

A ) = σ(X−
A )|C+ = 1, C− = 0] ,

where (X+
A , C+), (X−

A , C−) ∼ D are i.i.d. and Xγ
A = (Xγ

a |a ∈ A) obeys a marginal distribu-
tion of D (γ is either + or −).

The maximum AUC is the AUC of the best scoring function. It is a function of the set of
feature columns and independent of the scoring function.

▶ Definition 2 (Maximum AUC). Given a set of feature columns A, the maximum AUC is

AUC∗(A) = sup
σ:VA→R

AUCσ(A) .

Now we are ready to present our results. We start with Observation 3 which provides a
characterization of AUC via the total variation distance.

▶ Observation 3 (AUC as total variation distance). Let P A
i be the conditional distribution

Pr[XA|C = i] on VA and let dT V (P, Q) denote the total variation distance between two
probability measures P and Q. We have

AUC∗(A) = 1
2 + 1

2dT V (P A
1 × P A

0 , P A
0 × P A

1 ) = 1
2 + 1

2
∑

x,y∈VA

∣∣P A
1 (x)P A

0 (y) − P A
0 (x)P A

1 (y)
∣∣ ,

where P A
1 × P A

0 and P A
0 × P A

1 denote the product measures.
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Recall that if P and Q are two probability measures on a common σ-algebra F , the total
variation distance between them is

dT V (P, Q) ≜ sup
A∈F

|P (A) − Q(A)| ∈ [0, 1] .

If the sample space Ω (the set of all outcomes) is finite, Scheffé’s lemma [27] gives

dT V (P, Q) = 1
2∥P − Q∥1 ≜

1
2
∑
ω∈Ω

|P (ω) − Q(ω)| . (1)

We present the proof of Observation 3 in Section 4. Observation 3 shows that the
maximum AUC is an affine function of the total variation distance between P A

1 × P A
0 and

P A
0 × P A

1 , where P A
i is the probability measure conditioned on the label. In light of (1), we

have dT V (P A
1 × P A

0 , P A
0 × P A

1 ) = 1
2 ∥P A

1 × P A
0 − P A

0 × P A
1 ∥1. We call the signed measure

P A
1 × P A

0 − P A
0 × P A

1 the commutator of the two probability measures P A
0 and P A

1 . Our
second remark is that since the total variation distance always resides on [0, 1], the range of
the maximum AUC is [1/2, 1].

The next theorem is our main hardness result, stating that it is not possible to approx-
imate feature cross search, unless the exponential time hypothesis [12] fails. We consider
maximization of 2 AUC∗(A) − 1 rather than AUC∗(A) in (2) because the range of the maxi-
mum AUC is [1/2, 1] (as we remark before) and assigning the same score to all feature values
in VA attains an AUC of 1/2, thereby achieving at least a 1/2-approximation. In light of its
range, we consider its normalized version 2 AUC∗(A) − 1 whose range is [0, 1]. We prove this
theorem in Section 3. In fact, our hardness result also implies that the feature cross search
problem is NP-hard (see Corollary 14).

▶ Theorem 4. There is no n1/ poly(log log n)-approximation algorithm for the following maxi-
mization problem unless the exponential time hypothesis [12] fails.

max
A⊆U,|A|=k

(2 AUC∗(A) − 1) . (2)

Although the above hardness result rules out the existence of an algorithm with a good
approximation factor in the general case, it is very rare to face such hard examples in
practice. We consider the naïve Bayes assumption that all feature columns are conditionally
independent given the label. We borrowed this assumption from the widely-used naïve Bayes
classifier [22]. For example, under the same assumption, [15] established the submodularity
of mutual information and [6] proved that in the sequential information maximization
problem, the most informative selection policy behaves near optimally. [29] conducted an
empirical study on the public software defect data from NASA with PCA pre-processing.
They concluded that this assumption was not harmful. Although relaxing the assumption
could produce numerically more favorable results, they were not statistically significantly
better than assuming this assumption. In another example [9], based on their analysis on
three real-world datasets for natural language processing tasks (MDR, Newsgroup and the
ModApte version of the Reuters-21578), they drew a similar conclusion that relaxing the
assumption did not improve the performance.

▶ Assumption 1 (Naïve Bayes). Given the label, all feature columns are independent. In
other words, it holds for A ⊆ U and i = 0, 1 that

Pr[XA = xA|C = i] =
∏
a∈A

Pr[Xa = xa|C = i] . (3)
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Our major algorithmic contribution is to show that under the naïve Bayes assumption the
set function AUC∗ is monotone submodular, which in turn, implies that a greedy algorithm
provides a constant-factor approximation algorithm for this problem.3

▶ Theorem 5. Under the naïve Bayes assumption, the set function AUC∗ : 2U → R is
monotone submodular.

This theorem implies the following result in light of the result of [24].

▶ Corollary 6. Under the naïve Bayes assumption, there exists a (1 − 1/e)-approximation
algorithm that only needs polynomially many evaluations of AUC∗ for feature cross search.

To show Theorem 5, we prove Proposition 7. Proving this proposition requires an involved
analysis and it may be of independent interest in statistics.

▶ Proposition 7 (Proof in Section 5). Let U be a finite index set. Assume that for every
a ∈ U , there are a pair of probability measures P a

0 and P a
1 on a common sample space Va.

For any A ⊆ U , define the set function F : 2U → R≥0 by

F (A) = dT V

(
×
a∈A

P a
1 ××

a∈A

P a
0 ,×

a∈A

P a
0 ××

a∈A

P a
1

)
. (4)

The set function F is monotone and submodular.

Its proof is presented in Section 5. In fact, the most technical part of this paper is to
prove Proposition 7 which claims that the total variation of the commutator of probability
measures is monotone submodular. The monotonicity is a consequence of the subadditivity
of the absolute value function. Submodularity is the technically harder part and is shown in
the following four steps.

First, we introduce the notion of involution equivalence. An involution is a map from a set
to itself that is equal to its inverse map. Two probability measures P and P ′ are said to be
involution equivalent if there exists an involution f on the sample space Ω such that for every
x ∈ Ω, it holds that P (x) = P ′(f(x)). Note that if P (x) = P ′(f(x)) holds for every x ∈ Ω,
we have P ′(x) = P (f(x)) also holds for every x ∈ Ω. In fact, it defines a symmetric relation
on probability measures on Ω. If P and Q are two probability measures on a common sample
space, the product measures P × Q and Q × P are involution equivalent and connected by
the natural transpose involution f that sends (x, y) ∈ Ω2 to (y, x) ∈ Ω2.

The second step is in light of a key observation that summing a bivariate function of two
involution equivalent probability measures over the common sample space remains invariant
under the swapping of the two measures. Based on this key observation, if P and P ′ are
involution equivalent, for every x in their common sample space, we construct the probability
measures of two Bernoulli random variables Ux and U ′

x such that Ux(1) = U ′
x(0) = P (x)

P (x)+P ′(x)

and Ux(0) = U ′
x(1) = P ′(x)

P (x)+P ′(x) . The two Bernoulli probability measures Ux and U ′
x

are again involution equivalent and connected by the swapping of 0 and 1. To establish
submodularity, one has to check an inequality that characterizes the diminishing returns
property (see equation (5) in Section 2.2). Another key observation is that after defining the
Bernoulli probability measures, the desired inequality can be shown to be a conic combination
of the same inequality with some (not all) probability measures in the inequality replaced

3 We will review the definition of submodular and monotone set functions in Section 2.2.
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by the Bernoulli probability measures Ux and U ′
x. To make the above observation work, we

have to require that the remaining probability measures unreplaced in the inequality must
be either of the form P × Q or its transpose Q × P . Using this approach, we reduce the
problem to the Bernoulli case.

Third, after reducing the problem to the Bernoulli case, performing a series of more
involved algebraic manipulations, we re-parametrize the desired inequality that formulates
the diminishing returns property and obtain that the inequality is equivalent to the positive
semi-definiteness of a quadratic form with respect to a kernel matrix. However, this re-
parametrization is valid only for elements of a positive measure with respect to some
probability measures in the inequality. As a consequence, prior to the algebraic manipulations
and re-parametrization, we have to eliminate those elements of measure zero by showing that
their total contribution to the sum is zero. We would like to remark here that the individual
terms may not be zero but they are canceled out under the summation.

Finally, to show that the aforementioned kernel matrix is positive semi-definite, we prove
that it is induced by a positive definite function. We establish the positive definiteness of the
function by showing that its inverse Fourier transform is non-negative everywhere (this is an
implication of the Bochner’s theorem, see Section 2).

Theorem 5 is a straightforward corollary of Proposition 7.

Proof. Let P A
i [·] denote Pr[XA|C = i], the conditional probability measure on VA given the

labeling being i, where i = 0, 1. When A = {a} is a singleton, we write P a
i for P

{a}
i as a

shorthand notation. Under Assumption 1, (3) can be re-written as P A
i [xA] =

∏
a∈A P a

i [xa],
or in a more compact way,

P A
i = ×

a∈A

P a
i .

By Observation 3, we have

AUC∗(A) = 1
2 + 1

2dT V (P A
1 × P A

0 , P A
0 × P A

1 )

= 1
2 + 1

2dT V (×
a∈A

P a
1 ××

a∈A

P a
0 ,×

a∈A

P a
0 ××

a∈A

P a
1 )

= 1
2 + 1

2F (A) .

Since F (A) is monotone submodular by Proposition 7, so is AUC∗. ◀

2 Preliminaries

Throughout this paper, let ∆Ω denote the set of all probability measures on a finite set Ω
and we always assume that the sample space Ω is finite. The set of extended real numbers is
denoted by R and defined as R ∪ {−∞, +∞}.

2.1 Involution Equivalence
We first review the definition of an involution.

▶ Definition 8 (Involution). A map f : Ω → Ω is said to be an involution if for all x ∈ Ω, it
holds that f(f(x)) = x.
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In this paper, we introduce a new notion termed involution equivalence, which forms an
equivalence relation on ∆Ω. Intuitively, two probability measures on a common sample space
Ω are involution equivalent if they are the same after renaming the elements in Ω via an
involution.

▶ Definition 9 (Involution equivalence). Let P, P ′ be two probability measures on a common
sample space Ω. We say that P and P ′ are involution equivalent if there exists an involution
f such that for all x ∈ Ω, P (x) = P ′(f(x)). If P and P ′ are involution equivalent, we denote
it by P

f∼ P ′ or P ∼ P ′ with the involution f omitted when it is not of our interest.

▶ Remark 10. If P
f∼ P ′, we have P ′(x) = P ′(f(f(x)) = P (f(x)).

▶ Remark 11 (Transpose involution). If P and P ′ are two probability measures on a common
sample space Ω, the product measure P × P ′ is involution equivalent to P ′ × P via the
natural transpose map ⊤ that sends (x, y) ∈ Ω2 to ⊤(x, y) = (y, x) ∈ Ω2. Thus we write
P × P ′ ⊤∼ P ′ × P and term ⊤ a transpose involution.

2.2 Submodular and Monotone Set Functions
Let us recall the definition of submodular and monotone set functions. Submodular set
functions are those satisfying that the marginal gain of adding a new element to a set is no
smaller than that of adding the same element to its superset. This property is called the
diminishing returns property, which naturally arises in data summarization [23], influence
maximization [34], and natural language processing [19], among others.

▶ Definition 12 (Submodular set function, [24, 14]). A set function f : 2U → R≥0 is
submodular if for any A ⊆ U and a, b ∈ Ω \ A such that a ̸= b, it satisfies

f(A ∪ {a}) − f(A) ≥ f(A ∪ {a, b}) − f(A ∪ {b}) . (5)

The above Equation (5) formulates the diminishing returns property. Its left-hand side is
the marginal gain of adding a to a set A while the right-hand side is the marginal gain of
adding the same element a to the superset A ∪ {b}.

A monotone set function is a function that assigns a higher function value to a set than
all its subsets.

▶ Definition 13 (Monotone set function). A set function f : 2U → R is monotone if for any
A ⊆ B ⊆ U , we have f(A) ≤ f(B).

3 Hardness Result

In this section we show the hardness of approximation of the feature cross search problem.
We say an algorithm is an α-approximation algorithm for the feature cross search problem if
its accuracy (i.e., 2 AUC −1) is at least α times that of the optimum algorithm.

As a byproduct, we show a hardness result for a feature selection problem based on mutual
information defined as follows. In the label-based mutual information maximization problem
we have a universe of features U and a vector of labels C, and we want to select a subset S
of size k from U that maximizes the mutual information I(S; C). In other words we want to
solve argmaxS⊆U,|S|=k I(S; C). We say an algorithm is an α-approximation algorithm for
the label-based mutual information maximization problem if it reports a set S such that
α ≤ I(S;C)

maxS′⊆U,|S′|=k I(S′;C) .
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31:8 Feature Cross Search via Submodular Optimization

For both problems, we show that an α-approximation algorithm for the problem implies
an α-approximation algorithm for the k-densest subgraph problem. In the k-densest subgraph
problem we are given a graph G(V, E) and a number k and we want to pick a subset S of
size k from V such that the number of edges induced by S is maximized. Recently, [21]
shows that there is no [almost polynomial] n−1/ poly(log log n)- approximation algorithm for
k-densest subgraph that runs in polynomial time unless the exponential time hypothesis fails.
The best known algorithm for this problem has approximation factor n−1/4 [3].

▶ Theorem 4. There is no n1/ poly(log log n)-approximation algorithm for the following maxi-
mization problem unless the exponential time hypothesis [12] fails.

max
A⊆U,|A|=k

(2 AUC∗(A) − 1) . (2)

Proof. We prove this theorem via an approximation preserving reduction from k-densest
subgraph. Let G(V, E) be an instance of k-densest subgraph problem. We construct a set
of features as follows. There are n = |V | features each corresponding to one vertex of G.
For a vertex v ∈ V we indicate the value of the feature corresponding to v by xv. There
are three possible feature values, 0, 1 and #. The values of the features are determined
by the following random process. Select an edge (u, v) uniformly at random from E. The
value of the features xv and xu are chosen independently and uniformly at random from
{0, 1}. The value of all other features are #. The value of the label is xv ⊕ xu. To show the
hardness of approximation of the feature cross search, we show that any solution of accuracy
ϕ = 2 AUC −1 corresponds to a subgraph of G with k vertices and ϕm edges and vise versa.

Let H be a subgraph of G with k vertices and ϕm edges. Let S be the set of features
corresponding to the vertices in H. We analyze this in two cases.

Case 1. The value of the crossed feature contains zero or one numbers (i.e., all are #, or
all but one are #). Note that this case corresponds to a scenario that the pair of features
with binary value are not both in S and hence it happens with probability m−ϕm

m = 1 − ϕ.
Moreover, note that in this case the value of the crossed feature is independent of the value
of the label (i.e., given the value of the feature the label is 0 or 1 with probability 1/2 ).

Case 2. The value of the crossed feature contains two numbers. In this case one can
easily predict the correct label with probability 1 (i.e., if the numbers are both 0 or both 1
output 0, otherwise output 1). Moreover, note that this case corresponds to a scenario that
the pair of features with binary values are both in S and hence it happen with probability
ϕm
m = ϕ.

Case 1 happens with probability 1 − ϕ and in this case the label is independent of the
value of the crossed feature, and Case 2 happens with probability ϕ, where the label can be
predicted with probability 1. Therefore, we have AUC =

∫ 1
0 ϕ + (1 − ϕ)pdp = ϕ + 1−ϕ

2 = 1+ϕ
2

which gives us 2 AUC −1 = ϕ as claimed. ◀

In fact, the densest subgraph problem in NP-hard as well, and hence the reduction in the
proof of Theorem 4 directly implies the NP-hardness of feature cross search as well.

▶ Corollary 14. The feature cross search problem is NP-hard.

Similar proof to that of Theorem 4 implies the hardness of feature selection via label
based mutual information maximization.

▶ Theorem 15. There is no n−1/ poly(log log n)-approximation algorithm for feature selection
via label based mutual information maximization unless the exponential time hypothesis fails.
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Proof. Similar to Theorem 4 we prove this theorem via an approximation preserving reduction
from k-densest subgraph. Consider the hard example provided in the proof of Theorem 4.
Here we show that for any arbitrary set of features S if the induced subgraph of the
corresponding vertices has ϕm edges, we have I(S; C) = ϕ. We define a random variable X

as follows. X is 0 if none or one of the features in S has a binary value, and X is 1 if two of
the features in S have binary values. Note that the value of C is independent of X, and thus
we have I(S; C) = I(S; C|X). Hence, we have

I(S; C) = I(S; C|X) = EX [I(S, C)|X]
= Pr[X = 0](I(S; C)|X = 0) + Pr[X = 1](I(S; C)|X = 1) .

Note that given X = 0, S and C are independent and hence we have (I(S; C)|X = 0) = 0.
On the other hand if X = 1, S uniquely defines C, and hence we have (I(S; C)|X = 1) = 1.
Therefore we have I(S; C) = EX [I(S, C)|X] = Pr[X = 1] = ϕm

m = ϕ, as claimed. ◀

4 Reformulating Maximum AUC

Here, we prove Observation 3 and thereby reformulate the maximum AUC as an affine function
of the total variation of the commutator of two probability measures. Furthermore, we show
that the maximum AUC is achieved by a specific scoring function, i.e., the log-likelihood
ratio.

We start with some definitions. We define the log-likelihood ratio of an event E by
L(E) = log P1[E]

P0[E] provided that P0[E]P1[E] ̸= 0, where Pi[·] = Pr[·|C = i]. If P0[E] = 0, the
log-likelihood ratio L(E) is defined to be +∞. If P1[E] = 0, it is defined to be −∞. As
a result, the range of the log-likelihood ratio is the set of extended real numbers, denoted
by R = R ∪ {−∞, +∞}. Proposition 16 shows that the maximum AUC is achieved by a
specific scoring function, i.e., the log-likelihood ratio L. Here we abuse the notation and
define the score L(xA) assigned to each xA ∈ VA to be L(XA = xA), where XA and C are
jointly sampled from D. In other words, if we assign to each value in VA a score accordingly,
then the AUC is maximized.

▶ Proposition 16. The log-likelihood ratio achieves the maximum AUC among all functions
σ : VA → R

AUCL(A) = max
σ:VA→R

AUCσ(A) .

The above proposition is a folklore result. However, we provide a proof for completeness,
and the proof steps are also used to prove Observation 3.

Proof of Proposition 16 and Observation 3. To prove the above proposition, it suffices to
show that for any scoring function σ, its achieved AUC is no greater than that achieved by
using the log-likelihood ratio as the scoring function. In other words, we aim to prove that
for any σ : VA → R,

AUCL(A) ≥ AUCσ(A).

Recall Definition 1. The AUC given a scoring function σ can be described using i.i.d.
random variables (X+

U , C+), (X−
U , C−) ∼ D. We can express this quantity using indicator

functions as follows

AUCσ(A) = E[1{σ(X+
A ) > σ(X−

A )} + 1
21{σ(X+

A ) = σ(X−
A )}|C+ = 1, C− = 0] .
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Note that 1{σ(X+
A ) > σ(X−

A )} + 1{σ(X+
A ) = σ(X−

A )} + 1{σ(X+
A ) < σ(X−

A )} = 1, we have

AUCσ(A) = 1
2 + E

[
1
21{σ(X+

A ) > σ(X−
A )} − 1

21{σ(X+
A ) < σ(X−

A )}|C+ = 1, C− = 0
]

= 1
2 + 1

2E
[
1{σ(X+

A ) > σ(X−
A )} − 1{σ(X+

A ) < σ(X−
A )}|C+ = 1, C− = 0

]
= 1

2 + 1
2E
[
sign (σ(X+

A ) − σ(X−
A ))|C+ = 1, C− = 0

]
. (6)

To maximize the AUC, we focus on the term E[sign (σ(X+
A ) − σ(X−

A ))|C+ = 1, C− = 0].
By symmetrizing this quantity, we obtain the following equations.

E[sign (σ(X+
A ) − σ(X−

A ))|C+ = 1, C− = 0]

= 1
2
(
E[sign (σ(X+

A ) − σ(X−
A ))|C+ = 1, C− = 0] + E[sign (σ(X−

A ) − σ(X+
A ))|C+ = 0, C− = 1]

)
= 1

2
(
E[sign (σ(X+

A ) − σ(X−
A ))|C+ = 1, C− = 0] − E[sign (σ(X+

A ) − σ(X−
A ))|C+ = 0, C− = 1]

)
= 1

2
∑

x+
A

,x−
A

∈VA

(
P1[x+

A]P0[x−
A] sign (σ(x+

A) − σ(x−
A)) − P1[x−

A]P0[x+
A] sign (σ(x+

A) − σ(x−
A))
)

.

= 1
2

∑
x+

A
,x−

A
∈VA

(
P1[x+

A]P0[x−
A] − P1[x−

A]P0[x+
A]
)

sign (σ(x+
A) − σ(x−

A)) . (7)

The above expression can be upper bounded by the total variation distance between P1 × P0
and P0 × P1.

E[sign (σ(X+
A ) − σ(X−

A ))|C+ = 1, C− = 0] ≤ 1
2

∑
x+

A
,x−

A
∈VA

∣∣P1[x+
A]P0[x−

A] − P1[x−
A]P0[x+

A]
∣∣

= dT V (P A
1 × P A

0 , P A
0 × P A

1 ) .

(8)

Note that whenever P1[x+
A]P0[x−

A] or P1[x−
A]P0[x+

A] is non-zero, the log-likelihood ratios
L(x+

A) and L(x−
A), as well as L(x+

A)-L(x−
A), are well defined on R. Hence, if P1[x+

A]P0[x−
A] −

P1[x−
A]P0[x+

A] ̸= 0, one can show that

sign(P1[x+
A]P0[x−

A] − P1[x−
A]P0[x+

A]) = sign (L(x+
A) − L(x−

A)).

Consequently, all equality conditions in (8) can be achieved by using log-likelihood ratio as
the scoring function, and we have

E[sign (σ(X+
A ) − σ(X−

A ))|C+ = 1, C− = 0] ≤ E[sign (L(X+
A ) − L(X−

A ))|C+ = 1, C− = 0]
= dT V (P A

1 × P A
0 , P A

0 × P A
1 ) .

(9)

Combining (6) and (9), we have the following bound that holds true for any σ,

AUCσ(A) ≤ AUCL(A) = 1
2 + 1

2dT V (P A
1 × P A

0 , P A
0 × P A

1 ) , (10)

which completes the proof. ◀

According to Proposition 16 and equation (10), Observation 3 directly follows.
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5 Total Variation of Commutator of Probability Measures

In this section, we prove Proposition 7, which states that the total variation of commutator
of probability measures is a monotone submodular set function.

▶ Proposition 7 (Proof in Section 5). Let U be a finite index set. Assume that for every
a ∈ U , there are a pair of probability measures P a

0 and P a
1 on a common sample space Va.

For any A ⊆ U , define the set function F : 2U → R≥0 by

F (A) = dT V

(
×
a∈A

P a
1 ××

a∈A

P a
0 ,×

a∈A

P a
0 ××

a∈A

P a
1

)
. (4)

The set function F is monotone and submodular.

5.1 Monotonicty Part of Proposition 7

We first show the monotonicity part.

Proof of Proposition 7 (Monotonicity). Let A and B be two subsets of U such that A ⊆ B.
For any A ⊆ U , let P A

i =×a∈A
P a

i . Using the above notation, we have P B
i = P A

i × P
B\A
i .

By the definition of F , we have

F (A)
= dT V

(
P A

1 × P A
0 , P A

0 × P A
1
)

= 1
2
∑

x,y∈VA

∣∣P A
1 (x)P A

0 (y) − P A
0 (x)P A

1 (y)
∣∣

= 1
2
∑

x,y∈VA

∣∣∣∣∣∣
∑

z,w∈VB\A

P A
1 (x)P A

0 (y)P B\A
1 (z)P B\A

0 (w)

−
∑

z,w∈VB\A

P A
0 (x)P A

1 (y)P B\A
0 (z)P B\A

1 (w)

∣∣∣∣∣∣
≤ 1

2
∑

x,y∈VA

∑
z,w∈VB\A

∣∣∣P A
1 (x)P A

0 (y)P B\A
1 (z)P B\A

0 (w) − P A
0 (x)P A

1 (y)P B\A
0 (z)P B\A

1 (w)
∣∣∣

= dT V (P A
1 × P

B\A
1 × P A

0 × P
B\A
0 , P A

0 × P
B\A
0 × P A

1 × P
B\A
1 )

= dT V

(
P B

1 × P B
0 , P B

0 × P B
1
)

= F (B) .

where the third equality is because∑
z,w∈VB\A

P
B\A
1 (z)P B\A

0 (w) =
∑

z,w∈VB\A

P
B\A
0 (z)P B\A

1 (w) = 1

and the inequality is a consequence of the triangle inequality. ◀
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5.2 Submodularity Part of Proposition 7
To prove the submodularity part, we need the following lemmas.

▶ Lemma 17 (General case, proof in the full version [5]). Let R, R′ ∈ ∆Ω1 , S, S′ ∈ ∆Ω2 , and
P, Q ∈ ∆Ω, where Ω1, Ω2, Ω are finite sets. If R

f∼ R′ and S
g∼ S′, it holds that

dT V (R × S × P × Q, R′ × S′ × Q × P ) − dT V (R × P × Q, R′ × Q × P )
−dT V (S × P × Q, S′ × Q × P ) + dT V (P × Q, Q × P ) ≤ 0 .

We begin with the Bernoulli case where Ω1 and Ω2 in its statement are both {0, 1} so
that R, R′, S, S′ are all probability measures of a Bernoulli random variable.

▶ Lemma 18 (Bernoulli case, proof in the full version [5]). Let R, R′, S, S′ ∈ ∆{0,1} such that
R

f∼ R′ and S
f∼ S′, where f is a function on {0, 1} such that f(0) = 1 and f(1) = 0. Let

P, Q ∈ ∆Ω, where Ω is a finite sample space. The following inequality holds

dT V (R × S × P × Q, R′ × S′ × Q × P ) − dT V (R × P × Q, R′ × Q × P )
−dT V (S × P × Q, S′ × Q × P ) + dT V (P × Q, Q × P ) ≤ 0 . (11)

Proof sketch. To prove the Bernoulli case, we first show that under the summation (recall
that according to Equation (1), the total variation distance is half of the L1 distance, and
the L1 distance is the sum of the absolute value of the difference on each singleton), any
term that involves an element of measure zero (with respect to P or Q) has no contribution
to the expression on the left-hand side. We would like to emphasize that while the term
itself may be non-zero, it will be canceled out under the summation. In our second step, we
will consider quantities of the form

√
P (x)Q(y)
Q(x)P (y) in which Q(x) and P (y) must be non-zero

for all x and y. As a result, we have to eliminate elements of measure zero in first step by
showing that their total contribution is zero.

As the second step, we perform a series of algebraic manipulations and substitutions and
finally show that the opposite of left-hand side can be re-written as a quadratic v⊤Mv, where
v is a vector and M is a symmetric square matrix. Recall that the promised inequality claims
that the left-hand side is non-positive (thus the opposite of the left-hand side is non-negative).
Therefore, we will show it by establishing the positive semi-definiteness of M .

In fact, the matrix M is induced by a positive definite function. The problem of
establishing the positive semi-definiteness of M reduces to the problem of proving that the
function that induces M is positive definite. In light of the Bochner’s theorem (see the full
version [5]), we show its positive definiteness by computing its inverse Fourier transform,
which turns out to be finite-valued and non-negative everywhere. ◀

The high-level strategy of proving Lemma 17 is to use Observation 19 to reduce the
problem to the Bernoulli case (Lemma 18). The proof details can be found in the full version
[5].

▶ Observation 19. Let P, P ′ ∈ ∆Ω be such that P
f∼ P ′ and ϕ : R2 → R be a homogeneous

bivariate function, i.e., ϕ(λx, λy) = λϕ(x, y) holds for any x, y, λ ∈ R. For every element
x ∈ Ω, we define the Bernoulli probability measure Ux on {0, 1} such that Ux(1) = P (x)

P (x)+P ′(x)

and U ′
x(1) = P ′(x)

P (x)+P ′(x) . The following equation holds

∑
x∈Ω

ϕ(P (x), P ′(x)) =
∑
x∈Ω

P (x) + P ′(x)
2 (ϕ(Ux(1), U ′

x(1)) + ϕ(U ′
x(1), Ux(1))) .
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Before presenting the proof of Observation 19, we introduce the involutionary swapping
lemma, which is also used in the proof of Lemma 17. Intuitively, the involutionary swapping
lemma implies that two involution equivalent probability measures can be swapped inside a
summation of a bivariate function.

▶ Lemma 20 (Involutionary swapping lemma). Let P, P ′ ∈ ∆Ω be such that P
f∼ P ′ and

ϕ : R2 → R be any bivariate function. Then we have∑
x∈Ω

ϕ(P (x), P ′(x)) =
∑
x∈Ω

ϕ(P ′(x), P (x)) .

Proof. Under the assumption of the lemma statement, we have∑
x∈Ω

ϕ(P (x), P ′(x))

=
∑
x∈Ω

ϕ(P ′(f(x)), P (f(x)))

=
∑
x′∈Ω

ϕ(P ′(x′), P (x′))

=
∑
x∈Ω

ϕ(P ′(x), P (x)) .

The first equality is because for any x ∈ Ω, we have P (x) = P ′(f(x)) (by the definition of
involution equivalence) and P (f(x)) = P ′(x) (Remark 10). The second equality is obtained
by setting x′ = f(x) (this is because any involution map f is a bijection). The final equality
is obtained by renaming x′ to x. ◀

Proof of Observation 19. Under the assumption of the observation statement, we have∑
x∈Ω

ϕ(P (x), P ′(x)) = 1
2
∑
x∈Ω

ϕ(P (x), P ′(x)) + 1
2
∑
x∈Ω

ϕ(P (x), P ′(x))

= 1
2
∑
x∈Ω

ϕ(P (x), P ′(x)) + 1
2
∑
x∈Ω

ϕ(P ′(x), P (x))

=
∑
x∈Ω

P (x) + P ′(x)
2 (ϕ(Ux(1), U ′

x(1)) + ϕ(U ′
x(1), Ux(1))) .

We use Lemma 20 in the second term on the second line and the third equality is because ϕ

is homogeneous. ◀

We are in a position to show the submodularity part, which follows from Lemma 17.

Proof of Proposition 7 (Submodularity). To show that F is submodular, we need to check
its definition that for any A ⊆ U and a, b ∈ U \ A such that a ̸= b, it holds that

F (A ∪ {a}) + F (A ∪ {b}) ≥ F (A ∪ {a, b}) + F (A) ,

If we define P A
i =×a∈A

P a
i , the above definition is equivalent to

dT V

(
P a

1 × P a
0 × P A

1 × P A
0 , P a

0 × P a
1 × P A

0 × P A
1
)

+ dT V

(
P b

1 × P b
0 × P A

1 × P A
0 , P b

0 × P b
1 × P A

0 × P A
1
)

≥ dT V

(
P a

1 × P a
0 × P b

1 × P b
0 × P A

1 × P A
0 , P a

0 × P a
1 × P b

0 × P b
1 × P A

0 × P A
0
)

+ dT V

(
P A

1 × P A
0 , P A

0 × P A
1
)

.
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Re-arranging the terms yields

dT V

(
P a

1 × P a
0 × P b

1 × P b
0 × P A

1 × P A
0 , P a

0 × P a
1 × P b

0 × P b
1 × P A

0 × P A
0
)

− dT V

(
P a

1 × P a
0 × P A

1 × P A
0 , P a

0 × P a
1 × P A

0 × P A
1
)

− dT V

(
P b

1 × P b
0 × P A

1 × P A
0 , P b

0 × P b
1 × P A

0 × P A
1
)

+ dT V

(
P A

1 × P A
0 , P A

0 × P A
1
)

≤ 0 .

The above inequality follows from Lemma 17 if we set P = P A
1 , Q = P A

0 , R = P a
1 × P a

0 ,
R′ = P a

0 × P a
1 , S = P b

1 × P b
0 , and S′ = P b

0 × P b
1 . Note that R ∼ R′ and S ∼ S′ via the

transpose involution (see Remark 11). ◀

6 Other Related Works

As discussed before, our problem falls in the category of feature engineering problems.
Perhaps, the most studied problem in feature engineering is feature selection [10, 32, 33,
26, 11, 25, 18, 31]. In this problem, the goal is to select a small subset of the features to
obtain a learning model with high accuracy and avoid over-fitting. Here we just mention a
couple of feature selection algorithm related to submodular maximization and refer to [10]
for an introduction to feature selection and many relevant references. [8] used the notion
of weak submodularity to design and analyze feature selection algorithms. [16] used the
submodularity of mutual information between the sensors to design a (1−1/e)-approximation
algorithm for sensor placements, which can be directly used for feature selection. However,
as we show in Theorem 15, it is not possible to design such algorithms to maximize the
mutual information between the features and the label.

Another related well-studied problem in this domain is vocabulary compression [2, 7,
28, 1]. The goal of vocabulary compression is to improve the learning and serving time,
and in some cases to avoid overfitting. Vocabulary compression can be done by simple
approaches such as filtering and naive bucketing, or more complex approaches such as
mutual information maximization. [1] and [28] used clustering algorithms based on the
Jenson-Shannon divergence to compress the vocabulary of features. [7] proposed an iterative
algorithm that locally maximizes the mutual information between a feature and the label.
Recently, [2] considered this problem for binary labels and presented a quasi-linear-time
distributed approximation algorithm to maximize the mutual information between the feature
and the label. There are polynomial-time local algorithms for binary labels that maximize
the mutual information [17, 13], studied in the context of discrete memoryless channels.

[30] designed an integer programming based algorithm for feature cross search and applied
it to learn generalized linear models using rule-based features. They show that this approach
obtains better accuracy compared to that of the existing rule ensemble algorithms. [20]
proposed a greedy algorithm for feature cross search and show that the greedy algorithm
works well on a variety of datasets. Neither of these papers provide any theoretical guarantees
for the performance of their algorithm.

7 Conclusion

In this paper, we considered the problem of feature cross search. We formulated it as a
problem of maximizing the normalized area under the curve (AUC) of the linear model trained
on the crossed feature column. We first established a hardness result that no algorithm can
provide n1/ log log n approximation for this problem unless the exponential time hypothesis
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fails. Therefore, no polynomial algorithm can solve this problem unless P = NP. In light of
its intractable nature, we motivated and assumed the naïve Bayes assumption. We related
AUC to the total variation of the commutator of two probability measures. Under the naïve
Bayes assumption, we demonstrated that the aforementioned total variation is monotone
and submodular with respect to the set of selected feature columns to be crossed. As a
result, a greedy algorithm can achieve a (1 − 1/e)-approximation of the problem. Our proof
techniques may be of independent interest. Finally, an empirical study showed that the
greedy algorithm outperformed the baselines.
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Abstract
We consider the embeddability problem of a graph G into a two-dimensional simplicial complex C:
Given G and C, decide whether G admits a topological embedding into C. The problem is NP-hard,
even in the restricted case where C is homeomorphic to a surface.

It is known that the problem admits an algorithm with running time f(c)nO(c), where n is
the size of the graph G and c is the size of the two-dimensional complex C. In other words, that
algorithm is polynomial when C is fixed, but the degree of the polynomial depends on C. We
prove that the problem is fixed-parameter tractable in the size of the two-dimensional complex, by
providing a deterministic f(c)n3-time algorithm. We also provide a randomized algorithm with
expected running time 2cO(1)

nO(1).
Our approach is to reduce to the case where G has bounded branchwidth via an irrelevant vertex

method, and to apply dynamic programming. We do not rely on any component of the existing
linear-time algorithms for embedding graphs on a fixed surface; the only elaborated tool that we use
is an algorithm to compute grid minors.
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1 Introduction

An embedding of a graph G into a host topological space X is a crossing-free topological
drawing of G into X. The use and computation of graph embeddings is central in the
communities of computational topology, topological graph theory, and graph drawing. A
landmark result is the algorithm of Hopcroft and Tarjan [12], which allows to decide whether a
given graph is planar (has an embedding into the plane) in linear time. Related results include
more planarity testing algorithms [21], algorithms for embedding graphs on surfaces [18, 13]
and for computing book embeddings [17], Hanani-Tutte theorems [24], and the theory of
crossing numbers and planarization [2].

In this paper, we describe algorithms for deciding the embeddability of graphs into
topological spaces that are, in a sense, as general as possible: two-dimensional simplicial
complexes (or 2-complexes for brevity), which are made from vertices, edges, and triangles
glued together. (We remark that every graph is embeddable in R3, so considering higher-
dimensional simplicial complexes is irrelevant.) In a previous article, jointly written with
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Mohar [6], we proved that, given a graph G and a 2-complex C , one can decide whether
G embeds into C in polynomial time for fixed C ; but the algorithm has running time
f(c) ·nO(c), where n and c are the respective sizes of G and C . Using a very different strategy,
we describe algorithms for this problem, proving that it is fixed-parameter tractable in the
complexity of the input complex:

▶ Theorem 1.1. One can solve the embeddability problem of graphs into 2-dimensional
simplicial complexes in deterministic f(c)n3 time or in expected time 2cO(1)

nO(1), where c is
the number of simplices of the input 2-complex, n is the number of vertices and edges of the
input graph, and f is some computable function of c.

2-complexes are much more general than surfaces, and tools that are suitable for studying
embeddability of graphs on surfaces do not generalize. For example, the set of graphs
embeddable on a given 2-complex is not closed under minor, which makes many tools for
dealing with graphs on surfaces unsuitable for 2-complexes. Moreover, the complexity of some
topological problems increase drastically when we consider 2-complexes instead of surfaces,
e.g., deciding homeomorphism [20], or deciding the contractibility of curves [8, 16, 10]. Some
other topological problems, such as the existence of a drawing a graph with at most k

crossings in the plane or in a surface [14], can be recast as deciding whether the graph embeds
on a certain 2-complex. For more detailed motivations, see [6, Introduction].

Comparison with previous works on surfaces

Since every surface is homeomorphic to a 2-complex, our problem has been largely considered
in the special case where the input 2-complex is (homeomorphic to) a surface. That restricted
problem is NP-hard [26], but several algorithms that are fixed-parameter tractable in the
genus have been given, which we review now.

Mohar [18] has given an algorithm for this purpose that takes linear time in the input graph,
for every fixed surface. This algorithm is very technical and relies on several other articles.
The dependence on the genus is not made explicit, but seems to be doubly exponential [13].

Kawarabayashi et al., in an extended abstract [13], have given a simpler linear-time
algorithm for this problem, but not all details are presented, which makes the approach hard
to check [15, p. 3657, footnote].

General graph minor theory provides an algorithm for the same purpose. The graph
minor theorem by Robertson and Seymour [23] implies that, for every fixed surface S , there
is a finite list of graphs OS such that a graph G can be embedded on S if and only if G

does not contain any graph in OS as a minor. Moreover, there is an algorithm that given
any surface S (specified by its genus and orientability) outputs the list OS [1], and there
is an algorithm to decide whether a graph M is a minor of another graph G running, for
fixed M , in time cubic in the size of G [22][7, Theorem 6.12]. These considerations thus
lead to an algorithm to decide embeddability of a graph on a surface that runs, if the input
surface is fixed, in cubic time in the size of the input graph.

Finally, in the same vein, Kociumaka and Pilipczuk [15] have studied the following more
general problem than the embeddability problem of graphs on surfaces: Given a surface S , a
graph G, and an integer k ≥ 0, is it possible to remove a set U of at most k vertices from G

so that G − U is embeddable on S ? They provide an algorithm that is fixed-parameter
tractable in k and the genus of S , where the dependence on the genus is unspecified. In
particular, as a special case, they decide the embeddability of a graph on a surface; however,
they use one of the previous algorithms [18, 13] as a subroutine. The problem that we study,
the embeddability of graphs on 2-complexes, is independent from the problem studied by
Kociumaka and Pilipczuk, in the sense that there is, a priori, no obvious reduction from one
problem to the other. However, we will reuse some ingredients from that paper.
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Our algorithms, restricted to the case where we want to embed graphs on surfaces, are
not as efficient as the existing algorithms mentioned above. Indeed, the deterministic one
runs in cubic time in the size of the input graph (for a fixed complex); the dependence on
the size of the complex is not made explicit, because the algorithm uses, as a subroutine, an
algorithm to compute grid minors [22]. The second algorithm is randomized, because it uses
an algorithmic version of the excluded grid theorem [3] that uses randomness; for every fixed
surface, it runs in expected time that is a polynomial of fixed (but large) degree in the size
of the input graph. However, our algorithms are independent from the existing algorithms
for embedding graphs on surfaces; the only elaborated tool that we use is an algorithm to
compute grid minors [3, 22].

Overview and structure of the paper

We use a standard strategy in graph algorithms and parameterized complexity (see, e.g.,
the book by Cygan et al. [7, Chapter 7]): we show by dynamic programming that the
problem can be solved efficiently for graphs of bounded branchwidth, and then, using an
irrelevant vertex method, we prove that one can assume without loss of generality that the
input graph G has branchwidth bounded by a polynomial in the size of the input 2-complex.
In the context of surface-embedded graphs, this paradigm has been used in the extended
abstract by Kawarabayashi et al. [13] and in the article by Kociumaka and Pilipczuk [15];
our algorithm takes inspiration from the former, for the idea of the dynamic programming
algorithm, and from the latter, for some arguments in the irrelevant vertex method. However,
handling 2-complexes requires significantly more effort. More precisely, Theorem 1.1 follows
immediately from the following two theorems.

▶ Theorem 1.2 (algorithm for bounded branchwidth). One can solve the embeddability problem
of graphs into two-dimensional simplicial complexes in time (c + w)O(c+w)n, where c is the
number of simplices of the input 2-complex, and where n and w are the number of vertices
and edges and the branchwidth of the input graph, respectively.

▶ Theorem 1.3 (algorithm to reduce branchwidth). Let C be a 2-complex with c simplices,
and G a graph with n vertices and edges. We can correctly report that G is embeddable
on C , or correctly report that G is not embeddable on C , or compute a subgraph H of G, of
branchwidth polynomial in the number of simplices of C , such that G embeds on C if and
only if H does:

in deterministic time f(c) · n3 for some computable function f ,
or in expected polynomial time.

We now present the structure of the paper, indicating which techniques are used. We
also emphasize which components would be simpler if we were just aiming for an algorithm
for embedding graphs on surfaces.

We introduce some standard notions in Section 2.
Then, in Section 3, we show that we can make some simple assumptions on the input,

and present data structures for representing 2-complexes and graphs embedded on them. If
we restrict ourselves to the case where the input 2-complex is homeomorphic to a surface, we
essentially consider combinatorial maps of graphs on surfaces, except that the graphs need
not be cellularly embedded. The case of 2-complexes is largely more involved.

In Section 4, we show that if our input graph G has an embedding into our input 2-
complex C , then there exists an embedding of G on C that is sparse with respect to a
branch decomposition of G. This means that each subgraph of G induced by the leaves
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of any subtree of the branch decomposition can be separated from the rest of G using a
graph embedded on C , called partitioning graph, of small complexity. We find that this
new structural result, even in the surface case, is interesting and can prove useful in other
contexts. If the target space were a surface, we could assume that G is 3-connected and has
no loop or multiple edges, which would imply (still with some work) that any embedding
of G would be sparse, but again the fact that we consider 2-complexes requires additional
work.

In Section 5, we present the dynamic programming algorithm, which either determines the
existence of an embedding of G on C , or shows that no sparse embedding of G on C exists
(and thus no embedding at all, by the previous paragraph). The idea is to use bottom-up
dynamic programming and to consider all regions of the 2-complex in which the subgraph
of G (induced by a subtree of the branch decomposition) can be embedded. The complexity
depends exponentially on the branchwidth of G.

The previous arguments, most notably in Section 4, implicitly assumed that, if G has
an embedding into C , it has a proper and cellular embedding, in particular, in which the
faces are homeomorphic to disks. In Section 6, we show that we can assume this property.
Essentially, we build all 2-complexes “smaller” than C , such that G embeds on C if and only
if it embeds into (at least) one of these 2-complexes, and moreover if it is the case, it has an
embedding into (at least) one of these 2-complexes that is proper and cellular. If C were
an orientable surface, we would just consider the surfaces of lower genus; but here a more
sophisticated approach is needed.

The above ingredients allow to prove Theorem 1.2 (Section 7).
In Section 8, we show, using an irrelevant vertex method, that we can assume that G has

branchwidth polynomial in the size of C (Theorem 1.3).

2 Preliminaries

2.1 Graphs and branch decompositions

In this paper, graphs may have loops and multiple edges unless noted otherwise. Let G be a
graph; as usual, we denote by V (G) and E(G) the sets of vertices and edges of G.

A (rooted) branch decomposition of G is a rooted tree B in which:
every node has degree either one (it is a leaf) or three (it is an internal node),
the root is a leaf,
each non-root leaf is labelled with an edge of G, and this labelling induces a bijection.

The vertices and edges of B are called nodes and arcs, respectively. Each arc α of B splits
the tree B into two subtrees B1 and B2; if, for i = 1, 2, we denote by Ei the set of labels
appearing in Ti, we see that α naturally induces a partition (E1, E2) of the set of edges of G

(if α is the arc incident to the root, then one part of the partition is empty). The middle
set associated to α is the set of vertices of G which are the endpoints of at least one edge
in E1 and at least one edge in E2. The width of B is the maximum size of a middle set
associated to an arc of B. The branchwidth of G is the minimum width of its (rooted)
branch decompositions.

The usual definition of a branch decomposition is identical, except that the tree is
unrooted, and thus the leaves are in bijection with the edges of G. Our definition turns out
to be more convenient to use in the dynamic program. The difference is cosmetic, as one can
transform one kind of branch decomposition into the other easily while preserving the width.
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2.2 Surfaces
We will assume some familiarity with surface topology; see, e.g., [19, 25, 4] for suitable
introductions under various viewpoints. We recall some basic definitions and properties.
A surface (without boundary) S is a compact, connected Hausdorff topological space
in which every point has an open neighborhood homeomorphic to the open disk. Up to
homeomorphism, every surface S is obtained from a sphere by:

either removing g/2 open disks and attaching a handle (a torus with an open disk removed)
to each resulting boundary component, where g is an even, nonnegative integer called the
(Euler) genus of S ; in this case, S is orientable;
or removing g open disks and attaching a Möbius band to each resulting boundary
component, for a positive number g called the (non-orientable) genus of S ; in this case,
S is non-orientable.

A possibly disconnected surface is a disjoint union of surfaces.
A surface with boundary is obtained from a surface (without boundary) by removing

a finite set of interiors of disjoint closed disks. The boundary of each disk forms a boundary
component of S . The genus of S is defined as the genus of the original surface without
boundary. Equivalently, a surface with boundary is a compact, connected Hausdorff topolog-
ical space in which every point has an open neighborhood homeomorphic to the open disk or
the closed half disk {(x, y) ∈ R2 | y ≥ 0, x2 + y2 < 1}.

2.3 2-complexes
A 2-complex (or two-dimensional simplicial complex) is an abstract simplicial complex of
dimension at most two: a finite set of 0-simplices called vertices, 1-simplices called edges,
and 2-simplices called triangles. Each edge is a pair of vertices, and each triangle is a triple
of vertices; moreover, each subset of size two in a triangle must be an edge.

Each 2-complex C corresponds naturally to a topological space, obtained as follows: Start
with one point per vertex in C ; connect them by segments as indicated by the edges in C ;
similarly, for every triangle in C , create a triangle whose boundary is made of the three edges
contained in that triangle. By abuse of language, we identify C with that topological space.

2.4 Graph embeddings
Each graph has a natural associated topological space (for graphs without loops or multiple
edges, this is a specialization of the definition for 2-complexes). An embedding Γ of a
graph G into a 2-complex C is an injective continuous map from (the topological space
associated to) G to (the topological space associated to) C . A face of Γ is a connected
component of the complement of the image of Γ in C .

3 2-complexes and their data structures

3.1 Some preprocessing
A 3-book is a topological space obtained from three triangles by considering one side
per triangle and identifying these three sides together into a single edge. We say that a
2-complex C contains a 3-book if C contains three distinct triangles that share a common
edge. Because every graph can be embedded into a 3-book [6, Proposition 3.1], we have the
following proposition:
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Figure 1 On the left: A 2-complex with 5 singular points, numbered from 1 to 5, and 2 isolated
edges (one between 3 and 4 and one between 1 and 2) where, at singular points, the cones are in
green and the corners in yellow. On the right: the corresponding detached surface.

▶ Proposition 3.1. To decide the embeddability of a graph G on a 2-complex C , we can
without loss of generality, after a linear-time preprocessing, assume the following properties
on the input:

C has no 3-book and no connected component that is reduced to a single vertex;
G has no connected component reduced to a single vertex, and at most one connected
component homeomorphic to a segment.

In the rest of this article, without loss of generality, we implicitly assume that C

and G satisfy the properties stated in Proposition 3.1.

3.2 Structure of 2-complexes without 3-book or isolated vertex
Let C be a 2-complex without 3-book or isolated vertex, and let p be a vertex of C .
Following [6, Section 2.2], we describe the possible neighborhoods of p in C . A cone at p

is a cyclic sequence of triangles t1, . . . , tk, t1 (k ≥ 3), all incident to p, such that, for each
i = 1, . . . , k, the triangles ti and ti+1 (where tk+1 = t1) share an edge incident with p, and
any other pair of triangles have only p in common. A corner at p is a sequence of distinct
triangles t1, . . . , tk, all incident to p, such that, for each i = 1, . . . , k − 1, the triangles ti

and ti+1 share an edge incident with p, any other pair of these triangles have only p in
common, and no other triangle in C shares an edge incident with p and belonging to one
of t1, . . . , tk. An isolated segment at p is an edge incident to p but not incident to any
triangle. The cones, corners, and isolated segments at p form the link components at p.

The set of edges and triangles incident with a given vertex p of C are uniquely partitioned
into cones, corners, and isolated segments. We say that p is a regular point if all the
edges and triangles incident to p form a single cone or corner; in that case, p has an open
neighborhood homeomorphic to a disk or a closed half-disk. Otherwise, p is a singular
point. See Figure 1, left, for an illustration.

Detaching a singular point p in C consists of the following operation: replace p with new
vertices, one for each cone, corner, and isolated segment at p. Detaching all singular points
of a 2-complex (without 3-book) yields a disjoint union of (1) isolated segments and (2) a
surface, possibly disconnected, possibly with boundary, called the detached surface (see
Figure 1, right). The trace of the singular points on the detached surface are the marked
points. Conversely, C can be obtained from a surface (possibly disconnected, possibly with
boundary) and a finite set of segments by choosing finitely many subsets of points and
identifying the points in each subset together.

The boundary of C is the closure of the set of points of C that have an open neighborhood
homeomorphic to a closed half-plane. Equivalently, it is the union of the edges of C incident
with a single triangle.
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3.3 Topological data structure for 2-complexes
Any 2-complex C without 3-book or isolated vertex is obtained from the detached surface and
a set of disjoints segments, by identifying finitely many finite subsets of points. It is thus easy
to describe a topological data structure for storing 2-complexes, by storing the topology
of the detached surface and the segments, and recording additionally the identification of
points to obtain the complex. The size of C is the sum of the number of isolated segments,
the number of connected components of the detached surface, the total genus of the detached
surface, the total number of boundary components of the detached surface, and the total
number of marked points of the detached surface (the occurrences of the singular points).
This is, up to a constant factor, the size of the topological data structure indicated above, if
the genus is stored in unary. Any 2-complex described in the usual combinatorial way can
be converted in polynomial time into this representation. Thus, in the rest of this article,
without loss of generality, we implicitly assume that C is given in the form of
the above topological data structure.

Moreover, given two 2-complexes in the form above, deciding whether they are homeomor-
phic essentially amounts to testing whether the corresponding data structures are isomorphic,
which leads to the following lemma (the running time might be improvable, but this suffices
for our purposes):

▶ Lemma 3.2. Given two 2-complexes C and C ′, given in the topological representation
above, of sizes c and c′ respectively, we can decide whether C and C ′ are homeomorphic in
time (c + c′)O(c+c′).

3.4 Proper and cellular graph embeddings on 2-complexes
Let C be a 2-complex with size c, G a graph, and Γ an embedding of G on C . The
embedding Γ is proper if:

the image of Γ meets the boundary of C only on singular points;
the vertices of Γ cover the singular points of C .

The embedding Γ is cellular if each face of Γ is an open disk plus possibly some part of
the boundary of C . We emphasize that this definition slightly departs from the standard
one. Moreover, we will only consider cellular embeddings that are proper.

We will use a data structure to store possibly non-cellular embeddings of graphs on
surfaces [5, Section 2.2]. Such a data structure is based on the gem representation of cellular
graph embeddings [9, Section 2], but store additional information about the topology of the
faces. It is important to remark that this data structure also allows to recover the topology
of the underlying surface.

Let Γ be a proper graph embedding of a graph G on a 2-complex C (under the assumptions
of Proposition 3.1). Let S be the detached surface of C . Because Γ is proper, it naturally
induces an embedding Γ′, of another graph G′, on S ; some vertices of G located on singular
points of C are duplicated in G′, the vertices of G located in the relative interior of isolated
segments are absent from G′, and the edges of G not in G′ are edges on the isolated segments
of C . Our data structure, called combinatorial map, for storing the graph embedding Γ
and the 2-complex C consists of storing (1) the graph embedding Γ′ on S , as indicated in
the previous paragraph, (2) the isolated segments of C , together with, for each such isolated
segment, an ordered list alternating vertices and edges of Γ (or, instead of an edge, a mark
indicating the absence of such an edge in the region of the isolated segment between the
incident vertices), (3) the identifications of vertices of Γ′ that are needed to recover Γ (and
thus implicitly C ).
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Isomorphisms between combinatorial maps are defined in the obvious way, similar to
the concept of isomorphism between topological data structures: Two combinatorial maps
are isomorphic if there is an isomorphism between the combinatorial maps restricted to the
detached surfaces, isomorphisms between the maps on each isolated segments, and such that
incidences are preserved on the singular points. We can easily test isomorphism between two
combinatorial maps of size k and k′, respectively, in (k + k′)O(k+k′) time.

We will need an algorithm to enumerate all proper embeddings of small graphs on a given
2-complex. This is achieved by a brute-force algorithm:

▶ Lemma 3.3. Let C be a 2-complex of size c and k an integer. We can enumerate the
(c + k)O(c+k) combinatorial maps of graphs with at most k vertices and at most k edges
properly embedded on C in (c + k)O(c+k) time.

4 Partitioning graphs

Let C be a 2-complex and G a graph, which satisfy the properties of Proposition 3.1. In this
section, we lay the structural foundations of the dynamic programming algorithm, described
in the next section (Proposition 5.1). The goal, in this section and the following one, is to
obtain an algorithm that takes as input C and G, and, in time FPT in the size of C and the
branchwidth of G, reports correctly one of the following two statements:

G has no proper cellular embedding on C ,
G has an embedding on C .

This algorithm uses dynamic programming on a rooted branch decomposition of G.
When processing a node of the rooted branch decomposition, it considers embeddings of
the subgraph of G induced by the edges in the leaves of the subtree rooted at that node in
a region of C . This region will be delimited by a partitioning graph embedded on C . Our
dynamic program will roughly guess the partitioning graph at each node of the rooted branch
decomposition. For this purpose, we need that, if G has a proper cellular embedding on C ,
it has such an embedding that is sparse: at each node of the rooted branch decomposition
of G, the partitioning graph corresponding to the embedding of the induced subgraph is
small (its size is upper-bounded by a function of the branchwidth of G and of the size of C ).
The goal of this section is to prove that this is indeed the case.

Let (E1, . . . , Ek) be an (ordered) partition of the edge set E(G) of G. (We will only use
the cases k = 2 or k = 3.) The middle set of (E1, . . . , Ek) is the set of vertices of G whose
incident edges belong to at least two sets Ei.

Let Γ be a proper cellular embedding of G on C . Since Γ is cellular, every boundary of C

is incident to at least one vertex of Γ. Let Γ̂ be obtained from Γ by adding edges as follows:
for any pair of vertices u and v of Γ consecutive along a given boundary component of C , we
connect u and v via a new edge that runs along the boundary component. For each (ordered)
partition (E1, . . . , Ek) of the edge set of G, we let Ê1 be the union of E1 and of these new
edges, and Êi = Ei for each i ̸= 1; thus, (Ê1, . . . , Êk) is a partition of the set of edges of Γ̂.

The partitioning graph Π(Γ, E1, . . . , Ek) (or more concisely Π) associated to Γ and
(E1, . . . , Ek) is a graph properly embedded on C (but possibly non-cellularly), with labels
on its faces, defined as follows:

The vertex set of Π is the union of the singular points of C and of (the images under Γ
of) the middle set of E1, . . . , Ek.
The relative interiors of the edges of Π are disjoint from the edges of Γ̂ and from the
isolated segments of C . Let f be a face of Γ̂ (which is homeomorphic to an open disk
plus possibly some points of the boundary of C ). Let us describe the edges of Π inside f .
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E1 E2 Π(Γ, E1, E2)
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Figure 2 Construction of the partitioning graph Π = Π(Γ, E1, E2), for three choices of the
partition (E1, E2) of the same embedding Γ. Only a part of the 2-complex C is shown, with a
boundary at the upper part, and without singular point. Left: The graph embeddings Γ (in thick
lines) and Π (in thin lines). Right: The sole graph Π, together with the labelling of its faces.

If, for some i ∈ {1, . . . , k}, the boundary of f is comprised only of edges of Γ̂ that lie
in a single set Êi, then Π contains no edge inside f . Otherwise, the boundary of f is a
succession of edges of Ê1, Ê2, . . . , Êk. The edges of Π inside f run along the boundary
of f ; for each i ∈ {1, . . . , k}, for each (maximal) group of consecutive edges in Êi along
the boundary of f , we create an edge of Π that runs along this group, with endpoints the
corresponding vertices on the boundary of f (see Figures 2 and 3). These vertices either
are in the middle set of (E1, . . . , Ek), or lie on the boundary of C (and thus on singular
points of C ).
It follows from the construction that Γ̂ and Π intersect only at common vertices.
Each face of Π is labelled by an integer in {0, . . . , k} as follows: faces of Π containing
edges in Êi are labelled i, and the other ones are labelled 0. By construction of the
graph Π, each face of Π contains edges from at most one set Êi, so this labelling is well
defined.

Henceforth, we fix a rooted branch decomposition B of G, the root of which is denoted
by ρ. Every arc α of B naturally partitions E(G) into two parts E1 and E2, in which E1 is
the part on the same side as ρ; this (ordered) partition is the edge partition associated
to α. Recall that Γ is a proper and cellular embedding of G on C ; we let Π(Γ, α) be
Π(Γ, E1, E2). Similarly, every node ν of B naturally partitions E(G) into three parts E1, E2,
and E3, in which E1 is the part on the same side as ρ; this partition is the edge partition
associated to ν; we let Π(Γ, ν) be Π(Γ, E1, E2, E3).

We say that Γ is sparse (with respect to B) if the following conditions hold, letting c be
the size of C and w the width of B:
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E1 E2 E3 Π(Γ, E1, E2, E3)
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Figure 3 The partitioning graph Π = Π(Γ, E1, E2, E3). Left: The graph embeddings Γ (in thick
lines) and Π (in thin lines). Right: The sole graph Π, together with the labelling of its faces.
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Figure 4 Left: A vertex with 6 intervals, numbered from 1 to 6. Middle: The cyclic order obtained
by applying the first type of simplification operation on intervals 1 and 2. After the simplification,
the intervals 1 and 3 are merged into a single one, and similarly for the intervals 2 and 6. Right:
The cyclic order obtained by applying the second type of simplification to the configuration on the
left, on pairs of intervals {1, 2} and {4, 5}. After the simplification, the intervals 1, 3, and 5 are
merged, and similarly for the intervals 2, 6, and 4.

For each arc α of B, the graph Π(Γ, α) has at most 74c + 26w edges;
similarly, for each internal node ν of B, the graph Π(Γ, ν) has at most 3(74c + 26w)
edges.

The result of this section is the following.

▶ Proposition 4.1. Let C be a 2-complex and G a graph, which satisfy the properties of
Proposition 3.1. Let B be a rooted branch decomposition of G. Assume that G has a proper
cellular embedding on C . Then it has a proper cellular embedding Γ on C that is sparse (with
respect to B).

4.1 Monogons and bigons
A monogon of a graph Π embedded on a 2-complex C is a face of Π that is an open disk
whose boundary is a single edge of Π (a loop). Similarly, a bigon of Π is a face of Π that is
an open disk whose boundary is the concatenation of two edges of Π (possibly the same edge
appearing twice). The following general lemma on graphs embedded on surfaces without
monogons or bigons will be used.

▶ Lemma 4.2. Let S be a surface of genus g without boundary. Let Π be a graph embedded
on S , not necessarily cellularly. Assume that Π has no monogon or bigon. Then |E(Π)| ≤
max{0, 3g + 3|V (Π)| − 6}.

4.2 Vertex simplifications
The proof of Proposition 4.1 starts with any proper cellular embedding of Γ, and iteratively
changes the cyclic ordering of edges around vertices in a specific way. Let (E1, E2) be an
(ordered) partition of E(G), let v be a vertex of G, and let C be a link component at v (if
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the image of v under Γ is a singular point, there may be several such link components). We
restrict our attention to the edges of Γ̂ incident to v and belonging to C, in cyclic order
around v. For i = 1, 2, an interval (at v, relatively to (Ê1, Ê2)) is a maximal contiguous
subsequence of edges in this cyclic ordering that all belong to Êi; the interval is labelled i.
Simplifying v (with respect to (E1, E2)) means changing the cyclic ordering of the edges
of Γ̂ incident to v in C by one of the two following operations (Figure 4):
1. either exchanging two consecutive intervals in that ordering, in a way that the ordering

of the edges in each interval is preserved; this operation is allowed only if v is incident to
at least four intervals;

2. or performing the previous operation twice, on two disjoint pairs of consecutive intervals
in that ordering; this is allowed only if v is incident to at least six intervals.

We will rely on the following lemma.

▶ Lemma 4.3. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). Let Γ′ be another proper cellular embedding of G, obtained
from Γ by simplifying one or two vertices with respect to (E1, E2), while keeping the other
cyclic orderings unchanged. Then:
1. |E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;
2. for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},

we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Proof. The proof is based on the following easy but key observations (the second one will
be reused later):

A simplification of v strictly decreases the number of intervals at v;
the number of half-edges of Π(Γ, E1, E2) at v in the link component C equals twice the
number of intervals associated to (Ê1, Ê2) at v in C.

The first point of the lemma immediately follows. For the second point, let us consider, in
the cyclic ordering around v in C, a maximal contiguous sequence of edges in ˆ̃Ei. Since
ˆ̃Ei ⊆ Êj , when simplifying with respect to (E1, E2), this sequence is still contiguous in the
new embedding Γ′. It follows that the number of intervals associated to ( ˆ̃E1, ˆ̃E2) does not
increase when replacing Γ with Γ′. ◀

4.3 Rearranging Γ with respect to an edge partition
We can now prove the following lemma:

▶ Lemma 4.4. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). There exists a proper cellular embedding Γ′ of G such that:

|E(Π(Γ′, E1, E2))| ≤ 74c + 26w, where w is the size of the middle set of (E1, E2);
for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},
we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Sketch of proof. Let Π := Π(Γ, E1, E2). We assume that Π has “many monogons or bigons”
and show that there is another cellular embedding Γ′ of G such that:

|E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;
for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},
we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Intuitively, if Π has many monogons attached to a single vertex, or many bigons glued
together, we can change the embedding Γ in a way that leads to vertex simplifications. By
repeatedly iterating this argument, and up to replacing Γ with Γ′, this implies that we can
assume without loss of generality that Π has “not too many monogons or bigons”. Lemma 4.2
then implies that Π has at most 74c + 26w edges, which concludes. ◀
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4.4 Proof of Proposition 4.1
Proof of Proposition 4.1. Let B be a rooted branch decomposition of G, and let Γ be
a proper cellular embedding of G on C . We consider each arc α of the rooted branch
decomposition in turn, in an arbitrary order. For each such arc, we modify Γ by applying
Lemma 4.4. We first claim that after these iterations, for each arc α of B, we have
|E(Π(Γ, α))| ≤ 74c + 26w.

Immediately after applying the above procedure to an arc α̃ of B, corresponding to the
(ordered) partition (Ẽ1, Ẽ2) of E(G), we have |E(Π(Γ, Ẽ1, Ẽ2))| ≤ 74c + 26w. We now prove
that subsequent applications of Lemma 4.4 to other arcs of the rooted branch decomposition
do not increase this number of edges. Indeed, let α be another arc, corresponding to the
(ordered) partition (E1, E2) of E(G), to which we apply Lemma 4.4. The arc α partitions
the nodes of the tree B into two sets N1 and N2, and similarly α̃ partitions the nodes of the
tree B into two sets Ñ1 and Ñ2. Because B is a tree, we have Ñi ⊆ Nj for some i, j ∈ {1, 2}.
This implies that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2}; so the second item of Lemma 4.4 implies
that the number of edges of Π(Γ, Ẽ1, Ẽ2) does not increase when processing arc α. This
proves the claim.

Finally, there remains to prove that, for each internal node ν of B, the graph Π(Γ, ν) has
at most 3(74c + 26w) edges. This follows relatively easily from the above claim. ◀

5 Dynamic programming algorithm

The result of this section is the following proposition.

▶ Proposition 5.1. Let C be a 2-complex and G a graph, which satisfy the properties of
Proposition 3.1. Let c be the size of C and n the number of vertices and edges of G. Let B

be a rooted branch decomposition of G of width w. In (c + w)O(c+w)n time, one can report
one of the following statements, which is true:

G has no sparse proper cellular embedding into C ;
G has an embedding into C .

(Proposition 4.1 implies that we can remove the adjective “sparse” in the above proposi-
tion.)

5.1 Bounding graphs
Let B be a rooted branch decomposition of G of width w. Recall (see Section 2.1) that the
root ρ of B is a leaf associated to no edge of G. Our algorithm will use dynamic programming
in the rooted branch decomposition. For each arc α of B, let Gα be the subgraph of G

induced by the edges of G corresponding to the leaves of the subtree of B rooted at α. The
general idea is that we compute all possible relevant embeddings of Gα in subregions of C .
Such subregions will be delimited by a graph embedded on C of small complexity. For the
dynamic program to work, we also need to keep track of the location of the vertices in the
middle set of α. More precisely, a bounding graph for Gα is a proper labelled graph
embedding Π on C (but possibly non-cellular), such that:

some vertices of Π are labelled; these labels are exactly the vertices of the middle set
associated with α, and each label appears exactly once;
each unlabelled vertex of Π is mapped to a singular point of C ;
each face of Π is labelled 0, 1, or 2;
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Gα has an embedding Γα that respects Π: each vertex of Π labelled v is mapped,
under Π, to the image of v in Γα; moreover, the relative interior of each edge of Γα lies in
the interior of a face of Π labelled 2.

A bounding graph for Gα is sparse if it has at most 74c + 26w edges. Remark that, if Γ
is a sparse proper cellular embedding of G on C (as defined in Section 4), then Π(Γ, α) is a
sparse bounding graph for the restriction of Γ to Gα.

Henceforth, we regard two (labelled) properly embedded graphs as equal if and only if their
(labelled) combinatorial maps are isomorphic. A list Lα of sparse bounding graphs for Gα is
exhaustive if the following condition holds: If G has a sparse proper cellular embedding
on C , then for each such embedding Γ, the (combinatorial map of the) graph Π(Γ, α) is
in Lα.

The induction step for the dynamic programming algorithm is the following.

▶ Proposition 5.2. Let ν be a non-root node of B and α be the arc of B incident to ν that
is the closest to the root ρ. Assume that, for each arc β ≠ α of B incident to ν, we are given
an exhaustive list of sparse bounding graphs for Gβ. Then we can, in (c + w)O(c+w) time,
compute an exhaustive list of (c + w)O(c+w) sparse bounding graphs for Gα.

Assuming Proposition 5.2, the proof of which is deferred to the next subsection, it is easy
to prove Proposition 5.1:

Proof of Proposition 5.1, assuming Proposition 5.2. We apply the algorithm of Proposi-
tion 5.2 in a bottom-up manner in the rooted branch decomposition B. Let α be the arc
of B incident with the root node ρ. We end up with an exhaustive list of sparse bounding
graphs for Gα = G. By definition of a bounding graph, if this list is non-empty, then G has
an embedding on C . On the other hand, by definition of an exhaustive list, if this list is
empty, then G has no sparse proper cellular embedding on C .

There are O(n) recursive calls, each of which takes (c + w)O(c+w) time. ◀

5.2 The induction step: Proof of Proposition 5.2
Proof of Proposition 5.2. First case. Let us first assume that ν is a (non-root) leaf of B;
thus, Gα is a single edge uv. Using Lemma 3.3, we compute all the labelled combinatorial
maps of sparse bounding graphs for Gα. This is clearly an exhaustive list. Indeed, assume
that G has a sparse proper cellular embedding Γ on C ; by sparsity, Π(Γ, α) has at most
74c + 26w edges; thus, one of the labelled combinatorial maps computed will be equal to
that of Π(Γ, α).

Second case. Let us now assume that ν is an internal node of B. As above, let α be the
arc of B incident to ν that is the closest to the root ρ. Let β and γ be the arcs different
from α incident to ν. Let Lβ and Lγ be exhaustive lists of bounding graphs for Gβ and Gγ ,
respectively. Intuitively, every pair of bounding graphs in Lβ and Lγ that are compatible,
in the sense that the regions labelled 2 in each of these two graphs are disjoint, will lead
to a bounding graph in Lα. This is the motivating idea to our approach. More precisely,
we will enumerate labelled combinatorial maps Π, each of which can be “restricted” to
two compatible graphs, which are possible bounding graphs for Gβ and Gγ . If these two
restrictions lie in Lα and Lβ , this leads to a graph that is added to Lα.

We first introduce some terminology. Let Π be a graph properly embedded on C (possibly
non-cellularly), with faces labelled 0, 1, 2, or 3, and with labels on some vertices. Let i, j, k

be integers such that {i, j, k} = {1, 2, 3}. We will define a graph embedding Πi,j obtained
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from Π by somehow “merging” faces i and j. First, for an illustration, refer back to Figures 2
and 3: If Π is the graph embedding depicted on the right of Figure 3, then the configurations
shown on the right of Figure 2 correspond, from top to bottom, to Π2,3, Π1,3, and (Π1,2)−

(the latter being the graph Π1,2 in which each face label 3 is replaced by a 2).
Formally, Πi,j is defined as follows. First, let us replace all face labels j by i. Now, for

each face f of Π that is homeomorphic to a disk and labelled 0, we do the following. The
boundary of f is made of edges of Π; for the sake of the discussion, let us temporarily label
each such edge by the label of the face on the other side of f . If all edges on the boundary
of f all labelled i, then we remove all these edges, and f becomes part of a larger face
labelled i. Otherwise, for each maximal subsequence e1, . . . , eℓ of edges along the boundary
of f that are all labelled i, we remove each of e1, . . . , eℓ, and replace them with an edge
inside f from the source of e1 to the target of eℓ. Finally, we remove all isolated vertices
that do not coincide with a singular point of C , and all vertices in the relative interior of an
isolated segment that are incident to two faces with the same label.

For any labelled combinatorial map Π, we denote by Π− the same map where each label 3
on a face is replaced by a 2. The easy but key properties of this construction are the following:

(i) Assume that Π1,3 is a bounding graph for Gβ and (Π1,2)− is a bounding graph for Gγ .
Then Π2,3 is a bounding graph for Gα.

(ii) The node ν naturally partitions the edge set of G into three parts, which we denote by
E1 (on the side of α), E2 (on the side of β), and E3 (on the side of γ). Assume that G

has a sparse proper cellular embedding Γ on C and that Π = Π(Γ, E1, E2, E3). Then:

Π(Γ, α) = Π(Γ, E1, E2 ∪ E3) = Π2,3;

Π(Γ, β) = Π(Γ, E1 ∪ E3, E2) = Π1,3;

Π(Γ, γ) = Π(Γ, E1 ∪ E2, E3) = (Π1,2)−.

Property (ii) is, again, illustrated by Figures 2 and 3: If (E1, E2, E3) is the edge partition
depicted on Figure 3, then the edge partitions depicted on Figure 2, left, are, respectively,
(E1, E2∪E3), (E1∪E3, E2), and (E1∪E2, E3). As shown above, the corresponding partitioning
graphs are respectively Π2,3, Π1,3, and Π−

1,2.
If Π is the graph embedding depicted on the right of Figure 3, then the configurations

shown on the right of Figure 2 correspond, from top to bottom, to Π2,3, Π1,3, and (Π1,2)−

(the latter being the graph Π1,2 in which each face label 2 is replaced by a 2).
We compute our exhaustive list Lα of sparse bounding graphs for Gα as follows. Initially,

let this list be empty. Using Lemma 3.3, we enumerate all combinatorial maps Π of graphs
with at most c + 3w vertices and 3(74c + 26w) edges properly embedded on C (possibly
non-cellularly), with faces labelled 0, 1, 2, or 3, and such that the labels appearing on the
vertices are exactly the vertices of the middle set of α, β, or γ (and each label appears exactly
once). This takes (c + w)O(c+w) time. Whenever Π1,3 ∈ Lβ and (Π1,2)− ∈ Lγ , we add Π2,3
to Lα. Finally, we eliminate duplicates by testing pairwise isomorphism between the labelled
combinatorial maps in Lα, and remove the graphs that are not sparse or contain vertices
that bear a label not in the middle set of α.

Lα contains only sparse bounding graphs for Gα, by (i) above. Moreover, let Γ be a sparse
proper cellular graph embedding of G on C . By sparsity, one of the graphs Π enumerated in
the previous paragraph is Π(Γ, ν). By definition of Lβ and Lγ , we have that Π(Γ, β) ∈ Lβ

and Π(Γ, γ) ∈ Lγ , so by (ii) above, Π(Γ, α) ∈ Lα, which implies that Lα is exhaustive. ◀



É. Colin de Verdière and T. Magnard 32:15

6 Reduction to proper cellular embeddings

▶ Proposition 6.1. Let C be a 2-complex with at most c simplices, and G a graph with at
most n vertices and edges and branchwidth at most w. Assume that G and C satisfy the
properties of Proposition 3.1. In cO(c) + O(cn) time, one can compute a graph G′, and cO(c)

2-complexes Ci, such that:
1. each Ci and G′ satisfy the properties of Proposition 3.1;
2. G′ has at most 5cn vertices and 5cn edges, and branchwidth at most w;
3. each Ci has size at most c;
4. if, for some i, G′ embeds into Ci, then G embeds into C ;
5. if G embeds into C , then for some i, G′ has a proper cellular embedding into Ci.

Sketch of proof. Roughly but not exactly, G′ is obtained from G by dissolving every degree-
two vertex of G and then subdividing edges Θ(c) times, and the complexes Ci are all the
2-complexes “smaller” than C , obtained by detaching the singular points of C in all possible
ways, removing parts of the isolated segments of C in all possible ways, and simplifying the
topology of the detached surface in all possible ways. It is clear that, if G′ embeds into one
of these complexes, then G embeds into C . Conversely, if G embeds into C , then, by the
subdivision process above, G′ has a proper embedding into C , and the only problem is that
the faces of G′ may fail to be disks. However, by modifying C using the appropriate choice
of operations above, these faces are transformed into disks. ◀

7 Algorithm for bounded branchwidth: Proof of Theorem 1.2

Proof of Theorem 1.2. The proof of this theorem follows directly from the previous proposi-
tions. After the preprocessing step (Proposition 3.1), combining Propositions 4.1 and 5.1 give
an algorithm that takes as input G and C and reports one of the following true statements:
(i) G has no proper cellular embedding on C ; (ii) G has an embedding on C . So, we apply
this algorithm to the graph G′ and each 2-complex Ci obtained from Proposition 6.1. If
for at least one of these instances, the outcome is (ii), then G has an embedding into C .
Otherwise, G has no embedding into C . ◀

8 Reduction to bounded branchwidth: Proof of Theorem 1.3

Sketch of proof of Theorem 1.3. This is based on an irrelevant method. We assume that
G has large branchwidth. An important fact that we will use is that, if G is embeddable
on C , it has genus O(c).

A wall of size k × k is a subgraph of the (k × k)-grid obtained by removing alternately
the vertical edges of even (resp. odd) x-coordinate in each even (resp. odd) line, and then
the degree-one vertices.

We first use any algorithm to approximate the treewidth of G, e.g., Fomin et al. [11,
Theorem 1.1]: In polynomial time, we either compute a branch decomposition of small
width of G, in which case we are done, or correctly report that the treewidth is large. In
the latter case, the result by Chekuri and Chuzhoy [3] implies that there is a large grid
minor, which we can compute in randomized polynomial time using the same article, or in
deterministic f(k) · n2 time, where f is some computable function and k is the size of the
grid [22, Algorithm 4.4]. We have thus computed a subdivision of a large wall.

We then partition this wall into Ω(c) smaller subwalls W1, . . . , Wm, where m = Ω(c),
each bounded by a cycle γi. We then show that we can assume that there are (intuitively)
not too many connections, in G, between two different walls Wi, Wj that avoid the cycles γi
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and γj ; otherwise, by computing these connections, we exhibit a subgraph of G of genus
Ω(c), and deduce that G is not embeddable on C . Finally, we compute a cycle γ of G, such
that one connected component of G − γ is planar and contains a subdivision of a smaller,
but still large, wall.

We then show, borrowing some ingredients to Kociumaka and Pilipczuk [15, Section 5],
that the central vertex of this wall is irrelevant, in the sense that its removal does not affect
the embeddability or non-embeddability of the graph into C . Intuitively, v is surrounded
by Ω(c) concentric cycles in the wall; if G − v is embedded in C , then two concentric cycles
must bound an annulus. The planar part inside the inner cycle can be embedded close to
the boundary of the annulus that corresponds to this inner cycle.

Iterating the whole procedure, we obtain a graph of branchwidth polynomial in the
size of C . ◀

References
1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proceedings

of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650,
2008.

2 Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra Mutzel.
Crossings and planarization. In Roberto Tamassia, editor, Handbook of graph drawing and
visualization. Chapman and Hall, 2006.

3 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM, 63(5):Article 40, 2016.

4 Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry,
chapter 23. CRC Press LLC, third edition, 2018.

5 Éric Colin de Verdière and Arnaud de Mesmay. Testing graph isotopy on surfaces. Discrete &
Computational Geometry, 51(1):171–206, 2014.

6 Éric Colin de Verdière, Thomas Magnard, and Bojan Mohar. Embedding graphs into two-
dimensional simplicial complexes. In Proceedings of the 34th International Symposium on
Computational Geometry (SOCG), pages 27:1–27:14, 2018.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer-Verlag,
2015.

8 Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. Journal of Computer
and System Sciences, 58:297–325, 1999.

9 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 599–608, 2003.

10 Jeff Erickson and Kim Whittlesey. Transforming curves on surfaces redux. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1646–1655,
2013.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):Article 34, 2018.

12 John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549–
568, 1974.

13 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce Reed. A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 771–780, 2008.



É. Colin de Verdière and T. Magnard 32:17

14 Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear time. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
382–390, 2007.

15 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81:3655–3691, 2019.

16 Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 440–449,
2012.

17 Seth M. Malitz. Genus g graphs have pagenumber O(√g). Journal of Algorithms, 17:85–109,
1994.

18 Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM
Journal on Discrete Mathematics, 12(1):6–26, 1999.

19 Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2001.

20 Colm Ó Dúnlaing, Colum Watt, and David Wilkins. Homeomorphism of 2-complexes is
equivalent to graph isomorphism. International Journal of Computational Geometry &
Applications, 10:453–476, 2000.

21 Maurizio Patrignani. Planarity testing and embedding. In Roberto Tamassia, editor, Handbook
of graph drawing and visualization. Chapman and Hall, 2006.

22 Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995.

23 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92:325–357, 2004.

24 Marcus Schaefer. Toward a theory of planarity: Hanani–Tutte and planarity variants. Journal
of Graph Algorithms and Applications, 17(4):367–440, 2013.

25 John Stillwell. Classical topology and combinatorial group theory. Springer-Verlag, New York,
second edition, 1993.

26 Carsten Thomassen. The graph genus problem is NP-complete. Journal of Algorithms,
10(4):568–576, 1989.

ESA 2021





Efficient Sequential and Parallel Algorithms for
Multistage Stochastic Integer Programming Using
Proximity
Jana Cslovjecsek #

EPFL, Lausanne, Switzerland

Friedrich Eisenbrand #

EPFL, Lausanne, Switzerland

Michał Pilipczuk #

University of Warsaw, Poland

Moritz Venzin #

EPFL, Lausanne, Switzerland

Robert Weismantel #

ETH, Zürich, Switzerland

Abstract
We consider the problem of solving integer programs of the form min{ c⊺x : Ax = b, x ∈ Z⩾0},
where A is a multistage stochastic matrix in the following sense: the primal treedepth of A is
bounded by a parameter d, which means that the columns of A can be organized into a rooted
forest of depth at most d so that columns not bound by the ancestor/descendant relation do not
have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-
parameter time f(d, ∥A∥∞) · n logO(2d) n, where f is a computable function and n is the number
of rows of A. The algorithm works in the strong model, where the running time only measures
unit arithmetic operations on the input numbers and does not depend on their bitlength. This
is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear
running time in the strong sense. For two-stage stochastic integer programs, our algorithm works in
time 2((r+s)∥A∥∞)O(r(r+s))

· n logO(rs) n, which improves over previous methods both in terms of the
polynomial factor and in terms of the dependence on r and s. In fact, for r = 1 the dependence on
s is asymptotically almost tight assuming the Exponential Time Hypothesis. Our algorithm can
be also parallelized: we give an implementation in the PRAM model that achieves running time
f(d, ∥A∥∞) · logO(2d) n using n processors.

The main conceptual ingredient in our algorithms is a new proximity result for multistage
stochastic integer programs. We prove that if we consider an integer program P , say with a
constraint matrix A, then for every optimum solution to the linear relaxation of P there exists an
optimum (integral) solution to P that lies, in the ℓ∞-norm, within distance bounded by a function of
∥A∥∞ and the primal treedepth of A. On the way to achieve this result, we prove a generalization and
considerable improvement of a structural result of Klein for multistage stochastic integer programs.
Once the proximity results are established, this allows us to apply a treedepth-based branching
strategy guided by an optimum solution to the linear relaxation.
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1 Introduction

We consider integer linear programming problems

min{ c⊺x : Ax = b, x ∈ Z⩾0 }, (♠)

that are described by the constraint matrix A ∈ Zn×m, the linear objective goal c ∈ Zm and
the right-hand side vector b ∈ Zn. As in this work we only consider linear objective functions,
for brevity we use term integer programming instead of integer linear programming.

While integer programming is NP-hard, there are various natural assumptions on the
constraint matrix A for which (♠) is solvable in polynomial time. Famous examples include
totally unimodular and bimodular integer programming [15, 1], integer programs with a
constant number of variables [20, 17] or bipartite matching and shortest path problems, see,
e.g. [25]. Another example are block-structured integer programs in which the constraint
matrix exhibits a (recursive) block structure. For instance, in the case of N -fold integer
programming [7], the removal of a small number of constraints (rows of A) results in
decomposing the instance into a large number of small independent subproblems.

We focus on the case where the removal of a few columns of A results in a large number
of independent subproblems, i.e., on the case where A is two-stage or multistage stochastic.

Figure 1 A schematic view of a two-stage stochastic matrix (left panel) and a multistage stochastic
matrix (right panel). All non-zero entries are contained in the blocks depicted in grey.

Formally, A is two-stage or (r, s)-stochastic (Figure 1, left panel) if after deleting the first
r columns the matrix can be decomposed into blocks with at most s columns each. The
terminology is borrowed from the field of stochastic integer optimization, a model for discrete
optimization under uncertainty. Here, the r “global” variables correspond to a decision
made in the first stage, whereas the Ω(n) blocks involving s variables represent a usually
large number different scenarios that arise in the second stage of stochastic optimization.
Two-stage stochastic integer programming has found multiple applications and is a classical
topic in optimization, see the survey of Schultz et al. [26] for some examples and algorithms.
Multistage stochastic integer programming is a generalization of the two-stage variant above
obtained by allowing further recursive levels in the block structure (Figure 1, right panel).

The recursive structure in multistage stochastic integer programs can be explained through
the notion of the primal treedepth of a matrix. The primal treedepth of A, denoted tdP(A),
is the least integer d such that the columns of A can be organized into a rooted forest of
depth at most d (called an elimination forest) with the following property: for every pair
of columns that are not independent – they have non-zero entries in the same row – these
columns have to be in the ancestor/descendant relation in the forest. The form presented in
Figure 1 can be obtained by ordering the columns as in the top-down depth-first traversal of
the elimination forest, and applying a permutation to the rows to form the blocks.

The primal treedepth is a structural parameter that is useful in the design of efficient
integer programming solvers. By this, we mean the existence of fixed-parameter algorithms for
the parameterization by tdP(A) and ∥A∥∞. For this parameterization, fixed-parameterized
tractability can be understood in two ways. Weak fpt algorithms have running time of
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the form f(tdP(A), ∥A∥∞) · |P |O(1), where f is a computable function and |P | is the total
bitlength of the encoding of the input. From strong fpt algorithms we require time complexity
of the form f(tdP(A), ∥A∥∞) · nO(1), where f is computable and n is the number of rows of
the input matrix. Such algorithms work in the model where input numbers occupy single
memory cells on which unit-cost arithmetic operations are allowed. Note that thus, the
running time is not allowed to depend on the bitlength of the input numbers.

A weak fixed-parameter algorithm for the considered parameterization follows implicitly
from the work of Aschenbrenner and Hemmecke [2]. The first to explicitly observe the
applicability of primal treedepth to the design of fpt algorithms for integer programming were
Ganian and Ordyniak [13], although their algorithm also treats ∥b∥∞ as a parameter besides
tdP(A) and ∥A∥∞. A major development was brought by Koutecký et al. [19], who gave the
first strong fpt algorithm, with running time f(tdP(A), ∥A∥∞) · n3 log2 n. We refer the reader
to the joint manuscript of Eisenbrand et al. [10], which comprehensively presents the recent
developments in the theory of block-structured integer programming. Corollaries 93 and 96
there discuss the cases of two-stage and multistage stochastic integer programming.

Our contribution. We advance the state-of-the-art of fpt algorithms for two-stage and
multistage stochastic integer programming problems by proving the following. Here, n and d

respectively denote the number of rows and the primal treedepth of the constraint matrix A.

A) We give an f(d, ∥A∥∞) · n logO(2d) n-time algorithm for integer programming (♠) in the
strong sense, where f is a computable function (Theorem 8). This improves upon the
currently fastest strong fpt algorithm by Koutecký et al. [19] that is nearly cubic in n.

B) We provide a 2((r+s)∥A∥∞)O(r(r+s)) ·n logO(rs) n-time algorithm for (r, s)-stochastic integer
programming, again in the strong sense. This improves upon the currently fastest
algorithm that runs in time 2(2∥A∥∞)O(r2s+rs2) · nO(1) [10, 18], both in terms of the
parametric dependence and in terms of the polynomial factor in the running time.

The algorithmic contributions A and B rely on the following proximity result for integer
programs with low primal treedepth. This result can be regarded as the core contribution
of this paper, and we believe that it uncovers an important connection between the primal
treedepth of A and the solution space of (♠).

C) (Proximity) For each optimal solution x⋆ to the linear relaxation of (♠) there is an
optimal (integral) solution x⋄ such that ∥x⋄ − x⋆∥∞ is bounded by a computable function
of tdP(A) and ∥A∥∞. (This is proved in Lemma 3.)

This proximity result provides a very simple template for designing fpt algorithms for
multistage integer programming. Let us explain it for the case of (r, s)-stochastic IPs. After
one has found an optimal fractional solution x⋆ of the linear relaxation of (♠), one only has
to enumerate the (2 · f(d, ∥A∥∞) + 1)r many possible integer assignments for the r stage 1
variables that are within the allowed distance, where f(d, ∥A∥∞) is the proximity bound
provided by Item C. For each of these assignments, the integer program (♠) decomposes
into O(n) independent sub-problems, each with at most s variables. This results in a
f(r, s, ∆) · n-time algorithm (excluding the time needed for solving the linear relaxation).
For multistage-stochastic integer programming, this argument has to be applied recursively.

As for solving the linear relaxation, note that to obtain results A and B we need to be able
to solve linear programs with low primal treedepth in near-linear fpt time in the strong sense.
This is a non-trivial task. Here we rely on a recent paper, Cslovjecsek et al. [5] have shown
that the dual of the linear programming relaxation of (♠) can be solved in time n logO(2d) n.
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By linear programming duality, this provides an algorithm for finding the optimum value of
the linear relaxation of (♠) within the required complexity, but for applying the approach
presented above, we need to actually compute an optimum fractional solution to (♠). While
it is likely that the approach of Cslovjecsek et al. [5] can be modified so that it outputs such
a solution as well, we give a self-contained argument using complementary slackness that
applies the results of [5] only as a black-box.

The approach of Cslovjecsek et al. [5] is parallelizable, in the sense that the algorithm for
solving the linear relaxation of (♠) can be implemented on a PRAM with n processors so
that the running time is logO(2d) n, assuming the constraint matrix A is suitably organized
on input. As the simple enumeration technique sketched above also can be easily applied in
parallel, we obtain the following PRAM counterpart of A and B.

D) In both cases A and B, we provide algorithms that run in time f(d, ∥A∥∞) · logO(2d) n

and 2((r+s)∥A∥∞)O(r(r+s)) · logO(rs) n, respectively, on a PRAM with n processors. For A
we assume that the constraint matrix is suitably organized on input.

The proof of Item C relies on a structural lemma of Klein [18], which allows us to bound
the ℓ∞-norm of the projections of Graver-basis elements to the space of stage 1 variables.
In the language of convex geometry, the lemma says the following: if the intersection of
integer cones C1, . . . , Cm ⊆ Zd is non-empty, where each generator of each Ci has ℓ∞-norm
at most ∆, then there is an integer vector b ∈

⋂m
i=1 Ci that satisfies ∥b∥∞ ⩽ 2O(d∆)d . In fact,

the original bound of Klein [18] is doubly exponential in d2, while we provide a new proof
that improves this to a doubly exponential dependence on d log d only. A direct implication
of this is the improvement in the parametric factor reported in B. We also consider some
further relaxations of the statement that appear to be important in the proof of Item C.

Related work. The algorithm proposed by Koutecký et al. [19] for multistage stochastic
programming relies on iterative augmentation using elements of the Graver basis, see also [7,
23, 14]. The Graver basis of a matrix A consists of all minimal integer solutions of Ax = 0.
Here, minimal is w.r.t. the partial order ⊑ of Rn where x ⊑ y if for each i ∈ {1, . . . , n} we
have |xi| ⩽ |yi| and xiyi ⩾ 0. Intuitively, a Graver basis element comprises of “single steps”
in the lattice of points x satisfying Ax = 0. The augmentation framework is to iteratively
improve the current solution along directions in the Graver basis. It turns out that in the
case of multistage stochastic programs, the ℓ∞-norms of the elements of the Graver basis of
the constraint matrix A can be bounded by g(tdP(A), ∥A∥∞) for some computable function g.
This makes the iterative augmentation technique applicable in this setting. It seems that the
augmentation framework is however inherently sequential.

Let us note that Koutecký et al. [19] relied on bounds on the function g above due to
Aschenbrenner and Hemmecke [2], which only guaranteed computability. Better and explicit
bounds on g were later given by Klein [18], see also [10]. Roughly speaking, the proof of
Klein [18] shows that g(d, a) is at most d-fold exponential, and it is open whether this bound
can be improved to an elementary function.

On a related note, Jansen et al. [16] have very recently given a 22o(s) · nO(1) lower bound
for (1, s)-stochastic IPs in which all coefficients of the constraint matrix are bounded by a
constant in absolute values. This is assuming the Exponential Time Hypothesis. Thus, for
(1, s)-stochastic integer programming with bounded coefficients, our result B is almost tight.

While robust and elegant, iterative augmentation requires further arguments to accelerate
the convergence to an optimal solution in order to guarantee a good running time. As
presented in [10], to overcome this issue one can either involve the bitlength of the input
numbers in measuring the complexity, thus resorting to weak fpt algorithms, or reduce this



J. Cslovjecsek, F. Eisenbrand, M. Pilipczuk, M. Venzin, and R. Weismantel 33:5

bitlength using arguments originating in the work of Frank and Tardos [12]. For instance,
integer program (♠) can be solved in time f(d, ∥A∥∞) · n1+o(1) · logd ∥c∥∞, where d = tdP(A).
However, to the best of our knowledge, before this work there was no strong fpt algorithm
that would achieve a subquadratic running time dependence on n, even in the setting of
two-stage stochastic integer programming.

The setting of N -fold and tree-fold integer programming, which is dual to the setting
considered in this work, has received a lot of attention in the literature, see e.g. [3, 5, 7, 10,
14, 24]. Here, we mostly rely on the recent results of Cslovjecsek et al. [5]. They obtained
nearly linear-time strong fpt algorithms using an approach quite different from iterative
augmentation, which served as a loose inspiration for our work. The key component is a
proximity result for integer programs with bounded dual treedepth: they show that if P is an
integer program with constraint matrix A, then for every optimal solution x⋆ to a suitable
linear relaxation of P there exists an optimal (integral) solution x⋄ to P such that ∥x⋄ − x⋆∥1
is bounded by a function of ∥A∥∞ and the dual treedepth of A (i.e. primal treedepth of A⊺).
It follows that if a solution x⋆ is available, then an optimal integral solution x⋄ can be found
in linear fpt time using dynamic programming, where the bound on ∥x⋄ − x⋆∥ is used to limit
the number of relevant states. This approach requires devising an auxiliary algorithm for
solving linear relaxations with bounded dual treedepth in strong fpt time. This is achieved
through recursive Laplace dualization using ideas from Norton et al. [22].

Let us stress that our proximity bound provided by Item C requires a different proof using
completely different tools than the one obtained for tree-fold integer programs by Cslovjecsek
et al. [5]. Note also that our proximity result concerns the standard linear relaxation, whereas
the one in [5] holds for the strengthened relaxation, where the blocks are replaced by their
integer hulls.

Very recently, Dong et al. [8] proposed a sophisticated interior-point algorithm to approx-
imately solve linear programs whose constraint matrices have primal treewidth t in time
Õ(nt2 · log(1/ε)), where ε is an accuracy parameter. Note here that the primal treewidth is
bounded by the primal treedepth, so this algorithm in principle could be applied to the linear
relaxation of (♠). There are two caveats: the algorithm of [8] provides only an approximate
solution, and it is unclear whether it can be parallelized. For these reasons we rely on the
algorithm of Cslovjecsek et al. [5] through dualization, but exploring the applicability of the
work of Dong et al. [8] in our context is an exciting perspective for future work.

Organization. In this paper we focus on presenting the proximity result Item C and deriving
algorithmic corollaries. Discussion of solving the linear relaxation as well as full proofs of
statements marked with (q), can be found in the full version of this paper, which is available
on ArXiv [6].

2 Preliminaries

Model of computation. We assume a real RAM model of computation, where each memory
cell stores a real number (of arbitrary bitlength and precision) and arithmetic operations
(including rounding) are assumed to be of unit cost. For parallel computation we assume the
CRCW PRAM model. As we will be working with sparse matrices, we assume that a matrix
is specified on input by a list of its non-zero entries.

(Integer) linear programming. We consider integer programs of the form (♠). When
replacing the integrality constraint x ∈ Z⩾0 by x ∈ R⩾0 yields the linear relaxation of (♠).
We represent a program P as a quadruple P = (x, A, b, c), where x, A, b, c are as in (♠). We
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33:6 Algorithms for Multistage Stochastic Integer Programming Using Proximity

denote by SolZ(P ) (resp. SolR(P )) the set of feasible integral solutions to P (resp. the set of
fractional solutions to the linear relaxation to P ). Analogously, we denote the set of optimal
solutions (with respect to the objective function) by optZ(P ) and optR(P ) respectively.

Stochastic matrices. We say that a matrix M is block-decomposable if there are non-zero
block matrices M1, · · · , Mt such that M can be written as M = diag(M1, · · · , Mt). The
matrices M, M1, · · · , Mt need not be square. The block decomposition of M is then the
unique presentation of M as M = diag(M1, · · · , Mt), where the blocks M1, . . . , Mt are non
empty and not block-decomposable.

For nonnegative integers r and s, a matrix A is (r, s)-stochastic if the following condition
holds: if A′ is A with the first r columns removed, then each block in the block decomposition
of A′ has at most s columns. Equivalently, an (r, s)-stochastic matrix can be written as

A =


A1 B1
A2 B2
...

. . .
At Bt

 , (♢)

where the blocks A1, . . . , At have r columns and each block Bi has at most s columns. As
usual, in (♢) and throughout the paper, empty spaces denote blocks filled with zeros. In
general, a presentation of matrix A as in (♢) is called the stochastic decomposition of A. To
define the primal treedepth tdP(A) of a matrix A, we first recursively define the depth of A:

if A has no columns, then its depth is 0;
if A is block-decomposable, then its depth is equal to the maximum among the depths of
the blocks in its block decomposition; and
if A has at least one column and is not block-decomposable, then the depth of A is one
larger than the depth of the matrix obtained from A by removing its first column.

The primal treedepth of A is then the smallest integer d, such that the rows and columns of
A can be permuted so that the resulting matrix has depth d.

For the remainder of this paper we will assume that matrices of bounded primal treedepth
are suitably organized on input. That is, rows and columns are permuted so that the matrix
has primal treedepth at most d and is in the block form depicted above. Finding such a
permutation can be done in linear fpt time, we discuss this in the full version of the paper.

Graver bases. We collect some basic facts about Graver bases, for a thorough introduction
to the theory and its applications we refer to [23, 21]. For an integer matrix A, we write
kerZ(A) for the set of all integer vectors from ker(A). The Graver basis of A, denoted G(A),
consists of all ⊑-minimal vectors of kerZ(A). We will use the following known bounds on
g∞(A) := maxv∈G(A) ∥v∥∞, the maximum norm of Graver basis elements:

▶ Theorem 1 ([9], q). For every integer matrix A with n rows and m columns, we have
g∞(A) ⩽ (2n∥A∥∞ + 1)n and g∞(A) ⩽ (2m∥A∥∞ + 1)m.

We will also use the more general bounds for matrices with bounded primal treedepth.

▶ Theorem 2 (Lemma 26 of [10]). There is a computable function f : N × N → N such that
for every integer matrix A, g∞(A) ⩽ f(tdP(A), ∥A∥∞).

We note that the proof of Theorem 2 given by Eisenbrand et al. [10] shows that, roughly
speaking, g∞(A) is bounded by a d-fold exponential function of ∥A∥∞, where d is the primal
treedepth of A.
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3 Algorithms

As discussed, our algorithms use two ingredients: proximity results for stochastic integer
programs, and algorithms for solving their linear relaxations. In this section we state those
ingredients formally and argue how the results claimed in Section 1 follow.

As for proximity, we show that in stochastic integer programs, for every optimal fractional
solution there is always an optimal integral solution that is not far, in terms of the ℓ∞-norm.
Precisely, the following results will be proved in Section 5.

▶ Lemma 3. There exists a computable function f : N × N → N with the following property.
Suppose P = (x, A, b, c) is a linear program in the form (♠). Then for every optimal fractional
solution x⋆ ∈ SolR(P ) there exists an optimal integral solution x⋄ ∈ SolZ(P ) satisfying

∥x⋄ − x⋆∥∞ ⩽ f(depth(A), ∥A∥∞).

▶ Lemma 4. Suppose P = (x, A, b, c) is a linear program in the form (♠), where A is
(r, s)-stochastic for some positive integers r, s. Then for every optimal fractional solution
x⋆ ∈ SolR(P ) there exists an optimal integral solution x⋄ ∈ SolZ(P ) satisfying

∥x⋄ − x⋆∥∞ ⩽ 2O(r(r+s)∥A∥∞)r(r+s)
.

A (r, s)-stochastic matrix has depth at most r + s, so Lemma 4 can be seen as a special
case of Lemma 3, but provides an explicit bound. For solving the linear relaxation we obtain:

▶ Lemma 5 (q). Suppose we are given a linear program P = (x, A, b, c) in the form (♠),
where A has n rows. Then, in the PRAM model, one can, using n processors and in time
logO(2depth(A)) n, compute an optimal fractional solution to P .

▶ Lemma 6 (q). Suppose we are given an (r, s)-stochastic linear program P = (x, A, b, c) in
the form (♠), where A has n rows. Then, in the PRAM model, one can, using n processors
and in time 2O(r2+rs2) · logO(rs) n, compute an optimal fractional solution to P .

Again, Lemma 6 differs from Lemma 5 by considering a more restricted class of matrices
(i.e., (r, s)-stochastic), but providing better complexity bounds.

We now combine the tools presented above to show the following theorems.

▶ Theorem 7 (q). Suppose we are given an (r, s)-stochastic linear program P = (x, A, b, c)
in the form (♠), where A has n rows. Then, in the PRAM model, one can, using n processors
and in time 2((r+s)∥A∥∞)O(r(r+s)) · logO(rs) n, compute an optimal integral solution to P .

Sketch of proof. Apply Lemma 5 to find an optimal fractional solution x⋆. By Lemma 4,
there is an optimal integral solution x⋄ satisfying ∥x⋄ − x⋆∥∞ ⩽ ρ, where ρ ∈
2O(r(r+s)∥A∥∞)r(r+s) . In particular, if x⋄

0 and x⋆
0 are the projections of x⋄ and x⋆ onto

the first r coordinates, respectively, then ∥x⋄
0 − x⋆

0∥∞ ⩽ ρ.
Assume the stochastic decomposition (♢) of A. For all ξ ∈ Zr

⩾0 satisfying ∥ξ − x⋆∥∞ ⩽ ρ

and all i ∈ {1, . . . , t}, let us consider the integer program Pi(ξ) defined as:

min{ c⊺i xi : Bixi = bi − Aiξ, xi ⩾ 0 },

where bi, ci, xi are suitable restrictions of b, c, x to entries corresponding to rows or columns
of Bi. It follows that

optZ(P ) = min
{

c⊺0ξ +
t∑

i=1
optZ(Pi(ξ)) : ξ ⩾ 0 is integral and ∥ξ − x⋆

1∥∞ ⩽ ρ

}
,
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where c0 is the projection of c onto the first r coordinates. Therefore, it suffices to iterate
through all integral vectors ξ ⩾ 0 satisfying ∥ξ − x⋆

1∥ ⩽ ρ one by one – of which there are
at most (2ρ + 1)r many – and for each of them solve all the programs Pi(ξ) in parallel, by
assigning to Pi(ξ) as many processors as the number of rows of Bi.

It remains to argue how each of the programs Pi(ξ) is going to be solved efficiently. For
this, we may apply the same approach. Namely, we use Lemma 5 to find an optimal fractional
solution x⋆

i of Pi(ξ), and using Lemma 4 again we can argue that there exists an optimal
integral solution x⋄

i of Pi(ξ) that satisfies ∥x⋄
i − x⋆

i ∥∞ ⩽ ρ. Now Bi has at most s columns,
so there are only at most (2ρ + 1)s candidates for an integral vector x⋄

i satifying the above,
and they can be checked one by one. The overall running time analysis follows easily from
the bounds provided by Lemma 4 and Lemma 5; we leave the details to the reader. ◀

The same basic idea, but applied recursively, yields the following.

▶ Theorem 8 (q). There is a computable function f : N × N → N such that the following
holds. Suppose we are given a linear program P = (x, A, b, c) in the form (♠), where A has n

rows. Then, in the PRAM model, one can using n processors and in time f(depth(A), ∥A∥∞) ·
logO(2depth(A)) n compute an optimal integral solution to P .

4 A stronger Klein bound

In this section we discuss a stronger variant of a structural result of Klein [18] which we will
need for our proximity bounds in the next section.

▶ Theorem 9 (Stronger Klein bound, q). Let T1, . . . , Tn ⊆ Zd be multisets of integer vectors
of ℓ∞-norm at most ∆ such that their respective sums are almost the same in the following
sense: there is some b ∈ Zd and a positive integer ϵ such that∥∥∥ ∑

v∈Ti

v − b
∥∥∥

∞
< ϵ for all i ∈ {1, . . . , n}.

There exists a function f(d, ∆) ∈ 2O(d∆)d such that the following holds. Assuming ∥b∥∞ >

ϵ · f(d, ∆), one can find nonempty submultisets Si ⊆ Ti for all i ∈ {1, . . . , n}, and a vector
b′ ∈ Zd satisfying ∥b′∥∞ ⩽ f(d, ∆), such that∑

v∈Si

v = b′ for all i ∈ {1, . . . , n}.

Theorem 9 strengthens the original formulation of Klein [18, Lemma 2] in various aspects.
First, the formulation of Klein required all the vectors to be nonnegative. Second, the
argument of Klein yields a bound on f(d, ∆) that is doubly exponential in d2, our proof
improves this dependence to doubly exponential in d log d. Finally, we allow the sums of the
respective multisets to differ by some slack parameter ϵ, while in the original setting of Klein
all sums need to be exactly equal. This last aspect will prove essential in the proof of our
proximity bound, while the second is primarily used for improving the parametric factor in
the running time.

The full proof of Theorem 9 relies on polyhedral techniques and is rather lengthy. However,
using only the original formulation due to Klein and the pigeonhole principle, there is a short
proof that achieves the third aspect of our improvement, i.e. that we may allow the sums of
respective multisets to differ by some slack parameter. As this is central for the next section,
we prove only this part and defer the full proof of Theorem 9 to the full version of the paper.
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Proof of a simpler variant of Theorem 9. Specifically, we show the following statement:

Let T1, . . . , Tn be multisets of vectors in Zd
⩾0 of ℓ∞ norm at most ∆ such that there is

some b ∈ Zd and ϵ ∈ N such that∥∥∥ ∑
v∈Ti

v − b
∥∥∥

∞
< ϵ for all i ∈ {1, . . . , n}.

Then there is a function g(d, ∆) such that provided ∥b∥∞ > ϵ · g(d, ∆), there exist
nonempty submultisets Si ⊆ Ti for i ∈ {1, . . . , n} and a vector b′ ∈ Zd

⩾0 satisfying
∥b′∥∞ ⩽ g(d, ∆) such that∑

v∈Si

v = b′ for all i ∈ {1, . . . , n}.

In fact, one can take g(d, ∆) = 2(f(d, ∆) + 1)d+1 where f(d, ∆) is the bound from [18].

To prove this, we first add vectors belonging to {0, 1}d to each multiset Ti so that∑
v∈T̃i

v = b + ϵ · 1 for all i ∈ {1, . . . , n},

where the T̃i are the resulting multisets and 1 is the all-ones vector. Clearly, this can be
achieved by adding to each multiset Ti at most 2ϵ vectors from {0, 1}d.

Assume that ∥b∥∞ > 2ϵ · (f(d, ∆) + 1)d+1 where f(d, ∆) is the original bound from [18].
Since the multisets T̃i all sum up to b + ϵ · 1 exactly, we can use the original formulation
of [18] to infer that there are submultisets S1

i ⊆ T̃i, for all {1, . . . , n}, and a vector b1 ∈ Zd
⩾0

with ∥b1∥∞ ⩽ f(d, ∆) such that∑
v∈S1

i

v = b1 for all i ∈ {1, . . . , n}.

Since the multisets T̃i − S1
i sum up to b + ϵ · 1 − b1, we can iteratively find nonempty

submultisets S2
i ⊆ T̃i − S1

i , . . . , Sk
i ⊆ T̃i − (S1

i ∪ . . . ∪ Sk
i ) and vectors b1, . . . , bk of ℓ∞-norm

bounded by f(d, ∆) such that∑
v∈Sj

i

v = bj for all j ∈ {2, . . . , k} and i ∈ {1, . . . , n}.

Since we assumed that ∥b∥∞ > 2ϵ·(f(d, ∆)+1)d+1, we can continue the above procedure until
k > 2ϵ · (f(d, ∆) + 1)d. Note that there are at most (f(d, ∆) + 1)d integral and nonnegative
vectors of ℓ∞ norm at most f(d, ∆). Therefore, by pigeonhole principle there exists b′ ∈ Zd

⩾0
with ∥b′∥∞ ⩽ f(d, ∆) and a set of indices J of size 2ϵ + 1 such that

∑
v∈Sj

i
v = b′ for all

j ∈ J and i ∈ {1, . . . , n}. For each i ∈ {1, . . . , n}, one of these multisets Sj
i ⊆ T̃i for j ∈ J

does not contain any of the (at most) 2ϵ vectors we have added to Ti to obtain T̃i. Thus, for
each i ∈ {1, . . . , n} we can find a nonempty submultisets Si ⊆ Ti satisfying∑

v∈Si

v = b′.

Since ∥b′∥∞ ⩽ f(d, ∆) ⩽ g(d, ∆), this concludes the proof. ◀
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5 Proximity

The goal of this section to prove a very general theorem, Theorem 12, that will imply
Lemma 3 and Lemma 4, see Corollaries 14 and 15. To facilitate the discussion of proximity,
let us introduce the following definition.

▶ Definition 10. Let P = (x, A, b, c) be a linear program in the form (♠). The proximity
of P , denoted proximity∞(P ), is the infimum of reals ρ ⩾ 0 satisfying the following: for every
fractional solution x⋆ ∈ SolR(P ) and integral solution x@ ∈ SolZ(P ), there is an integral
solution x⋄ ∈ SolZ(P ) such that

∥x⋄ − x⋆∥∞ ⩽ ρ and x⋄ − x⋆ ⊑ x@ − x⋆.

The condition x⋄ − x⋆ ⊑ x@ − x⋆ is equivalent to saying that x⋄ is contained in the axis
parallel box spanned by x⋆ and x@, see Figure 2.

x⋆

x ⩾ 0

x@

x⋄
x•

Figure 2 x⋄ − x⋆ ⊑ x@ − x⋆, x⋄ is in the rectangle spanned by x@ and x⋆.

Comparing to earlier work, for instance [4, 11], this notion of proximity is independent
of the optimization goal. However, it can also be used to bound the distance of optimal
fractional solutions to optimal integral solutions.

▶ Lemma 11 (q). Suppose P = (x, A, b, c) is a linear program in the form (♠). Then
for every optimal fractional solution x⋆ to P there is an optimal integral solution x⋄ to P

satisfying

∥x⋄ − x⋆∥∞ ⩽ proximity∞(P ).

Sketch of proof, see Figure 2. Let x@ any optimal integral solution. By our definition of
proximity there is x⋄ with ∥x⋄ − x⋆∥∞ ⩽ proximity∞(P ) and x⋄ − x⋆ ⊑ x@ − x⋆. It can be
easily checked that if c⊺x@ < c⊺x⋄, then x• := x⋆ + x@ − x⋄ is feasible and c⊺x• < c⊺x⋆,
contradicting the optimality of x⋆. Thus, x⋄ is an optimal integral solution. ◀

For the remainder of this section we adopt the following notation. Suppose that A has a
stochastic decomposition (♢). Let x0, x1, . . . , xt be the partition of the vector of variables x

so that x0 ∈ Rr corresponds to the columns of matrices A1, . . . , At, while xi ∈ Rs corresponds
to the columns of Bi, for each i ∈ {1, . . . , t}. Finally, partition b into b1, . . . , bt so that bi

corresponds to the rows of Ai and Bi respectively. Thus, SolR(P ) takes the form:

Aix0 + Bixi = bi for all i ∈ {1, . . . , t},

xi ⩾ 0 for all i ∈ {0, 1, . . . , t}.
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For each i ∈ {1, . . . , t}, we define

Pi =
((

x0
xi

)
, Di, bi, 0

)
with Di := (Ai Bi). (1)

We observe that
x0
x1
...

xt

 ∈ SolR(P ) if and only if
(

x0
xi

)
∈ SolR(Pi) for all i ∈ {1, . . . , t}.

This decomposition of the constraint matrix is the key to our main technical result.

▶ Theorem 12 (Composition Theorem). Suppose P = (x, A, b, c) is a linear program in the
form (♠), where A admits a stochastic decomposition (♢). Adopt the notation presented
above and let k be the number of columns of each of the matrices A1, . . . , At. Further, let

γ := max
1⩽i⩽t

g∞(Di) and ρ := max
1⩽i⩽t

proximity∞(Pi).

Then

proximity∞(P ) ⩽ 3kγρ · f(k, γ)

where f(k, γ) is the bound provided by Theorem 9.

By substituting f(k, γ) with the bound of Theorem 9, we get proximity∞(P ) ⩽ ρ · 2O(kγ)k .
To derive the promised bounds on the proximity we use the following simple lemma.

▶ Lemma 13 (q). Let P = (x, A, b, c) be a linear program in the form (♠) where A has m

columns. Then

proximity∞(P ) ⩽ (m∥A∥∞)m+1.

Sketch of proof. Given a feasible fractional solution x⋆ and an integral vector x@, we can
consider the ILP on m variables defined by constraints Ax = b and x − x⋆ ⊑ x@ − x⋆. By the
classic theorem of Cook et al. [4], there is an integral solution whose ℓ∞ distance from x⋆ is
at most m times the largest sub-determinant. It remains to apply the Hadamard bound. ◀

▶ Corollary 14. Let P = (x, A, b, c) be a linear program in the form (♠), where A is
(r, s)-stochastic. Then

proximity∞(P ) ⩽ 2O(r(r+s)∥A∥∞)r(r+s)
.

Proof. Recalling the definition of Pi in (1) and using that the matrix A is (r, s)-stochastic,
we see that the constraint matrix Di of Pi has at most r + s columns with entries bounded
by ∥A∥∞. Using Lemma 13 and Theorem 1 respectively, we get

g∞(Di) ⩽ (2(r + s)∥A∥∞ + 1)r+s and proximity∞(Pi) ⩽ ((r + s)∥A∥∞)r+s+1.

By Theorem 12 we obtain the claimed bound on proximity∞(A). ◀

Applying the same idea recursively yields the following.

▶ Corollary 15 (q). There is a computable function h : N×N → N such that for every linear
program P = (x, A, b, c) in the form (♠), we have

proximity∞(P ) ⩽ h(tdP(A), ∥A∥∞).
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5.1 Proof of Theorem 12
We now use our strengthening of the lemma of Klein [18], Theorem 9, to prove Theorem 12.

Proof of Theorem 12. Consider any x⋆ ∈ SolR(P ) and x@ ∈ SolZ(P ). Let x⋄ ∈ SolZ(P ) be
an integral solution such that x⋄ − x⋆ ⊑ x@ − x⋆ and subject to the condition that ∥x⋄ − x⋆∥1
is minimized. Our goal is to show that then ∥x⋄ − x⋆∥∞ ⩽ 3kγρ · f(k, γ), where f(·, ·) is the
function given by Theorem 9.

Observe that if there existed a non-zero vector u ∈ kerZ(A) such that u ⊑ x⋆ − x⋄, then
we would have that x⋄ + u ∈ SolZ(P ), (x⋄ + u) − x⋆ ⊑ x⋄ − x⋆ ⊑ x@ − x⋆, and the ℓ1 distance
from x⋆ to x⋄ + u would be strictly smaller than to x⋄. This would contradict the choice of
x⋄. Therefore, it is sufficient to show the following: if ∥x⋄ −x⋆∥∞ is larger than 3kγρ ·f(k, γ),
then there exists a non-zero vector u ∈ kerZ(A) such that u ⊑ x⋆ − x⋄.

To this end, for all i ∈ {1, . . . , t}, restrict x⋆ and x⋄ to the variables of Pi as follows:

x̃⋆
i :=

(
x⋆

0
x⋆

i

)
∈ SolR(Pi) and x̃⋄

i :=
(

x⋄
0

x⋄
i

)
∈ SolZ(Pi).

By the definition of proximity, for all i ∈ {1, . . . , t} there are integral solutions

x̃i ∈ SolZ(Pi) with ∥x̃i − x̃⋆
i ∥∞ ⩽ proximity∞(Pi) ⩽ ρ and x̃i − x̃⋆

i ⊑ x̃⋄
i − x̃⋆

i .

Since x̃i and x̃⋄
i are both integral solutions to Pi, we have x̃i − x̃⋄

i ∈ kerZ(Ai Bi) and we
can decompose this vector into a multiset Gi of Graver elements. That is, Gi is a multiset
consisting of sign compatible (i.e., belonging to the same orthant) elements of G(Di) with
x̃i − x̃⋄

i =
∑

g∈Gi
g. Note that the first k entries of vectors x̃1, . . . , x̃t correspond to the same

k variables of P , but they may differ for different i ∈ {1, . . . , t}. For a vector w, let π(w) be
the projection onto the first k entries of w.

Let π(Gi) be the multiset that includes a copy of π(g) for each g ∈ Gi. By the definition
of x̃⋆

i and x̃⋄
i , we have π(x̃⋆

i ) = π(x̃⋆
j ) and π(x̃⋄

i ) = π(x̃⋄
j ) for all i, j ∈ {1, . . . , t}. From this,

for all i ∈ {1, . . . , t},∥∥∥ ∑
x∈π(Gi)

x − π(x̃⋆
1 − x̃⋄

1)
∥∥∥

∞
= ∥π(x̃i) − π(x̃⋆

1)︸ ︷︷ ︸
=π(x̃⋆

i
)

+ π(x̃⋄
1) − π(x̃⋄

i )︸ ︷︷ ︸
=0

∥∞ ⩽ ∥x̃i − x̃⋆
i ∥∞ ⩽ ρ.

Thus, Theorem 9 is applicable for d = k, ∆ = γ, ϵ = ρ and b = π(x̃⋆
1 − x̃⋄

1). Note that for
each i ∈ {1, . . . , t} and g ∈ Gi, we have ∥g∥∞ ⩽ γ. We now distinguish between two cases:
Case 1: ∥π(x̃⋆

1 − x̃⋄
1)∥∞ > ρ · f(k, γ).

By Theorem 9, there exist nonempty submultisets S1 ⊆ π(G1), . . . , St ⊆ π(Gt) such that∑
x∈Si

x =
∑

x∈Sj

x for all i, j ∈ {1, . . . , t}.

Define a vector u in the following way. For all i ∈ {1, . . . , t}, let Ĝi ⊆ Gi be submultisets
with π(Ĝi) = Si and set ũi :=

∑
g∈Ĝi

g ∈ kerZ(Di). Observe that vectors π(ũi) are equal for
all i ∈ {1, . . . , t}. This allows us to define u as the vector obtained by combining all the ũi,
so that projecting u to the variables of Pi yields ũi, for each i ∈ {1, . . . , t}. Note that since
multisets Ĝi are nonempty, u is a non-zero vector. Also u ∈ kerZ(A), since ũi ∈ kerZ(Di) for
all i ∈ {1, . . . , t}. Further, we have u ⊑ x⋆ − x⋄, because for all i ∈ {1, . . . , t},

ũi =
∑

g∈Ĝi

g ⊑ x̃i − x̃⋄
i ⊑ x̃⋆

i − x̃⋄
i .
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Thus, u contradicts the minimality of ∥x⋄ − x⋆∥1. We move to the second case.
Case 2: ∥π(x̃⋆

1 − x̃⋄
1)∥∞ ⩽ ρ · f(k, γ).

Since we have ∥π(x̃i − x̃⋄
i ) − π(x̃⋆

1 − x̃⋄
1)∥∞ ⩽ ρ for all i ∈ {1, . . . , t}, we have

∥π(x̃i − x̃⋄
i )∥∞ ⩽ ρ · f(k, γ) + ρ ⩽ 2ρ · f(k, γ) for all i ∈ {1, . . . , t}.

Suppose for a moment that for some i ∈ {1, . . . , t}, there exists an element g ∈ Gi with
π(g) = 0. Then by putting zeros on all the other coordinates, we can extend g to a vector
u ∈ kerZ(A) which satisfies u ⊑ x⋆ − x⋄. As g is non-zero, so is u, hence u satisfies all the
requested properties. Hence, from now on we may assume that no multiset Gi contains an
element g with π(g) = 0. It follows that

|Gi| = |π(Gi)| ⩽
∥∥∥ ∑

x∈π(Gi)

x
∥∥∥

1
⩽ k

∥∥∥ ∑
x∈π(Gi)

x
∥∥∥

∞
= k∥π(x̃i − x̃⋄

i )∥∞ ⩽ 2kρ · f(k, γ).

Since ∥g∥∞ ⩽ γ for every element g ∈ Gi, we infer that

∥x̃i − x̃⋄
i ∥∞ ⩽

∥∥∥ ∑
g∈Gi

g
∥∥∥

∞
⩽ γ|Gi| ⩽ 2kγρ · f(k, γ).

By combining this with ∥x̃i − x̃⋆
i ∥∞ ⩽ ρ, we get

∥x̃⋄
i − x̃⋆

i ∥∞ ⩽ ∥x̃⋄
i − x̃i∥∞ + ∥x̃i − x̃⋆

i ∥∞ ⩽ 2kγρ · f(k, γ) + ρ ⩽ 3kγρ · f(k, γ).

This implies that ∥x⋄ − x⋆∥ ⩽ 3kγρ · f(k, γ) and concludes the proof. ◀
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Abstract
We systematically investigate the complexity of counting subgraph patterns modulo fixed integers.
For example, it is known that the parity of the number of k-matchings can be determined in
polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)-time
algorithm to compute modulo 2t the number of subgraph occurrences of patterns that are s vertices
away from being matchings. This shows that the known polynomial-time cases of subgraph detection
(Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t. Complementing
our algorithm, we also give a simple and self-contained proof that counting k-matchings modulo
odd integers q is ModqW[1]-complete and prove that counting k-paths modulo 2 is ⊕W[1]-complete,
answering an open question by Björklund, Dell, and Husfeldt (ICALP 2015).
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1 Introduction

The last two decades have seen the development of several complexity dichotomies for pattern
counting problems in graphs, including full classifications for counting subgraphs, induced
subgraphs, and homomorphisms from fixed computable pattern classes H. The input to such
problems is a pattern graph H ∈ H and an unrestricted host graph G; the task is to count
the relevant occurrences of H in G. Depending on H, these problems are known to be either
polynomial-time solvable or #W[1]-hard when parameterized by |V (H)|. The latter rules
out polynomial-time algorithms under the complexity assumption FPT ̸= #W[1].

In this paper, we focus on counting subgraphs from any fixed graph class H. On the
positive side, given a pattern graph H ∈ H whose smallest vertex-cover has size vc(H) and
an n-vertex host graph G, there are known O(nvc(H)+1) time algorithms [40, 29, 9] to count
subgraphs of G that are isomorphic to H: First, find a minimum vertex-cover C of H using
exhaustive search. Then, iterate over all possible embeddings f of H[C] into G and count
the possible extensions of G[f(C)] to a full copy of H. Complementing this algorithm, an
almost matching running time lower bound of nΩ(vc(H)/ log vc(H)) under the exponential-time
hypothesis (ETH) is also known [8]. Thus, assuming ETH or FPT ̸= #W[1], the problem
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#Sub(H) of counting subgraphs from a fixed class H is polynomial-time solvable if and only
if the vertex-cover numbers (or equivalently, the maximum matching sizes) of the graphs
in H are bounded by a constant. The rightmost column of Figure 1 visualizes this situation.

Turning from counting to the problem Sub(H) of detecting subgraphs from fixed classes H,
the picture is less clear. Evidence points at three strata of complexity: Define the matching-
split number of H to be the minimum number of vertices whose deletion turns H into a
matching, that is, a graph of maximum degree 1. Jansen and Marx [25] show that, if this
number is bounded in a graph class H, then Sub(H) is polynomial-time solvable. For classes H
of bounded tree-width, it is known [34, 1, 19] that the problem Sub(H) is fixed-parameter
tractable when parameterized by |V (H)|. For pattern classes H of unbounded tree-width, it
is conjectured that Sub(H) is W[1]-hard – so far, this hardness has only been established
for cliques, bicliques [30], grids [6], and less natural graph classes. The leftmost column of
Figure 1 visualizes the situation.

We propose to study an intermediate setting between decision and counting, namely,
counting subgraph patterns modulo fixed integers q ∈ N. Modular counting has a tradition
in classical complexity theory, where the complexity classes ModqP for q ∈ N capture
problems that ask to count accepting paths of polynomially time-bounded non-deterministic
Turing machines modulo q. In particular, the class Mod2P (better known as ⊕P) plays a
central role in the proof of Toda’s theorem [38]. Several (partial) classification results for
frameworks of modular counting problems are known; this includes homomorphisms to fixed
graphs [16, 20, 21, 26, 18], constraint satisfaction problems [15, 22], and Holant problems [11].

Figure 1 summarizes our understanding. If the vertex-cover number is bounded, the
polynomial-time algorithms (regions 7 and 8) follow from the algorithm for #Sub(H) described
above and require no further attention. Our paper is concerned with the remaining regions 1–6.

As argued above, matchings play a central role in decision and counting, so it is natural
that they reprise their role in modular subgraph counting: On the positive side, there are
known polynomial-time algorithms for counting matchings of a given size modulo fixed
powers of two. (For bipartite graphs and counting modulo 2, this essentially follows from the
fact that determinant and permanent coincide modulo 2.) On the negative side, if q is not a
power of two, counting matchings modulo q is known to be ModpP-complete for any odd
prime p dividing q. We establish a parameterized analogue of this fact: Let ModqW[1] be
the class of parameterized problems that are fpt-reducible to counting k-cliques modulo q.
We show that counting k-matchings (that is, sets of k pairwise disjoint edges) in graphs
modulo fixed odd primes q ∈ N is ModqW[1]-hard. In our proof, modular counting allows us
to sidestep the algebraic machinery from previous works [9, 7, 8], resulting in a surprisingly
simple and self-contained argument.

▶ Theorem 1. For any integer q ∈ N containing an odd prime factor p, counting k-
matchings modulo q is ModpW[1]-hard under Turing fpt-reductions and admits no no(k/ log k)

time algorithm under ETH.

Known arguments from Ramsey theory (see [10, Section 5]) extend Theorem 1 from
matchings to #Sub(H) mod q for any hereditary class H of unbounded vertex-cover number.
This suggests that modular subgraph counting may only become tractable when the modulus
is a power of two. Indeed, we show that patterns of matching-split number s can be counted
modulo q = 2t in time nO(t4s). To prove this, we follow the general idea of the bounded vertex-
cover number algorithm for Sub(H) outlined before, and we reduce to counting matchings
modulo powers of two. This however requires us to overcome technical complications to
avoid unwanted cancellations. Overall, we obtain:
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This paper

vertex-cover
number

matching-split
number

tree-width

decision counting
mod 2t

counting
mod odd q

counting

paths
•

matchings •

grids •
bicliques •

W [1]-hard

Polynomial time

FPT

7 8

5 6

3 4

1 2

Figure 1 An overview over known results and our new results. The columns correspond, from left
to right, to the problem types Sub(H), #Sub(H) mod 2t, #Sub(H) mod q for q ̸= 2t, or #Sub(H);
our results are depicted in the two middle columns. The rows correspond, from bottom to top,
to requiring H to have bounded vertex-cover number, matching-split number, tree-width, or no
requirement at all. The complexity along each row is monotone: By Lemma 4, decision is no harder
than modular counting, and modular counting trivially is no harder than counting. Our results
are depicted in the middle two columns: Regions 1 and 2 are Lemma 5. Region 5 is Theorem 2.
Regions 7 and 8 already follow from [40]. The point in region 6 is Theorem 1, and the point in
region 3 is Theorem 3. We view the hardness of these points as evidence to conjecture their enclosing
regions to be hard, see Conjecture 14.

▶ Theorem 2. There is an algorithm that, given a graph H of matching-split number s ∈ N
and an n-vertex graph G, computes the number of H-isomorphic subgraphs of G modulo 2t

in time nO(t4s).

We complement this result in two ways: First, we observe that ⊕Sub(H) is ⊕W[1]-complete
for pattern classes H of unbounded tree-width; this follows directly from previous hardness
proofs for #Sub(H). More interestingly, we establish the ⊕W[1]-completeness of counting
k-paths modulo 2 in undirected graphs, thus solving an open problem from [3], where this
problem was considered in the context of Hamiltonian cycle detection, following [4].

▶ Theorem 3. Counting k-paths modulo 2 is ⊕W[1]-complete.

This result adds to a rich range of previous work on the k-path problem, and is of interest
outside our framework. Bodlaender [5] and Monien [32] showed that finding a k-path is
fixed-parameter tractable. In contrast, Flum and Grohe [17] showed that exactly counting
k-paths is #W[1]-hard. Nevertheless, Arvind and Raman [2] showed that approximately
counting k-paths, which corresponds to computing the most significant bit(s) of the number
of k-paths, is fixed-parameter tractable. Our Theorem 3 suggests that the least significant
bit of the number of k-paths is hard to compute. This is surprising, because some of the
most influential fpt-algorithms for finding a k-path work over characteristic 2, based on the
group algebra framework introduced by Koutis [28].

Let us conclude with a general remark on the techniques used in this paper: Recent
works successfully exploited a connection between subgraph counts and (linear combinations
of) homomorphism counts to obtain algorithms and hardness results [8, 35, 14, 36, 37]. For
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example, the number of k-matchings in a graph G is a linear combination of homomorphism
counts from f(k) fixed graphs. Insights on the complexity of counting the homomorphisms
occurring in this linear combination then lead to complexity results for counting k-matchings.
This connection however does not readily transfer to modular counting, as the relevant linear
combinations (which involve rational coefficients) may be undefined modulo p. We therefore
prove Theorems 1–3 using more combinatorial approaches.

2 Preliminaries

Unless otherwise stated, we consider finite, undirected, simple graphs without self-loops.

Subgraph problems

A homomorphism from graph H to graph G is a mapping φ : V (H) → V (G) such that
{φ(u), φ(v)} ∈ E(G) for each {u, v} ∈ E(H). An embedding is an injective homomorphism,
and we let Emb(H, G) denote the set of embeddings from H to G. An isomorphism is a
bijective homomorphism, and an automorphism is an isomorphism from H to itself. The set
of all automorphisms of H is called Aut(H), and forms a group when endowed with function
composition ◦.

We let Sub(H, G) be the set of all H-subgraphs of G, that is, the set of all H ′ with
V (H ′) ⊆ V (G) and E(H ′) ⊆ E(G) such that H ′ is isomorphic to H. This terminology fixes
the possible confusion about isomorphic copies of subgraphs: For example, there is exactly
one Kk-subgraph in Kk, but there are k! embeddings. The subgraph problem Sub is given
a pair (H, G) to decide whether G has at least one H-subgraph. The subgraph counting
problem #Sub is given a pair (H, G) to determine the number of H-subgraphs in G.

For a graph class H, we write #Sub(H) for the restricted problem where the input
(H, G) is promised to satisfy H ∈ H. For q ∈ Z≥2, the modular subgraph counting problem
#Sub(H) mod q is the problem to compute the number of H-subgraphs modulo q. In the
special case with q = 2, we write ⊕Sub.

It will be useful to consider colorful subgraph problems, where G is H-colored, that is,
there is a given homomorphism c : V (G) → V (H). Due to the homomorphism property,
we allow edges {u, v} ∈ E(G) only if the corresponding colors satisfy {c(u), c(v)} ∈ E(H).
A subgraph H ′ of an H-colored graph G is vertex-colorful if c is bijective on V (H ′). Let
VertexColorfulSub(H, G) be the set of vertex-colorful subgraphs H ′ for which c is an isomor-
phism from H ′ to H . The corresponding computational problems are defined analogously to
the uncolored case; the input consists of a graph G together with an H-coloring c.

Background from complexity theory

A parameterized counting problem is a pair (f, κ) of functions f, κ : {0, 1}∗ → N where κ

is computable. A parsimonious fpt-reduction from a parameterized counting problem (f, κ)
to a parameterized counting problem (g, ι) is a function R with the following properties:
(i) f(x) = g(R(x)) for all x ∈ {0, 1}∗, (ii) ι(R(x)) is bounded by a computable function
in κ(x), and (iii) the reduction is computable in time h(κ(x)) poly(|x|) for some computable
function h. A Turing fpt-reduction may query the oracle multiple times for instances whose
parameter is bounded by a function of the input parameter, and combine the query answers
in fpt-time to produce the correct output. Moreover, reductions can also be randomized, in
which case we require that their error probability is bounded by a small constant.
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The exponential-time hypothesis (ETH) postulates the existence of some ε > 0 such
that no algorithm solves n-variable 3-CNF formulas in time O(2εn). We write for short
that 3-CNF-SAT does not have 2o(n)-time algorithms, and we also disallow bounded-error
randomized algorithms.

Modular counting

For our purposes, we define the class ModqW[1] as the class of all parameterized problems
(f, κ) with f : Σ∗ → {0, . . . , q − 1} such that (f, κ) has a parsimonious fpt-reduction to the
problem of counting k-cliques modulo q. For q = 2, it was shown in [3] that all problems in
W[1] admit randomized fpt-reductions to problems in ⊕W[1]. Another result [39, Lemma 2.1]
yields the corresponding generalization for all q > 2. We use the following analogous
proposition for the vertex-colorful subgraph problem, proven in the full version.

▶ Lemma 4. For any integer q ≥ 2, there is a randomized Turing fpt-reduction from the
problem VertexColorfulSub to the problem #VertexColorfulSub mod q. On input (H, G), the
reduction only queries instances with the same pattern H.

Our work relies on the following hardness result for parameterized modular subgraph
counting, which follows easily from known results on the colorful subgraph decision prob-
lem [13, 31]. See the full version for a proof.

▶ Lemma 5. Let H be a graph family of unbounded tree-width and let q be an integer with
q ≥ 2. Then #VertexColorfulSub(H) mod q parameterized by k = |E(H)| is ModqW[1]-hard
under parsimonious fpt-reductions. Moreover, if ETH is true, then the problem does not have
an algorithm running in time no(k/ log k), where n = |V (G)|.

3 Hardness of counting k-matchings

In this section, we prove Theorem 1. We first establish ModqW[1]-hardness of the problem
#ColMatch mod q for odd q ≥ 3: Given a graph G with an edge-coloring c : E(G) → C for
some set of colors C with |C| = k, this problem asks to count modulo q the edge-colorful
matchings in G. These are the matchings that use each color in C exactly once.

▶ Lemma 6. For any fixed integer p with odd prime factor q, the problem #ColMatch mod p

is ModqW[1]-hard under parsimonious fpt-reductions and has no no(k/ log k) time algorithm
under ETH.

Proof. The class H of all 3-regular graphs has unbounded tree-width, and hence by Lemma 5,
the problem #VertexColorfulSub(H) mod q is ModqW[1]-hard and hard under ETH. We
reduce it to #ColMatch mod q, implying the hardness of #ColMatch mod p. Let H ∈ H
and G be the input for the reduction with k = |V (H)| and H-colored G, and let { Va : a ∈
V (H) } be the color classes of G, with edge-sets Ea,b(G) for ab ∈ E(H). Using the gadgets
from Figure 2, we construct a graph G′:
1. Each vertex u ∈ V (G) is replaced by three vertices u1, u2, and u3. We insert a consistency

gadget Qu at these vertices by adding q gadget vertices, connecting u2 and u3 to all
gadget vertices, and u1 to the first (q + 1)/2 gadget vertices. For S ⊆ {u1, u2, u3}, let
mS count the matchings in Qu that match precisely S; it can be checked that

mS ≡q

{
1 if S is ∅ or {u1, u2, u3},
0 if S is {u2}, {u3}, or {u2, u3}.

(1)

We explicitly ignore the other three cases for S, as they will not be relevant.
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q − 2

ui vj

q − 2

(a) The AND-gadget, shown here for q = 5.
In general, the upper ui, vj-path always
has 3 edges; both external vertices ui

and vj have q − 2 neighboring leaves. If ex-
actly 0 or 1 external vertices are removed,
this graph has 0 edges modulo q; if both
vertices are removed, the graph has 1 edge.

u1 u2

u3

q

(b) The consistency gadget contains q
gadget vertices, shown here for q = 5.
The number of matchings of size 0 and 3
equals 1 modulo q, and if u1 is deleted, the
number of non-empty edge-colorful match-
ings equals 0 modulo q.

Figure 2 The two gadgets used in the proof of Lemma 6.

2. For {a, b} ∈ E(H), suppose that a is the jth vertex incident to b, and that b is the ith
vertex incident to a. For each edge {u, v} ∈ Ea,b(G) with u ∈ Va and v ∈ Vb, we insert
an AND-gadget Auv at {ui, vj}. Then for any set S ⊊ {ui, vj}, the number of edges in
Auv − S is divisible by q, whereas Auv − {ui, vj} has exactly one edge.

3. The edge-colors of G′ are defined as follows: For u ∈ Va with a ∈ V (H), we assign color
(CONS, a, i) to all edges of Qu incident to vertex ui, for i ∈ {1, 2, 3}. For each ab ∈ E(H),
we assign color (AND, ab) to all edges in AND-gadgets between edges in Ea,b(G). Overall,
we have k′ = 3k + 3k/2 colors.

Every H-copy F in G induces a set MF of colorful matchings in G′. We describe this set
in the following, show that |MF | ≡q 1, and that MF and MF ′ are disjoint for F ̸= F ′.

For each v ∈ V (F ), match all of {v1, v2, v3} within Qv. For fixed v, the number of possible
matchings in Qv is m{v1,v2,v3} ≡q 1 by (1). Let QF denote the set of all matchings that
can be obtained by the previous step. Since matchings can be chosen independently for
distinct Qv, we obtain |QF | ≡q 1|V (F )| ≡q 1.
Any M ∈ QF can be extended to several colorful matchings by choosing one edge from
each color (AND, ab) for {a, b} ∈ E(H). For each {u, v} ∈ E(F ), the AND-gadget Auv has
exactly one such edge, while the other AND-gadgets of color (AND, ab) have 0 such edges
modulo q. Hence, the number edges of color (AND, ab) that can extend M is 1 modulo
q. This implies that the overall number rM of matchings extending M into a colorful
matching is also rM ≡q 1|E(F )| ≡q 1.

Overall, every H-copy F induces
∑

M∈QF
rM ≡q

∑
M∈MF

1 ≡q 1 colorful matchings, so
we indeed have |MF | ≡q 1. We also observe from the construction that MF ∩ MF ′ = ∅ for
distinct H-copies F and F ′. In the full version, we use properties of the gadgets to prove
that colorful matchings M /∈

⋃
F MF cancel modulo q.

▷ Claim 7. The number of colorful matchings M that are not contained in MF for any
H-copy F is divisible by q.

Overall, we have shown that the number of H-copies in G and the number of colorful
matchings in G′ agree modulo q. As G′ can be computed in polynomial time and the
parameter is increased only by a constant factor, the claimed hardness results follow. ◀

To prove Theorem 1, it suffices to give an fpt-reduction from #ColMatch mod q to
counting k-matchings modulo q. This is achieved by a standard inclusion-exclusion argument
that can be found in the full version.
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4 Counting matching-splittable subgraphs modulo 2t

In this section, we prove Theorem 2 by describing an nO(t4s)-time algorithm for counting
modulo 2t the subgraphs of matching-split number s. Our algorithm builds upon known
algorithms for the decision and counting versions of subgraph problems; we first review their
underlying ideas and sketch our algorithm for Theorem 2.

Counting subgraphs of bounded vertex-cover number
The basic structure of our algorithm is similar to a known O(ns+1) time algorithm [40, 29, 9]
for counting embeddings from H to G if H has a vertex-cover S ⊆ V (H) of size s ∈ N.
Counting embeddings is sufficient for counting subgraph copies, as we can first compute the
number #Aut(H) of automorphisms on H as #Emb(H, H), and then use

#Sub(H, G) = #Emb(H, G)
#Aut(H) . (2)

Given (H, G) with h = |V (H)| and n = |V (G)|, the algorithm for computing #Emb(H, G)
first finds a minimum vertex-cover S of H in time hO(s); then I := V (H)\S is an independent
set. Then the algorithm enumerates all partial embeddings f from H[S] to G, which takes
time at most nO(s). Finally, for each f , it remains to count all functions g : I → V (G) that
extend f to a full embedding from H to G. We observe that g extends f to a full embedding
if and only if every vertex u ∈ I maps via g to a vertex v = g(u) ∈ V (G) \ f(S) that satisfies
the neighborhood constraint NG(v) ∩ f(S) ⊇ f(NH(u)). Counting functions g with this
property can be achieved (in a not completely obvious way) with dynamic programming; we
only need to know the number of vertices v ∈ V (G) \ f(S) that have a specific neighborhood
NG(v) ∩ f(S), and for each f , there are at most 2s different possible such neighborhoods.
Overall, in nO(s) time, we can compute the number #Emb(H, G).

Detecting subgraphs of bounded matching-split number
Jansen and Marx [25] extend the above approach and obtain an nO(s) time algorithm for the
decision problem Sub(H, G) when H has matching-split number s. In this case, we consider
a splitting set S of size s instead of a vertex-cover, that is, the graph M = H − S may have
isolated edges besides isolated vertices. Now the idea is to not only classify the vertices
v ∈ V (G) \ f(S) by their neighborhoods Nv = NG(v) ∩ f(S), but to also classify the edges
{u, v} ∈ E(G − f(S)) by their neighborhoods {Nu, Nv}. It then remains to find a matching
in G − f(S) that has as many isolated vertices and isolated edges as H − S, such that these
vertices and edges satisfy the neighborhood constraints in f(S). Jansen and Marx achieve
this by reduction to a colored matching problem.

Our algorithm
In our algorithm for Theorem 2, we need to overcome two challenges:
(a) Since counting embeddings is algorithmically more straight-forward than counting sub-

graphs, we would like to count embeddings and divide by the number of automorphisms
#Aut(H) as in Equation (2). However, since we are counting modulo 2t, the number
#Aut(H) mod 2t may be 0, and so the division in Equation (2) is impossible. (In fact,
even even numbers #Aut(H) have no inverse modulo 2t.)

(b) When mimicking Jansen and Marx’s detection algorithm, we cannot just count the
relevant matchings in G − f(S), since counting perfect matchings is #P-hard.
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Most of our effort focuses on overcoming (a): In Section 4.1, we show that every graph H

of matching-split number s has a splitting set R of size O(s2) that remains rigid under
automorphisms, i.e., any automorphism f of H must satisfy f(R) = R. In Section 4.2, we
show how to compute #Sub(H, G) if such a rigid splitting set R for H is given. Rather than
counting H-embeddings and attempting a division by #Aut(H), we use the rigidity of R to
keep track of the automorphisms of H in a more explicit way.

To overcome (b), we use a determinant-based algorithm [23] to compute the Hafnian over
a polynomial ring modulo 2t. We then reduce our constrained matching counting problem to
computing such Hafnians. This part of the algorithm can be found in the full version.

4.1 Rigidizing the splitting set
Let H be a graph with a splitting set S of size s, and let M = H − S be the remaining
graph of maximum degree 1; we speak of M as a matching, even though it may contain
isolated vertices. An automorphism f of H may map a vertex v ∈ S in the splitting set to
f(v) /∈ S. We show that if a splitting set of size s exists then there is also a rigid splitting
set R of size O(s2), i.e., such that every f ∈ Aut(H) satisfies f(R) = R. In fact, the following
algorithm can find such a set R.

Algorithm Rigidize(H) Given a graph H of matching-split number s, this algorithm computes
a rigid splitting set R ⊆ V (H) of size O(s2).
R1 (Find small splitting set.) Using brute-force, compute a set S ⊆ V (H) of size s such that

H − S is a matching.
R2 (Extend it to neighbors of low-degree vertices.) Let D ⊆ V (H) be the set of all vertices

whose degree in H is at most s + 1. Set T := S. While there is an edge {u, v} with
u ∈ T ∩ D and v ∈ T , add v to T .

R3 (Refine it.) Set R := T . For each component C of H[T ∩ D] with at most two vertices,
remove V (C) from R.

The following lemma captures useful properties of Rigidize. See the full version for a proof.

▶ Lemma 8. The algorithm Rigidize runs in time hO(s) where h = |V (H)|, and the output
set R ⊆ V (H) has the properties that |R| ≤ O(s2), that H − R is a matching, and that every
f ∈ Aut(H) satisfies f(R) = R.

4.2 Counting subgraphs with rigid splitting sets
We use the rigid splitting set R from Lemma 8 to compute the number of times H occurs
as a subgraph modulo a power of two. As a subroutine, we use an algorithm for counting
colored matchings modulo a power of two in a setting involving particular “color demands”.

▶ Definition 9. Let G be a graph, let C be a finite set of colors, and let c : V (G)∪E(G) → 2C

be a function that labels each vertex and edge with a subset of C. For any matching M , let
I(M) be the set of its isolated vertices. For a coloring cM : I(M) ∪ E(M) → C, the colored
matching (M, cM ) is permissible if cM (t) ∈ c(t) holds for all t ∈ I(M) ∪ E(M).

Color demands are functions DI , DE : C → N. The pair (M, cM ) satisfies the de-
mands DI , DE if, for each i ∈ C, the graph M contains exactly DI(i) isolated vertices v with
cM (v) = i and exactly DE(i) edges with cM (e) = i. Let M(G, c, DI , DE) be the set of all
permissible matchings (M, cM ) that satisfy the demand D.

As shown in the full version, we obtain the following algorithm as a corollary to Hirai
and Namba’s algorithm [23] for computing the Hafnian over polynomial rings modulo 2t.
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▶ Lemma 10. Given a graph G, permissible colors c : V (G) ∪ E(G) → 2C , color de-
mands DI , DE : C → N, and t ∈ N≥1, there is an algorithm that computes the number
|M(G, c, DI , DE)| mod 2t in time nO(t|C|).

Before we state the main algorithm, we introduce some basic group-theoretic notation.
Let R be a splitting set of H that satisfies f(R) = R for all f ∈ Aut(H). Let G be a graph
and let S ⊆ V (G) be a set with |S| = |R|. For an embedding σ ∈ Emb(H[R], G[S]) and
an automorphism φ ∈ Aut(H), we note that the function σ ◦ (φ↾R) is again an embedding
in Emb(H[R], G[S]). Indeed, we view this operation as a right-action of the group Aut(H)
on the set Emb(H[R], G[S]). We call two embeddings σ, σ′ ∈ Emb(H[R], G[S]) equivalent
if there exists φ ∈ Aut(H) such that σ′ = σ ◦ (φ↾R); this clearly defines an equivalence
relation. The equivalence class σAut(H) is called the orbit of σ under Aut(H). All orbits
have the same size. Let ES be a set of representatives for each orbit, that is, a maximal set
of mutually non-equivalent embeddings in Emb(H[R], G[S]).

We are ready to state the modular counting algorithm for s-matching-splittable subgraphs.

Algorithm ModCount(H, G, t) Given an s-matching-splittable graph H, a host graph G, and
an integer t ≥ 2, this algorithm computes the number #Sub(H, G) mod 2t.
C1 (Compute rigid splitting set.) Call Rigidize(H) to compute the set R.
C2 (Reduce to counting colored matchings.) For each S ⊆ V (G) with |S| = |R| (that is,

a possible image of R) and each representative embedding σ ∈ ES from H[R] to G[S],
we construct an instance (G − S, cσ, DI , DE) of colored matching with demands and use
Lemma 10 to obtain the number |M(G − S, cσ, DI , DE)| mod 2t:
a. (Set permitted colors.) Let C = 2R ∪

(2R

1
)

∪
(2R

2
)
. For each vertex v ∈ V (G) \ S, let

Nv ⊆ R be the vertices of R that hit NG(v)∩S under σ, that is, Nv = σ−1(NG(v)∩S).
Define cσ(v) = { N : N ⊆ Nv }. Moreover, for each {u, v} ∈ E(G − S), define
cσ({u, v}) = { {N, N ′} : N ⊆ Nu, N ′ ⊆ Nv }.

b. (Make demands.) The demands DI , DE : C → N depend only on H and R. For each
N ⊆ R, we let DI(N) be the number of isolated vertices v in H−R whose neighborhood
in H satisfies NH(v) ∩ R = N . Moreover, for all N, N ′ ⊆ R, we let D({N, N ′}) be the
number of edges {u, v} ∈ E(H − R) with {NH(u) ∩ R, NH(v) ∩ R} = {N, N ′}.

C3 (Sum up.) Output the sum modulo 2t of all integers returned by the queries in C2.

In the full version, we prove that ModCount satisfies the properties stated in Theorem 2.

5 Hardness of counting paths modulo two

In this section, we prove Theorem 3, that counting k-paths modulo 2 is ⊕W[1]-hard. We
first formally introduce this and some intermediate problems.

The length of a path is the number of its edges. For a graph G and vertices s, t ∈ V (G), an
s, t-path is a simple path from s to t. For a computable, strictly increasing function f : N → N,
we define f -Flexible Path to be the problem that is given (G, s, t, k) to decide whether there
exists any s, t-path in G whose length ℓ satisfies k ≤ ℓ ≤ f(k). When id denotes the identity
function, then Path (also known as k-Path or Longest Path) is defined as id-Flexible Path.
We similarly define Directed f -Flexible Path and Directed Path for directed graphs, and we
define the counting and parity versions of these problems in the canonical manner.

We start our reduction at the vertex-colorful subgraph problem ⊕VertexColorfulSub(H)
for a class H of unbounded tree-width, which is ⊕W[1]-hard by Lemma 5. The class we
choose consists of connected, almost 4-regular graphs without non-trivial automorphisms;
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G[V1 ∪ V2]
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Figure 3 The construction of the graph G′ from the graphs H and G. The homomorphism from
G to H is indicated by colors. A colorful H-subgraph H ′ in G and the canonical path corresponding
to H ′ in G′ are highlighted in turquoise. Gadget edges are hinted at as semi-transparent curves.
Except for (half of the) gadget edges, all edges are oriented from left to right.

here, we say that a graph is almost 4-regular if it can be obtained from a 4-regular graph
by deleting one edge. The core part of the reduction is in Lemma 11, where we reduce to
counting paths of somewhat flexible length in a directed graph (modulo 2). From there, we
reduce to the familiar k-path problem in undirected graphs using standard tricks.

▶ Lemma 11. For any class H of connected, almost 4-regular graphs without non-trivial
automorphisms, there is a computable, strictly increasing function f such that there is
parsimonious polynomial-time fpt-reduction from ⊕VertexColorfulSub(H) to ⊕Directed f -
Flexible Path.

Proof. Let H ∈ H and G be the undirected graphs that are given as input, where G is given
with disjoint color classes Vu for u ∈ V (H). Let k = |E(H)|. Since H is connected and almost
4-regular, it has an Eulerian path u0, u1, . . . , uk−1, uk such that E(H) = { {ui, ui+1} : i ∈
{0, . . . , k − 1} }. Every vertex of H appears exactly twice on the Eulerian path, and u0
and uk are the two different degree-3 vertices of H. Our goal is to construct a directed
graph G′, such that ⊕VertexColorfulSub(H, G) = ⊕Directed f -Flexible Path(G′) holds for
a suitable f .

Intuitively, the graph G′ “visits” every color class Vui of G two times according to the
Eulerian path in H. Before we give a formal construction, we give an overview; see also
Figure 3. Essentially, the graph G′ is a sequence of directed bipartite graphs B0, . . . , Bℓ whose
edges are all directed from left to right. For a bipartite graph B, we write L(B) and R(B) for
its left and right part, respectively. We have R(Bj) = L(Bj+1) for all j ∈ {0, . . . , ℓ−1}. Each
Bj is either a perfect matching Mi or a graph Gi that is a directed copy of G[Vui−1 ∪ Vui

].
(Note that Gi is indeed bipartite, since G is H-colored and H contains no self-loops.)
Pictorially, the sequence of bipartite graphs is M0G1M1 . . . Mk−1GkMk. We also add some
additional gadget edges between all Mi and Mj with i ̸= j and ui = uj ; note that every Mi is
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paired with exactly one Mj in this way, because the Eulerian path visits every vertex exactly
twice. The gadget edges are the only edges that may be directed from right to left and that
connect non-adjacent layers.

The paths p in G that we wish to count modulo two should correspond to the colourful
H-subgraphs of G. The path p is supposed to run from left to right through G′; intuitively,
the edge that the path picks at layer Mi corresponds to the vertex of Vui ⊆ V (G) that
ui ∈ V (H) is mapped to in the subgraph embedding, and the edge that the path picks at
layer Gi corresponds to the edge of G that ui−1ui ∈ E(H) is mapped to in the subgraph
embedding. The gadget edges ensure that those paths cancel modulo two that do not
consistently select the “same” vertex in Vui

and Vuj
when ui = uj .

We now describe the construction of G′ in detail.
1. Graph edges. For each i ∈ {1, . . . , k}, let Gi be a fresh copy of G[Vui−1 ∪ Vui

], renamed
so that L(Gi) = {i} × Vui−1 and R(Gi) = {i} × Vui , and directed from left to right.

2. Matching edges. For each i ∈ {0, . . . , k}, let Mi be the canonical perfect matching
between L(Mi) = {i} × Vui and R(Mi) = {i + 1} × Vui , and directed from left to right.
Note that L(Mi) = R(Gi) holds for i ∈ {1, . . . , k} and R(Mi) = L(Gi+1) holds for
i ∈ {0, . . . , k − 1}.

3. Gadget edges. For all i, j ∈ {1, . . . , k} with i < j and ui = uj , note that L(Mi) =
{i} × Vui

and L(Mj) = {j} × Vui
. We add the canonical bidirected perfect matching

between L(Mi) and L(Mj). Similarly, we add the canonical bidirected perfect matching
between R(Mi) and R(Mj).

4. Source/sink. Let s be a new vertex and add all edges (s, v) for v ∈ L(M0). Let t be a
new vertex and add all edges (v, t) for v ∈ R(Mk+1).

5. Parameters. Finally, we set k′ = 2k + 2 and f(k′) = 6k + 3 so that we are counting all
s, t-paths whose length is between k′ and f(k′).

This finishes the construction of G′. Note that G′ \ {s, t} is indeed a sequence B0 . . . Bℓ of
bipartite graphs with some additional gadget edges, where ℓ = 2k. We define the j-th layer
of G′ as the set Lj = L(Bj) for j ≤ ℓ and Lℓ+1 = R(Bℓ). Recall that Lj = R(Bj−1) holds
for j > 0.

We describe the canonical solutions in the output of the reduction.
To this end, let H ′ be an H-subgraph of G that is colorful. This means that H is

isomorphic to H ′ and that the “coloring” homomorphism c : V (G) → V (H) is bijective
on V (H ′). Moreover, c restricted to V (H ′) is in fact an isomorphism: It must map non-edges
to non-edges because E(H) and E(H ′) have the same size. Let ϕ : V (H) → V (H ′) be the
inverse of c restricted to V (H ′) and note that ϕ is an isomorphism from H to H ′. Moreover,
because H has non-trivial automorphisms, this isomorphism ϕ is unique for H ′.

We define the canonical s, t-path spt in G′ corresponding to H ′: The path p visits exactly
one vertex from each layer from left to right; each layer has the form Lj = {i} × Vu for some
i and u, and p chooses the vertex (i, ϕ(u)) ∈ Lj in this layer. Note that this determines all
vertices of p. We claim that V (p) indeed induces a path on the graph and matching edges.

To show that p is a path, let j ∈ {0, . . . , ℓ}. We claim that the two vertices in V (p)∩V (Bj)
are adjacent in Bj . If Bj is one of the matching graphs, then L(Bj) = {i} × Vui

and
R(Bj) = {i + 1} × Vui

for some i. Since the perfect matching is canonical, there is indeed
an edge from (i, ϕ(ui)) to (i + 1, ϕ(ui)) in Bj . Otherwise, Bj is one of the graph copies,
say L(Bj) = {i} × Vui−1 and R(Bj) = {i} × Vui

. Recall that ui−1ui is part of the Eulerian
path and thus an edge of H. Since ϕ is a graph homomorphism from H to G respecting the
coloring, we have that ϕ(ui−1)ϕ(ui) is an edge in G[Vui−1 ∪ Vui

]. Since Bj was a copy of this
graph by construction, there is an edge from (i, ϕ(ui−1)) to (i, ϕ(ui)). Overall, we get that
spt is an s, t-path in G′, and its length is ℓ + 2 = 2k + 2 = k′; this is the canonical path
corresponding to H ′.
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Mi Mj

Figure 4 The left drawing shows the local configuration around the four vertices of G′ that
represent a vertex x ∈ Vu from G. These four vertices are contained in two matchings Mi and Mj

for ui = uj = u. Thick edges are contained in Mi or Mj while light edges are gadget edges. Note
that (i, x) and (j, x) have only the depicted outgoing edges in the entire graph G′, and (i + 1, x) and
(j + 1, x) have only the depicted incoming edges. The four drawings on the right depict (up to the
symmetry of exchanging i and j) all different ways in which paths might not be canonical: Either
they illegally use the gadget edges to jump from Mi to Mj as in (J1) or (J2) and continue from
there, or they do not consistently visit the corresponding edges in Mi and Mj , which allows them to
use the gadget edges to either take (B2) or not take (B1) a short detour from Mi to Mj .

In summary, every vertex-colorful H-subgraph H ′ in G defines a unique canonical s, t-
path in G′, which implies that the number of canonical paths is equal to the number of
H-subgraphs. We now characterize canonical paths slightly differently: Let p be any s, t-path
in G′ that picks exactly one vertex of each layer from left to right with the additional
property that it consistently picks the “same” vertex from each color class. That is, whenever
p picks (i, x) in layer {i} × Vu and (j, y) in a layer {j} × Vu (with the same Vu), then x = y.
Such a path p describes a set of |V (H)| vertices and k edges in G that make up a colorful
H-subgraph H ′ of G, which means that every such path is canonical.

Let P be the set of all s, t-paths whose length r satisfies k′ ≤ r ≤ f(k′). The central claim
is that the number of non-canonical paths in P is even. For this, we construct a fixed-point
free involution π on non-canonical paths.

First we focus on paths that are jumpy (cf. Figure 4): Let i, j ∈ {0, . . . , k} with i ̸= j and
ui = uj . By construction, we added gadget edges between Mi and Mj . Recall that vertices
have the form

(i, x) ∈ L(Mi), (i + 1, x) ∈ R(Mi), (j, x) ∈ L(Mj), (j + 1, x) ∈ R(Mj).

A path p ∈ P is jumpy at i, j, x if
(J1) p uses the edge from (i, x) to (j, x) but not the edge from (j + 1, x) to (i + 1, x), or
(J2) p uses the edge from (i + 1, x) to (j + 1, x) but not the edge from (j, x) to (i, x).

If p is jumpy (for some choice of i, j, x), we define π(p) as follows: First we identify the
lexicographically first position i, j, x where p is jumpy. Then we exchange state (J1) with
state (J2) at that position. Note that (J1) implies that p uses the Mj-edge from (j, x) to
(j + 1, x), since (j, x) has no other outgoing edges, and (J2) implies that p uses the Mi-edge
from (i, x) to (i + 1, x), because (i + 1, x) has no other incoming edges; we swap these edges
from Mi and Mj too when applying π. Now π is a fixed-point free involution on jumpy
paths, and note that π(p) has the same length as p.

Since jumpy paths will cancel out when counting modulo two, we can focus on non-
canonical paths that are not jumpy. Paths p that are not jumpy have the following property:
A gadget edge from (i, x) on the left side of Mi to (j, x) on the left side of Mj is used by p if
and only if the corresponding edge from (j + 1, x) to (i + 1, x) on the right side is used.
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Next we consider paths that are bad (again, cf. Figure 4): A path p ∈ P is bad at i, j, x

with ui = uj if
(B1) p uses the Mi-edge from (i, x) to (i + 1, x) but not the Mj-edge from (j, x) to (j + 1, x),

or
(B2) p does not use the Mi-edge from (i, x) to (i + 1, x) but does use the Mj-edge from

(j, x) to (j + 1, x).
We define π(p) for a bad path p by finding the first position i, j, x at which p is bad, and
switching between these two states. Say, p was in state (B1) at i, j, x as depicted in the
figure, then π(p) is in state (B2) at i, j, x, and π(p) is exactly two edges longer than p.

We claim that all bad paths that are not jumpy pair up in this manner, without having
to consider arbitrarily long paths. Indeed, since p is not jumpy, when we look at the vertices
that p traverses, we are for the most part traversing the layers in a monotone order, except
for potential short two-vertex detours in bad positions as depicted in the figure as (B2). More
precisely, for every vertex v on p, if v ∈ Lj for j < ℓ, then either the next vertex is in Lj+1
or the third vertex after it is in Lj+1. This means that the path moves to the right by one
layer at least once every 3 vertices, and thus paths that are not jumpy have length at most
3ℓ + 3 = 6k + 3 = f(k′), accounting for ℓ + 1 matching or graph edges and up to 2ℓ gadget
edges that p might take in the short detours, and the two edges at the source and sink.

Finally, if an s, t-path is neither jumpy nor bad, then it does not use any gadget edges,
and thus is canonical. Since all jumpy or bad paths cancel, the number of s, t-paths of length
between k′ and f(k′) in G′ is the number of canonical paths modulo two. ◀

For completeness, we include two simple reductions: First from the flexible-length to the
fixed-length problem in directed graphs, then from the directed to undirected problem.

▶ Lemma 12. Let f : N → N be computable and strictly increasing. There is a parsimonious
polynomial-time fpt-reduction from #Directed f -Flexible Paths to #Directed Paths.

▶ Lemma 13. #Directed Paths admits a parsimonious poly-time fpt-reduction to #Paths.

With all these prerequisites collected, we can complete the proof.

Proof of Theorem 3. Let H be the class of all graphs H that are connected, almost 4-regular,
and whose automorphism group has size one. We use the probabilistic method to argue
that the tree-width of graphs in H is not bounded. With probability 1 − o(1) as h → ∞,
random 4-regular graphs with h vertices are connected [41, Theorem 2.10], they have no
nontrivial automorphisms [27], and they are almost Ramanujan [24, Theorem 7.10], that is,
their second-largest eigenvalue in absolute value satisfies λ ≤ 2

√
3 + o(1) < 3.5. By a union

bound, H has all three properties simultaneously with probability 1 − o(1). By Cheeger’s
inequality [24, Theorem 4.11], we have

min
S⊆V (H),|S|≤ 1

2 h

|E(S, S)|
|S|

≥ 1
2(4 − λ) > 0.1 ,

that is, the edge expansion is bounded away from zero, which implies that the tree-width
of H is at least linear in h (see, e.g., [12, Exercise 7.34]). Now, if we remove an arbitrary
edge e from H, we obtain an almost 4-regular graph that remains connected (since H is
Eulerian) and whose tree-width has decreased by at most 1. Moreover, suppose that π is
an automorphism of H − e. Since π preserves degrees, it has to map the vertex set e to e.
But then π is an automorphism of H, too, which implies that π is the trivial automorphism
and the automorphism group of H − e has size one as required. Thus, H contains graphs of
arbitrarily large tree-width.
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By Lemma 5, ⊕VertexColorfulSub(H) is ⊕W[1]-hard under parsimonious fpt-reductions.
If there is a parsimonious fpt-reduction from problem #A to problem #B then in particular
the parity version ⊕A reduces to ⊕B. Writing ⊕A ≤ ⊕B we can summarize the chain of
reductions in Lemmas 11–13 as

⊕VertexColorfulSub(H) ≤ ⊕Directed f -Flexible Paths ≤ ⊕Directed Paths ≤ ⊕Paths .

This proves the ⊕W[1]-hardness of ⊕Paths. The containment follows from the standard
fpt-reduction from #Paths to #Clique, which is parsimonious. Overall, the claim follows. ◀

6 Conclusion

We conducted an initial investigation of modular subgraph counting, leading to the partial
classification depicted in Figure 1. To obtain a complete picture, the following conjecture
needs to be addressed.

▶ Conjecture 14. For any computable pattern class H:
If H has unbounded matching-split number, then the problem ⊕Sub(H) is ⊕W[1]-complete.
If H has unbounded vertex-cover number, then #Sub(H) mod q for fixed q ∈ N is
ModpW[1]-complete for any odd divisor p of q.

An appropriate transfer of the subgraph-homomorphism framework to modular counting
is likely to help in settling this conjecture. Partial results towards this have been obtained
by Peyerimhoff et al. [33].
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35:2 Minimum Common String Partition: Exact Algorithms

1 Overview

Two strings s1, s2 ∈ Σn are said to have a common partition of size t if one can cut s1 into
t blocks (by t−1 cuts), rearrange them, and get s2. This is a string similarity measure having
applications in computational biology, text processing, and data compression. The minimum
common string partition problem (MCSP) is to find the minimum size of a common partition
of two input strings. There are two natural special cases of the problem: in d-MCSP, every
symbol appears at most d times in each input string; in MCSPc, the size of the alphabet Σ
is at most c.

1.1 Known results

The problem has been studied extensively from various algorithmic angles.

Computational complexity. Already 2-MCSP is APX-hard, hence MCSP is both NP-hard
and APX-hard [8].

Paramaterized algorithms. The problem is fixed parameter tractable (FPT) with respect
to combinations of various parameters [6, 11, 2, 3]. For example, [2] gives an O∗(d2k)
algorithm1 for d-MCSP, whereas [3] gives an FPT algorithm with respect to t only.

Approximation algorithms. The best known approximation ratio for a polynomial-time
algorithm is O(log n log∗ n) [5]. There is also an O(d)-approximation algorithm [15].
The best known approximation ratios for 2-MCSP and 3-MCSP are 1.1037 and 4,
respectively [8].

Heuristic algorithms. One natural heuristic approach for MCSP is greedy: cut out a longest
common substring and repeat. It is well studied both from practical and theoretical
points of view. Its approximation factor is: O(log n) for many families of inputs [17],
between Ω(n0.46) and O(n0.69) in the worst case [4, 13]. It can be implemented in linear
time [9].

1.2 New results

Much less is known about the exact complexity of MCSP. The best known upper bound
is O∗(2n) [7]. This aligns well with what is known for many other permutation problems:
say, the shortest common superstring problem, the shortest common supersequence problem,
the traveling salesman problem. Whereas many approximation, parameterized, and heuristic
algorithms are known for these problems, breaking the 2n barrier for any of them is a long
standing open problem. (For the mentioned problems, n denotes the number of input strings,
sequences, or nodes.)

In this paper, we present the following new exact algorithms and lower bounds for MCSP.
We start by showing two straightforward O∗(2n) algorithms: the first one enumerates all
possible partitions of both input strings and is perhaps the simplest exact algorithm for
the problem; the second one is a straightforward application of the dynamic programming
method. Both algorithms use exponential space.

1 The O∗(·) notation is common in the field of algorithms for NP-hard problems: like O(·) hides constant
factors, it suppresses factors that grow polynomially in the input length.
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1.2.1 Improving time to ϕn: dynamic programming
Then, we show how to improve the dynamic programming algorithm to get the running time
O∗(ϕn) where ϕ ≈ 1.618... is the golden ratio. In short, the improvement is based on the
following idea. For two strings to have a common partition, their multisets of symbols should
coincide. Then, if one cuts the first string into blocks and maps all blocks of length at least
two to the second string (so that the mapped parts do not overlap), all the remaining blocks
of length one are mapped automatically.

1.2.2 Improving space to polynomial: FFT and Fibonacci encoding
The improved algorithm still uses exponential space (as it is based on dynamic programming).
Again, avoiding exponential space in algorithms for NP-hard problems may be a challenging
task. For example, the best known algorithm for the coloring problem has running time
O∗(2n) and uses exponential space [1]; bringing down the space consumption to polynomial
is an open problem. Also, for the optimal 2-constraint satisfaction problem (as well as for its
special cases: maximum 2-satisfiability and maximum cut), all known better-than-2n-time
algorithms use exponential space [18, 14]; improving 2n time while keeping polynomial
space is an open problem. For the MCSP problem, we show how to get a polynomial space
algorithm with running time O∗(ϕn).

The approach that we use is inspired by generating functions. Let c0, c1, c2, · · · = {ci}∞
i=0

be an integer sequence of interest, where term ci is expressed in a complex way through the
previous terms, so that it is difficult to directly find a closed form for it. Occasionally, one
can solve this problem in three steps.
1. Pack a sequence into a polynomial (or, rather, formal power series):

T (x) = c0 + c1x+ c2x
2 + · · · =

∞∑
i=0

cix
i .

2. By means of algebraic manipulations, find a closed form expression for T (x).
3. Then, ci is the coefficient of xi in Taylor expansion of T (x) that can be found using the

value of the ith derivative of T at zero.
What we use can be viewed as a discrete and algorithmic version of this approach. Given
strings s1, s2 ∈ Σn, we define a finite sequence {ci}N

i=0 with the following property: s1, s2
have a common partition of size t iff a particular term c is positive. This term may be
expressed through the other terms, but it will take a lot of space, so instead we find it in three
steps.
1. Pack a sequence into a polynomial P of finite degree such that the term c is a coefficient

of a particular monomial m in P .
2. Describe an efficient way of evaluating P at a given point.
3. Using fast Fourier transform, extract the coefficient of m using values of P at specific

points.
The algorithm uses Fibonacci encoding in order to keep the degree of the polynomial low
enough.

1.2.3 Subexponential running time for small alphabets: hybrid strategy
Then, we show that for the constant size alphabets, one can even get a subexponential
running time: 2O( n log log n

log n ). The main idea is to track short and long blocks differently:
we just guess the cut points of all long blocks (this is feasible as there are not too many
of them) and we exploit dynamic programming to handle the short ones. By balancing these
two cases carefully, one gets a speed up to a subexponential time.
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35:4 Minimum Common String Partition: Exact Algorithms

1.2.4 Lower bounds
Finally, we show that substantial improvement of the presented upper bounds is difficult.
Namely, we prove that under the Exponential Time Hypothesis (stating that there are
no subexponential time algorithms for the satisfiability problem), MCSP cannot be solved
in subexponential time (of the form 2o(n)). This is a simple application of the NP-hardness
proof of MCSP. Then, we present a reduction from the general case to the special case
of constant size alphabet that gives a lower bound 2Ω(n/ log n) (under ETH) for that special
case.

Notation
Throughout the paper, we use the following notation. Let s be a string of length n.
We use 1-based indexing and slice notation: s = s[1]s[2] · · · s[n]; for 1 ≤ l ≤ r ≤ n,
s[l : r] = s[l]s[l + 1] · · · s[r]. By [n] we denote the set {1, . . . , n}.

2 2n time and space: enumerating all partitions

In this section, we present perhaps the most straightforward algorithm. As simple as it is,
it has an important feature that many other algorithms lack: it works for any number of input
strings. See Algorithm 1. Its running time is O∗(2n) as the number of different partitions of
a string of length n is 2n−1: there are n− 1 places to make a cut.

Algorithm 1 Enumerating all partitions.
Input: strings s1, . . . , sj of length n.
Output: the minimum size of a common partition of s1, . . . , sj .

1: T ← associative array
2: for every partition of s1 into substrings p1, . . . , pk do
3: T [multiset{p1, . . . , pk}]← j-tuple (1, 0, . . . , 0)
4: for i from 2 to j do
5: for every partition of si into substrings p1, . . . , pk do
6: if T has key multiset{p1, . . . , pk} then
7: T [multiset{p1, . . . , pk}][i]← 1
8: t← +∞
9: for every key P of T do:

10: if T [P ] = (1, . . . , 1) then
11: t← min(t, |P |)
12: return t

Hereinafter, we return the size of the optimal partition instead of the partition itself. This
is equivalent to the original problem, since there is a polynomial Algorithm 2 for finding the
optimal partition given an oracle for minimum size of a common partition. In this algorithm,
we first look for the longest prefix p of s1 that can be matched somewhere in s2, such that
after replacing it and its match with a new symbol #1 the size of the optimal partition stay
the same. To make sure that the size of the optimal partition does not change, we use the
oracle. It is clear that in the optimal partition #1 is not a prefix of some longer block. After
we find p, we replace it and its match with #1 and start looking for the next longest block
in the optimal partition that we replace with a new symbol #2 and so on. In the end we
obtain a partition P = {p1, p2, . . . , pt} such that s1 = p1 . . . pt and pi is the longest possible
block in a common partition of the minimum size t given previous i− 1 blocks.
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Algorithm 2 Constructing the optimal partition.
Input: strings s1, s2 of length n, oracle O for the minimum size of a common partition.
Output: a common partition of s1, s2 of the minimum size.

1: P ← ∅
2: t← O(s1, s2)
3: for i from 1 to t do
4: #i ← a symbol that does not occur in s1 and s2
5: for all j from n down to i, all 1 ≤ l ≤ r ≤ n do
6: s′

1 ← s1[1 : i− 1] #i s1[j + 1 : n]
7: s′

2 ← s2[1 : l − 1] #i s2[r + 1 : n]
8: if s1[i : j] = s2[l : r] and O(s′

1, s
′
2) = t then

9: P ← P ∪ s1[i : j]
10: s1 ← s′

1
11: s2 ← s′

2
12: break
13: return P

3 Improving time to ϕn: dynamic programming

Here, we present a dynamic programming solution with roughly the same running time
and space as the previous solution. Later, we will be able to improve both time and space
of this algorithm. The algorithm works by solving the following subproblem: for 0 ≤ k ≤ n,
let C(k) be the set of all pairs (S, t), where S ⊆ [n], |S| = k, and 1 ≤ t ≤ n, such that
one can cut s1[1 : k] into t blocks and match them to the subsequence of s2 specified by S.
The minimum size of a common partition is then simply the minimum t such that (S, t) is
contained in C(n). To compute C(k), we first fix the length i of the last block of s1[1 : k].
Then, this block should be matched somewhere in s2, whereas C(k − i) can be used to find
the positions where the remaining t− 1 blocks should be matched. The formal pseudocode
is given in Algorithm 3. The running time and space is O∗(2n) as the number of different
subsets is 2n whereas all other steps clearly take polynomial time.

Algorithm 3 Dynamic programming.
Input: strings s1, s2 of length n.
Output: the minimum size of a common partition of s1, s2.

1: C(0)← {(∅, 0)}
2: for k from 1 to n do
3: C(k)← ∅
4: for all 1 ≤ i ≤ k, all 1 ≤ l ≤ n− i+ 1, all (S, t) ∈ C(k − i) do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] and S ∩ {l, l + 1, . . . , l + i− 1} = ∅ then
6: C(k)← C(k) ∪ {(S ∪ {l, l + 1, . . . , l + i− 1}, t+ 1)}
7: return min{t : (S, t) ∈ C(n)}

In the previous algorithm, we considered subsets of s2 that have a common partition of
particular size with the prefix of s1. Here, we are going to ignore pieces of size one in every
such partition: indeed, if one successfully matched longer pieces, then the pieces of size one
will match as well.
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35:6 Minimum Common String Partition: Exact Algorithms

With this in mind, one may consider only subsets of s2 that can be cut into pieces of
length at least two and matched to some subset of the prefix of s1: the remaining part of the
prefix is assumed to be filled with pieces of length one.

In addition to ignoring pieces of length one, we also plug the “holes” of size one in our
subsets, since we can plug them only with pieces of size one and may do it immediately. To
formalize that, we introduce the function Plug whose pseudocode is given in Algorithm 4.
Say that there is a hole at position i ∈ [n] in a set S ⊆ [n] if i /∈ S whereas each of i− 1 and
i+ 1 either belong to S or does not belong to [n].

Algorithm 4 The function Plug.
Input: subset S ⊆ [n].
Output: hole-free superset of S of minimum size.

1: for i in [n] do
2: if S has a hole at position i then
3: S ← S ∪ {i}
4: return S

Now we are ready to describe the subproblem of our algorithm. For 0 ≤ k ≤ n, let
C(k) be the set of all pairs (S, t), for which there exist a pair (T, β) such that S = Plug(T ),
t = β + |S| − |T |, and one can cut the subsequence of s2 specified by T into β blocks of size
at least two and match them to some subsequence of s1[1 : k]. Thus, t is a number of blocks
into which S can be cut so that all the blocks of size at least two match to s1[1 : k] and blocks
of size one (that is, plugged holes in T ) match somewhere in s1 (not necessarily in s1[1 : k]).
The minimum size of a common partition is then the minimum value of t+ n− |S| such that
(S, t) is contained in C(n). Here, n− |S| is the number of ignored but not plugged blocks of
size one. Clearly, C(k) ⊆ C(k′) for k < k′. To compute C(k), we first fix the length i ̸= 1
of the long block s1[k − i + 1 : k] and j ≥ 0 blocks of size one before it that we wish to
ignore. Then, this long block should be matched somewhere in s2, whereas C(k − i− j) can
be used to find the positions where the remaining long blocks should be matched. After we
correctly match the long block somewhere in s2, we append it to the corresponding S from
C(k − i− j), plug the holes and recalculate the number of blocks as the number of blocks
in S before appending plus one plus the number of holes plugged after appending. If i = 0,
then we may skip the choice of j and simply get C(k − 1). The formal pseudocode is given
in Algorithm 5.

Algorithm 5 Improved dynamic programming algorithm.
Input: strings s1, s2 of length n.
Output: the minimum size of a common partition of s1, s2.

1: C(0)← {(∅, 0)}
2: for k from 1 to n do
3: C(k)← C(k − 1) (case i = 0)
4: for all 2 ≤ i ≤ k, all 0 ≤ j ≤ n− i, all 1 ≤ l ≤ n− i+ 1, all (S, t) ∈ C(k− i− j) do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] and S ∩ {l, l + 1, . . . , l + i− 1} = ∅ then
6: S′ ← Plug(S ∪ {l, l + 1, . . . , l + i− 1})
7: C(k)← C(k) ∪ {(S′, t+ 1 + |S′| − |S|)}
8: return min{t+ n− |S| : (S, t) ∈ C(n)}

▶ Theorem 1. Algorithm 5 solves MCSP in time and space O∗(ϕn).
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Proof. Correctness. For every (S, t) ∈ C(n), the total number of blocks in the corresponding
partition is the number of long blocks plus the number of plugged holes (= t) plus |[n] \ S|
blocks of size one we ignore. If the optimal partition contains no pieces longer than one, then
we never fulfill the if condition, but nevertheless C(n) will contain (∅, 0) dragged through
the whole cycle (thanks to line 3), that corresponds to the partition of size n as required.

Running time. It is sufficient to count all the subsets S we considered. For that, it is
convenient to treat every such subset as a sequence v ∈ {0, 1}n without lonely zeros and ones.
Let f0(n) be the number of such sequences that end up with zero and f1(n) be the number
of such sequences that end up with one. Since every such sequence ending with one ends
with at least two ones, we can write the recurrence relation f1(n) =

∑n−2
i=2 f0(i). Similarly,

f1(n) = f0(n), hence f1(n) =
∑n−2

i=2 f1(i) that, together with the initial conditions f1(2) =
f1(3) = 1, describes the shifted sequence of Fibonacci numbers, thus f1(n) = O(ϕn). ◀

4 Improving space to polynomial: FFT and Fibonacci encoding

In this section, we improve the space of the previously considered algorithm to polynomial.
The following theorem provides a basic toolkit for this.

▶ Theorem 2. Assume that for two strings s1, s2 ∈ Σn and a parameter t one can construct
a multivariate polynomial (of finite degree) P (X) over a (finite) variable set X and a monomial
m =

∏
xi∈X xdi

i , where di ∈ Z≥0, with the following three properties:
1. Its coefficients are non negative and less than W = 2poly(n).
2. For fixed values of variables X, one can compute P (X) in time polynomial in the length

of the binary representation of the values.
3. There is a common partition of s1, s2 of size t if and only if the coefficient of m in P is

non-zero.
Then, MCSP can be solved in time

O∗

(
polylog

( ∏
xi∈X

degxi
(P )
) ∏

xi∈X

degxi
(P )
)

and space

O∗

(
polylog

( ∏
xi∈X

degxi
(P )
))

,

where degxi
(P ) is the degree of variable xi in P , that is, the maximum degree of xi across

the monomials of P with non-zero coefficients.

In the proof, we use the following theorem proved in [10] (Theorem 3.2).

▶ Theorem 3. Let P (x) =
∑d

i=0 pix
i be a polynomial of degree at most d with non-negative

integer coefficients less than W . Given an arithmetic circuit C(x, p) of size polylog(d,W )
which evaluates P modulo a prime p = d polylog(d,W ) at an integer point x, any coefficient
of P (x) can be found in time d polylog(d,W ) and space polylog(d,W ).

Here we calculate modulo p just to prevent the numbers we operate from growing exponentially
fast.
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Proof of Theorem 2. Let X = {x1, . . . , xq}. In order to apply Theorem 3, we need to build
a univariate polynomial Q(x) out of P (x1, . . . , xq). To do this, we use Kronecker substitu-
tion [16]:

Q(x) = P
(
x, xdegx1 (P )+1, x(degx1 (P )+1)(degx2 (P )+1), . . . , x

∏q−1
i=1

(degxi
(P )+1)

)
.

That is, we replace xi by x
∏i−1

j=1
(degxj

(P )+1). Then, P contains a monomial m =
∏

i∈[q] x
ai
i if

and only if Q contains a monomial x
∑

i∈[q]
ai·
∏i−1

j=1
(degxj

(P )+1).
Since W = 2poly(n), polylog(d,W ) = O∗(polylog(d)). ◀

As a warm up, we show how to reduce the space complexity of the 2n dynamic program-
ming Algorithm 3 to polynomial.

▶ Theorem 4. MCSP can be solved in time O∗(2n) and polynomial space.

Proof. We construct a series of polynomials Pk for 0 ≤ k ≤ n associated with the steps of the
dynamic programming algorithm. Each Pk corresponds to C(k) in the mentioned algorithm
in the following way: Pk has a monomial αzty|S|∏

i∈S x
2i−1 for some α > 0 depending

on the monomial if and only if (S, t) ∈ C(k). The pseudocode for computing Pn is given
in Algorithm 6. It is not difficult to see that this is a polynomial time algorithm.

Algorithm 6 Computing Pn.
Input: strings s1, s2 of length n, values x, y, z.
Output: value of Pn at the point (x, y, z).

1: P0(x, y, z)← 1
2: Pk(x, y, z)← 0 for all 1 ≤ k ≤ n
3: for k from 1 to n do
4: for all 1 ≤ i ≤ k, all 1 ≤ l ≤ n− i+ 1 do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] then
6: Pk(x, y, z)← Pk(x, y, z) + zyix2l+i−1−2l−1

Pk−i(x, y, z)
7: return Pn(x, y, z)

We claim that s1 and s2 have a common partition of size t if and only if Pn contains
a monomial ztynx2n−1. One direction is straightforward. Assume that there is a partition of
s1 into pieces (l1, r1), . . . , (lt, rt), where l1 = 1, rt = n and ri = li+1 − 1 for all i ∈ [t− 1] and
it corresponds to a partition of s2 into pieces (l′1, r′

1), . . . , (l′t, r′
t) such that s1[li : ri] = s2[l′i : r′

i]
for all i ∈ [t]. Then Pri

has a monomial

zyri−li+1x2r′
i −2l′

i
−1
Pri−1 .

Then, by induction, Pri
has a monomial

ziy

∑i

j=1
(rj−lj+1)

x

∑i

j=1
2r′

j −2l′
j

−1

.

Hence, Pn = Prt has a monomial

zty

∑t

j=1
(rj−lj+1)

x

∑t

j=1
2r′

j −2l′
j

−1

= ztynx2n−1 .
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For the reverse direction, suppose Pn has a monomial ztynx2n−1. It could only be obtained
as a product

∏t
i=1 zy

ri−li+1x2ri −2li−1 for some (l1, r1), . . . , (lt, rt) during the execution of
the algorithm. An important invariant of each such terms is that the degree of y is equal
to the Hamming weight of the degree of x. (Here, by the Hamming weight of an integer we
mean the sum of the bits of its binary representation.)

As
∑t

i=1(ri − li + 1) is equal to the degree of y, it is equal to n. If they are all disjoint,
we have a valid partition. Suppose there exist i and j such that (li, ri) and (lj , rj) intersect.
Consider the product

(zyri−li+1x2ri −2li−1
)(zyrj−lj+1x2rj −2lj −1

) = z2yri+rj−li−lj+2x

(∑ri

t=li
2t−1

)
+
(∑rj

t=lj
2t−1

)
.

Now, let us look at the Hamming weight of the degree of x. As it is the sum of
d = ri + rj − li − lj + 2 powers of 2, it is at most d. But as (li, ri) and (lj , rj) intersect,
there is at least one carry, so it is actually less than d. Then, when we multiply all the
terms, as the Hamming weight of the sum is not more than the sum of Hamming weights,
we have that Hamming weight is strictly less than the degree of y, so it is less than n. But
the Hamming weight of 2n − 1 is equal to n, a contradiction.

Finally, we can solve MCSP by finding the smallest t such that ztynx2n−1 is present in
Pn. As we already have a polynomial time algorithm for Pn, its coefficients are not greater
than (n2)n = 2O(n log n) and total degree is O∗(2n), by Theorem 2 there exists an O∗(2n)
time and polynomial space algorithm for MCSP. ◀

We are now going to infuse the previous algorithm with ideas from the improved dynamic
programming and introduce a better encoding to get a speed up. In the previous section, we
were encoding each segment (l, r) as 2r − 2l−1. This is a natural way to represent a subset:
this number has ones in its binary representation exactly at positions from l to r. Then
we were using a property of the binary representation that the sum of encodings of two
intersecting segments has a Hamming weight strictly less than sum of the Hamming weights
of the terms. Another way to look at it: for any two intersecting segments (l1, r1),(l2, r2)
there is a collection of nonintersecting segments (l′1, r′

1), . . . , (l′p, r′
p) such that:

2∑
i=1

2ri − 2li−1 =
p∑

i=1
2r′

i − 2l′
i−1 , but

2∑
i=1

ri − li + 1 >
p∑

i=1
r′

i − l′i + 1

Here we can take as (l′i, r′
i) all the substrings of consecutive 1s in the binary representation

of
∑2

i=1 2ri − 2li−1.
We are going to do something similar but sacrifice some of this clarity for efficiency. We

will encode each segment (l, r) as F ′(r)− F ′(l − 1), where F ′(i) is the (i+ 1)-th Fibonacci
number (so F ′(−1) = 0 and F ′(0) = 1). Then we will show that this encoding has a similar
property as a binary one but only for segments of size greater than one.

▶ Theorem 5. MCSP can be solved in time O∗(ϕn) and polynomial space.

Proof. Consider a polynomial defined by Algorithm 7.
We call a piece of the partition long if it has length greater than one. The meaning of

the indices is the following:
k is the length of the prefix of s1 that we are currently processing,
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Algorithm 7 Computing Pn

Input: strings s1, s2 of length n, values x, y, z, w.
Output: value of Pn at the point (x, y, z, w).

1: Pk ← 1 for all 0 ≤ k ≤ n
2: for k from 1 to n do
3: for all 1 < i ≤ j ≤ k, all 1 ≤ l ≤ n− i+ 1, all n− i+ 1 ≤ q ≤ n do
4: if s1[j − i+ 1 : j] = s2[l : l + i− 1] then
5: r ← l + i− 1
6: Pk ← Pk + wq−r+1yq−l+1zq2−(l−1)2

xF ′(q)−F ′(l−1)Pj−i

7: Pk ← Pk + wq−(r−l)yqzq2
xF ′(q)−1Pj−i

8: return Pn

j is the position of the rightmost symbol of the last long piece in s1[1 : k],
i is the length of this long piece s1[j − i+ 1 : j],
l and r are the endpoints of a potential match of this long piece in s2,
q is the right endpoint of the block s2[r + 1 : q] that is cut into pieces of length one.

In short, we consider only long pieces in s1 and every long piece s1[j − i + 1 : j] we
correspond with a) block s2[l : q] that consists of q − r + 1 pieces: its match s2[l : r] and the
group s2[r + 1 : q] of pieces of length one after it; b) block s2[1 : q] that consists of its match
and two groups s2[1 : l − 1] and s2[r + 1 : q] of pieces of length one.

Now we need to show that s1 and s2 have a common partition of size t if and only if Pn

contains a monomial wtxF ′(n)−1ynzn2 . The if part is provided by the following lemma:

▶ Lemma 6. If there is a common partition of s1 and s2 of size t, then there is a monomial
wtxF ′(n)−1ynzn2 in Pn.

Proof. Let (l1, r1), . . . , (ld, rd) be a set of long pieces in the common partition. Without loss
of generality we may assume that all (li, ri) are sorted, that is ∀ i : ri ≤ li+1. Each piece
(li, ri) for i > 1 may contribute a monomial

wqi−ri+1xF ′(qi)−F ′(li−1)yqi−(li−1)zq2
i −(li−1)2

,

where qi = li+1−1, qd = n, and (l1, r1) may contribute a monomial wq1−r1+l1xF ′(q1)−1yq1zq2
1 ,

where q1 = l2 − 1. Here, for i = 1 we choose the monomial that takes into account pieces of
size one before and after the long block (hence, q1 − r1 + l1 in the exponent of w) and for
i > 1 we choose the monomial that takes into account pieces of size one only after the long
block (hence, qi − ri + 1 in the exponent of w). Thus, the sum of all the exponents of w is
equal to the number of pieces in common partition, that is, t.

Multiplying all monomials together, we obtain the following monomial present in Pn:

wq1−r1+l1xF ′(q1)−1yq1zq2
1

d∏
i=2

wqi−ri+1xF ′(qi)−F ′(li−1)yqi−(li−1)zq2
i −(li−1)2

=

= wtxF ′(n)−1ynzn2
. ◀

Now we are getting to the tricky part. We need to prove that if Pn contains a monomial
wtxF ′(n)−1ynzn2 then s1 and s2 have a common partition with k pieces.
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For every set S = {(l1, r1), . . . , (ld, rd) | (li, ri) ⊂ [n]} of d intervals let m(S) denote a
monomial

m(S) :=
d∏

i=1
xF ′(r)−F ′(l−1)yri−li+1zr2

i −(li−1)2
=

= x
∑

i
F ′(ri)−F ′(li−1)y

∑
i

ri−li+1z
∑

i
r2

i −(li−1)2
.

The point of introducing such notation is that polynomial Pn is simply a sum of monomials
of the form wαm(S) for some S = {(l1, r1), . . . , (ld, rd)} where all the intervals are long, so
the m(S) part relates to what is covered in s2 and wα part relates to how it is covered (that
is, how many blocks).

It is easy to check that if there are no intersecting intervals in S and they cover the whole
[n] then m(S) = xF ′(n)−1ynzn2 and we have a common partition of size α. What about
intersecting intervals? The following lemma deals with this case:

▶ Lemma 7. If S contains intersecting intervals and m(S) = xF ′(n)−1ynzn2 then there is a
set S′ of non-intersecting intervals such that m(S′) = xF ′(n)−1yαzβ and (α < n) ∨ (β < n2).

Proof. Suppose there are two long intersecting intervals (l1, r1) and (l2, r2) in S. We can
show that there is a set of long non intersecting intervals (l′1, r′

1), . . . , (l′p, r′
p) such that:

p∑
j=1

(F ′(r′
j)− F ′(l′j − 1)) = (F ′(r1)− F ′(l1 − 1)) + (F ′(r2)− F ′(l2 − 1)),

and one of the following two statements is true:∑p
j=1(r′

j − l′j + 1) < (r1 − l1 + 1) + (r2 − l2 + 1),∑p
j=1(r′

j − l′j + 1) = (r1 − l1 + 1) + (r2 − l2 + 1), but∑p
j=1(r′2

j − (l′j − 1)2) < (r2
1 − (l1 − 1)2) + (r2

2 − (l2 − 1)2).
If we replace (l1, r1) and (l2, r2) with this intervals we obtain a set S1 such that m(S1) =
yαzβxF ′(n) and (α < n) ∨ (β < n2). We can keep replacing intersecting pairs with non-
intersecting intervals preserving the value of degx. It is clear that this process will eventually
stop since degy ≥ 0 and degz ≥ 0, and thus the resulting set S′ is well-defined and consists
of non-intersecting intervals.

It remains to present the set {(l′1, r′
1), . . . , (l′p, r′

p)} for every two intersecting intervals
{(l1, r1), (l2, r2)}.

Let T = {(ai, bi), . . . (ap, bp)}, such that ∀i ∈ [p] : 0 ≤ ai < bi − 1 ≤ n− 1 or ai = bi (the
later represents an interval of size 0 and is used only to reduce the number of cases in the
analysis). We will use the following notation:

f(T ) =
∑|T |

i=1 F
′(bi)− F ′(ai),

g(T ) =
∑|T |

i=1 bi − ai,
h(T ) =

∑|T |
i=1 b

2
i − a2

i .

Let A be a set {(a, b), (c, d)} such that (b ≥ d > a ≥ c) ∨ (b ≥ d > c ≥ a). As there is no
difference in analysis (we may replace (a, b), (c, d) with (a, d), (b, c)), we consider only the first
case. We are going to go through rigorous case analysis to show that we can always construct
a set B such that f(A) = f(B) and either g(A) > g(B) or g(A) = g(B) but h(A) > h(B):
1. If d > a+ 2 ∨ d = a+ 1 and a > c+ 2 ∨ a = c+ 1 then

B = {(c, a− 1), (a+ 1, d), (b− 1, b+ 1)},

g(B) = d− c < b− a+ d− c = g(A);
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2. If d > a+ 2 ∨ d = a+ 1 and a = c+ 2 then

B = {(c− 2, c), (a+ 1, d), (b− 1, b+ 1)},

g(B) = d− a+ 3 < b− a+ d− c = g(A);
3. If d = a+ 2 then

B = {(c, d− 1), (b− 1, b+ 1)},

g(B) = d− a+ 1 < b− a+ d− c = g(A);
4. If a = c and d > a+ 3 ∨ d = a+ 2 and b− a > 2 then

B = {(a− 2, a), (a+ 2, d), (b− 1, b+ 1)},

g(B) = d− a+ 2 < b− a+ d− c = g(A);
5. If a = c and b− a = 2 then

B = {(a, b+ 1)},

g(B) = b− a+ 1 < b− a+ d− c = g(A);
6. If a = c and d = a+ 3 and b > a+ 3 then

B = {(a− 2, d− 1), (b− 1, b+ 1)},

g(B) = d− a+ 3 < b− a+ d− c = g(A);
7. If a = c and d = b and b = a+ 3

B = {(a− 2, b+ 1)},

g(B) = d− a+ 3 = b− a+ d− c = g(A),
h(B) = (a+ 4)2 − (a− 2)2 = 12a+ 12 < 12a+ 18 = 2((a+ 3)2 − a2) = h(A).

In some of the cases, it may turn out that for some interval from B its left endpoint is
negative or its right endpoint is greater than n. In fact, the latter case is impossible: if long
interval (a, b) covers at least n+ 1 then F ′(b)− F ′(a) > F ′(n)− 1. In the former case we
will use the additional manipulations with B:
2. If c = 0 then we drop (−2, 0). If c = 1 then we replace (−1, 1) with (0, 2);
4. If a = 0 then we drop (−2, 0). If a = 1 then we replace (−1, 1) with (0, 2);
6. If a = 0 then we replace (−2, 2) with (0, 2). If a = 1 then we replace (−1, 3) with (2, 4);
7. If a = 0 then we replace (−2, 4) with (0, 4). If a = 1 then we replace (−1, 5) with (4, 6).

Now to get the desired result we need to apply this case analysis to {(l1−1, r1), (l2−1, r2)},
get a set B = {(a′

1, b
′
1) . . . (a′

p, b
′
p)} and get a collection (a′

1 + 1, b′
1), . . . , (a′

p + 1, b′
p) which

would satisfy all the intended properties. ◀

Suppose that there exists a set of intervals S with intersections and m(S) = xF ′(n)−1ynzn2 .
Let S′ be the corresponding set from the statement of the lemma. Since S′ contains only
non-intersecting intervals, degx(m(S′)) ≤ F ′(n) − 1 and equality can be achieved only
if this intervals cover the whole [n]. If so, then degy(m(S′)) = n = degy(m(S)) and
degz(m(S′)) = n2 = degz(m(S)). But at least one of degy and degz decreases while we
go from S to S′, which is a contradiction. Thus, the monomial wtxF ′(n)−1ynzn2 may only
correspond to some set without intersections that covers the whole [n] and in turn corresponds
to a common partition of size t.

Finally, we can solve MCSP problem by finding the smallest t such that wtxF ′(n)−1ynzn2

is present in Pn. As we already have a polynomial time algorithm for Pn, its coefficients
are not greater than (2n3)n = 2O(n log n) and total degree is O∗(ϕn), by Theorem 2 there is
O∗(ϕn) time and polynomial space algorithm for MCSP. ◀
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5 Subexponential running time for small alphabets: hybrid strategy

For the case of a constant size alphabet, we provide a subexponential time algorithm, that
collects information about partitions of s1 and s2 separately and then just checks if they
have any partition in common. The main idea is to divide all the pieces in a partition into
two groups: long ones and short ones. The good thing about long ones is that there are not
too many of those due to their length. The good thing about short ones is that there are not
too many possible short strings over our alphabet due to its small size. By balancing these
two cases, we get the desired running time.

▶ Theorem 8. MCSP can be solved in time and space 2O
(

n log |Σ| log log n
log n

)
when |Σ| = no(1).

Proof. Let µ be a parameter whose value we will choose later. For every multiset S of strings
no longer than µ, we define a histogram histµ(S) = {(s, count(S, s)) | s ∈ Σ∗, |s| ≤ µ}, where
count(S, s) stands for a number of occurrences of s in S. As before, for both input strings we
construct sets of their partitions, but now we treat each partition P as a pair (L, histµ(S))
of a multiset of long pieces L = {s ∈ P , |s| > µ} and a histogram of a multiset of short ones
S = {s ∈ P , |s| ≤ µ}.

The construction of all possible partitions goes as follows: we iterate over all possible
multisets of long pieces and for each of them we compute all possible histograms of short
ones. As the number of long pieces is not greater than n/µ, there are at most

( 2n
2n/µ

)
ways to

choose their ends.
Once we have fixed the long pieces, we want to enumerate all possible ways to cut the

rest into small pieces. In order to do this, we use dynamic programming. Let s1, s2, . . . , sk

be the multiset of strings after removing all the long pieces. By R({s1, s2, . . . , sk}) we define
the set of all possible ways to cut these strings into pieces no longer than µ. Then,

R({s1, s2, . . . , sk}) =

=
min{µ,|sk|}⋃

i=1
{C ∪ sk[|sk| − i+ 1 : |sk|] | C ∈ R({s1, s2, . . . , sk[1 : |sk| − i]})},

and R({s1, s2, . . . , sk}) may be computed in O∗(n|Σ|µ), as n|Σ|µ is the upper bound on the
number of all possible histograms: count(S, s) ≤ n for every s ∈ S and there are at most
|Σ|µ+1 distinct s, and it takes polynomial in n and linear in size time to obtain R if all
smaller ones are already computed.

Thus, the total time is O∗
(( 2n

2n/µ

)
· n|Σ|µ

)
and we wish to choose µ so that this time

is small as possible. Since
( 2n

2n/µ

)
= 2O( n

µ log µ) and n|Σ|µ = 2O(|Σ|µ log n), we may choose

µ = c log2 n/ log2 |Σ| with c < 1, and then the total time is 2O
(

n log |Σ| log log n
log n

)
. ◀

6 Lower bounds: reductions to MIS and to binary alphabet

In this section, we prove the ETH based lower bounds: assuming Exponential Time Hypoth-
esis, the best upper bounds for MCSP and MCSPc are 2Ω(n) and 2Ω(n/ log n), respectively.

▶ Lemma 9. Assuming ETH, there is no 2o(n) time algorithm for MCSP.

Proof. [8] proves NP-hardness of MCSP by reducing the maximum independent set on
degree-3 graphs (3-MIS) to MCSP. The reduction is linear: given a graph with n nodes,
it produces an instance of MCSP with strings of length O(n). In turn, [12] shows that
there is no 2o(n) time algorithm for 3-MIS under ETH. This implies that the same is true for
MCSP. ◀
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▶ Theorem 10. Assuming ETH, there is no 2o(n/ log n) time algorithm for MCSP on constant
size alphabets.

Proof. We show how to reduce an instance of the general MCSP of length n to an instance
of MCSP over binary alphabet that is 4 log n times longer. Since the general MCSP cannot
be solved in time 2o(n) under ETH, we obtain a lower bound 2Ω(n/ log n) for its constant-size
alphabet version.

Consider an instance of MCSP that consists of strings s1 and s2 of length n. Since there
are at most n distinct symbols in both strings, we can encode each symbol c via binary string
b(c) of length log2 n. For every symbol c we define a gadget ψ(c) as a string

ψ(c) = 0 b(c)[1] 0 b(c)[2] 0 . . . 0 b(c)[log2 n] 0 1 1 1 0 b(c)[1] 0 b(c)[2] 0 . . . 0 b(c)[log2 n] 0.

We call the central 1 of a gadget its pivot.
We transform s1 = s1[1]s1[2] . . . s1[n] into a string s′

1 = ψ(s1[1])ψ(s1[2]) . . . ψ(s1[n]) and
s2 = s2[1]s2[2] . . . s2[n] into a string s′

2 = ψ(s2[1])ψ(s2[2]) . . . ψ(s2[n]). It is clear that (s′
1, s

′
2)

is an instance of MCSP over binary alphabet of size n · ⌈4 log2 n+ 5⌉. We show that there is
a common partition of s1 and s2 of size at most t if and only if there is a common partition
of s′

1 and s′
2 of size at most t.

Necessity. Given a common partition of s1 and s2, we can transform it into a common
partition of s′

1 and s′
2 of the same size simply by replacing each block b = b[1]b[2] . . . b[|b|]

with ψ(b) = ψ(b[1])ψ(b[2]) . . . ψ(b[|b|]).
Sufficiency. Consider a common partition of s′

1 and s′
2 of size t. Call the block of

this partition long if it contains at least two pivots of some gadgets. Since the pivot and
its neighbors are the only consecutive 1’s in gadget, if some long block b1 of s′

1 matched
with some long block b2 of s′

2 then all the pivots of b1 matched with the corresponding
pivots of b2. Note that long blocks, along with each pivot, contain information about the
corresponding symbols of its gadgets, as this information is duplicated on both sides of the
pivot. This means that we can correspond every long block that contains pivots of gadgets
ψ(c[1])ψ(c[2]) . . . ψ(c[|c|]) with substring c[1]c[2] . . . c[|c|] of s1 and s2.

Now we are ready to present a common partition of s1 and s2 of size at most t: for every
long block in (s′

1, s
′
2) we take the corresponding block in (s1, s2) and cut the remains into

blocks of size one. Clearly, the result is a common partition of s1 and s2: blocks of length at
least two do not intersect and are contained in both strings since so do the corresponding
long blocks. The remaining blocks of size one match since s1 and s2 consists of the same
number of each symbol. The size of the constructed partition is equal to the number of
blocks in the considered partition of s′

1 and s′
2 that contain at least one pivot and hence is

no more than t. ◀

7 Open problems

There are three natural questions left open by the present studies.
1. Close the gap between a lower bound 2Ω(n/ log n) and an upper bound 2O(n log log n/ log n)

for constant size alphabets.
2. Design a moderately exponential time (of the form cn for c < 2) algorithm for the case

of more than two input strings.
3. Roughly, it is the “no-holes” property that allows us to improve the 2n upper bound for

MCSP. What are other problems with the same effect?
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Abstract
We present an accelerated, or “look-ahead” version of the Newton–Dinkelbach method, a well-known
technique for solving fractional and parametric optimization problems. This acceleration halves the
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Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain
strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial
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for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with
n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn)
time for general 2VPI systems, and O(m + n log n) time for the special case of deterministic Markov
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1 Introduction

Linear fractional optimization problems are well-studied in combinatorial optimization. Given
a closed domain D ⊆ Rm and c, d ∈ Rm such that d⊤x > 0 for all x ∈ D, the problem is

inf c⊤x/d⊤x s.t. x ∈ D . (1)
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36:2 An Accelerated Newton–Dinkelbach Method and Its Application to 2VPI Systems

The domain D could be either a convex set or a discrete set D ⊆ {0, 1}m. Classical examples
include finding minimum cost-to-time ratio cycles and minimum ratio spanning trees. One
can equivalently formulate (1) as a parametric search problem. Let

f(δ) = inf{(c− δd)⊤x : x ∈ D} , (2)

be a concave and decreasing function. Assuming (1) has a finite optimum δ, it corresponds
to the unique root f(δ) = 0.

A natural question is to investigate how the computational complexity of solving the
minimum ratio problem (1) may depend on the complexity of the corresponding linear
optimization problem min c⊤x s.t. x ∈ D. Using the reformulation (2), one can reduce
the fractional problem to the linear problem via binary search; however, the number of
iterations needed to find an exact solution may depend on the bit complexity of the input.
A particularly interesting question is: assuming there exists a strongly polynomial algorithm
for linear optimization over a domain D, can we find a strongly polynomial algorithm for
linear fractional optimization over the same domain?

A seminal paper by Megiddo [14] introduced the parametric search technique to solve linear
fractional combinatorial optimization problems. He showed that if the linear optimization
algorithm only uses p(m) comparisons and q(m) additions, then there exists an O(p(m)(p(m)+
q(m)) algorithm for the linear fractional optimization problem. This in particular yielded the
first strongly polynomial algorithm for the minimum cost-to-time ratio cycle problem. On a
very high level, parametric search works by simulating the linear optimization algorithm for
the parametric problem (2), with the parameter δ ∈ R being indeterminate.

A natural alternative approach is to solve (2) using a standard root finding algorithm.
Radzik [18] showed that for a discrete domain D ⊆ {0, 1}m, the discrete Newton method –
in this context, also known as Dinkelbach’s method [4] – terminates in a strongly polynomial
number of iterations. In contrast to parametric search, there are no restrictions on the
possible operations in the linear optimization algorithm. In certain settings, such as the
maximum ratio cut problem, the discrete Newton method outperforms parametric search;
we refer to the comprehensive survey by Radzik [19] for details and comparison of the two
methods.

1.1 Our Contributions
We introduce a new, accelerated variant of Newton’s method for univariate functions. Let
f : R→ R ∪ {−∞} be a concave function. Under some mild assumptions on f , our goal is
to either find the largest root, or show that no root exists. Let δ∗ denote the largest root, or
in case f < 0, let δ∗ denote the largest maximizer of f . For simplicity, we now describe the
method for differentiable functions. This will not hold in general: functions of the form (2)
will be piecewise linear if D is finite or polyhedral. The algorithm description in Section 2
uses a form with supergradients (that can be choosen arbitrarily between the left and right
derivatives).

The standard Newton method, also used by Radzik, proceeds through iterates δ(1) >

δ(2) > . . . > δ(t) such that f(δ(i)) ≤ 0, and updates δ(i+1) = δ(i) − f(δ(i))/f ′(δ(i)).
Our new variant uses a more aggressive “look-ahead” technique. At each iteration, we

compute δ = δ(i) − f(δ(i))/f ′(δ(i)), and jump ahead to δ′ = 2δ − δ(i). In case f(δ′) ≤ 0 and
f ′(δ′) < 0, we update δ(i+1) = δ′; otherwise, we continue with the standard iterate δ.

This modification leads to an improved and at the same time simplified analysis based
on the Bregman divergence Df (δ∗, δ(i)) = f(δ(i)) + f ′(δ(i))(δ∗ − δ(i))− f(δ∗). We show that
this decreases by a factor of two between any two iterations.
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A salient feature of the algorithm is that it handles both feasible and infeasible outcomes
in a unified framework. In the context of linear fractional optimization, this means that the
assumption d⊤x > 0 for all x ∈ D in (1) can be waived. Instead, d⊤x > 0 is now added as a
feasibility constraint to (1). This generalization is important when we use the algorithm to
solve two variables per inequality systems.

This general result leads to improvements and simplifications of a number of algorithms
using the discrete Newton method.

For linear fractional combinatorial optimization, namely the setting (1) with D ⊆ {0, 1}m,
we obtain an O(m logm) bound on the number of iterations, a factor m improvement
over the previous best bound O(m2 logm) by Wang et al. [25] from 2006. We remark
that Radzik’s first analysis [18] yielded a bound of O(m4 log2 m) iterations, improved to
O(m2 log2 m) in [19].
Goemans et al. [7] used the discrete Newton method to obtain a strongly polynomial
algorithm for parametric submodular function minimization. We give a simple new variant
of this result with the same asymptotic running time, using the accelerated algorithm.
For two variable per inequality (2VPI) systems, we obtain a strongly polynomial label-
correcting algorithm. This will be discussed in more detail next.

1.2 Two Variables Per Inequality Systems

A major open question in the theory of linear programming (LP) is whether there exists a
strongly polynomial algorithm for LP. This problem is one of Smale’s eighteen mathematical
challenges for the twenty-first century [22]. An LP algorithm is strongly polynomial if it only
uses elementary arithmetic operations (+,−,×, /) and comparisons, and the number of such
operations is polynomially bounded in the number of variables and constraints. Furthermore,
the algorithm needs to be in PSPACE, i.e. the numbers occurring in the computations must
remain polynomially bounded in the input size.

The notion of a strongly polynomial algorithm was formally introduced by Megiddo [15]
in 1983 (using the term “genuinely polynomial”), where he gave the first such algorithm for
two variables per inequality (2VPI) systems. These are feasibility LPs where every inequality
contains at most two variables. More formally, let M2(n,m) be the set of n×m matrices
with at most two nonzero entries per column. A 2VPI system is of the form A⊤y ≤ c for
A ∈M2(n,m) and c ∈ Rm.

If we further require that every inequality has at most one positive and at most one
negative coefficient, it is called a monotone two variables per inequality (M2VPI) system. A
simple and efficient reduction is known from 2VPI systems with n variables and m inequalities
to M2VPI systems with 2n variables and ≤ 2m inequalities [5, 10].

Connection between 2VPI and parametric optimization. An M2VPI system has a natural
graphical interpretation: after normalization, we can assume every constraint is of the form
yu− γeyv ≤ ce. Such a constraint naturally maps to an arc e = (u, v) with gain factor γe > 0
and cost ce. Based on Shostak’s work [21] that characterized feasibility in terms of this graph,
Aspvall and Shiloach [2] gave the first weakly polynomial algorithm for M2VPI systems.

We say that a directed cycle C is flow absorbing if
∏

e∈C γe < 1 and flow generating if∏
e∈C γe > 1. Every flow absorbing cycle C implies an upper bound for every variable yu

incident to C; similarly, flow generating cycles imply lower bounds. The crux of Aspvall and
Shiloach’s algorithm is to find the tightest upper and lower bounds for each variable yu.
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Finding these bounds corresponds to solving fractional optimization problems of the form
(1), where D ⊆ Rm describes “generalized flows” around cycles. The paper [2] introduced
the Grapevine algorithm – a natural modification the Bellman-Ford algorithm – to decide
whether the optimum ratio is smaller or larger than a fixed value δ. The optimum value can
found using binary search on the parameter.

Megiddo’s strongly polynomial algorithm [15] replaced the binary search framework
in Aspvall and Shiloach’s algorithm by extending the parametric search technique in [14].
Subsequently, Cohen and Megiddo [3] devised faster strongly polynomial algorithms for the
problem. The current fastest strongly polynomial algorithm is given by Hochbaum and Naor
[11], an efficient Fourier–Motzkin elimination with running time of O(mn2 logm).

2VPI via Newton’s method. Since Newton’s method proved to be an efficient and viable
alternative to parametric search, a natural question is to see whether it can solve the paramet-
ric problems occuring in 2VPI systems. Radzik’s fractional combinatorial optimization results
[18, 19] are not directly applicable, since the domain D in this setting is a polyhedron and
not a discrete set.1 Madani [13] used a variant of the Newton–Dinkelbach method as a tool
to analyze the convergence of policy iteration on deterministic Markov Decision Processes
(DMDPs), a special class of M2VPI systems (discussed later in more detail). He obtained a
weakly polynomial convergence bound; it remained open whether such an algorithm could
be strongly polynomial.

Our 2VPI algorithm. We introduce a new type of strongly polynomial 2VPI algorithm
by combining the accelerated Newton–Dinkelbach method with a “variable fixing” analysis.
Variable fixing was first introduced in the seminal work of Tardos [23] on minimum-cost
flows, and has been a central idea of strongly polynomial algorithms, see in particular [8, 20]
for cycle cancelling minimum-cost flow algorithms, and [16, 24] for maximum generalized
flows, a dual to the 2VPI problem.

We show that for every iterate δ(i), there is a constraint that has been “actively used”
at δ(i) but will not be used ever again after a strongly polynomial number of iterations.
The analysis combines the decay in Bregman divergence shown in the general accelerated
Newton–Dinkelbach analysis with a combinatorial “subpath monotonicity” property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In
particular, we adapt his “unfreezing” idea: the variables yu are admitted to the system
one-by-one, and the accelerated Newton–Dinkelbach method is used to find the best “cycle
bound” attainable at the newly admitted yu in the graph induced by the current variable
set. This returns a feasible solution or reports infeasibility within O(m) iterations. As every
iteration takes O(mn) time, our overall algorithm terminates in O(m2n2) time. For the
special setting of deterministic MDPs, the runtime per iteration improves to O(m+ n log n),
giving a total runtime of O(mn(m+ n log n)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm
[11], it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm
is a label-correcting algorithm, naturally fitting to the family of algorithms used in other com-
binatorial optimization problems with constraint matrices from M2(n,m) such as maximum
flow, shortest paths, minimum-cost flow, and generalized flow problems. We next elaborate
on this connection.

1 The problem could be alternatively formulated with D ⊆ {0, 1}m but with nonlinear functions instead
of c⊤x and d⊤x.
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Label-correcting algorithms. An important special case of M2VPI systems corresponds
to the shortest paths problem: given a directed graph G = (V,E) with target node t ∈ V
and arc costs c ∈ RE , we associate constraints yu − yv ≤ ce for every arc e = (u, v) ∈ E and
yt = 0. If the system is feasible and bounded, the pointwise maximal solution corresponds
to the shortest path labels to t; an infeasible system contains a negative cost cycle. A
generic label-correcting algorithm maintains distance labels y that are upper bounds on
the shortest path distances to t. The labels are decreased according to violated constraints.
Namely, if yu − yv > ce, then decreasing yu to ce + yv gives a smaller valid distance label
at u. We terminate with the shortest path labels once all constraints are satisfied. The
Bellman–Ford algorithm for the shortest paths problem is a particular implementation of the
generic label-correcting algorithm; we refer the reader to [1, Chapter 5] for more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI
systems, where constraints are of the form yu − γeyv ≤ ce for a “gain/loss factor” γe > 0
associated with each arc. A fundamental property of M2VPI systems is that, whenever
bounded, a unique pointwise maximal solution exists, i.e. a feasible solution y∗ such that
y ≤ y∗ for every feasible solution y. A label-correcting algorithm for such a setting can be
naturally defined as follows. Let us assume that the problem is bounded. The algorithm
should proceed via a decreasing sequence y(0) ≥ y(1) ≥ . . . ≥ y(t) of labels that are all valid
upper bounds on any feasible solution y to the system. The algorithm either terminates with
the unique pointwise maximal solution y(t) = y∗, or finds an infeasibility certificate.

The basic label-correcting operation is the “arc update”, decreasing yu to min{yu, ce +
γeyv} for some arc e = (u, v) ∈ E. Such updates suffice in the shortest path setting.
However, in the general setting arc operations only may not lead to finite termination.
Consider a system with only two variables, yu and yv, and two constraints, yu − yv ≤ 0, and
yv − 1

2yu ≤ −1. The alternating sequence of arc updates converges to (y∗
u, y

∗
v) = (−2,−2),

but does not finitely terminate. In this example, we can “detect” the cycle formed by the
two arcs, that implies the bound yu − 1

2yu ≤ −1.
Shostak’s [21] result demonstrates that arc updates, together with such “cycle updates”

should be sufficient for finite termination. Our M2VPI algorithm amounts to the first strongly
polynomial label-correcting algorithm for general M2VPI systems, using arc updates and
cycle updates.

Deterministic Markov decision processes. A well-studied special case of M2VPI systems
in which γ ≤ 1 is known as deterministic Markov decision process (DMDP). A policy
corresponds to selecting an outgoing arc from every node, and the objective is to find a
policy that minimizes the total discounted cost over an infinite time horizon. The pointwise
maximal solution of this system corresponds to the optimal values of a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all inter-
preted as variants of the label-correcting framework.2

Value iteration can be seen as a generalization of the Bellman–Ford algorithm to the
DMDP setting. As our previous example shows, value iteration may not be finite. One
could still consider as the termination criterion the point where value iteration “reveals” the
optimal policy, i.e. updates are only performed using constraints that are tight in the optimal
solution. If each discount factor γe is at most γ′ for some γ′ > 0, then it is well-known
that value iteration converges at the rate 1/(1− γ′). This is in fact true more generally, for
nondeterministic MDPs [12]. However, if the discount factors can be arbitrarily close to 1,

2 The value sequence may violate monotonicity in certain cases of value iteration.
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then Feinberg and Huang [6] showed that value iteration cannot reveal the optimal policy in
strongly polynomial time even for DMDPs. Post and Ye [17] proved that simplex with the
most negative reduced cost pivoting rule is strongly polynomial for DMDPs; this was later
improved by Hansen et al. [9]. These papers heavily rely on the assumption γ ≤ 1, and does
not seem to extend to general M2VPI systems.

Madani’s previously mentioned work [13] used a variant of the Newton–Dinkelbach method
as a tool to analyze the convergence of policy iteration on deterministic MDPs, and derived
a weakly polynomial runtime bound.

Paper organization We start by giving preliminaries and introducing notation below. In
Section 2, we present an accelerated Newton’s method for univariate concave functions, and
apply it to linear fractional combinatorial optimization and linear fractional programming.
Section 3 contains our main application of the method to the 2VPI problem. Our results on
parametric submodular function minimization and deterministic MDPs can be found in the
full version of the paper. Missing proofs also appear in the full version.

Preliminaries Let R+ and R++ be the nonnegative and positive reals respectively, and
denote R̄ := R ∪ {±∞}. Given a proper concave function f : R → R̄, let dom(f) :=
{x : −∞ < f(x) <∞} be the effective domain of f . For a point x0 ∈ dom(f), denote the
set of supergradients of f at x0 as ∂f(x0) := {g : f(x) ≤ f(x0) + g(x− x0) ∀x ∈ R}. If x0 is
in the interior of dom(f), then ∂f(x0) = [f ′

−(x0), f ′
+(x0)], where f ′

−(x0) and f ′
+(x0) are the

left and right derivatives. Throughout, we use log(x) = log2(x) to indicate base 2 logarithm.
For x, y ∈ Rm, denote x ◦ y ∈ Rm as the element-wise product of the two vectors.

2 An Accelerated Newton–Dinkelbach Method

Let f : R → R̄ be a proper concave function such that f(δ) ≤ 0 and ∂f(δ) ∩ R<0 ̸= ∅ for
some δ ∈ dom(f). Given a suitable starting point, as well as value and supergradient oracles
of f , the Newton–Dinkelbach method either computes the largest root of f or declares that
it does not have a root. In this paper, we make the mild assumption that f has a root or
attains its maximum. Consequently, the point δ∗ := max({δ : f(δ) = 0} ∪ arg max f(δ)) is
well-defined. It is the largest root of f if f has a root. Otherwise, it is the largest maximizer
of f . Therefore, the Newton–Dinkelbach method returns δ∗ if f has a root, and certifies that
f(δ∗) < 0 otherwise.

The algorithm takes as input an initial point δ(1) ∈ dom(f) and a supergradient g(1) ∈
∂f(δ(1)) such that f(δ(1)) ≤ 0 and g(1) < 0. At the start of every iteration i ≥ 1, it maintains
a point δ(i) ∈ dom(f) and a supergradient g(i) ∈ ∂f(δ(i)) where f(δ(i)) ≤ 0. If f(δ(i)) = 0,
then it returns δ(i) as the largest root of f . Otherwise, a new point δ := δ(i) − f(δ(i))/g(i)

is generated. Now, there are two scenarios in which the algorithm terminates and reports
that f does not have a root: (1) f(δ) = −∞; (2) f(δ) < 0 and g ≥ 0 where g ∈ ∂f(δ) is
the supergradient given by the oracle. If both scenarios do not apply, the next point and
supergradient is set to δ(i+1) := δ and g(i+1) := g respectively. Then, a new iteration begins.

To accelerate this classical method, we perform an aggressive guess δ′ := 2δ − δ(i) < δ on
the next point at the end of every iteration i. We call this procedure look-ahead, which is
implemented on Lines 7–10 of Algorithm 1. Let g′ ∈ ∂f(δ′) be the supergradient returned by
the oracle. If −∞ < f(δ′) < 0 and g′ < 0, then the next point and supergradient are set to
δ(i+1) := δ′ and g(i+1) := g′ respectively as δ′ ≥ δ∗. In this case, we say that look-ahead is
successful in iteration i. Otherwise, we proceed as usual by taking δ(i+1) := δ and g(i+1) := g.
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Algorithm 1 Look-aheadNewton.

input : Value and supergradient oracles for a proper concave function f , an initial
point δ(1) ∈ dom(f) and supergradient g(1) ∈ ∂f(δ(1)) where f(δ(1)) ≤ 0
and g(1) < 0.

output : The largest root of f if it exists; report NO ROOT otherwise.

1 i← 1
2 while f(δ(i)) < 0 do
3 δ ← δ(i) − f(δ(i))/g(i)

4 g ∈ ∂f(δ) /* Empty if f(δ) = −∞ */
5 if f(δ) = −∞ or (f(δ) < 0 and g ≥ 0) then
6 return NO ROOT

7 δ′ ← 2δ − δ(i) /* Look-ahead guess */
8 g′ ∈ ∂f(δ′) /* Empty if f(δ′) = −∞ */
9 if −∞ < f(δ′) < 0 and g′ < 0 then /* Is the guess successful? */

10 δ ← δ′, g ← g′

11 δ(i+1) ← δ, g(i+1) ← g

12 i← i+ 1
13 return δ(i)

It is easy to see that δ(i) is monotonically decreasing while f(δ(i)) is monotonically
increasing. Furthermore, g(i) is monotonically increasing except in the final iteration where
it may remain unchanged (Lemma 2.1). Similarly, we have g(i) < 0 except possibly in the
final iteration when f(δ(i)) = 0.

▶ Lemma 2.1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i−1), f(δ∗) ≥ f(δ(i)) >
f(δ(i−1)) and g(i) ≥ g(i−1), where the last inequality holds at equality if and only if g(i) =
infg∈∂f(δ(i)) g, g(i−1) = supg∈∂f(δ(i−1)) g and f(δ(i)) = 0. Moreover,

f(δ(i))
f(δ(i−1))

+ g(i)

g(i−1) ≤ 1 .

Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated
with f as a potential. Even though the original definition requires f to be differentiable and
strictly concave, it can be naturally extended to our setting in the following way.

▶ Definition 2.2. Given a proper concave function f : R → R̄, the Bregman divergence
associated with f is defined as

Df (δ′, δ) :=

f(δ) + sup
g∈∂f(δ)

g(δ′ − δ)− f(δ′) if δ ̸= δ′,

0 otherwise.

for all δ, δ′ ∈ dom(f) such that ∂f(δ) ̸= ∅.

Since f is concave, the Bregman divergence is nonnegative. It is again easy to see that
Df (δ∗, δ(i)) is monotonically decreasing except in the final iteration where it may remain
unchanged (Lemma 2.3).

▶ Lemma 2.3. For every iteration i ≥ 2, we have Df (δ∗, δ(i)) ≤ Df (δ∗, δ(i−1)) which holds
at equality if and only if g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0.
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If look-ahead is successful, then we have made significant progress. Otherwise, by our
choice of δ′, we learn that we are not too far away from δ∗. The next lemma demonstrates
the advantage of using the look-ahead Newton–Dinkelbach method. It exploits the proximity
to δ∗ to produce a geometric decay in the Bregman divergence of δ(i) and δ∗.

▶ Lemma 2.4. For every iteration i > 2 in Algorithm 1, we have Df (δ∗, δ(i)) <
1
2Df (δ∗, δ(i−2)).

In the remaining of this section, we apply the accelerated Newton–Dinkelbach method
to linear fractional combinatorial optimization and linear fractional programming. The
application to parametric submodular function minimization is in the full version.

2.1 Linear Fractional Combinatorial Optimization
The problem (1) with D ⊆ {0, 1}m is known as linear fractional combinatorial optimization.
Radzik [18] showed that the Newton–Dinkelbach method applied to the function f(δ)
as in (2) terminates in a strongly polynomial number of iterations. Recall that f(δ) =
minx∈D(c − δd)⊤x. By the assumption d⊤x > 0 for all x ∈ D, this function is concave,
strictly decreasing, finite and piecewise-linear. Hence, it has a unique root. Moreover, f(δ) < 0
and ∂f(δ) ∩ R<0 ̸= ∅ for sufficiently large δ. To implement the value and supergradient
oracles, we assume that a linear optimization oracle over D is available, i.e. it returns an
element in arg minx∈D(c− δd)⊤x for any δ ∈ R.

Our result for the accelerated variant improves the state-of-the-art bound O(m2 logm)
by Wang et al. [25] on the standard Newton–Dinkelbach method. We will need the following
lemma, given by Radzik and credited to Goemans in [19]. It gives a strongly polynomial
bound on the length of a geometrically decreasing sequence of sums.

▶ Lemma 2.5 ([19]). Let c ∈ Rm
+ and x(1), x(2), . . . , x(k) ∈ {−1, 0, 1}m. If 0 < c⊤x(i+1) ≤

1
2c

⊤x(i) for all i < k, then k = O(m logm).

▶ Theorem 2.6. Algorithm 1 converges in O(m logm) iterations for linear fractional com-
binatorial optimization problems.

Proof. Observe that Algorithm 1 terminates in a finite number of iterations because f is
piecewise linear. Let δ(1) > δ(2) > · · · > δ(k) = δ∗ denote the sequence of iterates at the start
of Algorithm 1. Since f is concave, we have Df (δ∗, δ(i)) ≥ 0 for all i ∈ [k]. For each i ∈ [k],
pick x(i) ∈ arg minx∈D(c− δ(i)d)⊤x which maximizes d⊤x. This is well-defined because f is
finite. Note that −d⊤x(i) = min ∂f(δ(i)). As f(δ∗) = 0, the Bregman divergence of δ(i) and
δ∗ can be written as

Df (δ∗, δ(i)) = f(δ(i))+ max
g∈∂f(δ(i))

g(δ∗ −δ(i)) = (c−δ(i)d)⊤x(i) −d⊤x(i)(δ∗ −δ(i)) = (c−δ∗d)⊤x(i) .

According to Lemma 2.4, (c−δ∗d)⊤x(i) = Df (δ∗, δ(i)) < 1
2Df (δ∗, δ(i−2)) = 1

2 (c−δ∗d)⊤x(i−2)

for all 3 ≤ i ≤ k. By Lemma 2.3, we also know that Df (δ∗, δ(i)) > 0 for all 1 ≤ i ≤ k − 2.
Thus, applying Lemma 2.5 yields k = O(m logm). ◀

2.2 Linear Fractional Programming
We next consider linear fractional programming, an extension of (1) with the assumption
that the domain D ⊆ Rm is a polyhedron, but removing the condition d⊤x > 0 for x ∈ D.
For c, d ∈ Rm, the problem is

inf c⊤x/d⊤x s.t. d⊤x > 0, x ∈ D . (F)
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For the problem to be meaningful, we assume that D ∩
{
x : d⊤x > 0

}
̸= ∅. The common

form in the literature assumes d⊤x > 0 for all x ∈ D as in (1); we consider the more general
setup for the purpose of solving M2VPI systems in Section 3. It is easy to see that any linear
fractional combinatorial optimization problem on a domain X ⊆ {0, 1}m can be cast as a linear
fractional program with the polytope D = conv(X ) because c⊤x̄/d⊤x̄ ≥ minx∈X c⊤x/d⊤x

for all x̄ ∈ D. The next theorem characterizes when (F) is unbounded.

▶ Theorem 2.7. If D ∩
{
x : d⊤x > 0

}
̸= ∅, then the optimal value of (F) is −∞ if and only

if at least one of the following two conditions hold:
1. There exists x ∈ D such that c⊤x < 0 and d⊤x = 0;
2. There exists y ∈ Rm such that c⊤y < 0, d⊤y = 0 and x+ λy ∈ D for all x ∈ D, λ ≥ 0.

▶ Example 2.8. Unlike in linear programming, the optimal value may not be attained even if
it is finite. Consider the instance given by inf(−x1 +x2)/(x1 +x2) subject to x1 +x2 > 0 and
−x1 + x2 = 1. The numerator is equal to 1 for any feasible solution, while the denominator
can be made arbitrarily large. Hence, the optimal value of this program is 0, which is not
attained in the feasible region.

We use the Newton–Dinkelbach method for f as in (2), that is, f(δ) = infx∈D(c− δd)⊤x.
Since D ̸= ∅, f(δ) <∞ for all δ ∈ R. By the Minkowski–Weyl theorem, there exist finitely
many points P ⊆ D such that f(δ) = minx∈P (c − δd)⊤x for all δ ∈ dom(f). Hence, f is
concave and piecewise linear. Observe that f(δ) > −∞ if and only if every ray y in the
recession cone of D satisfies (c − δd)⊤y ≥ 0. For f to be proper, we need to assume that
Condition 2 in Theorem 2.7 does not hold. Moreover, we require the existence of a point
δ′ ∈ dom(f) such that f(δ′) = (c−δ′d)⊤x′ ≤ 0 for some x′ ∈ D with d⊤x′ > 0. It follows that
f has a root or attains its maximum because dom(f) is closed. We are ready to characterize
the optimal value of (F) using f .

▶ Lemma 2.9. Assume that there exists δ′ ∈ dom(f) such that f(δ′) = (c− δ′d)⊤x′ ≤ 0 for
some x′ ∈ D with d⊤x′ > 0. If f has a root, then the optimal value of (F) is equal to the
largest root and is attained. Otherwise, the optimal value is −∞.

3 Monotone Two Variables per Inequality Systems

Recall that an M2VPI system can be represented as a directed multigraph G = (V,E)
with arcs costs c ∈ Rm and gain factors γ ∈ Rm

++. For a u-v walk P in G with E(P ) =
(e1, e2, . . . , ek), its cost and gain factor are defined as c(P ) :=

∑k
i=1

(∏i−1
j=1 γej

)
cei

and

γ(P ) :=
∏k

i=1 γei respectively. If P is a single vertex, then c(P ) := 0 and γ(P ) := 1.
The walk P induces the valid inequality yu ≤ c(P ) + γ(P )yv, implied by the sequence of
arcs/inequalities in E(P ). It is also worth considering the dual interpretation. Dual variables
on arcs correspond to generalized flows: if 1 unit of flow enter the arc e = (u, v) at u, then
γe units reach v, at a shipping cost of ce. Thus, if 1 unit of flow enter a path P , then γ(P )
units reach the end of the path, incurring a cost of c(P ).

Given node labels y ∈ R̄n, the y-cost of a u-v walk P is defined as c(P ) + γ(P )yv. Note
that the y-cost of a walk only depends on the label at the sink. A u-v path is called a shortest
u-v path with respect to y if it has the smallest y-cost among all u-v walks. A shortest path
from u with respect to y is a shortest u-v path with respect to y for some node v. Such a
path does not always exist, as demonstrated in the full version.

If P is a u-u walk such that its intermediate nodes are distinct, then it is called a cycle
at u. Given a u-v walk P and a v-w walk Q, we denote PQ as the u-w walk obtained by
concatenating P and Q.
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▶ Definition 3.1. A cycle C is called flow-generating if γ(C) > 1, unit-gain if γ(C) = 1,
and flow-absorbing if γ(C) < 1. We say that a unit-gain cycle C is negative if c(C) < 0.

Note that c(C) depends on the starting point u of a cycle C. This ambiguity is resolved
by using the term cycle at u. For a unit-gain cycle C, it is not hard to see that the starting
point does not affect the sign of c(C). Hence, the definition of a negative unit-gain cycle is
sound. Observe that a flow-absorbing cycle C induces an upper bound yu ≤ c(C)

1−γ(C , while
a flow-generating cycle C induces a lower bound yu ≥ −c(C)

γ(C)−1 . Let Cabs
u (G) and Cgen

u (G)
denote the set of flow-absorbing cycles and flow-generating cycles at u in G respectively.

▶ Definition 3.2. Given a flow-generating cycle C at u, a flow-absorbing cycle D at v,
and a u-v path P , the walk CPD is called a bicycle. We say that the bicycle is negative if
c(P ) + γ(P ) c(D)

1−γ(D) <
−c(C)

γ(C)−1 .

Using these two structures, Shostak characterized the feasibility of M2VPI systems.

▶ Theorem 3.3 ([21]). An M2VPI system (G, c, γ) is infeasible if and only if G contains a
negative unit-gain cycle or a negative bicycle.

3.1 A Linear Fractional Programming Formulation
Our goal is to compute the pointwise maximal solution ymax ∈ R̄n to an M2VPI system if it
is feasible, where ymax

u :=∞ if and only if the variable yu is unbounded from above. It is
well known how to convert ymax into a finite feasible solution – we refer to the full version
for details. In order to apply Algorithm 1, we first need to reformulate the problem as a
linear fractional program. Now, every coordinate ymax

u can be expressed as the following
primal-dual pair of linear programs, where ∇xv :=

∑
e∈δ+(u) xe −

∑
e∈δ−(u) γexe denotes the

net flow at a node v.

min c⊤x (Pu)
s. t. ∇xu = 1

∇xv = 0 ∀v ∈ V \ u
x ≥ 0

max yu (Du)
s. t. yv − γeyw ≤ ce ∀e = (v, w) ∈ E

The primal LP (Pu) is a minimum-cost generalized flow problem with a supply of 1 at
node u. It asks for the cheapest way to destroy one unit of flow at u. Observe that it is
feasible if and only if u can reach a flow-absorbing cycle in G. If it is feasible, then it is
unbounded if and only if there exists a negative unit-gain cycle or a negative bicycle in G. It
can be reformulated as the following linear fractional program

inf c⊤x

1−
∑

e∈δ−(u) γexe
s.t. 1−

∑
e∈δ−(u)

γexe > 0, x ∈ D . (Fu)

with the polyhedron

D :=
{
x ∈ Rm

+ : x(δ+(u)) = 1,∇xv = 0 ∀v ∈ V \ u
}
.

Indeed, if x is a feasible solution to (Pu), then x/x(δ+(u)) is a feasible solution to (Fu)
with the same objective value. This is because 1−

∑
e∈δ−(u) γexe/x(δ+(u)) = 1/x(δ+(u)).

Conversely, if x is a feasible solution to (Fu), then x/(1−
∑

e∈δ−(u) γexe) is a feasible solution
to (Pu) with the same objective value. Even though the denominator is an affine function of
x, it can be made linear to conform with (F) by working with the polyhedron {(x, 1) : x ∈ D}.

Our goal is to solve (Fu) using Algorithm 1. For a fixed δ ∈ R, the value of the parametric
function f(δ) can be written as the following pair of primal and dual LPs respectively
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min c⊤x+ δ
∑

e∈δ−(u)

γexe − δ

s. t. x ∈ D

max yu − δ
s. t. yv − γeδ ≤ ce ∀e = (v, u) ∈ δ−(u)

yv − γeyw ≤ ce ∀e = (v, w) /∈ δ−(u).

We refer to them as the primal (resp. dual) LP for f(δ), and their corresponding
feasible/optimal solution as a feasible/optimal primal (resp. dual) solution to f(δ).

Due to the specific structure of this linear fractional program, a suitable initial point for
the Newton–Dinkelbach method can be obtained from any feasible solution to (Fu). This is
a consequence of the unboundedness test given by the following lemma.

▶ Lemma 3.4. Let x be a feasible solution to (Fu) and δ̄ := c⊤x/(1 −
∑

e∈δ−(u) γexe).
If either f(δ̄) = −∞ or f(δ̄) = c⊤x̄ − δ̄(1 −

∑
e∈δ−(u) γex̄e) < 0 for some x̄ ∈ D with

1−
∑

e∈δ−(u) γex̄e ≤ 0, then the optimal value of (Fu) is −∞.

In order to characterize the finiteness of f(δ), we introduce the following notion of a
negative flow-generating cycle.

▶ Definition 3.5. For a fixed δ ∈ R and u ∈ V , a flow-generating cycle C is said to
be (δ, u)-negative if there exists a path P from a node v ∈ V (C) to node u such that
c(C) + (γ(C)− 1)(c(P ) + γ(P )δ) < 0, where C is treated as a v-v walk in c(C).

▶ Lemma 3.6. For any δ ∈ R, f(δ) = −∞ if and only if D ̸= ∅ and there exists a negative
unit-gain cycle, a negative bicycle, or a (δ, u)-negative flow-generating cycle in G \ δ+(u).

It turns out that if we have an optimal dual solution y to f(δ) for some δ ∈ R, then we
can compute an optimal dual solution to f(δ′) for any δ′ < δ. A suitable subroutine for
this task is the so called Grapevine algorithm (Algorithm 2), developed by Aspvall and
Shiloach [2].

Algorithm 2 Grapevine.

input : A directed multigraph G = (V,E) with arc costs c ∈ Rm and gain factors
γ ∈ Rm

++, node labels y ∈ R̄n, and a node u ∈ V .
output : Node labels y ∈ R̄n and a walk P of length at most n starting from u.

1 for i = 1 to n do
2 foreach v ∈ V do
3 y′

v ← min(yv,minvw∈δ+(v) cvw + γvwyw)
4 if y′

v < yv then
5 pred(v, i)← arg minvw∈δ+(v) cvw + γvwyw /* Break ties */
6 else
7 pred(v, i)← ∅

8 y ← y′

9 Let P be the walk obtained by tracing from pred(u, n)
10 return (y, P )

Given initial node labels y ∈ R̄n and a specified node u, Grapevine runs for n iterations.
We say that an arc e = (v, w) is violated with respect to y if yv > ce + γeyw. In an iteration
i ∈ [n], the algorithm records the most violated arc with respect to y in δ+(v) as pred(v, i),
for each node v ∈ V (ties are broken arbitrarily). Note that pred(v, i) = ∅ if there are
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no violated arcs in δ+(v). Then, each yv is decreased by the amount of violation in the
corresponding recorded arc. After n iterations, the algorithm traces a walk P from u by
following the recorded arcs in reverse chronological order. During the trace, if pred(v, i) = ∅
for some v ∈ V and i > 1, then pred(v, i− 1) is read. Finally, the updated node labels y and
the walk P are returned. Clearly, the running time of Grapevine is O(mn).

Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, the dual LP for f(δ′) can be
solved using Grapevine as follows. Define the directed graph Gu := (V ∪ {u′} , Eu) where
Eu := (E \ δ−(u)) ∪ {vu′ : vu ∈ δ−(u)}. The graph Gu is obtained from G by splitting u

into two nodes u, u′ and reassigning the incoming arcs of u to u′. These arcs inherit the
same costs and gain factors from their counterparts in G. Let ȳ ∈ Rn+1 be node labels in
Gu defined by ȳu′ := δ′ and ȳv := yv for all v ̸= u′. Then, we run Grapevine on Gu with
input node labels ȳ and node u. Note that ȳu′ remains unchanged throughout the algorithm.
The next lemma verifies the correctness of this method.

▶ Lemma 3.7. Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, define ȳ ∈ Rn+1

as ȳu′ := δ′ and ȳv := yv for all v ∈ V . Let (z̄, P ) be the node labels and walk returned
by Grapevine(Gu, ȳ, u). If z̄V is not feasible to the dual LP for f(δ′), then f(δ′) = −∞.
Otherwise, z̄V is a dual optimal solution to f(δ′) and P is a shortest path from u with respect
to ȳ in Gu.

If z̄V is an optimal dual solution to f(δ′), a supergradient in ∂f(δ′) can be inferred from
the returned path P . We say that an arc e = (v, w) is tight with respect to z̄ if z̄v = ce +γez̄w.
By complementary slackness, every optimal primal solution to f(δ′) is supported on the
subgraph of Gu induced by tight arcs with respect to z̄. In particular, any u-u′ path or any
path from u to a flow-absorbing cycle in this subgraph constitutes a basic optimal primal
solution to f(δ′). As P is also a path in this subgraph, we have γ(P )− 1 ∈ ∂f(δ′) if P ends
at u′. Otherwise, u can reach a flow-absorbing cycle in this subgraph because δ′ < δ. In this
case, −1 ∈ ∂f(δ′).

3.2 A Strongly Polynomial Label-Correcting Algorithm

Using Algorithm 1, we develop a strongly polynomial label-correcting algorithm for solving
an M2VPI system (G, c, γ). The main idea is to start with a subsystem for which (Du)
is trivial, and progressively solve (Du) for larger and larger subsystems. Throughout the
algorithm, we maintain node labels y ∈ R̄n which form valid upper bounds on each variable.
They are initialized to ∞ at every node. We also maintain a subgraph of G, which initially
is G(0) := (V, ∅).

The algorithm (Algorithm 3) is divided into n phases. At the start of phase k ∈ [n], a new
node u ∈ V is selected and all of its outgoing arcs in G are added to G(k−1), resulting in a
larger subgraph G(k). Since yu =∞ at this point, we update it to the smallest upper bound
implied by its outgoing arcs and the labels of its outneighbours. If yu is still infinity, then we
know that δ+(u) = ∅ or yv =∞ for all v ∈ N+(u). In this case, we find a flow-absorbing cycle
at u in G(k) using the multiplicative Bellman–Ford algorithm, by treating the gain factors as
arc costs. If there is none, then we proceed to the next phase immediately as yu is unbounded
from above in the subsystem (G(k), c, γ). This is because u cannot reach a flow-absorbing
cycle in G(k) by induction. We would like to point out that this does not necessarily imply
that the full system (G, c, γ) is feasible (see the full version for details). On the other hand,
if Bellman–Ford returns a flow-absorbing cycle, then yu is set to the upper bound implied by
the cycle. Then, we apply Algorithm 1 to solve (Du) for the subsystem (G(k), c, γ).
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Algorithm 3 Label-correcting algorithm for M2VPI systems.

input : An M2VPI system (G, c, γ).
output : The pointwise maximal solution ymax or the string INFEASIBLE.

1 Initialize graph G(0) ← (V, ∅) and counter k ← 0
2 Initialize node labels y ∈ R̄n as yv ←∞ ∀v ∈ V
3 foreach u ∈ V do
4 k ← k + 1
5 G(k) ← G(k−1) ∪ δ+(u)
6 yu ← minuv∈δ+(u) cuv + γuvyv

7 if yu =∞ and Cabs
u (G(k)) ̸= ∅ then

8 yu ← c(C)/(1− γ(C)) for any C ∈ Cabs
u (G(k))

9 if yu <∞ then
10 Define node labels ȳ ∈ R̄n+1 as ȳu′ ← yu and ȳv ← yv ∀v ∈ V
11 (ȳ, P )← Grapevine(G(k)

u ,ȳ,u)
12 if ∃ a violated arc w.r.t. ȳ in G

(k)
u or (|E(P )| > 0 and γ(P ) ≥ 1) then

13 return INFEASIBLE

14 ȳu′ ←Look-aheadNewton(Grapevine(G(k)
u , ·, u), ȳu′ , γ(P )− 1)

15 if ȳu′ = NO ROOT then
16 return INFEASIBLE

17 y ← ȳV

18 return y

The value and supergradient oracle for the parametric function f(δ) is Grapevine. Let
G

(k)
u be the modified graph and ȳ ∈ R̄n+1 be the node labels as defined in the previous

subsection. In order to provide Algorithm 1 with a suitable initial point and supergradient,
we run Grapevine on G(k)

u with input node labels ȳ. It updates ȳ and returns a walk P from
u. If ȳV is not feasible to the dual LP for f(ȳu′) or P is a non-trivial walk with γ(P ) ≥ 1,
then we declare infeasibility. Otherwise, we run Algorithm 1 with the initial point ȳu′ and
supergradient γ(P )− 1. We remark that Grapevine continues to update ȳ throughout the
execution of Algorithm 1.

▶ Theorem 3.8. If Algorithm 3 returns y ∈ R̄n, then y = ymax if the M2VPI system is
feasible. Otherwise, the system is infeasible.

We would like to point out that Algorithm 3 may return node labels y ∈ R̄n even if the
M2VPI system is infeasible. This happens when y contains ∞ entries. It is well-known how
to ascertain the system’s feasibility status in this case. We refer the reader to the full version
for details.

To bound the running time of Algorithm 3, it suffices to bound the running time of
Algorithm 1 in every phase. Our strategy is to analyze the sequence of paths whose gain
factors determine the right derivative of f at each iterate of Algorithm 1. The next property
is crucial in our arc elimination argument.

▶ Definition 3.9. Let P = (P (1), P (2), . . . , P (ℓ)) be a sequence of paths from u. We say that
P satisfies subpath monotonicity at u if for every pair P (i), P (j) where i < j and for every
shared node v ̸= u, we have γ(P (i)

uv ) ≤ γ(P (j)
uv ).

ESA 2021
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▶ Lemma 3.10. Let δ(1) > δ(2) > · · · > δ(ℓ) be a decreasing sequence of iterates. For each
δ(i) ∈ R, let P (i) be a u-u′ path in Gu on which a unit flow is an optimal primal solution to
f(δ(i)). Then, the sequence (P (1), P (2), . . . , P (ℓ)) satisfies subpath monotonicity at u.

Proof. For each i ∈ [ℓ], let y(i) ∈ Rn be an optimal dual solution to f(δ(i)). Let ȳ(i) ∈ Rn+1

be the node labels in Gu defined by ȳ(i)
u′ := δ(i) and ȳv := yv for all v ≠ u′. By complementary

slackness, every arc in P (i) is tight with respect to ȳ(i). Hence, P (i) is a shortest u-u′ path
in Gu with respect to ȳ(i). Now, pick a pair of paths P (i) and P (j) such that i < j and they
share a node v ̸= u. Then, the subpaths P (i)

uv and P (j)
uv are also shortest u-v paths in Gu with

respect to ȳ(i) and ȳ(j) respectively. Observe that ȳ(i)
v > ȳ

(j)
v because ȳ(i)

u′ = δ(i) > δ(j) = ȳ
(j)
u′ .

Define the function ψ : [ȳ(j)
v , ȳ

(i)
v ]→ R̄ as

ψ(x) := inf {c(P ) + γ(P )x : P is a u-v walk in Gu} .

Clearly, it is increasing and concave. It is also finite because ψ(ȳ(i)
v ) = c(P (i)

uv ) + γ(P (i)
uv )ȳ(i)

v

and ψ(ȳ(j)
v ) = c(P (j)

uv ) + γ(P (j)
uv )ȳ(j)

v . Subpath monotonicity then follows from the concavity
of ψ. ◀

▶ Theorem 3.11. In each phase k of Algorithm 3, Algorithm 1 terminates in O(|E(G(k))|)
iterations.

The full proof is given in the full version; we highlight some key steps. Let mk := |E(G(k))|.
Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) be a sequence of node labels at the start of every iteration of
Algorithm 1 in phase k. Let P = (P (2), P (3), . . . , P (ℓ)) be a sequence of u-u′ paths in G

(k)
u

such that P (i) determines the right derivative f ′
+(ȳ(i)

u′ ) for all i > 1. Perturb ĉ := c+ εχδ+(u)
by a suitably small ε ≥ 0 such that the system (G(k), ĉ, γ) is feasible. Let y∗ ∈ R̄n be its
pointwise maximal solution, and define the reduced cost c∗ ∈ Rmk

+ as c∗
vw := ĉvw +γvwy

∗
w−y∗

v

for all vw ∈ E(G(k)). For every arc vw ∈ ∪ℓ
i=1E(P (i)), let rvw be the largest gain factor of the

u-v subpath of the paths in P that contain vw. By Lemma 3.10, this is achieved by the last
path in P which contains vw. Order the elements of r◦c∗ as 0 ≤ r1c

∗
1 ≤ r2c

∗
2 ≤ · · · ≤ rmk

c∗
mk

,
and let di :=

∑i
j=1 rjc

∗
j for every i ∈ [mk]. The final step is showing that every interval

(di, di+1] contains the cost of at most two paths from P. This can be derived from the
Bregman divergence analysis, that yields c∗(P (i)) ≤ 1

2c
∗(P (i−2)) for all 3 ≤ i ≤ ℓ.

The runtime of every iteration of Algorithm 1 is dominated by Grapevine. Thus, we
obtain the following result.

▶ Corollary 3.12. Algorithm 3 solves the feasibility of M2VPI linear systems in O(m2n2)
time.
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1 Introduction

For many NP-hard graph problems, the instances constructed in hardness reductions are very
specific and “unstructured”. Thus a natural direction of research is to study how additional
restrictions imposed on the input graphs affect the complexity of the problem. In particular,
we would like to understand if the additional knowledge about the structure of the instance
makes the problem easier, and what are the “minimal” sets of restrictions that we need to
impose in order to make the problem efficiently solvable.

Usually, the main focus in the area is on hereditary classes of graphs, i.e., classes that
are closed under vertex deletion. Prominent examples are perfect graphs [7, 18], graphs
excluding a certain induced subgraph [17] or minor [11], and intersection graphs of geometric
objects [19]. Studying these classes has led to a better understanding of the structure of such
graphs [8,9,20,29] and a discovery of numerous exciting algorithmic techniques [2,10,15,16,24].
Let us point out that the property of being hereditary is particularly useful in the construction
of recursive algorithms based on branching or the divide & conquer paradigm.
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However, there are many natural classes of graphs that are not hereditary, for example
graphs with bounded diameter. Such graphs are interesting not only for purely theoretical
reasons: for example social networks tend to have small diameter [30].

Observe that for any graph G, a graph G+ obtained from G by adding a universal vertex
has diameter 2. Since the graph G may be arbitrarily complicated, the fact that G+ has
small diameter does not imply that its structure is simple. This observation can be used to
show that many classic computational problems are NP-hard for graphs of bounded diameter
and they cannot be solved in subexponential time under the ETH. For instance, the size of a
maximum independent set in G+ is equal to the size of a maximum independent set in G,
and thus Max Independent Set in diameter-2 graph is NP-hard and cannot be solved in
subexponential time, unless the ETH fails.

A similar argument applies to k-Coloring: the graph G+ is k-colorable if and only if G

is (k − 1)-colorable. Thus, for any k ⩾ 4, the k-Coloring problem is NP-hard and admits
no subexponential-time algorithm (under the ETH) in diameter-2 graphs. However, the
reasoning above breaks down for k = 3, as 2-Coloring is polynomial-time solvable.

This peculiar open case was first studied by Mertzios, Spirakis [26] who proved that the
problem can be solved in subexponential time. The result holds even for the more general
List 3-Coloring problem, where each vertex v of the instance graph is equipped with a list
L(v) ⊆ {1, 2, 3}, and we ask for a proper coloring, in which every vertex gets a color from its
list.

▶ Theorem 1 (Mertzios, Spirakis [26]). The List 3-Coloring problem on n-vertex graphs
with diameter 2 can be solved in time 2O(

√
n·log n).

Their algorithm is based on a simple win-win argument. The first ingredient is a well-
known fact that every graph with n vertices and minimum degree δ has a dominating
set of size O

(
n log δ

δ

)
[1, Theorem 1.2.2]. On the other hand, in a diameter-2 graph, the

neighborhood of each vertex is a dominating set, so there is a dominating set of size δ.
Thus, every diameter-2 graph has a dominating set S of size O

(
min(δ, n log δ

δ )
)

which is
upper-bounded by O(

√
n log n).

We exhaustively guess the coloring of vertices in S and update the lists of their neighbors.
Note that after this, each uncolored vertex has at least one colored neighbor, and thus each
list has at most 2 elements. A classic result by Edwards [12] shows that such a problem can
be solved in polynomial time by a reduction to 2-Sat. Summing up, the complexity of the
algorithm is bounded by 2|S| · nO(1) = 2O(

√
n log n).

Let us point out that the bound
√

n appears naturally for different parameters of diameter-
2 graphs, for example the maximum degree of such a graph is Ω(

√
n). Based on this, one can

also construct different algorithms for List 3-Coloring in diameter-2 graphs with running
time matching the one of Theorem 1 (see Section 3).

If it comes to 3-Coloring in diameter-3 graphs, Mertzios and Spirakis [26] proved that
the problem is NP-hard, but their reduction is quadratic. Thus, under the ETH, the problem
cannot be solved in time 2o(

√
n). Actually, the authors carefully analyzed how the lower

bound depends on the minimum degree of the input graph, and presented three hardness
reductions, each for a different range of δ. Furthermore, they showed that the problem can
be solved in time 2O(min(δ·∆, n log δ

δ )), where ∆ is the maximum degree. The argument again
follows from the observation that each diameter-3 graph has a dominating set of size at most
δ · ∆. Let us point out that if ∆ = Θ(n) and δ = O(1), then the running time is exponential
in n. In Figure 1 we summarize the results for diameter-3 graphs with given minimum degree.
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1/2

1/3

11/21/3

MS

Theorem 2

2Ω(n(1−ε)/2)

2Ω(nε)

2Ω(n1−ε)

for ε ∈ [0, 1/3)

for ε ∈ [1/3, 1/2)

for ε ∈ [1/2, 1)

Lower bounds:

Upper bounds:

2O(n
(1−ε) logn)

2O((n logn)2/3)

ε

β

Mertzios, Spirakis [26]

Theorem 2

Figure 1 The complexity of List 3-Coloring in n-vertex diameter-3 graphs with minimum
degree Θ(nε) for ε ∈ [0, 1]. The complexity bound is of the form 2O(nβ ·logO(1) n) for β ∈ [0, 1].

The story stops at diameter 3: a textbook reduction from NAE-Sat to 3-Coloring
builds a graph with diameter 4 and number of vertices linear in the size of the formula [27,
Theorem 9.8]. This proves that the 3-Coloring problem in diameter-4 graphs is NP-hard
and cannot be solved in subexponential time, unless the ETH fails.

Closing the gaps left by Mertzios and Spirakis [26], and in particular determining the
complexity of 3-Coloring in diameter-2 graphs, is a notorious open problem in the area of
graph algorithms. We know polynomial-time algorithms if some additional restrictions are
imposed on the instance [21,23]. However, to the best of our knowledge, no progress in the
general case has been achieved.

Let us also point out that some other problems, including different variants of graph
coloring, have also been studied for small-diameter graphs [3, 5, 6, 22].

Our results. As our first result, in Section 3 we show a simple subexponential-time algorithm
for the List 3-Coloring problem in diameter-3 graphs.

▶ Theorem 2. The List 3-Coloring problem on n-vertex graphs with diameter 3 can be
solved in time 2O(n2/3·log2/3 n).

Note that the running time bound does not depend on the maximum nor the minimum
degree of the input graph. In particular, this is the first algorithm for List 3-Coloring,
whose complexity is subexponential for all diameter-3 graphs, see Figure 1.

Let us present a high-level overview of the proof. We partition the vertex set of our graph
into three sets V1, V2, V3, where Vi contains the vertices with lists of size i. If the graph
contains a vertex v ∈ V2 ∪ V3 with at least n1/3 neighbors in V2 ∪ V3, then we can effectively
branch on the color of v. Otherwise, we observe that for any v ∈ V2 ∪ V3, the set S of vertices
at distance at most 2 from v in the graph induced by sets V2 ∪ V3 dominates V3, i.e., every
vertex from V3 is in S or has a neighbor in S. Thus, after exhaustively guessing the coloring
of S, all lists are reduced to size at most 2 and then we can finish in polynomial time, using
the already-mentioned result of Edwards [12].

In Section 4 we prove the following theorem, which is the main result of the paper.

ESA 2021
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▶ Theorem 3. The List 3-Coloring problem on n-vertex graphs with diameter 2 can be
solved in time 2O(n1/3·log2 n).

Again, let us give some intuition about the proof. We partition the vertex set of G into
(V1, V2, V3), as previously. We aim to empty the set V3, as then the problem can be solved in
polynomial time. We start with applying three branching rules. The first one is similar as in
the proof of Theorem 2: if we find a vertex v with many neighbors in V3, we can branch on
choosing the color of v. The other two branching rules are somewhat technical and their
purpose is not immediately clear, so let us not discuss them here.

The main combinatorial insight that is used in our algorithm is as follows. Consider an
instance (G, L), where G is of diameter 2 and none of the previous branching rules can be
applied. Suppose that G has a proper 3-coloring φ that respects lists L. Then there is a
color a ∈ {1, 2, 3} and sets S ⊆ V3 ∩ φ−1(a) and S̃ ⊆ V3 \ φ−1(a), each of size O(n1/3 log n),
with the following property:
(⋆) S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
dominates at least 1

6 -fraction of V3,

where N(S) (resp. N(S̃)) denotes the set of vertices with a neighbor in S (resp. S̃). The
existence of the sets S and S̃ is shown using a probabilistic argument.

Now we proceed as follows. We enumerate all pairs of disjoint sets S and S̃, each of size
O(n1/3 log n). If they satisfy the property (⋆), we exhaustively guess the color a used for
every vertex of S and the coloring of S̃ with colors {1, 2, 3} \ {a}. Then we update the lists
of the neighbors of colored vertices. Note that the color of every vertex from N(S) ∩ N(S̃) is
now uniquely determined. Thus, for at least 1

6 -fraction of vertices v ∈ V3, they are either
already colored or have a colored neighbor and thus their lists are of size at most 2. Thus
our instance was significantly simplified and we can proceed recursively.

Finally, in Section 5 we investigate possible extensions of our algorithms to some gen-
eralizations of (List) 3-Coloring. We observe that our approach can be used to obtain
subexponential-time algorithms for the problem of finding a list homomorphism from a graph
with diameter at most 3 to certain graphs, including in particular all cycles. We refer to
Section 5.1 for the definition of the problem and the precise statement of our results; let
us just point out that under the ETH the problems considered there cannot be solved in
subexponential time in general graphs [13,14]

We conclude with discussing the possibility of extending our algorithms to weighted
coloring problems, with Independent Odd Cycle Transversal [4] as a prominent special
case.

2 Preliminaries

For an integer n, we denote [n] := {1, 2, . . . , n}. For a set X, by 2X we denote the family of
all subsets of X. All logarithms in the paper are natural.

Let G = (V, E) be a connected graph. For two vertices u and v, by distG(u, v) we denote
the distance from u to v, i.e., the number of edges on a shortest u-v path in G. The diameter
of G, denoted by diam(G), is the maximum value of dist(u, v) over all u, v ∈ V .

For a vertex v, by NG(v) we denote its open neighborhood, i.e., the set of all vertices
adjacent to v. The closed neighborhood of v is defined as NG[v] := NG(v) ∪ {v}. For an
integer p, by N⩽p

G [v] we denote the set of vertices at distance at most p from v, and define
N⩽p

G (v) := N⩽p
G [v] \ {v}. For a set X of vertices, we define NG(X) :=

⋃
v∈X NG(v) \ X and

NG[X] := NG(X) ∪ X. For sets X, Y ⊆ V , we say that X dominates Y if Y ⊆ NG[X]. By
degG(v) we denote the degree of a vertex v, i.e., |NG(v)|.
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If the graph G is clear from the context, we drop the subscript in the notation above and
simply write dist(u, v), N(v), etc. By ∆(G) we denote the maximum vertex degree in G.

The following result by Edwards [12] will be an important tool used in all our algorithms.

▶ Theorem 4 (Edwards [12]). Let G = (V, E) be a graph and let L : V → 2N be a list
assignment, such that for every v ∈ V it holds that |L(v)| ⩽ 2. Then in polynomial time we
can decide whether G admits a proper vertex coloring that respects lists L.

Reduction rules. Let (G, L) be an instance of the List 3-Coloring problem. It is
straightforward to observe that the following reduction rules can be safely applied, as they do
not change the set of solutions. Moreover, each of them can be applied in polynomial time.
R1 If there exists a vertex v such that L(v) contains only one color a, then remove a from

L(u) for each vertex u ∈ N(v).
R2 If there exists a vertex v such that |L(v)| = 0, then report failure.
R3 If |L(v)| ⩽ 2 for each vertex v, then solve the problem using Theorem 4.
An instance (G, L) for which none of the reduction rules can be applied is called reduced.
Note that the reduction rules do not remove any vertices from the graph, even if their color
is fixed. This is because such an operation might increase the diameter.

Layer structure. Let (G, L) be a reduced instance of List 3-Coloring. For i ∈ [3], let Vi

be the set of vertices v of G, such that |L(v)| = i. Note that (V1, V2, V3) is a partition of V ;
we will call it the layer structure of G. Observe that since R1 cannot be applied to (G, L), it
holds that N(V1) ⊆ V2, i.e., there are no edges between V1 and V3.

We conclude this section with an important observation about layer structures of graphs
with diameter at most 3.

▶ Proposition 5. Let (G, L) be a reduced instance of List 3-Coloring, where G has
diameter d ⩽ 3, and let (V1, V2, V3) be the layer structure of G. Then, for any u, v ∈ V2 ∪ V3,
at least one of the following holds:
a) u and v are at distance at most d in G[V2 ∪ V3], or
b) {u, v} ∩ V2 ̸= ∅.

Proof. If V1 = ∅, then the first outcome follows, since G = G[V2 ∪ V3]. So assume that
V1 ̸= ∅. Consider u, v ∈ V3 and suppose that they are not at distance at most d in G[V2 ∪ V3].
Since they are at distance at most d in G, all shortest u-v-paths in G must intersect V1.
However, for any x ∈ V1, it holds that dist(u, x) ⩾ 2 and dist(v, x) ⩾ 2. Thus dist(u, v) ⩾ 4,
contradicting the fact that diam(G) ⩽ 3. ◀

Observe that Proposition 5 does not generalize to diameter-4 graphs: consider e.g. 5-
vertex path P5 with consecutive vertices v1, v2, v3, v4, v5, where V1 = {v3}. Vertices v1 and
v5 are in V3, they are at distance 4 in P5, but not in P5[V2 ∪ V3] = P5 − {v3}. For d = 2
Proposition 5 can be strengthened by replacing part (b) with {u, v} ⊆ V2

Proposition 5 immediately yields the following corollary.

▶ Corollary 6. Let (G, L) be an instance of the List 3-Coloring, where G has diameter
d ∈ {2, 3}, and let (V1, V2, V3) be the layer structure of G. For every v ∈ V3, the set
N⩽d−1

G[V2∪V3][v] dominates V3.
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3 Coloring diameter-3 graphs

In this section we present a simple proof of Theorem 2. Actually, we will show the following
more general result, which yields a 2O(

√
n log n)-algorithm for diameter-2 graphs; it implies

Theorem 1, but the proof is different than the one originally given by Mertzios and Spirakis [26].
This will serve as a warm-up before showing our main result, i.e., Theorem 3.

▶ Theorem 7. The List 3-Coloring problem on n-vertex graphs G can be solved in time:
1. 2O(n1/2 log1/2 n), if diam(G) = 2,
2. 2O(n2/3 log2/3 n), if diam(G) = 3.

Proof. Let (G, L) be an instance of List 3-Coloring, where G has n vertices and diameter
d ∈ {2, 3}. Without loss of generality we may assume that it is reduced. Let (V1, V2, V3) be
the layer structure of (G, L) and let us define a measure µ := 2|V2| + 3|V3|.

First, consider the case that there is a vertex v ∈ V2 ∪ V3 with at least (µ log µ)1/d

neighbors in V2 ∪ V3. Since each vertex of V2 ∪ V3 has one of four possible lists, there is a
subset of at least (µ log µ)1/d

4 neighbors of v that all have the same list L′. Note that there is
a ∈ L(v) ∩ L′ since both are subsets of size at least 2 of a set of size 3. We branch on coloring
the vertex v with color a or not. In other words, in the first branch we remove from L(v) all
elements but a, and in the other one we remove a from L(v). Note that after reducing the
obtained instance, at least (µ log µ)1/d

4 vertices will lose at least one element from their list in
the first branch.

We can bound the number of instances produced by applying this step exhaustively as
follows:

F (µ) ⩽ F

(
µ − (µ log µ)1/d

4

)
+ F (µ − 1).

Solving this inequality, we obtain that F (µ) = µ
O

(
µ

(µ log µ)1/d

)
= 2O((µ log µ)1−1/d).

Now consider the remaining case that ∆(G[V2 ∪ V3]) < (µ log µ)1/d. Recall that since the
reduction rule R3 cannot be applied, it holds that V3 ̸= ∅. Pick any vertex v ∈ V3. Define
X := N⩽d−1

G[V2∪V3][v]; by Corollary 6, the set X dominates V3. Furthermore

|X| ⩽ 1 + ∆(G[V2 ∪ V3])d−1 = O((µ log µ)(d−1)/d).

We exhaustively guess the coloring of X, which results in at most 3|X| = 2O((µ log µ)1−1/d)
branches. As X dominates V3, after applying the reduction rule R1 to every vertex of X, in
each branch there are no vertices with three-element lists. Therefore, the instance obtained
in each of the branches is solved in polynomial time using reduction rule R3. The claimed
bound follows since µ ⩽ 3n. ◀

4 Coloring diameter-2 graphs

In this section we prove the main result of the paper, i.e., Theorem 3. Let us recall the
following variant of the Chernoff concentration bound.

▶ Theorem 8 ( [25, Theorem 2.3]). Let X1, . . . , Xn be independent random variables with
0 ⩽ Xi ⩽ 1 for each i. Let X =

∑
Xi and X = E[X].

(1) For any ε > 0,

Pr
(
X ⩾ (1 + ε)X

)
⩽ e− ε2X

2(1+ε/3) .
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(2) For any ε > 0,

Pr
(
X ⩽ (1 − ε)X

)
⩽ e− ε2X

2 .

It will be more convenient to work with random variables for which we only know bounds
on the expected value. For this reason we will use the following corollary of Theorem 8.

▶ Corollary 9. Let X1, . . . , Xn be independent random variables with 0 ⩽ Xi ⩽ 1 for each i.
Let X =

∑
Xi.

(1) For any ε > 0 and X̂ ⩾ E[X],

Pr
(

X ⩾ (1 + ε)X̂
)
⩽ e− ε2X̂

2(1+ε/3) .

(2) For any ε > 0 and X̂ ⩽ E[X],

Pr
(

X ⩽ (1 − ε)X̂
)
⩽ e− ε2X̂

2 .

Proof. Clearly, if X̂ = E[X], then (1) and (2) follow directly from Theorem 8. So since now
assume that this is not the case. In order to prove (1) let us consider a random variable
Y = X + Y1 + Y2 + . . . + Yk, where k =

⌈
X̂ − E[X]

⌉
and each Yi is a constant equal to

X̂−E[X]
k . Clearly E[Y ] = X̂ and Y ⩾ X, so the statement follows by Theorem 8 (1).
For (2) it is enough to apply Theorem 8 (2) for the random variable Y = X X̂

E[X] . ◀

We start with a technical lemma that is the crucial ingredient of our algorithm.

▶ Lemma 10. There exists an absolute constant K such that the following is true. Let G be
a 3-colorable graph with n vertices such that

(i) ∆(G) ⩽ n2/3,
(ii) for every v ∈ V (G), the set N⩽2

G (v) contains at least n − 1
36 n2/3 vertices,

(iii) for every two vertices u, v ∈ V (G) there are at most n2/3 vertices w such that NG(u) ∩
NG(v) ∩ NG(w) ̸= ∅.

Let φ be a proper 3-coloring of G, where a ∈ [3] is the color that appears most frequently.
Define A := φ−1(a). Then there exist sets S ⊆ A and S̃ ⊆ V (G) \ A, each of size at most
K · n1/3 log n, such that S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
dominates at least n

6 vertices.

Before we prove Lemma 10, let us explain its purpose. Suppose that G is a graph with
diameter at most 2 and we are trying to find a 3-coloring of G under the promise that
it exists. We start by assigning to each vertex a list of 3 possible colors. Note that if
we correctly guess a set S of vertices of the most frequent color a and a set S̃ of vertices
together with its coloring using colors [3] \ {a}, then we can deduce the color of each vertex
in N(S) ∩ N(S̃). Hence, our reduction rules will remove at least one color from the list of
each vertex dominated by S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
. If the sets S and S̃ are as in the lemma,

then we have just removed at least n
6 colors from all the lists by guessing the coloring of only

O(n1/3 log n) vertices. This is roughly why our algorithm is much faster than an exhaustive
search.

The assumptions of the lemma can be read as follows: (i) vertices in G do not have too
many neighbors, (ii) G is almost a graph with diameter 2 and (iii) common neighbors of
every two vertices u and v do not dominate too many vertices of the graph. As we will
see later, those assumptions arise naturally when trying to solve the problem using simple
branching rules – if any of them is violated, then searching for a 3-coloring of G becomes
easier because of other reasons.

ESA 2021
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u w

xuw f(xuw) va

u w

xuw = f(xuw) va

Figure 2 The vertex u threatens w: if f(xuw) ∈ S̃ and u ∈ S, then w has a neighbor with
uniquely determined color.

Proof of Lemma 10. Note that we can assume that n ⩾ n0, where n0 is a constant that
implicitly follows from the reasoning below. Indeed, otherwise it is sufficient to set K := n0,
S := A, and S̃ := V (G) \ A. Thus from now on we assume that n is sufficiently large.

For every two vertices u, v ∈ V (G) such that N [u] ∩ N [v] ̸= ∅, let xuv be a vertex from
N [u] ∩ N [v]. Fix some vertex va ∈ A and a function f : N⩽2(va) → N(va) defined such that
f(u) ∈ N [u] ∩ N(va).

We start by selecting S̃ as a subset of neighbors of va. For such a set S̃ we say that a
vertex u ∈ A threatens a vertex w ∈ A if
(1) N [u] ∩ N [w] ̸= ∅,
(2) xuw ∈ N⩽2(va), and
(3) f(xuw) ∈ S̃.
Intuitively, u threatens w if selecting u to S would undoubtedly cause w to be dominated by
S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
, see Figure 2. The following claim gives us a set S̃ such that each

vertex of A is threatened by many vertices.

▷ Claim 11. There exists a set S̃ ⊆ N(va) of order at most 200n1/3 log n such that for at
least half of vertices w ∈ A there are at least 8n2/3 log n vertices from A that threaten w.

Proof. We select S̃ randomly in such a way that each neighbor of va is included in S̃

independently with probability p̃ = 100n−1/3 log n. We will show that S̃ satisfies the desired
properties with positive probability.

Note that the size of S̃ is a sum of deg(va) independent random boolean variables and the
expected value of |S̃| is deg(va) · p̃. Recall that by the assumption (i) we have deg(va) ⩽ n2/3.
Therefore by Corollary 9 (1) applied with ε = 1 we deduce that

Pr
(

|S̃| > 200n1/3 log n
)
⩽ e−37.5n1/3 log n.

Let A′ ⊆ A be the set of those v ∈ A, for which the set N
(
N(v) \ N⩽2(va)

)
contains

fewer than half of vertices from A. We will show that |A′| ⩾ 1
2 |A|. First, let us estimate

the number P of ordered pairs of vertices (u, v) such that u and v have a common neighbor
outside of N⩽2(va). By (i) each vertex outside of N⩽2(va) can be a common neighbor for
at most n4/3 pairs of vertices, so (ii) implies that P ⩽ 1

36 n2. Note that a vertex from A is
not contained in A′ only if it is in at least |A| ordered pairs that contribute to P . It follows
that A′ contains at least |A| − 2P

|A| vertices. Since a is the most frequent color used by the
3-coloring φ, we have |A| ⩾ 1

3 n, and thus |A′| ⩾ 1
2 |A|, as desired.

Fix a vertex w from A′. Consider a random variable Xw that counts the number of
vertices u from A such that u threatens w and N(u) ∩ N(w) ⊆ N⩽2(va). Our plan is to use
Corollary 9 to show that Xw is at least 8n2/3 log n with high probability.

We start by estimating the expected value of Xw. Let U be the set of vertices u ∈ A

such that N(u) ∩ N(w) ⊆ N⩽2(va); note that by the definition of U , there is a vertex in
N [u] ∩ N [w] ∩ N⩽2(va), so xuw and f(xuw) exist for all vertices u ∈ U . Each vertex u ∈ U
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contributes 1 to Xw if and only if f(xuw) ∈ S̃, i.e., with probability p̃. Since w ∈ A′, the
size of U is at least 1

2 |A| minus the number of vertices outside of N⩽2(w), which totals to at
least n

6 − 1
36 n2/3 by (ii). Therefore, E[Xw] ⩾ 16n2/3 log n for large enough n.

Now we express Xw as a sum of a number of independent random variables. Fix an
ordering t1, t2, . . . , tdeg(va) of neighbors of va and define Ui as the set of vertices u from U

such that xuw ∈ N⩽2(va) and f(xuw) = ti. For i = 1, 2, . . . , deg(va) let Xi be a random
variable that is equal to |Ui| if ti ∈ S̃ and 0 otherwise. Clearly Xw =

∑
i Xi and all the

variables X1, . . . , Xdeg(va) are independent by the independent selection of S̃.
By (iii), applied for w and ti, we obtain that Xi ⩽ n2/3 for all i. Therefore we may use

Corollary 9 (2) for the sequence of variables Xi

n2/3 and ε = 1
2 to deduce that

Pr
(

Xw

n2/3 ⩽ 8 log n

)
⩽ e−2 log n,

which gives that

Pr
(

Xw ⩽ 8n2/3 log n
)
⩽ n−2.

By the union bound we obtain that the probability that S̃ has more than 200n1/3 log n

vertices or that Xw < 8n2/3 log n for any w ∈ A′ is at most n · n−2 + n−37.5n1/3 . Therefore,
for large enough n the set S̃ satisfies the required properties with positive probability, so the
proof of the claim is complete. ◁

Having selected S̃, we proceed to selecting S as a subset of A that guarantees the desired
domination property.

▷ Claim 12. There exists a set S ⊆ A of order at most 2n1/3 such that at least half of the
vertices w ∈ A are dominated by S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
.

Proof. We randomly select S so that each vertex from A is in S independently with probability
p = n−2/3. Note that by Corollary 9 (1) the size of S is at most 2n1/3 with probability at
least 1 − e− 3

8 n2/3 .
Let w be a vertex from A that is threatened by at least 8n2/3 log n vertices from A. The

probability that w is not dominated by N(S) ∩ N(S̃) is at most

(1 − p)8n2/3 log n ⩽ e−8pn2/3 log n ⩽ e−8 log n ⩽ n−8.

By the union bound it follows that with probability at least 1 − n−7 all vertices threatened
by at least 8n2/3 log n vertices from A are dominated by N(S) ∩ N(S̃). Claim 11 implies
that there are at least 1

2 |A| such vertices, so the proof is complete. ◁

Setting K := max(n0, 200). Now the statement of the lemma follows from Claim 12 by
observing that since A is the most frequent color, we have 1

2 |A| ⩾ 1
6 n. ◀

Now we are ready to prove Theorem 3.

▶ Theorem 3. The List 3-Coloring problem on n-vertex graphs with diameter 2 can be
solved in time 2O(n1/3·log2 n).

Proof. Let (G, L) be an instance of the List 3-Coloring problem. Again, we start by
applying reduction rules R1, R2, R3, so we can assume that (G, L) is reduced. Let (V1, V2, V3)
be the layer structure of G and set µ := |V3|.
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We use one of the four branching rules to produce a number of instances of the problem,
each with fewer vertices with lists of size 3. Those instances are solved recursively and if a
success is reported for at least one of them, then the algorithm terminates and reports a
success. The following branching rules are applied in the given order – it is essential that B4
is executed only if the rules B1, B2 and B3 cannot be applied.
B1 If there exists a vertex v ∈ V2 ∪ V3 such that v has more than µ2/3 neighbors in V3,

then for every color a ∈ L(v) solve an instance obtained by replacing L(v) with {a} and
exhaustively applying the reduction rules.

B2 If there exists a vertex v ∈ V3 such that for at least 1
36 µ2/3 vertices u ∈ V3 a common

neighbor of u and v is in V2, then for every color a ∈ L(v) solve an instance obtained by
replacing L(v) with {a} and exhaustively applying the reduction rules.

B3 If there are two vertices u, v ∈ V3 such that for at least µ2/3 vertices w from V3 the set
N(u) ∩ N(v) ∩ N(w) is nonempty, then for every two distinct colors a, b construct an
instance by setting L(u) := {a} and L(v) := {b} and one additional instance obtained by
replacing vertices u and v with a new vertex z adjacent to N(u) ∪ N(v) with L(z) = [3].
Apply the reduction rules to each of those instances and solve them recursively.

B4 Let K be the constant from Lemma 10. For every tuple (a, S, S̃, φ), where
a ∈ [3] is a color,
S ⊆ V3 is a set of size at most K · µ1/3 log µ,
S̃ ⊆ V3 \ S is a set of size at most K · µ1/3 log µ,
φ is a coloring of S̃ using colors [3] \ {a},

construct an instance by setting L(v) := {a} for each v ∈ S and L(v) = {φ(v)} for v ∈ S̃.
Apply the reduction rules to each of those instances for which S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
dominates at least 1

6 µ vertices from V3 and solve them recursively.

Let us show that the above algorithm is correct. Branching rules B1 and B2 are clearly
correct, because if there is a solution to the given instance of the List 3-Coloring problem,
then it assigns to v one color from L(v). The rule B3 is correct because if there is a solution
to the given instance of the problem, then it either assigns two different colors to u and v, or
assigns the same color to u and v, hence at least one of the constructed instances will admit
a solution. Note that contracting the vertices u and v does not increase the diameter. Now
consider the branching rule B4. Recall that it is applied only when rules B1, B2 and B3 are
inapplicable, so in this case the graph G[V3] satisfies the assumptions (i)-(iii) of Lemma 10.
Therefore if the original instance has a solution, then by Lemma 10 at least one instance
constructed in B4 admits a solution. On the other hand, each instance is obtained by fixing
the colors of vertices in S ∪ S̃ ⊆ V3, so each such a coloring respects lists L. Furthermore, if
this coloring is improper, then the application of reductions rules R1 and R2 will cause the
algorithm to reject the instance. Hence, the branching rule B4 is correct.

Let us denote by F (x) the maximum running time of the algorithm on an instance with
at most x vertices with lists of size 3. By p(n) we denote the cost of exhaustively applying
the reduction rules to an instance with n vertices; note that p(n) is polynomial in n.

Now we will bound the running time of the algorithm on our instance (G, L) with µ

vertices with lists of size 3, depending on which branching rule was applied.

Case 1: B1 was applied. Note that this branching produced at most three instances of the
problem, each with at most µ − µ2/3 vertices with lists of size 3. This is because for every
vertex u ∈ V3 that is a neighbor of v the color c was removed from L(u). Therefore, in this
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case the running time is at most

3F
(

µ − µ2/3
)

+ 3p(n).

Case 2: B2 was applied. For a color x let Nx be the number of vertices u ∈ V3 such that
the list of a common neighbor of v and u in V2 does not contain x. Let us rename the colors
by a, b and c such that Na ⩽ Nb ⩽ Nc. Note that if a vertex u contributes to Nc, then after
the application of reduction rules b (respectively a) is removed from L(u) in the instance
constructed for the color a (respectively b). It follows that the running time of the algorithm
in this case is at most

F (µ − 1) + 2F

(
µ − 1

108µ2/3
)

+ 3p(n).

Case 3: B3 was applied. Let w be a vertex from V3 such that the set N(u) ∩ N(v) ∩ N(w)
is nonempty. Note that if we set L(u) to {a} and L(v) to {b}, for a ̸= b, then after applying
the reduction rules common neighbors of u and v will have lists of size 1, hence the size of
the list of w will be at most 2. Therefore, in this case the running time is at most

F (µ − 1) + 6F
(

µ − µ2/3
)

+ 7p(n).

Case 4: B4 was applied. Note that in the constructed instances, after applying the
reduction rules, all vertices from S ∪ S̃ ∪

(
N(S) ∩ N(S̃)

)
have lists of size 1, so all vertices

dominated by S ∪ S̃ ∪
(

N(S) ∩ N(S̃)
)

have lists of size at most 2. Therefore, all instances
that are solved recursively have at most µ − 1

6 µ vertices with lists of size 3. The total number
of those instances can be upper bounded by

3 · µ2Kµ1/3 log µ · 2Kµ1/3 log µ < 2K′µ1/3 log2 µ,

for some constant K ′. Therefore the total running time in this case is at most

2K′µ1/3 log2 µF

(
5
6µ

)
+ 2K′µ1/3 log2 µp(n)

As the considered cases cover all possibilities, we conclude that F (µ) is bounded by the
maximum of the expressions obtained in all four cases. By solving this recurrence we obtain

F (µ) ⩽ p(n) · 2O(µ1/3 log2 µ) = 2O(µ1/3 log2 µ).

Since µ ⩽ n, the proof is complete. ◀

5 Possible extensions of our results

We conclude the paper with discussing possible extensions of our results.

5.1 Solving List H-Coloring in small-diameter graphs
For a fixed graph H with possible loops, an instance of List H-Coloring is a pair (G, L),
where G is a graph and L : V (G) → 2V (H) is a list function. We ask whether there exists a
list homomorphism from (G, L) to H, i.e., a function φ : V (G) → V (H), such that (i) for

ESA 2021



37:12 Faster 3-Coloring of Small-Diameter Graphs

each uv ∈ E(G) it holds that φ(u)φ(v) ∈ E(H), and (ii) for each v ∈ V (G) it holds that
φ(v) ∈ L(v). Clearly List Kk-Coloring is equivalent to List k-Coloring. This is why
we refer to the vertices of H as colors.

We observe that the algorithm from Theorem 2 and Theorem 3 can be adapted to List
H-Coloring if the graph H satisfies certain conditions. First, the algorithm from Theorem 2
can be adapted to solve the List H-Coloring problem if
(P1) every vertex of H has at most two neighbors (possibly including itself, if it is a vertex

with a loop).
For such graphs H, once we fix a color of some v ∈ V (G), all its neighbors have lists of size
at most 2.

To adapt the algorithm from Theorem 3, in addition to property (P1), we need two more:
(P2) any two distinct vertices of H must have at most one common neighbor,
(P3) H has no loops.
Property (P2) is needed to ensure that as soon as we fix the coloring of the sets S and S̃

selected in Lemma 10, then the color of every vertex in N(S) ∩ N(S̃) is uniquely determined.
Property (P3) is needed for our selection of the set S̃: recall that all these vertices are in the
neighborhood of some vertex va colored a, which is sufficient to ensure that no vertex of S̃

gets the color a.
Let H be the family of connected graphs that satisfy property (P1). From the complexity

dichotomy for List H-Coloring by Feder, Hell, and Huang [13,14] it follows that if H ∈ H,
then List H-Coloring is polynomial-time solvable if:

H has at most two vertices,
H = C4,
H is a path,
H is a path with a loop on one endvertex,

and otherwise the problem is NP-complete and does not admit a subexponential-time
algorithm under the ETH. So, in other words, there are two families of graphs H ∈ H for
which the problem is NP-complete (in general graphs):

all cycles Ck for k = 3 or k ⩾ 5, and
all graphs obtained from a path with k ⩾ 3 vertices by adding loops on both endvertices;
let us call such a graph P ∗

k .
Let us present one more simple observation about solving List H-Coloring in graphs with
small diameter. Consider an instance (G, L) of List H-Coloring and suppose that H

contains two vertices x, y at distance greater than diam(G). (Here, with a little abuse of
notation, we use the convention that if x and y are in different connected components of H,
then their distance is infinite.) We note that there is no (list) homomorphism from G to H

that uses both x and y. Thus we can reduce the problem to solving an instance (G, Lx) of
List (H − x)-Coloring and an instance (G, Ly) of List (H − y)-Coloring, where lists
Lx (resp. Ly) are obtained from L by removing the vertex x (resp., y) from each set.

Combining all observations above, we obtain the following results. We skip the formal
proofs, as they are essentially the same as the ones of Theorem 2 and Theorem 3 and bring
no new insight.

▶ Theorem 13. Let H ∈ H. Consider an instance (G, L) of List H-Coloring, where G is
of diameter 2. Then (G, L) can be solved
1. in polynomial time if H /∈ {C3, C5, P ∗

3 },
2. in time 2O(n1/3 log2 n) if H ∈ {C3, C5},
3. in time 2O(n1/2 log1/2 n) if H = P ∗

3 .
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▶ Theorem 14. Let H ∈ H. Consider an instance (G, L) of List H-Coloring, where G is
of diameter 3. Then (G, L) can be solved
1. in polynomial time if H /∈ {C3, C5, C6, C7, P ∗

3 , P ∗
4 },

2. in time 2O(n2/3 log2/3 n) if H ∈ {C3, C5, C6, C7, P ∗
3 , P ∗

4 }.

5.2 Weighted coloring problems
Another possible generalization of List 3-Coloring would be to introduce weights: for each
pair (v, c), where v ∈ V (G) and c ∈ {1, 2, 3}, we are given a cost w(v, c) of coloring v with c,
and we ask for a proper coloring minimizing the total cost. A natural special case of this
problem is Independent Odd Cycle Transversal, where we ask for a minimum-sized
independent set which intersects all odd cycles.

Let us point out that the branching phases in our algorithms from Theorem 2 and
Theorem 3 can handle this type of modification. However, this is no longer the case for the
last phase, when the problem of coloring a graph with all lists of size at most two is reduced
to 2-Sat using Theorem 4. It is known that a weighted variant of 2-Sat is NP-complete
and admits no subexponential-time algorithm, unless the ETH fails [28]. Thus, in order to
extend our algorithmic results to weighted setting, we need to find a way to replace using
Theorem 4 with some other strategy of dealing with lists of size 2.
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Abstract
In this paper, we study several important geometric optimization problems arising in machine
learning. First, we revisit the Minimum Enclosing Ball (MEB) problem in Euclidean space Rd. The
problem has been extensively studied before, but real-world machine learning tasks often need to
handle large-scale datasets so that we cannot even afford linear time algorithms. Motivated by
the recent developments on beyond worst-case analysis, we introduce the notion of stability for
MEB, which is natural and easy to understand. Roughly speaking, an instance of MEB is stable, if
the radius of the resulting ball cannot be significantly reduced by removing a small fraction of the
input points. Under the stability assumption, we present two sampling algorithms for computing
radius-approximate MEB with sample complexities independent of the number of input points n. In
particular, the second algorithm has the sample complexity even independent of the dimensionality d.
We also consider the general case without the stability assumption. We present a hybrid algorithm
that can output either a radius-approximate MEB or a covering-approximate MEB, which improves
the running time and the number of passes for the previous sublinear MEB algorithms. Further, we
extend our proposed notion of stability and design sublinear time algorithms for other geometric
optimization problems including MEB with outliers, polytope distance, one-class and two-class linear
SVMs (without or with outliers). Our proposed algorithms also work fine for kernels.
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1 Introduction

Many real-world machine learning tasks can be formulated as geometric optimization problems
in Euclidean space. We start with a fundamental geometric optimization problem, Minimum
Enclosing Ball (MEB), which has attracted a lot of attentions in past years. Given a set P of
n points in Euclidean space Rd, where d could be quite high, the problem of MEB is to find a
ball with minimum radius to cover all the points in P [16,38,60]. MEB finds several important
applications in machine learning [68]. For example, the popular classification model Support
Vector Machine (SVM) can be formulated as an MEB problem in high dimensional space, if
all the mapped points have the same norm by using kernel method, e.g., the popular radial
basis function kernel [80]. Hence fast MEB algorithms can be adopted to speed up its training
procedure [24,25, 80]. Recently, MEB has also been used for preserving privacy [37,69] and
quantum cryptography [46].

Usually, we consider the approximate solutions of MEB. If a ball covers all the n points
but has a radius larger than the optimal one, we call it a “radius-approximate solution”;
if a ball has the radius no larger than the optimal one but covers less than n points, we
call it a “covering-approximate solution” instead (the formal definitions are shown in
Section 3). In the era of big data, the dataset could be so large that we cannot even afford
linear time algorithms. This motivates us to ask the following questions:
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Is it possible to develop approximation algorithms for MEB that run in sublinear time
in the input size? And how about other high-dimensional geometric optimization problems
arising in machine learning?

It is common to assume that the input data is represented by a n× d matrix, and thus
any algorithm having complexity o(nd) can be considered as a sublinear time algorithm.
In practice, data items are usually represented as sparse vectors in Rd; thus it can be fast
to perform the operations, like distance computing, even though the dimensionality d is
high (see the concluding remarks of [25]). Moreover, the number of input points n is often
much larger than the dimensionality d in many real-world scenarios. Therefore, we are
interested in designing the algorithms that have complexities sublinear in n (or
linear in n but with small factor before it). Designing sublinear time algorithms has
become a promising approach to handle many big data problems, and a detailed discussion
on previous works is given in Section 2.

1.1 Our Main Ideas and Results
Our idea for designing sublinear time MEB algorithms is inspired by the recent developments
on optimization with respect to stable instances, under the umbrella of beyond worst-case
analysis [74]. For example, several recent works introduced the notion of stability for problems
like clustering and max-cut [8, 10, 15]. In this paper, we give the notion of “stability” for
MEB. Roughly speaking, an instance of MEB is stable, if the radius of the resulting ball
cannot be significantly reduced by removing a small fraction of the input points (e.g., the
radius cannot be reduced by 10% if only 1% of the points are removed). The rationale behind
this notion is quite natural: if the given instance is not stable, the small fraction of points
causing significant reduction in the radius should be viewed as outliers (or we may need
multiple balls to cover the input points as k-center clustering [45,52]). To the best of our
knowledge, this is the first study on MEB from the perspective of stability.

We prove an important implication of the stability assumption: informally speaking, if
an instance of MEB is stable, its center should reveal a certain extent of robustness in the
space (Section 4). Using this implication, we propose two sampling algorithms for computing
(1 + ϵ)-radius approximate MEB with sublinear time complexities (Section 5); in particular,
our second algorithm has the sample size (i.e., the number of sampled points) independent
of the number of input points n and dimensionality d (to the best of our knowledge, this is
the first algorithm achieving (1 + ϵ)-radius approximation with such a sublinear complexity).

Moreover, we have an interesting observation: the ideas developed under the stability
assumption can even help us to solve the general instance without the stability assumption,
if we relax the requirement slightly. We introduce a hybrid approach that can output either a
radius-approximate MEB or a covering-approximate MEB, depending upon whether the input
instance is sufficiently stable1 (Section 6). It is worth noting that the simple uniform sampling
idea based on VC-dimension [49, 81] can only yield a “bi-criteria” approximation, which has
errors on both the radius and the number of covered points (see the discussion on our first
sampling algorithm in Section 5.1). Comparing with the sublinear time MEB algorithm
proposed by Clarkson et al. [25], we reduce the total running time from Õ(ϵ−2n+ ϵ−1d+M)
to O(n+h(ϵ, δ) ·d+M), where M is the number of non-zero entries in the input n×d matrix
and h(ϵ, δ) is a factor depending on the pre-specified radius error bound ϵ and covering error
bound δ. Thus, our improvement is significant if n ≫ d. The only tradeoff is that we allow a

1 We do not need to know whether the instance is stable or not, when running our algorithm.
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covering approximation for unstable instance (given the lower bound proved by [25], it is
quite unlikely to reduce the term ϵ−2n if we keep restricting the output to be (1 + ϵ)-radius
approximation). Moreover, our algorithm only needs uniform sampling and a single pass
over the data; on the other hand, the algorithm of [25] needs Õ(ϵ−1) passes (the details are
shown in Table 1).

Table 1 The existing and our results for computing MEB in high dimensions. In the table, “rad.”
and “cov.” stand for “radius approximation” and “covering approximation”, respectively. “M” is
the number of non-zero entries in the input n × d matrix. The factor C1 depends on ϵ and the
stability degree of the given instance; the factor C2 depends on ϵ and δ. The mark “∗” means that
the method can be extended for MEB with outliers.

Results Quality Time Number of passes

Clarkson et al. [25] (1 + ϵ)-rad. Õ(ϵ−2n + ϵ−1d + M) Õ(ϵ−1)

Core-sets methods∗

[16, 24,60,71]
(1 + ϵ)-rad.

roughly O(ϵ−1nd)
or O(ϵ−1(n + d + M))

if M = o(nd)

O(ϵ−1)

Numerical method [76] (1 + ϵ)-rad.
Õ(ϵ−1/2nd) or

Õ(ϵ−1/2(n + d + M))
if M = o(nd)

O(ϵ−1/2)

Numerical method [6] (1 + ϵ)-rad. Õ(nd + n
√

d/
√

ϵ) Õ(d +
√

d/ϵ)

Streaming algorithm [4,21] 1.22-rad. O(nd/ϵ5) one pass

This
paper

stable
instance∗

(1 + ϵ)-rad. O(C1 · d) uniform sampling

general
instance∗

(1 + ϵ)-rad.
or (1 − δ)-cov.

O
(
(n + C2)d

)
or

O(n + C2 · d + M)
if M = o(nd)

uniform sampling
plus a single pass

Our proposed notion of stability can be naturally extended to several other geometric
optimization problems arising in machine learning.

MEB with outliers. In practice, we often assume the presence of outliers in given datasets.
MEB with outliers is a natural generalization of the MEB problem, where the goal is to
find the minimum ball covering at least a certain fraction of input points. The presence
of outliers makes the problem not only non-convex but also highly combinatorial in high
dimensions. We define the stability for MEB with outliers, and propose the sublinear time
approximation algorithms. Our algorithms are the first sublinear time single-criterion
approximation algorithms for the MEB with outliers problem (comparing with the previous
bi-criteria approximations like [18,31]), to the best of our knowledge.

Polytope distance and SVM. Given a set P of points in Rd, the polytope distance problem
is to compute the shortest distance of any point inside the convex hull of P to the origin.
Similar to MEB, polytope distance is also a fundamental problem in computational geometry
and has many important applications, such as sparse approximation [24]. The polytope
distance problem is also closely related to SVMs. Actually, training linear SVM is equivalent
to solving the polytope distance problem for the Minkowski difference of two differently
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labeled training datasets [41]. Though polytope distance is quite different from the MEB
problem, they in fact share several common features. For instance, both of them can be
solved by the greedy core-set construction method [24]. Following our ideas for MEB, we
define the stability for polytope distance, and propose the sublinear time algorithms.

Because the geometric optimization problems studied in this paper are motivated from
machine learning applications, we also take into account the kernels [78]. Our proposed
algorithms only need to conduct the basic operations, like computing the distance and inner
product, on the data items. Therefore, they also work fine for kernels.

The rest of the paper is organized as follows. In Section 2, we summarize the previous
results that are related to our work. In Section 3, we present the important definitions and
briefly introduce the coreset construction method for MEB from [16] (which will be used
in our following algorithms design and analysis). In Section 4, we prove the implication of
MEB stability. Further, we propose two sublinear time MEB algorithms in Section 5. We
also briefly introduce several important extensions in Section 6; due to the space limit, we
leave the details to our full paper.

2 Previous Work

The works most related to ours are [7,25]. Clarkson et al. [25] developed an elegant perceptron
framework for solving several optimization problems arising in machine learning, such as
MEB. Given a set of n points in Rd represented as an n× d matrix with M non-zero entries,
their framework can compute the MEB in Õ( n

ϵ2 + d
ϵ ) time 2. Note that the parameter “ϵ” is

an additive error (i.e., the resulting radius is r + ϵ if r is the radius of the optimal MEB)
which can be converted into a relative error (i.e., (1+ ϵ)r) in O(M) preprocessing time. Thus,
if M = o(nd), the running time is still sublinear in the input size nd (please see Table 1).
The framework of [25] also inspires the sublinear time algorithms for training SVMs [51] and
approximating Semidefinite Programs [40]. Hayashi and Yoshida [50] presented a sampling-
based method for minimizing quadratic functions of which the MEB objective is a special
case, but it yields a large additive error O(ϵn2).

Alon et al. [7] studied the following property testing problem: given a set of n points in
some metric space, determine whether the instance is (k, b)-clusterable, where an instance is
called (k, b)-clusterable if it can be covered by k balls with radius (or diameter) b > 0. They
proposed several sampling algorithms to answer the question “approximately”. Specifically,
they distinguish between the case that the instance is (k, b)-clusterable and the case that it is
ϵ-far away from (k, b′)-clusterable, where ϵ ∈ (0, 1) and b′ ≥ b. “ϵ-far” means that more than
ϵn points should be removed so that it becomes (k, b′)-clusterable. Note that their method
cannot yield a single criterion radius-approximation or covering-approximation algorithm for
the MEB problem, since it will introduce unavoidable errors on the radius and the number
of covered points due to the relaxation of “ϵ-far”. But it is possible to convert it into a
“bi-criteria” approximation, where it allows approximations on both the radius and the
number of uncovered outliers (e.g., discard more than the pre-specified number of outliers).

MEB and core-set. A core-set is a small set of points that approximates the structure/shape
of a much larger point set [1, 35, 72]. The core-set idea has also been used to compute
approximate MEB in high dimensional space [18,57,60,71]. Bădoiu and Clarkson [16] showed

2 The asymptotic notation Õ(f) = O
(
f · polylog( nd

ϵ )
)
.
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that it is possible to find a core-set of size ⌈2/ϵ⌉ that yields a (1 + ϵ)-radius approximate
MEB. Several other methods can yield even lower core-set sizes, such as [17, 57]. In fact, the
algorithm for computing the core-set of MEB is a Frank-Wolfe algorithm [39], which has been
systematically studied by Clarkson [24]. Other MEB algorithms that do not rely on core-sets
include [6, 38,76]. Agarwal and Sharathkumar [4] presented a streaming ( 1+

√
3

2 + ϵ)-radius
approximation algorithm for computing MEB; later, Chan and Pathak [21] proved that the
same algorithm actually yields an approximation ratio less than 1.22.

MEB with outliers and bi-criteria approximations. The MEB with outliers problem can
be viewed as the case k = 1 of the k-center clustering with outliers problem [22]. Bădoiu et
al. [18] extended their core-set idea to the problems of MEB and k-center clustering with
outliers, and achieved linear time bi-criteria approximation algorithms (if k is assumed to
be a constant). Huang et al. [53] and Ding et al. [31, 33] respectively showed that simple
uniform sampling approach can yield bi-criteria approximation of k-center clustering with
outliers. Several algorithms for the low dimensional MEB with outliers have also been
developed [5, 34, 47, 62]. There also exist a number of works on streaming MEB and k-center
clustering with outliers [20, 23, 63, 82]. Other related topics include robust optimization [14],
robust fitting [3, 48], and optimization with uncertainty [19].

Polytope distance and SVMs. The Gilbert’s algorithm [42] is one of the earliest known
algorithms for computing polytope distance. Similar to the core-set construction of MEB,
the Gilbert’s algorithm is also an instance of the Frank-Wolfe algorithm where the upper
bound of the number of iterations is independent of the data size and dimensionality [24, 41].
In general, SVM can be formulated as a quadratic programming problem, and a number of
efficient techniques have been developed besides the Gilbert’s algorithm, such as the soft
margin SVM [26,73], ν-SVM [27,77], and CVM [80].

Optimizations under stability. Bilu and Linial [15] showed that the Max-Cut problem
becomes easier if the given instance is stable with respect to perturbation on edge weights.
Ostrovsky et al. [70] proposed a separation condition for k-means clustering which refers to the
scenario where the clustering cost of k-means is significantly lower than that of (k− 1)-means
for a given instance, and demonstrated the effectiveness of the Lloyd heuristic [61] under the
separation condition. Balcan et al. [10] introduced the concept of approximation-stability for
finding the ground-truth of k-median and k-means clustering. Awasthi et al. [8] introduced
another notion of clustering stability and gave a PTAS for k-median and k-means clustering.
More clustering algorithms under stability assumption were studied in [9, 11–13,59].

Sublinear time algorithms. Besides the aforementioned sublinear MEB algorithm [25], a
number of sublinear time algorithms have been studied for the problems like clustering [29,
54,55,64,65] and property testing [44]. More detailed discussion on sublinear time algorithms
can be found in the survey papers [28,75].

3 Definitions and Preliminaries

We describe and analyze our algorithms in the unit-cost RAM model [66]. Suppose the input
is represented by an n× d matrix (i.e., n points in Rd). As mentioned in [25], it is common
to assume that any entry of the matrix can be recovered in constant time.
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We let |A| denote the number of points of a given point set A in Rd, and ||x− y|| denote
the Euclidean distance between two points x and y in Rd. We use B(c, r) to denote the
ball centered at a point c with radius r > 0. Below, we give the definitions for MEB and
the notion of stability. To keep the structure of our paper more compact, we place other
necessary definitions for our extensions to the full paper.

▶ Definition 1 (Minimum Enclosing Ball (MEB)). Given a set P of n points in Rd, the MEB
problem is to find a ball with minimum radius to cover all the points in P . The resulting ball
and its radius are denoted by MEB(P ) and Rad(P ), respectively.

▶ Definition 2 (Radius Approximation and Covering Approximation). Let 0 < ϵ, δ < 1. A
ball B(c, r) is called a (1 + ϵ)-radius approximation of MEB(P ), if the ball covers all points
in P and has radius r ≤ (1 + ϵ)Rad(P ). On the other hand, the ball is called a (1 − δ)-
covering approximation of MEB(P ), if it covers at least (1 − δ)n points in P and has radius
r ≤ Rad(P ).

Both radius approximation and covering approximation are single-criterion approximations.
When ϵ (resp., δ) approaches to 0, the (1 + ϵ)-radius approximation (resp., (1 − δ)-covering
approximation) will approach to MEB(P ). The “covering approximation” seems to be
similar to “MEB with outliers”, but actually they are quite different.

▶ Definition 3 ((α, β)-stable). Given a set P of n points in Rd with two parameters α
and β in (0, 1), P is an (α, β)-stable instance if (1) Rad(P ′) > (1 − α)Rad(P ) for any
P ′ ⊂ P with |P ′| > (1 − β)n, and (2) there exists a P ′′ ⊂ P with |P ′′| = (1 − β)n having
Rad(P ′′) ≤ (1 − α)Rad(P ).

The intuition of Definition 3. Actually, β can be viewed as a function of α. For any α > 0,
there always exists a β ≥ 1

n such that P is an (α, β)-stable instance (β ≥ 1
n because we

must remove at least one point). The property of stability indicates that Rad(P ) cannot
be significantly reduced unless removing a large enough fraction of points from P . For a
fixed α, the larger β is, the more stable P becomes. Actually, our stability assumption is
quite reasonable in practice. For example, if the radius can be reduced considerably (say by
α = 10%) after removing only a very small fraction (say β = 1%) of points, it is natural to
view the small fraction of points as outliers. In practice, it is difficult to obtain the exact
value of β for a fixed α. However, the value of β only affects the sample sizes in our proposed
algorithms in Section 5, and thus only assuming a reasonable lower bound β0 < β is already
sufficient. To better understand the notion of stability in high dimensions, we consider the
following two examples.

Example (i). Suppose that the distribution of P is uniform and dense inside MEB(P ).
Let α ∈ (0, 1) be a fixed number, and we study the corresponding β of P . If we want
the radius of the remaining (1 − β)n points to be as small as possible, intuitively we
should remove the outermost βn points (since P is uniform and dense). Let P ′′ denote
the set of innermost (1 − β)n points that has Rad(P ′′) ≤ (1 − α)Rad(P ). Then we have
|P ′′|
|P | ≈ V ol

(
MEB(P ′′)

)
V ol

(
MEB(P )

) = (Rad(P ′′))d

(Rad(P ))d ≤ (1 − α)d, where V ol(·) is the volume function. That

is, 1 − β ≤ (1 − α)d and thus limd→∞ β = 1 when α is fixed; that means P tends to be very
stable as d increases.
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Example (ii). Consider a regular d-dimensional simplex P containing d+ 1 points where
each pair of points have the pairwise distance equal to 1. It is not hard to obtain Rad(P ) =√

d
2(1+d) , and we denote it by rd. If we remove β(d+ 1) points from P , namely it becomes a

regular d′-dimensional simplex with d′ = (1 − β)(d+ 1) − 1, the new radius rd′ =
√

d′

2(1+d′) .
To achieve rd′

rd
≤ 1 − α with a fixed α, it is easy to see that 1 − β should be no larger than

1
1+(2α−α2)d and thus limd→∞ β = 1. Similar to example (i), the instance P tends to be very
stable as d increases.

3.1 Core-set Construction for MEB [16]
To compute a (1 + ϵ)-radius approximate MEB, Bădoiu and Clarkson [16] proposed an
algorithm yielding an MEB core-set of size 2/ϵ (for convenience, we always assume that 2/ϵ
is an integer). We first briefly introduce their main idea, since it will be used in our proposed
algorithms (we do not use the MEB algorithm of [24] because it is not quite convenient to
analyze under our stability assumption; the other construction algorithms [17,57], though
achieving lower core-set sizes, are more complicated and thus not applicable to our problems).

Given a point set P ⊂ Rd, the algorithm is a simple iterative procedure. Initially, it
selects an arbitrary point from P and places it into an initially empty set T . In each of the
following 2/ϵ iterations, the algorithm updates the center of MEB(T ) and adds to T the
farthest point from the current center of MEB(T ). Finally, the center of MEB(T ) induces
a (1 + ϵ)-radius approximation for MEB(P ). The selected set of 2/ϵ points (i.e., T ) is called
the core-set of MEB. However, computing the exact center of MEB(T ) could be expensive;
in practice, one may only compute an approximate center of MEB(T ) in each iteration. In
the i-th iteration, we let ci denote the exact center of MEB(T ); also, let ri be the radius
of MEB(T ). Suppose ξ is a given number in (0, 1). Using another algorithm proposed
in [16, Section 3], one can compute an approximate center oi having the distance to ci less
than ξri in O( 1

ξ2 |T |d) time. Since we only compute oi rather than ci in each iteration, we
in fact only select the farthest point to oi (not ci). In [31], Ding provided a more careful
analysis on Bădoiu and Clarkson’s method and presented the following theorem.

▶ Theorem 4 ( [31]). In the core-set construction algorithm of [16], if one computes an
approximate MEB for T in each iteration and the resulting center oi has the distance to ci

less than ξri with ξ = s ϵ
1+ϵ for some s ∈ (0, 1), the final core-set size is bounded by z = 2

(1−s)ϵ .
Also, the bound could be arbitrarily close to 2/ϵ when s is sufficiently small.

▶ Remark 5. (i) We can simply set s to be any constant in (0, 1); for instance, if s = 1/3, the
core-set size will be bounded by z = 3/ϵ. Since |T | ≤ z in each iteration, the total running
time is O

(
z
(
|P |d + 1

ξ2 zd
))

= O
(

1
ϵ

(
|P | + 1

ϵ3

)
d
)

. (ii) We also want to emphasize a simple
observation mentioned in [18,31] on the above core-set construction procedure, which will be
used in our algorithms and analyses later on. The algorithm always selects the farthest point
to oi in each iteration. However, this is actually not necessary. As long as the selected point
has distance at least (1 + ϵ)Rad(P ), the result presented in Theorem 4 is still true. If no
such a point exists (i.e., P \ B

(
oi, (1 + ϵ)Rad(P )

)
= ∅), a (1 + ϵ)-radius approximate MEB

(i.e., the ball B
(
oi, (1 + ϵ)Rad(P )

)
) has been already obtained.

▶ Remark 6 (kernels). If each point p ∈ P is mapped to ψ(p) in RD by some kernel function
(e.g., as the CVM [80]), where D could be +∞, we can still run the core-set algorithm
of [16, 58], since the algorithm only needs to compute the distances and the center oi is
always a convex combination of T in each iteration; instead of returning an explicit center,
the algorithm will output the coefficients of the convex combination for the center. And
similarly, our Algorithm 2 presented in Section 5.2 also works fine for kernels.
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Figure 1 (a) The case MEB(P ′) ⊂ MEB(P ); (b) an illustration under the assumption ∠ao′o <

π/2 in the proof of Claim 9; (c) the angle ∠ao′o ≥ π/2; (d) an illustration of Lemma 10.

4 Implication of the Stability Property

In this section, we show an important implication of the stability property of Definition 3.

▶ Theorem 7. Assume ϵ, ϵ′, β0 ∈ (0, 1). Let P be an (ϵ2, β)-stable instance of the MEB
problem with β > β0, and o be the center of its MEB. Let õ be a given point in Rd. Assume
the number r ≤ (1 + ϵ′2)Rad(P ). If the ball B

(
õ, r

)
covers at least (1 − β0)n points from P ,

the following holds

||õ− o|| < (2
√

2ϵ+
√

3ϵ′)Rad(P ). (1)

Theorem 7 indicates that if a ball covers a large enough subset of P and its radius is
bounded, its center should be close to the center of MEB(P ). Let P ′ = B

(
õ, r

)
∩ P , and

assume o′ is the center of MEB(P ′). To bound the distance between õ and o, we bridge
them by the point o′ (since ||õ− o|| ≤ ||õ− o′|| + ||o′ − o||). The following are two key lemmas
for proving Theorem 7.

▶ Lemma 8. The distance ||o′ − o|| ≤
√

2ϵRad(P ).

Proof. We consider two cases: MEB(P ′) is totally covered by MEB(P ) and otherwise. For
the first case (see Figure 1(a)), it is easy to see that

||o′ − o|| ≤ Rad(P ) − (1 − ϵ2)Rad(P ) = ϵ2Rad(P ) <
√

2ϵRad(P ), (2)

where the first inequality comes from the fact that MEB(P ′) has radius at least (1 −
ϵ2)Rad(P ) (Definition 3). Thus, we can focus on the second case below.

Let a be any point located on the intersection of the two spheres of MEB(P ′) and
MEB(P ). Consequently, we have the following claim.

▷ Claim 9. The angle ∠ao′o ≥ π/2.

Proof. Suppose that ∠ao′o < π/2. Note that ∠aoo′ is always smaller than π/2 since
||o − a|| = Rad(P ) ≥ Rad(P ′) = ||o′ − a||. Therefore, o and o′ are separated by the
hyperplane H that is orthogonal to the segment o′o and passes through the point a. See
Figure 1(b). Now we show that P ′ can be covered by a ball smaller than MEB(P ′). Let oH

be the point H ∩ o′o, and t (resp., t′) be the point collinear with o and o′ on the right side of
the sphere of MEB(P ′) (resp., left side of the sphere of MEB(P ); see Figure 1(b)). Then,
we have

||t− oH || + ||oH − o′|| = ||t− o′|| = ||a− o′|| < ||o′ − oH || + ||oH − a||
=⇒ ||t− oH || < ||oH − a||. (3)
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Similarly, we have ||t′ − oH || < ||oH − a||. Consequently, MEB(P ) ∩ MEB(P ′) is covered
by the ball B(oH , ||oH − a||). Further, because P ′ is covered by MEB(P ) ∩ MEB(P ′) and
||oH − a|| < ||o′ − a|| = Rad(P ′), P ′ is covered by the ball B(oH , ||oH − a||) that is smaller
than MEB(P ′). This contradicts to the fact that MEB(P ′) is the minimum enclosing ball
of P ′. Thus, the claim ∠ao′o ≥ π/2 is true. ◁

Given Claim 9, we know that ||o′ − o|| ≤
√(

Rad(P )
)2 −

(
Rad(P ′)

)2. See Figure 1(c).
Moreover, Definition 3 implies that Rad(P ′) ≥ (1 − ϵ2)Rad(P ). Therefore, we have

||o′ − o|| ≤
√(

Rad(P )
)2 −

(
(1 − ϵ2)Rad(P )

)2 ≤
√

2ϵRad(P ). (4)

◀

▶ Lemma 10. The distance ||õ− o′|| < (
√

2ϵ+
√

3ϵ′)Rad(P ).

Proof. Let L be the hyperplane orthogonal to the segment õo′ and passing through the
center o′. Suppose õ is located on the left side of L. Then, there exists a point b ∈ P ′

located on the right closed semi-sphere of MEB(P ′) divided by L (this result was proved
in [18,43] and see Lemma 2.2 in [18]). See Figure 1(d). That is, the angle ∠bo′õ ≥ π/2. As a
consequence, we have

||õ− o′|| ≤
√

||õ− b||2 − ||b− o′||2. (5)

Moreover, since ||õ− b|| ≤ r ≤ (1 + ϵ′2)Rad(P ) and ||b− o′|| = Rad(P ′) ≥ (1 − ϵ2)Rad(P ),
(5) implies that ||õ− o′|| ≤

√
(1 + ϵ′2)2 − (1 − ϵ2)2Rad(P ), where this upper bound is equal

to √
2ϵ′2 + ϵ′4 + 2ϵ2 − ϵ4Rad(P ) <

√
3ϵ′2 + 2ϵ2Rad(P ) < (

√
2ϵ+

√
3ϵ′)Rad(P ). (6)

◀

By triangle inequality, Lemmas 8 and 10, we immediately have

||õ− o|| ≤ ||õ− o′|| + ||o′ − o|| < (2
√

2ϵ+
√

3ϵ′)Rad(P ). (7)

This completes the proof of Theorem 7.

5 Sublinear Time Algorithms for MEB under Stability Assumption

Suppose ϵ ∈ (0, 1). We assume that the given instance P is an (ϵ2, β)-stable instance where
β is larger than a given lower bound β0 (i.e., β > β0). Using Theorem 7, we present two
different sublinear time sampling algorithms for computing MEB. Following most of the
articles on sublinear time algorithms (e.g., [29,64,65]), in each sampling step of our algorithms,
we always take the sample independently and uniformly at random.

5.1 The First Algorithm
The first algorithm is based on the theory of VC dimension and ϵ-nets [49, 81]. Roughly
speaking, we compute an approximate MEB of a small random sample (say, B(c, r)), and
expand the ball slightly; then we prove that this expanded ball is an approximate MEB
of the whole data set (see Figure 2). Our key idea is to show that B(c, r) covers at least
(1 − β0)n points and therefore c is close to the optimal center by Theorem 7. As emphasized

ESA 2021



38:10 Stability Yields Sublinear Time Algorithms

r

c

Figure 2 An illustration for the first sampling algorithm. The red points are the samples; we
expand B(c, r) slightly and the larger ball is a radius-approximate MEB of the whole input point set.

in Section 1.1, our result is a single-criterion approximation. If simply applying the uniform
sample idea without the stability assumption (as the ideas in [33, 53]), it will result in a
bi-criteria approximation where the ball has to cover less than n points for achieving the
desired bounded radius.

▶ Theorem 11. With probability 1 − η, Algorithm 1 returns a λ-radius approximate MEB of
P , where

λ =
(
1 + (2

√
2 +

√
3)ϵ

)
(1 + ϵ2)

1 − ϵ2
(8)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1).

Algorithm 1 MEB Algorithm I.

Input: Two parameters 0 < ϵ, η < 1; an (ϵ2, β)-stable instance P of MEB problem in Rd,
where β is larger than a known lower bound β0 > 0.

1: Sample a set S of Θ( 1
β0

· max{log 1
η , d log d

β0
}) points from P uniformly at random.

2: Apply any approximate MEB algorithm (such as the core-set based algorithm [16]) to
compute a (1 + ϵ2)-radius approximate MEB of S, and let the obtained ball be B(c, r).

3: Output the ball B
(
c, 1+(2

√
2+

√
3)ϵ

1−ϵ2 r
)
.

Before proving Theorem 11, we prove the following lemma first.

▶ Lemma 12. Let S be a set of Θ( 1
β0

· max{log 1
η , d log d

β0
}) points sampled randomly and

independently from a given point set P ⊂ Rd, and B be any ball covering S. Then, with
probability 1 − η, |B ∩ P | ≥ (1 − β0)|P |.

Proof. Consider the range space Σ = (P,Φ) where each range ϕ ∈ Φ is the complement
of a ball in the space. In a range space, a subset Y ⊂ P is a β0-net if for any ϕ ∈ Φ,
|P ∩ϕ|

|P | ≥ β0 =⇒ Y ∩ ϕ ̸= ∅. Since |S| = Θ( 1
β0

· max{log 1
η , d log d

β0
}), we know that S is a

β0-net of P with probability 1−η [49,81]. Thus, if |B∩P | < (1−β0)|P |, i.e., |P \B| > β0|P |,
we have S ∩

(
P \B

)
̸= ∅. This contradicts to the fact that S is covered by B. Consequently,

|B ∩ P | ≥ (1 − β0)|P |. ◀

Proof of Theorem 11. Denote by o the center of MEB(P ). Since S ⊂ P and B(c, r) is
a (1 + ϵ2)-radius approximate MEB of S, we know that r ≤ (1 + ϵ2)Rad(P ). Moreover,
Lemma 12 implies that |B(c, r) ∩ P | ≥ (1 − β0)|P | with probability 1 − η. Suppose it is true
and let P ′ = B(c, r) ∩ P . Then, we have the distance

||c− o|| ≤ (2
√

2 +
√

3)ϵRad(P ) (9)
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via Theorem 7 (we set ϵ′ = ϵ). For simplicity, we use x to denote (2
√

2+
√

3)ϵ. The inequality
(9) implies that the point set P is covered by the ball B(c, (1 + x)Rad(P )). Note that we
cannot directly return B(c, (1 + x)Rad(P )) as the final result, since we do not know the
value of Rad(P ). Thus, we have to estimate the radius (1 + x)Rad(P ).

Since P ′ is covered by B(c, r) and |P ′| ≥ (1 − β0)|P |, r should be at least (1 − ϵ2)Rad(P )
due to Definition 3. Hence, we have

1 + x

1 − ϵ2
r ≥ (1 + x)Rad(P ). (10)

That is, P is covered by the ball B(c, 1+x
1−ϵ2 r). Moreover, the radius

1 + x

1 − ϵ2
r ≤ 1 + x

1 − ϵ2
(1 + ϵ2)Rad(P ). (11)

This means that ball B(c, 1+x
1−ϵ2 r) is a λ-radius approximate MEB of P , where

λ = (1 + ϵ2) 1 + x

1 − ϵ2
=

(
1 + (2

√
2 +

√
3)ϵ

)
(1 + ϵ2)

1 − ϵ2
(12)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1). ◀

Running time of Algorithm 1. For simplicity, we assume log 1
η < d log d

β0
. If we use

the core-set based algorithm [16] to compute B(c, r) (see Remark 5), the running time of
Algorithm 1 is O

( 1
ϵ2 (|S|d + 1

ϵ6 d)
)

= O
(

d2

ϵ2β0
log d

β0
+ d

ϵ8

)
= Õ(d2) where the hidden factor

depends on ϵ and β0.
▶ Remark 13. If the dimensionality d is too high, the random projection technique Johnson-
Lindenstrauss (JL) transform [30] can be used to approximately preserve the radius of
enclosing ball [2, 56,79]. However, it is not very useful for reducing the time complexity of
Algorithm 1. If we apply the JL-transform on the sampled Θ( d

β0
log d

β0
) points in Step 1, the

JL-transform step itself already takes Ω( d2

β0
log d

β0
) time.

5.2 The Second Algorithm
Our first algorithm in Section 5.1 is simple, but has a sample size (i.e., the number of sampled
points) depending on the dimensionality d, while the second algorithm has a sample
size independent of both n and d (it is particularly important when a kernel function is
applied, because the new dimension could be very large or even +∞). We briefly overview
our idea first.

High level idea of the second algorithm. Recall our Remark 5 (ii). If we know the value of
(1 + ϵ)Rad(P ), we can perform almost the same core-set construction procedure described in
Theorem 4 to achieve an approximate center of MEB(P ), where the only difference is that
we add a point with distance at least (1 + ϵ)Rad(P ) to oi in each iteration. In this way, we
avoid selecting the farthest point to oi, since this operation will inevitably have a linear time
complexity. To implement our strategy in sublinear time, we need to determine the value of
(1+ ϵ)Rad(P ) first. We propose Lemma 14 below to estimate the range of Rad(P ), and then
perform a binary search on the range to determine the value of (1 + ϵ)Rad(P ) approximately.
Based on the stability property, we observe that the core-set construction procedure can
serve as an “oracle” to help us to guess the value of (1 + ϵ)Rad(P ) (see Algorithm 3). Let
h > 0 be a candidate. We add a point with distance at least h to oi in each iteration. We
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prove that the procedure cannot continue for more than z iterations if h ≥ (1 + ϵ)Rad(P ),
and will continue more than z iterations with constant probability if h < (1 − ϵ)Rad(P ),
where z is the size of core-set described in Theorem 4. Also, during the core-set construction,
we add the points to the core-set via random sampling, rather than a deterministic way. A
minor issue here is that we need to replace ϵ by ϵ2 in Theorem 4, so as to achieve the overall
(1 +O(ϵ))-radius approximation in the following analysis. Below, we introduce Lemma 14
and Theorem 16 first, and then present the main result in Theorem 17.

▶ Lemma 14. Given a parameter η ∈ (0, 1), one selects an arbitrary point p1 ∈ P and takes
a sample Q ⊂ P with |Q| = 1

β0
log 1

η uniformly at random. Let p2 = arg maxp∈Q ||p − p1||.
Then, with probability 1 − η,

Rad(P ) ∈ [ 12 ||p1 − p2||, 1
1 − ϵ2

||p1 − p2||]. (13)

Proof. First, the lower bound of Rad(P ) is obvious since ||p1 − p2|| is always no larger than
2Rad(P ). Then, we consider the upper bound. Let B(p1, l) be the ball covering exactly
(1 − β0)n points of P , and thus l ≥ (1 − ϵ2)Rad(P ) according to Definition 3. To complete
our proof, we also need the following folklore lemma presented in [32].

▶ Lemma 15 ( [32]). Let N be a set of elements, and N ′ be a subset of N with size |N ′| = τ |N |
for some τ ∈ (0, 1). Given η ∈ (0, 1), if one randomly samples ln 1/η

ln 1/(1−τ) ≤ 1
τ ln 1

η elements
from N , then with probability at least 1 − η, the sample contains at least one element of N ′.

ll

p1p1

p2p2

Figure 3 An illustration of Lemma 14; the red points are the sampled set Q.

In Lemma 15, let N and N ′ be the point set P and the subset P \ B(p1, l), respectively.
We know that Q contains at least one point from N ′ according to Lemma 15 (by setting
τ = β0). Namely, Q contains at least one point outside B(p1, l). Moreover, because p2 =
arg maxp∈Q ||p−p1||, we have ||p1 −p2|| ≥ l ≥ (1−ϵ2)Rad(P ), i.e., Rad(P ) ≤ 1

1−ϵ2 ||p1 −p2||
(see Figure 3 for an illustration). ◀

Lemma 14 immediately implies the following result.

▶ Theorem 16. In Lemma 14, the ball B(p1,
2

1−ϵ2 ||p1 − p2||) is a 4
1−ϵ2 -radius approximate

MEB of P , with probability 1 − η.

Proof. From the upper bound in Lemma 14, we know that 2
1−ϵ2 ||p1 −p2|| ≥ 2Rad(P ). Since

||p1 − p|| ≤ 2Rad(P ) for any p ∈ P , the ball B(p1,
2

1−ϵ2 ||p1 − p2||) covers the whole point
set P . From the lower bound in Lemma 14, we know that 2

1−ϵ2 ||p1 − p2|| ≤ 4
1−ϵ2 Rad(P ).

Therefore, it is a 4
1−ϵ2 -radius approximate MEB of P . ◀

Since |Q| = 1
β0

log 1
η in Lemma 14, Theorem 16 indicates that we can easily obtain a

4
1−ϵ2 -radius approximate MEB of P in O( 1

β0
(log 1

η )d) time. Below, we present our second
sampling algorithm (Algorithm 2) that can achieve a much lower (1 +O(ϵ))-approximation
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ratio. Algorithm 3 serves as a subroutine in Algorithm 2. In Algorithm 3, we simply set
z = 3

ϵ2 with s = 1/3 as described in Theorem 4 (as mentioned before, we replace ϵ by ϵ2); we
compute oi having distance less than s ϵ2

1+ϵ2 Rad(T ) to the center of MEB(T ) in Step 2(1).

▶ Theorem 17. With probability 1 − η0, Algorithm 2 returns a λ-radius approximate MEB
of P , where

λ = (1 + x1)(1 + x2)
1 + ϵ2

with x1 = O
( ϵ2

1 − ϵ2
)
, x2 = O

( ϵ√
1 − ϵ2

)
, (14)

and λ = 1 +O(ϵ) if ϵ is a fixed number in (0, 1). The running time is Õ
(
( 1

ϵ2β0
+ 1

ϵ8 )d
)
, where

Õ(f) = O(f · polylog( 1
ϵ ,

1
η0

)).

Algorithm 2 MEB Algorithm II.

Input: Two parameters 0 < ϵ, η0 < 1; an (ϵ2, β)-stable instance P of MEB problem in Rd,
where β is larger than a given lower bound β0 > 0. Set the interval [a, b] for Rad(P )
that is obtained by Lemma 14.

1: Among the set {(1 − ϵ2)a, (1 + ϵ2)(1 − ϵ2)a, · · · , (1 + ϵ2)w(1 − ϵ2)a = (1 + ϵ2)b} where
w = ⌈log1+ϵ2

2
(1−ϵ2)2 ⌉ + 1 = O( 1

ϵ2 ), perform binary search for the value h by using
Algorithm 3 with z = 3

ϵ2 and η = η0
2 log w .

2: Suppose that Algorithm 3 returns “no” when h = (1 + ϵ2)i0(1 − ϵ2)a and returns “yes”
when h = (1 + ϵ2)i0+1(1 − ϵ2)a.

3: Run Algorithm 3 again with h = (1 + ϵ2)i0+2a, z = 3
ϵ2 , and η = η0/2; let õ be the

obtained ball center of T when the loop stops.

4: Return the ball B(õ, r), where r =
1+(2

√
2+ 2

√
6√

1−ϵ2
)ϵ

1+ϵ2 h.

Algorithm 3 Oracle for testing h.

Input: An instance P , a parameter η ∈ (0, 1), h > 0, and a positive integer z.
1: Initially, arbitrarily select a point p ∈ P and let T = {p}.
2: i = 1; repeat the following steps:

(1) Compute an approximate MEB of T and let the ball center be oi as described in
Theorem 4 (replace ϵ by ϵ2 and set s = 1/3).

(2) Sample a set Q ⊂ P with |Q| = 1
β0

log z
η uniformly at random.

(3) Select the point q ∈ Q that is farthest to oi, and add it to T .
(4) If ||q − oi|| < h, stop the loop and output “yes”.
(5) i = i+ 1; if i > z, stop the loop and output “no”.

Before proving Theorem 17, we provide Lemma 18 first.

▶ Lemma 18. If h ≥ (1+ϵ2)Rad(P ), Algorithm 3 returns “yes”; else if h < (1−ϵ2)Rad(P ),
Algorithm 3 returns “no” with probability at least 1 − η.

Proof. First, we assume that h ≥ (1 + ϵ2)Rad(P ). Recall the remark following Theorem 4.
If we always add a point q with distance at least h ≥ (1 + ϵ2)Rad(P ) to oi, the loop 2(1)-(5)
cannot continue more than z iterations, i.e., Algorithm 3 will return “yes”.

Now, we consider the case h < (1 − ϵ2)Rad(P ). Similar to the proof of Lemma 14, we
consider the ball B(oi, l) covering exactly (1 − β0)n points of P . According to Definition 3,
we know that l ≥ (1 − ϵ2)Rad(P ) > h. Also, with probability 1 −η/z, the sample Q contains
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at least one point outside B(oi, l) due to Lemma 15. By taking the union bound, with
probability (1 − η/z)z ≥ 1 − η, ||q − oi|| is always larger than h and eventually Algorithm 3
will return “no”. ◀

Proof of Theorem 17. Since Algorithm 3 returns “no” when h = (1 + ϵ2)i0(1 − ϵ2)a and
returns “yes” when h = (1 + ϵ2)i0+1(1 − ϵ2)a, from Lemma 18 we know that

(1 + ϵ2)i0(1 − ϵ2)a < (1 + ϵ2)Rad(P ); (15)
(1 + ϵ2)i0+1(1 − ϵ2)a ≥ (1 − ϵ2)Rad(P ). (16)

The above inequalities together imply that

(1 + ϵ2)3

1 − ϵ2
Rad(P ) > (1 + ϵ2)i0+2a ≥ (1 + ϵ2)Rad(P ). (17)

Thus, when running Algorithm 3 with h = (1 + ϵ2)i0+2a in Step 3, the algorithm returns
“yes” (by the right hand-side of (17)). Then, consider the ball B(õ, h). We claim that
|P \ B(õ, h)| < β0n. Otherwise, the sample Q contains at least one point outside B(õ, h)
with probability 1 − η/z in Step 2(2) of Algorithm 3, i.e., the loop will continue. Thus, it
contradicts to the fact that the algorithm returns “yes”. Let P ′ = P ∩ B(õ, h), and then
|P ′| ≥ (1 − β0)n. Moreover, the left hand-side of (17) indicates that

h = (1 + ϵ2)i0+2a < (1 + 8ϵ2

1 − ϵ2
)Rad(P ). (18)

Now, we can apply Theorem 7, where we set “ϵ′” to be “
√

8ϵ2

1−ϵ2 ” in the theorem. Let o be
the center of MEB(P ). Consequently, we have

||õ− o|| < (2
√

2 + 2
√

6/
√

1 − ϵ2)ϵ · Rad(P ). (19)

For simplicity, we let x1 = 8ϵ2

1−ϵ2 and x2 = (2
√

2 + 2
√

6/
√

1 − ϵ2)ϵ. Hence, h ≤ (1 +
x1)Rad(P ) and ||õ − o|| ≤ x2Rad(P ) in (18) and (19). From (19), we know that P ⊂
B(õ, (1 + x2)Rad(P )). From the right hand-side of (17), we know that (1 + x2)Rad(P ) ≤
1+x2
1+ϵ2 h. Thus, we have P ⊂ B

(
õ, 1+x2

1+ϵ2 h
)

where 1+x2
1+ϵ2 h =

1+(2
√

2+ 2
√

6√
1−ϵ2

)ϵ

1+ϵ2 h. Also, the radius

1 + x2

1 + ϵ2
h ≤︸︷︷︸

by (18)

(1 + x2)(1 + x1)
1 + ϵ2

Rad(P ) = λ · Rad(P ). (20)

Thus B
(
õ, 1+x2

1+ϵ2 h
)

is a λ-radius approximate MEB of P , and λ = 1 +O(ϵ) if ϵ is fixed.

Success probability. The success probability of Algorithm 3 is 1 − η. In Algorithm 2, we
set η = η0

2 log w in Step 1 and η = η0/2 in Step 3, respectively. We take the union bound and
the success probability of Algorithm 2 is (1 − η0

2 log w )log w(1 − η0/2) > 1 − η0.

Running time. As the subroutine, Algorithm 3 runs in O(z( 1
β0

(log z
η )d + 1

ϵ6 d)) time; Al-
gorithm 2 calls the subroutine O

(
log( 1

ϵ2 )
)

times. Note that z = O( 1
ϵ2 ). Thus, the total

running time is Õ
(
( 1

ϵ2β0
+ 1

ϵ8 )d
)
. ◀
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6 Extensions

We also present two important extensions in this paper (due to the space limit, we place the
details to our full paper). We briefly introduce the main ideas and summarize the results
below.

We first consider MEB with outliers under the stability assumption and provide a sublinear
time constant factor radius approximation. We also consider the general case without the
stability assumption. An interesting observation is that the ideas developed for stable
instance can even help us to develop a hybrid approach for MEB (without or with outliers)
when the stability assumption does not hold. First, we “suppose” the input instance is
(α, β)-stable where “α” and “β” are carefully designed based on the pre-specified radius error
bound ϵ and covering error bound δ, and compute a “potential” (1 + ϵ)-radius approximation
(say a ball B1); then we apply the recently proposed sublinear time bi-criteria MEB with
outliers algorithm [31] to compute a “potential” (1 − δ)-covering approximation (say a ball
B2); finally, we determine the final output based on the ratio of their radii. Specifically,
we set a threshold τ that is determined by the given radius error bound ϵ. If the ratio is
no larger than τ , we know that B1 is a “true” (1 + ϵ)-radius approximation and return it;
otherwise, we return B2 that is a “true” (1 − δ)-covering approximation. Moreover, for the
latter case (i.e., returning a (1 − δ)-covering approximation), we will show that our proposed
algorithm yields a radius not only being strictly smaller than Rad(P ), but also having a gap
of Θ(ϵ2) · Rad(P ) to Rad(P ) (i.e., the returned radius is at most

(
1 − Θ(ϵ2)

)
· Rad(P )).

Our algorithm only needs uniform sampling and a single pass over the input data, where the
space complexity in memory is O(d) (the hidden factor depends on ϵ and δ); if the input
data matrix is sparse (i.e., M = o(nd)), the time complexity is sublinear. Furthermore, we
propose the similar results for the polytope distance and SVM problems (for both stable
instance and general instance).

7 Future Work

Following our work, several interesting problems deserve to be studied in future. For example,
different from radius approximation, the current research on covering approximation of MEB is
still inadequate. In particular, can we provide a lower bound for the complexity of computing
covering approximate MEB, as the lower bound result for radius approximate MEB proved
by [25]? Also, is it possible to extend the stability notion to other geometric optimization
problems with more complicated structures (like subspace fitting and clustering [36], and
regression problems [67])?
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1 Introduction

One of the central problems in theoretical computer science is proving lower bounds in
various models of computation such as circuits and data structures. Proving super-linear
size lower bounds for circuits even when their depth is restricted is rather elusive. Similarly,
proving polynomial lower bounds on query time for certain static data structure problems
seems out of reach. To deal with this situation researchers developed various conjectures
which if true would imply the sought after lower bounds. In this paper, we investigate the
relative power of some of those conjectures. The Network Coding Conjecture (NCC) of Li
and Li [25] attracted recently lot of attention and it was used to prove various lower bounds
such as lower bounds on the size of circuits computing multiplication [3] and the number of
IO operations needed for external memory sorting [13].

Another problem that is popular in cryptography is a certain data structure type problem
for function inversion [19]. Corrigan-Gibbs and Kogan [9] observed that lower bounds for the
function inversion problem imply lower bounds for logarithmic depth circuits. A similar more
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general observation was made by Viola [35]. In this paper, we establish a new connection
between the function inversion problem and NCC. We show that NCC implies certain weak
lower bounds for the inversion data structure problem. That in turn implies the same type
of circuit lower bounds as given by Corrigan-Gibbs and Kogan [9]. We show that similar
results apply to a host of other data structure problems such as the well-studied polynomial
evaluation problem or the Finite Field Fourier transform problem. Corrigan-Gibbs and
Kogan [9] gave their circuit lower bound for certain apriori undetermined function. We
establish the same circuit lower bounds for sorting integers which is a very explicit function.
Similarly, we establish a connection between data structure for polynomial evaluation and
circuits for multi-point polynomial evaluation. Our results sharpen and generalize the picture
emerging in the literature.

The data structures considered in this paper are static, non-adaptive, and systematic,
i.e., a very restricted class of data structures for which lower bounds should perhaps be
easier to obtain. Such data structure problems have the following structure: Given the
input data described by N bits, create a data structure of size s. Then we receive a single
query from a set of permissible queries and we are supposed to answer the query while
non-adaptively inspecting at most t locations in the data structure and in the original
data. The non-adaptivity means that the inspected locations are chosen only based on
the query being answered but not on the content of the inspected memory. We show that
when s ≥ ω

(
N/ log log N

)
, polynomial lower bounds on t for certain problems would imply

super-linear lower bounds on log-depth circuits for computing sorting, multi-point polynomial
evaluation, and other problems.

We show that logarithmic lower bounds on t for the data structures can be derived from
NCC even in the more generous setting of s ≥ εN and when inspecting locations in the
data structure is for free. This matches the lower bounds of Afshani [3] for certain circuit
parameters derived from NCC. One can recover the same type of result they showed from
our connection between NCC, data structure lower bounds, and circuit lower bounds. In
this regards, NCC seems to be a stronger assumption than that certain functions require
large boolean circuits or inefficient data structures. One would hope that for the strongly
restricted data structure problems, obtaining the required lower bounds should be within
our reach.

Our technique seems applicable to data structure problems that are involutions that
are inverses of themselves. Although we use a lot of the same technical machinery as the
previous papers on NCC our proofs involve new ideas. An interesting aspect of our proofs is
that they apply the hypothesized data structure twice in the reductions. This is reminiscent
of many quantum algorithms that use Hadamard transform twice in a row.

Organization. The statement of our main results is in Section 4. In the next section, we
review the data structure problems we consider. Then we provide a precise definition of
Network Coding Conjecture in Section 3. In Section 5 we prove our main result for function
inversion. In Section 6 we discuss the connection between data structure and circuit lower
bounds for explicit functions. Some of the proofs are left for the full version [12].

2 Data Structure Problems

In this paper, we study lower bounds on systematic data structures for various problems –
function inversion, polynomial evaluation, and polynomial interpolation. We are given an
input I = {x0, . . . , xn−1}, where each xi ∈ [n] = {0, . . . , n − 1} or each xi is an element of
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some field F. First, a data structure algorithm can preprocess I to produce an advice string
aI of s bits (we refer to the parameter s as space of the data structure D). Then, we are
given a query q and the data structure should produce a correct answer (what is a correct
answer depends on the problem). To answer a query q, the data structure D has access to
the whole advice string aI and can make t probes to the input I, i.e., read at most t elements
from I. We refer to the parameter t as the query time of the data structure.

We consider non-uniform data structures as we want to provide connections between data
structures and non-uniform circuits. Formally, a non-uniform systematic data structure Dn

for an input I = {x0, . . . , xn−1} is a pair of algorithms (Pn, Qn) with oracle access to I. The
algorithm Pn produces the advice string aI ∈ {0, 1}s. The algorithm Qn with inputs aI and
a query q outputs a correct answer to the query q with at most t oracle probes to I. The
algorithms Pn and Qn can differ for each n ∈ N.

2.1 Function Inversion
In the function inversion problem, we are given a function f : [n] → [n] and a point y ∈ [n]
and we want to find x ∈ [n] such that f(x) = y. This is a central problem in cryptography
as many cryptographic primitives rely on the existence of a function that is hard to invert.
To sum up we are interested in the following problem.

Function Inversion
Input: A function f : [n] → [n] as an oracle.
Preprocessing: Using f , prepare an advice string af ∈ {0, 1}s.
Query: Point y ∈ [n].
Answer: Compute the value f−1(y), with a full access to af and

using at most t probes to the oracle for f .
We want to design an efficient data structure, i.e., make s and t as small as possible.

There are two trivial solutions. The first one is that the whole function f−1 is stored in the
advice string af , thus s = O(n log n) and t = 0. The second one is that the whole function f

is probed during answering a query y ∈ [n], thus t = O(n) and s = 0. Note that the space s

of the data structure is the length of the advice string af in bits but with one oracle-probe
xi the data structure reads the whole f(xi), thus with n oracle-probes we read the whole
description of f , i.e., n log n bits.

The question is whether we can design a data structure with s, t ≤ o(n). Hellman [19]
gave the first non-trivial solution and introduced a randomized (adaptive) systematic data
structure which inverts a function with a constant probability (over the uniform choice of
the function f and the query y ∈ [n]) and s = O

(
n2/3 log n

)
and t = O

(
n2/3 log n

)
. Fiat

and Naor [14] improved the result and introduced a data structure that inverts any function
at any point, however with a slightly worse trade-off: s3t = O

(
n3 log n

)
. Hellman [19]

also introduced a more efficient data structure for inverting a permutation – it inverts any
permutation at any point and st = O(n log n). Thus, it seems that inverting a permutation
is an easier problem than inverting an arbitrary function.

In this paper, we are interested in lower bounds for the inversion problem. Yao [36]
gave a lower bound that any systematic data structure for the inversion problem must
have st ≥ Ω(n log n), however, the lower bound is applicable only if t ≤ O(

√
n). Since

then, only slight progress was made. De et al. [10] improved the lower bound of Yao [36]
to be applicable for the full range of t. Abusalah et al. [1] improved the trade-off, that
for any k it must hold that skt ≥ Ω

(
nk

)
. Seemingly, their result contradicts Hellman’s

trade-off
(
s = t = O

(
n2/3 log n

))
as it implies s = t ≥ nk/k+1 for any k. However, for

Hellman’s attack [19] we need that the function can be efficiently evaluated and the functions
introduced by Abusalah et al. [1] cannot be efficiently evaluated. There is also a series of
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papers [17, 30, 11, 8] that study how the probability of successful inversion depends on
the parameters s and t. However, none of these results yields a better lower bound than
st ≥ Ω(n log n). Hellman’s trade-off is still the best-known upper bound trade-off for the
inversion problem. Thus, there is still a substantial gap between the lower and upper bounds.

Another caveat of all known data structures for the inversion is that they heavily use
adaptivity during answering queries y ∈ [n]. I.e., probes to the oracle depend on the advice
string a and answers to the oracle probes which have been already made. We are interested
in non-adaptive data structures. We say a systematic data structure is non-adaptive if all
oracle probes depend only on the query y ∈ [n].

As non-adaptive data structures are weaker than adaptive ones, there is a hope that
for non-adaptive data structures we could prove stronger lower bounds. Moreover, the
non-adaptive data structure corresponds to circuits computation [31, 32, 34, 9]. Thus,
we can derive a circuit lower bound from a strong lower bound for a non-adaptive data
structure. Non-adaptive data structures were considered by Corrigan-Gibbs and Kogan [9].
They proved that improvement by a polynomial factor of Yao’s lower bound [36] for non-
adaptive data structures would imply the existence of a function F : {0, 1}N → {0, 1}N

for N = n log n that cannot be computed by a linear-size and logarithmic-depth circuit.
More formally, they prove that if a function f : [n] → [n] cannot be inverted by a non-
adaptive data structure of space O (n log n/ log log n) and query time O(nε) for some ε > 0
then there exists a function F : {0, 1}N → {0, 1}N that cannot be computed by any
circuit of size O(N) and depth O(log N). They interpret r ∈ {0, 1}N as n numbers in
[n], i.e, r = (r1, . . . , rn) ∈ {0, 1}N where each ri ∈ [n]. The function F is defined as
F (y) = F (y1, . . . , yn) =

(
f−1(y1), . . . .f−1(yn)

)
where f−1(yi) = min

{
x ∈ [n] | f(x) = y

}
and min ∅ = 0. Informally, if the function f is hard to invert at some points, then it is hard
to invert at all points together. Compared to the result of Corrigan-Gibbs and Kogan [9],
we provide an explicit function (sorting n-bit integers) which will require large circuits if
any of the functions f is hard to invert. A connection similar to Corrigan-Gibbs and Kogan
between data structures and circuits was made also by Viola [35].

2.2 Evaluation and Interpolation of Polynomials
In this section, we describe two natural problems connected to polynomials. We consider our
problems over a finite field F to avoid issues with encoding reals.

Polynomial Evaluation over F
Input: Coefficients of a polynomial p ∈ F[x]: α0, . . . , αn−1 ∈ F

(i.e., p(x) =
∑

i∈[n] αix
i)

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: A number x ∈ F.
Answer: Compute the value p(x), with a full access to ap and using

at most t probes to the coefficients of p.

Polynomial Interpolation over F
Input: Point-value pairs of a polynomial p ∈ F[x] of degree at

most n − 1:
(
x0, p(x0)

)
, . . . ,

(
xn−1, p(xn−1)

)
∈ F × F

where xi ̸= xj for any two indices i ̸= j

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: An index j ∈ [n].
Answer: Compute j-th coefficient of the polynomial p, i.e., the

coefficient of xj in p, with a full access to ap and using
at most t probes to the oracle for point-value pairs.
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In the paper we often use a version of polynomial interpolation where the points
x0, x1, . . . , xn−1 are fixed in advance and the input consists just of p(x0), p(x1), . . . , p(xn−1).
Since we are interested in lower bounds, this makes our results slightly stronger.

Let F = GF(pk) denote the Galois Field of pk elements. Let n be a divisor of pk − 1.
It is a well-known fact that for any finite field F its multiplicative group F∗ is cyclic (see
e.g. Serre [28]). Thus, there is a primitive n-th root of unity σ ∈ F (that is an element σ

such that σn = 1 and for each 1 ≤ j < n, σj ̸= 1). Pollard [27] defines the Finite Field
Fourier transform (FFFT) (with respect to σ) as a linear function FFFTn,σ : Fn → Fn which
satisfies:

FFFTn,σ(α0, . . . , αn−1) = (β0, . . . , βn−1) where

βi =
∑

j∈[n]

αjσij for any i ∈ [n]

The inversion FFFT−1
n,σ is given by:

FFFT−1
n,σ(β0, . . . , βn−1) = (α0, . . . , αn−1) where

αi = 1
n

∑
j∈[n]

βjσ−ij for any i ∈ [n]

Here, 1
n = (

∑n
i=1 1)−1 over F. In our theorems we always set n to be a divisor of |F|−1 = pk−1

thus n modulo p is non-zero and the inverse exists. Observe, that FFFT−1
n,σ = 1

n FFFTn,σ−1 .
FFFT is the finite field analog of Discrete Fourier transform (DFT) which works over

complex numbers. The FFT algorithm by Cooley and Tukey [7] can be used for the case of
finite fields as well (as observed by Pollard [27]) to get an algorithm using O(n log n) field
operations (addition or multiplication of two numbers). Thus we can compute FFFTn,σ and
its inverse in O(n log n) field operations.

It is easy to see that FFFTn,σ is actually evaluation of a polynomial in multiple special
points (specifically in σ0, . . . , σn−1). We can also see that it is a special case of interpolation
by a polynomial in multiple special points since FFFT−1

n,σ = 1
n FFFTn,σ−1 . We provide an

NCC-based lower bound for data structures computing the polynomial evaluation. However,
we use the data structure only for evaluating a polynomial in powers of a primitive root
of unity. Thus, the same proof yields a lower bound for data structures computing the
polynomial interpolation.

There is a great interest in data structures for polynomial evaluation in a cell probe
model. In this model, some representation of a polynomial p =

∑
i∈[n] αix

i ∈ F[x] is stored
in a table T of scell cells, each of w bits. Usually, w is set to O

(
log |F|

)
, that we can store

an element of F in a single cell. On a query x ∈ F the data structure should output p(x)
making at most tcell probes to the table T . A difference between data structures in the cell
probe model and systematic data structures is that a data structure in the cell probe model
is charged for any probe to the table T but a systematic data structure is charged only for
probes to the input (the coefficients αi), reading from the advice string ap is for free. Note
that, the coefficients αi of p do not have to be even stored in the table T . There are again
two trivial solutions. The first one is that we store a value p(x) for each x ∈ F and on a query
x ∈ F we probe just one cell. Thus, we would get tcell = 1 and scell = |F| (we assume that we
can store an element of F in a single cell). The second one is that we store the coefficients of
p and on a query x ∈ F we probe all cells and compute the value p(x). Thus, we would get
tcell = scell = n.

ESA 2021



39:6 Data Structures Lower Bounds and Popular Conjectures

Let k = log |F|. Kedlaya and Umans [22] provided a data structure for the polynomial
evaluation that uses space n1+ε · k1+o(1) and query time logO(1) n · k1+o(1). Note that, n · k

is the size of the input and k is the size of the output.
The first lower bound for the cell probe model was given by Miltersen [26]. He proved

that for any cell probe data structure for the polynomial evaluation it must hold that
tcell ≥ Ω

(
k/ log scell

)
. This was improved by Larsen [23] to tcell ≥ Ω

(
k/ log(scellw/nk)

)
, that

gives tcell ≥ Ω(k) if the data structure uses linear space scell · w = O(n · k). However, the
size of F has to be super-linear, i.e., |F| ≥ n1+Ω(1), and it is not known if the bound holds
for smaller fields, e.g., of linear size. Data structures in a bit probe model were studied by
Gál and Miltersen [15]. The bit probe model is the same as the cell probe model but each
cell contains only a single bit, i.e., w = 1. They studied succinct data structures that are
data structures such that scell = (n + r) · k for r < o(n). Thus, the succinct data structures
are related to systematic data structures but still, the succinct data structures are charged
for any probe (as any other data structure in the cell probe model). Note that a succinct
data structure stores only a few more bits than it is needed due to information-theoretic
requirement. Gál and Miltersen [15] showed that for any succinct data structure in the
bit probe model it holds that r · tcell ≥ Ω(n · k). We are not aware of any lower bound for
systematic data structures for the polynomial evaluation.

Larsen et al. [24] also gave a log-squared lower bound for dynamic data structures in the
cell probe model. Dynamic data structures also support updates of the polynomial p which
usually impacts their query time.

There is a great interest in algorithmic questions about the polynomial interpolation
such as how fast we can interpolate polynomials [16, 5, 18], how many probes we need to
interpolate a polynomial if it is given by oracle [6, 20], how to compute the interpolation
in a numerically stable way over infinite fields [29] and many others. However, we are not
aware of any results about data structures for the interpolation, i.e., when the interpolation
algorithm has an access to some precomputed advice.

3 Network Coding

We prove our conditional lower bounds based on the Network Coding Conjecture. In network
coding, we are interested in how much information we can send through a given network. A
network consists of a graph G = (V, E), positive capacities of edges c : E → R+ and k pairs
of vertices (s0, t0), . . . , (sk−1, tk−1). We say a network R =

(
G, c, (si, ti)i∈[k]

)
is undirected

or directed (acyclic) if the graph G is undirected or directed (acyclic). We say a network is
uniform if the capacities of all edges in the network equal to some q ∈ R+ and we denote
such network as

(
G, q, (si, ti)i∈[k]

)
.

A goal of a coding scheme for directed acyclic network R =
(
G, c, (si, ti)i∈[k]

)
is that at

each target ti it will be possible to reconstruct an input message wi which was generated at
the source si. The coding scheme specifies messages sent from each vertex along the outgoing
edges as a function of received messages. Moreover, the lengths of the messages sent along
the edges have to respect the edge capacities.

More formally, each source si of a network receives an input message wi sampled (in-
dependently of the messages for the other sources) from the uniform distribution Wi on a
set Wi. Without loss of generality we can assume that each source si has an in-degree 0
(otherwise we can add a vertex s′

i and an edge (s′
i, si) and replace si by s′

i). There is an
alphabet Σe for each edge e ∈ E(G). For each source si and each outgoing edge e = (si, u)
there is a function fsi,e : Wi → Σe which specifies the message sent along the edge e as a
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function of the received input message wi ∈ Wi. For each non-source vertex v ∈ V, v ̸= si

and each outgoing edge e = (v, u) there is a similar function fv,e :
∏

e′=(u′,v) Σe′ → Σe which
specifies the message sent along the edge e as a function of the messages sent to v along the
edges incoming to v. Finally, each target ti has a decoding function di :

∏
e′=(u′,ti) Σe′ → Wi.

The coding scheme is executed as follows:
1. Each source si receives an input message wi ∈ Wi. Along each edge e = (si, u) a message

fsi,e(wi) is sent.
2. When a vertex v receives all messages m1, . . . , ma along all incoming edges (u′, v) it

sends along each outgoing edge e = (v, u) a message fv,e(m1, . . . , ma). As the graph
G is acyclic, this procedure is well-defined and each vertex of non-zero out-degree will
eventually send its messages along its outgoing edges.

3. At the end, each target ti computes a string w̃i = di(m′
1, . . . , m′

b) where m′
j denotes the

received messages along the incoming edges (u′, ti). We say the encoding scheme is correct
if w̃i = wi for all i ∈ [k] and any input messages w0, . . . , wk−1 ∈ W0 × · · · × Wk−1.

The coding scheme has to respect the edge capacities, i.e., if Me is a random variable that
represents a message sent along the edge e, then H(Me) ≤ c(e), where H(·) denotes the
Shannon entropy. A coding rate of a network R is the maximum r such that there is a correct
coding scheme for input random variables W0, . . . , Wk−1 where H(Wi) = log |Wi| ≥ r for
all i ∈ [k]. A network coding can be defined also for directed cyclic networks or undirected
networks but we will not use it here.

Network coding is related to multicommodity flows. A multicommodity flow for an
undirected network R̄ =

(
Ḡ, c, (si, ti)i∈[k]

)
specifies flows for each commodity i such that they

transport as many units of commodity from si to ti as possible. A flow of the commodity i

is specified by a function f i : V × V → R+
0 which describes for each pair of vertices (u, v)

how many units of the commodity i are sent from u to v. Each function f i has to satisfy:
1. If u, v are not connected by an edge, then f i(u, v) = f i(v, u) = 0.
2. For each edge {u, v} ∈ E(Ḡ), it holds that f i(u, v) = 0 or f i(v, u) = 0.
3. For each vertex v that is not the source si or the target ti, it holds that what comes to

the vertex v goes out from the vertex v, i.e.,∑
u∈V

f i(u, v) =
∑
u∈V

f i(v, u).

4. What is sent from the source si arrives to the target ti, i.e.,∑
u∈V

f i(si, u) − f i(u, si) =
∑
u∈V

f i(u, ti) − f i(ti, u).

Moreover, all flows together have to respect the capacities, i.e., for each edge e = {u, v} ∈ E(Ḡ)
it must hold that

∑
i∈[k] f i(u, v) + f i(v, u) ≤ c(e). A flow rate of a network R̄ is the

maximum r such that there is a multicommodity flow F = (f0, . . . , fk−1) that for each
i transports at least r units of the commodity i from si to ti, i.e., for all i, it holds that∑

u∈V f i(u, ti)−f i(ti, u) ≥ r. A multicommodity flow for directed graphs is defined similarly,
however, the flows can transport the commodities only in the direction of edges.

Let R be a directed acyclic network of a flow rate r′. It is clear that for a coding rate r

of R it holds that r ≥ r′. As we can send the messages without coding and thus reduce the
encoding problem to the flow problem. The opposite inequality does not hold: There is a
directed network R =

(
G, c, (si, ti)i∈[k]

)
such that its coding rate is Ω

(
|V (G)|

)
-times larger

than its flow rate as shown by Adler et al. [2]. Thus, the network coding for directed networks
provides an advantage over the simple solution given by the maximum flow. However, such a
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result is not known for undirected networks. Li and Li [25] conjectured that the network
coding does not provide any advantage for undirected networks, thus for any undirected
network R̄, the coding rate of R̄ equals to the flow rate of R̄. This conjecture is known as
Network Coding Conjecture (NCC) and we state a weaker version of it below.

For a directed graph G = (V, E) we denote by un(G) the undirected graph (V, Ē) obtained
from G by making each directed edge in E undirected (i.e., replacing each (u, v) ∈ E(G)
by {u, v}). For a directed acyclic network R =

(
G, c, (si, ti)i∈[k]

)
we define the undirected

network un(R) =
(
un(G), c̄, (si, ti)i∈[k]

)
by keeping the source-target pairs and capacities the

same, i.e, c
(
(u, v)

)
= c̄

(
{u, v}

)
.

▶ Conjecture 1 (Weaker NCC). Let R be a directed acyclic network, r be a coding rate of R

and r̄ be a flow rate of un(R). Then, r = r̄.

This conjecture was used to prove a conditional lower bound for sorting algorithms with
an external memory [13] and for circuits multiplying two numbers [3].

4 NCC Implies Data Structure Lower Bounds

In this paper, we provide several connections between lower bounds for data structures and
other computational models. The first connection is that the Network Coding Conjecture
(Conjecture 1) implies lower bounds for data structures for the permutation inversion
and the polynomial evaluation and interpolation. Assuming NCC, we show that a query
time t of a non-adaptive systematic data structure for any of the above problems satisfies
t ≥ Ω

(
log n/ log log n

)
, even if it uses linear space, i.e., the advice string a has size εn log n

for sufficiently small constant ε > 0. Formally, we define tInv(s) as a query time of the optimal
non-adaptive systematic data structure for the permutation inversion using space at most
s. Similarly, we define tFEval(s) and tFInterp(s) for the polynomial evaluation and interpolation
over F.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

▶ Theorem 3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F| for a
sufficiently small constant ε > 0. Then assuming NCC, it holds that tFEval(s), tFInterp(s) ≥
Ω

(
log n/ log log n

)
.

Note that by Theorem 2, assuming NCC, it holds that s · t ≥ Ω
(
n log2 n/ log log n

)
for

s = εn log n and t = tInv(s). The same holds for tFEval and tFInterp by Theorem 3. Thus, these
conditional lower bounds cross the barrier Ω(n log n) for s · t given by the best unconditional
lower bounds known for the function inversion [36, 10, 1, 17, 30, 11, 8] and the lower bound
for the succinct data structures for the polynomial evaluation by Gál and Miltersen [15].
Note that our lower bound does not contradict Hellman’s attack [19] for the permutation
inversion, as his data structure is heavily adaptive.

Our lower bound for the data structure for the polynomial evaluation and interpolation
is applicable even for linear size field (i.e., linear number of queries). Larsen’s lower bound
for the data structure for the polynomial evaluation [23] is applicable only for superlinear
fields, i.e., |F| ≥ n1+Ω(1). We give the result for the polynomial evaluation here as it has an
analogous proof as the lower bound for the polynomial interpolation and it might illustrate
a more general phenomenon that our technique might be applicable to a broader class of
functions that contains an involution as a subproblem.
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To prove Theorems 2 and 3, we build on the technical machinery of Farhadi et al. [13].
The proof can be divided into two steps:
1. From a data structure for the problem we derive a network R with O(tn) edges such

that R admits an encoding scheme that is correct on a large fraction of the inputs. This
step is distinct for each problem and the reduction for the function inversion is shown in
Section 5, the reduction for the polynomial problems is left to the full version [12]. This
step uses new ideas and interestingly, it uses the data structure twice in a sequence.

2. If there is a network R with dn edges that admits an encoding scheme which is correct
for a large fraction of inputs, then d ≥ Ω

(
log n/ log log n

)
. This step is common to all the

problems. It was implicitly proved by Farhadi et al. [13] and Afshani et al. [3].

5 NCC Implies a Weak Lower Bound for the Function Inversion

In this section, we prove Theorem 2 that assuming NCC, any non-adaptive systematic
data structure for the permutation inversion requires query time at least Ω

(
log n/ log log n

)
even if it uses linear space. Let D be a data structure for inverting permutations of a
linear space s = εn log n, for sufficiently small constant ε < 1, with query time t = tInv(s).
Recall that tInv(s) is a query time of the optimal non-adaptive systematic data structure for
the permutation inversion using space s. From D we construct a directed acyclic network
R =

(
G, c, (si, ti)i∈[n]

)
and an encoding scheme of a coding rate log n. By Conjecture 1 we get

that the flow rate of un(R) =
(
Ḡ, c, (si, ti)i∈[n]

)
is log n as well. We prove that there are many

source-target pairs of distance at least Ω(logt n). Since the number of edges of Ḡ will be O(tn)
and flow rate of un(R) is log n, we are able to derive a lower bound t ≥ Ω

(
log n/ log log n

)
.

We will design the network based on the probe graph of the data structure. By the probe
graph of the data structure, we understand a graph with n input vertices corresponding to
possible oracle probes and n output vertices corresponding to possible data structure queries.
Each query vertex is connected to the vertices of oracle probes executed by the data structure
when answering that query. Here, we use the non-adaptivity of the studied data structures as
the probe graph does not depend on the stored data but only on the data structure itself. Our
construction will utilize two copies of the probe graph connected in a sequence. The network
will have input vertices s0, . . . , sn−1 and output vertices u0, . . . , un−1 where each target ti is
set to ui+b mod n for a suitable constant b. The input vertices s0, . . . , sn−1 correspond to
the oracle vertices of the first copy of the probe graph. (See Fig. 1 for an illustration.)

We will feed distinct values x0, . . . , xn−1 ∈ [n] to the input vertices which then send
them to the query vertices of the first copy of the probe graph. Values x0, . . . , xn−1 define a
permutation f(i) = xi. Each query vertex j of the first copy of the probe graph can determine
f−1(j) if it is provided with the advice string af of the data structure corresponding to f .
(We will fix the most common advice string af and restrict ourselves to inputs x0, . . . , xn−1
consistent with it.) Each query vertex j can also determine the value of a newly defined
function h(j) = f−1(j) + b which it sends along its outgoing edges. The second copy of the
data structure serves to invert the function h similarly to inverting f . The oracle vertices of
the second copy of the probe graph coincide with the query vertices of the first copy. The
query vertices of the second copy of the probe graph are the output vertices u0, . . . , un−1.
Hence, the query vertex i + b of the second copy will be used to determine h−1(i + b) = xi.
Thus, xi is directed from si to ti = ui+b.

The above construction gives a network R with an encoding scheme E that is correct only
on a substantial fraction of all possible inputs. Namely on inputs x0, . . . , xn−1 ∈ [n] which
are distinct and consistent with the fixed advices. This forces correlations among messages
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received by the sources. However, the Network Coding Conjecture requires independently
sampled messages for each source. To overcome this issue we use the technique introduced
by Farhadi et al. [13] to augment R so that it admits an encoding scheme for independent
messages. We provide technical details next.

Let R =
(
G, c, (si, ti)i∈[k]

)
be a directed acyclic network. Let each source receive a binary

string of length r as its input message, i.e., each Wi = {0, 1}r. If we concatenate all input
messages wi we get a string of length r · k, thus the set of all possible inputs for an encoding
scheme for R corresponds to the set I = {0, 1}rk. We say an encoding scheme is correct on an
input w̄ = (w0, . . . , wk−1) ∈ I if it is possible to reconstruct all messages wi at appropriate
targets. An (ε, r)-encoding scheme is an encoding scheme which is correct on at least 2(1−ε)rk

inputs in I.
We say a directed network R =

(
G, c, (si, ti)i∈[k]

)
is (δ, d)-long if for at least δk source-

target pairs (si, ti), it holds that distance between si and ti in un(G) is at least d. Here, we
measure the distance in the undirected graph un(G), even though the network R is directed.
The following lemma is implicitly used by Farhadi et al. [13] and Afshani et al. [3].

▶ Lemma 4 (Implicitly used in [13, 3]). Let R =
(
G, r, (si, ti)i∈[k]

)
be a (δ, d)-long directed

acyclic uniform network for δ > 5
6 and sufficiently large r ∈ R+. Assume there is an

(ε, r)-encoding scheme for R for sufficiently small ε. Then assuming NCC, it holds that
|E(G)|

k ≥ δ′ · d, where δ′ = δ−5/6
10 .

Now we are ready to prove a conditional lower bound for the permutation inversion. For
the proof we use the following fact which follows from well-known Stirling’s formula:

▶ Fact 1. The number of permutations [n] → [n] is at least 2n log n−2n.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

Proof Sketch. Let D = Dn be the optimal data structure for the inversion of permutation on
[n] using space εn log n. We set t = tInv(εn log n). We will construct a directed acyclic uniform
network R =

(
G, r, (si, ti)i∈[n]

)
where r = log n. Let ε′ = 2 · ε + 2

q + 2
log n for sufficiently large

q so that we could apply Lemma 4. The network R will admit an (ε′, r)-encoding scheme E.
The number of edges of G will be at most 2tn and the network R will be

( 9
10 , d

)
-long for

d = 1
2 logqt n. Thus, by Lemma 4 we get that

2t = 2tn

n
≥ Ω

(
logqt n

)
,

from which we can conclude that t ≥ Ω
(
log n/ log log n

)
. Thus, it remains to construct the

network R and the scheme E.
First, we construct a graph G′ which will yield the graph G by deleting some edges.

The graph G′ has three layers of n vertices: a source layer A of n sources s0, . . . , sn−1, a
middle layer M of n vertices v0, . . . , vn−1 and a target layer B of n vertices u0, . . . , un−1.
The targets t0, . . . , tn−1 of R will be assigned to the vertices u0, . . . , un−1 later.

We add edges according to the data structure D: Let Qj ⊆ [n] be the set of oracle probes
which D makes during the computation of f−1(j), i.e., for each i ∈ Qj , the query j probes
the oracle f for f(i). As D is non-adaptive, the sets Qj are well-defined. For each j ∈ [n]
and i ∈ Qj we add edges (si, vj) and (vi, uj). We set a capacity of all edges to r = log n.
This finishes the construction of G′, see Fig. 1 for illustration of the graph G′.

The graph G′ has exactly 2tn edges. Moreover, the vertices of the middle and the target
layer have in-degree at most t as the incoming edges correspond to the oracle probes made
by D. However, some vertices of the source and the middle layer might have large outdegree,



P. Dvořák, M. Koucký, K. Král, and V. Slívová 39:11

Input messages from [n] x0 x1 xi xn−1

t

h−1(i+ b) = xi

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

xi+b

f−1(i)

si sends f(i) = xi

vj sends h(j) = f−1(j) + b

Figure 1 A sketch of the graph G′ and encoding scheme E.

which is a problem that might prevent the network R to be
( 9

10 , d
)
-long. Thus, we need

to remove edges adjacent to high-degree vertices. Let W ⊆ V (G′) be the set of vertices of
out-degree larger than qt. We remove all edges incident to W from G′ to obtain the graph
G. (For simplicity, we keep the degree 0 vertices in G). Thus, the maximum degree of G is
at most qt. Since the graph G′ has 2tn edges, it holds that |W | ≤ 2

q · n.
Now, we assign the targets of R in such a way that R is

( 9
10 , d

)
-long. Let Cv be the set

of vertices of G which have distance at most d from v in un(G). Since the maximum degree
of G is at most qt and d = 1

2 logqt n, for each v ∈ V (G), |Cv| ≤ 2
√

n. It follows from an
averaging argument that there is an integer b such that there are at least n − 2

√
n sources si

with distance at least d from ui+b in un(G). (Here the addition i + b is modulo n.) We fix
one such b and set ti = ui+b. For n large enough, it holds that n − 2

√
n ≥ 9

10 · n. Thus, the
network R is

( 9
10 , d

)
-long.

It remains to construct the (ε′, r)-encoding scheme E for R (see Fig. 1 for a sketch of the
encoding E). We only sketch the construction here, the full proof is in the full version [12].
At vertices of the middle layer we compute the inversion of f , i.e., at a vertex vj we compute
f−1(j) using the data structure D. To do that we need to fix the advice string af (of at
most εn log n bits) and values on the vertices in W (the high degree vertices).

We define a function h : [n] → [n] as h(j) = f−1(j) + b. Thus, at each vertex vj we are
able to compute the value h(j). By the anologous strategy, we compute the inverse h−1(ℓ) at
each vertex uℓ (again using the data structure D, now for the function h). It can be showed
that h−1(i + b) = xi, thus we can reconstruct xi at each vertex ti = ui+b. Overall, we fix
at most (2ε + 2

q ) · n log n bits (the advice strings af and ah, and the computed values at
the vertices in W ). Since the sheme E is correct on all inputs encoding a permutation and
consistent with the fixing, the scheme E is (ε′, r)-encoding scheme for ε′ = 2ε + 2

q + 2
log n . ◀

6 Strong Lower Bounds for Data Structures and Lower Bounds for
Boolean Circuits

In this section, we study a connection between non-adaptive data structures and boolean
circuits. We are interested in circuits with binary AND and OR gates, and unary NOT
gates. (See e.g. [21] for background on circuits). Corrigan-Gibbs and Kogan [9] describe
a connection between lower bounds for non-adaptive data structures and lower bounds for
boolean circuits for a special case when the data structure computes function inversion. They
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show that we would get a circuit lower bound if any non-adaptive data structure using O(Nε)
queries must use at least ω

(
N/ log log N

)
bits of advice (for some fixed constant ε > 0). They

define a boolean operator to be a family of functions (FN )N∈N for FN : {0, 1}N → {0, 1}N

represented by boolean circuits with N input and N output bits and constant fan-in gates.
A boolean operator is said to be an explicit operator if the decision problem whether the
j-th output bit of FN is equal to one is in the complexity class NP.

▶ Theorem 5 (Corrigan-Gibbs and Kogan [9], Theorem 6 (in contraposition)). If every explicit
operator FN has fan-in-two boolean circuits of size O(N) and depth O(log N) then, for every
ε > 0, there exists a family of strongly non-adaptive black-box algorithms that inverts all
functions f : [n] → [n] using O

(
n log n/ log log n

)
bits of advice and O(nε) online probes.

To prove their theorem Corrigan-Gibbs and Kogan [9] use the common bits model of
boolean circuits introduced by Valiant [31, 32, 33]. Valiant proves that for any circuit there
is a small cut, called common bits, such that each output bit is connected just to few input
bits. Corrigan-Gibbs and Kogan [9] use the common bits of the given circuit to create a
non-adaptive data structure by setting the advice string to the content of common bits and
the queries are to those function values which are still connected to the particular output
after removing the common bits. Using Valiant’s result directly one can obtain the following
corollaries (see the full version [12] for details).

▶ Corollary 6. Let S =
{

pk | p is a prime, k ∈ N, k ̸= 0
}

be the set of all sizes of finite
fields. For each n ∈ S, let Fn = GF (n) and σn be a primitive (n − 1)-th root of unity
(thus a generator of the multiplicative group F∗

n). If there is a circuit family computing
FFFTn−1,σn (over Fn) of size O(n log n) and depth O(log n) (where each input and output
number is represented by log |Fn| bits) then for every ε > 0 there is a family of non-adaptive
data structures {Dn}n∈S where Dn uses advice of size O

(
n log n/ log log n

)
and on a query

j ∈ [n − 1] outputs the j-th output of FFFTn−1,σn
using O(nε) queries to the input.

To put the corollary in a counter-positive way: if for some ε > 0, there are no non-adaptive
data structures for polynomial interpolation, polynomial evaluation, or FFFT with an advice
of size o

(
n log n/ log log n

)
that use O(nε) queries to the input then there are no linear-size

circuits of logarithmic depth for FFFT.
In Theorem 2, resp. Theorem 3, we prove a conditional lower bound for permutation

inversion, resp. polynomial evaluation and polynomial interpolation, of the form, that a
non-adaptive data structure using εn log n bits must do at least Ω

(
log n/ log log n

)
queries.

It is not clear if assuming NCC we can get a sufficiently strong lower bound which would rule
out non-adaptive data structures with sublinear advice string using O(nε) oracle queries.

▶ Corollary 7. We say that a circuit Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉ sorts its input if on
an input viewed as n binary strings x1, x2, . . . , xn ∈ {0, 1}⌈log n⌉ outputs the strings sorted
lexicographically. If there is a circuit family (Cn)n∈N, where Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉

sorts its inputs, and each circuit Cn is of size O(n log n) and depth O(log n) then for every
ε > 0, for every permutation f : [n] → [n] there is a non-adaptive data structure for inverting
f that uses advice of size O

(
n log n/ log log n

)
and O(nε) queries.

The works of Farhadi et al. [13] and Asharov et al. [4] connect the NCC conjecture
directly to lower bounds for sorting. Their work studies sorting n numbers of k + w bits by
their first k bits. Namely Asharov et al. [4] show that NCC implies that constant fan-in
constant fan-out circuits must have size Ω

(
nk(w − log(n) + k)

)
whenever w > log(n) − k and

k ≤ log n. This is incomparable to our results as we have w = 0.
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We give polynomial-time approximation schemes for monotone maximization problems expressible
in terms of distances (up to a fixed upper bound) and efficiently solvable on graphs of bounded
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1 Introduction

In this paper, we consider optimization problems such as:
Maximum r-Independent Set, r ∈ Z+: Given a graph G, the objective is to find a
largest subset X ⊆ V (G) such that distance in G between any two vertices in X is at
least r.
Maximum weight induced forest: Given a graph G and an assignment w : V (G) →
Z+

0 of non-negative weights to vertices, the objective is to find a subset X ⊆ V (G)
such that G[X] does not contain a cycle and subject to that, w(X) :=

∑
v∈X w(v) is

maximized.
Maximum (F, r)-Matching, for a fixed connected graph F and r ∈ Z+: Given a graph
G, the objective is to find a largest subset X ⊆ V (G) such that G[X] can be partitioned
into vertex-disjoint copies of F such that distance in G between any two vertices belonging
to different copies is at least r.

To be precise, to fall into the scope of our work, the problem must satisfy the following
conditions:

It must be a maximization problem on certain subsets of vertices of an input
graph, possibly with non-negative weights. That is, the problem specifies which subsets
of vertices of the input graph are admissible, and the goal is to find an admissible subset
of largest size or weight.
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The problem must be defined in terms of distances between the vertices, up
to some fixed bound. That is, there exists a parameter r ∈ Z+ such that for any
graphs G and G′, sets X ⊆ V (G) and X ′ ⊆ V (G′), and a bijection f : X → X ′, if
min(r, dG(u, v)) = min(r, dG′(f(u), f(v))) holds for all u, v ∈ X, then X is admissible in
G if and only if X ′ is admissible in G′.
The problem must be monotone (i.e., all subsets of an admissible set must be admissible),
or at least near-monotone (as happens for example for Maximum (F, r)-Matching)
in the following sense: There exists a parameter c ∈ Z+ such that for any admissible set
A in a graph G, there exists a system {Rv ⊆ A : v ∈ A} of subsets of A such that

each vertex belongs to Rv for at most c vertices v ∈ A,
v ∈ Rv for each v ∈ A, and
for every Z ⊆ A, the subset A \

⋃
v∈Z Rv is admissible in G.

The problem must be tractable in graphs of bounded treewidth, that is, there must
exist a function g and a polynomial p such that given any graph G, its tree decomposition
of width t, an assignment w of non-negative weights to the vertices of G, and a set X0 ⊆ X,
it is possible to find a maximum-weight admissible subset of X0 in time g(t)p(|V (G)|).

Let us call such problems (≤r)-distance determined c-near-monotone (g, p)-tw-tractable. Note
that a convenient way to verify these assumptions is to show that the problem is expressible
in solution-restricted Monadic Second-Order Logic (MSOL) with bounded-distance predicates,
i.e., by a MSOL formula with one free variable X such that the quantification is restricted
to subsets and elements of X, and using binary predicates d1, . . . , dr, where di(u, v) is
interpreted as testing whether the distance between u and v in the whole graph is at most i.
For example, r-Independent Set is expressed by the formula (∀u, v ∈ X) u = v ∨ ¬dr(u, v).
This ensures that the problem is (≤r)-distance determined, and (g, O(n))-tw-tractable for
some function g by Courcelle’s meta-algorithmic result [5].

Of course, the problems satisfying the assumptions outlined above are typically hard to
solve optimally, even in rather restrictive circumstances. For example, Maximum Independ-
ent Set is NP-hard even in planar graphs of maximum degree at most 3 and arbitrarily large
(fixed) girth [1]. Moreover, it is hard to approximate it within factor of 0.995 in graphs of
maximum degree at most three [4]. Hence, to obtain polynomial-time approximation schemes
(PTASes), i.e., polynomial-time algorithms for approximating within any fixed precision, a
restriction other than just bounding the maximum degree is needed.

A natural restriction that has been considered in this context is the requirement that the
graphs have sublinear separators (a set S of vertices of a graph G is a balanced separator if
every component of G \ S has at most |V (G)|/2 vertices, and a hereditary class G of graphs
has sublinear separators if for some c < 1, every graph G ∈ G has a balanced separator of
size O(|V (G)|c)). This restriction still lets us speak about many interesting graph classes
(planar graphs [19] and more generally proper minor-closed classes [2], many geometric graph
classes [21], . . . ). Moreover, the problems discussed above admit PTASes in all classes with
sublinear separators or at least in substantial subclasses of these graphs:

Maximum Independent Set has been shown to admit a PTAS in graphs with sublinear
separators already in the foundational paper of Lipton and Tarjan [20].
For any positive integer, Maximum r-Independent Set and several other problems are
known to admit PTASes in graphs with sublinear separators by a straightforward local
search algorithm [16].
All of the problems mentioned above (and more) are known to admit PTASes in planar
graphs by a layering argument of Baker [3]; this approach can be extended to some related
graph classes, including all proper minor-closed classes [6, 12].
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The problems also admit PTASes in graph classes that admit thin systems of overlays [11],
a technical property satisfied by all proper minor-closed classes and by all hereditary
classes with sublinear separators and bounded maximum degree.
Bidimensionality arguments [7] apply to a wide range of problems in proper minor-closed
graph classes.

However, each of the outlined approaches has drawbacks. On one side, the local search
approach only applies to specific problems and does not work at all in the weighted setting.
On the other side of the spectrum, Baker’s approach is quite general as far as the problems
go, but there are many hereditary graph classes with sublinear separators to which it does
not seem to apply. The approach through thin systems of overlays tries to balance these
concerns, but it is rather technical and establishing this property is difficult.

Another option that has been explored is via fractional treewidth-fragility. For a function
f : Z+ × Z+ → Z+ and a polynomial p, a class of graphs G is p-efficiently fractionally
treewidth-f-fragile if there exists an algorithm that for every k ∈ Z+ and a graph G ∈ G
returns in time p(|V (G)|) a collection of subsets X1, X2, . . . , Xm ⊆ V (G) such that each
vertex of G belongs to at most m/k of the subsets, and moreover, for i = 1, . . . , m, the
algorithm also returns a tree decomposition of G \ Xi of width at most f(k, |V (G)|). We
say a class is p-efficiently fractionally treewidth-fragile if f does not depend on its second
argument (the number of vertices of G). This property turns out to hold for basically all
known natural graph classes with sublinear separators. In particular, a hereditary class G of
graphs is efficiently fractionally treewidth-fragile if

G has sublinear separators and bounded maximum degree [9],
G is proper minor-closed [8, 12], or
G consists of intersection graphs of convex objects with bounded aspect ratio in a finite-
dimensional Euclidean space and the graphs have bounded clique number, as can be seen
by a modification of the argument of Erlebach et al. [15]. This includes all graph classes
with polynomial growth [18].

In fact, Dvořák conjectured that every hereditary class with sublinear separators is fractionally
treewidth-fragile, and gave the following result towards this conjecture.

▶ Theorem 1 (Dvořák [10]). There exists a polynomial p so that the following claim holds.
For every hereditary class G of graphs with sublinear separators, there exists a polynomial q

such that G is p-efficiently fractionally treewidth-f -fragile for the function f(k, n) = q(k log n).

Moreover, Dvořák [9] observed that weighted Maximum Independent Set admits a PTAS
in any efficiently fractionally treewidth-fragile class of graphs. Indeed, the algorithm is
quite simple, based on the observation that for the sets X1, . . . , Xm from the definition of
fractional treewidth-fragility, at least one of the graphs G \ X1, . . . , G \ Xm (of bounded
treewidth) contains an independent set whose weight is within the factor of 1 − 1/k from the
optimal solution. A problem with this approach is that it does not extend to more general
problems; even for the Maximum 2-Independent Set problem, the approach fails, since a
2-independent set in G \ Xi is not necessarily 2-independent in G. Indeed, this observation
served as one of the motivations behind more restrictive (and more technical) concepts
employed in [11, 12].

As our main result, we show that this intuition is in fact false: There is a simple way
how to extend the approach outlined in the previous paragraph to all bounded distance
determined near-monotone tw-tractable problems.
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▶ Theorem 2. For every class G of graphs with bounded expansion, there exists a function
h : Z+ × Z+ → Z+ such that the following claim holds. Let c and r be positive integers,
g : Z+ → Z+ and f : Z+ × Z+ → Z+ functions and p and q polynomials. If G is q-
efficiently fractionally treewidth-f-fragile, then for every (≤r)-distance determined c-near-
monotone (g, p)-tw-tractable problem, there exists an algorithm that given a graph G ∈ G,
an assignment of non-negative weights to vertices, and a positive integer k, returns in time
h(r, c)|V (G)| + q(|V (G)|) · p(|V (G)|) · g(f(h(r, c)k, |V (G)|)) an admissible subset of V (G)
whose weight is within the factor of 1 − 1/k from the optimal one.

Note that the assumption that G has bounded expansion is of little consequence – it is
satisfied for any hereditary class with sublinear separators [14] as well as for any fractionally
treewidth-fragile class [9]; see Section 2 for more details. The time complexity of the
algorithm from Theorem 2 is polynomial if f does not depend on its second argument,
and quasipolynomial (exponential in a polylogarithmic function) if f is logarithmic in the
second argument and g is single-exponential, i.e., if g(n) = exp

(
nO(1)). Hence, we obtain

the following corollaries.

▶ Corollary 3. Let c and r be positive integers, g : Z+ → Z+ a function and p a polynomial.
Every (≤r)-distance determined c-near-monotone (g, p)-tw-tractable problem admits a PTAS
in any efficiently fractionally treewidth-fragile class of graphs.

We say a problem admits a quasipolynomial-time approximation schemes (QPTAS) if
there exist quasipolynomial-time algorithms for approximating the problem within any fixed
precision. Combining Theorems 1 and 2, we obtain the following result.

▶ Corollary 4. Let c and r be positive integers, g : Z+ → Z+ a single-exponential function,
and p a polynomial. Every (≤ r)-distance determined c-near-monotone (g, p)-tw-tractable
problem admits a QPTAS in any hereditary class of graphs with sublinear separators.

The idea of the algorithm from Theorem 2 is quite simple: We consider the sets X1, . . . , Xm

from the definition of fractional treewidth-f -fragility, extend them to suitable supersets Y1,
. . . , Ym, and argue that for i = 1, . . . , m, any admissible set in G \ Xi disjoint from Yi is also
admissible in G, and that for some i, the weight of the heaviest admissible set in G \ Xi

disjoint from Yi is within the factor of 1 − 1/k from the optimal one. The construction of
the sets Y1, . . . , Ym is based on the existence of orientations with bounded outdegrees that
represent all short paths, a generalization of a result Kowalik and Kurowski [17] that we
present in Section 2.

Let us remark one can develop the idea of this paper in further directions. Dvořák proved
in [13](via a substantially more involved argument) that every monotone maximization
problem expressible in first-order logic admits a PTAS in any efficiently fractionally treewidth-
fragile class of graphs. Note that this class of problems is incomparable with the one
considered in this paper (e.g., Maximum Induced Forest is not expressible in first-order
logic, while Maximum Independent Set consisting of vertices belonging to triangles is
expressible in first-order logic but does not fall into the scope of the current paper).

Finally, it is worth mentioning that our results only apply to maximization problems.
We were able to extend the previous uses of fractional treewidth-fragility by giving a way to
handle dependencies over any bounded distance. However, for the minimization problems,
we do not know whether fractional treewidth-fragility is sufficient even for the distance-
1 problems. For a simple example, consider the Minimum Vertex Cover problem in
fractionally treewidth-fragile graphs, or more generally in hereditary classes with sublinear
separators. While the unweighted version can be dealt with by the local search method [16],
we do not know whether there exists a PTAS for the weighted version of this problem.
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2 Paths and orientations in graphs with bounded expansion

For r ∈ Z+
0 , a graph H is an r-shallow minor of a graph G if H can be obtained from a

subgraph of G by contracting pairwise vertex-disjoint connected subgraphs, each of radius
at most r. For a function f : Z+ → Z+, a class G of graphs has expansion bounded by f if
for all non-negative integers r, all r-shallow minors of graphs from G have average degree
at most f(r). A class has bounded expansion if its expansion is bounded by some function
f . The theory of graph classes with bounded expansion has been developed in the last 15
years, and the concept has found many algorithmic and structural applications; see [23] for
an overview. Crucially for us, this theory includes a number of tools for dealing with short
paths. Moreover, as we have pointed out before, all hereditary graph classes with sublinear
separators [14] as well as all fractionally treewidth-fragile classes [9] have bounded expansion.

Let G⃗ be an orientation of a graph G, i.e, uv is an edge of G if and only if the directed
graph G⃗ contains at least one of the directed edges (u, v) and (v, u); note that we allow
G⃗ to contain both of them at the same time, and thus for the edge uv to be oriented in
both directions. We say that a directed graph H⃗ with the same vertex set is a 1-step
fraternal augmentation of G⃗ if G⃗ ⊆ H⃗, for all distinct edges (x, y), (x, z) ∈ E(G⃗), either
(y, z) or (z, y) is an edge of H⃗ , and for each edge (y, z) ∈ E(H⃗) \ E(G⃗), there exists a vertex
x ∈ V (G⃗) \ {y, z} such that (x, y), (x, z) ∈ E(G⃗). That is, to obtain H⃗ from G⃗, for each pair
of edges (x, y), (x, z) ∈ E(G⃗) we add an edge between y and z in one of the two possible
directions (we do not specify the direction, but in practice we would choose directions of the
added edges that minimize the maximum outdegree of the resulting directed graph). For an
integer a ≥ 0, we say F⃗ is an a-step fraternal augmentation of G⃗ if there exists a sequence
G⃗ = G⃗0, G⃗1, . . . , G⃗a = F⃗ where for i = 1, . . . , a, G⃗i is a 1-step fraternal augmentation of
G⃗i−1. We say F⃗ is an a-step fraternal augmentation of an undirected graph G if F⃗ is an
a-step fraternal augmentation of some orientation of G.

A key property of graph classes with bounded expansion is the existence of fraternal
augmentations with bounded outdegrees. Let us remark that whenever we speak about an
algorithm returning an a-step fraternal augmentation H⃗ or taking one as an input, this
implicitly includes outputting or taking as an input the whole sequence of 1-step fraternal
augmentations ending in H⃗.

▶ Lemma 5 (Nešetřil and Ossona de Mendez [22]). For every class G with bounded expansion,
there exists a function d : Z+

0 → Z+ such that for each G ∈ G and each non-negative integer
a, the graph G has an a-step fraternal augmentation of maximum outdegree at most d(a).
Moreover, such an augmentation can be found in time O(d(a)|V (G)|).

As shown already in [22], fraternal augmentations can be used to succinctly represent
distances between vertices of the graph. For the purposes of this paper, we need a more explicit
representation by an orientation of the original graph without the additional augmentation
edges, as we only assume that the original (rather than the augmented) graph is fractionally
treewidth-fragile. Let us remark that the existence of such a representation was shown
by Kowalik and Kurowski [17] in a more restrictive setting of graph classes closed under
topological minors.

By a walk in a directed graph G⃗, we mean a sequence W = v0v1v2 . . . vb such that for
i = 1, . . . , b, (vi−1, vi) ∈ E(G⃗) or (vi, vi−1) ∈ E(G⃗); that is, the walk does not have to respect
the orientation of the edges. The walk W is inward directed if for some c ∈ {0, . . . , b}, we
have (vi, vi+1) ∈ E(G⃗) for i = 0, . . . , c − 1 and (vi, vi−1) ∈ E(G⃗) for i = c + 1, . . . , b. For
a positive integer r, an orientation G⃗ of a graph G represents (≤ r)-distances if for each
u, v ∈ V (G) and each b ∈ {0, . . . , r}, the distance between u and v in G is at most b if and
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only if G⃗ contains an inward-directed walk of length at most b between u and v. Note that
given such an orientation with bounded maximum outdegree for a fixed r, we can determine
the distance between u and v (up to distance r) by enumerating all (constantly many) walks
of length at most r directed away from u and away from v and inspecting their intersections.

Our goal now is to show that graphs from classes with bounded expansion admit orienta-
tions with bounded maximum outdegree that represent (≤r)-distances. Let us define a more
general notion used in the proof of this claim, adding to the fraternal augmentations the
information about the lengths of the walks in the original graph represented by the added
edges. A directed graph with (≤r)-length sets is a pair (H⃗, ℓ), where H⃗ is a directed graph and
ℓ is a function assigning a subset of {1, . . . , r} to each unordered pair {u, v} of vertices of H⃗ ,
such that if neither (u, v) nor (v, u) is an edge of H⃗ , then ℓ({u, v}) = ∅. We say that (H⃗, ℓ) is
an orientation of a graph G if G is the underlying undirected graph of H⃗ and ℓ({u, v}) = {1}
for each uv ∈ E(G). We say that (H⃗, ℓ) is an (≤ r)-augmentation of G if V (H⃗) = V (G),
for each uv ∈ E(G) we have 1 ∈ ℓ({u, v}), and for each u, v ∈ V (G) and b ∈ ℓ({u, v}) there
exists a walk of length b from u to v in G. Let (H⃗1, ℓ1) be another directed graph with
(≤r)-length sets. We say (H⃗1, ℓ1) is a 1-step fraternal augmentation of (H⃗, ℓ) if H⃗1 is a 1-step
fraternal augmentation of H⃗ and for all distinct u, v ∈ V (H⃗) and b ∈ {1, . . . , r}, we have
b ∈ ℓ1({u, v}) if and only if b ∈ ℓ({u, v}) or there exist x ∈ V (H⃗) \ {u, v}, b1 ∈ ℓ({x, u}), and
b2 ∈ ℓ({x, v}) such that (x, u), (x, v) ∈ E(H⃗) and b = b1 + b2. Note that a 1-step fraternal
augmentation of an (≤r)-augmentation of a graph G is again an (≤r)-augmentation of G.
The notion of an a-step fraternal augmentation of a graph G is then defined in the natural
way, by starting with an orientation of G and performing the 1-step fraternal augmentation
operation a times. Let us now restate Lemma 5 in these terms (we just need to maintain the
edge length sets, which can be done with O(a2) overhead per operation).

▶ Lemma 6. Let G be a class of graphs with bounded expansion, and let d : Z+
0 → Z+ be the

function from Lemma 5. For each G ∈ G and each non-negative integer a, we can in time
O(a2d(a)|V (G)|) construct a directed graph with (≤ a + 1)-length sets (H⃗, ℓ) of maximum
outdegree at most d(a) such that (H⃗, ℓ) is an a-step fraternal augmentation of G.

Let (H⃗, ℓ) be an (≤ r)-augmentation of a graph G. For b ≤ r, a walk of span b in
(H⃗, ℓ) is a tuple (v0v1 . . . vt, b1, . . . , bt), where v0v1 . . . vt is a walk in H⃗ , bi ∈ ℓ({vi−1, vi}) for
i = 1, . . . , t, and b = b1 + . . . + bt. Note that if there exists a walk of span b from u to v

in (H⃗, ℓ), then there also exists a walk of length b from u to v in G. We say that (H⃗, ℓ)
represents (≤ r)-distances in G if for all vertices u, v ∈ V (G) at distance b ≤ r from one
another, (H⃗, ℓ) contains an inward-directed walk of span b between u and v. Next, we show
that this property always holds for sufficient fraternal augmentations.

▶ Lemma 7. Let G be a graph and r a positive integer and let (H⃗, ℓ) be a directed graph
with (≤r)-length sets. If (H⃗, ℓ) is obtained as an (r − 1)-step fraternal augmentation of G,
then it represents (≤r)-distances in G.

Proof. For b ≤ r, consider any walk W = (v0v1 . . . vt, b1, . . . , bt) of span b in an (≤ r)-
augmentation (H⃗1, ℓ1) of G, and let (H⃗2, ℓ2) be a 1-step augmentation of (H⃗1, ℓ1). Note that
W is also a walk of span b between v0 and vt in (H⃗2, ℓ2). Suppose that W is not inward-directed
in (H⃗1, ℓ1), and thus there exists i ∈ {1, . . . , t − 1} such that (vi, vi−1), (vi, vi+1) ∈ E(H⃗1).
By the definition of 1-step fraternal augmentation, this implies bi + bi+1 ∈ ℓ2({vi−1, vi+1}),
and thus (v0 . . . vi−1vi+1 . . . vt, b1, . . . , bi + bi+1, . . . bt) is a walk of span b from v0 to vt in
(H⃗2, ℓ2).

Let (G⃗0, ℓ0), . . . , (G⃗r−1, ℓr−1) be a sequence of (≤r)-augmentations of G, where (G⃗, ℓ0)
is an orientation of G, (G⃗r−1, ℓr−1) = (H⃗, ℓ), and for i = 1, . . . , r − 1, (G⃗i, ℓi) is a 1-step
fraternal augmentation of (G⃗i−1, ℓi−1). Let u and v be any vertices at distance b ≤ r in G,
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and let P be a shortest path between them. Then P naturally corresponds to a walk P0
of span b in (G⃗0, ℓ0). For i = 1, . . . , r − 1, if Pi−1 is inward-directed, then let Pi = Pi−1,
otherwise let Pi be a walk of span b in (G⃗i, ℓi) obtained from Pi−1 as described in the previous
paragraph. Since each application of the operation decreases the number of vertices of the
walk, we conclude that Pr−1 is an inward-directed walk of span b between u and v in (H⃗, ℓ).
Hence, (H⃗, ℓ) represents (≤r)-distances in G. ◀

Next, let us propagate this property back through the fraternal augmentations by ori-
enting some of the edges in both directions. We say that (H⃗, ℓ) is an a-step fraternal
superaugmentation of a graph G if there exists an a-step fraternal augmentation (F⃗ , ℓ) of
G such that V (F⃗ ) = V (H⃗), E(F⃗ ) ⊆ E(H⃗) and for each (u, v) ∈ E(H⃗) \ E(F⃗ ), we have
(v, u) ∈ E(F⃗ ). We say that (F⃗ , ℓ) is a support of (H⃗, ℓ).

▶ Lemma 8. Let G be a graph and r a positive integer and let (H⃗, ℓ) be an (≤r)-augmentation
of G of maximum outdegree ∆ representing (≤r)-distances. For a ≥ 1, suppose that (H⃗, ℓ)
is an a-step fraternal superaugmentation of G. Then we can in time O(r2∆|V (G)|) obtain
an (a − 1)-step fraternal superaugmentation of G representing (≤r)-distances, of maximum
outdegree at most (r + 1)∆.

Proof. Let (F⃗ , ℓ) be an a-step fraternal augmentation of G forming a support of (H⃗, ℓ),
obtained as a 1-step fraternal augmentation of an (a − 1)-step fraternal augmentation (F⃗1, ℓ1)
of G. Let (H⃗1, ℓ1) be the (a−1)-step fraternal superaugmentation of G obtained from (F⃗1, ℓ1)
as follows:

For all distinct vertices y, z ∈ V (G) such that (y, z), (z, y) ∈ E(H⃗), (y, z) ∈ E(F⃗1), and
(z, y) ̸∈ E(F⃗1), we add the edge (z, y).
For each edge (y, z) ∈ E(H⃗) and integer b ∈ ℓ({y, z}) \ ℓ1({y, z}), we choose a vertex
x ∈ V (G) \ {y, z} such that (x, y), (x, z) ∈ E(F⃗1) and b = b1 + b2 for some b1 ∈ ℓ1({x, y})
and b2 ∈ ℓ1({x, z}), and add the edge (y, x). Note that such a vertex x and integers b1
and b2 exist, since b was added to ℓ({y, z}) when (F⃗ , ℓ) was obtained from (F⃗1, ℓ1) as a
1-step fraternal augmentation.

Each edge (y, x) ∈ E(H⃗1) \ E(H⃗) arises from an edge (y, z) ∈ E(H⃗) leaving y and an element
b ∈ ℓ({y, z}) \ ℓ1({y, z}), and each such pair contributes at most one edge leaving y. Hence,
the maximum outdegree of H⃗1 is at most (r + 1)∆.

Consider an inwards-directed walk (v0v1 . . . vt, b1, . . . , bt) of span b in H⃗, for any b ≤ r.
Then H⃗ contains an inwards-directed walk of span b from v0 to vt obtained by natural edge
replacements: For any edge (y, z) ∈ E(H⃗) of this walk and b′ ∈ ℓi({y, z}), the construction
described above ensures that if (y, z) ̸∈ E(H⃗1) or b′ ̸∈ ℓ1({y, z}), then there exists x ∈
V (G) \ {y, z} such that (y, x), (x, z) ∈ E(H⃗1) and b′ = b′′ + b′′′ for some b′′ ∈ ℓ1({x, y}) and
b′′′ ∈ ℓ1({x, z}), and we can replace the edge (y, z) in the walk by the edges (y, x) and (x, z)
of E(H⃗1). Since H⃗ represents (≤r)-distances in G, this transformation shows that so does
H⃗1. ◀

We are now ready to prove the main result of this section.

▶ Lemma 9. For any class G with bounded expansion, there exists a function d′ : Z+ → Z+

such that for each G ∈ G and each positive integer r, the graph G has an orientation with
maximum outdegree at most d′(r) that represents (≤r)-distances in G. Moreover, such an
orientation can be found in time O(r2d′(r)|V (G)|).

Proof. Let d be the function from Lemma 5, and let d′(r) = (r +1)r−1d(r −1). By Lemma 6,
we obtain an (r − 1)-step fraternal augmentation (H⃗, ℓ) of G of maximum outdegree at most
d(r − 1). By Lemma 7, (H⃗, ℓ) represents (≤r)-distances in G. Repeatedly applying Lemma 8,
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we obtain a 0-step fraternal superaugmentation (G⃗, ℓ0) of G of maximum outdegree at most
d′(r) representing (≤r)-distances. Clearly, G⃗ is an orientation of G of maximum outdegree
at most d′(r) representing (≤r)-distances. ◀

3 Approximation schemes

Let us now prove Theorem 2. To this end, let us start with a lemma to be applied to the
sets arising from fractional treewidth-fragility.

▶ Lemma 10. Let G⃗ be an orientation of a graph G with maximum outdegree ∆. Let A be a
set of vertices of G and for a positive integer c, let {Rv : v ∈ A} be a system of subsets of
A such that each vertex belongs to at most c of the subsets. For X ⊆ V (G) and a positive
integer r, let DG⃗,r(X) ⊆ A be the union of the sets Rv for all vertices v ∈ A such that G⃗

contains a walk from v to X of length at most r directed away from v. For a positive integer
k, let X1, . . . , Xm be a system of subsets of V (G) such that each vertex belongs to at most

m
c(∆+1)rk of the subsets. For any assignment w of non-negative weights to vertices of G, there
exists i ∈ {1, . . . , m} such that w(A \ DG⃗,r(Xi)) ≥ (1 − 1/k)w(A).

Proof. For a vertex z ∈ A, let B(z) be the set of vertices reachable in G⃗ from vertices
v ∈ A such that z ∈ Rv by walks of length at most r directed away from v. Note that
|B(z)| ≤ c(∆ + 1)r and that for each X ⊆ V (G), we have z ∈ DG⃗,r(X) if and only if
B(z) ∩ X ̸= ∅.

Suppose for a contradiction that for each i we have w(A \ DG⃗,r(Xi)) < (1 − 1/k)w(A),
and thus w(DG⃗,r(Xi)) > w(A)/k. Then

m

k
w(A) <

m∑
i=1

w(DG⃗,r(Xi)) =
m∑

i=1

∑
z∈DG⃗,r(Xi)

w(z) =
m∑

i=1

∑
z∈A:B(z)∩Xi ̸=∅

w(z)

≤
m∑

i=1

∑
z∈A

w(z)|B(z) ∩ Xi| =
∑
z∈A

w(z)
m∑

i=1
|B(z) ∩ Xi|

=
∑
z∈A

w(z)
∑

x∈B(z)

|{i ∈ {1, . . . , m} : x ∈ Xi}| ≤
∑
z∈A

w(z)
∑

x∈B(z)

m

c(∆ + 1)rk

=
∑
z∈A

w(z)|B(z)| m

c(∆ + 1)rk
≤

∑
z∈A

w(z)m

k
= m

k
w(A),

which is a contradiction. ◀

Next, let us derive a lemma on admissibility for (≤r)-distance determined problems.

▶ Lemma 11. For a positive integer r, let G⃗ be an orientation of a graph G representing
(≤ r)-distances. For a set X ⊆ V (G), let YG⃗,r(X) be the set of vertices y such that G⃗

contains a walk from y to X of length at most r directed away from y. For any (≤r)-distance
determined problem, a set B ⊆ V (G)\YG⃗,r(X) is admissible in G if and only if it is admissible
in G − X.

Proof. Since the problem is (≤ r)-distance determined, it suffices to show that
min(r, dG(u, v)) = min(r, dG−X(u, v)) holds for all u, v ∈ B. Clearly, dG(u, v) ≤ dG−X(u, v),
and thus it suffices to show that if the distance between u and v in G is b ≤ r, then G − X

contains a walk of length b between u and v. Since G⃗ represents (≤r)-distances, there exists
an inward-directed walk P of length b between u and v in G⃗. Since u, v ̸∈ YG⃗,r(X), we have
V (P ) ∩ X = ∅, and thus P is also a walk of length b between u and v in G − X. ◀
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We are now ready to prove the main result.

Proof of Theorem 2. Let d′ be the function from Lemma 9 for the class G. Let us define
h(r, c) = c(d′(r) + 1)r. The algorithm is as follows. Since G is q-efficiently fractionally
treewidth-f -fragile, in time q(|V (G)|) we can find sets X1, . . . , Xm ⊆ V (G) such that each
vertex belongs to at most m

h(r,c)k of them, and for each i, a tree decomposition of G − Xi of
width at most f(h(r, c)k, |V (G)|). Clearly, m ≤ q(|V (G)|). Next, using Lemma 9, we find an
orientation G⃗ of G that represents (≤r)-distances. Let YG⃗,r be defined as in the statement
of Lemma 11. Since the problem is (g, p)-tw-tractable problem, for each i we can in time
p(|V (G)|) · g(f(h(r, c)k, |V (G)|)) find a subset Ai of V (G) \ YG⃗,r(Xi) admissible in G − Xi

of largest weight. By Lemma 11, each of these sets is admissible in G; the algorithm return
the heaviest of the sets A1, . . . , Am.

As the returned set is admissible in G, it suffices to argue about its weight. Let A

be a heaviest admissible set in G. Let {Rv ⊆ A : v ∈ A} be the system of subsets
from the definition of c-near-monotonicity, and let DG⃗,r be defined as in the statement of
Lemma 10. By the definition of c-near-monotonicity, for each i the set A \ DG⃗,r(Xi) is
admissible in G. Since v ∈ Rv for each v ∈ A, we have YG⃗,r(Xi) ∩ A ⊆ DG⃗,r(Xi), and thus
A \ DG⃗,r(Xi) ⊆ V (G) \ YG⃗,r(Xi). By Lemma 11, A \ DG⃗,r(Xi) is also admissible in G − Xi,
and by the choice of Ai, we have w(Ai) ≥ w(A \ DG⃗,r(Xi)). By Lemma 10, we conclude that
for at least one i, we have w(Ai) ≥ (1 − 1/k)w(A), as required. ◀
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Abstract
A multiple knapsack constraint over a set of items is defined by a set of bins of arbitrary capacities,
and a weight for each of the items. An assignment for the constraint is an allocation of subsets of items
to the bins which adheres to bin capacities. In this paper we present a unified algorithm that yields
efficient approximations for a wide class of submodular and modular optimization problems involving
multiple knapsack constraints. One notable example is a polynomial time approximation scheme for
Multiple-Choice Multiple Knapsack, improving upon the best known ratio of 2. Another example is
Non-monotone Submodular Multiple Knapsack, for which we obtain a (0.385 − ε)-approximation,
matching the best known ratio for a single knapsack constraint. The robustness of our algorithm is
achieved by applying a novel fractional variant of the classical linear grouping technique, which is of
independent interest.
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1 Introduction

The Knapsack problem is one of the most studied problems in mathematical programming
and combinatorial optimization, with applications ranging from power management and
production planning, to blockchain storage allocation and key generation in cryptosystems [31,
26, 38, 41]. In a more general form, knapsack problems require assigning items of various
sizes (weights) to a set of bins (knapsacks) of bounded capacities. The bin capacities then
constitute the hard constraint for the problem. Formally, a multiple knapsack constraint
(MKC) over a set of items is defined by a collection of bins of varying capacities and a
non-negative weight for each item. A feasible solution for the constraint is an assignment of
subsets of items to the bins, such that the total weight of items assigned to each bin does
not exceed its capacity. This constraint plays a central role in the classic Multiple Knapsack
problem [8, 23, 24]. The input is an MKC and each item also has a profit. The objective is to
find a feasible solution for the MKC such that the total profit of assigned items is maximized.

Multiple Knapsack can be viewed as a maximization variant of the Bin Packing problem [25,
13]. In Bin Packing we are given a set of items, each associated with non-negative weight.
We need to pack the items into a minimum number of identical (unit-size) bins.
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41:2 Submodular Optimization with Multiple Knapsack Constraints

A prominent technique for approximating Bin Packing is grouping, which decreases the
number of distinct weights in the input instance. Informally, a subset of items is partitioned
into groups G1, . . . , Gτ , and all the items within a group are treated as if they have the
same weight (e.g., [13, 25]). By properly forming the groups, the increase in the number of
bins required for packing the instance can be bounded. Classic grouping techniques require
knowledge of the items to be packed, and thus cannot be easily applied in the context of
maximization problems, and specifically for a multiple knapsack constraint.

The main technical contribution of this paper is the introduction of fractional grouping, a
variant of linear grouping which can be applied to multiple knapsack constraints. Fractional
Grouping partitions the items into groups using an easy to obtain fractional solution,
bypassing the requirement to know the items in the solution.

Fractional Grouping proved to be a robust technique for maximization problems. We use
the technique to obtain, among others, a polynomial-time approximation scheme (PTAS)
for the Multiple-Choice Multiple Knapsack Problem, a (0.385− ε)-approximation for non-
monotone submodular maximization with a multiple knapsack constraint, and a (1− e−1 −
o (1))-approximation for the Monotone Submodular Multiple Knapsack Problem with Uniform
Capacities.

1.1 Problem Definition
We first define formally key components of the problem studied in this paper.

A multiple knapsack constraint (MKC) over a set I of items, denoted by K = (w, B, W ),
is defined by a weight function w : I → R≥0, a set of bins B and bin capacities given by
W : B → R≥0. An assignment for the constraint is a function A : B → 2I which assigns a
subset of items to each bin. An assignment A is feasible if

∑
i∈A(b) w(i) ≤W (b) for all b ∈ B.

We say that A is an assignment of S if S =
⋃

b∈B A(b).
A set function f : 2I → R is submodular if for any S ⊆ T ⊆ I and i ∈ I \ T it holds

that f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ).1 Submodular functions naturally arise in
numerous settings. While many submodular functions, such as coverage [19] and matroid
rank function [6], are monotone, i.e., for any S ⊆ T ⊆ I, f(S) ≤ f(T ), this is not always
the case (cut functions [18] are a classic example). A special case of submodular functions
is modular (or, linear) functions in which, for any S ⊆ T ⊆ I and i ∈ I \ T , we have
f(S ∪ {i})− f(S) = f(T ∪ {i})− f(T ).

For a constant d ∈ N, the problem of Submodular Maximization with d-Multiple Knapsack
Constraints (d-MKCP) is defined as follows. The input is T =

(
I, (Kt)d

t=1 , I, f
)

, where I is
a set of items, Kt, 1 ≤ t ≤ d are d MKCs over I, I ⊆ 2I and f : 2I → R≥0 is a non-negative
submodular function. I is an additional constraint which can be one of the following: (i)
I = 2I , i.e., any subset of items can be selected. (ii) I is the independent set of a matroid,2
or (iii) I is the intersection of independent sets of two matroids, or (iv) I is a matching.3 A
solution for the instance is S ∈ I and (At)d

t=1, where At is a feasible assignment of S w.r.t
Kt for 1 ≤ t ≤ d. The value of the solution is f(S), and the objective is to find a solution of
maximal value.

We assume the function f is given via a value oracle. We further assume that the input
indicates the type of constraint that I represents. Finally, I is given via a membership oracle,
and if I is a matroid intersection, a membership oracle is given for each matroid.

1 Alternatively, for every S, T ⊆ I: f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).
2 A formal definition for matroid can be found in [34].
3 I is a matching if there is a graph G = (V, I), and S ∈ I iff S is a matching in G.
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Table 1 Results of Theorem 1 for d-MKCP.

Type of Additional Modular Monotone Non-Monotone
Constraint Maximization Submodular Max. Sub. Max

No additional constraint PTAS 1 − e−1 − ε 0.385 − ε

Matroid constraint PTAS 1 − e−1 − ε −
2 matroids or a matching PTAS − −

We refer to the special case in which f is monotone (modular) as monotone (modular)
d-MKCP. Also, we use non-monotone d-MKCP when referring to general d-MKCP instances.
Similarly, we refer to the special case in which I is an independent set of a matroid (intersection
of independent sets of two matroids or a matching) as d-MKCP with a matroid (matroid
intersection or matching) constraint. If I = 2I we refer to the problem as d-MKCP with no
additional constraint. Thus, for example, in instances of modular 1-MKCP with a matroid
constraint the function f is modular and I is an independent set of a matroid.

Instances of d-MKCP naturally arise in various settings (see a detailed example in the
full version of this paper [16]).

1.2 Our Results
Our main results are summarized in the next theorem (see also Table 1).

▶ Theorem 1. For any fixed d ∈ N+ and ε > 0, there is
1. A randomized PTAS for modular d-MKCP ((1− ε)-approximation). The same holds for

this problem with a matroid constraint, matroid intersection constraint, or a matching
constraint.

2. A polynomial-time random (1− e−1 − ε)-approximation for monotone d-MKCP with a
matroid constraint.

3. A polynomial-time random (0.385− ε)-approximation for non-monotone d-MKCP with
no additional constraint.

All of the results are obtained using a single algorithm (Algorithm 2). The general
algorithmic result encapsulates several important special cases. The Multiple-Choice Multiple
Knapsack Problem is a variant of the Multiple Knapsack Problem in which the items
are partitioned into classes C1, . . . , Ck, and at most one item can be selected from each
class. Formally, Multiple-Choice Multiple Knapsack is the special case of modular 1-MKCP
where I describes a partition matroid.4 The problem has natural applications in network
optimization [12, 37]. The best known approximation ratio for the problem is 2 due to [12].
This approximation ratio is improved by Theorem 1, as stated in the following.

▶ Corollary 2. There is a randomized PTAS for the Multiple-Choice Multiple Knapsack
Problem.

While the Multiple Knapsack Problem and the Monotone Submodular Multiple Knapsack
Problem are well understood [8, 23, 24, 15, 35], no results were previously known for the
Non-Monotone Submodular Multiple Knapsack Problem, the special case of non-montone
1-MKCP with no additional constraint. A constant approximation ratio for the problem is
obtained as a special case of Theorem 1.

4 That is, I = {S ⊆ I | ∀1 ≤ j ≤ k : |S ∩ Cj | ≤ 1} where C1, . . . , Ck is a partition of I.
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41:4 Submodular Optimization with Multiple Knapsack Constraints

▶ Corollary 3. For any ε > 0 there is a polynomial time random (0.385− ε)-approximation
for the Non-Monotone Submodular Multiple Knapsack Problem.

A PTAS for Multistage Multiple Knapsack, a multistage version of the Multiple Knapsack
Problem, can be obtained via a reduction to modular d-MKCP with a matroid constraint.5
Here, to obtain a (1−O(ε))-approximation for the multistage problem, the reduction solves
instances of modular Θ

( 1
ε

)
-MKCP with a matroid constraint (see [14] for details). Beyond

the rich set of applications, our ability to derive such a general result is an evidence for the
robustness of fractional grouping, the main technical contribution of this paper.

Our result for modular d-MKCP, for d ≥ 2, generalizes the PTAS for the classic d-
dimensional Knapsack problem (I = 2I and |Bt| = 1 for any 1 ≤ t ≤ d). Furthermore,
a PTAS is the best we can expect as there is no efficient PTAS (EPTAS) already for
d-dimensional Knapsack, unless W[1] = FPT [28]. While there is a well-known PTAS
for Multiple Knapsack [8], existing techniques do not readily enable handling additional
constraints, such as a matroid constraint.

The approximation ratio obtained for monotone d-MKCP is nearly optimal, as for any
ε > 0 there is no (1− e−1 + ε)-approximation for monotone submodular maximization with
a cardinality constraint in the oracle model [32]. The approximation ratio is also tight under
P ≠ NP due to the special case of coverage functions [19]. Previous works [15, 35] obtained
the same approximation ratio for the Monotone Submodular Multiple Knapsack Problem
(i.e, monotone 1-MKCP). However, as in the modular case, existing techniques are limited to
handling a single MKC (with no other constraints).

In the non-montone case, the approximation ratio is in fact (c− ε) for any ε > 0, where
c > 0.385 is the ratio derived in [4]. This approximation ratio matches the current best
known ratio for non-monotone submodular maximization with a single knapsack constraint
[4]. A 0.491 hardness of approximation bound for non-monotone d-MKCP follows from [22].

Our technique can be cast also as a variant of contention resolution scheme [11]. The
scheme can be used to derive approximation algorithms for special cases of d-MKCP which
are not considered in Theorem 1. Such a scheme can be found in an earlier version of this
paper [17].6

The Monotone Submodular Multiple Knapsack Problem with Uniform Capacities (USMKP)
is the special case of d-MKCP in which I = 2I , d = 1, f is monotone, and furthermore, all the
bins in the MKC have the same capacity. That is, K1 = (w, B, W ) and W (b1) = W (b2) for
any b1, b2 ∈ B. This restricted variant of d-MKCP commonly arises in real-life applications
(e.g., in file assignment to several identical storage devices). The best known approximation
ratio for USMKP is (1− e−1 − ε) for any fixed ε > 0 [15, 35]. Another contribution of this
paper is an improvement of this ratio.

▶ Theorem 4. There is a polynomial-time random (1− e−1−O((log |B|)− 1
4 ))-approximation

for the Monotone Submodular Multiple Knapsack Problem with Uniform Capacities.

1.3 Related Work
In the classic Multiple Knapsack problem, the goal is to maximize a modular set function
subject to a single multiple knapsack constraint. A PTAS for the problem was first presented
by Chekuri and Khanna [8]. The authors also ruled out the existence of a fully polynomial
time approximation scheme (FPTAS). An EPTAS was later developed by Jansen [23, 24].

5 See, e.g., [2] for the Multistage Knapsack model.
6 We were unable to obtain tight approximation ratios for the studied problems using this approach.
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In the Bin Packing problem, we are given a set I of items, a weight function w : I → R≥0
and a capacity W > 0. The objective is to partition the set I into a minimal number
of sets S1, . . . , Sm (i.e., find a packing) such that

∑
i∈Sb

w(i) ≤ W for all 1 ≤ b ≤ m.
In [25] the authors presented a polynomial-time algorithm which returns a packing using
OPT + O(log2 OPT) bins, where OPT is the number of bins in a minimal packing. The
result was later improved by Rothvoß [33].

Research work on monotone submodular maximization dates back to the late 1970’s.
In [32] Nemhauser and Wolsey presented a greedy-based tight (1− e−1)-approximation for
maximizing a monotone submodular function subject to a cardinality constraint, along with a
matching lower bound in the oracle model. The greedy algorithm of [32] was later generalized
to monotone submodular maximization subject to a knapsack constraint [27, 36].

A major breakthrough in the field of submodular optimization resulted from the intro-
duction of algorithms for optimizing the multilinear extension of a submodular function
([6, 30, 7, 40, 20, 5]). For x̄ ∈ [0, 1]I , we say that a random set S ⊆ I is distributed by x̄

(i.e., S ∼ x̄) if Pr(i ∈ S) = x̄i, and the events (i ∈ S)i∈I are independent. Given a function
f : 2I → R≥0, its multilinear extension is F : [0, 1]I → R≥0 defined as F (x̄) = ES∼x̄[f(S)].

The input for the problem of optimizing the multilinear relaxation is an oracle for a
submodular function f : 2I → R≥0 and a downward closed solvable polytope P .7 The
objective is to find x̄ ∈ P such that F (x̄) is maximized, where F is the multilinear extension
of f . The problem admits a random (1− e−1 − o(1))-approximation in the monotone case
and a random (0.385 + δ)-approximation in the non-monotone case (for some small constant
δ > 0) due to [7] and [4].

Several techniques were developed for rounding a (fractional) solution for the multilinear
optimization problem to an integral solution. These include Pipage Rounding [1], Randomized
Swap Rrounding [9], and Contention Resolution Schemes [11]. These techniques led to the
state of art results for many problems (e.g., [29, 7, 1, 9]).

A random (1− e−1− ε)-approximation for the Monotone Submodular Multiple Knapsack
problem was presented in [15]. The technique in [15] modifies the objective function and
its domain. This modification does not preserve submodularity of a non-montone function
and the combinatorial properties of additional constraints. Thus, it does not generalize to
d-MKCP.

A deterministic (1−e−1−ε)-approximation for Monotone Submodular Multiple Knapsack
was later obtained by Sun et al. [35]. Their algorithm relies on a variant of the greedy
algorithm of [36] which cannot be extended to the non-monotone case, or easily adapted to
handle more than a single MKC.

1.4 Technical Overview
In the following we describe the technical problem solved by fractional grouping and give
some insight to the way we solve this problem. For simplicity, we focus on the special
case of 1-MKCP, in which the number of bins is large and all bins have unit capacity. Let
(I, (w, B, W ), 2I , f) be a 1-MCKP instance where W (b) = 1 for all b ∈ B. Also, assume that
no two items have the same weight. Let S∗ and A∗ be an optimal solution for the instance.

7 A polytope P ∈ [0, 1]I is downward closed if for any x̄ ∈ P and ȳ ∈ [0, 1]I such that ȳ ≤ x̄ (that is,
ȳi ≤ x̄i for every i ∈ I) it holds that ȳ ∈ P . A polytope P ∈ [0, 1]I is solvable if, for any λ̄ ∈ RI , a
point x̄ ∈ P such that λ̄ · x̄ = maxȳ∈P λ̄ · ȳ can be computed in polynomial time, where λ̄ · x̄ is the dot
product of λ̄ and x̄.
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41:6 Submodular Optimization with Multiple Knapsack Constraints

Fix an arbitrary small µ > 0 such that µ−2 ∈ N. We say that an item i ∈ I is heavy
if w(i) > µ; otherwise, i is light. Let H ⊆ I denote the heavy items. We can apply linear
grouping [13] to the heavy items in S∗. That is, let h∗ = |S∗ ∩H| be the number of heavy
items in S∗, and partition S∗ ∩H to µ−2 groups of cardinality µ2 · h∗, assuming the items
are sorted in decreasing order by weights (for simplicity, assume h∗ ≥ µ−2 and µ2 · h∗ ∈ N).
Specifically, S∗ ∩H = G∗

1 ∪ . . . ∪G∗
µ−2 , where |G∗

k| = µ2 · h∗ for all 1 ≤ k ≤ µ−2 and for any
i1 ∈ G∗

k1
, i2 ∈ G∗

k2
where k1 < k2 we have that w(i1) > w(i2). Also, for any 1 ≤ k ≤ µ−2 let

qk, the k-th pivot, be the item of highest weight in G∗
k.

We use the pivots to generate a new collection of groups G1, . . . , Gµ−2 where Gk = {i ∈
H | w (qk+1) < w(i) ≤ w(qk)} for 1 ≤ k < µ−2, and Gµ−2 = {i ∈ H | w(i) ≤ w(qµ−2)}.
Clearly, G∗

k ⊆ Gk for any 1 ≤ k ≤ µ−2. Let X = {i ∈ H | w(i) > w(q1)} be the set of largest
items in H.

A standard shifting argument can be used to show that any set S ⊆ I \X, such that
w(S) ≤ |B| and |S ∩Gk| ≤ µ2 · h∗ for all 1 ≤ k ≤ µ−2, can be packed into (1 + 2µ)|B|+ 1
bins as follows.8 The items in S ∩Gk can be packed in place of the items in G∗

k−1 in A∗, each
of the items in S∩G1 can be packed in a separate bin (observe that |S∩G1| ≤ µ2 ·h∗ ≤ µ|B|
as packing of h∗ heavy items requires at least h∗ · µ bins). Finally, First-Fit can be used to
pack the light items in S.

Now, assume we know q1, . . . , qµ−2 and h∗; thus, the sets G1, . . . , Gµ−2 and X can
be constructed. Consider the following optimization problem: find S ⊆ I \ X such that
w(S) ≤ |B|, |S ∩Gk| ≤ µ2 · h∗ for all 1 ≤ k ≤ µ−2, and f(S) is maximal. The problem is an
instance of non-monotone submodular maximization with a (1 + µ−2)-dimensional knapsack
constraint, for which there is a (0.385−ε)-approximation algorithm [29, 4]. The algorithm can
be used to find S ⊆ I \X which satisfies the above constraints and f(S) ≥ (0.385− ε) · f(S∗),
as S∗ is a feasible solution for the problem. Subsequently, S can be packed into bins
using a standard bin packing algorithm. This will lead to a packing of S into roughly
(1 + 2µ)|B|+ O(log2 |B|) bins. By removing the bins of least value (along with their items),
and using the assumption that |B| is sufficiently large, we can obtain a set S′ and an
assignment of S′ into B such that f(S) is arbitrarily close to 0.385 · f(S∗).

Indeed, we do not know the values of q1, . . . , qµ−2 and h∗. This prevents us from using
the above approach. However, as in [3], we can overcome this difficulty through exhaustive
enumeration. Each of q1, . . . , qµ−2 and h∗ takes one of |I| possible values. Thus, by iterating
over all |I|1+µ−2 possible values for q1, . . . , qµ−2 and h∗, and solving the above problem for
each, we can find a solution of value at least 0.385 · f(S∗).

While this approach is useful for our restricted class of instances, due to the use of
exhaustive enumeration it does not scale to general instances, where bin capacities may be
arbitrary. Known techniques ([15]) can be used to reduce the number of unique bin capacities
in a general MKC to be logarithmic in |B|. As enumeration is required for each unique
capacity, this results in |I|Θ(log |B|) iterations, which is non-polynomial.

Fractional Grouping overcomes this hurdle by using a polytope P ⊆ [0, 1]I to represent
an MKC. A grouping Gȳ

1, . . . , Gȳ
τ with τ ≤ µ−2 + 1 is derived from a vector ȳ ∈ P . The

polytope P bears some similarity to configuration linear programs used in previous works
([24, 21, 3]). While P is not solvable, it satisfies an approximate version of solvability which
suffices for our needs.

Fractional grouping satisfies the main properties of the grouping defined for S∗. Each
of the groups contains roughly the same number of fractionally selected items. That is,∑

i∈Gȳ
k

ȳi ≈ µ2|B| for all 1 ≤ k ≤ τ . Furthermore, we show that if ȳ is strictly contained in

8 For a set S ⊆ I we denote w(S) =
∑

i∈S
w(i).
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P then any subset S ⊆ I satisfying (i) |S ∩Gk| ≤ µ|B| for all 1 ≤ k ≤ τ , and (ii) w(S \H)
is sufficiently small, can be packed into strictly less than |B| bins (see the details in Section
2). The existence of a packing for S relies on a shifting argument similar to the one used
above. In this case, however, the structure of the polytope P replaces the role of S∗ in our
discussion.

This suggests the following algorithm. Use the algorithm of [4] to find ȳ ∈ P such that
F (ȳ) ≥ (0.385− ε)f(S∗), and sample a random set R ∼ (1− δ)2ȳ. By the above property, R

can be packed into strictly less than |B| bins with high probability, as E [|R ∩Gk|]≪ µ|B|.
Thus, R can be packed into B using a bin packing algorithm. Standard tools (specifically,
the FKG inequality as used in [11]) can also be used to show that E[f(R)] is arbitrarily close
to F (ȳ). Hence, we can obtain an approximation ratio arbitrarily close to (0.385− ε) while
avoiding enumeration.

This core idea of fractional grouping for bins of uniform capacities can be scaled to obtain
Theorem 1. This scaling involves use of existing techniques for submodoular optimization
([15, 9, 10, 7, 4]), along with a novel block association technique we apply to handle MKCs
with arbitrary bin capacities.

Organization

We present the fractional grouping technique in Section 2. Our algorithms for uniform bin
capacities and the general case are given in Section 3 and 4, respectively. Due to space
constraints, the block association technique and some proofs are omitted. Those appear in
the full version [16].

2 Fractional Grouping

Given an MKC (w, B, W ) over I, a subset of bins K ⊆ B is a block if all the bins in K have
the same capacity. Denote by W ∗

K the capacities of the bins in block K, then W ∗
K = W (b)

for any b ∈ K.
We first define a polytope PK which represents the block K ⊆ B of an MKC (w, B, W ) over

I. To simplify the presentation, we assume the MKC (w, B, W ) and K are fixed throughout
this section. W.l.o.g., assume that I = {1, 2, . . . , n} and w(1) ≥ w(2) ≥ . . . ≥ w(n). A K-
configuration is a subset C ⊆ I of items which fits into a single bin of block K, i.e., w(C) ≤W ∗

K .
We use CK to denote the set of all K-configurations. Formally, CK = {C ⊆ I | w(C) ≤W ∗

K}.

▶ Definition 5. The extended block polytope of K is

P e
K =

ȳ ∈ [0, 1]I , z̄ ∈ [0, 1]CK

∣∣∣∣∣∣∣∣
∑

C∈CK

z̄C ≤ |K|

∀i ∈ I : ȳi ≤
∑

C∈CK s.t. i∈C

z̄C

 (1)

The first constraint in (1) bounds the number of selected configurations by the number of
bins. The second constraint requires that each selected item is (fractionally) covered by a
corresponding set of configurations. It is easy to verify that, for any (ȳ, z̄) ∈ P e

K , it holds
that

∑
i∈I w(i) · ȳi ≤ |K| ·W ∗

K .

▶ Definition 6. The block polytope of K is

PK =
{

ȳ ∈ [0, 1]I | ∃z̄ ∈ [0, 1]CK : (ȳ, z̄) ∈ P e
K

}
. (2)
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41:8 Submodular Optimization with Multiple Knapsack Constraints

While P e
K and PK are defined using an exponential number of variables (as z̄ ∈ [0, 1]CK

and CK is exponential), it follows from standard arguments (see, e.g., [21, 25]) that, for any
c̄ ∈ RI , maxȳ∈PK

c̄ · ȳ can be approximated.

▶ Lemma 7. There is a fully polynomial-time approximation scheme (FPTAS) for the
problem of finding ȳ ∈ PK such that c̄ · ȳ is maximized, given an MKC (w, B, W ), a block
K ⊆ B and a vector c̄ ∈ RI , where PK is the block polytope of K.

A formal proof for Lemma 7 if given in [16]. We say that A : K → 2I is a feasible assignment
for K if w(A(b)) ≤W ∗

K for any b ∈ K. Also, we use 1S = x̄ ∈ {0, 1}I , where x̄i = 1 if i ∈ S

and x̄i = 0 if i ∈ I \ S. The next lemma implies that the definition of P e
K is sound for the

problem.

▶ Lemma 8. Let A be a feasible assignment for K and S =
⋃

b∈K A(b). Then 1S ∈ PK .

The lemma is easily proved, by setting z̄C = 1 if A(b) = C for some b ∈ B, and z̄C = 0
otherwise. We say an item i ∈ I is µ-heavy for µ > 0 (w.r.t K) if W ∗

K ≥ w(i) > µ ·W ∗
K ; i ∈ I

is µ-light if w(i) ≤ µW ∗
K . Denote by HK,µ and LK,µ the sets of µ-heavy items and µ-light

items, respectively.
Given a vector ȳ ∈ PK , we now describe the partition of µ-heavy items into groups

G1, . . . , Gτ , for some τ ≤ µ−2 + 1. Starting with k = 1 and Gk = ∅, add items from HK,µ to
the current group Gk until

∑
i∈Gk

ȳi ≥ µ|K|. Once the constraint is met, mark the index of
the last item in Gk as qk, the µ-pivot of Gk, close Gk and open a new group, Gk+1. Each of
the groups G1, . . . , Gτ−1 represents a fractional selection of ≈ µ|K| heavy items of ȳ. The
last group, Gτ , contains the remaining items in HK,µ, for which the µ-pivot is qmax (last
item in HK,µ). We now define formally the partition process.

▶ Definition 9. Let ȳ ∈ PK and µ ∈
(
0, 1

2
]
. Also, let q0 ∈ {0, 1, . . . , n} and qmax ∈ I such

that HK,µ = {i ∈ I | q0 < i ≤ qmax}. The µ-pivots of ȳ, given by q1, . . . , qτ , are defined
inductively, i.e.,

qk = min

s ∈ HK,µ

∣∣∣∣∣∣
s∑

i=qk−1+1
ȳi ≥ µ · |K|

 .

If the set over which the minimum is taken is empty, let τ = k and qτ = qmax. The µ-grouping
of ȳ consists of the sets G1, . . . , Gτ , where Gk = {i ∈ HK,µ | qk−1 < i ≤ qk} for 1 ≤ k ≤ τ .

Note that in the above definition it may be that q0 ̸= 0 as there may be items i ∈ I for which
w(i) > W ∗

K . Given a polytope P and δ ∈ R, we use the notation δP = {δx̄ | x̄ ∈ P}. The
main properties of fractional grouping are summarized in the next lemma.

▶ Lemma 10 (Fractional Grouping). For any ȳ ∈ PK and 0 < µ < 1
2 there is a polynomial

time algorithm which computes a partition G1, . . . , Gτ of HK,µ with τ ≤ µ−2 + 1 for which
the following hold:
1.

∑
i∈Gk

ȳi ≤ µ · |K|+ 1 for any 1 ≤ k ≤ τ .
2. Let S ⊆ HK,µ ∪LK,µ such that |S ∩Gk| ≤ µ|K| for every 1 ≤ k ≤ τ , and w(S ∩LK,µ) ≤∑

i∈LK,µ
ȳi · w(i) + λ ·W ∗

K for some λ ≥ 0. Also, assume ȳ ∈ (1− δ)PK for some δ ≥ 0.
Then S can be packed into (1− δ + 3µ)|K|+ 4 · 4µ−2 + 2λ bins of capacity W ∗

K .
We refer to G1, . . . , Gτ as the µ-grouping of ȳ.
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Proof. It follows from Definition 9 that G1, . . . , Gτ can be computed in polynomial time.
Also,

∑
i∈Gτ

ȳi < µ · |K| and

∀1 ≤ k < τ : µ · |K| ≤
∑

i∈Gk

ȳi ≤ µ · |K|+ 1. (3)

Furthermore, τ ≤ µ−2 + 1. Thus, it remains to show Property 2 in the lemma.
Define the type of a configuration C ∈ CK , denoted by type(C), as the vector T ∈ Nτ with

Tk = |C ∩Gk|. Let T = {type(C) | C ∈ CK} be the set of all types. Given a type T ∈ T ,
consider a set of items Q ⊆ HK,µ \G1, such that |Q ∩Gk| ≤ Tk−1 for any 2 ≤ k ≤ τ , then
w(Q) ≤ W ∗

K . This is true since we assume the items in HK,µ are sorted in non-increasing
order by weights. We use this key property to construct a packing for S.

We note that
∑τ

k=1 |C ∩ Gk| < µ−1 for any C ∈ CK (otherwise w(C) > W ∗
K , as

Gk ⊆ HK,µ). It follows that |T | ≤ 4µ−2 . Indeed, the number of types is bounded by the
number of different non-negative integer τ -tuples whose sum is at most µ−1.

By Definition 5, there exists z̄ ∈ [0, 1]CK such that (ȳ, z̄) ∈ (1 − δ)P e
K . For T ∈ T , let

η(T ) =
∑

C∈CK s.t. type(C)=T z̄C . Then, for any 1 ≤ k ≤ τ − 1, we have

µ|K| ≤
∑

i∈Gk

ȳi ≤
∑

i∈Gk

∑
C∈Ck s.t. i∈C

z̄C =
∑

C∈CK

|Gk ∩ C|z̄C =
∑
T ∈T

Tk · η(T ) (4)

The first inequality follows from (3). The second inequality follows from (1). The two
equalities follow by rearranging the terms.

Using z̄ (through the values of η(T )) we define an assignment of S ∩ (G2 ∪ . . . ∪Gτ ) to
η =

∑
T ∈T ⌈η(T )⌉ bins. We initialize η sets (bins) A1, . . . , Aη = ∅ and associate a type with

each set Ab, such that there are ⌈η(T )⌉ sets associated with the type T ∈ T , using a function
R. That is, let R : {1, 2, . . . , η} → T such that |R−1(T )| = ⌈η(T )⌉. We assign the items in
S ∩ (G2 ∪ . . .∪Gτ ) to A1, . . . , Aη while ensuring that |Ab ∩Gk| ≤ R(b)k−1 for any 1 ≤ b ≤ η

and 2 ≤ k ≤ τ . In other words, the number of items assigned to Ab from Gk is at most
the number of items from Gk−1 in the configuration type T assigned to bin b by R. The
assignment is obtained as follows. For every 2 ≤ k ≤ τ , iterate over the items i ∈ S ∩Gk,
find 1 ≤ b ≤ η such that |Ab ∩Gk| < R(b)k−1 and set Ab ← Ab ∪{i}. It follows from (4) and
the conditions of the lemma that such b will always be found.

Upon completion of the process, we have that S ∩ (G2 ∪ . . . ∪Gτ ) = A1 ∪ . . . ∪ Aη.
Furthermore, for every 1 ≤ b ≤ η, there are C ∈ CK and T ∈ T such that type(C) = T = R(b).
Since Ab ⊆ G2 ∪ . . . ∪Gτ , we have

w(Ab) =
τ∑

k=2
w(Ab∩Gk) ≤

τ∑
k=2

Tk−1 ·w(qk−1) =
τ∑

k=2
|C∩Gk−1| ·w(qk−1) ≤

∑
i∈C

w(i) ≤W ∗
K .

The first inequality holds since w(qk−1) ≥ w(i) for every i ∈ Gk, and the second holds since
w(qk−1) ≤ w(i) for every i ∈ Gk−1. By similar arguments, for every 2 ≤ k ≤ τ , we have

w(S∩Gk) ≤ |S∩Gk| ·w(qk−1) ≤ µ|K| ·w(qk−1) ≤
∑

i∈Gk−1

ȳi ·w(qk−1) ≤
∑

i∈Gk−1

ȳi ·w(i). (5)

The third inequality is due to (3). Using (5) and the conditions in the lemma,

w (S \G1) = w(S ∩ LK,µ) +
τ∑

k=2
w(S ∩Gk) ≤

∑
i∈LK,µ

ȳiw(i) + λW ∗
K +

τ−1∑
k=1

∑
i∈Gk

ȳiw(i)

≤
∑
i∈I

ȳi · w(i) + λW ∗
K ≤ (1− δ)W ∗

K · |K|+ λW ∗
K .

(6)
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We use First-Fit (see, e.g., Chapter 9 in [39]) to add the items in S ∩ LK,µ to the
sets (=bins) A1, . . . , Aη while maintaining the capacity constraint, w(Ab) ≤W ∗

K . First-Fit
iterates over the items i ∈ S∩LK,µ and searches for a minimal b such that w(Ab∪{i}) ≤W ∗

K .
If such b exists, First-Fit updates Ab ← Ab ∪ {i}; otherwise, it adds a new bin with i as
its content. Let η′ be the number of bins by the end of the process. As w(i) ≤ µW ∗

K for
i ∈ S∩LK,µ, and due to (6), it holds that η′ ≤ max{η, (|K|(1− δ) + λ) (1+2µ)+1}. Finally,

η =
∑
T ∈T
⌈η(T )⌉ ≤ |T |+

∑
T ∈T

η(T ) ≤ 4µ−2
+

∑
C∈CK

z̄C ≤ 4µ−2
+ (1− δ)|K|.

Thus, there is a packing of S \G1 into at most (1− δ)|K|+ 4µ−2 + 1 + 2µ|K|+ 2λ bins of
capacity W ∗

K . Since |S ∩G1| ≤ µ|K|, each of the items in S ∩G1 can be packed into a bin
of its own. This yields a packing using at most (1− δ + 3µ)|K|+ 4 · 4µ−2 + 2λ bins. ◀

3 Uniform Capacities

In this section we apply fractional grouping (as stated in Lemma 10) to solve the Monotone
Submodular Multiple Knapsack Problem with Uniform Capacities (USMKP). An instance of
the problem consists of an MKC (w, B, W ) over a set I of items, such that W ∗

B = W (b) for
all b ∈ B, and a submodular function f : 2I → R≥0. For simplicity, we associate a solution
for the problem with a feasible assignment A : B → 2I . Then, the set of assigned items is
given by S =

⋃
b∈B A(b).

Our algorithm for USMKP instances applies Pipage Rounding [1, 6]. The input for a
Pipage Rounding step is a (fractional) solution x̄ ∈ [0, 1]I , and two items i1, i2 ∈ I with
costs c1, c2 ≥ 0. The Pipage Rounding step returns a new random solution x̄′ ∈ [0, 1]I such
that x̄′

i = x̄i for i ∈ I \ {i1, i2}, x̄i1 · c1 + x̄i2 · c2 = x̄′
i1
· c1 + x̄′

i2
· c2, and either x̄′

i1
∈ {0, 1}

or x̄′
i2
∈ {0, 1}. Furthermore, for any submodular function f : 2I → R≥0 it holds that

E [F (x̄′)] ≥ F (x̄), where F is the multilinear exetension of f . Algorithm 1 calls a subroutine
Pipage(x̄, f, G, c̄), which can be implemented by an iterative application of Pipage Rounding
steps as long as x̄ contains two fractional entries, and randomly sampling the last remaining
fractional entry. The properties of Pipage are summarized in the next result.

▶ Lemma 11. There is a polynomial time procedure Pipage(x̄, f, G, c̄) for which the following
holds. Given x̄ ∈ [0, 1]I , a submodular function f : 2I → R≥0, a subset of items G ⊆ I and
a cost vector for the items c̄ ∈ RG

≥0, the procedure returns a random vector x̄′ ∈ [0, 1]I such
that E [F (x̄′)] ≥ F (x̄), x̄′

i ∈ {0, 1} for i ∈ G, x̄′
i = x̄i for all i ∈ I \ G, and there is i∗ ∈ G

such that
∑

i∈G x̄′
i · ci ≤ ci∗ +

∑
i∈G x̄i · ci.

To solve USMKP instances, our algorithm initially finds ȳ ∈ PB , where PB is the block
polytope of B (note that B is a block in this case), for which F (ȳ) is large (F is the multilinear
extension of the value function f). The algorithm chooses a small value for µ and uses
G1, . . . , Gτ , the µ-grouping of (1 − 4µ)ȳ, to guide the rounding process. Pipage rounding
is used to convert (1− 4µ) · ȳ to S ⊆ I while preserving the number of selected items from
each group as ≈ µ|B|, and the total weight of items selected from LB,µ (i.e., µ-light items)
as ≈ (1− 4µ) ·

∑
i∈LB,µ

ȳi · w(i). An approximation algorithm for bin packing is then used
to find a packing of S to the bins. Lemma 10 ensures the resulting packing uses at most
|B| bins for sufficiently large B. In case the packing requires more than |B| bins we simply
assume the algorithm returns an empty solution. We give the pseudocode in Algorithm 1.

▶ Lemma 12. Algorithm 1 yields a
(

1− e−1 −O
(

(log |B|)− 1
4
))

-approximation for USMKP.
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Algorithm 1 Submodular Multiple Knapsack with Uniform Capacities.

Input: An MKC (w, B, W ) over I with uniform capacities. A submodular function
f : 2I → R≥0.

1 Find an approximate solution ȳ ∈ PB for maxȳ∈PB
F (ȳ), where PB is the block

polytope of B, and F is the multilinear extension of f .
2 Choose µ = min

{
(log |B|)− 1

4 , 1
2

}
.

3 Set ȳ0 ← (1− 4µ)ȳ. and let G1, . . . , Gτ be the µ-grouping of ȳ0.
4 for k = 1, 2, . . . , τ do ȳk ← Pipage

(
ȳk−1, f, Gk, 1̄

)
.

5 ȳ′ = Pipage
(

ȳτ , f, LB,µ, (w(i))i∈LB,µ

)
.

6 Let S = {i ∈ I | ȳ′
i = 1}.

7 Pack the items in S into B using a bin packing algorithm. Return the resulting
assignment.

Proof. Let A∗ be an optimal solution for the input instance, and OPT = f
(⋃

b∈B A∗(b)
)

its
value. By Lemma 8, 1⋃

b∈B
A∗(b) ∈ PB. Let c = 1− e−1. By using the algorithm of [7] we

have that F (ȳ) ≥
(

c− 1
|I|

)
·OPT (ȳ is defined in Step 1 of Algorithm 1). The algorithm of [7]

is used with the FPTAS of Lemma 7 as an oracle for solving linear optimization problems
over PB. We note that a

(
c− 1

|I|

)
-approximate solution can be obtained even when the

algorithm is only given an FPTAS (and not an exact solver) for linear optimization problems
over the polytope.

Since the multilinear extension has negative second derivatives [7], it follows that F (ȳ0) ≥
(1− 4µ) ·

(
c− 1

|I|

)
·OPT. Now, consider the vector ȳ′ output in Step 5 of the algorithm. By

Lemma 11, it follows that E [F (ȳ′)] ≥ F (ȳ0) ≥ (1−4µ)·
(

c− 1
|I|

)
·OPT, and ȳ′ ∈ {0, 1}I (note

that ȳ′
i = ȳi = 0 for any i with w(i) > W ∗

B due to (1)). Thus, for the set S defined in Step 6 of
the algorithm, we have E [f(S)] ≥ (1− 4µ) ·

(
c− 1

|I|

)
·OPT ≥

(
c−O

(
(log |B|)− 1

4
))
·OPT

(observe we may assume w.l.o.g that |I| ≥ |B|).
To complete the proof, it remains to show that the bin packing algorithm in Step 7

packs all items in S into the bins B. By Lemma 11, for any 1 ≤ k ≤ τ , it holds that
|S∩Gk| =

∑
i∈Gk

ȳ′
i ≤ 1+

∑
i∈Gk

ȳ0
i ≤ µ · |B|+2 (the last inequality follows from Lemma 10).

Similarly, there is i∗ ∈ LB,µ such that

w(S ∩ LB,µ) =
∑

i∈LB,µ

ȳ′
i · w(i) ≤ w(i∗) +

∑
i∈LB,µ

ȳ0
i · w(i) ≤ µ ·W ∗

B +
∑

i∈LB,µ

ȳ0
i · w(i).

To meet the conditions of Lemma 10, we need to remove (up to) two items from each group,
i.e., S ∩Gk, for 1 ≤ k ≤ τ . Let R ⊆ S be a minimal subset such that |(S \R) ∩Gk| ≤ µ|B|
for all 1 ≤ k ≤ τ . By the above we have that |R| ≤ 2 · τ ≤ 2 · (µ−2 + 1). Therefore, S \ R

satisfies the conditions of Lemma 10. Hence, by taking δ = 4µ and λ = µ, the items in S \R

can be packed into (1− µ)|B|+ 4 · 4µ−2 + 2µ bins. By using an additional bin for each item
in R, and assuming |B| is large enough, the items in S can be packed into

(1− µ)|B|+ 4 · 4µ−2
+ 2µ + 2 · (µ−2 + 1) ≤ |B| − |B|

(log |B|)
1
4

+ 5 · 4
√

log |B| + 3 ≤ |B|

bins of capacity W ∗
B. Recall that the algorithm of [25] returns a packing in at most

OPT + O(log2 OPT) bins. Thus, for large enough |B|, the number of bins used in Step 7 of
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Algorithm 1 is at most

|B| − |B|
(log |B|)

1
4

+ 5 · 4
√

log |B| + O(log2 |B|) ≤ |B|.

Finally, we note that Algorithm 1 can be implemented in polynomial time. ◀

4 Approximation Algorithm

In this section we present our algorithm for general instances of d-MKCP, which gives the
result in Theorem 1. In designing the algorithm, a key observation is that we can restrict our
attention to d-MKCP instances of certain structure, with other crucial properties satisfied
by the objective function. For the structure, we assume the bins are partitioned into levels
by capacities, using the following definition of [15].

▶ Definition 13. For any N ∈ N, a set of bins B and capacities W : B → R≥0, a partition
(Kj)ℓ

j=0 of B is N -leveled if, for all 0 ≤ j ≤ ℓ, Kj is a block and |Kj | = N⌊
j

N2 ⌋. We say
that B and W are N -leveled if such a partition exists.

For N, ξ ∈ N, (N, ξ)-restricted d-MKCP is the special case of d-MKCP in which for
any instance R =

(
I, (wt, Bt, Wt)d

t=1 , I, f
)

it holds that Bt and Wt are N -leveled for all
1 ≤ t ≤ d, and f({i}) − f(∅) ≤ OPT

ξ for any i ∈ I, where OPT is the value of an optimal
solution for the instance. We assume the input for (N, ξ)-restricted d-MKCP includes the
N -leveled partition (Kt

j)ℓt
j=0 of Bt for all 1 ≤ t ≤ d. Combining standard enumeration with

the structuring technique of [15], we derive the next result.

▶ Lemma 14. For any N, ξ, d ∈ N and c ∈ [0, 1], a polynomial time c-approximation for
modular/ monotone/ non-monotone (N, ξ)-restricted d-MKCP with a matroid/ matroid
intersection/ matching/ no additional constraint implies a polynomial time c ·

(
1− d

N

)
-

approximation for d-MKCP, with the same type of function and same type of additional
constraint.

The proof of the lemma is given in [16].
Our algorithm for (N, ξ)-restricted d-MKCP associates a polytope with each instance.

To this end, we first generalize the definition of a block polytope (Definition 6) to represent
an MKC. We then use it to define a polytope for the whole instance.

▶ Definition 15. For γ > 0, the extended γ-partition polytope of an MKC (w, B, W ) and the
partition (Kj)ℓ

j=0 of B to blocks is

P e =

(x̄, ȳ0, . . . , ȳℓ)

∣∣∣∣∣∣∣∣∣
x̄ ∈ [0, 1]I∑ℓ

j=0 ȳj = x̄

ȳj ∈ PKj
∀0 ≤ j ≤ ℓ

ȳj
i = 0 ∀0 ≤ j ≤ ℓ, |Kj | = 1, i ∈ I \ LKj ,γ

 (7)

where PKj
is the block polytope of Kj, and LKj ,γ is the set of γ-light items of Kj. The

γ-partition polytope of (w, B, W ) and (Kj)ℓ
j=0 is

P =
{

x̄ ∈ [0, 1]I
∣∣ ∃ȳ0, . . . ȳℓ ∈ [0, 1]I s.t. (x̄, ȳ0, . . . , ȳℓ) ∈ P e

}
(8)
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The last constraint in (7) forbids the assignment of γ-heavy items to blocks of a single bin.
This technical requirement is used to show a concentration bound.

Finally, the γ-instance polytope of
(

I, (wt, Bt, Wt)d
t=1 , I, f

)
and a partition

(
Kt

j

)ℓt

j=0 of

Bt to blocks, for 1 ≤ t ≤ d, is P = P (I) ∩
(⋂d

t=1 Pt

)
, where P (I) is the convex hull of I

and Pt is the γ-partition polytope of (wt, Bt, Wt) and
(
Kt

j

)ℓt

j=0. In the instance polytope
optimization problem, we are given a d-MKCP instance R with a partition of the bins to
blocks for each MKC, c̄ ∈ RI and γ > 0. The objective is to find x̄ ∈ P such that x̄ · c̄ is
maximized, where P is the γ-instance polytope of R. While the problem cannot be solved
exactly, it admits an FPTAS.

▶ Lemma 16. There is an FPTAS for the instance polytope optimization problem.

The lemma follows from known techniques for approximating an exponential size linear
program using an approximate separation oracle for the dual program. The full proof appears
in [16].

The next lemma asserts that the γ-instance polytope provides an approximate represent-
ation for the instance as a polytope.

▶ Lemma 17. Given an (N, ξ)-restricted d-MKCP instance R with objective function f , let
S, (At)d

t=1 be an optimal solution for R and γ > 0. Then there is S′ ⊆ S such that 1S′ ∈ P

and f(S′) ≥
(

1− N2·d
ξ·γ

)
f(S), where P is the γ-instance polytope of R.

Lemma 17 is proved constructively by removing the γ-heavy items assigned to blocks of a
single bin in At, for 1 ≤ t ≤ d. The full proof appears in [16].

Recall that F is the multiliear extension of the objective function f . Our algorithm
finds a vector x̄ in the instance polytope for which F (x) approximates the optimum. The
fractional solution x̄ is then rounded to an integral solution. Initially, a random set R ∈ I is
sampled, with Pr(i ∈ R) = (1− δ)2x̄i.9 The technique by which R is sampled depends on I.
If I = 2I then R is sampled according to x̄, i.e., R ∼ (1− δ)2x̄ (as defined in Section 1.3). If
I is a matroid constraint, the sampling of [9] is used. Finally, if I is a matroid intersection,
or a matching constraint, then the dependent rounding technique of [10] is used. Each of the
distributions admits a Chernoff-like concentration bound. These bounds are central to our
proof of correctness. We refer to the above operation as sampling R by x̄, δ and I.

Given the set R, the algorithm proceeds to a purging step. While this step does not
affect the content of R if f is monotone, it is critical in the non-monotone case. Given a
submodular function f : 2I → R, we define a purging function ηf : 2I → 2I as follows. Fix
an arbitrary order over I (which is independent of S), initialize J = ∅ and iterate over the
items in S by their order in I. For an item i ∈ S, if f(J ∪ {i})− f(J) ≥ 0 then J ← J ∪ {i};
else, continue to the next item. Now, ηf (S) = J , where J is the set at the end of the process.
The purging function was introduced in [11] and is used here similarly in conjunction with
the FKG inequality.

While the above sampling and purging steps can be used to select a set of items for the
solution, they do not determine how these items are assigned to the bins. We now show that
it suffices to associate the selected items with blocks and then use a Bin Packing algorithm
for finding their assignment to the bins in the blocks, as in Algorithm 1.

Intuitively, we would like to associate a subset of items It
j with a block Kt

j in a way that
enables to assign the items in It

j ∩ R to |Kt
j | bins, for 1 ≤ t ≤ d and 1 ≤ j ≤ ℓt. Consider

two cases. If |Kt
j | > 1 then we ensure It

j ∩R satisfies conditions that allow using Fractional

9 Recall that I is the additional constraint.
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Grouping (see Lemma 10). On the other hand, if |Kt
j | = 1, it suffices to require that R ∩ It

j

adheres to the capacity constraint of this bin. Such a partition (It
j)ℓt

j=0 of supp(x̄) can be
computed for each of the MKCs. We refer to this partition as the Block Association of a point
in the γ-partition polytope and µ, on which the partition depends. The formal definition of
block association and its properties can be found in [16].

We proceed to analyze our algorithm (see the pseudocode in Algorithm 2).

Algorithm 2 (N, ξ)-restricted d-MKCP.

Input: An (N, ξ)-restricted d-MKCP instance R defined by(
I, (wt, Bt, Wt)d

t=1 , I, f
)

and (Kt
j)ℓt

j=0, the N -leveled partition of Bt for
1 ≤ t ≤ d.

Configuration : γ > 0, δ > 0, N ∈ N, ξ ∈ N,
1 Optimize F (x̄) with x̄ ∈ P , where P is the γ-instance polytope of R, and F is the

multilinear extension of f .
2 Let R be a random set sampled by x̄, δ and I. Define J = ηf (R) (ηf is the purging

function).
3 Let ȳt,0, . . . , ȳt,ℓt ∈ [0, 1]I such that (x̄, ȳt,0, . . . , ȳt,ℓt) ∈ P e

t , where P e
t is the extended

γ-partition polytope of (wt, Bt, Wt) and the partition (Kt
j)ℓt

j=0, for 1 ≤ t ≤ d.
4 Find the block association (It

j)ℓt
j=0 of (1− δ)(x̄, ȳt,0, . . . , ȳt,ℓt) and µ = δ

4 for
1 ≤ t ≤ d.

5 Pack the items of J ∩ It
j into the bins of Kt

j using an algorithm for bin packing if
|Kt

j | > 1, or simply assign J ∩ It
j to Kt

j otherwise .
6 Return J and the resulting assignment if the previous step succeeded; otherwise,

return an empty set and an empty packing.

▶ Lemma 18. For any d ∈ N, ε > 0 and M > 0, there are parameters N ∈ N satisfying
N > M , ξ ∈ N, γ > 0 and δ > 0 such that Algorithm 2 is a randomized (c−ε)-approximation
for (N, ξ)-restricted d-MKCP, where c = 1 for modular instances with any type of additional
constraint, c = 1− e−1 for monotone instances with a matroid constraint, and c = 0.385 for
non-monotone instances with no additional constraint.

A formal proof of the lemma appears in [16]. Theorem 1 follows immediately from Lemmas
18 and 14.
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Abstract
Differentially private algorithms protect individuals in data analysis scenarios by ensuring that
there is only a weak correlation between the existence of the user in the data and the result of the
analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an
evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output
the value of the solution after each update operation, i.e., continuously. We study (event-level
and user-level) differentially private algorithms for graph problems under continual observation,
i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for
partially dynamic counting-based problems such as triangle count that improve the additive error
by a polynomial factor (in the length T of the update sequence) on the state of the art, resulting in
the first algorithms with additive error polylogarithmic in T .

We also give ε-differentially private and partially dynamic algorithms for minimum spanning tree,
minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST
algorithm is O(W log3/2 T/ε), where W is the maximum weight of any edge, which, as we show, is
tight up to a (

√
log T /ε)-factor. For the other problems, we present a partially-dynamic algorithm

with multiplicative error (1+β) for any constant β > 0 and additive error O(W log(nW ) log(T )/(εβ)).
Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level
privacy must be linear in the value of the output solution’s range.
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1 Introduction

Differential privacy aims to protect individuals whose data becomes part of an increasing
number of data sets and is subject to analysis. A differentially private algorithm guarantees
that its output depends only very little on an individual’s contribution to the input data.
Roughly speaking, an algorithm is ϵ-differentially private if the probability that it outputs O

on data set D is at most an eϵ-factor of the probability that it outputs O on any adjacent
data set D′. Two data sets are adjacent if they differ only in the data of a single user.
Differential privacy was introduced in the setting of databases [9, 11], where users (entities)
are typically represented by rows and data is recorded in columns. An important notion
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that allowed for the development of generic techniques and tools (like the Laplace and the
exponential mechanism) is the sensitivity of a function f : the static sensitivity ρ of f is
the maximum |f(D) − f(D′)| over all adjacent pairs D, D′. Differential privacy was later
generalized to a more challenging setting, where data evolves over time [12, 6]: a differentially
private algorithm under continual observation must provide the same privacy guarantees as
before, but for a sequence (or stream) of data sets instead of just a single data set. Often,
this sequence results from updates to the original data set that arrive over time. In this
setting, the presence or absence of a single user in one update can affect the algorithm’s
output on all future data sets, i.e., two adjacent databases can differ on all future outputs
and, thus, have infinite sensitivity.

In this paper, we study differentially private graph algorithms under continual observation,
i.e., for dynamic graph problems. The input is a sequence of graphs that results from node
or edge updates, i.e., insertions or deletions. Partially dynamic algorithms only allow either
insertions or deletions, fully dynamic algorithms allow both. After each update, the algorithm
has to output a solution for the current input, i.e., the algorithm outputs a sequence of
answers that is equally long as the input sequence. For differentially private graph algorithms
two notions of adjacency of graph sequences exist: node-adjacency and edge-adjacency. Two
graph sequences are edge-adjacent if they only differ in a single insertion or deletion of an
edge. Similarly, two graph sequences are node-adjacent if they only differ in an insertion or
deletion of a node.1

We initiate the study of differentially private algorithms for non-local partially dynamic
graph problems. We consider a problem non-local if its (optimum) value cannot be derived
from the graph’s frequency histogram of constant-size subgraphs and call it local otherwise.
Non-local problems include the cost of the minimum spanning tree, the weight of the global
and s-t minimum cut, and the density of the densest subgraph. We also give improved
algorithms for local graph problems and show various lower bounds on the additive error for
differentially private dynamic graph algorithms.

Local problems. The only prior work on differentially private dynamic algorithms is an
algorithm by Song et al. [29] for various local graph problems such as counting high-degree
nodes, triangles and other constant-size subgraphs. We present an algorithm for these local
problems that improves the additive error by a factor of

√
T/ log3/2 T , where T is the length of

the update sequence. We also give the first differentially private partially-dynamic algorithm
for the value of the minimum spanning tree. Table 1 lists upper and lower bounds for these
results, where n is the number of nodes in the graph, W is the maximum edge weight (if
applicable), D is the maximum node degree, ϵ is an arbitrarily small positive constant, and δ

is the failure probability of the algorithm. We state below our main contributions in more
detail. The update time of all our algorithms is linear in log T plus the time needed to solve
the corresponding non-differentially private dynamic graph problem.

▶ Theorem 1 (see Section 3). Let ε, δ > 0. There exist an ε-edge-differentially as well as an
ε-node-differentially private algorithm for partially-dynamic minimum spanning tree, edge
count, the number of high-degree nodes, the degree histogram, triangle count and k-star count
that with probability at least 1− δ give an answer with additive error as shown in Table 1.

1 Of course, a graph can also be represented by a database, where, e.g., every row corresponds to an edge,
but as we present algorithms that solve graph algorithmic problems we use the graph-based terminology
through the paper.
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Table 1 Additive errors for partially-dynamic ε-differentially private algorithms with failure
probability δ. We use D for the maximum degree and W for the maximum edge weight, n for the
maximum number of nodes of any graph in the input sequence, and Λ = log(1/δ)/ε. The upper
bounds follow from Corollary 13 and Table 3 on page 11. See Section 5 for results on event-level
lower bounds and Section 6 for user-level lower bounds.

Graph function partially dynamic fully dynamic
edge-adj. node-adj. edge-adj. edge-adj.

event-level event-level event-level user-level

min. spanning tree Ω(W log T ),
O(W log3/2 T · Λ)

Ω(W log T ),
O(DW log3/2 T · Λ)

Ω(W log T ) Ω(nW )

min. cut,
max. matching

Ω(W log T ) Ω(W log T ) Ω(W log T ) Ω(nW )

edge count Ω(log T ),
O(log3/2 T · Λ)

Ω(log T ),
O(D log3/2 T · Λ)

Ω(log T ),
O(log3/2 T · Λ)

Ω(n2)

high-degree nodes Ω(log T ),
O(log3/2 T · Λ))

Ω(log T ),
O(D log3/2 T · Λ)

Ω(log T ) Ω(n)

degree histogram Ω(log T ),
O(D log3/2 T · Λ))

Ω(log T ),
O(D2 log3/2 T · Λ)

Ω(log T ) Ω(n)

triangle count Ω(log T ),
O(D log3/2 T · Λ))

Ω(log T ),
O(D2 log3/2 T · Λ)

Ω(log T ) Ω(n3)

k-star count Ω(log T ),
O(Dk log3/2 T · Λ)

Ω(log T ),
O(Dk log3/2 T · Λ)

Ω(log T ) Ω(nk+1)

Non-local problems. For non-local problems we present an algorithm that, by allowing
a small multiplicative error, can obtain differentially private partially dynamic algorithms
for a broad class of problems that includes the aforementioned problems. Table 2 lists our
results for some common graph problems. The algorithm achieves the following performance.

▶ Theorem 2 (see Theorem 16). Let ε, β, δ, r > 0 and let f be a function with range
[1, r] that is monotone on all input sequences and has sensitivity ρ. There exists an ε-
differentially private dynamic algorithm with multiplicative error (1 + β), additive error
O(ρ log(r) log(T )/ log(1 + δ)) and failure probability δ that computes f .

Note that for partially dynamic graph algorithms it holds that T = O(n2). Thus for local
problems the bounds presented in Table 1 are superior to the bounds in Table 2.

Lower bounds. We complement these upper bounds by also giving some lower bounds
on the additive error of any differentially private dynamic graph algorithm. For the problems
in Table 1 we show lower bounds of Ω(W log T ), resp. Ω(log T ). Note that these lower bounds
apply to the partially dynamic as well as to the fully dynamic setting.

The above notion of differential privacy is also known as event-level differential privacy,
where two graph sequences differ in at most one “event”, i.e., one update operation. A more
challenging notion is user-level differential privacy. Two graph sequences are edge-adjacent
on user-level if they differ in any number of updates for a single edge (as opposed to one
update for a single edge in the case of the former event-level adjacency). Note that requiring
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Table 2 Private algorithms with failure probability δ with additional multiplicative error of
(1 + β) for arbitrary β > 0. We use Λ = 1/(εδ log(1 + β)), D for the maximum degree, W for the
maximum edge weight and n for the maximum number of nodes of any graph in the input sequence.

Graph function partially dynamic, event-level
edge-adjacency node-adjacency

minimum cut O(W log(nW ) log(T ) · Λ) O(DW log(nW ) log(T ) · Λ)
densest subgraph O(log(n) log(T ) · Λ) O(log(n) log(T ) · Λ)
minimum s, t-cut O(W log(nW ) log(T ) · Λ) O(DW log(nW ) log(T ) · Λ)
maximum matching O(W log(nW ) log(T ) · Λ) O(W log(nW ) log(T ) · Λ)

user-level edge-differential privacy is a more stringent requirement on the algorithm than
event-level edge-differential privacy.2 We show strong lower bounds for edge-differentially
private algorithms on user-level for a broad class of dynamic graph problems.

▶ Theorem 3 (informal, see Theorem 19). Let f be a function on graphs, and let G1, G2
be arbitrary graphs. There exists a T ≥ 1 so that any ε-edge-differentially private dynamic
algorithm on user-level that computes f must have additive error Ω(|f(G1) − f(G2)|) on
input sequences of length at least T .

This theorem leads to the lower bounds for fully dynamic algorithms stated in Table 1.

Technical contribution. Local problems. Our algorithms for local problems (Theorem 1)
incorporate a counting scheme by Chan et al. [6] and the difference sequence technique by
Song et al. [29]. The difference sequence technique addresses the problem that two adjacent
graphs might differ on all outputs starting from the point in the update sequence where their
inputs differ. More formally, let fG(t) be the output of the algorithm after operation t in
the graph sequence G. Then the continuous global sensitivity

∑T
t=1 |fG(t)− fG′((t)| might be

Θ(ρT ). Using the “standard” Laplacian mechanism for such a large sensitivity would, thus,
lead to an additive error linear in T . The idea of [29] is to use instead the difference sequence
of f defined as ∆f(t) = f(t)−f(t−1), as they observed that for various local graph properties
the continuous global sensitivity of the difference sequence, i.e.,

∑T
t=1 |∆fG(t)−∆fG′((t)|

can be bounded by a function independent of T . However, their resulting partially-dynamic
algorithms still have an additive error linear in

√
T . We show how to combine the continuous

global sensitivity of the difference sequence with the binary counting scheme of Chan et
al. [6] to achieve partially-dynamic algorithms with additive error linear in log3/2 T .

Furthermore we show that the approach based on the continuous global sensitivity of the
difference sequence fails, if the presence or absence of a node or edge can significantly change
the target function’s value for all of the subsequent graphs. In particular, we show that for
several graph problems like minimum cut and maximum matching changes in the function
value between adjacent graph sequences can occur at every time step even for partially
dynamic sequences, resulting in a continuous global sensitivity of the difference sequence
that is linear in T . This implies that this technique cannot be used to achieve differentially
private dynamic algorithms for these problems.

Non-local problems. We leverage the fact that the sparse vector technique [13] provides
negative answers to threshold queries with little effect on the additive error to approximate
monotone functions f on graphs under continual observation (e.g., the minimum cut value

2 Node-adjacency on user-level is defined accordingly but not studied in this paper.
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in an incremental graph) with multiplicative error (1 + β): If r is the maximum value of
f , we choose thresholds (1 + β), . . . , (1 + β)log1+β(r) for the queries. This results in at most
log1+β(r) positive answers, which affect the additive error linearly, while the at most T

negative answers affect the additive error only logarithmically instead of linearly.
Lower bounds. Dwork et al. [12] had given a lower bound for counting in binary streams.

We reduce this problem to partially dynamic graph problems on the event-level to achieve
the event-level lower bounds.

For the user-level lower bounds we assume by contradiction that an ϵ-differentially
private dynamic algorithm A with “small” additive error exists and construct an exponential
number of graph sequences that are all user-level “edge-close” to a simple graph sequence G′.
Furthermore any two such graph sequences have at least one position with two very different
graphs such that A (due to its small additive error) must return two different outputs at this
position, which leads to two different output sequences if A answers within its error bound.
Let Oi be the set of accurate output sequences of A on one of the graph sequences Gi. By
the previous condition Oi ∩Oj = ∅ if i ̸= j. As Gi is “edge-close” to G′, there is a relatively
large probability (depending on the degree of “closeness”) that Oi is output when A runs
on G′. This holds for all i. However, since Oi ∩ Oj = ∅ if i ̸= j and we have constructed
exponentially many graph sequences Gi, the sum of these probabilities over all i adds up to
a value larger than 1, which gives a contradiction. The proof is based on ideas of a lower
bound proof for databases in [12].

All missing proofs can be found in the full version of the paper at http://arxiv.org/
abs/2106.14756.

Related Work. Differential privacy, developed in [9, 11], is the de facto gold standard of
privacy definitions and several lines of research have since been investigated [2, 25, 20, 10, 16, 4].
In particular, differentially private algorithms for the release of various graph statistics such as
subgraph counts [19, 3, 7, 21, 32], degree distributions [18, 8, 33], minimum spanning tree [26],
spectral properties [31, 1], cut problems [16, 1, 14], and parameter estimation for special
classes of graphs [23] have been proposed. Dwork et al. [12] and Chan et al. [6] extended the
analysis of differentially private algorithms to the regime of continual observation, i.e., to
input that evolves over time. Since many data sets in applications are evolving data sets,
this has lead to results for several problems motivated by practice [5, 22, 27, 15, 30]. Only
one prior work analyzes evolving graphs: Song et al. [29] study problems in incremental
bounded-degree graphs that are functions of local neighborhoods. Our results improve all
bounds for undirected graphs initially established in [29] by a factor of

√
T/ log3/2 T in the

additive error.

2 Preliminaries

2.1 Graphs and Graph Sequences
We consider undirected graphs G = (V, E), which change dynamically. Graphs may be
edge-weighted, in which case G = (V, E, w), where w : E → N. The evolution of a graph
is described by a graph sequence G = (G1, G2, . . . ), where Gt = (Vt, Et) is derived from
Gt−1 by applying updates, i.e., inserting or deleting nodes or edges. We denote by |G|
the length of G, i.e., the number of graphs in the sequence. At time t we delete a set of
nodes ∂V −

t along with the corresponding edges ∂E−
t and insert a set of nodes ∂V +

t and
edges ∂E+

t . More formally, Vt = (Vt−1 \ ∂V −
t ) ∪ ∂V +

t and Et = (Et−1 \ ∂E−
t ) ∪ ∂E+

t , with
initial node and edge sets V0, E0, which may be non-empty. If a node v is deleted, then
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all incident edges are deleted at the same time, i.e., if v ∈ ∂V −
t , then (u, v) ∈ ∂E−

t for all
(u, v) ∈ Et−1. Both endpoints of an edge inserted at time t need to be in the graph at time t,
i.e., ∂E+

t ⊆ ((Vt−1 \∂V −
t )∪∂V +

t )×((Vt−1 \∂V −
t )∪∂V +

t ). The tuple (∂V +
t , ∂V −

t , ∂E+
t , ∂E−

t )
is the update at time t. For any graph G and any update u, let G ⊕ u be the graph that
results from applying u on G.

A graph sequence is incremental if ∂E−
t = ∂V −

t = ∅ at all time steps t. A graph sequence
is decremental if ∂E+

t = ∂V +
t = ∅ at all time steps t. Incremental and decremental graph

sequences are called partially dynamic. Graph sequences that are neither incremental nor
decremental are fully dynamic.

Our goal is to continually release the value of a graph function f which takes a graph as
input and outputs a real number. In other words, given a graph sequence G = (G1, G2, . . . )
we want to compute the sequence f(G) = (f(G1), f(G2), . . . ). We write f(t) for f(Gt). Our
algorithms will compute an update to the value of f at each time step, i.e., we compute
∆f(t) = f(t)− f(t− 1). We call the sequence ∆f the difference sequence of f .

Given a graph function g the continuous global sensitivity GS(g) of g is defined as the
maximum value of ||g(S)− g(S′)||1 over all adjacent graph sequences S, S′. We will define
adjacency of graph sequences below. In our case, we are often interested in the continuous
global sensitivity of the difference sequence of a graph function f , which is given by the
maximum value of

∑T
t=1 |∆fG(t)−∆fG′(t)|, where ∆fG and ∆fG′ are the difference sequences

of f corresponding to adjacent graph sequences G and G′.
Two graphs are edge-adjacent if they differ in one edge. We also define global sensitivity

of functions applied to a single graph. Let g be a graph function. Its static global sensitivity
GSstatic(g) is the maximum value of |g(G)− g(G′)| over all edge-adjacent graphs G, G′.

2.2 Differential Privacy
The range of an algorithm A, Range(A), is the set of all possible output values of A. We
denote the Laplace distribution with mean µ and scale b by Lap(µ, b). If µ = 0, we write
Lap(b).

▶ Definition 4 (ε-differential privacy). A randomized algorithm A is ε-differentially private
if for any two adjacent databases B, B′ and any S ⊆ Range(A) we have Pr[A(B) ∈ S] ≤
eε · Pr[A(B′) ∈ S]. The parameter ε is called the privacy loss of A.

To apply Definition 4 to graph sequences we now define adjacency for graph sequences.
First, we define edge-adjacency, which is useful if the data to be protected is associated with
the edges in the graph sequence. Then, we define node-adjacency, which provides stronger
privacy guarantees.

▶ Definition 5 (Edge-adjacency). Let G, G′ be graph sequences as defined above with associated
sequences of updates (∂V −

t ), (∂V +
t ), (∂E−

t ), (∂E+
t ) and (∂V −

t
′), (∂V +

t
′), (∂E−

t
′), (∂E+

t
′).

Let ∂V −
t = ∂V −

t
′ and ∂V +

t = ∂V +
t

′ for all t. Let the initial node and edge sets for G and
G′ be V0 = V ′

0 and E0 = E′
0. Assume w.l.o.g. that ∂E−

t
′ ⊆ ∂E−

t and ∂E+
t

′ ⊆ ∂E+
t for all t.

The graph sequences G and G′ are adjacent on e∗ if |G| = |G′|, there exists an edge e∗ and
one of the following statements holds:
1. ∂E−

t = ∂E−
t

′ ∀ t and ∃t∗ such that ∂E+
t∗ \ ∂E+

t∗
′ = {e∗} and ∂E+

t = ∂E+
t

′ ∀ t ̸= t∗;
2. ∂E+

t = ∂E+
t

′ ∀ t and ∃t∗ such that ∂E−
t∗ \ ∂E−

t∗
′ = {e∗} and ∂E−

t = ∂E−
t

′ ∀ t ̸= t∗;

Remark. If G and G′ are edge-adjacent, then for any index i the graphs at index i in the
two sequences are edge-adjacent.
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Two edge-adjacent graph sequences differ in either the insertion or the deletion of a single
edge e∗. There are several special cases that fit into this definition. For example, we may have
∂V −

t = ∂V −
t

′ = ∂V +
t = ∂V +

t′ = ∅, so only edge updates would be allowed. Similarly, we can
use the definition in the incremental setting by assuming ∂V −

t = ∂V −
t

′ = ∂E−
t = ∂E−

t
′ = ∅.

The definition of node-adjacency is similar to that of edge-adjacency, but poses additional
constraints on the edge update sets.

▶ Definition 6 (Node-adjacency). Let G, G′ be graph sequences as defined above with associated
sequences of updates (∂V −

t ), (∂V +
t ), (∂E−

t ), (∂E+
t ) and (∂V −

t
′), (∂V +

t
′), (∂E−

t
′), (∂E+

t
′).

Assume w.l.o.g. that ∂V −
t

′ ⊆ ∂V −
t and ∂V +

t
′ ⊆ ∂V +

t for all t. The graph sequences G and G′

are adjacent on v∗ if |G| = |G′|, there exists a node v∗ and one of the following statements
holds:
1. ∂V −

t = ∂V −
t

′ ∀ t and ∃t∗ such that ∂V +
t \ ∂V +

t
′ = {v∗} and ∂V +

t = ∂V +
t

′ ∀ t ̸= t∗;
2. ∂V +

t = ∂V +
t

′ ∀ t and ∃t∗ such that ∂V −
t \ ∂V −

t
′ = {v∗} and ∂V −

t = ∂V −
t

′ ∀ t ̸= t∗;
Additionally, all edges in ∂E+

t and ∂E−
t are incident to at least one node in ∂V +

t and ∂V −
t ,

respectively. Lastly, we require that ∂E+
t

′ (∂E−
t

′) is the maximal subset of ∂E+
t (∂E−

t ) that
does not contain edges incident to v∗.

We define the following notions of differential privacy based on these definitions of
adjacency.

▶ Definition 7. An algorithm is ε-edge-differentially private (on event-level) if it is ε-
differentially private when considering edge-adjacency. An algorithm is ε-node-differentially
private (on event-level) if it is ε-differentially private when considering node-adjacency.

When explicitly stated, we consider a stronger version of ε-differential privacy, which
provides adjacency on user-level. While adjacency on event-level only allows two graph
sequences to differ in a single update, user-level adjacency allows any number of updates to
differ as long as they affect the same edge (for edge-adjacency) or node (for node-adjacency),
respectively.

▶ Definition 8. Let G = (G1, . . .),G′ = (G′
1, . . .) be graph sequences. The two sequences

are edge-adjacent on user-level if there exists an edge e∗ and a sequence of graph sequences
S = (G1, . . . ,Gℓ) so that G1 = G,Gℓ = G′ and, for any i ∈ [ℓ−1], Gi and Gi+1 are edge-adjacent
on e∗. An algorithm is ε-edge-differentially private on user-level if it is ε-differentially private
when considering edge-adjacency on user-level.

2.3 Counting Mechanisms
Some of our algorithms for releasing differentially private estimates of functions on graph
sequences rely on algorithms for counting in streams.

A stream σ = σ(1)σ(2) · · · is a string of items σ(i) ∈ {L1, . . . , L2} ⊆ Z, where the i-th
item is associated with the i-th time step. A binary stream has L1 = 0 and L2 = 1. We
denote the length of a stream, i.e., the number of time steps in the stream, by |σ|. Stream σ

and σ′ are adjacent if |σ| = |σ′| and if there exists one and only one t∗ such that σ(t∗) ̸= σ′(t∗)
and σ(t) = σ′(t) for all t ̸= t∗.

A counting mechanism A(σ) takes a stream σ and outputs a real number for every time
step. For all time steps t, A’s output at time t is independent of all σ(i) for i > t. At each
time t a counting mechanism should estimate the count c(t) =

∑t
i=1 σ(i).
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Following Chan et al. [6] we describe our mechanisms in terms of p-sums, which are
partial sums of the stream over a time interval. For a p-sum p we denote the beginning and
end of the time interval by start(p) and end(p), respectively. With this notation the value of
p is

∑end(p)
t=start(p) σ(t). To preserve privacy we add noise to p-sums and obtain noisy p-sums:

given a p-sum p, a noisy p-sum is p̂ = p + γ, where γ is drawn from a Laplace-distribution.

2.4 Sparse Vector Technique

The sparse vector technique (SVT) was introduced by Dwork et al. [13] and was subsequently
improved [17, 28]. SVT can be used to save privacy budget whenever a sequence of threshold
queries f1, . . . , fT is evaluated on a database, but only c≪ T queries are expected to exceed
the threshold. Here, a threshold query asks whether a function fi evaluates to a value
above some threshold ti on the input database. Using SVT, only queries that are answered
positively reduce the privacy budget. We use the following variant of SVT, which is due to
Lyu et al.

▶ Lemma 9 ([24]). Let D be a database, ϵ, ρ, c > 0 and let (f1, t1), . . . be a sequence of
mappings fi from input databases to R and thresholds ti ∈ R, which may be generated
adaptively one after another so that ρ ≥ maxi GSstatic(fi). Algorithm 1 is ϵ-private.

Algorithm 1 SVT algorithm [24].

1 Function InitializeSvt(D, ρ, ϵ, c)
2 ϵ1 ← ϵ/2, ζ ← Lap(ρ/ϵ1), ϵ2 ← ϵ− ϵ1, count← 0
3 Function ProcessSvtQuery(fi, ti)
4 νi ← Lap(2cρ/ϵ2)
5 if count ≥ c then
6 return abort
7 if fi(D) + νi ≥ ti + ζ then
8 count← count + 1, return ⊤
9 else

10 return ⊥

3 Mechanisms Based on Continuous Global Sensitivity

Some of our mechanisms for privately estimating graph functions are based on mechanisms
for counting in streams. In both settings, we compute the sum of a sequence of numbers
and we will show that the mechanisms for counting can be transferred to the graph setting.
However, there are differences in the analysis. In counting, the input streams differ at only
one time step. This allows us to bound the difference in the true value between adjacent
inputs and leads to low error. In the graph setting, the sequence of numbers can vary at
many time steps. Here however, we use properties of the counting mechanisms to show that
the total difference for this sequence can still be bounded, which results in the same error as
in the counting setting.

We first generalize the counting mechanisms by Chan et al. [6] to streams of integers
with bounded absolute value, and then transfer them to estimating graph functions.
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3.1 Non-Binary Counting

We generalize the counting mechanisms of Chan et al. [6] to streams of numbers in {−L, . . . , L},
for some constant L. We view these algorithms as releasing noisy p-sums from which the
count can be estimated. The generic algorithm is outlined in Algorithm 2 on page 9.

The algorithm releases a vector of noisy p-sums over T time steps, such that at every
time step the noisy p-sums needed to estimate the count up to this time are available. Each
of the noisy p-sums is computed exactly once. See the proof of Corollary 13 for an example
on how to use p-sums.

In order to achieve the desired privacy loss the mechanisms need to meet the following
requirements. Let A be a counting mechanism. We define Range(A) = Rk, where k is the
total number of p-sums used by A and every item of the vector output by A is a p-sum. We
assume that the time intervals represented by the p-sums in the output of A are deterministic
and only depend on the length T of the input stream. For example, consider any two streams
σ and σ′ of length T . The ℓ-th element of A(σ) and A(σ′) will be p-sums of the same time
interval [start(ℓ), end(ℓ)]. We further assume that the p-sums are computed independently
from each other in the following way: A computes the true p-sum and then adds noise from
Lap(z · ε−1), where z is a sensitivity parameter. The next lemma is stated informally in [6].

Algorithm 2 Generic counting mechanism.

1 Input: privacy loss ε, stream σ of items {L1, . . . , L2} with |σ| = T

2 Output: vector of noisy p-sums a ∈ Rk, released over T time steps
3 Initialization: Determine which p-sums to compute based on T

4 At each time step t ∈ {1, . . . , T}:
5 Compute new p-sums pi, . . . , pj for t

6 For ℓ = i, . . . , j:
7 p̂ℓ = pℓ + γℓ, γℓ ∼ Lap((L2 − L1)ε−1)
8 Release new noisy p-sums p̂i, . . . , p̂j

▶ Lemma 10 (Observation 1 from [6]). Let A be a counting mechanism as described in
Algorithm 2 with L1 = 0 and L2 = 1 that releases k noisy p-sums, such that the count at
any time step can be computed as the sum of at most y p-sums and every item is part of
at most x p-sums. Then, A is (x · ε)-differentially private, and the error is O(ε−1√y log 1

δ )
with probability at least 1− δ at each time step.

To extend the counting mechanisms by Chan et al. to non-binary streams of values in
{−L, . . . , L}, we only need to account for the increased sensitivity in the scale of the Laplace
distribution. By Lemma 11, we can use the mechanisms of Chan et al. [6] to compute the
sum of a stream of numbers in {−L, . . . , L}, but gain a factor 2L in the error.

▶ Lemma 11 (Extension of Lemma 10). Let A be a mechanism as in Algorithm 2 (see page 9)
with L1 = −L and L2 = L that releases k noisy p-sums, such that the count at any time step
can be computed as the sum of at most y p-sums, and every item is part of at most x p-sums.
Furthermore, A adds noise Lap(2L/ε) to every p-sum. Then, A is (x ·ε)-differentially private,
and the error is O(Lε−1√y log 1

δ ) with probability at least 1− δ at each time step.
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Algorithm 3 Generic graph sequence mechanism.

Input: privacy loss ε, contin. global sensitivity Γ, graph sequence G = (G1, . . . , GT )
Output: vector of noisy p-sums a ∈ Rk, released over T time steps

1 Initialization: Determine which p-sums to compute based on T

2 At each time step t ∈ {1, . . . , T}:
3 Compute f(t) and ∆f(t) = f(t)− f(t− 1), f(0) := 0
4 Compute new p-sums pi, . . . , pj for the sequence ∆f

5 For ℓ = i, . . . , j:
6 p̂ℓ = pℓ + γℓ, γℓ ∼ Lap(Γε−1)
7 Release new noisy p-sums p̂i, . . . , p̂j

3.2 Graph Functions via Counting Mechanisms
We adapt the counting mechanisms to continually release graph functions by following the
approach by Song et al. [29]. Algorithm 3 outlines the generic algorithm. It is similar to
Algorithm 2, with the difference that the stream of numbers to be summed is computed
from a graph sequence G. The algorithm is independent of the notion of adjacency of graph
sequences, however the additive error is linear in the continuous global sensitivity of the
difference sequence ∆f .

In counting binary streams we considered adjacent inputs that differ at exactly one time
step. In the graph setting however, the stream of numbers that we sum, i.e., the difference
sequence ∆f , can differ in multiple time steps between two adjacent graph sequences. We
illustrate this with a simple example. Let f be the function that counts the number of edges
in a graph and consider two node-adjacent incremental graph sequences G, G′. G contains an
additional node v∗, that is not present in G′. Whenever a neighbor is added to v∗ in G, the
number of edges in G increases by more than the number of edges in G′. Thus, every time a
neighbor to v∗ is inserted, the difference sequence of f will differ between G and G′.

To generalize this, consider two adjacent graph sequences G, G′ that differ in an update at
time t′. Let ∆fG and ∆fG′ be the difference sequences used to compute the graph function
f on G and G′. As discussed above we may have ∆fG(t) ̸= ∆fG′(t) for all t ≥ t′. Thus, more
than x p-sums can be different, which complicates the proof of the privacy loss. However,
we observe that the set P of p-sums with differing values can be partitioned into x sets
P1, . . . , Px, where the p-sums in each Pi cover disjoint time intervals. By using a bound on
the continuous global sensitivity of the difference sequence ∆f , this will lead to a privacy
loss of x · ε. The following lemma formalizes our result.

▶ Lemma 12 (Lemma 11 for graph sequences). Let f be a graph function whose difference
sequence has continuous global sensitivity Γ. Let 0 < δ < 1 and ε > 0. Let A be a mechanism
to estimate f as in Algorithm 3 that releases k noisy p-sums and satisfies the following
conditions:
1. at any time step the value of a graph function f can be estimated as the sum of at most y

noisy p-sums,
2. A adds independent noise from Lap(Γ/ε) to every p-sum,
3. the set P of p-sums computed by the algorithm can be partitioned into at most x subsets

P1, . . . , Px, such that in each partition Px all p-sums cover disjoint time intervals. That
is, for all Pi ∈ {P1, . . . , Px} and all j, k ∈ Pi, j ̸= k, it holds that (1) start(j) ̸= start(k)
and (2) start(j) < start(k) =⇒ end(j) < start(k).

Then, A is (x · ε)-differentially private, and the error is O(Γε−1√y log 1
δ ) with probability at

least 1− δ at each time step.
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Table 3 Global sensitivity of difference sequences.

Graph Function f Continuous Global Sensitivity of ∆f

Partially Dynamic Fully Dynamic
node-adjacency edge-adjacency node-adj. edge-adj.

edge counta D 1 ≥ T 2
high-degree nodesa 2D + 1 4 ≥ T ≥ T

degree histograma 4D2 + 2D + 1 8D ≥ 2T ≥ 2T

triangle counta (
D
2

)
D ≥ T ≥ T

k-star counta D
(

D−1
k−1

)
+

(
D
k

)
2 ·

((
D
k

)
−

(
D−1

k

))
≥ T ≥ T

minimum spanning tree 2DW 2W − 2 ≥ T ≥ T

minimum cut ≥ T ≥ T ≥ T ≥ T

maximum matching ≥ T ≥ T ≥ T ≥ T
aBounds for partially dynamic node-adjacency from Song et al. [29]

We can compute the p-sums in Algorithm 3 as in the binary mechanism [6] to release
ε-differentially private estimates of graph functions.

▶ Corollary 13 (Binary mechanism). Let f be a graph function whose difference sequence
has continuous global sensitivity Γ. Let 0 < δ < 1 and ε > 0. For each T ∈ N there exists
an ε-differentially private algorithm to estimate f on a graph sequence which has error
O(Γε−1 · log3/2 T · log δ−1) with probability at least 1− δ.

3.3 Bounds on Continuous Global Sensitivity
Song et al. [29] give bounds on the continuous global sensitivity of the difference sequence
for several graph functions in the incremental setting in terms of the maximum degree D.
Table 3 summarizes the results on the continuous global sensitivity of difference sequences
for a variety of problems in the partially dynamic and fully dynamic setting, both for edge-
and node-adjacency. Note that bounds on the continuous global sensitivity of the difference
sequence for incremental graph sequences hold equally for decremental graph sequences as
for every incremental graph sequence there exists an equivalent decremental graph sequence
which deletes nodes and edges in the reverse order.

In the partially dynamic setting, the continuous global sensitivity based approach works
well for graph functions that can be expressed as the sum of local functions on the neigh-
borhood of nodes. For non-local problems the approach is less successful. For the weight
of a minimum spanning tree the continuous global sensitivity of the difference sequence is
independent of the length of the graph sequence. However, for minimum cut and maximum
matching this is not the case. In the fully-dynamic setting the approach seems not to be
useful. Here, we can show that even for estimating the number of edges the continuous global
sensitivity of the difference sequence scales linearly with T under node-adjacency. When
considering edge-adjacency we only have low sensitivity for the edge count.

Using Corollary 13 we obtain ε-differentially private mechanisms with additive error that
scales with log3/2 T , compared to the factor

√
T in [29]. Note that we recover their algorithm

when using the Simple Mechanism II by Chan et al. [6] to sum the difference sequence.
The difference sequence approach can be employed to privately estimate the weight of a

minimum spanning tree in partially dynamic graph sequences. If the edge weight is bounded
by W , then the continuous global sensitivity of the difference sequence is O(W ) and O(DW )
under edge-adjacency and node-adjacency, respectively. Using Corollary 13 we obtain the
algorithms outlined in Theorems 14 and 15.
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▶ Theorem 14. There exists an ε-edge-differentially private algorithm that outputs the weight
of a minimum spanning tree on an incremental graph sequence G with edge-weights from the
set {1, . . . , W}. At every time step, the algorithm has error O(Wε−1 · log3/2 T · log δ−1) with
probability at least 1− δ, where T is the length of the graph sequence.

▶ Theorem 15. There exists an ε-node-differentially private algorithm that outputs the weight
of a minimum spanning tree on an incremental graph sequence G with edge-weights from the
set {1, . . . , W}. At every time step, the algorithm has error O(DWε−1 · log3/2 T · log δ−1)
with probability at least 1 − δ, where T is the length of the graph sequence and D is the
maximum degree.

4 Upper Bound for Monotone Functions

In Section 3.3, we show that privately releasing the difference sequence of a graph sequence
does not lead to good error guarantees for partially dynamic problems like minimum cut.
Intuitively, the reason is that even for neighboring graph sequences G,G′, the differences of
the difference sequence can be non-zero for all graphs Gi, G′

i. In other words, the difference of
objective values for the graphs Gi and G′

i can constantly fluctuate during continual updates.
However, the difference of objective values, regardless of fluctuations, is always small. We
show that, by allowing an arbitrarily small multiplicative error, we can leverage this fact
for a broad class of partially dynamic problems. In particular, we prove that there exist
ε-differentially private algorithms for all dynamic problems that are non-decreasing (or
non-increasing) on all valid input sequences. This includes, e.g., minimum cut, maximum
matching and densest subgraph on partially dynamic inputs. See Algorithm 4 for the details
and Table 2 on page 4 for explicit upper bounds for applications. We state the result
for monotonically increasing functions, but it is straightforward to adapt the algorithm to
monotonically decreasing functions.

Algorithm 4 Multiplicative error algorithm for monotone functions.

1 Function Initialize(D, ρ, ϵ, r, β)
2 k0 ← 0
3 InitializeSvt (D, ρ, ϵ, log1+β(r)) // see Algorithm 1
4 Function Process(fi)
5 ki ← ki−1
6 while ProcessSvtQuery(fi, (1 + β)ki) = ⊤ do // see Algorithm 1
7 ki ← ki + 1
8 return (1 + β)ki

▶ Theorem 16. Let r > 0 and let f be any monotonically increasing function on dynamic
inputs (e.g., graphs) with range [1, r] and static global sensitivity ρ := GSstatic(f). Let
β ∈ (0, 1), δ > 0 and let α = 16 log1+β(r)ρ · ln(2T/δ)/ε. There exists an ε-differentially
private algorithm for computing f with multiplicative error (1 + β), additive error α and
failure probability δ.
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5 Lower Bounds for Event-Level Privacy

We can show lower bounds for the error of edge- and node-differentially private algorithms
in the partially dynamic setting. We derive the bounds by reducing differentially private
counting in binary streams to these problems and apply a lower bound of Dwork et al. [12],
which we restate here.

▶ Theorem 17 (Lower bound for counting in binary streams [12]). Any differentially private
event-level algorithm for counting over T rounds must have error Ω(log T ) (even with ε = 1).

We obtain a lower bound of Ω(W log T ) for minimum cut, maximum weighted matching
and minimum spanning tree. The same approach yields a lower bound of Ω(log T ) for the
subgraph-counting problems, counting the number of high-degree nodes and the degree
histogram. See Table 1 on page 3. Note that any lower bound for the incremental setting
can be transferred to the decremental setting, using the same reductions but proceeding in
reverse.

6 Lower Bound for User-Level Privacy

We show that for several fundamental problems on dynamic graphs like minimum spanning
tree and minimum cut, a differentially private algorithm with edge-adjacency on user-level
must have an additive error that is linear in the maximum function value. Technically, we
define the spread of a graph function as the maximum difference of the function’s value
on any two graphs. Then, we show that any algorithm must have an error that is linear
in the graph function’s spread. We write this section in terms of edge-adjacency but the
corresponding result for node-adjacency carries over.

▶ Definition 18. Let G1 and G2 be a pair of graphs. We define τ(G1, G2) to be an update
sequence u1, . . . , uℓ of minimum length that transforms G1 into G2. We denote the graph
sequence that results from applying τ(G1, G2) to G1 by T(G1, G2).

Let s, ℓ : N → {2i | i ∈ N} be functions. A graph function f has spread (s(n), ℓ(n)) on
inputs of size n if, for every n, there exist two graphs G1, G2 of size n so that |f(G1)−f(G2)| ≥
s(n) and |τ(G1, G2)| = ℓ(n).

See Table 1 on page 3 for the resulting lower bounds.

▶ Theorem 19. Let ϵ, δ > 0 and let f be a graph function with spread (s, ℓ) that spares
an edge e. For streams of length T on graphs of size n, where T > log(e4ϵℓ/(1 − δ)) ∈
O(ϵℓ + log(1/(1− δ))), every ϵ-differentially private dynamic algorithm with user-level edge-
adjacency that computes f with probability at least 1− δ must have error Ω(s(n)).

▶ Fact 20. Minimum spanning tree has spread (Θ(nW ), Θ(n)). Minimum cut has spread
(Θ(nW ), Θ(n2)). Maximal matching has spread (Θ(n), Θ(n)). Maximum cardinality matching
has spread (Θ(n), Θ(n)). Maximum weight matching has spread (Θ(nW ), Θ(n)).
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Abstract
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively,
subject to constraints that specific subsets of elements have to be consecutive. While equivalent to
each other, PC-trees are conceptually much simpler than PQ-trees; updating a PC-tree so that a set
of elements becomes consecutive requires only a single operation, whereas PQ-trees use an update
procedure that is described in terms of nine transformation templates that have to be recursively
matched and applied.

Despite these theoretical advantages, to date no practical PC-tree implementation is available.
This might be due to the original description by Hsu and McConnell [14] in some places only sketching
the details of the implementation. In this paper, we describe two alternative implementations of PC-
trees. For the first one, we follow the approach by Hsu and McConnell, filling in the necessary details
and also proposing improvements on the original algorithm. For the second one, we use a different
technique for efficiently representing the tree using a Union-Find data structure. In an extensive
experimental evaluation we compare our implementations to a variety of other implementations of
PQ-trees that are available on the web as part of academic and other software libraries. Our results
show that both PC-tree implementations beat their closest fully correct competitor, the PQ-tree
implementation from the OGDF library [6, 15], by a factor of 2 to 4, showing that PC-trees are
not only conceptually simpler but also fast in practice. Moreover, we find the Union-Find-based
implementation, while having a slightly worse asymptotic runtime, to be twice as fast as the one
based on the description by Hsu and McConnell.
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solve the consecutive ones problem, which asks whether the columns of a Boolean matrix
can be permuted such that the 1s in each row are consecutive. PC-trees are a more recent
generalization introduced by Shih and Hsu [16] to solve the circular consecutive ones problem,
where the 1s in each row only have to be circularly consecutive.

Though PQ-trees represent linear orders and PC-trees represent circular orders, Haeupler
and Tarjan [10] show that in fact PC-trees and PQ-trees are equivalent, i.e., one can use one
of them to implement the other without affecting the asymptotic running time. The main
difference between PQ-trees and PC-trees lies in the update procedure. The update procedure
takes as input a PQ-tree (a PC-tree) T and a subset U of its leaves and produces a new PQ-
tree (PC-tree) T ′ that represents exactly the linear orders (circular orders) represented by T

where the leaves in U appear consecutively. The update procedure for PC-trees consists only
of a single operation that is applied independently of the structure of the tree. In contrast,
the update of the PQ-tree is described in terms of a set of nine template transformations
that have to be recursively matched and applied.

PQ-trees have numerous applications, e.g., in planarity testing [3, 16], recognition of
interval graphs [3] and genome sequencing [1]. Nevertheless, PC-trees have been adopted
more widely, e.g., for constrained planarity testing problems [2, 5] due to their simpler update
procedure. Despite their wide applications and frequent use in theoretical algorithms, few
PQ-tree implementations and even fewer PC-tree implementations are available. Table 1
shows an overview of all PC/PQ-tree implementations that we are aware of, though not all
of them are working.

In this paper we describe the first correct and generic implementations of PC-trees.
Section 2 contains an overview of the update procedure for applying a new restriction to a
PC-tree. In Section 3, we describe the main challenge when implementing PC-trees and how
our two implementations take different approaches at solving it. In Section 4, we present an
extensive experimental evaluation, where we compare the performance of our implementations
with the implementations of PC-trees and PQ-trees from Table 1. Our experiments show
that, concerning running time, PC-trees following Hsu and McConnell’s original approach
beat their closest competitor, the PQ-tree implementation from the OGDF library [6] by
roughly a factor 2. Our second implementation using Union-Find is another 50% faster than
this first one, thus beating the OGDF implementation by a factor of up to 4.

2 The PC-tree

A PC-tree T is a tree without degree-2 vertices whose inner nodes are partitioned into P-nodes
and C-nodes. Edges incident to C-nodes have a circular order that is fixed up to reversal,
whereas edges incident to P-nodes can be reordered arbitrarily. Traversing the tree according
to fixed orders around the inner nodes determines a circular ordering of the leaves L of the
tree. Any circular permutation of L that can be obtained from T after arbitrarily reordering
the edges around P-nodes and reversing orders around C-nodes is a valid permutation of L.
In this way a PC-tree represents a set of circular permutations of L.

When applying a restriction R ⊆ L to T , we seek a new tree that represents exactly the
valid permutations of L where the leaves in R appear consecutively. We call a restriction
impossible if there is no valid permutation of L where the leaves in R are consecutive. Thus,
restriction R is possible if and only if the edges incident to P-nodes can be rearranged
and orders of edges incident to C-nodes can be reversed in such a way that all leaves in R

are consecutive. Updating a PC-tree to enforce the new restriction can thus be done by
identifying and adapting the nodes that decide about the consecutivity of the elements of R

and then changing the tree to ensure that this consecutivity can no longer be broken.
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Figure 1 (a) Two equivalent PC-Trees with their nodes colored according to the restriction
{4, 8, 10, 11, 12, 15}. C-nodes are represented by big double circles and the P-nodes are represented
by small circles. The white nodes represent empty nodes, the black nodes represent full nodes and
the gray nodes represent partial nodes. The thick edges represent the terminal path with terminal
nodes t1 and t2. As the restriction is possible, all full leaves of the tree on the left can be made
consecutive, as shown on the right. Furthermore all nodes that must be modified lie on a path.
(b) Updated PC-tree with new central C-node c.

Let a leaf x ∈ L be full if x ∈ R and empty otherwise. We call an edge terminal if the
two subtrees separated by the edge both contain at least one empty and at least one full leaf.
Exactly the endpoints of all terminal edges need to be “synchronized” to ensure that all full
leaves are consecutive. Hsu and McConnell [14, 13] show that R is possible if and only if the
terminal edges form a path and all nodes of this path can be flipped so that all full leaves
are on one side and all empty leaves are on the other. This path is called the terminal path,
the two nodes at the ends of the terminal path are the terminal nodes. Observe that each
node in T that is adjacent to two subtrees of which one only contains full leaves and the
other contains only empty leaves is contained in the terminal path. Figure 1a illustrates the
terminal path.

When updating T in order to apply the restriction, every node on the terminal path is
split into two nodes, one of which holds all edges to neighbors of the original node whose
subtree has only full leaves, the other holds all edges to empty neighbors, while terminal
edges are deleted. A new central C-node c is created that is adjacent to all the split nodes in
such a way that it preserves the order of the neighbors around the terminal path. Contracting
all edges to the split C-nodes incident to c and contracting all nodes with degree two results
in the updated tree that represents the new restriction [14, 13]. Figure 1 shows an example
of this update, while Figure 2 details changes made to the terminal path.

It remains to efficiently find the terminal edges, and thus the subtrees with mixed full
and empty leaves. To do so, Hsu and McConnell first choose an arbitrary node of the tree
as root. They also assign labels to the inner nodes of the tree, marking an inner node (and
conceptually the subtree below it) partial if at least one of its neighbors (i.e. children or
parent) is full, full if all its neighbors except one (which usually is the parent) are full, and
empty otherwise. Then, an edge is terminal if and only if it lies on a path between two partial
nodes [14, 13]. Assigning the labels and subsequently finding the terminal edges can be done
by two bottom-up traversals of the tree. We summarize these steps in the following, more
fine-granular description of Hsu and McConnell’s algorithm for updating the PC-tree [13,
Algorithm 32.2]:
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c c

Figure 2 Left: The terminal path with all full subtrees shown in black on top and all empty
subtrees shown in white on the bottom. Middle: The updated PC-tree, where all terminal edges
were deleted, all nodes on the terminal were split in a full and empty half and all new nodes were
connected to a new C-node c. Right: The PC-Tree after contracting all new C-nodes and all degree-2
P-nodes into c.

Algorithm for Applying Restrictions. To add a new restriction R to a PC-tree T :
1. Label all partial and full nodes by searching the tree bottom-up from all full leaves.
2. Find the terminal path by walking the tree upwards from all partial nodes in parallel.
3. Perform flips of C-nodes and modify the cyclic order of edges incident to P-nodes so that

all full leaves lie on one side of the path.
4. Split each node on the path into two nodes, one incident to all edges to full leaves and

one incident to all edges to empty leaves.
5. Delete the edges of the path and replace them with a new C-node c, adjacent to all split

nodes, whose cyclic order preserves the order of the nodes on this path.
6. Contract all edges from c to adjacent C-nodes, and contract any node that has only two

neighbors.

3 Our Implementations

The main challenge posed to the data structure for representing the PC-tree is that, in
step 6, it needs to be able to merge arbitrarily large C-nodes in constant time for the overall
algorithm to run in linear time. This means that, whenever C-nodes are merged, updating
the pointer to a persistent C-node object on every incident edge would be too expensive.
Hsu and McConnell (see [13, Definition 32.1]) solve this problem by using C-nodes that,
instead of having a permanent node object, are only represented by the doubly-linked list
of their incident half-edges, which we call arcs. This complicates various details of the
implementation, like finding the parent pointer of a C-node, which are only superficially
covered in the initial work of Hsu and McConnell [14]. These issues are in part remedied
by the so called block-spanning pointers introduced in the later published book chapter [13],
which are related to the pointer borrowing strategy introduced by Booth and Lueker [3].
These block-spanning pointers link the first and last arc of a consecutive block of full arcs (i.e.
the arcs to full neighbors) around a C-node and can be accompanied by temporary C-node
objects. Whenever a neighbor of a C-node becomes full, either a new block is created for the
corresponding arc of the C-node, an adjacent block grows by one arc, or the two blocks that
now became adjacent are merged.

Using this data structure, Hsu and McConnell show that the addition of a single new
restriction R takes O(p + |R|) time, where p is the length of the terminal path, and that
applying restrictions R1, . . . , Rk takes Θ(|L| +

∑k
i=1 |Ri|) time [14, 13]. Especially for steps 1

and 2, they only sketch the details of the implementation, making it hard to directly put
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it into practice. In the full version, we fill in the necessary details for these steps and also
refine their runtime analysis, showing that step 1 can be done in O(|R|) time and step 2 can
be done in O(p) time. Using the original procedures by Hsu and McConnell, steps 3 and 4
can be done in O(|R|) time and steps 5 and 6 can be done in O(p) time.

For our first implementation, which we call HsuPC, we directly implemented these steps
in C++, using the data structure without permanent C-node objects as described by Hsu
and McConnell. During the evaluation, we realized that traversals of the tree are expensive.
This is plausible, as they involve a lot of pointer-dereferencing to memory segments that
are not necessarily close-by, leading to cache misses. To avoid additional traversals for
clean-up purposes, we store information that is valid only during the update procedure with
a timestamp. Furthermore, we found that keeping separate objects for arcs and nodes and
the steps needed to work around the missing C-node objects pose a non-negligible overhead.

To remove this overhead, we created a second version of our implementation, which we call
UFPC, using a Union-Find tree for representing C-node objects: Every C-node is represented
by an entry in the Union-Find tree and every incident child edge stores a reference to this
entry. Whenever two C-nodes are merged, we apply union to both entries and only keep
the object of the entry that survives. This leads to every lookup of a parent C-node object
taking amortized O(α(|L|)) time, where α is the inverse Ackermann function. Although
this makes the overall runtime super-linear, the experimental evaluation following in the
next section shows that this actually improves the performance in practice. As a second
change, the UFPC no longer requires separate arc and node objects, allowing us to use a
doubly-linked tree consisting entirely of nodes that store pointers to their parent node, left
and right sibling node, and first and last child node. Edges are represented implicitly by the
child node whose parent is the other end of the edge. Note that of the five stored pointers, a
lookup in the Union-Find data structure is only needed for resolving the parent of a node.

Our algorithmic improvements and differences of both implementations are described in
more detail in the full version. We use the Union-Find data structure from the OGDF [6] and
plan to merge our UFPC implementation into the OGDF. Furthermore, both implementations
should also be usable stand-alone with a custom Union-Find implementation. The source
code for both implementations, our evaluation harness and all test data are available on
GitHub (see Table 1).

4 Evaluation

In this section, we experimentally evaluate our PC-tree implementations by comparing the
running time for applying a restriction with that of various PQ- and PC-tree implementations
that are publicly available. In the following we describe our method for generating test cases,
our experimental setup and report our results.

4.1 Test Data Generation
To generate PQ-trees and restrictions on them, we make use of the planarity test by Booth
and Lueker [3], one of the initial applications of PQ-trees. This test incrementally processes
vertices one by one according to an st-ordering. Running the planarity test on a graph with n

vertices applies n − 1 restrictions to PQ-trees of various sizes. Since not all implementations
provide the additional modification operations necessary to implement the planarity test, we
rather export, for each step of the planarity test, the current PQ-tree and the restriction
that is applied to it as one instance of our test set. We note that the use of st-orderings
ensures that the instances do not require the ability of the PC-tree to represent circular
permutations, making them good test cases for comparing PC-trees and PQ-trees.
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(a) (b)

Figure 3 Distribution of tree and restriction size for the data sets (a) SER-POS and (b) SER-IMP.
Please note the different color scales. The SER-POS instances that are left of the black line are too
small and filtered out.

In this way, we create one test set SER-POS consisting of only PQ-trees with possible
restrictions by exporting the instances from running the planarity test on a randomly
generated biconnected planar graph for each vertex count n from 1000 to 20, 000 in steps
of 1000 and each edge count m ∈ {2n, 3n − 6}. To avoid clutter, to remedy the tendency
of the planarity test to produce restrictions with very few leaves, and to avoid bias from
trivial optimizations such as filtering trivial restrictions with |R| ∈ {1, |L| − 1, |L|}, which is
present in some of the implementations, we filter test instances where |R| lies outside the
interval [5, |L| − 2]. Altogether, this test set contains 199, 831 instances, whose distribution
with regards to tree and restriction size is shown in Figure 3a.

To guard against overly permissive implementations, we also create a small test set
SER-IMP of impossible restrictions. It is generated in the same way, by adding randomly
chosen edges to the graphs from above until they become non-planar. In this case the
planarity test fails with an impossible restriction at some point; we include these 3, 800
impossible restrictions in the set, see Figure 3b.

As most of the available implementations have no simple means to store and load a
PQ-/PC-tree, we serialize each test instance as a set of restrictions that create the tree,
together with the additional new restriction. When running a test case, we then first apply all
the restrictions to reobtain the tree, and then measure the time to apply the new restriction
from the test case. The prefix SER- in the name of both sets emphasizes this serialization.

To be able to conduct a more detailed comparison of the most promising implementations,
we also generate a third test set with much larger instances. As deserializing a PC- or PQ-tree
is very time-consuming, we directly use the respective implementations in the planarity test
by Booth and Lueker [3], thus calling the set DIR-PLAN. We generated 10 random planar
graphs with n vertices and m edges for each n ranging from 100, 000 to 1, 000, 000 in steps of
100, 000 and each m ∈ {2n, 3n − 6}, yielding 200 graphs in total. The planarity test then
yields one possible restriction per node. As we only want to test big restrictions, we filter out
restrictions with less than 25 full leaves, resulting in DIR-PLAN containing 564, 300 instances.
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4.2 Experimental Setup
Table 1 gives an overview of all implementations we are aware of, although not all implemen-
tations could be considered for the evaluation.

The three existing implementations of PC-trees we found are incomplete and unusable
(Luk&Zhou) or tightly intertwined with a planarity test in such a way that we were not
able to extract a generic implementation of PC-trees (Hsu, Noma). We further exclude two
PQ-tree implementations as they either crash or produce incorrect results on almost all
inputs (GTea) or have an excessively poor running time (TryAlgo). Among the remaining
PQ-tree implementations only three correctly handle all our test cases (OGDF, Gregable,
SageMath). Several other implementations have smaller correctness issues: After applying
a fix to prevent segmentation faults in a large number of cases for BiVoC, the remaining
implementations crash (BiVoC, GraphSet, Zanetti) and/or produce incorrect results (Reisle,
JGraphEd, Zanetti) on a small fraction of our tests; compare the last column of Table 1. We
nevertheless include them in our evaluation.

We changed the data structure responsible for mapping the input to the leaves of the
tree for BiVoC and Gregable from std::map to std::vector to make them competitive.
Moreover, BiVoC, Gregable and GraphSet use a rather expensive cleanup step that has to
be executed after each update operation. As this could probably largely be avoided by the
use of timestamps, we do not include the cleanup time in their reported running times. For
SageMath the initial implementation turned out to be quadratic, which we improved to linear
by removing unnecessary recursion. As Zanetti turned out to be a close competitor to our
implementation in terms of running time, we converted the original Java implementation
to C++ to allow a fair comparison. This decreased the runtime by one third while still
producing the exact same results. All other non-C++ implementations were much slower or
had other issues, making a direct comparison of their running times within the same language
environment as our implementations unnecessary. Further details on the implementations
can be found in the full version.

Each experiment was run on a single core of a Intel Xeon E5-2690v2 CPU (3.00 GHz,
10 Cores) with 64 GiB of RAM, running Linux Kernel version 4.19. Implementations in
C++ were compiled with GCC 8.3.0 and optimization -O3 -march=native -mtune=native.
Java implementations were executed on OpenJDK 64-Bit Server VM 11.0.9.1 and Python
implementations were run with CPython 3.7.3. For the Java implementations we ran each
experiment several times, only measuring the last one to remove startup-effects and to
facilitate optimization by the JIT compiler. We used OGDF version 2020.02 (Catalpa) to
generate the test graphs.

4.3 Results
Our experiments turn out that SageMath, even with the improvements mentioned above,
is on average 30 to 100 times slower than all other implementations.2 For the sake of
readability, we scale our plots to focus on the other implementations. As the main application
of PC-/PQ-trees is applying possible restrictions, we first evaluate on the dataset SER-POS.
Figure 4 shows the runtime for individual restrictions based on the size of the restriction (i.e.
the number of full leaves) and the overall size of the tree. Figure 4a clearly shows that for all
implementations the runtime is linear in the size of the restriction. Figure 4b suggests that

2 Part of this might be due to the overhead of running the code with CPython. As the following analysis
shows, SageMath also has other issues, allowing us to safely exclude it.
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(a) (b)

Figure 4 Runtime for SER-POS restrictions depending on (a) restriction size and (b) tree size.

(a) (b)

Figure 5 (a) A heatmap showing the average runtime of SER-POS restrictions, depending on
both the size of the restriction and the size of the tree. The color scale is based on the maximum
runtime of each respective implementation. (b) Runtime for SER-POS restrictions depending on the
terminal path length.

(a) (b)

Figure 6 Runtime for SER-IMP restrictions depending on (a) restriction size and (b) tree size for
all implementations.
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the runtime of Reisle and GraphSet does not solely depend on the restriction size, but also
on the size of the tree. To verify this, we created for each implementation a heatmap that
indicates the average runtime depending on both the tree size and the restriction size, shown
in Figure 5a. The diagonal pattern shown by SageMath, Reisle, and GraphSet confirms
the dependency on the tree size. All other implementations exhibit vertical stripes, which
shows that their runtime does not depend on the tree size. Finally, Figure 5b shows the
runtime compared to the terminal path length. As expected, all implementations show a
linear dependency on the terminal path length, with comparable results to Figure 4a.

Figure 6 shows the performance on the dataset SER-IMP. The performance is comparable
with that on SER-POS. Noteworthy is that Zanetti performs quite a bit worse, which is due to
its implementation not being able to detect failure during a labeling step. It always performs
updates until a so-called R-node would be generated. Altogether, the data from SER-POS
and SER-IMP shows that the implementations GraphSet, OGDF, Zanetti, HsuPC and UFPC
are clearly superior to the others. In the following, we conduct a more detailed comparison
of these implementations by integrating them into a planarity test and running them on
much larger instances, i.e., the data set DIR-PLAN. In addition to an update method, this
requires a method for replacing the now-consecutive leaves by a P-node with a given number
of child leaves. Adding the necessary functionality would be a major effort for most of the
implementations, which is why we only adapted the most efficient implementations to run
this set. We also exclude GraphSet from this experiment; the fact that it scales linearly
with the tree size causes the planarity test to run in quadratic time. Figure 7 again shows
the runtime of individual restrictions depending on the restriction size. Curiously, Zanetti
produces incorrect results for nearly all graphs with m = 2n in Figure 7a. As the initial tests
already showed, the implementation has multiple flaws; one major issue is already described
in an issue on GitHub and another independent error is described in the full version. Both
plots show that HsuPC is more than twice as fast as OGDF and that UFPC is again close to
two times faster than HsuPC. Zanetti’s runtime is roughly the same as that of HsuPC, while
converting its Java code to C++ brings the runtime down close to that of UFPC.

As OGDF is the slowest, we use it as baseline to calculate the speedup of the other
implementations. Figure 8a shows that the runtime improvement for all three implementations
is the smallest for small restrictions, quickly increasing to the final values of roughly 0.4 times
the runtime of OGDF for HsuPC and 0.25 for both CppZanetti and UFPC. Figure 8b shows
the speedup depending on the length of the terminal path. For very short terminal paths
(which are common in our datasets), both implementations are again close; but already for
slightly longer terminal paths UFPC quickly speeds up to being roughly 20% faster than
CppZanetti. This might be because creating the central node in step 5 is more complicated
for UFPC, as the data structure without edge objects does not allow arbitrarily adding and
removing edges (which is easier for HsuPC) and allowing circular restrictions forces UFPC
to also pay attention to various special cases (which are not necessary for PQ-trees).

5 Conclusion

In this paper we have presented the first fully generic and correct implementations of PC-trees.
One implementation follows the original description of Hsu and McConnell [14, 13], which
contains several subtle mistakes in the description of the labeling and the computation
of the terminal path. This may be the reason why no fully generic implementation has
been available so far. A corrected version that also includes several small simplifications is
described in the full version of this paper.
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(a) (b)

Figure 7 Runtime of individual restrictions of DIR-PLAN with OGDF, Zanetti and our implemen-
tations for graphs of size (a) m = 2n and (b) m = 3n − 6.

(a) (b)

Figure 8 Median performance increase depending on (a) the size of the restriction and (b) the
terminal path length, with OGDF as baseline. The shaded areas show the interquartile range.

Furthermore, we provided a second, alternative implementation, using Union-Find to
replace many of the complications of Hsu and McConnell’s original approach. Technically,
this increases the runtime to O((|R| + p) · α(|L|)), where α is the inverse Ackerman function.
In contrast, our evaluations show that the Union-Find-based approach is even faster in
practice, despite the worse asymptotic runtime.

Our experimental evaluation with a variety of other implementations reveals that surpris-
ingly few of them seem to be fully correct. Only three other implementation have correctly
handled all our test cases. The fastest of them is the PQ-tree implementation of OGDF, which
our Union-Find-based PC-tree implementation beats by roughly a factor of 4. Interestingly,
the Java implementation of PQR-trees by Zanetti achieves a similar speedup once ported
to C++. However, Zanetti’s Java implementation is far from correct and it is hard to say
whether it is possible to fix it without compromising its performance.

Altogether, our results show that PC-trees are not only conceptually simpler than PQ-
trees but also perform well in practice, especially when combined with Union-Find. To
put the speedup of factor 4 into context, we compared the OGDF implementations of the
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planarity test by Booth and Lueker and the one by Boyer and Myrvold on our graph instances.
The Boyer and Myrvold implementation was roughly 40% faster than the one based on Booth
and Lueker’s algorithm. Replacing the PQ-trees, which are the core part of the latter, by
an implementation that is 4 time faster, might make this planarity test run faster than the
one by Boyer and Myrvold. We leave a detailed evaluation, also taking into account the
embedding generation, which our PC-tree based planarity test not yet provides, for future
work.
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Abstract
The problem of nearest-neighbor classification is a fundamental technique in machine-learning. Given
a training set P of n labeled points in Rd, and an approximation parameter 0 < ε ≤ 1

2 , any unlabeled
query point should be classified with the class of any of its ε-approximate nearest-neighbors in P .
Answering these queries efficiently has been the focus of extensive research, proposing techniques that
are mainly tailored towards resolving the more general problem of ε-approximate nearest-neighbor
search. While the latest can only hope to provide query time and space complexities dependent
on n, the problem of nearest-neighbor classification accepts other parameters more suitable to its
analysis. Such is the number kε of ε-border points, which describes the complexity of boundaries
between sets of points of different classes.

This paper presents a new data structure called Chromatic AVD. This is the first approach for
ε-approximate nearest-neighbor classification whose space and query time complexities are only
dependent on ε, kε and d, while being independent on both n and ∆, the spread of P .
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1 Introduction

Non-parametric classification is a fundamental technique in machine-learning. In this context,
we are given a training set P consisting of n points in a metric space (X , d), with domain
X and distance function d : X 2 → R+. Additionally, the training set is partitioned into a
finite set of classes C by associating each point p ∈ P with a label l(p), which indicates the
class to which it belongs. Given an unlabeled query point q ∈ X , the goal of a classifier is to
predict q’s label using the training set P .

The nearest-neighbor rule is among the best-known classification techniques [15]. It assigns
a query point the label of its closest point in P according to the defined metric. This technique
exhibits good classification accuracy both experimentally and theoretically [12, 13, 34], but it
is often criticized due to its high space and time complexities. Despite the advent of more
sophisticated techniques (e.g., support-vector machines [11] and deep neural networks [32]),
nearest-neighbor classification is still widely used in practice [9, 22,26], proving its value in
constructing resilient defense strategies against adversarial [27] and poisoning [29] attacks, as
well as in achieving interpretable machine-learning models [28,33].

As mentioned, the criticism towards nearest-neighbor classification lingers on the bases of
exceedingly high query times and space requirements. The standard approach to answering
these queries, even approximately, involves storing the entire training set P or at least a

© Alejandro Flores-Velazco and David M. Mount;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afloresv@umd.edu
https://orcid.org/0000-0003-0868-9802
mailto:mount@umd.edu
https://orcid.org/0000-0002-3290-8932
https://doi.org/10.4230/LIPIcs.ESA.2021.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 Boundary-Sensitive Approach for Approximate Nearest-Neighbor Classification

sufficiently large part of it. This implies that the time spent to answer such queries depends
to a large degree on the size and dimensionality of the training set of points stored, limiting
the use of nearest-neighbor classification on large-scale applications.

In this paper we explore efficient methods for approximate nearest-neighbor classification.
We are given the training set P and an approximation parameter 0 < ε ≤ 1

2 . The objective
is to construct a data structure so that given any query point q, it is possible to efficiently
classify q according to any valid ε-approximate nearest-neighbor in P . Throughout, we take
the domain X to be d-dimensional Euclidean space Rd, the distance function d to be the L2
norm, and we assume that the dimension d is a fixed constant, independent of n and ε.

1.1 Related Work
In the standard ε-approximate nearest-neighbor searching (ε-ANN), the objective is to
compute a point whose distance from the query point is within a factor of 1 + ε of the true
nearest neighbor. This problem, referred to as “standard ANN” throughout, has been widely
studied. In chromatic ε-ANN search the objective is to return just the class (or more visually,
the “color”) of any such point [6, 18]. We refer to this as ε-classification.

Clearly, chromatic ANN queries can be reduced to standard ANN queries. Hence,
most of the efficiency improvements in nearest-neighbor classification have arisen from
improvements to the standard ANN problem. While standard ANN has been well studied in
high-dimensional spaces (see, e.g., [1]), in constant-dimensional Euclidean space, the most
efficient data structures involve variants of the Approximate Voronoi Diagram (or AVD)
(see [3–5,23]). Arya et al. [6] proposed a data structure specifically tailored for ε-classification.
Unfortunately, this work was based on older technology, and its results are not competitive
when compared to the most recent advances on standard ANN search via AVDs.

All previous results have query and space complexities that depend on n, the total size of
the training set P . In many cases, a much smaller portion of the training set may suffice
to correctly ε-classify queries. Think of the boundaries between adjacent Voronoi cells of
points of different classes (see Figure 1a). The points that define these boundaries are known
as border points. Throughout, let k denote the number of such border points in P (clearly,
k ≤ n, and hopefully, k ≪ n). Furthermore, the notion of border points can be generalized
to the context of ε-classification (see Section 2 for a formal definition). Thus, denote kε as
the number of ε-border points, where k ≤ kε ≤ n. Ideally, we would like the query and space
complexities of answering chromatic ε-ANN queries to depend on kε instead of n.

In order to achieve this goal, previous research has focused on reducing the training set
P by selecting a subset R ⊆ P . Once R is computed, it is assumed that this subset will be
used to build a standard AVD for ε-classification. Research in this area is vast, but there
are two broad approaches, depending on the type and size of the computed subsets, and the
classification guarantees provided.

Heuristics: Most of the work has focused on proposing heuristics to compute smaller training
sets R ⊆ P . These are often known as condensation algorithms, and the literature on
these is extensive (see [25,35] for comprehensive surveys, and [2,7, 8, 21,24,30] for some
of the proposed algorithms). The most recent condensation algorithms [16,17,20] show
that it is possible to compute subsets of P of size O(k) in O(n2) time. However, when
AVDs are built from these subsets, the resulting data structures are likely to introduce
classification errors [19], especially for query points that should be easily ε-classified.
Thus, while often used in practice, these approaches do not guarantee that chromatic
ε-ANN queries are answered correctly.
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Coresets: Recent results propose a technique to compute a coreset for ε-classification [19].
A coreset R guarantees that every query point will be correctly classified when assigning
the class of the point of R returned by the AVD. That is, for any query q ∈ Rd, the
point of R returned by the AVD belongs to the same class as one of q’s ε-approximate
nearest-neighbors in P . Unfortunately, the size of the computed coreset can be as large
as O((k log ∆)/εd−1), where ∆ is the spread1 of P .

1.2 Contributions
From the previous section, we have seen that existing approaches for ε-classification achieve
only one of the following goals:

The size of the resulting data structure is dependent only on ε, kε (the number of ε-border
points) and d, while being independent from n and ∆.
It guarantees correct ε-classification for any query point.

The main result of this paper is an approach that achieves both goals. We propose a new
data structure built specifically to answer chromatic ε-ANN queries over the training set P ,
which we call a Chromatic AVD. Given any query point q ∈ Rd, this data structure returns
the class to be assigned to q, which matches the class of at least one of q’s ε-approximate
nearest-neighbors in P . More generally, our data structure returns a set of classes such that
there is an ε-approximate nearest-neighbor of q from each of these classes.

Therefore, the Chromatic AVD can be used to correctly ε-classify any query point. The
main result of this work is summarized in the following theorem, expressed in the form of a
space-time tradeoff based on a parameter γ.

▶ Theorem 1. Given a training set P of n labeled points in Rd, an error parameter 0 < ε ≤ 1
2 ,

and a separation parameter 2 ≤ γ ≤ 1
ε . Let kε be the number of ε-border points of P . There

exists a data structure for ε-classification, called Chromatic AVD, with:

Query time: O

(
log (kεγ) + 1

(εγ) d−1
2

)
Space: O

(
kεγd log 1

ε

)
.

Which can be constructed in time Õ
((

n + kε/(εγ) 3
2 (d−1)

)
γd log 1

ε

)
.

By setting γ to either of its extreme values, we obtain the following query times and
space complexities.

▶ Corollary 2. The separation parameter γ describes the tradeoffs between the query time
and space complexity of the Chromatic AVD. This yields the following results:

If γ = 2 −→ Query time: O
(

log kε + 1
ε

d−1
2

)
Space: O

(
kε log 1

ε

)
.

If γ = 1
ε

−→ Query time: O
(

log kε

ε

)
Space: O

(
kε

εd

)
.

The approach towards constructing this data structure is hybrid, combining a quadtree-
induced partitioning of space (leveraging similar techniques to the ones used for standard
AVDs), with the construction of coresets for only some cells of this partition. All other cells
can be discarded, and a new quadtree can be built with only the remaining cells. The final
size of the tree is bounded in terms of kε. This technique allows us to maintain coresets in
the most critical regions of space, and thus, avoiding the dependency on the spread of P .

1 The spread of a point set is defined to be the ratio between the largest and smallest pairwise distances.
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(a) Standard AVD [3–5,23]. (b) Chromatic AVD.

Figure 1 Examples of the space partitioning achieved by any standard AVD, compared to the
Chromatic AVD data structure proposed in this paper. Our approach subdivides the space around
the boundaries defined by the ε-border points, while ignoring other boundaries.

2 Preliminary Ideas and Intuition

Preliminaries. First, we need to introduce some preliminary definitions and notations that
are relevant to the results presented in the remaining of the paper. Given any point q ∈ Rd,
denote its nearest-neighbor as nn(q), and the distance between them by dnn(q) = d(q, nn(q)).

Additionally, let’s introduce a few concepts and related properties that will prove useful in
the construction of the Chromatic AVD. These are Well-Separated Pair Decompositions [10]
(WSDPs), Quadtrees [14,31], and Approximate Voronoi Diagrams [3–5,23] (AVDs).

Well-Separated Pair Decompositions: Given the point set P , and a separation factor σ > 2,
we say that two sets X, Y ⊆ P are well separated if they can be enclosed within two
disjoint balls of radius r, such that the distance between the centers of these balls is at
least σr. We say that X and Y form a dumbbell, where both sets are the heads of this
dumbbell. Consider the line segment that connects the centers of both balls, and let z

and ℓ be the center and length of this line segment, respectively (i.e., the center and the
length of the dumbbell). The following properties hold when σ > 4, for x ∈ X and y ∈ Y :

d(x, z) < ℓ ℓ < 2d(x, y) ℓ > d(x, y)/2.

Furthermore, a well-separated pair decomposition of P is defined as a set D = {(Xi, Yi)}i

where every Xi and Yi are well separated, and for every two distinct points p1, p2 ∈ P

there exists a unique pair P = (X, Y ) ∈ D such that p1 ∈ X and p2 ∈ Y , or vice-versa.
It is known how to construct a WSPD of P with O(σdn) pairs in O(n log n + σdn) time.

Quadtrees: These are tree data structures that provide a hierarchical partition of space. Each
node in this tree consists of a d-dimensional hypercube, where non-leaf nodes partition its
corresponding hypercube into 2d equal parts. The root of this tree corresponds to the [0, 1]d
hypercube. We will use a variant of this structure called a balanced box-decomposition
tree (BBD tree) [6]. Such data structure satisfies the following properties:
1. Given a point set P , such a tree can be built in O(n log n) time, having space O(n)

such that each leaf node contains at most one point of P .
2. Given a collection U of n quadtree boxes in [0, 1]d, such a tree can be built in O(n log n)

time, having O(n) nodes such that the subdivision induced by its leaf cells is a
refinement of the subdivision induced by the Quadtree boxes in U .

3. Given the trees from 1 or 2, it is possible to determine the leaf cell containing any
arbitrary query point q in O(log n) time.
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Approximate Voronoi Diagram: Generally, AVDs are quadtree-based data structures that
can be used to efficiently answer ANN queries. The partitioning of space induced by
this data structure is often generated from a WSPD of P . Additionally, every leaf cell
w of this quadtree has an associated set of ε-representatives Rw that has the following
property: for any query point q ∈ w, at least one point in Rw is one of q’s ε-approximate
nearest-neighbors in P .

New Ideas and Intuitions. Consider the space partitioning induced by a standard AVD, as
previously described. By construction, any leaf cell w of this partition has an associated set
of ε-representatives Rw. Evidently, for the purposes of ε-classification, the most important
information related to this leaf cell comes from the classes of the points in Rw, and not
necessarily the points themselves.

This leads to an initial approach to simplify an AVD. We distinguish between two types
of leaf cells, based on the points inside their corresponding ε-representative sets. Any leaf
cell w is said to be:

Resolved: If every point in Rw belongs to the same class.
Ambiguous: Otherwise, if at least two points in Rw belong to different classes.

Clearly, there is no need to store the set of ε-representatives of any resolved leaf cell, as
instead, we can simply mark the leaf cell w as resolved with the class that is shared by all
the points in Rw. This effectively reduces the space needed for such cells to be constant.

Furthermore, it seems that the bulk of the “work” needed to decide the class of a given
query point can be carried out by the ambiguous leaf cells, along with some groupings of
resolved leaf cells. The data structure presented in this paper, called Chromatic AVD, builds
upon this hypothesis.

Additionally, we formally define the set of ε-border points of the training set P . This
set, denoted as Kε, contains any point p ∈ P for which there exist some q ∈ Rd and p̄ ∈ P ,
such that p and p̄ are ε-approximate nearest-neighbors of q, and both belong to different
classes. Denote kε = |Kε| as the number of ε-border points of the training set P . Note that
Kε ⊆ Kε′ if and only if ε ≤ ε′. Additionally, note that K0 defines the set of (exact) border
points of P , where k = k0.

(a) (b)

Figure 2 Intuition to think that Kε (and not K0) is needed to ε-classify some query points.

This generalization of the definition of border points seems better suited to analyze the
problem of ε-classification, as illustrated in Figure 2. Figure 2b shows the ε-approximate
bisectors between the two closest and two farthest points (the first two belong to K0, while
the others belong to Kε but not K0). A hypothetical leaf cell w is sufficiently separated from
the only two exact border points, but intersects the ε-approximate bisectors between the

ESA 2021
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two farthest points. This implies that inside the cell w lie query points that can only be
ε-classified with one class, and others with the other class, forcing this cell to be ambiguous.
This suggests that K0 is insufficient to account for the necessary complexity of ε-classification.

3 Chromatic AVD Construction

In this section, we describe our method for constructing the proposed Chromatic AVD. The
following overview outlines the necessary steps followed to construct this data structure.

The Build step (Section 3.1): Consists of building an initial quadtree-based subdivision
of space, designed specifically to achieve the properties described in Lemma 3.
The Reduce step (Section 3.2): Seeks to identify the leaf cells of the initial subdivision
that are relevant for ε-classification, as well as those that can be ignored or simplified.
This process consists of the following substeps.

Computing the sets of ε-representatives for every leaf cell of the initial quadtree.
Based on these sets, marking the leaf cells as either ambiguous or resolved.
Selecting those leaf cells which are relevant for ε-classification.
Building a new quadtree-based subdivision using the previously selected leaf cells.

3.1 The Build Step
We begin by constructing the tree Tinit using similar methods as the ones used to construct
a standard AVD. Thus, the first step is to compute a well-separated pair decomposition D
of P using a constant separation factor of σ > 4. While the standard construction would
use all pairs in this decomposition, for the purpose of the Chromatic AVD, we filter D to
only keep bichromatic pairs. Denote D′ ⊆ D to be the set of bichromatic pairs in D, where a
pair P ∈ D is said to be bichromatic if and only if the dumbbell heads separate points of
different classes. Note that D′ can be computed similarly to D, using a simple modification
of the well-known algorithm for computing WSPDs [10] (the details are left to the reader).

Next, we compute an initial set of quadtree boxes U(P) for every pair in D′ as follows.
This construction depends on two constants c1 and c2 whose assignment will be described
later in this section. For 0 ≤ i ≤ ⌈log (c1 1/ε)⌉, we define bi(P) as the ball centered at z of
radius ri = 2iℓ. Thus, this set of balls involves radius values ranging from ℓ to Θ(ℓ/ε). For
each such ball bi(P), let Ui(P) be the set of quadtree boxes of size ri/(c2γ) that overlap the
ball. Let U(P) denote the union of all these boxes over all the O(log 1/ε) values of i.

After performing this process on every pair of the filtered decomposition D′, take the
union of all these boxes denoted as U =

⋃
P∈D′ U(P). Finally, build the tree Tinit from the set

of quadtree boxes U , leveraging property 2 of quadtrees described in Section 2. Additionally,
for each class i in the training set, build an auxiliary tree T i

aux from the point set Pi (i.e., the
points of P of that are labeled with class i), using property 1 of quadtrees. These auxiliary
trees will be used together with Tinit in order to build our final tree T , the Chromatic AVD.

While the standard AVD construction satisfies that all resulting leaf cells of the tree have
certain separation properties from the points of set P , the same is not true for tree Tinit.
However, the following result describes a relaxed notion of the separation properties, now
based on the classes of the points, which are achieved by Tinit.

▶ Lemma 3 (Chromatic Separation Properties). Given two separation parameters γ > 2 and
φ > 3, every leaf cell w of the tree Tinit satisfies at least one of the following separation
properties, where bw is the minimum enclosing ball of w:

(i) P ∩ γbw is empty (see Figure 3a), and hence bw is concentrically γ-separated from P .
(ii) The cell w can be resolved with the classes present inside P ∩ φbw (see Figure 3b).
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(a) No points inside γbw. (b) Leaf cell w can be resolved.

Figure 3 Basic separation properties achieved by during the construction of the Chromatic AVD.

Proof. Let w be any leaf cell of Tinit, with center cw and side length sw, where its (minimum)
enclosing ball bw has radius rw =

√
d/2 sw and shares the center cw. Additionally, let

xi ∈ Pi be a 1-approximate nearest-neighbor of cw among the points of P of class i. In other
words, for each class of points we use the auxiliary trees T i

aux to compute a 1-approximate
nearest-neighbor of cw. A few cases unfold from here:

The first case is rather simple. If 4γφbw ∩ {xi}i = ∅, knowing that the points xi are
1-approximate nearest-neighbors of cw, this implies that the ball 2γφbw is empty (i.e., we
know that 2γφbw ∩ P = ∅). Clearly, this means the the first separation property holds for w.

Consider the case when |4γφbw ∩ {xi}i| = 1, and let i be the class of the point that lies
inside 4γφbw. Following similar arguments to the previous case, this implies that only points
of class i could potentially lie inside of 2γφbw. Then, check if xi lies inside the smaller ball
expansion 2γbw. If not, we know that γbw is empty (i.e., γbw ∩ P = ∅), making the first
separation property hold for w. Otherwise, we know that 2γbw contains at least one point
(i.e., xi), and additionally we know that 2γbw is φ-separated from points of all other classes
but i (as 2γφbw only contains points of class i). Given that φ > 3, the nearest neighbor of
every query point inside 2γbw has class i. Therefore, w can be resolved with class i (namely,
Cw = {i}), satisfying the second separation property.

Lastly, it is possible that |4γφbw ∩ {xi}i| ≥ 2. However, it is possible to show that if this
is the case, it immediately implies that every point inside 4γφbw actually lies inside of some
ball b′

w which is β-separated from w (see Figure 5a), where β = 1/ε. The details of this part
of the proof are omitted, and left in the Appendix A, as the arguments are similar to the
ones described in [5]. However, proving this provides insights into how to set constants c1
and c2, where c1 ≥ 3(1 + ε) and c2 ≥ 20φ

√
d.

Finally, if |4γφbw ∩ {xi}i| ≥ 2, we know all points inside 4γφbw are β-separated from w.
We can now proceed similarly to the previous case, by checking if one of the computed 1-
approximate nearest-neighbors lies inside the ball 2γbw. If 2γbw ∩{xi}i = ∅ we know that γbw

is empty (i.e., γbw ∩P = ∅), making the first separation property hold for w. Otherwise, note
that b′

w is completely contained inside 2γ(1 + ε)bw. Given that φ > 3, it is possible to show
that for any query point in w, all points in b′

w are valid ε-approximate nearest neighbors. This
implies that we can resolve w with the class of any of the points inside of b′

w, thus satisfying
the second separation property. In particular, we mark w as resolved with every class present
in the inner cluster b′

w, namely, Cw = {l(p) | ∀ p ∈ b′
w ∩ P} = {i | xi ∈ 4γφbw}. ◀

ESA 2021
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3.2 The Reduce Step
From the initial partitioning as described in Lemma 3, every leaf cell w of Tinit is either
concentrically γ-separated from P (i.e., γbw ∩ P = ∅), or it is already marked as resolved.
For every leaf cell w in the first case, we will compute a set of ε-representatives by leveraging
the concentric ball lemma (see Lemma 5.1 in [5]). It states that there exists a set Rw of
ε-representatives for w of size O(1/(εγ) d−1

2 ), and provides a way to compute such set.
Instead of directly applying this result, we use it to compute a set of ε/3-representatives

for any leaf cell w that is yet unresolved. Essentially, this leads to the same asymptotic
upper-bound on the size of Rw, meaning that |Rw| = O(1/(εγ) d−1

2 ). Once Rw is computed,
we can proceed to mark w as either resolved or ambiguous as follows.

Procedure to Mark Leaf Cells. For every leaf cell w, this procedure marks w as either
resolved or ambiguous, following a few defined cases that unfold from the contents of the set
Rw of points selected as representatives for w. Let r−

w = ε (1−γ) rw/3.

1. If all the points in Rw belong to the same class.
For every point p ∈ Rw and class i ∈ C, compute a 1-approximate nearest-neighbor of p

among the points of Pi, denoted as the point xp,i. If d(p, xp,i) < r−
w , then add xp,i to Rw.

It is easy to show that xp,i would also be an ε-representative for w. Repeat this for every
point originally in Rw, and every class in the training set.
a. If any point xp,i was added to Rw, proceed with Case 2.
b. Otherwise, mark w as resolved with the class of the points in Rw. Namely, let i be the

class of every point in Rw, then Cw = {i}.
2. If Rw contains points of more than one class.

Before proceeding, we will do some basic pruning of the set Rw. For every class i, compute
a net among the points of Rw of class i, using a radius of r−

w to compute the net, and
replace the points of class i in Rw with the computed net. It is easy to see that the
remaining points of Rw are a set of ε-representatives of w, and that every two points in
Rw of the same class are at distance at least r−

w .
a. If the diameter of Rw is less than r−

w , it is easy to prove that all the points in Rw are
ε-representatives of any point inside bw. Therefore, w can be labeled as resolved with
the class of all of the points in Rw. That is, Cw = {l(p) | ∀ p ∈ Rw}.

b. If the diameter is greater than or equal to r−
w , w is marked as ambiguous.

Let A and R be the sets of ambiguous and resolved leaf cells of Tinit, respectively. We
will use some of these cells to build the Chromatic AVD, while ignoring the remaining cells.

Consider the set of resolved leaf cells R, we partition this set into two subsets Rb and Ri

(named boundary and interior resolved leaf cells, respectively). We say a resolved leaf cell w1
belongs to Rb, if and only if there exists another resolved leaf cell w2 adjacent to w1, such
that Cw2 \Cw1 ̸= ∅. Every other resolved leaf cell belongs to Ri (i.e., Ri = R \ Rb). Note
that both sets Rb and Ri can be identified by a simple traversal over the leaf cells of Tinit,
using linear time in the size of the tree2.

Finally, we build a new tree T from the set of ambiguous and boundary resolved leaf cells
A ∪ Rb. By well-known construction methods of quadtrees, as described in Section 2, the leaf
cells of T either belong to A ∪ Rb, or are “Steiner” leaf cells added during the construction
of T that cover the remainer of the space that is uncovered by A ∪ Rb.

2 Two leaf cells are adjacent if and only if a vertex of one of the cells “touches” the other cell. This implies
that the number of adjacency relations (i.e., edges in the implicit graph where the leaf cells are the
nodes) is O(2d m), where m is the number of leaf cells of the tree Tinit.
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▶ Lemma 4. For any leaf cell w in the tree T such that w ̸∈ A ∪ Rb, w must cover a space
that is also covered by a collection of leaf cells of Tinit, all of which are resolved with the same
set of classes Cw.

Proof. This becomes apparent from the construction of T . In the new tree T , consider
any leaf cell w of T that is not part of A ∪ Rb (i.e., a “Steiner” leaf cell added during the
construction of the tree). Now, recall that the leaf cells of both T and Tinit are a partitioning
of (the same) space, which means that we can define Ww = {w′ ∈ Tinit | w ∩ w′ ̸= ∅} as the
collection of leaf cells of Tinit that cover the same space covered by w.

Now, for any fixed w of T , it is easy to see that any two leaf cells w1, w2 ∈ Ww must be
resolved with the same set of classes. Otherwise, at least one of these two would be part of
the set Rb, which would be a contradiction to the fact that w is a “Steiner” leaf cell of T .
Therefore, any query inside w can be answered with the classes Cw = Cw1 = Cw2 , and this
can be determined during preprocessing by a single query on Tinit (e.g., finding the leaf cell
of Tinit that contains the center cw of w is sufficient to know the contents of Cw). ◀

This implies that after building tree T , and with some extra preprocessing to resolve the
“Steiner” leaf cells of the tree, we can use the resulting data structure to correctly answer
chromatic ε-approximate nearest-neighbor queries over the training set P . In other words,
T can be used to answer ε-classification queries over P . We call this data structure T the
Chromatic AVD.

▶ Lemma 5. The construction of T takes Õ
(
nγd log 1

ε

)
time.

Proof. Let’s analyze the total time needed to build our Chromatic AVD, namely the tree T ,
by analyzing the time required to perform each step of the construction.

Building Tinit has essentially the same complexity of building any standard AVD [3–5,23].
This means that constructing Tinit takes O(m log m) time, where m = nγd log 1

ε . Note
that during the construction, while computing the set of ε-representatives of each leaf
cell, each leaf cell can already be marked as either ambiguous or resolved.
Building the auxiliary trees T i

aux for every class i, takes O(n log n) time, as the number
of classes of P is considered to be a constant. Recall that because these trees are only
used to for 1-ANN queries, they only need to be standard Quadtrees, and not AVDs.
Identifying the set Rb requires a traversal over the leaf-level partitioning of the space,
which is linear in terms of the number of cells. Therefore, this step requires O(m) time.
Once the sets of ambiguous and boundary resolved leaf cells are identified, namely, the
sets A and Rb, the final tree T can be built. Roughly, this step takes O(m log m) time.
Finally, we must resolve the “Steiner” leaf cells of T , which can be done by a single query
over Tinit, each taking O(log m) time. Thus, this step takes O (m log m) total time.

All together, the total construction time is dominated by the first step. Therefore, the
time required to construct T is O(m log m) = Õ(m) = Õ

(
nγd log 1

ε

)
. ◀

4 Tree-size Analysis

4.1 Initial Size Bounds
Define the set of important leaf cells I of the tree Tinit as those leaf cells w for which there
exists two ε-border points inside ργbw for some constant ρ, such that the distance between
these points is lower-bounded by Ω(εγrw). Formally, we define this set as I = {w ∈ Tinit |
∃p1, p2 ∈ ργbw ∩ Kε, d(p1, p2) = Ω(εγrw)}.
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▶ Lemma 6. The number of important leaf cells of Tinit is |I| = O
(
kεγd log 1

ε

)
.

Proof. This proof follows from a charging argument on the set Kε of ε-border points of
P . More specifically, consider a well-separated pair decomposition D′′ of Kε with constant
separation factor of σ > 4, the charging scheme assigns every important leaf cell w ∈ I to a
pair of D′′. Recall that D′′ can generally be consider to have O(kε) pairs, where kε = |Kε|.
It is important to note that both Kε and D′′ need not be computed.

Given that w ∈ I, we know there exist two points p1, p2 ∈ ργbw ∩ Kε. Let P ∈ D′′ be the
pair of D′′ that contains both p1 and p2, each in one of its dumbbell heads. We then charge
w to the pair P . Denote z and ℓ to be the center and length of P , respectively, we know the
following. First, note that the distance from cw (the center of w) to z is d(cw, z) ≤ ργrw + ℓ.
Additionally, we know that ℓ ≥ d(p1, p2)/2 = Ω(εγrw) by the properties of WSPDs described
in Section 2. Therefore, this implies that the ratio d(cw, z)/ℓ = O(1/ε).

Finally, fix some pair P ∈ D′′ with center z and length ℓ, and consider all important leaf
cells according to their distance to z. For any value of i ∈ [0, 1, . . . , O(log 1/ε)], consider all
leaf cells that can charge P whose distance to z is between 2iℓ and 2i+1ℓ. From our previous
analysis, rw ≥ d(cw, z)/ργ ≥ 2iℓ/ργ. By a simple packing argument, the number of such leaf
cells is at most O(γd). Thus, a total of O(γd log 1/ε) cells can charge P. Note that no leaf
cell whose distance to z is Ω(ℓ/ε) can charge P , as it would contradict the fact that both p1
and p2 are separated by a distance of Ω(εγrw). Finally, the proof follows by knowing that
there are at most O(kε) pairs in D′′. ◀

▶ Lemma 7. Every ambiguous leaf cell of Tinit is important, namely A ⊆ I.

Proof. Consider any ambiguous leaf cell w ∈ A of the tree Tinit. Knowing that w is ambiguous
implies that there must exist some point q ∈ γ

2 bw for which two of the ε-representatives of w

are valid ε-approximate nearest neighbors for q, both points belong to different classes, and
the distance between them is Ω(εγrw). Formally, denote these points as p1, p2 ∈ P such that
l(p1) ̸= l(p2), d(p1, p2) ≥ ε (1−γ) rw/4, and d(q, p1), d(q, p2) ≤ (1+ε) dnn(q).

We will see now how to bound the distance from cw to any of these points as a constant
factor of rw (recall that rw =

√
d/2 sw). From the proof of Lemma 6.3 in [5], we know that

the ball c3γbw ∩P ̸= ∅, for some constant c3 ≥ 1+2c2/
√

d. In other words, dnn(cw) ≤ c3γ rw.
From this, we can say that dnn(q) ≤ ( 1

2 + c3)γrw. Applying the triangle inequality yields
that d(cw, p1) ≤ d(cw, q) + d(q, p1) ≤

( 1
2 + (1 + ε)( 1

2 + c3)
)

γ rw. Similarly, we can achieve
the same bound for d(cw, p2).

Therefore, both p1, p2 ∈ ργbw for sufficiently large constant ρ (i.e., ρ ≥ ε( 1
2 + c3) + c3 + 1).

Knowing also that d(p1, p2) = Ω(r−
w ) = Ω(εγrw) yields that the leaf cell w ∈ I. ◀

▶ Lemma 8. Every boundary resolved leaf cell of Tinit is important, namely Rb ⊆ I.

Proof. Let w1 ∈ Rb be any boundary resolved leaf cell of the tree Tinit, we know there exists
another leaf cell w2 ∈ Rb adjacent to w1, such that there exists some class i ∈ Cw2 \Cw1 . Let
bw1 and bw2 be the corresponding bounding balls of w1 and w2. By definition, any point
q on the boundary shared by w1 and w2 has at least one ε-representative from each cell,
namely some points p1 ∈ Rw1 and p2 ∈ Rw2 , where l(p1) ̸= i and l(p2) = i. Additionally, by
similar arguments to the ones described in Lemma 7, we know that both p1, p2 ∈ ργbw for
sufficiently large constant ρ.

Now, we proceed to prove that d(p1, p2) ≥ r−
w /2. First, note that if w1 was resolved by

the initial marking of leaf cells as described in Lemma 3, then p2 must lie outside of γbw. In
such cases, clearly d(p1, p2) ≥ r−

w /2. The remaining possibility is that w1 was resolved after
computing the set of representatives. From the described procedure, in Case 1, we know
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that if d(p1, p2) < r−
w /2, the point xp1,i (which is a 1-approximate nearest-neighbor of p1

among points in Pi) would hold that d(p1, xp1,i) < r−
w . Hence, xp1,i should have been added

to the set of representatives of w1, contradicting the assumption that w1 is resolved, or that
Cw1 does not contain i. All together, we have that d(p1, p2) = Ω(r−

w ) = Ω(εγrw). From the
definition of the set of important leaf cells, w ∈ I. ◀

Lemmas 7 and 8 imply that all the leaf cells used to build T belong to the set of important
leaf cells (i.e., A ∪ Rb ⊆ I), whose size is upper-bounded by Lemma 6. All together, and
leveraging construction methods of quadtrees (see Section 2), the size of T is proportional to
the total number of leaf cells used to build it, which we now know is O(kεγd log 1

ε ). However,
we also need to account for the set of ε-representatives stored for each ambiguous leaf cell,
leading to a worst-case upper-bound of O(kεγd log 1

ε · 1/(εγ) d−1
2 ) total space to store T .

4.2 Spatial Amortization
The previous result can be improved by applying a technique called spatial amortization,
described by Arya et al. [5]. That is, we can remove the extra O(1/(εγ) d−1

2 ) factor from the
analysis of the space requirements for T .

This will be twofold process, as in order to successfully apply spatial amortization to the
analysis of the data structure, we first need to further reduce the set of ε-representatives
of every ambiguous leaf cell in the tree. Actually, the new set will no longer be a set of
ε-representatives, but it will just be a weak ε-coreset for query points inside of each leaf cell.

▶ Lemma 9. The total space required to store the ambiguous leaf cells of T is O
(
kεγd log 1

ε

)
.

Consider any ambiguous leaf cell w of T , and in particular, consider the set Rw of
ε-representatives of w. By construction, Rw has the property that every point q ∈ bw has at
least one ε-approximate nearest-neighbor in the set Rw. However, note that the opposite is
not necessarily true, as not every p ∈ Rw is an ε-approximate nearest-neighbor of some point
in bw. Even worst, while the fact the w is ambiguous indicates that at least two points in Rw

belong to Kε, the remaining points of Rw might not, which in turn prevents the application
of a spatial amortization analysis. Overall, this suggests some of the points of Rw might not
be necessary to distinguish between the classes that change the classification of points inside
bw (see Figure 4a).

This can be resolved as follows. Suppose we have access to the Voronoi diagram of the
set of points Rw, and consider the boundaries between adjacent cells of this diagram. Any
boundary that separates two points of Rw of different classes, and that intersects bw, is
relevant to the classification any query point inside bw. Formally, we define the set R′

w ⊆ Rw

of border points of Rw as (see Figure 4b):

R′
w = {p ∈ Rw | ∃ q ∈ bw, p′ ∈ Rw such that l(p) ̸= l(p′) ∧ d(q, p) = d(q, p′)}

This new set R′
w has some useful properties. Note that for any query point q ∈ bw, its

(exact) nearest-neighbor in R′
w belongs to the same class as its (exact) nearest-neighbor in

Rw, which itself is an ε-approximate nearest-neighbor of q among the points of P . In other
words, R′

w is an ε-coreset for any query point in bw. This implies that we can replace the set
of ε-representatives of w with the set R′

w. Moreover, this means that by the definition of
ε-border points, R′

w ⊆ Kε. Note that we don’t need to compute the Voronoi diagram of Rw,
but instead just part of the 1-skeleton. While not immediately evident, the set R′

w can be
computed in time O(|Rw|3), by fixing every two pairs of Rw, and checking whether there
exists a point q ∈ bw with the desired properties. The later step can be solved using Linear
Programming via the lifting transform into a parabola in d + 1 Euclidean space.
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(a) Set of ε-representatives Rw. (b) Set of border points R′
w. (c) Relevant pairs of D′′.

Figure 4 The set Rw of ε-representatives of w can be reduced to the set R′
w. This later set is a

subset of Kε, and can be charged to a proportional number of relevant pairs of D′′.

Now, let’s proceed with the charging argument over the pairs of the same WSPD D′′

used in Lemma 6. Instead of only charging w to a single pair (as described in Lemma 7),
we charge every point stored in R′

w to a pair of D′′. Thus, consider the following procedure
to find a sufficient number of pairs to charge all the points in R′

w, which is derived from a
similar procedure proposed in [5]. See Figure 4c for an illustrative example.

1. Compute a net of R′
w using radius r−

w , and denote this subset R′′
w. Given that all the

points of R′
w that belong to the same class are already separated by a distance of at least

r−
w , we know that |R′′

w| = Θ(|R′
w|), hiding constants3 that depend exponentially on d.

2. Find the two of points of p1, p2 ∈ R′′
w with smallest pairwise distance, and consider the

pair of P ∈ D′′ that contains both points p1 and p2, each in one of its dumbbell heads.
Note that by having computed a net in the previous step, d(p1, p2) ≥ r−

w .
3. Delete one of the two points from R′′

w (without lost of generality, delete p1).
4. Charge every point of R′

w that is covered by p1 (i.e., whose distance to p1 is ≤ r−
w ) to the

pair P . By the arguments described in step 1 on the size of R′′
w, we know that P receives

a charge from O(1) points of R′
w.

5. Repeat steps 2-4 with the remaining points of R′′
w until the set is empty.

Evidently, the number of pairs found (and charged) equals |R′′
w| − 1. All together, we

have that the total space required to store all the ambiguous leaf cells is proportional to the
sum of charges to every pair of D′′. Using the same arguments as Lemma 6, this implies
that the total storage is O(kεγd log 1

ε ). This completes the proof of Theorem 1.
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Figure 5 It is possible that points of ≥ 2 classes lie inside of γφbw. However, this case can be
reduced to the two separation properties illustrated in Figure 3.

To finish the proof of Lemma 3, we shall proof the assumption that if |4γφbw ∩ {xi}i| ≥ 2,
then every point inside 4γφbw lies inside the ball b′
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Proof. Let x, y ∈ 4γφbw be the two points of different classes inside the ball 4γφbw with
largest pairwise distance. Thus, it is easy to show that all the points inside 4γφbw lie inside
the two balls centered at x and y with radii equal to d(x, y), as shown in Figure 5b. By
definition of the (bichromatic) well-separated pair decomposition D′, there exists a pair
P ∈ D′ that contains x and y each in one of its dumbbells, with length ℓ and center z. Now,
we define the ball b′

w with center at z and radius r′
w = max (d(z, x), d(z, y)) + d(x, y). By

definition of P , we know that d(z, x), d(z, y) ≤ ℓ and d(x, y) ≤ 2ℓ, thus making r′
w ≤ 3ℓ. Let

L be the distance from w to z, we distinguish two cases based on the relationship between L

and ℓ:

L > c1βℓ. Consider the distance that separates the ball b′
w from the cell w.

d(w, b′
w) = L − r′

w > c1βℓ − r′
w ≥ (c1β/3 − 1) r′

w

Since β = 1/ε, for all sufficiently large constants c1 ≥ 3(1 + ε), the distance d(w, b′
w)

exceeds βr′
w which implies that b′

w is concentrically β-separated from w.
L ≤ c1βℓ. We will show that this case cannot occur, since otherwise the dumbbell P
would have caused w to be split, contradicting the assumption that it is a leaf cell of
Tinit. Since x, y, and w are all contained in the ball 4γφbw whose center lies within w, we
have both that d(x, w) ≤ 4γφrw, and ℓ < 2d(x, y) ≤ 2(8γφrw) = 16γφrw. Thus, by the
triangle inequality, we have:

L ≤ d(x, y) + d(x, w) < ℓ + 4γφrw < 16γφrw + 4γφrw = 20γφrw

Because L ≤ c1βℓ, it follows from our construction that there is at least one ball bi(P)
(with 0 ≤ i ≤ ⌈log c1β⌉) that overlaps w. Let b denote the smallest such ball, and
let r denote its radius. By the construction, we have that r ≤ max (ℓ, 2L). Since our
construction generates all quadtree boxes of size r/(c2γ) that overlap b, it follows that
sw ≤ r/(c2γ). Thus, we have:

rw = sw

√
d

2 ≤ r
√

d

2c2γ
≤ max (ℓ, 2L)

√
d

2c2γ
<

20γφrw

√
d

c2γ
= 20φrw

√
d

c2

Choosing c2 ≥ 20φ
√

d yields the desired contradiction.

This completes the proof of Lemma 3. ◀
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Abstract
In grammar-based compression a string is represented by a context-free grammar, also called a
straight-line program (SLP), that generates only that string. We refine a recent balancing result
stating that one can transform an SLP of size g in linear time into an equivalent SLP of size O(g)
so that the height of the unique derivation tree is O(log N) where N is the length of the represented
string (FOCS 2019). We introduce a new class of balanced SLPs, called contracting SLPs, where for
every rule A → β1 . . . βk the string length of every variable βi on the right-hand side is smaller by a
constant factor than the string length of A. In particular, the derivation tree of a contracting SLP
has the property that every subtree has logarithmic height in its leaf size. We show that a given SLP
of size g can be transformed in linear time into an equivalent contracting SLP of size O(g) with rules
of constant length. This result is complemented by a lower bound, proving that converting SLPs
into so called α-balanced SLPs or AVL-grammars can incur an increase by a factor of Ω(log N).

We present an application to the navigation problem in compressed unranked trees, represented
by forest straight-line programs (FSLPs). A linear space data structure by Reh and Sieber (2020)
supports navigation steps such as going to the parent, left/right sibling, or to the first/last child
in constant time. We extend their solution by the operation of moving to the i-th child in time
O(log d) where d is the degree of the current node.

Contracting SLPs are also applied to the finger search problem over SLP-compressed strings
where one wants to access positions near to a pre-specified finger position, ideally in O(log d) time
where d is the distance between the accessed position and the finger. We give a linear space solution
for the dynamic variant where one can set the finger in O(log N) time, and then access symbols or
move the finger in time O(log d + log(t) N) for any constant t where log(t) N is the t-fold logarithm
of N . This improves a previous solution by Bille, Christiansen, Cording, and Gørtz (2018) with
access/move time O(log d + log log N).
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1 Introduction

In grammar-based compression a long string is represented by a context-free grammar, also
called a straight-line program (SLP), that generates only that string. Straight-line programs
can achieve exponential compression, e.g. a string of length 2n can be produced by the
grammar with the rules An → An−1An−1, . . . , A0 → a. While it is NP-hard to compute a
smallest SLP for a given string [5] there are efficient grammar-based compressors of both
practical and theoretical interest such as the LZ78/LZW-algorithms [25, 24], Sequitur [19],
and Re-Pair [16]. There is a close connection between grammar-based compression and the
LZ77 algorithm, which parses a string into z phrases (without self-references): On the one
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45:2 Compression by Contracting Straight-Line Programs

hand z is always a lower bound on the size of the smallest SLP for the string [5]. On the
other hand one can always construct an SLP of size O(z log N) where N is the string length
[5, 22] (see also [13] for LZ77 with self-referential phrases). Furthermore, the hierarchical
structure of straight-line programs makes them amenable to algorithms that work directly
on the compressed representation, without decompressing the string first. We refer to [17]
for a survey on the broad literature on algorithms on grammar-compressed data.

Balanced grammars. For some algorithmic applications it is useful if the SLP at hand
satisfies certain balancedness conditions. In the following we always denote by N the length
of the represented string. A recent result states that one can transform an SLP of size g in
linear time into an equivalent SLP of size O(g) so that the height of the unique derivation
tree is O(log N) [10]. This yields a clean O(g) space data structure which supports random
access to any position i in the string in time O(log N), by descending in the derivation tree
from the root to the i-th leaf. The original solution for the random access problem by Bille,
Landau, Raman, Sadakane, Satti, and Weimann relied on a sophisticated weighted ancestor
data structure [3]. Its advantage over the balancing approach from [10] is that it supports
random access to the string defined by any given variable A in time O(log |A|).

Although the derivation tree of an SLP may have logarithmic height its subtrees may
still be very unbalanced. Arguably, the strongest balancedness notions are α-balanced SLPs
[5] and AVL-grammars [22]. An SLP in Chomsky normal form is α-balanced if for every rule
A → BC the ratios |B|/|A| and |C|/|A| lie between α and 1−α. An AVL-grammar is an SLP
in Chomsky normal form whose derivation tree is an AVL-tree, i.e. for every rule A → BC

the subtree heights below B and C differ at most by one. In fact, the aforementioned
transformations from LZ77 into SLPs produce an α-balanced SLP, with α ≤ 1 − 1

2
√

2 [5],
and an AVL-grammar [22]. Using the same proof techniques one can also transform an SLP
of size g into an α-balanced SLP or an AVL-grammar of size O(g log N) [5, 22].

Let us list a few algorithmic results on α-balanced SLPs and AVL-grammars. The
compressed pattern matching problem can be solved in linear time if the text is given by an
α-balanced SLP and the pattern is given explicitly [13]. Gagie, Gawrychowski, Kärkkäinen,
Nekrich, and Puglisi [7] presented a solution for the bookmarking problem in α-balanced
SLPs or AVL-grammars of size g. Given b positions in the string, called bookmarks, we
can decompress any substring of length ℓ that covers a bookmark in time O(ℓ) and space
O(g + b log∗ N). Based on this bookmarking data structure they present self-indexes for LZ77
and SLPs [7, 8], which support extracting substrings and finding all occurrences of a given
pattern. Abboud, Backurs, Bringmann, and Künnemann studied the Hamming distance
problem and the subsequence problem on SLP-compressed strings [1]. As a first step their
algorithms convert the input SLPs into AVL-grammars, and solve both problems in time
Õ(g1.410 · N0.593), improving on the decompress-and-solve O(N) time algorithms.

Main results. The starting point of this paper is the observation that the size increase by a
O(log N) factor in the transformation from SLPs to α-balanced SLPs or AVL-grammars is
unavoidable (Theorem 4). This lower bound holds whenever in the derivation tree any path
from a variable A to a leaf has length Θ(log |A|). This motivates the search for balancedness
notions of SLPs that can be established without increasing the size by more than a constant
factor and that provide good algorithmic properties. We introduce a new class of balanced
SLPs, called contracting straight-line programs, in which every variable βi occurring on the
right-hand side of a rule A → β1 . . . βk satisfies |βi| ≤ |A|/2. The derivation tree of an
contracting SLP has the property that every subtree has logarithmic height in its leaf size,
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i.e. in the number of descendant leaves. We explicitly admit rules with right-hand sides of
length greater than two, however, the length will always be bounded by a constant in this
paper. We say that an SLP G defines a string s if some variable in G derives s (and s only).
The main theorem of this paper refines the balancing theorem from [10] as follows:

▶ Theorem 1. Given an SLP G of size g, one can compute in linear time a contracting SLP
of size O(g) with constant-length right-hand sides which defines all strings that G defines.

As an immediate corollary we obtain a simple O(g) size data structure supporting access
to the i-th symbol of a variable A in time O(log |A|) instead of O(log N). This is useful
whenever multiple strings s1, . . . , sm are compressed using a single SLP since we can support
random access to any string si in time O(log |si|). We present an example application to
unranked trees represented by forest straight-line programs (FSLPs). FSLPs are a natural
generalization of SLPs that can compress trees both horizontally and vertically, and share
the good algorithmic applicability of their string counterparts [11]. Reh and Sieber presented
a linear space data structure on FSLP-compressed trees that allows to perform various
navigation steps in constant time [21]. We extend their data structure by the operation of
moving to the i-th child in time O(log d) where d is the degree of the current node.

▶ Theorem 2. Given an FSLP G of size g, one can compute an data structure in O(g)
time and space supporting the following operations in constant time: Move to the root of the
first/last tree of a given variable, move to the first/last child, to the left/right sibling or to
the parent of the current node, return the symbol of the current node. One can also move to
the i-th child of the current node in time O(log d) where d is the degree of the current node.

A second application concerns the finger search problem on grammar-compressed strings.
A finger search data structure supports fast updates and searches to elements that have
small rank distance from the fingers, which are pointers to elements in the data structure.
The survey [4] provides a good overview on dynamic finger search trees. In the setting of
finger search on a string s, Bille, Christiansen, Cording, and Gørtz [2] considered three
operations: access(i) returns symbol s[i], setfinger(i) sets the finger at position i of s, and
movefinger(i) moves the finger to position i in s. Given an SLP of size g for a string of
length N , they presented an O(g) size data structure which supports setfinger(i) in O(log N)
time, and access(i) and movefinger(i) in O(log d + log log N) time where d is the distance
from the current finger position [2]. If we assume that the SLP is α-balanced or an AVL-
grammar, there is a linear space solution supporting access(i) and movefinger(i) in O(log d)
time (Theorem 17). For general SLPs we present a finger search structure with improved
time bounds:

▶ Theorem 3. Let t ≥ 1. Given an SLP of size g for a string of length N , one can support
setfinger(i) in O(log N) time, and access(i) and movefinger(i) in O(log d + log(t) N) time,
where d is the distance between i and the current finger position, after O(tg) preprocessing
time and space.

Here log(t) N is the t-fold logarithm of N , i.e. log(0) N = N and log(t+1) N = log log(t) N .
Choosing any constant t we obtain a linear space solution for dynamic finger search, supporting
access(i) and movefinger(i) in O(log d + log(t) N) time. Alternatively, we obtain a clean
O(log d) time solution if we admit a O(g log∗ N) space data structure. Theorem 3 also works
for multiple fingers where every finger uses additional O(log N) space.

Let us remark that Theorem 1 holds in the pointer machine model [23], whereas for
Theorem 2 and Theorem 3 we assume the word RAM model with the standard arithmetic and
bitwise operations on w-bit words, where w ≥ log N . The assumption on the word length is
standard in the area of grammar-based compression, see [3, 2].
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Overview of the proofs. The proof of Theorem 1 follows the ideas from [3] and [10].
The obstacle for O(log N) time random access or O(log N) height are occurrences of heavy
variables on right-hand sides of rules A → β1 . . . βk, i.e. variables βi whose length exceeds
|A|/2. These occurrences can be summarized in the heavy forest, which is a subgraph of the
directed acyclic graph associated with the SLP. The random access problem can be reduced
to weighted ancestor queries (see Section 5) on every heavy tree whose edges are weighted by
the lengths of the variables that branch off from the heavy tree. Using a “biased” weighted
ancestor data structure one can descend in the derivation tree in O(log N) time, spending
amortized constant time on each heavy tree [3]. Our main contribution is a solution of the
weighted ancestor problem in the form of an SLP: Given a tree T of size n where the edges
are labeled by weighted symbols, we construct a contracting SLP of size O(n) defining all
prefixes in T , i.e. labels of paths from the root to some node. The special case of defining all
prefixes of a weighted string by a weight-balanced SLP of linear size (i.e. T is a path) was
solved in [10]; however, the constructed SLP only satisfies a weaker balancedness condition.

To solve finger search efficiently, Bille, Christiansen, Cording, and Gørtz first consider the
fringe access problem [2]: Given a variable A and a position 1 ≤ i ≤ |A|, access symbol A[i],
ideally in time O(log d) where d = min{i, |A|− i+1}. For this purpose the SLP is partitioned
into leftmost and rightmost trees, which produce strings of length N , N1/2, N1/4, N1/8,
etc. The leftmost/rightmost trees can be traversed in O(log log N) time using a O(log log N)
time weighted ancestor data structure by Farach-Colton and Muthukrishnan [6]. Applying
this approach to contracting SLPs one can solve fringe access in time O(log d + log log |A|)
since the trees have O(log N) height, for which one can answer weighted ancestor queries in
constant time using a predecessor data structure by Pǎtraşcu-Thorup [20]. Using additional
weighted ancestor structures, we can reduce the term log log |A| to log(t) N .

2 Straight-line programs

A context-free grammar G = (V, Σ, R, S) consists of a finite set V of variables, an alphabet
Σ of terminal symbols, where V ∩ Σ = ∅, a finite set R of rules A → u where A ∈ V and
u ∈ (V ∪ Σ)∗ is a right-hand side, and a start variable S ∈ V. The set of symbols is V ∪ Σ.
We call G a straight-line program (SLP) if every variable occurs exactly once on the left-hand
side of a rule and there exists a linear order < on V such that A < B whenever B occurs on
the right-hand side of a rule A → u. This ensures that every variable A derives a unique
string JAK ∈ Σ∗. We also write |A| for |JAK|. A string s ∈ Σ∗ is defined by G if JAK = s

for some A ∈ V. The size of G is the total length of all right-hand sides in G. We denote
by height(A) the height of the derivation tree rooted in A. The height of G is height(S).
We define the directed acyclic graph dag(G) = (V ∪ Σ, E) where E is a multiset of edges,
containing for every rule A → β1 . . . βk in R the edges (A, β1), . . . , (A, βk). An SLP G can be
transformed in linear time into an SLP G′ in Chomsky normal form which defines all strings
that G defines, i.e. each rule is of the form A → BC or A → a where A, B, C ∈ V and a ∈ Σ.

An SLP is α-balanced, for some constant 0 < α ≤ 1/2, if it is in Chomsky normal
form and for all rules A → BC both |B|/|A| and |C|/|A| lie between α and 1 − α. An
AVL-grammar is an SLP in Chomsky normal form where for all rules A → BC we have
|height(B) − height(C)| ≤ 1. An SLP in Chomsky normal form is (α, β)-path balanced, for
some constants 0 < α ≤ β, if for every variable A the length of every root-to-leaf path in
the derivation tree is between α log |A| and β log |A|. Observe that every α-balanced SLP is
(1/ log(α−1), 1/ log((1 − α)−1))-path balanced and AVL-grammars are (0.5, 2)-path balanced.
The latter follows from the fact that the height decreases at most by 2 when going from an
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AVL-tree to an immediate subtree. There are algorithms that compute for given a string w

an α-balanced SLP [5] and an AVL-grammar [22] of size O(g log N) where g is the size of a
smallest SLP for w. We show that these bounds are optimal even for path balanced SLPs:
There are strings for which the smallest path balanced SLPs have size Ω(g log N).

▶ Theorem 4. There exists a family of strings (sn)n≥1 over {a, b} such that |sn| = Ω(2n),
sn has an SLP of size O(n) and every (α, β)-path balanced SLP has size Ω(n2).

Proof. First we use an unbounded alphabet. Let sn = b1a2n

b2a2n

. . . bn−1a2n

bn, which has
an SLP of size O(n) with the rules S → b1Anb2An . . . bn, A0 → a and Ai → Ai−1Ai−1 for
all 1 ≤ i ≤ n. Consider an (α, β)-path balanced SLP G for sn. We will show that dag(G) has
Ω(n2) edges. Let 1 ≤ i ≤ n and consider the unique path in dag(G) from the starting variable
to bi. Let πi be the suffix path starting in the lowest node Ai such that JAiK contains some
symbol bj with i ̸= j. Therefore |Ai| ≥ 2n. Since G is (α, β)-path balanced πi has length
≥ αn. Since all paths πi are edge-disjoint it follows that G has size Ω(n2).

For a binary alphabet define the separator Ti = ba2i−2ba2i−1b for 1 ≤ i ≤ n and define
sn = T1a2n

T2 . . . Tn−1a2n

Tn of length Ω(2n). The string sn also has an SLP of size O(n).
Consider an (α, β)-path balanced SLP G for sn. Let 1 ≤ i ≤ n and consider the unique
path ρi in dag(G) from the starting variable to the symbol b in the middle of the separator
Ti = ba2i−2ba2i−1b. Let Bi be the lowest node on ρi such that JBiK contains either ba2i−2b

or ba2i−1b. Since the successor of Bi on ρi produces a string strictly shorter than |Ti| ≤ 4n,
the suffix path of ρi starting in Bi has length at most 1 + β log(4n) = O(log n). Let Ai be
the lowest ancestor of Bi on ρi such that JAiK contains a symbol from a separator Tj for
i ̸= j. Therefore |Ai| ≥ 2n and hence the suffix path of ρi starting in Ai has length at least
α log(2n) = αn = Ω(n). Thus, the path πi from Ai to Bi has length Ω(n) − O(log n) = Ω(n).
All paths πi are edge-disjoint since for any edge (X, Y ) in πi, JY K is of the form aℓba2i−2bar

or aℓba2i−1bar. This implies that G has size Ω(n2). ◀

We define contracting SLPs over a weighted alphabet, i.e. an alphabet Γ equipped with
a function ∥ · ∥ : Γ → N \ {0}, which is extended additively to Γ∗. The standard weight
function is the length function | · |. A symbol β occurring in a weighted string s is heavy
in s if ∥β∥ > ∥s∥/2; otherwise it is light in s. Consider an SLP G = (V, Σ, R, S) over a
weighted alphabet Σ. We define ∥A∥ = ∥JAK∥ for A ∈ V. A symbol β ∈ V ∪ Σ is a heavy
child of A ∈ V if β is heavy on the right-hand side of the rule A → u. We also call β a heavy
symbol. A rule A → u is contracting if u contains no heavy variables, i.e. every variable B

occurring in u satisfies ∥B∥ ≤ ∥A∥/2. Let us emphasize that heavy terminal symbols from Σ
are permitted in contracting rules. If all rules in G are contracting we call G contracting. If
B occurs heavily in a rule A → uBv and the rule B → x is contracting we can expand the
occurrence of B and obtain a contracting rule A → uxv.

3 Transformation into contracting SLPs

A labeled tree T = (V, E, γ) is a rooted tree where each edge e ∈ E is labeled by a string γ(e)
over a weighted alphabet Γ. A prefix in T is the labeling of a path starting from the root.
The first step towards proving Theorem 1 is a reduction to the following problem: Given a
labeled tree T , construct a contracting SLP over Γ of size O(|T |), defining all prefixes in T .

Decomposition into heavy trees. Consider an SLP G = (V, Σ, R, S). If a rule A → β1 . . . βk

contains a unique heavy symbol βi then β1 . . . βi−1 is the light prefix of A and βi+1 . . . βk

is the light suffix of A. The heavy forest H = (V ∪ Σ, EH) contains all edges (A, β) where
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Figure 1 An excerpt from the dag representation of an SLP. The variables S, T, U, V form a
heavy tree with root U . The value of S can be split into the prefix ACD, the root U of the heavy
tree, and the suffix B. Observe that the left labeling of the path from U to S is DCA, which is the
reverse of the prefix ACD.

β ∈ V ∪ Σ is a heavy child of A ∈ V, which is a subgraph of dag(G). Notice that the edges
in H point towards the roots, i.e. if (α, β) ∈ E then α is a child of β in H. We define two
labeling functions: The left label λ(e) of an edge e = (A, β) is the reversed light prefix of A

and the right label ρ(e) of e is the light suffix of A. The connected components of (H, λ)
and (H, ρ) are called the left labeled and right labeled heavy trees, which can be computed in
linear time from G. If β is the root of a heavy tree containing a variable A we can factorize
JAK into the reversed left labeling from A to its root β in H, the value of β, and the right
labeling of the path from β to A. In that way one can redefine every variable using SLPs
which define all prefixes in the left labeled and the right labeled heavy trees.

▶ Proposition 5. Given an SLP G and contracting SLPs HL and HR defining all prefixes
of all left labeled and right labeled heavy trees of G. Let g be the total number of variables
in the SLPs and r be the maximal length of a right-hand side. One can compute in linear
time a contracting SLP G′ which defines all strings that G defines, has O(g) variables and
right-hand sides of length O(r).

The goal of this section is to prove the following result.

▶ Theorem 6. Given a labeled tree T with n edges and labels of length ≤ ℓ, one can compute
in linear time a contracting SLP with O(n) variables and right-hand sides of length O(ℓ)
defining all prefixes in T .

Together with Proposition 5 it implies Theorem 1. We can always assume that every
edge in T is labeled by a single symbol: Edges labeled by ε can clearly be contracted. Edge
labels u of length > 1 are replaced by a new symbol Xu of weight ∥u∥, which can be replaced
by u again in the constructed SLP. We will also assume that all symbols in T are distinct.

Prefixes of weighted strings. We start with the case where the tree is a path, i.e. we need
to define all prefixes of a weighted string s using O(|s|) contracting rules. The following
theorem refines [10, Lemma III.1] where only the path length from a prefix variable Si to a
symbol aj in the derivation tree was bounded by O(1 + log ∥Si∥

∥aj∥ ).

▶ Theorem 7. Given a weighted string s of length n one can compute in linear time a
contracting SLP with O(n) variables with right-hand sides of length at most 10 that defines
all nonempty prefixes of s.

Let us illustrate the difficulty of defining all prefixes with contracting rules. Consider the
weighted string s = a1 . . . an where symbol ai has weight 2n−i. Since in every factor ai . . . aj

the left-most symbol ai is heavy, every rule for ai . . . aj must split off the first symbol. If for
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Figure 2 The derivation tree D of a base SLP and the modified tree D0 containing all symbols
which are not a left-most child in D.

every prefix we would only repeatedly split off the first symbol we would create Ω(n2) many
variables. This shows that there is no better solution with right-hand sides of length ≤ 2.
However, using longer rules we can simultaneously reduce both the weight (in a contracting
fashion) and the length.

First we recursively construct a contracting “base” SLP B = (V, Σ, R, S) for the weighted
string s = a1 . . . an. It will have the additional property of being left-heavy, i.e. for every rule
A → β1 . . . βk and all 2 ≤ i ≤ k with βi ∈ V we have ∥β1 . . . βi−1∥ ≥ ∥βi∥. Let us emphasize
that the condition does not apply when βi is a terminal symbol. The case n = 1 is clear. If
n > 1 we factorize s = uaiv such that u, v ∈ Σ∗ have weight at most ∥s∥/2. Next factorize
v = v1v2 such that |v1| and |v2| differ at most by one. We add the rule S → UaiV1V2 to
the SLP, possibly omitting variables if some of the strings u, v1, v2 are empty. Finally, we
recursively define the variables U , V1 and V2. The SLP B is clearly contracting, has at
most n variables, since every variable can be identified with the unique symbol a ∈ Σ on
its right-hand side, and its right-hand sides have length at most 4. Notice that the rule
S → UaiV1V2 is left-heavy since ∥uai∥ > ∥s∥/2 ≥ ∥v1∥ + ∥v2∥.

▶ Lemma 8. The base SLP B can be computed in linear time from s.

Consider the derivation tree D of B whose node set is S = V ∪ Σ. Let ⪯D and ≺D be
the ancestor and the proper ancestor relation on S. For all α ⪯D β we define left(α, β) = u

where α ⇒∗
B uβv is the unique derivation with u, v ∈ Σ∗. In the derivation tree left(α, β)

is the string that branches off to the left on the path from α to β. Notice that every
proper nonempty prefix of s can be written as left(S, ai) = a1 . . . ai−1. For α ∈ S \ {S}
occurring in the unique rule α′ → uαv we define the left sibling string lsib(α) = u. It satisfies
lsib(α) ⇒∗

B left(α′, α). Notice that we can have left(α, β) = left(α′, β′) for different pairs
(α, β), (α′, β′). For a unique description we define the set of nodes S0 ⊆ S which are not a
left-most child in D, i.e. symbols α such that α = S or lsib(α) ̸= ε. In particular S belongs
to S0. Observe that left(α, β) = left(α′, β′) where α′ and β′ are the lowest ancestors of α

and β, respectively, that belong to S0. In particular, every proper nonempty prefix of s is of
the form left(α, β) for some α, β ∈ S0. Let D0 be the unique unordered tree with node set
S0 whose ancestor relation is the ancestor relation of D restricted to S0. Figure 2 shows an
example of a tree D with the modified tree D0.

We will introduce variables Lα,β for the strings left(α, β). The variable Lα,β can be
defined using Lα′,β′ where α′ is a child of α in D0 and β′ is the parent of β in D0. To achieve
the O(n) bound we will restrict to variables Lα,β that are used in the derivation of a prefix
variable, namely L = {Lα,β | α, β ∈ S0, α ≺ β, level(α) ≤ height(β)}. Here level(α) refers to
distance from α to the root in D0, and height(β) is the height of the subtree of D0 below β.
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▶ Lemma 9. We can compute in linear time a contracting SLP G = (V ∪ L, Σ, R ∪ Q, S)
with right-hand sides of constant length such that JLα,βK = left(α, β) for all Lα,β ∈ L.

We have seen that G defines all nonempty prefixes (S derives s and every proper nonempty
prefix is defined by some variable LS,ai). To finish the proof of Theorem 7 remains to show
that G has O(n) variables. The SLP G consists of n variables from the base SLP B and the
variables in L. A variable Lα,β ∈ L is determined by β and the level of α, which is an integer
between 0 and the height of β in D0. Hence it suffices to show that

∑
β∈S0

height(β) is O(n).
This follows from the fact that every node in D0 has logarithmic height in its leaf size.

Prefixes in trees. For Theorem 6 we will construct an SLP G for the prefixes in T , which
will not be contracting in general. Still, its heavy forest is a disjoint union of caterpillar trees,
i.e. trees where every node has at most one child which is not a leaf. Put differently, every
heavy tree of G consists of a central path α1, . . . , αm such that every αi occurs at most once
heavily in a rule A → u where A is heavy, namely A = αi−1. We first extend Theorem 7 to
caterpillar trees and then apply Proposition 5 to G, concluding the proof of Theorem 6.

▶ Proposition 10. Given a labeled caterpillar tree T with n edges and labels of length ≤ ℓ,
one can compute a contracting SLP G defining all nonempty prefixes in T such that G has
O(n) variables and right-hand sides of length O(ℓ).

▶ Proposition 11. Given a labeled tree T with n edges we can compute an SLP G defining
all nonempty prefixes in T such that
(a) G has 4n variables and right-hand sides of length ≤ 6,
(b) the subgraph of dag(G) induced by the set of heavy symbols is a disjoint union of paths.

Proof sketch. We proceed by induction on n. Let us assume a tree T = (V, E, ω) with
n ≥ 2 edges. We partition E into maximal unary paths π = (v0, . . . , vk), where k ≥ 1, and
v1, . . . , vk−1 have degree one. For every such a path π we create an SLP Gπ with the rules
Pv0,v1 → ω(v0, v1) and Pv0,vi → Pv0,vi−1ω(vi−1, vi) for 2 ≤ i ≤ k. We contract every such a
maximal unary path into a single edge (v0, vk) labeled by the variable Pv0,vk

and remove all
leaves. This new tree T ′ has at most n/2 many edges. Let V ′ ⊆ V be the node set of T ′.

For v ∈ V ′ let d(v) be the weight of the path from the root to v in T ′ and define
rk(v) = inf{k ∈ Z | d(v) ≤ 2k}. Let v̂ be the highest ancestor of v in T ′ with rk(v) = rk(v̂),
called the peak node of v. We partition T ′ into subtrees consisting of nodes with the same
peak node, and apply the construction recursively on each part. Let G′ be the union of all
obtained SLPs with at most 4 · n/2 ≤ 2n variables. For every node v ∈ V ′ which is not a
peak node G′ contains a variable Bv̂,v where JBv̂,vK is the path labeling from v̂ to v in T ′.

Let G be the union of G′ and all SLPs Gπ, which has at most n + 2n = 3n variables. For
every x ∈ V which is not the root of T we add a variable Ax such that JAxK is the labeling
of the path from the root to x in T . This yields 4n variables, as claimed. Let v be the lowest
ancestor of x in T contained in V ′. If v is the root then we add the rule

Ax → Pv,x. (1)

Now assume that v is not the root and hence v̂ is also not the root, since the children of the
root are peak nodes. Let u be the parent of v̂ in T ′. If u is the root of T ′ we add the rule

Ax → Pu,v̂ Bv̂,v Pv,x. (2)
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Otherwise, u and û are not the root. Let s be the parent node of û in T ′ and add the rule

Ax → As Ps,û Bû,u Pu,v̂ Bv̂,v Pv,x. (3)

One can prove correctness by induction on rk(v). It remains to prove property (b) of the
statement. One can observe that the A- and B-variables are light in the rules (2) and (3).
Consider a maximal unary path π = (v0, . . . , vk). The variable Pv0,vi for 1 ≤ i ≤ k − 1 only
occurs in the rule of Pv0,vi−1 . The variable Pv0,vk

can occur on the right-hand sides of (1),
(2) and (3), but the corresponding left-hand side Ax is not heavy. By induction hypothesis
Pv0,vk

is the heavy child of at most one heavy variable in G′. This concludes the proof. ◀

4 Navigation in FSLP-compressed trees

As a simple application we extend the navigation data structure on FSLP-compressed trees
[21] by the operation which moves to the i-th child in time O(log d) where d is the degree
of the current node. This is established by applying Theorem 1 to the substructure of the
FSLP that compresses forests horizontally.

SLP navigation. The navigation data structure on FSLPs is based on a navigation data
structure on (string) SLPs from [18], which extends the data structure from [12] from one-way
to two-way navigation. The data structure represents a position 1 ≤ i ≤ |A| in a variable A

by a data structure σ(A, i), that we will call pointer, which is a compact representation of
the path in the derivation tree from A to the leaf corresponding to position i.

▶ Theorem 12 ([18]). A given SLP S can be preprocesed in O(|S|) time and space so that
the following operations are supported in constant time:

Given a variable A, compute σ(A, 1) or σ(A, |A|).
Given σ(A, i), compute σ(A, i − 1) or σ(A, i + 1), or return ⊥ if the position is invalid.
Given σ(A, i), return the symbol at position i in A.

Furthermore, a single pointer σ(A, i) uses O(height(A)) space and can be computed in time
O(height(A)) for a given pair (A, i).

Forest straight-line programs. In this section we use the natural term representation for
forests. Let Σ be an alphabet of node labels. The set of forests is defined inductively as
follows: The concatenation of n ≥ 0 forests is a forest (this includes the empty forest ε), and,
if a ∈ Σ and t is a forest, then a(t) is a forest. A context is a forest over Σ ∪ {x} where x

occurs exactly once and this occurrence is at a leaf node. If f is a context and g is a forest or
a context then f⟨g⟩ is obtained by replacing the unique occurrence of x in f by g. A forest
straight-line program (FSLP) G = (V0, V1, Σ, R, S) consists of finite sets of forest variables V0
and context variables V1, the alphabet Σ, a finite set of rules R, and a start variable S ∈ V0.
The rules contain arbitrary applications of horizontal concatenation and substitutions of
forest and context variables. We restrict ourselves to rules in a certain normal form, which
can be established in linear time with a constant factor size increase [11]. The normal form
assumes a partition V0 = V⊤

0 ∪ V⊥
0 where V⊥

0 -variables produce trees whereas V⊤
0 -variables
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A → a(B) X → Y ⟨Y ⟩
B → CC Y → b⟨DxD⟩
C → X⟨D⟩ E → ε

D → c(E)

a

b

cb

ccc

c

b

cb

ccc

c

Figure 3 An example FSLP with the variables V⊥
0 = {A, C, D}, V⊤

0 = {B, E} and V1 = {X, Y }.
The tree defined by A is displayed on the right.

produce forests with arbitrarily many trees. The rules in R have one of the following forms:

A → ε where A ∈ V⊤
0 ,

A → BC where A ∈ V⊤
0 and B, C ∈ V0,

A → a(B) where A ∈ V⊥
0 , a ∈ Σ, and B ∈ V0,

A → X⟨B⟩ where A, B ∈ V⊥
0 and X ∈ V1,

X → Y ⟨Z⟩ where X, Y, Z ∈ V1

X → a(LxR) where X ∈ V1, a ∈ Σ, and L, R ∈ V0,

Every variable A ∈ V0 derives a forest JAK and every variable X ∈ V1 derives a context
JXK, see [11] for formal definitions. An example FSLP for a tree is shown in Figure 3.

The normal form allows us to define two string SLPs (without start variables) that
capture the horizontal and the vertical compression in G. The rib SLP G⊟ = (V0, Σ⊟, R⊟)
over the alphabet Σ⊟ = {A | A ∈ V⊥

0 } contains all rules of the form A → ε or A → BC from
R where A ∈ V⊤

0 , and the rule A → A for all A ∈ V⊥
0 . We write JAK⊟ = A1 . . . An for the

string derived by A in G⊟, which satisfies JAK = JA1K . . . JAnK. In the example of Figure 3
we have JBK⊟ = C C. The spine SLP G� = (V⊥

0 ∪ V1, Σ�, R�) is defined over the alphabet

Σ� = {a(B) | (A → a(B)) ∈ R} ∪ {a(LxR) | (X → a(LxR)) ∈ R}.

The set R� contains all rules A → a(B) and X → a(LxR) from R. It also contains
the rule A → X for all (A → X⟨B⟩) ∈ R where A ∈ V⊥

0 , and X → Y Z for all (X →
Y ⟨Z⟩) ∈ R. We write JV K� for the string derived by V in G�. If X ∈ V1 and JXK� =
a1(L1xR1) . . . an(LnxRn) then JXK is the vertical composition of all contexts ai(JLiKxJRiK).
In the example of Figure 3 we have JCK⊟ = b⟨DxD⟩ b⟨DxD⟩.

FSLP navigation. Now we define the data structure from [21]. It represents a node v in a
tree produced by a variable A ∈ V0 by a pointer τ(A, v), which is basically a sequence of
navigation pointers in the SLPs G⊟ and G� describing the path from the root of JAK to v.
Intuitively, the pointer τ(A, v) can be described as follows. First we select the subtree of
JAK which contains v, by navigating in G⊟ to a symbol B0 where B0 ∈ V⊥

0 . The tree JB0K is
defined by a sequence of insertion rules B0 → X1⟨B1⟩, B1 → X2⟨B2⟩, . . . , Bk−1 → Xk⟨Bk⟩,
where possibly k = 0, and a final rule Bk → a(C). We navigate in G� in the variable B0
from left to right. The string JB0K� specifies the contexts aj(LjxRj) which together form
the context JX1K. If we encounter a context aj(LjxRj) which contains v, there are two cases.
If v is the aj-labeled root then we are done. If v is contained in either Lj or Rj then we
record the direction (L or R) and continue recursively from the variable Lj or Rj . If v is not
contained in the context X1 then we reach the end of JB0K�, and continue searching from B1,
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etc. If v is contained in Bk then it is either its root or it is contained in C. In the former case,
we are done; in the latter case we record the direction M and continue recursively from C.

To define τ(A, v) formally, let us write σ⊟(A, i) and σ�(A, i) for the pointers to the i-th
position of a variable A ∈ V0 in G⊟ and G�, respectively. We represent every node v in every
variable A ∈ V0 by a horizontal pointer τ⊟(A, v). Furthermore, we represent every node v

in every variable A ∈ V⊥
0 , deriving a tree, by a vertical pointer τ�(A, v). The pointers are

defined recursively as follows:
1. Let A ∈ V0. If JAK⊟ = A1 . . . An and v is contained in JAiK then set τ⊟(A, v) :=

σ⊟(A, i) τ�(Ai, v).
2. Let A ∈ V⊥

0 with a rule A → a(B). If v is the root of JAK set τ�(A, v) := σ�(A, 1), and
otherwise τ�(A, v) := σ�(A, 1) M τ⊟(B, v).

3. Let A ∈ V⊥
0 with a rule A → X⟨B⟩ and JAK� = JXK� = a1(L1xR1) . . . an(LnxRn). If

v is contained in fi = ai(JLiKxJRiK) set τ�(A, v) to be σ�(A, i), σ�(A, i) L τ⊟(Li, v) or
σ�(A, i) R τ⊟(Ri, v), depending whether v is the root of fi or is contained in JLiK or JRiK.
If v is contained in JBK set τ�(A, v) := σ�(A, n) τ�(B, v).

For the navigation we only use the horizontal pointers and write τ(A, v) instead of τ⊟(A, v).

▶ Theorem 13 ([21]). A given FSLP G can be preprocesed in O(|G|) time and space so that
the following operations are supported in constant time:

Given a variable A, compute τ(A, v) where v is the root of the first/last tree in JAK.
Given τ(A, v), compute τ(A, v′) where v′ is the parent, first/last child or left/right sibling
of v, or return ⊥ if it does not exist.
Given τ(A, v), return the symbol of node v.

Navigation to a child. We extend Theorem 13 by the operation which, given a pointer
τ(S, v) and a number 1 ≤ j ≤ d, where v has degree d, moves the pointer to the j-th child of
v in O(log d) time. To this end we apply Theorem 1 to G⊟ so that every variable A ∈ V0
in the rib SLP has height O(log |JAK⊟|), by adding only O(g) new variables. In particular,
we can compute a pointer σ⊟(A, i) in O(log |JAK⊟|) time by Theorem 12. Furthermore, we
compute the length |JAK⊟| for all A ∈ V0 in linear time.

Suppose we are given a pointer τ(S, v) to a node v with degree d for some variable S ∈ V0.
We show how to compute τ(S, vj) where vj is the j-th child of v in O(log d) time.
1. In the first case the last pointer in τ(S, v) is σ�(A, 1) where the rule of A ∈ V⊥

0 is of the
form A → a(B). Here B derives the forest below the a-node and we need to move to the
root of the j-th tree in the forest. We compute the pointer σ⊟(B, j) in O(log |JBK⊟|) ≤
O(log d) time. Then we query the symbol Bj at pointer σ⊟(B, j) and compute the pointer
σ�(Bj , 1) in constant time. Then we obtain τ(S, vj) = τ(S, v) M σ⊟(B, j) σ�(Bj , 1).

2. In the second case the last pointer in τ(S, v) is σ�(A, i) where the rule of A ∈ V⊥
0 is

of the form A → X⟨B⟩. We query the symbol ai(LixRi) at pointer σ�(A, i). The j-th
child vj is either in Li, Ri or at the position of the parameter x. If j = |JLiK⊟| + 1 we
replace σ�(A, i) by σ�(A, i + 1) in constant time. If this is not successful then vj is the
root of B and we have τ(S, vj) = τ(S, v) σ�(B, 1), which can be computed in constant
time. If j ≤ |JLiK⊟| we compute σ⊟(Li, j) in O(log |JLiK⊟|) ≤ O(log d) time. We query
the symbol Bj at σ⊟(Li, j) and compute σ�(Bj , 1) in constant time. Then we have
τ(S, vj) = τ(S, v) L σ⊟(Li, j) σ�(Bj , 1). If j ≥ |JLiK⊟| + 2 we proceed similarly using
σ⊟(Ri, j − |JLiK⊟| − 1).

Remarks. In its original form the SLP navigation data structure from [18] is non-persistent,
i.e. the operations modify the given pointer. However, it is not hard to adapt the structure so
that an operation returns a fresh pointer, by representing paths in the derivation tree using
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linked lists that share common prefixes. In a similar fashion, Theorem 2 can be adapted so
that a pointer is not modified by a navigation step.

Finally, let us comment on the space consumption of a single pointer in Theorem 2. A
single pointer τ(A, v) consists of a sequence of pointers in G⊟ and G� that almost describes a
path in the derivation tree of A in G. The sequence may contain pointers σ�(A, n) that point
to the lowest node above the parameter of a context JXK. However, in the representation
of [18] such a pointer σ�(A, n) only uses O(1) space, since it is a rightmost path in the
derivation tree of A in G�. Therefore τ(A, v) uses O(height(A)) space where height(A) is the
height of the derivation tree of A in G. By [10, Theorem VII.3] we can indeed assume that
the FSLP G has O(log N) height while retaining the size bound of O(|G|). We also need the
fact that the transformation into the normal form increases the height only by a constant
factor. However, since the application of Theorem 1 to the rib SLP may possibly increase the
total height of the FSLP G by more than a constant factor, it is unclear whether Theorem 2
can be achieved with O(log N) sized pointers.

5 Finger search in SLP-compressed strings

In this section we present our solution (Theorem 3) for the finger search problem using
contracting SLPs. Our finger data structure is an accelerated path, which compactly represents
the path from root to the finger in the derivation tree using precomputed forests on the dag
of the SLP. To move the finger we ascend to some variable on the path, branch off from the
path, and descend in a subtree while computing the new accelerated path. We can maintain
the accelerated path in a dynamic predecessor structure with constant update and query
time, thanks to the O(log N) height of the SLP. We follow the approach of [2] and present
an improved O(tg) space solution for the fringe access problem: Given a variable A and a
position 1 ≤ i ≤ |A|, we can access the i-th symbol of JAK in time O(log d + log(t) N) where
d = min{i, |A| − i + 1} is the distance from the fringe of A, and t is any parameter.

Data structures. Recall that we assume the word RAM model with word size w ≥ log N

where N is the string length. Since all occurring sets and trees have size n ≤ N we have
w ≥ log n in the following. We use a dynamic predecessor data structure by Pǎtraşcu-
Thorup, which represents a dynamic set S of n = wO(1) many w-bit integers in space O(n),
supporting the following updates and queries in constant time [20]: insert(S, x) = S ∪ {x},
delete(S, x) = S \ {x}, pred(S, x) = max{y ∈ S | y < x}, succ(S, x) = min{y ∈ S | y > x},
rank(S, x) = |{y ∈ S | y < x}|, and select(S, i) = x with rank(S, x) = i, if any. By enlarging
the word size to 2w we can identify a number x · 2w + y, where x, y are w-bit numbers, with
the key-value pair (x, y), allowing us to store key-value pairs in the data structure sorted by
their keys. We remark that all standard operations on a 2w-bit word RAM can be simulated
by a constant number of w-bit operations. This dynamic predecessor structure is used to
maintain the accelerated path to the finger. We extend the data structure by the operation
split(S, x) = {y ∈ S | y ≤ x} for O(w)-sized sets.

▶ Theorem 14 ([20]). There is a data structure representing a dynamic set S of at most
n = O(w) many w-bit numbers in space O(n) supporting the operations insert(S, x), split(S, x)
and pred(S, x) in constant time.

A weighted tree T is a rooted tree where each node v carries a nonnegative integer d(v),
called the weighted depth, satisfying d(u) ≤ d(v) for all nodes v with parent u. Given a node
v and a number p ∈ N, the weighted ancestor query (v, p) asks to return the highest ancestor
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u of v with d(u) > p. Given a node v and p ∈ N, we can also compute the highest ancestor u

of v where the weighted distance d(u, v) = d(v) − d(u) is less than p, by the weighted ancestor
query (v, d(v) − p). In our application the edges have nonnegative weights and the weighted
depth of a node is computed as the sum of all edge weights on the path from the root.

Kopelowitz and Lewenstein [15] showed that weighted ancestor queries on a tree of size n

can be answered in time O(pred(n)+ log∗ n) where pred(n) is the query time of a predecessor
data structure. It was claimed in [14] that the log∗ n-term can be eliminated without giving
an explicit proof. We refer to [9, Proposition 17] for a proof in the setting where n ≤ w

using the predecessor structure from [20]. Furthermore, we can also support constant time
weighted ancestor queries if the tree height is O(w).

▶ Proposition 15. A weighted tree T with n nodes and height h = O(w) can be preprocessed
in O(n) space and time so that weighted ancestor queries can be answered in constant time.

The fringe access problem. Consider an SLP G with the variable set V containing g

variables for a string of length N . Using Theorem 1 we assume that G is in Chomsky normal
form and that every variable A has height O(log |A|). We precompute in linear time the
length of all variables in G. To simplify notation we assume that the variables B and C in
all rules A → BC are distinct, which can be established by doubling the number of variables.
We assign to each edge e in dag(G) a left weight λ(e) and a right weight ρ(e): For every rule
A → BC in G, the edge e = (A, B) has left weight λ(e) = 0 and right weight ρ(e) = |C|,
whereas the edge e = (A, C) has left weight ρ(e) = |B| and right weight ρ(e) = 0.

Let F be a finite set of subforests of dag(G) with node set V whose edges point towards
the roots (as for example in the heavy forest). The forests will be computed later in
Proposition 16. For every forest F ∈ F we define two edge-weighted versions FL and FR
where the edges inherit the left weights and the right weights from dag(G), respectively,
yielding 2|F| many weighted forests. Let λF (A) and ρF (A) be the weighted depths of A in FL
and FR, respectively. In O(|F| ·g) time we compute for all A ∈ V0 the weighted depths λF (A)
and ρF (A) and the root rootF (A) of the subtree of F containing A. We write λF (A, B)
and ρF (A, B) for the weighted distances between A and B in FL and FR, respectively. We
preprocess all 2|F| weighted forests in time and space O(|F| · g) to support weighted ancestor
queries in constant time according to Proposition 15. This is possible because the height of
the forests is O(log N) = O(w).

We denote by ⟨A, i⟩ the state in which we aim to compute a compact representation of
the path from A to the i-th leaf in the derivation tree of A. Starting from state ⟨A, i⟩ we can
take short steps and long steps. A short step considers the rule of A: If it is a terminal rule
A → a we have found the symbol a. If it is a binary rule A → BC we compare i with |B|: If
i ≤ |B| then the short step leads to ⟨B, i⟩, and otherwise to ⟨C, i − |B|⟩. A left long step in
F ∈ F is possible if i ≤ λF (A)+ |rootF (A)|. Put differently, the path from A to A[i] branches
off to the left on the path from A to rootF (A), or continues below rootF (A). We determine
the highest ancestor X of A in FL with λF (A, X) < i and move to ⟨X, i − λF (A, X)⟩. Using
the weighted ancestor data structure on F the variable X can be determined in constant
time. Symmetrically, a right long step in F is possible if |A| − i + 1 ≤ ρF (A) + |rootF (A)|.
Put differently, the path from A to A[i] branches off to the right on the path from A to
rootF (A), or continues below rootF (A). After finding the highest ancestor X of A in FR with
ρF (A, X) < |A| − i + 1 we move to ⟨X, |A| − i + 1 − ρF (A, X)⟩.

If we take a long step in a forest F then a subsequent short step moves us from one
subtree in F to a different subtree, by maximality of the answer from the weighted ancestor
query. A sequence of short and long steps is summarized in an accelerated path (e1, . . . , em) of
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short and long edges. A short edge is an edge (A, B) in dag(G) whereas a long edge is a triple
(A, F, B) such that F ∈ F contains a (unique) path from A to B. In the triple (A, F, B) we
store only an identifier of F instead of the forest itself. The left weight and the right weight
of a long edge e = (A, F, B) are λ(e) = λF (A, B) and ρ(e) = ρF (A, B), respectively.

▶ Proposition 16. Let t ≥ 1. One can compute and preprocess in O(tg) time a set of forests
F with |F| = O(t) so that given a variable A and a position 1 ≤ i ≤ |A|, one can compute an
accelerated path from A to A[i] in time O(log d + log(t+1) N) where d = min{i, |A| − i + 1}.

Proof sketch. First let us assume that i ≤ |A|/2. To this end we construct forests F =
{F0, . . . , Ft−1} in O(tg) time so that an accelerated path from A to A[i] can be computed in
time O(log i + log(t+1) N). For all F ∈ F we construct two constant time weighted ancestor
data structures (for FL and FR), and compute λF (A), ρF (A) and rootF (A) for all A ∈ V .

The simple algorithm which only uses short steps takes time O(log |A|). We first improve
the running time to O(log i + log log |A|). Let rk(A) = min{k ∈ N : |A| ≤ 22k }, which is at
most 1 + log log |A|. The forest F0 contains for every rule A → BC in G either the edge
(A, B), if rk(A) = rk(B), or the edge (A, C) if rk(A) = rk(C) > rk(B). If rk(A) is strictly
greater than both rk(B) and rk(C) then no edge is added for the rule A → BC. To query
A[i] where rk(A) = k we make a case distinction. If i ≤ λF0(A) + |rootF0(A)| we take a left
long step in F0 to some state ⟨X, j⟩ with rk(X) < k and j ≤ i, and repeat the procedure
from there. Otherwise i > |rootF0(A)| > 22k−1 ≥

√
|A| and we query A[i] using short steps

in time O(log |A|) ≤ O(log i). Since the rank is reduced in the former case this procedure
takes time O(log i + k) ≤ O(log i + log log |A|).

We can replace log log |A| by log(t+1) N by adding forests F1, . . . , Ft−1 to F : The forest
Fk where 1 ≤ k ≤ t − 1 contains for every rule A → BC in G either the edge (A, B), if
|B| > log(k) N , or the edge (A, C), if |B| ≤ log(k) N and |C| > log(k) N . To query A[i] we
compute the maximal k ∈ [0, t − 1] such that i ≤ log(k) N . We will compute the accelerated
path in time O(log i + log(k+2) N) ≤ O(log i + log(t+1) N). If |A| ≤ log(k) N we can query
A[i] in time O(log i + log log |A|) ≤ O(log i + log(k+2) N). If i ≤ log(k) N < |rootFk

(A)| we
can take a left long step in Fk and then a short step to some state ⟨X, j⟩ where |X| ≤ log(k) N

and j ≤ i. We can query X[j] in time O(log j + log log |X|) ≤ O(log i + log(k+2) N).
Finally, for every forest F ∈ F we include a mirrored right-skewed version of F , which

then supports access to symbol A[i] in time O(log(|A| − i + 1) + log(t+1) N). ◀

Solving the finger search problem. We are ready to prove Theorem 3. We maintain an
accelerated path π = (e1, . . . , em) from the start variable S to the current finger position f

with its left weights and right weights as follows. Let ℓj =
∑j

k=1 λ(ek) and rj =
∑j

k=1 ρ(ek)
be the prefix sums of the weights. Observe that f = ℓm + 1. We store a stack γ =
((e1, ℓ1, r1), (e2, ℓ2, r2), . . . , (em, ℓm, rm)), implemented as an array. Given i ∈ [1, m], one can
pop all elements at positions i + 1, . . . , m in constant time. We store the set of distinct prefix
sums L = {ℓj | 0 ≤ j ≤ m} in a dynamic predecessor data structures from Theorem 14
where a prefix sum ℓ is stored together with the maximal index j such that ℓ = ℓj . Similarly
R = {rj | 0 ≤ j ≤ m} is stored in a predecessor data structure.

For setfinger(f) we compute an arbitrary accelerated path from S to S[f ], say only using
only short steps, and set up the list γ and the predecessor data structures for L and R in
time O(log N). For movefinger(i) we can assume that f − i = d > 0 since the data structures
are left-right symmetric. By a predecessor query on L we can find the unique index j with
ℓj < i ≤ ℓj+1. Then we restrict γ to its prefix of length j, and perform split(L, ℓj) and
split(R, rj), all in constant time. Using fringe access we can compute an accelerated path
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π′ from A to S[i] = A[i′] where i′ = i − ℓj : If ej+1 is a short edge we take a short step and
then use Proposition 16 for the remaining path. If ej+1 is a left or right long edge in a forest
F ∈ F we take a left long step, followed by a short step, and then use Proposition 16 for
the remaining path. Finally, we update the stack γ and the prefix sums in L and R in time
O(|π′|). This concludes the proof of Theorem 3.

We leave it as an open question whether there exists a linear space finger search data
structure, supporting access(i) and movefinger(i) in O(log d) time. For path balanced SLPs
such a solution does exist.

▶ Theorem 17. Given an (α, β)-path balanced SLP of size g for a string of length N , one
can support setfinger(i) in O(log N) time, and access(i) and movefinger(i) in O(log d) time,
where d is the distance between i and the current finger position, after O(g) preprocessing
time and space.
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Abstract
In the two-dimensional orthogonal colored range counting problem, we preprocess a set, P , of n

colored points on the plane, such that given an orthogonal query rectangle, the number of distinct
colors of the points contained in this rectangle can be computed efficiently. For this problem, we
design three new solutions, and the bounds of each can be expressed in some form of time-space
tradeoff. By setting appropriate parameter values for these solutions, we can achieve new specific
results with (the space costs are in words and ϵ is an arbitrary constant in (0, 1)):

O(n lg3 n) space and O(
√

n lg5/2 n lg lg n) query time;
O(n lg2 n) space and O(

√
n lg4+ϵ n) query time;

O(n lg2 n
lg lg n

) space and O(
√

n lg5+ϵ n) query time;
O(n lg n) space and O(n1/2+ϵ) query time.

A known conditional lower bound to this problem based on Boolean matrix multiplication gives some
evidence on the difficulty of achieving near-linear space solutions with query time better than

√
n by

more than a polylogarithmic factor using purely combinatorial approaches. Thus the time and space
bounds in all these results are efficient. Previously, among solutions with similar query times, the
most space-efficient solution uses O(n lg4 n) space to answer queries in O(

√
n lg8 n) time (SIAM. J.

Comp. 2008). Thus the new results listed above all achieve improvements in space efficiency, while
all but the last result achieve speed-up in query time as well.
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1 Introduction

In computational geometry, there have been extensive studies on problems over points
associated with information represented as colors [13, 14, 20, 19, 21, 11, 23, 10, 12, 5, 3, 16, 24].
Among them, the 2D orthogonal range counting query problem is one of the most fundamental.
In this problem, we preprocess a set, P , of n points on the plane, each colored in one of C

different colors, such that given an orthogonal query rectangle, the number of distinct colors
of the points contained in this rectangle can be computed efficiently.

This problem is important in both theory and practice. Theoretically, it has connections
to matrix multiplication: The ability to answer m colored range counting queries offline
over n points on the plane in o(min{n, m}ω/2) time, where ω is the best current exponent
of the running time of matrix multiplication, would yield a faster algorithm for Boolean
matrix multiplication [19]. In practice, the records in database systems and many other
applications are often associated with categorical information which can be modeled as colors.
The Structured Programming Language (SQL) thus provides keywords such as DISTINCT
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and GROUP BY to compute information about the distinct categories of the records within a
query range, which can be modeled using colored range query problems, and these queries
have also been used in database query optimization [6].

One challenge in solving the 2D orthogonal range counting problem is that the queries
are not easily decomposible: if we partition the query range into two or more subranges,
we cannot simply obtain the number of distinct colors in the query range by adding up the
number of distinct colors in each subrange. Furthermore, the conditional lower bound based
on matrix multiplication as described above gives theoretical evidence on the hardness of this
problem. Indeed, if polylogarithmic query times are desired, the solution with the best space
efficiency [22] uses O(n2 lg n/ lg lg n) words of space to answer queries in O((lg n/ lg lg n)2)
time. There is a big gap between the complexities of this solution to those of the optimal
solution to 2D orthogonal range counting for which we do not have color information and
are only interested in computing the number of points in a 2D orthogonal query range. The
latter can be solved in merely linear space and O(lg n/ lg lg n) query time [17].

Applications that process a significant amount of data would typically require structures
whose space costs are much lower than quadratic. As the running time of the best known
combinatorial algorithm of multiplying two n × n Boolean matrices is Θ(n3/ polylog(n)) [1,
2, 26], the conditional lower bound of 2D orthogonal colored range counting implies that no
solution can simultaneously have preprocessing time better than Ω(n3/2) and query time
better than Ω(

√
n), by purely combinatorial methods1 with current knowledge, save for

polylogarithmic speed-ups. To match this query time within polylogarithmic factors, the
most space-efficient solution uses O(n lg4 n) words of space to answer queries in O(

√
n lg8 n)

time [19]. Despite this breakthrough, the exponents in the polylogarithmic factors in the
time and space bounds leave much room for potential improvements. Hence, in this paper,
we aim at decreasing these polylogarithmic factors in both space and time costs, to design
solutions that are more desirable for applications that manage large data sets.

Previous Work. Gupta et al. [13] showed how to reduce the orthogonal colored range
searching problem in 1D to orthogonal range searching over uncolored points in 2D, thus
achieving a linear-space solution with O(lg n/ lg lg n) query time. Later, the query time was
improved to O(lg C/ lg lg n) by Nekrich [23], where C is the number of colors.

To solve 2D colored orthogonal range counting, Gupta et al. [13] used persistent data
structures to extend their 1D solution to 2D and designed a data structure of O(n2 lg2 n)
words that supports queries in O(lg2 n) time. Kaplan et al. [19] achieved the same bounds
by decomposing the input points into disjoint boxes in 3D and reduced the problem to 3D
stabbing counting queries. Recently, Munro at al. [22] showed that 3D 3-sided colored range
counting can be answered in O((lg n/ lg lg n)2) time using a data structure of O(n(lg n/ lg lg n))
words of space, which implies a solution to 2D 3-sided colored range counting with the same
time and space bound. For each distinct x-coordinate xi of the points in the point set,
if we use the strategy in [13, 19] to build a data structure supporting 2D 3-sided queries
upon the points whose x-coordinates are greater than or equal to xi, then this set of data
structures constructed can be used to answer a 4-sided query. This yields a solution to the
2D orthogonal colored range counting problem with O(n2 lg n/ lg lg n) words of space and
O((lg n/ lg lg n)2) query time. Kaplan et al. [19] further showed how to achieve time-space
tradeoffs by designing a solution with O(X lg7 n) query time that uses O(( n

X )2 lg6 n + n lg4 n)

1 When algebraic approaches are allowed, ω ≈ 2.3727 [25], implying that the preprocessing time and the
query time cannot be simultaneously less than Ω(n1.18635) and Ω(n0.18635), respectively.
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words of space. Setting X =
√

n lg n minimizes space usage, achieving an O(n lg4 n)-word
solution with O(

√
n lg8 n) query time. When only linear space is allowed, Grossi and Vind

[11] showed how to answer a query in O(n/ polylog(n)) time. Though not explicitly stated
anywhere, by combining an approach that Kaplan et al. [19] presented for dimensions of
3 or higher (which also works for 2D) and a linear space solution to 2D orthogonal range
emptiness [4], the query time can be improved to O(n3/4 lgϵ n) for any constant ϵ using
a linear space structure. Finally, Kaplan et al. also considered the offline version of this
problem and showed that n 2D orthogonal colored range counting queries can be answered
in O(n1.408) time.

Researchers have also studied approximate colored range counting problem. In 1D, El-Zein
et al. [10] designed a succinct data structure to answer a (1+ ϵ)-approximate colored counting
query in constant time. In 2D, Rahul [24] provided a reduction from (1 + ϵ)-approximate
orthogonal colored range counting to 2D colored orthogonal range reporting which reports
the number of distinct colors in a 2D orthogonal query range. Based on this, they gave an
O(n lg n)-word data structure with O(lg n) query time.

The orthogonal colored range counting problem has also been studied in higher dimen-
sions [21, 19, 24, 16]. Furthermore, He and Kazi [16] generalized it to categorical path
counting by replacing the first dimension with tree topology. One of their solutions to a
path query problem generalized from 2D orthogonal colored range counting also uses linear
space and provides O(n3/4 lgϵ n) query time. We end this brief survey by commenting that,
after a long serious of work [18, 13, 19, 23, 11, 12], Chan and Nekrich [5] solved the related
2D orthogonal range reporting problem in O(n lg3/4+ϵ n) words of space and O(lg lg n + k)
query time for points in rank space, where k is output size. This almost matches the bounds
of the optimal solution to (uncolored) 2D orthogonal range reporting over points in rank
space, which uses O(n lgϵ n) words to answer queries in O(lg lg n + k) time.

Our Results. Under the word RAM model, we present three results, all in the form of
time-space tradeoffs, for two-dimensional orthogonal colored range counting. Specifically, for
an integer parameter X ∈ [1, n], we propose solutions (all space costs are in words):

with O(( n
X )2 lg4 n + n lg3 n) space and O(lg4 n + X lg2 n lg lg n) query time; setting

X =
√

n lg n achieves O(n lg3 n) space and O(
√

n lg5/2 lg lg n) query time;
with O(( n

X )2 lg4 n + n lg2 n) space and O(lg6 n + X lg3+ϵ n) query time for any constant
ϵ ∈ (0, 1); setting X =

√
n lg n achieves O(n lg2 n) space and O(

√
n lg4+ϵ) query time;

with O(( n
X )2 lg2 n·log2

λ n+n lg n·logλ n) space and O(λ2 ·lg6 n·log2
λ n+X ·lg3+ϵ n·λ logλ n)

query time for an integer parameter λ ∈ [2, n]; setting X =
√

n lg n logλ n and λ = lgϵ n

achieves O(n lg2 n
lg lg n ) space and O(

√
n lg5+ϵ′

n) query time for any ϵ′ > 2ϵ, while setting
X =

√
n lg n and λ = nϵ/5 achieves O(n lg n) space and O(n1/2+ϵ) query time.

When presenting each result, we also showed the bounds of the most space-efficient
tradeoff that can be achieved by setting appropriate parameter values. The conditional lower
bound based on Boolean matrix multiplication which we discussed before gives some evidence
on the difficulty of achieving query time better than

√
n by more than a polylogarithmic

factor using combinatorial approaches without increasing these space costs polynomially.
When comparing to previous results, note that only the time-space tradeoff presented

by Kaplan et al. [19] could possibly achieve near-linear space and O(
√

n polylog(n)) query
time. More specifically, their solution uses O(( n

X )2 lg6 n + n lg4 n) words of space to achieve
O(X lg7 n) query time. The most space-efficient tradeoff that could be obtained from it is an
O(n lg4 n)-word structure with O(

√
n lg8 n) query time. Thus we indeed achieve the goal of

improving the polylogarithmic terms in both their time and space costs significantly.
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Table 1 Bounds of 2D orthogonal colored range counting structures. The results in the form of
time-space tradeoffs are listed in the top portion, in which X and λ are integer parameters in [1, n]
and [2, n], respectively. The bottom portion presents results with specific bounds, among which
marked with a † are those obtained from the top portion by setting appropriate parameters values.

Source Model Query Time Space Usage in Words
[19] PM O(X lg7 n) O(( n

X
)2 lg6 n + n lg4 n)

Cor. 6 PM O(lg5 n + X lg3 n) O(( n
X

)2 lg4 n + n lg3 n)
Thm. 5 RAM O(lg4 n + X lg2 n lg lg n) O(( n

X
)2 lg4 n + n lg3 n)

Thm. 9 RAM O(lg6 n + X lg3+ϵ n) O(( n
X

)2 lg4 n + n lg2 n)
Thm. 12 RAM O(λ2 lg6 n log2

λ n + X lg3+ϵ nλ logλ n) O(( n
X

)2 lg2 n log2
λ n+n lg n logλ n)

[13, 19] PM O(lg2 n) O(n2 lg2 n)
[22] RAM O((lg n/ lg lg n)2) O(n2 lg n/ lg lg n)
[19]† PM O(

√
n lg8 n) O(n lg4 n)

Cor. 6† PM O(
√

n lg7/2 n) O(n lg3 n)
Thm. 5† RAM O(

√
n lg5/2 n lg lg n) O(n lg3 n)

Thm. 9† RAM O(
√

n lg4+ϵ n) O(n lg2 n)
Thm. 12† RAM O(

√
n lg5+ϵ n) O(n lg2 n

lg lg n
)

Thm. 12† RAM O(n1/2+ϵ) O(n lg n)
[19] PM O(n3/4 lg n) O(n lg n)
[11] RAM O(n/ polylog(n)) O(n)
[19, 4] RAM O(n3/4 lgϵ n) O(n)

It is worthwhile to mention that the result of Kaplan et al. can work under the pointer
machine (PM) model. Thus, for an absolutely fair comparison, we show how our first result
can be adapted to the same model of computation to achieve O(( n

X )2 lg4 n + n lg3 n) space
and O(lg5 n + X lg3 n) query time. Thus under PM, we have an O(n lg3 n)-word structure
with O(

√
n lg7/2 lg n) query time. This is still a significant improvement over previous similar

results. In the rest of the paper, however, we assume the word RAM model of computation
unless otherwise specified, since most of our results are designed under it. See Table 1 for a
comparison of our results to all previous results.

To achieve these results, we use the standard technique of decomposing a 4-sided query
range to two 3-sided subranges with a range tree. Then the answer can be obtained by adding
up the numbers of distinct colors assigned to points in each subrange and then subtracting
the number of distinct colors that exist in both. We still use an approach of Kaplan et al. to
reduce 2D 3-sided colored range counting to 3D stabbing queries over a set of boxes.What is
new is our scheme of achieving time-space tradeoffs when computing the number of colors
that exist in both subranges. Based on a parameter, we selectively precompute the sizes
of the intersections between pairs of colors sets, each of which corresponds to a prefix of
a certain box list somewhere in the stabbing query structures. Compared to the scheme
of Kaplan et al. for the same purpose, ours gives more flexibility in the design of the 3D
stabbing query structures that could work with the scheme. This extra flexibility further
allows us to use and design different stabbing query structures to achieve new results.
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2 Preliminaries

In this section, we introduce some notation and previous results used in our paper.

Notation. Throughout this paper, we assume points are in general positions unless otherwise
specified. In three-dimensional space, we call a box B canonical if it is defined in the form of
[x1, +∞) × [y1, y2) × [z1, z2), where x1, y1, z1 ∈ IR and y2, z2 ∈ IR ∪ {+∞}. We use B.x1 to
refer to the lower bound of the x-range of B, B.y1 and B.y2 to respectively refer to the lower
and upper bounds of the y-range of B, and so on. Let (p.x, p.y, p.z) denote the coordinates
of a point p. We say a point q ∈ IR3 dominates another point p ∈ IR3, if q.x ≥ p.x, q.y ≥ p.y

and q.z ≥ p.z hold simultaneously.

2D Orthogonal Colored Range Emptiness. An orthogonal range emptiness query determines
whether an axis-aligned query rectangle contains at least one point in the point set P . Observe
that a solution to this query problem directly leads to a solution to the colored version of
this problem called orthogonal colored range emptiness, in which each point in P is colored
in one of C different colors, and given a color c and an axis-aligned rectangle, the query
asks whether the query range contains at least one point colored in c. The reduction works
as follows: For each color 1 ≤ c ≤ C, let Pc denote the subset of P containing all points
colored in c. If we construct an orthogonal range emptiness structure over Pc for each color c,
then we can answer an orthogonal colored range emptiness query by querying the structure
constructed over the points with the query color. The following lemma thus directly follows
from the work of Chan et al. [4] on range emptiness:

▶ Lemma 1 ([4]). Given n colored points in 2-dimensional rank space, there is a data
structure of nf(n) words that answers 2D orthogonal colored range emptiness queries in g(n)
time, where

a) f(n) = O(1) and g(n) = O(lgϵ n) for any constant ϵ > 0; or
b) f(n) = O(lg lg n) and g(n) = O(lg lg n).

Orthogonal Stabbing Queries over 3D Canonical Boxes. In the 3D stabbing counting
problem, we preprocess a set of 3D boxes, such that, given a query point q, we can compute
the number of boxes containing q efficiently, while in the 3D stabbing reporting query problem,
we report these boxes. In both our solution and the solution of Kaplan et al. [19], we use
data structures for this problem in a special case in which each box is a canonical box.

Here we introduce the data structure of Kaplan et al. [19] that solves the stabbing query
problems over a set of n canonical boxes in 3D, as our first solution to the colored range
counting problem augments this data structure and uses it as a component. Their data
structure consists of two layers of segment trees. The structure at the top layer is a segment
tree constructed over the z-coordinates of the boxes. More precisely, we project each box
onto the z-axis to obtain an interval, and the segment tree is constructed over all these
intervals. A box is assigned to a node in this tree if its corresponding interval on the z-axis
is associated with this node. (Recall that as a segment tree, the leaves correspond to the
elementary intervals induced by the endpoints of the intervals projected by each box onto
the z-axis; and each internal node v of the tree corresponds to an interval Iz(v) that are
the union of elementary intervals of the leaves in the subtree rooted at v. A box is assigned
to a node v in this tree if its corresponding interval on the z-axis covers the interval Iz(v)
but does not cover the interval Iz(u), where u is the parent node of v.) For each node v in
the top-layer segment tree, we further construct a segment tree over the projections of the
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boxes assigned to v on the y-axis, and the segment trees constructed for all the nodes of
the top-layer tree form the bottom-layer structure. Finally, for each node, v′, of a segment
tree at the bottom layer, we construct a list, sList(v′), of the boxes assigned to v′, sorted
by their x1-coordinates, i.e. the left endpoints of their projections on the x-axis; recall that
the right endpoint is always +∞ by the definition of canonical boxes. The lists of boxes
associated with the nodes in the same bottom-level segment tree are linked together in a
fractional cascading [8] data structure to facilitate the search among x1-coordinates of the
boxes in each list.

With these data structures, the query algorithm first performs a search in the top-layer
segment tree to locate the O(lg n) nodes whose associated intervals (which are projections of
boxes on the z-axis) contain the z-coordinate of the query point q. For each of these nodes,
we then query the bottom-layer segment tree constructed for it to find the boxes whose
projections on the yz-plane contain (q.y, q.z). The searches with this layer of structures end
at O(lg2 n) nodes of the bottom-layer trees, whose sList’s are disjoint. Finally, a binary
search at the sList of each of these nodes, sped up by factional cascading, gives us the answer.
Thus:

▶ Lemma 2 ([19]). Given a set of n canonical boxes in three dimension, the above data
structure occupies O(n lg2 n) words and answers stabbing counting queries in O(lg2 n) time
and stabbing reporting queries in O(lg2 n + k) time, where k denotes the number of boxes
reported. Furthermore, the output of the reporting query is the union of O(lg2 n) disjoint
subsets, each containing the boxes stored in a nonempty prefix of a bottom-layer sorted list.
The preprocessing time is O(n lg2 n).

Reducing 2D 3-Sided Colored Range Counting to 3D Orthogonal Stabbing Counting over
Canonical Boxes. A key technique used in both the solutions of Kaplan et al. [19] and our
solutions is a reduction from 2D 3-sided colored range counting queries, in which each query
range is of the form [a, b]×[c, +∞) for some a, b, c ∈ IR, to 3D orthogonal stabbing queries over
canonical boxes2. The reduction is performed in two steps. First we reduce the 2D 3-sided
colored range counting query problem to the 3D dominance colored range counting problem,
in which we preprocess a set, P , of colored points in IR3, such that given a query point q in
IR3, one can report the number of distinct colors in P ∩ (−∞, q.x] × (−∞, q.y] × (−∞, q.z]
efficiently. This reduction works as follows: For each point, p = (p.x, p.y), we create a point,
p′ = (−p.x, p.x, −p.y), in IR3, and assign it with the color of p. Then a 2D 3-sided colored
range counting query over the original points in which the query range is [a, b] × [c, +∞) can
be answered by performing a 3D dominance colored range query over the created points,
using (−∞, −a] × (−∞, b] × (−∞, −c] as the query range.

To further reduce the 3D dominance colored range counting problem to 3D orthogonal
stabbing counting over canonical boxes, we need some additional notation: Given a point p

in 3D, let Q+
p denote region [p.x, +∞) × [p.y, +∞) × [p.z, +∞). Furthermore, given a point

set A, let U(A) denote the region of ∪p∈AQ+
p . Then the following lemma is crucial:

▶ Lemma 3 ([19]). Given a set, A, of n points in three-dimensional space, a set of O(n)
pairwise disjoint 3D canonical boxes can be computed in O(n lg2 n) time such that the union
of these boxes is the region U(A).

2 Later we sometimes deal with query ranges of the form [a, b] × (∞, d] for some a, b, d ∈ IR, and a similar
reduction also works.
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Originally Kaplan et al. [19, Theorem 2.1] proved the above lemma for d-dimensional
space where d ≥ 1; for a general d, the number of boxes required to cover U(A) is O(n⌊d/2⌋).

With this lemma, the reduction works as follows. Let P denote the input colored point set
of the 3D dominance colored range counting problem, and let C denote the number of colors.
Then, for each color 1 ≤ c ≤ C, we apply Lemma 3 to partition U(Pc), where Pc is the set of
all the points in P that are colored c, into a set, Bc, of O(|U(Pc)|) disjoint 3D canonical boxes.
We then construct a 3D stabbing counting structure over B = ∪C

c=1Bc. Note that this data
structure is constructed over O(|P |) canonical boxes, as

∑C
c=1 |Bc| =

∑C
c=1 O(|Pc|) = O(|P |).

To answer a 3D dominance colored range counting query over P , for which the query range
is the region dominated by a point q, observe that, if q dominates at least one point in Pc,
then it must be located with U(Pc). Then, since U(Pc) is partitioned into the boxes in
Bc, we conclude that q dominates at least one point in Pc iff q is contained in a box in Bc.
Furthermore, since the boxes in Bc are pairwise disjoint, q is either contained in exactly one
box in Bc or outside U(Pc). Hence, the number of distinct colors in the region dominated by
q is equal to the number of boxes in B that contains q, which can be computed by performing
a stabbing counting query in B using q as the query point.

3 A New Framework of Achieving Time-Space Tradeoffs

We present three new solutions to 2D orthogonal colored range counting in this section and
Section 4. They follow the same framework, of which we give an overview in Section 3.1. One
key component of this framework is a novel scheme of computing the sizes of the intersections
between the color sets assigned to different subsets of points that lie within the query range;
Section 3.2 describes this scheme and shows how to combine it with Lemma 2 to immediately
achieve a new time-space tradeoff for 2D orthogonal colored range counting.

3.1 Overview of the Data Structure Framework
Let P denote a set of n points on the plane, each assigned a color identified by an integer in
[1, C]. To support orthogonal colored range counting over P , we construct a binary range
tree T over the y-coordinates of the points in P such that each leaf of T stores a point of P ,
and, from left to right, the points stored in the leaves are increasingly sorted by y-coordinate.
For each internal node v of T , we construct the following data structures:

A list P (v) containing the points stored at the leaf descendants of v, sorted by x-coordinate;
A list Py(v) containing the sorted list of y-coordinates of the points in P (v);
2D 3-sided colored range counting structures, S(vl) and, S(vr), constructed over P (vl)
and P (vr) respectively, where vl and vr are respectively the left and right children of v

(S(vl) requires query ranges to open at the top while S(vr) requires them to open at the
bottom; the exact data structures used will be selected later for different tradeoffs);
2D orthogonal colored range emptiness query structures, E(vl), and, E(vr), constructed
over P̂ (vl) and P̂ (vr), respectively (using Lemma 1), where P̂ (vl) and P̂ (vr) are the point
set in rank space converted from P (vl) and P (vr).

Let Q = [a, b] × [c, d] be the query rectangle. Given an internal node v, let CQ(v) denote
the set of distinct colors assigned to points in P (v) ∩ Q. The query algorithm first locates
the lowest common ancestor u of the c-th and d-th leaves of T . As all the points from P

that are in the query range Q must be in P (u), |CQ(u)| is the answer to the query. To
compute |CQ(u)|, let ul and ur denote the left and right children of u, respectively. By the
exclusion-inclusion principle, we know that |CQ(u)| = |CQ(ul)|+|CQ(ur)|−|CQ(ul)∩CQ(ur)|.
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Among the terms on the right hand side of this equation, |CQ(ul)| and |CQ(ur)| can be
computed by performing 2D 3-sided colored range counting queries over S(vl) and S(vr),
using [a, b] × [c, +∞) and [a, b] × (−∞, d] as query ranges, respectively. What remains is to
compute |CQ(ul) ∩ CQ(ur)|.

This idea of decomposing a 4-sided query range into two 3-sided query ranges has been used
before for both 2D orthogonal colored range reporting [12] and counting [19]. Furthermore,
to support 2D 3-sided colored range counting, we apply the reduction of Kaplan et al. [19]
(summarized in Section 2 of our paper) to reduce it to the 3D stabbing query problems over
canonical boxes. Thus, the techniques summarized so far have been used in previous work
(without the construction of range emptiness structures). What is new is our scheme of
achieving time-space tradeoffs when computing |CQ(ul) ∩ CQ(ur)|; it gives us more flexibility
in the design of 3D stabbing query structures, thus allowing us to achieve new results.

Here we describe the conditions that a 3D stabbing query structure must meet so that we
can combine it with our scheme of computing |CQ(ul) ∩ CQ(ur)|, while deferring the details
of the latter to Section 3.2. The stabbing query structure consists of multiple layers of trees
of some kind. The top-layer tree is constructed over the entire set of canonical boxes, and
each of its nodes is assigned a subset of boxes. The second layer consists of a set of trees,
each constructed over the boxes assigned to a node in the top-layer tree, and so on. Thus
each bottom-layer tree node is also assigned a list of boxes in a certain order (e.g., the sList

in the data structure for Lemma 2). The query algorithm locates a set S of bottom-layer
tree nodes. For each node v ∈ S, there exists a nonempty prefix of the box list assigned to v,
such that such prefixes over all the nodes in S form a partition of the set of boxes containing
the query point q. Furthermore, the size of each such prefix can be computed efficiently, and
each box in such a prefix can also be reported efficiently.

Clearly Lemma 2 satisfies these conditions and can be used in our framework. On the
contrary, even though Kaplan et al. proved this lemma and used it successfully in their
O(n2 lg2 n) space solution, they can not directly use it with their scheme of achieving time-
space tradeoffs. Instead, they expand this structure with a third layer which is a segment tree
constructed over x-coordinates of the boxes, increasing both time and space costs. Recall
that in their scheme the set of boxes containing the query point are also decomposed into a
fixed number of subsets. The reason Kaplan et al. cannot directly apply Lemma 2 is that
their scheme requires each of the decomposed subsets to be equal to the entire set of boxes
stored in a bottom-layer tree node, while our scheme allows each subset to be part of such a
box set. Hence, this extra flexibility allows us to use Lemma 2 and alternative 3D stabbing
query structures to be designed later (in Section 4) in our framework.

3.2 Computing Intersections between Color Sets
We now introduce our new scheme of computing |CQ(ul) ∩ CQ(ur)|, and combine it with
the stabbing query structure from Lemma 2 to achieve a new time-space tradeoff for 2D
orthogonal colored range counting. Since our scheme works with some other stabbing query
structures, we describe it assuming a stabbing query structure satisfying the conditions
described in Section 3.1 is used. To understand this scheme more easily, it may be advisable
for readers to think about how it applies to the stabbing query structure of Lemma 2.

Recall that, the problems of computing |CQ(ul)| and |CQ(ur)| have each been reduced to
a 3D stabbing query. Furthermore, for each stabbing query, all reported boxes are distributed
into a number of disjoint sets; the boxes in each such set form a nonempty prefix of the
box list assigned to a node of the bottom-layer tree (henceforth we call each such box list a
bottom list for convenience). Then, for the stabbing query performed to compute |CQ(ul)|, we
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define DQ to be a set in which each element is a such a disjoint set, and all these disjoint sets
(whose union form the set of reported boxes) are elements of DQ. UQ is defined in a similar
way for |CQ(ur)|. Thus, if we use the data structure for Lemma 2 to answer these stabbing
queries, both |DQ| and |UQ| will be upper bounded by O(lg2 n). As shown in Section 2,
when reducing 2D 3-sided colored counting to 3D stabbing queries over canonical boxes, we
guarantee that, each canonical box is part of the region U(Pc) for each color c; we call this
color the color of this canonical box, and explicitly store with each box its color. Furthermore,
for each color 1 ≤ c ≤ C, at most one canonical box colored in c contains the query point,
which implies that each box in ∪s∈DQ

s (resp. ∪t∈UQ
t) has a distinct color. For each set

s ∈ DQ and t ∈ UQ, let C(s) and C(t) denote the set of colors associated with the boxes
in s and t, respectively. Then we have |CQ(ul)| =

∑
s∈DQ

|C(s)|, |CQ(ur)| =
∑

t∈UQ
|C(t)|,

and |CQ(ul) ∩ CQ(ur)| =
∑

s∈DQ,t∈UQ
|C(s) ∩ C(t)|.

It now remains to show how to compute
∑

s∈DQ,t∈UQ
|C(s) ∩ C(t)|, for which more

preprocessing is required. For each node v in the binary range tree T , we construct a matrix
M(v) as follows: Let X ∈ [1, n] be a parameter to be chosen later. If the length, m, of a
bottom list in the stabbing query structure S(vl) or S(vr) is greater than X, we divide the
list into ⌈m/X⌉ blocks, such that each block, with the possible exception of the last block, is
of length X. If m ≤ X, then the entire list is a single block. If a block is of length X, we call
it a full block. Let bl(v) and br(v) denote the total numbers of full blocks over all bottom
lists in S(vl) and S(vr), respectively. Then M(v) is a bl(v) × br(v) matrix, in which each
row (or column) corresponds to a nonempty prefix of a bottom list in S(vl) (or S(vr)) that
ends with the last entry of a full block, and each entry M [i, j] stores the number of colors
that exist in both the set of colors assigned to the boxes in the prefix corresponding to row
i and the set of colors assigned to the boxes in the prefix corresponding to column j. To
bound the size of M(v), we define the duplication factor, δ(n), of a stabbing query structure
that satisfies the conditions in Section 3.1 to be the maximum number of bottom lists that
any canonical box can be contained in. For example, the duplication factor of the structure
for Lemma 2 is O(lg2 n). (To see this, observe that in a segment tree constructed over n

intervals, each interval may be stored in O(lg n) tree nodes. Since segment trees are used in
both layers of the data structure for Lemma 2, each box can be stored in O(lg2 n) different
bottom lists.) Since each full block contains X boxes, the numbers of full blocks in the
bottom lists of S(vl) and S(vr) are at most δ(n)|P (vl)|/X and δ(n)|P (vr)|/X, respectively.
Therefore, M(v) occupies O(δ(n)2|P (vl)||P (vr)|/X2) = O((δ(n)|P (v)|/X)2) words.

With these matrices, the computation of
∑

s∈DQ,t∈UQ
|C(s)∩C(t)| can proceed as follows.

Since each set s ∈ DQ (resp. t ∈ UQ) occupies a prefix of a bottom list, s (resp. t) can
be split into two parts: sh (resp. th) which is the (possibly empty) prefix of s (resp. t)
that consists of all the full blocks entirely contained in s (resp. t), and sl (resp. tl) which
contains the remaining entries of s (resp. t). Thus we have C(sh) ∪ C(sl) = C(s) and
C(th) ∪ C(tl) = C(t). Since no two boxes in s have the same color and the same applies to
the boxes in t, C(sh) ∩ C(sl) = C(th) ∩ C(tl) = ∅ also holds. Thus, we have∑

s∈DQ,t∈UQ

|C(s) ∩ C(t)| =
∑

s∈DQ,t∈UQ

(|C(sh) ∩ C(th)| + |C(sh) ∩ C(tl)| + |C(sl) ∩ C(t)|)

=
∑

s∈DQ,t∈UQ

|C(sh) ∩ C(th)| +
∑

s∈DQ,t∈UQ

|C(sh) ∩ C(tl)| + |(∪s∈DQ
C(sl)) ∩ ∪t∈UQ

C(t)|

(1)

For the first term in the last line of Equation 1, we can retrieve |C(sh)∩C(th)| from the matrix
M(v) for each possible pair of sh and th and sum them up. Therefore, the first term can be
computed in O(|DQ| · |UQ|) time. For the third term, observe that, ∪t∈UQ

C(t) = CQ(ur).
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Therefore, the third term can be computed by performing, for each color c ∈ ∪s∈DQ
C(sl),

a 2D orthogonal colored range emptiness query over P (ur) with c as the query color and
Q as the query range. Note that the range emptiness query data structure E(vr) defined
in Section 3.1 is built upon the points P̂ (vr) in rank space. We need to reduce Q into rank
space with respect to P̂ (vr) before performing colored range emptiness queries. Since all
these queries share the same query range, we need only convert Q into rank space once.
This can be done by performing binary searches in P (v) and Py(v) in O(lg n) time. As
| ∪s∈DQ

C(sl)| = | ∪s∈DQ
sl| = O(|DQ| · X), it requires O(X|DQ| · (g(n) + τ(n)) + lg n) time

to compute these colors and then answer all these queries, where g(n) denotes the query time
of each range emptiness query in Lemma 1 and τ(n) denotes the query time of reporting a
box and its color in the query range.

Finally, to compute the second term in the last line of Equation 1, observe that,∑
s∈DQ,t∈UQ

|C(sh)∩C(tl)| = |(∪s∈DQ
C(s))∩(∪t∈UQ

C(tl))|−|(∪s∈DQ
C(sl))∩(∪t∈UQ

C(tl))|

(2)

The first term of the right hand side of Equation 2 can be computed in O(X|UQ| · (g(n) +
τ(n)) + lg n) time, again by performing range emptiness queries, but this time we use E(vl).
The second term can be computed by retrieving and sorting the colors in ∪s∈DQ

C(sl) and
those in ∪t∈UQ

C(tl), and then scanning both sorted lists to compute their intersection. Since
|(∪s∈DQ

C(sl))| (resp. |(∪t∈UQ
C(tl))|) are bounded by O(X|DQ|) (resp. O(X|UQ|)), the two

sets of colors can be retrieved in O(X|DQ|τ (n)) and O(X|UQ|τ(n)) time and then sorted using
Han’s sorting algorithm [15] in O(X|DQ| lg lg n) and O(X|UQ| lg lg n) time. Thus the second
term in the last line of Equation 1 can be computed in O(X(|UQ| + |DQ|)(lg lg n + τ(n)))
time. Overall, computing |CQ(ul) ∩ CQ(ur)| requires O(|DQ| · |UQ| + X(|UQ| + |DQ|)(lg lg n +
g(n) + τ(n)) + lg n) time. Lemma 4 summarizes the complexities of our framework.

▶ Lemma 4. Suppose that the 3D stabbing query structure of S(vl) (or S(vr)) for each node
v ∈ T has duplication factor δ(n), occupies O(|P (v)|h(n)) words, and, given a query point q, it
can compute ϕ(n) disjoint sets of boxes whose union is the set of boxes containing q in O(ϕ(n))
time. Furthermore, each subset is a nonempty prefix of a bottom list, and after this prefix is
located, its length can be computed in O(1) time and each box in it can be reported in O(τ(n))
time. Let f(n) and g(n) be the functions set in Lemma 1 to implement E(vl) and E(vr). Then
the structures in our framework occupy O((nδ(n)/X)2+n lg n(f(n)+h(n))) words and answer
a 2D orthogonal colored range counting query in O(ϕ2(n)+Xϕ(n)(lg lg n+g(n)+τ(n))+lg n)
time, where X is an integer parameter in [1, n].

Proof. Each node v of T stores a pair of lists, P (v) and Py(v), of points, the colored
range emptiness query structures E(vl) and E(vr), the stabbing query data structures S(vl)
and S(vr), and the matrix M(v). Among them, both P (v) and Py(v) use |P (v)| words of
space. E(vl) and E(vr) use O(|P (v)|f(n)) words of space by Lemma 1. S(vl) and S(vr) use
O(|P (v)|h(n)) words of space. The matrix M(v) uses O((δ(n)|P (v)|/X)2) words of space.
Summing the space costs over all internal nodes of the range tree T , the overall space cost
is at most

∑
v∈T O((δ(n)|P (v)|/X)2 + |P (v)|(f(n) + h(n))). To simplify this expression,

first observe that
∑

v∈T |P (v)| = O(n lg n). Furthermore, we can calculate
∑

v∈T |P (v)|2 as
follows: At the i-th level of T , there are 2i nodes, and each node stores a point list of length
n/2i. Therefore, the sum of the squares of the lengths of the point lists at the ith level is
n2/2i. Summing up over all levels, we have

∑
v∈T |P (v)|2 = O(n2). Therefore, the overall

space cost simplifies to O((nδ(n)/X)2 + n lg n(f(n) + h(n))).



Y. Gao and M. He 46:11

Given a query range, we use O(ϕ(n)) time to compute |CQ(ul)| and |CQ(ur)|. As shown
before, computing |CQ(ul)∩CQ(ur)| can be reduced to computing

∑
s∈DQ,t∈UQ

|C(s)∩C(t)|,
which requires O(|DQ| · |UQ| + X(|UQ| + |DQ|)(lg lg n + g(n) + τ(n)) + lg n) time. Since both
|DQ| and |UQ| are upper bounded by ϕ(n), the overall query time is O(ϕ2(n)+Xϕ(n)(lg lg n+
g(n) + τ(n)) + lg n). ◀

We can now achieve a new time-space tradeoff by using the stabbing queries data structure
from Lemma 2 in our framework. To combine Lemmas 2 and 4, observe that h(n) = O(lg2 n),
ϕ(n) = O(lg2 n) and τ(n) = O(1). As discussed before, δ(n) = O(lg2 n). We use part b) of
Lemma 1 to implement E(vl) and E(vr), so f(n) = O(lg lg n) and g(n) = O(lg lg n). Hence:

▶ Theorem 5. Given n colored points on the plane, there is a data structure of O(( n
X )2 lg4 n+

n lg3 n) words of space that answers colored orthogonal range counting queries in O(lg4 n +
X lg2 n lg lg n) time, where X is an integer parameter in [1, n]. In particular, setting X =√

n lg n yields an O(n lg3 n)-word structure with O(
√

n lg5/2 n · lg lg n) query time.

Unlike our result in Theorem 5, the solution of Kaplan et al. [19] with O(( n
X )2 lg6 n +

n lg4 n) words of space and O(X lg7 n) query time works under the pointer machine model.
Nevertheless, with some modifications, our solution can also be made to work under this
same model. First, Lemma 1 requires the word RAM model, we can replace it by the
optimal solution to the 2D orthogonal range emptiness query problem by Chazelle [7] with
O(n lg n/ lg lg n) words of space and O(lg n) query time. Thus, g(n) = O(lg n), but the
overall space cost of the data structure remains unchanged. Second, when computing
|(∪s∈DQ

C(sl))∩ (∪t∈UQ
C(tl))|, we cannot use Han’s sorting algorithm [15] which requires the

word RAM. Instead, using mergesort, we can compute this value in O(X(|UQ| + |DQ|) · lg n)
time. Finally, to simulate a matrix M(v), we can use lists indexed by binary search trees, so
that we can retrieve each entry in O(lg n) time. Thus, we achieve the following result:

▶ Corollary 6. Under the arithmetic pointer machine model, given n colored points on
the plane, there is a data structure of O(( n

X )2 lg4 n + n lg3 n) words of space that answers
colored orthogonal range counting queries in O(lg5 n + X lg3 n) time, where X is an integer
parameter in [1, n]. In particular, setting X =

√
n lg n yields an O(n lg3 n)-word structure

with O(
√

n lg7/2 n) query time.

4 Two More Solutions with Better Space Efficiency

As the space cost in Theorem 5 is at least Ω(n lg3 n), we now design two more solutions with
potentially better space efficiency for 2D orthogonal colored range counting.

4.1 Achieving O(n lg2 n) Space
We design an alternative solution for 3D stabbing queries over canonical boxes whose space
cost is a logarithmic factor less of that in Lemma 2 asymptotically, and it also satisfies the
conditions described in Section 3.1 and can thus be applied in our framework. This leads to
another time-space tradeoff for 2D orthogonal colored range counting, whose space cost can
be as little as O(n lg2 n) by choosing the right parameter value.

This new 3D stabbing query solution requires us to design a data structure supporting 2D
dominance counting and reporting, by augmenting a binary range tree constructed over the
y-coordinates of the input points. Each internal node v of T is conceptually associated with
a list, P (v), of points that are leaf descendants of v, sorted by x-coordinate, but we do not
store P (v) explicitly. Lemma 7 presents this data structure. Even though better solutions
exist for these problems [17, 4], Lemma 7 gives us additional range tree functionalities that
are required for our next two solutions to colored range counting.
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▶ Lemma 7. Consider a binary range tree T constructed over a set, P , of n points on the
plane as described above. T can be augmented using O(n) additional words such that, given
a query range Q which is the region dominated by a point q, a set, S, of O(lg n) nodes of T

can be located in O(lg n) time that satisfies the following conditions: For each node v ∈ S,
there exists a nonempty prefix L(v) of P (v) such that the point set P ∩ Q can be partitioned
into |S| disjoint subsets, each consisting of the points in such a prefix. Furthermore, the
individual sizes of all these subsets can be computed in O(lg n) time in total, and each point
in such a subset can be reported in O(lgϵ n) additional time for any positive constant ϵ.

Proof. For simplicity, we assume that point coordinates are in rank space. Then each leaf of
the range tree T represents an integer range [p.y, p.y] if p is stored at this leaf. The range
represented by an internal node of T is the union of the ranges represented by its children.

At each internal node v of T , we store a bit vector, B(v), such that if the point P (v)[i] is a
leaf descendant of the left child of v, then B(v)[i] is set to 0; otherwise B(v)[i] is set to 1. We
construct a data structure of O(|B(v)|) bits of space upon B(v) to support the computation
of rank(v, k), which is

∑
i≤k B(v)[i], for any k in constant time [9]. These bit vectors over

all internal nodes v of T use
∑

v O(|B(v)|) = O(n lg n) bits, which is O(n) words of space.
Given a query range Q = [1, q.x] × [1, q.y], we find the path, π, from the root node of T

to the q.y-th leaf. For each node u in π, if it is the right child of its parent, we add its left
sibling, v, into a set S′. We also add the q.y-th leaf into S′. Then the ranges represented
by the nodes in S′ form a partition of the query y-range [1, q.y], so P ∩ Q ⊆ ∪v∈S′P (v).
Furthermore, for each node v ∈ S′, we add it into S if |P (v)∩Q| > 0. To compute |P (v)∩Q|,
observe that, since the y-coordinates of points in P (v) are within the query y-range, and
these points are increasingly sorted by their x-coordinates, |P (v) ∩ Q| is equal to the index,
i, of the rightmost point of P (v) whose x-coordinate is no more than q.x. Furthermore, if
|P (v) ∩ Q| > 0, then L(v) = P (v)[1..i]. Thus the following observation is crucial: Let s

and t be two nodes of T , where s is the parent of t, let j be the number of points in P (s)
whose x-coordinates are no more than q.x. Then, if t is the left child of s, the number of
points in P (t) whose x-coordinates are no more than q.x is |P (s)| − rank(s, j). Otherwise,
it is rank(s, j). We know that at the root node r, the number of points in P (r) whose
x-coordinates are no more than q.x is simply q.x. Then, during the top down traversal of π,
we can make use of this observation and perform up to two rank operations at each level,
so that for any node u ∈ π ∪ S′, we can compute the index of the rightmost point of P (u)
whose x-coordinate is no more than q.x. This way we can compute S and for each v ∈ S,
compute |L(u)|. The total running time is O(lg n). To report the coordinates of each point
in L(v) for any v ∈ S, we augment T with the ball inheritance data structure [4], which can
use O(n) additional words of space to support each query in O(lgϵ n) time. The details are
deferred to the full version of the paper. ◀

Next we present the new stabbing query data structure. This time we construct data
structures consisting of three layers of trees to answer stabbing queries over a given set
of n canonical boxes in three-dimensional space, but a different tree structure is adopted
in each layer. At the top-layer we construct a segment tree over the z-coordinates of the
boxes. More precisely, we project each box onto the z-axis to obtain an interval, and the
segment tree is constructed over all these intervals. A box is assigned to a node in this tree
if its corresponding interval on the z-axis is associated with this node. For each node v in
the top-layer segment tree, we further construct an interval tree over the projections of the
boxes assigned to v on the y-axis, and the interval trees constructed for all the nodes of the
top-layer tree form the middle-layer structure. For each node v′ of an interval tree, we use
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the set B(v′), of boxes assigned to it to define the two point sets, Slower(v′) and Supper(v′),
on the plane as follows: We project all the boxes in B(v′) onto the xy-plane and get a set of
right-open rectangles. Then, Slower(v′) is the set of the lower left vertices of these rectangles
(henceforth called lower points), i.e., {(B.x1, B.y1)|B ∈ B(v′)}, and Supper(v′) is the set
of the upper left vertices (henceforth called upper points), i.e., {(B.x1, B.y2)|B ∈ B(v′)}.
We then use Lemma 7 to build a pair of binary range trees, Tlower(v′) and Tupper(v′), over
Slower(v′) and Supper(v′), respectively. The range trees constructed for all these interval tree
nodes form the bottom-layer structure.

Recall that, each node v′′ of a binary range tree in the bottom layer is conceptually
associated with a list, P (v′′), of lower or upper points, which are the points stored in the
leaf descendants of v′′, sorted by x-coordinate. Each point of P (v′′) represents a box. Since
there is a one-to-one correspondence between a point in P (v′′) and the box it represents, we
may abuse notation and use P (v′′) to refer to the list of boxes that these points represent
when the context is clear. Hence P (v′′) is the bottom list when the data structure is used in
our framework. Lemma 8 summarizes the solution.

▶ Lemma 8. Given a set of n canonical boxes in three dimension, the data structure above
occupies O(n lg n) words and answers stabbing counting queries in O(lg3 n) time and stabbing
reporting queries in O(lg3 n + k · lgϵ n) time, where k denotes the number of boxes reported.
Furthermore, the set of reported boxes is the union of O(lg3 n) different disjoint sets, each of
which is a nonempty prefix of some bottom list in the data structure.

Proof. The top-layer segment tree occupies O(n lg n) words, while both interval trees and
binary ranges trees from Lemma 7 are linear-space data structures. Therefore, the overall
space cost is O(n lg n) words.

To show how to answer a query, let q be the query point. Our query algorithm first
searches for q.z in the top-layer segment tree. This locates O(lg n) nodes of the top-layer tree.
Each node v located in this phase stores a list, B(v), of boxes whose z-ranges contain q.z. It
now suffices to show how to count and report the boxes in each list B(v) whose projections on
the xy-plane contain (q.x, q.y). To do this, we use the interval tree in the middle layer that is
constructed over B(v). In an interval tree, each node v′ stores the median, denoted by m(v′),
of the endpoints of the intervals associated with its descendants (including itself), and it also
stores a set, I(v′), of the intervals that contain m(v′). In our case, each interval in I(v′) is
the y-range of a canonical box in B(v), its left endpoint corresponds to the y-coordinate of
a point in Slower(v′), and its right endpoint corresponds to the y-coordinate of a point in
Supper(v′). The next phase of our algorithm then starts from the root, r, of this interval
tree. If q.y ≤ m(r), then an interval in I(v′) contains q.y iff its left endpoint is less than or
equal to q.y. This means, among the points in Slower(v′), those lie in (−∞, q.x] × (−∞, q.y]
correspond to the boxes whose projections on the xy-plane contain (q.x, q.y). Since the
z-range of these boxes already contains q.z, they contain q in the three-dimensional space.
Hence, by performing a dominance query over Tlower(v′) using (−∞, q.x] × (−∞, q.y] as
the query range, we can compute these boxes. Then, since the nodes in the right subtree
r store intervals whose left endpoints are greater than m(r) which is at least q.y, none of
these intervals can possibly contain q.y. Thus, we descend to the left child of r afterwards
and repeat this process. If q.y > m(r) instead, then we perform a dominance query over
Tupper(v′) using [−∞, q.x] × (q.y, +∞) as the query range to compute the boxes associated
with r that contain q, descend to the right child of r, and repeat.

To analyze the running time, observe that this algorithm locates O(lg n) nodes in the
top-layer segment tree, and for each of these nodes, it further locates O(lg n) nodes in the
middle-layer interval trees. Hence, we perform a 2D dominance counting and reporting query
using Lemma 7 for each of these O(lg2 n) interval tree nodes, and the proof completes. ◀

ESA 2021



46:14 Space-Efficient Orthogonal Colored Range Counting

In an interval tree, each interval is stored in exactly one node, while in a segment tree or
a binary range tree, each interval or point can be associated with O(lg n) nodes. Therefore,
this data structure has duplication factor δ = O(lg2 n). If we combine Lemmas 2 and 4, we
also have h(n) = O(lg n), ϕ(n) = O(lg3 n) and τ(n) = O(lgϵ n). We again use part b) of
Lemma 1 to implement E(vl) and E(vr), so f(n) = O(lg lg n) and g(n) = O(lg lg n). Hence:

▶ Theorem 9. Given n colored points on the plane, there is a data structure of O(( n
X )2 lg4 n+

n lg2 n) words of space that answers colored orthogonal range counting queries in O(lg6 n +
X lg3+ϵ n) time, where X is an integer parameter in [1, n] and ϵ is an arbitrary posit-
ive constant. In particular, setting X =

√
n lg n yields an O(n lg2 n)-word structure with

O(
√

n lg4+ϵ n) query time.

4.2 Achieving O(n lg n) Space
We further improve the space cost of the data structure for 3D stabbing queries over canonical
boxes. The new solution also satisfies the conditions described in Section 3.1 and can thus
be applied in our framework. This leads to our third time-space tradeoff for 2D orthogonal
colored range counting, whose space cost can be as little as O(n lg n) by choosing the right
parameter value.

Our solution will use a space-efficient data structure for 3D orthogonal range searching.
Using a range tree with node degree λ ∈ [2, n], we can transform a 2D linear space data
structure shown in Lemma 7 into a three-dimensional data structure that uses O(n logλ n)
words. Therefore, we can solve 3D dominance range searching as shown in Lemma 10, whose
proof is deferred to the full version of the paper.

▶ Lemma 10. Given n points in three dimension, there is a data structure of O(n logλ n)
words of space that answers 3D dominance counting queries in O(λ lg n · logλ n) time and
3D dominance reporting queries in O(λ lg n · logλ n + k lgϵ n) time, where k is the number of
reported points and λ is an integer parameter in [2, n].

Next, we design a new data structure for stabbing queries over 3D canonical boxes. It
again contains trees of three layers, with interval trees in the top- and middle- layers plus
the data structures for 3D dominance range searching from Lemma 10 in the bottom layer.
More precisely, the structure at the top layer is an interval tree, T1, constructed over the
z-coordinates of the boxes. That is, we project each box onto the z-axis to obtain an interval,
and the interval tree is constructed over all these intervals. A box is assigned to a node in this
tree if its corresponding interval on the z-axis is associated with this node. For each node v

in the top-layer interval tree, we further construct an interval tree, T2(v), over the projections
of the boxes assigned to v on the y-axis, and the interval trees constructed for all the nodes
of the top-layer tree form the middle-layer structure. For each node v′ of an interval tree in
the middle-layer, we use the set B(v′), of boxes assigned to it to define the four point sets,
Sll(v′), Slr(v′), Sul(v′), and Sur(v′) in 3D such that Sll(v′) = {(B.x1, B.y1, B.z1)|B ∈ B(v′)},
Slr(v′) = {(B.x1, B.y1, B.z2)|B ∈ B(v′)}, Sul(v′) = {(B.x1, B.y2, B.z1)|B ∈ B(v′)}, and
Sur(v′) = {(B.x1, B.y2, B.z2)|B ∈ B(v′)}. We then use Lemma 10 to build a set of 3D
dominance range searching structures, Tll(v′), Tlr(v′), Tul(v′) and Tur(v′), over Sll(v′),
Slr(v′), Sul(v′), and Sur(v′), respectively. The 3D dominance range searching structures
constructed for the nodes of all interval trees in the middle-layer form the bottom-layer
structure.

As shown in the previous section, we need to identify the bottom lists from the data
structures described above, which would be used in our framework. Without loss of generality,
we take the 3D dominance range searching structure, Tll(v′), built in the bottom-layer as
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an example. Observe that Tll(v′) is a λ-ary range tree, of which each internal node, v′′,
stores a binary range tree data structure Tb(v′′) implemented by Lemma 7 for 2D dominance
range searching. Recall that, each node v̂ of a binary range tree Tb(v′′) is conceptually
associated with a list, P (v̂), of points from the set Sll(v′), which are the points stored in the
leaf descendants of v̂, sorted by x-coordinate. Each point of P (v̂) represents a box. Since
there is a one-to-one correspondence between a point in P (v̂) and the box it represents, we
may abuse notation and use P (v̂) to refer to the list of boxes that these points represent
when the context is clear. Hence P (v̂) is the bottom list when the data structure is used in
our framework. The following lemma summarizes this solution:

▶ Lemma 11. Given a set of n canonical boxes in three dimension, the data structure
described above occupies O(n logλ n) words of space and answers stabbing counting queries in
O(lg2 n ·λ lg n · logλ n) time and stabbing reporting queries in O(lg2 n ·λ lg n · logλ n + k · lgϵ n)
time, where k denotes the number of boxes reported and λ is an integer parameter in [2, n].
Furthermore, the set of reported boxes is the union of O(lg2 n · λ lg n · logλ n) different disjoint
sets, each of which is a nonempty prefix of some bottom list in the data structure.

Proof. The top- and middle- layer interval trees are linear-space data structure, while the
3D dominance range searching structures from Lemma 10 occupy O(n logλ n) words of space
in total. Therefore, the overall space cost is O(n logλ n) words.

To show how to answer a query, let q = (q.x, q.y, q.z) be the query point. In an interval
tree T1 (resp. T2(v)), each node v (resp. v′) stores the median, denoted by mz(v) (resp.
my(v′)), of the endpoints of the intervals associated with its descendants (including itself),
and it also stores a set, Iz(v)(resp. Iy(v′)), of the intervals that contain mz(v) (resp. my(v′)).
In our case, each interval in Iz(v) (resp. Iy(v′)) is the z-range (resp. y-range ) of a canonical
box in B(v) (resp. B(v′)). The query algorithm starts from the root, r, of T1. If q.z ≤ mz(r),
then an interval in Iz(r) contains q.z iff its left endpoint is less than or equal to q.z. Then
we visit the interval tree T2(r) in the middle-layer that is constructed upon the y-ranges of
the boxes in B(r). The next phase of our algorithm then starts from the root, r′, of T2(r). If
q.y ≤ my(r′), then an interval in Iy(r′) contains q.y iff its lower endpoint is less than or equal
to q.y. This means, among the points in Sll(v′), those lie in (−∞, q.x]×(−∞, q.y]×(−∞, q.z]
correspond to the boxes containing (q.x, q.y, q.z). Hence, by performing a dominance query
over Tll(v′) using (−∞, q.x] × (−∞, q.y] × (−∞, q.z] as the query range, we can compute
these boxes. Then, since the nodes in the right subtree r′ store intervals whose lower
endpoints are greater than my(r′) which is at least q.y, none of these intervals can possibly
contain q.y. Thus, we descend to the left child of r′ afterwards and repeat this process.
Otherwise if q.y > my(r′) instead, then we perform a dominance query over Tul(v′) using
(−∞, q.x] × (q.y, +∞) × (−∞, q.z] as the query range to compute the boxes associated with
r′ that contain q, descend to the right child of r′, and repeat this process until reaching the
leaf level of T2(r). Once T2(r) has been traversed, we return the root node r of T1. Since
the nodes in the right subtree r store intervals whose left endpoints are greater than mz(r)
which is at least q.z, none of these intervals can possibly contain q.z. Thus, we descend to
the left child of r afterwards and repeat this process. Otherwise, if q.z > mz(r) instead, then
we perform a dominance query over either Tlr(v′) using (−∞, q.x] × (−∞, q.y] × (q.z, +∞)
as the query range or Tur(v′) using [−∞, q.x] × (q.y, +∞) × (q.y, +∞) as the query range to
compute the boxes associated with v′ that contain q, where v′ is a node of T2(r′) that we
visit, descend to the right child of r, and repeat the process. In summary, let v denote a
node on the traversed path of T1 and given node v, let v′ denote a node on the traversed
path of T2(v). By comparing q.z against mz(v) and q.y against my(v′), we can decide which
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3D dominance range searching data structure to be used in the bottom-layer. It includes the
following four different cases:

when q.z ≤ mz(v) and q.y ≤ my(v′), we search Tll(v′) for the points of Sll(v′) in the
query range (−∞, q.x] × (−∞, q.y] × (−∞, q.z];
when q.z ≤ mz(v) and q.y > my(v′), we search Tul(v′) for the points of Sul(v′) in the
query range (−∞, q.x] × (q.y, +∞) × (−∞, q.z];
when q.z > mz(v) and q.y ≤ my(v′), we search Tlr(v′) for the points of Slr(v′) in the
query range (−∞, q.x] × (−∞, q.y] × (q.z, +∞);
when q.z > mz(v) and q.y > my(v′), we search Tur(v′) for the points of Sur(v′) in the
query range (−∞, q.x] × (q.y, +∞) × (q.z, +∞).

To analyze the running time, observe that this algorithm locates O(lg n) nodes in the
top-layer interval tree, and for each of these nodes, it further locates O(lg n) nodes in the
middle-layer interval trees. Hence, we perform a 3D dominance counting and reporting query
using Lemma 10 for each of these O(lg2 n) interval tree nodes, and the proof completes. ◀

In an interval tree, each interval is stored in exactly one node, while in a 3D dominance
range searching structure from Lemma 10, each point can be associated with O(lg n · logλ n)
nodes. Therefore, this data structure has duplication factor δ(n) = O(lg n · logλ n). If we
combine Lemmas 11 and 4, we have h(n) = O(logλ n), ϕ(n) = O(lg2 n · λ lg n · logλ n) and
τ(n) = O(lgϵ n). We use part a) of Lemma 1 to implement E(vl) and E(vr), so f(n) = O(1)
and g(n) = O(lgϵ n). Hence:

▶ Theorem 12. Given n colored points on the plane, there is a data structure of O(( n
X )2 lg2 n·

log2
λ n + n lg n · logλ n) words of space that answers colored orthogonal range counting queries

in O(λ2 · lg6 n · log2
λ n+X · lg3+ϵ n ·λ logλ n) time, where X is an integer parameter in [1, n], λ

is an integer parameter in [2, n], and ϵ is any constant in (0, 1). Setting X =
√

n lg n logλ n

and λ = lgϵ n yields an O(n lg2 n
lg lg n )-word structure with O(

√
n lg5+ϵ′

n) query time for any
constant ϵ′ > 2ϵ. Alternatively, setting X =

√
n lg n and λ = nϵ/5 yields an O(n lg n)-word

structure with O(n1/2+ϵ) query time.
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1 Introduction

Let G = (V, E) be a connected undirected graph with m edges and n vertices. An (edge) cut
of G is a set of edges S ⊆ E such that G \ S is not connected. We say that S is a k-cut if its
cardinality is |S|= k. Also, we refer to the 1-cuts as the bridges of G. A cut S is minimal
if no proper subset of S is a cut of G. The edge connectivity of G, denoted by λ(G), is the
minimum cardinality of an edge cut of G. A graph is k-edge-connected if λ(G) ≥ k.

A cut S separates two vertices u and v, if u and v lie in different connected components
of G \S. Vertices u and v are k-edge-connected, denoted by u

G≡k v, if there is no (k− 1)-cut
that separates them. By Menger’s theorem [16], u and v are k-edge-connected if and only
if there are k-edge-disjoint paths between u and v. A k-edge-connected component of G

is a maximal set C ⊆ V such that there is no (k − 1)-edge cut in G that disconnects any
two vertices u, v ∈ C (i.e., u and v are in the same connected component of G \ S for any
(k − 1)-edge cut S). We can define, analogously, the vertex cuts and the k-vertex-connected
components of G.

Computing and testing the edge connectivity of a graph, as well as its k-edge-connected
components, is a classical subject in graph theory, as it is an important notion in several
application areas (see, e.g., [19]), that has been extensively studied since the 1970’s. It is
known how to compute the (k−1)-edge cuts, (k−1)-vertex cuts, k-edge-connected components
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and k-vertex-connected components of a graph in linear time for k ∈ {2, 3} [5, 10, 18, 21, 25].
The case k = 4 has also received significant attention [2, 3, 11, 12]. Unfortunately, none
of the previous algorithms achieved linear running time. In particular, Kanevsky and
Ramachandran [11] showed how to test whether a graph is 4-vertex-connected in O(n2) time.
Furthermore, Kanevsky et al. [12] gave an O(m + nα(m, n))-time algorithm to compute
the 4-vertex-connected components of a 3-vertex-connected graph, where α is a functional
inverse of Ackermann’s function [23]. Using the reduction of Galil and Italiano [5] from edge
connectivity to vertex connectivity, the same bounds can be obtained for 4-edge connectivity.
Specifically, one can test whether a graph is 4-edge-connected in O(n2) time, and one can
compute the 4-edge-connected components of a 3-edge-connected graph in O(m + nα(m, n))
time. Dinitz and Westbrook [3] presented an O(m + n log n)-time algorithm to compute
the 4-edge-connected components of a general graph G (i.e., when G is not necessarily
3-edge-connected). Nagamochi and Watanabe [20] gave an O(m + k2n2)-time algorithm to
compute the k-edge-connected components of a graph G, for any integer k. We also note that
the edge connectivity of a simple undirected graph can be computed in O(mpolylogn) time,
randomized [8, 13] or deterministic [9, 15]. The best current bound is O(m log2 n log log2n),
achieved by Henzinger et al. [9] which provided an improved version of the algorithm of
Kawarabayashi and Thorup [15].

Our results and techniques. In this paper we present the first linear-time algorithm that
computes the 4-edge-connected components of a general graph G, thus resolving a problem
that remained open for more than 20 years. Hence, this also implies the first linear-time
algorithm for testing 4-edge connectivity. We base our results on the following ideas. First,
we extend the framework of Georgiadis and Kosinas [7] for computing 2-edge cuts (as well as
mixed cuts consisting of a single vertex and a single edge) of G. Similar to known linear-time
algorithms for computing 3-vertex-connected and 3-edge-connected components [10, 25],
Georgiadis and Kosinas [7] define various concepts with respect to a depth-first search (DFS)
spanning tree of G. We extend this framework by introducing new key parameters that can
be computed efficiently and provide characterizations of the various types of 3-edge cuts
that may appear in a 3-edge-connected graph. We deal with the general case by dividing
G into auxiliary graphs H1, . . . , Hℓ, such that each Hi is 3-edge-connected and corresponds
to a different 3-edge-connected component of G. Also, for any two vertices x and y, we
have x

G≡4 y if and only if x and y are both in the same auxiliary graph Hi and x
Hi≡4 y.

Furthermore, this reduction allows us to compute in linear time the number of minimal 3-edge
cuts in a general graph G. Next, in order to compute the 4-edge-connected components in
each auxiliary graph Hi, we utilize the fact that a minimum cut of a graph G separates
G into two connected components. Hence, we can define the set VC of the vertices in the
connected component of G \ C that does not contain a specified root vertex r. We refer
to the number of vertices in VC as the r-size of the cut C. Then, we apply a recursive
algorithm that successively splits Hi into smaller graphs according to its 3-cuts. When no
more splits are possible, the connected components of the final split graph correspond to the
4-edge-connected components of G. We show that we can implement this procedure in linear
time by processing the cuts in non-decreasing order with respect to their r-size.

Due to the space constraints we omit several technical details and proofs. They can be
found in the full version of the paper which is available at [6].
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2 Concepts defined on a DFS-tree structure

Let G = (V, E) be a connected undirected graph, which may have multiple edges. For a
set of vertices S ⊆ V , the induced subgraph of S, denoted by G[S], is the subgraph of G

with vertex set S and edge set {e ∈ E | both ends of e lie in S}. Let T be the spanning tree
of G provided by a depth-first search (DFS) of G [21], with start vertex r. The edges in
T are called tree-edges; the edges in E \ T are called back-edges, as their endpoints have
ancestor-descendant relation in T . A vertex u is an ancestor of a vertex v (v is a descendant
of u) if the tree path from r to v contains u. Thus, we consider a vertex to be an ancestor
(and, consequently, a descendant) of itself. We let p(v) denote the parent of a vertex v in
T . If u is a descendant of v in T , we denote the set of vertices of the simple tree path
from u to v as T [u, v]. The expressions T [u, v) and T (u, v] have the obvious meaning (i.e.,
the vertex on the side of the parenthesis is excluded). From now on, we identify vertices
with their preorder number (assigned during the DFS). Thus, v being an ancestor of u in T

implies that v ≤ u. Let T (v) denote the set of descendants of v, and let ND(v) denote the
number of descendants of v (i.e. ND(v) = |T (v)|). With all ND(v) computed, we can check
in constant time whether a vertex u is a descendant of v, since u ∈ T (v) if and only if v ≤ u

and u < v + ND(v) [22].
Whenever (x, y) denotes a back-edge, we shall assume that x is a descendant of y. We

let B(v) denote the set of back-edges (x, y), where x is a descendant of v and y is a proper
ancestor of v. Thus, if we remove the tree-edge (v, p(v)), T (v) remains connected to the rest of
the graph through the back-edges in B(v). This implies that G is 2-edge-connected if and only
if |B(v)|> 0, for every v ̸= r. Furthermore, G is 3-edge-connected only if |B(v)|> 1, for every
v ̸= r. We let b_count(v) denote the number of elements of B(v) (i.e. b_count(v) = |B(v)|).
low(v) denotes the lowest y such that there exists a back-edge (x, y) ∈ B(v). Similarly,
high(v) is the highest y such that there exists a back-edge (x, y) ∈ B(v).

We let M(v) denote the nearest common ancestor of all x for which there exists a back-
edge (x, y) ∈ B(v). Note that M(v) is a descendant of v. Let m be a vertex and v1, . . . , vk

be all the vertices with M(v1) = . . . = M(vk) = m, sorted in decreasing order. (Observe that
vi+1 is an ancestor of vi, for every i ∈ {1, . . . , k − 1}, since m is a common descendant of
all v1, . . . , vk.) Then we have M−1(m) = {v1, . . . , vk}, and we define nextM (vi) := vi+1, for
every i ∈ {1, . . . , k− 1}, and lastM (vi) := vk, for every i ∈ {1, . . . , k}. Thus, for every vertex
v, nextM (v) is the successor of v in the decreasingly sorted list M−1(M(v)), and lastM (v) is
the lowest element in M−1(M(v)).

The following two facts have been proved in [7].

▶ Fact 1. All ND(v), b_count(v), M(v), low(v) and high(v) can be computed in total
linear-time, for all vertices v.

▶ Fact 2. B(u) = B(v) ⇔ M(u) = M(v), and high(u) = high(v) ⇔ M(u) = M(v) and
b_count(u) = b_count(v).

Furthermore, [7] implies the following characterization of a 3-edge-connected graph.

▶ Fact 3. G is 3-edge-connected if and only if |B(v)|> 1, for every v ̸= r, and B(v) ̸= B(u),
for every pair of vertices u and v, u ̸= v.

Now let us provide some extensions of those concepts that will be needed for our purposes.
Assume that G is 3-edge-connected, and let v ̸= r be a vertex of G. By Fact 3, b_count(v) > 1,
and therefore there are at least two back-edges in B(v). Thus, there is at least one back-edge
(x, y) ∈ B(v) such that y = low(v). We let low1 (v) denote y, and low1D(v) denote x. In other
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words, low1 (v) is the low point of v, and low1D(v) is a descendant of v which is connected with
a back-edge to its low point. (Notice, however, that low1D(v) is not uniquely determined.)
Similarly, we let highD(v) denote a descendant of v which is connected with a back-edge to the
high point of v. Then we define low2 (v) := min{y′ | ∃(x′, y′) ∈ B(v)\{(low1D(v), low1 (v))}},
and we let low2D(v) denote a descendant of v which is connected with a back-edge to low2 (v).
Thus, if v ̸= r, we have that (low1D(v), low(v)) and (low2D(v), low2 (v)) are two distinct
back-edges in B(v). It is easy to compute all low1 (v), low1D(v), low2 (v) and low2D(v)
during the DFS. It is also easy to extend the algorithm for the computation of high points in
order to compute all highD(v). (We refer to [6] for the details.)

We let l(v) denote the lowest y for which there exists a back-edge (v, y), or v if no
such back-edge exists. Thus, low(v) ≤ l(v). Now let c1, . . . , ck be the children of v sorted
in non-decreasing order w.r.t. their low point. Then we call c1 the low1 child of v, and
c2 the low2 child of v. (Of course, the low1 and low2 children of v are not uniquely
determined after a DFS on G, since we may have low(c1) = low(c2).) We let M̃(v) denote
the nearest common ancestor of all x for which there exists a back-edge (x, y) ∈ B(v) with
x a proper descendant of M(v). Formally, M̃(v) := nca{x | ∃(x, y) ∈ B(v) and x ̸= M(v)}.
If the set {x | ∃(x, y) ∈ B(v) and x ̸= M(v)} is empty, we leave M̃(v) undefined. We
also define Mlow1(v) as the nearest common ancestor of all x for which there exists a
back-edge (x, y) ∈ B(v) with x being a descendant of the low1 child of M(v), and also
define Mlow2(v) as the nearest common ancestor of all x for which there exists a back-
edge (x, y) ∈ B(v) with x a descendant of the low2 child of M(v). Formally, Mlow1(v) :=
nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low1 child of M(v)} and Mlow2(v) :=
nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low2 child of M(v)}. If the set in the
formal definition of Mlow1(v) (resp. Mlow2(v)) is empty, we leave Mlow1(v) (resp. Mlow2(v))
undefined.

The following list summarizes the concepts that we use on a DFS-tree; they are defined
for all v ̸= r. (For an illustration, see Figure 1.)

B(v) := {(x, y) | x is a descendant of v and y is a proper ancestor of v}.
l(v) := min({y | ∃(v, y) ∈ B(v)} ∪ {v}).
low(v) := min{y | ∃(x, y) ∈ B(v)}.
low1 (v) := low(v).
low1D(v) := a vertex x such that (x, low1 (v)) ∈ B(v).
low2 (v) := min{y′ | ∃(x′, y′) ∈ B(v) \ {(low1D(v), low1 (v))}}.
low2D(v) := a vertex x such that (x, low2 (v)) ∈ B(v).
high(v) := max{y | ∃(x, y) ∈ B(v)}.
highD(v) := a vertex x such that (x, high(v)) ∈ B(v).
M(v) := nca{x | ∃(x, y) ∈ B(v)}.
M̃(v) := nca{x | ∃(x, y) ∈ B(v) and x is a proper descendant of M(v)}.
Mlow1(v) := nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low1 child of M(v)}.
Mlow2(v) := nca{x | ∃(x, y) ∈ B(v) and x is a descendant of the low2 child of M(v)}.

In Section 2.1 of the full paper [6], we show how to compute all these concepts in
linear time.
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v

high(v)

low2(v)

low1(v)

M(v)

Mlow1(v) Mlow2(v)

(v)M̃(v)

Figure 1 An illustration of some concepts defined on a DFS-tree. The red arrows correspond to
the back-edges in B(v). Dashed lines correspond to tree-paths.

3 Computing the 3-cuts of a 3-edge-connected graph

In this section we present a linear-time algorithm that computes all the 3-edge-cuts of a
3-edge-connected graph G = (V, E). It is well-known that the number of the 3-edge-cuts
of G is O(n) [19] (e.g., it follows from the definition of the cactus graph [1, 14]), but we
provide an independent proof of this fact. Then, in Section 4.1, we show how to extend this
algorithm so that it can also count the number of minimal 3-edge-cuts of a general graph.
Note that there can be O(n3) such cuts [2].

Our method is to classify the 3-cuts on the DFS-tree T in a way that allows us to compute
them efficiently. If {e1, e2, e3} is a 3-cut, we can initially distinguish three cases w.l.o.g.:
either e1 is a tree-edge and both e2 and e3 are back-edges, or e1 and e2 are two tree-edges
and e3 is a back-edge, or e1, e2 and e3 is a triplet of tree-edges. Then, we divide those cases
in subcases based on the concepts we have introduced in the previous section. Figure 2 gives
a general overview of the cases we will handle in some detail in the following sections.

3.1 One tree-edge and two back-edges

The following lemma characterizes all 3-cuts consisting of a tree-edge and two back-edges.

▶ Lemma 4. Let {(u, p(u)), e, e′} be a 3-cut such that e and e′ are back-edges. Then
B(u) = {e, e′}. Conversely, if for a vertex u ̸= r we have B(u) = {e, e′} where e and e′ are
back-edges, then {(u, p(u)), e, e′} is a 3-cut.

Thus, to compute all the 3-cuts of this type, we have to find all u ̸= r with b_count(u) =
2. For every such u, there are two back-edges e1, e2 such that B(u) = {e1, e2}, and so,
w.l.o.g., we have e1 = (low1D(u), low1 (u)) and e2 = (low2D(u), low2 (u)). Then we mark
{(u, p(u)), e1, e2} as a 3-cut.

ESA 2021



47:6 Computing the 4-Edge-Connected Components of a Graph in Linear Time

u p(u)

r

u p(u)

r
v p(v) w p(w)

r

u

p(u)

v
p(v)

u p(u)

r
w p(w)v p(v)

(a) (b)

(c)

(d)

(e)

u p(u)

r
v p(v)

Figure 2 The types of 3-cuts with respect to a DFS-tree. (a) One tree-edge (u, p(u)) and two
back-edges. (b) Two tree-edges (u, p(u)) and (v, p(v)), where u is a descendant of v, and one-back
edge in B(v) \ B(u). (c) Two tree-edges (u, p(u)) and (v, p(v)), where u is a descendant of v, and
one-back edge in B(u) \ B(v). (d) Three tree-edges (u, p(u)), (v, p(v)) and (w, p(w)), where w is an
ancestor of u and v, but u and v are not related as ancestor and descendant. (d) Three tree-edges
(u, p(u)), (v, p(v)) and (w, p(w)), where u is a descendant of v and v is a descendant of w.

3.2 Two tree-edges and one back-edge
In the case of 3-cuts consisting of two tree-edges and a back-edge, we have the following.

▶ Lemma 5. Let {(u, p(u)), (v, p(v)), e} be a 3-cut such that e is a back-edge. Then u and v

are related as ancestor and descendant.

▶ Proposition 6. Let {(u, p(u)), (v, p(v)), e} be a 3-cut, where e is a back-edge. Then, either
(1) B(v) = B(u) ⊔ {e} or (2) B(u) = B(v) ⊔ {e}. Conversely, if there exists a back-edge e

such that (1) or (2) is true, then {(u, p(u)), (v, p(v)), e} is a 3-cut.

We let V (u), for a u ̸= r, be the set of all v that are ancestors of u such that B(v) = B(u)⊔{e},
for a back-edge e. We also let U(v), for a v ̸= r, be the set of all u that are descendants of v

such that B(u) = B(v)⊔{e}, for a back-edge e. Then, for every 3-cut {(u, p(u)), (v, p(v)), e},
where e is a back-edge, Proposition 6 implies that either u ∈ V (u) or v ∈ U(v).

The following two lemmata imply that the number of 3-cuts consisting of two tree-edges
and a back-edge is O(n).

▶ Lemma 7. Let v, v′ be two distinct vertices. Then V (u) ∩ V (u′) = ∅.

▶ Lemma 8. Let u, u′ be two distinct vertices. Then U(v) ∩ U(v′) = ∅.
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Now, every v ∈ V (u) has either M̃(v) = M(u), or Mlow1(v) = M(u), or Mlow2(v) =
M(u), and u is the lowest vertex which is greater than v such that M̃(v) = M(u), or
Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. This suggests a method to compute,
for every vertex v, the unique u (if it exists) such that v ∈ V (u). We process all vertices v,
and for every v that we process we have to find the lowest element u of M−1(x) which is
greater than v, for every x ∈ {M̃(v), Mlow1(v), Mlow2(v)}, and check whether v ∈ V (u). To
perform this efficiently, we have the lists M−1(x), for every vertex x, sorted in decreasing
order, and we process the vertices in a bottom-up fashion. Then, for every v that we process,
and every x ∈ {M̃(v), Mlow1(v), Mlow2(v)}, we search for the lowest u in M−1(x) which
is greater than v, by traversing the list M−1(x) starting from the last element of M−1(x)
that we considered, which is being stored in a variable currentVertex [x]. This is to avoid
traversing M−1(x) from the beginning each time we process a vertex v. We can check in
constant time whether v ∈ V (u) thanks to the following lemma.

▶ Lemma 9. Let v be an ancestor of u such that either M̃(v) = M(u), or Mlow1(v) = M(u),
or Mlow2(v) = M(u), and let m = M̃(v), or m = Mlow1(v), or m = Mlow2(v), depending
on whether M̃(v) = M(u), or Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. Then,
v ∈ V (u) if and only if u is the lowest element in M−1(m) which is greater than v and such
that high(u) < v and b_count(v) = b_count(u) + 1.

Finally, for a v ∈ V (u), we can immediately identify the back-edge (x, y) with B(v) =
B(u) ⊔ {(x, y)}, since we have x = M̃(v) and y = l(M̃(v)), or x = Mlow1(v) and y =
l(Mlow1(v)), or x = Mlow2(v) and y = l(Mlow2(v)), depending on whether M̃(v) = M(u),
or Mlow1(v) = M(u), or Mlow2(v) = M(u), respectively. Algorithm 1 shows how we can
compute all 3-cuts of the form {(u, p(u)), (v, p(v)), e}, with B(v) = B(u) ⊔ {e}.

We can use a similar method to compute the 3-cuts of the form {(u, p(u)), (v, p(v)), e},
with B(u) = B(v) ⊔ {e}.

3.3 Three tree-edges
The case of 3-cuts consisting of three tree-edges is more involved and is subdivided into
several subcases. The following is generally true for all such 3-cuts.

▶ Lemma 10. Let {(u, p(u)), (v, p(v)), (w, p(w))} be a 3-cut, and assume, without loss of
generality, that w < min{v, u}. Then w is an ancestor of both u and v.

First we treat the case that u and v are not related as ancestor and descendant. We have
the following characterizations of the 3-cuts of this type.

▶ Proposition 11. Let u and v be two vertices which are not related as ancestor and
descendant, and let w be an ancestor of both u and v. Then {(u, p(u)), (v, p(v)), (w, p(w))}
is a 3-cut if and only if B(w) = B(u) ⊔B(v).

▶ Lemma 12. Let u and v be two vertices which are not related as ancestor and descendant,
and let w be an ancestor of both u and v. Then B(w) = B(u) ⊔ B(v) if and only if:
Mlow1(w) = M(u) and Mlow2(w) = M(v) (or Mlow1(w) = M(v) and Mlow2(w) = M(u)),
and high(u) < w, high(v) < w, and b_count(w) = b_count(u) + b_count(v).

Then, as an implication of the following lemma, we see than the pair {u, v} with the property
that u and v are descendants of w, but are not related as ancestor and descendant, and
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, is uniquely determined by w (and thus the number
of those 3-cuts in O(n)).
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Algorithm 1 Find all 3-cuts {(u, p(u)), (v, p(v)), e)}, where u is a descendant of v and
B(v) = B(u) ⊔ {e}, for a back-edge e.

1 initialize an array currentVertex with n entries
// m = M̃(v)

2 foreach vertex x do currentVertex [x]← x

3 for v ← n to v = 1 do
4 m← M̃(v)
5 if m = ∅ then continue

// find the lowest u ∈M−1(m) which is greater than v

6 u← currentVertex [m], prev ← u

7 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
8 currentVertex [m]← prev

// check the condition in Lemma 9
9 if high(u) < v and b_count(v) = b_count(u) + 1 then

10 mark the triplet {(u, p(u)), (v, p(v)), (M(v), l(M(v)))}
11 end
12 end

// m = Mlow1(v)
13 foreach vertex x do currentVertex [x]← x

14 for v ← n to v = 1 do
15 m←Mlow1(v)
16 if m = ∅ or l(M(v)) < v then continue

// find the lowest u ∈M−1(m) which is greater than v

17 u← currentVertex [m], prev ← u

18 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
19 currentVertex [m]← prev

// check the condition in Lemma 9
20 if high(u) < v and b_count(v) = b_count(u) + 1 then
21 mark the triplet {(u, p(u)), (v, p(v)), (Mlow2(v), l(Mlow2(v)))}
22 end
23 end

// m = Mlow2(v)
24 foreach vertex x do currentVertex [x]← x

25 for v ← n to v = 1 do
26 m←Mlow2(v)
27 if m = ∅ or l(M(v)) < v then continue

// find the lowest u ∈M−1(m) which is greater than v

28 u← currentVertex [m], prev ← u

29 while nextM (u) ̸= ∅ and nextM (u) > v do prev ← u, u← nextM (u)
30 currentVertex [m]← prev

// check the condition in Lemma 9
31 if high(u) < v and b_count(v) = b_count(u) + 1 then
32 mark the triplet {(u, p(u)), (v, p(v)), (Mlow1(v), l(Mlow1(v)))}
33 end
34 end
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▶ Lemma 13. Let {(u, p(u)), (v, p(v)), (w, p(w))} be a 3-cut such that u and v are not related
as ancestor and descendant and let w is an ancestor of both u and v. By Proposition 11
and Lemma 12, we may assume w.l.o.g. that Mlow1(w) = M(u) and Mlow2(w) = M(v), and
let m1 = Mlow1(w) and m2 = Mlow2(w). Then u is the lowest vertex in M−1(m1) which is
greater than w, and v is the lowest vertex in M−1(m2) which is greater that w.

This suggests a method to compute those u, v (if they exist) for a particular w. We simply
have to find the lowest u in M−1(Mlow1(w)) which is greater than w, and the lowest v in
M−1(Mlow2(w)) which is greater than w, and, if they exist, check whether high(u) < w,
high(v) < w, and b_count(w) = b_count(u) + b_count(v). To perform this search efficiently,
we have the lists M−1(x), for every vertex x, sorted in decreasing order, we process the
vertices w in a bottom-up fashion, and we keep stored in a variable currentVertex [x] the
most recent element of M−1(x) that we considered. Algorithm 2 is an implementation of
this procedure, for computing all 3-cuts of this type.

Algorithm 2 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where w is an ancestor of u

and v, and u, v are not related as ancestor and descendant.

1 initialize an array currentVertex with n entries
2 foreach vertex x do currentVertex [x]← x

3 for w ← n to w = 1 do
4 m1 ←Mlow1(w), m2 ←Mlow2(w)
5 if m1 = ∅ or m2 = ∅ then continue

// find the lowest u in M−1(m1) which is greater than w

6 u← currentVertex [m1]
7 while nextM (u) ̸= ∅ and nextM (u) > w do u← nextM (u)
8 currentVertex [m1]← u

// find the lowest v in M−1(m2) which is greater than w

9 v ← currentVertex [m2]
10 while nextM (v) ̸= ∅ and nextM (v) > w do v ← nextM (v)
11 currentVertex [m2]← v

// check the condition in Lemma 12
12 if b_count(w) = b_count(u) + b_count(v) and high(u) < w and high(v) < w

then
13 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
14 end
15 end

Now we treat the case that u and v are related as ancestor and descendant, and assume
w.l.o.g. that u is a descendant of v. We have the following characterization of those 3-cuts.

▶ Proposition 14. Let u, v, w be three vertices such that u is a descendant of v and v is
a descendant of w. Then {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if B(v) =
B(u) ⊔B(w).

This implies that M(v) is an ancestor of M(w), and we distinguish two cases, depending on
whether M(v) is a proper ancestor of M(w). In the first case we have the following.

▶ Lemma 15. Let u be a descendant of v and v a descendant of w, and M(v) ̸= M(w).
Then, {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if: M(w) = Mlow1(v) and w is
the greatest vertex with M(w) = Mlow1(v) which is lower than v, M(u) = Mlow2(v) and u
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is the lowest vertex with M(u) = Mlow2(v), high(u) < v and b_count(v) = b_count(u) +
b_count(w).

This shows that the number of such 3-cuts is O(n), and it immediately suggests an algorithm
to compute them efficiently (i.e. we work as in Algorithm 2).

Now, if M(v) = M(w), we distinguish two cases, depending on whether w = nextM (v)
or w < nextM (v). In any case, there is a unique u which is a descendant of v such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, since by Proposition 14 we have B(u) = B(v)\B(w),
and we have assumed that the graph is 3-edge-connected (and so the result follows from Fact
3). The next lemma shows that u satisfies high(u) = high(v) and nextM (u) = ∅.

▶ Lemma 16. Let u, v, w be three vertices such that u is a descendant of v, v is a descendant
of w, and M(v) = M(w). Then, B(v) = B(u) ⊔ B(w) only if high(u) = high(v) and
nextM (u) = ∅.

Thus, for every vertex h, we seek in the decreasingly sorted list high−1(h) pairs of vertices
{u, v} that have the potential to provide a 3-cut of the form {(u, p(u)), (v, p(v)), (w, p(w))},
where u is a descendant of v, v is a descendant of w, and M(v) = M(w). In the case
w = nextM (v) we have the following:

▶ Proposition 17. Let h = high(v) and w = nextM (v), and suppose that the list
high−1(h) is sorted in decreasing order. Then, u is a descendant of v such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut if and only if u is a predecessor of v in high−1(h),
nextM (u) = ∅, low(u) ≥ w, b_count(u) = b_count(v) − b_count(w), and all elements of
high−1(h) between u and v are ancestors of u.

Thus we traverse the decreasingly sorted list high−1(h) from its first element, and we keep
consecutive entries that are related as ancestor and descendant in a stack. When we meet a
v ∈ high−1(h) that has nextM (v) ̸= ∅, we simply check whether there is an entry u in the
stack that satisfies nextM (u) = ∅, low(u) ≥ nextM (v) and b_count(u) = b_count(v) −
b_count(nextM (v)), whence we immediately infer that {(u, p(u)), (v, p(v)), (nextM (v),
p(nextM (v)))} is a 3-cut. This procedure is shown in Algorithm 3.

The case w < nextM (v) is more complicated, since for a particular v ∈ high−1(h) there
may be many pairs {u, w} such that u is a descendant of v and w is a proper ancestor of
nextM (v) with M(w) = M(v), and {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut. Thus, we keep
in a stack stackU [v], for every v ∈ high−1(h), a set of u ∈ high−1(h) with the potential to
provide such a 3-cut. In particular, let Ũ(v), for a vertex v, denote the set of all descendants
u of v with the property that there exists a w with M(w) = M(v) and w < nextM (v),
such that {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut. Then the stacks stackU [v] are filled with
Algorithm 4, and satisfy the following:

▶ Lemma 18. For every vertex v we have Ũ(v) ⊆ stackU (v), and for every v′ ̸= v we have
stackU (v) ∩ stackU (v′) = ∅. Furthermore, if u′ is a successor of u in stackU (v), then u′ is
an ancestor of u.

This implies that the number of 3-cuts of the form {(u, p(u)), (v, p(v)), (w, p(w))}, where
u is a descendant of v and w is a proper ancestor of nextM (v) with M(w) = M(v), is
O(n). The next lemma provides a criterion to determine whether a u ∈ stackU (v) is in
Ũ(v), and a way to compute the vertex w with M(w) = M(v) and w < nextM (v), such that
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut.
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Algorithm 3 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v

and w = nextM (v).

1 initialize an array A with m entries (where m is the number of edges of the graph)
2 initialize a stack S

3 sort the elements of every list high−1(h), for every vertex h, in decreasing order
4 foreach vertex h do
5 u← first element of high−1(h)
6 while u ̸= ∅ do
7 z ← next element of high−1(h)
8 if z = ∅ then break
9 if z is not an ancestor of u then

10 while S is not empty do
11 u′ ← S.pop()
12 A[b_count(u′)]← ∅
13 end
14 end
15 if nextM (z) = ∅ then
16 S.push(z)
17 A[b_count(z)]← z

18 end
19 else if nextM (z) ̸= ∅ then
20 v ← z, w ← nextM (v)
21 if A[b_count(v)− b_count(w)] ̸= ∅ then
22 u← A[b_count(v)− b_count(w)]
23 if low(u) ≥ w then
24 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
25 end
26 end
27 end
28 u← z

29 end
30 end

▶ Lemma 19. Let u be a vertex in stackU [v] and w a proper ancestor of v such that
M(w) = M(v). Then, if {(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut, we have that b_count(v) =
b_count(u) + b_count(w) and w is the greatest element of M−1(M(v)) such that w ≤
low(u). Conversely, if b_count(v) = b_count(u) + b_count(w) and w ≤ low(u), then
{(u, p(u)), (v, p(v)), (w, p(w))} is a 3-cut.

Thus, for every u ∈ stackU [v], we have to find the greatest w ∈ M−1(M(v)) such that
w ≤ low(u) and b_count(v) = b_count(u) + b_count(w). To do this efficiently, we take
advantage of the fact that the stack stackU [v] has been filled in such a way, that the successor
of every u ∈ stackU [v] is an ancestor of u, and of the fact that low(u′) ≤ low(u), for every
ancestor u′ of u. Then we have the lists M−1(x), for every vertex x, sorted in decreasing order,
and we process the vertices v from lowest to highest. For every u ∈ stackU [v], we traverse
the list M−1(M(v)) in order to find the greatest w ∈ M−1(M(v)) that has w ≤ low(u).
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Algorithm 4 Fill all stacks stackU [v], for all vertices v.

1 initialize a stack S

2 sort the elements of every list high−1(h), for every vertex h, in decreasing order
3 foreach vertex v do initialize a stack stackU [v]
4 foreach vertex h do
5 u← first element of high−1(h)
6 while u ̸= ∅ do
7 z ← next element of high−1(h)
8 if z = ∅ then break
9 if z is not an ancestor of u then

10 pop out all elements from S

11 end
12 if nextM (z) = ∅ then
13 S.push(z)
14 end
15 else if nextM (z) ̸= ∅ then
16 while low(S.top()) < lastM (z) do S.pop()
17 while low(S.top()) < nextM (z) do
18 u← S.pop()
19 stackU [v].push(u)
20 end
21 end
22 u← z

23 end
24 end

Using a path-compression method, we can bypass segments of M−1(M(v)) that we have
already visited. This procedure is shown in Algorithm 5. A detailed proof of correctness and
linear complexity is given in the full version of this paper [6].

Algorithm 5 Find all 3-cuts {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v,
v is a descendant of w with M(v) = M(w), and w ̸= nextM (v).

1 initialize an array lowestW with n entries
2 foreach vertex v do lowestW [v]← nextM (v)
3 for v ← 1 to v ← n do
4 while stackU [v].top() ̸= ∅ do
5 u← stackU [v].pop()
6 w ← lowestW [v]
7 while w > low(u) do w ← lowestW [w]
8 lowestW [v]← w

9 if b_count(v) = b_count(u) + b_count(w) then
10 mark the triplet {(u, p(u)), (v, p(v)), (w, p(w))}
11 end
12 end
13 end
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4 Computing the 4-edge-connected components in linear time

Now we consider how to compute the 4-edge-connected components of an undirected graph
G in linear time. First, we reduce this problem to the computation of the 4-edge-connected
components of a collection of auxiliary 3-edge-connected graphs.

4.1 Reduction to the 3-edge-connected case
Given a (general) undirected graph G, we execute the following steps:
1. Compute the connected components of G.
2. For each connected component, we compute the 2-edge-connected components which are

subgraphs of G.
3. For each 2-edge-connected component, we compute its 3-edge-connected components

C1, . . . , Cℓ.
4. For each 3-edge-connected component Ci, we compute a 3-edge-connected auxiliary graph

Hi, such that for any two vertices x and y, we have x
G≡4 y if and only if x and y are

both in the same auxiliary graph Hi and x
Hi≡4 y.

5. Finally, we compute the 4-edge-connected components of each Hi.

Steps 1–3 take overall linear time [21, 25]. We describe step 5 in the next section, so it
remains to give the details of step 4. Let H be a 2-edge-connected component (subgraph) of
G. We can construct a compact representation of the 2-cuts of H , which allows us to compute
its 3-edge-connected components C1, . . . , Cℓ in linear time [7, 25]. Now, since the collection
{C1, . . . , Cℓ} constitutes a partition of the vertex set of H , we can form the quotient graph Q

of H by shrinking each Ci into a single node. Graph Q has the structure of a tree of cycles [2];
in other words, Q is connected and every edge of Q belongs to a unique cycle. Let (Ci, Cj)
and (Ci, Ck) be two edges of Q which belong to the same cycle. Then (Ci, Cj) and (Ci, Ck)
correspond to two edges (x, y) and (x′, y′) of G, with x, x′ ∈ Ci. If x ̸= x′, we add a virtual
edge (x, x′) to G[Ci]. (The idea is to attach (x, x′) to G[Ci] as a substitute for the cycle of Q

which contains (Ci, Cj) and (Ci, Ck).) Now let C̄i be the graph G[Ci] plus all those virtual
edges. Then C̄i is 3-edge-connected and its 4-edge-connected components are precisely those
of G that are contained in Ci [2]. Thus we can compute the 4-edge-connected components
of G by computing the 4-edge-connected components of the graphs C̄1, . . . , C̄ℓ (which can
easily be constructed in total linear time). Since every C̄i is 3-edge-connected, we can apply
Algorithm 6 of the following section to compute its 4-edge-connected components in linear
time. Finally, we define the multiplicity m(e) of an edge e ∈ C̄i as follows: if e is virtual,
m(e) is the number of edges of the cycle of Q which corresponds to e; otherwise, m(e) is 1.
Then, the number of minimal 3-cuts of H is given by the sum of all m(e1) ·m(e2) ·m(e3),
for every 3-cut {e1, e2, e3} of C̄i, for every i ∈ {1, . . . , l} [2]. Since the 3-cuts of every C̄i can
be computed in linear time, the minimal 3-cuts of H can also be computed within the same
time bound.

4.2 Computing the 4-edge-connected components of a
3-edge-connected graph

Now we describe how to compute the 4-edge-connected components of a 3-edge-connected
graph G in linear time. Let r be a distinguished vertex of G, and let C be a minimum cut of
G. By removing C from G, G becomes disconnected into two connected components. We let
VC denote the connected component of G \ C that does not contain r, and we refer to the
number of vertices of VC as the r-size of the cut C. (Of course, these notions are relative
to r.)
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Figure 3 C = {(x1, y1), (x2, y2), (x3, y3)} is a 3-cut of G, with {x1, x2, x3} and {y1, y2, y3}
lying in different connected components of G \ C. The split operation of G at C consists of
the removal the edges of C from G, and the introduction of two new nodes x, y, and six virtual
edges (x1, y), (x2, y), (x3, y), (x, y1), (x, y2), (x, y3). Now, the split graph is made of two connected
components, G1 and G2. Every 3-cut C′ ̸= C of G (or more precisely: a 3-cut that corresponds to
C′) lies entirely within G1 or G2. Conversely, every 3-cut of either G1 or G2 corresponds to a 3-cut
of G. Thus, every 4-edge-connected component of G lies entirely within G1 or G2.

Let G = (V, E) be a 3-edge-connected graph, and let C be the collection of the 3-cuts of G.
If the collection C is empty, then G is 4-edge-connected, and V is the only 4-edge-connected
component of G. Otherwise, let C ∈ C be a 3-cut of G. By removing C from G, G is
separated into two connected components, and every 4-edge-connected component of G

lies entirely within a connected component of G \ C. This observation suggests a recursive
algorithm for computing the 4-edge-connected components of G, by successively splitting
G into smaller graphs according to its 3-cuts. Thus, we start with a 3-cut C of G, and we
perform the splitting operation shown in Figure 3. Then we take another 3-cut C ′ of G and
we perform the same splitting operation on the part which contains (the corresponding 3-cut
of) C ′. We repeat this process until we have considered every 3-cut of G. When no more
splits are possible, the connected components of the final split graph correspond (by ignoring
the newly introduced vertices) to the 4-edge-connected components of G.

To implement this procedure in linear time, we must take care of two things. First,
whenever we consider a 3-cut C of G, we have to be able to know which ends of the edges
of C belong to the same connected component of G \ C. And second, since an edge e of a
3-cut of the original graph may correspond to two virtual edges of the split graph, we have
to be able to know which is the virtual edge that corresponds to e. We tackle both these
problems by locating the 3-cuts of G on a DFS-tree T of G rooted at r, and by processing
them in increasing order with respect to their r-size. By locating a 3-cut C ∈ C on T we can
answer in O(1) time which ends of the edges of C belong to the same connected component
of G \ C. And then, by processing the 3-cuts of G in increasing order with respect to their
size, we ensure that (the 3-cut that corresponds to) a 3-cut C ∈ C that we process lies in the
split part of G that contains r.

Now, due to the analysis of the preceding sections, we can distinguish the following types
of 3-cuts on a DFS-tree T (see also Figure 2):

(I) {(v, p(v)), (x1, y1), (x2, y2)}, where (x1, y1) and (x2, y2) are back-edges.
(IIa) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(v).
(IIb) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(u).
(III) {(u, p(u)), (v, p(v)), (w, p(w))}, where w is an ancestor of both u and v, but u, v are
not related as ancestor and descendant.
(IV) {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v and v is a descendant
of w.
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Let r be the root of T . Then, for every 3-cut C ∈ C, VC is either T (v), or T (v) \ T (u), or
T (w) \ (T (u) ∪ T (v)), or T (u) ∪ (T (w) \ T (v)), depending on whether C is of type (I), (II),
(III), or (IV), respectively. Thus we can immediately calculate the size of C and the ends
of its edges that lie in VC . In particular, the size of C is either ND(v), or ND(v)−ND(u),
or ND(w) − ND(u) − ND(v), or ND(u) + ND(w) − ND(v), depending on whether it is of
type (I), (II), (III), or (IV), respectively; VC contains either {v, x1, x2}, or {p(u), v, x}, or
{p(u), v, y}, or {p(u), p(v), w}, or {u, p(v), w}, depending on whether C is of type (I), (IIa),
(IIb), (III), or (IV), respectively.

Algorithm 6 shows how we can compute the 4-edge-connected components of G in linear
time, by repeatedly splitting G into smaller graphs according to its 3-cuts. When we process
a 3-cut C of G, we have to find the edges of the split graph that correspond to those of C, in
order to delete them and replace them with (new) virtual edges. That is why we use the
symbol v′, for a vertex v ∈ V , to denote a vertex that corresponds to v in the split graph.
(Initially, we set v′ ← v.) Now, if (x, y) is an edge of C with x ∈ VC , the edge of the split
graph corresponding to (x, y) is (x′, y′). Then we add two new vertices vC and ṽC to G, and
the virtual edges (x′, ṽC) and (vC , y′). Finally, we let x correspond to vC , and so we set
x′ ← vC . This is sufficient, since we process the 3-cuts of G in increasing order with respect
to their size, and so the next time we meet the edge (x, y) in a 3-cut, we can be certain that
it corresponds to (vC , y′).

Algorithm 6 Compute the 4-edge-connected components of a 3-edge-connected graph
G = (V, E).

1 Find the collection C of the 3-cuts of G

2 Locate and classify the 3-cuts of G on a DFS-tree of G rooted at r

3 For every C ∈ C, calculate size(C) (relative to r)
4 Sort C in increasing order w.r.t. the size of its elements
5 foreach v ∈ V do Set v′ ← v

6 foreach C = {(x1, y1), (x2, y2), (x3, y3)} ∈ C do
7 Find the ends of the edges of C that lie in VC // Let those ends be x1,x2

and x3
8 Remove the edges (x′

1, y′
1),(x′

2, y′
2),(x′

3, y′
3) from G

9 Introduce two new vertices vC and ṽC to G

10 Add the edges (x′
1, ṽC),(x′

2, ṽC),(x′
3, ṽC),(vC , y′

1),(vC , y′
2),(vC , y′

3) to G

11 Set x′
1 ← vC , x′

2 ← vC , x′
3 ← vC

12 end
13 Output the connected components of G, ignoring the newly introduced vertices

Final Remarks
Independently from our work, Nadara et al. [17] also presented a linear-time algorithm
for computing the 4-edge-connected components of a graph. Both our algorithm and the
algorithm of [17] require the use of the static tree disjoint-set-union data structure of Gabow
and Tarjan [4] to achieve linear running time. Also, similar to our algorithm, the main part
in the algorithm of Nadara et al. is the computation of the 3-edge cuts of a 3-edge-connected
graph G. Both algorithms operate on a depth-first search tree of G, with start vertex r, and
distinguish 3 types of cuts C = {e1, e2, e3}, depending on the number of tree edges in C.
These cases are handled in a different manner in [17]. In particular, Nadara et al. [17] show
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that the case where C consists of three tree edges can be reduced, in linear time, to the other
two cases. We note that by applying this idea in our framework, we are able to avoid the
use of high points. (We achieve this by modifying the algorithm that identifies 3-edge cuts
consisting of two tree edges, described in Section 3.2.) This way, we obtain a linear-time
algorithm that does not require the Gabow-Tarjan disjoint-set-union data structure, and
thus is implementable in the pointer machine computation model [24].
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Abstract

Partitioning a graph into blocks of “roughly equal“ weight while cutting only few edges is a
fundamental problem in computer science with a wide range of applications. In particular, the
problem is a building block in applications that require parallel processing. While the amount of
available cores in parallel architectures has significantly increased in recent years, state-of-the-art
graph partitioning algorithms do not work well if the input needs to be partitioned into a large number
of blocks. Often currently available algorithms compute highly imbalanced solutions, solutions of low
quality, or have excessive running time for this case. This is due to the fact that most high-quality
general-purpose graph partitioners are multilevel algorithms which perform graph coarsening to build
a hierarchy of graphs, initial partitioning to compute an initial solution, and local improvement to
improve the solution throughout the hierarchy. However, for large number of blocks, the smallest
graph in the hierarchy that is used for initial partitioning still has to be large.

In this work, we substantially mitigate these problems by introducing deep multilevel graph
partitioning and a shared-memory implementation thereof. Our scheme continues the multilevel
approach deep into initial partitioning – integrating it into a framework where recursive bipartitioning
and direct k-way partitioning are combined such that they can operate with high performance and
quality. Our integrated approach is stronger, more flexible, arguably more elegant, and reduces
bottlenecks for parallelization compared to existing multilevel approaches. For example, for large
number of blocks our algorithm is on average at least an order of magnitude faster than competing
algorithms while computing partitions with comparable solution quality. At the same time, our
algorithm consistently produces balanced solutions. Moreover, for small number of blocks, our
algorithms are the fastest among competing systems with comparable quality.
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1 Introduction

Graphs are a universal abstraction for modelling relations between objects. Thus they are
used throughout computer science and have applications with an ever growing volume and
variety of the considered graphs. One frequently needed basic operation is balanced graph
partitioning – cutting a graph into k pieces of “roughly equal” weight while cutting only few
edges. Balanced graph partitioning is NP-hard and even NP-hard to approximate [5] and
thus usually solved using heuristics. In particular, multilevel graph partitioning (MGP) is
used in most high-quality general-purpose systems: During coarsening, build a hierarchy of
graphs where each graph is a coarse approximation of the previous one. When the coarse
graph is “small”, run a possibly expensive inital partitioning method on it. This is useful
because a feasible partition at the coarsest level is a feasible partition of the original input
with the same cut value. The partition is successively uncoarsened to each finer level and
locally improved. This is often both faster and higher quality than applying comparable
improvement algorithms only on the finest level since MGPs have a more global view on the
coarse levels and can move entire groups of nodes in constant time.

A prominent application (out of many) is distributing workload across parallel machines
with little communication. With growing numbers of processors in parallel machines, we
are interested in large values of k – in the order of millions. However, existing research
has mostly focused on small values, typically 2 ≤ k ≤ 256. Unsurprisingly, these systems
perform poorly for large k. If direct k-way partitioning is used, the coarsest graph still has
to be large when initial partitioning is called. Recursive bipartitioning performs log(k) cycles
of (un)coarsening and is either restricted to very small imbalances or unlikely to return a
feasible solution. Further, both exhibit parallelization bottlenecks on coarse levels.

We mitigate these problems by introducing deep MGP, an approach that continues the
multilevel scheme deep into initial partitioning and integrates aspects of direct k-way and
recursive bipartitioning. Deep MGP can be instantiated with concrete (parallel) building
blocks for (un)coarsening, k-way local improvement, and bipartitioning of small graphs. We
also include balancing as an explicit component. Figure 1 summarizes the approach. Deep
MGP performs only one cycle of (un)coarsening. Bipartitioning is done during uncoarsening
so that it is always applied to graphs with about C nodes (input parameter) until the
desired number of k blocks is reached. To exploit all the available parallelism, the invariant is
maintained that parallel tasks performed by x processing elements (PEs) work on graphs with
at least xC nodes. Maintaining this invariant during coarsening allows multiple diversified
attempts with little overhead invested.

Under certain simplifying assumptions, deep MGP for k-partitioning an n-node graph
with bounded degree can be done in time O

(
(n/p) max(1, log(kC/n)) + log2 n

)
, i.e., with

linear work and polylogarithmic span unless k is very large; see Section 4.
After introducing notation and basic concepts in Section 2 and discussing related work in

Section 3, Section 4 introduces deep MGP as a generic method. In Section 5 we describe the
simple and fast KaMinPar partitioner which uses deep MGP to achieve scalability to both
large k and a considerable number of parallel cores while guaranteeing balanced solutions.

In Section 6 we report on extensive experiments which indicate that KaMinPar has a very
favorable quality-performance tradeoff and very good scaling behavior. For traditional values
of k, it is faster than previous algorithms that can achieve comparable or better quality. For
large k, previous algorithms mostly find infeasible solutions and exhibit excessive running
times, whereas KaMinPar consistently finds feasible solutions with comparable quality and is
an order of magnitude faster. Section 7 summarizes the results and outlines possible future
directions.
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coarsening

bipartitioning

select best

duplicateuncoarsening

balancing + k-way local improvement

4 PEs
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4 PEs

4 PEs

n

≈ 8C

≈ 4C

≈ 2C

≈ 2C

4× 1 PE

Figure 1 Partitioning a graph with n nodes into 8 blocks using 4 PEs. Duplicate while coarsening
to maintain load ≥ C on each PE. Successively bipartition during uncoarsening. Colors indicate
work performed by each PE.

2 Preliminaries

Notation and Definitions. Let G = (V, E, c, ω) be an undirected graph with node weights
c : V → N>0, edge weights ω : E → N>0, n := |V |, and m := |E|. We extend c and ω to
sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). N(v) := {u | {u, v} ∈ E} denotes

the neighbors of v and E(v) := {e | v ∈ e} denotes the edges incident to v. For some
V ′ ⊆ V , G[V ′] denotes the subgraph of G induced by V ′. We are looking for blocks of nodes
Π := {V1, . . . , Vk} that partition V , i.e., V1∪· · ·∪Vk = V and Vi∩Vj = ∅ for i ̸= j. The balance
constraint demands that ∀i ∈ {1..k} : c(Vi) ≤ Lmax,k := max{(1 + ε) c(V )

k , c(V )
k + maxv c(v)}

for some imbalance parameter ε.1 The objective is to minimize cut(Π) :=
∑

i<j ω(Eij)
(weight of all cut edges), where Eij := {{u, v} ∈ E | u ∈ Vi, v ∈ Vj}. We call a node v ∈ Vi

that has a neighbor w ∈ Vj , i ̸= j a boundary node. A clustering C := {C1, . . . , Cl} is also a
partition of V , where the number of blocks l is not given in advance (there is also no balance
constraint).

Multilevel Graph Partitioning. Many high-quality graph partitioners employ the multilevel
paradigm, which consists of three phases: During the coarsening phase, the algorithms build
a hierarchy of successively smaller graphs where each graph is a coarse approximation of the
previous one. Coarse graphs are built by either computing node clusters or matchings and
afterwards contracting them. A clustering C = {C1, . . . , Cl} is contracted by collapsing each
cluster Ci into a single node ci with weight c(ci) =

∑
v∈Ci

c(v). There is an edge e = (ci, cj)
in the contracted graph with weight ω(e) =

∑
(u,v)∈Eij

ω(u, v) where Eij are the edges that
connect cluster Ci and Cj in the original graph, if |Eij | > 0. Once the number of nodes of a
coarse graph falls below a certain threshold or the coarsening algorithm converges, initial
partitioning computes a partition of the coarsest graph. Finally, refinement subsequently
undoes the contractions performed during coarsening. In each uncontraction, the partition is
first projected to the finer graph and then improved using local improvement algorithms.

1 Traditionally, Lk := (1 + ε)⌈ c(V )
k ⌉ is used as balance constraint. However, finding a balanced partition

with Lk is NP-complete, which, as we will see in Section 4, is not case for Lmax,k.
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Generally, there are two ways to partition a graph into k blocks using the mutlilevel
paradigm, namely direct k-way partitioning and recursive bipartitioning. The former coarsens
the graph until Ω(k) nodes are left – usually kC nodes where C is an input parameter – and
then computes a k-way partition of the coarsest graph. The latter first computes a bipartition
Π = {V1, V2} and then recurses on the induced subgraphs G[V1] and G[V2] by partitioning V1
into ⌈ k

2 ⌉ and V2 into ⌊ k
2 ⌋ blocks. Note that many multilevel graph partitioners based on the

direct k-way partitioning scheme use recursive bipartitioning to compute an initial partition
of the coarsest graph [25, 37, 28, 3, 19].

Size-Constrained Label Propagation. Based on the label propagation clustering algorithm
by Raghavan et al. [36], Meyerhenke et al. [34] introduced the size-constrained label propagation
algorithm as a coarsening and refinement algorithm. The algorithm is parameterized by a
maximum cluster size U . In the coarsening resp. refinement phase, each node is initially
assigned to its own cluster resp. to its corresponding block of the partition. The algorithm
then works in rounds. In each round, the nodes are visited in some order and a node u is
moved to the cluster resp. block K that contains the most neighbors of u without violating
the size constraint, i.e., c(K) + c(u) ≤ U . The algorithm terminates once no more nodes
were moved during a round or a maximum number of rounds has been exceeded.

Maintaining the Balance Constraint. Finding a balanced partition of a weighted graph
with Lk := (1 + ε)⌈ c(V )

k ⌉ as balance constraint is NP-complete as it can be reduced to the
problem of scheduling jobs on identical parallel machines [17]. Therefore, many partitioners
incorporate techniques that prevent the formation of heavy nodes during the coarsening
process by penalizing the contraction of nodes with large weights [9] or enforcing a strict
upper bound for node weights [21]. This makes it easier for initial partitioning to find a
feasible initial solution. However, as we will see in Section 4, if we replace Lk with Lmax,k the
problem of finding a balanced partition becomes solvable in polynomial time. In the recursive
bipartitioning setting, using the input imbalance parameter ε for each bipartition can produce
blocks in the final k-way partition that would violate the balance constraint. Therefore,
KaHyPar [20, 38] ensures that a k-way partition obtained via recursive bipartitioning is
balanced by adapting the imbalance ratio for each bipartition individually. Let G[V ′] be the
subgraph of the current bipartition that should be partitioned recursively into k′ ≤ k blocks.
Then, ε′:=

(
(1+ε) c(V )

k · k′
c(V ′)

) 1
⌈log2(k′)⌉ − 1 is the imbalance ratio used for the bipartition of G[V ′].

If each bipartition is ε′-balanced, then the final k-way partition is ε-balanced.

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the reader
to overview papers [39, 7, 43, 8, 40] for most of the general material. Here, we give a brief
overview of techniques used in parallel multilevel graph partitioners and issues closely related
to our main contributions.

Most modern high-quality graph partitioners are based on the multilevel paradigm. Well-
known software packages based on this approach include KaHiP [37] and Metis [24] (sequential
graph partitioners), Mt-KaHiP [4] and Mt-Metis [28, 30] (shared-memory graph partitioners),
Jostle [43]. PT-Scotch [11], ParHiP [35] and ParMetis [23] (distributed graph partitioners).

The matching [11, 13, 28, 23, 43] and clustering algorithms [4, 10, 19] used by different
sequential partitioners in the coarsening phase are well-suited for parallelization, sometimes
with only minor quality losses [10, 33]. The coarsening phase proceeds until a fixed number
of nodes remains, usually kC, where C is a tuning parameter.
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In the initial partitioning phase, parallel partitioners either call sequential multilevel
algorithms with different random seeds [4, 11, 13, 22] or use parallel recursive bipartition-
ing [19, 28, 23, 30]. In the former case, the graph is copied to each PE and the best partition
obtained from all independent runs is projected back to the coarsest graph. In the latter
case, parallelism is achieved by either splitting the thread pool into two evenly-sized groups
and assigning each to one of the two recursive calls [23, 28] or dynamically assign the threads
to the recursive calls with a task scheduler [19]. To obtain an initial bipartition of the
coarsest graph, often portfolio approaches composed of different bipartitioning algorithms
are used [37, 38, 19, 9].

Most parallel partitioners use the label propagation heuristic to improve the solution
quality during the refinement phase [4, 28, 19, 35, 43, 13]. More advanced techniques are
based on parallel variants of the FM local search [15] that are widely used in sequential
partitioners. PT-Scotch [11], KaPPa [22] and Jostle [43] use sequential 2-way FM refinement
on two adjacent blocks of the partition. Mt-KaHiP [4] and Mt-KaHyPar [19] implement a
parallel k-way FM algorithm based on the localized multi-try FM of the sequential graph
partitioner KaHiP [37]. Mt-Metis [30] uses greedy refinement (FM with only positive gain
moves), and hill-scanning, a simplification of localized FM where small groups of vertices,
whose individual gains are negative, are moved if their combined gain is positive.

In the parallel setting, nodes can change their block concurrently which requires syn-
chronization to ensure that the balance constraint is not violated [28]. Existing systems
either explicitly communicate their local changes and reject moves that would violate the
balance constraint [28, 23, 13] or use atomic compare-and-swap instructions to maintain
block weights [19, 4].

Limitations of Existing Systems for Large k. The coarsening phase of MGP usually stops
when kC nodes are left. For large k, this breaks the assumption that the coarsest graph is
small. Thus, really expensive initial partitioners are infeasible at this level. Many MGPs
therefore use multilevel recursive bipartitioning for the coarsest graph [25, 37, 28, 3, 19].
This results in a sequential running time of O(T log k) where T is the running time of the
bipartitioning algorithm. When this is used within a parallel algorithm, initial partitioning
can become a major bottleneck [4].

Furthermore, a feasible solution for the k-way graph partitioning problem must satisfy the
balance constraint that usually depends on the average block weight c(V )

k . Thus, increasing
the number of blocks leads to a tighter balance constraint and drastically reduces the space
of feasible solutions. Therefore, a partitioner handling larger values of k has to employ
techniques to ensure that the balance constraint is not violated.

4 Generic Deep MGP

In this section, we present our first major contribution – a new partitioning scheme that
we call Deep Multilevel Graph Partitioning. Deep MGP continues coarsening deep into the
initial partitioning phase. Roughly speaking, it starts by coarsening the input graph until
2C nodes are left – for some input parameter C. Then, the coarsest graph is bipartitioned
into two blocks. During uncoarsening, it maintains the key invariant that the partition of a
coarse graph with n′ nodes has k′ = min{k, ceil2( n′

C )} blocks, where ceil2(x) is x rounded up
to the next power of two. This value is chosen such that each invocation of flat bipartitioning
works on a graph with roughly 2C nodes. Thus, the graph is divided into min{k, ceil2( n

C )}
blocks after unrolling the graph hierarchy. If k > ceil2( n

C ), blocks are further subdivided
until k blocks are obtained.
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Algorithm 1 partition.
Input: G = (V, E), k, ε > 0, const. C

Output: k′-way partition Π of G

1 if |V (G)| > 2C and coarsening has not
converged then // recursion

2 Gc := coarsen(G)
3 Πc := partition(Gc, k, ε, C)
4 Π := project(G, Πc)
5 else // base case
6 Π := {V }

7 k′ :=
{

k, |V | = n

ceil2(|V |/C), else
8 k′ := max{min{k, k′}, 2}
9 while |Π| < k′ do // obtain k′ blocks

10 Π := bipartitionBlocks(G, Π, k)
11 Π := refine(G, balance(G, Π))
12 return Π

Algorithm 2 bipartitionBlocks.
Input: G, k′-way partition Π, k, const. R

Output: 2k′-way partition Π′

1 Π′ := ∅
2 foreach Vi ∈ Π do

3 ε′ :=
(

(1 + ε) c(V )
|Π|c(Vi)

)1/ log2(k/|Π|)
− 1

4 Gi := G[Vi]
5 // compute R bipartitions of Vi

6 Π1, . . . , ΠR := bipartition(Gi, ε′, R)
7 // select lowest (feasible) edge cut
8 Π′ := Π′ ∪ lowest(Gi, Π1, . . . , ΠR)

This approach combines the merits of direct k-way partitioning and recursive biparti-
tioning: similar to direct k-way partitioning, deep MGP coarsens and uncoarsens the graph
only once, and enables the use of k-way local improvement algorithms throughout the graph
hierarchy. Moreover, it enforces that (possibly expensive) bipartitioning algorithms are only
applied to small graphs. Thereby, it eliminates the initial partitioning bottleneck for large
values of k or parallel graph partitioning.

In the remainder of this section, we give a detailed description of deep MGP. We simplify
this description by restricting k to powers of two, but lift this restriction in a subsequent
paragraph. Finally, we describe how to parallelize it and analyze its running time.

Deep Multilevel Graph Partitioning. Deep MGP starts by coarsening the input graph
G1 = (V1, E1), building a hierarchy of successively coarse representations G1, . . . , Gℓ of G1.
This is achieved by clustering each graph Gi and contracting all clusters to build Gi+1.
Coarsening stops once the coarsest graph Gℓ has at most 2C nodes, or the process converged.
In Algorithm 1, this process is implemented in Lines 2–3.

From here, we start a sequence of the following operations: use recursive initial bipartition
to subdivide the current graph into more blocks, possibly rebalance the partition and improve
it using a k-way local improvement algorithm, project the partition onto the previous graph
Gℓ−1 and repeat the process on that graph. During these operations, we maintain the
following key invariants:

(P) A coarse graph Gi is partitioned into ki := ceil2(|Vi|/C) blocks (bounded by 2 and
k).

(B) A ki-way partition of Gi fulfills the balance constraint.
An idealized coarsening algorithm produces a graph hierarchy where the number of nodes

is halved between two levels and the coarsest graph has 2C nodes. In this case, it is sufficient
to bipartition the coarsest graph Gℓ once to fulfill invariant (P). To restore the invariant
after uncoarsening (doubling the number of nodes in the current graph), each block of the
current partition has to be bipartitioned once.

In the more general case, where coarsening can shrink the number of nodes of a graph by
a larger factor than 2, we use recursive initial bipartitioning to maintain (P). More precisely,
whenever the partition Πi of graph Gi violates invariant (P), we recursively bipartition each
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block of Πi until we have ki blocks in total. In Algorithm 1, this process is implemented in
Lines 7–10. Initial bipartitioning is implemented in Algorithm 2.

Uncoarsening and initial bipartitioning can cause violations of invariant (B) (see below).
If this is the case, we run a balancing algorithm afterwards. The resulting partition – which
satisfies invariants (P) and (B) – is then improved using a k-way local improvement algorithm
(Algorithm 1, Line 11).

If k > ceil2(|V1|/C), the partition computed by the process described above has less than
k blocks. In this case, we perform an additional round of recursive initial bipartitioning to
obtain k blocks, and run balancing and k-way local improvement once more on the final
partition.

Parallelization. We parallelize the partitioning method described above using parallel
coarsening, local improvement and balancing algorithms. On very coarse levels, we maintain
the invariant that parallel tasks performed by p PEs work on graphs with at least pC

nodes. This is achieved by running initial partitioning on more and more copies of the
coarsened graph, as illustrated by Figure 1. We diversify this search by using randomized
coarsening, initial bipartitioning and local improvement algorithms. More precisely, we follow
the algorithm described above until the coarsest graph GC has pC nodes left. To uphold the
invariant that tasks performed by p PEs work on graphs with at least pC nodes, we obtain
two copies Gr

C and Gℓ
C of GC , and split PEs into two groups (conceptually) with p′ = p

2
PEs each. If p′ > 1, we continue by coarsening Gr

C with PEs of the first group and Gℓ
C with

PEs of the second group, until each graph has p′C nodes left. We proceed in this fashion
recursively, until we have obtained p graphs with 2C nodes each after log2(p) recursion levels.

Each of these graphs is then bipartitioned using a single PE. Let Gr
C and Gℓ

C with
respective bipartitions Πr

C and Πℓ
C be two such graphs that are copies of GC on the previous

recursion level. We use the better bipartition of Πr
C and Πℓ

C (i.e., if only one of these
partitions is feasible, we use that one, otherwise the one with the lower edge cut) as partition
ΠC of GC . We proceed on GC as before, i.e., bipartition each block of ΠC if applicable, and
apply the balancing and local improvement algorithm. This process is repeated for all log2(p)
recursion levels.

Handling General k. The simplified description of deep MGP only considers the case where
k is a power of two. For the general case, we associate each block B with a final block count
fB – the number of blocks B is subdivided into in the final partition. Initially, fV = k. To
bipartition B into two blocks B0 and B1, we set fB0 = ⌊ fB

2 ⌋ and fB1 = ⌈ fB

2 ⌉, and divide
the weight of B in a fB0 to fB1 ratio between B0 and B1. Thus, once we have computed a
k′ := floor2(k)-way partition, there are k − k′ heavy blocks with fB = 2 and 2k′ − k light
blocks with fB = 1. During the next and final initial partitioning step, we obtain a k-way
partition by only bipartitioning heavy blocks.

Maintaining the Balance Constraint. Since MGP implementations usually employ coarsen-
ing algorithms that do not guarantee strictly uniform node weights, maintaining the
balance constrain used in other partitioning systems, Lk := (1 + ε)⌈ c(V )

k ⌉, becomes an
NP-complete problem [17] on coarse levels. To mitigate this problem, we use Lmax,k :=
max{(1+ε) c(V )

k , c(V )
k +maxv c(v)} as balance constraint instead. This ensures that a feasible

partition always exists, and that it can be found with simple greedy algorithms. Both claims
are based on the fact that the average block weight of a partition is c(V )

k and thus, there
always exists a block Vi with c(Vi) ≤ c(V )

k . In the multilevel setting, projecting a partition
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to a finer graph can violate the balance constraint due to the change in maxv c(v). However,
the overload per block is bounded by maxv c(v), which implies that a balancing algorithm
only needs to move a small number of nodes out of a block to restore the balance constraint.

Running Time. Next, we analyze the running time of parallel (deep) MGP using highly
idealized assumption. We do not claim that the results hold for our implementation but use
this simplified analysis to give a quantitative expression to the qualitative reasoning that
deep MGP is scalable if its components are scalable. The analysis also allows us to compare
the asymptotic performance of different approaches to parallel MGP without having to
discuss which particular implementations of the basic operations can or cannot avoid certain
difficult cases. We assume: (1) k is a power of two and we have unit node/edge weights,
(2) n > Cp log p, (3) coarsening a graph halves the number of nodes, (4) (un)coarsening
or balancing a graph with n nodes takes time O(n/p + log n), (5) sequential bipartitioning
takes linear time. We effectively ignore edges here. This implies the assumption that nodes
have bounded degree and that the degrees remain bounded when the graph is shrunk.

▶ Theorem 1. Under the assumptions made above, deep MGP requires time

O
(

n

p
max

(
1, log kC

n

)
+ log2 n

)
.

Proof. By (3), MGP goes through log(n/C) levels so that the overhead terms “log n” in (4)
sum to O

(
log2 n

)
– we ignore these overhead from now on. While > pC nodes are left, the

graph shrinks geometrically with the levels so that the total remaining cost for (un)coarsening
and balancing from (4) is linear – O(n/p).

When ≤ pC nodes are left, replication and selection of the best partition keeps the
number of nodes at each level at Θ(pC). There are log p such levels incurring total cost
O(C log p) for (un)coarsening and balancing. By (2) this cost is bounded by O(n/p).

For the cost of bipartitioning we consider three cases:
Case (a) k ≤ p: Each PE performs log k bipartitions with total cost C log k. By (2) this is

bounded by O(n/p).
Case (b) p < k ≤ n/C: Each PE performs log p + k/p bipartitions with total cost C(k/p +

log p). Once more, by (2) this is bounded by O(n/p).
Case (c) k > n/C: In this case, deep MGP first performs an n/C-way partitioning into

blocks of size about C. By the above analysis, this takes time O
(
n/p + log2 n

)
. Then the

remaining blocks are partitioned into k/(n/C) = kC/n blocks using recursive bipartition-
ing in time O(C log(kC/n)). Summing over all blocks assigned to a PE we get additional
cost n log(kC/n)/p. ◀

5 Implementation

In this section we describe the different components in our shared-memory parallel im-
plementation of deep MGP called KaMinPar. Recall that the components are coarsening,
bipartitioning on small graphs, and uncoarsening with k-way balancing and refinement.

5.1 Coarsening by Size-Constrained Label Propagation
We use size-constrained label propagation [34] to compute a clustering for contraction, where
the weight of the heaviest cluster is restricted by a fixed upper bound U . We set U := ε c(V )

k′ ,
where k′ = min{k, |V |/C} is the number of blocks we obtain on the finest level (before
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further bipartitioning if necessary) and ε is the imbalance from the problem formulation.
This choice implies that c(V )

k′ + maxv c(v)
maxv c(v)≤U

≤ (1 + ε)⌈ c(V )
k′ ⌉ = Lk′ on every level, and

hence Lmax,k simplifies to the traditional balance constraint Lk on unweighted inputs. If
the current number of nodes is ≤ k′

2 C, we adapt k′ to k′

2 and U accordingly. We perform 5
rounds of label propagation, but terminate early if no nodes were moved. To further improve
the running time, we only move a node, if one of its neighbors changed its cluster in the
previous round.

Parallelization. We parallelize the algorithm by iterating over all nodes in parallel. When
moving a node to another cluster, we use atomic fetch-and-add operations to update the
respective cluster weights. Note that we do not strictly enforce the weight limit. The limit
could be violated if multiple PEs move a node to the same cluster at the same time. However,
this is unproblematic in practice since the weight limit violations are usually small.

Iteration Order and Cache Locality. Solution quality of label propagation is improved when
nodes are visited in increasing degree order [34, 4]. Since this is not cache efficient and lacks
diversification by randomization, we sort the nodes of the graph into exponentially spaced
degree buckets, i.e., bucket i contains all nodes with degree 2i ≤ d < 2i+1, and rearrange
the graph such that nodes are sorted by their bucket number. For node traversal, we split
buckets into small chunks and randomize node traversal on a inter-chunk and intra-chunk
level. This is analogous to the randomization in Metis’ matching algorithm [24].

Two-hop Clustering. We observed that size-constrained label propagation is unable to
shrink some irregular graph instances sufficiently. We solve this by implementing a technique
similar to the two-hop matching algorithm of Metis [31]. During label propagation, if node u

cannot be moved into any neighboring cluster due to the size constraint, we store the highest
rated neighboring cluster as u’s favored cluster. If the graph is shrunk by less than 50% after
termination, we merge singleton clusters that share the same favored cluster until the graph
shrunk by 50%.

5.2 Initial Bipartitioning
We perform multilevel bipartitioning to compute an initial bipartition of a subgraph GV ′

(with |V ′| ≈ 2C). On this size, the used algorithms are sequential. For coarsening, we use
label propagation and set the maximum cluster weight to the same value used in KaHiP [37].
The maximum block weight for bipartitioning is set to L2 := (1 + ε′)⌈ c(V ′)

2 ⌉, where ε′ is
the adaptive imbalance as defined in Section 2. We coarsen until no further contractions
are possible. For refinement, we use 2-way FM [15]. We use a pool of simple algorithms
to bipartition the coarsest graph, namely random bipartitioning, breadth-first searches and
greedy graph growing [24]. We repeat each algorithm several times with different random
seeds and select the bipartition with the lowest edge cut. Moreover, we use the adaptive
algorithm selection technique of Mt-KaHyPar [18].

5.3 Uncoarsening
After bipartitioning the blocks of a k

2 -way partition, we use a k-way balancing algorithm
to restore the balance constraint (if violated). Afterwards, we run a local improvement
algorithm based on size-constrained label propagation to improve it.
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Balancing. In contrast to Section 4, our implementation prevents balance constraint vi-
olations by changes in maxv c(v) due to our choice of the maximum cluster weight during
coarsening. However, balance violations can occur during initial bipartitioning, in particular
due to our multilevel bipartitioning approach.

For each overloaded block B, we store just enough nodes of B in a priority queue PB

ordered by relative gains, to remove the excess weight o(B) := c(B)−Lmax,k. The relative gain
of a node v is d · c(v) if d ≥ 0 and d/c(v) if d < 0, where d is the largest reduction in edgecut
when moving v to a block that would not become overloaded. We initialize the priority queues
by iterating over the nodes in G. If a node is in an overloaded block and c(PB) < o(B), we
insert it. Otherwise, we only insert it if its relative gain is higher than the lowest relative
gain of any element in PB and remove its lowest element if c(PB) > o(B) + maxv c(V ) after
the insertion.

Once the priority queues are initialized, we empty each overloaded block B individually
by repeatedly removing the node v with the largest relative gain from PB. If its relative
gain changed since insertion, or its designated target block can no longer take v without
becoming overloaded, we re-insert v (if v is still a border node). Otherwise, we move v to its
target block or a random block that can take v without becoming overloaded. Subsequently,
we try to insert all neighbors from its former block. To reduce the running time, we only try
to insert each node once.

We parallelize the algorithm as follows. During initialization, we iterate over all nodes in
parallel and maintain one thread-local priority queue for each overloaded block. Afterwards,
we iterate over all blocks in parallel, merge the respective thread-local priority queues and
perform node movements as described above.

Local Improvement. We use the same parallelization of size-constrained label propagation
as described in Section 5.1, but strictly enforce the maximum cluster weight (set to the
maximum block weight) using an atomic compare-and-swap instruction. We run at most 5
rounds of size-constrained label propagation (same value as used in Mt-KaHyPar [19]), but
terminate early if no node was moved during a round.

6 Experimental Evaluation

We implemented the proposed algorithm KaMinPar in C++ and compiled it using g++-10.2
with flags -O3 -march=native. We use Intel’s TBB [1] as parallelization library.

Setup. We perform our experiments on two different machines. Machine A is equipped
with an AMD EPYC 7702 64-Core processor clocked at 2 GHz and 1 TB main memory.
This machine is only used for our scalability experiment. All other experiments are run on
Machine B, which is a node of a cluster equipped with Intel Xeon Gold 6230 processors (2
sockets with 20 cores each) clocked at 2.1 GHz and 96 GB or 192 GB main memory.

We compare our algorithm with Mt-Metis 0.7.2 [30], Mt-KaHiP 1.0 [4], PuLP 0.11 [41],
Metis 5.1.0 [31] and the fsocial preset of KaHiP 3.10 [37]. We chose this preset because it is
one of the fastest configurations that computes good quality. While other presets of KaHiP
achieve better partition quality, they are also much slower. We do not include ParMetis [23]
and Pt-Scotch [11] in our comparison since they are slower than Mt-Metis and produce
partitions with comparable solution quality [29]. Moreover, we exclude ParHiP [35] since it is
outperformed by Mt-KaHiP [2]. In the following, we add a suffix to the name of each parallel
partitioner to indicate the number of threads used, e.g., KaMinPar 64 for 64 threads.
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Instances. We evaluate our algorithm on a benchmark set composed of 197 graphs (referred
to as set A), including 129 graphs from the 10th DIMACS Implementation Challenge [6], 25
randomly generated graphs [16, 26], 25 large social networks [27, 32], and 18 graphs from
various application domains [12, 44, 42]. Scalability and experiments with larger values of
k are performed on a subset of set A that contains 21 graphs (referred to as set B). This
benchmark set includes the 18 largest graphs (by number of nodes)2 and 3 randomly chosen
small graphs of set A such that a partition with 220 blocks only contains a few nodes per
block. Basic properties of benchmark instances are shown in Appendix A, Figure 6.

Methodology. We consider a combination of a graph and number of blocks k as an instance.
For each instance, we usually perform several runs with different random seeds and aggregate
running times and edge cuts using the arithmetic mean over all seeds. To further aggregate
over multiple instances, we use the harmonic mean for relative speedups, and the geometric
mean for absolute running times and edge cuts. Runs with imbalanced partitions are not
excluded from aggregated running times and for instances that exceeded the time limit, we
use the time limit in the aggregates. We consider an instance as infeasible, if all runs failed
or computed an imbalanced partition and mark them with ✗ in the plots.

To compare the solution quality of different algorithms, we use performance profiles [14].
Let A be the set of all algorithms we want to compare, I the set of instances, and qA(I) the
quality of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the fraction of
instances |IA(τ)|

|I| (y-axis) where IA(τ) := {I ∈ I | qA(I) ≤ τ · minA′∈A qA′(I)} and τ is on
the x-axis. Achieving higher fractions at lower τ -values is considered better. For τ = 1, the
y-value indicates the percentage of instances for which an algorithm performs best. Since
performance profiles relate the quality of an algorithm to the best solution, the ranking
induced by τ = 1 does not permit full ranking of all algorithms, if more than two algorithms
are included.

Running Time and Solution Quality for Small k. In Figure 2, Figure 3 and Table 1, we
compare the quality and running time of KaMinPar with different sequential and parallel
partitioners for k ∈ {2, 4, 8, 16, 32, 64}, ε = 0.03 and 5 repetitions per instance on set A and
machine B. These are commonly used values to evaluate graph partitioning systems. We
execute each parallel partitioner using 10 threads to simulate the performance on commodity
machines.

KaMinPar 10 is the overall fastest algorithm on average and also an order of magnitude
faster than the sequential partitioners Metis and KaHIP-fsocial on large graphs (m ≥ 108),
while producing partitions with comparable solution quality (see Figure 3 (left)). KaMinPar
10 (0.39 s geometric mean running time) is moderately faster than Mt-Metis 10 (0.48 s) and
more than a factor of 2 resp. 3 faster than PuLP 10 (1.11 s) and Mt-KaHIP 10 (1.33 s). The
differences in running time, as shown in Figure 2 (right), are more pronounced on larger
instances, e.g., KaMinPar 10 (9.36 s) is more than factor of 3 resp. 5 faster than Mt-Metis 10
(30.36 s) resp. Mt-KaHIP 10 (55.76 s) on instances with more than 108 edges. Figure 2 (left)
shows that Mt-KaHIP 10 computes the partition with lowest edge cut on a majority of the
instances (≈ 60%), while the partitions produced by PuLP 10 are more than a factor of 2
worse than the best achieved edge cuts on more than 55% of the instances. These results are
expected, since Mt-KaHIP is the only partitioner that implements a parallel direct k-way FM
algorithm and PuLP is the only non-multilevel system in our evaluation.

2 excluding er-fact1.5-scale26, since Mt-KaHiP and Mt-Metis are unable to compute a partition on
this graph even for small k, and kmer_V2a to avoid over-representation of k-mer graphs
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Table 1 Geometric mean running time and solution quality for different algorithms on benchmark
set A and k ∈ {2, 4, 8, 16, 32, 64}. Running time only includes instances for which all algorithms
produced a result. The number of included instances is shown in the last row. Solution quality is
relative to KaMinPar (lower is better) and only includes instances for which the respective algorithm
computed a balanced partition. Thus, solution quality cannot be compared between different
competitors.

Algorithm T T [m ≥ 106] T [m ≥ 108] rel. cut # infeasible

KaMinPar 10 0.39 s 0.85 s 9.36 s 1.00 0

Mt-Metis 10 0.48 s 1.49 s 30.36 s 1.00 349
Mt-KaHiP 10 1.33 s 3.84 s 55.76 s 0.94 6
PuLP 10 1.11 s 5.70 s 95.93 s 2.39 72

Metis 1.00 s 4.15 s 97.44 s 1.05 2
KaHiP-fsocial 2.93 s 11.05 s 200.67 s 1.03 8

# instances 1,150 832 196
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Figure 2 Performance profile and running time plot (shows time per edge with a right-aligned
rolling geometric mean over 50 instances) comparing the performance of KaMinPar with different
partitioners for k ∈ {2, 4, 8, 16, 32, 64} on set A.

We also ran KaMinPar, Mt-Metis and Mt-KaHiP on all 64 cores of machine A. Here, we
partitioned each graph of the reduced benchmark set B into k ∈ {2, 4, 8, 16, 32, 64} blocks
allowing a maximum imbalance of ε = 0.03. In this setup, KaMinPar 64 is 5 resp. 4.4 times
faster than Mt-KaHiP 64 resp. Mt-Metis 64, whereas on the same instances on 10 cores
of machine B, it is 5.7 resp. 3.1 times faster. Thus, we can see that the running time of
KaMinPar scales slightly worse to 64 cores than Mt-KaHiP, but slightly better than Mt-Metis
for smaller values of k. In Figure 3 (right), we compare the solution quality of each algorithm
on the reduced benchmark set B. We can see that the differences of the partitioners in terms
of solution quality are more pronounced on this set than on set A (compare with Figure 2).
However, this is due to the benchmark set, since each partitioner produced partitions with
comparable quality if we compare them individually with 10 and 64 threads. Overall, we
can conclude that KaMinPar offers a compelling trade-off between running time and quality
compared to established shared-memory and sequential GP systems.

Running Time and Solution Quality for Large k. In Table 2, we present the results of
our experiment with different parallel partitioners (each using 10 threads) for larger values
of k ∈ {211, 214, 217, 220}, ε = 0.03 and 3 repetitions per instance with a time limit of one
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Table 2 Results of our experiment for large values of k with different parallel partitioners on set B.
The last two columns show the geometric mean running time and edge cuts relative to KaMinPar of
all instances that do not crash (timeout instances are additionally excluded in edge cut comparison).

Algorithm # timeout # crash # imbalanced # feasible rel. time rel. cut

KaMinPar 10 0 0 0 84 1.00 1.00

Mt-Metis-K 10 19 10 51 4 11.91 0.99
Mt-Metis-RB 10 0 25 55 4 5.61 1.03
Mt-KaHiP 10 31 7 11 35 38.64 1.00
PuLP 10 76 0 0 8 73.52 1.25
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Figure 3 Left: performance profile of KaMinPar, Metis and KaHiP-fsocial on benchmark set
A with k ∈ {2, 4, 8, 16, 32, 64} and ε = 0.03. Right: performance profile of KaMinPar, Mt-KaHiP
and Mt-Metis on 64 cores of machine A, reduced benchmark set B with k ∈ {2, 4, 8, 16, 32, 64} and
ε = 0.03. Note that the change in relative solution quality is due to the reduced benchmark set.

hour on set B and machine B (192 Gb main memory). Note that the time limit is 10 times
larger than the longest running time of KaMinPar for an instance. We additionally included
the recursive bipartitioning version of Mt-Metis (referred to as Mt-Metis-RB) to evaluate the
performance of recursive bipartitioning on large k. In the following, we consider a run of an
algorithm for an instance as feasible, if the algorithm terminates in the given time limit and
the produced partition satisfies the balance constraint Lk := (1 + ε)⌈ c(V )

k ⌉.
Out of the 84 evaluated instances (21 graphs times 4 values of k), Mt-Metis-RB 10,

Mt-Metis-K 10, PuLP 10 and Mt-KaHiP 10 were only able to produce on 4, 4, 8 resp. 35
instances a feasible solution. Mt-Metis-RB 10 and Mt-Metis-K 10 primarily failed to produce
solutions that satisfy the balance constraint (55 resp. 51 instances). Figure 4 (right) shows
that Mt-Metis-K 10 generally produces larger balance violations (median resp. maximum
imbalance is 1.14 resp. 15.56) than Mt-Metis-RB 10 (median 1.05 and maximum 1.15). Mt-
KaHiP 10 and PuLP 10 were mostly unable to compute a partition in the given time limit
(31 resp. 76 instances). KaMinPar 10 produced a feasible solution on all instances. The
fastest competitor is Mt-Metis-RB 10, which is more than 5 times slower than KaMinPar
10 on average. All other partitioners are an order of magnitude slower. If we include all
imbalanced partitions and individually compare the partitioners on those instances with
respect to solution quality, we can see that all perform comparable (except for PuLP 10).
However, a fair comparison is difficult due to the large number of infeasible solutions. We
can conclude that KaMinPar is currently the only partitioner considered in our evaluation
that can reliably compute feasible partitions for larger values of k in a reasonable amount of
time.
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Figure 4 Left: imbalance of infeasible partitions computed by Mt-KaHiP 10, Mt-Metis 10, PuLP
10, Metis and KaHiP-fsocial on benchmark set A with k ∈ {2, 4, 8, 16, 32, 64} and ε = 0.03. Right:
imbalance of infeasible partitions computed by Mt-Metis-K 10, Mt-Metis-RB 10 and Mt-KaHiP 10 on
benchmark set B with k ∈ {211, 214, 217, 220} and ε = 0.03.
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Figure 5 Self-relative speedups for the different components of KaMinPar on set B.

Scalability of KaMinPar. In Figure 5, we show the scalability of KaMinPar for k ∈
{211, 214, 217, 220}, ε = 0.03 and three repetitions per instance on set B using p ∈ {1, 4, 16, 64}
cores of machine A. In the plot, we represent the speedup of each instance as a point and
the cumulative harmonic mean speedup over all instances with a single-threaded running
time ≥ x seconds with a line. Note that initial partitioning includes all calls to our initial
bipartitioning algorithms on graphs with more than 2pC nodes.

The overall harmonic mean speedup of KaMinPar is 3.8 for p = 4, 13.3 for p = 16
and 27.9 for p = 64. The harmonic mean speedups of coarsening, initial partitioning and
refinement are 25.0, 34.5 and 33.1 for p = 64. We note that our refinement component
achieves slightly better speedups than our coarsening component, although both are based on
the size-constrained label propagation algorithm. This effect is most pronounced on instances
with larger node degrees. During coarsening, each thread aggregates ratings to neighboring
clusters in a local hash map (with only 215 entries) for nodes with small degree and in a local
vector of size n for high degree nodes (≥ 215/3). During refinement, each thread uses a local
vector of size k for this. Instances with larger node degrees more often uses the local vector
of size n to aggregate ratings during coarsening, which can limit scalability due to cache
effects. Note that KaMinPar performs no expensive arithmetic operations. Hence, perfect
speedups are not possible due to limited memory bandwidth.
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7 Conclusion and Future Work

We presented a new graph partitioning scheme that successfully combines the merits of
classical direct k-way partitioning and recursive bipartitioning. Similar to direct k-way
partitioning, deep MGP coarsens and uncoarsens the graph only once, and allows the use
of k-way local improvement algorithms. Yet, it does not suffer scalability problems if
k is large and has a better asymptotic running time than recursive bipartitioning. Our
experimental evaluation shows that our shared-memory parallel implementation of deep
MGP runs efficiently on up to 64 PEs, while achieving comparable results to established
graph partitioners if k is small. Furthermore, our evaluation showed that KaMinPar is an
order of magnitude faster than other graph partitioners based on direct k-way partitioning if
k is large, while consistently producing balanced solutions. In the future, we would like to
explore graph partitioning for very large values of k, e.g., k ∈ Θ(n).
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Abstract
Unsplittable flow on a path (UFP) is an important and well-studied problem. We are given a
path with capacities on its edges, and a set of tasks where for each task we are given a demand,
a subpath, and a weight. The goal is to select the set of tasks of maximum total weight whose
total demands do not exceed the capacity on any edge. UFP admits an (1 + ϵ)-approximation with
a running time of nOϵ(poly(log n)), i.e., a QPTAS [Bansal et al., STOC 2006; Batra et al., SODA
2015] and it is considered an important open problem to construct a PTAS. To this end, in a series
of papers polynomial time approximation algorithms have been developed, which culminated in a
(5/3 + ϵ)-approximation [Grandoni et al., STOC 2018] and very recently an approximation ratio of
(1 + 1

e+1 + ε) < 1.269 [Grandoni et al., 2020]. In this paper, we address the search for a PTAS from
a different angle: we present a faster (1 + ϵ)-approximation with a running time of only nOϵ(log log n).
We first give such a result in the relaxed setting of resource augmentation and then transform it to
an algorithm without resource augmentation. For this, we present a framework which transforms
algorithms for (a slight generalization of) UFP under resource augmentation in a black-box manner
into algorithms for UFP without resource augmentation, with only negligible loss.
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1 Introduction

The unsplittable flow on a path problem (UFP) is a natural packing problem which has
received a lot of attention, e.g., [3, 17, 15, 6, 7, 4, 8, 9]. We are given a path G = (V, E)
with a capacity u(e) ∈ N0 for each edge e ∈ E and a set of tasks T . For each task i ∈ T

we are given a sub-path P (i) of E, a demand d(i) ∈ N0, and a weight (or profit) w(i) ∈ N0.
For any set of tasks T ′ ⊆ T , we define d(T ′) :=

∑
i∈T ′ d(i) and w(T ′) :=

∑
i∈T ′ w(i) and for

each e ∈ E we define Te ⊆ T to be the set of all tasks i ∈ T using e, i.e., such that e ∈ P (i).
Similarly we sometimes say that i is contained, contains, or intersects a subpath P if P (i)
does. The goal is to select a set of tasks T ′ ⊆ T of maximum total weight w(T ′) such that
T ′ obeys the edge capacities, i.e., d(T ′ ∩ Te) ≤ u(e) for each edge e ∈ E. We denote by n the
size of the input, and hence in particular |T | ≤ n and |E| ≤ n.
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UFP is a generalization of Knapsack (i.e., if |E| = 1) and it is motivated by various
applications. For example, the path G can represent a network with a chain of communication
links in which we seek to select the most profitable set of possible transmissions that obey
the given edge capacities. Also, the edges in E can correspond to discrete time slots, each
task models a job that we might want to execute, and the edge capacities model the available
amount of a resource shared by the jobs like energy or machines. Also, there is a connection
between UFP and general caching, i.e., where pages can have different (possible non-unit)
sizes and different costs for being evicted [12].

There is a (1 + ϵ)-approximation algorithm known for UFP with running time of
nOϵ(log n) [7], i.e., a QPTAS (improving an earlier QPTAS in [5]), and it has been a
long-standing open problem to construct a PTAS. Towards this goal, polynomial time
approximation algorithms for UFP have been developed and the best known approximation
ratio has been gradually improved from O(log n) [6] to 7 + ϵ [8], 2 + ϵ [3], and 5/3 + ϵ [17],
while the currently best known ratio ratio is 1 + 1

1+e + ϵ < 1.269 [15].

1.1 Our Contribution
In this paper, we contribute to the search for a PTAS for UFP from a different angle:
we improve the running time of the known QPTAS for UFP [7] and present a (1 + ϵ)-
approximation with a running time of only nOϵ(log log n). Hence, our result is in the same
spirit as similar improvements for the Maximum Independent Set of Rectangles problem
in [13] and precedence constrained scheduling for unit-size jobs in [18].

We first present our result for the case of resource augmentation, i.e., when we allow
ourselves to increase the edge capacities by a factor of 1 + δ for some constant δ > 0 while the
compared optimal solution OPT does not have this privilege. Let umin and umax denote the
minimum and maximum edge capacities, respectively. In that setting, it is easy to show that
we can assume that the edge capacities are in a constant range, namely umax = Oε,δ(umin).
We classify each task i ∈ T to be small or large, depending on whether i uses a relatively
small or a relatively large fraction of the available capacity on the edges of P (i). Since we
have a constant range of edge capacities, one can show easily that each edge e can be used
by only a constant number of large tasks in OPT .

The high level strategy in the known QPTASs [5, 7] is to take the middle edge e∗, guess
the large tasks using e∗, split the small tasks using e∗ into O(log n) or (log n)O(1) groups,
and guess an under-estimating capacity profile for each group with Oϵ(1) uniform steps. In
more detail, in the latter step one guesses for each edge e ∈ E approximately how much
capacity from u(e) is used in OPT by the tasks crossing e∗ in each group. For each group
one argues that one loses only a factor of 1 + ϵ in the profit by underestimating the true
capacity. Then one recurses on the subpaths of E on the left of e∗ and on the right of e∗

which yields a recursion depth of O(log n).
Instead, when we consider the small tasks using e∗, we use only one over-estimating

profile with non-uniform step size for all tasks together with only Oε,δ(log log n) steps. Each
step is a power of 1+δ in [ δ

log n umin, umax]. This yields Oε,δ(log log n) steps since the profile is
monotone on the left and on the right of e∗ and umax = Oε,δ(umin). Also, our justification for
the error is very different. On some edges e the error is at most δ

log n umin which accumulates
to at most O(δ)umin ≤ O(δ)u(e) during the recursion. On the other edges e the error is at
most a δ-fraction of the total demand used on e by tasks crossing e∗; over the recursion this
can add up to at most δu(e) since in OPT edge e is used by tasks with a total demand of at
most u(e).
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When we recurse we employ another novelty: we consider the tasks crossing at least one
of two specially defined edges e∗

1, e∗
2, and recurse in three subpaths induced by them: e∗

1 is
like before the middle edge of current subpath. The other edge e∗

2 is chosen such that half of
previously guessed steps are on the left and the other half on the right (like in the QPTAS
in [7]). This ensures that at the same time the recursion depth is O(log n) and each recursive
call is described by a subpath of E and only Oε,δ(log log n) steps from previously guessed
profiles. Thus, we can embed this recursion into a dynamic program (DP) with DP-table of
size nOε,δ (log log n).

Then, we present a new framework using which one can transform algorithms for UFP
under resource augmentation (like ours) in a black-box manner into algorithms for UFP
without resource augmentation, while losing only a factor of 1 + ϵ in the approximation
ratio. To this end, we define a slight generalization of UFP that we denote by Bonus-UFP.
The key difference to UFP is that in addition to profit from normal tasks, one receives a
bonus for subpaths which do not completely contain the path of any selected task. Also,
its instances are required to have a simpler structure than general UFP instances, yielding
similar properties as obtained via resource augmentation. For example, on each edge one is
allowed to select only a constant number of large tasks (independently of the actual edge
capacities!), so they can be easily guessed in time nOϵ(1) for each edge. Also, the capacity
allocated for small tasks in OPT is intuitively in a constant range (similarly as above) and
the notion of resource augmentation is defined such that this capacity for the small tasks is
increased by a factor 1 + δ.

Our framework directly transforms any algorithm for Bonus-UFP under resource aug-
mentation to an algorithm for UFP without resource augmentation, while increasing the
approximation ratio only by a factor 1 + ϵ. The transformation uses the slack-lemma [16]
which was employed in previous algorithms for UFP [16, 15, 17] in order to gain free capacity
on the edges within quite complicated dynamic programs. With our framework one does not
need to apply the slack-lemma and construct this technical machinery “by hand” anymore,
but it is sufficient to design an algorithm for Bonus-UFP under resource augmentation and
then the framework does the transformation automatically.

▶ Theorem 1 (informal). Given an α-approximation algorithm for Bonus-UFP under resource
augmentation with a running time of T (n), we can construct a (1 + ϵ)α-approximation
algorithm for UFP (without resource augmentation) with a running time of T (n)nOϵ(1).

We hope that this facilitates future research on UFP for (eventually) finding a PTAS.
In particular, we believe that if one constructs an algorithms for UFP under resource
augmentation then it is very likely that it can be adjusted to an algorithm for Bonus-UFP
under resource augmentation. For example, we demonstrate that this can be easily done
with our algorithm for UFP under resource augmentation above, which yields the following
theorem.

▶ Theorem 2. For any ϵ > 0 there is a (1 + ϵ)-approximation algorithm for UFP with a
running time of nOϵ(log log n).

1.2 Other related work
There are some special cases of UFP for which PTASs are known, for example when there are
O(1) edges such that each input task uses one of them [16], each input task can be selected
an unbounded number of times [16], or when the profit of each task is proportional to its
demand [7]. Also, there is an FPT-(1 + ϵ)-algorithm known for the unweighted case of UFP
where the fixed parameter is the cardinality of the optimal solution [19].

ESA 2021
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Variations of UFP have been studied like bagUFP where the input tasks are partitioned
into bags, and we are allowed to select at most one task from each bag [14]. Also, since
the natural LP-formulation of UFP suffers from an integrality gap of Ω(n) [9], stronger
LP-formulations have been investigated [10, 2]. Furthermore, unsplittable flow has been
studied on trees, where the best known results are a O(log2 n)-approximation [10]. This was
generalized to a O(k · log n)-approximation [1] for submodular objectives where k denotes
the pathwidth of the given tree (bounded by O(log n)).

2 Faster approximation scheme for UFP with resource augmentation

We first provide a (1+ϵ)-approximation algorithm for UFP with a running time of nOϵ,δ(log log n)

for the simplified setting of δ-resource augmentation where we permit the algorithm to com-
pute a solution S where for each edge e ∈ E we have that

∑
i∈S∩Te

d(i) ≤ (1 + δ)u(e)
and we require the optimal solution OPT to respect the original capacities u(·), i.e.,∑

i∈OPT∩Te
d(i) ≤ u(e) for each e ∈ E. For a UFP instance with a path G = (V, E)

and edge capacities u(·), we define umin := mine∈E u(e) and umax := maxe∈E u(e). First, we
use the resource augmentation to reduce the general case to the setting of a constant range
of (polynomially bounded) edge capacities where umax ≤ umin/δ(2/ϵ).

▶ Lemma 3. Assume that for any constants ϵ > 0, δ > 0, there is an α-approximation
algorithm under δ-resource augmentation for UFP with a running time of T (n) for instances
such that umin = n/δ and umax ≤ umin/δ2/ϵ. Then there is an (α+ϵ)-approximation algorithm
for UFP under 4δ-resource augmentation with a running time of T (n)(n log umax)Oϵ,δ(1).

Due to Lemma 3, in the following we assume that we are given an instance of UFP such
that n/δ ≤ u(e) ≤ n/(ηδ) for each e ∈ E and some ϵ, δ > 0, with η := δ2/ϵ, and that we
are in the setting of δ-resource augmentation. By contracting edges suitably we can assume
w.l.o.g. that each edge e ∈ E is the first or the last edge of the path P (i) of some input task
i ∈ T .

2.1 Recursive Algorithm
We describe our algorithm first as a recursive algorithm and then embed it into a dynamic
program which will have a running time of nOϵ,δ(log log n).

Let e∗ ∈ E be an edge in the middle of E, i.e., such that at most ⌊|E|/2⌋ edges are on the
left of e∗ and at most ⌊|E|/2⌋ edges are on the right of e∗. We would like to guess the tasks in
OPT ∩ Te∗ . Since there are too many possibilities for this, we first guess approximately how
much capacity the tasks in OPT ∩ Te∗ use on each edge e ∈ E. For any set of tasks S ⊆ T ,
we define uS(e) :=

∑
i∈S∩Te

d(i) for each e ∈ E. Observe that uTe∗ ∩OPT is non-decreasing
on the left of e∗ and non-increasing on the right of e∗, since all tasks in Te∗ ∩ OPT use e∗.
We will guess an over-estimating profile mpTe∗ ∩OPT : E → N of uTe∗ ∩OPT(e) defined below,
with the properties that

for each edge e it holds that mpTe∗ ∩OPT(e) ≥ uTe∗ ∩OPT(e),
mpTe∗ ∩OPT is a step-function with only Oϵ,δ(log log n) steps (i.e., E can be partitioned
into Oϵ,δ(log log n) subpaths and mpTe∗ ∩OPT is constant on each subpath), and
mpTe∗ ∩OPT(e) and uTe∗ ∩OPT(e) do not differ too much on each edge e ∈ E.

Formally, let D := log n; our overall algorithm will intuitively be a recursion with D

levels. For any set of tasks S ⊆ T we define the minimal profile mpS : E → N of S as follows.
Let θ := ⌊umin · δ/D⌋. If for an edge e ∈ E it holds that d(S ∩ Te) = 0 then we define
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Figure 1 Overestimating profile mp(uTe∗ ∩OPT) (the red line). The edge e′ halves the number of
steps and e′′ the length of the path on the left-hand side of e∗.

mpS(e) := 0. Otherwise, we define mpS(e) := ⌊θ(1 + δ)ke⌋ where ke is the smallest integers
such that θ(1 + δ)ke ≥ d(S ∩ Te) (see Figure 1). It turns out that mpS(·) is a step-function
with only Oδ,ϵ(log log n) steps, assuming that there is an edge ē that is used by all tasks in S

(like the edge e∗ above).

▶ Lemma 4. There is a value Γ = Oδ,ϵ(log D) = Oδ,ϵ(log log n) such that for every edge
ē ∈ E and every set S ⊆ Tē with d(S ∩ Te) ≤ u(e) for each e ∈ E, we have that mpS(·) is a
step-function with at most Γ steps.

Proof. Recall that by Lemma 3 umin = n/δ and umax ≤ n/(δη). We therefore search for an
upper bound on the smallest value k such that ⌊θ(1 + δ)k⌋ ≥ n/(δη). We have that

k ∈ O(log1+δ

( n

δηθ

)
) = O

(
log1+δ

( nD

ηδ2umin

))
= O

(
log1+δ

( D

ηδ2

))
= Oδ,ϵ(log D) = Oδ,ϵ(log log n).

The second claim follows due to monotonicity of the profile formed by the tasks OPTS∩Te. ◀

For any set S, the profile mpS(·) overestimates the true demand of the tasks S on each
edge e. Therefore, we define the error of this estimation by err(mpS , e) := mpS(e) − uS(e)
for each edge e ∈ E. Intuitively, in our algorithm we will guess profiles mpS in each of the
D = log n recursion levels, such that at the end each edge e is in the support of at most
2D of these profiles. A key insight is the following lemma which implies that for each edge
e, the sum of the errors of these 2D profiles is bounded by the extra space of δu(e) due
to the resource augmentation. Intuitively, if mpS(e) = θ on some edge e, then the error
is at most θ = umin · δ/D and for 2D profiles the errors of this type can accumulate to at
most 2D · θ ≤ 2δumin ≤ 2δu(e). On the other hand, if mpS(e) > θ then the error is at most
δ · d(S ∩ Te), and this can accumulate to at most δ · u(e) for all profiles together if these
profiles correspond to disjoint sets of tasks S1, S2, . . . , SD′ that use at most u(e) units of
capacity on e altogether, for any D′.

▶ Lemma 5. Let S1, S2, . . . , SD′ ⊆ T be disjoint sets of tasks with D′ ∈ O(D). If
∑

j d(Sj ∩
Te) ≤ u(e) for an edge e, then

∑D′

j=1 err(mpSj∩Te
, e) ≤ O(δ) · u(e).
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Proof. For each index j and edge e such that mpSj∩Te
(e) = ⌊θ(1+δ)kj ⌋ for some kj , the error

err(mpSj∩Te
, e) is bounded from above by ⌊θ⌋ if kj = 0 and by ⌊θ·(1+δ)kj ⌋−⌈θ·(1+δ)kj−1⌉ ≤

θ(1 + δ)kj−1 · δ ≤ δd(Sj) if kj > 0. (Observe that the rounding is valid because the demands
are integers.) Thus err(mpSj∩Te

, e) ≤ max{θ, δd(Sj)}. Summing up over all errors we obtain

∑D′

j=1err(mpSj∩Te
, e) ≤ D′ · θ +

∑
jδd(Sj ∩ Te) ≤ D′uminδ

D + δu(e) ∈ O(δ)u(e). ◀

As mentioned above, we guess mpTe∗ ∩OPT, which can be done in time nOδ,ϵ(log log n) due to
Lemma 4. Then, we compute the essentially most profitable set of tasks T ′ ⊆ Te∗ that fits
into mpTe∗ ∩OPT, i.e., such that d(T ′ ∩ Te) ≤ mpTe∗ ∩OPT(e) on each edge e ∈ E. This can be
done using a PTAS in [16] for rooted UFP instances in which all input tasks share a common
edge (like the edge e∗ in our case).

▶ Theorem 6 ([16]). There is a PTAS for instances of UFP in which there is an edge that
is used by every input task (rooted UFP). The same holds if there exist O(1) edges such that
each task uses at least one of them.

We recurse on the subpaths on the left and on the right of e∗. Let us consider the left
subpath, i.e., let EL denote the path from the left-most edge of E up to e∗, not including
e∗. (The recursion to the right is analogous.) We subdivide EL into three parts determined
by two edges e′, e′′ in EL (or two parts if these edges coincide). We choose the first edge
e′ ∈ EL on the left of e∗ such that the number of steps in the profile ū := mpOPT∩Te∗ within
EL is halved (a similar trick was used in [7]). Formally, let Γ = Oδ,ϵ(log log n) such that
mpOPT∩Te∗ is a step-function with Γ steps. We choose e′ such that mpOPT∩Te∗ restricted to
the subpath of EL on the left of e′ is a step-function with at most ⌈Γ/2⌉ steps, and the same
is true for mpOPT∩Te∗ restricted to the subpath of EL on the right of e′. The second edge e′′

lies in the middle of EL such that on the left of e′′ there are at most ⌊|EL| /2⌋ edges of EL

and the same is true on the right of e′′. We may assume without loss of generality that e′

lies on the left of e′′.
We guess the profiles ū′ := mp(OPT∩Te′ )\Te∗

and ū′′ := mp(OPT∩Te′′ )\(Te∗ ∪Te′ ) and apply
Theorem 6 to compute essentially the most profitable subset of tasks that fit into ū′ (and
ū′′), among the input tasks i ∈ Te′ with P (i) ⊆ EL (among the input tasks i ∈ Te′′ \ Te′ with
P (i) ⊆ EL). Then we recurse on each of the up to three components of EL \ {e′, e′′}, where
the parameter is the respective subpath and the profile ū + ū′ + ū′′ restricted to that subpath.
Due to the choice of e′′, the depth of our recursion is bounded by D = log n. In particular,
at the end each edge e is in the support of at most O(D) guessed profiles. By Lemma 5,
the total error of these profiles is at most O(δ)u(e) which is compensated by the resource
augmentation. Due to the choice of e′, one can show that in each recursive call the profile
of the parameter is a step function with only 4Γ = Oδ,ϵ(log log n) steps: each recursive call
“inherits” only half of the steps that were given to its parent subproblem, and additionally
up to 2Γ new steps due to the guessed profiles in the parent subproblem. This allows us
to embed this recursion into a dynamic program (DP) with only nOδ,ϵ(log log n) DP-cells as
follows, and hence we obtain an overall running time of nOδ,ϵ(log log n).

2.2 Dynamic program
We define the mentioned DP formally. In our DP table, we have a cell (P, û) for each subpath
P ⊆ E and each function û : P → N0 such that 0 ≤ û(f) ≤ n/(δη) for each edge f ∈ P and û

is a step-function with at most 4Γ steps, i.e., one can partition P into 4Γ subpaths such that
û is constant on each one of them. The intuitive meaning of û is that for each edge e ∈ P ,
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û(e) units of capacity have already been assigned to some tasks. The goal is to compute a
set of tasks with maximum total weight and with P (i) ⊆ P for each selected task i, such
that on each edge e ∈ P the selected tasks use a total capacity of at most u(e) − û(e).

▶ Lemma 7. There are at most nOδ,ϵ(log log n) many different DP cells.

Proof. There are O(n2) possible choices for P . To determine the number of possible profiles û,
recall that û has at most 4Γ = Oδ,ϵ(log log n) many steps. There are

(
O(n)

Oδ,ϵ(log log n)
)

∈
nOδ,ϵ(log log n) possibilities to partition P into at most Oδ,ϵ(log log n) subpaths. For each
subpath, there are at most n/(δη) possibilities for the value of û on this subpath, i.e.,
(n/(δη))Oδ(log log n) possible combinations overall. Recall that η = δ2/ε. Multiplying these
two numbers gives the total number of profiles. ◀

Given a DP cell DP(P, û). We identify two edges e′, e′′ ∈ P similarly as above, i.e., we select
e′ ∈ P such that if we restrict û to the edges of P on the left of e′ or on the right of e′, then û

is a step-function with at most 2Γ steps. Also, we select e′′ such that at most ⌊|P |/2⌋ edges
of P lie on the left of e′′, and at most ⌊|P |/2⌋ edges of P lie on the right of e′′. Let P1, P2, P3
denote the subpaths of P induced by e′ and e′′, i.e., the components of P \ {e′, e′′}.

Let T be the set of all pairs (û′, û′′) such that û′ : P → N0 and û′′ : P → N0 are step-
functions with at most Γ steps each, and on each edge f ∈ P they use at most (1 + δ)u(f)
units of capacity, i.e., û(f) + û′(f) + û′′(f) ≤ (1 + δ)u(f). We apply the algorithm due to
Theorem 6 to the instance whose input tasks contain all tasks in i ∈ Te′ with P (i) ⊆ P

and with edge capacities given by û′. Similarly, we apply this algorithm to the instance
whose input tasks contain all tasks in i ∈ Te′′ \ Te′ with P (i) ⊆ P and with edge capacities
given by û′′. Denote by alg(û′) and alg(û′′) the respective solutions. With the pair (û′, û′′)
we associate the solution given by alg(û′) ∪ alg(û′′) and the solutions stored in the cells
DP (Pj , (û + û′ + û′′)|Pj

) for j ∈ {1, 2, 3}. We store in DP(P, û) the weight of the most
profitable solution for all pairs (û′, û′′) ∈ T , i.e.,

DP(P, û) := max
t=(û′,û′′)∈T

((alg(û′)) + w(alg(û′′)) +
∑3

j=1DP(Pj , (û + û′ + û′′)|Pj
)).

Observe that (û + û′ + û′′)|Pj
has at most 4Γ steps as required for valid DP cells: the profile

û restricted to Pj has at most 2Γ steps due to the halving and both û′ and û′′ introduce at
most Γ new steps each.

At the end we output DP(E, u0) where u0 is the profile with u0(e) = 0 for all e ∈ E. By
standard memoization we can also output the solution associated with DP(E, u0).

We need to show that the DP computes a near-optimal solution. It is clear that we output
a feasible solution since in the computation for each cell, the set T contains only pairs (û′, û′′)
such that û(f) + û′(f) + û′′(f) ≤ (1 + δ)u(f) for each edge f ∈ P . Intuitively, Lemma 5
allows us to argue that in each step we can guess for û′ and û′′ the profiles mpOPT′∩Te′

and mp(OPT′∩Te′′ )\Te′ , respectively, where OPT′ denotes the tasks i ∈ OPT with P (i) ⊆ P ,
without violating the capacities of the edges.

▶ Lemma 8. The dynamic program computes a solution ALG which is feasible with O(δ)-
resource augmentation and w(ALG) ≥ (1 − ϵ)w(OPT).

Proof. Consider a DP-cell (P, û) for which the DP defined the edges e′, e′′ when calculating its
solution. Consider the profiles mpOPT∩{i∈Te′ |P (i)⊆P } and mpOPT∩{i∈Te′′ \Te′ |P (i)⊆P }. Observe
that all tasks {i ∈ OPT∩(Te′ ∪Te′′) | P (i) ⊆ P} fit into the combined profile and all remaining
tasks from OPT within P will be considered in subproblems. If the two profiles are a feasible
choice, then the DP obtains a profit of at least (1 − ϵ)w({i ∈ OPT ∩ (Te′ ∪ Te′′) | P (i) ⊆ P})
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from the tasks in Te′ ∪ Te′′ when choosing these profiles. Therefore, it suffices to proof the
claim that if in each recursive call up to some recursion level ℓ the DP chooses exactly these
profiles, then in each subsequent recursive call of level ℓ + 1 the corresponding profiles will
be a feasible choice again. Inductively, we can conclude then that the DP obtains a profit of
at least (1 − ϵ)opt.

To prove the mentioned claim, intuitively, due to the halving of the paths, the recursion
depth is bounded from above by O(log n) and therefore the total error does not exceed
the available amount of resource augmentation. Formally, we inductively maintain the
invariant that for a DP cell (P, û), if the profile û is composed of 2k profiles (from previous
DP cells), then the length of P is bounded from above by 2n/2k. Recall that we assumed
that |E| ≤ O(n). For each edge, we therefore have that at most O(log n) profiles overlap
and by Lemma 5, the total error of is at most O(δ)u(e) for each edge e, i.e., O(δ)-resource
augmentation is sufficient. ◀

Together with Lemma 3 we conclude that we obtain a (1 + ϵ)-approximation algorithm
for UFP with δ-resource augmentation.

3 Bonus-UFP

In this section we define formally the Bonus-UFP problem (BUFP) and formalize how an
algorithm with resource augmentation for Bonus-UFP yields an algorithm for (ordinary)
UFP without resource augmentation.

3.1 Problem definition
Like in (ordinary) UFP, in the Bonus-UFP problem we are given as input a path G = (V, E)
and a set of tasks T where each task i ∈ T has a demand d(i) ∈ N, a sub-path P (i) of E, and
a weight w(i) ∈ N0. The profit of a computed solution with task set T ′ ⊆ T stems as usual
from w(T ′) and, additionally, from some bonus profit that we obtain from subpaths E′ ⊆ E

(i.e., E′ forms the edges of the respective subpath) such that no task i ∈ T ′ satisfies that
P (i) ⊆ E′ (but it might be that P (i) ∩ E′ ̸= ∅). The amount of bonus of such a subpath
E′ depends on the tasks i ∈ T ′ with P (i) ∩ E′ ̸= ∅. The reader may imagine that we get
more bonus from E′ if fewer tasks from T ′ intersect E′. In particular, the computed solution
consists of T ′ and of the subpaths E′ from which the respective bonus profit is collected.
Additionally, the input tasks are divided into large and small tasks, and on any edge we
are allowed to select only O(1) large tasks (in particular, for each edge e the large tasks
in OPT ∩ Te can be guessed easily in time nO(1)). Also, for technical reasons, the selected
small tasks are allowed to use at most 2b units of capacity of each edge e ∈ E for some given
value b (see Figure 2).

Formally, in the input we are given a constant τ ∈ N and values µ ∈ (0, 1), b > 0 which
partition the tasks T into a set of large tasks TL = {i ∈ T : d(i) > µb} and small tasks
TS = {i ∈ T : d(i) ≤ µb}. For each pair of a subpath E′ ⊆ E and a set L′

int ⊆ TL such that
the path of each task i ∈ L′

int uses the leftmost or the rightmost edge of E′ and
|L′

int ∩ Te| ≤ τ for each edge e ∈ E′

we are given a possible bonus bn(E′, L′
int) ≥ 0. As described above, we obtain the bonus

bn(E′, L′
int) if no selected task (large or small) is contained in E′ and the tasks in L′

int are
exactly the selected large tasks that use some edge of E′ (the amount of bonus does not
depend on the selected small tasks i with P (i) ∩ E′ ̸= ∅). A feasible solution to an instance
of BUFP consists of a set of tasks R ⊆ TL ∪ TS and a collection of node-disjoint subpaths
E1, . . . Eq of G such that the following holds:
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Figure 2 A Bonus-UFP instance with two bonus intervals E′ and E′′. The hatched task within
E′′ is not allowed. The bonus depends on the intervals and the tasks depicted in dark gray – the
large tasks that intersect with an interval.

1. R is a feasible UFP solution, i.e., for every e ∈ E it holds that d(R ∩ Te) ≤ u(e),
2. the small tasks in R use at most a capacity of 2b on each edge e ∈ E, i.e., d(R∩TS ∩Te) ≤

2b,
3. each edge e ∈ E is used by at most τ tasks in R ∩ TL, i.e., |R ∩ TL ∩ Te| ≤ τ , and
4. for no i ∈ R the path P (i) is contained in any Ej (but possibly P (i) ∩ Ej ̸= ∅).
The profit of the solution is w(R) plus the bonus for each subpath Ej , where the latter
depends on the large tasks in R that use Ej , i.e., the total profit is w(R)+

∑q
j=1 bn(Ej , Lint,j)

where Lint,j = {i ∈ R ∩ TL|P (i) ∩ Ej ̸= ∅}.
We say that a solution to the above problem is feasible under δ-resource augmentation if

we relax the first two conditions to
1.’ for every e ∈ E it holds that d(R ∩ Te) ≤ u(e) + δb,
2.’ for every e ∈ E it holds that d(R ∩ TS ∩ Te) ≤ 2b + δb.
So intuitively this increases the capacity for the small tasks by at least a factor 1 + O(δ).
Also, note that Property 3 ensures that each edge e is used by at most τ = O(1) large tasks,
and hence we can guess the large tasks for each edge in time nO(τ) = nO(1).

For non-negative values α, β, γ ≤ 1 we say that a tri-criteria (α, β, γ)-approximation
algorithm for BUFP with δ-resource augmentation is an algorithm that computes a solution
that is feasible under δ-resource augmentation of profit at least αoptS + βoptL + γoptB,
assuming that there exists an (optimal) solution R∗ with bonuses

{
bn(E∗

j , L∗
int,j)

}
j

such that
optS = w(R∗ ∩ TS), optL = w(R∗ ∩ TL), and optB =

∑q
j=1 bn(E∗

j , L∗
int,j). Then our main

result states that if γ = 1 we can translate such an algorithm to an algorithm for normal
UFP whose approximation ratio is 1/ min{α, β}. We will prove the following theorem in
Section 3.2.

▶ Theorem 9 (Black-box reduction). Assume that there is a (α, β, 1)-approximation algorithm
for BUFP with δ-resource augmentation with a running time of Tτ,δ(n, umax). Then there is
a 1+ϵ

min{α,β} -approximation algorithm for UFP (without resource augmentation) with a running
time of TOϵ(1),Oϵ(1)(n, umax) · (n · log umax)Oϵ(1).

3.2 Black-box reduction
In this section we explain the key ideas for the black-box reduction due to Theorem 9
(omitting details due to space constraints). We start with a lemma indicating that there
are near-optimal solutions in which each edge has a certain amount of slack. This slack is a
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constant fraction of the capacity used by small tasks according to a suitable definition of
small and large tasks. To avoid confusion, we refer to large and small tasks as in definition
of BUFP as bonus-large and bonus-small, respectively.

In the lemma, we assign a level ℓ(e) to each edge e. We say that a task i is of level ℓ if
P (i) includes an edge e with ℓ(e) = ℓ and no edge e′ with ℓ(e′) < ℓ; let T (ℓ) ⊆ T denote all
tasks of level ℓ. Intuitively, each edge e of level ℓ has an amount of slack ε4a(ℓ) for some
value a(ℓ) corresponding to level ℓ. We define small and large tasks such that on each edge e

of level ℓ, the small tasks of level ℓ use a total capacity of at most 2b(ℓ) with b(ℓ) = Oϵ(a(ℓ))
and each edge e of level ℓ is used by at most τ = Oϵ(1) large tasks i with d(i) = Ω(a(ℓ)).
Formally, for an offset h′ ∈ {0, ..., 1/ϵ − 1} and a value h = Θ( 1

ε ln 7
ε2 ) defined in the next

lemma, we set a(ℓ) := (1 + ε)h′+ℓh·(1+ 1
ε )− h

ε and b(ℓ) = a(ℓ) · (1 + ε) h
ε . Let opt denote the

weight of the optimal solution to the given instance.

▶ Lemma 10 (Slack Lemma). Let ϵ > 0. There are two constants µ1, µ2 ∈ (0, ε4) with
µ1 < µ2/(1 + ε)1/ε3 , values h = Θ( 1

ε ln 7
ε2 ) and τ = Oε(1), an offset h′ contained in a set

of size Oϵ(1) that can be computed in polynomial time, a near-optimal solution OPT with
w(OPT) ≥ (1 − O(ϵ))opt, and a level ℓ(e) for each edge e ∈ E with the following properties.
We define

TL := {i ∈ T : d(i) ≥ µ2 · a(ℓ(e)) for some edge e ∈ P (i)} (large tasks)
TS := {i ∈ T : d(i) < µ1 · b(ℓ(e)) for every edge e ∈ P (i)} (small tasks)
OPTL = OPT ∩ TL and OPT

(ℓ)
S := OPT ∩ TS ∩ T (ℓ) for each ℓ.

Then, for each edge e of level ℓ(e) = ℓ, it holds that:
d(Te ∩ OPTL) + d(Te ∩ OPT

(ℓ)
S ) ≤ u(e) − ε4a(ℓ),

d(Te ∩ OPT
(ℓ)
S ) ≤ 2b(ℓ),

e is used by at most τ tasks i ∈ OPTL ∩ T (ℓ) with d(i) ≥ µ2 · a(ℓ).

Our goal is to define an algorithm BB that solves UFP given an oracle OR for BUFP
with δ-resource augmentation. We will use the notation GB, T B , T B

S , T B
L , uB , τB for the

input path, input tasks, edge capacities, and threshold τ of the constructed instances of
BUFP, while we use G, T, u to denote the corresponding values of the given instance of UFP.

Intuitively, BB solves a subproblem of BUFP for each maximally long path GB in which
each edge is of level at least ℓ for some given value ℓ ∈ {0, . . . , ℓmax} (where ℓmax denotes
the maximum level due to Lemma 10), and the bonus subpaths Ej selected in an optimal
solution will correspond to maximal subpaths of GB consisting of edges of level at least ℓ + 1.
With this interpretation, the amount of received bonus on such a subpath Ej is calculated
via subproblems of BUFP defined on this subpath Ej , level ℓ + 1, and any possible set
of Oϵ(1) selected large tasks of level ℓ that use at least one edge of Ej but which are not
contained in Ej . The parameters of the calls to OR for this a subproblem (i.e., path GB

and level ℓ) will be intuitively as follows. We set b = b(ℓ), µ = µ1, and a = a(ℓ). We place
in T B the tasks in T contained in GB whose demand is at most µ1b(ℓ) or at least µ2a(ℓ).
This yields that T B

L = {i ∈ T B |d(i) ≥ µ2a(ℓ)} and T B
S = {i ∈ T B |d(i) ≤ µ1b(ℓ)} according

to the definition of BUFP. We remark that either µ2a(ℓ) > µ1b(ℓ) or µ1b(ℓ) < 1 (in which
case T B

L = ∅); hence T B
L and T B

S are distinct. This way we will enforce that T B
L ⊆ TL and

T B
S ⊆ TS for the sets TL, TS due to Lemma 10. We will set τB to be the respective value τ

due to Lemma 10.
Note that in this recursive call there are Oϵ(1) (previously selected) large tasks that use

some but possibly not all edges of Ej . However, in the definition of Bonus-UFP, we have a
global upper bound of τB for the number of allowed large tasks using an edge. To this end,
we guess some further large tasks whose paths are contained in Ej , profiles for some of the
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small tasks, and a partition of Ej into Oϵ(1) subpaths, such that we split this problem into
subproblems in which each edge can be used by the same number τB ≤ τ of large tasks, so
that we can call OR on the resulting subproblem. We denote by optS and optL the profit
due to small and large tasks, resp., in the solution OPT from Lemma 10.

▶ Theorem 11. Given a Tτ,δ(n, umax) time (α, β, 1)-approximation algorithm OR for BUFP
with δ-resource augmentation, for every given constant δ > 0. Then, for every constant
ε > 0, there exists a TOϵ(1),Oϵ(1)(n, umax) · (n log umax)Oϵ(1) time algorithm BB for UFP
that computes a solution of profit at least (1 − ϵ)αoptS + (1 − ϵ)βoptL.

Theorem 9 then follows from Lemma 10 and Theorem 11, where we set α = 1 − ε and β = 1.
The reader might wonder why we proved the above theorem for general α and β. The

reason is that it turns out that tasks i ∈ OPTS = OPT ∩ TS from Lemma 10 satisfy
d(i) ≤ ϵ2u(e) for each e ∈ P (i). Therefore, we can use LP-rounding techniques as in [11]
to compute an alternative UFP solution with profit at least (1 − O(ϵ))optS . Hence any
algorithm for BUFP as in Theorem 11 implies a ( 1+β−α

β + O(ε))-approximation for UFP.
Recent work showed how to obtain (α, β)-approximation algorithms for UFP in the above
sense with β = 1 and α equal to 1

3 [17]. This result becomes substantially easier to prove
with resource augmentation in the BUFP setting. So we hope that Theorem 11 as stated
can be a handy tool for future work along the same line.

4 Algorithm for Bonus-UFP under resource augmentation

We describe now how to adjust our algorithm for ordinary UFP with resource augmentation
from Section 2 to an algorithm for Bonus-UFP with resource augmentation. Intuitively, there
are two extra issues than one needs to address. First, the edges e′ and e′′ that partition the
considered subpath P might happen to fall within the interval of some bonus. This has to be
taken into account in the definition of the subproblems which are solved recursively. Second,
we need to keep track of the large tasks that use each edge so that the threshold τ is not
exceeded. Therefore it is convenient to guess them explicitly, and use the over-estimated
profiles for the small tasks only.

▶ Theorem 12. There is a (1 − ϵ, 1, 1)-approximation algorithm for Bonus-UFP with δ-
resource augmentation with a running time of nOε,δ(log log n).

Theorems 9 and 12 together yield Theorem 2. It remains a challenging open problem to
construct a PTAS for (Bonus-)UFP. One key bottleneck in our approach is that already in
the first iteration we need to guess a profile with up to Ω(log log n) many steps, and it is not
clear how to do this in polynomial time.

In the remaining section, we prove Theorem 12. Again, we start with normalizing the
instance. Since we have an additive resource augmentation of δb, we can use half of it in
order to ensure umin ≥ δb/2. Thus 2b ≤ 4umin/δ, i.e., uOPTS

(e) together with half of the
resource augmentation has a constant capacity profile. Furthermore, analogous to Lemma 3,
we can assume that each task i ∈ T has an integer demand d(i) ∈ N and b ∈ Oδ(n). Unlike
before, we do not lose a profit of ϵw(OPTL).

▶ Lemma 13. For arbitrary δ > 0, suppose there is an (α, β, γ)-approximation algorithm for
BUFP instances I with (1 + δ) resource augmentation such that umin = δb, b ∈ Oδ(n), and
d(i) ∈ N for all i ∈ T . Then there is an ((1 − ϵ)α, β, γ)-approximation algorithm for BUFP
with (1 + 4δ) resource augmentation.
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Due to Lemma 13, in the following we assume that we are given an instance of BUFP
with (1 + δ) resource augmentation such that umin = δb, 2b = n/η for some η ∈ Oδ(1), and
d(i) ∈ N for all i ∈ T .

We adapt the strategy used for UFP with resource augmentation and we use the same
notation. Again we overestimate profiles based on the value θ := ⌊umin · δ/D⌋, now with
umin = δb and D = log n. Lemma 4 is still valid for BUFP, if we restrict the set S to small
tasks.

▶ Lemma 14. There is a value Γ = Oδ,ϵ(log D) = Oδ,ϵ(log log n) such that for every edge
ē ∈ E and every set S ⊆ TS ∩ Tē with d(S ∩ Te) ≤ 2b for each e ∈ E, we have that mpS(·) is
a step-function with at most Γ steps.

Proof. Since the demand d(S) is bounded from above by 2b, it is sufficient to consider the
profile that for each edge e ∈ E has the capacity min{2b, u(e)}. With the modification, we
can apply Lemma 4. ◀

Furthermore, Lemma 5 does not change for BUFP, if we restrict it to small tasks, i.e.,
Sj ⊆ TS for all j.

For ease of notation, we assume that for each edge f and each set L ⊆ TL ∩ Te with
d(L) ≤ u(f), the BUFP instance to be solved has is a (dummy) bonus interval ({f}, L). If
the bonus interval is not part of the original instance, it has zero bonus, i.e., bn({f}, L) = 0.
By duplicating edges, we can assume without loss of generality that there is no task i with
P (i) = f .

4.1 Dynamic program for BUFP
In our DP table, we have a cell (P, û, L) for each subpath P ⊆ E, each function û : P → N0,
and each set of large tasks L ⊆ TL with the following properties. We require 0 ≤ û(f) ≤ n/η

for each edge f ∈ P and û is a step-function with at most 8Γ steps, i.e., one can partition P

into 8Γ subpaths such that û is constant on each of them. A set L is valid, if each task in L

uses the leftmost or the rightmost edge of P . Note that |L| ≤ 2τ since there can only be at
most τ large tasks crossing each of the two boundaries of P .

The intuitive meaning of û and L is that for each edge e ∈ P , û(e) units of capacity have
already been assigned to some small tasks and the tasks L have already been selected. For a
set of tasks T ′, we define uT ′ : E → N0 to be the profile with uT (e) = d(T ′ ∩ Te) for each
e ∈ E. The goal is to compute a set of tasks with maximum total weight and with P (i) ⊆ P

for each selected task i, such that on each edge e ∈ P the selected tasks use a total capacity
of at most u(e) − û(e) − uL(e).

▶ Lemma 15. There are at most nOδ,ϵ,τ (log log n) many different DP cells.

Proof. There are O(n2) possible choices for P . To determine the number of possible profiles
û, recall that û has at most 8Γ = Oδ,ϵ(log log n) many steps and L has a size of at most 2τ .

There are
(

O(n)
Oδ,ϵ,τ (log log n)

)
∈ nOδ,ϵ,τ (log log n) possibilities to partition P into at most

Oδ,ϵ,τ (log log n) subpaths. For each subpath, there are at most n/η possibilities for the value
of û on this subpath and

(
n
2τ

)
≤ n2τ possibilities for selecting L, i.e., (n/η)Oδ,ϵ(log log n) · n2τ

possible combinations overall. Multiplying these two numbers gives the total number of
profiles. ◀

Suppose that we are given a DP cell DP(P, û, L). We identify two edges e′, e′′ ∈ P . We
select e′ ∈ P such that if we restrict û to the edges of P on the left of e′ or on the right of
e′, then û is a step-function with at most 4Γ steps. Also, we select e′′ such that at most
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⌊|P |/2⌋ edges of P lie on the left of e′′, and at most ⌊|P |/2⌋ edges of P lie on the right of
e′′. Let P1, P2, P3 denote the subpaths of P induced by Ej′ and Ej′′ , i.e., the components of
P \ (Ej′ ∪ Ej′′).

Let T be the set of all tuples (p1, p2, û′, û′′) with p1 := (Ej′ , Lint,j′) and p2 := (Ej′′ , Lint,j′′)
specified as follows. The pair (Ej′ , Lint,j′) is a bonus interval with e′ ∈ Ej′ and (Ej′′ , Lint,j′′)
is a bonus interval with e′′ ∈ Ej′′ such that Ej′ ∩ Ej′′ = ∅ or p1 = p2. A task i which overlaps
with both Ej′ and Ej′′ (i.e., P (i) ∩ Ej′ ̸= ∅ and P (i) ∩ Ej′′ ̸= ∅) is either in both Lint,j′ and
Lint,j′′ or in none.

Each of the remaining two entries of the tuple û′ : P → N0 and û′′ : P → N0 is composed of
two step-functions with at most Γ steps each, and on each edge f ∈ P , û′(f)+û′′(f) ≤ (2+δ)b.
Furthermore, the capacity of all step-functions use at most u(f) + δb units of capacity, i.e.,
û(f) + û′(f) + û′′(f) + uL(f) + uLint,j′ (f) + uLint,j′′ (f) ≤ u(f) + δb. Let e′

ℓ, e′
r, e′′

ℓ , e′′
r be

the left-most and right-most edge of Ej′ and Ej′′ , respectively. We apply the algorithm
due to Theorem 6 to the instance whose input tasks contain all tasks in i ∈ Te′

ℓ
∪ Te′

r

with P (i) ⊆ P and P (i) ⊈ Ej′ , with edge capacities given by û′. Similarly, we apply this
algorithm to the instance whose input tasks contain all tasks in i ∈ Te′′

ℓ
∪Te′′

r
\(Te′

ℓ
∪Te′

r
) with

P (i) ⊆ P and P (i) ⊈ Ej′′ , with edge capacities given by û′′. Denote by alg(û′) and alg(û′′)
the respective solutions. With the tuple (p1, p2, û′, û′′) we associate the solution given by
alg(û′)∪alg(û′′), the bonuses bn(p1), bn(p2), the profit from large tasks w(Lint,j′ ∪Lint,j′′ \L),
and the solutions stored in the cells DP (Pj , (û + û′ + û′′)|Pj

, L′) for j ∈ {1, 2, 3} and L′ the
tasks from L ∪ Lint,j′ ∪ Lint,j′′ crossing Pj . We store in DP(P, û, L) the weight of the most
profitable solution for all tuples (p1, p2, û′, û′′) ∈ T , i.e.,

DP(P, û, L) := max
t=(p1,p2,û′

S
,û′′

S
)∈T

(
w(alg(û′)) + w(alg(û′′))

+
∑

p∈{p1,p2}

bn(p) + w(Lint,j′ ∪ Lint,j′′ \ L) +
3∑

j=1
DP(Pj , (û + û′ + û′′)|Pj

)
)
,

where û′ and û′′ are derived from t as described before. Observe that if p1 = p2, we collect
only one bonus. We have to ensure that û(j) := (û + û′ + û′′)|Pj

is a valid profile. Due to the
halving, restricted to Pj the profile û has at most 4τ steps and each of the other two profiles
has at most 2Γ steps from small tasks, which results in 8Γ steps in total. Independently, we
always have a total number of at most 4τ steps from large tasks

At the end we output DP(E, u0) where u0 is the profile with u0(e) = 0 for all e ∈ E. By
standard memoization we can also output the solution associated with DP(E, u0).

We need to show that the DP computes a near-optimal solution. It is clear that we
always output a feasible solution since in the computation for each cell, the set T contains
only tuples (û′

S , û′′
S , p1, p2) such that û(f) + û′(f) + û′′(f) + uL∪Lint,j′ ∪Lint,j′′ ≤ u(f) + δb for

each edge f ∈ P . Intuitively, Lemma 5 allows us to argue that in each step we can guess for
û′ and û′′, the pairs p1 and p2, the profiles mpOPT′∩Te′ and mp(OPT′∩Te′′ )\Te′ , respectively,
where OPT′ denotes the tasks i ∈ OPT with P (i) ⊆ P , without violating the capacities of
the edges. Let OPTB be the set of bonus pairs of an optimal solution and w(OPTB) the
sum of bonuses.

▶ Lemma 16. The dynamic program computes a solution ALG which is feasible with O(δ)-
resource augmentation and w(ALG) ≥ (1 − ϵ)w(OPTS) + w(OPTL) + w(OPTB).
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Proof. Initially, the DP chooses the middle edge e (i.e., e = e′ = e′′) and a bonus interval
containing e. One of the choices is the bonus pair p = (Ej , Lint,j) such that p ∈ OPTB

and e ∈ Ej . Since OPT is feasible, it has no tasks contained in Ej . Let eℓ and er be the
left-most and right-most edge of Ej . Then one of the options for the profile is to choose
û := mpOPT∩Teℓ

+ mpOPT∩Ter
.

All tasks OPT ∩ (Teℓ
∪ Ter

) fit into the profile û. Since the DP approximates the profit
from these tasks, the value of the DP cell without the values from the subproblems is at least
(1− ϵ)w(OPTS ∩Te)+w(OPTL ∩ (Teℓ

∪Ter ))+bn(p). The instance is split into the left hand
side of Ej and the right hand side of Ej . Let (P, û, L) be a sub-problem reached (recursively)
by the described choice of profile. Each edge e′ chosen subsequently within P has the property
that the DP can choose the bonus pair p1 := (Ej′ , Lint,j′) (where as before we assume that e′

ℓ

and e′
r are the leftmost and rightmost edges of Ej′ , respectively) from OPTB containing e′ and

a feasible choice of û′ is mpOPTS∩{i∈Te′
ℓ

∪Te′
r

|P (i)⊆P }. Each edge e′′ chosen subsequently within
P has the property that the DP can choose the bonus pair p2 := (Ej′′ , Lint,j′′) (where as before
we assume that e′′

ℓ and e′′
r are the leftmost and rightmost edges of Ej′′ , respectively) from

OPTB containing e′′ and a feasible choice of û′ is mpOPTS∩{i∈Te′′
ℓ

∪Te′′
r

\(Te′
ℓ

∪Te′
r

) | P (i) ⊆ P}.
Observe that all tasks {i ∈ OPTS ∩ (Te′

ℓ
∪ Te′

r
∪ Te′′

ℓ
∪ Te′′

r
) | P (i) ⊂ P} fit into the combined

profiles, we select all tasks specified in p1 and p2, and all remaining tasks from OPT within
P will be available in sub-problems. The DP collects a profit of at least (1 − ϵ)w({i ∈
OPTS ∩ (Te′

ℓ
∪ Te′′

r
∪ Te′′

ℓ
∪ Te′′

r
) | P (i) ⊆ P}) + w({i ∈ OPTL ∩ (Te′

ℓ
∪ Te′′

r
∪ Te′′

ℓ
∪ Te′′

r
) \ L |

P (i) ⊆ P}) + bn(p1) + bn(p2). We inductively conclude that if all choices as described above
are feasible, the DP obtains a profit of at least (1 − ϵ)w(OPTS) + w(OPTL) + w(OPTB).

To show feasibility, we have to argue that none of the described choices exceeds the
overall capacity of u(f) + δb for an edge f ∈ E. The argument is analogous to the proof of
Lemma 8. ◀

Together with Lemma 13 we conclude that we obtain a (1 − ϵ, 1, 1)-approximation
algorithm for BUFP with δ-resource augmentation.
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Abstract
We present a new quantum algorithm for estimating the mean of a real-valued random variable
obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic
speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed
distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier
works on the mean estimation problem that were not optimal for heavy-tailed distributions [9, 8], or
that require prior information on the variance [23, 32, 22]. As an application, we obtain new quantum
algorithms for the (ϵ, δ)-approximation problem with an optimal dependence on the coefficient of
variation of the input random variable.
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1 Introduction

The problem of estimating the mean µ of a real-valued random variable X given i.i.d.
samples from it is one of the most basic tasks in statistics and in the Monte Carlo method.
The properties of the various classical mean estimators are well understood. The standard
non-asymptotic criterion used to assess the quality of an estimator is formulated as the
following high probability deviation bound: upon performing n random experiments that
return n samples from X, and given a failure probability δ ∈ (0, 1), what is the smallest error
ϵ(n, δ,X) such that the output µ̃ of the estimator satisfies |µ̃−µ| > ϵ(n, δ,X) with probability
at most δ? Under the standard assumption that the unknown random variable X has a
finite variance σ2, the best possible performances are obtained by the so-called sub-Gaussian
estimators [30] that achieve the following deviation bound

Pr
[
|µ̃− µ| > L

√
σ2 log(1/δ)

n

]
≤ δ (1)

for some constant L. The term “sub-Gaussian” reflects that these estimators have a Gaussian
tail even for non-Gaussian distributions. The most well-known sub-Gaussian estimator is
arguably the median-of-means [35, 27, 2], which consists of partitioning the n samples into
roughly log(1/δ) groups of equal size, computing the empirical mean over each group, and
returning the median of the obtained means.

The process of generating a random sample from X is generalized in the quantum model
by assuming the existence of a unitary operator U where U |0⟩ coherently encodes the
distribution of X. A quantum experiment is then defined as one application of this operator
or its inverse. The celebrated quantum amplitude estimation algorithm [9] provides a way
to estimate the mean of any Bernoulli random variable by performing fewer experiments
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than with any classical estimator. Yet, for general distributions, the existing quantum
mean estimators either require additional information on the variance [23, 32, 22] or are
less performant than the classical sub-Gaussian estimators when the distribution is heavy
tailed [9, 38, 8, 32]. These results leave open the existence of a general quantum speedup
for the mean estimation problem. We address this question by introducing the concept of
quantum sub-Gaussian estimators, defined through the following deviation bound

Pr
[
|µ̃− µ| > L

σ log(1/δ)
n

]
≤ δ (2)

for some constant L. We give the first construction of a quantum estimator that achieves
this bound up to a logarithmic factor in n. Additionally, we prove that it is impossible
to go below that deviation level. This result provides a clear equivalent of the concept of
sub-Gaussian estimator in the quantum setting.

A second important family of mean estimators addresses the (ϵ, δ)-approximation problem,
where given a fixed relative error ϵ ∈ (0, 1) and a failure probability δ ∈ (0, 1) the goal is to
output a mean estimate µ̃ such that

Pr[|µ̃− µ| > ϵ|µ|] ≤ δ. (3)

The aforementioned sub-Gaussian estimators do not quite answer this question since the num-
ber of experiments they require (respectively n = Ω

(
( σ

ϵµ )2 log(1/δ)
)

and n = Ω̃
(

σ
ϵ|µ| log(1/δ)

)
)

depends on the unknown quantities σ and µ. Sometimes a good upper bound is known
on the coefficient of variation |σ/µ| and can be used to parametrize a sub-Gaussian estim-
ator. Otherwise, the standard approach is based on sequential analysis techniques, where
the number of experiments is chosen adaptively depending on the results of previous com-
putations. Given a random variable distributed in [0, 1], the optimal classical estimators
perform Θ

(((
σ
ϵµ

)2 + 1
ϵµ

)
log(1/δ)

)
random experiments in expectation [17] for computing an

(ϵ, δ)-approximation of µ. We construct a quantum estimator that reduces this number to
Θ̃

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
and we prove that it is optimal.

1.1 Related work
There is an extensive literature on classical sub-Gaussian estimators and we refer the reader
to [30, 15, 12, 18, 28] for an overview of the main results and recent improvements. We
point out that the empirical mean estimator is not sub-Gaussian, although it is optimal for
Gaussian random variables [37, 15]. The non-asymptotic performances of the empirical mean
estimator are captured by several standard concentration bounds such as the Chebyshev,
Chernoff and Bernstein inequalities.

There is a series of quantum mean estimators [21, 1, 8] that get close to the bound
Pr

[
|µ̃−µ| > L log(1/δ)

n

]
≤ δ for any random variable distributed in [0, 1] and some constant L.

Similar results hold for numerical integration problems [1, 36, 23, 39, 24]. The amplitude
estimation algorithm [9, 38] leads to a sharper bound of Pr

[
|µ̃− µ| > L

(√
µ(1−µ) log(1/δ)

n +
log(1/δ)2

n2

)]
≤ δ (see Proposition 12) when X is distributed in [0, 1]. Nevertheless, the quantity

µ(1− µ) is always larger than or equal to the variance σ2. The question of improving the
dependence on σ2 was considered in [23, 32, 22]. The estimators of [23, 32] require to know
an upper bound Σ on the standard deviation σ, whereas [22] needs an upper bound ∆ on
the coefficient of variation σ/µ (for non-negative random variables). The performances of
these estimators are captured (up to logarithmic factors) by the deviation bound given in
Equation (2) with σ replaced by Σ and µ∆ respectively.
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The (ϵ, δ)-approximation problem has been addressed by several classical works such
as [17, 31, 20, 26]. In the quantum setting, there is a variant [9, Theorem 15] of the
amplitude estimation algorithm that performs O(log(1/δ)/(ϵ√µ)) experiments in expectation
to compute an (ϵ, δ)-approximate of the mean of a random variable distributed in [0, 1] (see
Theorem 7 and Proposition 15). However, the complexity of this estimator does not scale
with σ. Given an upper bound ∆ on σ/µ, the estimator of [22] can be used to compute
an (ϵ, δ)-approximate with roughly Õ(∆ log(1/δ)/ϵ) quantum experiments if the random
variable is non-negative.

We note that the related problem of estimating the mean with additive error ϵ, that
is Pr[|µ̃ − µ| > ϵ] ≤ δ, has also been considered by several authors. The optimal number
of experiments is Θ(log(1/δ)/ϵ2) classically [14] and Θ(1/ϵ) quantumly [34] (with failure
probability δ = 1/3). These bounds do not depend on unknown parameters (as opposed to the
relative error case), thus sequential analysis techniques are unnecessary here. Montanaro [32]
also described an estimator that performs Õ(Σ log(1/δ)/ϵ) quantum experiments given an
upper bound Σ on the standard deviation σ.

1.2 Contributions and organization
We first formally define the input model in Section 2.1. We introduce the concept of “q-
random variable” (Definition 3) to describe a random variable that corresponds to the output
of a quantum computation. We measure the complexity of an algorithm by counting the
number of quantum experiments (Definition 4) it performs with respect to a q-random
variable. We also introduce some needed tools in Section 2.2. Next, we construct a quantum
algorithm for estimating the quantiles of a q-random variable in Section 3, and we use it in
Section 4 to design the following quantum sub-Gaussian estimator.

Theorem 13 (Restated). There exists a quantum algorithm with the following properties.
Let X be a q-random variable with mean µ and variance σ2, and set as input a time
parameter n and a real δ ∈ (0, 1) such that n ≥ log(1/δ). Then, the algorithm outputs a mean
estimate µ̃ such that Pr

[
|µ̃− µ| > σ log(1/δ)

n

]
≤ δ and it performs O(n log3/2(n) log log(n))

quantum experiments.

Then we turn our attention to the (ϵ, δ)-approximation problem in Section 5. In case
we have an upper bound ∆ on the coefficient of variation |σ/µ|, we directly use our sub-
Gaussian estimator to obtain an algorithm that performs Õ

( ∆
ϵ log(1/δ)

)
quantum experiments

(Corollary 14). Next, we consider the more subtle parameter-free setting where there is no
prior information about the input random variable, except that it is distributed in [0, 1]. In
this case, the number of experiments is chosen adaptively, and the bound we get is stated in
expectation.

Theorem 16 (Restated). There exists a quantum algorithm with the following properties.
Let X be a q-random variable distributed in [0, 1] with mean µ and variance σ2, and set
as input two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃ such that
Pr[|µ̃− µ| > ϵµ] ≤ δ, and it performs Õ

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in

expectation.

Finally, we prove several lower bounds in Section 6 that match the complexity of the
above estimators. We also consider the weaker input model where one is given copies of
a quantum state encoding the distribution of X. We prove that no quantum speedup is
achievable in this setting (Theorem 22).
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1.3 Proof overview

Sub-Gaussian estimator. Our approach (Theorem 13) combines several ideas used in
previous classical and quantum mean estimators. In this section, we simplify the exposition
by assuming that the random variable X is non-negative and by replacing the variance σ2

with the second moment E[X2]. We also take the failure probability δ to be a small constant.
Our starting point is a variant of the truncated mean estimators [6, 12, 30]. Truncation
is a process that consists of replacing the samples larger than some threshold value with
a smaller number. This has the effect of reducing the tail of the distribution, but also
of changing its expectation. Here we study the effect of replacing the values larger than
some threshold b with 0, which corresponds to the new random variable Y = X1X≤b. We
consider the following classical sub-Gaussian estimator that we were not able to find in
the literature: set b =

√
nE[X2] and compute the empirical mean of n samples from Y .

By a simple calculation, one can prove that the expectation of the removed part is at
most E[X − Y ] ≤ E[X2]/b =

√
E[X2]/n. Moreover, using Bernstein’s inequality and the

boundedness of Y , the error between the output estimate and E[Y ] is on the order of√
E[X2]/n. These two facts together imply that the overall error for estimating E[X] is

indeed of a sub-Gaussian type. This approach can be carried out in the quantum model
by performing the truncation in superposition. This is similar to what is done in previous
quantum mean estimators [23, 32, 22]. In order to obtain a quantum speedup, one must
balance the truncation level differently by taking b = n

√
E[X2]. Then, by a clever use of

amplitude estimation discovered by Heinrich [23], the expectation of Y can be estimated
with an error on the order of

√
E[X2]/n. The main drawback of this estimator is that it

requires the knowledge of E[X2] to perform the truncation. In previous work [23, 32, 22],
the authors made further assumptions on the variance to be able to approximate b. Here,
we overcome this issue by choosing the truncation level b differently. Borrowing ideas from
classical estimators [30], we define b as the quantile value that satisfies Pr[X ≥ b] = 1/n2.
This quantile is always smaller than the previous threshold value n

√
E[X2]. Moreover,

it can be shown that the removed part E[X − Y ] is still on the order of
√
E[X2]/n. We

give a new quantum algorithm for approximating this quantile with roughly n quantum
experiments (Theorem 11), whereas it would require n2 random experiments classically. Our
quantile estimation algorithm builds upon the quantum minimum finding algorithm of Dürr
and Høyer [19, 3] and the kth-smallest element finding algorithm of Nayak and Wu [34].
Importantly, it does not require any knowledge about E[X2].

(ϵ, δ)-Approximation without side information. We follow an approach similar to that
of a classical estimator described in [17]. Our algorithm (Theorem 16) uses the quantum
sub-Gaussian estimator and the quantum sequential Bernoulli estimator described in Propos-
ition 15. The latter estimator can estimate the mean µ of a random variable X distributed
in [0, 1] with constant relative error by performing O(1/√µ) quantum experiments in expect-
ation. The first step of the (ϵ, δ)-approximation algorithm is to compute a rough estimate µ̂
of µ with the sequential Bernoulli estimator. Then, the variance σ2 of X is estimated by
using again the sequential Bernoulli estimator on the random variable (X −X ′)/2 (where X ′

is an independent copy of X). The latter estimation is stopped if it uses more than O(1/
√
ϵµ̂)

quantum experiments. We show that if σ2 ≥ Ω(ϵµ) then the computation is not stopped and
the resulting estimate σ̃2 is close to σ2 with high probability. Otherwise, it is stopped with
high probability and we set σ̃ = 0. Finally, the quantum sub-Gaussian estimator is used with
the parameter n ≈ max

(
σ̃

ϵµ̂
, 1√

ϵµ̂

)
to obtain a refined estimate µ̃ of µ. The choice of the first



Y. Hamoudi 50:5

(resp. second) term in the maximum value implies that |µ̃− µ| ≤ ϵµ with high probability
when the variance σ2 is larger (resp. smaller) than ϵµ. In order to upper bound the expected
number of experiments performed by this estimator, we show in Proposition 15 that the
estimates µ̂ and σ̃ obtained with the sequential Bernoulli estimator satisfy the expectation
bounds E[1/µ̂] ≤ 1/µ, E[σ̃] ≤ σ and E[1/

√
µ̂] ≤ 1/√µ.

Lower bounds. We sketch the proof of optimality of the quantum sub-Gaussian estimator
(Theorem 18). The lower bound is proved in the stronger quantum query model, which
allows us to extend it to all the other models mentioned in Section 2.1. Our approach is
inspired by the truncation level chosen in the algorithm. Given σ and n, we consider the two
distributions p0 and p1 that output respectively nσ√

1−1/n2
and −nσ√

1−1/n2
with probability 1/n2,

and 0 otherwise. The two distributions have variance σ2 and the distance between their
means is larger than 2σ

n . Thus, any estimator that satisfies the bound Pr
[
|µ̃− µ| > σ

n

]
≤ 1

3
can distinguish between p0 and p1 with constant success probability. However, we show
by a reduction to Quantum Search that it requires at least Ω(n) quantum experiments to
distinguish between two distributions that differ with probability at most 1/n2.

2 Preliminaries

2.1 Model of input
The input to the mean estimation problem is represented by a real-valued random variable X
defined on some probability space. A classical estimator accesses this input by obtaining n
i.i.d samples of X. In this section, we describe the access model for quantum estimators
and we compare it to previous models suggested in the literature. We only consider finite
probability spaces for finite encoding reasons. First, we recall the definition of a random
variable, and we define a classical model of access called a random experiment.

▶ Definition 1 (Random variable). A finite random variable is a function X : Ω→ E for
some probability space (Ω, p), where Ω is a finite sample set, p : Ω→ [0, 1] is a probability
mass function and E ⊂ R is the support of X. As is customary, we will often omit to mention
(Ω, p) when referring to the random variable X.

▶ Definition 2 (Random experiment). Given a random variable X on a probability space
(Ω, p), we define a random experiment as the process of drawing a sample ω ∈ Ω according
to p and observing the value of X(ω).

We now introduce the concept of “q-random variable” to represent a quantum process
that outputs a real number.

▶ Definition 3 (q-random variable). A q-variable is a triple (H, U,M) where H is a
finite-dimensional Hilbert space, U is a unitary transformation on H, and M = {Mx}x∈E is
a projective measurement on H indexed by a finite set E ⊂ R. Given a random variable X
on a probability space (Ω, p), we say that a q-variable (H, U,M) generates X when,
1. H is a finite-dimensional Hilbert space with some basis {|ω⟩}ω∈Ω indexed by Ω.
2. U is a unitary transformation on H such that U |0⟩ =

∑
ω∈Ω

√
p(ω)|ω⟩.

3. M = {Mx}x is the projective measurement on H defined by Mx =
∑

ω:X(ω)=x|ω⟩⟨ω|.
A random variable X is a q-random variable if it is generated by some q-variable (H, U,M).

We stress that the sample space Ω may not be known explicitly, and we do not assume
that it is easy to perform a measurement in the {|ω⟩}ω∈Ω basis for instance. Often, we are
given a unitary U such that U |0⟩ =

∑
x∈E

√
p(x)|ψx⟩|x⟩ for some unknown garbage unit
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state |ψx⟩, together with the measurement M = {I⊗|x⟩⟨x|}x∈E . In this case, we can consider
the q-random variable X defined on the probability space (Ω, p) where Ω = {|ψx⟩|x⟩}x∈E

and X(|ψx⟩|x⟩) = x.
We further assume that there exist two quantum oracles, defined below, for obtaining

information on the function X : Ω→ E. These two oracles can be efficiently implemented if
we have access to a quantum evaluation oracle |ω⟩|0⟩ 7→ |ω⟩|X(ω)⟩ for instance. The rotation
oracle (Assumption 2) has been extensively used in previous quantum mean estimators [38,
8, 32, 22]. The comparison oracle (Assumption 1) is needed in our work to implement the
quantile estimation algorithm.

▶ Assumption 1 (Comparison oracle). Given a q-random variable X on a probability
space (Ω, p), and any two values a, b ∈ R ∪ {−∞,+∞} such that a < b, there is a unitary
operator Ca,b acting on H⊗ C2 such that for all ω ∈ Ω,

Ca,b(|ω⟩|0⟩) =
{
|ω⟩|1⟩ when a < X(ω) ≤ b,
|ω⟩|0⟩ otherwise.

▶ Assumption 2 (Rotation oracle). Given a q-random variable X on a probability space
(Ω, p), and any two values a, b ∈ R ∪ {−∞,+∞} such that a < b, there is a unitary operator
Ra,b acting on H⊗ C2 such that for all ω ∈ Ω,

Ra,b(|ω⟩|0⟩) =

|ω⟩
(√

1−
∣∣∣ X(ω)

b

∣∣∣|0⟩+
√∣∣∣ X(ω)

b

∣∣∣|1⟩) when a < X(ω) ≤ b,

|ω⟩|0⟩ otherwise.

We now define the measure of complexity used to count the number of accesses to a
q-random variable, which are referred to as quantum experiments.

▶ Definition 4 (Quantum experiment). Let X be a q-random variable that satisfies
Assumptions 1 and 2. Let (H, U,M) be a q-variable that generates X. We define a quantum
experiment as the process of applying any of the unitaries U , Ca,b, Ra,b (for any values
of a < b), their inverses or their controlled versions, or performing a measurement according
to M .

Note that a random experiment (Definition 2) can be simulated with two quantum
experiments by computing the state U |0⟩ and measuring it according to M . We briefly
mention two other possible input models. First, some authors [21, 34, 23, 10, 16, 8, 29]
consider the stronger query model where p is the uniform distribution and a quantum
evaluation oracle is provided for the function ω 7→ X(ω). A second model tackles the problem
of learning from quantum states [11, 5, 4], where the input consists of several copies of∑

x∈E

√
Pr[X = x]|x⟩ (we do not have access to a unitary preparing that state). We show

in Theorem 22 that no quantum speedup is achievable for our problem in the latter setting.

2.2 Tools
We will use a variant of the amplitude amplification algorithm that does not need a time
parameter n as input. We call it the “sequential amplitude amplification” algorithm in
reference to sequential analysis. The original version of this algorithm was analysed in
Theorem 3 of [7, 9], with a bound on the expected complexity E[T ]. We propose a slightly
different version that allows us to bound E[T 2] and E[1/T ] (note that E[T ] ≤

√
E[T 2]). The

algorithm and its analysis are deferred to the extended version of this paper.
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▶ Theorem 5 (Sequential amplitude amplification). Let U be a unitary quantum
algorithm and let Π be a projection operator. Define the number p ∈ [0, 1] and the two unit
states |ψ0⟩, |ψ1⟩ such that U |0⟩ =

√
1− p|ψ0⟩+√p|ψ1⟩ and ΠU |0⟩ = √p|ψ1⟩. If p > 0 then

the sequential amplitude amplification algorithm Seq-AAmp(U,Π) outputs the state |ψ1⟩ with
probability 1. Moreover, if we let T denote the number of applications of U , U† and I − 2Π
used by the algorithm, then E[T 2] ≤ O(1/p) and E[1/T ] ≤ O(√p).

The next result is a generalization of Quantum Counting that corresponds to Theorems 11
and 12 in [9].

▶ Theorem 6 (Amplitude estimation, [9]). Let U be a unitary quantum algorithm
and let Π be a projection operator. Define the number p ∈ [0, 1] such that p = ∥ΠU |0⟩∥2.
Then, for any integer n ≥ 0, the amplitude estimation algorithm AEst(U,Π, n) outputs an
amplitude estimate p̃ such that, Pr

[
|p̃− p| ≤ 2π

√
p(1−p)
n + π2

n2

]
≥ 8/π2. The algorithm uses n

applications of U , U†, I − 2Π and O(log2(n)) 2-qubit quantum gates.

We will also use a sequential version of the amplitude estimation algorithm that does
not need a time parameter n as input. This result was first obtained by [9, Theorem 15].
We describe a variant with additional properties that is based on the sequential amplitude
amplification algorithm.

▶ Theorem 7 (Sequential amplitude estimation). There exists an algorithm, called the
sequential amplitude estimation algorithm Seq-AEst, with the following properties. Let U be
a unitary quantum algorithm and let Π be a projection operator. Define the number p ∈ [0, 1]
such that p = ∥ΠU |0⟩∥2. Then, the algorithm Seq-AEst(U,Π) outputs an amplitude estimate
p̃ and uses a number T of applications of U , U †, I − 2Π such that,
1. There is a universal constant c ∈ (0, 1) such that Pr[|p̃− p| ≤ cp] ≥ 7/8.
2. There is a universal constant c′ such that E[T 2] = E[1/p̃] ≤ c′/p.
3. There is a universal constant c′′ such that E[1/T ] = E[

√
p̃] ≤ c′′√p.

Proof. The algorithm Seq-AEst(U,Π) consists of recording the number T of applications of
U , U†, I − 2Π used by the sequential amplitude amplification algorithm Seq-AAmp(U,Π)
(Theorem 5), and choosing the estimate p̃ = 1/T 2. The results follow immediately from
Theorem 5 and Markov’s inequality. ◀

3 Quantile estimation

In this section, we present a quantum algorithm for estimating the quantiles of a finite
random variable X. This is a key ingredient for the sub-Gaussian estimator of Section 4.
For the convenience of reading, we define a quantile in the following non-standard way (the
cumulative distribution function is replaced with its complement).

▶ Definition 8 (Quantile). Given a discrete random variable X and a real p ∈ [0, 1], the
quantile of order p is the number Q(p) = sup{x ∈ R : Pr[X ≥ x] ≥ p}.

Our result is inspired by the minimum finding algorithm of Dürr and Høyer [19] and its
generalization in [3]. The problem of estimating the quantiles of a set of numbers under the
uniform distribution was studied before by Nayak and Wu [34, 33]. We differ from that work
by allowing arbitrary distributions, and by not using the amplitude estimation algorithm. On
the other hand, we restrict ourselves to finding a constant factor estimate, whereas [34, 33]
can achieve any wanted accuracy.
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50:8 Quantum Sub-Gaussian Mean Estimator

The idea behind our algorithm is rather simple: if we compute a sequence of values
−∞ = y0 ≤ y1 ≤ y2 ≤ y3 ≤ . . . where each yj+1 is sampled from the distribution of X
conditioned on yj+1 ≥ yj , then when j ≃ log(1/p) the value of yj should be close to the
quantile Q(p). The complexity of sampling each yj is on the order of 1/Pr[X ≥ yj ] classically,
but it can be done quadratically faster in the quantum setting. We analyze a slightly different
algorithm, where the sequence of samples is strictly increasing and instead of stopping after
roughly log(1/p) iterations we count the number of experiments performed by the algorithm
and stop when it reaches a value close to 1/√p. This requires showing that the times Tj

spent on sampling yj is neither too large nor too small with high probability, which is proved
in the next lemma.

▶ Lemma 9. There is a quantum algorithm such that, given a q-random variable X and
a value x ∈ R ∪ {−∞,+∞}, it outputs a sample y from the probability distribution of X
conditioned on y > x. If we let T denote the number of quantum experiments performed by this
algorithm, then there exist two universal constants c0 < c1 such that E[T ] ≤ c1/

√
Pr[X > x]

and Pr[T < c0/
√

Pr[X > x]] ≤ 1/10.

Proof. Let (H, U,M) be a q-variable generating X. We use the comparison oracle Cx,+∞
from Assumption 1 to construct the unitary V = Cx,+∞(U ⊗ I) acting on H ⊗ C2. By
definition of Cx,+∞ and U (Section 2.1), we have that V |0⟩ =

∑
ω∈Ω:X(ω)≤x

√
p(ω)|ω⟩|0⟩+∑

ω∈Ω:X(ω)>x

√
p(ω)|ω⟩|1⟩ =

√
1− Pr[X > x]|ϕ0⟩|0⟩ +

√
Pr[X > x]|ϕ1⟩|1⟩ for some unit

states |ϕ0⟩, |ϕ1⟩ where |ϕ1⟩ = 1√
Pr[X>x]

∑
ω:X(ω)>x

√
p(ω)|ω⟩. The algorithm for sampling y

conditioned on y > x consists of two steps. First, we use the sequential amplitude amplification
algorithm Seq-AAmp(V, I ⊗ |1⟩⟨1|) from Theorem 5 on V to obtain the state |ϕ1⟩. Next, we
measure |ϕ1⟩ according to M . The claimed properties follow directly from Theorem 5. ◀

We use the next formula for the probability that a value x occurs in the sequence (yj)j

defined before. This lemma is adapted from [19, Lemma 1].

▶ Lemma 10 (Lemma 47 in [3]). Let X be a discrete random variable. Consider the increasing
sequence of random variables Y0, Y1, Y2, . . . where Y0 is a fixed value and Yj+1 for j ≥ 0 is a
sample drawn from X conditioned on Yj+1 > Yj. Then, for any x, y ∈ R,

Pr[x ∈ {Y1, Y2, . . .} | Y0 = y] =
{

Pr[X = x |X ≥ x] when x > y,
0 otherwise.

The quantile estimation algorithm is described in Algorithm 1 and the analysis is detailed
in the extended version of this paper.

Algorithm 1 Quantile estimation algorithm, Quantile(X, p, δ).

1. Repeat the following steps for i = 1, 2, . . . , ⌈6 log(1/δ)⌉.
a. Set y0 = −∞ and initialize a counter C = 0 that is incremented each time a quantum

experiment is performed.
b. Set j = 1. Repeat the following process and interrupt it when C = c′/

√
p (where c′

is a constant chosen in the proof of Theorem 11): sample an element yj+1 from X

conditioned on yj+1 > yj by using the algorithm of Lemma 9, set j ← j + 1.
c. Set Q̃(i) = yj .

2. Output Q̃ = median(Q̃(1), . . . , Q̃(⌈6 log(1/δ)⌉)).
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▶ Theorem 11 (Quantile estimation). Let X be a q-random variable. Given two
reals p, δ ∈ (0, 1), the approximate quantile Q̃ produced by the quantile estimation algorithm
Quantile(X, p, δ) (Algorithm 1) satisfies Q(p) ≤ Q̃ ≤ Q(cp) with probability at least 1−δ, where
c < 1 is a universal constant. The algorithm performs O

(
log(1/δ)√

p

)
quantum experiments.

4 Sub-Gaussian estimator

In this section, we present the main quantum algorithm for estimating the mean of a random
variable with a near-quadratic speedup over the classical sub-Gaussian estimators. Our result
uses the following Bernoulli estimator, which is a well-known adaptation of the amplitude
estimation algorithm to the mean estimation problem [9, 38, 32]. The Bernoulli estimator
allows us to estimate the mean of the truncated random variable X1a<X≤b for any a, b.

▶ Proposition 12 (Bernoulli estimator). There exists a quantum algorithm, called
the Bernoulli estimator, with the following properties. Let X be a q-random variable and
set as input a time parameter n ≥ 0, two range values 0 ≤ a < b, and a real δ ∈ (0, 1)
such that n ≥ log(1/δ). Then, the Bernoulli estimator BernEst(X,n, a, b, δ) outputs a mean
estimate µ̃a,b of µa,b = E[X1a<X≤b] such that |µ̃a,b − µa,b| ≤

√
bµa,b log(1/δ)

n + b log(1/δ)2

n2 . It
performs O(n) quantum experiments.

Proof. Let (H, U,M) be a q-variable generating X. Using the rotation oracle Ra,b from
Assumption 2, we define the unitary algorithm V = Ra,b(U ⊗ I) acting on H ⊗ C2. In
order to simplify notations, let us first assume that the random variable X is only distrib-
uted in the interval (a, b). Then, we have µ = µa,b and by definition of Ra,b and U (Sec-
tion 2.1) the operator V satisfies that V |0⟩ =

∑
ω∈Ω

√
p(ω)|ω⟩

(√
1− X(ω)

b |0⟩+
√

X(ω)
b |1⟩

)
=√

1− µ
b

(∑
ω∈Ω

√
p(ω)(b−X(ω))

b−µ |ω⟩
)
|0⟩ +

√
µ
b

(∑
ω∈Ω

√
p(ω)X(ω)

µ |ω⟩
)
|1⟩. Thus, there exist

some unit states |ψ0⟩, |ψ1⟩ such that V |0⟩ =
√

1− µ
b |ψ0⟩+

√
µ
b |ψ1⟩ and (I ⊗ |1⟩⟨1|)V |0⟩ =√

µ
b |ψ1⟩. If X takes values outside the interval (a, b) then the same result holds with µa,b in

place of µ and a different definition of |ψ0⟩, |ψ1⟩.
Consider the output ṽ of the amplitude estimation algorithm AEst

(
V,Π,

⌈ 2πn
log(1/δ)

⌉)
(The-

orem 6) where Π = I⊗|1⟩⟨1|. Then, the estimate bṽ satisfies the statement of the proposition
with probability 8/π2 by Theorem 6. The Bernoulli estimator consists of running ⌈6 log(1/δ)⌉
copies of AEst

(
V,Π,

⌈ 2πn
log(1/δ)

⌉)
and outputting the median of the results. The success

probability is at least 1− δ by the Chernoff bound. ◀

The Bernoulli estimator can estimate the mean of a non-negative q-random variable X
by setting a = 0 and b = maxX. However, its performance is worse than that of the classical
sub-Gaussian estimators when the maximum of X is large compared to its variance. Our
quantum sub-Gaussian estimator (Algorithm 2) uses the Bernoulli estimator in a more subtle
way, and in combination with the quantile estimation algorithm.

▶ Theorem 13 (Sub-Gaussian estimator). Let X be a q-random variable with mean µ

and variance σ2. Given a time parameter n and a real δ ∈ (0, 1) such that n ≥ log(1/δ),
the sub-Gaussian estimator SubGaussEst(X,n, δ) (Algorithm 2) outputs a mean estimate µ̃
such that, Pr

[
|µ̃− µ| ≤ σ log(1/δ)

n

]
≥ 1− δ. The algorithm performs O(n log3/2(n) log log(n))

quantum experiments.
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Algorithm 2 Sub-Gaussian estimator, SubGaussEst(X, n, δ).

1. Set k = log n and m = dn
√

log n log(9k/δ)
log(1/δ) , where d > 1 is a constant chosen in the proof

of Theorem 13 (if k is not an integer, round n to the next power of two).
2. Compute the median η of ⌈30 log(2/δ)⌉ classical samples from X and define the non-

negative random variables

Y + = (X − η)1X≥η and Y − = −(X − η)1X≤η.

3. Compute an estimate µ̃Y+ of E[Y+] and an estimate µ̃Y− of E[Y−] by executing the
following steps with Y := Y+ and Y := Y− respectively:
a. Compute an estimate Q̃ of the quantile of order p =

(
log(1/δ)

6n

)2
of Y with failure

probability δ/8 by using the quantile estimation algorithm Quantile(Y, p, δ/8).
b. Define a−1 = 0 and aℓ = 2ℓ

n Q̃ for ℓ ≥ 0. Compute an estimate µ̃ℓ of E[Y 1aℓ−1<Y ≤aℓ
]

with failure probability δ/(9k) for each 0 ≤ ℓ ≤ k, by using the Bernoulli estimator
BernEst(Y,m, aℓ−1, aℓ, δ/(9k)) with m quantum experiments.

c. Set µ̃Y =
∑k

ℓ=0 µ̃ℓ.
4. Output µ̃ = η + µ̃Y+ − µ̃Y− .

Proof. First, by standard concentration inequalities, the median η computed at step 2
satisfies |η − µ| ≤ 2σ with probability at least 1 − δ/2. Moreover, if |η − µ| ≤ 2σ then√
E[(X − η)2] =

√
E[(X − µ+ µ− η)2] ≤

√
E[(X − µ)2] + |µ − η| ≤ 3σ, by using the

triangle inequality. Below we prove that for any non-negative random variable Y the estimate
µ̃Y of µY = E[Y ] computed at step 3 satisfies

|µ̃Y − µY | ≤
√
E[Y 2] log(1/δ)

5n (4)

with probability at least 1−δ/4. Using the fact that X = η+Y+−Y− and (X−η)2 = Y 2
+ +Y 2

−,
we can conclude that

|µ̃− µ| ≤

(√
E[Y 2

+] +
√

E[Y 2
−]

)
log(1/δ)

5n ≤
√

2E[(X − η)2] log(1/δ)
5n ≤ σ log(1/δ)

n

with probability at least 1 − δ. The algorithm performs O(log(1/δ)) ≤ O(n) classical
experiments during step 2, O(log(1/δ)/√p) ≤ O(n) quantum experiments during step 3.a,
and O(km) ≤ O(n log3/2(n) log log(n)) quantum experiments during step 3.b.

We now turn to the proof of Equation (4). We make the assumption that all the
subroutines used in step 3 are successful, which is the case with probability at least (1 −
δ/8)(1− δ/(9k))k+1 ≥ 1− δ/4. First, according to Theorem 11, we have Q(p) ≤ Q̃ ≤ Q(cp)
for some universal constant c. It implies that cp ≤ Pr[Y ≥ Q(cp)] ≤ Pr[Y ≥ Q̃] ≤ E[Y 2]/Q̃2,
where the first two inequalities are by definition of the quantile function Q, and the last
inequality is a standard fact. Consequently, by our choice of p,

Q̃ ≤
6n

√
E[Y 2]√

c log(1/δ)
. (5)

Next, we upper bound the expectation of the part of Y that is above the largest threshold
ak = Q̃ considered in step 3.b. By Cauchy–Schwarz’ inequality, we have E[Y 1

Y >Q̃
] ≤
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√
E[Y 2] Pr[Y > Q̃]. Moreover, by definition of Q, Pr[Y > Q̃] ≤ Pr[Y > Q(p)] ≤ p. Thus,

E[Y 1
Y >Q̃

] ≤
√
E[Y 2] log(1/δ)

6n . (6)

The expectation of Y is decomposed into the sum µY =
∑k

ℓ=0 µℓ + E[Y 1Y >ak
], where

µℓ = E[Y 1aℓ−1<Y ≤aℓ
] is estimated at step 3.b. We have |µ̃ℓ−µℓ| ≤

√
aℓµℓ log(1/δ)
dn
√

log n
+ aℓ log(1/δ)2

d2n2 log n

for all 0 ≤ ℓ ≤ k according to Proposition 12. Thus, by the triangle inequality,

|µ̃Y − µY | ≤
k∑

ℓ=0
|µ̃ℓ − µℓ|+ E[Y 1Y >ak

]

≤
k∑

ℓ=0

√
aℓµℓ log

( 1
δ

)
dn
√

log n
+

k∑
ℓ=0

aℓ log
( 1

δ

)2

d2n2 log n + E[Y 1Y >ak
]

≤
Q̃ log

( 1
δ

)
dn2√log n

+
k∑

ℓ=1

√
2E[Y 21aℓ−1<Y ≤aℓ

] log
( 1

δ

)
dn
√

log n
+

2Q̃ log
( 1

δ

)2

d2n2 log n + E[Y 1Y >ak
]

≤

√
2k

√∑k
ℓ=1 E[Y 21aℓ−1<Y ≤aℓ

] log
( 1

δ

)
dn
√

log n
+

3Q̃ log
( 1

δ

)2

dn2√log n
+ E[Y 1Y >ak

]

≤
√

2k
√
E[Y 2] log

( 1
δ

)
dn
√

log n
+

3Q̃ log
( 1

δ

)2

dn2√log n
+ E[Y 1Y >ak

]

≤
√

2
√
E[Y 2] log

( 1
δ

)
dn

+
18

√
E[Y 2] log

( 1
δ

)
√
cdn
√

log n
+

√
E[Y 2] log

( 1
δ

)
6n

≤
√
E[Y 2] log

( 1
δ

)
5n

where the third step uses a0µ0 ≤ a2
0 = (Q̃/n)2 and aℓµℓ ≤ (aℓ/aℓ−1)E[Y 2

1aℓ−1<Y ≤aℓ
] ≤

2E[Y 2
1aℓ−1<Y ≤aℓ

] when ℓ ≥ 1, the fourth step uses the Cauchy–Schwarz inequality, the sixth
step uses Equations (5) and (6), and in the last step we choose d = 600/

√
c. ◀

5 (ϵ, δ)-Estimators

We study the (ϵ, δ)-approximation problem under two different scenarios. First, we consider
the case where we know an upper bound ∆ on the coefficient of variation |σ/µ|. As a direct
consequence of Theorem 13 we obtain the following estimator that subsumes a similar result
shown in [22] for non-negative random variables.

▶ Corollary 14 (Relative estimator). There exists a quantum algorithm with the following
properties. Let X be a q-random variable with mean µ and variance σ2, and set as input a
value ∆ ≥ |σ/µ| and two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃
such that Pr[|µ̃− µ| > ϵ|µ|] ≤ δ and it performs Õ

( ∆
ϵ log(1/δ)

)
quantum experiments.

Proof. The algorithm runs the sub-Gaussian estimator SubGaussEst
(
X, ∆

ϵ log(1/δ), δ
)
. ◀

Next, we construct a parameter-free estimator that performs Õ
((

σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in expectation for any random variable distributed in [0, 1]. We
follow an approach similar to the classical AA algorithm described in [17]. We first give
a sequential estimator that approximates the mean with constant relative error and that
performs O(1/√µ) quantum experiments in expectation. We use the term “sequential” in
reference to sequential analysis techniques. The classical counterpart of this estimator is the
Stopping Rule Algorithm in [17].
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▶ Proposition 15 (Sequential Bernoulli estimator). There is an algorithm, called the
sequential Bernoulli estimator, with the following properties. Let X be a q-random variable
distributed in [0, 1] with mean µ. Then, the sequential Bernoulli estimator Seq-BernEst(X)
outputs an estimate µ̃ and performs a number T of quantum experiments such that,
1. There is a universal constant c ∈ (0, 1) such that Pr[|µ̃− µ| ≤ cµ] ≥ 7/8.
2. There is a universal constant c′ such that E[T 2] = E[1/µ̃] ≤ c′/µ.
3. There is a universal constant c′′ such that E[

√
µ̃] ≤ c′′√µ.

Proof. The algorithm is identical to the one of Proposition 12 with a = 0 and b = 1, except
that the amplitude estimation algorithm is replaced with the sequential amplitude estimation
algorithm (Theorem 7). The algorithm inherits the properties proved in Theorem 7. ◀

The expected number of experiments performed by the sequential Bernoulli estimator
is E[T ] ≤

√
E[T 2] ≤ 1/√µ. The output µ̃ of the sequential Bernoulli estimator can be

used in the Bernoulli estimator (Proposition 12) with parameter n = 8 log(1/δ)/(ϵ
√
µ̃)

to solve the (ϵ, δ)-approximation problem. However, the expected number of experiments
performed with this approach is O(log(1/δ)/(ϵ√µ)). We propose a better algorithm with an
improved dependence on ϵ. The algorithms uses the sequential Bernoulli estimator and the
sub-Gaussian estimator.

Algorithm 3 Sequential (ϵ, δ)-estimator.

1. For i = 1, . . . , 32 log(1/δ):
a. Compute an estimate µ̃X of µ = E[X] by using the sequential Bernoulli estimator

Seq-BernEst(X) (Proposition 15).
b. Let Y denote the random variable (X − X ′)2/2 where X ′ is independent from X

and identically distributed. Compute an estimate µ̃Y of µY = E[Y ] by using the
sequential Bernoulli estimator Seq-BernEst(Y ) (Proposition 15). Stop the computation
if it performs more than c1√

ϵµ̃X

quantum experiments (where c1 is a constant chosen
in the proof of Theorem 16) and set µ̃Y = 0.

c. Compute a second estimate µ̃
(i)
X of µ by using the sub-Gaussian estimator

SubGaussEst(X,n, 15/16) (Theorem 13) with n = c2 max
(√

µ̃Y

ϵµ̃X

, 1√
ϵµ̃X

)
(where c2

is a constant chosen in the proof of Theorem 16).
2. Output µ̃ = median

(
µ̃

(1)
X , . . . , µ̃

(32 log(1/δ))
X

)
.

▶ Theorem 16 (Sequential relative estimator). Let X be a q-random variable dis-
tributed in [0, 1] with mean µ and variance σ2. Given two reals ϵ, δ ∈ (0, 1) the estimate µ̃
output by the sequential relative estimator (Algorithm 3) satisfies Pr[|µ̃− µ| > ϵµ] ≤ δ. The
algorithm performs Õ

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments in expectation.

Proof. We prove that, for a fixed value of i, the estimate µ̃(i)
X computed at step 1.c satisfies

Pr
[
|µ̃(i)

X −µ| ≤ ϵµ
]
≥ 5/8 and the number of experiments performed during its computation is

Õ
((

σ
ϵµ + 1√

ϵµ

))
in expectation. The theorem follows by the Chernoff bound and the linearity

of expectation.
Let c, c′, c′′ denote the constants mentioned in Proposition 15, and set c1 = 16c′

√
(1 + c)

and c2 = 4(1 + c)/
√

1− c. We assume that |µ̃X − µ| ≤ cµ at step 1.a, which is the case
with probability at least 7/8 by Proposition 15. The analysis of steps 1.b and 1.c is split
into two cases to show that Pr

[
|µ̃(i)

X − µ| ≤ ϵµ
]
≥ 5/8. First, if σ ≤ √ϵµ, then we can
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ignore step 1.b and consider the second term in the max at step 1.c. By Theorem 13,
the estimate µ̃(i)

X satisfies |µ̃(i)
X − µ| ≤

4σ

c2/
√

ϵµ̃X

≤ 4
√

1+c
c2

ϵµ ≤ ϵµ with probability 15/16.

Secondly, if σ ≥ √ϵµ, then by Proposition 15 and the fact that µY = σ2, the estimate µ̃Y

computed at step 1.b satisfies |µ̃Y −σ2| ≤ cσ2 with probability 7/8 if we remove the stopping
condition. Since we assumed that µ̃X ≤ (1 + c)µ, the computation is interrupted if it
performs more than c1√

ϵµ̃X

≥ c1√
(1+c)µY

= 16c′
√

µY
experiments. However, by Proposition 15

and Markov’s inequality, the number of experiments performed by the sequential Bernoulli
estimator at step 1.b is at most 16c′/

√
µY with probability at least 15/16. Consequently,

we can assume that µ̃Y ≥ (1 − c)σ2 with success probability at least 7/8 · 15/16. In
this case, by considering the first term in the max at step 1.c, the estimate µ̃(i)

X satisfies
|µ̃(i)

X − µ| ≤
4σ

c2

√
µ̃Y /(ϵµ̃X )

≤ 4(1+c)
c2

√
1−c

ϵµ ≤ ϵµ with probability 15/16. The overall success

probability is at least (7/8)2(15/16)2 ≥ 5/8.
We now analyse the expected number of quantum experiments performed during the

computation of µ̃(i)
X . Step 1.a performs O(1/√µ) experiments in expectation by Proposition 15.

Step 1.b is stopped after O(1/(√ϵµ)) experiments in expectation since E[1/
√
µ̃X ] ≤ O(1/√µ)

by Proposition 15. Step 1.c performs Õ
(

max
(√

µ̃Y

ϵµ̃X

, 1√
ϵµ̃X

))
experiments by Theorem 13.

The estimates µ̃Y and µ̃X are independent if we ignore the stopping condition at step 1.b, in

which case E
[√

µ̃Y

µ̃X

]
= E

[
1

µ̃X

]
E[

√
µ̃Y ] ≤ O

(
σ
µ

)
by Proposition 15. The stopping condition

can only decrease this quantity. Thus, step 1.c performs Õ
(
max

(
σ
ϵµ ,

1√
ϵµ

))
experiments in

expectation. ◀

6 Lower bounds

We prove several lower bounds for the mean estimation problem under different scenarios. In
Section 6.1, we study the number of experiments that must be performed to estimate the
mean with a sub-Gaussian error rate. In Section 6.2, we study the number of experiments
needed to solve the (ϵ, δ)-approximation problem. Finally, in Section 6.3, we consider the
mean estimation problem in the state-based model, where the input consists of several copies
of a quantum state encoding a distribution.

6.1 Sub-Gaussian estimation
We show that the quantum sub-Gaussian estimator described in Theorem 13 is optimal up
to a polylogarithmic factor. We make use of the following lower bound for Quantum Search
in the small-error regime.

▶ Proposition 17 (Theorem 4 in [13]). Let N > 0, 1 ≤ K ≤ 0.9N and δ ≥ 2−N . Let
T (N,K, δ) be the minimum number of quantum queries any algorithm must use to decide
with failure probability at most δ whether a function f : [N ]→ {0, 1} has 0 or K preimages
of 1. Then, T (N,K, δ) ≥ Ω(

√
N/K log(1/δ)).

We construct two particular probability distributions that allow us to reduce the Quantum
Search problem to the sub-Gaussian mean estimation problem.

▶ Theorem 18. Let n > 1 and δ ∈ (0, 1) such that n ≥ 2 log(1/δ). Fix σ > 0 and consider the
family Pσ of all q-random variables with variance σ2. Let T (n, σ, δ) be the minimum number
of quantum experiments any algorithm must perform to compute with failure probability
at most δ a mean estimate µ̃ such that |µ̃ − µ| ≤ σ log(1/δ)

n for any X ∈ Pσ with mean µ.
Then, T (n, σ, δ) ≥ Ω(n).
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Proof. Let m = n
log(1/δ) and b = m√

1−1/m2
σ. We define the probability distribution p0 with

support {0, b} that takes value b with probability 1
m2 . Similarly, we define the probability

distribution p1 with support {0,−b} that takes value −b with probability 1
m2 . The variance

of each distribution is equal to σ2. Moreover, the means µ0 and µ1 of the two distributions
satisfy that,

µ0 − µ1 > 2σ log(1/δ)
n

. (7)

Let N,K be two integers such that N ≥ log(1/δ) and K/N = 1/m2 (assuming m is
rational). Let F0 be the family of all functions f : [N ]→ {0, 1} with exactly K preimages
of 1. Similarly, let F1 be the family of all functions f : [N ] → {−1, 0} with exactly K

preimages of −1. By using Proposition 17, it is easy to see that any algorithm that can
distinguish between f ∈ F0 and f ∈ F1 with success probability 1 − δ must use at least
Ω(

√
N/K log(1/δ)) = Ω(m log(1/δ)) = Ω(n) quantum queries to f . We associate with each

function f ∈ F0∪F1 the q-variable (H, U,M)f whereH = CN+2, U |0⟩ = 1√
N

∑
x∈[N ]|x⟩|f(x)⟩,

and M = {I⊗|0⟩⟨0|, I⊗|−1⟩⟨−1|, I⊗|1⟩⟨1|}. The random variable X generated by (H, U,M)f

is distributed according to p0 if f ∈ F0, and according to p1 if f ∈ F1. Moreover, one quantum
experiment with respect to X can be simulated with one quantum query to f . Consequently,
any algorithm that can distinguish between a random variable distributed according to p0 or p1
with success probability 1−δ must perform at least Ω(n) quantum experiments. On the other
hand, by Equation (7), if an algorithm can estimate the mean with an error rate smaller than
σ log(1/δ)

n then it can distinguish between f ∈ F0 and f ∈ F1. Thus, T (n, σ, δ) ≥ Ω(n). ◀

6.2 (ϵ, δ)-Estimation
We consider the (ϵ, δ)-estimation problem in the parameter-free setting, when the coefficient
of variation is unknown. We make use of the next lower bound for Quantum Counting.

▶ Proposition 19 (Theorem 4.2.6 in [33]). Let N > 0, 1 < K ≤ N and ϵ ∈
( 1

4K , 1
)
.

Consider the set of all quantum algorithms such that, given a query oracle to any function
f : [N ] → {0, 1}, they return an estimate C̃ of the number C of preimages of 1 in f such
that |C̃ − C| ≤ ϵC with probability at least 2/3. Let TK(N, ϵ) be the minimum number of
quantum queries any such algorithm must use when the oracle has exactly K preimages of 1.
Then, TK(N, ϵ) ≥ Ω

(√
K(N−K)
ϵK+1 +

√
N

ϵK+1

)
.

We obtain by a simple reduction to the above problem that the result described in
Theorem 16 is nearly optimal.

▶ Proposition 20. Let ϵ ∈ (0, 1). Let PB denote the family of all q-random variables that
follow a Bernoulli distribution. Consider any algorithm that takes as input X ∈ PB and that
outputs a mean estimate µ̃ such that |µ̃− E[X]| ≤ ϵE[X] with probability at least 2/3. Then,
for any µ ∈ (0, 1), there exists X ∈ PB with mean µ such that the algorithm performs at least
Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments on input X, where σ2 = Var[X].

Proof. Given ϵ ∈ (0, 1) and µ ∈ (0, 1), we choose two integers K and N such that K > 1/(4ϵ)
and K/N = µ (assuming µ is rational). Similarly to the proof of Theorem 18, we associate
with each function f : [N ] → {0, 1} the q-variable (H, U,M)f where H = CN+2, U |0⟩ =

1√
N

∑
x∈[N ]|x⟩|f(x)⟩, and M = {I⊗|0⟩⟨0|, I⊗|1⟩⟨1|}. If an algorithm can estimate the mean
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of any Bernoulli random variable with error ϵ and success probability 2/3, then it can be used
to count the number of preimages of 1 in f with the same accuracy. Thus, by Proposition 19,
it must perform at least Ω

(√
K(N−K)
ϵK+1 +

√
N

ϵK+1

)
= Ω

(√
µ(1−µ)

ϵµ+1/N + 1√
ϵµ+1/N

)
= Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments on a q-random variable with mean µ and variance σ2 = µ(1− µ). ◀

6.3 State-based estimation

We consider the state-based model where the input consists of several copies of a quantum
state |p⟩ =

∑
x∈E

√
p(x)|x⟩ encoding a distribution p over E. This model is weaker than the

one described before, since it does not provide access to a unitary algorithm preparing |p⟩.
We prove that no quantum speedup is achievable in this setting. Our result uses the next
lower bound on the number of copies needed to distinguish two states.

▶ Lemma 21. Let δ ∈ (0, 1) and consider two probability distributions p0 and p1 with
the same finite support E ⊂ R. Define the states |ϕ0⟩ =

∑
x∈E

√
p0(x)|x⟩ and |ϕ1⟩ =∑

x∈E

√
p1(x)|x⟩. Then, the smallest integer T such that there is an algorithm that can

distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T with success probability at least 1− δ satisfies T ≥ ln(1/(4δ))
D(p0∥p1) ,

where D(p0∥p1) =
∑

x∈E p0(x) ln
(

p0(x)
p1(x)

)
is the KL-divergence from p0 to p1.

Proof. According to Helstrom’s bound [25] the best success probability to distinguish between
two states |ϕ⟩ and |ϕ′⟩ is 1

2 (1 +
√

1− |⟨ϕ |ϕ′⟩|2). Thus, the smallest number T needed to
distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T must satisfy 1

2 (1 +
√

1− ⟨ϕ0 |ϕ1⟩2T ) ≥ 1 − δ. It implies

that T ≥ − ln(1−(1−2δ)2)
−2 ln(⟨ϕ0 | ϕ1⟩) ≥

ln(1/(4δ))

−2 ln
(∑

x
p0(x)

√
p1(x)
p0(x)

) ≥ ln(1/(4δ))∑
x

p0(x) ln
(

p0(x)
p1(x)

) = ln(1/(4δ))
D(p0∥p1) where the

second inequality uses the concavity of the logarithm function. ◀

We use the above lemma to show that no quantum mean estimator can perform better
than the classical sub-Gaussian estimators in the state-based input model.

▶ Theorem 22. Let n > 1 and δ ∈ (0, 1) such that n ≥ 2 log(1/δ). Fix σ > 0 and consider
the family Pσ of all distributions with finite support whose variance lies in the interval
[σ2, 4σ2]. For any p ∈ Pσ with support E ⊂ R, define the state |p⟩ =

∑
x∈E

√
p(x)|x⟩.

Let T (n, σ, δ) be the smallest integer such that there exists an algorithm that receives the
state |p⟩⊗T (n,σ,δ) for any p ∈ Pσ, and that outputs an estimate µ̃ of the mean µ of p such
that Pr

[
|µ̃− µ| >

√
σ2 log(1/δ)

n

]
≤ δ. Then, T (n, σ, δ) ≥ Ω(n).

Proof. Let m = n
log(1/δ) , b = m√

m−1σ and α = 2 ln
(

1 +
√

1− 1
m

)
. We define the two

distributions p0 and p1 with support E = {0, b} such that p0(b) = eα

m and p1(b) = 1
m . Let µ0

and σ2
0 (resp. µ1 and σ2

1) denote the expectation and the variance of p0 (resp. p1). Observe
that p0, p1 ∈ Pσ since σ0 ∈ [σ, 2σ] and σ1 = σ. Moreover, µ0 − µ1 = σ eα−1√

m−1 = σ
(
eα/2 +

1
)

eα/2−1√
m−1 > 2

√
σ2 log(1/δ)

n . Thus, we can distinguish |p0⟩⊗T (n,σ,δ) from |p1⟩⊗T (n,σ,δ) with
failure probability δ by using any optimal algorithm that satisfies the error bound stated in
the theorem. Since the KL-divergence from p0 to p1 isD(p0∥p1) ≤ p0(b) ln

(
p0(b)
p1(b)

)
= αeα

m2 ≤ 6
m ,

we must have T (n, σ, δ) ≥ Ω
(

log(1/δ)
D(p1∥p0)

)
= Ω(n) by Lemma 21. ◀
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Abstract
Tverberg’s theorem states that a set of n points in Rd can be partitioned into ⌈n/(d + 1)⌉ sets
whose convex hulls all intersect. A point in the intersection (aka Tverberg point) is a centerpoint,
or high-dimensional median, of the input point set. While randomized algorithms exist to find
centerpoints with some failure probability, a partition for a Tverberg point provides a certificate of
its correctness.

Unfortunately, known algorithms for computing exact Tverberg points take nO(d2) time. We
provide several new approximation algorithms for this problem, which improve running time or
approximation quality over previous work. In particular, we provide the first strongly polynomial
(in both n and d) approximation algorithm for finding a Tverberg point.
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1 Introduction

Given a set P of n points in the plane and a query point q, classification problems ask
whether q belongs to the same class as P . Some algorithms use the convex hull CH(P ) as
a decision boundary for classifying q. However, in realistic datasets, P may be noisy and
contain outliers, and even one faraway point can dramatically enlarge the hull of P . Thus,
we would like to measure how deeply q lies within P in way that is more robust against noise.

In this paper, we investigate the notion of Tverberg depth. However, there are many
related measures of depth in the literature, including:
1. Tukey depth. The Tukey depth of q is the minimum number of points that must be

removed before q becomes a vertex of the convex hull. Computing the depth is equivalent
to computing the closed halfspace that contains q and the smallest number of points of
P , and this takes O(n log n) time in the plane [7].

2. Centerpoint. In Rd, a point with Tukey depth nα is an α-centerpoint. There is always a
1/(d + 1)-centerpoint, known simply as the centerpoint, which can be computed exactly in
O(nd−1) time [19, 7]. It can be approximated using the centerpoint of a sample [11], but
getting a polynomial-time (in both n and d) approximation algorithm proved challenging.
Clarkson et al. [11] provided an algorithm that computes a 1/4d2-centerpoint in roughly
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O(d9) time. Miller and Sheehy [23] derandomized it to find a (roughly) 1/2d2-centerpoint
in nO(log d) time. More recently, Har-Peled and Mitchell [16] improved the running time
to compute a (roughly) 1/d2-centerpoint in (roughly) O(d7) time.

3. Onion depth. Imagine peeling away the vertices of the current convex hull and removing
them from P . The onion depth is the number of layers which must be removed before the
point q is exposed. The convex layers of points in the plane can be computed in O(n log n)
time by an algorithm of Chazelle [8]. The structure of convex layers is well-understood
for random points [12] and grid points [13].

4. Uncertainty. Another model considers uncertainty about the locations of the points.
Suppose that each point of P has a certain probability of existing, or alternatively, its
location is given via a distribution. The depth of query point q is the probability that q is
in the convex hull once P has been sampled. Under certain assumptions, this probability
can be computed exactly in O(n log n) time [2]. Unfortunately, the computed value might
be very close to zero or one, and therefore tricky to interpret.

5. Simplicial depth. The simplicial depth of q is the number of simplices induced by P

containing it. This number can be approximated quickly after some preprocessing [1].
However, it can be quite large for a point which is intuitively shallow.

Tverberg depth

Given a set P of n points in Rd, a Tverberg partition is a partition of P into k disjoint
sets P1, . . . , Pk such that

⋂
i CH(Pi) is not empty. A point in this intersection is a Tverberg

point. Tverberg’s theorem states that P has a Tverberg partition into ⌈n/(d + 1)⌉ sets. In
particular, the Tverberg depth (T-depth) of a point q is the maximum size k of a Tverberg
partition such that q ∈

⋂k
i=1 CH(Pi).

By definition, points of T-depth n/(d + 1) are centerpoints for P . In the plane, Reay [25]
showed that if a point has Tukey depth k ≤ |P | /3, then the T-depth of q is k. This property
is already false in three dimensions [4]. The two-dimensional case was handled by Birch [5],
who proved that any set of n points in the plane can be partitioned into n/3 triples whose
induced triangles have a common intersection point.

Computing a Tverberg point

For work on computing approximate Tverberg points, see [23, 24, 26, 9] and the references
therein. Currently, no polynomial-time (in both n and d) approximation algorithm is known
for computing Tverberg points. This search problem is believed to be quite hard, see [22].

Algorithms for computing an exact Tverberg point of T-depth n/(d+1) implement the con-
struction implied by the original proof. The runtime of such an algorithm is dO(d2)nd(d+1)+1,

see the full version [17]. As previously mentioned, the exception is in two dimensions, where
the algorithm of Birch [5] runs in O(n log n) time. But even in three dimensions, we are
unaware of an algorithm faster than O(n13).

Convex combinations and Carathéodory’s theorem

The challenge in finding a Tverberg point is that we have few subroutines at our disposal with
runtimes polynomial in d. Consider the most basic task – given a set P of n points and a
query point q, decide if q lies inside CH(P ), and if so, compute the convex combination of q in
term of the points of P . This problem can be reduced to linear programming. Currently, the
fastest strongly polynomial LP algorithms run in super-polynomial time 2O(

√
d log d) + O(d2n)
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[10, 21], where d is the number of variables and n is the number of constraints. However,
any given convex combination of P representing q can be sparsified in polynomial time into
a convex combination using only d + 1 points of P . Lemma 22 describes this algorithmic
version of Carathéodory’s theorem.

Radon partitions in polynomial time

Finding points of T-depth 2 is relatively easy. Any set of d+2 points in Rd can be partitioned
into two disjoint sets whose convex hulls intersect, and a point in the intersection is a Radon
point. Radon points can be computed in O(d3) time by solving a linear system with d + 2
variables. Almost all the algorithms for finding Tverberg points mentioned above amplify
the algorithm for finding Radon points.

Our results

The known and new results are summarized in Table 1.1. In Section 2, we review preliminary
information and known results, which include the following.
1. An exact algorithm. The proof of Tverberg’s theorem is constructive and leads to

an algorithm with running time O(nd(d+1)). It seems that the algorithm has not been
described and analyzed explicitly in the literature. For the sake of completeness, we
provide this analysis in the full version [17].

2. In two dimensions. Given a set P of n points in the plane and a query point q of Tukey
depth k, Birch’s theorem [5] implies that q can be covered by min(k, ⌊n/3⌋) vertex-disjoint
triangles of P . One can compute k and this triangle cover in O(n + k log k) time, and
use them to compute a Tverberg point of depth ⌊n/3⌋ in O(n log n) time.

In Section 3, we provide improved algorithms for computing Tverberg points and partitions.

1. Projections in low dimensions. We use projections to find improved approximation
algorithms in dimensions 3 to 7, see Table 1.2. For example, in three dimensions, one can
compute a point with T-depth n/6 in O(n log n) time.

2. An improved quasi-polynomial algorithm. We modify the algorithm of Miller and
Sheehy to use a buffer of free points. Coupled with the algorithm of Mulzer and Werner
[24], this idea yields an algorithm that computes a point of T-depth ≥ (1 − δ)n/2(d + 1)2

in dO(log(d/δ))n time. This improves the approximation quality of the algorithm of [24]
by a factor of 2(d + 1), while keeping (essentially) the same running time.

3. A strongly polynomial algorithm. In Section 3.3, we present the first strongly
polynomial approximation algorithm for Tverberg points, with the following caveats:

a. the algorithm is randomized, and might fail,

b. one version returns a Tverberg partition, but not a point that lies in its intersection,

c. the other (inferior) version returns a Tverberg point and a partition realizing it, but
not the convex combination of the Tverberg point for each set in the partition.

Specifically, one can compute a partition of P into n/O(d2 log d) sets, such that the
intersection of their convex hulls is nonempty (with probability close to one), but without
finding a point in the intersection. Alternatively, one can also compute a Tverberg point,
but the number of sets in the partition decreases to n/O(d3 log d).
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Table 1.1 The known and improved results for Tverberg partition. The notation Ow hides terms
with polylogarithmic dependency on size of the numbers, see Remark 21. The parameter δ can be
freely chosen.

Depth Running time Ref / Comment
n/(d + 1) dO(d2)nd(d+1)+1 Tverberg theorem

d = 2 : n/3 O(n log n) [5]: Theorem 8
n

2(d + 1)2 nO(log d) Miller and Sheehy [23]

n

4(d + 1)3 dO(log d)n Mulzer and Werner [24]

n

2d(d + 1)2 Ow(n4) Rolnick and Soberón [26]

(1 − δ)n
d(d + 1) (d/δ)O(d) + Ow(n4) Rolnick and Soberón [26]

New results
(1 − δ)n
2(d + 1)2 dO(log(d/δ))n Theorem 18

n

O(d2 log d)
O(dn) Lemma 19: Only partition

n

O(d3 log d) O(dn + d7 log6 d) Lemma 20: Partition + point, but no con-
vex combination

n

O(d2 log d) Ow(n5/2 + nd3) Lemma 24: Weakly polynomial

(1 − δ)n
2(d + 1)2 dO(log log(d/δ))Ow(n5/2) Theorem 25: Weakly quasi polynomial

(1 − δ)n
d(d + 1)

O(c + c′n + d2n log2 n)
c = dO(d)/δ2(d−1)

c′ = 2O(
√

d log d)
Lemma 26: Useful for low dimensions

Table 1.2 The best approximation ratios for Tverberg depth in low dimensions, with nearly
linear-time algorithms, as implied by Lemma 16. Note that the new algorithm is no longer an
improvement in dimension 8. We are unaware of any better approximation algorithms (except for
running the exact algorithm for Tverberg’s point, which requires nO(d2) time).

Dim T. Depth New depth Known Ref Comment
3 n/4 n/6 n/8
4 n/5 n/9 n/16 [24]
5 n/6 n/18 n/32

6 n/7 n/27 (1 − δ)n/42 Original paper describes a weakly
7 n/8 n/54 (1 − δ)n/56 [26] polynomial algorithm. The improved
8 n/9 n/81 (1 − δ)n/72 algorithm is described in Lemma 26.
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4. A weakly polynomial algorithm. Revisiting an idea of Rolnick and Soberón [26],
we use algorithms for solving LPs. The resulting running time is either weakly polyno-
mial (depending logarithmically on the relative sizes of the numbers in the input) or
super-polynomial, depending on the LP solver. In particular, the randomized, strongly
polynomial algorithms described above can be converted into constructive algorithms
that compute the convex combination of the Tverberg point over each set in its partition.
Having computed approximate Tverberg points of T-depth ≥ n/O(d2 log d), we can feed
them into the buffered version of Miller and Sheehy’s algorithm to compute Tverberg
points of depth ≥ (1 − δ)n/2(d + 1)2. This takes dO(log log(d/δ))Ow(n5/2) time, where Ow

hides polylogarithmic terms in the size of the numbers involved, see Remark 21.
5. Faster approximation in low dimensions. One can compute (or approximate) a

centerpoint, then repeatedly extract simplices covering it until the centerpoint is exposed.
This leads to an Od(n2) approximation algorithm [26]. Since Od hides constants that
depend badly on d, this method is most useful in low dimensions. By random sampling,
we can speed up this algorithm to Od(n log2 n) time.

2 Background, preliminaries and known results

▶ Definition 1. A Tverberg partition (or a log) of a set P ⊆ Rd, for a point q, is a set
ℓ = {P1, . . . , Pk} of vertex-disjoint subsets of P , each containing at most d + 1 points, such
that q ∈ CH(Pi), for all i. The rank of ℓ is k = |ℓ|. The maximum rank of any log of q is its
Tverberg depth (T-depth).

A set Pj in a log is a batch. For every batch Pj = {p1, . . . , pd+1} in the log, we store the
convex coefficients α1, . . . , αd+1 ≥ 0 such that

∑
i αipi = q and

∑
i αi = 1. A pair (q, ℓ) of a

point and its log is a site.

Tverberg’s theorem states that, for any set of n points in Rd, there is a point in Rd with
Tverberg depth ⌈n/(d + 1)⌉. For simplicity, we assume the input is in general position.

2.1 An exact algorithm
The constructive proof of Tverberg and Vrećica [28] implies an algorithm for computing exact
Tverberg points – see [17] for details.

▶ Lemma 2. Let P be a set of n points in Rd. In dO(d2)nd(d+1)+1 time, one can compute
a point q and a partition of P into disjoint sets P1, . . . , Pr such that q ∈

⋂
i CH(Pi), where

r = ⌈n/(d + 1)⌉.

2.2 In two dimensions
We first review Tukey depth, which is closely related to Tverberg depth in two dimensions.

▶ Definition 3. The Tukey depth of a point q in a set P ⊆ Rd, denoted by dTK(q), is the
minimum number of points contained in any closed halfspace containing q.

The following result is implicit in the proof of Theorem 5.2 in [6]. Chan solves the decision
version of the Tukey depth problem, while we need to compute it explicitly, resulting in a
more involved algorithm. For the sake of completeness, we provide the details in Appendix A.

▶ Lemma 4 (Proof in Appendix A). Given a set P of n points in the plane and a query
point q, such that P ∪ {q} is in general position, one can compute, in O(n + k log k) time,
the Tukey depth k of q in P . The algorithm also computes the halfplane realizing this depth.
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For shallow points in the plane, the Tukey and Tverberg depths are equivalent, and we
can compute the associated Tverberg partition.

▶ Lemma 5 (Proof in Appendix B). Let P be a set of n points in the plane, let q be a query
point such that P ∪ {q} is in general position, and suppose that k = dTK(q) ≤ n/3. Then one
can compute a log for q of rank k in O(n + k log k) time.

The Tukey depth of a point can be as large as ⌊n/2⌋. Indeed, consider the vertices of a
regular n-gon (for odd n), the polygon center has depth ⌊n/2⌋.

▶ Lemma 6. Let P be a set of n points in the plane, and let q be a query point such that
P ∪{q} is in general position, and q has Tukey depth larger than n/3. Then, one can compute
a log for q of this rank in O(n log n) time.

Proof. Let N = ⌊n/3⌋. Assume q that is the origin, and sort the points of P in counter-
clockwise order, where pi is the ith point in this order, for i = 1, . . . , n. For i = 1, . . . , N ,
let △i = △pipN+ip2N+i. We claim that ∠piqpN+i ≤ π. Otherwise, there is a halfspace
containing fewer than N points induced by the line passing through pi and q. Similarly,
∠pN+iqp2N+i ≤ π and ∠p2N+iqpi ≤ π, so that q lies inside △i, as desired. ◀

▶ Theorem 7. Let P be a set of n points in the plane, let q be a query point such that
P ∪ {q} is in general position, and suppose that k = dTK(q) is the Tukey depth of q in P .
Then one can compute the Tukey depth k of q, along with a log of rank τ = min(⌊n/3⌋ , k),
in O(n + k log k) time.

Proof. Compute the Tukey depth of q in O(n+k log k) time, using the algorithm of Lemma 4.
If k ≤ n/3, then compute the log using the algorithm of Lemma 5, and otherwise using the
algorithm of Lemma 6. ◀

The above implies the following theorem of Birch, which predates Tverberg’s theorem.

▶ Theorem 8 ([5]). Let P be a set of n = 3k points in the plane. Then there exists a
partition of P into k vertex-disjoint triangles, such that their intersection is not empty. The
partition can be computed in O(n log n) time.

Proof. A centerpoint of P can be computed in O(n log n) time [7]. Such a centerpoint has
Tukey depth at least k, so the algorithm of Lemma 6 partitions P into k triangles. ◀

▶ Remark 9. (A) Note that Tverberg’s theorem in the plane is slightly stronger – it states
that any point set with 3k − 2 points has Tverberg depth k. In such a decomposition, some
of the sets may be pairs of points or singletons.

(B) In the colored version of Tverberg’s theorem in the plane, one is given 3n points
partitioned into three classes of equal size. Agarwal et al. [3] showed how to compute a
decomposition into n triangles covering a query point, where every triangle contains a vertex
of each color (if such a decomposition exists). This problem is significantly more difficult,
and their running time is a prohibitive O(n11).

2.3 Miller and Sheehy’s algorithm
Here, we review Miller and Sheehy’s [23] approximation algorithm for computing a Tverberg
point before describing our improvement.
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Radon partitions

Radon’s theorem states that a set P of d + 2 points in Rd can be partitioned into two disjoint
subsets P1, P2 such that CH(P1) ∩ CH(P2) ̸= ∅. This partition can be computed via solving
a linear system in d + 2 variables in O(d3) time. A point in this intersection (which is an
immediate byproduct of computing the partition) is a Radon point.

Let p be a point in Rd. It is a convex combination of points {p1, . . . , pm} if there are
α1, . . . , αm ∈ [0, 1] such that p =

∑m
i=1 αipi and

∑
i αi = 1.

▶ Lemma 10 ([23, 17]: Sparsifying conv. combination). Let p be a point in Rd, and let
P = {p1, . . . , pm} ⊆ Rd be a point set. Furthermore, assume that we are given p as a convex
combination of points of P . Then, one can compute a convex combination representation of
p that uses at most d + 1 points of P . This takes O(md3) time.

▶ Lemma 11 ([23, 17]). Given d + 2 sites (p1, ℓ1), . . . , (pd+2, ℓd+2) of rank r in Rd, where
the logs ℓi are disjoint, one can compute a site (p, ℓ) of rank 2r in O(rd5) time.

A recycling algorithm for computing a Tverberg point

The algorithm of Miller and Sheehy maintains a collection of sites. Initially, it converts
each input point p ∈ P into a site (p, {p}) of rank one. The algorithm then merges d + 2
sites of rank r into a site of rank 2r, using Lemma 11. Before the merge, the input logs use
r(d + 2)(d + 1) points in total. After the merge, the new log uses only 2(d + 1)r points. The
algorithm recycles the remaining (d + 2)(d + 1)r − 2(d + 1)r = d(d + 1)r points by reinserting
them into the collection as singleton sites of rank one. When no merges are available, the
algorithm outputs the maximum-rank site as the approximate Tverberg point.

Analysis

For our purposes, we need a slightly different way of analyzing the above algorithm of Miller
and Sheehy [23], so we provide the analysis in detail.

Let 2h be the rank of the output site. The number of points in all the logs is n. Since a
site of rank 2i has at most (d + 1)2i points of P in its log, and there are at most d + 1 sites
of each rank, n is at most

∑h
i=0(d + 1)22i. As such,

n ≤
h∑

i=0
(d+1)22i = (d+1)2(2h+1 −1) ⇐⇒ n

(d + 1)2 +1 ≤ 2h+1 =⇒ 2h ≥
⌈

n

2(d + 1)2

⌉
.

(2.1)

Every site in the collection is associated with a history tree that describes how it was
computed. Thus, the algorithm execution generates (conceptually) a forest of such history
trees, which is the history of the computation.

▶ Lemma 12. Let 2h be the maximum rank of a site computed by the algorithm. The total
number of sites in the history that are of rank (exactly) 2h−i is at most (d + 2)i+1 − 1.

Proof. There are at most T (0) = d + 1 nodes of rank 2h−0 in the history, and each has d + 2
children of rank 2h−1. In addition, there might be d + 1 trees in the history whose roots have
rank 2h−1. Thus, T (1) = d + 1 + (d + 2)T (0). By induction, there are at most

T (i) = d + 1 + (d + 2)T (i − 1) = (d + 2)i+1 − 1

nodes in the history of rank 2h−i. ◀
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▶ Lemma 13. Let 2h be the maximum rank of a site computed by the algorithm. The total
amount of work spent (directly) by the algorithm (throughout its execution) at nodes of rank
≥ 2h−i is O(d4+in). In particular, the overall running time of the algorithm is O(d4n1+log2 d).

Proof. There are at most (d + 2)i+1 nodes of rank 2h−i in the history. The rank of such
a node is ri = O( n

2i+1(d+1)2 ), and the amount of work spent in computing the node is
O(rid

6) = O
(
d4n/2i

)
. As such, the total work in the top i ranks of the history is proportional

to Li =
∑i

j=0(d + 2)j · d4n/2j = O(d4+in).
Since h ≤ log2 n, the overall running time is O(Lh) = O(d4+log2 nn) = O(d4n1+log2 d). ◀

3 Improved Tverberg approximation algorithms

3.1 Projections in low dimensions
▶ Lemma 14. Let P be a set of n points in three dimensions. One can compute a Tverberg
point of P of depth n/6 (and the log realizing it) in O(n log n) time.

Proof. Project the points of P to two dimensions, and compute a Tverberg point p and a
partition for it of size n/3. Lifting from the plane back to the original space, the point p lifts
to a vertical line ℓ, and every triangle lifts to a triangle which intersects ℓ. Pick a point q

on this line which is the median of the intersections. Now, pair every triangle intersecting ℓ

above q with a triangle intersecting ℓ below it. This partitions P into n/6 sets, each of size 6,
such that the convex hull of each sets contains q. Within each set, compute at most 4 points
whose convex hull contains q. These points yield the desired log for q of rank n/6. ◀

▶ Remark 15. Lemma 14 seems innocent enough, but to the best of our knowledge, it is the
best one can do in near-linear time in 3D. The only better approximation algorithm we are
aware of is the one suggested by Tverberg’s theorem. It yields a point of Tverberg depth
n/4, but its running time is probably at least O(n13) (see Lemma 2).

As observed by Mulzer and Werner [24], one can repeat this projection mechanism. Since
Mulzer and Werner [24] bottom their recursion at dimension 1, their algorithm computes a
point of Tverberg depth n/2d (in three dimensions, depth n/8). Applying this projection idea
but bottoming at two dimensions, as above, yields a point of Tverberg depth n/(3 · 2d−2).

▶ Lemma 16. Let P be a set of n points in four dimensions. One can compute a Tverberg
point of P of depth n/9 (and the log realizing it) in O(n log n) time.

More generally, for d even, and a set P of n points in Rd, one can compute a point of
depth n/3d/2 in dO(1)n log n time. For d odd, we get a point of depth n/(2 · 3(d−1)/2).

Proof. As mentioned above, the basic idea is due to Mulzer and Werner. Project the four-
dimensional point set onto the plane spanned by the first two coordinates (i.e. “eliminate”
the last two coordinates), and compute a n/3 centerpoint using Theorem 8. Translate the
space so that this centerpoint lies at the origin. Now, consider each triangle in the original
four-dimensional space. Each triangle intersects the two-dimensional subspace formed by
the first two coordinates. Pick an intersection point from each lifted triangle. On this set of
n/3 points, living in this two dimensional subspace, apply again the algorithm of Theorem 8
to compute a Tverberg point of depth (n/3)/3 = n/9. The resulting centerpoint p is now
contained in n/9 triangles, where every vertex is contained in an original triangle of points.
That is, p has depth n/9, where each group consists of 9 points in four dimensions. Now,
sparsify each group into 5 points whose convex hull contains p.

The second part of the claim follows from applying the above argument repeatedly. ◀
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3.2 An improved quasi-polynomial algorithm
The algorithm of Miller and Sheehy is expensive at the bottom of the recursion tree, so we
replace the bottom with a faster algorithm. We use a result of Mulzer and Werner [24]:

▶ Theorem 17 ([24]). Given a set P of n points in Rd, one can compute a site of rank
≥ n/4(d + 1)3 (together with its log) in dO(log d)n time.

Let δ ∈ (0, 1) be a small constant. We modify the algorithm of Miller and Sheehy by
keeping all the singleton sites of rank one in a buffer of free points. Initially, all points are
in the buffer. Whenever the buffer contains at least δn points, we use the algorithm of
Theorem 17 to compute a site of rank ρ ≥ δn/8(d + 1)3, where ρ is a power of two. (If the
computed rank is too large, we throw away entries from the log until the rank reaches a
power of two.) We insert this site into the collection of sites maintained by the algorithm.
As in Miller and Sheehy’s algorithm, we repeatedly merge d + 2 sites of the same rank to get
a site of double the rank. In the process, the points thrown out from the log are recycled
into the buffer. Whenever the buffer size exceeds δn, we compute a new site of rank ρ. This
process stops when no sites can be merged and the number of free points is less than δn.

▶ Theorem 18. Given a set P of n points in Rd, and a parameter δ ∈ (0, 1), one can
compute a site of rank at least (1−δ)n

2(d+1)2 (together with its log) in dO(log(d/δ))n time.

Proof. When the algorithm above stops, there are at least (1−δ)n points in its logs. Arguing
as in Eq. (2.1), the output site has rank

2h ≥ (1 − δ)n
2(d + 1)2 .

We now consider runtime. The algorithm maintains only nodes of rank ρ ≥ 2h−H , where

H =
⌈

log2
2h

ρ

⌉
≤

⌈
log2

n/2(d + 1)2

δn/8(d + 1)3

⌉
= 1 + log2

4(d + 1)
δ

= O(log(d/δ)).

The total work spent on merging nodes with these ranks is equivalent to the work in Miller
and Sheehy’s algorithm for such nodes. By Lemma 13, the total work performed is O(d4+Hn).

As for the work associated with the buffer, observe that Theorem 17 is invoked (d + 2)H+1

times (this is the number of nodes in the history of rank 2h−H). Each invocation takes
dO(log d)n time, so the total running time of the algorithm is

dO(H)n + (d + 1)H+1dO(log d)n = dO(log(d/δ))n. ◀

3.3 A strongly polynomial algorithm
▶ Lemma 19. Let P be a set of n points in Rd. For N = Θ(d2 log d), consider a random
coloring of P by k = ⌊n/N⌋ colors, and let {P1, . . . , Pk} be the resulting partition of P . With
probability ≥ 1 − k/dO(d), this partition is a Tverberg partition of P .

Proof. Let ε = 1/(d + 1). The VC dimension of halfspaces in Rd is d + 1 by Radon’s theorem.
By the ε-net theorem [18, 15], a sample from P of size

N =
⌈

8(d + 1)
ε

log(16(d + 1))
⌉

= Θ(d2 log d)

is an ε-net with probability ≥ 1 − 4
(
16(d + 1)

)−2(d+1). Then P1, . . . , Pk are all ε-nets with
the probability stated in the lemma.
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Now, consider the centerpoint q of P . We claim that q ∈ CH(Pi), for all i. Indeed,
assume otherwise, so that there is a separating hyperplane between q and some Pi. Then the
halfspace induced by this hyperplane that contains q also contains at least εn points of P ,
because q is a centerpoint of P . But this contradicts that Pi is an ε-net for halfspaces. ◀

▶ Lemma 20. Let P be a set of n points in Rd. For N = O(d3 log d), consider a random
coloring of P by k = ⌊n/N⌋ = Ω( n

d3 log d ) colors, and let {P1, . . . , Pk} be the resulting partition
of P . One can compute, in O(d7 log6 d) time, a Tverberg point that lies in

⋂
i CH(Pi). This

algorithm succeeds with probability ≥ 1 − k/dO(d).

Proof. Compute a 1/(2d2)-centerpoint q for P using the algorithm of Har-Peled and Jones
[16], and repeat the argument of Lemma 19 with ε = 1/(2d2). With the desired probability,
q ∈ CH(Pi) for all i. ◀

3.4 A weakly polynomial algorithm
Let TLP(n, m) be the time to solve an LP with n variables and m constraints. Using interior
point methods, one can solve such LPs in weakly polynomial time. The fastest known method
runs in Ow(mn + n3) [29] or Ow(mn3/2) [20], where Ow hides polylogarithmic terms that
depends on n, m, and the width of the input numbers.

▶ Remark 21. The error of the LP solver, see [29], for a prescribed parameter ε, is the
distance of the computed solution from an optimal one. Specifically, let R be the maximum
absolute value of any number in the given instance. In O((nm + n3) logO(1) n log(n/ε)) time,
the LP solver can find an assignment to the variables which is E close to complying with
the LP constraints, where E ≤ εnmR [29]. That is, the LP solver can get arbitrarily close
to a true solution. This is sufficient to compute an exact solution in polynomial time if the
input is made out of integer numbers with polynomially bounded values, as the running time
then depends on the number of bits used to encode the input. We use Ow(·) to denote such
weakly polynomial running time.

▶ Lemma 22 (Carathéodory via LP). Given a set P of n points in Rd and query point q, one
can decide if q ∈ CH(P ), and if so, output a convex combination of d + 1 points of P that is
equal to q. The running time of this algorithm is O(TLP(n, n + d) + nd3) = Ow(nd + nd3).

Alternatively, one can compute such a point in 2O(
√

d log d) + O(d2n) time.

Proof. We write the natural LP for representing q as a point in the interior of CH(P ). This
LP has n variables (one for each point), and n + 2d + 2 constraints (all variables are positive,
the points sum to q, and the coefficients sum to 1), where an equality constraint counts as
two constraints. If the LP computes a solution, then we can sparsify it using Lemma 10.

The alternative algorithm writes an LP to find a hyperplane separating q from P . First,
it tries to find a hyperplane which is vertically below P and above q. This LP has d variables,
and it can be solved in O(2

√
d log d + d2n) time [27, 10, 21]. If there is no such separating

hyperplane, then the algorithm provides d points whose convex hull lies below q and tries
again. This time, it computes a separating hyperplane below q and above P . Again, if no
such separating hyperplane exists, then the algorithm returns d points whose convex hull
lies above q. The union of the computed point sets above and below q contains at most 2d

points. Now, write the natural LP with 2d variables as above, and solve it using linear-time
LP solvers in low dimensions. This gives the desired representation. ◀
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▶ Remark 23. Rolnick and Soberón [26] achieved a result similar to that of Lemma 22, but
they used binary search to find the d + 1 coefficients in the minimal representation. Thus
their running time is O(TLP(n, n + d)d log n).

Using Lemma 19, we get the following.

▶ Lemma 24. Let P be a set of n points in Rd. For N = O(d2 log d), one can compute a site
q of rank k = n/O(d2 log d) in Ow(n5/2 + nd3) time. The algorithm succeeds with probability
≥ 1 − k/dO(d).

Proof. We compute a Tverberg partition using Lemma 19. Next we write an LP for computing
an intersection point q that lies in the interior of the k = n/O(d2 log d) sets. This LP has
O(n + d) constraints and n variables, and it can be solved in Ow(n5/2) time [20]. We then
sparsify the representations over each of the k sets. This requires O(d2 log d · d3) time per
set and hence O(nd3) time overall. The result is a site q with a log of rank k, as desired. ◀

▶ Theorem 25. Given a set P of n points in Rd, and a parameter δ ∈ (0, 1), one can
compute a site of rank at least (1−δ)n

2(d+1)2 (together with its log) in dO(log log(d/δ))Ow(n5/2) time.

Proof. We modify the algorithm of Theorem 18 to use Lemma 24 to compute a Tverberg
point on the points in the buffer. Since the gap between the top rank of the recursion tree
and rank computed by Lemma 24 is O(log(d/δ)), it follows that the algorithm uses only the
top O(log log(d/δ)) levels of the recursion tree, and the result follows. ◀

3.5 Faster approximation in low dimensions
▶ Lemma 26. Let P be a set of n points in Rd, and let δ ∈ (0, 1) be some parameter.
One can compute a Tverberg point of depth ≥ (1 − δ)n/d(d + 1), together with its log, in
O(dO(d)/δ2(d−1) + 2O(

√
d log d)n + d2n log2 n) time. The algorithm succeeds with probability

close to one.

Proof. Let ε = 1/2(d + 1), and let R be a random sample from P of size

m = O(dε−1δ−2 log ε−1) = O(d2δ−2 log d).

This sample is a (ε, δ)-relative approximation for P with probability close to one [14].
Compute a centerpoint c for the sample using “brute force” in O(md−1) time [7]. Now,
repeatedly use the algorithmic version of Carathéodory’s theorem (Lemma 22) to extract a
simplex that contains c. One can repeat this process ⌊n/d(d + 1)⌋ times before getting stuck,
since every simplex contains at most d points in any halfspace passing through c. Naively,
the running time of this algorithm is 2O(

√
d log d)n2.

However, one can do better. The number of simplices extracted by the above algorithm
is L = ⌊n/d(d + 1)⌋. For i = 1, . . . L, let bi = ⌊n/(d + 1)⌋ − d(i − 1) be a lower bound on
the Tukey depth of c at the beginning of the ith iteration of the above extraction algorithm.
At this moment, the point set has ni = n − (d + 1)(i − 1) ≥ n/2 points. Hence the relative
Tukey depth of c is εL−i = bL−i/nL−i. In particular, an εi-net Ri for halfspaces has size
ri = O( d

εi
log 1

εi
). If ri is larger than the number of remaining points, then the sample consists

of the remaining points of P . The convex hull of such a sample contains c with probability
close to one, so one can apply Lemma 22 to Ri to get a simplex that contains P (if the
sample fails, then the algorithm resamples). The algorithm adds the simplex to the output
log, removes its vertices from P , and repeats.
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Since the algorithm invokes Lemma 22 O(n/d2) times, the running time is bounded by
2O(

√
d log d)n/d2 + O(d2 ∑

i ri). Since nL−i ≥ n/2 and bL−i ≥ i · d, we have that εL−i ≥
(id/(n/2) = 2id/n. Therefore,

∑
i

ri = O(n) +
L−1∑
i=1

rL−i = O(n) +
L−1∑
i=1

O

(
dn

2id
log n

id

)
= O(n log2 n). ◀
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A Tukey depth in two dimensions

Restatement of Lemma 4. Given a set P of n points in the plane and a query point q, such
that P ∪ {q} is in general position, one can compute, in O(n + k log k) time, the Tukey depth
k of q in P . The algorithm also computes the halfplane realizing this depth.

Proof. In the dual, q⋆ is a line, and the task is to find a point on this line which minimizes
the number of lines of P ⋆ (i.e., set of lines dual to the points of P ) strictly below it. More
precisely, one has to also solve the upward version, and return the minimum of the two
solutions. Handling the downward version first, every point p ∈ P has a dual line p⋆. The
portion of q⋆ that lies above p⋆ is a closed ray on q⋆. As such, we have a set of rays on
the line (which can be interpreted as the x-axis), and the task is to find a point on the
line contained in the minimum number of rays. (This is known as linear programming with
violations in one dimension.)

Let R Z⇒ (resp. L⇐\) be the set of points that corresponds to heads of rays pointing to the
right (resp. to the left) by P ⋆ on q⋆. Let Ri be the set of

⌊
n/2i
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rightmost points of R Z⇒, for

i = 0, . . . , h = ⌊log2 n⌋. Using median selection, each set Ri can be computed from Ri−1 in
|Ri−1| time. As such, all these sets can be computed in

∑
i O(n/2i) = O(n) time. The sets

L0, L1, . . . , Lh are computed in a similar fashion. For all i, we also compute the rightmost
point ri−1 of Ri−1 \ Ri (which is the rightmost point in R \ Ri). Similarly, li is the leftmost
point of Li−1 \ Li, for i = 1, . . . , h. Let r0 (resp. l0) be the rightmost (resp. leftmost) point
of R0 (resp. L0).
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Now, compute the maximum j such that rj is to the left of lj . Observe that (R \ Rj) ∪
(L \ Lj) form a set of rays that their intersection is non-empty (i.e., feasible). Similarly, the
set of rays (R \ Rj+1) ∪ (L \ Lj+1) is not feasible, and any set of feasible rays must be created
by removing at least |Rj+1| = |Lj+1| =

⌊
n/2j+1⌋

rays from R Z⇒ ∪ L⇐\. Hence, in linear time,
we have computed a 4-approximation to the minimum number of rays that must be removed
for feasibility. In particular, if S is a set of rays such that (R Z⇒ ∪ L⇐\) \ S is feasible, then
(Rj−1 ∪ Lj−1) \ S is also feasible. Namely, if the minimum size of such a removeable set S is
k, then we have computed a set of O(k) rays, such that it suffices to solve the problem on
this smaller set.

In the second stage, we solve the problem on Rj−1 ∪ Lj−1. We first sort the points, and
then for each point in this set, we compute how many rays must be removed before it lies in
the intersection of the remaining rays. Given a location p on the line, we need to remove all
the rays of Rj−1 (resp. Lj−1) whose heads lie to the right (resp. left) of p. This can be done
in O(k log k) time by sweeping from left to right and keeping track of the rays that need to
be removed.

As such, we can solve the LP with violations on the line in O(n + k log k) time, where k

is the minimum number of violated constraints. A 4-approximation to k can be computed in
O(n) time.

Now we return to the Tukey depth problem. First we compute a 4-approximation, denoted
by k̃↓, for the minimum number of lines crossed by a vertical ray shot down from a point on
q⋆. Similarly, we compute k̃↑. If 4k̃↓ < k̃↑, then we compute k↓ exactly and return the point
on q⋆ that realizes it. (In the primal, this corresponds to a closed halfspace containing q

along with exactly k↓ points of P .) Similarly, if k̃↓ > 4k̃↑, then we compute k↑ exactly, and
return it as the desired solution. In the remaining case, we compute both quantities and
return the minimum of the two. ◀

B Tverberg partitions in two dimensions

Restatement of Lemma 5. Let P be a set of n points in the plane, let q be a query point
such that P ∪ {q} is in general position, and suppose that k = dTK(q) ≤ n/3. Then one can
compute a log for q of rank k in O(n + k log k) time.

Proof. Using the algorithm of Lemma 4, compute the Tukey depth of q and the closed
halfplane h+ realizing it, where q lies on the line h bounding h+. This takes O(n + k log k)
time. By translation and rotation, we can assume that q is the origin and h is the x-axis.
Let P + = P ∩ h+ be the k points realizing the Tukey depth of q, and let P − = P \ P + be
the set of points below the x-axis, so that |P −| = n − k ≥ 2k.

Consider the counterclockwise order of the points of P − starting from the negative side
of the x-axis. Let T be the set containing the first and last k points in this order, computed
in O(n) time by performing median selection twice. Let T = {t1, . . . , t2k} be the points of T

sorted in counterclockwise order. Similarly, let P + = {p1, . . . , pk} be the points of P + sorted
in counterclockwise order starting from the positive side of the x-axis, see Figure B.1.

Let △i = △pititk+i, for i = 1, . . . , k. We claim that q ∈ △i for all i. To this end, let ℓi

be the line passing through the origin and pi, and let ℓ+
i denote the halfspace it induces to

the left of the vector −→qpi. Then ℓ+
i must contain ti, as otherwise,

∣∣P ∩ ℓ+
i

∣∣ < k, contradicting
the Tukey depth of q. Namely, the segment piti intersects the negative side of the x-axis. A
symmetric argument, applied to the complement halfplane, implies that the segment tk+ipi

intersects the positive side of the x-axis. Then the origin q is contained in △i, as claimed.
Computing these triangles, we have found a log for q of rank k in O(n + k log k) time. ◀
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Figure B.1 Illustration of the proof of Lemma 5.
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Abstract
Let G be a graph and S, T ⊆ V (G) be (possibly overlapping) sets of terminals, |S| = |T | = k. We
are interested in computing a vertex sparsifier for terminal cuts in G, i.e., a graph H on a smallest
possible number of vertices, where S ∪ T ⊆ V (H) and such that for every A ⊆ S and B ⊆ T the size
of a minimum (A, B)-vertex cut is the same in G as in H. We assume that our graphs are unweighted
and that terminals may be part of the min-cut. In previous work, Kratsch and Wahlström (FOCS
2012/JACM 2020) used connections to matroid theory to show that a vertex sparsifier H with O(k3)
vertices can be computed in randomized polynomial time, even for arbitrary digraphs G. However,
since then, no improvements on the size O(k3) have been shown.

In this paper, we draw inspiration from the renowned Bollobás’s Two-Families Theorem in
extremal combinatorics and introduce the use of total orderings into Kratsch and Wahlström’s
methods. This new perspective allows us to construct a sparsifier H of Θ(k2) vertices for the case
that G is a DAG. We also show how to compute H in time near-linear in the size of G, improving on
the previous O(nω+1). Furthermore, H recovers the closest min-cut in G for every partition (A, B),
which was not previously known. Finally, we show that a sparsifier of size Ω(k2) is required, both
for DAGs and for undirected edge cuts.
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1 Introduction

Let G = (V, E) be an unweighted, directed graph, and let S, T ⊂ V be sets of terminals, not
necessarily disjoint. In the vertex sparsifier problem, our goal is to construct a smaller graph
H , called a vertex sparsifier, that preserves the cut structure of S, T in G. More precisely, H

includes all vertices in S, T , and for all subsets A ⊆ S and B ⊆ T , the size of the minimum
vertex cut separating A and B is the same in G and H. Here, we allow the min-cut to
contain vertices from A and B; for other notions of cut sparsifiers from the literature, see
related work, below.

A result of Kratsch and Wahlström proved the first bound on the size of a vertex sparsifier
that is polynomial in the number of terminals. When S, T have size k, the vertex sparsifier
has O(k3) vertices. Kratsch and Wahlström’s main insight is to phrase the problem in
terms of constructing representative families on a certain matroid, after which they can
appeal to the rich theory on representative families [19, 16]. Their result, also known as the
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cut-covering lemma in the areas of fixed-parameter tractability and kernelization, has led to
many new algorithmic developments [13, 12, 9, 10]. Nevertheless, despite the recent surge in
applications of the cut-covering lemma, the original bound of O(k3) has yet to be improved.

In this paper, we introduce the ordered version of the representative family method,
and use it to give a sparsifier on O(k2) vertices in directed acyclic graphs. This matches
lower bounds of Ω(k2), which we present in Section 4. Furthermore, unlike Kratsch and
Wahlström’s result, our new algorithm runs in near-linear time in the size of the graph,
and preserves all closest min-cuts between subsets of the terminals. In fact, the latter is an
important ingredient in the improved running time; see discussion below. We expect that
covering closest min-cuts may lead to further applications in the theory of kernelization. The
central method we use is the following theorem.

▶ Theorem 1. Suppose F is a family of subsets of Fd for some field F and for all B ∈ F ,
|B| = s. Let

A = {A ⊆ Fd | |A| ≤ r and ∃B ∈ F s.t. A ⊎ B is linearly independent}.

Fix any ordering σ of F , namely F = {B1, B2, . . . , Bn}, and suppose d ≥ r + s. Then there
exists B ⊆ F , B = {Bi1 , Bi2 , . . . , Bim} where i1 < i2 < . . . < im, such that
(a) For all A ∈ A, there exists Bik

∈ B where A⊎Bik
is independent and for all j ∈ [n], j > ik,

A⊎Bj is dependent. Note that Bj is not necessarily in B. Here ⊎ denotes disjoint union,
which particularly implies that if A and B are not disjoint, then A ⊎ B is a multi-set
and therefore dependent.

(b) m ≤
(

d
s

)
, and we can find B algorithmically using O(

(
d
s

)
nsω +

(
d
s

)ω−1
n) field operations

over F (in particular, in a number of operations linear in |F|).

The condition that A ⊎ Bj is required to be dependent only for j > ik, as opposed to
A ⊎ Bj being dependent for every j ̸= ik, recalls the skew version of Bollobás’s two-families
theorem, proven by Frankl [8].

Technically, this version is equivalent to the weighted version of the representative family
method shown by Fomin et al. [6]. In that version, every element X ∈ F has a weight w(X),
and condition a is replaced by the condition that w(Bik

) is maximal among all sets Bj such
that A ⊎ Bj is independent. Indeed, given σ we can simply use w(Bj) = j, and conversely
any input where all the weights are distinct enforces a corresponding total ordering on the
elements1. However, the difference in focus between weights and an ordering is significant,
as a total element ordering can carry semantic meaning that is obscured when implemented
using weights.

Applying Theorem 1 to vertex cut sparsifiers, we obtain the main result of this paper.

▶ Theorem 2. Given a directed acyclic graph G = (V, E) with terminal sets S, T of size k,
we can find a vertex cut sparsifier of G of size Θ(k2) algorithmically in time Õ((m+n)kO(1)).

Our proof initially follows that of Kratsch and Wahlström [13]. Like Kratsch and
Wahlström, we compute a “cut-covering set”, i.e., a set Z ⊆ V (G) such that for every A ⊆ S

and B ⊆ T there is an (A, B)-min cut C with C ⊆ Z. However, Kratsch and Wahlström’s
result is based around essential vertices, i.e., vertices v ∈ V (G) that must be included in any

1 In the first version of this paper, we presented a proof of Theorem 1 that runs in polynomial time. It was
later pointed out to us that this theorem is equivalent to Theorem 3.7 in [6], which runs in near-linear
time. We thereby refer the readers to the proof in [6], as our proof shares similar underlying ideas with
theirs.
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cut-covering set. Using the unordered version of Theorem 1 (see Lemma 1.1 of [11]), they
compute a set X of O(k3) vertices which is guaranteed to include all essential vertices in G.
They then eliminate one vertex not in X, recompute the representative family, and repeat
until exhaustion. This gives a superlinear running time and a final bound of |Z| = O(k3).
This iterative process for computing Z was required because the initial set X could not be
guaranteed to contain all vertices of any (A, B)-min cut C, unless that min-cut happens to
be unique (i.e., consist only of essential vertices).

We use Theorem 1 to improve over this in two ways. By using the additional power
of an ordering, we reduce the bound from |Z| = O(k3) to |Z| = O(k2) when G is a DAG.
Furthermore, instead of covering some arbitrary min-cut for every pair (A, B), we observe
that our construction guarantees that Z contains the unique closest (A, B)-min cut to A,
i.e., that mincut C for which the set of vertices reachable from A is minimized. This is an
interesting consequence that was not previously known, but additionally, it allows us to
significantly improve the running time required to compute a cut-covering set. Since the
output of Theorem 1 contains all vertices of the closest (A, B)-min cut C for every (A, B),
we can compute a cut-covering set Z with a single application of Theorem 1, eliminating the
iterative nature of [13] and improving the running time of the procedure.

Finally, to achieve a linear running time, one more obstacle must be overcome. In order
to apply Theorem 1, we need to compute a representation for the matroids underlying the
result, known as gammoids, in time linear in n + m. The usual method for representing
gammoids goes via the class of transversal matroids, however, this requires taking the inverse
of an n × n matrix. Luckily, we observe that an older construction of Mason [17] can be used
to represent gammoids more efficiently over DAGs; see Lemma 10. This allows us to compute
Z in time linear in n + m, and computing the final sparsifier H is then a simple task.

We also show that there are graphs G with k terminals such that any cut sparsifier H

requires Ω(k2) vertices, both when H is a directed vertex cut sparsifier for a DAG G, and
when H is an undirected edge cut sparsifier for an undirected graph G.

Related work. Several different notions of cut sparsifiers have been considered, as well
as vertex sparsifiers for other problems. Vertex cut sparsifiers were first introduced by
Moitra [18] in the setting of approximation algorithms; see also [15, 2, 4]. Recently, they
have found applications in fast graph algorithms, especially in the dynamic setting [5, 1, 3].
Compared to our setting, many of these results replicate min-cuts only approximately, rather
than exactly, and most apply only to undirected edge cuts. On the other hand, in the general
case (e.g., when working with edge cuts or when terminals are not deletable), there is an
important distinction between parameterizing by the number of terminals and the total
terminal capacity. Our setting, with deletable terminals, corresponds to parameterizing edge
cuts by the total capacity of the terminal set. Previous results for this setting include Kratsch
and Wahlström [13] discussed above and Chuzhoy [4], as well as recent results on terminal
multicut sparsification [20]. By contrast, parameterizing by the number of terminals in a
setting where terminals have unbounded capacity makes for a much harder sparsification
task, and this is the setting that has been most commonly considered in approximation
algorithms. Indeed, it is known that any exact cut sparsifier for k terminals with unbounded
capacity needs to have at least exponential size in k, and possibly double-exponential [14].
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2 Preliminaries

Throughout the paper, all graphs are directed and unweighted. We begin with standard
terminology on cuts and cut sparsifiers.

▶ Definition 3 (Vertex Cut). Given a directed unweighted graph G = (V, E) with sets
X, Y ⊆ V , a set C ⊆ V is a vertex cut of (X, Y ) if after removing C from G, there does not
exist a path from a vertex in X to a vertex in Y . We denote the size of a minimum vertex
cut between X, Y in G as mincutG(X, Y ).

▶ Definition 4 (Vertex Cut Sparsifier). Consider a directed unweighted graph G = (V, E) with
sets S, T ⊆ V . A directed unweighted graph H = (V ′, F ) is a vertex cut sparsifier of G if
(a) S, T ⊆ V ′.
(b) For all X ⊆ S, Y ⊆ T , mincutG(X, Y ) = mincutH(X, Y ).

The problem we consider in this paper is the minimum size of a vertex sparsifier.

▶ Problem 5 (Minimum Vertex Cut Sparsifier). Given a directed unweighted graph G = (V, E)
with terminal sets S, T ⊆ V , what is the minimum number of vertices in a vertex cut sparsifier
of G?

Kratsch and Wahlström [13] obtained a bound for this problem of O(k3) vertices, where
|S| = |T | = k. Their application was in the fixed-parameter tractability setting, specifically
in constructing kernels for cut-based problems. Our proof utilizes similar matroid-theoretic
techniques as in their work. We introduce these techniques next.

▶ Definition 6 (Matroid). Given a finite ground set E, a set system M = (E, I) where
I ⊆ P(E) is called a matroid if
(a) ∅ ∈ I.
(b) For X, Y ⊆ E, if Y ∈ I and X ⊆ Y , then X ∈ I.
(c) If X, Y ∈ I and |X| < |Y |, then there exists y ∈ Y \ X such that X ∪ {y} ∈ I.

Central to our proof is the use of gammoids and their representations.

▶ Definition 7 (Gammoid). Given a graph G = (V, E) and a subset of vertices S (which
we refer to as the “source vertices”), the gammoid on S is the matroid M = (V, I) where I

contains all subsets T ⊆ V such that there exist |T | vertex-disjoint paths from S to T in G.

▶ Definition 8 (Matroid disjoint union). Given two matroids on disjoint ground sets, their
matroid disjoint union is the matroid whose ground set is the union of their ground sets, and
a set is independent if the corresponding part in each matroid is independent.

▶ Definition 9 (Representable matroid). Given a field F , a matroid M = (E, I) is represent-
able over F if there exists a matrix A over the field F and a bijective mapping from E to the
columns of A, such that a set S ⊆ E is independent if and only if its corresponding set of
columns of A are linearly independent.

In particular, it is well known in matroid theory that gammoids are representable in
randomized polynomial time; see Marx [16]. However, to control the running time, we revisit
an older representation by Mason [17], and note that it leads to a representation in near-linear
time in |V | + |E| on DAGs. (Proofs of results marked ⋆ are deferred to the full version of
this paper.)
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▶ Lemma 10 (⋆ Construction of Gammoid Representation on DAGs). Given a directed
acyclic graph G = (V, E), a set S ⊆ V , and ε > 0, with |V | = n, |E| = m and |S| = k, a
representation of the gammoid on S of dimension k over a finite field with entries of bit
length ℓ = O(k log n + log(1/ε)) can be constructed in randomized time Õ((n + m)kℓ) with
one-sided error at most ε, where Õ hides factors logarithmic in ℓ.

We also note that the disjoint union of two representable matroids is representable. Given
these definitions, we now present the main arguments of this paper.

3 Vertex Cut Sparsifier for DAGs

In this section, we prove our main result, Theorem 2. We first borrow the following key
concepts from Kratsch and Wahlström [13].

▶ Definition 11 (Essential Vertex). A vertex v ∈ V \ (S ∪ T ) is called essential if there exist
X ⊆ S, Y ⊆ T such that v belongs to every minimum vertex cut between X, Y .

▶ Definition 12 (Neighborhood Closure). For a digraph G = (V, E) and a vertex v ∈ G, the
neighborhood closure operation is defined by removing v from G and adding an edge from
every in-neighbor of v to every out-neighbor of v. The new graph is denoted by clv(G).

▶ Definition 13 (Closest Set). For sets of vertices X, A ⊆ V , A is closest to X if A is the
unique min-cut between X and A.

We introduce the following definitions to simplify our discussions.

▶ Definition 14. For sets X ⊆ S, Y ⊆ T , let C be a vertex cut for X, Y . Let G′ be the
subgraph formed by the union of all paths from X to Y . The left-hand side of C, denoted
L(C), is the set of vertices that are still reachable from X in G′ after C is removed. Similarly,
the right-hand side of C, denoted R(C), is the set of vertices that can still reach Y in G′

after C is removed.

▶ Definition 15 (Saturation). Let C be a vertex cut for X ⊆ S, Y ⊆ T . For a vertex v ∈ C,
we say that (C, v) is saturated by X if there exist |C| + 1 paths from X to C that are vertex
disjoint except for two paths that both ends at v. Similarly, (C, v) is saturated by Y if there
exist |C| + 1 paths from C to Y that are vertex disjoint except for two paths that both start
at v.

The following three lemmas follow from [13, Section 5.1]. Their proofs, as presented in
[13] and Chapter 11.6 of [7], are included in the Appendix for completeness.

▶ Lemma 16 (Essential Vertex Lemma). Let v be an essential vertex with respect to X ⊆ S,
Y ⊆ T . Let C be any minimum vertex cut between X, Y . Then (C, v) is saturated by both X

and Y .

▶ Lemma 17 (Closure Lemma). If v ∈ V \ (S ∪ T ) is not an essential vertex, then clv(G) is
a vertex cut sparsifier of G.

▶ Lemma 18 (Closest Cut Lemma). Let C be a vertex cut for X ⊆ S, Y ⊆ T that is closest
to X (resp. Y ), then for all vertices v ∈ C, (C, v) is saturated by X (resp. Y ).

Using the saturation properties of essential vertices (as in Lemma 16), Kratsch and Wahl-
ström presented a construction of matroids which, combined with the unordered version of
Theorem 1, computes a set of vertices P of size O(k3) that contains all the essential vertices.
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They then apply Lemma 17 iteratively to any one vertex not in P and repeat the process.
The repetition is required since Lemma 17 may change the essential vertices of the graph.

In our proof, instead of marking only essential vertices we consider all vertices on closest
min-cuts. These have weaker saturation properties than essential vertices (as in Lemma 18),
but these weaker properties suffice thanks to the ordering imposed in Theorem 1. This
ordering, when applied to the topological ordering of a DAG, allows us to mark all vertices of
closest min-cuts in a single application of Theorem 1, which eliminates the iterative nature
of the previous result. This intuition will be made clear in the following discussion.

We now present our construction, which results in Theorem 2.

▶ Theorem 19. For a directed acyclic graph G = (V, E) with terminal sets S and T , let
k = |S ∪ T |. Then there exists a set of vertices P of size O(k2) such that for each pair of
X ⊆ S, Y ⊆ T , the min-(X, Y ) cut that is closest to Y is contained in P . This set can be
found in time Õ(nk2ω−1 + mk2), and a sparsifier on P can then be constructed in the same
asymptotic running time.

Proof. Let GR = (V, ER) be the graph G with the direction of all edges reversed. We make
the following modification to our graphs G, GR. For each vertex v ∈ V \ (S ∪T ), add a vertex
v′ into V and for each directed edge (u, v) ∈ E, add (u, v′) into E. We refer to v′ as the
sink-only copy of v. Denote this new directed graph G′ = (V ′, E′), we add sink-only copies
of vertices to GR and obtain G′

R = (V ′, E′
R). Note that G′, G′

R are both acyclic. Enumerate
V in a reverse topological ordering, namely V = (v1, v2, · · · , vn) where vi cannot reach any
vj for j > i.

Let M1 = (E1, I1) be the gammoid constructed on the graph G and the set of terminals
S in G, and let M2 = (E2, I2) be the gammoid constructed on the graph G′

R and the set of
terminals T in G′

R. To distinguish between vertices of E1 and E2, we label vertices in E1
as v1, . . . , vn, and elements in E2 as v1, . . . , vn, v1

′, . . . , vn
′. Note that E1 does not contain

sink-only copies. For any set of vertices U ⊆ V , denote the respective sets in E1 and E2 as
U1 and U2. Let M be the disjoint union of matroids M1 and M2, so M is representable and
it has rank O(k).

Observe that for any X ⊆ S, Y ⊆ T , the min-cuts between X and Y in G are the same
as in G′ because the vertex copies v′ we added to G have no outgoing edges. Therefore, G

and G′ have the same set of closest cuts. We now consider the following constructions. For a
min-cut C between X, Y that is closest to Y , and a vertex v ∈ C, define

A(C,v) = [(S1 \ X1) ∪ (C1 \ {v})] ∪ [(T2 \ Y2) ∪ C2].

Let Ã consist of A(C,v) for all such cut-vertex pairs. Define

F = {Bv = {v, v′} | v ∈ V }.

We pause for a moment to explain the ideas behind these definitions. First of all, note that
the algorithm in Theorem 1 only takes as input a family F . Intuitively, one should think of
the sets in F as answers to potential queries, and the sets in A (defined in Theorem 1) as all
queries answered by F . As we will show, the family of queries Ã we defined is a subset of A.
If we can further show that for each v in a closest min-cut C, Bv is the unique answer that
the algorithm will find for query A(C,v), then we know that the output of the algorithm must
contain all vertices of all closest min-cuts, because all queries in A ⊇ Ã must be answered.

More specifically, for each query A(C,v), Theorem 1 promises to find the answer Bu to
A(C,v) (which means A(C,v) ⊎ Bu is independent in M) that is the last answer according to
the reverse topological ordering on F . This means for all w > u, A(C,v) ⊎ Bw is dependent
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in M . Since our goal is for Theorem 1 to output a set containing all vertices on all closest
min-cuts, we want to show that Bv is the last answer in the ordering to A(C,v). This is
precisely captured in the following claim.

▷ Claim 20. For each A = A(C,v), Bv is the unique set in F such that
A ⊎ Bv is independent in M , and
for all u > v in the reverse topological ordering of V , A ⊎ Bu is dependent in M .

Proof. We first show that A ⊎ Bv is independent. Since M is a disjoint union matroid, we
need to show that (A∩E1)⊎{v} = (S1 \X1)∪C1 is independent in M1 and (A∩E2)⊎{v′} =
(T2 \ Y2) ∪ C2 ∪ {v′} is independent in M2.

Since both M1 and M2 are gammoids, we need to show existence of vertex disjoint paths
from S1 to (S1 \ X1) ∪ C1. First note that singleton paths can cover all vertices in S1 \ X1.
Since C1 is a min-cut between X1 and Y1, by duality there exist vertex disjoint paths from
X1 to C1. Therefore (S1 \ X1) ∪ C1 is independent in M1. Similarly, singleton paths can
cover all vertices in T2 \ Y2. It suffices for us to show the existence of vertex disjoint paths
from Y2 to C2 ∪ {v′}.

By Lemma 18, there exist |C2| + 1 paths from Y2 to C2 that are vertex disjoint except for
two paths that both ends at v. Therefore, we can redirect one of these two paths to end at v′,
and we obtain |C2| + 1 vertex disjoint paths from Y2 to C2 ∪ {v′}. This proves independence.

Now fix u > v in the reverse topological ordering, so that there does not exist a path from
v to u. We want to show that either (A ∩ E1) ⊎ {u} is dependent in M1, or (A ∩ E2) ⊎ {u′}
is dependent in M2. Consider four possible cases:

u is not on any path from X to Y . Assume for the sake of contradiction that both
(A ∩ E1) ⊎ {u} and (A ∩ E2) ⊎ {u′} are independent. Then there must exist a path from
X to u and a path from u to Y , which forms a path from X to Y through u (since G is
acyclic), contradiction.
u ∈ L(C) (see Definition 14). Then any path from u to Y (or from Y to u in GR) must
intersect with C, which means there does not exist vertex disjoint paths from Y to C ∪{u}
in GR. Therefore (A ∩ E2) ⊎ {u′} is dependent.
u ∈ R(C). Then any path from X to u must intersect C. Assume for the sake of
contradiction that (A ∩ E1) ⊎ {u} is independent, then there exist vertex disjoint paths
from X to C \ {v} ∪ {u}, which means there is a path from X to u that goes through v.
However, since u > v in the topological ordering, there does not exist paths from v to u.
This is a contradiction, so (A ∩ E1) ⊎ {u} is dependent.
u ∈ C. Then u ∈ (A ∩ E1), which implies (A ∩ E1) ⊎ {u} contains two copies of u.
Therefore it is dependent.

This completes the proof. ◁

We now apply Theorem 1 on F with a reverse topological ordering, and we note that the
family Ã we defined in this proof is a subfamily of A defined in Theorem 1. Let P be
the collection of vertices that Theorem 1 finds. Then by the above claim, for each pair of
X ⊆ S, Y ⊆ T and their min-cut C closest to Y , all vertices in C must be in P . Note that
this also implies that all essential vertices are in P .

To construct the final sparsifier H on P , for each vertex u ∈ P , we run a depth-first
search starting at u on the graph Gu, defined to be G minus the out-edges of vertices in
P \ {u}. For each vertex v ∈ P \ {u} that is reachable from u in Gu, we add an edge (u, v) to
H. Note that this procedure returns the same graph H as the one that sequentially applies
Lemma 17 on all vertices not in P , but achieves a shorter runtime of O(k2m). To see the
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equivalence, observe that in both cases, there is an edge (u, v) in the final sparsifier if and
only if there is a path from u to v in G whose internal vertices are disjoint from P . We
conclude that the output graph H is a valid sparsifier.

For the final running time, note that computing the gammoids takes time Õ((m + n)k2)
by Lemma 10 with ε = 1/nO(1), and computing the representative sets takes time Õ(nk2ω−1)
by taking d = k and s = 2 in Theorem 1. ◀

We make a few remarks regarding this proof. Intuitively, the gammoid M2 and its
respective query A(C,v) ∩ E2 = (T2 \ Y2) ∪ C2 is used to filter out all vertices on the left-hand
side of C, because no vertex in L(C) can reach T without crossing C. The gammoid M1
and its query A(C,v) ∩ E1 = (S1 \ X1) ∪ (C1 \ {v}), however, is different, because the query
itself allows terminals in X to reach the right-hand side of C through v. If we do not impose
a reverse topological ordering on the vertices and use the unordered version of Theorem 1
(Lemma 1.1 in [11]), our proof will fail – there may exists u ∈ R(C) reachable from v such
that A(C,v) ⊎ Bu is independent, and the algorithm may not find Bv as the answer. By
imposing the reverse topological ordering, we demand the algorithm to find the answer last
in the ordering, thereby ensuring the algorithm discovering Bv.

This is the critical difference between our proof and Kratsch and Wahlström’s proof.
In Kratsch and Wahlström’s paper, they presented a construction with three matroids –
one gammoid on G′ and S1 (note that our first gammoid is constructed on G and S1), one
gammoid on G′

R and T2, and one uniform matroid of rank k on V . They then utilized
the property that essential vertices can be saturated from both sides (see Lemma 16) and
constructed queries similar to our definition of A(C,v). Their first (resp. second) gammoid
serves to filter out R(C) (resp. L(C)), and they use the uniform matroid to filter out
vertices u ̸= v ∈ C. We managed to merge their first gammoid and uniform matroid with an
asymmetrical construction, thereby proving a stronger bound.

We finally remark that in our proof, we never explicitly compute the queries A(C,v). As
mentioned previously, the algorithm in Theorem 1 only takes as input the family F , and we
are simply showing that given our construction of F , Ã is a subset of queries answered. If
one can show that another meaningful set of queries are answered by the same F , then they
can derive more properties of the output set of the algorithm (while the output set itself
remains unchanged).

We now present tight lower bound constructions in the following section.

4 Lower Bound Constructions

In this section we present two constructions graphs for which any vertex cut sparsifier
requires Ω(k2) vertices. The first construction is presented by Kratsch and Wahlström [13]
(construction found in arXiv preprint only); note that the graph is a DAG.

▶ Lemma 21 (⋆). Let S and T be two vertex sets of size 2k. Enumerate them as

S = {v1, v′
1, v2, v′

2, · · · , vk, v′
k}, T = {u1, u′

1, u2, u′
2, · · · , uk, u′

k}.

For each i, j ∈ [k], create a vertex wi,j and add edges from vi, v′
i to wi,j, and from wi,j to

uj , u′
j. Any vertex cut sparsifier for the resulting graph requires Ω(k2) vertices.

Next, we show the same bound holds also for edge cut sparsifiers, when both G and its
sparsifier H are undirected. For simplicity, we also restrict ourselves to just one terminal
set T .
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Figure 1 The lower bound construction for k = 6.

T2

Figure 2 The set Ti for i = 2.

▶ Definition 22 ((Undirected) Edge Cut Sparsifier). Consider an unweighted, undirected graph
G = (V, E) with terminal set T ⊆ V . An unweighted, undirected graph H = (V ′, F ) is an
edge cut sparsifier of G if
(a) T ⊆ V ′.
(b) For all disjoint X, Y ⊆ T , emincutG(X, Y ) = emincutH(X, Y ).

Consider the k-by-k grid with leaf terminals attached in Figure 1: begin with a k-by-k
grid of non-terminals, and add the following leaf (degree-1) terminals:
1. one leaf terminal adjacent to each vertex on the top row, called the top terminals,
2. one leaf terminal adjacent to each vertex on the bottom row, called the bottom terminals,
3. one leaf terminal adjacent to each vertex on the left column, called the left terminals, and
4. one leaf terminal adjacent to each vertex on the right column, called the right terminals.
Note that non-terminals on the corner of the grid have two terminals attached. This concludes
the construction of the terminal set T . We now show that any edge cut sparsifier of G, even
with directed edges allowed, has at least k2 vertices. Since G has O(k) terminals, this proves
the quadratic lower bound.

▶ Lemma 23. Any (undirected) edge cut sparsifier of G has Ω(k2) vertices.

For the rest of this section, we prove Lemma 23. For an undirected graph G and a subset
of vertices S, we define ∂GS as the set of edges with exactly one endpoint in S.

Consider a directed sparsifier H with vertex set V ′ ⊇ T . For 0 ≤ i ≤ k, let Ti ⊆ T be
following set of terminals: all of the left terminals, plus the first i top and bottom terminals,
counting from the left (see Figure 2). Let Ci ⊆ V ′ be Ti’s side of the mincut between Ti, T \Ti
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in the sparsifier H, which must have |∂Ci| = |∂(V ′ \ Ci)| = k, since emincutG(Ti, T \ Ti) is
k and H is a sparsifier of G. Similarly, let T ′

i ⊆ T be all the top terminals, plus the first i

left and right terminals, counting from the top, and let Ri ⊆ V ′ be T ′
i ’s side of the mincut

between T ′
i , T \ T ′

i in H, so that |∂Ri| = |∂(V ′ \ Ri)| = k.

▷ Claim 24. Without loss of generality, we may assume that C0 ⊆ C1 ⊆ · · · ⊆ Ck and
R0 ⊆ R1 ⊆ · · · ⊆ Rk.

Proof. We only prove the statement for Ci; the one for Ri follows by symmetry of G. Suppose
for contradiction that Ci \ Ci+1 ̸= ∅. By submodularity,

|∂Ci| + |∂Ci+1| ≥ |∂(Ci ∩ Ci+1)| + |∂(Ci ∪ Ci+1)|.

Since Ci ∩ Ci+1 is a (Ti, T \ Ti)-cut in H and Ci ∪ Ci+1 is a (Ti+1, T \ Ti+1)-cut in H, their
cut values ∂(Ci ∩ Ci+1) and ∂(Ci ∪ Ci+1) are at least k. Therefore,

k + k = |∂Ci| + |∂Ci+1| ≥ |∂(Ci ∩ Ci+1)| + |∂(Ci ∪ Ci+1)| ≥ k + k,

so the inequality must be an equality. It follows that we can replace Ci with Ci ∩ Ci+1, which
is still a (Ti, T \ Ti+1)-cut in H, and we can also replace Ci+1 with Ci ∪ Ci+1. While there
exists an i such that Ci \ Ci+1 ̸= ∅, we perform the replacement; this can only happen a
finite number of times, since the quantity

∑k
i=0 |Ci|2 increases by at least 1 each time and

has an upper limit. ◁

For each 1 ≤ i, j < k, define Si,j ⊆ V ′ as Si,j = (Ci+1 \ Ci) ∩ (Rj+1 \ Rj); see Figure 3a.
Our goal is to prove that Si,j ̸= ∅ for all i, j; since the sets are disjoint over all 1 ≤ i, j ≤ k,
this implies the k2 bound.

▷ Claim 25. There are no edges between Si,j and Si′,j′ for i ̸= i′ and j ̸= j′.

Proof. First, consider some 1 ≤ i, i′, j, j′ ≤ k where i < i′ and j < j′ (see Figure 3a). By
submodularity on the sets Ci+1 and Rj′+1,

|∂Ci+1| + |∂Rj′+1| ≥ |∂(Ci+1 ∩ Rj′+1)| + |∂(Ci+1 ∪ Rj′+1)|.

Since ∂(Ci+1 ∩ Rj′+1) is a (Ti+1 ∩ T ′
j′+1, T \ (Ti+1 ∩ T ′

j′+1))-cut, its value is at least

emincutG(Ti+1 ∩ T ′
j′+1, T \ (Ti+1 ∩ T ′

j′+1)) = (i + 1) + (j′ + 1).

Similarly, |∂(Ci+1 ∪ Rj′+1)| ≥ k − (i + 1) + k − (j′ + 1). It follows that

k + k = |∂Ci+1| + |∂Rj′+1| ≥ |∂(Ci+1 ∩ Rj′+1)| + |∂(Ci+1 ∪ Rj′+1)|
≥ (i + 1) + (j′ + 1) + k − (i + 1) + k − (j′ + 1)
= k + k,

so the inequality must be an equality. It follows that there are no edges between Ci+1 \ Rj′+1
and Rj′+1 \ Ci+1, since those edges would make the submodularity inequality strict. In
particular, there are no edges between Si,j and Si′,j′ .

Finally, the i < i′ and j < j′ assumptions can be removed essentially by symmetry,
replacing Ci+1 by V ′ \ Ci+1 or Rj′+1 by V ′ \ Rj′+1 (or both). ◁
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Ci Ci+1 Ci′ Ci′+1

Rj′

Rj′+1

Rj

Rj+1
Si,j

Si′,j′

(a) The setting for the proof of Claim 25.

Ci Ci+1

Rj+1

Rj+2

Si,j

Si,j′

X

Si,j

Si,j′
Y

(b) The definitions of X and Y , and the different
types of edges that are allowed by Claim 25 and
leave or enter the sets Rj+1, Rj+2, Ci, Ci+1.
The long edges marked in red make the inequal-
ity |∂HX| + |∂HY | ≤ |∂HRj+1| + |∂HRj+2| +
|∂HCi| + |∂HCi+1| strict.

Ci Ci+1

Rj+1

X

Rj+2

(c) The cut and flow that establishes that
emincutG(X ∩ T, T \ X) = 2k. The flow is
drawn in red and dark blue.

Ci Ci+1

Rj

Rj+1

X ′

Y ′

Si,j = ∅

(d) The definitions of X ′ and Y ′. The red edge
makes the submodularity inequality strict.

Figure 3 Figures for Lemma 23.

▷ Claim 26. There are no edges between Si,j and Si,j′ for |j − j′| ≥ 2. Similarly, there are
no edges between Si,j and Si′,j for |i − i′| ≥ 2.

Proof. We first prove the inequality for Si,j and Si,j′ for j′ ≥ j + 2. As shown in Figure 3b,
define X = (Rj+1∩Ci+1)∪((V \Rj+2)∩(V \Ci)) and Y = (Rj+2∩Ci)∪((V ′\Rj+1)∩(V ′\Ci+1).
We now claim the inequality

|∂HX| + |∂HY | ≤ |∂HRj+1| + |∂HRj+2| + |∂HCi| + |∂HCi+1| (1)

by examining each type of edge in Figure 3b and its contribution to both sides of the
inequality:
1. Each edge between Ci ∩ Rj+1 and (Ci+1 \ Ci) ∩ Rj+1 contributes 1 to |∂HY | and 1 to

|∂HCi|.
2. Each edge between Ci+1 ∩ Rj+1 and (V \ Ci+1) ∩ Rj+1 contributes 1 to |∂HX| and 1 to

|∂HCi+1|.
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3. Each edge between Ci ∩ Rj+1 and (V \ Ci+1) ∩ Rj+1 contributes 1 to |∂HX| and |∂HY |
and 1 to |∂HCi| and |∂HCi+1|.

4. Each edge between Ci ∩ Rj+1 and Ci ∩ (Rj+2 \ Rj+1) contributes 1 to |∂HX| and 1 to
|∂HRj+1|.

5. Each edge between Ci ∩ Rj+2 and Ci ∩ (V \ Rj+2) contributes 1 to |∂HY | and 1 to
|∂HRj+1|.

6. Each edge between Ci ∩ Rj+1 and Ci ∩ (V \ Rj+2) contributes 1 to |∂HX| and |∂HY | and
1 to |∂HRj+1| and |∂HRj+2|.

7. Each edge between Ci ∩ (V \ Rj+2) and (Ci+1 \ Ci) ∩ (V \ Rj+2) contributes 1 to |∂HX|
and 1 to |∂HCi|.

8. Each edge between Ci+1 ∩ (V \ Rj+2) and (V \ Ci+1) ∩ (V \ Rj+2) contributes 1 to |∂HY |
and 1 to |∂HCi+1|.

9. Each edge between Ci ∩ (V \ Rj+2) and (V \ Ci+1) ∩ (V \ Rj+2) contributes 1 to |∂HX|
and |∂HY | and 1 to |∂HCi| and |∂HCi+1|.

10. Each edge between (V \ Ci+1) ∩ Rj+1 and (V \ Ci+1) ∩ (Rj+2 \ Rj+1) contributes 1 to
|∂HY | and 1 to |∂HRj+1|.

11. Each edge between (V \ Ci+1) ∩ Rj+2 and (V \ Ci+1) ∩ (V \ Rj+2) contributes 1 to |∂HX|
and 1 to |∂HRj+1|.

12. Each edge between (V \ Ci+1) ∩ Rj+1 and (V \ Ci+1) ∩ (V \ Rj+2) contributes 1 to |∂HX|
and |∂HY | and 1 to |∂HRj+1| and |∂HRj+2|.

13. Each edge between Ci ∩ (Rj+2 \ Rj+1) and (Ci+1 \ Ci) ∩ (Rj+2 \ Rj+1) contributes 1 to
|∂HY | and 1 to |∂HCi|.

14. Each edge between (Ci+1 \Ci)∩ (Rj+2 \Rj+1) and (V \Ci+1)∩ (Rj+2 \Rj+1) contributes
1 to |∂HY | and 1 to |∂HCi+1|.

15. Each edge between Ci ∩ (Rj+2 \ Rj+1) and (V \ Ci+1) ∩ (Rj+2 \ Rj+1) contributes 1 to
|∂HCi| and 1 to |∂HCi+1|.

16. Each edge between (Ci+1 \ Ci) ∩ Rj+1 and (Ci+1 \ Ci) ∩ (Rj+2 \ Rj+1) contributes 1 to
|∂HX| and 1 to |∂HRj+1|.

17. Each edge between (Ci+1 \ Ci) ∩ (Rj+2 \ Rj+1) and (Ci+1 \ Ci) ∩ (V \ Rj+2) contributes
1 to |∂HX| and 1 to |∂HRj+2|.

18. Each edge between (Ci+1 \ Ci) ∩ Rj+1 and (Ci+1 \ Ci) ∩ (V \ Rj+2) contributes 1 to
|∂HRj+1| and 1 to |∂HRj+2|.

All of the above types of edges contribute the same to both sides of (1) except those of
type 15 and 18, namely those indicated by long red edges in Figure 3b. We call such edges
red. Then, the inequality (1) is strict if any only if red edges are present.

Since all edges between Si,j and Si,j′ are red, it suffices to show that (1) is actually an
equality, which would exclude all red edges and hence all edges between Si,j and Si,j′ as well.
Observe that emincutG(X ∩ T, T \ X) = 2k, as seen in Figure 3c, which shows a cut and a
flow both of value 2k. Similarly, emincutG(Y ∩ T, T \ Y ) = 2k. Since H is a sparsifier of G,
we must have

2k + 2k = |∂HX| + |∂HY | ≤ |∂HRj+1| + |∂HRj+2| + |∂HCi| + |∂HCi+1|
= k + k + k + k.

In other words, the inequality is tight, as desired.
The case for Si,j and Si′,j for i′ ≥ i + 2 is similar. Note that edges between Si,j and Si′,j

correspond to the red horizontal edges in Figure 3b (for different values of i, j), which we
have already shown do not exist. ◁
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▷ Claim 27. For each 1 ≤ i, j ≤ k, we have Si,j ̸= ∅.

Proof. Suppose for contradiction that Si,j = ∅ for some 1 ≤ i, j ≤ k. As shown in Figure 3d,
define the sets X ′ = Ci ∪ (Ci+1 ∩ Rj) and Y ′ = Ci ∪ (Ci+1 \ Rj+1). We have X ′ ∩ Y ′ = Ci,
and since Si,j = ∅ by assumption, we also have X ′ ∪ Y ′ = Ci+1. By submodularity,

|∂HX ′| + |∂HY ′| ≥ |∂H(X ′ ∩ Y ′)| + |∂H(X ′ ∪ Y ′)| = |∂HCi| + |∂HCi+1|.

Moreover, the inequality is tight because the only types of edges that can make the inequality
strict (marked red in Figure 3d) are prohibited by Claim 26. Since H is a sparsifier of G,

emincutG(X ′ ∩T, T \X ′)+emincutG(Y ′ ∩T, T \Y ′) ≤ |∂HX ′|+ |∂HY ′| = |∂HCi|+ |∂HCi+1| = 2k.

However, it is not hard to see that emincutG(X ′∩T, T \X ′) = emincutG(Y ′∩T, T \Y ′) = k+1,
a contradiction. ◁

5 Conclusions

We showed that every unweighted, directed acyclic graph G with k terminals admits a
vertex cut sparsifier H with O(k2) vertices, assuming that the terminals are deletable. This
improves the previous result by Kratsch and Wahlström of O(k3) vertices, for general directed
graphs [13]. Furthermore, the sparsifier can be computed in near-linear time in the size of G,
specifically in time O((m + n)kO(1)) plus O((m + n)kO(1)) field operations over a finite field
with entries of bitlength O(k log n), where n = |V (G)| and m = |E(G)|. This improves over
previous work [13], whose time complexity was not explicitly given but is at least O(nω+1)
due to the repeated construction of a representation of a gammoid.

Furthermore, we showed that Ω(k2) vertices in a sparsifier may be required, both for
vertex cuts in DAGs and for the seemingly simpler setting of undirected edge cuts. However,
we leave it open whether such a bound applies to the mixed setting, where we want to
preserve undirected edge cuts in the input graph G but allow the sparsifier to be a directed
graph.

More importantly, we leave open the question of whether vertex cut sparsifiers of O(k2)
vertices exist for general directed graphs. We conjecture that O(k2) is the correct bound for
general directed graphs, but we were not able to find a proof.
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Abstract
In the problem called single resource constraint scheduling, we are given m identical machines and
a set of jobs, each needing one machine to be processed as well as a share of a limited renewable
resource R. A schedule of these jobs is feasible if, at each point in the schedule, the number of
machines and resources required by jobs processed at this time is not exceeded. It is NP-hard to
approximate this problem with a ratio better than 3/2. On the other hand, the best algorithm so far
has an absolute approximation ratio of 2 + ε. In this paper, we present an algorithm with absolute
approximation ratio (3/2 + ε), which closes the gap between inapproximability and best algorithm
with exception of a negligible small ε.
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1 Introduction

In the single resource constraint scheduling problem, we are given m identical machines, a
discrete renewable resource with a fixed size R ∈ N and a set of n jobs J . Each job has a
processing time p(j) ∈ Q. We define the total processing time of a set of jobs J ′ ⊆ J as
p(J ′) :=

∑
j∈J ′ p(j). To be scheduled, each job j ∈ J needs one of the machines as well as

a fix amount r(j) ∈ N of the resource which it will allocate during the complete processing
time p(j) and which it deallocates as soon as it has finished its processing. Neither machine
nor any part of the resource can be allocated by two different jobs at the same time. We
define the area of a job as area(j) := r(j) · p(j) and the area of a set of jobs J ′ ⊆ J as
area(J ′) :=

∑
j∈J ′ r(j) · p(j).

A schedule σ : J → N maps each job j ∈ J to a starting point σ(j) ∈ Q. We say a
schedule is feasible if

∀t ∈ Q :
∑

j:t∈[σ(j),σ(j)+p(j))

r(j) ≤ R and (resource condition)

∀t ∈ Q :
∑

j:t∈[σ(j),σ(j)+p(j))

1 ≤ m. (machine condition)

Given a schedule σ where these two conditions hold, we can generate an assignment of
resources and machines to the jobs such that each machine and each resource part is allocated
by at most one job at a time, see [27]. The objective is to find a feasible schedule, which
minimizes the total length of the schedule called makespan, i.e., we have to minimize
maxj∈J σ(j) + p(j).
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This problem arises naturally, e.g., in parallel computing, where jobs that are scheduled in
parallel share common memory or in production logistics where different jobs need a different
number of people working on it. From a theoretical perspective these problem is a sensible
generalization of problems like scheduling on identical machines, parallel task scheduling and
bin packing with cardinality constraint.

The algorithm with the best absolute ratio so far is a (2 + ε)-approximation by Niemeier
and Wiese [31]. In this paper, we close this gap between approximation and lower bound by
presenting an algorithm with approximation ratio (3/2 + ε).

▶ Theorem 1. There is an algorithm for single resource constraint scheduling with approx-
imation ratio (3/2 + ε) and running time O(n log(1/ε)) + O(n)(m log(R)/ε)Oε(1), where Oε

dismisses all factors solely dependent on 1/ε.

As a by-product of this algorithm, we also present an algorithm, which has an approx-
imation guarantee of (1 + ε)OPT + pmax. Note that we can scale each instance such that
pmax = 1 and hence we can see pmax as a constant independent of the instance. Algorithms
with an approximation guarantee of the form (1 + ε)OPT + c fore some constant c are called
asymptotic polynomial time approximation schemes (APTAS). Note that this algorithm is
a (2 + ε)-approximation as well, but improves this ratio, in the case that pmax is strictly
smaller than OPT and for pmax < OPT/2 improves the approximation ratio of the algorithm
from Theorem 1.

▶ Theorem 2. There is an APTAS for single resource constraint scheduling with an additive
term pmax and running time O(n log(1/ε + n)) + O(n)(m log(R)/ε)Oε(1).

In the schedule generated by this APTAS, almost all jobs are completed before (1 +
O(ε))OPT, except for a small set J ′ of jobs that all start simultaneously at (1 + O(ε))OPT,
after the processing of all other jobs is finished. The processing of this set J ′ causes the
additive term pmax.

Methodology and Organization of this Paper

In Section 2, we will present the main results to generate the APTAS from Theorem 2.
The general structure of the algorithm can be summarized as follows. First, we simplify
the instance by rounding the processing time of the jobs and partitioning them into large,
medium, and small corresponding to their processing time. Afterward, we use some linear
programming approaches to find a placement of these jobs inside the optimal packing. The
few jobs that are placed fractional with this linear program will be placed on top of the
packing contributing to the set J ′ which was mentioned before.

As usual for this kind of algorithms for packing and scheduling problems, we divide the
jobs into large, medium and small jobs. While for the placement of medium and small jobs,
we use techniques already known, see e.g. [21], we used a new technique to place the large
jobs. For the following (3/2 + ε) approximation, it is important to guarantee that only Oε(1),
i.e. constant in 1/ε, large jobs are not placed inside the optimal scheduling area. To find such
a schedule, we divide the schedule into Oε(1) time slots and guess the machine requirement
and a rounded resource requirement of large jobs during this slot. Afterward, the large jobs
are placed inside this profile using a linear program, which schedules only Oε(1) of these
jobs fractionally. We have to remove these Oε(1) fractionally scheduled jobs, as well as only
one extra job per time slot due to the rounded guess, and assign them to the set J ′.

Afterward, in Section 3, we present the (3/2 + ε)-approximation and prove Theorem
1. Instead of placing the fractional jobs on top of the packing, we stretch the packing by
(1/2 + O(ε))OPT, and place the fractional scheduled large jobs inside a gap in this stretched
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schedule. This stretching allows us to define a common finishing point of (almost) all the
jobs, which have a processing time larger than OPT/2 and, thus, we avoid scheduling them
fractionally with the linear program. While the general idea of creating such a gap was used
before, e.g., in [19], the novelty of this approach is to search for this gap at multiple points
in time while considering two and not only one constraint. This obstacle of considering two
instead of one constraint while searching for a gap requires a more careful analysis of the
shifted schedule, as was needed in other gap constructions.

Related Work

The problem resource constraint scheduling is one of the classical problems in scheduling.
It was first studied in 1975 by Garey and Graham [10]. Given m identical machines and
capacities R1, . . . , Rs of s distinct resources such that each job requires a share of each of
them, they proved that the greedy list algorithm produces a schedule of length at most
(s + 2 − (2s + 1)/m)OPT. This corresponds to an approximation ratio of (3 − 3/m) for the
case of s = 1 i.e., the problem studied in this paper. In the same year Garey and Johnson
[11] showed that this general scheduling problem is NP-complete even if just one resource
is given, i.e., s = 1. Lately, Niemeier and Wiese [31] presented a (2 + ε)-approximation for
single resource constraint scheduling, and this is the best known ratio so far.

Note that the problem single resource constraint scheduling contains multiple problems
as subproblems. When all the processing times are equal to one, this problem corresponds to
bin packing with cardinality constraint. Hence there is no algorithm with an approximation
guarantee better than 3/2 for this problem unless P = NP. For bin packing with cardinality
constraint Epstein and Levin [8] presented an AFPTAS. This AFPTAS was improved and
extended to work for single resource constraint scheduling by Jansen et al. [21]. It has an
additive term of O(pmax log(1/ε)/ε).

On the other hand, if the number of machines m is larger than n, the constraint that only
m jobs can be processed at the same time is no longer a restriction. The resulting problem
is known as the parallel task scheduling problem. This problem is strongly NP-complete for
R ≥ 4 [17] and there exists a pseudo polynomial algorithm for R ≤ 3 [7]. Furthermore, for R

constant and R ∈ nO(1) there exists polynomial time approximation schemes by Jansen and
Porkolab [22] as well as Jansen and Thöle [26] respectively. For an arbitrary large R there
exists no algorithm with approximation ratio smaller than 3/2 unless P = NP . The best
algorithm for this scenario is a (3/2 + ε) approximation by Jansen [19].

Finally, if each job requires at most R/m from the resource, the used resources are no
longer a restriction. The corresponding problem is known as the NP-hard problem makespan
scheduling on identical machines. For this problem several algorithms are known, see, e.g.,
[13, 18, 2, 20].

An interesting extension of the considered problem is the consideration of resource
dependent processing times. In this scenario, instead of a fixed resource requirement for
the jobs, each jobs processing time depends on the amount of allocated resources. The first
result for this extension was achieved by Grigoriev et al. [14]. They studied a variant where
the processing time of a job depends on the machine it is processed on as well as the number
of assigned resources and described a 3.75-approximation. For the case of identical machines
this result was improved by Kellerer [28] to a (3.5 + ε)-approximation. Finally, Jansen at al
[21] presented an AFPTAS for this problem with additive term O(πmax log(1/ε)/ε), where
πmax is the largest occurring processing time considering all possible resource assignments.

Closely related to single resource constraint scheduling is the strip packing problem.
Here we are given a set of rectangular items that have to be placed overlapping free into a
strip with bounded width and infinite height. We can interpret single resource constraint
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scheduling as a Strip Packing problem by setting the jobs processing time to the height
of a rectangular item and the resource requirement to its width. The difference to strip
packing is now, that when placing an item, we are allowed to slice it vertically as long
as the lower border of all slices are placed at the same vertical level. Furthermore, we
have an single resource constraint scheduling carnality condition that allows only m items
to intersect each horizontal line through the strip. The strip packing problem has been
widely studied [3, 4, 5, 6, 12, 16, 25, 29, 32, 33, 34, 35]. The algorithm with approximation
ratio (5/3 + ε), which is the smallest so far, was presented by Harren, Jansen, Prädel, and
van Stee [15]. On the other hand, using a reduction from the partition problem, we know
that there is no polynomial-time algorithm with an approximation ratio smaller than 3/2.
Closing this gap between the best approximation ratio and lower bound represents an open
question. Strip packing has also been studied with respect to asymptotic approximation
ratio [3, 6, 12, 29]. The best algorithms in this respect are an AFPTAS with additive term
O(1/ε log(1/ε))hmax [35, 5] and an APTAS with additive term hmax [25], where hmax is
the tallest height in the set of given items. Finally, this problem has been studied with
respect to pseudo-polynomial processing time [36, 26, 30, 9, 23, 1], where the width of the
strip is allowed to occur polynomial in the running time of the algorithm. There is no
pseudo-polynomial algorithm with an approximation ratio smaller than 5/4 [17] and a ratio
of (5/4 + ε) is achieved by the algorithm in [24].

2 APTAS with additive term pmax

In this section, we present an asymptotic PTAS for the single resource constraint scheduling
problem which has an approximation guarantee of (1 + ε)OPT + pmax and a running time
of O(n log(n)) + (m log(R))Oε(1), i.e., we prove Theorem 2 in this section. Due to space
limitations the proofs of this section can be found in the appendix.

Simplifying the input instance. In the first step of the algorithm, we simplify the given
instance such that it has a simple structure and a reduced set of processing times. Consider
the lower bound on the optimal makespan T := min{pmax, area(J )/R, p(J )/m}. By the
analysis of the greedy list schedule, as described in [31], we know that the optimal schedule
has a size of at most 1

m p(J ) + 2
R area(J ) + pmax ≤ 4T , giving us appropriate bounds for a

dynamic search framework.
In the next step, we will create a gap between jobs with a large processing time and

jobs with a small processing time, by removing a set of medium sized jobs. We want to
schedule this set of medium sized jobs in the beginning or end of the schedule using the
greedy list schedule. However this schedule of the medium sized items should add at most
O(ε)OPT to the makespan. The schedule generated by the greedy list schedule algorithm
has a makespan of at most 1

m p(J ) + 2
R area(J ) + pmax ≤ 4OPT. Hence, we choose the set of

medium jobs JM such that pmax(JM ) ≤ εOPT, i.e. the maximal processing time appearing
in the set of medium jobs is bounded by εOPT. On the other hand, the total area and the
total processing time of the medium jobs should be small enough.

▶ Lemma 3. Consider the sequence γ0 = ε, γi+1 = γiε
4. There exists an i ∈ {1, . . . , 1/ε}

such that

1
m

p(Jγi) + 2
R

area(Jγi) ≤ ε

(
1
m

p(J ) + 2
R

area(J )
)

, (1)

where Jγi
:= {j ∈ J | p(j) ∈ [γiT, γi−1T )} and we can find this i in O(n + 1/ε).
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Let i ∈ {1, . . . , 1/ε} be the smallest value such that Jγi has the property from Lemma 3
and define µ := γi and δ := γi−1. Note that γi = ε1+4i and hence δ ≥ ε4/ε+1. Using these
values for δ and µ, we partition the set of jobs into large JL := {j ∈ J |p(j) ≥ δT}, small
JS := {j ∈ J |p(j) < µT } and medium JM := {j ∈ J |µT ≤ p(j) < δT }.

▶ Lemma 4. The medium jobs can be scheduled in O(n log(n)) operations with makespan
O(ε)T

The final simplification step is to round the processing times of the large jobs using the
rounding in Lemma 5 to multiples of εδT .

▶ Lemma 5 (See [23]). Let be δ ≥ εk for some value k ∈ N. At loss of a factor (1 + 2ε)
in the approximation ratio, we can round the processing time of each job j with processing
time εl−1T ≥ p(j) ≥ εlT for some l ∈ N ≤ k such that it has a processing time kjεl+1T for
a value kj ∈ {1/ε, . . . 1/ε2 − 1}. Furthermore, the jobs can be started at a multiple of εl+1T .

In this step, we reduce the number of different processing times of large jobs to O(logε(δ)/ε2) =
O(1/ε3). However, we lengthen the schedule at most by the factor (1 + 2ε). Furthermore,
this rounding reduces the starting times of these jobs to at most O(1/(εδ)) possibilities since
all the large jobs start and end at multiples of εδT and the optimal makespan of the rounded
instance is bounded by (1 + 2ε) · 4T .

Scheduling Large Jobs. In this section, we describe how to schedule the large jobs when
given the size of the makespan T ′ := lεT of the rounded schedule. For a given set S of
start and endpoints of long jobs, we define a layer li as the processing time between two
consecutive starting times si, si+1 ∈ S. Notice that, during the processing of a layer in a
rounded optimal schedule, the resource requirement and number of machines used by large
jobs stays unchanged since the large jobs only start and end at the starting points in S.

▶ Lemma 6. Let γ ∈ (0, 1] and T ′ = lεT ≥ OPT for some l ∈ N, and J̄ be a set of
jobs for which an optimal schedule exists such that all jobs in J̄ have their starting and
endpoints in S. There exists an algorithm that finds in O((m log(R))Oε(1)|S|/γ) operations
O((m log(R))Oε(1)/γ) schedules with the following properties
1. In each of the schedules, all large jobs are scheduled except for a set J ′ ⊆ J̄ of at most

|J ′| ∈ 3|S| jobs and a total resource requirement of at most R(J ′) ≤ γR.
2. In at least one of the schedules, in each layer given by S, the total number of machines

and resources not used by jobs in J̄ is as large as in a rounded optimal schedule.

In the APTAS we will use the algorithm from Lemma 6 with J̄ := JL and S ′ := S.

Scheduling Small Jobs. We will schedule small jobs inside the layers using the residual
free resources and machines given by the guess for the large jobs. We define m

(S)
s as the

number of machines in layer s not used by jobs with processing times larger than δT and
analogously define R

(S)
s as the number of resources not used by jobs with processing times

larger than δT during the processing of this layer in an optimal schedule.

▶ Lemma 7. Define for each layer s ∈ S a box with processing time (1 + ε)εδT , m
(S)
s

machines and R
(S)
s resources, where the values m

(S)
s and R

(S)
s are at least as large as in a

rounded optimal schedule. There exists an algorithm with time complexity O(n) · Oε,|S|(1),
that places the jobs inside the boxes and an additional horizontal box with m machines, R

resources, and processing time O(ε)T .

This algorithm uses the same techniques as the AFPTAS designed by Jansen et al. [21].
For the sake of completeness the ideas can be found in the appendix.
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53:6 Closing the Gap for Single Resource Constraint Scheduling

The AFPTAS. We can summarize the algorithm as follows. We define T := min{pmax,

area(J )/R, p(J )/m} and simplify the instance as described above. Then via a binary search
framework, we try values T ′ ∈ [T, 4T ] as optimal makespan. For each of the considered
values T ′, we use the algorithm from Lemma 6 to generate several scheduled for the large
jobs each wit makespan at most T ′. If we cannot find a feasible schedule, the value T ′ was
to small. Otherwise, we use the algorithm from Lemma 7 to schedule the small jobs inside
each of the generated schedules for the large jobs. If T ′ was large enough, we can place the
small jobs inside the layers, by increasing the schedule by a factor of at most O(ε). If the
small jobs do not fit in one of the schedules for large jobs, the chosen T ′ was to small. If
we have found a schedule for the small jobs, we try the next smaller value for T ′ in binary
search fashion. In the final step, we use greedy list schedule to schedule the medium jobs
and place the set J ′ of non scheduled large jobs at the top.

3 A (3/2 + ε)-Approximation

We aim to find a schedule with makespan (3/2 + O(ε))T ′, where T ′ is the assumed optimal
makespan given by a binary search framework. Consider Lemma 6. If one of the jobs in
J ′ has a processing time larger than T ′/2 + O(ε)T , we exceed the aspired approximation
ratio of (3/2 + O(ε))T , when placing the set J ′ on top of the schedule. We call this set of
critical jobs huge jobs, i.e., JH := {j ∈ J |p(j) > T ′/2}, and redefine the set of large jobs as
JL := {j ∈ J |δT ≤ p(j) ≤ T ′/2} respectively.

Notice that the processing of all huge jobs has to intersect the time T ′/2 in each schedule
with makespan at most T ′ and each machine can contain at most one of these jobs. If we
could guess the starting positions of these huge jobs, and schedule only the large jobs with
the algorithm from Lemma 6, the discarded jobs J ′ would have a processing time of at most
T ′/2 and could be placed on top of the schedule, resulting in a schedule of makespan at
most (3/2 + O(ε))T ′. Sadly this guessing step is not possible in polynomial time since there
are up to m of these jobs and iterating all combinations of their starting position needs
Ω((1/εδ)m) operations. Our idea is to let almost all the huge jobs end at a common point
in time, e.g. T ′, and thus avoid the guessing step. To solve the violation of the resource or
machine condition, we shift up all the jobs which start after ⌈T ′/2⌉εδT by ⌈T ′/2⌉εδT such
that they now start after T ′, where we denote by ⌈T ′/2⌉εδT the integer multiple of εδT that
is the first which has a size of at least T ′/2.

While this shift fixes the start positions of the huge jobs, the large jobs are again placed
with the techniques described in Section 2. Since Lemma 6 states that each of the generated
schedules may not schedule a subset J ′ of the large jobs, we need to find a gap in the shifted
schedule where we can place them. In the following, we will consider optimal schedules and
the possibilities to rearrange the jobs. Depending on this arrangement, we can find a gap of
processing time ⌈T ′/2⌉εδT for the fractional scheduled large jobs.

Let us assume that we have to schedule k := |J ′| ∈ Oε(1) ≤ m/4 jobs with total resource
requirement at most γR ≤ R/(3|S|). We consider an optimal schedule, after applying the
simplification steps and the corresponding transformed optimal schedule, where each large
job starts at a multiple of εδT and each huge job starts at a multiple of ε2T . Furthermore,
we will assume that there are more than 4k = Oε(1) huge jobs. Otherwise, we can guess
their starting positions in O((1/εδ)4k) and place the fractional scheduled large jobs on top
of the schedule.

In the following, we will prove that by extending it by ⌈T ′/2⌉εδT , we can transform the
rounded optimal schedule OPTrounded such that all the huge jobs, except for O(k) of them,
end at a common point in time and we can place k further narrow large jobs without violating
the machine or the resource constraint.
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T ′/2

T ′

τ

JL,τ,>,pre

Jτ,≥,pre

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

k machines
unused

Figure 1 In this and the following figures we present the processing time on the y-axis, while
the resource requirements of jobs can be found on the x-axis. While the machines are not visually
represented in these figures, the machine condition has to apply for each horizontal cut through
the schedule. On the left: A rounded optimal schedule. The hatched rectangles are the jobs that
start after T ′/2 and intersect τ , the dark gray area corresponds to large jobs, which start before
T ′/2 and end after τ and the dark gray rectangles on the left are huge jobs. On the right: The
corresponding shifted schedule.

▶ Lemma 8. Let k := |J ′| ≤ m/4 and γ ≤ 1/(3|S|). Furthermore, let a rounded optimal
schedule OPTrounded with makespan at most T ′ and at most |S| starting positions for large
jobs be given.

Without removing any job from the schedule, we can find a transformed schedule OPTshift
with makespan at most T ′ + ⌈T ′/2⌉εδT , with the following properties:
1. We can guess the end positions of all huge jobs in polynomial time.
2. There is a gap of processing time ⌈T ′/2⌉εδT with k empty machines and γR free resources

where we can schedule the jobs in J ′.
3. There is an injection which maps each layer s in OPTrounded with ms,S machines and

Rs,S resources not used by huge and large jobs to a layer in OPTshift where there are at
least as many machines and resources not used by these jobs.

Proof. We will prove this lemma by a careful analysis of the structure of the schedule
OPTrounded. First, however, we introduce some notations. Let s ∈ S, with s > T ′/2 be
any starting point of large jobs. We say a job j ∈ J intersects s or is intersected by s if
σ(j) < s < σ(j) + p(j). We will differentiate sets of jobs that start before T ′/2 and those
that start at or after T ′/2 by adding the attribute pre to sets of jobs that contain only jobs
starting before T ′/2, and the attribute post to those that contain only jobs that start at or
after T ′/2. Furthermore, we will identify the sets of jobs that intersect certain points of time.
We will add the attribute s,≥ to denote a set of jobs that is processed at least until the point
in time s ∈ S, i.e., we denote by Js,≥,pre := {j ∈ J |p(j) ≥ δT, σ(j) < T ′/2, σ(j) + p(j) ≥ s}
the set of large and huge jobs starting before T ′/2 and ending at or after s. On the other
hand, if we are only interested in the jobs that intersect the time s, we add the attribute s,>

to the set and mean Js,>,pre := {j ∈ J |p(j) ≥ δT, σ(j) < T ′/2, σ(j) + p(j) > s}. Finally, we
will indicate if the set contains only huge or only large jobs, by adding the attribute H or L.

Let τ ∈ {s|s ∈ S, T ′/2 ≤ s ≤ T ′} be the smallest value such that there are at most
m − k jobs (huge or large) that start before T ′/2 and intersect τ , i.e., end after τ . We
partition the set of large jobs intersected by τ into two sets. Let JL,τ,>,pre := {j ∈ JL|σ(j) <

T ′/2, σ(j) + p(j) > τ} be the set of large jobs which start before T ′/2 and end at or after τ .
Further let JL,τ,>,post := {j ∈ JL|T ′/2 ≤ σ(j) < τ, σ(j) + p(j) > τ} be the set of large jobs,
which are started at or after T/2 but before τ and end after τ , see Figure 1.
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53:8 Closing the Gap for Single Resource Constraint Scheduling

Note that by the choice of τ in each point between τ and T ′/2 in the schedule there are
more than m − k machines used by Jτ,≥,pre. As a result there are at most k − 1 machines
used by jobs starting after T ′/2 at each point between T ′/2 and τ , implying |JL,τ,>,post| < k.

We now construct a shifted schedule. Starting times in this schedule will be denoted by
σ′. We shift each job j ∈ J with σ(j) ≥ T ′/2 and σ(j) + pj ≥ τ exactly ⌈T ′/2⌉εδT upwards,
i.e., we define σ′(j) := σ(j) + ⌈T ′/2⌉εδT for these jobs. Furthermore, each huge job j ∈ JH

intersecting τ is shifted upwards such that it ends at T ′, i.e., we define σ′(j) := T ′ − pj for
these jobs j, see Figure 1. Note that there are at most k huge jobs ending strictly before τ .
If the total number of huge jobs ending before or at τ is larger than k, we choose arbitrarily
from the set of jobs ending at τ and shift them until there are exactly k huge jobs ending
before or at τ .

▷ Claim 9. After this shift there are at least k machines at each point between τ and
τ + ⌈T ′/2⌉εδT that are not used by any other job.

Proof. Up to T ′, there are k free machines, because there is no new job starting between τ

and T ′ since we shifted all of them up such that they start after ⌈T ′/2⌉εδT . On the other
hand, only jobs from the set JL,τ,>,post are processed between T ′ and τ + ⌈T ′/2⌉εδT . Since
|JL,τ,>,post| < k and m − k ≥ k this leaves k free machines which proves the claim. ◁

The idea is to place the gap at τ since there are enough free machines. However, it can
happen that at a point between τ and τ + ⌈T ′/2⌉εδT there is not enough free resource for
the gap. In the following, we carefully analyze where we can place the k jobs, dependent on
the structure of the optimal schedule OPTrounded

Case 1: r(Jτ,≥,pre) ≤ R − γR. In this case there are at least γR free resources at each
point in the shifted schedule between τ and T ′ since there are no jobs starting between
these points of time. To place the k fractional scheduled jobs, we have to generate a gap of
processing time ⌈T ′/2⌉εδT . In this gap there have to be k unused machines and γR unused
resources. For the time between τ and T ′, we have this guarantee, while for the time between
T ′ and τ + ⌈T ′/2⌉εδT , we have k free machines, but might have less than γR free resource.
The only jobs overlapping in this time window are the jobs from the set JL,τ,>,post, see
Figure 1. If these jobs have a small resource requirement, we have found our gap, see Case
1.1. and, otherwise, we have to look more careful at the schedule.

Case 1.1: r(JL,τ,>,post) ≤ R − γR. In this case, the required gap is positioned between
τ and τ + ⌈T ′/2⌉εδT , see Figure 2. In this shifted optimal schedule there are at most k

huge jobs ending before τ . In the algorithm, we will guess τ dependent on a given solution
for the large jobs and guess these k huge jobs and their start points in O(mkSk), which is
polynomial in the input size, see Section 3 for an overview.

Case 1.2: r(JL,τ,>,post) > R − γR. In this case, there is a point t ∈ [τ, T ′] such that
after this point there are less than γR free resources. Therefore, we need another position to
place the fractionally scheduled jobs. We partition the set JL,τ,>,post into at most |S|/2 sets
J ι

L,τ,>,post by the their original finishing points ι ∈ S>τ , i.e., each job in J ι
L,τ,>,post finishes

at ι in the non shifted rounded optimal schedule.

▷ Claim 10. One of the sets J ι
L,τ,>,post, ι ∈ S>τ , has a resource requirement of at least γR.
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Case 1.1

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

Gap

Case 1.2

i

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Figure 2 Examples for the two Cases 1.1. and 1.2. In Case 1.1 the gap is positioned between τ

and τ + ⌈T ′/2⌉εδT . In Case 1.2 the jobs in the set J ι
L,τ,>,post are shifted back down. At each point

between ι and ι + ⌈T ′/2⌉εδT there are at least γR unused resources.

Proof. The jobs in JL,τ,>,post use more than R − γR resource in total. Since γ ≤ 1/(3|S|) ≤
1/(|S|/2 − 1), it holds that

R − γR

|S|/2 ≥ (1 − 1/(|S|/2 − 1))R
|S|/2 = R/(|S|/2 − 1) ≥ γR.

Hence, by the pigeon principle, one of the sets, say J ι
L,τ,>,post, must have a resource

requirement of at least γR. ◁

Let J ι
L,τ,>,post be this set. To generate a gap, we shift down all jobs in J ι

L,τ,>,post back to
their primary start position, see Figure 2.

▷ Claim 11. As a result of this shift, there are at least γR free resources at each point
between ι and ι + ⌈T ′/2⌉εδT .

Proof. At each point between ι and T ′ there were γR unused resources before. Each job
which starts between T ′ and τ + ⌈T ′/2⌉εδT is an element of JL,τ,>,post and was therefore
scheduled in parallel to the jobs in J ι

L,τ,>,post. Therefore, at each point between T ′ and
τ + ⌈T ′/2⌉εδT at least γR resources are unused. From τ + ⌈T ′/2⌉εδT to ι + ⌈T ′/2⌉εδT the
jobs J ι

L,τ,>,post were scheduled, so there are at least γR free resources. ◁

We now have to differentiate if there are at least k machines unused between τ +⌈T ′/2⌉εδT

and ι + ⌈T ′/2⌉εδT , see Figure 2. Let ρ ∈ {s|τ ≤ s ≤ T, s ∈ S} be the first point in the
schedule where at most k jobs from Jτ,≥,pre are scheduled in the given optimal schedule
(not the shifted one), i.e., ρ is the first point in time where |Jρ,>,pre| ≤ k. Note that as a
consequence |Jρ,≥,pre| ≥ k since otherwise there would have been a point in time before ρ,
where at most k machines are used by jobs starting before T ′/2. We know that between T ′

and ρ + ⌈T ′/2⌉εδT there always will be k machines unused since before the first shift they
were blocked by jobs in Jτ,≥,pre.

Case 1.2.1: ρ ≥ ι. In this case, at each point between ι and ι + ⌈T ′/2⌉εδT there are k

machines unused. Between ι and T ′ there are k free machines by the choice of τ and between
T ′ and ρ + ⌈T ′/2⌉εδT there are k free machines by the choice of ρ. Therefore, there is a
gap between ι and ι + ⌈T ′/2⌉εδT , see Figure 3. Similar as in Case 1.1. the total number of
guesses needed to place the huge jobs is bounded by mO

ε (1), although we have to add the
guess for ρ.
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Case 1.2.1

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Gap

Case 1.2.2

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Gap

Figure 3 Examples for the shifted schedule and the position of the gap in the Cases 1.2.1 and
1.2.2.

Case 1.2.2: ρ < ι. Let JH,ρ := {j ∈ JH |sj + pj > ρ} be the set of huge jobs, which are
still scheduled after ρ. It holds that |JH,ρ| ≤ k. As a consequence, it is possible to guess their
starting positions in polynomial time. Therefore, the algorithm will schedule each job in JH,ρ

as in the original simplified schedule OPTrounded. The other huge jobs, which end between
τ and ρ, are scheduled such that they end at ρ, i.e., we define σ′(j) := ρ − p(j) for each of
these huge jobs j. Next, we shift the all the jobs j with starting time σ′(j) ≥ ρ + ⌈T ′/2⌉εδT

downwards such that they start as they had started before the first shift. As a result between
T ′ and T ′ + ⌈T ′/2⌉εδT , there are just jobs left which overlap the time from τ + ⌈T ′/2⌉εδT to
ρ + ⌈T ′/2⌉εδT , see Figure 3. By the choice of ρ and τ at each point between τ + ⌈T ′/2⌉εδT

and ρ + ⌈T ′/2⌉εδT there are at most m − k jobs which use at most R − γR resource since the
job i was scheduled there before. Since each job between T ′ and T ′ + ⌈T ′/2⌉εδT overlaps this
area there are at least k free machines and γR free resources in this area. Hence, we position
the gap at T ′. In the algorithm, we will guess τ and ρ dependent on a given fractional
solution for the large jobs and guess the at most k jobs ending before τ and the k jobs ending
after ρ in O(m2k−1). For each of these jobs, we have to guess its starting time out of at most
|S|/2 possibilities.

Case 2: r(Jτ,≥,pre) > R − γR. In this case, the gap has to start strictly after τ since
at τ there is not enough free resource. Let JL,T ′/2 be the set of large jobs intersecting
the point in time T ′/2. Remember that Jτ,≥,pre contains huge and large jobs. Since
r(Jτ,≥,pre) > R − γR at least one of these stets of jobs (huge or large) has to contribute a
large resource requirement to r(Jτ,≥,pre). In the following, we will find the gap, depending
on which of both sets contributes a suitable large resource requirement.

Case 2.1: r(JL,T ′/2) ≥ 2γR. Let τ ′ ∈ {s ∈ S|τ ≤ s ≤ T ′} be the first point in time
where r(JL,T ′/2) − r(JL,τ ′,>,pre) ≥ γR. Note that τ ≤ τ ′ since, otherwise, there would be
γR free resources at τ .

▷ Claim 12. By this choice at each point between τ ′ and τ ′ + ⌈T ′/2⌉εδT there are at least
γR free resources.

Between τ ′ and T ′ there are γR free resources since jobs form JL,T ′/2 with a resource
requirement of at least γR end before τ ′. On the other hand, before the shift there was at
least γR resource blocked by jobs from JL,T ′/2 between T ′/2 and τ ′ and hence after the shift
there is at least γR free resource at any time between T ′ and τ ′ + ⌈T ′/2⌉εδT . Moreover, as in
Case1.2, let ρ ∈ {s|τ ≤ s ≤ T ′, s ∈ S} be the first point in the schedule where |Jρ,>,pre| ≤ k,
i.e., where at most k jobs are scheduled that start before T ′/2.



K. Jansen and M. Rau 53:11

Case 2.1.1

T ′/2
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Case 2.1.2
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Figure 4 Examples for the shifted schedules and the position of the gap in Cases 2.1.1 and Case
2.1.2.

▷ Claim 13. By this choice at each point between τ and ρ + ⌈T ′/2⌉εδT there are at least k

unused machines.

From τ to T ′ there are k unused machines, by the choice of τ . On the other hand, at each
point in time between T ′ and ρ + ⌈T ′/2⌉εδT there where k machines blocked by jobs from
that started before T ′/2 and these machines are now unused.

Similar as in Cases 1.2.1 and 1.2.2, we will find the gap dependent of the relation between
τ ′ and ρ.

Case 2.1.1: ρ ≥ τ ′. In this case between τ ′ and τ ′ + ⌈T ′/2⌉εδT there are at least k unused
machines. Therefore, we have a gap between these two points, which is large enough, see
Figure 4. In the algorithm, we have to guess the k huge jobs, which end before τ and their
start point, as well as the points τ , τ ′ and ρ. All the guesses for this case can be iterated in
polynomial time.

Case 2.1.1: ρ < τ ′. In this case, we act like in Case 1.2.2 and shift all huge jobs, but the
at most k jobs ending after ρ, downwards such that they end at ρ, see Figure 4. Furthermore,
we shift all jobs starting after ρ + ⌈T ′/2⌉εδT back downwards such that they again start
at their primary start position. Now after T ′ there are just jobs having their start or end
position between τ + ⌈T ′/2⌉εδT and ρ + ⌈T ′/2⌉εδT . At each point between these two points
there are at least k unused machines and γR unused resource with the same arguments as in
Case 1.2.2. Hence, we have a gap with the right properties between T ′ and T ′ + ⌈T ′/2⌉εδT .
All the guesses for this case can be iterated in polynomial time.

Case 2.2: r(JL,T ′/2) < 2γR. Since we have r(Jτ,≥,pre) > R−γR (by Case 2.) and it holds
that (JH ∩Jτ,≥,pre) ∪ (JL,T ′/2 ∩Jτ,≥,pre) = Jτ,≥,pre we get that r(JH ∩Jτ,≥,pre) ≥ R − 3γR.
Similar as before, let ρ ∈ {s|τ ≤ s ≤ T, s ∈ S} be the first point in the schedule where less
than k jobs are scheduled that start before T ′/2. By the same argument as in Case 2.1, we
know that at every point between τ and ρ + ⌈T ′/2⌉εδT there are at least k unused machines
in the shifted schedule.

Case 2.2.1: r(Jρ,≥,pre) ≥ γR. In this case, we can construct a schedule in the same
way as in case 1.2.2 or 2.1.2 by shifting down the jobs that start after ρ + ⌈T ′/2⌉εδT and
positioning the gap at T ′, see Figure 5. This is possible because the jobs that are scheduled
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Case 2.2.1

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT
Gap

Case 2.2.2

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT

ρ′

ρ′ + ⌈T ′/2⌉εδT

Gap

Gap

Figure 5 The shifted schedule and the position of the gap in Cases 2.2.1 and 2.2.2. Note that in
Case 2.2.2 the gap is not displayed continuously. However, by swapping the used resource, we can
make it continuous. We only need the fact that at each point in time there are enough free resources
and machines.

between τ + ⌈T ′/2⌉εδT and ρ + ⌈T ′/2⌉εδT can use at most R − γR resources in this case since
r(Jρ,≥,pre) ≥ γR and hence at least γR resources are blocked by the jobs in Jρ,≥,pre. All
the guesses for this case can be iterated in polynomial time.

Case 2.2.2: r(Jρ,≥,pre) < γR. Let ρ′ ∈ {iδ2|τ/δ2 ≤ i ≤ ρ/δ2, i ∈ N} be the smallest
value, where r(Jρ′,≥,pre) ≤ γR. Remember, we had r(JH ∩ Jτ,≥,pre) ≥ R − 3γR so huge
jobs with summed resource requirement of at least R − 4γR are finished till ρ′. We partition
the huge jobs that finish between τ and ρ by their processing time. Since each job has
a processing time of at least ⌈T ′/2⌉εδT , we get at most O(1/εδ) ≤ |S|/2 sets. As seen in
Section 2, we have to discard at most k ≤ 3|S| large jobs, which have to be placed later on.

▷ Claim 14. There exists a set in the partition, which uses at least 3γR resource total.

Proof. Since γ ≤ 1/(2|S|) ≤ 1/(3|S|/2 + 4) it holds that

R − 4γR

|S|/2 ≥ (1 − 4/(3|S|/2 + 4))R
|S|/2 = 3R/(3|S|/2 + 4) ≥ 3γR.

Therefore, by the pigeon principle, there must be one set in the partition, which has summed
resource requirement of at least 3γR. ◁

We sort the jobs in this partition by non increasing order of resource requirement. We
greedily take jobs from this set, till they have a summed resource requirement of at least
γR and schedule them such that they end before ρ′. If there was a job with more than γR

resource requirement, it had to be finished before ρ′ since the resource requirement of huge
jobs finishing after ρ′ is smaller than γR and we only chose it. Otherwise, the greedily chosen
jobs have summed resource requirement of at 2γR. Since the considered set has a summed
resource requirement of at least 3γR, jobs of this set with summed resource requirement at
least 2γR end before ρ′. Therefore, we do not violate any constraint by shifting down these
jobs such that they end at ρ′, see Figure 5.

Concerning property three, note that since we only use the free area (machines and
resources) to schedule the k large jobs inside the gap, there is a layer s′ in the shifted
schedule, for each layer s ∈ S that has at least as many machines and resources not used by
large and huge jobs as the layer s. ◀
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Algorithm Summary. Given a value T ′ := iε′T , we determine the set S and call the
algorithm from Lemma 6 with γ = 1/(3|S| + 4) to generate the set of schedules for the large
jobs. One of these schedules uses in each layer at most as many machines and resources for
large jobs, as the rounded optimal schedule, or the value T ′ is to small. Furthermore, the
set of not scheduled large jobs J ′ has a total machine requirement of at most 3|S|, a total
resource requirement of at most γR, and each job has a processing time of at most T ′/2.

For each of these schedules, the algorithm iterates all values for τ and ρ and all possibilities
for the at most 2k huge jobs ending before or after these values and their starting positions.
Then, we identify the case and the other variables dependent on the guesses and the solution
schedule for the large jobs. By this we generate a new set of schedules, for which it will try
to place the small jobs. We refer to the full version for more details.

To bound the total number of guesses that we add by this procedure, note that we have
to guess τ , ρ and ρ′ from at most O(|S|) possibilities. Further, we for each of these guesses,
the algorithm guesses at most 2k huge jobs and their starting positions. The total number
of these guesses is bounded by (m/ε2)O(k), since the huge jobs start at multiples of ε2T .
Therefore, the total number of guesses for the large jobs is bounded by (m/ε2)O(k) · O(|S|3).
Since k ≤ 3|S|, this guess for the huge jobs lengthens the running time by a factor of at most
(m/ε)1/εO(1/ε2) . This concludes the proof of Theorem 1.
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Abstract
Given a set A of n points in Rd with weight function w : A → R>0, the Fermat distance function is
φ(x) :=

∑
a∈A

w(a)∥x − a∥. A classic problem in facility location dating back to 1643, is to find the
Fermat point x∗, the point that minimizes the function φ. We consider the problem of computing
a point x̃

∗ that is an ε-approximation of x∗ in the sense that ∥x̃
∗ − x∗∥ < ε. The algorithmic

literature has so far used a different notion based on ε-approximation of the value φ(x∗). We devise a
certified subdivision algorithm for computing x̃

∗, enhanced by Newton operator techniques. We also
revisit the classic Weiszfeld-Kuhn iteration scheme for x∗, turning it into an ε-approximate Fermat
point algorithm. Our second problem is the certified construction of ε-isotopic approximations of
n-ellipses. These are the level sets φ−1(r) for r > φ(x∗) and d = 2. Finally, all our planar (d = 2)
algorithms are implemented in order to experimentally evaluate them, using both synthetic as well
as real world datasets. These experiments show the practicality of our techniques.
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1 Introduction

A classic problem in Facility Location, see e.g., [21, 43], is the placement of a facility to
serve a given set of demand points or customers so that the total transportation costs are
minimized. The total cost at any point is interpreted as the sum of the distances to the
demand points. The point that minimizes this sum is called the Fermat Point; see Figure 1.
This is an old geometric problem that has inspired scientists over the last three centuries.

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , an} in Rd

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with
weight w(a). Let W :=

∑
a∈A w(a). The Fermat distance function of A is given by

φ(x) :=
∑
a∈A

w(a)∥x− a∥,
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(a) (b)

Figure 1 The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted with (x), along with
three 28-ellipses of different radii. (a) The foci (capitals) are unweighted. (b) Each focus has the
weight of the country’s population. The source of the map is https://www.consilium.europa.eu.

where ∥ · ∥ is the Euclidean norm in Rd. The global minimum value of φ is called the
Fermat radius of A, denoted by r∗ = r∗(A). Any point x ∈ Rd that achieves this minimum,
φ(x) = r∗, is called a Fermat point, denoted by x∗ = x∗(A). The Fermat point is not unique
if and only if A is collinear and n is even. We can check if A is collinear in O(n) time, and
in that case, the median, which is a Fermat point, can be found in O(n log n) time. So
henceforth, we assume that A is not collinear. In that case φ is a strictly convex function
[35, 37], and x∗ is unique.

We also consider the closely related problem of computing n-ellipses of A. For any
r > r∗(A), the level set of the Fermat distance function is φ−1(r) :=

{
x ∈ Rd : φ(x) = r

}
.

If n = 1, the level set is a sphere; and if n = 2 and d = 2, it is the classic ellipse. When
A has n points, we call φ−1(r) an n-ellipsoid, or an n-ellipse if d = 2; hence the term foci
set. From an application perspective, an n-ellipse of radius r can be viewed as a curve that
bounds the candidate area for facility location [46], such that the total transportation cost
to the demand points is at most r, as in Figure 1.

The question of approximating the Fermat point is of great interest as its coordinates are
roots of polynomials of degree exponential in n [3]. For any ε > 0, an ε-approximation x̃∗ to
the Fermat point x∗ can be interpreted in 3 ways:
(A) Approximate Fermat Point: ∥x̃∗ − x∗∥ ≤ ε;
(B) Absolute Approximate Fermat Radius: φ(x̃∗) ≤ φ(x∗) + ε;
(C) Relative Approximate Fermat Radius: φ(x̃∗) ≤ (1 + ε)φ(x∗).

Thus, we have three ε-approximation problems: (A), (B) and (C). Essentially (B) and
(C) are approximations of the Fermat radius, while (A) is a direct approximation of the
Fermat point. In this paper we consider approximations in the sense of (A); to the best
of our knowledge, only approximations in the sense of (B) and (C), have been considered
before, see e.g., [8, 16]. Below, we show that (B) and (C) are easily reduced to (A) while the
converse reductions are non-obvious (reductions in the sense of complexity theory).

In this work we introduce certified algorithms for approximating the Fermat point and n-
ellipses, combining a subdivision approach with interval methods (cf. [33, 48]). The approach
can be formalized in the framework of soft predicates [56]. Our certified algorithms are fairly
easy to implement, and are shown to have good performance experimentally.

Related Work. The problem we study has a long history, with numerous extensions and
variations. Out of the 15 names found in the literature, see [23], we call it the Fermat point
problem. Other common names are the Fermat-Weber problem and the Geometric median

https://www.consilium.europa.eu
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(a) (b)

Figure 2 The resulting box subdivision of Figure 1(a) for (a) the n-ellipses and (b) the Fer-
mat point.

problem. Apart from the Facility Location application introduced by Weber [57], the problem
is motivated by applications in diverse fields such as statistics and data mining where it is
known as the 1-Median problem, and is an instance of the k-median clustering technique [27].

For d = 2, n = 3, the problem was first stated by P. Fermat (1607 - 1665) and was solved
by E. Torricelli (1608 - 1647) and Krarup and Vajda [30] using a geometric construction. For
n = 4, solutions were given by Fagnano [20] and Cieslik [14]. The first general method, for
arbitrary n, is an iterative scheme proposed by Weiszfeld [58] in 1937. It was later corrected
and improved by Kuhn [32] and Ostresh [43]; see Beck and Sabach [4] for a review. The
method is essentially a gradient descent iterative algorithm. It behaves quite well in practice
and has only linear convergence, with guaranteed convergence from any starting point.

A plethora of approximation algorithms for the Fermat point, in the senses of (B) and
(C), can be found in the literature using various methods. There are algorithms based on
semidefinite programming [45], interior point methods [16, 60], sampling [2, 16], geometric
data structures [8] and coresets [26], among others [13, 22]. Moreover, special configurations
of foci have been considered [7, 15], a continuous version of the problem [21], and also a
generalized Fermat point of planar convex objects [1, 12, 18].

The literature on n-ellipses is smaller but equally old: Nagy [38] proved that n-ellipses are
convex curves, calling them egg curves, and dating them back to Tschirnhaus in 1695 [55,
p. 183]. Further, he characterized the singular points of the n-ellipses as being either foci or
the Fermat point. Another early work is by Sturm in 1884 [53]. Sekino [51] showed that the
Fermat distance function φ is C∞ on R2 \A. So, the n-ellipse is a piecewise smooth curve,
as it may pass through several foci. Nie et al. [42] showed that the polynomial equation
defining the n-ellipses has algebraic degree exponential in n.

Our Contributions. In this paper, we design, implement and experimentally evaluate
algorithms for approximating the Fermat point of a given set of foci in Rd. We also compute
an ε-approximate n-ellipse; a problem not considered in computational literature before.
These are the first certified algorithms [36, 54] for these problems. Our contributions are
summarized as follows:

We design two certified algorithm for the approximate Fermat point: one based on
subdivision, the other based on Weiszfeld iteration [58].
Our notion of ε-approximate Fermat point appears to be new; in contrast, several recent
works focus on ε-approximation of the Fermat radius. The approximate Fermat radius
can be reduced to approximate Fermat point; the converse reduction is unclear.
Based on the PV construction [47, 33], we design an algorithm to compute a regular
isotopic ε-approximation of an n-ellipse. We also augment the algorithm to compute
simultaneous contour plots of the distance function φ, resulting in a useful visualization
tool (see Figure 1).
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We implement and experimentally evaluate the performance of all our algorithms on
different datasets in the plane, as a function of n and ε.

Various details of the interval primitives and proofs can be found in the full arXiv version.

2 Preliminaries

Vector variables are written in bold font: thus 0 is the origin of Rd and x = (x1, . . . , xd). For
a differentiable function f : Rd → R, let ∂if denote partial differentiation with respect to xi.
The gradient ∇f : Rd → Rd of f is given by the vector ∇f(x) = (f1(x), . . . , fd(x))T where
fi = ∂if . In general, the operator ∇ is partial, i.e., ∇f(x0) might not be defined at a point
x0. A point x0 is a critical point of f if ∇f(x) = 0 or ∇f(x) is undefined.

We consider analytic properties of a scalar function f : Rd → R, mainly from the
viewpoint of convex analysis [35, 39]. In our case, f is the Fermat distance function for some
weighted set A. From an abstract perspective, the Fermat point problem (resp., n-ellipsoid
problem) amounts to computing the critical points of the gradient of f (resp., computing the
level sets of f). The Fermat point is the only critical point of ∇f in Rd \A, assuming A is
non-collinear.

Most of the basic properties regarding the Fermat point are well-known and may be found
in our references such as [32, 35, 39, 43, 58]. To emphasize the foci set A, we explicitly write
φA instead of φ. A focus a ∈ A is the Fermat point of A if and only if

∥∥∇φA\a(a)
∥∥ ≤ w(a).

Testing if the Fermat point x∗ is in A can be done in O(n2d) time. If x∗ is not one of the
foci, then ∇f(x∗) = 0, and the problem can be reduced to general finding real zeros of a
square system of polynomial equations (e.g., [59]). However, the thrust of this paper is to
develop direct methods that exploit the special properties of the Fermat problem.

We formally define the two main problems which we consider:
Approximate Fermat Point: Given a weighted point set A in Rd and ε > 0, compute
a point x̃∗ within ε distance to the Fermat point x∗ of A.
Approximate Isotopic n-Ellipses: Given ε > 0, a weighted point set A in R2 of
size n and a radius r > r∗(A), compute a closed polygonal curve E that is ε-isotopic to
φ−1(r), i.e., there exists an ambient isotopy1 γ : R2 × [0, 1]→ R2 with γ(E, 1) = φ−1(r)
and for any point a ∈ φ−1(r), the parametric curve γ(a, ·) has at most length ε. This
implies a bound of ε on the Hausdorff distance between E and φ−1(r).

Approximation notions. We compare the three different notions of ε-approximation for the
Fermat point. We reduce the approximation problem of notion (C) to (B), and (B) to (A).
An ε-approximation x̃∗ of x∗ in the sense

∥∥x̃∗ − x∗
∥∥ ≤ ε is also a (Wε)-approximation in

the sense φ(x̃∗) ≤ φ(x∗) + Wε, which follows directly from the triangle inequality

φ(x̃∗) =
∑
a∈A

w(a)∥x̃∗ − a∥ ≤
∑
a∈A

w(a)(∥x̃∗ − x∗∥+ ∥x∗ − a∥) = Wε + φ(x∗).

An ε-approximation x̃∗ of x∗ in the sense φ(x̃∗) ≤ φ(x∗) + ε is also a 2ε
φ(g) -approximation

in the sense φ(x̃∗) ≤ (1 + 2ε
φ(g) )φ(x∗). The center of gravity g is a 2-approximation of the

Fermat radius r∗ (see [16]), i.e. φ(x∗) ≥ 1
2 φ(g). Hence

φ(x̃∗) ≤ φ(x∗) + ε =
(

1 + ε

φ(x∗)

)
φ(x∗) ≤

(
1 + 2ε

φ(g)

)
φ(x∗)

1 That is, a continuous map γ : R2 × [0, 1] → R2 such that γ0 = γ(·, 0) is the identity map, and, for all
t ∈ [0, 1], γt = γ(·, t) is a homeomorphism on R2.
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On the other hand, it is not clear how to derive an ε-approximation of type (A) if an
approximation algorithm for type (B) and (C) is at hand, as the following 2 examples show.
Example 1: For any ε > 0 choose c ≤ ε

2
√

2−2 and consider the weighted foci a1 = (1, 0),
a2 = (0, 1), a3 = (−1, 0), a4 = (0,−1) with w(a1) = w(a3) = 1 and w(a2) = w(a4) = c for
which the Fermat point is x∗ = (0, 0) for symmetry reasons, see Figure 3(a). Point p = (1, 0)
is an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to x∗.
Example 2: For any ε > 0 we choose h > 0 small enough such that: 2

√
4 + h2 + 2h ≤

4
√

1 + h2 + ε. Consider the foci a1 = (0,−h), a2 = (0, h), a3 = (2,−h), a4 = (2, h) with
unit weights. The Fermat point is x∗ = (1, 0) for symmetry reasons, see Figure 3(b). Point
p = (2, 0) is an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to
x∗.

(a)
x

y

a1 = p

a2

a3

a4

x∗ (b)
x

y

a1

a2

a3

a4

x∗ p
{
{

h

h

︸ ︷︷ ︸
2

Figure 3 (a) Example that a good approximation of the Fermat point in sense (B) does not imply
a good approximation in sense (A). (b) Analogous example for sense (C).

Subdivision Paradigm. The subdivision algorithms presented in this paper take as input an
initial box B0 ⊂ Rd and recursively split it. We organize the boxes in a generalized quadtree
data structure [50]. A box can be specified by d intervals as B = I1 × I2 × · · · × Id. Let
mB denote the center of B, rB the radius of B (distance between mB and a corner), and
ω(B) the width of B (the maximum length of its defining intervals). The term c ·B denotes
the box with center mB and radius c · rB. The function split1 takes a box B and returns
2d congruent subboxes (children), one for each orthant. We use split2 to indicate that we
do two successive levels of split1 operations (i.e., 1 + 2d split1 operations, resulting in
(2d)2 = 4d leaves).

Soft Predicates. Let Rd denote the set of closed d-dimensional boxes (i.e., Cartesian
products of intervals) in Rd. Let P be a logical predicate on boxes, i.e., P : Rd →
{true, false}. For example, the Fermat point predicate is given by Pfp(B) = true if and
only if x∗ ∈ B. Logical predicates are hard to implement, and thus, we may focus on
tests, which are viewed as one-sided predicates. Formally, a test T looks like a predicate:
T : Rd → {success, failure} and it is always associated to some predicate P : call T a
test for predicate P if T (B) = success implies P (B) = true. However, we conclude nothing
if T (B) = failure. Denote this relation by “T ⇒ P”.

Soft predicates [56] are an intermediate concept between a test and a predicate. Typically,
they arise from a partial scalar function f : Rd → R ∪ {↑} where f(x) =↑ means f(x) is not
defined. We then define a partial geometric predicate Pf on boxes B as follows:
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Pf (B) =


↑ if ↑∈ f(B),
+1 if f(B) > 0,

−1 if f(B) < 0,

0 else.

We can now derive various logical predicates P from Pf , by identifying the values in
the set {−1, 0, +1, ↑} with true or false. For instance, we call P an exclusion predicate
if we associate the 0- and ↑-value with false and the other values with true. For the
inclusion predicate, we associate the 0-value with true, others with false. For example,
a test for the Fermat point predicate Pfp is an inclusion predicate based on the partial
function f(x) =

∑
i(∂if(x))2; the function is partial because f(x) =↑ when x is a focus

point. Although our box predicates P (B) are defined for full-dimensional boxes B, we
can extend them to any point x as follows: P (x) has the logical value associated with the
sign(f(x)) ∈ {↑, +1,−1, 0}.

▶ Definition 1. Let T be a test for a predicate P . We call T a soft predicate (or soft version
of P ) if it is convergent in this sense: if (Bi : i = 0, 1, . . .) is a monotone sequence of boxes
Bi+1 ⊆ Bi that converges to a point a, then P (a) ≡ T (Bi) for i large enough.

Here, “P (a) ≡ T (Bi)” means P (a) = true if and only if T (Bi) = success. A soft
version of P (B) is usually denoted P (B). We note that soft versions of exclusion predicates
are generally easier to construct than inclusion predicates. The former can be achieved by
numerical approximation, while the latter requires some deeper principle such as the Brouwer
fixed point theorem [9].

Interval arithmetic. We construct soft predicates using functions of the form F : Rd →
(R ∪ {−∞,∞}) that approximate the scalar function f : D → R with D ⊂ Rd.

▶ Definition 2. Call F a soft version of f if it is
i) conservative, i.e., for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and
ii) convergent, i.e., if for monotone sequence (Bi : i ≥ 0) that converges to a point a ∈ D,

limi→∞ ω(F (Bi)) = 0 holds.

We shall denote F by f when F is a soft version of f . There are many ways to achieve
f . For example, if f has an arithmetic expression E, we can simply evaluate E using

interval arithmetic. More sophisticated methods may be needed for performance. The next
lemma shows how f leads to soft exclusion predicates based on f .

▶ Lemma 3. If P is an exclusion predicate based on f , then the test P (B) : 0 /∈ f(B) is
a soft version of P .

Below, we need a multivariate generalization, to the case where f : Rd → Rm, and the
exclusion predicate P (B) is 0 /∈ f(B). If f : Rd → Rm is a soft version of f , then a
soft version of P (B) is the given by the test T (B) : 0 /∈ f(B). If f = (f1, . . . , fm), then
this reduces to 0 /∈ fi(B) for some i = 1, . . . , m.

3 Approximate Fermat points

We now present three approximation algorithms for the Fermat point x∗. For simplicity, we
assume in our algorithms that the Fermat point is not a focus, i.e. x∗ /∈ A. This assumption
can be easily checked in O(n2d) preprocessing time, or with a more elegant approach, in
O(nd) time during the execution of our subdivision algorithms.
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Figure 4 Different steps during the the execution of Algorithm 1. The dark red boxes cannot
contain the Fermat point, whereas the light green boxes may contain it.

3.1 Using the Subdivision Paradigm
The subdivision paradigm requires an initial box B0 to start subdividing. If B0 is not given,
it is easy to find a box that contains x∗, since x∗ lies in the convex hull of A [32]. We use
a function Initial-Box(A) which, in O(nd) time, computes an axis-aligned bounding box
with corners having the minimum and maximum x, y coordinates.

We define an exclusion and inclusion predicate based on the gradient function ∇φ.

▶ Definition 4. Given a box B, the gradient exclusion predicate C∇
0 (B) is defined by the

condition 0 /∈ ∇φ(B). The gradient inclusion predicate C∇
1 (B) is just the complement of

C∇
0 (B), that is 0 ∈ ∇φ(B).

Under our assumptions that x∗ /∈ A, we have that C∇
1 (B) holds if and only if x∗ ∈ B.

We obtain a soft version of the exclusion predicate C∇
0 (B) by replacing ∇φ in its definition

with any soft version ∇φ, see Lemma 3. But it is not so easy to get a soft version of
C∇

1 (B); we shall return to this when we treat the Newton operator below.
In Algorithm 1, using the exclusion predicate we discard boxes that are guaranteed not to

contain x∗ (red in Figure 4) and we split boxes that might contain x∗ (green in Figure 4).
While subdividing, we test whether we can already approximate x∗ well enough by putting a
bounding box around all the boxes that are not excluded yet, using the following predicate.

▶ Definition 5. Given a set of boxes Q that contains the Fermat point, the stopping predicate
Cε(Q) returns true, if and only if the minimum axis-aligned bounding box containing all
boxes in Q has a radius at most ε.

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is
at most ε, the center of the box is an ε-approximate Fermat point x̃∗.

Algorithm 1 Subdivision for the approximate Fermat point (SUB).

Input : Foci set A, constant ε > 0
Output : Point x̃∗

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇

0 (B) then
5 Q.push(split1(B));
6 return x̃∗ ← Center of the bounding box of Q;
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Regarding the runtime of Algorithm 1, evaluating ∇φ and its soft version takes linear
time in n. The subdivision approach induces an exponential dependency on d, as splitting
a box creates 2d many children. Further, a split1 operation decreases the boxwidth by a
factor of 2, therefore, Algorithm 1 cannot converge faster than linear in ε.

3.2 Enhancing the Subdivision Paradigm
In this section, we augment Algorithm 1 with a speed up based on a Newton operator, which
will ensure eventual quadratic convergence.

The Newton operator. Newton-type algorithms have been considered in the past, usually
independently of other methods, and thus suffer from lack of global convergence. Moreover,
from a numerical viewpoint, such methods face the precision-control problem. Our algorithm
integrates subdivision with the Newton operator (an old idea that goes back to Dekker [17]
in the 1960’s), thus ensuring global convergence.

We want to find the Fermat point, i.e., the root of f = ∇φ. Newton-type operators are
well-studied in the interval literature, and they have the form N = Nf : Rd → Rd. There
are three well-known versions of Nf : the simplest version, from Moore [36] and Nickel [40], is

N(B) = mB − J−1
f (B) · f(mB),

where Jf is the Jacobian matrix of f . Since f = ∇φ, this matrix is actually the Hessian of
φ. The second version by Krawzcyk [31, 52] is:

N(B) = mB −K · f(mB) + (I −K · f(B)) · (B −mB),

where K is any non-singular d×d matrix, usually chosen to be an approximation of J−1
f (mB).

The third version, from Hansen and Sengupta [24, 25], can be viewed as a sophisticated
implementation of the Moore-Nickel operator using an iteration reminiscent of the Gauss-
Seidel algorithm, combined with preconditioning. Later we report on our implementation of
the first two Newton operators. In general, the Newton operator N(B) does not return a box
even if B is a box; so we define N(B) to be a box that contains N(B). For simplicity, we
assume that N(B) is the smallest box containing N(B) with the same aspect ratio as B.

The following three properties of Newton box operators are consequences of Brouwer’s
Fixed Point Theorem [9, 41, 52, 59]:
1. (Inclusion Property) If N(B) ⊆ B then x∗ ∈ N(B).
2. (Exclusion Property) If N(B) ∩B = ∅ then x∗ /∈ B.
3. (Narrowing Operator) If x∗ ∈ B then x∗ ∈ N(B).

Based on these properties, we can define two tests and an operator:

▶ Definition 6. Newton tests for gradient exclusion/inclusion predicates (below we explain
why we use 2B instead of B):

Newton exclusion test:
T N

0 (B) = success iff N(2B) ∩B = ∅. Thus T N
0 (B)⇒ C∇

0 (B).
Newton inclusion test:
T N

1 (B) = success iff N(2B) ⊆ 2B. Thus T N
1 (B)⇒ C∇

1 (2B).
Newton narrowing operator:
N∩(B) returns B ∩N(2B).
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Note that the Newton tests T N
0 (B) and T N

1 (B) are defined using the exact Newton
operator N(B). If we replace it by a soft version N(B) in these definitions, they remain as
inclusion/exclusion tests for C∇

1 (B) and C∇
0 (B); we denote them by C∇

1 (B) and C∇
0 (B).

To compute N(B), we use standard interval arithmetic to evaluate the Newton operators.
We already noted that if N(B) ⊆ B, then x∗ ∈ N(B). But if x∗ is on the boundary of
B, then N(B) ⊆ B might not hold, and this issue persists even after splitting B. We
circumvent this problem by using 2B instead of B in the definition of T N

1 (B).
We enhance Algorithm 1 by the soft inclusion predicate T N

1 (B), as sketched in Algo-
rithm 2. If T N

1 (B) succeeds, we conclude that x∗ is contained in N(2B). In that case,
we can discard all other boxes and initialize a new queue Q on N(2B). In subsequent calls
to T N

1 (B′) for B′ ∈ Q, we conclude that x∗ ∈ 2B′. But to ensure that w(2B′) < w(B) (to
avoid an infinite loop), we initialize the queue Q with the 4d boxes of split2( N(2B)).

Algorithm 2 Enhanced subdivision for the approximate Fermat point (ESUB).

As in Algorithm 1 but replace line 5 with the following:
5.1 if T N

1 (B) then
5.2 Q← Queue(); // initialize a new queue
5.3 Q.push(split2( N(2B)); // 2 split operations
5.4 else
5.5 Q.push(split1(B));

With respect to the runtime of Algorithm 2, we observe that once the soft Newton
inclusion predicate succeeds, then it will also do so for an initial box of the new queue. This,
essentially, divides the algorithm into two phases. The first phase can be basically seen as
Algorithm 1. In the second phase, the Newton test guarantees quadratic convergence in ε.
Getting into the second phase depends on the configuration of the foci set but not on ε,
hence, our approach is of particular interest for small values of ε.

The termination of both subdivision algorithms follows from the soft gradient exclusion
predicate being convergent. The algorithms terminate once the predicate Cε(Q) succeeds,
yielding an ε-approximate Fermat point, so we summarize as follows.

▶ Theorem 7. Both Algorithms 1 and 2 terminate and return an ε-approximate Fermat point.

3.3 Certifying the Weiszfeld method
Weiszfeld’s iterative method [32, 43, 58] describes a sequence pi (i = 0, 1, . . .) of points that
converges to the Fermat point x∗, starting from any initial p0. The recurrence relation is
pi+1 = T (pi), where T (x) is defined by

T (x) =
∑

a∈A,a̸=x w(a) a
∥x−a∥∑

a∈A,a̸=x w(a) 1
∥x−a∥

.

Note that when x is a focus, then T (x) depends just on all other foci.
This simple iterative method is widely used, and although it converges, it does not solve

our ε-approximation problem as we do not know when to stop. To see that this is a real
issue, consider the example in Figure 5.

We augment the Weiszfeld iteration by adding Newton tests during the computation,
turning it into an ε-approximation algorithm. While at the i-th iteration, we define a small
box B with point pi as center, and map it to the box N(B) using the Newton operator;
see Figure 6. If N(B) ⊆ B, then the Fermat point x∗ lies in N(B). On the contrary, if

N(B) ̸⊆ B we move on to the next point pi+1 and adjust the box size as follows.

ESA 2021



54:10 Certified Approximation Algorithms for the Fermat Point and n-Ellipses
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two clusters of 249 foci
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Figure 5 An example with 500 foci, showing that Weiszfeld’s scheme does not solve the ε-
approximation problem. The scheme stopped when

∥∥pi−1 − pi

∥∥ ≤ 1/10, after 207 steps (blue
points). The distance ∥x∗ − p207∥ can be arbitrarily big (∥x∗ − p207∥ > 15 in this case).

If B
10 ∩ N( B

10 ) = ∅, then the box B
10 does not contain x∗ and we therefore expand B by

a factor of 10. If B
10 ∩ N( B

10 ) ̸= ∅, then there might be a focus in box B
10 , which hinders

N(B) ⊆ B to succeed. In that case we shrink B by a factor of 10. If a focus is not in B
10 ,

shrinking B does not effect the algorithm negatively, as B can expand again.
Using these tests we augment the point sequence scheme, sketched in Algorithm 3,

with the property that if the Newton test evaluates to true, then we are guaranteed an
ε-approximation of x∗. As a starting point, we choose the center of mass p0 of A, i.e.,
p0 = 1

W

∑
a∈A w(a) a.

With respect to the runtime, the point sequence T (x) converges linearly in ε towards
x∗ [29] but in order for Algorithm 3 to terminate the test N(B) ⊆ B must succeed. Similar
to other Newton operators, N(B) ⊆ B succeeds for boxes in a neighborhood surrounding
x∗. This neighborhood depends only on the configuration of A but not on ε. Further,
evaluating T (x) and N(B) can be done in O(nd2) time. We conclude as follows.

▶ Theorem 8. Algorithm 3 terminates and returns an ε-approximate Fermat point.

Algorithm 3 Certified Weiszfeld for the approximate Fermat point (CW ).

Input : Foci set A, constant ε > 0 Output: Point x̃∗

1 p← p0; l← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = l);
4 if N(B) ⊆ B then // Figure 6(a)
5 return x̃∗ ← p;
6 else if N

(
B
10

)
∩ B

10 = ∅ then // Figure 6(b)
7 l← min{10 · l, ε};
8 else // Figure 6(c)
9 l← 1

10 · l;
10 p← T (p);

B B
10

pi
pi(a) (b) (c)

piN( B
10
)

N(B) N( B
10
)

B
10

Figure 6 The case analysis of Algorithm 3. (a) N(B) ⊆ B, (b) N( B
10 ) ∩ B

10 = ∅, and
(c) N( B

10 ) ∩ B
10 ̸= ∅.
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4 Approximating n-ellipses

In this section, we describe an algorithm to construct approximate n-ellipses, based on the
subdivision paradigm. Throughout this work we maintain the subdivision smooth, i.e., the
width of any two adjacent boxes, which are leaves of the quadtree, may differ at most by a
factor of 2. Maintaining smoothness is easy to implement and has amortized O(1) cost per
operation [6]. Without maintaining smoothness, the amortized cost can be Ω(log n) [6].

The Plantinga and Vegter (PV) construction [47, 33, 34] approximates the zero set of
a function F : Rd → R where d ∈ {2, 3}. Assuming that S = F −1(0) is regular, i.e., the
gradient ∇F is non-zero at every point of S, this approximation is isotopic to S. Our goal
is to use this construction to approximate the n-ellipse defined by F (p) := φ(p) − r with
r > r∗. For simplicity, we assume all boxes are square; for the construction to succeed, we
only need an aspect ratio ≤

√
2 (see [33]). We use the notation ⟨·, ·⟩ for the scalar product.

The following are the key predicates and tests in the PV construction of the n-ellipse F −1(0).

▶ Definition 9. Fix F (p) = φ(p)− r. Let B be a square box.
1. The fundamental box predicate is the inclusion predicate CF

1 (B) : 0 ∈ F (B), and its
complement, the exclusion predicate CF

0 (B) : 0 /∈ F (B).
2. The (corner) inclusion test Tcor(B) = success iff F , when evaluated at the corners of B,

admits both negative and positive values. Clearly, Tcor(B) is a test for CF
1 (B). (There is

a standard PV trick whereby any 0-value can be arbitrarily made positive.)
3. The normal variation predicate Cnv(B) is defined by the condition ⟨∇F (B),∇F (B)⟩ > 0.

We obtain the soft versions CF
0 (B) and Cnv(B) by the usual device of replacing F (B)

in the definition of the predicates by a soft version F (B). But for the inclusion predicate
CF

1 (B) we have no soft version. Instead, the corner test Tcor(B) is a test for CF
1 (B). To

supplement the corner test, we need the normal variation predicate Cnv(B). This predicate
is equivalent to the condition that the angle between the gradient of any two points in B

is at most 90◦. It implies that the n-ellipse is monotone in either x- or y-direction within
the box. In Figure 7, boxes are: red if they pass the CF

0 (B) test, green if they pass both
Cnv and Tcor, orange if the pass only Cnv, and gray otherwise. Note that orange boxes

may, or may not, contain parts of the approximate n-ellipse.
An n-ellipse is not regular if it passes through some focus [51]; in that case a direct PV

construction is not possible. We develop a variation, sketched in Algorithm 4, where we
simultaneously subdivide boxes and construct pieces of the n-ellipse on the fly, instead of
doing that in the end. Further, boxes in which the n-ellipse may not be regular are treated
differently. During the subdivision part of the algorithm, we classify boxes in three categories:

1. Boxes which satisfy CF
0 (B) (red): These do not contain any piece of the n-ellipse, so

they do not need to be further considered and are discarded.
2. Boxes which satisfy Cnv and have width smaller than ε/2 (green or orange): We

immediately draw edges in each of these boxes, in contrast to the normal PV construction.
Note that at a later stage of the algorithm it might happen that we split one of B’s
neighboring boxes. In that case we need to take into account the sign of F at the new
vertex on B’s boundary. If necessary, the edges in box B then need to be updated.

3. The remaining boxes (gray): Such boxes occur near foci and need more careful attention,
as we cannot apply the standard PV construction. Instead, given a set of gray boxes we
first distinguish them in connected components, using a DFS algorithm. Then, for each
connected component of gray boxes Ki, we check if a set of conditions is satisfied:
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(a) (b)

Figure 7 (a) A 3-ellipse passing through two foci. Components of gray boxes (temporarily)
surround the foci. (b) If a gray component satisfies (B1) - (B3) the two ingoing edges are connected
with an edge (shown dashed).

(B1) Ki contains exactly one focus.
(B2) There are exactly two PV-edges leading to Ki.
(B3) The distance between any two corners of the boxes in Ki is at most ε/2.
If Ki satisfies all (B1) - (B3), then we connect the 2 PV-edges leading to Ki by a line
segment and discard boxes of Ki, see Figure 7(b). Otherwise, the children of the boxes of
Ki are put back in Q for further classification.

Algorithm 4 Approximating an n-ellipse.

Input : Foci set A, radius r, constant ε, box B0 Output: Curve E

1 Q← Queue(); Q.push(B0);
2 while Q ̸= ∅ do
3 Qnew ← Queue();
4 while Q ̸= ∅ do
5 B ← Q.pop();
6 if not CF

0 (B) then // exclude red
7 if Cnv(B) and ω(B) < ε/2 then // green or orange
8 E∩B ← Online-PV(B);
9 else // gray

10 Qnew.push(split4(B));
11 Q← Connected-Components-Analysis(Qnew)
12 return E;

By controlling the size of the boxes containing parts of the output curve, and by the
modification the PV construction we prove the following.

▶ Theorem 10. Algorithm 4 returns an isotopic ε-approximation of the n-ellipse F −1(0).

Interpolating edges. The PV construction creates edges within a box B, which start and
end at midpoints of box edges. One can derive a nicer-looking approximation by using linear
interpolation on the box edges by taking into account the value of F at B’s corners.

Contour Plotting. As an application, we can use the above technique in order to produce a
topologically correct, ε-approximate and visually nice n-elliptic contour plot. To do so, we
first adapt our algorithm in order to simultaneously plot several n-ellipses inside a bounding
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(a) (b)

Figure 8 Two different 3-elliptic contour plots with 10 contour lines, having the same set of foci.
(a) Using radii of equidistant points. (b) Using equidistant radii.

box, corresponding to the same foci but with different radii. Each n-ellipse is a contour line,
and we describe how to plot them visually nice, i.e., the contour lines are roughly equally
distributed in space. See Figure 8 for two different approaches and their visualization effect.

5 Experiments

We implemented our algorithms for R2 and conducted a series of experiments. Our current
software is written in MATLAB (version R2018b), taking advantage of its graphics ability.
The numerical accuracy is therefore IEEE numerical precision. The platform used was
MacOS Big Sur v11.2.3, with 2.5 GHz Quad-Core Intel Core i7 and 16 GB 1600MHz DDR3.

Following, we report on our experiments, discussing some notable points one by one.
We evaluated our algorithms on both synthetic and real-world datasets. For all algorithms
approximating the Fermat point we chose a time limit of 600 seconds. Moreover, for most
experiments we executed 10 different instances for completeness. In the illustrated charts,
the curves pass through the mean of the 10 running times, and additionally we also marked
the minimum and maximum running times. All axes in the charts are of logarithmic scale.

Datasets. We mainly experimented with two different types of synthetic datasets, namely
Unif-1 and Unif-2. In Unif-1 the n foci are sampled uniformly from a disk of radius 1. In
Unif-2 again the n foci are sampled uniformly from a disk of radius 1 and then n/2 foci are
translated by a vector (10, 10), see Figure 9(a) and Figure 9(b). Despite their similarity, the
two datasets present strong differences. As we later see, Unif-2 is significantly more difficult
to solve in comparison to Unif-1, and further Unif-1 resembles nicely real-world datasets.
The foci of Unif-2 lie almost all on a common line, which implies that there are many points
for which the gradient is close to 0. This makes it difficult to find the actual Fermat point,
for which the gradient is exactly 0. We experimented with more types of synthetics datasets,
such as points in convex position, vertices of a regular n-gon, clusters of points, but we do
not report on these results, as they are similar to Unif-1 or Unif-2.

Newton operators. Adding a Newton operator to the subdivision process drastically
improves the running time. We compared Algorithm 1 with two versions of Algorithm 2,
where we once use the Newton operator based on Moore and Nickel and also the operator
by Krawzcyk. The results for various values of n and ε on both Unif-1 and Unif-2 are
summarized in Figure 10. Note that Algorithm 2 initially needs to perform simple splitting
operations until at some point the Newton test succeeds the first time. After that the
algorithm converges quadratically in ε, which explains why the running time of both versions
almost do not increase for decreasing ε. Even though the operator by Krawzcyk returns a
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(a) (b) (c)

Figure 9 A box subdivision for n = 200 foci: (a) Unif-1, (b) Unif-2 and (c) Unif-2 after PCA.

smaller box N(B), i.e. it is more precise, than Moore and Nickel, it performs slower for
Unif-1 as evaluating the operator takes more time. We conclude that using a Newton operator
speeds up the computations, and we use the one of by Moore and Nickel in Algorithm 2.

Principal component analysis. Foci sets like Unif-2 are challenging as all foci are close to
a common line. In this case, the subdivision algorithms can be slow because there are many
boxes for which the gradient ∇φ is close to 0. Our approach to tackle this problem is to use
subdivision with rectangular boxes. In a preprocessing step we do a principal component
analysis (PCA) of the foci as heuristic. Then, we rotate the coordinate system such that the
x-direction is the first principal component. In the box subdivision we use rectangular boxes
with long x-width, see Figure 9(c). Observe in the following table, that for well distributed
foci sets like Unif-1, using the PCA adds only a small overhead to the total running time.

ε = 10−3, n = 10 100 1000 10000
without PCA 0.12 0.31 2.33 23.4
with PCA 0.10 0.30 2.30 23.9

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 0.20 0.30 0.33 0.34
with PCA 0.18 0.30 0.33 0.35

On the contrary, for sets like Unif-2, adding the PCA decreases drastically the running
time, as shown next. Hence, the PCA preprocessing is a useful addition to Algorithm 2,
which we will use also in the following experiments.

ε = 10−3, n = 10 100 1000 10000
without PCA 90.7 48.5 170 timeout
with PCA 0.15 0.40 3.21 32.7

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 37.1 49.2 49.2 49.5
with PCA 0.36 0.40 0.42 0.43

(a) (b) (c) (d)

Figure 10 A comparison of Algorithm 1 (• SUB), Algorithm 2 with the Krawzcyk Newton
operator ( Krawzcyk), and Algorithm 2 with the Nickel and Moore Newton operator (■ Nickel
& Moore). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function of ε with
n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.
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Real Datasets. Inspired by the applications in facility location we chose to experiment with
instances of the well-known Traveling Salesman Person Library [49] or TSPlib. The foci
correspond mostly to location of cities in different areas around the world. It appears that
real-world instances show a similar behavior to Unif-1 datasets; so we infer that Unif-1
are realistic datasets for the evaluation of different algorithms. In our experiments, to verify
that for each TSPlib dataset we created an additional foci set, where we uniformly sampled
the same number of foci in the axis-aligned bounding box. As ε we chose 10−6 times the
width of the corresponding bounding box. These experiments are illustrated in Figure 12(a),
and the similarity of the running time for the two datasets is obvious.

Summary on the Fermat point. We make an overall comparison of Algorithm 1, Algorithm 2
with the PCA, and Algorithm 3, illustrated in Figure 11. The running time of all methods
shows a linear dependency on n, but there are big differences regarding the dependency
on ε. Overall, Algorithm 3 performs well in all cases, but due to the linear convergence of
Weiszfeld’s point sequence, it cannot converge faster as ε decreases. In contrast, Algorithm 2
takes more time in the subdivision phase, but once the Newton tests succeeds, the algorithm
terminates very quickly. So, it does not exhibit almost any changes in the running time for
decreasing ε. This makes it favorable when a high precision approximate solution is required.
It is also very fast in Unif-2 instances and outperforms Algorithm 3. Summarizing, we
suggest to use Algorithm 2 in small dimensional spaces and for small ε due to its eventual
quadratic convergence in ε. On the other hand, the subdivision methods take exponential
time in d, therefore, we suggest to use Algorithm 3 for higher dimensional spaces.

n-ellipses. Finally, we evaluated the runtime of n-ellipses algorithm. In Figure 12(b) we
evaluate the dependency on n. In order to keep the length of the curve almost constant
we choose the radii r = (10

√
2+2)n
2 . The bounding box used is [−2, 12]2. In Figure 12(c) we

analyze the dependency on the length of the n-ellipse. The bounding box is fixed and we
experimented with different radii such that the lengths of the curve differ by a factor of
3/2. The runtime shows a linear dependency on n, as expected, and it also shows a linear
dependency on the length of curve. This can be justified, as covering an n-ellipse of length l

with boxes of width ε takes O(l/ε) many boxes.

(a) (b) (c) (d)

Figure 11 An overall comparison of Algorithm 1 (• SUB), Algorithm 2 with the PCA ( ESUB),
and Algorithm 3 (■ CW). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function
of ε with n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.
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(a) (b) (c)

Figure 12 (a) A comparison of TSP data sets (filled shapes) with Unif-1 (empty shapes, dashed
curve) for both Algorithm 2 (• ESUB) and Algorithm 3 (■ CW). Fermat point with time as a
function of n. (b),(c) n-ellipse on Unif-2 with time as a function of (b) n and (c) the length of the
n-ellipse. Two ε approximations with ε = 0.1 (•) and ε = 0.01 (■) have been computed.

6 Concluding Remarks

In this work, we mainly focused on finding ε-approximate Fermat points, in a strong sense
∥x̃∗−x∗∥ ≤ ε, which had not been considered before. This approximation can also be used to
derive an ε-approximation of the Fermat radius. This was done using a simple-to-implement
subdivision approach. All of our algorithms are certified in the sense of interval arithmetic.
Moreover, we certified the famous point-sequence algorithm of Weiszfeld [58] to guarantee
that it does find an ε-approximate Fermat point. We also designed an algorithm to construct
ε-approximate n-ellipses. The simplicity and efficiency of our algorithms were evaluated
experimentally for d = 2.

There are many directions for further research. One is to derive algorithmic complexity
bounds. Our intuition regarding the time complexity of our algorithms was affirmed by the
experimental runtime evaluation. Such bounds are rare for iterative numerical algorithms.
There has been considerable success in the area of root isolation [10, 11] where the idea
of “continuous amortization” should also apply here. Further, we expect the usage of the
Hansen-Sengupta Newton operator to result in a speedup.

Regarding the construction of n-ellipses, it would be interesting to design an alternative
algorithm based on curve-tracing. This could improve the runtime once a starting point on
the n-ellipse is found.

Another direction is related to Voronoi diagrams. From one perspective, it is interesting
to approximate the Voronoi diagram, where the sites are n-ellipses; so far only 2-ellipses have
been studied [19]. From a different perspective, if the sites are sets of foci (each associated
with a Fermat distance function) it is interesting to compute their Voronoi diagram, defined
as the minimization diagram of the Fermat distance functions. This is a min-sum diagram
in the context of cluster Voronoi diagrams, see e.g., [28, 44]. We believe that subdivision
methods augmented with root boxes, similar to [5], would be applicable to these problems.

References
1 A. Karim Abu-Affash and Matthew J. Katz. Improved bounds on the average distance to

the Fermat-Weber center of a convex object. Information Processing Letters, 109(6):329–333,
2009.

2 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proc. Symposium on Theory of Computing, pages 250–257. ACM, 2002. doi:10.1145/509907.
509947.

3 Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3(2):177–191, 1988.

https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/509907.509947


K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 54:17

4 Amir Beck and Shoham Sabach. Weiszfeld’s method: Old and new results. Journal of
Optimization Theory and Applications, 164(1):1–40, 2015.

5 Huck Bennett, Evanthia Papadopoulou, and Chee Yap. Planar minimization diagrams via
subdivision with applications to anisotropic Voronoi diagrams. Computer Graphics Forum,
35(5):229–247, 2016. doi:10.1111/cgf.12979.

6 Huck Bennett and Chee Yap. Amortized analysis of smooth quadtrees in all dimensions.
Computational Geometry, 63:20–39, 2017. doi:10.1016/j.comgeo.2017.02.001.

7 Bhaswar B. Bhattacharya. On the Fermat-Weber point of a polygonal chain and its general-
izations. Fundamenta Informaticae, 107(4):331–343, 2011.

8 Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances,
clustering and the Fermat-Weber problem. Computational Geometry, 24(3):135–146, 2003.

9 Luitzen Egbertus Jan Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische
Annalen, 71(1):97–115, 1911.

10 Michael Burr, Felix Krahmer, and Chee Yap. Continuous amortization: A non-probabilistic
adaptive analysis technique. Electronic Colloquium on Computational Complexity, TR09(136),
2009.

11 Michael A. Burr. Continuous amortization and extensions: With applications to bisection-
based root isolation. Journal of Symbolic Computation, 77:78–126, 2016. doi:10.1016/j.jsc.
2016.01.007.

12 Paz Carmi, Sariel Har-Peled, and Matthew J. Katz. On the Fermat-Weber center of a convex
object. Computational Geometry, 32(3):188–195, 2005. doi:10.1016/j.comgeo.2005.01.002.

13 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees for
regression problems. In Proc. Innovations in Theoretical Computer Science, pages 269–282.
ACM, 2013.

14 Dietmar Cieslik. Steiner minimal trees, volume 23. Springer Science & Business Media, 2013.
15 Ernest J. Cockayne and Zdzislaw A. Melzak. Euclidean constructibility in graph-minimization

problems. Mathematics Magazine, 42(4):206–208, 1969.
16 Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric

median in nearly linear time. In Proc. Symposium on Theory of Computing, pages 9–21. ACM,
2016. doi:10.1145/2897518.2897647.

17 Theodorus Jozef Dekker. Finding a zero by means of successive linear interpolation. In
Constructive Aspects of the Fundamental Theorem of Algebra, pages 37–48. Wiley Interscience,
1967.

18 Adrian Dumitrescu, Minghui Jiang, and Csaba D. Tóth. New bounds on the average distance
from the Fermat-Weber center of a planar convex body. Discrete Optimization, 8(3):417–427,
2011. doi:10.1016/j.disopt.2011.02.004.

19 Ioannis Z. Emiris, Elias P. Tsigaridas, and George M. Tzoumas. The predicates for the Voronoi
diagram of ellipses. In Proc. Symposium on Computational Geometry, pages 227–236. ACM,
2006.

20 Giovanni Francesco Fagnano. Problemata quaedam ad methodum maximorum et minimorum
spectantia. Nova Acta Eruditorum, pages 281–303, 1775.

21 Sándor P. Fekete, Joseph S.B. Mitchell, and Karin Beurer. On the continuous Fermat-Weber
problem. Operations Research, 53(1):61–76, 2005.

22 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proc. Symposium on Theory of Computing, pages 569–578. ACM, 2011.

23 Horst Hamacher and Zvi Drezner. Facility location: applications and theory. Science &
Business Media: Springer, 2002.

24 Eldon R. Hansen. A multidimensional interval newton method. Reliable Computing, 12(4):253–
272, 2006. doi:10.1007/s11155-006-9000-y.

25 Eldon R. Hansen and Saumyendra Sengupta. Bounding solutions of systems of equations
using interval analysis. BIT, 21:203–211, 1981.

ESA 2021

https://doi.org/10.1111/cgf.12979
https://doi.org/10.1016/j.comgeo.2017.02.001
https://doi.org/10.1016/j.jsc.2016.01.007
https://doi.org/10.1016/j.jsc.2016.01.007
https://doi.org/10.1016/j.comgeo.2005.01.002
https://doi.org/10.1145/2897518.2897647
https://doi.org/10.1016/j.disopt.2011.02.004
https://doi.org/10.1007/s11155-006-9000-y


54:18 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

26 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, 2007.

27 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proc. 36th Annual ACM Symposium on Theory of computing, pages 291–300. ACM, 2004.

28 Daniel P. Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

29 I. Norman Katz. Local convergence in Fermat’s problem. Mathematical Programming, 6(1):89–
104, 1974.

30 Jakob Krarup and Steven Vajda. On Torricelli’s geometrical solution to a problem of Fermat.
Journal of Management Mathematics, 8(3):215–224, 1997.

31 Rudolf Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken.
Computing, 4(3):187–201, 1969. doi:10.1007/BF02234767.

32 Harold W. Kuhn. A note on Fermat’s problem. Mathematical programming, 4(1):98–107, 1973.
33 Long Lin and Chee Yap. Adaptive isotopic approximation of nonsingular curves: the parame-

terizability and nonlocal isotopy approach. Discrete & Computational Geometry, 45(4):760–795,
2011. doi:10.1007/s00454-011-9345-9.

34 Long Lin, Chee Yap, and Jihun Yu. Non-local isotopic approximation of nonsingular surfaces.
Computer-Aided Design, 45(2):451–462, 2012.

35 Luis Fernando Mello and Lucas Ruiz dos Santos. On the location of the minimum point in the
Euclidean distance sum problem. São Paulo Journal of Mathematical Sciences, 12:108–120,
2018.

36 Ramon E. Moore. Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs, NJ, 1966.
37 Kent E Morrison. The fedex problem. The College Mathematics Journal, 41(3):222–232, 2010.
38 Gyula Sz Nagy. Tschirnhaus’sche Eiflächen und Eikurven. Acta Mathematica Academiae

Scientiarum Hungarica, 1(1):36–45, 1950.
39 Nguyen Mau Nam. The Fermat-Torricelli problem in the light of convex analysis. ArXiv

e-prints, 2013. arXiv:1302.5244v3.
40 Karl Nickel. Triplex-algol and applications. Interner Bericht des Instituts für Informatik der

Universität Karlsruhe, 1969.
41 Karl Nickel. On the Newton method in interval analysis. Technical report, Wisconsin

University-Madison Mathematics Research Center, 1971.
42 Jiawang Nie, Pablo A. Parrilo, and Bernd Sturmfels. Semidefinite representation of the

k-ellipse. In Algorithms in algebraic geometry, pages 117–132. Springer, 2008.
43 Lawrence M. Ostresh Jr. Convergence and descent in the Fermat location problem. Trans-

portation Science, 12(2):153–164, 1978.
44 Evanthia Papadopoulou. The Hausdorff Voronoi diagram of point clusters in the plane.

Algorithmica, 40(2):63–82, 2004.
45 Pablo A. Parrilo and Bernd Sturmfels. Minimizing polynomial functions. Algorithmic and

quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 60:83–99, 2003.

46 Maja Petrović, Bojan Banjac, and Branko Malešević. The geometry of trifocal curves with
applications in architecture, urban and spatial planning. Spatium, pages 28–33, 2014.

47 Simon Plantinga and Gert Vegter. Isotopic approximation of implicit curves and surfaces.
In Proc. of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pages
245–254. ACM, 2004.

48 Helmut Ratschek and Jon Rokne. Computer methods for the range of functions. Horwood,
1984.

49 Gerhard Reinelt. TSPLIB - A traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

50 Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
51 Junpei Sekino. n-ellipses and the minimum distance sum problem. The American mathematical

monthly, 106(3):193–202, 1999.

https://doi.org/10.1007/BF02234767
https://doi.org/10.1007/s00454-011-9345-9
http://arxiv.org/abs/1302.5244v3


K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 54:19

52 Sergey P Shary. Krawczyk operator revised. Novosibirsk, Institute of Computational Tech-
nologies, Rússia, 2004.

53 Rudolf Sturm. Über den Punkt kleinster Entfernungssumme von gegebenen Punkten. Journal
für die reine und angewandte Mathematik, 97:49–61, 1884.

54 Warwick Tucker. Validated Numerics: A short intro to rigorous computations. Princeton
Press, 2011.

55 Ehrenfried Walther von Tschirnhaus. Medicina Mentis Et Corporis. Fritsch, Lipsiae, 1695.
URL: http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10008248-3.

56 Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion planning.
Computational Geometry: Theory and Applications., 48(8):589–605, 2015.

57 Alfred Weber. Über den Standort der Industrien. English translation by CJ Friedrich (1929)
Theory of the Location of Industries, 1909.

58 Endre Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est
minimum. Tohoku Mathematical Journal, First Series, 43:355–386, 1937.

59 Juan Xu and Chee Yap. Effective subdivision algorithm for isolating zeros of real systems
of equations, with complexity analysis. In Proc. International Symposium on Symbolic and
Algebraic Computation, pages 399–406. ACM, 2019.

60 Guoliang Xue and Yinyu Ye. An efficient algorithm for minimizing a sum of Euclidean norms
with applications. SIAM Journal on Optimization, 7(4):1017–1036, 1997.

ESA 2021

http://mdz -nbn-resolving.de/urn:nbn:de:bvb:12-bsb10008248-3




Parameterized Algorithms for Diverse Multistage
Problems
Leon Kellerhals #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Malte Renken #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Philipp Zschoche #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Abstract
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1 Introduction

In the multistage setting, given a sequence of instances of some problem, one asks whether
there is a corresponding sequence of solutions such that consecutive solutions relate in
some way to each other. Often the aim is to find consecutive solutions that are very
similar [25, 18, 20, 7, 6, 19]. This is reasonable when changing between distinct solutions
incurs some form of cost. In other settings, the opposite goal is more reasonable, that is,
consecutive solutions should be very different. This is a natural goal when wear minimization,
load distribution, or resilience against failures or attacks are of interest. This diverse
multistage setting is what we want to focus on in this paper. Here, given a sequence of
instances of some decision problem, the task is to find a sequence of solutions such that
the diversity, i.e., the size of the symmetric difference of any two consecutive solutions is at
least ℓ.
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This problem has already received some attention in the literature: Fluschnik et al. [21]
studied the problem of finding diverse s-t paths and Bredereck et al. [11] considered series of
committee elections. In a similar setting, but aiming for large symmetric difference between
every two (i.e., not just consecutive) solutions, Baste et al. [8] provide a framework for
parameterization by treewidth, while the case that all instances are the same is studied for
matchings, independent sets of matroids [22, 23], and for Kemeny rank aggregation [3].

We briefly give a formal definition. Assume Π to be some decision problem which asks
whether the family of solutions R(I) ⊆ 2B(I) of an instance I of Π is non-empty, where
B(I) is some base set encompassing all possible solutions. For example, for an instance I

of Vertex Cover, the set B(I) is the set of all vertices and R(I) is the set of all vertex
covers within the size bound. The problem Diverse Multistage Π is now the following.

Diverse Multistage Π
Input: A sequence (Ii)τ

i=1 of instances of Π and an integer ℓ ∈ N0.
Question: Is there a sequence (Si)τ

i=1 of solutions Si ∈ R(Ii) such that |Si∆Si+1| ≥ ℓ for
all i ∈ [τ − 1]?

Our contributions. We present a general framework which allows us to prove fixed-parameter
tractability of Diverse Multistage Π parameterized by the diversity ℓ for several prob-
lems Π. This includes finding diverse matchings, but also diverse commitees (answering an
open question by Bredereck et al. [11]), diverse s-t paths, and diverse independent sets in
matroids such as spanning forests. Finally, we show that similar results cannot be expected
for finding diverse vertex covers.

Generally, our framework can be applied to Diverse Multistage Π whenever one can
solve a 4-colored variant of Π efficiently. Formally, this variant is defined as follows.

4-Colored Exact Π
Input: An instance I of Π, a coloring c : B(I) → [4], and ni ∈ N0, i ∈ [4].
Output: A solution S ∈ R(I) such that |{x ∈ S | c(x) = i}| = ni for all i ∈ [4] or “no” if no

such solution exists.

Our main result reads as follows.

▶ Theorem 1. For any parameter r of Π, if an instance I of 4-Colored Exact Π can be
solved in f(r) · |I|O(1) time, then an instance J of Diverse Multistage Π can be solved
in 2O(ℓ) · f(rmax) · |J |O(1) time, where rmax is the maximum of parameter r over all instances
of Π in J .1

We prove Theorem 1 in Section 3 in a more general form which also allows solving 4-Colored
Exact Π by a Monte Carlo algorithm. We then apply our framework to the following
problems:

Committee Election (Section 4). In Diverse Multistage Plurality Voting, we are
given a set A of agents, a set C of candidates, and τ many voting profiles ui : A → C. The
goal is to find a sequence (Ci)τ

i=1 of committees Ci ⊆ C such that each committee Ci is of
size at most k and gets at least x votes in the voting profile ui (i.e., |u−1

i (Ci)| ≥ x), and
|Ci∆Ci+1| ≥ ℓ for all i ∈ [τ − 1]. We show that there is a 2O(ℓ) · |J |O(1)-time algorithm
to solve a Diverse Multistage Plurality Voting instance J . This answers an open
question of Bredereck et al. [11]. In the full version we generalize the algorithm used to solve
4-Colored Exact Plurality Voting to matroids.

1 For example, if the input is a sequence of graphs and r is the treewidth, then rmax is the maximum
treewidth over all graphs in the input.
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Perfect Matching (Section 5). In the multistage setting, Perfect Matching is among the
problems most intensively studied [25, 5, 4, 13, 34]. Given a sequence of graphs (Gi)τ

i=1
and an integer ℓ, Diverse Multistage Perfect Matching asks whether there is a
sequence (Mi)τ

i=1 such that each Mi is a perfect matching in Gi, and |Mi∆Mi+1| ≥ ℓ for
all i ∈ [τ − 1]. We show that there is a randomized 2O(ℓ) · |J |O(1)-time algorithm to solve
a Diverse Multistage Perfect Matching instance J with constant error probability.
This stands in remarkable contrast to the W[1]-hardness of the (non-diverse) Multistage
Perfect Matching, when parameterized by ℓ + τ [34]. To apply our framework, we
establish an algebraic algorithm using the Pfaffian of a specific variant of the Tutte matrix
to solve s-Colored Exact Perfect Matching on an n-vertex graph in nO(s) time with
low error probability.

s-t Path (Section 6). Studying s-t Path in the multistage setting was already suggested
in the seminal work of Gupta et al. [25]. In Diverse Multistage s-t Path one is given a
sequence of graphs (Gi)τ

i=1, two distinct vertices s and t, and an integer ℓ, and asks whether
there is a sequence (Pi)τ

i=1 such that each Pi is an s-t Path in Gi, and |V (Pi)∆V (Pi+1)| ≥ ℓ

for all i ∈ [τ − 1]. Fluschnik et al. [21] provided a comprehensive study of finding s-t
paths of bounded length in the multistage setting from the viewpoint of parameterized
complexity. Among other results, they showed that Diverse Multistage s-t Path is
NP-hard but fixed-parameter tractable when parameterized by the maximum length of an
s-t Path in the solution. We show that Diverse Multistage s-t Path parameterized
by ℓ is fixed-parameter tractable. At first glance, using our framework seems unpromising
since 4-Colored Exact s-t Path can presumably not be solved in polynomial time (it is
NP-hard by a straight-forward reduction from Hamiltonian Path). However, we develop a
win/win strategy around a generalization of the Erdős-Pósa theorem for long cycles due to
Mousset et al. [30] so that we have to solve 4-Colored Exact s-t Path only on graphs on
which the treewidth is upper-bounded in the parameter ℓ.

In Section 7, we complement our fixed-parameter tractability results with a W[1]-hardness
for Diverse Multistage Vertex Cover when parameterized by ℓ.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respectively.
For n ∈ N, let [n] := {1, 2, . . . , n}. For two sets A and B, we denote by A∆B := (A \ B) ∪
(B \ A) = (A ∪ B) \ (A ∩ B) the symmetric difference of A and B, and by A ⊎ B the disjoint
union of A and B. For a function c : A → B, let c(A′) :=

⋃
a∈A′ c(a) and c−1(b) := {a ∈ A |

c(a) = b}, where A′ ⊆ A. We also use the notations cb and cb,b′ as shorthands for c−1(b)
and c−1(b) ∪ c−1(b′), respectively.

A Monte Carlo algorithm, or an algorithm with error probability p, is a randomized
algorithm that returns a correct answer with probability 1 − p.

Let Σ be a finite alphabet. A parameterized problem L is a subset L ⊆ {(x, k) ∈ Σ∗ ×N0}.
An instance (x, k) ∈ Σ∗ × N0 is a yes-instance of L if and only if (x, k) ∈ L (otherwise,
it is a no-instance). A parameterized problem L is fixed-parameter tractable (in FPT) if
for every input (x, k) one can decide in f(k) · |x|O(1) time whether (x, k) ∈ L, where f

is some computable function only depending on k. If W[1]-hard parameterized problem
is not fixed-parameter tractable unless FPT=W[1]. We refer to Downey and Fellows [17]
and Cygan et al. [14] for more material on parameterized complexity. We use standard
notation from graph theory [16]. Throughout this paper, we assume graphs to be simple and
undirected.
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3 The General Framework

In this section, we introduce a general framework to show (for some decision problem Π)
fixed-parameter tractability of Diverse Multistage Π parameterized by ℓ. Recall that,
for every instance I of a decision problem Π, we denote by B(I) the base set encompassing
all possible solutions, by R(I) ⊆ 2B(I) the family of solutions, and by |I| the input size of I,
which is at least |B(I)|. For the reminder of this section we assume that |B(I)| ≥ 2 for all
instances I of Π. The framework is applicable to Diverse Multistage Π if there is an
efficient algorithm for 4-Colored Exact Π. Formally, we use the following prerequisite,
which is slightly more general than in Theorem 1.

▶ Assumption 2. There are computable functions f, g such that for every 0 ≤ p ≤ 1 for
which g(p) is defined, there is a Monte-Carlo algorithm A with error probability p and
running time f(r) · |I|O(1) · g(p) that solves an instance I of 4-Colored Exact Π, where
r ∈ N0 is some parameter of I and g is monotone non-increasing.

We allow an error probability in Assumption 2 because for one of our applications (in
Section 5), no other polynomial-time algorithm is known. The goal is to prove the following.

▶ Theorem 3. Let Assumption 2 be true. Then any size-n instance I of Diverse Mul-
tistage Π can be solved in 2O(ℓ) · f(rmax) · nO(1) · g(p/τ2O(ℓ)nO(1)) time by a Monte-Carlo
algorithm with error probability p, where rmax is the maximum of parameter r over all
instances of Π in I, and 0 ≤ p ≤ 1 is an arbitrary probability for which the above expression
is defined.2

Note that, if we have a non-randomized algorithm in Assumption 2 (that is, g(0) is defined
and g maps always to one), then Theorem 1 follows directly from Theorem 3.

The underlying strategy of the algorithm for a Diverse Multistage Π-instance J

behind Theorem 3 is to compute for each instance I of Π in J a solution family such that the
Cartesian product of these families contains a solution for J if and only if J is a yes-instance.
Once these families are obtained, we can check whether J is a yes-instance by dynamic
programming. To this end, we compute a small subset of R(I) satisfying the following
definition.

▶ Definition 4. Let F be a set family. A subfamily F̂ ⊆ F is called an ℓ-diverse repre-
sentative of F if the following holds: for any pair of sets A, B, if there is an S ∈ F with
min{|A∆S|, |B∆S|} ≥ ℓ, then there is an Ŝ ∈ F̂ such that min{|A∆Ŝ|, |B∆Ŝ|} ≥ ℓ.

First of all, we note that ℓ-diverse representatives can be rather small.

▶ Lemma 5. Let F be a set family and S1, S2, S3 ∈ F . If |Si∆Sj | ≥ 2ℓ for all distinct
i, j ∈ [3], then {S1, S2, S3} is an ℓ-diverse representative of F .

Proof. Assume for contradiction that there exist sets A and B with min{|A∆Si|, |B∆Si|} < ℓ

for all i. Without loss of generality, assume that |A∆S1| < ℓ. Then for j ∈ {2, 3} we have
|A∆Sj | ≥ |S1∆Sj | − |S1∆A| > 2ℓ − ℓ = ℓ by the triangle inequality. Therefore, |B∆Sj | < ℓ

for all j ∈ {2, 3}. In particular, |B∆S2| < ℓ. Again, by the triangle inequality |B∆S3| ≥
|S2∆S3| − |S2∆B| > 2ℓ − ℓ = ℓ, i.e., min{|A∆S3|, |B∆S3|} ≥ ℓ – a contradiction. ◀

2 For example, if we only have an algorithm with non-zero error probability, then p = 0 is excluded.
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In the following, we measure the distance of two solutions by the size of the symmetric
difference. In a nutshell, we compute an ℓ-diverse representative of the family of solutions by
first trying to compute three solutions which are far apart from each other (that is, size of
symmetric difference at least 2ℓ). If this succeeds, then by Lemma 5 we are done. Otherwise,
we distinguish between three cases.
No solution. If there is no solution at all, then trivially ∅ is an ℓ-diverse representative of

the family of solutions.
One solution. If we only find one solution S1 to the instance of Π, then each other solution is

close to S1. Hence, for any two sets A, B, if one of them is far away from S1, then by the
triangle inequality it is also far away from every other solution and can be safely ignored.
For those sets which are close to S1, we can exploit the upper bound on the symmetric
difference by using color-coding [2] and then applying Assumption 2 to compute an
ℓ-diverse representative of the family of solutions. This case is handled in Lemma 9.

Two solutions. If we find two diverse solutions S1 and S2 such that no other solution is far
away from both, then S1 and S2 partition the solution space into two parts: the solutions
close to S1 and those close to S2. Again, given two sets A, B, if either of them is far
away from S1 and S2, then we may ignore it. By including S1 and S2 in our family, we
may further assume that A is similar to S1 and B is similar to S2. We distinguish two
subcases. If the distance between S1 and S2 is very large, then A is far away from all
solutions in the second part and B is far away from all solutions in the first part. We
can thus ignore one of them (say B) and exploit the fact that A, S1, and all solutions of
interest are close to each other to use color-coding and then apply Assumption 2. In the
other subcase where the distance between S1 and S2 is bounded, we can utilize that fact
similarly. This case is handled in Lemma 10.

Hereafter, the details. Before we dive into the case distinction outlined above, we need to
prove two technical lemmata, telling us how to build a diverse representative set that works
for all sets obeying some given coloring of the elements of B(I). These will later work as
building blocks in the construction of proper diverse representatives. In the first lemma, only
two colors are used, and we are only concerned with one arbitrary set A instead of two.

▶ Lemma 6. Let Assumption 2 be true. Given an instance I of Π of size n, a color-
ing c : B(I) → [2], and a solution M ∈ R(I), one can compute in f(r)nO(1)g(pn−4) time
and with error probability at most p a family F ⊆ R(I) of size at most n4 such that for
any S ∈ R(I) and any A ⊆ B(I) with S \ A ⊆ c1 and A \ S ⊆ c2, there is Ŝ ∈ F with
|A∆Ŝ| ≥ |A∆S| and |M∆Ŝ| = |M∆S|.

Proof. Let F ′
1 := c1 ∩ M , F ′

2 := c2 ∩ M , F ′
3 := c1 \ M , and F ′

4 := c2 \ M .
Start with F = ∅. Then, for each m ∈ [n] and each number partition

∑4
i=1 mi = m with

mi ≥ 0, use algorithm A to search in f(r)nO(1)g(pn−4) time and with error probability at
most pn−4 for a set N ∈ R(I) such that |N ∩ F ′

i | = mi for all i ∈ [4]. If this succeeds, then
we add N to F . Since there are

(
n+4

4
)

≤ n4 possibilities for m1, . . . , m4, the probability of
an error occurring is upper-bounded by p. Moreover, the size of F is upper-bounded by n4

and hence the time required is bounded by f(r)nO(1)g(pn−4).
It remains to be proven that F has the desired properties. Let S ∈ R(I) be arbitrary

and set mi := |S ∩ F ′
i | for all i ∈ [4]. By construction, F contains a set Ŝ ∈ R(I) such that

|Ŝ ∩ F ′
i | = mi. We then have |Ŝ∆M | = m3 + m4 + |M | − m1 − m2 = |S∆M |.

Let A ⊆ B(I) be a set with S \ A ⊆ c1 and A \ S ⊆ c2. Since A \ S ⊆ c2 we have

|A ∩ S ∩ c1| = |A ∩ c1| ≥ |A ∩ Ŝ ∩ c1| (1)
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and since S \ A ⊆ c1, we have that

|A ∩ S ∩ c2| = |S ∩ c2| = m2 + m4 = |Ŝ ∩ c2| ≥ |A ∩ Ŝ ∩ c2|. (2)

By adding (1) and (2) we obtain |A ∩ S| ≥ |A ∩ Ŝ| which in turn implies |A∆S| ≤ |A∆Ŝ|
since |S| = |Ŝ|. ◀

The next lemma extends the approach of Lemma 6 to the case where we have four colors
and two arbitrary sets A, B.

▶ Lemma 7. Let Assumption 2 be true. Given an instance I of Π of size n and a color-
ing c : B(I) → [4], one can compute in f(r)nO(1)g(pn−4) time and with error probability
at most p a family F ⊆ R(I) of size at most n4 such that for any S ∈ R(I) and all sets
A, B ⊆ B(I) with A \ (B ∪ S) ⊆ c1, B \ (A ∪ S) ⊆ c2, (A ∩ B) \ S ⊆ c3, and S \ (A ∩ B) ⊆ c4,

there is Ŝ ∈ F with |C∆Ŝ| ≥ |C∆S| for all C ∈ {A, B}.

Proof. Begin with F = ∅. Then, for each m ∈ [n] and each number partition
∑4

i=1 mi = m

with mi ≥ 0, use algorithm A to search in f(r)nO(1)g(pn−4) time and with error probability
at most pn−4 for an M ∈ R(I) such that |M ∩ ci| = mi for all i ∈ [4]. If this succeeds, then
add M to F . Since there are

(
n+4

4
)

≤ n4 possibilities for m1, . . . , m4, the probability of an
error occurring is upper-bounded by p. Moreover, the size of F is at most n4 and thus the
overall running time is f(r)nO(1)g(pn−4).

Now let S ∈ R(I) be arbitrary. Set mi := |S ∩ ci|, for all i ∈ [4]. By construction there is
Ŝ ∈ F such that |Ŝ ∩ ci| = mi for all i ∈ [4]. It remains to be proven that Ŝ has the desired
properties. To this end, let A, B ⊆ B(I) be two sets as stated in the lemma. By symmetry,
it suffices to show that |A∆Ŝ| ≥ |A∆S|.

Since S \ A ⊆ c4 we have

|S ∩ A ∩ c1,3| = |S ∩ c1,3| = m1 + m3 = |Ŝ ∩ c1,3| ≥ |Ŝ ∩ A ∩ c1,3| (3)

and since A \ S ⊆ c1,3, we have

|S ∩ A ∩ c2,4| = |A ∩ c2,4| ≥ |Ŝ ∩ A ∩ c2,4|. (4)

By adding (3) and (4), we obtain |S ∩ A| ≥ |Ŝ ∩ A| and thus |S∆A| ≤ |Ŝ∆A| since
|S| = |Ŝ|. ◀

We now describe how we generate the colorings required for using Lemmata 6 and 7. Color-
coding [2] is well-established in the toolbox of parameterized algorithms. While color-coding
was initially described as a randomized technique, we use universal sets [33] to derandomize
this technique as shown in the next lemma. Interestingly, without this derandomization
the error probability of the color-coding step would later propagate through the dynamic
programming method and consequently also depend on the number of instances of Π in the
input instance of Diverse Multistage Π. The derandomization works as follows.

▶ Lemma 8. For any set A of size n and any b ≤ n one can compute in 22b+o(b) log n · n

time a family of functions {cj : A → [4] | j ∈ [22b+o(b) log n]} such that for any
⊎4

i=1 Bi ⊆ A

with |
⊎4

i=1 Bi| ≤ b there is a j such that cj(Bi) = {i}, for all i ∈ [4].

Proof. Let A := {a1, . . . , an}. By a result of Naor et al.citeNearOptimalDerandomization,
one can compute in 22bbO(log b) · log n · n ⊆ 22b+o(b) log n · n time a so-called (2n, 2b)-universal
set which is a family U ⊆ 2[2n] such that for every B′ ⊆ A with |B′| = 2b the family
{B′ ∩ U | U ∈ U} contains all 22b subsets of B′. Let U := {Ui}22b+o(b) log n

i=1 . We then define
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cj , j ∈ [22b+o(b) log n], by

cj(ai) :=


1, if i, i + n ∈ Uj ,

2, if i ∈ Uj and i + n /∈ Uj ,

3, if i /∈ Uj and i + n ∈ Uj , and
4, if i, i + n /∈ Uj .

Now let B1 ⊎ B2 ⊎ B3 ⊎ B4 ⊆ A be an arbitrary 4-partition of a subset of A of size at most b.
Consider B′ := {i, i + n | ai ∈

⋃4
q=1 Bq}. We assume that B′ is of size 2b, otherwise we add

arbitrary elements from [2n]. Since B′′ := {i, i + n | ai ∈ B1} ∪ {i | ai ∈ B2} ∪ {i + n | ai ∈
B3} ⊆ B′ there is an Uj ∈ U such that B′ ∩ Uj = B′′. Hence, cj(Bi) = {i}, for all i ∈ [4]. ◀

We now show how to generate an ℓ-diverse representative of the family of solutions if there is
one solution M∗ from which no other solution differs by more than 2ℓ.

▶ Lemma 9. Let Assumption 2 be true. Given an instance I of Π of size n, and a
solution M∗ ∈ R(I) such that each M ∈ R(I) satisfies |M∆M∗| ≤ 2ℓ, one can compute in
216ℓ+o(ℓ) log n · f(r) · nO(1) · g(p/216ℓ+o(ℓ) log n·n4) time and with error probability p an ℓ-diverse
representative of R(I) of size at most 216ℓ+o(ℓ) log n · n4.

Proof. For simplicity, let J := [216ℓ+o(ℓ) log n]. Apply Lemma 8 with b = 8ℓ to compute in
216ℓ+o(ℓ) log n · n time a family of colorings {cj : B(I) → [4] | j ∈ J}. To apply Lemma 8
we assume that |B(I)| ≥ 8ℓ, otherwise we utilize dummy elements. For each j ∈ J, apply
Lemma 7 to I and cj to compute a family Fj ⊆ R(I) with error probability p · |J|−1. Observe
that the probability of an error occurring at any of the |J| steps is bounded by p. Choose
F := {M∗} ∪

⋃
j∈J Fj . According to Lemma 7 the size of F is upper-bounded by |J| · n4 and

the time required is bounded by |J| · f(r) · nO(1) · g(pn−4 · |J|−1).
We now show that F is an ℓ-diverse representative of R(I). To this end, let S ∈ R(I)

and let A, B be two arbitrary sets such that |A∆S| ≥ ℓ and |B∆S| ≥ ℓ. Since M∗ ∈ F ,
we may assume by symmetry that, say, |M∗∆A| < ℓ, otherwise we are done. Note that
|M∗∆S| ≤ 2ℓ and that |A∆S| ≤ |A∆M∗| + |M∗∆S| < 3ℓ. We say that some coloring c is
good for A, B, S if the conditions of Lemma 7 are satisfied, i.e. if

A \ (B ∪ S) ⊆ c1, B \ (A ∪ S) ⊆ c2, (A ∩ B) \ S ⊆ c3, and S \ (A ∩ B) ⊆ c4.

We distinguish between two cases.
Case 1: |M∗∆B| < 3ℓ. Then |B∆S| ≤ |B∆M∗| + |M∗∆S| ≤ 5ℓ. According to Lemma 8

there is an i ∈ J such that coloring ci is good for A, B, S, since |B∆S| + |A∆S| < 8ℓ. By
Lemma 7 and construction of Fi, there is an Ŝ ∈ Fi ⊆ F such that |Ŝ∆A| ≥ |S∆A| ≥ ℓ

and |Ŝ∆B| ≥ |S∆B| ≥ ℓ.
Case 2: |M∗∆B| ≥ 3ℓ. Set B′ := A. According to Lemma 8 there is an i ∈ J such that

coloring ci is good for A, B′, S, since |B′∆S| + |A∆S| < 6ℓ. Thus, by Lemma 7 and by
the construction of Fi there is an Ŝ ∈ Fi ⊆ F such that |Ŝ∆A| ≥ |S∆A| ≥ ℓ. Finally, we
observe that |Ŝ∆B| ≥ |M∗∆B| − |M∗∆Ŝ| ≥ 3ℓ − 2ℓ ≥ ℓ by the triangle inequality.

This completes the proof. ◀

Next, we show how to generate an ℓ-diverse representative of the family of solutions if there
are two solutions such that no other solution differs from both by more than 2ℓ.

▶ Lemma 10. Let Assumption 2 be true. Let I be an Π-instance of size n, and M1, M2 ∈ R(I)
such that |M1∆M2| ≥ 2ℓ and each M ∈ R(I) has min{|M∆M1|, |M∆M2|} ≤ 2ℓ. Then one
can compute, in 220ℓ+o(ℓ) log n · f(r)nO(1)g(p/n4220ℓ+o(ℓ) log n) time and with error probability p,
an ℓ-diverse representative of R(I) of size 220ℓ+o(ℓ) log n · n4.

ESA 2021



55:8 Parameterized Algorithms for Diverse Multistage Problems

Proof. For simplicity, let J := [220ℓ+o(ℓ) log n]. Apply Lemma 8 with b = 10ℓ to compute in
220ℓ+o(ℓ) log n · n time a family of colorings {cj : B(I) → [4] | j ∈ J}. To apply Lemma 8 we
assume that |B(I)| ≥ 10ℓ, otherwise we utilize dummy elements.

For each j ∈ J, apply Lemma 7 to I and cj to compute a family Fj ⊆ R(I) of size
at most n4 with error probability p/3 · |J|−1. Observe that the probability of an error
occurring at any of the |J| steps is upper-bounded by p/3 and the computation of all Fj

takes |J|f(r)nO(1)g(p/3n4·|J|) time.
Next, define another family of colorings {c′

j : B(I) → [2] | j ∈ J} by setting c′
j(x) :=

⌈cj(x)/2⌉. Then, for each j ∈ J, apply Lemma 6, to I, c′
j and M1 to compute a family F ′

j ⊆
R(I), with the same error probability and time bound as before. Repeat with M2 instead
of M1 to obtain F ′′

j .
Set F := {M1, M2} ∪

⋃
j∈J(Fj ∪ F ′

j ∪ F ′′
j ). Then F has size at most 3|J|n4 + 2 ⊆

220ℓ+o(ℓ) log n · n4. Computing F takes 220ℓ+o(ℓ) log n · f(r)nO(1)g(p/3n4·|J|) time. The proba-
bility of an error occurring at any step while computing F is upper-bounded by p.

We now show that F is an ℓ-diverse representative of R(I). To this end, let S ∈ R(I)
and A, B be two arbitrary sets such that |A∆S| ≥ ℓ and |B∆S| ≥ ℓ. We may assume for
each i ∈ [2] that |Mi∆A| < ℓ or |Mi∆B| < ℓ, otherwise we are done. By symmetry, we may
assume |M1∆A| < ℓ. Then |M2∆A| ≥ |M2∆M1| − |M1∆A| > ℓ by the triangle inequality
and thus we must have |M2∆B| < ℓ. By assumption, min{|S∆M1|, |S∆M2|} ≤ 2ℓ, so let
without loss of generality |S∆M1| ≤ 2ℓ. Note that |A∆S| ≤ |A∆M1| + |M1∆S| < 3ℓ. We
distinguish the following two cases.
Case 1: |M1∆M2| ≤ 4ℓ. Then, |B∆S| ≤ |B∆M2| + |M2∆M1| + |M1∆S| < 7ℓ. We say

that some coloring c is good for A, B, S if the conditions of Lemma 7 are satisfied,
i.e. if A \ (B ∪ S) ⊆ c1, B \ (A ∪ S) ⊆ c2, (A ∩ B) \ S ⊆ c3, and S \ (A ∩ B) ⊆ c4.

According to Lemma 8 there is an i ∈ J such that coloring ci is good for A, B, S,
since |B∆S| + |A∆S| ≤ 10ℓ. By Lemma 7, there is Ŝ ∈ Fi ⊆ F such that such that
|Ŝ∆A| ≥ |S∆A| ≥ ℓ and |Ŝ∆B| ≥ |S∆B| ≥ ℓ.

Case 2: |M1∆M2| > 4ℓ. Since |S∆A| < 3ℓ ≤ 10ℓ, there is j ∈ J such that S \ A ⊆
c′

j
1 and A \ S ⊆ c′

j
2
. By Lemma 6 there is Ŝ ∈ F ′

j such that |Ŝ∆M1| = |S∆M1| ≤ 2ℓ

and |Ŝ∆A| ≥ |S∆A| ≥ ℓ. Finally, observe that by the triangle inequality |Ŝ∆B| ≥
|M1∆M2| − |M1∆Ŝ| − |B∆M2| > ℓ.

This completes the proof. ◀

With Lemmata 5, 9, and 10 at hand we can formalize the case distinction outlined in the
beginning of the section. This gives us a way to efficiently compute an ℓ-diverse representative
in general.

▶ Lemma 11. Let Assumption 2 be true. Let I be an instance of Π of size n. One can
compute an ℓ-diverse representative of R(I) of size 220ℓ+o(ℓ) log n · n4 in 220ℓ+o(ℓ) log n ·
f(r)nO(1)g(p/n4·220ℓ+o(ℓ) log n) time with error probability at most p.

Proof. Our procedure to compute an ℓ-diverse representative of R(I) works in four steps.

Step 1. We use A with a monochrome coloring and error probability p/4n to search for some
M1 ∈ R(I) in f(r)nO(1)g(p/4n) time by guessing the size of |M1| ≤ n. Observe that the
probability of an error occurring in any of the searches is upper-bounded by p/4. If we do
not succeed, then output the empty set and we are done. Otherwise, we proceed with the
next step.
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Step 2. For each pair m1, m2 with m1 + m2 ≤ n and m2 + |M1| − m1 > 2ℓ, try to compute
M2 ∈ R(I) with |M2 ∩ M1| = m1 and |M2 ∩ (B(I) \ M1)| = m2 in f(r)nO(1)g(p/4n2) time
and with error probability p/4n2 using A with a 2-coloring where elements in M1 are
assigned one color and elements in B(I) \ M1 are assigned the second color. If no
such M2 is found for any pair m1, m2, then for every M ∈ R(I) the symmetric difference
|M∆M1| ≤ 2ℓ. In that case we may apply Lemma 9 with error probability p/2 and are
done. Observe that the probability of an error occurring at any step until here is upper-
bounded by p and the overall running time is 216ℓ+o(ℓ) log n · f(r)nO(1)g(p/n4·216ℓ+o(ℓ) log n).
If we found such an M2, then we proceed with the next step.

Step 3. We have M1, M2 ∈ R(I) with |M1∆M2| ≥ 2ℓ. Define the coloring c : B(I) → [4] by

c(v) :=


i if v ∈ Mi \ Mj for {i, j} = {1, 2},

3 if v ∈ M1 ∩ M2, and
4 otherwise.

For all m′
1, m′

2, m′
3, m′

4 with m′
1 +m′

2 +m′
3 +m′

4 ≤ n and m′
2 +m′

4 + |M1|−m′
1 −m′

3 > 2ℓ

and m′
1 +m′

4 + |M2|−m′
2 −m′

3 > 2ℓ, search for a solution M3 ∈ R(I) with |M3 ∩ci| = m′
i,

for all i ∈ [4], using A with c and error probability p/4n4. For all these combined, we thus
have error probability p/4 and need f(r)nO(1)g(p/4n4) time. If no such M3 is found for any
choice of m′

1, m′
2, m′

3, m′
4, then any M ∈ R(I) must have min{|M∆M1|, |M∆M2|} ≤ 2ℓ.

In that case we may apply Lemma 10 with error probability p/4 and are done. Observe
that the probability of an error occurring at any step until here is upper-bounded by p

and the overall running time is 220ℓ+o(ℓ) log n · f(r)nO(1)g(p/n4·220ℓ+o(ℓ) log n). In case that
we found such an M3, we proceed with the next step.

Step 4. We have M1, M2, M3 ∈ R(I) such that |Mi∆Mj | ≥ 2ℓ for all distinct i, j ∈ [3].
Hence, by Lemma 5, we can output {M1, M2, M3}. This completes the proof. ◀

Finally, Lemma 11 allows us to formulate a dynamic program for Diverse Multistage Π
and prove Theorem 3.

Proof of Theorem 3. Let J := ((Ii)τ
i=1, ℓ) be an instance of Diverse Multistage Π,

where n := maxi∈[τ ] |Ii|. For each i ∈ [τ ] we apply Lemma 11 to obtain an ℓ-diverse
representative Fi of R(Ii) that has size at most 220ℓ+o(ℓ) log n ·n4 in 220ℓ+o(ℓ) log n ·f(r)nO(1) ·
g(p/τn4·220ℓ+o(ℓ) log n) time with error probability p/τ . Observe that the probability of an error
occurring at any step is upper-bounded by p. Now we use the following dynamic program to
check whether J is a yes-instance.

∀i ∈ {2, 3, . . . , τ}, S ∈ Fi : D[i, S] :=
{

⊤ if ∃Ŝ ∈ Fi−1 : D[i − 1, Ŝ] = ⊤ and |S∆Ŝ| ≥ ℓ,

⊥ otherwise,

where D[1, Ŝ] = ⊤ if and only if Ŝ ∈ F1. We report that J is a yes-instance if and only there is
an S ∈ Fτ such that D[τ, S] = ⊤. Note that this takes

(
220ℓ+o(ℓ) log n · n4)2

τ ⊆ 2O(ℓ)nO(1)τ

time. Hence our overall running time is 2O(ℓ)·f(rmax)nO(1)·τ ·g(p/τn4·220ℓ+o(ℓ) log n), where rmax
is the maximum of parameter r over all instances of Π in J .

(⇐): We show by induction over i ∈ [τ ] that if D[i, S] = ⊤, then there is a sequence
(Sj)j∈[i] such that Si = S, Sj ∈ R(Ij) for all j ∈ [i] and |Sj−1∆Sj | ≥ ℓ for all j ∈ {2, 3, . . . , i}.

By definition of D this is clearly the case for i = 1. Now let 1 < i ≤ τ and D[i, S] = ⊤.
Since D[i, S] = ⊤, S ∈ Fi and thus S ∈ R(Ii). By definition of D there is an Ŝ ∈ Fi−1 with
D[i − 1, Ŝ] = ⊤ and |S∆Ŝ| ≥ ℓ. By induction hypothesis, there is a sequence (Sj)j∈[i−1] such
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that Si−1 = Ŝ, Sj ∈ R(Ij) for all j ∈ [i − 1] and |Sj−1∆Sj | ≥ ℓ for all j ∈ {2, 3, . . . , i − 1}.
Hence, the sequence (S1, . . . , Si−1 = Ŝ, S) completes the induction. Thus, if we report that
J is a yes-instance, then this is true.

(⇒): Now let (Sj)j∈[τ ] be a solution for J . To simplify the proof let Sτ+1 be a set of
ℓ elements that are disjoint from Sτ . We show by induction that for all i ∈ [τ ] there is a
Z ∈ Fi such that D[i, Z] = ⊤ and |Z∆Si+1| ≥ ℓ.

Let i = 1. Then there is a Z ∈ F1 such that |S2∆Z| ≥ ℓ since F1 is an ℓ-diverse
representative of R(I1). Hence, D[1, Z] = ⊤.

Now let 1 < i ≤ τ . By induction hypothesis, there is a Zi−1 ∈ Fi−1 such that D[i −
1, Zi−1] = ⊤ and |Si∆Zi−1| ≥ ℓ. Since Si ∈ R(Ii) and we have |Si∆Zi−1|, |Si∆Si+1| ≥ ℓ and
Fi is an ℓ-diverse representative of R(Ii), there is a Z ∈ Fi such that |Z∆Zi−1|, |Z∆Si+1| ≥ ℓ.
By definition of D, we also have D[i, Z] = ⊤. This completes the induction step. Thus, there
is a Z ∈ Fτ such that D[τ, Z] = ⊤ and if J is a yes-instance, then we report that. ◀

4 Application: Committee Election

Bredereck et al. [11] studied the following problem under the name Revolutionary Mul-
tistage Plurality Voting.

Diverse Multistage Plurality Voting
Input: A set A of agents, a set C of candidates, a sequence (ui)τ

i=1 of voting profiles
ui : A → C ∪ {∅}, and integers k, x, ℓ ∈ N.

Question: Is there a sequence (C1, C2, . . . , Cτ ) such that for all i ∈ [τ ] it holds that Ci ⊆ C,
|Ci| ≤ k, and |u−1(Ci)| ≥ x, and for all i ∈ [τ −1] it holds true that |Ci∆Ci+1| ≥ ℓ?

In this section, we affirmatively answer the question of Bredereck et al. [11] whether Diverse
Multistage Plurality Voting parameterized by ℓ or k is in FPT.3

▶ Theorem 12. An instance J of Diverse Multistage Plurality Voting can be solved
in 2O(ℓ) · |J |O(1) time.

To prove Theorem 12, we use Theorem 1. In the notation of our framework, we deal with the
following problem Π: given an instance I = (A, C, u, k, x) consisting of a set A of agents, a
set C =: B(I) of candidates, a voting profile u : A → C, and two integers k, x, decide whether
R(I) := {S ⊆ C | k ≥ |S| and |u−1(S)| ≥ x} is non-empty. Hence, to apply Theorem 1, we
consider the following problem.

4-Colored Exact Plurality Voting
Input: A set A of agents, a set C of candidates, a voting profile u : A → C ∪ {∅}, a coloring

c : C → [4], and integers ni, x, k ∈ N, i ∈ [4].
Output: A set C′ ⊆ C of at most k candidates so that |u−1(C′)| ≥ x and |c−1(i) ∩ C′| = ni

for all i ∈ [4] or “no” if no such set exists.

This problem is polynomial-time solvable and hence the following observation together with
Theorem 1 proves Theorem 12. In the full version we will generalize this application to
independent sets in matroids.

▶ Observation 13 (⋆4). 4-Colored Exact Plurality Voting is polynomial-time
solvable.

3 Note that ℓ ≤ 2k for all non-trivial instances, so it suffices to prove this for ℓ.
4 Proofs of results marked with a star are deferred to the full version.
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5 Application: Perfect Matching

In this section, we apply our framework from Section 3 to find a sequence of diverse perfect
matchings.

Diverse Multistage Perfect Matching
Input: A sequence (Gi)τ

i=1 of graphs and an integer ℓ ∈ N0.
Question: Is there a sequence (Mi)τ

i=1 of perfect matchings Mi ⊆ E(Gi) such that
|Mi∆Mi+1| ≥ ℓ for all i ∈ [τ − 1]?

There are two closely related variants of this problem which were studied extensively. The
first variant is the non-diverse variant, where one seeks to bound the symmetric differences
(in some way) from above [5, 4, 13, 25, 34]. Steinhau [34] proved that if the size of the
symmetric difference of two consecutive perfect matchings shall be at most ℓ, then this
problem variant is NP-hard even if ℓ is constant, and W[1]-hard when parameterized by ℓ + τ .
The second variant is the non-multistage variant, where one is given a single graph and is
asked to compute a set of pairwise diverse perfect matchings [22, 23]. Fomin et al. [22] proved
that this variant is NP-hard even if one asks only for two diverse matchings. This directly
implies NP-hardness for Diverse Multistage Perfect Matching even when τ = 2.

Our goal is to show fixed-parameter tractability of Diverse Multistage Perfect
Matching when parameterized by ℓ. This stands in contrast to the NP-hardness for the
non-diverse problem variant with constant ℓ.

▶ Theorem 14 (⋆). An instance J of Diverse Multistage Perfect Matching can be
solved in 2O(ℓ) · |J |O(1) time with a constant error probability.

We will prove Theorem 14 by means of Theorem 3 at the end of this section. To this end we
need to consider the following problem.

s-Colored Exact Perfect Matching
Input: A graph G = (V, E), a coloring c : E → [s], and ki ∈ N, i ∈ [s].
Output: (if exists) A perfect matching M in G such that |ci ∩ M | = ki, for all i ∈ [s]?

For s = 2, this problem is known as Exact Matching, and Mulmuley et al. [32]
showed that this special case is solvable by a randomized polynomial-time algorithm. We
generalize this result by showing that s-Colored Exact Perfect Matching can be
solved in polynomial time for any constant s by a randomized algorithm with constant error
probability. While we only need this for s = 4 in order to prove Theorem 14, we believe that
the general case may be of independent interest. We remark that it is open whether Exact
Matching can be solved in (deterministic) polynomial time.

▶ Lemma 15 (⋆). For every 0 < p < 1 there is an (nO(s)·log 1/p)-time algorithm which, given
an instance of s-Colored Exact Perfect Matching, finds a solution with probability at
least 1 − p if one exists, and concludes that there is no solution otherwise.

To determine whether a given s-Colored Exact Perfect Matching has a solution we
use the following algorithm.

▶ Algorithm 16. Let 0 < p < 1 and let I = (G, c, k1, . . . , ks) be an instance of s-Colored
Exact Perfect Matching where G = (V, E) has n vertices.
Step 1. Set γ := ⌈n/(2p)⌉ and draw wij ∈ [γ] for all {i, j} ∈ E uniformly at random.
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Step 2. Construct an n × n matrix A′ with entries aij ∈ Z[y1, . . . , ys], 1 ≤ i ≤ j ≤ n, where

aij :=
{

0 if {i, j} /∈ E,

wijyq if {i, j} ∈ cq ∩ E, q ∈ [s].

Afterwards we compute the skew-symmetric matrix A := A′ − (A′)T .
Step 3. Compute the polynomial P :=

√
det(A) ∈ Z[y1, . . . , zs].

Step 4. If P contains a monomial b∗yk1
1 yk2

2 · · · yks
s such that b∗ ̸= 0 then, output yes. Other-

wise, output no. ⋄
Before studying the running time of Algorithm 16, we first focus on its correctness.

▶ Lemma 17. Let I and p be the input of Algorithm 16. If Algorithm 16 returns yes, then
there is a solution for I. Conversely, if I is a yes-instance, then Algorithm 16 returns yes
with probability at least 1 − p.

Proof. Let P be the set of all partitions of V into unordered pairs. For σ ∈ P with σ =
{{i1, j1}, {i2, j2}, . . . , {in/2, jn/2}} with ik < jk for k ∈ [n/2] and i1 < i2 < · · · < in/2, let

πσ :=
[

1 2 3 4 · · · n − 1 n

i1 j1 i2 j2 · · · in/2 jn/2

]
be the corresponding permutation. Let val(σ) := sgn(πσ)

∏
{i,j}∈σ aij , where sgn(πσ) ∈

{+1, −1} is the signum of πσ. The Pfaffian of A (computed by Algorithm 16) is defined
as pf(A) :=

∑
σ∈P val(σ) [27]. Note that A is skew-symmetric, hence, pf(A) =

√
det(A) = P

[31, 27]. As val(σ) = 0 whenever σ contains a non-edge, we have P =
∑

M∈PM val(M),
where PM is the set of perfect matchings in G. Let M be a perfect matching and let zq =
|cq ∩ M |, q ∈ [s]. Then val(M) = sgn(πM )

∏
q∈[s]

∏
{i,j}∈M∩cq wijyq = b · yz1

1 yz2
2 · · · yzs

s ,

where b ∈ Z. Let PM∗ ⊆ PM be the family of perfect matchings M∗ which have exactly
ki edges of color i, for all i ∈ [s]. Then the coefficient b∗ of the monomial b∗yk1

1 yk2
2 · · · yks

s

of P is b∗ =
∑

M∗∈PM∗ sgn(πM∗)
∏

{i,j}∈M∗ wij . Hence, if Algorithm 16 returns yes (i.e.,
b∗ ̸= 0), then PM∗ ̸= ∅.

Now conversely assume I to be a yes-instance, i.e., PM∗ ̸= ∅. We analyze the probability
of the event b∗ = 0 occurring. Note that b∗ can be seen as a polynomial of degree at most n/2
over the indeterminates {wij | {i, j} ∈ E}. As we have drawn the wij independently and
uniformly at random from [γ] with γ ≥ n/(2p), by the DeMillo-Lipton-Schwartz-Zippel
lemma the probability that b∗ = 0 is at most n/(2γ) ≤ p. ◀

Now we show that Algorithm 16 can be executed efficiently.

▶ Lemma 18 (⋆). Algorithm 16 runs in nO(s) log(1/p) time.

We are now ready to put all parts together and prove Lemma 15. In a nutshell, we use
Algorithm 16 to check whether there is a solution. If this is the case, then we try to delete
as many edges as possible from the instance until the whole edge set is a solution. Putting
Lemma 15 and Theorem 3 together, we can prove the main theorem of this section, see the
full version for details.

6 Application: s-t Path

In this section, we apply our framework to the task of finding a sequence of diverse s-t paths.
This has obvious applications e.g. in convoy routing [21].
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Diverse Multistage s-t Path
Input: A sequence of graphs (Gi)τ

i=1, two distinct vertices s, t ∈
⋂τ

i=1 V (Gi), and ℓ ∈ N0.
Question: Is there a sequence (P1, P2, . . . , Pτ ) such that Pi is an s-t path in Gi for all i ∈ [τ ],

and |Si∆Si+1| ≥ ℓ for all i ∈ [τ − 1]?

Our goal is to show that Diverse Multistage s-t Path parameterized by ℓ is in FPT.

▶ Theorem 19. Diverse Multistage s-t Path parameterized by ℓ is in FPT.

We will prove Theorem 19 by means of Theorem 1 at the end of this section. To this end, we
need to consider the following problem.

4-Colored Exact s-t Path
Input: A graph G, distinct vertices s, t ∈ V (G), coloring c : V (G) → [4], and ni ∈ N0, i ∈ [4].
Output: (if exists) An s-t path P such that |c−1(i) ∩ V (P )| = ni for all i ∈ [4].

Unfortunately, 4-Colored Exact s-t Path is unlikely to be polynomial-time solvable,
as it is NP-hard even if only a single color is used, by a trivial reduction from Hamiltonian
Path. However, as we will see in the proof of Theorem 19, by a result of Mousset et al. [30]
we can actually reduce 4-Colored Exact s-t Path to the case that all graphs have small
treewidth. In this setting, we then employ dynamic programming.

▶ Lemma 20 (⋆). 4-Colored Exact s-t Path is solvable kO(k) · |I|O(1) time, where k is
the treewidth of the input graph G.

While some techniques [15, 24, 9] seem applicable to improve the running time of Lemma 20
slightly, for our needs a straight-forward dynamic program on a nice tree decomposition
suffices. We are now ready to prove Theorem 19.

Proof of Theorem 19. Let the instance J of Diverse Multistage s-t Path be given in
the form of graphs G1, . . . , Gτ , two vertices s, t ∈

⋂τ
i=1 Gi and ℓ ∈ N. We may assume that

every vertex v of every graph Gi is contained in at least one s-t path in Gi, since otherwise
we may delete v. This is equivalent to the assumption that the graph G′

i obtained from
adding the edge {s, t} to Gi is biconnected.

By a result of Mousset et al. [30], there is a universal constant γ > 0, such that each Gi

with treewidth tw(Gi) ≥ γℓ contains two vertex-disjoint cycles of size at least 4ℓ.
If two such cycles C, C ′ exist in Gi, then let P1 be an s-t path containing at least one

edge of C. To see that such a path exists, construct a biconnected graph by simply attaching
a new degree-two vertex s′ to both s and t, create another new vertex t′ by subdividing some
edge of C, and take two disjoint paths between s′ and t′.

Without loss of generality, P1 enters C and C ′ at most once each. Construct another
s-t path P2 from P1 by setting E(P2) := E(P1)∆E(C). If P1 contains any edge of C ′,
then define P3 by E(P3) := E(P1)∆E(C ′). Otherwise, let P3 be any s-t path containing
at least half of the edges of C ′ (this can be achieved analogously to the construction of P1
resp. P2). Observe that P1, P2, and P3 have pairwise symmetric differences at least 2ℓ. Thus,
{P1, P2, P3} is an ℓ-diverse representative of all s-t paths in Gi by Lemma 5.

We can then solve the subinstances given by (Gj)j<i and (Gj)j>i separately and pick a
suitable path from {P1, P2, P3} afterwards.

All subinstances in which every graph Gi has tw(Gi) < γℓ can be solved by Theorem 1 in
combination with Lemma 20 in 2O(ℓ)f(γℓ)|J |O(1) time, where f is given by Lemma 20. ◀
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7 Hardness of Vertex Cover

We finally present a problem where our framework from Section 3 is not applicable, un-
less FPT = W[1]. The non-diverse variant of the following problem was studied by
Fluschnik et al. [20]. Among others, they showed W[1]-hardness when parametrized by the
vertex cover size k or by the maximum number of edges over all instances in the input.

Diverse Multistage Vertex Cover
Input: A sequence of graphs (Gi)τ

i=1 and k, ℓ ∈ N.
Question: Is there a sequence (S1, S2, . . . , Sτ ) such that for all i ∈ [τ ] the set Si ⊆ V (Gi) is a

vertex cover of size at most k in Gi and |Si∆Si+1| ≥ ℓ for all i ∈ [τ − 1]?

The framework from Section 3 is presumably not applicable to Diverse Multistage
Vertex Cover because of the following result.

▶ Theorem 21. Diverse Multistage Vertex Cover parameterized by ℓ is W[1]-hard,
even if τ = 2.

Proof. We reduce from Independent Set: Given a graph G = (V, E), and k ∈ N, is
there a vertex set S ⊆ V , |S| ≥ k, such that the vertices in S are pairwise nonadjacent?
Independent Set is W[1]-hard with respect to k [17].

Let I := (G = (V, E), k) be an instance of Independent Set and let |V | = n. Without
loss of generality, we assume that k > 1. We construct an instance J := ((G1, G2), k′, ℓ)) of
Diverse Multistage Vertex Cover as follows. The first graph G1 is a complete graph
on the vertex set V ∪ {v}. The second graph G2 consists of the vertex set V ∪ {v} and the
edge set E ∪ {{u, v} | u ∈ V }, that is, G2 is a copy of G to which we add a vertex v which
is adjacent to every other vertex. Lastly, we set k′ := n and ℓ := k + 1. Clearly, J can be
constructed in polynomial time. We now show that I is a yes-instance if and only if J is a
yes-instance.

(⇒): Let S be an independent set of size at least k in G. Let S1 := V and S2 := {v}∪V \S.
Note that |S1∆S2| ≥ k + 1 and |S2| ≤ |S1| = n, and Si is a vertex cover in Gi for i ∈ [2].
Thus (S1, S2) is a valid solution for our instance of Diverse Multistage Vertex Cover.

(⇐): Let (S1, S2) be a solution for our instance of Diverse Multistage Vertex
Cover. As G1 is a complete graph, we have |S1| ≥ n. Without loss of generality, we assume
that S1 = V . Then S1∆S2 = {v} ∪ V \ S2. Note that v ∈ S2, otherwise S2 must be equal
to V in order to be a vertex cover, and |S1∆V | < ℓ. As S2 is a vertex cover of G2, the
set S := (V ∪ {v}) \ S2 is an independent set of G2. Note that v /∈ S, hence S is also an
independent set of G. Finally, as S = (S1∆S2) \ {v}, we have |S| ≥ ℓ − 1 = k, and we are
done. ◀

8 Conclusion

We introduced a versatile framework to show fixed-parameter tractability for a variety of
diverse multistage problems when parameterized by the diversity ℓ. The only requirement
for applying our framework is that a four-colored variant of the base problem can be solved
efficiently. We presented four applications of our framework, one of which resolving an open
question by Bredereck et al. [11]. Two other applications revealed problems which may be of
independent interest from a technical and motivational point of view, see Sections 5 and 6.

We believe that our framework can be applied to a broad spectrum of multistage problems.
In particular, a broad systematic study of the multistage setting in elections was proposed by
Boehmer and Niedermeier et al. [10]. Herein, diversity is a natural goal. From a motivational
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point of view, an interesting direction for future research is to combine the diverse multistage
setting with time windows, known from other temporal domains [35, 28, 12, 1, 29]. Here, a
solution to the i-th instance should be sufficiently different from the δ previous solutions
in the sequence; our work covers the case δ = 1. In some multistage scenarios a “global
view” [26] on the symmetric differences is desired. In context of this paper this means that
two consecutive solutions can have a small symmetric difference as long as the sum of all
consecutive symmetric differences is at least ℓ. We believe that our framework (Section 3) can
be extended to this setting. To see this, we have to realize that for an ℓ-diverse representative
F of a family of solutions the following holds: For all sets A and B and integers ℓa, ℓb ≤ ℓ, if
there is an S ∈ F such that |A∆S| ≥ ℓa and |B∆S| ≥ ℓb, then there is an Ŝ ∈ F such that
|A∆Ŝ| ≥ ℓa and |B∆Ŝ| ≥ ℓb. We leave the details for further research. Finally, the presented
time and space constraints to compute ℓ-diverse representatives seem to be suboptimal.
Hence, improving the time or space constraints could be a fruitful research direction.
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Abstract
Grammar compression is, next to Lempel–Ziv (LZ77) and run-length Burrows–Wheeler transform
(RLBWT), one of the most flexible approaches to representing and processing highly compressible
strings. The main idea is to represent a text as a context-free grammar whose language is precisely
the input string. This is called a straight-line grammar (SLG). An AVL grammar, proposed by
Rytter [Theor. Comput. Sci., 2003] is a type of SLG that additionally satisfies the AVL property:
the heights of parse trees for children of every nonterminal differ by at most one. In contrast to other
SLG constructions, AVL grammars can be constructed from the LZ77 parsing in compressed time:
O(z log n) where z is the size of the LZ77 parsing and n is the length of the input text. Despite
these advantages, AVL grammars are thought to be too large to be practical.

We present a new technique for rapidly constructing a small AVL grammar from an LZ77 or
LZ77-like parse. Our algorithm produces grammars that are always at least five times smaller than
those produced by the original algorithm, and usually not more than double the size of grammars
produced by the practical Re-Pair compressor [Larsson and Moffat, Proc. IEEE, 2000]. Our
algorithm also achieves low peak RAM usage. By combining this algorithm with recent advances
in approximating the LZ77 parsing, we show that our method has the potential to construct a
run-length BWT in about one third of the time and peak RAM required by other approaches.
Overall, we show that AVL grammars are surprisingly practical, opening the door to much faster
construction of key compressed data structures.
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1 Introduction

The increase in the amount of highly compressible data that requires efficient processing in the
recent years, particularly in the area of computational genomics [3, 4], has caused a spike of
interest in dictionary compression. Its main idea is to reduce the size of the representation of
data by finding repetitions in the input and encoding them as references to other occurrences.
Among the most popular methods are the Lempel–Ziv (LZ77) compression [32], run-length
Burrows–Wheeler transform (RLBWT) [5, 16], and grammar compression [6]. Although in
theory, LZ77 and RLBWT are separated by at most a factor of O(log2 n) (where n is the length
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of the input text) [15, 20], the gap in practice is usually noticeable (as also confirmed by our
experiments). RLBWT is the largest of the three representations in practice, but is also the
most versatile, supporting powerful suffix array and suffix tree queries [16]. LZ77, on the other
hand, is the smallest, but its functionality includes only the easier longest common extension
(LCE), random-access, and pattern matching queries [1, 7, 12, 13, 21]. Grammar compression
occupies the middle ground between the two, supporting queries similar to LZ77 [26]. Navarro
gives a comprehensive overview of these and related representations [26, 27].

A major practical concern with these representations – RLBWT in particular – is how
to construct them efficiently. Past efforts have focused on engineering efficient general
algorithms for constructing the BWT and LZ77 [10, 18, 2, 17], but these are not applicable
to the terabyte-scale datasets routinely found, e.g., in modern genomics [4]. Specialized
algorithms for highly repetitive datasets have only been investigated recently. Boucher et
al. [4] proposed a method for the efficient construction of RLBWT using the concept of
prefix-free parsing. The same problem was approached by Policriti and Prezza, and Ohno
et al. [29, 28], using a different approach based on the dynamic representation of RLBWT.
These methods represent the state of the art in the practical construction of RLBWT.

A different approach to the construction of RLBWT was recently proposed in [20]. The
idea is to first compute the (exact or approximate) LZ77 parsing for the text, and then
convert this representation into an RLBWT. Crucially, the LZ77 → RLBWT conversion takes
only O(z polylog n) time (where z is the size of the LZ77 parsing), i.e., it runs not only in the
compressed space but also in compressed time.1 The computational bottleneck is therefore
shifted to the easier problem of computing or approximating the LZ77, which is the only step
taking Ω(n) time. Internally, this new pipeline consists of three steps: text → (approximate)
LZ77 → grammar → RLBWT, unsurprisingly aligning with the gradual increase in the size
and complexity of these representations. Kosolobov et al. [24] recently proposed a fast and
space-efficient algorithm to approximate LZ77, called Re-LZ. The second and third steps
in the pipeline, from the LZ77 parse to the RLBWT, have not been implemented. The
only known algorithm to convert LZ77 into a grammar in compressed time was proposed
by Rytter [30], and is based on the special type of grammars called AVL grammars, whose
distinguishing feature is that all subtrees in the parse tree satisfy the AVL property: the
tree-heights for children of every nonterminal do not differ by more than one. The algorithm
is rather complex, and until now has been considered impractical.

Our Contribution. Our main contribution is a series of practical improvements to the basic
variant of Rytter’s algorithm, and a fast and space-efficient implementation of this improved
algorithm. Compared to the basic variant, ours produces a grammar that is always five times
smaller, and crucially, the same holds for all intermediate grammars computed during the
algorithm’s execution, yielding very low peak RAM usage. The resulting grammar is also
no more than twice of the smallest existing grammar compressors such as Re-Pair [25]. We
further demonstrate that combining our new improved algorithm with Re-LZ opens up a
new path to the construction of RLBWT. Our preliminary experiments indicate that at least
a three-fold speedup and the same level of reduction in the RAM usage is possible.

The key algorithmic idea in our variant is to delay the merging of intermediate AVL
grammars as much as possible to avoid creating nonterminals that are then unused in the
final grammar. We dub this variant lazy AVL grammars. We additionally incorporate
Karp–Rabin fingerprints [19] to re-write parts of the grammar on-the-fly and further reduce

1 polylog n = logc n for some constant c > 0.
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the grammar size. We describe two distinct versions of this technique: greedy and optimal,
and demonstrate that both lead to reductions in the grammar size. As a side-result of
independent interest, we describe a fast and space-efficient data structure for the dynamic
predecessor problem, in which the inserted key is always larger than all other elements
currently in the set.

2 Preliminaries

Strings. For any string S, we write S[i . . j], where 1 ≤ i, j ≤ |S|, to denote a substring of
S. If i > j, we assume S[i . . j] to be the empty string ε. By [i . . j) we denote [i . . j − 1].
Throughout the paper, we consider a string (text) T [1 . . n] of n ≥ 1 symbols from an integer
alphabet Σ = [0 . . σ). By LCE(i, i′) we denote the length of the longest common prefix of
suffixes T [i . . n] and T [i′ . . n].

Karp–Rabin Fingerprints. Let q be a prime number and let r ∈ [0 . . q) be chosen uniformly
at random. The Karp–Rabin fingerprint of a string S is defined as

Φ(S) =
|S|∑
i=1

S[i] · r|S|−i mod q .

Clearly, if T [i . . i + ℓ) = T [j . . j + ℓ) then Φ(T [i . . i + ℓ)) = Φ(T [j . . j + ℓ)). On the other
hand, if T [i . . i + ℓ) ̸= T [j . . j + ℓ) then Φ(T [i . . i + ℓ)) ̸= Φ(T [j . . j + ℓ)) with probability at
least 1 − ℓ/q [9]. In our algorithm we are comparing only substrings of T of equal length.
Thus, the number of different possible substring comparisons is less than n3, and hence for
any positive constant c, we can set q to be a prime larger than nc+4 (but still small enough to
fit in O(1) words) to make the fingerprint function perfect with probability at least 1 − n−c.

LZ77 Compression. An LZ77-like factorization of T is a factorization T = F1 · · · Ff into
non-empty phrases such that every phrase Fj with |Fj | > 1 has an earlier occurrence in T ,
i.e., letting i = 1 + |F1 · · · Fj−1| and ℓ = |Fj |, there exists p ∈ [1 . . i) satisfying LCE(p, i) ≥ ℓ.
The phrase Fj = T [i . . i + ℓ) is encoded as a pair (p, ℓ). If there are multiple choices for p, we
choose one arbitrarily. The occurrence T [p . . p + ℓ) is called the source of Fj . If ℓ = 1, the
phrase Fj = T [i] is encoded as a pair (T [i], 0). The LZ77-like parsing, in which we additionally
require the phrase to not overlap its source, i.e., p + ℓ ≤ i, is called non-self-referential.

The LZ77 factorization [32] (or the LZ77 parsing) of a string T is an LZ77-like factorization
constructed by greedily parsing T from left to right into longest possible phrases. More
precisely, the jth phrase Fj is the longest substring starting at position i = 1 + |F1 · · · Fj−1|
that has an earlier occurrence in T . If there is no such substring, then Fj = T [i]. We denote
the number of phrases in the LZ77 parsing by z. For example, the text bbabaababababaababa
has the LZ77 parsing b · b · a · ba · aba · bababa · ababa with z = 7 phrases, and is encoded as
a sequence (b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5).

Grammar Compression. A context-free grammar is a tuple G = (N, Σ, R, S), where N is a
finite set of nonterminals, Σ is a finite set of terminals, and R ⊆ N × (N ∪ Σ)∗ is a set of
rules. We assume N ∩ Σ = ∅ and S ∈ N . The nonterminal S is called the starting symbol. If
(A, γ) ∈ R then we write A → γ. The language of G is set L(G) ⊆ Σ∗ obtained by starting
with S and repeatedly replacing nonterminals with their expansions, according to R.

A grammar G = (N, Σ, R, S) is called a straight-line grammar (SLG) if for any A ∈ N

there is exactly one production with A of the left side, and all nonterminals can be ordered
A1, . . . , A|N | such that S = A1 and if Ai → γ then γ ∈ (Σ ∪ {Ai+1, . . . , A|N |})∗, i.e., the
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graph of grammar rules is acyclic. The unique γ such that A → γ is called the definition of
A and is denoted rhs(A). In any SLG, for any u ∈ (N ∪ Σ)∗ there exists exactly one w ∈ Σ∗

that can be obtained from u. We call such w the expansion of u, and denote it by exp(u).
We define the parse tree of A ∈ N ∪ Σ as a rooted ordered tree T (A), where each node v is
associated to a symbol sym(v) ∈ N ∪ Σ. The root of T (A) is a node v such that sym(v) = A.
If A ∈ Σ then v has no children. If A ∈ N and rhs(A) = B1 · · · Bk, then v has k children
and the subtree rooted at the ith child is a copy of T (Bi). The parse tree T (G) is defined as
T (S). The height of any A ∈ N is defined as the height of T (A), and denoted height(A).

The idea of grammar compression is, given a text T , to compute a small SLG G such
that L(G) = {T}. The size of the grammar is measured by the total length of all definitions,
and denoted |G| :=

∑
A∈N |rhs(A)|. Clearly, it is easy to encode any G in O(|G|) space: pick

an ordering of nonterminals and write down the definitions of all nonterminals, replacing
nonterminal symbols with their numbers in the order.

3 AVL Grammars and the Basic Algorithm

An SLG G = (N, Σ, R, S) is said to be in Chomsky normal form, if for every A ∈ N , it holds
rhs(A) ∈ Σ or rhs(A) = XY , where X, Y ∈ N . An SLG in Chomsky normal form is called a
straight-line program (SLP). Rytter [30] defines an AVL grammar as an SLP G = (N, Σ, R, S)
that additionally satisfies the AVL property: for every A ∈ N such that rhs(A) = XY , it
holds |height(X)| − |height(Y )| ≤ 1. This condition guarantees that for every A ∈ N (in
particular for S ∈ N), it holds height(A) = O(log |exp(A)|) [30, Lemma 1].

The main result presented in [30] is an algorithm that given a non-self-referential LZ77-like
parsing of a length-n text T consisting of f phrases, computes in O(f log n) time an AVL
grammar G generating T and satisfying |G| = O(f log n). Rytter’s construction was extended
to allow self-references in [20, Theorem 6.1]. Our implementation of the basic as well as
improved Rytter’s algorithm works for the self-referential variant, but for simplicity here and
in Section 4 we describe the algorithm only for the non-self-referential variant.

The algorithm in [30] works in f steps. It maintains the dynamically changing AVL
grammar G such that after the kth step is complete, there exists a nonterminal Pk in G

such that exp(Pk) = F1 · · · Fk, where T = F1 · · · Ff is the input LZ77-like factorization of
the input. This implies that at end there exist a nonterminal expanding to T . The algorithm
does not delete any nonterminals between steps. At the end, it may perform an optional
pruning of the grammar to remove the nonterminals not present in the parse tree T (Pf ).
This reduces the grammar size but not the peak memory usage of the algorithm.

The algorithm uses the following three procedures, each of which adds a nonterminal A

with a desired expansion exp(A) to the grammar G, along with a bounded number of extra
nonterminals:
1. AddSymbol(c): Given c ∈ Σ, add a nonterminal A with rhs(A) = c to the grammar G.
2. AddMerged(X, Y ): Given the identifiers of nonterminals X, Y existing in G, add a

nonterminal A to G that satisfies exp(A) = exp(X)exp(Y ). The difficulty of this operation
is ensuring that the updated G remains an AVL grammar. Simply setting rhs(A) = XY

would violate the AVL condition in most cases. Instead, the algorithm performs the
procedure similar to the concatenation of AVL trees [22, p. 474], taking O(1+|height(X)−
height(Y )|) time, and introducing O(|height(X) − height(Y )|) extra nonterminals.

3. AddSubstring(A, i, j): Given the identifier of a nonterminal A existing in G, and two
positions satisfying 1 ≤ i ≤ j ≤ |exp(A)|, add a nonterminal B to G that satisfies
exp(B) = exp(A)[i . . j]. To explain how this is achieved, we define the auxiliary proce-
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dure Decompose(A, i, j) that given the same parameters as above, returns the sequence
B1, . . . , Bq of nonterminals satisfying exp(A)[i . . j] = exp(B1) · · · exp(Bq). The nontermi-
nals Bi are found by performing two root-to-leaf traversals in the parse tree T (A). This
takes O(1 + height(A)) = O(1 + log |exp(A)|) time and ensures q = O(log |exp(A)|). It
is easy to see that given B1, . . . , Bq, we can now obtain B in O(1 + log2 |exp(A)|) time
using AddMerged. In [30], it was however shown that if we always choose the shortest
nonterminal to merge with its neighbor, the total runtime is O(1 + log |exp(A)|) and only
O(log |exp(A)|) extra nonterminals are introduced.

Using the above three procedures, the algorithm in [30] works as follows. Suppose we have
already processed the leftmost k − 1 phrases. The step begins by creating a nonterminal Ak

satisfying exp(Ak) = Fk. If |Fk| = 1, it uses the procedure AddSymbol(Fk). Otherwise, Ak

is obtained as the output of AddSubstring(Pk−1, p, p + ℓ − 1), where ℓ = |Fk| and T [p . . p + ℓ)
is the source of phrase Fk. Finally, Pk is obtained as the output of AddMerged(Pk−1, Ak). A
single iteration thus takes O(1 + log |F1 · · · Fk−1|) = O(log n) time and adds O(log n) extra
nonterminals, for total of O(f log n) nonterminals over all steps.

4 Modified Algorithm

Lazy Merging. We start by observing that the main reason responsible for the large final
grammar produced by the algorithm in Section 3 is the requirement that at the end of each
step k ∈ [1 . . f ], there exist a nonterminal Pk satisfying exp(Pk) = F1 · · · Fk. We relax this
requirement, and instead require only that at the end of step k, there exists a sequence
of nonterminals R1, . . . , Rm such that exp(R1) · · · exp(Rm) = F1 · · · Fk. The algorithm
explicitly maintains these nonterminals as a sequence of pairs (ℓ1, R1), . . . , (ℓm, Rm), where
ℓj =

∑j
i=1 |exp(Ri)|. The modified algorithm uses the following new procedures:

1. MergeEnclosed(i, j): Given two positions satisfying 1 ≤ i ≤ j ≤ |F1 · · · Fk−1|, add to G

a nonterminal R satisfying exp(R) = exp(Rx) · · · exp(Ry), where x = min{t ∈ [1 . . m] :
ℓt−1 ≥ i − 1} and y = max{t ∈ [1 . . m] : ℓt ≤ j}. The positions x and y are found
using a binary search. The pairs of the sequence (ℓ1, R1), . . . , (ℓm, Rm) at positions
between x and y are then removed and replaced with a pair (ℓy, R). In other words, this
procedure merges all the nonterminals from the current root sequence whose expansion
is entirely inside the given interval [i . . j]. Merging of Rx, . . . , Ry is performed pairwise,
using the AddMerged procedure. Note, however, that there is no dependence between
heights of the adjacent nonterminals (in particular, they do not form a bitonic sequence,
like in the algorithm in Section 3), and moreover, their number m̂ := y − x + 1 is not
bounded. To minimize the number of newly introduced nonterminals, we thus employ a
greedy heuristic, that always chooses the nonterminal with the smallest height among
the remaining elements, and merges it with a shorter neighbor. We use a list to keep the
pointers between neighbors and a binary heap to maintain heights. The merging thus
runs in O(m̂ log n) time.

2. DecomposeWithRoots(i, j): Given two positions satisfying 1 ≤ i ≤ j ≤ |F1 · · · Fk−1|, this
procedure returns a sequence of nonterminals A1, . . . , Aq satisfying (F1 · · · Fk−1)[i . . j] =
exp(A1) · · · exp(Aq). First, it computes positions x and y, as defined in the description of
MergeEnclosed above. It then returns the result of Decompose(Rx−1, i−ℓx−2, ℓx−1 −ℓx−2),
followed by Rx, . . . , Ry, followed by the result of Decompose(Ry+1, 1, j−ℓy) (appropriately
handling the boundary cases, which for clarity we ignore here). In other words, this
procedure finds the sequence of nonterminals that uses as many roots from the sequence
R1, . . . , Rm, as possible, and runs the standard Decompose for the boundary roots. Letting
m̂ = y − x + 1, it runs in O(m̂ + log n) time.
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Using the above additional procedures, our algorithm works as follows. Suppose that we
have already processed the first k − 1 phrases. The step begins by computing the sequence
of nonterminals A1, . . . , Aq satisfying exp(A1) · · · exp(Aq) = Fk. If |Fk| = 1, we proceed
as in Section 3. Otherwise, we first call MergeEnclosed(p, p + ℓ − 1), where ℓ = |Fk| and
T [p . . p + ℓ) is the source of Fk. The sequence A1, . . . , Aq is then obtained as a result of
DecomposeWithRoots(p, p + ℓ − 1). Finally, A1, . . . , Aq, is appended to the roots sequence.

The above algorithm runs in O(f log2 n) time. To see this, note that first calling
MergeEnclosed ensures that the output size of DecomposeWithRoots is O(log n). Thus, each
step appends only O(log n) nonterminals to the roots sequence. The total time spend in
MergeEnclosed is thus bounded by O(f log2 n), dominating the time complexity.

To prove the correctness of the modified algorithm, we need to prove that: (1) every
nonterminal in the new algorithm satisfies the AVL property, and (2) after iteration k ∈ [1 . . f ],
the invariant exp(R1) · · · exp(Rm) = F1 · · · Fk holds. To show (1), we note that in the above
algorithm, the nonterminals are only created by the MergeEnclosed procedure. Internally, this
procedure calls AddMerged, which guarantees that the newly created nonterminal satisfies the
AVL property (see Section 3). To show (2), we first note that, by definition, MergeEnclosed
does not change exp(R1) · · · exp(Rm) (although it may change m). The expansion of the roots
sequence changes only after appending the sequence of nonterminals A1, . . . , Aq returned
by DecomposeWithRoots(p, p + ℓ − 1). Since T [p . . p + ℓ) is the source of Fk, we thus have
exp(A1) · · · exp(Aq) = (F1 · · · Fk−1)[p . . p + ℓ) = T [p . . p + ℓ) = Fk.

Utilizing Karp–Rabin Fingerprints. Our second technique is designed to detect the situation
in which the algorithm adds a nonterminal A to G, when there already exists some B ∈ N

such that exp(A) = exp(B). For any u ∈ (N ∪ Σ)∗, we define Φ(u) = Φ(exp(u)). Let us
assume that there are no collisions between fingerprints.2 During the algorithm, we maintain
a collection of fingerprints {Φ(A) : A ∈ N ′}, where N ′ ⊆ N is some subset of nonterminals.
Assume, that given a nonterminal A ∈ N , we can quickly compute Φ(A), and that given
some x ≥ 0, we can check, if there exists B ∈ N ′ such that Φ(B) = x. There are two places
in the above algorithm (using lazy merging) where we utilize this to reduce the number of
nonterminals:
1. Whenever during the greedy merge in MergeEnclosed, we are about to call AddMerged

for the pair of adjacent nonterminals X and Y , we instead first compute the fingerprint
x = Φ(XY ) of their concatenation, and if there already exists A ∈ N ′ such that Φ(A) = x,
we use A instead, avoiding the call to AddMerged and the creation of extra nonterminals.

2. Before appending the nonterminals A1, . . . , Aq to the roots sequence at the end of the
step, we check if there exists an equivalent but shorter sequence B1, . . . , Bq′ , i.e., such that
exp(A1) · · · exp(Aq) = exp(B1) · · · exp(Bq′) and q′ < q. We utilize that q = O(log n), and
run a quadratic algorithm (based on dynamic programming) to find the optimal (shortest)
equivalent sequence. We then use that equivalent sequence in place of A1, . . . , Aq.

Observe that the above techniques cannot be applied during AddMerged, as the equivalent
nonterminal could have a much shorter/taller parse tree, violating the AVL property. Note
also that the size and contents of N ′ do not affect the correctness or the time complexity of the
algorithm. To determine the set N ′, our implementation uses a parameter p ∈ [0 . . 1], which
is the probability of adding A to N ′, whenever a new nonterminal A is created. The value of

2 Although such an assumption can be ensured with probability 1 − n−c for any constant c > 0, it cannot
be easily guaranteed. This turns our algorithm into a Monte Carlo randomized algorithm.
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p is one of the main parameters controlling the time-space trade-off of the algorithm, as well
as the size of the final grammar. To check if there exists A ∈ N ′ such that Φ(A) = x, for a
given x ≥ 0, we maintain a hash table that maps the values from the set {Φ(A) : A ∈ N ′} to
the corresponding nonterminals (each nonterminal is assigned a unique integer identifier).

5 Implementation Details

Storing Sequences. Our implementation stores many sequences, where the insertion only
happens at the end (e.g., the sequence of nonterminals, which are never deleted in the
algorithm). A standard approach to this is to use a dynamic array, which is a plain array
that doubles its capacity, once it gets full. Such implementation achieves an amortized
O(1) insertion time, but suffers from a high peak RAM usage. On all systems we tried,
the reallocation call that extends the array is not in-place. Since the peak RAM usage is
critical in our implementation, we implemented our own dynamic array that instead of a
single allocated block, keeps a larger number of blocks (we use 32). This significantly reduces
the peak RAM usage. We found the slowdown in the access-time to be negligible.

Implementation of the Roots Sequence. The roots sequence (ℓ1, R1), . . . , (ℓm, Rm) under-
goes predecessor queries, deletions (at arbitrary positions), and insertions (only at the end).
Rather than using an off-the-shelf dynamic predecessor data structure (such as balanced
BST), we exploit as follows the fact that insertions happen only at the end.

All roots are stored as a static sequence that only undergoes insertions at the end (using
the space efficient dynamic array implementation described above). Deleted elements are
marked as deleted, but remain physically in the array. The predecessor query is implemented
using a binary search, with skipping of the elements marked as deleted. To ensure that the
predecessor queries are efficient, we keep a counter of accesses to the deleted elements. Once
it reaches the current array size, we run the “garbage collector” that scans the whole array
left-to-right, and removes all the elements marked as deleted, eliminating all gaps. This way,
the predecessor query is still efficient, except the complexity becomes amortized.

Computing Φ(A) and |exp(A)| for A ∈ N . During the algorithm, we often need to
query the value of Φ(A) for some nonterminal A ∈ N . In our implementation we utilize
64-bit fingerprints, and hence storing the value Φ(A) for every nonterminal is expensive. We
thus only store Φ(A) for A ∈ N satisfying |exp(A)| ≥ 255. The number of such elements
in N is relatively small. To compute Φ(A) for any other A ∈ N , we first obtain exp(A),
and then compute Φ(A) from scratch. This operation is one of the most expensive in our
algorithm, and hence whenever possible we avoid doing repeated Φ queries.

As for the values |exp(A)|, we observe that in most cases, it fits in a single byte. Thus, we
designate only a single byte, and whenever |exp(A)| ≥ 255, we lookup |exp(A)| in an array
ordered by the number of nonterminal, with access implemented using binary search.

6 Experimental Results

Algorithms. We performed experiments using the following algorithms:
Basic-AVLG, our implementation of the algorithm to convert an LZ-like parsing to
an AVL grammar proposed by Rytter [30], and outlined in Section 3. Self-referential
phrases are handled as in the full version of [20, Theorem 6.1]. The implementation uses
space-efficient dynamic arrays described in Section 5. This implementation is our baseline.
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Table 1 Statistics of files used in the experiments, with n denoting text length, σ denoting
alphabet size, r denoting the number of runs in the BWT, and z denoting the number of phrases in
the LZ77 parsing. For convenience, we also show the average BWT run length n/r and the average
LZ77 phrase length n/z. Each of the symbols in the input texts is encoded using a single byte.

File name n σ r n/r z n/z

cere 461 286 644 5 11 574 640 39.85 1 700 630 271.24
coreutils 205 281 778 236 4 684 459 43.82 1 446 468 141.91
einstein.en.txt 467 626 544 139 290 238 1611.18 89 467 5 226.80
influenza 154 808 555 15 3 022 821 51.21 769 286 201.23
dna.001.1 104 857 600 5 1 716 807 61.07 308 355 340.05
english.001.2 104 857 600 106 1 449 518 72.33 335 815 312.24
proteins.001.1 104 857 600 21 1 278 200 82.03 355 268 295.15
sources.001.2 104 857 600 98 1 213 427 86.41 294 994 355.45
chr19.1000 59 125 116 167 5 45 927 063 1287.37 7 423 960 7964.09
kernel 137 438 953 472 229 129 506 377 1061.25 30 222 602 4547.55

Lazy-AVLG, our implementation of the improved version of Basic-AVLG, utilizing lazy
merging and Karp–Rabin fingerprints, as described in Section 4. This is the main
contribution of our paper. In some of the experiments below, we consider the algorithm
with the different probability p of sampling the Karp–Rabin hash of a nonterminal, but
our default value (as discussed below) is p = 0.125. Our implementation (including also
Basic-AVLG) is available at https://github.com/dominikkempa/lz77-to-slp.
Big-BWT, a semi-external algorithm constructing the RLBWT from the input text in
Ω(n) time, proposed by Boucher et al. [4]. As shown in [4], if the input text is highly
compressible, the working space of Big-BWT is sublinear in the text length. We use the
implementation from https://gitlab.com/manzai/Big-BWT.
Re-LZ, an external-memory algorithm due to Kosolobov et al. [24] that given a text
on disk, constructs its LZ-like parsing in Ω(n) time [24]. The algorithm is faster than
the currently best algorithms to compute the LZ77 parsing. In practice, the ratio f/z

between the size f of the resulting parsing and the size z of the LZ77 parsing usually
does not exceed 1.5. Its working space is fully tunable and can be specified arbitrarily.
We use the implementation from https://gitlab.com/dvalenzu/ReLZ.
Re-Pair, an O(n)-time algorithm to construct an SLG from the text, proposed by Larsson
and Moffat [25]. Although no upper bound is known on its output size, Re-Pair produces
grammars that in practice are smaller than any other grammar compression method [25].
Its main drawback is that most implementations need Θ(n) space [11], and hence are not
applicable on massive datasets. The only implementation using o(n) space is [23], but as
authors note themselves, it is not practical. There is also work on running Re-Pair on
the compressed input [31], but since it already requires the text as a grammar, it is not
applicable in our case. In our experiments we therefore use Re-Pair only as a baseline
for the achievable grammar size. We note that there exists recent work on optimizing
Re-Pair by utilizing maximal repeats [11]. The decrease in the grammar size, however,
requires a potentially more expensive nonterminal encoding that includes the length of
the expansion. For simplicity, we therefore use the basic version of Re-Pair.

All implementations are in C++ and are largely sequential, allowing for a constant
number of additional threads used for asynchronous I/O.

We also considered Online-RLBWT, an algorithm proposed by Ohno at al. [28], that
given a text in a right-to-left streaming fashion, construct its run-length compressed BWT
(RLBWT) in O(n log r) time and using only O(r log n) bits of working space (the implementa-

https://github.com/dominikkempa/lz77-to-slp
https://gitlab.com/manzai/Big-BWT
https://gitlab.com/dvalenzu/ReLZ
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Figure 1 Performance of the Lazy-AVLG algorithm for different values of the parameter p

(probability of storing Karp–Rabin fingerprint in the hash table) on the files from Pizza & Chili
corpus. The graphs in the top row show the normalized RAM usage (in bytes per phrase of the
LZ77 parsing) and the runtime (in ns per symbols of the input text). The bottom row shows the
resulting grammar size (the total length of right-hand sides of all productions) divided by z, and the
percentage of merges avoided during the greedy merge procedure (in %).

tion is available from: https://github.com/itomomoti/OnlineRlbwt). In the preliminary
experiment we determined that while using only about a third of the memory of Big-BWT (on
the 16 GiB prefix of the kernel testfile), the algorithm was about 10x slower than Big-BWT.
We also did not include [14], since in the preliminary experiments we found it to be slower
(usually by about 5–10%) than Big-BWT, while using about 1.8x more RAM.

Experimental Platform and Datasets. We performed experiments on a machine equipped
with two twelve-core 2.2 GHz Intel Xeon E5-2650v4 CPUs with 30 MiB L3 cache and 512 GiB of
RAM. The machine used distributed storage achieving an I/O rate >220 MiB/s (read/write).

The OS was Linux (CentOS 7.7, 64bit) running kernel 3.10.0. All programs were compiled
using g++ version 4.8.5 with -O3 -DNDEBUG -march=native options. All reported runtimes
are wallclock (real) times. The machine had no other significant CPU tasks running. To
measure the peak RAM usage of the programs we used the /usr/bin/time -v command.

The statistics of testfiles used in our experiments are shown in Table 1. Shorter version of
files used in the scalability experiments are prefixes of full files. We used the files from the Pizza
& Chili repetitive corpus available at http://pizzachili.dcc.uchile.cl/repcorpus.html.
We chose a sample of 8 real and pseudo-real files. Since all files are relatively small (less than
512 MiB), we additionally include 2 large repetitive files:

ESA 2021
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Figure 2 Comparison of the size (measured as the total length of the right hand sides of all
nonterminals) of grammars produced by the Basic-AVLG, Lazy-AVLG (p = 0.125), and Re-Pair
algorithms on the files from the Pizza & Chili corpus. Basic-AVLG (pruned) denotes the size of
grammar produced by Basic-AVLG with all nonterminals not reachable from the root removed. All
sizes are normalized with respect to the size of the LZ77 parsing (z).

chr19.1000, a concatenation of 1000 versions of Human chromosome 19. The sequences
were obtained from the 1000 Genomes Project [8]. One copy consists of ∼58×106 symbols.
kernel, a concatenation of ∼10.7 million source files from over 300 versions of the Linux
kernel (see http://www.kernel.org/).

Karp–Rabin Sampling Rate. The key parameter that controls the runtime, peak RAM
usage, and the size of the grammar in our algorithm is the probability p of including the
Karp–Rabin fingerprint of a nonterminal in the hash table. In our first experiment, we study
the performance of the Lazy-AVLG algorithm for different values of the parameter p. We
tested all values p ∈ {0, 0.1, 0.2, . . . , 1} and for each we measured the algorithm’s time and
memory usage, and the size of the final grammar. The results are given in Figure 1.

While utilizing the Karp–Rabin fingerprints (i.e., setting p > 0) can notably reduce the
final grammar size (up to 40% for the cere file), it is not worth using values p much larger
than 0.1, as it quickly increases the peak RAM usage (e.g., by about 2.3x for the sources.001.2
testfile) and this increase is not repaid significantly in the further grammar reduction. The
bottom right panel in Figure 1 provides some insight into the reason for this. It shows the
percentage of cases, where during the greedy merging of nonterminals enclosed by the source
of the phrase, the algorithm is able to avoid merging two nonterminals, and instead use the
existing nonterminal. Having some fingerprints in the hash table turns out to be enough to
avoid creating between 4–14% of the new nonterminals, but having more does not lead to a
significant difference. We also observe that if a larger grammar is acceptable, disabling the
use of Karp–Rabin fingerprints entirely (i.e., setting p = 0) can lead to a significant speed-up
(the top right panel in Figure 1) and a small saving in the RAM usage (note, that it also
makes the algorithm deterministic). We choose to use p > 0, however, since in our main
application (BWT construction), the final grammar is subject to further processing, and
since this processing may dominate the RAM usage, we prefer to keep the grammar as small
as possible. Since peak RAM usage is the likely limiting factor for this algorithm – a slower
algorithm is still usable, but exhaustion of RAM can prevent it running entirely – we chose
p = 0.125 as the default value in our implementation (and use in the next two experiments).

http://www.kernel.org/
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Figure 3 Scalability of Big-BWT compared to Re-LZ and Lazy-AVLG. The graphs on the right
show the normalized runtime in ns/char. The graphs on the left show the RAM usage in GiB.

Grammar Size. In our second experiment, we compare the size of the grammar produced
by Lazy-AVLG to Basic-AVLG and Re-Pair. In the comparison we also include the size of
the grammar obtained by running Basic-AVLG and removing all nonterminals not reachable
from the root. We have run the experiments on 8/10 testfiles, as running Re-Pair on the
large files is prohibitively time consuming. The results are given in Figure 2.

Lazy-AVLG produces grammars that are between 1.59x and 2.64x larger than Re-Pair
(1.95x on average). The resulting grammar is always at least 5x smaller than produced by
Basic-AVLG, and also always smaller than Basic-AVLG (pruned). Importantly, the RAM
usage of our conversion is proportional the size of the final grammar, whereas the algorithm
to compute the pruned version of Basic-AVLG must first obtain the initial large grammar,
increasing peak RAM usage. This is a major practical concern, as described in the next
experiment. In conclusion, Lazy-AVLG compresses only slightly worse than Re-Pair, but its
construction requires much less working space.

Application in the Construction of BWT. In our third experiment, we evaluate the
potential of the method to construct the RLBWT presented in [20], which works by first
computing/approximating the LZ77 parsing of the text in Ω(n) time, and then converting
the resulting compressed representation of T into the RLBWT in O(f polylog n) time (where
f denotes the number of factors). We use Re-LZ to implement the first step. As for the
second step, we note that the conversion from the (approximate) LZ77 to RLBWT internally
consists of two steps: (2a) (approximate) LZ77 → grammar, and (2b) grammar → RLBWT.
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In this experiment, we use Lazy-AVLG to implement step (2a). We have not implemented
the step (2b), and leave it as a future work. The results reported here are therefore only a
preliminary indication of what is achievable with the approach of [20]. Our baseline for the
construction of RLBWT is the Big-BWT algorithm [4].

We evaluated the runtime and peak RAM usage of Big-BWT, Re-LZ, and Lazy-AVLG
with p = 0.125 (the default value) on successively longer prefixes of the large testfiles
(chr19.1000 and kernel). The RAM use of Re-LZ was set to match the RAM use of Big-BWT
on the shortest prefix we tried. To allow a comparison with different methods in the future,
we evaluated Lazy-AVLG on the LZ77 parsing rather than on the output of Re-LZ. Thus, to
obtain the performance of the pipeline Re-LZ + Lazy-AVLG, one should multiply the runtime
and RAM usage of Lazy-AVLG by the approximation ratio f/z of Re-LZ. The value f/z

did not exceed 1.05 on any of the kernel prefixes, and 1.27 on any of the chr19.1000 prefixes
(with the peak reached on the largest prefixes). This puts the RAM use of Lazy-AVLG on
the output of Re-LZ still below that of Re-LZ. The results are given in Figure 3.

The runtime of Re-LZ is always below that of Big-BWT. The reduction is by a factor of
at least three for all prefixes of chr19.1000, and by at least 25% for all prefixes of kernel. The
runtime of Lazy-AVLG stays significantly below that of both other methods. Importantly,
this also holds for Lazy-AVLG’s peak RAM usage. Given these results, we conclude that the
construction of the RLBWT via LZ parsing has the potential to achieve at least a three-fold
speedup and reduction in the RAM usage. We also point out that the construction of
RLBWT has received much attention in recent years, whereas the practical approximation
of LZ77 is a relatively unexplored topic, and hence significant speedup may be possible, e.g.,
via parallelization. The intuition for this is that, unlike in the case of BWT construction, LZ
approximation algorithms need not be exact.
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Abstract
A hierarchical plane st-graph H can be thought of as a combinatorial description of a planar
drawing Γ of a 2-connected graph G in which each edge is a y-monotone curve and each face encloses
a y-monotone region (that is, a region whose intersection with any horizontal line is a line segment,
a point, or empty). A drawing Γ′ of H is a drawing of G such that each horizontal line intersects
the same left-to-right order of edges and vertices in Γ and Γ′, that is, the underlying hierarchical
plane st-graph of both drawings is H. A straight-line planar drawing of a graph is convex if the
boundary of each face is realized as a convex polygon.

We study the computation of convex drawings of hierarchical plane st-graphs such that the
outer face is realized as a prescribed polygon. Chrobak, Goodrich, and Tamassia [SoCG’96] and,
independently, Kleist et al. [CGTA’19] described an idea to solve this problem in O(n1.1865) time,
where n is the number of vertices of the graph. Also independently, Hong and Nagamochi [J. Discrete
Algorithms’10] described a completely different approach, which can be executed in O(n2) time.

In this paper, we present an optimal O(n) time algorithm to solve the above problem, thereby
improving the previous results by Chrobak, Goodrich, and Tamassia, Kleist et al., and by Hong
and Nagamochi. Our result has applications in graph morphing. A planar morph is a continuous
deformation of a graph drawing that preserves straight-line planarity. We show that our algorithm
can be used as a drop-in replacement to speed up a procedure by Alamdari et al. [SICOMP’17] to
morph between any two given straight-line planar drawings of the same plane graph. The running
time improves from O(n2.1865) to O(n2 log n). To obtain our results, we devise a new strategy for
computing so-called archfree paths in hierarchical plane st-graphs, which might be of independent
interest.
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Figure 1 A y-monotone drawing (left) and a convex drawing of its underlying hierarchical plane
st-graph (right) with a prescribed compatible polygon (middle) as the outer face.

∗ Due to space constraints, some proofs in this extended abstract are only sketched or omitted entirely.

© Boris Klemz;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4532-3765
https://doi.org/10.4230/LIPIcs.ESA.2021.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


57:2 Computing Convex Drawings of Hierarchical Graphs in Linear Time

1 Introduction

A y-monotone drawing Γ is a planar drawing of a 2-connected planar graph G = (V, E)
where each edge is realized as a y-monotone curve and the boundary of each face encloses a y-
monotone region, that is, a region whose intersection with any horizontal line is a line segment,
a point, or empty; for an illustration see Figure 1. Due to the y-monotone edges, the drawing Γ
uniquely determines for each v ∈ V (1) the y-coordinate y(v) of v, (2) a left-to-right ordering
of the edges incident to v that have an endpoint with a y-coordinate larger than y(v), and (3)
a left-to-right ordering of the edges incident to v that have an endpoint with a y-coordinate
smaller than y(v). A plane graph is a combinatorial description of a planar drawing of a
graph that consists of the graph equipped with the so-called combinatorial embedding of
the drawing and a distinguished outer face. Similarly, the underlying hierarchical plane
st-graph H of Γ is a combinatorial description of the y-monotone drawing Γ that consists
of G equipped with the above information (Items (1)–(3)) for each vertex. A drawing Γ′ of H

is a y-monotone drawing of G whose underlying hierarchical plane st-graph is H. A planar
straight-line drawing of a graph is called convex if the boundary of each face is realized as a
simple convex polygon.

This paper is concerned with the computation of convex drawings of hierarchical plane
st-graphs such that the outer face is realized as a prescribed polygon that is, in some sense,
compatible with the given graph; for an illustration see Figure 1. A plane graph admits a
convex drawing if and only if it is a subdivision of an internally 3-connected graph. Hence,
we will assume that our input graphs satisfy this property.

The above problem has applications in graph morphing, as we will discuss next.

Applications. A (planar) morph is a continuous deformation of a graph drawing that
preserves straight-line edges (and planarity) at all times. Graph morphing is motivated by
applications in animation and computer graphics [17]. In computational morphing problems,
one typically seeks “piece-wise linear” morphs, which are composed of a number of linear
morphing steps. In a linear morph, each vertex moves along a line segment at constant
speed (which depends on the length of the segment) such that it arrives at its final position
at the end of the morph. Such a morph is uniquely defined by specifying the initial and the
final drawing. Hence, a morph composed of k linear morphs can be efficiently encoded as a
sequence of k + 1 drawings.

Algorithms to compute convex drawings of hierarchical plane st-graphs such that the
outer face is realized as a prescribed polygon serve as a subroutine in several graph morphing
algorithms [2, 22, 7, 27, 6]. The key observation is that the linear morph from a y-monotone
straight-line drawing to a convex drawing of its underlying hierarchical plane st-graph is
planar, which is not difficult to prove due to the fact that its vertex trajectories are parallel
lines [2]; a linear morph with this property is called unidirectional. The restriction to
y-monotone drawings might seem limiting at first. However, the observation is also useful
in a more general context: let Γ be a straight-line planar drawing. Let Γ′ be a y-monotone
augmentation of Γ created by adding a set A of y-monotone (but not necessarily straight-line)
edges. Finally, let Γ′′ be a convex drawing of the underlying hierarchical plane st-graph
of Γ′. Then the linear morph from Γ to Γ′′ \ A is also planar [22]. Note that all angles of
face boundaries in Γ′′ \A that were not subdivided by edges of A are convex. In this sense,
Γ′′ \A is a simplified version of Γ, which can be exploited algorithmically. We will illustrate
this by discussing an explicit example.
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One of the most basic tasks in graph morphing is the computation of a planar morph
(composed of linear morphing steps) between two given straight-line planar drawings Γ1, Γ2 of
the same plane graph G. Alamdari et al. [2] described an algorithm to compute such a morph
consisting of a linear number of unidirectional steps. They provide a reduction to show that it
suffices to consider the case that Γ1, Γ2, and G are triangulated. For triangulations, the idea
is as follows: find a suitable edge e = {u, v} shrink it to a point in both drawings, thereby
contracting the edge e in G to a new vertex w. Then, recursively compute a morph M of the
reduced graph. Finally, turn the thereby obtained “pseudomorph” of G into an actual morph
by placing u and v very close to the position of w in each of the drawings encoding M. To
find an edge e that can be contracted without violating planarity in either drawing, proceed
as follows: let u be an internal vertex with degG(u) ≤ 5. If the polygon defined by the
neighbors of u is convex in both Γ1 and Γ2, then u can be contracted towards the same
neighbor in both drawings. If this is not the case, the polygon (or some specific angle) can
be made convex using the strategy described in the preceding paragraph.

In other types of morphing problems, the task is to compute planar morphs between
two given drawings while maintaining additional properties such as convexity [7] or upward-
planarity [27], or planar morphs that transform a given drawing in order to achieve a certain
property while being in some sense monotonic [1, 22, 11]. Very recently, the problem of
morphing graphs was also studied on the torus [9].

We remark that the computation of convex drawings of hierarchical plane st-graphs with
a prescribed polygon as the outer face also plays a role when embedding polyhedral graphs
in R3 with a good vertex resolution [10, 29]. The idea is to first find a convex drawing in the
plane where the vertices are placed at, suitably chosen, prescribed small integer y-coordinates.
The drawing is then lifted to R3. However, to ensure this strategy can be carried out, the
constructed plane drawings are also required to be embeddings with so-called equilibrium
stress – the drawings created by the algorithm presented in this paper do not guarantee this
property.

Previous algorithms. An idea for constructing convex drawings of hierarchical plane st-
graphs with a prescribed polygon as the outer face was described already in 1996 by Chrobak,
Goodrich, and Tamassia [10, Section 3] (in the context of realizing polyhedral graphs in R3);
also see [29, Section 4]. The approach was independently rediscovered by Kleist et al. [22]
(in the context of a morphing problem) and is based on using Tutte’s well-known spring
theorem [32, 15, 16]. The main idea is to precompute barycenter weights that force the
vertices to lie at the prescribed y-coordinates before applying Tutte’s algorithm, which
then finds suitable x-coordinates. (Notably, the way in which the barycenter weights are
determined in [22] is quite different from the method used in [10] and [29].) Chrobak et al.
point out that the approach can be implemented in O(nω/2 + n log n) ⊆ O(n1.1865) time by
using the generalized nested dissection method [25, 26, 4], where n is the number of vertices
of the graph and ω < 2.37286 [3, 24] denotes the matrix multiplication exponent.

In 2010, Hong and Nagamochi [20] described a completely different approach, based on a
recursive combinatorial construction. The runtime of their algorithm is O(n2). The idea is to
choose a suitable internal vertex y of the given graph G and compute three disjoint (except
for y) paths from y to the outer face, see Figure 2a. These paths dissect G into three regions,
which are then handled recursively. The outer face of each of the three regions is composed
of two of the three paths, which are prescribed to be realized as straight-line segments, and a
part of the original prescribed polygon, see Figure 2b. To ensure that the thereby described
polygon can be extended to a convex drawing of the entire region, the computed paths need
to be archfree, meaning that they are not arched by an internal face. A path P is arched by
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a face f if P contains two distinct vertices a, b that belong to the boundary of f such that
the subpath Pab of P between a and b is not a subpath of the boundary of f , see Figure 2c.
Indeed, such a path P cannot be realized as a straight-line segment in a convex drawing
since in this case the interior of the segment ab has to be disjoint from the realization of f .
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Figure 2 (a–b) The idea of Hong and Nagamochi’s [20] construction. (c) The path P = (x, . . . , y)
is arched by a face f .

We remark that Chrobak et al.’s result [10] does not appear to be widely known: the
morphing papers [2, 7, 27, 6, 22] only refer to the method by Hong and Nagamochi [20].
Moreover, Hong and Nagamochi [20] and Kleist et al. [22] were also unaware of its existence.

Other related work. Pach and Tóth [28] and Eades, Feng, Lin, and Nagamochi [14] studied
the problem of finding (not necessarily convex) straight-line drawings of hierarchical plane
graphs, which can be defined as hierarchical plane st-graphs, except that they describe (not
necessarily y-monotone) planar drawings in which each edge is realized as a y-monotone
curve. Eades et al. [14] provide a linear-time algorithm for this problem that realizes the
outer face as a prescribed polygon.

A graph in which each vertex is equipped with a y-coordinate is sometimes called a level
graph. The central question in the Level Planarity [13, 18, 21] problem and its many
variants [5, 8, 23] is to decide whether a given level graph admits a level planar drawing,
that is, a planar drawing in which each vertex is placed at its prescribed y-coordinate and
each edge is realized as a y-monotone curve. By definition, the underlying level graph of
each hierarchical plane (st-)graph admits a level planar drawing.

Contribution and organization. In Section 4, we describe an optimal linear-time algorithm
for constructing convex drawings of hierarchical plane st-graphs with a prescribed polygon as
the outer face (if possible), thereby improving the previous approaches by Chrobak, Goodrich,
and Tamassia [10], Kleist et al. [22], and Hong and Nagamochi [20].

▶ Theorem 1. There exists an algorithm that, given a subdivision G = (V, E) of an internally
3-connected hierarchical plane st-graph and a convex polygon Γo that is compatible with G,
computes a convex drawing of G with Γo as the realization of the outer face in time O(n)
where n = |V |.

We introduce our notation and terminology (including the definitions of compatible
polygons and internally 3-connected graphs) and the assumed data structures in Section 2.

To obtain Theorem 1, we follow the idea of the recursive combinatorial construction by
Hong and Nagamochi [20]. We observe that the main bottleneck in Hong and Nagamochi’s
algorithm is the computation of archfree paths to the boundary: Hong and Nagamochi obtain
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such a path by computing an arbitrary y-monotone path P which is then modified to obtain
an archfree path P ′. In general, not all vertices of P belong to P ′. Hence, a given vertex
may be involved in the archfree path computation on multiple layers of the recursion. Since
the recursion depth can be linear, the overall runtime of their algorithm is quadratic. In
Section 3, we describe a new efficient algorithm to obtain archfree paths in a more direct
way: the running time of our approach is linear in the sum of the degrees of the internal
vertices visited by the computed path. With this tool at hand, the layers of the recursion
become, in a sense, disjoint (since archfree paths computed on distinct layers of the recursion
are disjoint). This lets us carry out the algorithm corresponding to Theorem 1 in linear time.

▶ Theorem 2. There exists an algorithm that, given an internally 3-connected hierarchical
plane st-graph G and (a pointer to) an internal vertex y of G, computes an archfree directed
path Pyz from y to some outer vertex z of G such that all vertices of Pyz except for z are
internal vertices of G in time O(

∑
i∈V(Pyz)\{z} deg+

G(i)).

Alamdari et al. state in [2] that their morphing algorithm, which was already mentioned
above, can be executed in time O(n3). It uses Hong and Nagamochi’s [20] algorithm for
constructing convex drawings of hierarchical plane st-graphs as a blackbox with running
time O(n2). Kleist et al. [22] observed that by replacing the contents of this blackbox with an
algorithm based on Tutte’s theorem (as described by Chrobak et al. [10]), the running time
can be improved to O(n1+ω/2 + n2 log n) ⊆ O(n2.1865). By plugging in Theorem 1 instead,
we further improve the running time to O(n2 log n). In fact, if the graph is 2-connected, the
running time can be improved to O(n2). [2, Theorem 1.1] and [22, Theorem 2] become:

▶ Theorem 3. There exists an algorithm that, given two straight-line planar drawings of the
same n-vertex plane graph G, computes a planar morph between the two drawings that consists
of O(n) unidirectional morphs in time O(n2 log n), and in time O(n2) if G is 2-connected.

Alamdari et al. [2] proved that the number of linear morphing steps to morph between
two planar straight-line drawings of a path is bounded by Ω(n). This bound easily extends
to the 2-connected case [22, Theorem 3]. Recall that a linear morph is uniquely defined by
the initial and the final drawing. Hence, a natural way to encode a morph composed of k

linear morphing steps is to provide a list of k + 1 drawings. Since the size of each drawing
is Ω(n), the Ω(n) bound for the number of morphing steps implies an output complexity
of Ω(n2) when the morph is assumed to be encoded in this fashion. Hence, in this model,
Theorem 3 is near-optimal, and optimal in the 2-connected case. It is an interesting question
whether allowing some sort of implicit encoding can lead to better running times.

It seems likely that a similar running time improvement can be obtained for other
morphing algorithms (such as the ones stated in [22, 7, 27]), though, we have not analyzed
the respective running times in detail yet. We believe that Theorem 3 might be a useful tool
for designing morphing algorithms in the future.

2 Terminology, data structures, and preliminary results

All graphs in this paper are simple, that is, we do not allow parallel edges or self-loops.
Let G = (V, E) be a graph. We denote by V(G) = V the vertex set and by E(G) = E the
edge set of G. Assume that G is planar and let Γ be a planar drawing of G. The boundary
of each face f of G can be uniquely described by a counterclockwise sequence of edges, or
multiple such sequences if G is disconnected. In the connected case, we use ∂f to denote the
boundary of f . If G is 2-connected, then ∂f is a simple cycle (otherwise, ∂f can visit vertices
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and edges multiple times). The drawing Γ determines a circular ordering of the neighbors
of each vertex. The set of these orderings together with the set of face boundaries is called
the combinatorial embedding of Γ. Two drawings of G may have the same combinatorial
embedding, but different outer faces. A plane graph is a planar graph equipped with a
combinatorial embedding and a distinguished outer face. A plane graph can be efficiently
encoded and traversed by means of the well-known doubly connected edge list (DCEL) [12].

Let H be a hierarchical plane st-graph. We consider each edge of H to be directed from
its lower to its higher endpoint. Note that H has a unique source and sink, which belong
to the outer face. Moreover, the boundary of each face of H has a unique source and sink.
We refer to this as the st-property of H. For a face f of H, we define its peak, denoted by
peak(f), to be the y-coordinate of its sink. The valley of f , denoted by valley(f), is the
y-coordinate of its source. Let v ∈ V(H) such that v is not the source or sink of H . There is
a natural partition of the faces incident to v: a face with two out-edges of v on its boundary
is called an up-face of v. Similarly, a face with two in-edges of v on its boundary is called a
down-face of v. The unique left-face of v has the left-most out-edge and the left-most in-edge
of v on its boundary. The right-face of v is defined analogously. Moreover, we refer to the
collection of the left-, right-, and up-faces of v as its out-faces, and to the collection of the
left-, right-, and down-faces of v as its in-faces. The left-to-right ordering of the out-edges
(in-edges) of H uniquely determines a left-to-right ordering of the out-faces (in-faces) of H.
A hierarchical plane st-graph can be encoded and traversed by means of a slightly augmented
DCEL: for each vertex, one simply has to add its y-coordinate and a pointer to its left-most
out-edge (except for the sink) and a pointer to its right-most in-edge (except for the source).
This augmented DCEL is easily preprocessed in linear time to obtain the peak and valley of
each face. Hence, we may assume that each face is equipped with these values. Moreover,
we may assume (again via preprocessing in linear time) that the vertices of the outer face
are marked, so that it is possible in O(1) time to test whether a given vertex is external or
internal. All hierarchical plane st-graphs in this paper are assumed to be represented by
means of this data structure.

We say that an angle is convex if it is at most π and reflex if it exceeds π. In a convex
polygon, each internal angle is convex. Recall that a planar straight-line drawing of a graph
is called convex if the boundary of each face is realized as a simple convex polygon. A side of
a simple convex polygon is a maximal straight-line segment in its boundary, i.e., a maximal
sequence of collinear edges. It is well known that a planar graph admits a convex drawing if
and only if it is a subdivision of an internally 3-connected graph [31, 30, 20, 19]. There are
multiple well-known equivalent definitions of this property. Each of them provides a different
perspective on the concept and it will be convenient to refer to all of them. Hence, we define
internal 3-connectivity in form of a characterization; a proof of the equivalence of the three
properties can be found in [22].

▶ Definition 4. Let G be a plane 2-connected graph and let fo denote its outer face. Then G

is called internally 3-connected if and only if the following equivalent statements are satisfied:
(I1) Inserting a new vertex v in fo and adding edges between v and all vertices of fo results

in a 3-connected graph.
(I2) From each internal vertex w of G there exist three paths to fo that are pairwise disjoint

except for the common vertex w.
(I3) Every separation pair u, v of G is external, meaning that u and v lie on fo and every

connected component of the subgraph of G induced by V(G) \ {u, v} contains a vertex
of fo.
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Let G be a plane graph and Γo be a convex drawing of the boundary of the outer face
of G. Even if G is internally 3-connected, the drawing Γo cannot necessarily be extended to a
convex drawing of G. Recall that a path P of G is arched by a face f of G if there exist two
distinct vertices a, b ∈ V(P ) ∩V(∂f) such that the subpath of P between a and b is not a
subpath of ∂f , see Figure 2c. Moreover, P is called archfree if it is not arched by an internal
face of G. The drawing Γo can be extended to a convex drawing of G if and only if G is a
subdivision of an internally 3-connected graph and each side of Γo corresponds to an archfree
path of G [31, 30, 20, 19]. Hong and Nagamochi [20] showed that this characterization carries
over to hierarchical graphs: let H be a hierarchical plane st-graph and Λo be a convex drawing
of the restriction of H to the boundary of its outer face. If each side of Λo corresponds to an
archfree path of H, we call Λo compatible with H. The drawing Λo can be extended to a
convex drawing of H if and only if H is a subdivision of an internally 3-connected graph
and Λo is compatible with H [20]. Hong and Nagamochi also proved the following lemma.

▶ Lemma 5 ([20, Lemma 1]). Let G be an internally 3-connected plane graph and let f be
an internal face of G. Any subpath P of ∂f with |E(P )| ≤ |E(∂f)| − 2 is archfree.

3 Computing archfree paths efficiently

In this section, we prove Theorem 2, that is, we describe our algorithm for computing archfree
paths in internally 3-connected hierarchical plane st-graphs. In fact, we prove the following
generalization of Theorem 2, which gives us the freedom to influence the choice of the first
edge of the computed path. This aspect will be useful in our algorithm to create convex
drawings of hierarchical plane st-graphs.

▶ Theorem 6. There exists an algorithm that, given an internally 3-connected hierarchical
plane st-graph G and (a pointer to) an internal vertex y of G, computes an archfree directed
path Pyz from y to some outer vertex z of G such that all vertices of Pyz except for z are
internal vertices of G in time O(

∑
i∈V(Pyz)\{z} deg+

G(i)).
Moreover, the choice of the first edge (y, u) of Pyz may be influenced as follows: let Fy be

the set of out-faces of y, let ky = maxg∈Fy
{peak(g)}, and let Ky = {g ∈ F | peak(g) = k}.

We may choose (y, u) to be the left-most out-edge of v that is incident to the right-most
out-face in Ky; or the right-most out-edge of v that is incident to the left-most out-face in Ky.

Proof. In the following, we describe the idea of our algorithm; for a full pseudocode version,
see Algorithm 1. Suppose we have already computed a directed path P from y to some
vertex v such that all vertices of P are internal (initially v = y). We will extend P by
appending an out-edge e′ of v that is incident to an out-face of v with maximum peak,
for an illustration see Figure 3. More precisely, let F be the set of out-faces of v, let
k = maxg∈F {peak(g)}, and, finally, let K = {g ∈ F | peak(g) = k}.

(R1) We extend P by appending an out-edge e′ of v that is incident to a face f ′ ∈ K.

At each edge of our path, we store a pointer to the face that was the reason why the edge
was chosen, i.e., we associate the edge e′ with the face f ′.

In general, the choice of e′ and f ′ according to Rule (R1) is not unique (see Figure 3),
and computing a path while exclusively relying on Rule (R1) does not necessarily lead to
an archfree result. We introduce two tiebreaking rules that specialize Rule (R1). Assume
for now that v ̸= y and let e be the edge of P whose head is v. Let f be the face that is
associated with e.
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Algorithm 1 The procedure corresponding to Theorem 6.

input : an internally 3-connected hierarchical plane st-graph G

an internal vertex y of G

d ∈ {L, R} ▷ initial associated direction
output : a directed archfree path Pyz from y to an outer vertex z of G such that all

vertices of Pyz except z are internal vertices of G

v ←− y ▷ The endpoint of our current path P ,
P ←− ∅ ▷ whose list of edges is initially empty.
e←− nil ▷ The edge that was most recently appended to P

f ←− nil ▷ and the face associated with it.
D ←− d ▷ The direction currently associated with P

while true do
▷ Let F be the set of out-faces of v

k ←− maxg∈F {peak(g)}
K ←− {g ∈ F | peak(g) = k}
if f ̸= nil and additionally peak(f) = k then

e←− the unique edge of ∂f with tail v

else ▷ f = nil; or f ̸= nil and additionally peak(f) < k

if D = L then
f ←− the right-most face in K

e←− the left-most out-edge of v that belongs to ∂f

else ▷ D = R

f ←− the left-most face in K

e←− the right-most out-edge of v that belongs to ∂f

append e to P

v ←− head(e)
if f is to the left of e then

D ←− L

else ▷ f is to the right of e

D ←− R

if v belongs to the outer face of G then
return P

(R2) If v ̸= y and f ∈ K, we choose f ′ = f and e′ to be the unique out-edge of v that is
incident to f .

In other words, we continue to follow the boundary of a face f until we encounter a
vertex v incident to a face with strictly larger peak, see Figure 3a.

It remains to discuss the case where the preconditions of Rule (R2) are not satisfied. We
associate a direction D ∈ {L, R} with P , namely, D = L if f is to the left of e, and D = R

otherwise. Whenever we switch from f to a new face, we also try to switch the direction
associated with our path if possible. That is, if D = L, we try to choose f ′ and e′ such
that f ′ is to the right of e′, see Figure 3b. Note that this is impossible if and only if |K| = 1
and the unique face f ′ ∈ K is the left-face of v, see Figure 3c. Symmetrically, if D = R,
we try to choose f ′ and e′ such that f ′ is to the left of e′, which is impossible if and only
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e
v

e′

f, f ′

y = k

(a)

ev

e′

f

y = k

f ′

(b)

ev
f

y = k

f ′
e′

(c)

Figure 3 The choices of (e′, f ′) made according to Rule (R1) are sometimes unique (c), but in
general they are not (a–b). (a) Unique choice of (e′, f ′) according to Rule (R2). (b–c) Unique choice
of (e′, f ′) according to Rule (R3). In (c) it is not possible to switch the direction of the path.

if |K| = 1 and the unique f ′ ∈ K is the right-face of v. In general, this choice of f ′ and e′ is
still not unique. Whenever there are multiple options, we choose f ′ and e′ such that if D = L

(D = R), the face f ′ is the right-most (left-most) out-face of v such that the above properties
are satisfied, see Figure 3b. To streamline the algorithm, the initial path, where v = y (and,
hence, f is undefined), is also associated with a direction L or R. This initial direction may
be freely chosen. The following rule realizes the strategy discussed in this paragraph:

(R3) If v = y or f /∈ K, our choice of f ′ and e′ depends on D: if D = L (D = R),
we choose f ′ to be the right-most (left-most) face in K and e′ to be the left-most
(right-most) out-edge of v that belongs to ∂f ′.

Indeed, whenever we switch to a new face f ′ ̸= f , Rule (R3) ensures that the direction
associated with the path is switched if possible:

▷ Claim 7. If D = L (D = R) and f ′ and e′ are chosen according to Rule (R3), then f ′ is to
the right (left) of e′, unless |K| = 1 and the unique f ′ ∈ K is the left-face (right-face) of v.

Correctness. Since G has the st-property, Algorithm 1 terminates with a directed path Pyz

from y to some outer vertex z of G such that all vertices of P except for z are internal
vertices of G. Since the initial direction may be freely chosen, Rule (R3) guarantees the
choice of the first edge of Pyz as described in the statement of the theorem.

It remains to show that Pyz is archfree. To the contrary, assume that Pyz is arched by
a face A. Without loss of generality, we may assume that A is to the right of Pyz. This
implies the existence of a directed subpath Aab of the left boundary of A that starts at a
vertex a ∈ V(Pyz), ends at a vertex b ∈ V(Pyz) with b ̸= a, and is interior-disjoint from Pyz.
Let Pab denote the subpath of Pyz that leads from a to b. Let Cab denote the simple cycle
formed by Pab and Aab in the underlying undirected graph of G.

In a plane 2-connected graph, every edge belongs to the boundary of at least one internal
face. Consequently, Lemma 5 implies that in internally 3-connected graphs every path of
length 1 is archfree (since each face is bounded by at least three edges). Since G is internally
3-connected, it follows that |E(Pab)| ≥ 2. Let e = (a, w) denote the unique out-edge of a that
belongs to Pab (where w ̸= b since |Pab| ≥ 2). Let f denote the face associated with e. By
the definition of Aab, we have f ̸= A. The face f can be either to the left or the right of e.
Accordingly, we distinguish two cases.

Case 1: f is to the right of e. For an illustration see Figure 4a. This implies that f is interior
to the cycle Cab. Consequently, we have peak(f) ≤ peak(A). Moreover, by Rule (R1), we
have peak(f) = peak(A) since both A and f are out-faces of a. From the fact that f is
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interior to the cycle Cab, we can also conclude that a is the (unique) source of f . Therefore,
the face f and the edge e were chosen according to Rule (R3) (rather than Rule (R2)). Due
to the fact that peak(f) = peak(A), Claim 7 implies that the direction associated with the
subpath Pya of Pyz from y to a is L. Consequently, Rule (R3) implies that f is the right-most
out-face of v whose peak is peak(f) (= peak(A)). We obtain a contradiction to the fact
that A is to the right of f . ◁

a

b

w

e
f

A

Aab

Pab

(a)

a

w
e

f

A

Aab

Pab

x, b

(b)

a

w
e

f

A

Aab

Pab

b

x
e′

f ′

(c)

Figure 4 (a) Case 1 and (b–c) Case 2 in the proof of Theorem 6.

Case 2: f is to the left of e. Let Pax denote the unique maximal subpath of Pab such that
all edges of Pax are associated with f .

To the contrary, assume that the endpoint x ̸= a of Pax is b; for an illustration see
Figure 4b. It follows that a and b form a separator in G that separates w (and all other
vertices in the closed interior of Cab except for a and b) from the outer vertices of G.
Consequently, a and b form a nonexternal separation pair; a contradiction to the internal
3-connectivity of G. Therefore, we have x ̸= b.

Let e′ denote the unique out-edge of x that belongs to Pab; for an illustration see Figure 4c.
By Rule (R2), the edge e′ is associated with a face f ′ such that peak(f ′) > peak(f). Therefore,
face f ′ and edge e′ were chosen according to Rule (R3). Since f is to the left of e, each
edge of Pax has f to its left. Therefore the direction associated with the subpath Pyx of Pyz

from y to x is L. By Rule (R1) applied to a, we have peak(f) ≥ peak(A). Moreover, we
have peak(A) > y(x) since x ≠ b. Consequently, peak(f) > y(x), which implies that f is
the left-face of x. Therefore, by Claim 7, the face f ′ is to the right of e′. This implies
that f ′ is interior to Cab and, consequently, peak(f ′) ≤ peak(A). Altogether, we have
peak(f) < peak(f ′) ≤ peak(A) ≤ peak(f); a contradiction. ◁

Running time. The claimed running time of O(
∑

i∈V(Pyz)\{z} deg+
G(i)) of Algorithm 1 is

easy to achieve: the initialization takes O(1) time. The while loop is executed once for
each vertex of Pyz that is an internal vertex of G. For each vertex v, the quantity k can
be computed in time O(deg+

G(v)) by sweeping the linear sequence of out-faces of v once.
With a second sweep of the sequence, we can then determine in time O(deg+

G(v)) the set K.
Actually, it suffices to remember the left-most and the right-most out-face in K. With this
information, the remaining lines in the while loop can be executed in time O(1). ◀
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4 Computing convex drawings of hierarchical graphs in linear time

In this section, we describe our O(n)-time algorithm to create a convex drawing of a
hierarchical plane st-graph. We follow the idea of the recursive combinatorial construction
by Hong and Nagamochi [20]. As discussed in Section 1, the main improvement comes from
using Theorem 6 to compute archfree paths. We also need to make some changes to the
low-level details of the original algorithm and apply a more careful (amortized) analysis
of its running time. The correctness of our algorithm follows for the most part from the
correctness of the algorithm by Hong and Nagamochi.

▶ Theorem 1. There exists an algorithm that, given a subdivision G = (V, E) of an internally
3-connected hierarchical plane st-graph and a convex polygon Γo that is compatible with G,
computes a convex drawing of G with Γo as the realization of the outer face in time O(n)
where n = |V |.

Proof sketch. It suffices to prove the claim for the case that G is internally 3-connected.
The y-coordinate of each vertex in the desired drawing of G is already fixed. Moreover, the
x-coordinates of the vertices of the outer face are also fixed by Γo. Hence, our goal is to
(recursively) compute the x-coordinates of the internal vertices in a convex drawing of G

with Γo as the realization of the outer face.
We assume we are given a cyclic list L that contains the vertices of G corresponding to

the vertices of Γo whose outer angles are reflex in the order in which they appear around Γo.
We refer to L as the corner list of Γo. Initially, we can preprocess G and Γo to obtain L

in O(n) time. When making recursive calls, we will split L appropriately to create a new
corner list for each subproblem in O(1) time. Given the list L, it is possible in O(1) time to
compute a vertex r that corresponds to a vertex of Γo whose outer angle is reflex and such
that r is not the source or sink of G. Without loss of generality, we assume that r belongs to
the right boundary of Γo. We distinguish two cases regarding the degree of r.

Case 1: degG(r) = 2. For an illustration see Figure 5a. Let ra and rb denote the in-neighbor
and out-neighbor of r, respectively. If |L| = 3 and ra is the source of G and rb is the sink
of G, then G has no internal vertices (otherwise, the internal face incident to r would arch
the path corresponding to the side rarb of Γo thereby contradicting the compatibility of Γo).
Hence, we simply report that the coordinates of all internal vertices are already fixed. This
is the base case of our recursion. It can be recognized and dealt with in O(1) time.

So assume that |L| ≥ 4 or that r has a neighbor that is not the sink or source of G. Let Γo
1

denote the simple (convex) polygon obtained from Γo created by replacing the segments rra

and rrb with the segment rarb. The simplicity of Γo
1 is implied by the above assumption.

If (ra, rb) ∈ E we set G′
1 = G. Otherwise, we add the edge (ra, rb) in the internal face incident

to r and call the resulting graph G′
1. We delete r from G′

1 and call the resulting graph G1.
Properties (I1)–(I2) of Definition 4 can be used to show that G1 is internally 3-connected.
Moreover, it can be derived by Lemma 5 that Γo

1 is compatible with G1. We recursively
compute the coordinates of the internal vertices in a convex drawing of G1 with Γo

1 as the
realization of the outer face. These coordinates combined with the coordinates of r correspond
to the desired drawing of G. The graph G and its polygon Γo are easily transformed into G1
and Γo

1 in O(1) time, and L can be transformed into a corner list of Γo
1 in O(1) time. ◁

Case 2: degG(r) ≥ 3. For illustrations see Figures 5b, 5c, and 6a Without loss of generality,
there is an edge whose head is r and whose tail is an internal vertex of G. Let fr denote
the left-face of r and let P ′

r denote the (unique) directed subpath of ∂fr that connects
the source y′ of fr with r. Let y be the first outer vertex of G distinct from r that is
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encountered when traversing P ′
r from r towards y′ – if no such vertex exists, we set y = y′.

We define Pr to be the subpath of P ′
r between y and r. If y and r are nonadjacent, we

have |E(Pr)| ≤ |E(∂fr)| − 2 and hence Pr is archfree by Lemma 5. If y and r are adjacent,
then Pr = (y, r); otherwise, by the definition of fr, the edge (y, r) is to the right of Pr, which
implies that the vertices r, y form a nonexternal separation pair that separates the internal
vertices of Pr from the outer face and, thus, contradicts the internal 3-connectivity of G.
Hence, Pr is again archfree by Lemma 5. So in any case Pr is archfree. Moreover, Pr is easily
computed in O(|E(Pr)|) time.

r

ra

rb

(a) Case 1.

rfr

y
y′

Pr

(b) Case 2.1.

rfr

y

P1

P2

G2

G1

Pr

(c) Case 2.1.

Figure 5 Case 1 and Case 2.1 in the proof of Theorem 1 and [20, Theorem 8]. (b) depicts the
case where y ̸= y′ and Pr ̸= P ′

r, whereas (c) depicts the case where y = y′ and Pr = P ′
r.

We distinguish two cases depending on whether y is an internal vertex or not.

Case 2.1: y is an outer vertex of G. For illustrations see Figures 5b and 5c. The boundary of
the outer face of G contains two interior disjoint paths P1, P2 between r and y. Each of these
two paths forms a cycle together with Pr. The closed interior of each of these two cycles
describes a hierarchical plane st-graph. We denote these two graphs by G1 and G2 such
that Gi, i ∈ {1, 2} has Pi on its outer face. We define Γo

1 to be the polygon resulting from
replacing the part of Γo that corresponds to P2 with Pr drawn as a straight-line segment,
thereby fixing the coordinates of the internal vertices of Pr. The drawing Γo

2 is defined
analogously. Since each side of Γo corresponds to an archfree path in G, it follows that r

and y do not belong to a common side of Γo. Hence, Γo
1 and Γo

2 are simple (convex) polygons.
Moreover, since Pr is archfree, Γo

1 is compatible with G1 and Γo
2 is compatible with G2. By

Property (I2) of Definition 4 for G it easily follows that G1 and G2 are internally 3-connected.
We recursively compute the coordinates of the internal vertices in convex drawings of G1
and G2 with outer face Γ1 and Γ2, respectively. Note that these coordinates combined with
the coordinates of Γo and Pr correspond to the desired drawing of G.

The hierarchical plane st-graphs G1 and G2 can be obtained in O(|E(Pr)|) time by
splitting G along Pr. The polygons Γo

1 and Γo
2 can be obtained in O(|E(Pr)|) time by

splitting Γo and their corner lists can be obtained in O(1) time by splitting L. ◁

Case 2.2: y is an internal vertex of G. For an illustration see Figure 6a. We compute a
directed archfree path Px from a vertex x on the outer face of G to y by using (a symmetric
version of) Theorem 2. The paths Px and Pr are disjoint except for the common endpoint y.
We also compute a directed archfree path Pz from y to a vertex z on the outer face of G by
using Theorem 6. To ensure that Pz is disjoint from Pr (except for the common endpoint y),
we make use of the ability to influence the choice of the first edge (y, u) of Pz as guaranteed
by Theorem 6. Let Fy be the set of out-faces of y, let ky = maxg∈Fy{peak(g)}, and let
Ky = {g ∈ F | peak(g) = k}. If Ky = {fr}, we pick the left-most out-edge of y that is
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incident to the right-most out-face in Ky (which is fr). Since fr is the left-face of r, this
choice guarantees that Pz and Pr are disjoint. Otherwise (if Ky contains at least one face
distinct from fr), we pick the right-most out-edge of y that is incident to the left-most
out-face in Ky. Since fr is the left-face of r, its peak is strictly larger than y(r). Hence, Ky

cannot contain any face that is to the right of fr. Consequently, it contains a face to the left
of fr. Thus, our choice guarantees that Pz is disjoint from Pr since Pr is the left-face of r.

r

y

fr

x

z

Pr

Px

Pz

(a)

r

y

x

z

Pr

Px

Pz

Pzr
Gzr

P ′
zr

Gxz
Grx

(b)

Figure 6 Case 2.2 in the proof of Theorem 1 and [20, Theorem 8].

The boundary of the outer face of G contains two interior disjoint paths from z to r.
Let Pzr denote the path that does not contain x and let P ′

zr denote the path that contains x,
for an illustration see Figure 6b. The closed interior of the cycle formed by Pzr, Pz, and Pr

describes a hierarchical plane st-graph Gzr, which is easily seen to be internally 3-connected
due to Property (I2) of Definition 4. We pick a point p with y(p) = y(y) in the interior of the
triangle formed by the vertices r, x, z. Finally, we create a convex polygon Γo

zr from Γo by
replacing the part corresponding to P ′

zr with the straight-line segments pz and pr, which fixes
the coordinates of the vertices of Pr and Pz. Since Pr and Pz are archfree in G, it follows
that Γo

zr is compatible with Gzr. Analogously, we define two other internally 3-connected
hierarchical plane st-graphs Grx and Gxz that together with Gzr partition the internal faces
of G. We also construct two convex polygons Γo

rx and Γo
xz that are compatible with Grx

and Gxz, respectively, that also use the point p as a corner. We recursively compute the
internal coordinates of convex drawings of Gzr, Grx, and Gxz with Γo

zr, Γr
rx and Γo

xz as the
realization of the outer face, respectively. Note that these coordinates combined with the
coordinates of Γo, Pr, Pz, and Px correspond to the desired drawing of G.

By Theorem 6, the path Px can be computed in O(
∑

i∈V(Px)\{x} deg−
G(i)) time and Pz

can be computed in O(
∑

i∈V(Pz)\{z} deg+
G(i)) time. By splitting G and Γo, we can com-

pute Gzr, Grx, and Gxz and Γo
zr, Γr

rx, and Γo
xz, respectively, in O(|E(Pr)|+ |E(Px)|+ |E(Pz)|)

time. By splitting L, we can compute the corner lists of Γo
zr, Γr

rx, and Γo
xz in O(1) time. ◁

Running time. The preprocessing (computing L) takes O(n) time. Case 1 can be dealt with
inO(1) time. The time to take care of Case 2.1 can be expressed as O(1)+O(|E(Pr)|). Case 2.2
can be taken care of in time O(1)+O(|E(Pr)|+

∑
i∈V(Px)\{x} deg−

G(i)+
∑

i∈V(Pz)\{z} deg+
G(i)).

In all three cases, the nonconstant summands only involve internal vertices of G, that
is, |E(Pr)| is linear in the number of vertices of Pr that are internal vertices of G, and
the expressions

∑
i∈V(Px)\{x} deg−

G(i) and
∑

i∈V(Pz)\{z} deg+
G(i)) only involve the degree of

vertices of Px and Pz, respectively, that are internal to G. The graph G is then split to
obtain up to three hierarchical plane st-graphs in which these internal vertices are external.
Hence, each vertex of G can contribute to the nonconstant part of the running time of at
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most one subproblem in the recursion tree. Therefore, the total sum of these nonconstant
parts is bounded by

∑
v∈V degG(v) ⊆ O(n). It remains to find an upper bound on the total

number of subproblems. The number of subproblems for which Case 1 arises is bounded by
the number of faces of an internal triangulation of G, which is O(n). Each subproblem for
which Case 2 arises splits at least one internal edge, which becomes external in the created
subproblems. Hence, each edge is split at most once and so the number of the subproblems
for which Case 2 arises is O(n). Therefore the total running time is O(n). ◀
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1 Introduction

The Quantified Constraint Satisfaction Problem QCSP(B), for a fixed template (structure) B,
is a popular generalisation of the Constraint Satisfaction Problem CSP(B). In the latter, one
asks if a primitive positive sentence (the existential quantification of a conjunction of atoms)
φ is true on B, while in the former this sentence may also have universal quantification. Much
of the theoretical research into (finite-domain1) CSPs has been in respect of a complexity
classification project [11, 5], recently completed by [4, 22, 24], in which it is shown that all

1 All structures considered in this article are finite.
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such problems are either in P or NP-complete. Various methods, including combinatorial
(graph-theoretic), logical and universal-algebraic were brought to bear on this classification
project, with many remarkable consequences.

Complexity classifications for QCSPs appear to be harder than for CSPs. Indeed, a
classification for QCSPs will give a fortiori a classification for CSPs (if B ⊎ K1 is the disjoint
union of B with an isolated element, then QCSP(B ⊎ K1) and CSP(B) are polynomial-
time many-one equivalent). Just as CSP(B) is always in NP, so QCSP(B) is always in
Pspace. However, no polychotomy has been conjectured for the complexities of QCSP(B),
though, until recently, only the complexities P, NP-complete and Pspace-complete were
known. Recent work [25] has shown that this complexity landscape is considerably richer,
and that dichotomies of the form P versus NP-hard (using Turing reductions) might be the
sensible place to be looking for classifications.

CSP(B) may equivalently be seen as the homomorphism problem which takes as input
a structure A and asks if there is a homomorphism from A to B. The surjective CSP,
SCSP(B), is a cousin of CSP(B) in which one requires that this homomorphism from A to B
be surjective. From the logical perspective this translates to the stipulation that all elements
of B be used as witnesses to the (existential) variables of the primitive positive input φ.
The surjective CSP appears in the literature under a variety of names, including surjective
homomorphism [2], surjective colouring [12, 15] and vertex compaction [19, 20]. CSP(B) and
SCSP(B) have various other cousins: see the survey [2] or, in the specific context of reflexive
tournaments, [15]. The only one we will dwell on here is the retraction problem CSPc(B)
which can be defined in various ways but, in keeping with the present narrative, we could
define logically as allowing atoms of the form v = b in the input sentence φ where b is some
element of B (the superscript c indicates that constants are allowed). It has only recently
been shown that there exists a B so that SCSP(B) is in P while CSPc(B) is NP-complete [23].
It is still not known whether such an example exists among the (partially reflexive) graphs.

It is well-known that the binary cousin relation is not transitive, so let us ask the
question as to whether the surjective CSP and QCSP are themselves cousins? The algebraic
operations pertaining to the CSP are polymorphisms and for QCSP these become surjective
polymorphisms. On the other hand, a natural use of universal quantification in the QCSP
might be to ensure some kind of surjective map (at least under some evaluation of many
universally quantified variables). So it is that there may appear to be some relationship
between the problems. Yet, there are known irreflexive graphs H for which QCSP(H) is in
NL, while SCSP(H) is NP-complete (take the 6-cycle [18, 20]). On the other hand, one can
find a 3-element B whose relations are preserved by a semilattice-without-unit operation
such that both CSPc(B) and SCSP(B) are in P but QCSP(B) is Pspace-complete. We are
not aware of examples like this among graphs and it is perfectly possible that for (partially
reflexive) graphs H, SCSP(H) being in P implies that QCSP(H) is in P.

Tournaments, both irreflexive and reflexive (and sometimes in between), have played a
strong role as a testbed for conjectures and a habitat for classifications, for relatives of the
CSP both complexity-theoretic [1, 10, 15] and algebraic [14, 21]. Looking at Table 1 one can
see the last unresolved case is precisely QCSP on reflexive tournaments. This is the case we
address in this paper. For irreflexive tournaments H, QCSP(H) is in P if and only if SCSP(H)
in P, but for reflexive tournaments this is not the case. When H is a reflexive tournament, we
prove that QCSP(H) is in NL if H has both initial and final strongly connected components
trivial, and is NP-hard otherwise. In contrast to the proof from [10] and like the proof of
[15], we will henceforth work largely combinatorially rather than algebraically. Note that we
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do not investigate beyond NP-hard, so our dichotomy cannot be compared directly to the
trichotomy of [10] for irreflexive tournaments which distinguishes between P, NP-complete
and Pspace-complete.

Table 1 Our result in a wider context. The results for irreflexive tournaments were all proved in
the more general setting of irreflexive semicomplete digraphs in the papers cited.

QCSP CSP Surjective CSP Retraction
irreflexive
tournaments

trichotomy [10] dichotomy [1] dichotomy [1] dichotomy [1]

reflexive
tournaments

this paper all trivial dichotomy [15] dichotomy [14]

In Section 3 we prove the NP-hard cases of our dichotomy. Our proof method follows
that from [15], while adapting the ideas of [8] in order to make what was developed for
Surjective CSP applicable to QCSP. The QCSP is not naturally a combinatorial problem
but can be seen thusly when viewed in a certain way. We indeed closely mirror [15] with [8]
in the strongly connected case. For the not strongly connected case, the adaptation from the
strongly connected case was straightforward for the Surjective CSP in [15]. However, the
straightforward method does not work for the QCSP. Instead, we seek a direct argument
that essentially sees us extending the method from [15].

In Section 4 we prove the NL cases of our dichotomy. Here, we use ideas originally
developed in (the conference version of) [8] and first used in the wild in [17]. Thus, we do not
introduce new proof techniques as such but rather weave our proof through the reasonably
intricate synthesis of different known techniques. In Section 5 we state our dichotomy and
give some directions for future work. Owing to space restrictions in the original submission,
some of our proofs are omitted.

2 Preliminaries

For an integer k ≥ 1, we write [k] := {1, . . . , k}. A vertex u ∈ V (G) in a digraph G is
backwards-adjacent to another vertex v ∈ V if (u, v) ∈ E. It is forwards-adjacent to another
vertex v ∈ V if (v, u) ∈ E. If a vertex u has a self-loop (u, u), then u is reflexive; otherwise u

is irreflexive. A digraph G is reflexive or irreflexive if all its vertices are reflexive or irreflexive,
respectively.

The directed path on k vertices is the digraph with vertices u0, . . . , uk−1 and edges
(ui, ui+1) for i = 0, . . . , k − 2. By adding the edge (uk−1, u0), we obtain the directed cycle
on k vertices. A digraph G is strongly connected if for all u, v ∈ V (G) there is a directed
path in E(G) from u to v. A double edge in a digraph G consists in a pair of distinct
vertices u, v ∈ V (G), so that (u, v) and (v, u) belong to E(G). A digraph G is semicomplete
if for every two distinct vertices u and v, at least one of (u, v), (v, u) belongs to E(G). A
semicomplete digraph G is a tournament if for every two distinct vertices u and v, exactly
one of (u, v), (v, u) belongs to E(G). A reflexive tournament G is transitive if for every
three vertices u, v, w with (u, v), (v, w) ∈ E(G), also (u, w) belongs to E(G). A digraph F
is a subgraph of a digraph G if V (F) ⊆ V (G) and E(F) ⊆ E(G). It is induced if E(F)
coincides with E(G) restricted to pairs containing only vertices of V (F). A subtournament is
an induced subgraph of a tournament. It is well known that a reflexive tournament H can be
split into a sequence of strongly connected components H1, . . . , Hn for some integer n ≥ 1 so
that there exists an edge from every vertex of Hi to every vertex of Hj if and only if i < j.
We will use the notation H1 ⇒ · · · ⇒ Hn for H and we refer to H1 and Hn as the initial and
final components of H, respectively.
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A homomorphism from a digraph G to a digraph H is a function f : V (G) → V (H) such
that for all u, v ∈ V (G) with (u, v) ∈ E(G) we have (f(u), f(v)) ∈ E(H). We say that f is
(vertex)-surjective if for every vertex x ∈ V (H) there exists a vertex u ∈ V (G) with f(u) = x.
A digraph H′ is a homomorphic image of a digraph H if there is a surjective homomorphism
from H to H′ that is also edge-surjective, that is, for all (x′, y′) ∈ E(H′) there exists an
(x, y) ∈ E(H) with x′ = h(x) and y′ = h(y).

The problem H-Retraction takes as input a graph G of which H is an induced subgraph
and asks whether there is a homomorphism from G to H that is the identity on H. This
definition is polynomial-time many-one equivalent to the one we suggested in the introduction
(see e.g. [2]). The quantified constraint satisfaction problem QCSP(H) takes as input a
sentence φ := ∀x1∃y1 . . . ∀xn∃yn Φ(x1, y1, . . . , xn, yn), where Φ is a conjunction of positive
atomic (binary edge) relations. This is a yes-instance to the problem just in case H |= φ.

The canonical query of G (from [13]) is a primitive positive sentence φG that has the
property that, for all H, G has a homomorphism to H iff H |= φG. It is built by mapping
edges (x, y) from E(G) to atoms E(x, y) is an existentially quantified conjunctive query.

The direct product of two digraphs G and H, denoted G × H, is the digraph on vertex
set V (G) × V (H) with edges ((x, y), (x′, y′)) if and only if (x, x′) ∈ E(G) and (y, y′) ∈ E(H).
We denote the direct product of k copies of G by Gk. A k-ary polymorphism of G is a
homomorphism f from Gk to G; if k = 1, then f is also called an endomorphism. A k-ary
polymorphism f is essentially unary if there exists a unary operation g and i ∈ [k] so that
f(x1, . . . , xk) = g(xi) for every (x1, . . . , xk) ∈ Gk. Let us say that a k-ary polymorphism f

is uniformly z for some z ∈ V (G) if f(x1, . . . , xk) = z for every (x1, . . . , xk) ∈ V (Gk). We
need the following two lemmas.

▶ Lemma 1. Let H be a reflexive tournament and f be a k-ary polymorphism of H. If
f(x, . . . , x) = z for every x ∈ V (H), then f is uniformly z.

Proof. Consider some tuple (x1, . . . , xk) which has m distinct vertices. We proceed by
induction on m, where the base case m = 1 is given as an assumption. Suppose we have
the result for m vertices and let (x1, . . . , xk) have m + 1 distinct entries. For simplicity
(and w.l.o.g.) we will consider this reordered and without duplicates as (y1, . . . , ym, ym+1).
Suppose f maps (x1, . . . , xk) to z′. Assume (ym, ym+1) ∈ E(H) (the case (ym+1, ym) is
symmetric). Then consider the tuples (y1, . . . , ym, ym) and (y1, . . . , ym+1, ym+1). By the
inductive hypothesis, f maps each of these (when reordered and padded appropriately
with duplicates) to z. Furthermore, we have co-ordinatewise edges from (y1, . . . , ym, ym) to
(y1, . . . , ym, ym+1) and from (y1, . . . , ym, ym+1) to (y1, . . . , ym+1, ym+1). Since we deduce by
the definition of polymorphism that both (z, z′), (z′, z) ∈ E(H), it follows that z′ = z. Thus,
f maps also (y1, . . . , ym, ym+1) (when reordered and padded appropriately with duplicates)
to z. That is, f(x1, . . . , xk) = z. ◀

▶ Lemma 2. Let H be the reflexive tournament H1 ⇒ · · · ⇒ Hi ⇒ · · · ⇒ Hn. If f is a k-ary
surjective polymorphism of H, then f preserves each of V (H1), . . . , V (Hn); that is, for every
i and every tuple of k vertices x1, . . . , xk ∈ V (Hi), f(x1, . . . , xk) ∈ V (Hi).

Proof. Suppose f maps some tuple (x1, . . . , xm) from V (Hi) to y ∈ V (Hℓ). Let (x′
1, . . . , x′

m)
be any tuple from V (Hi). Since Hi is strongly connected, f(x′

1, . . . , x′
m) in V (Hℓ). It follows

that if ℓ ̸= i, e.g. w.l.o.g. ℓ < i, then some component ℓ′ ≥ i can not be in the range of f . ◀

The relevance of this lemma is in its sequent corollary, which follows according to Proposi-
tion 3.15 of [3].
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▶ Corollary 3. Let H be the reflexive tournament H1 ⇒ · · · ⇒ Hi ⇒ · · · ⇒ Hn. Each subset
of the domain V (Hi) is definable by a QCSP instance in one free variable.

An endomorphism e of a digraph G is a constant map if there exists a vertex v ∈ V (G)
such that e(u) = v for every u ∈ V (G), and e is the identity if e(u) = u for every u ∈ G.
An automorphism is a bijective endomorphism whose inverse is a homomorphism. An
endomorphism is trivial if it is either an automorphism or a constant map; otherwise
it is non-trivial. A digraph is endo-trivial if all of its endomorphisms are trivial. An
endomorphism e of a digraph G fixes a subset S ⊆ V (G) if e(S) = S, that is, e(x) ∈ S

for every x ∈ S, and e fixes an induced subgraph F of G if it is the identity on V (F). It
fixes an induced subgraph F up to automorphism if e(F) is an automorphic copy of F. An
endomorphism e of G is a retraction of G if e is the identity on e(V (G)). A digraph is
retract-trivial if all of its retractions are the identity or constant maps. Note that endo-
triviality implies retract-triviality, but the reverse implication is not necessarily true (see
[15]). However, on reflexive tournaments both concepts do coincide [15].

We need a series of results from [15]. The third one follows from the well-known fact that
every strongly connected tournament has a directed Hamilton cycle [6].

▶ Lemma 4 ([15]). A reflexive tournament is endo-trivial if and only if it is retract-trivial.

▶ Lemma 5 ([15]). Let H be an endo-trivial reflexive digraph with at least three vertices.
Then every polymorphism of H is essentially unary.

▶ Lemma 6 ([15]). If H is an endo-trivial reflexive tournament, then H contains a directed
Hamilton cycle.

▶ Lemma 7 ([15]). If H is an endo-trivial reflexive tournament, then every homomorphic
image of H of size 1 < n < |V (H)| has a double edge.

▶ Corollary 8. If H is an endo-trivial reflexive digraph on at least three vertices, then
QCSP(H) is NP-hard (in fact it is even Pspace-complete).

Proof. This follows from Lemma 5 and [3]. ◀

3 The Proof of the NP-Hard Cases of the Dichotomy

We commence with the NP-hard cases of the dichotomy. The simpler NL cases will follow.

3.1 The NP-Hardness Gadget
We introduce the gadget Cyl∗m from [15] drawn in Figure 1. Take m disjoint copies of the
(reflexive) directed m-cycle DC∗

m arranged in a cylindrical fashion so that there is an edge
from i in the jth copy to i in the (j + 1)th copy (drawn in red), and an edge from i in the
(j + 1)th copy to (i + 1) mod m in the jth copy (drawn in green). We consider DC∗

m to
have vertices {1, . . . , m}. Recall that every strongly connected (reflexive) tournament on m

vertices has a Hamilton Cycle HCm. We label the vertices of HCm as 1, . . . , m in order to
attach it to the gadget Cyl∗m.2

The following lemma follows from induction on the copies of DC∗
m, since a reflexive

tournament has no double edges.

2 The superscripted ∗ indicates that the corresponding graph is reflexive. This notation is inherited from
[15]. It is not significant since we could safely assume every graph we work with is reflexive as the
template is a reflexive tournament.
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Figure 1 The gadget Cyl∗m in the case m := 4 (self-loops are not drawn). We usually visualise
the right-hand copy of DC∗

4 as the “bottom” copy and then we talk about vertices “above” and
“below” according to the red arrows.

▶ Lemma 9 ([15]). In any homomorphism h from Cyl∗m, with bottom cycle DC∗
m, to a

reflexive tournament, if |h(DC∗
m)| = 1, then |h(Cyl∗m)| = 1.

We will use another property, denoted (†), of Cyl∗m, which is that the retractions from Cyl∗m
to its bottom copy of DC∗

m, once propagated through the intermediate copies, induce on
the top copy precisely the set of automorphisms of DC∗

m. That is, the top copy of DC∗
m is

mapped isomorphically to the bottom copy, and all such isomorphisms may be realised. The
reason is that in such a retraction, the (j + 1)th copy may either map under the identity
to the jth copy, or rotate one edge of the cycle clockwise, and Cyl∗m consists of sufficiently
many (namely m) copies of DC∗

m. Now let H be a reflexive tournament that contains a
subtournament H0 on m vertices that is endo-trivial. By Lemma 6, we find that H0 contains
at least one directed Hamilton cycle HC0. Define Spillm(H[H0, HC0]) as follows. Begin with
H and add a copy of the gadget Cyl∗m, where the bottom copy of DC∗

m is identified with HC0,
to build a digraph F(H0, HC0). Now ask, for some y ∈ V (H) whether there is a retraction r

of F(H0, HC0) to H so that some vertex x (not dependent on y) in the top copy of DC∗
m

in Cyl∗m is such that r(x) = y. Such vertices y comprise the set Spillm(H[H0, HC0]).
▶ Remark 10. If x belongs to some copy of DC∗

m that is not the top copy, we can find a
vertex x′ in the top copy of DC∗

m and a retraction r′ from F(H0, HC0) to H with r′(x′) =
r(x) = y, namely by letting r′ map the vertices of higher copies of DC∗

m to the image
of their corresponding vertex in the copy that contains x. In particular this implies that
Spillm(H[H0, HC0]) contains V (H0).
We note that the set Spillm(H[H0, HC0]) is potentially dependent on which Hamilton cycle
in H0 is chosen. We now recall that Spillm(H[H0, HC0]) = V (H) if H retracts to H0.

▶ Lemma 11 ([15]). If H is a reflexive tournament that retracts to a subtournament H0 with
Hamilton cycle HC0, then Spillm(H[H0, HC0]) = V (H).

We now review a variant of a construction from [8]. Let G be a graph containing H where
|V (H)| is of size n. Consider all possible functions λ : [n] → V (H) (let us write λ ∈ V (H)[n] of
cardinality N). For some such λ, let G(λ) be the graph G enriched with constants c1, . . . , cn

where these are interpreted over V (H) according to λ in the natural way (acting on the
subscripts). We use calligraphic notation to remind the reader the signature has changed
from {E} to {E, c1, . . . , cn} but we will still treat these structures as graphs. If we write
G(λ) without calligraphic notation we mean we look at only the {E}-reduct, that is, we drop
the constants. Of course, G(λ) will always be G.
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Figure 2 Illustrations of direct product with constants.

Let G =
⊗

λ∈V (H)[n] G(λ). That is, the vertices of G are N -tuples over V (G) and
there is an edge between two such vertices (x1, . . . , xN ) and (y1, . . . , yN ) if and only if
(x1, y1), . . . , (xN , yN ) ∈ E(G). Finally, the constants ci are interpreted as (x1, . . . , xN ) so
that λ1(ci) = x1, . . . , λN (ci) = xN . An important induced substructure of G is {(x, . . . , x) :
x ∈ V (G)}. It is a copy of G called the diagonal copy and will play an important role in
the sequel. To comprehend better the construction of G from the sundry G(λ), confer on
Figure 2.

The final ingredient of our fundamental construction involves taking some structure G
and making its canonical query with all vertices other than those corresponding to c1, . . . , cn

becoming existentially quantified variables (as usual in this construction). We then turn
the c1, . . . , cn to variables y1, . . . , yn to make φG(y1, . . . , yn). Let H come from the given
construction in which G = H . It is proved in [8] that H′ |= ∀y1, . . . , yn φH(y1, . . . , yn) if and
only if QCSP(H) ⊆ QCSP(H′) (here we identify QCSP(H) with the set of sentences that
form its yes-instances). By way of a side note, let us consider a k-ary relation R over H with
tuples (x1

1, . . . , x1
k), . . . , (xr

1, . . . , xr
k). For i ∈ [r], let λi map (c1, . . . , ck) to (xi

1, . . . , xi
k). Let

H =
⊗

λ∈{λ1,...,λr} H(λ). Then φH(y1, . . . , yn) is the closure of R under the polymorphisms
of H.

3.2 The strongly connected case: Two Base Cases
Recall that if H is a (reflexive) endo-trivial tournament, then QCSP(H) is NP-hard due to
Lemma 5 combined with the results from [3] (indeed, we may even say Pspace-complete).
However H may not be endo-trivial. We will now show how to deal with the case where H is
not endo-trivial but retracts to an endo-trivial subtournament. For doing this we use the
NP-hardness gadget, but we need to distinguish between two different cases.

▶ Lemma 12 (Base Case I.). Let H be a reflexive tournament that retracts to an endo-
trivial subtournament H0 with Hamilton cycle HC0. Assume that H retracts to H′

0 for
every isomorphic copy H′

0 = i(H0) of H0 in H with Spillm(H[H′
0, i(HC0)]) = V (H). Then

H0-Retraction can be polynomially reduced to QCSP(H).

ESA 2021
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Proof. Let m be the size of |V (H0)| and n be the size of |V (H)|. Let G be an instance of
H0-Retraction. We build an instance φ of QCSP(H) in the following fashion. First, take
a copy of H together with G and build G′ by identifying these on the copy of H0 that they
both possess as an induced subgraph. Now, consider all possible functions λ : [n] → V (H).
For some such λ, let G′(λ) be the graph enriched with constants c1, . . . , cn where these are
interpreted over some subset of V (H) according to λ in the natural way (acting on the
subscripts).

Let G′ =
⊗

λ∈V (H)[n] G′(λ). Let G′d, Hd and Hd
0 be the diagonal copies of G′, H and H0

in G′. Let H be the subgraph of G′ induced by V (H) × · · · × V (H). Note that the constants
c1, . . . , cn live in H. Now build G′′ from G′ by augmenting a new copy of Cyl∗m for every
vertex v ∈ V (H)\V (Hd

0). Vertex v is to be identified with any vertex in the top copy of DC∗
m

in Cyl∗m and the bottom copy of DC∗
m is to be identified with HC0 in Hd

0 according to the
identity function. (Thus, in each case, the new vertices are the middle cycles of Cyl∗m and all
but one of the vertices in the top cycle of Cyl∗m.)

Finally, build φ from the canonical query of G′′ where we additionally turn the constants
c1, . . . , cn to outermost universal variables. The size of φ is doubly exponential in n (the size
of H) but this is constant, so still polynomial in the size of G.

We claim that G retracts to H0 if and only if φ ∈ QCSP(H).
First suppose that G retracts to H0. Let λ be some assignment of the universal variables of

φ to H. To prove φ ∈ QCSP(H) it suffices to prove that there is a homomorphism from G′′ to H
that extends λ. Then for this it suffices to prove that there is a homomorphism h from G′ that
extends λ. Let us explain why. Because H retracts to H0, we have Spillm(H[H0, HC0]) = V (H)
due to Lemma 11. Hence, if h(x) = y for two vertices x ∈ V (H) \ V (Hd

0) and y ∈ V (H), we
can always find a retraction of the graph F(H0, HC0) to H that maps x to y, and we mimic
this retraction on the corresponding subgraph in G′′. The crucial observation is that this can
be done independently for each vertex in V (H) \ V (Hd

0), as two vertices of different copies of
Cyl∗m are only adjacent if they both belong to H.

Henceforth let us consider the homomorphic image of G′ that is G′(λ). To prove φ ∈
QCSP(H) it suffices to prove that there is a homomorphism from G′(λ) to H that extends λ.
Note that it will be sufficient to prove that G′ retracts to H. Let h be the natural retraction
from G′ to H that extends the known retraction from G to H0. We are done.

Suppose now φ ∈ QCSP(H). Choose some surjection for λ, the assignment of the universal
variables of φ to H. Recall N = |V (H)[n]|. The evaluation of the existential variables that
witness φ ∈ QCSP(H) induces a surjective homomorphism s from G′′ to H which contains
within it a surjective homomorphism s′ from H = HN to H. Consider the diagonal copy of
Hd

0 ⊂ Hd ⊂ G′d in G′. By abuse of notation we will also consider each of s and s′ acting just
on the diagonal. If |s′(Hd

0)| = 1, by construction of G′′, we have |s′(Hd)| = 1. Indeed, this was
the property we noted in Lemma 9. By Lemma 1, this would mean s′ is uniformly mapping
H to one vertex, which is impossible as s′ is surjective. Now we will work exclusively in the
diagonal copy G′d. As 1 < |s′(Hd

0)| < m is not possible either due to Lemma 7, we find that
|s′(Hd

0)| = m, and indeed s′ maps Hd
0 to a copy of itself in H which we will call H′

0 = i(Hd
0)

for some isomorphism i.
We claim that Spillm(H[H′

0, i(HCd
0)]) = V (H). In order to see this, consider a vertex

y ∈ V (H). As s′ is surjective, there exists a vertex x ∈ V (H) with s′(x) = y. By construction,
x belongs to some top copy of DC∗

m in Cyl∗m in F(H0, HC0). We can extend i−1 to an
isomorphism from the copy of Cyl∗m (which has i(HCd

0) as its bottom cycle) in the graph
F(H′

0, i(HCd
0)) to the copy of Cyl∗m (which has HCd

0 as its bottom cycle) in the graph
F(H0, HC0). We define a mapping r∗ from F(H′

0, i(HCd
0)) to H by r∗(u) = s′ ◦ i−1(u) if
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Figure 3 An interesting tournament H on six vertices (self-loops are not drawn). This tournament
does not retract to the DC∗

3 on the left-hand side, yet Spill3(H[DC∗
3, DC3]) = V (H).

u is on the copy of Cyl∗m in F(H′
0, i(HCd

0)) and r∗(u) = u otherwise. We observe that
r∗(u) = u if u ∈ V (H′

0) as s′ coincides with i on H0. As Hd
0 separates the other vertices

of the copy of Cyl∗m from V (Hd) \ V (Hd
0), in the sense that removing Hd

0 would disconnect
them, this means that r∗ is a retraction from F(H′

0, i(HCd
0)) to H. We find that r∗ maps i(x)

to s′ ◦ i−1(i(x)) = s′(x) = y. Moreover, as x is in the top copy of DC∗
m in F(H0, HC0), we

conclude that y always belongs to Spillm(H[H′
0, i(HCd

0)]).
As Spillm(H[H′

0, i(HCd
0)]) = V (H), we find, by assumption of the lemma, that there exists

a retraction r from H to H′
0. Now, recalling that we can view s′ acting just on the diagonal

copy Hd of H, i−1 ◦ r ◦ s′ is the desired retraction of G to H0. ◀

We now need to deal with the situation in which we have an isomorphic copy H′
0 = i(H0)

of H0 in H with Spillm(H[H′
0, i(HC0)]) = V (H), such that H does not retract to H′

0 (see
Figure 3 for an example). We cannot deal with this case in a direct manner and first show
another base case. For this we need the following lemma and an extension of endo-triviality
that we discuss afterwards.

▶ Lemma 13 ([15]). Let H be a reflexive tournament, containing a subtournament H0 so that
any endomorphism of H that fixes H0 as a graph is an automorphism. Then any endomorphism
of H that maps H0 to an isomorphic copy H′

0 = i(H0) of itself is an automorphism of H.

Let H0 be an induced subgraph of a digraph H. We say that the pair (H, H0) is endo-trivial
if all endomorphisms of H that fix H0 are automorphisms.

▶ Lemma 14 (Base Case II). Let H be a reflexive tournament with a subtournament H0 with
Hamilton cycle HC0 so that (H, H0) and H0 are endo-trivial and Spillm(H[H0, HC0]) = V (H).
Then H-Retraction can be polynomially reduced to QCSP(H).

Proof. Let G be an instance of H-Retraction. Let m be the size of |V (H0)| and n be the
size of |V (H)|. We build an instance φ of QCSP(H) in the following fashion. Consider all
possible functions λ : [n] → V (H). For some such λ, let G(λ) be the graph enriched with
constants c1, . . . , cn where these are interpreted over some subset of V (H) according to λ in
the natural way (acting on the subscripts).

Let G =
⊗

λ∈V (H)[n] G(λ). Let Gd, Hd and Hd
0 be the diagonal copies of G, H and H0

in G. Let H be the subgraph of G induced by V (H) × · · · × V (H). Note that the constants
c1, . . . , cn live in H. Now build G′ from G by augmenting a new copy of Cyl∗m for every vertex
v ∈ V (H) \ V (Hd

0). Vertex v is to be identified with any vertex in the top copy of DC∗
m

in Cyl∗m and the bottom copy of DC∗
m is to be identified with HC0 in Hd

0 according to the
identity function.
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Finally, build φ from the canonical query of G′ where we additionally turn the constants
c1, . . . , cn to outermost universal variables.

First suppose that G retracts to H by r. Let λ be some assignment of the universal
variables of φ to H. To prove φ ∈ QCSP(H) it suffices to prove that there is a homomorphism
from G′ to H that extends λ and for this it suffices to prove that there is a homomorphism
from G that extends λ. This is always possible since we have Spillm(H[H0, HC0]) = V (H) by
assumption.

Henceforth let us consider the homomorphic image of G that is G(λ). To prove φ ∈
QCSP(H) it suffices to prove that there is a homomorphism from G(λ) to H that extends
λ. Note that it will be sufficient to prove that G retracts to H. Well this was our original
assumption so we are done.

Suppose now φ ∈ QCSP(H). Choose some surjection for λ, the assignment of the universal
variables of φ to H. Recall N = |V (H)[n]|. The evaluation of the existential variables that
witness φ ∈ QCSP(H) induces a surjective homomorphism s from G′ to H which contains
within it a surjective homomorphism s′ from H = HN to H. Consider the diagonal copy of
Hd

0 ⊂ Hd ⊂ Gd in (G)N . By abuse of notation we will also consider each of s and s′ acting
just on the diagonal. If |s′(Hd

0)| = 1, by construction of G′, we have |s′(Hd)| = 1. By Lemma
1, this would mean s′ is uniformly mapping H to one vertex, which is impossible as s′ is
surjective. Now we will work exclusively on the diagonal copy Gd. As 1 < |s′(Hd

0)| < m is
not possible either due to Lemma 7, we find that |s′(Hd

0)| = m, and indeed s′ maps Hd
0 to a

copy of itself in H which we will call H′
0 = i(Hd

0) for some isomorphism i.
As (H, H0) is endo-trivial, Lemma 13 tells us that the restriction of s′ to Hd is an

automorphism of Hd, which we call α. The required retraction from G to H is now given by
α−1 ◦ s′. ◀

3.3 The strongly connected case: Generalising the Base Cases
We now generalise the two base cases to more general cases via some recursive procedure.
Afterwards we will show how to combine these two cases to complete our proof. We will
first need a slightly generalised version of Lemma 13, which nonetheless has virtually the
same proof.

▶ Lemma 15 ([15]). Let H2 ⊃ H1 ⊃ H0 be a sequence of strongly connected reflexive
tournaments, each one a subtournament of the one before. Suppose that any endomorphism
of H1 that fixes H0 is an automorphism. Then any endomorphism h of H2 that maps H0 to
an isomorphic copy H′

0 = i(H0) of itself also gives an isomorphic copy of H1 in h(H1).

The following two lemmas generalise Lemmas 12 and 14. The proof of the second is
omitted.

▶ Lemma 16 (General Case I). Let H0, H1, . . . , Hk, Hk+1 be reflexive tournaments, the first
k of which have Hamilton cycles HC0, HC1, . . . , HCk, respectively, so that H0 ⊆ H1 ⊆ · · · ⊆
Hk ⊆ Hk+1. Assume that H0, (H1, H0), . . . , (Hk, Hk−1) are endo-trivial and that

Spilla0
(H1[H0, HC0]) = V (H1)

Spilla1(H2[H1, HC1]) = V (H2)
...

...
...

Spillak−1
(Hk[Hk−1, HCk−1]) = V (Hk).

Moreover, assume that Hk+1 retracts to Hk and also to every isomorphic copy H′
k = i(Hk)

of Hk in Hk+1 with Spillak
(Hk+1[H′

k, i(HCk)]) = V (Hk+1). Then Hk-Retraction can be
polynomially reduced to QCSP(Hk+1).
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Proof. Let ak+1, . . . , a0 be the cardinalities of |V (Hk+1)|, . . . , |V (H0|), respectively. Let
n = ak+1. Let G be an instance of Hk-Retraction. We will build an instance φ of
QCSP(Hk+1) in the following fashion. First, take a copy of Hk+1 together with G and build
G′ by identifying these on the copy of Hk that they both possess as an induced subgraph.

Consider all possible functions λ : [n] → V (Hk+1). For some such λ, let G′(λ) be the
graph enriched with constants c1, . . . , cn where these are interpreted over some subset of
V (Hk+1) according to λ in the natural way (acting on the subscripts).

Let G′ =
⊗

λ∈V (Hk+1)[n] G′(λ). Let G′d, Hd
k+1 and Hd

k etc. be the diagonal copies of G′d,
Hk+1 and Hk in G′. Let Hk+1 be the subgraph of G′ induced by V (Hk+1) × · · · × V (Hk+1).
Note that the constants c1, . . . , cn live in Hk+1. Now build G′′ from G′ by augmenting a new
copy of Cyl∗ak

for every vertex v ∈ V (Hk+1) \ V (Hd
k). Vertex v is to be identified with any

vertex in the top copy of DCak
in Cyl∗ak

and the bottom copy of DCak
is to be identified

with HCk in Hd
k according to the identity function.

Then, for each i ∈ [k], and v ∈ V (Hd
i ) \ V (Hd

i−1), add a copy of Cyl∗ai−1
, where v is

identified with any vertex in the top copy of DC∗
ai−1

in Cyl∗ai−1
and the bottom copy of

DC∗
i−1 is to be identified with Hi−1 according to the identity map of DC∗

ai−1
to HCi−1.

Finally, build φ from the canonical query of G′′ where we additionally turn the constants
c1, . . . , cn to outermost universal variables.

First suppose that G retracts to Hk. Let λ be some assignment of the universal variables
of φ to Hk+1. To prove φ ∈ QCSP(Hk+1) it suffices to prove that there is a homomorphism
from G′′ to Hk+1 that extends λ and for this it suffices to prove that there is a homomorphism
from G′ that extends λ. Let us explain why. We map the various copies of Cyl∗ai−1

in G′′

in any suitable fashion, which will always exist due to our assumptions and the fact that
Spillak

(Hk+1[Hk, HCk]) = V (Hk+1), which follows from our assumption that Hk+1 retracts
to Hk and Lemma 11.

Henceforth let us consider the homomorphic image of G′ that is G′(λ). To prove φ ∈
QCSP(Hk+1) it suffices to prove that there is a homomorphism from G′(λ) to Hk+1 that
extends λ. Note that it will be sufficient to prove that G′ retracts to Hk+1. Let h be the
natural retraction from G′ to Hk+1 that extends the known retraction from G to Hk. We
are done.

Suppose now φ ∈ QCSP(Hk+1). Choose some surjection for λ, the assignment of the
universal variables of φ to Hk+1. Let N = |V (Hk+1)[n]|. The evaluation of the existential
variables that witness φ ∈ QCSP(Hk+1) induces a surjective homomorphism s from G′ to
Hk+1 which contains within it a surjective homomorphism s′ from H = HN

k+1 to Hk+1.
Consider the diagonal copy of Hd

0 ⊂ · · · ⊂ Hd
k ⊂ Hd

k+1 ⊂ G′d in G′. By abuse of notation we
will also consider each of s and s′ acting just on the diagonal. If |s′(Hd

0)| = 1, by construction
of G′′, we could follow the chain of spills to deduce that |s′(Hd

k+1)| = 1, which is not possible
by Lemma 1. Moreover, 1 < |s′(Hd

0 )| < |V (Hd
0 )| is impossible due to Lemma 7. Now we will

work exclusively on the diagonal copy G′d.
Thus, |s′(Hd

0)| = |V (Hd
0)| and indeed s′ maps Hd

0 to an isomorphic copy of itself in Hk+1
which we will call H′

0 = i(Hd
0). We now apply Lemma 15 as well as our assumed endo-

trivialities to derive that s′ in fact maps Hd
k by the isomorphism i to a copy of itself in Hk+1

which we will call H′
k. Since s′ is surjective, we can deduce that Spillak

(Hk+1[H′
k, i(HCd

k)]) =
V (Hk+1) in the same way as in the proof of Lemma 12. and so there exists a retraction r

from Hk+1 to H′
k. Now i−1 ◦ r ◦ s′ gives the desired retraction of G to Hk. ◀

▶ Lemma 17 (General Case II). Let H0, H1, . . . , Hk, Hk+1 be reflexive tournaments, the first
k + 1 of which have Hamilton cycles HC0, HC1, . . . , HCk, respectively, so that H0 ⊆ H1 ⊆
· · · ⊆ Hk ⊆ Hk+1. Suppose that H0, (H1, H0), . . . , (Hk, Hk−1), (Hk+1, Hk) are endo-trivial
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and that

Spilla0(H1[H0, HC0]) = V (H1)
Spilla1

(H2[H1, HC1]) = V (H2)
...

...
...

Spillak−1
(Hk[Hk−1, HCk−1]) = V (Hk)

Spillak
(Hk+1[Hk, HCk]) = V (Hk+1)

Then Hk+1-Retraction can be polynomially reduced to QCSP(Hk+1).

▶ Corollary 18. Let H be a non-trivial strongly connected reflexive tournament. Then
QCSP(H) is NP-hard.

Proof. As H is a strongly connected reflexive tournament, which has more than one vertex by
our assumption, H is not transitive. Note that H-Retraction is NP-complete (see Section
4.5 in [15], using results from [14, 5, 16]). Thus, if H is endo-trivial, the result follows from
Lemma 12 (note that we could also have used Corollary 8).

Suppose H is not endo-trivial. Then, by Lemma 4, H is not retract-trivial either. This
means that H has a non-trivial retraction to some subtournament H0. We may assume that
H0 is endo-trivial, as otherwise we will repeat the argument until we find a retraction from
H to an endo-trivial (and consequently strongly connected) subtournament.

Suppose that H retracts to all isomorphic copies H′
0 = i(H0) of H0 within it, except possibly

those for which Spillm(H[H′
0, i(HC0)]) ̸= V (H). Then the result follows from Lemma 12. So

there is a copy H′
0 = i(H0) to which H does not retract for which Spillm(H[H′

0, i(HC0)]) =
V (H). If (H, H′

0) is endo-trivial, the result follows from Lemma 14. Thus we assume (H, H′
0)

is not endo-trivial and we deduce the existence of H′
0 ⊂ H1 ⊂ H (H1 is strictly between H

and H′
0) so that (H1, H′

0) and H ′
0 are endo-trivial and H retracts to H1. Now we are ready to

break out. Either H retracts to all isomorphic copies of H′
1 = i(H1) in H, except possibly

for those so that Spillm(H[H′
1, i(HC1)]) ̸= V (H), and we apply Lemma 16, or there exists

a copy H′
1, with Spillm(H[H′

1, i(HC1)]) = V (H), to which it does not retract. If (H, H′
1) is

endo-trivial, the result follows from Lemma 17. Otherwise we iterate the method, which will
terminate because our structures are getting strictly larger. ◀

3.4 An initial strongly connected component that is non-trivial

This section follows a similar methodology to the previous two sections. However, the proofs
are a little more involved and are omitted from this version of the paper.

▶ Corollary 19. Let H be a reflexive tournament with an initial strongly connected component
that is non-trivial. Then QCSP(H) is NP-hard.

4 The Proof of the NL Cases of the Dichotomy

A particular role in the tractable part of our dichotomy will be played by TT∗
2, the reflexive

transitive 2-tournament, which has vertex set {0, 1} and edge set {(0, 0), (0, 1), (1, 1)}.

▶ Lemma 20. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament on m + 2 vertices
with V (H1) = {s} and V (Hn) = {t}. Then there exists a surjective homomorphism from
(TT∗

2)m to H.



B. Larose, P. Marković, B. Martin, D. Paulusma, S. Smith, and S. Živný 58:13

Proof. Build a surjective homomorphism f from (TT∗
2)m to H in the following fashion. Let

xi be the m-tuple which has 1 in the ith position and 0 in all other positions. For i ∈ [m],
let f map xi to i. Let f map (0, . . . , 0) to s and everything remaining to t.

By construction, f is surjective. To see that f is a homomorphism, let ((y1, . . . , ym),
(z1, . . . , zm)) ∈ E((TT∗

2)m), which is the case exactly when yi ≤ zi for all i ∈ [m]. Let
f(y1, . . . , ym) = u and f(z1, . . . , zm) = v. First suppose that y1, . . . , ym are all 0. Then u = s.
As s has an out-edge to every vertex of H, we find that (u, v) ∈ E(H). Now suppose that
y1, . . . , ym contains a single 1. If (y1, . . . , ym) = (z1, . . . , zm), then u = v. As H is reflexive,
we find that (u, v) ∈ H. If (y1, . . . , ym) ̸= (z1, . . . , zm), then v = t. As t has an in-edge from
every vertex of H, we find that (u, v) ∈ E(H). Finally suppose that y1, . . . , ym contains more
than one 1. Then u = v = t. As H is reflexive, we find that (u, v) ∈ E(H). ◀

We also need the following lemma, which follows from combining some known results.

▶ Lemma 21. If H is a transitive reflexive tournament then QCSP(H) is in NL.

Proof. It is noted in [15] that H has the ternary median operation as a polymorphism. It
follows from well-known results (e.g. in [7, 9]) that QCSP(H) is in NL. ◀

The other tractable cases are more interesting.
We are now ready to prove the main result of this section.

▶ Theorem 22. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament. If |V (H1)| = |V (Hn)| =
1, then QCSP(H) is in NL.

Proof. Let |V (H)| = m + 2 for some m ≥ 0. By Lemma 20, there exists a surjective
homomorphism from (TT∗

2)m to H. There exists also a surjective homomorphism from H to
TT∗

2; we map s to 0 and all other vertices of H to 1. It follows from [8] that QCSP(H) =
QCSP(TT∗

2) meaning we may consider the latter problem. We note that TT∗
2 is a transitive

reflexive tournament. Hence, we may appply Lemma 21. ◀

5 Final result and remarks

We are now in a position to prove our main dichotomy theorem.

▶ Theorem 23. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament. If |V (H1)| = |V (Hn)| =
1, then QCSP(H) is in NL; otherwise it is NP-hard.

Proof. The NL case follow from Theorem 22. The NP-hard cases follow from Corollary 18 and
Corollary 19, bearing in mind the case with a non-trivial final strongly connected component
is dual to the case with a non-trivial initial strongly connected component (map edges (x, y)
to (y, x)). ◀

Theorem 23 resolved the open case in Table 1. Recall that the results for the irreflexive
tournaments in this table were all proven in a more general setting, namely for irreflexive
semicomplete graphs. A natural direction for future research is to determine a complexity
dichotomy for QCSP and SCSP for reflexive semicomplete graphs. We leave this as an
interesting open direction.
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Abstract
We propose a new model for augmenting algorithms with predictions by requiring that they are
formally learnable and instance robust. Learnability ensures that predictions can be efficiently
constructed from a reasonable amount of past data. Instance robustness ensures that the prediction
is robust to modest changes in the problem input, where the measure of the change may be problem
specific. Instance robustness insists on a smooth degradation in performance as a function of the
change. Ideally, the performance is never worse than worst-case bounds. This also allows predictions
to be objectively compared.

We design online algorithms with predictions for a network flow allocation problem and restricted
assignment makespan minimization. For both problems, two key properties are established: high
quality predictions can be learned from a small sample of prior instances and these predictions are
robust to errors that smoothly degrade as the underlying problem instance changes.
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1 Introduction

Inspired by advances in machine learning, there is an interest in augmenting algorithms with
predictions, especially in online algorithm design [21, 10, 12, 15, 26, 28, 34, 27]. Algorithms
augmented with predictions have had empirical success in domains such as look-up tables [26],
caching [28], and bloom-filters [31]. These successes and the availability of data to make
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for going beyond worst-case bounds where an algorithm is supplied with accurate predictions.
In these models, an algorithm is given access to a prediction about the problem instance. The
algorithm’s performance is bounded in terms of the quality of this prediction. Typically the
algorithm learns such predictions from a limited amount of past data leading to error-prone
predictions. The algorithm with accurate predictions should result in better performance
than the best worst-case bound. Ideally, the algorithm never performs asymptotically worse
than the best worst-case algorithm even if the prediction error is large. In-between, there
is a graceful degradation in performance as the prediction error increases. For example,
competitive ratio or running time can be parameterized by prediction error. See [32]
for a survey.

Learnable and Instance Robust Predictions. The model proposed in this paper has two
pillars for augmenting algorithms with predictions. (Learnability:) Predictions should be
learnable from representative data. (Instance Robustness2:) Predictions should be robust
to minor changes in the problem instance. As in prior models, determining what to predict
remains a key algorithmic challenge.

Suppose there is an unknown distribution D over instances I. Building on data driven
algorithm design [21] and PAC-learning models, we require that predicted parameters are
provably learnable using a small number of sample instances from D. The sample complexity
of this task can be used to compare how difficult different predictions are to construct.
Practically, the motivation is that parameters are learned from prior data (e.g. instances of
the problem).

In practice, future problem instances may not come from the same distribution used
to learn the parameters. Therefore, we also desire predictions that are robust to modest
changes in the input. In particular, if the predictions perform well on some instance I, then
the performance on a nearby instance I ′ should be bounded as a function of the distance
between these instances. This measure of the distance between instances is necessarily
problem specific.

We note that learnability is rarely addressed in prior work and our robustness model
differs from many prior works by bounding the error by differences in problem instances
(instance robustness), rather than by the differences in the predictions themselves (para-
meter robustness). We present learnable and instance-robust predictions for two concrete
online problems.

Online Flow Allocation Problem. We consider a general flow and matching problem. The
input is a Directed-Acyclic-Graph (DAG) G. Each node v has an associated capacity Cv.
There is a sink node t, such that all nodes in the DAG can reach the sink. Online source
nodes arrive that have no incoming edges (and never have any incoming edges in the future)
and the other nodes are offline and fixed. We will refer to online nodes I as impressions.
When impression i arrives, it is connected to a subset of nodes Ni. At arrival, the algorithm
must decide a (fractional) flow from i to t of value at most 1 obeying the node capacities.
This flow is fixed the moment the node arrives. The goal is to maximize the total flow that
reaches t without exceeding node capacities. Instances are defined by the number of each type
of impression. The type of an impression is given by the subset of the nodes of G to which it
has outgoing arcs. We may consider specific worst-case instances or a distribution over types

2 Note that the robustness here is different from the definition of robustness mentioned in previous work,
which we refer to as parameter robustness. See Section 2 for a discussion.
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in our analysis. This problem captures fractional versions of combinatorial problems such as
online matching, unweighted Adwords, and finding a maximum independent set in a laminar
matroid or gammoid. We call the problem the Online Flow Allocation Problem.

Restricted Assignment Makespan Minimization. In this problem, there are m machines
and n jobs arrive in an online order. When job j arrives it must be immediately and
irrevocably assigned to a machine. The job has size pj and can only be assigned to a subset
of machines specific to that job. After j is assigned the next job arrives. A machine’s load is
the total size of all jobs assigned to it. The goal is to minimize the makespan, or maximum
load, of the assignment.

1.1 Overview of Results for Flow Allocation and Restricted Assignment
We first focus on the flow allocation problem and then we give similar results for the makespan
minimization problem.

Node Parameters. Our results on learnability and robustness are enabled by showing
the existence of node weights which capture interesting combinatorial properties of flows.
Inspired by the weights proven in [2] for bipartite matching, we establish that there is a
single weight for each node in the DAG that completely describe near optimal flows on a
single problem instance. The weights determine an allocation of flow for each impression
which is independent of the other impressions. Each node in the DAG routes the flow leaving
it proportionally to the weights of its outgoing neighbors. Moreover, the flow is near optimal,
giving a (1−ϵ)-approximate solution for any constant ϵ > 0 (but requiring time polynomial in
1/ϵ to compute). Given these weights, the flow can be computed in one forward pass for each
impression in isolation. Thus they can be used online if given as a prediction. These weights
are also efficiently computable offline given the entire problem instance (see Theorem 3).

Instance Robustness. We measure the distance of the two instances as the difference of
the number of impressions of each type (see Theorem 5). We show that if the weights are
near optimal for one instance, the performance degrades gracefully according to the distance
between the two instances. This distance is defined for any two instances irrespective of
whether they are generated by specific distributions 3.

Learnability. For learnability it is assumed that impressions are drawn from an unknown
distribution over types. We show that learning near-optimal weights for this distribution has
low sample complexity under two assumptions. First, we assume the unknown distribution
is a product distribution. Second, we assume that the optimal solution of the “expected
instance” (to be defined later) has at least a constant amount of flow routed through each
node. In the 2-layer case, this assumption can be simplified to requiring each node’s capacity
to be at least a constant (depending on 1

ϵ ).4 The number of samples is polynomial in the
size of the DAG without the impressions. Note that in problems such as Adwords, the
impressions are usually much larger than the fixed portion of the graph.

We now present our main theorem on the flow allocation problem.

3 We also show that our predictions for the online flow allocation problem have “parameter robustness”,
the kind of robustness that has been considered in prior work (Theorem 6).

4 This is similar to the lower bound requirement on budgets in the online analysis of the AdWords
problem [16].
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▶ Theorem 1 (Flow Allocation - Informal). There exist algorithmic parameters for the Online
Flow Allocation problem with the following properties:

(i) (Learnability) Learning near-optimal parameters has sample complexity polynomial in
1
ϵ and the size of the graph excluding the impressions. These parameters result in an
online algorithm that is a (1 − ϵ)-approximate solution in expectation as compared to
the expected optimal value on the distribution for any constant ϵ > 0. (Theorem 4)

(ii) (Instance Robustness) Using the optimal parameters for an instance on another instance
gives a competitive ratio that improves as their distance decreases, where the distance is
proportional to the difference of impressions (Theorem 5).

(iii) (Worst-Case Robustness) The competitive ratio of the online algorithm using the para-
meters is never worse than 1

d+1 , regardless of the distance between the two instances,
where d is the diameter of G. (Theorem 5)

The theorem states that weights are learnable and only a small number of samples are
required to construct weights that are near optimal. These predictions break the worst-case
1 − 1

e bound on the competitive ratio for any randomized algorithm for online fractional
matching, a special case. Moreover, the difference in the types of impressions between two
instances gives a metric under which we can demonstrate instance robustness. Further the
algorithm has worst-case guarantees, i.e. the ratio is never worse than 1

d+1 , which is tight
for deterministic integral online algorithms and d-layer graphs (see Theorem 61 in the full
version) even though we output fractional allocations.

We now discuss our results for makespan minimization.

▶ Theorem 2 (Restricted Assignment - Informal). There exist algorithmic parameters for the
Restricted Assignment Makespan Minimization problem with the following properties:

(i) (Learnability) Learning the near optimal parameters has sample complexity polynomial
in m, the number of machines, and 1

ϵ . These parameters result in an online algorithm
that is a (1 + ϵ) approximate solution in expectation as compared to the expected optimal
value on the distribution for any constant ϵ > 0. (Theorem 8)

(ii) (Instance Robustness) Using the optimal parameters for any instance on a nearby
instance gives a competitive ratio for fractional assignment that is proportional to their
distance, where the distance is proportional to the relative difference of job sizes of the
same type. (Theorem 7)

(iii) (Worst-Case Robustness) The competitive ratio of the algorithm using the parameters is
never worse than O(log m), matching the known Ω(log m) lower-bound on any integral
online algorithm. (Theorem 7)

This theorem shows that the predictions of [27] have much stronger properties than what
is known and are learnable and instance robust. That paper left open the question if their
predictions can be formally learned in any model. Moreover, it was not known if they are
instance robust. We remark that this theorem assumes fractional assignments, whereas the
original problem (and the lower bound [8]) requires integer assignments. Lattanzi et al. [27]
shows that any fractional assignment can be rounded online while losing a O((log log m)3)
factor in the makespan.

1.2 Related Work
Algorithms with Predictions. In this paper, we consider augmenting the standard model of
online algorithms with erroneous predictions. Several online problems have been studied in
this context, including caching [28, 35, 23, 37], page migration [22], metrical task systems [6],
ski rental [34, 19, 3], scheduling [34], load balancing [27], online linear optimization [13],
speed scaling [38], set cover [39], and bipartite matching and secretary problems [7].
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Antoniadis et al. [7] studies online weighted bipartite matching problems with predictions.
The main aspect of this work which distinguishes it from ours is that it considers the random
order arrival model, rather than adversarial orders.

Mahdian et al. [29] focuses on the design of robust algorithms. Rather than considering
online algorithms which use a prediction, they consider two black box online algorithms, one
optimistic and the other pessimistic. The goal is to give an online algorithm which never
performs much worse than the better of these two algorithms for any given instance. This is
shown for problems such as load balancing, facility location, and ad allocation.

The predictions utilized in our algorithm come in the form of vertex weights that guide a
proportional allocation scheme. Agrawal et al. [2] first studied proportional allocations for
maximum cardinality fractional matching as well as weighted fractional matchings with high
entropy. Lattanzi et al. [27] utilize similar predictions based on proportional weights to give
algorithms with predictions for online load balancing.

Data-Driven Algorithm Design. This paper considers the learnability of the predictions
through the model of data-driven algorithms. In classical algorithm design, the main
desire is finding an algorithm that performs well in the worst case against all inputs for
some measure of performance, e.g. running time or space usage. Data-driven algorithm
design [21, 9, 11, 10, 12, 15], in contrast, wants to find an algorithm that performs well on
the instances that the user is typically going to see in practice. This is usually formalized by
fixing a class of algorithms and an unknown distribution over instances, capturing the idea
that some (possibly worst case) instances are unlikely to be seen in practice. The typical
question asked is: how many sample instances are needed to guarantee you have found the
best algorithm for your application domain?

Other Related Work. Online matching and related allocation problems have been ex-
tensively studied in both the adversarial arrival setting [25, 24, 17, 30] and with stochastic
arrivals [16, 18, 20, 33, 1]. A related but different setting to ours is the online algorithms
with advice setting [14]. Here the algorithm has access to an oracle which knows the offline
input. The oracle is allowed to communicate information to the algorithm about the full
input, and the goal is to understand how many bits of information are necessary to achieve a
certain competitive ratio. This has also been extended to the case where the advice can be
arbitrarily wrong [4]. This can be seen as similar to our model, however the emphasis isn’t
on tying the competitive ratio to the amount of error in the advice.

2 Algorithms with Learnable and Instance-Robust Predictions

Learnability via Sample Complexity. We consider the following setup inspired by PAC
learning and recently considered in data-driven algorithms. Assume a maximization problem
and let D be an unknown distribution over problem instances. Let ALG(I, y) be the
performance5 of an algorithm using parameters y on instance I. The ideal prediction for this
distribution is then y∗ := arg maxy EI∼D[ALG(I, y)]. Since we assume that D is unknown,
we wish to learn from samples. In particular, we wish to use some number s of independent
samples to compute a parameter ŷ such that EI∼D[ALG(I, ŷ)] ≥ (1 − ϵ)EI∼D[ALG(I, y∗)]

5 In general this can be any performance metric, such as running time or solution value. Here we focus
on the value of some objective function such as the size of a fractional flow.
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with probability 1 − δ, for any ϵ, δ ∈ (0, 1). The sample complexity s depends on the
problem size as well as 1/ϵ and 1/δ. As is standard in learning theory, we require the sample
complexity to be polynomial in these parameters6.

Inspired by competitive analysis, we also compare to the following stronger benchmark in
this paper. For any instance I, let OPT(I) be the value of an optimal solution on I. We
give learning algorithms producing predicted parameters ŷ such that EI∼D[ALG(I, ŷ)] ≥
(1 − ϵ)EI∼D[OPT(I)] and polynomial sample complexity under the assumptions on D
described earlier. Note that this guarantee implies the first one.

Instance Robustness. Let I and I ′ be two problem instances, and consider running the
algorithm on instance I ′ with the prediction y∗(I). We bound the performance of the
algorithm as a function of the difference between these two instances. In contrast, prior
work focuses on differences in the predicted parameters y∗ and y′ for the same instance I.
Moreover, it is desirable that the algorithm never performs worse than the best worst-case
algorithm.

For example, in online flow allocation, we can consider an instance as a vector of types,
i.e. Ii is the number of impressions of type i. Then we can take the difference between the
instances as γ = ∥I − I ′∥1. Say y∗(I) can be used to give a c-competitive algorithm on
instance I. Let α be the best competitive ratio achievable in the worst-case model. We desire
an algorithm that is max{f(c, γ), α}-competitive where f is a monotonic function depending
on c and γ.We remark that the online model requires I ′ to arrive in a worst-case order.

2.1 Putting the Model in Context
Relationship to Prior Predictions Model. The first main difference in this model as
compared to prior work is learnability. With the notable exception of [3], prior work has
introduced predictions without establishing they are learnable. Without this requirement
there is no objective metric to detail if a prediction is reasonable or not. To see this
shortcoming, imagine simply predicting the optimal solution for the problem instance. This
is often not reasonable because the optimal solution is too complex to learn and use as a
prediction. We introduce bounded sample complexity for learning predictions in our model
to ensure predictions can be provably learned.

Next difference is in how to measure error. The performance of the algorithm is bounded
in terms of the error in the prediction in the prior model. For example, say the algorithm is
given a predicted vector ŷ(I) for problem instance I and the true vector that should have been
predicted is y∗(I). One can define ηŷ(I) = ∥ŷ(I) − y∗(I)∥p to be the error in the parameters
for some norm p ≥ 1. The goal is to give an algorithm that is f(ηŷ(I))-competitive for an
online algorithm where f is some non-decreasing function of ηŷ(I): the better the function f ,
the better the algorithm performance. One could also consider run time or approximation
ratio similarly. Notice the bound is worst-case for a given error in the prediction. This we
call parameter robustness.

It is perhaps more natural to define a difference between two problem instances as in
our model rather than the difference between two predicted parameters. Indeed, consider
predicting optimal dual linear program values. These values can be different for problem
instances that are nearly identical. Therefore, accurate parameters will not be sufficient to
handle inconsequential changes in the input. Instance robustness allows for more accurate

6 For more difficult problems, we can relax the 1 − ϵ requirement to be a weaker factor.
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Table 1 Relationship to Prior Work.

Problem Parameter Robustness Learnability Instance Robustness
Caching [28, 35, 23, 37] - -
Completion Time Scheduling [34] - [34]
Ski Rental [34, 3, 19] [3] [34, 3, 19]
Restricted Assignment [27] This Paper This Paper
b-Matching This Paper This Paper This Paper
Flow Allocation This Paper This Paper This Paper

comparison of two predictions on similar problem instances. More practically, instance
closeness is easier to monitor than closeness of the proposed predictions to an unknown
optimal prediction for the whole instance.

Learning Algorithm Parameters. Learning algorithmic parameters has distinct advantages
over learning an input distribution. In many cases it can be easier to learn a decision rule
than it is to learn a distribution. For example, consider the unweighted b-matching problem
in bipartite graphs for large b in the online setting. In this problem there is a bipartite graph
G = (I ∪ A, E) with capacities b ∈ ZA

+. The objective is to find a collection of edges such
that each node in I is matched at most once and each node a ∈ A is matched at most ba

times. Nodes on one side of the graph arrive online and must be matched on arrival. Say the
nodes are i.i.d. sampled from an unknown discrete distribution over types. A type is defined
by the neighbors of the node. Let s be the number of types. Then the sample complexity of
learning the distribution is Ω(s). Notice that s could be superlinear in the number of nodes.
In our results, the sample complexity is independent of the number of types in the support
of the distribution. The phenomenon that it is sometimes easier to learn good algorithmic
parameters rather than the underlying input distribution has been observed in several prior
works. See [21, 9, 11, 10, 12, 15] for examples.

Table 1 illustrates how our paper relates to prior work, focusing on the two pillars for
augmenting algorithms emphasized in our model.

Paper Organization. In this extended abstract, we give a technical overview of our results.
For online flow allocation, both learnability and instance-robustness rely on showing the
existence of node predictions which is described in Section 3, followed by learnability and
robustness in Sections 4 and 5 respectively. Section 6 considers online load balancing and
gives a brief technical overview. All proofs of our results are available in the full version of
this paper.

3 Matchings and Flows: Existence of Weights

Consider a directed acyclic graph G = ({s, t} ∪ V, E), where each vertex v ∈ V has capacity
Cv and is on some s − t path. Our goal is to maximize the flow sent from s to t without
violating vertex capacities. Before considering the general version, we examine the 3-layered
version. Say a graph is d-layered if the vertices excluding s, t can be partitioned into d

ordered sets where all arcs go from one set to the next. Then the 3-layered case is defined as
follows. The vertices in V are partitioned into 3 sets I, A, and B. s is connected to all of I

and t is connected from all of B, while the remaining edges are only allowed to cross from I

to A and from A to B. Let Nu := {v ∈ V | (u, v) ∈ E} be u’s out-neighbors. We have the
following result generalizing the prior work of Agrawal et al [2] on 2-layered graphs.
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▶ Theorem 3. Let G = ({s, t} ∪ V, E) be a 3-layered DAG. For each edge (u, v) ∈ E, let xuv

be the proportion of flow through u which is routed along (u, v). For any ϵ ∈ (0, 1), there
exist weights {αv}v∈V such that setting xuv = αv∑

v′∈Nu
αv′

yields a (1 − ϵ)-approximate flow.

Moreover, these weights can be obtained in time O(n4 log(n/ϵ)/ϵ2).

We can generalize this theorem to d-layered graphs. In particular, our algorithm for the
d-layered case produces weights with additional properties, which we leverage to handle
general DAGs. Notice that the number of weights is proportional to the number of nodes in
the graph and not the number of edges. We believe it is an interesting combinatorial property
that such succinct weights on the nodes can encode a good flow on the asymptotically larger
number of edges and is of independent interest.

Technical Overview
Here we give a technical overview. The full proof is omitted in this version.

A Simple Algorithm for Layered Graphs. Prior work [2] showed that there exists a set
of weights giving nearly the same guarantees we show, but only for bipartite graphs. The
existence of such weights can be generalized to d-layer graphs easily as follows. First find an
(optimal) maximum flow f . For each vertex v, let f(v) be the flow going through v. Reset
the vertex capacity of v to be f(v). For each pair of adjacent layers find the weights between
the two layers independently using the algorithm of [2], treating nodes v on the left hand
side as f(v) individual impressions. By the previous result, each layer only loses a negligible
portion of the total flow which can be compounded to yield a low loss for these set of weights.

The above reduction does not generalize to general DAGs. One can arrange a DAG into
layers, but there are fundamental algorithmic challenges with constructing weights that arise
when edges cross layers. One of this paper’s algorithmic contributions is showing how to
construct such weights for general DAGs. Moreover, as an intermediate result, we show how
to compute the weights directly extending the approach of [2] for multi-layer graphs without
first solving a flow problem optimally as in the above reduction.

Finding Weights for Bipartite Graphs. We begin by first simplifying the algorithm of [2]
for bipartite graphs. Let G = ({s, t} ∪ I ∪ A, E) be such a graph. In this case, the fraction
of flow u ∈ I sends to v ∈ A simplifies to xuv = αv∑

v′∈Nu
αv′

where {α}v∈I∪A are the set of

weights. Initially all of the weights are 1 for a vertex a ∈ A. Some of the nodes receive more
flow than their capacity in this initial proportional allocation according to the weights. We
say a node for which the current proportional allocation of flow exceeds its capacity by a 1+ ϵ

factor is overallocated. In an iteration, the algorithm decreases the weights of these nodes by
a 1 + ϵ factor.7 After this process continues for a poly-logarithmic number of iterations, we
will be able to show the resulting weights result in a near optimal flow.

To prove that the final weights are near optimal, we show that the weights can be directly
used to identify a vertex cut whose value matches the proportional flow given by the weights.
In particular, we will partition the nodes in A based on their weight values. For a parameter
β, we say a node is “above the gap” if its weight is larger than βn/ϵ. A node of weight less

7 Prior work [2] performed this operation as well as increasing the weights of nodes whose allocation was
significantly below the capacity. Our simplification to allow only decreases helps with the generalization
to more complex graphs and correcting for error in the weights.
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than β is below the gap. All others are in the gap. The parameter β is chosen such that the
nodes in the gap contribute little to the overall flow and they can essentially be discarded
via an averaging argument8. Assume this set is empty for simplicity. Let G(A)+ and G(A)−

be the sets of vertices in A above and below the gap, respectively.
We now describe a cut. Let I0 ⊆ I be the impression nodes adjacent to at least one node

in G(A)+. Then the vertex cut is I0 ∪ G(A)−. Since all paths must either cross I0 or G(A)−,
this is a valid vertex cut. We now show the cut value is close to the flow achieved by the
weights, completing the analysis using the weaker direction of the max-flow min-cut theorem.

First, nodes in I0 are cut. Due to the way flow is sent based on the weight proportions,
for any vertex I0, at least a (1 − ϵ) proportion of its flow will be sent to G(A)+. Since the
nodes in G(A)+ did not decrease the weights at least once, at some point they were not
over-allocated. We claim that because of this, they will never be over-allocated hence and,
therefore, nodes in I0 send nearly all of their flow to the sink successfully. Next nodes in
G(A)− are cut. These nodes decreased their weights (almost) every iteration because they
are at or above their allocation. Thus, for all these nodes we get flow equal to their total
capacity. The fraction of this flow through G(A)− coming from paths using I0 is negligible
because of the weight proportions so this flow is almost disjoint from that of I0. Thus, we
have found a proportional flow nearly matching the value of the cut identified.

General Graphs. Now we consider the more general algorithm. To convey intuition, we will
only consider directly computing weights for a 3-layered graph G = ({s} ∪ I ∪ A ∪ B ∪ {t}, E)
where edges are between adjacent layers. This will highlight several of the new ideas. As
before, weights of all nodes are initially one. And as before, a node decreases its weight if
it is over-allocated, which we will refer now to as a self-decrease. Now though, whenever a
node in A decreases its weight it does so by a (1 + ϵ′) factor and those in B decrease at a
(1 + ϵ) factor where ϵ′ ≤ ϵ.

A new challenge is that a node b in layer B may be over allocated and it may not be
enough for B to reduce its weight. Indeed, B may need some neighbors in A to reduce their
allocation. For instance, if b ∈ B has neighbors in A for which it is the only neighbor, then
reducing b’s weight does not change its allocation and the flow needs to be redistributed
in the first layer. In this case, the nodes in B will specify that some nodes in A need to
decrease their allocation. We call this a forced decrease. This set has to be carefully chosen
and intuitively only the nodes in A that are the largest weight as compared to b ∈ B are
decreased. We run this procedure for a polylogarithmic number of steps and again we seek
to find a cut matching the achieved flow.

We discuss the need for different ϵ and ϵ′. In the bipartite case when a node decreased
its weight, that node is guaranteed to receive no more allocation in the next round (it
could remain the same though). Intuitively, this is important because in the above proof
for bipartite graphs we want that if a node is in G(A)+, above the gap, if it was ever
under-allocated then it never becomes over-allocated in later iterations. Our update ensures
this will be the case since self-decreases will continue henceforth to keep the load of such a
node below its capacity. Consider setting ϵ = ϵ′ for illustration. Because of the interaction
between layers, a node i in B could receive more allocation even if it decreases its weight in
an iteration. This is because the nodes in A and B could change their weights. Nodes in A

changing their weight can give up to an extra (1 + ϵ) allocation (via predecessors of i that are

8 This averaging is what necessitates the poly-logarithmic number of weight update iterations in the
algorithm
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not decreased), and the same for B for a total of (1 + ϵ)2 extra allocation arriving at i. The
node decreasing its weight reduces its allocation by a (1 + ϵ) factor for a total change of a
(1 + ϵ)2 · 1

(1+ϵ) > 1 factor. By choosing ϵ and ϵ′ to be different, as well as the characterization
of which nodes decrease during a forced decrease, we can show any node will not receive less
allocation if its weight does not decrease and will not receive more allocation if it performs a
decrease. We call these properties “Increasing monotonicity” and “Decreasing monotonicity”
in the full version of this paper.

As in the bipartite case, we can find a gap in layers A and B, which gives sets above
the gap G(A)+ and G(B)+ in A and B, respectively. Let the sets G(A)− and G(B)− be
the nodes below the gap. As before nodes in G(A)− (resp., G(B)−) decreased their weight
many more iterations than G(A)+ (resp. , G(B)+,). For simplicity, assume this partitions
the nodes of the entire graph, so no nodes are inside either gap. Let I0 ⊆ I be the nodes
adjacent to at least one node in G(A)+. Let A0 be nodes in G(A)−, below the gap, that have
an edge to G(B)+ (the analogue of I0 in the A-layer) . Any flow path that crosses the A

layer at G(A)+, A0 and G(A)− \ A0 are blocked by the sets I0, A0 and G(B)− respectively
showing that this set forms a vertex cut.

We show the flow obtained is nearly the value of the vertex cut I0 ∪ A0 ∪ G(B)−. As
before, nodes in I0 (resp. A0) send almost all their flow to nodes above the gap in the next
layer G(A)+ (resp. G(B)+). Like before G(A)+ and G(B)+ do not decrease every round, so
we can show they are not allocated more than their capacity (see Lemma 11 and Lemma 13
in this paper’s full version). The algorithmic key is that, by choosing the forced decrease
carefully, we can show each node in G(A)+ has a neighbor in G(B)+. This ensures almost all
of G(A)+’s flow reaches the sink because all of these nodes will send essentially all their the
flow to G(B)+ and these nodes are not at capacity. Thus, I0 can send all its flow to the sink
successfully. Similarly, A0 sends its flow to G(B)+ and then to the sink. Finally, as before,
G(B)− (as well as G(A)−) are sets of nodes near their allocation because they decreased
essentially every iteration (see Lemma 12 and Lemma 14 in the full version). Thus, G(B)−

sends its flow directly to the sink. Moreover, we ensure that only a negligible fraction of this
flow is double counted by the definition of the large weight reduction across the gaps (see
Lemma 15 in the full version); therefore we have found a flow allocation obtained by the
weights whose value nearly matches the value of an identified cut.

This analysis generalizes to layered DAGs where edges do not cross layers. To extend the
existence of these weights to general DAGs we reduce the problem to finding weights with
additional structural properties on a layered DAG. From the input DAG we make additional
copies of nodes that have ancestors in earlier layers and link these copies via a path to the
original neighbor. We convert any edge that crosses many layers to one in the layered DAG
from its original head node to the copy of its tail node in the next layer. Then we argue that
a key functional relation exists between the weights of any original node and its copies in
earlier layers. This allows us to transfer the weights computed in the auxiliary layered DAG
to the original DAG.

4 Matchings and Flows: Learnability of Predictions

We show that the weights are efficiently learnable. Assuming that each arriving impression
is i.i.d. sampled from an unknown distribution, we want to learn a set of weights from
a collection of past instances and examine their expected performance on a new instance
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from the same distribution9. A direct approach might be to learn the unknown distribution
from samples and utilize known ideas from stochastic optimization (where knowledge of the
distribution is key). A major issue though is that there can be a large number of possible
types (potentially exponential in the number of nodes of the DAG). A distribution that is
sparse over types is not easy to learn with a small number of samples.

We claim that the weights are efficiently learnable, even if the distribution of types of
impressions is not. We show that this task has low sample complexity and admits an efficient
learning algorithm. Consequently, if there is an unknown arbitrary distribution that the
impressions are drawn from, then only a small number of instances is required to compute the
weights. The number of samples is proportional to size of the DAG without the impressions.
In most problems such as Adwords, the number of arriving impressions is much larger than
the fixed (offline) portion of the graph.

Before stating our results, we introduce two necessary assumptions. The first assumption
is that each impression is i.i.d. sampled from an unknown distribution D. Where no ambiguity
will result, we also say an instance is sampled from D if each impression is an i.i.d sample
from D. The second assumption is related to the expected instance of the distribution D.
The expected instance of a distribution is the instance where the number of each type of
impressions is exactly the expected value.10 We assume that in the optimal solution of the
expected instance, the load of each node is larger than a constant. Namely, it cannot happen
that in the optimal flow, there exist many vertices which obtain very small amount of flow.

▶ Theorem 4. Under the two assumptions above, for any ϵ, δ ∈ (0, 1), there exists a
learning algorithm such that, after observing O( n2

ϵ2 ln( n log n
δ )) instances, returns weights

{α̂}, satisfying that with probability at least 1 − δ, EI∼D[R(α̂, I)] ≥ (1 − ϵ)EI∼D[R(α∗, I)]
where R(α, I) is the value of the fractional flow obtained by applying α to instance I and
α∗ = arg max

α
EI∼D[R(α, I)].

Technical Overview. Here we overview the analysis. The full proof is omitted in this version.
To show that the weights are learnable we utilize a model similar to that of data-driven
algorithm design. To illustrate our techniques we focus on the case when the instance is a
bipartite graph G = (I ∪ A, E) with capacities Ca for each a ∈ A (also recall that |A| = n).

In this setting there is an unknown distribution D over instances of I of length m. The t’th
entry of I represents the t’th impression arriving online. Our goal is to find a set of weights
that performs well for the distribution D. In particular let α∗ := arg maxα∈S EI∼D[R(α, I)]
be the best set of weights for the distribution. Define R(α, I) to be the value of the matching
using weights α on instance I. Here S is a set of “admissible” weights, and in particular we
only consider weights output by a proportional algorithm similar to the algorithm of Agrawal
et al. [2]. We are allowed to sample s independent samples I1, I2, . . . , Is from D and use
these samples to compute a set of weights α̂. We say that a learning algorithm (ϵ, δ)-learns
the weights if with probability at least 1 − δ over the samples from D, we compute a set of
weights α̂ satisfying EI∼D[R(α̂, I)] ≥ (1 − ϵ)EI∼D[R(α∗, I)].

This definition is similar to PAC learning [36]. Also note we are aiming for a relative
error guarantee rather than an absolute error. The main quantity of interest is then the
sample complexity, i.e. how large does s need to be as a function of n, m, ϵ, and δ in order
to (ϵ, δ)-learn a set of weights? Ideally, s only depends polynomially on n, m, 1/ϵ, and 1/δ,
and smaller is always better.

9 We can also analyze the performance on similar distributions by applying techniques from our instance
robustness result

10 Note this could be a fractional value.
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The standard way to understand the sample complexity for this type of problem is via the
pseudo-dimension. Intuitively, pseudo-dimension is the natural extension of VC-dimension
to a class of real valued functions. In our case the class of functions is {R(α, ·) | α ∈ S},
i.e. we are interested in the class of function mapping each instance I to the value of the
fractional matching given by each fixed set of weights α. If the pseudo-dimension of this
class of functions is d, then s ≈ d

ϵ2 log(1/δ) samples are needed to (ϵ, δ) learn the weights,
given that we are able to approximately optimize the empirical average performance [5].

The good news for our setting is that the pseudo-dimension of our class of functions
is bounded. Each node in the set A can only have one of T different weight values for
some parameter T . Then since the number of nodes in A is n, there can only be at most
T n different “admissible” weights. It is well known that the pseudo-dimension of a finite
class of k different functions is log2(k). Thus the pseudo-dimension of our class of functions
is d = n log2(T ). As long as T isn’t growing too fast as a function of n and m, we get
polynomial sample complexity.

Unfortunately, finding weights to optimize the average performance across the s sampled
instances is complicated. Note that for a fixed instance I, the value of the matching as a
function of the weights, R(·, I), is non-linear in the weights since we are using proportional
allocation. Moreover, it is neither convex nor concave in the parameters α so applying a
gradient descent approach will not work. Due to this, it is difficult to analyze the learnability
via known results on pseudo-dimension.

The main tool we have at our disposal is that for a fixed instance I, we can compute
weights α such that R(α, I) ≥ (1 − ϵ)OPT(I). This motivates the following natural direct
approach. Take the s sampled instances I1, I2, . . . , Is and take their union to form a larger
“stacked” instance Î. We then run the aforementioned algorithm on Î to get weights α̂.
Intuitively, if s is large enough, then by standard concentration inequalities Î ≈ sE[I], i.e.
the stacked instance approaches s copies of the “expected” instance. Then to complete
the analysis, we need to show that E[R(α̂, I)] ≈ R(α̂,E[I]). In general, it is not true that
E[R(α̂, I)] ≈ R(α̂,E[I]). Using more careful analysis, we show that when the distribution D
is a product distribution and our two assumptions hold, this is in fact the case.

5 Matching and Flows: Robustness

Instance Robustness. To show the instance robustness, we assume that we can describe
the instance directly. Say we have a description of the entire instance denoted by a vector
Î = (m̂1, . . . , m̂i, . . .), where m̂i is the number of impressions of type i. We show that if a set
of weights performs well in instance Î, it can be transferred to a nearby instance I robustly.

▶ Theorem 5. For any ϵ > 0, if a set of weights α̂ returns a (1 − ϵ)-approximated solution
in instance Î, it yields an online flow allocation on instance I whose value is at least
max{(1 − ϵ)OPT − 2γ, OPT/(d + 1)}. Here OPT is the maximum flow value on instance
I, d is the diameter of this graph excluding vertex t, and γ is the difference between two
instances, defined by ||Î − I||1.

This theorem can be interpreted as follows. If we sample the instance and compute the
weights in it, these weights will work well and break through worst-case bounds when the
type proportions are sampled well. Indeed, the weights will perform well in nearby instances
with similar type proportions. Moreover, the algorithm never performs worse than a 1

d+1
factor of optimal. We remark that this is the best competitive ratio a deterministic integral
algorithm can achieve because we show a lower bound on such algorithms (see Appendix G.2
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in the full version of this paper). This example builds a recursive version of the simple lower
bound of 1

2 on the competitive ratio of deterministic online algorithms for the matching
problem.

Recall that the key to showing existence of the weights was to construct a cut whose
capacity is nearly the same as the value of the flow given by the weights. To show robustness
against nearby instances, we observe how this proof can be extended to nearby cuts. This
allows us to argue about the optimal value of the new instance. Standard calculations then
let us connect the value of the predicted weights to this optimal value while losing only O(γ)
in the value of the flow. To ensure the algorithm is never worse than a 1

d+1 factor of the
optimal, we guarantee that the algorithm always returns a maximal allocation.

Parameter Robustness. For the parameter robustness, we show that the performance
degrades linearly in the relative error of the weight parameter. Thus, our algorithm has the
same robustness guarantees shown in other works as well.

▶ Theorem 6. Consider a prediction of α̂v for each vertex v ∈ V . Due to scale invariance,
we can assume that the minimum predicted vertex weight α̂min = 1. Define the prediction
error η := maxv∈V ( α̂v

α∗
v
,

α∗
v

α̂v
), where {α∗

v}v∈V are vertex weights that can achieve an (1 − ϵ)-
approximate solution and α∗

min = 1 for any fixed ϵ > 0. Employing predictions α̂, we can
obtain a solution with competitive ratio max( 1

d+1 , 1−ϵ
η2d ), where d is the diameter of this graph

excluding vertex t.

When the prediction error η approaches one, the performance smoothly approaches
optimal. While the above theorem involves comparing the propagation of the prediction
errors in the performance analysis, we also investigate how inaccurate predictions can be
adaptively corrected and improved in the 2-layered Adwords case. For that case, we give an
improved algorithm that can correct error in the weights, so that the loss is only O(log η).
Moreover, we show that the way we adapt is tight and the best possible up to constant
factors for any algorithm given predicted weights with error η.

The parameter robustness follows almost directly from the definition of the proportional
assignment given by the weights. In each layer, the over allocation (potentially above the
capacity) can be easily bounded by a η2 factor, resulting in a loss of at most η2d on a d layer
graph. We remark that directly using the weights ensures the algorithm is never worse than
a 1

d+1 factor of the optimal solution. The technical proof, along with the weight-adapting
technique for the 2-layered case, is present in Appendix G of this paper’s full version.

6 Results on Load Balancing

Next we show results for restricted assignment load balancing problem in our model. In
particular, we study the instance robustness and learnability of proportional weights for
this problem. The existence of useful weights and parameter robustness for predicting these
weights were shown in prior work [2, 27]. As discussed before, we focus on analyzing fractional
assignments.

To describe our results we introduce the following notation. Let [m] denote the set of
machines and S denote a set of jobs. Each job j ∈ S has a size pj and a neighborhood N(j)
of feasible machines. Given a set of positive weights {wi}i∈[m] on the machines, we define a
fractional assignment for each job j by setting xij(w) = wi∑

i′∈N(j)
wi′

for each i ∈ N(j). Let

ALG(S, w) be the fractional makespan on the jobs in S with weights w and similarly let
OPT(S) be the optimal makespan on the jobs in S. Prior work [2, 27] shows that for any
set of jobs S and ϵ > 0 there exists weights α such that ALG(S, w) ≤ (1 + ϵ)OPT(S).
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To describe our instance robustness result we consider an instance of the problem as
follows. Consider instances with n jobs. The type of a job is the subset of machines to
which it can be assigned. Let Sj be the total size of jobs of type j in instance S. We
consider relative changes in the instance and define the difference between instances S

and S′ as η(S, S′) := maxj max{ Sj

S′
j
,

S′
j

Sj
}. Our instance robustness result is given in the

following theorem.

▶ Theorem 7. For any instance S and ϵ > 0, let w be weights such that ALG(S, w) ≤
(1 + ϵ)OPT(S). Then for any instance S′ we have ALG(S′, w) ≤ (1 + ϵ)2η(S, S′)2OPT(S′).

Let w be as in the statement of the theorem and w′ be weights such that ALG(S′, w′) ≤
(1 + ϵ)OPT(S′). Intuitively, we lose the first factor of η(S, S′) by bounding the performance
of w on S′ and the second factor by bounding the performance of w′ on S.

Next we study learnability. We give the first result showing these weights are learnable in
any model. In order to understand the sample complexity of learning the weights we need to
consider an appropriate discretization of the space of possible weights. For integer R > 0 and
ϵ > 0, let W(R) = {α ∈ Rm | αi = (1 + ϵ)k, i ∈ [m], k ∈ {0, 1, . . . , R}}. Additionally, let pmax
be an upper bound on all jobs sizes. The following theorem characterizes the learnability of
the weights for restricted assignment load balancing.

▶ Theorem 8. Let ϵ, δ ∈ (0, 1) be given and set R = O( m2

ϵ2 log( m
ϵ )) and let D =

∏n
j=1 Dj be

a product distribution over n-job restricted assignment instances such that ES∼D[OPT(S)] ≥
Ω( 1

ϵ2 log( m
ϵ )). There exists an algorithm which finds weights w ∈ W(R) such that

ES∼D[ALG(S, w)] ≤ (1 + ϵ)ES∼D[OPT(S)]with probability at least 1 − δ when given access
to s = Õ( m3

ϵ2 log( 1
δ )) independent samples S1, S2, . . . , Ss ∼ D.

Our techniques here are similar to that of the online flow allocation problem in that
we use the samples to construct a “stacked” instance then compute a set of near optimal
weights on this instance. We then have to show that these weights work well in expectation
with high probability. This step necessitates the two assumptions in the theorem statement.
First, we need that the expected optimal makespan is reasonably large so that the expected
makespan is close to the maximum of the expected loads of the machines. Second, we need
that the instance is drawn from a product distribution so that the stacked instance converges
in some sense to s copies of the “expected” instance. See the full version of the paper for
complete arguments.
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Abstract
Filters are small, fast, and approximate set membership data structures. They are often used to
filter out expensive accesses to a remote set S for negative queries (that is, filtering out queries
x /∈ S). Filters have one-sided errors: on a negative query, a filter may say “present” with a tunable
false-positive probability of ε. Correctness is traded for space: filters only use log(1/ε) + O(1) bits
per element.

The false-positive guarantees of most filters, however, hold only for a single query. In particular,
if x is a false positive, a subsequent query to x is a false positive with probability 1, not ε. With this
in mind, recent work has introduced the notion of an adaptive filter. A filter is adaptive if each
query is a false positive with probability ε, regardless of answers to previous queries. This requires
“fixing” false positives as they occur.

Adaptive filters not only provide strong false positive guarantees in adversarial environments
but also improve query performance on practical workloads by eliminating repeated false positives.

Existing work on adaptive filters falls into two categories. On the one hand, there are practical
filters, based on the cuckoo filter, that attempt to fix false positives heuristically without meeting
the adaptivity guarantee. On the other hand, the broom filter is a very complex adaptive filter that
meets the optimal theoretical bounds.

In this paper, we bridge this gap by designing the telescoping adaptive filter (TAF), a
practical, provably adaptive filter. We provide theoretical false-positive and space guarantees for
our filter, along with empirical results where we compare its performance against state-of-the-art
filters. We also implement the broom filter and compare it to the TAF . Our experiments show that
theoretical adaptivity can lead to improved false-positive performance on practical inputs, and can
be achieved while maintaining throughput that is similar to non-adaptive filters.
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1 Introduction

A filter is a compact and probabilistic representation of a set S from a universe U . A filter
supports insert and query operations on S. On a query for an element x ∈ S, a filter returns
“present” with probability 1, i.e., a filter guarantees no false negatives. A filter is allowed to
have bounded false positives – on a query for an element x /∈ S, it may incorrectly return
“present” with a small and tunable false-positive probability ε.

Filters are used because they allow us to trade correctness for space. A lossless represent-
ation of S ⊆ U requires Ω(n log u) bits, where n = |S|, u = |U|, and n ≪ u. Meanwhile, an
optimal filter with false-positive probability ε requires only Θ(n log(1/ε)) bits [11].

Examples of classic filters are the Bloom filter [7], the cuckoo filter [18], and the quotient
filter [6]. Recently, filters have exploded in popularity due to their widespread applicability –
many practical variants of these classic filters have been designed to improve upon throughput,
space efficiency, or cache efficiency [8, 16,19,22,29,32].

A filter’s small size allows it to fit in fast memory, higher in the memory hierarchy than a
lossless representation of S would allow. For this reason, filters are frequently used to speed
up expensive queries to an external dictionary storing S.

In particular, when a dictionary for S is stored remotely (on a disk or across a network),
checking a small and fast filter first can avoid expensive remote accesses for a 1 − ε fraction
of negative queries. This is the most common use case of the filter, with applications in
LSM-based key-value stores [12,23,27], databases [13,15,17], and distributed systems and
networks [9, 31].

False positive guarantees and adaptivity. When a filter is used to speed up queries to a
remote set S, its performance depends on its false-positive guarantees: how often does the
filter make a mistake, causing us to access S unnecessarily?

Many existing filters, such as the Bloom, quotient and cuckoo filters, provide poor
false-positive guarantees because they hold only for a single query. Because these filters do
not adapt, that is, they do not “fix” any false positives, querying a known false positive x

repeatedly can drive their false-positive rate to 1, rendering the filter useless.
Ideally, we would like a stronger guarantee: even if a query x has been a false positive in

the past, a subsequent query to x is a false positive with probability at most ε. This means
that the filter must “fix” each false positive x as it occurs, so that subsequent queries to x

are unlikely to be false positives. This notion of adaptivity was formalized by Bender et
al. [5]. A filter is adaptive if it guarantees a false positive probability of ε for every query,
regardless of answers to previous queries. Thus, adaptivity provides security advantages
against an adversary attempting to degrade performance, e.g., in denial-of-service attacks.

At the same time, fixing previous false positives leads to improved performance. Many
practical datasets do, in fact, repeatedly query the same element – on such a dataset, fixing
previous false positives means that a filter only incurs one false positive per unique query.
Past work has shown that simple, easy-to-implement changes to known filters can fix false
positives heuristically. Due to repeated queries, these heuristic fixes can lead to reduction of
several orders of magnitude in the number of incurred false positives [10,21,25].

Recent efforts that tailor filters to query workloads by applying machine learning tech-
niques to optimize performance [14,24,30] reinforce the benefits achieved by adaptivity.

Adaptivity vs practicality. The existing work on adaptivity represents a dichotomy between
simple filters one would want to implement and use in practice but are not actually adapt-
ive [21, 25], or adaptive filters that are purely theoretical and pose a challenge to implement-
ation [5].
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Mitzenmacher et al. [25] provided several variants of the adaptive cuckoo filter (ACF)
and showed that they incurred significantly fewer false positives (compared to a standard
cuckoo filter) on real network trace data. The data structures in [25] use simple heuristics to
fix false positives with immense practical gains, leaving open the question of whether such
heuristics can achieve worst-case guarantees on adaptivity.

Recently, Kopelowitz et al. [21] proved that this is not true even for a non-adversarial
notion of adaptivity. In particular, they defined support optimality as the adaptivity
guarantee on “predetermined” query workloads: that is, query workloads that are fixed ahead
of time and not constructed in response to a filter’s response on previous queries. They
showed that the filters in [25] fail to be adaptive even under this weaker notion – repeating
O(1) queries n times may cause them to incur Ω(n) false positives.

Kopelowitz et al. [21] proposed a simple alternative, the cuckooing ACF, that achieves
support optimality by cuckooing on false positives (essentially reinserting the element).
Furthermore, they proved that none of the cuckoo filter variants (including the cuckooing
ACF) are adaptive. They showed that a prerequisite to achieving adaptivity is allocating
a variable number of bits to each stored element – that is, maintaining variable-length
fingerprints. All of the cuckooing filter variants use a bounded number of bits per element.

The only known adaptive filter is the broom filter of Bender et al. [5], so-named because
it “cleans up” its mistakes. The broom filter achieves adaptivity, while supporting constant-
time worst-case query and insert costs, using very little extra space – O(n) extra bits in total.
Thus the broom filter implies that, in theory, adaptivity is essentially free.

More recently, Bender et al. [4] compared the broom filter [5] to a static filter augmented
with a comparably sized top-k cache (a cache that stores the k most frequent requests). They
found that the broom filter outperforms the cache-augmented filter on Zipfian distributions
due to “serendipitous corrections” – fixing a false positive eliminates future false positives
in addition to the false positive that triggered the adapt operation. They noted that their
broom filter simulation is “quite slow,” and left open the problem of designing a practical
broom filter with performance comparable to that of a quotient filter.

In this paper, we present a practical and efficient filter which also achieves worst-case
adaptivity: the telescoping adaptive filter. The key contribution of this data structure is
a practical method to achieve worst-case adaptivity using variable-length fingerprints.

Telescoping adaptive filter. The telescoping adaptive filter (TAF) combines ideas from the
heuristics used in the adaptive cuckoo filter [25], and the theoretical adaptivity of the broom
filter [5].

The TAF is built on a rank-and-select quotient filter (RSQF) [29] (a space- and cache-
efficient quotient filter [6] variant), and inherits its performance guarantees.

The telescoping adaptive filter is the first adaptive filter that can take advantage of any
amount of extra space for adaptivity, even a fractional number of bits per element. We
prove that if the TAF uses

(
1
e + b

(1−b)2

)
extra bits per element in expectation, then it is is

provably adaptive for any workload consisting of up to n/(b
√

ε) unique queries (Section 4).
Empirically, we show that the TAF outperforms this bound: with only 0.875 of a bit extra per
element for adaptivity, it is adaptive for larger query workloads. Since the RSQF uses 2.125
metadata bits per element, the total number of bits used by the TAF is (n/α)(log2(1/ε) + 3),
where α is the load factor.

The TAF stores these extra bits space- and cache-efficiently using a practical implement-
ation of a theoretically-optimal compression scheme: arithmetic coding [20,33]. Arithmetic
coding is particularly well-suited to the exponentially decaying probability distribution of
repeated false positives. While standard arithmetic coding on the unit interval can be slow,
we implement an efficient approximate integer variant.
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The C code for our implementation can be found at https://github.com/djslzx/
telescoping-filter.

Our contributions. We summarize our main contributions below.

We present the first provably-adaptive filter, the telescoping adaptive filter, engineered
with space, cache-efficiency and throughput in mind, demonstrating that adaptivity is
not just a theoretical concept, and can be achieved in practice.
As a benchmark for TAF, we also provide a practical implementation of the broom
filter [5]. We call our implementation of the broom filter the extension adaptive filter
(exAF). While both TAF and exAF use the near-optimal Θ(n) extra bits in total to adapt
on Θ(n) queries, the telescoping adaptive filter is optimized to achieve better constants
and eke out the most adaptivity per bit. This is confirmed by our experiments which show
that given the same space for adaptivity (0.875 bits per element), the TAF outperforms
the false-positive performance of the exAF significantly on both practical and adversarial
workloads. Meanwhile, our experiments show that the query performance of exAF is
factor 2 better than that of the TAF . Thus, we show that there is a trade off between
throughput performance and how much adaptivity is gained from each bit.
We give the first empirical evaluation of how well an adaptive filter can fix positives
in practice. We compare the TAF with a broom filter implementation, as well as with
previous heuristics. We show that the TAF frequently matches or outperforms other
filters, while it is especially effective in fixing false positives on “difficult” datasets, where
repeated queries are spaced apart by many other false positives. We also evaluate the
throughput of the TAF and the exAF against the vacuum filter [32] and RSQF, showing
for the first time that adaptivity can be achieved while retaining good throughput bounds.

2 Preliminaries

In this section, we provide background on filters and adaptivity, and describe our model.

2.1 Background on Filters
We briefly summarize the structure of the filters discussed in this paper. For a more detailed
description, we refer the reader to the full version. All logs in the paper are base 2. We
assume that ε is an inverse power of 2.

The quotient filter and cuckoo filter are both based on the single-hash function filter [28].
Let the underlying hash function h output Θ(log n) bits. To represent a set S ⊆ U , the filter
stores a fingerprint f(x) for each element x ∈ S. The fingerprint f(x) consists of the first
log n + log(1/ε) bits of h(x), where n = |S| and ε is the false-positive probability.

The first log n bits of f(x) are called the quotient q(x) and are stored implicitly; the
remaining log(1/ε) bits are called the remainder r(x) and are stored explicitly in the data
structure. Both filters consist of an array of slots, where each slot can store one remainder.

Quotient filter. The quotient filter (QF) [6] is based on linear probing. To insert x ∈ S, the
remainder r(x) is stored in the slot location determined by the quotient q(x), using linear
probing to find the next empty slot. A small number of metadata bits suffice to recover the
original slot for each stored element. A query for x checks if the remainder r(x) is stored
in the filter – if the remainder is found, it returns “present”; otherwise, it returns “absent.”
The rank-and-select quotient filter (RSQF) [29] implements such a scheme using very few
metadata bits (only 2.125 bits) per element.

https://github.com/djslzx/telescoping-filter
https://github.com/djslzx/telescoping-filter
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Broom filter. The broom filter of Bender et al. [5] is based on the quotient filter. Initially,
it stores the same fingerprint f(x) as a quotient filter. The broom filter uses the remaining
bits of h(x), called adaptivity bits, to extend f(x) in order to adapt on false positives.

On a query y, if there is an element x ∈ S such that f(x) is a prefix of h(y), the broom
filter returns “present.” If it turns out that y /∈ S, the broom filter adapts by extending
the fingerprint f(x) until it is no longer a prefix of h(y).1 Bender et al. show that, with
high probability, O(n) total adaptivity bits of space are sufficient for the broom filter to be
adaptive on Θ(n) queries.

Cuckoo filters and adaptivity. The cuckoo filter resembles the quotient filter but uses
a cuckoo hash table rather than linear probing. Each element has two fingerprints, and
therefore two quotients. The remainder of each x ∈ S must always be stored in the slot
corresponding to one of x’s two quotients.

The Cyclic ACF [25], Swapping ACF [25], and Cuckooing ACF [21]2 change the function
used to generate the remainder on a false positive. To avoid introducing false negatives, a
filter using this technique must somehow track which function was used to generate each
remainder so that the appropriate remainders can be compared at query time.

The Cyclic ACF stores s extra bits for each slot, denoting which of 2s different remainders
are used. The Swapping ACF, on the other hand, groups slots into constant-sized bins, and
has a fixed remainder function for each slot in a bin. A false positive is fixed by moving
some x ∈ S to a different slot in the bin, then updating its remainder using the function
corresponding to the new slot. The Cuckooing ACF works in much the same way, but both
the quotient and remainder are changed by “cuckooing” the element to its alternate position
in the cuckoo table.

2.2 Model and Adaptivity
All filters that adapt on false positives [5, 21, 25] have access to the original set S. This is
called the remote representation, denoted R. The remote representation does not count
towards the space usage of the filter. On a false positive, the filter is allowed to access the
set R to help fix the false positive.

The justification for this model is twofold. (This justification is also discussed in [5,21,25].)
First, the most common use case of filters is to filter out negative queries to S – in this case,
a positive response to a query accesses R anyway. Information to help rebuild the filter can
be stored alongside the set in this remote database. Second, remote access is necessary to
achieve good space bounds: Bender et al. [5] proved that any adaptive filter without remote
access to S requires Ω(n log log u) bits of space.

Our filter can answer queries using only the local state L. Our filter accesses the remote
state R in order to fix false positives when they occur, updating its local state. This allows
our filter to be adaptive while using small (near optimal) space for the local state.

Adaptivity. The sustained false positive rate of a filter is the probability with which a
query is a false positive, regardless of the filter’s answers to previous queries.

1 These additional bits are stored separately in the broom filter: groups of Θ(log n) adaptivity bits,
corresponding to log n consecutive slots in the filter, are stored such that accessing all the adaptivity
bits of a particular element (during a query operation) can be done in O(1) time.

2 We use the nomenclature of [21] in calling these the Cyclic ACF, Swapping ACF, and Cuckooing ACF.

ESA 2021



60:6 Telescoping Filter: A Practical Adaptive Filter

The sustained false positive rate must hold even if generated by an adversary. We use
the definition of Bender et al. [5], which is formally defined by a game between an adversary
and the filter, where the adversary’s goal is to maximize the filter’s false positive rate. We
summarize this game next; for a formal description of the model see Bender et al. [5].

In the adaptivity game, the adversary generates a sequence of queries Q = x1, x2, . . . , xt.
After each query xi, both the adversary and filter learn whether xi is a false positive (that
is, xi /∈ S but a query on xi returns “present”). The filter is then allowed to adapt before
query xi+1 is made by the adversary. The adversary can use the information about whether
queries x1, . . . , xi were a false positive or not, to choose the next query xi+1.

At any time t, the adversary may assert that it has discovered a special query x̃t that is
likely to be a false positive of the filter. The adversary “wins” if x̃t is in fact a false positive
of the filter at time t, and the filter “wins” if the adversary is wrong and x̃t is not a false
positive of the filter at time t.

The sustained false positive rate of a filter is the maximum probability ε with which
the adversary can win the above adaptivity game. A filter is adaptive if it can achieve a
sustained false positive rate of ε, for any constant 0 < ε < 1.

Similar to [5], we assume that the adversary cannot find a never-before-queried element
that is a false positive of the filter with probability greater than ε. Many hash functions
satisfy this property, e.g., if the adversary is a polynomial-time algorithm then one-way hash
functions are sufficient [26]. Cryptographic hash functions satisfy this property in practice,
and it is likely that even simple hash functions (like Murmurhash used in this paper) suffice
for most applications.

Towards an adaptive implementation. Kopelowitz et al. [21] showed that the Cyclic ACF
(with any constant number of hash-selector bits), the Swapping ACF, and the Cuckooing
ACF are not adaptive. The key insight behind this proof is that for all three filters, the
state of an element – which slot it is stored in, and which fingerprint function is used – can
only have O(1) values. Over o(n) queries, an adversary can find queries that collide with an
element on all of these states. These queries can never be fixed.

Meanwhile, the broom filter avoids this issue by allowing certain elements to have more
than O(1) adaptivity bits – up to O(log n), in fact. The broom filter stays space-efficient by
maintaining O(1) adaptivity bits per element on average.

Thus, a crucial step for achieving adaptivity is dynamically changing how much space is
used for the adaptivity of each element based on past queries. The telescoping adaptive filter
achieves this dynamic space allocation (hence the name “telescoping”) using an arithmetic
coding.

3 The Telescoping Adaptive Filter

In this section, we describe the high-level ideas behind the telescoping adaptive filter.

Structure of the telescoping adaptive filter. Like the broom filter, the TAF is based on a
quotient filter where the underlying hash function h outputs Θ(log n) bits. For any x ∈ S,
the first log n bits of h(x) are the quotient q(x) (stored implicitly), and the next log(1/ε) bits
are the initial remainder r0(x), stored in the slot determined by the quotient. We maintain
each element’s original slot using the strategy of the rank-and-select quotient filter [29], which
stores 2.125 metadata bits per element.
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The TAF differs from a broom filter in that, on a false positive, the TAF changes its
remainder rather than lengthening it, similar to the Cyclic ACF.

For each element in the TAF, we store a hash-selector value. If an element x has
hash-selector value i, its remainder ri is the consecutive sequence of log(1/ε) bits starting at
the (log n + i log(1/ε))th bit of h(x). Initially, the hash-selector values of all elements are
0, and thus the remainder r(x) is the first log 1/ε bits immediately following the quotient.
When the hash-selector value of an element x ∈ S is incremented, its remainder “slides over”
to the next (non-overlapping) log 1/ε bits of the hash h(x), as shown in Figure 1. Thus, the
fingerprint of x is f(x) = q(x)◦ri(x), where ◦ denotes concatenation and i is the hash-selector
value of x.

Figure 1 The fingerprint of x ∈ S is its quotient q(x) followed by its remainder ri(x), where i is
the hash-selector value of x.

On a false positive query y /∈ S, there must be some x ∈ S with hash-selector value i,
such that q(x) = q(y) and ri(x) = ri(y). To resolve this false positive, we increment i. We
update the hash-selector value and the stored remainder accordingly.

We describe below how to store hash-selector values using an average 0.875 bits per
element. This means that the TAF with load factor α uses (n/α)(log(1/ε) + 3) bits of space.

Difference between hash-selector and adaptivity bits. Using hash-selector bits, rather
than adaptivity bits (as in the broom filter), has some immediate upsides and downsides.

If fingerprint prefixes p(x) and p(y) collide, they will still collide with probability 1/2 after
each prefix has been lengthened by one bit. But adding a bit also reduces the probability
that x will collide with any future queries by a factor of 1/2. Such false positives that are
fixed (without being queried) are called serendipitous false positives [4].

On the other hand, incrementing the hash-selector value of an element x ∈ S after it
collides with an element y /∈ S reduces the probability that y will collide again with x by a
factor of ε ≪ 1/2. Thus, the TAF is more aggressive about fixing repeated false positives.
However, the probability that x collides with future queries that are different from y remains
unchanged. Thus, on average the TAF does not fix serendipitous false positives.

Our experiments (Section 6) show that the gain of serendipitous false positive fixes is
short-lived; aggressively fixing false positives leads to better false-positive performance.

Storing hash selectors in blocks. The TAF does not have a constant number of bits per slot
dedicated solely to storing its hash-selector value. Instead, we group the hash-selector values
associated with each Θ(log n) contiguous slots (64 slots in our implementation) together in a
block. We allocate a constant amount of space for each such block. If we run out of space,
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we rebuild by setting all hash-selector values in the block to 0. (After a rebuild, we still
fix the false positive that caused the rebuild. Therefore, there will often be one non-zero
hash-selector value in the block after a rebuild.)

Encoding hash-selector bits. To store the hash selectors effectively, we need a code that
satisfies the following requirements: the space of the code should be very close to optimal;
the code should be able to use < 1 bits on average per character encoded; and the encode
and decode operations should be fast enough to be usable in practice.

In Section 5, we give a new implementation of the arithmetic coding that is tailored to
our use case, specifically encoding characters from the distribution given in Corollary 3. Our
implementation uses only integers, and all divisions are implemented using bit shifts, leading
to a fast and reliable implementation while still retaining good space bounds.

4 Telescoping Adaptive Filter: Analysis

In this section, we analyze the sustained false-positive rate, the hash-selector probabilities,
and the space complexity of the telescoping adaptive filter.

We assume the TAF uses a uniform random hash function h such that the hash can be
evaluated in O(1) time. In our adaptivity analysis of the TAF (Theorem 1), we first assume
that the filter has sufficient space to store all hash-selector values; that is, it does not rebuild.
Then, in Theorem 4, we give a bound on the number of unique queries that the TAF can
handle (based on its size) without the need to rebuild, thus maintaining adaptivity.

Adaptivity. We first prove that the telescoping adaptive filter is adaptive, i.e., it guarantees
a sustained false positive rate of ε.

We say a query x has a soft collision with an element y ∈ S if their quotients are the
same: q(x) = q(y). We say a query x has a hard collision with an element y ∈ S if both
their quotients and remainders are the same: q(x) = q(y) and ri(x) = ri(y), where i is the
hash-selector value of y at the time x is queried (see Section 3).

▶ Theorem 1. Consider a telescoping adaptive filter storing a set S of size n. For any
adaptively generated sequence of t queries Q = x1, x2, . . . , xt (possibly interleaved with
insertions), where each xi /∈ S, the TAF has a sustained false-positive rate of ε; that is,
Pr[xi is a false positive] ≤ ε for all 1 ≤ i ≤ t.

Proof. Consider the i-th query xi ∈ Q. Query xi is a false positive if there exists an element
y ∈ S such that there is hard collision between them. Let hi(y) = q(y) ◦ rk(y) denote the
fingerprint of y at time i, where y has the hash-selector value k at time i. Then, xi and y

have a hard collision if and only if hi(xi) = hi(y).
We show that for any y, regardless of answers to previous queries, xi and y have a hard

collision with probability ε/n; taking a union bound over all elements gives the theorem.
We proceed in cases. First, if xi is a first-time query, that is, xi /∈ {x1, . . . , xi−1}, then

the probability that hi(xi) = hi(y) is the probability that both their quotient and remainder
match, which occurs with probability 2−(log n+log 1/ε) = ε/n.

Next, suppose that xi is a repeated query, that is, xi ∈ {x1, . . . , xi−1}. Let j < i be the
largest index where xi = xj was previously queried. If xj did not have a soft collision with
y, that is, q(xj) ̸= q(y), then xi cannot have a hard collision with y. Now suppose that
q(xj) = q(y). We have two subcases.
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1. y’s hash-selector value has not changed since xj was queried. Note that, in this case, xj

must not have had a hard collision with y, as that would have caused y’s hash-selector
value, and thus its remainder, to be updated. Thus, hj(y) = hi(y) ̸= hj(xj) = hi(xi).

2. y’s hash-selector value has been updated since xj was queried. Such an update could
have been caused by a further query to xj having a hard collision with y, or some other
query xk ∈ xj , xj+1, . . . , xi having a hard collision with y. In either case, the probability
that the new remainder matches, i.e., ri(y) = ri(xi), is 2− log 1/ε = ε.

Therefore, the probability that xi has a hard collision with y is at most ε · Pr[q(xj) =
q(y)] = ε/n. Finally, by a union bound over n possibilities for y ∈ S, we obtain that
Pr[xi is a false positive] ≤ ε for all 1 ≤ i ≤ t, as desired. ◀

Hash-selector probabilities. The telescoping adaptive filter increments the hash-selector
value of an element y ∈ S whenever a false positive query collides with y. Here we analyze
the probability of an element having a given hash-selector value.

▶ Lemma 2. Consider a sequence Q = x1, x2, . . . , xt of queries (interleaved with inserts),
where each xi /∈ S and Q consists of cn unique queries (with any number of repetitions),
where c < 1/ε − 1. Then for any y ∈ S, if v(y) is the hash-selector value of y after all queries
in Q are performed, then:

Pr[v(y) = k]
{

= (1 − ε
n )cn if k = 0

≤ εk(1 − ε)
∑k

i=1
(

cn
i

) 1
ni if k > 0

Proof. First, consider the case k = 0: the hash-selector value of y stays zero after all the
queries are made if and only if none of the queries have a hard collision with y. Since there
are cn unique queries, and the probability that each of them has a hard collision with y is
ε/n, the probability that none of them collide with y is (1 − ε/n)cn.

Now, consider the case k ≥ 1. Given that the hash selector value of y is k, we know
that there have been exactly k hard collisions between queries and y (where some of these
collisions may have been caused by the same query). Suppose there are i unique queries
among all queries that have a hard collision with y, where 1 ≤ i ≤ k. Let kj be the number
of times a query j collides with y causing an increment in its hash-selector value, where
1 ≤ j ≤ i. Thus,

∑i
j=1 kj = k.

For a query xj , the probability that xj collides with y, the first time xj is queried, is ε/n.
Then, given that xj has collided with y once, the probability of any subsequent collision
with y is ε. (This is because the log 1/ε bits of the remainder of y are updated with each
collision.) Thus, the probability that xj collides with y at least kj times is ε

n · εkj−1.
The probability that a query xj collides with y at least kj times, is given by

∏i
j=1

ε
n ·

εkj−1 = εk

ni . There are
(

cn
i

)
ways of choosing i unique queries from cn, for 1 ≤ i ≤ k, which

gives us

Pr[v(y) ≥ k] = εk
k∑

i=1

(
cn

i

)
1
ni

(1)
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Finally, using Inequality 1, we can upper bound the probability that a hash-selector value
is exactly k.

Pr[v(y) = k] = Pr[v(y) ≥ k] − Pr[v(y) ≥ k + 1]

= εk

[
k∑

i=1

(
cn

i

)
1
ni

− ε
k+1∑
i=1

(
cn

i

)
1
ni

]

= εk · (1 − ε)
[

k∑
i=1

(
cn

i

)
1
ni

− ε

1 − ε

(
cn

k + 1

)
1

nk+1

]

≤ εk(1 − ε)
k∑

i=1

(
cn

i

)
1
ni

◀

We simplify the probabilities in Lemma 2 in Corollary 3. The probability bounds in Corol-
lary 3 closely match the distribution of hash-selector frequencies we observe experimentally.

▶ Corollary 3. Consider a sequence Q = x1, x2, . . . , xt of queries (interleaved with inserts),
where each xi /∈ S and Q consists of cn unique queries (with any number of repetitions),
where c < 1/ε − 1. For any y ∈ S, if v(y) is the hash-selector value of y after all queries in
Q are performed, then:

Pr[v(y) = 0] <
1

ecε
, and Pr[v(y) = k] < εk

k∑
i=1

ci

i! for k ≥ 1.

Proof. To upper bound Pr[v(y) = 0], we use the inequality (1 − 1/x)x ≤ 1/e for x > 1. To
upper bound Pr[v(y) = k], we upper bound:(

cn

i

)
1
ni

≤ cn · (cn − 1) · · · (cn − i)
i!

1
ni

≤ cini

i!ni
= ci

i! ◀

Space analysis. Up until now, we have assumed that we always have enough room to store
arbitrarily large hash selector values. Next, we give a tradeoff between the space usage of
the data structure and the number of unique queries it can support.

We use the hash-selector probabilities derived above to analyze the space overhead of
storing hash-selector values. Theorem 4 assumes an optimal arithmetic encoding: storing
a hash-selector value k that occurs with probability pk requires exactly log(1/pk) bits. In
our implementation we use an approximate version of the arithmetic coding for the sake of
performance.

▶ Theorem 4. For any ε < 1/2 and b ≥ 2, given a sequence of n/(b
√

ε) unique queries (with
no restriction on the number of repetitions of each), the telescoping adaptive filter maintains
a sustained false-positive rate of ε using at most

(
1
e + b

(b−1)2

)
bits of space in expectation

per element.

Proof. Let c = 1/(b
√

ε); thus, there are cn unique queries. Consider an arbitrary element
y ∈ S. The expected space used to store the hash-selector value v(y) of y is

∑∞
k=0 pk log 1/pk,

where pk is the probability that v(y) = k.
We separate out the case where k = 0, for which pk is the largest, and upper bound the

p0 log 1/p0 term below, using the probability derived in Lemma 2.

p0 log 1/p0 = (1 − ε/n)cn log 1
(1 − ε/n)cn

≤ 1
ecε

· log(1 + ε

n
)cn

= 1
ecε

· cn log(1 + ε

n
) ≤ 1

ecε
· cn

ε

n
= cε

ecε
<

1
e

(2)
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In step (2) above we use the fact that x/ex < 1/e for all x > 0.
We now upper bound the rest of the summation, that is,

∑∞
k=1 pk log 1/pk for k ≥ 1.

When upper bounding this summation we will be using upper bounds on pk – but this is
a lower bound on log 1/pk. To deal with this, we observe that the function x log 1/x is
monotonically increasing for x < 1/e. Therefore, if we show that the bounds in Corollary 3
never exceed 1/e, we can substitute both terms in pk log 1/pk in our analysis. We start by
showing this upper bound. In the following, we use b ≥ 2 and ε < 1/2.

pk < εk
k∑

i=1

ci

i! < εkck · k < εk ·
(

1
b
√

ε

)k

· k = k

bk
· εk/2 < k · 1

23k/2 <
1
e

.

We now upper bound the sum
∑∞

k=1 pk log 1/pk by replacing pk with its upper bound
εkck · k (this replacement is an upper bound because we showed εk

∑k
i=1

ci

i! < 1/e above).

∞∑
k=1

pk log 1/pk ≤
∑
k≥1

kεkck log 1
εkckk

=
∞∑

k=1

k

bk
·
(

εk/2 · log 1/εk
)

(3)

<
∞∑

k=1

k

bk
= b

(b − 1)2 . (4)

We simplify step (3) above using the fact that
√

x log 1/x < 1 for all x ≤ 1; step (4) is a
known identity.

Thus,
∑∞

k=0 pk log 1/pk < 1/e + b/(b − 1)2, which is the expected number of bits used to
store the hash-selector value of y. ◀

Theorem 4 implies that if the TAF is using a certain number of bits per element in
expectation to store hash-selector values, then there is a precise bound on the number of
unique queries it can handle in any query workload while being provably adaptive. For
example, if ε = 1/28 and we set b = 4 in Theorem 4, then a telescoping adaptive filter that
uses 4/9 + 1/e ≈ 0.812 bits per element in expectation can handle 4n unique queries without
running out of space and having to rebuild. In Section 6, the TAF outperforms this bound,
retaining good performance with 0.812 bits per element for A/S ≤ 20.

5 Implementation

In this section, we describe the implementation of the TAF and our implementation of the
broom filter [5], which we call the extension adaptive filter (exAF).

Recall that adaptive filters have a local state L and a remote representation R.

Rank-and-select quotient filter. The local state L of both the TAF and exAF is implemented
as a rank-and-select quotient filter (RSQF) [29]. The RSQF stores metadata bits – one
occupied bit and one runend bit for each slot. The occupied bit associated with slot i

indicates whether any elements with the quotient i have been inserted into the filter. The
runend bit associated with slot i tracks whether the remainder placed in slot i is the last
remainder in a contiguous run of remainders with the same quotient. These metadata bits
are sufficient to find the original slot of an element, but processing them bit-by-bit can be
slow. The RSQF cleverly uses rank and select operations to quickly jump to the original
slot [6]. These operations are efficiently implemented using x86 instructions on 64-bit words.

To improve cache efficiency, the RQSF stores remainders (along with their 2 metadata
bits) in 64-element blocks. In particular, each block stores 64 contiguous remainders and two
64-bit metadata arrays. To search through the blocks efficiently, an offset (stored using at

ESA 2021



60:12 Telescoping Filter: A Practical Adaptive Filter

most 8 bits) is stored for each block. The offset of a location i is the distance between i and
i’s associated runend. Each block stores the offset of its first slot. In total, the RSQF stores
2.125 metadata bits per element in the filter.

Arithmetic coding on integers. Arithmetic coding can give theoretically optimal compres-
sion, but the standard implementation that recursively divides the unit interval relies on
floating point operations. These floating point operations are slow in practice, and involve
precision issues that can lead to incorrect answers or inefficient representations. In our
implementation, we avoid these issues by applying arithmetic coding to a range of integers,
{0, . . . , 2k − 1} for the desired code length k, instead of the unit interval. We set k = 56,
encoding all hash-selector values for a block in a 56-bit word. When multiplying or dividing
integral intervals by probabilities in [0, 1], we approximate floating point operations using
integer shifts and multiplications.

Remote representation. We implement R for both filters as an array storing elements in
the set S, along with their associated hashes. We keep R in sync with L: if the remainder
r(x) is stored in slot s in L, then x is stored in slot s in R. This leads to easy lookups: to
lookup an element x in R, we simply check the slot R[s] where r(x) = L[s]. Insertions that
cause remainders to shift in L are expensive, however, as we need to shift elements in R as
well.

TAF implementation. The local state of TAF is an RSQF where each block of 64 contiguous
elements stores the remainders of all elements, all metadata bits (each type stored in a 64-bit
word), an 8-bit offset, and a 56-bit arithmetic code storing hash-selector values.

TAF’s inserts are similar to the RSQF, which may require shifting remainders. The TAF
updates the hash-selector values of all blocks that are touched by the insertion.

Our implementation uses MurmurHash [3] which has a 128-bit output. We partition the
output of MurmurHash into the quotient, followed by chunks of size log(1/ε), where each
chunk corresponds to one remainder. Each time we increment the hash-selector value, we
just slide over log(1/ε) bits to obtain the new remainder.

On a query x, the TAF goes through each slot s corresponding to quotient q(x) and
compares the remainder stored in s to ri(y), where i is the hash-selector value of s, retrieved
by decoding the blocks associated with each s. If they match, the filter returns “present”
and checks R to determine if x ∈ S. If x /∈ S, the filter increments the hash-selector i of x

and updates the arithmetic code of the block containing x.
If the 56-bit encoding fails, we rebuild: we set all hash-selector bits in the block to 0,

and then attempt to fix the false positive again.

exAF implementation. Our implementation of the broom filter, which we call the exAF,
maintains its local state as a blocked RSQF, similar to the TAF . The main difference
between the two filters is how they adapt. The exAF implements the broom filter’s adapt
policy of lengthening fingerprints. To do this efficiently, we follow a strategy similar to the
TAF . We divide the data structure into blocks of 64 elements, storing all extensions for a
single block into an arithmetic code that uses at most 56 bits.

The exAF’s insertion algorithm resembles the that of the RSQF and broom filter. However,
while the broom filter adapts on inserts to ensure that all stored fingerprints are unique, the
exAF does not adapt on inserts, and may have duplicate fingerprints.
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During a query operation, the exAF first performs an RQSF query: it finds if there is a
stored element whose quotient and remainder bits match, without accessing any extension bit.
Only if these match does it decode the block’s arithmetic code, allowing it to check extension
bits. This makes queries in the exAF faster compared to TAF, which must perform decodes
on all queries. If the full fingerprint of a query y collides with an element x ∈ S, the filter
returns “present” and checks R to determine if x ∈ S. If x /∈ S, the exAF adapts by adding
extension bits to f(x) by decoding the block’s arithmetic code, updating x’s extension bits,
and re-encoding.

As in the TAF, if the 56-bit encoding fails, the exAF rebuilds by setting all adaptivity
bits in the block to 0, and then attempts to fix the false positive again.

6 Evaluation

In this section, we empirically evaluate the telescoping adaptive filter and the exAF.
We compare the false-positive performance of these filters to the Cuckooing ACF, the

Cyclic ACF (with s = 1, 2, 3 hash-selector bits), and the Swapping ACF. The Cyclic ACF
and the Cuckooing ACF use 4 random hashes to choose the location of each element, and
have bins of size 1. The Swapping ACF uses 2 location hashes and bins of size 4.

We compare the throughput of the TAF and exAF against the vacuum filter [32], our
implementation of the RSQF, and a space-inefficient version of the TAF that does not
perform arithmetic coding operations.

Experimental setup. We evaluate the filters in terms of the following parameter settings.
Load factor. For the false-positive tests, we use a load factor of .95. We evaluate the
throughput on a range of load factors.
Fingerprint size: We set the fingerprint size of each filter so that they all use the same
amount of space. We use 8-bit remainders for the TAF. Because the TAF has three
extra bits per element for metadata and adaptivity, this corresponds to fingerprints of
size 11 for the Swapping and Cuckooing ACF, and size 11 − s for a Cyclic ACF with s

hash-selector bits.
A/S ratio. The parameter A/S (shorthand for |A|/|S|) is the ratio of the number of
unique queries in the query set A and the size of the filter’s membership set S. Depending
on the structure of the queries, a higher A/S value may indicate a more difficult workload,
as “fixed” false positives are separated by a large number of interspersed queries.

All experiments were run on a workstation with Dual Intel Xeon Gold 6240 18-core 2.6 Ghz
processors with 128G memory (DDR4 2666MHz ECC). All experiments were single-threaded.

6.1 False Positive Rate
Firehose benchmark. We measure the false positive rate on data generated by the Firehose
benchmark suite [1,2] which simulates a real-world cybersecurity workload. Firehose has two
generators: power law and active set; we use data from both.

The active set generator generates 64-bit unsigned integers from a continuously evolving
“active set” of keys. The probability with which an individual key is sampled varies in time
according to a bell-shaped curve to create a “trending effect” as observed in cyberstreams [2].
We generated 10 million queries using the active set generator. We set the value POW_EXP
in the active set generator to 0.5 to encourage query repetitions. (Each query is repeated
approximately 57 times on average in our final dataset.)
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We then generated 50 million queries using the power-law generator, which generates
queries using a power-law distribution. This dataset had each query repeated many times;
each query was repeated 584 times on average.
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Figure 2 False positive rates on the firehose benchmarks. The plot on the left uses the active set
generator; the plot on the right uses the power-law generator.

In our tests we vary the size of the stored set S (each uses the same input, so |A| is
constant). The results are shown in Figure 2; all data points are the average of 10 experiments.
ACF1, ACF2, and ACF3 represent the Cyclic ACF with s = 1, 2, 3 respectively.

For the active set generated data, the TAF is the best data structure for moderate
A/S. Above A/S ≈ 20, rebuilds become frequent enough that TAF performance degrades
somewhat, after which its performance is similar to that of the Cyclic ACF with s = 2
(second to the Swapping ACF). This closely matches the analysis in Section 4.

For the power law data, the TAF is competitive for most A/S values, although again it
is best for moderate values.

Notably, in both cases (and particularly for the active set data), the exAF performs
substantially worse than the TAF. This shows that given the space amount of extra bits per
element on average, the TAF uses them more effectively towards adaptivity than the exAF.

Network Traces. We give experiments on three network trace datasets from the CAIDA
2014 dataset, replicating the experiments of Mitzenmacher et al. [25]. We use three net-
work traces from the CAIDA 2014 dataset, specifically equinix-chicago.dirA.20140619
(“Chicago A”, Figure 3) equinixchicago.dirB.20140619-432600 (“Chicago B”, Figure 3),
and equinix-sanjose.dirA.20140320-130400 (“San Jose”, Figure 4).

On network trace datasets, most filters are equally effective at fixing false positives, and
their performance is determined mostly by their baseline false positive rate, that is, the
probability with which a first-time query is a false positive. If s bits are used for adaptivity,
that increases the baseline FP rate by 2s, compared to when those bits are used towards
remainders. This gives the Cuckooing ACF an advantage as it uses 0 bits for adapting.

The TAF and exAF perform similarly to the Swapping ACF and ACF1 (Cyclic ACF
with s = 1) on these datasets.

Adversarial tests. The main advantage of the TAF and exAF is that both are adaptive in
theory – even against an adversary. Adversarial inputs are motivated by security concerns,
such as denial-of-service attacks, but they may also arise in some situations in practice. For
example, it may be that the input stream is performance-dependent, and previous false
positives are more likely to be queried again.
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Figure 3 False positive performance of the filters on network trace data. The Chicago A dataset
is used on the left, and the Chicago B dataset is on the right.
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Figure 4 On the left is the network trace San Jose dataset. On the right is adversarial data,
where we vary the size of the initial query set, and plot the proportion of elements in the final set
that are false positives.

We test our filter against an “adversarial” stream that probabilistically queries previous
false positives. This input is significantly simpler than the lower bounds given in [21] and [5],
but shares some of the basic structure.

Our adversarial stream starts with a set of random queries |Q|. The queries are performed
in a sequence of rounds; each divided into 10 subrounds. In a subround, each element of Q is
queried. After a round, any element that was never a false positive in that round is removed
from Q. The filter then continues to the next round. The test stops when |Q|/|S| = .01, or a
bounded number of rounds is reached.

The x-axis of our plot is |Q|/|S|, and the y-axis is the false positive rate during the final
round (after the adversary has whittled Q to only contain likely false positives). We again see
that the TAF does very well up until around |Q|/|S| ≈ 20. After this point, the adversary is
successfully able to force false positives. This agrees closely with the analysis in Section 4.

The Cyclic ACF with s = 3 (ACF3) does well on adversarial data even though it is known
to not be adaptive. This may be in part because the constants in the lower bound proof [21]
are very large (the lower bound uses 1/ε8 ≈ 264 queries). However, this adaptivity comes at
the cost of a worse baseline FP rate, as this filter struggles on network trace data.

6.2 Throughput
In this section, we compare the throughput of our filters to other similar filters.

For the throughput tests, we introduce several new filters as a point of comparison.
The vacuum filter [32] is a cuckoo filter variant designed to be space- and cache-efficient.
We compare to the “from scratch” version of their filter [34]. We also compare to our
implementation of the RSQF [29]. The RSQF does not adapt, or perform remote accesses.
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Figure 5 The throughput for inserts (left) and queries (right) on the active set Firehose data.

Finally, to isolate the cost of the arithmetic coding itself, we compare to our implementa-
tion of an uncompressed telescoping adaptive filter (uTAF). The uTAF works exactly
as the TAF, except it stores its hash-selector values explicitly, without using an arithmetic
coding. This means that the uTAF is very space-inefficient.

For the throughput tests, we evaluated the performance on the active set Firehose data
used in Figure 2. Our filters used 224 slots. We varied the load factor to compare performance.
All data points shown are the average of 10 runs.

The throughput tests show that the TAF achieves similar performance in inserts to
the other filters, though it lags behind in queries at high throughput. The exAF performs
significantly better for queries, likely due to skipping decodes as discussed in Section 5.

The uTAF is noticeably faster than the TAF, but is similar in performance to exAF.
This highlights the trade-offs between the two ways to achieve adaptivity: the exAF scheme
of lengthening remainders has better throughput but worse adaptivity per bit; while the
TAF scheme of updating remainders has better adaptivity per bit but worse throughput.
Overall, while the query-time decodes of TAF do come at a throughput cost, they stop short
of dominating performance.

7 Conclusion

We provide a new provably-adaptive filter, the telescoping adaptive filter, that was engineered
with space- and cache-efficiency and throughput in mind. The TAF is unique among adaptive
filters in that it only uses a fractional number of extra bits for adaptivity (0.875 bits
per element). To benchmark the TAF, we also provide a practical implementation of the
broom filter. To effectively compress the adaptivity metadata for both filters, we implement
arithmetic coding that is optimized for the probability distributions arising in each filter.

We empirically evaluate the TAF and exAF against other state-of-the-art filters that
adapt, on a variety of datasets. Our experiments show that TAF outperforms the exAF
significantly on false-positive performance, and frequently matches or outperforms other
heuristically adaptive filters. Our throughput tests show that our adaptive filters achieve a
comparable throughput to their non-adaptive counterparts.

We believe that our technique to achieve adaptivity through variable-length fingerprints
is universal and can be used alongside other filters that stores fingerprints of elements (e.g.,
a cuckoo or vacuum filter). Thus, there is potential for further improvements by applying
our ideas to other filters, taking advantage of many years of filter research.
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Abstract
Given points P = {p1, ..., pn} subset of Rd, how do we find a point x which approximately maximizes
the function 1

n

∑
pi∈P

e−∥pi−x∥2
? In other words, how do we find an approximate mode of a Gaussian

kernel density estimate (KDE) of P ? Given the power of KDEs in representing probability distribu-
tions and other continuous functions, the basic mode finding problem is widely applicable. However,
it is poorly understood algorithmically. We provide fast and provably accurate approximation
algorithms for mode finding in both the low and high dimensional settings. For low (constant)
dimension, our main contribution is a reduction to solving systems of polynomial inequalities. For
high dimension, we prove the first dimensionality reduction result for KDE mode finding. The
latter result leverages Johnson-Lindenstrauss projection, Kirszbraun’s classic extension theorem, and
perhaps surprisingly, the mean-shift heuristic for mode finding. For constant approximation factor
these algorithms run in O(n(log n)O(d)) and O(nd + (log n)O(log3 n)), respectively; these are proven
more precisely as a (1 + ϵ)-approximation guarantee. Furthermore, for the special case of d = 2,
we give a combinatorial algorithm running in O(n log2 n) time. We empirically demonstrate that
the random projection approach and the 2-dimensional algorithm improves over the state-of-the-art
mode-finding heuristics.
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1 Introduction

Given a point set P in Rd and a kernel K : Rd ×Rd → R, the kernel density estimate (KDE)
is a function mapping from Rd to R and is defined as 1

|P |
∑

p∈P K(x, p) for any x ∈ Rd. One
common example of kernel K is the Gaussian kernel, K(x, y) = e−∥x−y∥2 for any x, y ∈ Rd,
which is the focus of this paper.

These kernel density estimates are a fundamental tool in statistics [48, 45, 18, 19] and
machine learning [44, 23, 36]. For d = 1, KDEs with a triangular kernel (K(x, p) =
max(0, 1− |x− p|)) can be seen as the average over all shifts of a fix-width histogram. And
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unlike histograms these generalize naturally to a higher dimensions as a stable way to create
a continuous function to represent the measure of a finite point set. Indeed, the KDEs
constructed on an iid sample from any tame distribution will converge to that distribution in
the limit as the sample size grows [48, 45]. Not surprisingly they are also central objects in
Bayesian data analysis [27, 21]. Using Gaussian kernels (and other positive definite kernels),
KDEs are members of a reproducing kernel Hilbert space [53, 50, 36] where for instance they
induce a natural distance between distributions [49, 28]. Their other applications includes
outlier detection [56], clustering [43], topological data analysis [40, 14], spatial anomaly
detection [2, 24], and statistical hypothesis testing [23].

In this paper, we study how to find an approximate mode of a Gaussian KDE. An
ϵ-approximate mode of a KDE is a point x′ whose KDE value is at least 1 − ϵ times the
maximum of the KDE. It is known that Gaussian KDEs can have complex structure of local
maximum [20, 26], but other than some heuristic approaches [9, 10, 54, 22] there has been
very little prior work [40, 2] (which we discuss shortly) in developing and formally analyzing
algorithms to find this maximum. Beyond being a key descriptor (the mode) of one of the
most common representations of a continuous distribution, finding the (global) maximum
of a KDE has many other specific applications. It is a necessary step to create a simplicial
complex to approximate superlevel sets of KDEs [40]; to localize and track objects [13, 46]; to
quantify multi-modality of distributions [47]; to finding typical objects, including curves [22].

Problem Definition. For any x, y ∈ Rd, we define the Gaussian kernel as K(x, y) = e−∥x−y∥2 .
The Gaussian kernel density estimate (KDE) GP (x) of a point set P is defined as GP (x) =

1
|P |
∑

p∈P K(p, x), for x ∈ Rd. We will sometimes use the notation GP (x) = |P | · GP (x) to
simplify calculations. In line with other works on optimization, we focus on the approximate
version of the mode finding problem, defined as follows. Given a point set P of size n

where maxx∈Rd GP (x) ≥ ρ for some parameter ρ below which the maximum is uninteresting,
and an error parameter ϵ > 0, the goal is to find an ϵ-approximate mode x′, such that
GP (x′) ≥ (1− ϵ) maxx∈Rd GP (x). We assume the lower bound ρ is known to the algorithm;
or we can set ρ = 1/n since GP (p) ≥ 1/n for any p ∈ P . In practice, one should expect that
ρ≪ ϵ, so we aim for algorithms with far smaller dependence on 1/ρ than on 1/ϵ.

Known Results. One trivial approach is exhaustive search. It is easy to see that the optimal
point x∗ cannot be too far away from the input data. More precisely, x∗ should be within
the radius of

√
log 1

ρ of a point p for some p ∈ P . Given the above observation, one can
construct a grid of width 1

ϵρ around each point of input data and evaluate the value of GP at
each grid point. This approach will allow us to output a solution with additive error at most
ϵnρ. However, the size of the search space could be as large as O

(
n
(√

log 1
ρ

/
ϵρ
)d
)

which is
infeasible in practice. A similar approach is suggested by [40].

Another approach, proposed by [2], is to compute the depth in an arrangement of a set
of geometric objects. Namely, it is to find the point that maximizes the number of objects
including that point. They consider a set S of segment in R2 and, for any x ∈ R2 and s ∈ S,
define K(x, s) = K(x, y) where y is the closest point on s to x. In our setting, we treat the
point set P as degenerate (length 0) segments S. By discretizing the continuous function K

into the level set of it, one can view the problem as computing the depth in an arrangement
of a collection of level sets. This approach has a running time of O( n

ϵ4 log3 n) (this implicitly
sets ρ = 1/n). One can generalizes their approach to the high dimensional case, but the
running time would still be O(nO(d)).
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Related Work. As mentioned before, computing depth in an arrangement of a set of
geometric object is highly related to our problem. Given a collection C of geometric object in
Rd, one can expressed the depth as

∑
c∈C 1c(x) where 1c(x) is the indicator function of x ∈ c.

It is easy to see that KDE is basically the same formula by replacing 1c(x) with K(x, p).
Namely, one can view finding a maximum point of KDE as computing the point of maximum
“fractional” depth among kernels. Surprisingly, there are not many non-trivial algorithmic
results on computing the depth of high-dimensional geometric objects. In general, whenever
C is a collection of bounded complexity (e.g. VC dimension [52]) objects, the arrangement is
always of complexity O(nO(d)) and it can be constructed, with the depth encoded, in as much
time. A celebrated case is when C is a collection of axis parallel box, the point of maximum
depth can be found in O(nd/2−o(1)) time [12]. For our task we can run such approaches on a
sample of size n0 = O( d

ϵ2ρ log 1
ρ ) [32, 25], so the runtimes still have a 1/ρO(d) term.

Another line of work [11, 20, 5] attempts to bound the number of local maximum of a
Gaussian KDE. Perhaps surprisingly, the number is greater than n for dimensions d ≥ 2, and
in fact can be at least

(
n
d

)
+ n for n, d ≥ 2 [5]. It is currently unknown whether the number

can be infinite, but the best upper bound assuming finiteness is 2d+(n
2)(5 + 3d)n. So even if

we could identify all of these, there still would be Ω(nd) points to evaluate.
While not as explicit as the dimensionality reduction results we will present, other work

based on LSH [6, 7] or related to geometric graphs [41] have shown properties of evaluating
KDEs after what can be interpreted as forms of dimensionality reduction. For instance,
Quanrud [41] shows that using dimensionality reduction, as well as other approximations
and structures, one can evaluate KDEs within 1± ϵ error in roughly 1/ϵ2 time, but also with
logarithmic factors depending on, for example, spread parameters for the Gaussian kernel.

Our Approach and Result. We present an approximation scheme that reads the data (to
sample it) in O(nd) time, and then its runtime depends only on 1/ϵ and 1/ρ. At the heart of
our algorithm are two techniques: dimensionality reduction and polynomial system solving.
We also use standard coreset results for Gaussian kernel density estimates.

For dimensionality reduction (Section 3), we use Johnson-Lindenstrauss matrices to
project the point set down to low dimensions, and solve the problem in low dimensions. The
crucial issue is, if we solve the mode finding problem in the low dimensional space, it is not
immediately clear that the original high dimensional space also has a point that gives a high
KDE value. We resolve this with an application of Kirszbraun’s extension theorem [30, 51],
which shows the existence of such a high dimensional point. To find the actual point in the
high dimensional space, we use one step of the mean-shift algorithm [9, 10], which is a known
heuristic for the KDE maximum finding problem with provable monotonicity properties.
We could alternatively combine a terminal dimensionality reduction result [37] with our
mean-shift recovery strategy. Doing so would give the same level of dimensionality reduction,
at the expense of reduced simplicity and runtime efficiency.

In low dimensions, we consider Taylor series truncations of the Gaussian kernel, and reduce
the mode finding problem to solving systems of polynomial inequalities (Section 2). The
result of [42] implies that one can find a solution to a system of λ polynomial inequalities with
degree D and k variables in time O((λD)O(k)). Here, k will essentially be the dimensionality
d of the problem, and λ will be a constant as shown in our constructions. We observe that
since the optimal point must be close to one of the points in the input, we can consider a
sufficiently fine grid in the vicinity of each input point, which totals to O(n2O(d)) grid points.
For each grid point, we formulate and solve a system of polynomial inequalities based on
Taylor expansions, up to O(log 1

ρ ) terms around that grid point. This gives a running time
of O(n(log 1

ρ )O(d)), where n is the size of the input point set.
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Combining the above ideas with standard coreset results (small subsets Q ⊂ P so GQ

approximates GP ) yields approximation schemes for the KDE mode finding problem. We
present two such schemes, one with exponential runtime dependence on the dimensionality
d which is more suitable for low dimensions, and another with only linear dependence
in d (which is necessary for reading the input) and is designed for the high dimensional
regime. Guarantees of these approximations are captured by Theorems 1 and 2; we provide
algorithmic details and intuition, but proofs are in the appendices.

▶ Theorem 1 (Low dimensional regime). Given ϵ, ρ > 0 and a point set P ⊂ Rd of size n with
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ Rd so GP (x′) ≥ (1− ϵ)GP (x∗)

in O

(
nd + d

ϵ2ρ · log 1
ρδ ·

(
log d

ϵρ

)O(d)
)

time with probability at least 1− δ.

▶ Theorem 2 (High dimensional regime). Given ϵ, ρ > 0 and a point set P ⊂ Rd of size n with
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ Rd so GP (x′) ≥ (1− ϵ)GP (x∗)

in O

(
nd +

(
log 1

ϵρ

)O( 1
ϵ2 log3 1

ϵρ )
· log 1

δ + min{nd log 1
δ , d

ϵ2ρ2 log2 1
δ }
)

time with probability at

least 1− δ.

One may set the relative error parameter ϵ, and failure probability δ to constants, and
observe the mode of GP must be at least 1/n and set ρ = 1/n. Then the runtimes become
O(n(log n)O(d)) for constant dimensions, and O(nd + (log n)O(log3 n)) in high dimensions.

In addition to our result in Theorems 1 and 2, we also consider the special case where
d = 2. We present a combinatorial algorithm for the 2-dimensional regime which is easier to
implement. Here, we borrow the idea from [2] which is to compute the depth. Instead of
simply considering the level sets of the Gaussian kernel (which are circles in our setting), we
consider a more involved decomposition. One important property of the Gaussian kernel is its
multiplicatively separability – namely, the Gaussian kernel can be decomposed into factors,
with one factor for each dimension. We now discretize each factor into level sets (which
are simply intervals) and then consider their Cartesian products, generating a collection of
axis-parallel rectangles. A similar idea was also suggested by [38]. Finally, if we compute
the depth of this collection of axis-parallel rectangles, we can find out an approximate mode
in time O( 1

ϵ2ρ log2 1
ρ ). This approach also works in higher dimensions, but it would yield a

slower running time than our general approaches in Theorems 1 and 2. The formal guarantees
of this 2-d algorithm are captured in Theorem 3, and proven in the appendices.

▶ Theorem 3 (2-dimensional setting). Given ϵ, ρ > 0 and a point set P ⊂ R2 of size n such that
GP (x∗) ≥ ρ, where x∗ = argmaxx∈Rd GP (x), we can find x′ ∈ R2 so GP (x′) ≥ (1− ϵ)GP (x∗)
in O

(
n + 1

ϵ2ρ (log 1
ρ + log 1

δ ) log( 1
ϵρ log 1

δ )
)

time with probability at least 1− δ.

There are different extensions of our problem formulation. For example, one can define
the weighted KDE of a point set P ,

∑
p∈P wpK(x, p), and find its mode. Another common

extension is to consider non-spherical Gaussians with different variances. We expect that our
technique with some straightforward modifications work for these extensions and will omit
the details.

2 KDE Mode Finding via System of Polynomials

In this section we provide algorithms that approximately find the maximum of the Gaus-
sian KDE in Rd. We first define the following notations. For a point p ∈ Rd and r > 0,
we define Bp(r) as

{
y ∈ Rd | ∥y − p∥ ≤ r

}
, namely the Euclidean ball around p. For a
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point set P ⊂ Rd and r > 0, we define BP (r) as ∪p∈P Bp(r), that is the union of Eu-
clidean balls around all the points in P . For a point set P ⊂ Rd, a point q ∈ Rd and
r > 0, also define QP,q(r) = P ∩ Bq(r

√
log 1

ϵρ ). Finally, let Grid(γ) be the infinite grid
{x = (i1γ, i2γ, . . . , idγ) | i1, i2, . . . , id are integers}, parametrized by a cell length γ > 0.

We first make an observation that the maximum point must be close to one of the data
points, captured by Observation 4.

▶ Observation 4. x∗ ∈ BP (
√

log 1
ρ ). Recall that x∗ = argmaxx∈Rd GP (x).

Proof. Suppose x∗ /∈ BP (
√

log 1
ρ ). Then, GP (x∗) =

∑
p∈P e−∥p−x∗∥2

<
∑

p∈P ρ = nρ.

However, GP (x∗) ≥ nρ by assumption. ◀

The algorithm presented in this section relies crucially on the result of Renegar for solving
systems of polynomial inequalities, as stated in the following lemma.

▶ Lemma 5 ([42]). Consider λ polynomial inequalities with maximum degree D and k

variables. There is an algorithm either finds a solution that satisfies all λ polynomial
inequalities or returns NO SOLUTION in O((λD)O(k)) time.

Before we give details of our algorithm, we present the family of systems of polynomial
inequalities we formulate for mode finding. Let SysPoly(P, q, r, r′, β) be the following system.

∑
p∈QP,q(r′)

d∏
i=1

s−1∑
j=0

1
j!
(
−(xi − pi)2)j

 ≥ β
∧

∥x− q∥2 ≤ r2 log 1
ϵρ

where s = (r + r′)2e2 log d
ϵρ . Intuitively, if a point x ∈ Rd satisfies the left inequality of

SysPoly(P, q, r, r′, β), then the value GP (x) is larger than a threshold that is approximately β.
It is because the LHS of the left inequality is the sum of the truncated Taylor expansion of the
Gaussians centered at p that is around q. On the other hand, the truncated Taylor expansion
only gives a good approximation locally. Hence, the right inequality of SysPoly(P, q, r, r′, β)
ensures that x is around q.

Also, let SysPoly(P, q, r, r′) be the algorithm that performs binary search on β of the
above system SysPoly(P, q, r, r′, β) and terminates when the search gap is less than 1

10 |P | ϵρ.
Note that β lies between 0 and O(|P |) which means we need O

(
log
(
|P | / 1

10 |P | ϵρ
))

=
O
(

log 1
ϵρ

)
iterations in binary search. The total running time of SysPoly(P, q, r, r′) is

O
(

(4s)O(d) log 1
ϵρ

)
= O(sO(d)) since k = d, λ = 2 and D = 2s in Lemma 5.

The following lemma captures the approximation error from the Taylor series truncation.

▶ Lemma 6. Suppose r + r′ > 1 and q ∈ Rd such that ∥x∗ − q∥ ≤ r
√

log 1
ϵρ . Then, the

output x(q) of SysPoly(P, q, r, r′) satisfies GQP,q(r′)(x(q)) ≥ GQP,q(r′)(x∗)− |P | ϵρ
2 .

In short, it shows that the truncation of the above infinite summation of polynomial
terms (wrapped in a sum over all points Q, and the product over d dimensions) induces an
error terms E(x(q)) and E(x∗) at x(q) and x∗, respectively. We can show that the difference
between these terms is at most ϵρ for our choice of s, as desired.
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Proof. First, we write
∑

p∈Qq(r′) e−∥p−x(q)∥2 into the following form.

∑
p∈Qq(r′)

e−∥p−x(q)∥2
=

∑
p∈Qq(r′)

d∏
i=1

 ∞∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j


=

∑
p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j

+ E(x(q))

where E(x) =
∑

p∈Qq(r′)
∑

j1,...,jd|one of ji ≥ s
1

j1!···jd!
(
−(x1 − p1)2)j1 · · ·

(
−(xd − pd)2)jd for

any x ∈ Rd.
Now, we have

∑
p∈Qq(r′)

e−∥x(q)−p∥2
=

∑
p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!

(
−(x(q)

i − pi)2
)j

+ E(x(q))

≥
∑

p∈Qq(r′)

d∏
i=1

 s∑
j=0

1
j!
(
−(x∗

i − pi)2)j

− |P | ϵρ

10 + E(x(q))

≥
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 + E(x(q))− E(x∗)

In order to analyze the term E(x(q)) and E(x∗), we can first analyze the term∣∣∣∣∣∣
∑

j1,...,jd|one of ji ≥ s

1
j1! · · · jd!α

j1
1 · · ·α

jd

d

∣∣∣∣∣∣
where αi = −(yi − pi)2 where y is x(q) or x∗.

∑
j1,...,jd|one of ji ≥ s

(
d∏

i=1

1
ji!

αji

i

)
=

d∑
i=1

i−1∏
k=1

s−1∑
j=0

1
j!α

j
k

 ∞∑
j=s

1
j!α

j
i

 d∏
k=i+1

∞∑
j=0

1
j!α

j
k


For each i = 1, 2, . . . , d, by taking s = (r + r′)2e2 log d

ϵρ ,∣∣∣∣∣∣
∞∑

j=s

1
j!α

j
i

∣∣∣∣∣∣ ≤
∞∑

j=s

1
j! |αi|j ≤ max

ξ∈[−|αi|,|αi|]

eξ

s! |αi|s

The last inequality is the error approximation of Taylor expansion of exponential function.
Note that |αi| = (yi− pi)2 ≤ ∥y− p∥2 ≤ (∥y − q∥+ ∥p− q∥)2 ≤

(
r
√

log 1
ϵρ + r′

√
log 1

ϵρ

)2
≤

(r + r′)2 log 1
ϵρ . We have∣∣∣∣∣∣

∞∑
j=s

1
j!α

j
i

∣∣∣∣∣∣ ≤ e(r+r′)2 log 1
ϵρ

s! ((r + r′)2 log 1
ϵρ

)s

≤ e(r+r′)2 log 1
ϵρ

ss
((r + r′)2e log 1

ϵρ
)s by s! ≥ (s

e
)s

≤ e(r+r′)2 log 1
ϵρ

es
≤ (ϵρ

d
)(r+r′)2(e2−1) recall that s = (r + r′)2e2 log d

ϵρ

≤ ϵρ

20d
by r + r′ > 1 and for sufficient small ϵρ
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Now, we can plug this into
∣∣∣∑j1,...,jd|one of ji ≥ s

1
j1!···jd! α

j1
1 · · ·α

jd

d

∣∣∣.∣∣∣∣∣∣
∑

j1,...,jd|one of ji ≥ s

1
j1! · · · jd!α

j1
1 · · ·α

jd

d

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i=1

i−1∏
k=1

s−1∑
j=0

1
j!α

j
k

 ∞∑
j=s

1
j!α

j
i

 d∏
k=i+1

∞∑
j=0

1
j!α

j
k

∣∣∣∣∣∣
≤

d∑
i=1

(
i−1∏
k=1

(1 + ϵρ

10d
)
)( ϵρ

10d

)( d∏
k=i+1

eαk

)

≤
(

1 + ϵρ

20d

)d ϵρ

20 ≤ e
ϵρ
20

ϵρ

20 ≤
ϵρ

8 for sufficient small ϵρ

That means∑
p∈Qq(r′)

e−∥x(q)−p∥2
≥

∑
p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 + E(x(q))− E(x∗)

≥
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ

10 − |QP,q(r′)| ϵρ8 − |QP,q(r′)| ϵρ8

=
∑

p∈Qq(r′)

e−∥x∗−p∥2
− |P | ϵρ2 . ◀

2.1 Algorithm for Searching Polynomial Systems in Neighborhoods

A first attempt invokes Lemma 6 in a ball Bp

(√
log 1

ρ

)
around each p ∈ P . However, to

find out the subset of points that lie inside the ball Bp

(√
log 1

ρ

)
for each p ∈ P , one needs

to search linearly over P naively. Therefore, it requires Ω(n2) runtime.
Rather, following Algorithm 1, we create a set GP of neighborhoods, defined by the subset

of Grid
(

2
√

log 1
ϵρ

d

)
which is within 4

√
log 1

ϵρ of some point p ∈ P . For each q ∈ GP we define

a neighborhood set QP,q(4), and run the algorithm in Lemma 5. Again we return the output
with associated maximum GQP,q()(·) value, which satisfies Theorem 7.

Algorithm 1 Solving System of Polynomial using an Infinite Grid.

input: a point set P ⊂ Rd, parameter ϵ, ρ > 0
1: for each p ∈ P do
2: insert p into QP,q(4) for each q ∈ Bp(4

√
log 1

ϵρ ) ∩ Grid(2
√

log 1
ϵρ

d )

3: Let GP be the q ∈ Grid(2
√

log 1
ϵρ

d ) such that QP,q(4) is non empty
4: for each q ∈ GP do
5: Let x(q) be the solution to SysPoly(P, q, 2, 4) by the algorithm in Lemma 5
6: return x′ = argmaxq∈GP

GQP,q(4)(x(q))

▶ Theorem 7. Given 0 < ϵ, ρ < 1/2 and a point set P ⊂ Rd of size n, let x∗ =
argmaxx∈Rd GP (x). If GP (x∗) ≥ ρ, we find x′ ∈ Rd with GP (x′) ≥ GP (x∗)− ϵρ in time

O

(
n · log n · (2

√
2eπ)d + n ·

(
log d

ϵρ

)O(d)
)

.

ESA 2021



61:8 Finding an Approximate Mode of a Kernel Density Estimate

Proof. We need to argue that x∗ must be contained in some neighborhood Bq(2
√

log 1
ϵρ ) for

some q ∈ GP , and then apply Lemma 5 with r = 2 and r′ = 4. This follows since, by Lemma
4, x∗ ∈ Bp(

√
log 1

ρ ) ⊂ Bp(
√

log 1
ϵρ ) for some p ∈ P . Then let q ∈ GP be the closest grid

point to that point p; the distance ∥p − q∥ ≤
√

dγ/2 =
√

log 1
ϵρ with γ = 2

√
log(1/ϵρ)/d.

Then by triangle inequality ∥q − x∗∥ ≤ ∥q − p∥+ ∥p− x∗∥ ≤ 2
√

log 1
ϵρ . Now, we conclude

that the output of SysPoly(P, p, 2, 4) satisfies

GP (x′) ≥ GQP,q(4)(x′) = GQP,q(4)(x(q)) ≥ GQP,q(4)(x∗)− |P | ϵρ2
=
∑
p∈P

e−∥p−x∗∥2
−

∑
p/∈QP,q(4)

e−∥p−x∗∥2
− |P | ϵρ2

Note that ∥x∗ − p∥ ≥ ∥q − p∥ − ∥q − x∗∥ ≥ 4
√

log 1
ϵρ − 2

√
log 1

ϵρ = 2
√

log 1
ϵρ since x∗ ∈

Bq

(
2
√

log 1
ϵρ

)
and p /∈ Bq

(
4
√

log 1
ϵρ

)
.

GP (x′) ≥ GP (x∗)− |QP,q(4)| (ϵρ)4 − |P | ϵρ2 ≥ GP (x∗)− |P | ϵρ since ϵ, ρ < 1/2

We now compute the running time. First, to construct QP,q(4) (for notation con-
venience, we use Qq instead), for each p ∈ P , we enumerate all q ∈ Bp

(
4
√

log 1
ϵρ

)
∩

Grid
(

2
√

log 1
ϵρ

d

)
and insert p into Qq. Since, by considering the volume of high dimen-

sional sphere, there are O

(
πd/2

Γ( d
2 +1)

(
4
√

log 1
ϵρ

/
2
√

log 1
ϵρ

d

)d
)

= O
(
(2
√

2eπ)d
)

points in

Bp

(
4
√

log 1
ϵρ

)
∩Grid

(
2
√

log 1
ϵρ

d

)
for each p ∈ P , we have

∑
q∈GP

|Qq| = O(n(2
√

2eπ)d) and

also there are only O(n(4
√

2eπ)d) non empty Qq. Here, Γ is the gamma function and we use
the fact of Γ(x + 1) ≥ ( x

e )x. It is easy to construct a data structure to insert all p into all of
the corresponding Qq in O

(
n(2
√

2eπ)d log
(
n(2
√

2eπ)d
))

= O
(
n(2
√

2eπ)d(log n + d)
)
. Let

s = 36e2 log d
ϵρ . We now can precompute each polynomial

∏d
i=1

(∑s−1
j=0

1
j!
(
−(xi − pi)2)j

)
in

O(d(2s)d) time for each p ∈ P which takes O(nd(2s)d) total time to compute all of them.
For each q ∈ GP , it takes O(|Qq| (2s)d) to construct the polynomial and O(sO(d)) time to
solve the system of polynomial as suggested in Lemma 5. Therefore, the total running time is

O

n(2
√

2eπ)d(log n + d) + nd(2s)d +
∑

q∈GP

(|Qq| (2s)d + sO(d)


= O

(
n · log n · (2

√
2eπ)d + n ·

(
log d

ϵρ

)O(d)
)

. ◀

To achieve our final result for low dimensionality, we pre-process the input P by construct-
ing, under the assumption that maxx GP (x) ≥ ρ, a (1− ϵ/3)-approximation coreset from [55]
of size O( d

ϵ2
1
ρ (log 1

ρ + log 1
δ )). Running Algorithm 1 on this coreset yields Theorem 1.
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Proof of Theorem 1. Let x∗∗ = argmaxx∈Rd GP1(x). We first have GP1(x∗∗) ≥ GP1(x∗) ≥
(1− 1

3 ϵ)GP (x∗) = Ω(ρ) for small ϵ. By Theorem 7 and reparameterizing ϵ, we have

GP (x′) ≥ GP1(x′)− 1
3ϵMx′ by the construction of P1

≥ GP1(x∗∗)− 1
3ϵρ− 1

3ϵMx′ since GP1(x∗∗) = Ω(ρ) and by Theorem 7

≥ GP0(x∗)− 1
3ϵρ− 1

3ϵMx′

≥ (1− 1
3ϵ)GP (x∗)− 1

3ϵρ− 1
3ϵMx′ by GP (x∗) ≥ ρ and construction of P1

≥ (1− ϵ)GP (x∗) since Mx′ ≤ GP (x∗)

The final running time is O(nd) to read data and construct P1 plus

O

(
n1 · log n1 · (2

√
2eπ)d + n1 ·

(
log d

ϵρ

)O(d)
)

= O

(
d

ϵ2ρ
· log 1

ρδ
·
(

log d

ϵρ

)O(d)
)

. ◀

3 Dimensionality Reduction for KDE Mode Finding

Leveraging Kirszbraun’s extension theorem, we prove that compressing P = {p1, . . . , pn}
using a Johnson-Lindenstrauss random projection to O

(
log n log2(1/ϵρ)/ϵ2) dimensions

preserves the mode of the KDE with centers in P , to a (1 − ϵ) factor. Crucially, we then
show that it is possible to recover an approximate mode for P from a solution to the low
dimensional problem by applying a single iteration of the mean-shift algorithm.

In Section 3.1 we combine this result with our low dimensional algorithm from Section 2
and existing coreset results for KDEs (which allow us to eliminate the log n dependence) to
give our final algorithm for high-dimensional mode finding. We first present the dimensionality
reduction result in isolation as, like dimensionality reduction strategies for other computational
hard problems [15, 35, 8], it could in principle be combined with any other heuristic or
approximate mode finding method. For example, we show a practical strategy is to solve the
low-dimensional problem using the mean-shift heuristic.

We need one basic definition before outlining our approach in Algorithm 2.

▶ Definition 8 ((γ, k, δ)-Johnson-Lindenstrauss Guarantee). A randomly selected matrix
Π ∈ Rm×d satisfies the (γ, k, δ)-JL Guarantee if, for any k data points v1, . . . , vk ∈ Rd,

∥vi − vj∥ ≤ ∥Πvi −Πvj∥ ≤ (1 + γ)∥vi − vj∥,

for all pairs i, j ∈ 1, . . . , k simultaneously, with probability (1− δ).

Definition 8 is satisfied by many possible constructions. When Π is a properly scaled random
Gaussian or sign matrix, it satisfies the (γ, k, δ)-JL guarantee as long as m = O(log(k/δ)/γ2)
[17, 1]. In this case, Π can be multiplied by a d dimensional vector in O(md) time. For
simplicity, we assume such a construction is used in our algorithm. Other constructions,
including fast Johnson-Lindenstrauss transforms [3, 4, 31] and sparse random projections
[29, 16] satisfy the definition with slightly larger m, but faster multiplication time. Depending
on problem parameters, using such constructions may lead to a slightly faster overall runtime.
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Algorithm 2 Dimensionality Reduction for KDE mode finding.

input: a set of n points P ⊂ Rd, parameters ϵ, δ > 0, ρ such that maxx GP (x) ≥ ρn

output: a point x′ ∈ Rd satisfying GP (x′) ≥ (1− ϵ) maxx GP (x) with prob. 1− δ

1: Set γ = ϵ
4 log(4/ϵρ) .

2: Choose a random matrix Π ∈ Rm×d satisfying the (γ, n + 1, δ)-JL guarantee (Defn. 8).
3: For each pi ∈ P , compute Πpi and let ΠP denote the data set {Πp1, . . . , Πpn}
4: Using an algorithm for mode finding in low dimensions (e.g. Algorithm 1) find a point

x′′ satisfying GΠP (x′′) ≥ (1− ϵ/2) maxx∈Rm GΠP (x).

5: return x′ =
∑

p∈P
p·e−∥x′′−Πp∥2∑

p∈P
e−∥x′′−Πp∥2

▶ Theorem 9. With probability (1 − δ), Algorithm 2 returns an x′ satisfying GP (x′) ≥
(1 − ϵ) maxx GP (x). When implemented with a random Rademacher or Gaussian Π, the
algorithm runs in time O (ndm) + Tm,(1−ϵ/2), where m = O

(
log(n/δ) log2(1/ϵρ)

ϵ2

)
and Tm,(1−ϵ)

is the time required to compute a (1− ϵ/2) approximate mode for an O (m) dimension dataset.

The runtime claim is immediate, so we focus on proving the correctness of Algorithm 9.
The following key lemma is the main structural result, that the mode of our dimensionality
reduced problem has approximately the same density as that of the original. Its proof, as we
see below, crucially uses Kirszbraun’s extension theorem.

▶ Lemma 10. Suppose Π is a projection satisfying the (γ, n + 1, δ)-JL guarantee, then

(1− ϵ/2) max
x∈Rd

GP (x) ≤ max
x∈Rm

GΠP (x) ≤ max
x∈Rd

GP (x) (1)

Proof. Let x∗ = argmaxx GP (x). Since Π was chosen to satisfy the (γ, n + 1, δ)-JL property
with γ = ϵ

4 log(4/ϵρ) , we have that, with probability at least 1− δ, for all y, z ∈ {x∗} ∪ P ,

∥y − z∥2 ≤ ∥Πy −Πz∥2 ≤
(

1 + ϵ

4 log(4/ϵρ)

)
∥y − z∥2. (2)

The rest of our analysis conditions on this fact being true. We first prove the left side of (1).
From (2), we have that ∥Πx∗ −Πp∥2 ≤ (1 + ϵ

4 log(4/ϵρ) )∥x∗ − p∥2 for all p ∈ P . Accordingly,

max
x∈Rm

GΠP (x) ≥ GΠP (Πx∗) =
∑
p∈P

e−∥Πx∗−Πp∥2
≥
∑
p∈P

e−(1+ ϵ
4 log(4/ϵρ) )∥x∗−p∥2

≥
∑
p∈P

∥x∗−p∥2<log(4/ϵρ)

e−∥x∗−p∥2
e− ϵ

4 log(4/ϵρ) ∥x∗−p∥2
≥ (1− ϵ/4)

∑
p∈P

∥x∗−p∥2<log(4/ϵρ)

e−∥x∗−p∥2
. (3)

The last step uses that e− ϵ
4 log(4/ϵρ) ∥x−p∥2

≥ 1− ϵ/4 when ∥x− p∥2 ≤ log(4/ϵρ). Next we have∑
p∈P

∥x∗−p∥2<log 4
ϵρ

e−∥x∗−p∥2
≥
∑
p∈P

e−∥x∗−p∥2
− ϵnρ = GP (x∗)− ϵnρ ≥ (1− ϵ/4)GP (x∗).

This statement follows from two facts: 1) If ∥x−p∥2 ≥ log 4
ϵρ then e−∥x−p∥2 ≤ ϵρ/4 and 2) we

assume that GP (x∗) ≥ ρn. Combining with (3) we conclude that GΠP (x) ≥ (1− ϵ/2)GP (x∗).
We are left to prove the right hand side of (1). To do so, we rely on the classic Kirszbraun

extension theorem for Lipschitz functions, which is stated as follows:
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▶ Theorem 11 (Kirszbraun Theorem [30, 51]). For any S ⊂ Rz, let f : S → Rw be an
L-Lipschitz function: for all x, y ∈ S, ∥f(x)− f(y)∥2 ≤ L∥x− y∥2. Then there always exists
some extension f̃ : Rz → Rw of f to the entirety of Rz such that:
1. f̃(x) = f(x) for all x ∈ S,
2. f̃ is also L-Lipschitz: for all x, y ∈ Rz, ∥f̃(x)− f̃(y)∥2 ≤ L∥x− y∥2.

We will apply this theorem to the function g : {Πx∗}∪ΠP → {x∗}∪P with g(Πy) = y for
any y ∈ {x∗}∪P . By (2), we have that g is 1-Lipschitz. It follows that there is some function
g̃ : Rm → Rd which agrees with g on inputs {Πx∗}∪P and satisfies ∥g̃(s)− g̃(t)∥ ≤ ∥s− t∥ for
all s, t ∈ Rm. This fact can be used to establish that, for any x ∈ Rm, GΠP (x) ≤ GP (g̃(x)):

GΠP (x) =
∑
p∈P

e−∥x−Πp∥2
≤
∑
p∈P

e−∥g̃(x)−g̃(Πp)∥2
=
∑
p∈P

e−∥g̃(x)−p∥2
= GP (g̃(x)).

It thus follows that maxx GΠP (x) ≤ maxx GP (x), so the right side of (1) is proven. ◀

In proving Lemma 10 we have also proven the following statement.

▶ Corollary 12. For any x ∈ Rm, there exists some point g̃(x) ∈ Rd such that, for all p ∈ P ,
∥g̃(x)− p∥ ≤ ∥x−Πp∥.

We complete the proof of Theorem 9 by showing that, not only does the maximum of
GΠP approximate that of GP , but an approximate maximizer for GΠP can be used to recover
one for GP . Algorithm 2 does so on Line 5 by applying a single iteration of the mean-shift
algorithm, a common heuristic KDE mode finding [9, 10], which repeatedly iterates the

equation x(i+1) =
∑

p∈P
p·e−∥x(i)−p∥2∑

p∈P
e−∥x(i)−p∥2 . While not guaranteed to converge to a point which

maximizes GP , a useful property of the mean-shift algorithm is that its solution is guaranteed
to never decrease in quality on each iteration:

▷ Claim 13. Given y ∈ Rd, let y′ =
∑

p∈P
p·e−∥y−p∥2∑

p∈P
e−∥y−p∥2 , then GP (y′) ≥ GP (y).

Proof. We prove this well known fact for completeness. First, observe by rearrangement that
GP (y′)− GP (y) =

∑
p∈P

(
e−∥y′−p∥2+∥y−p∥2 − 1

)
e−∥y−p∥2 . Then, since ez ≥ 1 + z for all z,

we have e−∥y′−p∥2+∥y−p∥2 − 1 ≥ −∥y′ − p∥2 + ∥y − p∥2 = −
(
∥y′∥2 − ∥y∥2 − 2(y′ − y)T p

)
.

GP (y′)− GP (y) ≥ −
(
∥y′∥2 − ∥y∥2)∑

p∈P

e−∥y−p∥2
+ 2(y′ − y)T

∑
p∈P

pe−∥y−p∥2

= GP (y)
(
−∥y′∥2 + ∥y∥2 + 2(y′ − y)T y′) = GP (y)∥y′ − y∥2 ≥ 0. ◀

Proof of Theorem 9. Recall from Corollary 12 that for any x, there is always a g̃(x) with

∥g̃(x)− p∥ ≤ ∥x−Πp∥ (4)

for all p ∈ P . Suppose this inequality was tight: i.e., suppose that for all p ∈ P, x ∈ Rm,
∥g̃(x)− p∥ = ∥x−Πp∥. Then letting x′′ be as defined in Algorithm 2, we would have that
Line 5 sets x′ equal to a mean-shift update applied to g̃(x′′). From Claim 13 we would
then immediately have that GP (x′) ≥ GP (g̃(x′′)) = GΠP (x′′) ≥ (1 − ϵ/2) maxx GΠP (x) ≥
(1− ϵ) maxx GP (x), which would prove the theorem.

However, since (4) is not tight, we need a more involved argument by lifting to a d + 1-
dimensional space. In particular, for each p ∈ P , let p̄ ∈ Rd+1 be a vector with its first d

entries equal to p and let the final entry be equal to
√
∥x−Πp∥2 − ∥g̃(x)− p∥2. Additionally,
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Algorithm 3 Full algorithm for high dimensional case.

input: a point set P ∈ Rd, parameter ϵ, ρ, δ > 0
1: Generate O(log 1

δ ) random samples P j
0 ⊂ P of size n0 = O( 1

ϵ2ρ2 ) (à la Lopaz-Paz et al.)
2: for j ← 1 to O(log 1

δ ) do
3: Set γ = ϵ

4 log(4/ϵρ) .
4: Choose random matrix Π ∈ Rm×d satisfying (γ, n + 1, 1/100)-JL guarantee (Defn. 8)
5: For each pi ∈ P j

0 , compute Πpi and let ΠP j
0 denote the data set {Πp1, . . . , Πpn}

6: Run the algorithm in Phillips and Tai [39] to construct a subset P j
2 ⊂ ΠP j

0 of size
n2 = O(

√
m

ϵρ

√
log 1

ϵρ ) = O( 1
ϵ2ρ log2 1

ϵρ )
7: Set x′′ as the output of Algorithm 1 (Section 2) on P j

2 in dimension m

8: Compute new x′ =
∑

p∈P
j
0

p·e−∥x′′−Πp∥2∑
p∈P

j
0

e−∥x′′−Πp∥2

9: Return the best solution from all iterations of Step 8, evaluated on
⋃

j P j
0

for every point x ∈ Rm, let ¯̃g(x) ∈ Rd+1 be a vector with its first d entries equal to g̃(x) ∈ Rd

and final entry equal to 0. Clearly, for any p ∈ P ,

∥¯̃g(x)− p̄∥ = ∥x−Πp∥. (5)

For z ∈ Rd+1, let GP (z) =
∑

p∈P e−∥z−p̄∥2 and let x̄′ =
∑

p∈P
p̄e−∥x′′−Πp∥2∑

p∈P
e−∥x′′−Πp∥2 . It follows from

(5) and the argument above that GP (x̄′) ≥ GP (¯̃g(x′)) = GΠP (x′′). But clearly it also holds
that GP (x′) ≥ GP (x̄′) because, for any p ∈ P , ∥x′ − p∥ ≤ ∥x̄′ − p̄∥. So we conclude that
GP (x′) ≥ GΠP (x′′) as desired. Furthermore, recall that x′′ is an approximate mode in the
projected setting. It satisfies GΠP (x′′) ≥ maxx(1− ϵ/2)GΠP (x), and from Lemma 10 we have
that maxx GΠP (x) ≥ (1 − ϵ/2) maxx GP (x). Chaining these inequalities gives the desired
bound that GP (x′) ≥ (1− ϵ/2)2 maxx GP (x) ≥ (1− ϵ) maxx GP (x). ◀

3.1 Final Result for High Dimensions
For the high dimensional case, we combine together the techniques of 1) dimensionality
reduction, 2) polynomial system solving and 3) coresets by [34] and [39] to obtain an algorithm
that is linear in the dimensionality d and exponential only in poly(1/ϵ, log 1/ρ), leading to
Theorem 2.

In the regime where ϵ (the relative error) and δ (the probability of failure) are constant,

the runtime simplifies to O

((
n + 1

ρ2

)
d +

(
log 1

ρ

)O(log3 1
ρ )
)

. Note however that if 1/ρ2 ≤ n0

dominates n, then we would not have constructed the coresets P j
0 in the first place but used the

entire point set instead, and so we can treat the first term as just O(nd). We also recall that
ρ = GP (x∗) ≥ 1/n, which by substitution gives an upper bound of O

(
nd + (log n)O(log3 n)

)
.

Proof of Theorem 2. We first show the approximation guarantee. It suffices to prove that
an iteration of the for loop succeeds with constant probability, so we fix a particular j and
omit the superscript in P0 and P2. From Lemma 4, x∗ ∈ Bq

(√
log 1

ρ

)
⊂ Bq

(√
log 1

ϵρ

)
for some q ∈ P2. Let x∗∗

0 be arg maxx∈Rm GP2(x). By Lemma 6 with r = 1, we have
GP2(x′′) ≥ GP2(x∗∗

0 ) − ϵρ ≥ (1 − ϵ)GP2(x∗∗
0 ). The coreset result by [39] implies that, both∣∣GΠP0(x′′)− GP2(x′′)

∣∣ ≤ ϵρ and
∣∣GΠP0(x∗∗)− GP2(x∗∗)

∣∣ ≤ ϵρ which implies GΠP0(x′′) ≥
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(1 − O(ϵ))GΠP0(x∗∗). Now, let x∗
0 be arg maxx∈Rd GΠP0(x). By Theorem 9, with constant

probability we have GP0(x′) ≥ (1−O(ϵ))GP0(x∗
0). By [34], a random sample P0 ⊂ P of size

n0 = O( 1
ϵ2ρ2 ) is sufficient to have the guarantee of

∣∣GP (x)− GP0(x)
∣∣ ≤ ϵρ for any x ∈ Rd. If

we combine this inequality and the guarantee of random sampling, we can conclude that
GP (x′) ≥ (1− ϵ)GP (x∗).

We now analyze the running time. Reading the input and constructing the coresets P j
0

take O(nd + n0 log 1
δ ) time in total. Evaluating all the solutions in Step 9 takes O(n0d log2 1

δ )
time, since there are O(log 1

δ ) many candidates evaluated over a coreset of size O(n0 log 1
δ ) in d

dimensions. From Theorem 9, the runtime of a single iteration of the loop is O(n0dm)+Tm,ϵ/2,
where Tm,ϵ/2 is the runtime of solving the approximate mode finding problem in m dimensions.
In our case, Tm,ϵ/2 consists of the runtime of the second coreset result as well as Algorithm 1.
It takes time O(n0poly(1/ϵρ)) to compute the second coreset P j

2 . Then, Theorem 7 implies

that Algorithm 1 requires O(n2 log n2 · (2
√

2eπ)m + n2 ·
(

log m
ϵρ

)O(m)
).

The single-loop runtime is dominated by the runtime of Algorithm 1. Writing out the
runtime of Algorithm 1 gives

O

(
n2 log n2 · (2

√
2eπ)m + n2 ·

(
log m

ϵρ

)O(m)
)

= O

(
n2 ·

(
log m

ϵρ

)O(m)
)

= O

(
1

ϵ2ρ
log2 1

ϵρ
·
(

log 1
ϵ3ρ

log 1
ϵρ

log2 1
ϵρ

)O( 1
ϵ2 log3 1

ϵρ )
)

= O

((
log 1

ϵρ

)O( 1
ϵ2 log3 1

ϵρ )
)

.

Combining with the runtimes for reading the input, coreset construction and evaluating
solutions in Step 9, then repeating the loop for O(log 1

δ ) times gives the bound in the theorem
statement. If n < n0 log 1

δ , we use the full set P as each P j
0 . ◀

4 KDE mode finding for Two Dimensional Case

In this subsection, we assume that P ⊂ R2 and p = (p1, p2) for each p ∈ P . We can improve
our low-dimensional analysis that used a set of systems of polynomials by about a logarithmic
factor using a different approach. This shows how to approximate each Gaussian by a
weighted set of rectangles. After sampling by these weights, we can quickly retrieve the point
of maximum depth in these rectangles as an approximation of the maximum.

We first define the following notation. We let s = ϵρ
6 be a minimal additive error

we will allow for the spatial approximation, and then m = ⌈ 1
s⌉ will be the number of

discretizations we will need. A Gaussian has infinite support, but we will only need
to consider m such widths defined rj =

√
log 1

lj
with lj = 1 − j

m for j = 0, 1, . . . , m.

As a special case we set rm = ∞ (note that this allows e−r2
j = lj). We can now

define a series of axis-parallel rectangles centered at a point p = (p1, p2) ∈ P as Rp ={
[p1 − ra1 , p1 + ra1 ]× [p2 − ra2 , p2 + ra2 ] | (a1, a2) ∈ {0, 1, . . . , m− 1}2}. It enumerates all

widths r0, r1, . . . , rm−1 on both directions, so its size is m2. Also, let R be ∪p∈PRp.
Given any x ∈ Rd and any finite collection C subsets of R2, denote N(C, x) as the number

of C ∈ C that x ∈ C, known as the depth or ply of x. And we can show that the depth,
normalized by 1/(nm2), approximates the KDE value GP (x).

▶ Lemma 14. GP (x) ≥ N(R,x)
nm2 ≥ GP (x)− 1

3 ϵρ

The main idea is to show that Gaussian kernel can be approximated by a collection of
axis-parallel rectangle where m controls precision. Observe that |R| = nm2. However, |R|
(and therefore m) does not show up in the running time of our algorithm since, we perform
the random sampling on R in the first step of Algorithm 4.
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Proof. For any p ∈ P and i ∈ {1, 2}, let ai be the integer such that rai−1 ≤ |pi − xi| ≤ rai

which implies e−r2
ai−1 ≥ e−(pi−xi)2 ≥ e−r2

ai = 1− ai

m . Then, we have

e−∥p−x∥2
= e−(p1−x1)2−(p2−x2)2

≥ (1− a1

m
)(1− a2

m
) = N(Rp, x)

m2

Note that N(R, x) =
∑d

i=1 N(Rp, x). Now,

GP (x) =
∑
p∈P

e−∥p−x∥2
≥
∑
p∈P

N(Rp, x)
m2 = N(R, x)

m2

On the other hand, let ∆p,x,i = e−(pi−xi)2 − (1− ai

m ) which is larger than 0,

N(Rp, x)
m2 = (1− a1

m
)(1− a2

m
) =

(
e−(p1−x1)2

−∆p,x,1

)(
e−(p2−x2)2

−∆p,x,2

)
= e−(p1−x1)2

e−(p2−x2)2
−∆p,x,1e−(p2−x2)2

−∆p,x,2e−(p1−x1)2
+ ∆p,x,1∆p,x,2

≥ e−(p1−x1)2
e−(p2−x2)2

−∆p,x,1e−(p2−x2)2
−∆p,x,2e−(p1−x1)2

Recall that e−r2
ai−1 ≥ e−(pi−xi)2 ≥ e−r2

ai which implies ∆p,x,i ≤ e−r2
ai−1 − e−r2

ai = s. The
above equation becomes

N(Rp, x)
m2 ≥ e−(p1−x1)2

e−(p2−x2)2
−∆p,x,1e−(p2−x2)2

−∆p,x,2e−(p1−x1)2

≥ e−∥p−x∥2
− 2s

Finally, we have

N(R, x)
m2 =

∑
p∈P

N(Rp, x)
m2 ≥

∑
p∈P

(e−∥p−x∥2
− 2s) = GP (x)− 1

3ϵnρ. ◀

Now consider (X,S) be a range space with VC dimension ν. Given ϵ > 0 and α > 0, we call
a subset Z of X a relative (α, ϵ)-approximation for (X,S) if, for any τ ∈ S,

∣∣∣ |X∩τ |
|X| −

|Z∩τ |
|Z|

∣∣∣ ≤
ϵM when M = max{ |X∩τ |

|X| , α}. A random sample of size O
( 1

ϵ2α (ν log 1
α + log 1

δ )
)

is an
(α, ϵ)-approximation with probability at least 1− δ [25]. The range space (R2,B) where B is
the set of all axis-parallel box in R2 has VC dimension 4. Thus its dual range space (B,D)
where D =

{
{B ∈ B | x ∈ B} | x ∈ R2}, has VC dimension is O(1).

Given a set B0 of λ axis-aligned rectangles in R2, [12] finds a maximal depth point, that
maximizes N(B0, x), in O(λ log λ) time. This leads to Algorithm 4 and Theorem 3.

Algorithm 4 Computing Depth.

input: a point set P ⊂ R2, parameter ϵ, ρ, δ > 0
1: generate a random subset R0 of R of size O

(
1

ϵ2ρ (log 1
ρ + log 1

δ )
)

.
2: compute x′ ∈ R2 such that x′ = arg maxx∈Rd N(R0, x) using the algorithm by [12].
3: return x′

Proof of Theorem 3. First, by Lemma 14, N(R,x∗)
|R| ≥ GP (x∗) − 1

3 ϵρ = Ω(ρ). Let M be
max{N(R,x′)

|R| , ρ}. We also have M = max{N(R,x′)
|R| , ρ} ≤ GP (x∗). By Lemma 14 and the

construction of R0, we have GP (x′) ≥ N(R,x′)
|R| ≥ N(R0,x′)

|R0| − 1
3 ϵM . Since x′ is the optimal

solution, the term N(R0,x′)
|R0| is larger than N(R0,x∗)

|R0| .
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GP (x′) ≥ N(R0, x∗)
|R0| − 1

3 ϵM

≥
(1 − 1

3 ϵ)N(R, x∗)
|R| − 1

3 ϵM by N(R, x∗)
|R| = Ω(ρ) and construction of R0

≥ (1 − 1
3 ϵ)(GP (x∗) − 1

3 ϵρ) − 1
3 ϵM by [12]

Finally, by the assumption of ρ ≤M ≤ GP (x∗), we have GP (x′) ≥ (1− ϵ)GP (x∗).
To see the running time, note that the size of input λ = O

(
1

ϵ2ρ (log 1
ρ + log 1

δ )
)

in our
context and O(n) time to create a sample. Therefore, the total running time is

O

(
n + 1

ϵ2ρ
(log 1

ρ
+ log 1

δ
) log( 1

ϵρ
log 1

δ
)
)

. ◀

5 Experiments

In this section, we present two sets of experiments, demonstrating the efficacy of 1) our
dimensionality reduction approach and 2) our 2D combinatorial algorithm. We did not have
a ground truth, so we took the best run of any algorithm as the optimal (OPT), and present
the “Error in %” as (x−OPT)/OPT. The experiments were run in Python on Google Colab
instances with GPU.

Dimensionality Reduction. The first experiment shows the speedup attained via dimension-
ality reduction, while sacrificing little in solution quality. As noted in Section 3, dimensionality
reduction can be combined with any algorithm for mode finding; we compare the state-of-the-
art mean-shift heuristic (described also in Section 3) with applying mean-shift after reducing
the dimensionality in the data. We use a subset of the CelebA images [33]: n = 20,000
aligned and cropped face 178× 218 pixel images of celebrities. We converted each image to
greyscale, and treat as (d = 38804)-dimensional vectors.

Given the KDE, we pick 10 random starting points and run mean-shift starting at each
of them until the KDE value improves by less than 0.001. Then we return to the original
dimensionality by running a single iteration of mean shift, to get a final value. We output the
best solution, and report the total time of all restarts. For each target dimension (20–800),
we report 500 trials as separate marks in the plot. Each trial with reduced dimensionality
uses a single JL matrix across all restarts.

Figure 1 (Left) shows that, even if we reduce from 38804 dimensions down to 20 dimensions,
the solution quality loss is only in the order of 0.1%. For reference, the solution quality is
roughly 6550. The runtime savings are significant, from roughly 130 seconds in the original
38804 dimensions, to 8-9 seconds in 20 dimensions.

The theory demands a JL matrix with one-sided error; the random Gaussian matrix
should be divided by some factor of 1− ϵ. We did not do so because: (1) for very low target
dimensions (say, 20), there is no valid ϵ ∈ (0, 1); and (2) even when such ϵ exists, this ϵ is
large enough that a division by 1− ϵ introduces significant bias and worsens the solution.

2D Algorithm. Figure 1 (Right) shows the comparison of our 2D combinatorial algorithm
and heuristics for mode finding. It shows both the best heuristic from [54] of evaluating
random points, and then also the mean-shift iterative improvement on top of these [9, 10].
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Figure 1 Percentage Error of algorithms as a function of runtime. (Left): Scatterplot for the
dimensionality reduction, then mean-shift with 10 restarts. For each target dimension, we show
500 trials. (Right): 2D experiments, our algorithm versus choosing random starting point, then
mean-shift. In each segment top point is error before mean-shift, and bottom one is after mean-shift.

We use the entire “Iowa_highway” dataset in [54], which has n = 1,155,101 points in R2

denoting all waypoints in Iowa from Open Street Maps. It is very multi-modal.
To compare our algorithm, we start with the best heuristic [54] of evaluating the KDE

at k data points, and selecting the best. We use k between 1 and 10 random data points,
and repeat 5 times for each, and select the lowest error. These are the top blue xs of each
segment in the figure. Then for each initial data point, we run mean-shift to improve the
error, and report the lowest error (out of each set of k starting points). These are the lower
blue x of each segment in the figure. Note that the initial data point sampling heuristic
occasionally obtains near-optimal error, but is typically much worse. The blue line segments
showing the improvement of mean-shift indicate again it sometimes obtains near-optimal
error, but not consistently. It also takes several seconds.

Our algorithm is shown as green dots. The top dot of the green segment is the cost/error
of our algorithm, and the lower one is after optimizing with mean shift. We observe that our
algorithm is significantly more efficient than the heuristics, taking less than one second, and
achieves near-optimality, basically the same error as the best of prior heuristics.
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1 Introduction

Our main contribution is a polynomial-time algorithm to reduce a k-colorable gammoid to a
(2k − 2)-colorable partition matroid. Before elaborating on the statement of this result, we
first give the necessary definitions, and the most relevant prior work. After stating the result
we then explain some of the algorithmic ramifications.

1.1 Definitions
A set system is a pair M = (S, I) where S is a universe of n elements and I ⊆ 2S is a
collection of subsets of S. Sets in I are called independent and the rank r is the maximum
cardinality of a set in I. A partition C1, C2, . . . , Ck of S into independent sets is a k-coloring
of M . The coloring number of M is the smallest k such that a k-coloring exists.

If each element s ∈ S has an associated list As of allowable colors, then a list coloring
is a coloring C1, C2, . . . , Cj such that if an s ∈ S is in Ci then i ∈ As. The list coloring
number of M is the smallest k that guarantees that if for s ∈ S it is the case that if |As| ≥ k

then a list coloring exists.
If R ⊆ S then the restriction of M to R, denoted by M | R, is a set system where the

universe is S ∩ R and where a set I ⊆ S is independent if and only if I ⊆ R and I ∈ I.
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A hereditary set system is a set system where if A ⊆ B ⊆ S and B ∈ I then A ∈ I. A
matroid is an hereditary set system with the additional properties that ∅ ∈ I and if A ∈ I,
B ∈ I, and |A| < |B| then there exists an s ∈ B \ A such that A ∪ {s} ∈ I. The intersection
of matroids (S, I1), . . . , (S, Iℓ) on common universe is a hereditary set system with universe
S where a set I ⊆ S is independent if and only if for all i ∈ [1, ℓ] it is the case that I ∈ Ii.

A gammoid is a matroid that has a graphical representation (D = (V, E), S, Z), where
D = (V, E) is a directed graph, S ⊆ V is a collection of source vertices and Z ⊆ V is a
collection of sink vertices. In the gammoid that is represented by D a set I ⊆ S is in I if
and only if there exists |I| vertex-disjoint paths from the vertices in I to some subcollection
of vertices in Z. A partition matroid is a type of matroid that can be represented by a
partition X of S. In the partition matroid that is represented by the partition X a set Y ⊆ S

is in I if and only if |Y ∩ X| ≤ 1 for all X ∈ X . 1

A matroid N is a reduction (also called weak map) of a matroid M , with the same
universe, if and only if every independent set in N is also an independent set in M . If N is a
partition matroid, then we say that there exists a partition reduction from M to N . [5]
defined the following decomposability concept, which generalizes partition reduction.

▶ Definition 1. A matroid M = (S, I) is (b, c)-decomposable if S can be partitioned into
sets X1, X2, . . . , Xℓ such that:

For all i ∈ [ℓ], it is the case that |Xi| ≤ c · k, where k is the coloring number of M .
For a set Y = {v1, . . . , vℓ}, consisting of one representative element vi from each Xi, the
matroid M | Y is b colorable.

If b = 1 then X1, X2, . . . , Xℓ represents a partition matroid. Thus (1, c)-decomposability
means there exists a partition reduction where the coloring number increases by at most a
factor of c.

1.2 Prior Work
There are two prior, independent, papers in the literature that are directly relevant to our
results. [3] showed that any gammoid M admits a (1, (2 − 2

k ))-decomposition. This proof is
constructive, and can be converted into an algorithm. The resulting algorithm is essentially
a local search algorithm that selects a neighboring solution in the dual matroid in such a way
that an auxiliary potential function always decreases. But there seems to be little hope of
getting a better than exponential bound on the time, at least using techniques from [3] as the
potential can be exponentially large. Further [3] shows that no better bound is achievable.

[5] gave a polynomial-time algorithm to construct a (18, 1)-decomposition of a gammoid.
The reduction was shown by leveraging prior work on unsplittable flows [6]. Both paper [3, 5]
also observed that partition reductions are relatively easily obtainable for other common
types of combinatorial matroids. In particular transversal matroids are (1, 1)-decomposable
[3, 5], graphic matroids are (1, 2)-decomposable [3, 5] and paving matroids are (1, ⌈ r

r−1 ⌉)-
decomposable if they are of rank r [3].

The main algorithmic result from [5] is:

▶ Theorem 2 ([5]). Consider matroids M1, M2, . . . , Mℓ defined over a common universe,
where matroid Mi has coloring number ki. There is a polynomial-time algorithm that,
given a (bi, ci)-decomposition of each matroid Mi, computes a coloring of the intersection of
M1, M2, . . . , Mℓ using at most

(∏
i∈[k] bi

)
·
(∑

i∈[k] ci

)
k∗ colors, where k∗ = maxi∈[l] ki.

1 Technically one can generalize this to let there be a separate upper bound for each Xi on the number of
elements Y can obtain from Xi, but in this paper we only consider partition matroids where the bound
is one.
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Combining Theorem 2 with the decompositions in [3, 5] one obtains O(1)-approximation
algorithms for problems that can be expressed as coloring problems on the intersection of
O(1) common combinatorial matroids. Several natural examples of such problems are given
in [5]. [1] showed that for two matroids M1 and M2 over a common universe with coloring
numbers k1 and k2, the coloring number k of M1 ∩ M2 is at most 2 max(k1, k2). The proof
in [1] uses topological arguments that do not directly give an algorithm for finding the
coloring. The list coloring number of a single matroid equals its coloring number [9]. For the
intersection of two matroids [3] observed that a list coloring could be efficiently computed by
partition reducing each of the matroids. A consequence of the results in [3] is a constructive
proof that the list coloring number of M1 ∩ M2 is at most 2 max(k1, k2) if M1 and M2 are
each one of the standard combinatorial matroids. Further a consequence of the results in [5]
is an efficient algorithm to compute such a list coloring if M1 and M2 are each one of the
standard combinatorial matroids besides a gammoid.

For hereditary set systems the coloring number is equal to the set cover number. Set
cover has been studied extensively in the field of approximation algorithms. The greedy
algorithm has an approximation ratio of Hn ≈ ln n and this is essentially optimal assuming
P ̸= NP [10, 11].

1.3 Our Main Result and Its Algorithmic Applications
We are now ready to state our main result:

▶ Theorem 3. A partition reduction from a k-colorable gammoid to a (2k − 2)-colorable
partition matroid can be computed in polynomial time given a directed graph D that represents
M as input.

Recall that [3] showed that the (2k − 2) bound is tight.
Combining our main result, Theorem 3, with Theorem 2 from [5] we obtain significantly

better approximation guarantees for matroid intersection coloring problems in which one of
the matroids is a gammoid. One example is given by the following problem. Initially assume
that the input consists of a directed graph D with a designated file server location (a sink) and
a collection of clients requesting files from the server at various locations in the networks (the
sources). The goal is to as quickly as possible get every client the file that they want from the
server, where in each time step one can service any collection of clients for which there exist
disjoint paths to the server. This is a matroid coloring problem that can be solved exactly in
polynomial-time [4]. Now assume that additionally the input identifies the company to which
each client is employed by, and for each company there is a Service Level Agreement (SLA)
that upper bounds on how many clients from that company can be serviced in one time unit.
Now, the problem becomes a matroid intersection coloring problem, where the intersecting
matroids are a gammoid and a partition matroid. Using the (18, 1)-decomposition of a
gammoid and Theorem 2 from [5] one obtains a polynomial-time 36-approximation algorithm.
However, combining the (2k − 2)-partition reduction of a gammoid from Theorem 3 with
Theorem 2 from [5] we now obtain a polynomial-time 3-approximation algorithm.2

Another algorithmic consequence is an efficient algorithm to list coloring the intersection
M1 ∩ M2 of a k1-colorable matroid M1 and a k2-colorable matroid M2 if the list of allowable
colors for each element has cardinality at least 2 max(k1, k2), and each of the matroids is

2 This is because Theorem 2 is a (1, 2)-decomposition of a gammoid and a partition matroid is in itself a
(1, 1)-decomposition, so Theorem [5] states the approximation is 3.
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Figure 1 Example of trees created. Here k = 3. Source portals are matched to sink portals along
a path not in the trees. All sink portals will have k units of flow entering them and source portals
have k units leaving.

either a graphic matroid, paving matroid, transversal matroid, or gammoid. Casting this
into the context our running file server example implies that additionally each client has a
list of allowable times when the file transfer may be scheduled. Our partition reduction of a
gammoid then yields an efficient algorithm to find a feasible schedule as long as the cardinality
of allowable times for each client is at least 2 max(k1, k2), where k1 is time required if the
network had infinite capacity (so only the SLA constraints come into play), and k2 is the
time required if the SLA allowed infinitely many file transfers (so only the network capacity
constraints come into play).

Set cover is a canonical algorithmic problem. So there is considerable interest in discovering
examples of natural special types of set cover instances where o(log n) approximation is
possible. For example, several geometrically based types of instances are known, for example
covering points in the plane using a discs [7], where a polynomial time approximation scheme
is known. Our results provide another example of such a natural special case, namely when
the sets come from the intersection of a small number of standard combinatorial matroids.

Theorem 3 and its proof reveal structural properties of gammoids that would seem likely
to be of use to address future research on gammoids.

1.4 Overview of Techniques
Given a graphic representation of a gammoid, an optimal coloring can be computed in
polynomial-time [4]. By superimposing the source-sink paths for the various color classes one
can obtain a flow f from the sources to the sinks that moves at most k units of flow over any
vertex. Using standard cycle-canceling techniques [2] one can then convert f to what we call
an acyclic flow. A flow f is acyclic if for every undirected cycle C in D at least one edge in
C either has flow k or has no flow. Thus by deleting edges that support no flow in f , as they
are unnecessary, we are left with a forest T of edges that have flow in the range [1, k − 1]
and a collection of disjoint paths, which we call highways, that have flow k. See Figure 1.

Now each part X in the computed partition X will be entirely contained in one tree
T ∈ T , and the parts X in a tree T ∈ T are computed independently of other trees in T .
There can be four types of vertices in T : (1) sources s that have outflow 1, (2) source portals
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s̃, which are vertices that have a highway directed into them, and which have outflow k in T ,
(3) sink portals z̃, which are vertices that have a highway directed out of them, and which
have inflow k in T , and (4) normal vertices. Again see Figure 1.

We give a recursive partitioning algorithm for forming the parts X in a tree T ∈ T . On
each recursive step our algorithm first identifies a single part X of at most 2k − 2 sources
and an associated sink portal that are in some sense near each other on the edge of T . The
algorithm then removes these sources and sink portal from T , and reconnects disconnected
sources back into appropriate places in T . The algorithm then recurses on this new tree T .

Most of the proof that our partitioning algorithm produces a (1, 2 − 2
k )-decomposition

focuses on routing individual trees in T . So let Y be a collection of sources such that for all
X ∈ X |Y ∩ X| ≤ 1.

The first key part is proving that as the partitioning algorithm recurses on a tree T , it
is always possible to route both the flow coming into T , and the flowing emanating within
T , out of T , without routing more than k units of flow through any vertex in T . Note that
as the algorithm recurses the tree T loses a sink portal (which reduces the capacity of the
flow that can leave T by k) and loses up to 2k − 2 sources (which means there is less flow
emanating in T that has to be routed out).

The second key part is to prove that there is a vertex-disjoint routing from the source
portals in T and the sources in T ∩ Y to the sink portals in T . To accomplish we trace our
partitioning algorithm’s recursion backwards. So in each step a new collection X of sources
and a sink portal is added back into T . We then prove by induction that no matter how the
previously considered sources in Y were routed, there is always a feasible way to route the
chosen source in Y ∩ X to a sink portal in T . Then we finish by observing that unioning the
routings constructed within the trees with the highways gives a feasible routing for Y .

2 Preliminaries

This section introduces notation and other necessary definitions. Let D = (V, E) be a
directed graph that represents a gammoid. Let S ⊆ V be a set of sources, and Z ⊆ V be the
collection of sinks. We may assume without loss of generality that:

Each vertex v ∈ V has either out-degree 1 or in-degree 1.
Each source s ∈ S has in-degree 0 and out-degree 1.
Each sink z ∈ Z has in-degree 1 and out-degree 0 and |Z| = r.
If uv is an edge in E then vu is not an edge in E.
We assume without loss of generality that all color classes have full rank, that is |S| = rk.

This can be assumed by adding dummy sources to S.
▶ Definition 4. A feasible flow in a digraph D from a collection S′ ⊂ S is a collection

of paths {ps | s ∈ S′} such that (1) ps is a simple path from s to some sink, and (2) no
vertex or edge in D has more than k such paths passing through it.
A feasible routing in a digraph D from a collection S′ ⊂ S is a collection of paths
{ps | s ∈ S′} such that (1) ps is a simple path from s to some sink, and (2) no vertex or
edge in D has more than one such path passing through it.

3 The Partition Reduction Algorithm

This section gives the Partition Reduction Algorithm. First, we define a corresponding flow
graph. Using a Cycle-Canceling Algorithm, we decompose the flow graph into a collection of
trees. Then we algorithmically create the partitions from the local structure in these trees.
The analysis of the algorithm is deferred to the next section.
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3.1 Defining the Flow Graph
Given the digraph D we can compute a minimum k such that M is k-colorable in polynomial
time using a polynomial-time algorithm for matroid intersection [8]. Further we can compute
the collection of resulting color classes C = {C1, C2, . . . , Ck}. So C is a partition of the
sources S, and for each Ci ∈ C there exist r vertex-disjoint paths p1

i , . . . , pr
i in the digraph

D from the r sources Ci to Z. We create an f where the flow f(u, v) on each edge (u, v) is
initialized to the number of paths pj

i that traverse (u, v), that is

f(u, v) =
k∑

i=1

r∑
j=1

1(u,v)∈pj
i

A flow f is acyclic if for every undirected cycle C in D at least one edge in C either has
flow k or has no flow in f . An arbitrary flow can be converted acyclic by finding cycles in a
residual network Dr. This is standard [2], but for completeness we define it here.

For every directed edge (u, v) with f(u, v) < k there exists a forward directed edge (u, v)
in Dr with capacity cr(u, v) := k − f(u, v). For every directed edge (u, v) with f(u, v) > 0
there exists a backward directed edge (v, u) in Dr with capacity cr(v, u) := f(u, v). An
augmenting cycle in Dr is a simple directed cycle with strictly more than two edges.

Cycle-Canceling Algorithm. While there exists an augmenting cycle C do the following:
Let c := min(u,v)∈C cr(u, v) be the minimum capacity of an edge in C.
For each forward edge (u, v) ∈ C, increase f(u, v) by c.
For each backward edge (u, v) ∈ C, decrease f(u, v) by c.

As every iteration increases the number of edges that have flow k in f or that have no
flow in f by 1, the Cycle-Canceling Algorithm terminates after at most |E| iterations. The
following observations are straight-forward.

▶ Observation 5. The following properties hold when the Cycle-Canceling Algorithm termi-
nates:

f is a feasible flow of kr units of flow from all the sources.
Every undirected cycle C in D contains at least one edge with flow k in f or one edge
with no flow in f .
The collection of edges in D that has flow strictly between 0 and k in f forms a forest.
The collection of edges in D with flow k in f are a disjoint union of directed paths, which
we will call highways.

3.2 Properties of the Acyclic Flows
We now give several definitions and straightforward observations about our acyclic flow f

that will be useful in our algorithm design and analysis.

▶ Definition 6.
A vertex v is a source portal if its in-degree in D is 1, and it has k units of flow passing
through it in f .
A vertex v is a sink portal if its out-degree in D is 1, and it has k units of flow passing
through it in f .
Let T be the forest consisting of edges in D that have flow in f strictly between 0 and k.
For a tree T ∈ T and a vertex v ∈ T define Tv to be the forest that results from deleting
the vertex v from T .
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▶ Observation 7. Each sink z ∈ Z is in a tree T ∈ T that consists solely of z.

Proof. By assumption, the sink z has in-degree 1 in D and all color classes C have full rank.
Hence, k units of flow are entering z through a unique edge. ◀

As our partition reduction algorithm partitions each tree T ∈ T independently, it will
be notationally more convenient to fix an arbitrary tree T ∈ T , and make some definitions
relative to this fixed T , and make some observations that must hold for any such T . To a
large extent these observations are intended to show that the Figure 2 is accurate.

▶ Definition 8.
Let S̃ be the collection of source portals in tree T .
Let Z̃ be the collection of sink portals in tree T .
A normal vertex is a vertex that is none of a source, a sink, a source portal, nor a sink
portal.

▶ Definition 9.
A feasible flow in T from a collection S′ ⊂ S is a collection of paths, one path ps for
each s ∈ S′ and k paths ps̃

1, . . . , ps̃
k for each source portal s̃ ∈ S̃ such that (1) ps is a

simple path from s to some sink portal, (2) each ps̃
i is a simple path from s̃ to a sink

portal, and (3) no vertex or edge in T has more than k such paths passing through it.
A feasible routing in T from a collection S′ ⊂ S is a collection of paths, one path ps

for each s ∈ S′ and one path ps̃ for each source portal s̃ ∈ S̃ such that (1) ps is a simple
path from s to some sink portal, (2) ps̃ is a simple path from s̃ to a sink portal, and (3)
no vertex or edge in T has more than one such paths passing through it.

This following observation holds for trees in T initially and gives intuition for the
structure of T . We remark that this observation may not hold throughout the execution of
our algorithm for all trees.

▶ Observation 10. The number of sources in T is an integer multiple of k.

Proof. This follows from the fact that each source portal s̃ ∈ T has exactly k units of flow
coming into T via s̃ in the flow f and each sink portal z̃ ∈ T has exactly k units of flow
leaving T via z̃ in f . ◀

▶ Definition 11.
For two vertices u, v ∈ T , let P (u, v) be the unique undirected path from u to v in T .
The backbone B of T is the subgraph of T consisting of the union of all paths in between
pairs of sink portals in T , that is B =

⋃
ỹ∈Z̃

⋃
z̃∈Z̃ P (ỹ, z̃).

For the backbone B, let Bv be the induced forest that results from deleting v from B.
A vertex v in a backbone B is a branching vertex if either:

v is not a sink portal and the forest Bv contains at least two trees that each contain
exactly one sink portal, or
v is a sink portal and the forest Bv contains at least one tree that contains exactly one
sink portal.

Let H be the forest that results from deleting the edges in B from the tree T .
For two vertices u, v ∈ B, let S(P (u, v)) be the sources s ∈ S such that there exists a tree
H ∈ H such that s ∈ H and such that H contains a vertex w ∈ P (u, v). Intuitively these
are the sources in trees in H hanging off vertices of the path P (u, v).
Let S(v) denote S(P (v, v)).
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Legend

Sink Portal

Source Portal

Source

Edges in H

Edges in backbone B

Figure 2 Backbone of a tree.

▶ Observation 12. If s̃ ∈ S̃ is a source portal in T then s̃ is in the backbone B and
deg+

B(s̃) ≥ 2, that is s̃ has out-degree at least 2 in B.

Proof. By definition s̃ has a unique incoming edge, which is saturated in f , at least one
outgoing edge in T that is not saturated in f . Hence, deg+

B(s̃) ≥ 2. By flow conservation,
there has to be at least two directed paths from s̃ to two different sink portals in T . This
implies that s̃ is in the backbone B. ◀

▶ Observation 13. If B contains at least two sink portals, then B contains a branching
vertex v.

Proof. Consider an arbitrary vertex v ∈ B. If v is not a branching vertex, then there must
be a subtree T ′ ∈ Bv that contains two sink portals. One can then recurse on T ′ to find a
branching vertex. ◀

▶ Observation 14. If s ∈ S is a source in T then s is not in the backbone B.

Proof. As s has out-degree 1 in D, it can not be on any path between sink portals in T . ◀

▶ Observation 15. For each tree H ∈ H it must be the case that all edges in H are directed
towards the unique vertex w in H that is also in B.

Proof. This follows from the fact that H \ {w} can not contain a sink portal. ◀

▶ Observation 16. Assume that T has at least two sink portals. Let v be a branching vertex.
Let T ′ be a tree in the forest Bv that contains exactly one sink portal z̃. Then the following
must hold:

T ′ = P (v, z̃) \ {v}.
If T ′ contains a source portal s̃, then deg+

B(s̃) = 2.
The path T ′ contains at most one vertex y such that deg+

B(y) = 2.

Proof. The first statement follows from the definition of B and the fact that T ′ only contains
one sink portal. The second statement follows since every vertex on a path other than its
endpoints has degree two. For the last statement assume to reach a contradiction that there
were two such y’s, y1 and y2 with y1 being closer to v in B. Then the flow leaving y1 toward
z̃ could not be feasibly routed through y2. ◀
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3.3 Description of the Partition Reduction Algorithm
Given the collection of trees T , our Partition Reduction Algorithm returns a partition X of
the sources in S. The algorithm iterates through the trees T in T and partitions the sources
in T based on their locality in T . So let us consider a particular tree T ∈ T .

The algorithm performs the first listed case below that applies, with the base cases being
checked before the other cases. In the non-base cases the tree T will be modified, and the
algorithm called tail-recursively on the modified tree. We will show after the algorithm
description that the algorithm maintains the invariant that there is a feasible flow on the
tree T throughout the recursion.

Base Case A. If T contains no sources then the recursion terminates, and the algorithm
moves to the next tree in T .

Base Case B. Otherwise if T contains at most 2k − 2 sources and no source portal then
these sources are added as a part X in X . The recursion terminates, and the algorithm then
moves to the next tree in T .

We perform the following recursively on T if neither base case holds. Let v be an arbitrary
branching vertex in B. We will show this must exist in Observation 17.

Let z̃1 be a sink portal in some tree T1 in Tv that only contains one sink portal. If v is
not a sink portal, let z̃2 be a sink portal in some tree T2, where T1 ̸= T2, in Tv that only
contains one sink portal. If v is a sink portal let z̃2 = v.

The algorithm’s cases are broken up as follows. Case 1 is executed when there is a source
portal at v or in T1 or in T2. Case 2 is executed when there is a vertex of out-degree 2 in T1
or T2 and there is no source portal. Case 3 is everything else.

Recursive Case 1a. The vertex v is a source portal. In this case T is modified as follows:
(1) for each source s ∈ T1 a directed edge (s, v) is added to T , (2) v is converted into a
normal vertex, and (3) all the nonsources in T1 are deleted from T . The algorithm then
recurses on this new T .

Recursive Case 1b. In this case for some i ∈ {1, 2} the path P (v, z̃i) \ {v} contains a source
portal. In this case T is modified as follows: (1) for each source s ∈ Ti a directed edge (s, v)
is added to T , and (2) all the nonsources in Ti are deleted from T . The algorithm then
recurses on this new T .

−→

v = s̃ v

z̃1

v

s̃

v

−→

z̃i

Case 1a: Case 1b:

Recursive Case 2a. In this case for some i ∈ {1, 2}, the path P (v, z̃i)\{v} contains a vertex
y with deg+

B(y) = 2 and |S(P (y, z̃i))| ≤ 2k − 2. Add the sources in S(P (y, z̃i)) as a part X

to X . The tree T is then modified as follows: (1) for each source s ∈ Ti − X a directed edge
(s, v) is added to T , and (2) the sources in X and all the nonsources in Ti are deleted from
T . The algorithm then recurses on this new T .

ESA 2021



62:10 An Efficient Reduction of a Gammoid to a Partition Matroid

Recursive Case 2b. In this case for some i ∈ {1, 2}, the path P (v, z̃i)\{v} contains a vertex
y with deg+

B(y) = 2 and |S(y)| = k. In this case the algorithm adds the k sources in S(y)
as a part X to X . The tree T is then modified as follows: (1) for each source s ∈ Ti − X a
directed edge (s, v) is added to T , and (2) the sources in X and all the nonsources in Ti are
deleted from T . The algorithm then recurses on this new T .

v v

y

z̃i

X −→

Case 2a:

k

z̃i

y

v v

−→
X

Case 2b:

Recursive Case 2c. In this case for some i ∈ {1, 2}, the path P (v, z̃i) \ {v} contains a
vertex y with deg+

B(y) = 2 and |S(P (y, z̃i) \ {y})| = k. In this case the algorithm adds the k

sources in S(P (y, z̃i) \ {y}) as a part X to X . The tree T is then modified as follows: (1) for
each source s ∈ Ti − X a directed edge (s, v) is added to T , and (2) the sources in X and all
the nonsources in Ti are deleted from T . The algorithm then recurses on this new T .

k

z̃i

y

v v

−→
X

Case 2c:

Recursive Case 3a. In this case for some i ∈ {1, 2} Ti contains exactly k sources. Add the
sources in Ti as a part X to X . The tree T is modified by deleting Ti. The algorithm then
recurses on this new T .

Recursive Case 3b. The set of sources in T1 ∪ T2 are added as a part X in X . The tree T

is modified by deleting the vertices in T1 and T2. Add a new sink portal z̃ together with a
directed edge (v, z̃) to T . The algorithm then recurses on this new T .

k

z̃i

v v

−→
X

Case 3a: v v

z̃1 z̃2

z̃−→
X

Case 3b:

4 Analysis of the Partition Reduction Algorithm

Our goal is to show that the partition matroid, represented by the partition constructed
from the trees, indeed corresponds to a feasible partition reduction from the gammoid. The
analysis has the following key components.
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Every tree T has a corresponding feasible flow throughout the algorithm.
Every part X of the partition has size at most 2k − 2 and all sources are in some part.
Any collection of sources Y such that |Y ∩ X| ≤ 1 for all X ∈ X is in I and, therefore,
can each route a unit of flow to the sink in D.

4.1 The Trees Always Have a Feasible Flow
This section’s goal is to show that each tree has a feasible flow as defined in Definition 8
throughout the execution of the algorithm. We will later use this to prove that our partition
indeed represents a partition matroid that corresponds to a feasible partition reduction in
the following section.

We begin by showing various invariants hold for each tree when a feasible flow exists.
In particular, this will show that a branching vertex exists if any of the recursive cases are
executed. Moreover, arriving at Cases (3a) and (3b) ensure the existence of T1 and T2. All
together this with the fact that each tree has a feasible flow will establish that the algorithm
always has a case to execute if T is non-empty.

This observation shows a branching vertex exists if neither base case holds.

▶ Observation 17. Fix a tree T ∈ T during the execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. If neither of the base cases apply then T contains
at least two sink portals. Moreover a branching vertex must exist in T in this case.

Proof. This observation holds because T must contain either more than 2k − 2 sources or
a source portal along with at least one source. In either case, we require two sink portals
to support the strictly more than k units of flow from these sources and source portal. A
branching vertex must then exist by Observation 13. ◀

▶ Observation 18. Fix a tree T ∈ T during execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. Say that T has a branching vertex v with a tree
Ti containing exactly one sink z̃i. Moreover say that there is no vertex with out-degree 2 in
P (v, z̃i). It is the case that P (v, z̃i) is a directed path from v to z̃i.

Proof. No vertex with out-degree 2 is in P (v, z̃i). Thus, P (v, z̃i) is either a path from v to
z̃i or from z̃i to v. Sink portals always have out-degree 0 in T , so the observation follows. We
note that, sink portals have out-degree 0 in T initially and are never given outgoing edges by
the algorithm. ◀

The next observation shows that a branching vertex is not a sink portal when Cases (3a) or
(3b) are executed.

▶ Observation 19. Fix a tree T ∈ T during execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. Say that T has a branching vertex v and a
corresponding tree Ti with exactly one sink z̃i. If P (v, z̃i) \ {v} does not contain a vertex of
out-degree 2 in B, then v is not a sink portal.

Proof. Observation 18 implies that P (v, z̃i) is a directed path form v to z̃i. Sink portals
always have out-degree 0 in T , so the observation follows. We note that, sink portals have
out-degree 0 in T initially and are never given outgoing edges by the algorithm. ◀

The previous observations guarantee the algorithm always has a case to execute if a
feasible flow exists in all trees. The next lemma guarantees the existence of a feasible flow.

▶ Lemma 20. Fix any tree T during the execution of the algorithm. There must be a feasible
flow in T as described in Definition 8.
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4.2 Bounding the Size of the Parts in the Partition
This section shows that every source is in some part X in X and that every X ∈ X has size
at most 2k − 2. Thus we have a valid partition with each part having the desired size.

▶ Lemma 21. It is the case that |X| ≤ 2k − 2 for all X ∈ X . Moreover, every source in S

is in some set in X .

Proof. It is easy to see that every source in S is in some set in X . This is because sources
are always contained in some tree of T until they are added to a set placed in X and the
algorithm stops once there is no tree in T .

Now we show how to bound the size of sets in X . Cases (1a) and (1b) do not add a set
to X . Cases (2b), (2c) and (3a) add a set to X of size k by definition. Case (2a) adds a set
of size 2k − 2.

Case (3b) is more interesting. Consider the execution of this case on a tree T with
branching vertex v. Let z̃1 and z̃2 be the corresponding sinks. We know v is not a sink portal
by Observation 19 and therefore T1 and T2 both exist. By Observation 18, the paths from
v to z̃1 and z̃2 are directed paths from v to z̃1 and from v to z̃2. Hence, neither T1 nor T2
contains more than k sources. Since case (3a) does not hold, T1 and T2 has strictly less than
k sources. Thus, there are at most 2k − 2 sources in the set added to X . ◀

4.3 Routing Sources within a Tree
In this section, we show that the algorithm is indeed a partition reduction from a k-colorable
gammoid to a (2k − 2)-colorable partition matroid. That is, we show that every set Y , that
is independent in the partition matroid represented by X is also independent in the gammoid.
More specifically, for any set Y where |Y ∩ X| ≤ 1 for all X ∈ X it is the case that Y ∈ I or,
equivalently, there is a feasible routing in the digraph D from the sources in Y . The key to
this will be Lemma 22 which essentially states that there exists a feasible routing in each
tree T ∈ T .

▶ Lemma 22. Let T be an arbitrary tree in T . Let XT be the parts in X that are also in T .
For a set Y with |Y ∩ X| ≤ 1 for all X ∈ X , let YT be the subset of sources in Y that are
also in T . Then there is a feasible routing R in T from YT .

▶ Lemma 23. Let Y ⊂ S such that for all X ∈ X it is the case that |X ∩ Y | ≤ 1. Then
there exists a feasible routing from Y in the digraph D.

Proof. This follows from Lemma 22 and the fact there is a unique highway into each source
portal in each tree and a unique highway leaving each sink portal in every tree. ◀
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Abstract
We present approximation and exact algorithms for piecewise regression of univariate and bivariate
data using fixed-degree polynomials. Specifically, given a set S of n data points (x1, y1), . . . , (xn, yn) ∈
Rd × R where d ∈ {1, 2}, the goal is to segment xi’s into some (arbitrary) number of disjoint pieces
P1, . . . , Pk, where each piece Pj is associated with a fixed-degree polynomial fj : Rd → R, to minimize
the total loss function λk +

∑n

i=1(yi − f(xi))2, where λ ≥ 0 is a regularization term that penalizes
model complexity (number of pieces) and f :

⊔k

j=1 Pj → R is the piecewise polynomial function
defined as f |Pj = fj . The pieces P1, . . . , Pk are disjoint intervals of R in the case of univariate data
and disjoint axis-aligned rectangles in the case of bivariate data. Our error approximation allows
use of any fixed-degree polynomial, not just linear functions.

Our main results are the following. For univariate data, we present a (1 + ε)-approximation
algorithm with time complexity O( n

ε
log 1

ε
), assuming that data is presented in sorted order of

xi’s. For bivariate data, we present three results: a sub-exponential exact algorithm with running
time nO(

√
n); a polynomial-time constant-approximation algorithm; and a quasi-polynomial time

approximation scheme (QPTAS). The bivariate case is believed to be NP-hard in the folklore but
we could not find a published record in the literature, so in this paper we also present a hardness
proof for completeness.
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1 Introduction

Line, or curve, fitting is a classical problem in statistical regression and data analysis, where
the goal is to find a simple predictive model that best fits an observed data set. For instance,
given a set of two-dimensional points (xi, yi), i = 1, . . . , n, the least-square line fitting problem
is to find a linear function f : y = ax+b minimizing the cumulative error

∑n
i=1(yi−(axi+b))2.

This problem is easily solved in O(n) time because the coefficients of the optimal line have a
simple closed form solution in terms of input data. In most cases, however, a single line is a
poor fit for the data, and instead the goal is to segment the data into multiple piece, with
each piece represented by its own linear function. This problem of poly-line (or piecewise
linear) fitting has been studied widely in computational geometry, where the goal is either
to minimize the total error for a given number of pieces [8, 10], or to minimize the number
of pieces for a given upper bound on the error [8], under a variety of error measures. In a
related but technically different vein of work on “curve simplification”, the approximation
must also form a polygonal chain – that is, the pieces representing neighboring segments
must form a continuous curve, and it is conjectured that finding a polygonal chain of k

pieces with minimum L2 error is NP-hard [8]. In our regression setting, such continuity is
not required.
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63:2 Piecewise Polynomial Regression

These best-fit formulations with a “hard-coded” value for the number of pieces k, however,
suffer from the problem of having to specify k, rather than letting the structure in the data
dictate the choice. This can be circumvented by running the algorithm for multiple values
of k, and then stopping with the smallest number of pieces with an acceptable error. A
significant issue, however, is the inherent tradeoff between the number of pieces and the error
– the larger number of pieces, the smaller the error – which is recognized as the problem of
“overfitting” in statistics and machine learning. In order to avoid this overfitting problem,
regression typically uses “regularization” and includes a penalty term for the size of the
representation (model) in the objective, often called the “loss” function. By optimizing the
loss function, the algorithm automatically balances the two competing criteria: number of
pieces k and approximation error.

In particular, suppose we have a set of data points (xi, yi) ∈ Rd × R, for i = 1, . . . , n.
We call (xi, yi) univariate data if d = 1 and bivariate if d = 2. We will consider piecewise
approximation of these data points using polynomial functions of any fixed degree g, where
linear functions are the special case when the degree is one. Our goal is to segment xi’s into
some (arbitrary) number of disjoint pieces P1, . . . , Pk, each associated with a constant-degree
polynomial function fj , to minimize the total loss function

λk +
n∑

i=1
(yi − f(xi))2,

where λ > 0 is a pre-specified penalty term for regularizing the model complexity (number of
pieces) and f :

⊔k
j=1 Pj → R is the piecewise polynomial function defined as f |Pj = fj . The

pieces P1, . . . , Pk are disjoint intervals in R in the case of univariate data and are disjoint
axis-aligned rectangles in R2 in the case of bivariate data.

Even for piecewise linear approximation of univariate data, the best bound currently
known is Ω(kn2) [2, 9, 15], and it is an important open problem to either find a sub-quadratic
algorithm or prove a Ω(n2) lower bound. We make progress on this problem by presenting a
linear-time approximation scheme for this problem.

▶ Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise
polynomial regression which runs in O( n

ε log 1
ε ) time (excluding the time for pre-sorting).

For bivariate data, we obtain the following results, including a sub-exponential exact
algorithm, a constant-factor approximation in polynomial time, and a quasi-polynomial
approximation scheme (QPTAS).

▶ Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression
which runs in nO(

√
n) time.

▶ Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise
polynomial regression which runs in polynomial time.

▶ Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.

Finally, while the bivariate case (and hence the case of more than two variables) is believed
to be NP-hard in the folklore, we could not find a published record in the literature, so we
also present a hardness proof for completeness.

▶ Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials,
including piecewise constant or piecewise linear functions.



D. Lokshtanov, S. Suri, and J. Xue 63:3

Related work. Curve fitting and piecewise regression related problems have been studied
in computational geometry [6, 8], statistics [16] and machine learning [1, 9] as well as in
database theory under the name histogram approximation [11, 14]. The main focus of research
in computational geometry has been to approximate a curve, or a set of points sampled
from a curve, by a fixed-size polygonal chain to minimize some measure of error, such as
L1, L2, L∞ error or Hausdorff error. For instance, Goodrich [10] presented an O(n log n)-time
algorithm to compute a polyline (or a connected piecewise linear function) in the plane
that minimizes the maximum vertical distance from a set of n points to the polyline, which
improves upon the algorithms of [12, 17]. Aronov et al. present an FPTAS for the polyline
fitting problem with the min-sum and least-square error measure, and conjecture that finding
a polygonal chain of k pieces with minimum L2 error is NP-hard [8]. Agarwal et al. [6]
consider approximation under Hausdorff and Frechet distances.

Unlike these computational geometric models, in statistics, machine learning and database
theory, the piecewise approximation is typically not required to be “connected”; instead, the
goal is to partition the data into a given number k of pieces, each represented by a simple
function. Such an optimal histogram (piecewise approximation) can be constructed in O(kn2)
time using dynamic programming, where k is the number of pieces [11, 14]. A similar dynamic
programming algorithm can also compute an optimal “regularized” piecewise approximation,
where k is the number of pieces in the optimal solution [15]. It is an important open problem
to either find a sub-quadratic algorithm or prove a Ω(n2) lower bound.

In machine learning, Acharya et al. [2] study a “segmented regression” problem where
the goal is to recover a function f , which is promised to be “nice” (say, piecewise linear with
k pieces), and the sampled data from f has a small random noise. The quality of recovery is
measured by the mean squared error. In this model, they present an algorithm for computing
a function with O(k) linear pieces in O(n log n) time [2]. An extension to multi-dimensional
data with similar results is presented in [9]. Our focus is a little different from these results
because (1) we do not assume a fixed value of k, and (2) we judge the error of our regression
against worst-case input that is not necessarily drawn from a hypothetical k-piece input with
small random noise. Thus, these two lines of research are complementary.

Finally, for bivariate data, Agarwal and Suri [7] considered the problem of computing a
piecewise linear surface with smallest number of pieces whose vertical distance from data
points is at most ε. They showed that the problem is NP-hard and gave a polynomial-time
O(log n)-approximation algorithm.

Organization. Section 2 introduces some basic notations and concepts used throughout the
paper. Our linear-time approximation scheme for univariate data (Theorem 1) is presented
in Section 3, while our algorithms for bivariate data are presented in Section 4. Finally, in
Section 5, we conclude the paper and pose some open questions. Due to limited space, the
algorithm of Theorem 2 and the hardness result of Theorem 5 (as well as some proofs and
details) are omitted in this version, which will appear in the full paper.

2 Basic notations and concepts

We begin with basic notation and concepts that are used throughout the paper. For an
integer g ≥ 0, we use R[x]g and R[x, x′]g to denote the family of all univariate and bivariate
polynomial functions with degree at most g. A univariate (resp., bivariate) piecewise
polynomial function of degree at most g is a function f :

⊔k
j=1 Pj → R, where P1, . . . , Pk are

disjoint intervals in R1 (disjoint axis-parallel rectangles in R2) and f |Pj
= fj |Pj

for some
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63:4 Piecewise Polynomial Regression

fj ∈ R[x]g (resp., fj ∈ R[x, x′]g), for all j ∈ {1, . . . , k}. The intervals (resp., rectangles)
P1, . . . , Pk are the pieces of f , and the number k is the complexity of f , denoted by |f |. The
notion of piecewise polynomial functions generalizes to higher dimensions (multi-variables),
where the pieces becomes axis-parallel boxes but in this paper we only study univariate and
bivariate piecewise polynomial functions.

Let Γ d
g denote the family of piecewise polynomial functions with d variables and of degree

at most g. For a set of n points S = {(xi, yi) ∈ Rd×R}n
i=1, we define the error of a function

f ∈ Γ d
g for S as

σS(f) = λ · |f |+
n∑

i=1
(yi − f(xi))2,

where λ > 0 is a pre-specified (regularizer) parameter. We assume σS(f) =∞ if the domain
of f does not cover all xi’s. For a fixed constant g, the piecewise polynomial regression
problem takes S and λ as the input, and aims to find the function f∗ ∈ Γ d

g that minimizes the
error σS(f∗). By appropriate scaling of the y-values in the input, we can assume without loss
of generality that λ = 1. Therefore, for convenience, we make this assumption throughout
the paper.

3 Algorithm for univariate data

The input to the univariate regression problem is a dataset S = {(xi, yi) ∈ R×R}n
i=1, where

x1 ≤ · · · ≤ xn, and the goal is to find the function f∗ ∈ Γ 1
g minimizing σS(f∗), for some

fixed constant g ≥ 0, where we assume λ = 1, as mentioned earlier. This problem can be
solved in O(n2) time with a straightforward dynamic program, and no subquadratic-time
(even approximation) algorithm is known. Our main result in this section is a linear-time
approximation scheme, which for any ε > 0 computes in O( n

ε log 1
ε ) time a piecewise function

f ∈ Γ 1
g whose error is at most (1 + ε) · opt, assuming that the points in S are pre-sorted by

their x-coordinates.
In order to explain the main ideas behind our algorithm, it is helpful to first briefly

review the quadratic-time dynamic programming algorithm. That algorithm performs n

iterations, where the ith iteration computes an optimal piecewise regression for the subset of
points (x1, y1), . . . , (xi, yi). If the rightmost piece in the optimal solution for this subproblem
covers the points (xj , yj), . . . , (xi, yi), then the solution combines the optimal regression for
(x1, y1), . . . , (xj−1, yj−1) with the best fitting degree g polynomial for (xj , yj), . . . , (xi, yi).
By dynamic programming, the former is already computed in the (j − 1)th iteration, and the
latter can be computed for all subproblems with an O(n2)-time preprocessing step. There are
O(i) candidates for the rightmost piece, and so the ith iteration takes O(i) time, resulting in
an O(n2) time algorithm.

A natural idea for improving the dynamic program’s time complexity is to reduce the
number of guesses needed for the rightmost piece in each iteration: ideally, we would like to
find the “best” rightmost piece without trying all possibilities. This, however, seems quite
difficult if we want the exact optimal solution. Our main idea is to show that this is possible
if we only need a (1 + ε) approximation of the minimum error. Our algorithm builds on
three key steps. First, we prove a structural lemma (Lemma 7) showing that there exists an
approximate solution f in which the squared error of each piece (essentially) is bounded by
O(1/ε), and therefore contributes between 1 and 1 + O(1/ε) to the final objective σS(f). The
second key idea is to show that, for each i ∈ [n], there exist a set of O( 1

ε log 1
ε ) “candidate”

pieces with right endpoint xi such that a (1 + ε)-approximate solution can be found using
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only these pieces (Lemma 8). Thus, assuming that these candidate pieces and their best fit
degree g polynomials are known, we only have to make O( 1

ε log 1
ε ) guesses in each iteration,

which leads to an O( n
ε log 1

ε )-time algorithm. The final, and third, step is to compute all the
candidate pieces efficiently, which we show can be done using prefix sum and the standard
formula for least-square polynomial regression–the details of this part will appear in the full
paper.

With this preamble, we are ready to describe our algorithm in detail. For a, b ∈ [n]
satisfying a ≤ b, we define

f [a, b] = arg min
f∈R[x]g

b∑
i=a

(yi − f(xi))2 and δ[a, b] = min
f∈R[x]g

b∑
i=a

(yi − f(xi))2.

That is, f [a, b] is the best-fit polynomial in R[x]g for the set of points (xa, ya), . . . , (xb, yb)
(in terms of square error) and δ[a, b] is the square error of f [a, b]. We have the following
simple observation.

▶ Lemma 6. If a′ ≤ a and b′ ≥ b, then δ[a′, b′] ≥ δ[a, b]. Furthermore, for a sequence of
numbers a0, a1, . . . , ar where a−1 ≤ a0 < · · · < ar ≤ b, we have δ[a, b] ≥

∑r
j=1 δ[aj−1 +1, aj ].

Let ε be the approximation factor, which we assume is sufficiently small, say 0 < ε ≤ 1.
Let ε̃ > 0 be such that it satisfies (1 + ε̃)2 = 1 + ε. Then, we have ε/3 ≤ ε̃ ≤ ε since ε ≤ 1.
For an index i ∈ [n], we say i is a left (resp., right) break point if xi−1 < xi (resp., xi+1 > xi).
For a function f ∈ Γ 1

g and a piece P of f , the cost of P is defined as
∑

xi∈P (yi − f(xi))2.
Thus, the total error σS(f) is simply |f | plus the cost of all the pieces of f .

▶ Lemma 7. There exists a function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε̃) · opt and each piece

of f either has cost at most 2/ε̃ or is a singleton point.

Proof. Let f∗ ∈ Γ 1
g be an optimal solution, and so σS(f∗) = opt. Consider a piece of f∗, say,

P ∗ = [xa, xb] where a is a left break point and b is a right break point and a, b ∈ [n]. Since f∗

is optimal, the cost of P ∗ is δ[a, b]. We replace P ∗ with r < ε̃ · δ[a, b] + 1 pieces P1, . . . , Pr as
follows. We say a pair (a′, a′′) of indices with a′ ≤ a′′ is legal if xa′ = xa′′ or δ[a′, a′′] ≤ 2/ε̃.
Starting with a0 = a − 1, we create a sequence a0, a1, a2, . . . of indices, where ai+1 is the
largest right break point in {ai + 1, . . . , b} such that (ai + 1, ai+1) is legal. The sequence ends
at some ar = b, and we claim that r < ε̃ · δ[a, b] + 1. We first observe that since ai+1 is the
largest right break point for which (ai + 1, ai+1) is legal, we have δ[ai + 1, ai+2] > 2/ε̃ for all
i ∈ {0, 1, . . . , r − 2}. Now consider the sum

∑⌊r/2⌋−1
i=0 δ[a2i + 1, a2(i+1)]. Each summand of

this sum is greater than 2/ε̃. On the other hand, we have δ[a, b] ≥
∑⌊r/2⌋−1

i=0 δ[a2i + 1, a2(i+1)]
by Lemma 6. It directly follows that ⌊r/2⌋ < ε̃ · δ[a, b]/2 and hence r < ε̃ · δ[a, b] + 1. We
define Pi = [xai−1+1, xai ] for i ∈ [r]. We replace P ∗ of f∗ with P1, . . . , Pr, and call them the
sub-pieces of P ∗. We do this for all pieces of f∗, which gives us our function f ∈ Γ 1

g , as
follows. First, clearly, the domain of f is contained in the domain of f∗. Next, for each piece
P = [xa, xb] of f , the function f|P is simply the polynomial f [a, b] restricted to P , whose cost
is δ[a, b]. All that remains is to bound the total error σS(f). Consider a piece P ∗ = [xa, xb] of
f∗ and its sub-pieces P1, . . . , Pr. Let c(P ∗) be the total cost of all the sub-pieces P1, . . . , Pr

plus r. By Lemma 6, the total cost of all the sub-pieces P1, . . . , Pr is at most δ[a, b], and since
r < ε̃ · δ[a, b] + 1 and c∗(P ∗) = δ[a, b] + 1, we get c(P ∗) ≤ (1 + ε̃) · c∗(P ∗). This inequality
holds for each piece of f∗, and so we get our result that σS(f) ≤ (1 + ε̃) · σS(f∗). ◀

For convenience, we say a function f ∈ Γ 1
g is S-light if each piece of f is either a singleton

point or of cost at most 2/ε̃. Similarly, for a subset S′ ⊆ S, we say a function f ∈ Γ 1
g is

S′-light if each piece of f is either a singleton point or of cost with respect to S′ (i.e., the
sum of only the square error of the points in S′) at most 2/ε̃.
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63:6 Piecewise Polynomial Regression

For a right break point b ∈ [n] and an integer i ≥ 0, let ai(b) ∈ [b] be the smallest left
break point such that δ[ai(b), b] ≤ (1 + ε̃)i − 1; if such a left break point does not exist, we
set ai(b) to be the largest left break point that is smaller than or equal to b. We define an
index set A(b) = {ai(b) : i ≥ 0 and (1 + ε̃)i−1 − 1 ≤ 2/ε̃}. We say an interval I is canonical
if I = [xa, xb] for some a, b ∈ [n] such that b is a right break point and a ∈ A(b). A function
f ∈ Γ 1

g is canonical if all pieces of f are canonical intervals. The following lemma shows that
we can limit our search to canonical functions.

▶ Lemma 8. There exists a canonical function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε) · opt.

Proof. We claim that for any S-light function f0 ∈ Γ 1
g , there exists a canonical function

f ∈ Γ 1
g with σS(f) ≤ (1 + ε̃) · σS(f0). This claim in combination with Lemma 7 proves the

lemma. We prove the claim using induction on the number r of distinct x-coordinates of the
points in S, i.e., distinct elements in {x1, . . . , xn}. If r = 1, then x1 = · · · = xn and the interval
I = [x1, xn] is a singleton point. Furthermore, in this case, 1 is the unique left break point,
hence 1 ∈ A(n) and I is canonical. Therefore, the claim clearly holds. Assume that the claim
holds if the number of distinct x-coordinates of the points in S is less than r, and consider the
case where the number is r. Let f0 ∈ Γ 1

g be a S-light function, and we want to show that there
exists a canonical function f ∈ Γ 1

g such that σS(f) ≤ (1 + ε̃) ·σS(f0). Consider the rightmost
piece P of f0. Without loss of generality, we may assume that P = [xa, xn] for some left break
point a ∈ [n]. Let c(P ) be the cost of P . We consider two cases, c(P ) ≤ 2/ε̃ and c(P ) > 2/ε̃.
If c(P ) ≤ 2/ε̃, we define i as the smallest integer such that (1 + ε̃)i ≥ c(P ) + 1. Therefore,
(1 + ε̃)i−1 ≤ c(P ) + 1 ≤ (1 + ε̃)i. Since c(P ) ≤ 2/ε̃, we have (1 + ε̃)i−1 − 1 ≤ 2/ε̃ and hence
ai(n) ∈ A(n). By the definition of ai(n), we have ai(n) ≤ a and δ[ai(n), n] ≤ (1 + ε̃)i − 1,
i.e., δ[ai(n), n] + 1 ≤ (1 + ε̃)i. Since (1 + ε̃)i−1 ≤ c(P ) + 1, we further deduce that
δ[ai(n), n] + 1 ≤ (1 + ε̃) · (c(P ) + 1). Now we define S′ = {(x1, y1), . . . , (xa−1, ya−1)} ⊆ S

and S′′ = {(x1, y1), . . . , (xai(n)−1, yai(n)−1)} ⊆ S. Let f ′
0 ∈ Γ 1

g be the function obtained by
restricting f0 to the union of the pieces other than P . Then f ′

0 is both S′-light and S′′-light.
Note that the number of distinct x-coordinates of the points in S′′ is strictly less than r, as
ai(n) is a left break point. Therefore, by our induction hypothesis, there exists some canonical
function f ′′ ∈ Γ 1

g with σS′′(f ′′) ≤ (1 + ε̃) · σS′′(f0) ≤ (1 + ε̃) · σS′(f0), and we can assume
without loss of generality that all pieces of f ′′ are contained in the range (−∞, xai(n)−1].
We define our function f as the “combination” of f ′′ and f [ai(n), n]. Specifically, the pieces
of f consists of all pieces of f ′′ and the interval [xai(n), xn]. On the piece [xai(n), xn], f is
the same as f [ai(n), n]. On the other pieces, f is the same as f ′′. Clearly, f ∈ Γ 1

g , and it is
canonical because f ′′ is canonical and [xai(n), xn] is a canonical interval. Finally, we have

σS(f) = σS′′(f ′′) + δ[ai(n), n] + 1
≤ (1 + ε̃) · σS′(f0) + (1 + ε̃) · (c(P ) + 1)
= (1 + ε̃) · σS(f0).

In the case c(P ) > 2/ε̃, P must be a singleton point as f0 is S-light. Thus, xa = xn and a is
the largest left break point smaller than or equal to n, which implies a0(n) = a and hence P

is canonical. By our induction hypothesis, there exists some canonical function f ′′ ∈ Γ 1
g with

σS′(f ′′) ≤ (1+ ε̃) ·σS′(f0), where S′ = {(x1, y1), . . . , (xa−1, ya−1)}. Without loss of generality,
we may assume all pieces of f ′′ are contained in the range (−∞, xa−1]. Similarly to the
above, We define f as the combination of f ′′ and f [a, n]. Since σS′(f ′′) ≤ (1 + ε̃) · σS′(f0)
and the cost of P is at least δ[a, n], we have σS(f) ≤ (1 + ε̃) · σS(f0). ◀
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We can find a canonical function f ∈ Γ 1
g minimizing σS(f) using dynamic programming,

as shown in Algorithm 1. By Lemma 8, the result is a (1 + ε)-approximation of the univariate
regression problem.

Algorithm 1 Approximate-Regression-1D(S).

1: t← 0 and opt0 ← 0
2: for t from 1 to n do
3: if t is a right break point then
4: ã← arg mina∈A(t){opta−1 + (δ[a, t] + 1)}
5: optt ← optã−1 + (δ[ã, t] + 1)
6: return optn

The correctness of Algorithm 1 is clear. To analyze its time complexity, we observe that
|A(b)| = O( 1

ε log 1
ε ) for all right break points b ∈ [n]. Therefore, assuming that we know

all the index sets A(b) and all the f [a, b] and δ[a, b], where a ∈ A(b), Algorithm 1 can be
directly implemented in O( n

ε log 1
ε ) time. The details of how to compute all A(b) and all

f [a, b], δ[a, b], where a ∈ A(b), in O( n
ε log 1

ε ) time will appear in the full paper. The following
theorem states the main result of this section.

▶ Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise
polynomial regression which runs in O( n

ε log 1
ε ) time (excluding the time for pre-sorting).

4 Algorithms for bivariate data

In this section, we present our algorithms for piecewise polynomial regression for bivariate
data. The input of the problem is a dataset S = {((xi, x′

i), yi) ∈ R2 × R}n
i=1, and our goal is

to find a function f∗ ∈ Γ 2
g that minimizes σS(f∗) (recall that λ = 1 by assumption).

We present three algorithms for this problem. The first is a polynomial-time constant-
factor approximation. This is the simplest of the three results. The second algorithm
computes the exact solution in sub-exponential time nO(

√
n)), which makes use of the planar

separator theorem (this one will appear in the full paper). The third result is a quasi-
polynomial time approximation scheme, and is technically the most sophisticated of the three
algorithms.

We begin with a brief overview of the high-level ideas underlying our algorithms. We
first observe that a piecewise function corresponds to an orthogonal partition of the plane
(induced by the pieces of the function). Therefore, the problem of finding the optimal function
f∗ ∈ Γ 2

g is (essentially) equivalent to computing an optimal orthogonal partition of the
plane (Lemma 9). Our constant-approximation algorithm (Section 4.1) follows easily from
the observation that there always exists a binary orthogonal partition whose “cost” is a
constant factor of the optimal solution (Lemma 11), and we can compute such a partition in
polynomial-time using dynamic programming. To obtain our subexponential-time algorithm,
we observe that an orthogonal partition of the plane forms a planar graph, and so we can use
a divide-and-conquer approach by utilizing balanced separators of this graph. Finally, our
QPTAS (Section 4.2) is more complicated. It is also based on a planar separator theorem,
together with a cutting lemma (Lemma 13) of [3]. The basic idea is to guess a balanced
separator of the planar graph of the cutting and do divide-and-conquer. We then carefully
analyze the quality of the solution computed by this divide-and-conquer process (Lemma 15
and Corollary 16), and show it is indeed a (1 + ε)-approximation.
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We begin with introducing some notations and concepts. Let ∆ > 0 be a sufficiently
small number such that 3∆ ≤ |xi − xj | for all i, j ∈ [n] with xi ̸= xj and 3∆ ≤ |x′

i − x′
j |

for all i, j ∈ [n] with x′
i ̸= x′

j . Define X = {xi − ∆ : i ∈ [n]} ∪ {xi + ∆ : i ∈ [n]} and
X ′ = {x′

i−∆ : i ∈ [n]}∪{x′
i +∆ : i ∈ [n]}. We say a rectangle [x−, x+]× [x′

−, x′
+] is regular if

x−, x+ ∈ X ∪ {−∞,∞} and x′
−, x′

+ ∈ X ′ ∪ {−∞,∞}. Let Rreg denote the set of all regular
rectangles. The total number of different regular rectangles is O(n4), i.e., |Rreg| = O(n4),
because |X| = O(n) and |X ′| = O(n). Note that if R is a regular rectangle, then for any
i ∈ [n], the point (xi, x′

i) is either contained in the interior of R or outside R. We say a
regular rectangle R is nonempty if (xi, x′

i) ∈ R for some i ∈ [n], and empty otherwise. For a
nonempty rectangle R, we define

δR = 1 + min
f∈R[x,x′]g

∑
(xi,x′

i
)∈R

(yi − f(xi, x′
i))2.

Note that δR can be computed in nO(1) time using the standard approach for least-square
polynomial regression. For a set R of regular rectangles, denote by R• ⊆ R the subset of
nonempty rectangles, and define σS(R) =

∑
R∈R•

δR. A regular region refers to a subset of
R2 that is the union of regular rectangles.

An orthogonal partition (OP) Π of a region K ⊆ R2 is a set of interior-disjoint (axis-
parallel) rectangles whose union is K (see Figure 1 for an illustration). An OP Π is regular if
all rectangles in Π are regular. The following lemma shows that our problem can be reduced
to computing a regular OP Π of the plane which minimizes σS(Π).

K

Figure 1 An orthogonal partition (OP) of the region K.

▶ Lemma 9. For any f ∈ Γ 2
g , there exists a regular OP Π of R2 such that |Π| ≤ 5|f |+ 1

and σS(Π) ≤ σS(f). Conversely, given a regular OP Π of R2, one can compute in nO(1)

time a function f ∈ Γ 2
g such that σS(f) = σS(Π).

Using the reduction of Lemma 9, we establish our algorithms for piecewise polynomial
regression for bivariate data. Section 4.1 presents a polynomial-time constant-approximation
algorithm (Theorem 3), and Section 4.2 presents a QPTAS (Theorem 4).

4.1 A polynomial-time constant-approximation algorithm
In this section, we present a polynomial-time constant-approximation algorithm for the
problem. Let Π∗ be a regular OP of R2 that minimizes σS(Π∗). In order to describe our
algorithm, we need to introduce the notion of binary OP (and regular binary OP).

▶ Definition 10 (binary OP). Let R be an axis-parallel rectangle. A binary OP of R is an
OP defined using the following recursive rule:

The trivial partition {R} is a binary OP of R.
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R

Figure 2 A binary OP of the rectangle R.

If ℓ is a horizontal or vertical line that partitions R into two smaller rectangles R1 and
R2, and Π1 (resp., Π2) are binary OPs of R1 (resp., R2), then Π1 ∪Π2 is a binary OP
of R.

A binary OP is regular if it only consists of regular rectangles.

See Figure 2 for an illustration of binary OP. The basic idea of our approximation
algorithm is to, instead of computing an optimal regular OP, compute an optimal binary
regular OP, i.e., a regular binary OP Π of R2 that minimizes σS(Π). This task can be solved
in polynomial time by a simple dynamic programming algorithm as follows. Suppose we
want to compute an optimal binary regular OP Π of a regular rectangle R. Then Π is either
the trivial partition {R} of R, or there exists a horizontal or vertical line ℓ separating R

into two rectangles R1 and R2, and Π = Π1 ∪Π2 where Π1 (resp., Π2) is a regular binary
OPs of R1 (resp., R2). In the latter case, the equation of the line ℓ must be x = x̃ for some
x̃ ∈ X or x′ = x̃′ for some x̃′ ∈ X ′, because Π has to be a regular OP. This implies that
R1 and R2 are regular rectangles. Furthermore, Π1 and Π2 must be optimal regular binary
OPs of R1 and R2, respectively, in order to minimize σS(Π). Therefore, if we already know
the optimal regular binary OPs of all regular rectangles R′ such that area(R′) < area(R),
then an optimal regular binary OPs of R can be computed in O(n) time. The details of our
algorithm is shown in Algorithm 2, which computes an optimal regular binary OP of R2.
Since |Rreg| = O(n4), it is clear that Algorithm 2 runs in polynomial time.

Let Πbin be the optimal regular binary OP of R2 computed by Algorithm 2 and Π∗ be
the regular OP of R2 that minimizes σS(Π∗). We shall show that σS(Πbin) = O(σS(Π∗)).
To this end, we need the following two lemmas.

▶ Lemma 11. For any regular OP Π of R2, there exists a regular binary OP Π ′ of R2 such
that |Π ′| = O(|Π•|) and for any R′ ∈ Π ′

• there exists R ∈ Π• such that R′ ⊆ R.

▶ Lemma 12. Let Π and Π ′ be two regular OP of R2. If for any R′ ∈ Π ′
• there exists

R ∈ Π• such that R′ ⊆ R, then we have σS(Π ′)− σS(Π) ≤ |Π ′
•| − |Π•|.

By Lemma 11, there exists a regular binary OP Π ′ of R2 such that |Π ′
•| ≤ O(|Π∗

• |)
and for any R′ ∈ Π ′

• there exists R ∈ Π∗
• such that R′ ⊆ R. Then by Lemma 12,

we have σS(Π ′)/σS(Π∗) = 1 + (σS(Π ′) − σS(Π∗))/σS(Π∗) ≤ 1 + (|Π ′
•| − |Π∗

• |)/|Π∗
• | =

|Π ′
•|/|Π∗

• | = O(1). Because Πbin is an optimal regular binary OP of R2, we further have
σS(Πbin) ≤ σS(Π ′) ≤ O(σS(Π∗)). We have σS(Π∗) ≤ opt by the first statement of Lemma 9,
and hence σS(Πbin) ≤ O(opt). Using the second statement of Lemma 9, we then compute a
function f ∈ Γ 2

g in O(n · |Πbin|) = O(n5) time such that σS(f) = σS(Πbin) ≤ O(opt).

▶ Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise
polynomial regression which runs in polynomial time.
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Algorithm 2 OptBinPartition(S).

1: N ← |Rreg|
2: sort the rectangles in Rreg as R1, . . . , RN such that area(R1) ≤ · · · ≤ area(RN )
3: for i from 1 to N do
4: Π[Ri]← {Ri} and opt[Ri]← σS(Π[Ri])
5: suppose Ri = [x−, x+]× [x′

−, x′
+]

6: for all z ∈ X such that x− < z < x+ do
7: R′

i ← [x−, z]× [x′
−, x′

+] and R′′
i ← [z, x+]× [x′

−, x′
+]

8: if opt[Ri] > opt[R′
i] + opt[R′′

i ] then
9: Π[Ri]← Π[R′

i] ∪Π[R′′
i ] and opt[Ri]← σS(Π[Ri])

10: for all z′ ∈ X ′ such that x′
− < z′ < x′

+ do
11: R′

i ← [x−, x+]× [x′
−, z′] and R′′

i ← [x−, x+]× [z′, x′
+]

12: if opt[Ri] > opt[R′
i] + opt[R′′

i ] then
13: Π[Ri]← Π[R′

i] ∪Π[R′′
i ] and opt[Ri]← σS(Π[Ri])

14: return Π[R2]

4.2 A quasi-polynomial-time approximation scheme
In this section, we design a quasi-polynomial-time approximation scheme (QPTAS) for the
problem, that is, a (1 + ε)-approximation algorithm which runs in nlogO(1) n time for any
fixed ε > 0. To this end, we borrow an idea from the geometric independent set literature
[3, 4, 5, 13], which combines the cutting lemma and the planar separator theorem. We need
the following cutting lemma.

▶ Lemma 13. Given a set R of interior-disjoint regular rectangles and a number 1 ≤ r ≤ |R|,
there exists a regular OP Π of R2 with |Π| = O(r) such that each rectangle in Π intersects
at most |R|/r rectangles in R.

Proof. This lemma follows directly from a result of [3] (Lemma 3.12). The original statement
in Lemma 3.12 of [3] only claims the existence of a partition Π of R2 satisfying the desired
properties. However, by the construction in [3], if R consists of regular rectangles, then the
partition Π is a regular OP. ◀

Using the above cutting lemma and the (weighted) planar separator theorem, we obtain the
following corollary.

▶ Corollary 14. Given a set R of interior-disjoint regular rectangles in R2 and a number
1 ≤ r ≤ |R|, there exists a set Σ of O(

√
r) interior-disjoint regular rectangles such that each

rectangle in Σ intersects at most |R|/r rectangles in R and for any regular region K ⊆ R2,
the closure of each connected component U of K\(

⋃
R∈Σ R) entirely contains at most 2

3 |R|
rectangles in R.

Proof. We shall used the following weighted version of the planar separator theorem. Let
G = (V, E) be a planar graph with m vertices where each vertex has a non-negative weight,
and W be the total weight of the vertices. The weighted planar separator theorem states
that one can partition the vertex set V into three parts V1, V2, Σ such that (i) there is no
edge between V1 and V2, (ii) |Σ| ≤ O(

√
m), and (iii) the total weight of the vertices in Vi is

at most 2
3 W for i ∈ {1, 2}.

Let Π be the regular partition of R2 described in Lemma 13 satisfying that |Π| = O(r)
and each rectangle in Π intersects at most |R|/r rectangles in R. Consider the planar graph
GΠ induced by Π. We assign each vertex of GΠ (i.e., each rectangle in Π) a non-negative
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weight as follows. For each rectangle R ∈ R, let m(R) be the number of rectangles in Π

that intersects R. The weight of each rectangle R′ ∈ Π is the sum of 1/m(R) for all R ∈ R
that intersects R′. Note that the total weight W is equal to |R| because each rectangle in R
contributes exactly 1 to the total weight. Applying the weighted planar separator theorem
to the vertex-weighted graph GΠ , we now partition Π into three parts V1, V2, Σ such that
(i) there is no edge between V1 and V2 in GΠ , (ii) |Σ| ≤ O(

√
r), and (iii) the total weight

of the vertices in Vi is at most 2
3 |R| for i ∈ {1, 2}. The separator Σ is just the desired set of

interior-disjoint regular rectangles described in the corollary. The fact that each rectangle
in Σ intersects at most |R|/r rectangles in R follows directly from the property of Π. So
it suffices to show that for any regular region K ⊆ R2, (the closure of) each connected
component of K\(

⋃
R∈Σ R) intersects at most 2

3 |R| rectangles in R. Let U be a connected
component of K\(

⋃
R∈Σ R). The rectangles in Π that are contained in the closure of U

induces a connected subgraph of GΠ , and hence they either all belong to V1 or all belong to
V2 (because there is no edge between V1 and V2 in GΠ). It follows that the total weight of
these rectangles is at most 2

3 |R|, which further implies that the number of rectangles in R
that are (entirely) contained in the closure of U is at most 2

3 |R|. ◀

With the above corollary in hand, we are ready to describe our QPTAS. Roughly speaking,
our algorithm “guesses” the set Σ in Corollary 14 for the optimal regular OP R (and some
parameter r polynomial in log n and 1/ε) and then recursively solve the sub-problem in each
rectangle in Σ and in each connected component of the complement of

⋃
R∈Σ R. The nice

properties of Σ described in Corollary 14 can be used to show (with a careful analysis) that
the final solution we compute is a (1 + ε)-approximation of the optimal solution.

Formally, let r = ω(1) be an integer parameter to be determined later and c be a
sufficiently large constant. For a regular region K ⊆ R2 and an integer m, we denote by
optK,m as the minimum σS(Π) for a regular OP Π of K with |Π•| ≤ m. We shall design a
procedure AppxPartition(S, K, m), which computes a regular OP Π of the regular region
K such that σS(Π) is “not much larger” than optK,m (note that we do not require |Π•| ≤ m);
what we mean by “not much larger” will be clear shortly.

Algorithm 3 AppxPartition(S, K, m).

1: Πopt ← ∅ and opt←∞
2: for all Π ⊆ Rreg with |Π| ≤ r do
3: if the rectangles in Π are interior-disjoint and contained in K then
4: construct an arbitrary regular OP Π ′ of K such that Π ⊆ Π ′

5: if σS(Π ′) < opt then Πopt ← Π ′ and opt← σS(Π ′)
6: if m ≤ r then return Πopt

7: for all Σ ⊆ Rreg with |Σ| ≤ c
√

r do
8: if the rectangles in Σ are interior-disjoint then
9: U ← Components(K\(

⋃
R∈Σ R))

10: ΠR ← AppxPartition(S, K ∩R, m/r) for all R ∈ Σ

11: ΠU ← AppxPartition(S, Closure(U), 3
4 m) for all U ∈ U

12: Π ← (
⋃

R∈Σ ΠR) ∪ (
⋃

U∈U ΠU )
13: if σS(Π) < opt then Πopt ← Π and opt← σS(Π)
14: return Πopt

Algorithm 3 shows how AppxPartition(S, K, m) works step-by-step, and here we provide
an intuitive explanation of the algorithm. Let Π∗ be a (unknown) regular OP of K such
that |Π∗| ≤ m and σS(Π∗) = optK,m. We consider two cases separately: |Π∗

• | ≤ r and
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|Π∗
• | > r. The for-loop of Line 2-6 handles the case |Π∗

• | ≤ r. We simply guess the (at
most) r rectangles in Π∗

• . Note that when we correctly guess Π∗
• , i.e., Π = Π∗

• in Line 2,
any regular OP Π ′ of K such that Π ⊆ Π ′ satisfies σS(Π ′) = σS(Π) = σS(Π∗

• ) = σS(Π∗),
because (xi, x′

i) /∈ K\(
⋃

R∈Π R) for all i ∈ [n]. Therefore, in the case |Π∗
• | ≤ r, we already

have |Πopt| ≤ optK,m after the for-loop of Line 2-6. The remaining case is |Π∗
• | > r, which

implies m > r. This case is handled in the for-loop of Line 8-15. We guess the set Σ

described in Corollary 14 with R = Π∗
• (Line 8 of Algorithm 3), which consists of at most

c
√

r interior-disjoint regular rectangles (recall that c is sufficiently large). Let U be the set
of connected components of K\(

⋃
R∈Σ R). By Corollary 14, for each R ∈ Σ, the regular

region K ∩ R intersects at most |Π∗
• |/r (and hence at most m/r) rectangles in R, and

for each U ∈ U , the closure of U contains at most 2
3 |Π

∗
• | rectangles (and hence at most

2
3 m) in R. We then recursively call AppxPartition(S, K ∩ R, m/r) for all R ∈ Σ and
AppxPartition(S, Closure(U), 3

4 m) for all U ∈ U ; see Line 11-12 of Algorithm 3. Each
recursive call returns us a regular OP of the corresponding sub-region of K; we set Π to be
the union of all the returned regular OPs, which is clearly a regular OP of K (Line 13 of
Algorithm 3). Intuitively, σS(Π) should be “not much larger” than σS(Π∗) if our guess for
Σ is correct. More precisely, we have the following observation.

▶ Lemma 15.
∑

R∈Σ optK∩R,m/r +
∑

U∈U optClosure(U), 3
4 m ≤ (1 + O(1/

√
r)) · σS(Π∗).

Proof. We first show that there exists a regular OP Π of K satisfying (i) |Π•| − |Π∗
• | =

O(|Π∗
• |/
√

r), (ii) each rectangle in Π is either contained in some R ∈ Σ or interior-disjoint
with all R ∈ Σ, (iii) each R ∈ Σ contains at most m/r nonempty rectangles in Π and
Closure(U) contains at most 3

4 m nonempty rectangles in Π for each U ∈ U . Consider the
regular OP Π∗ of K. We further partition each rectangle R∗ ∈ Π∗ into smaller (regular)
rectangles as follows. Let m(R∗) denote the number of rectangles in Σ that intersect (the
interior of) R∗. Since the rectangles in Σ are interior-disjoint, the boundaries of these
m(R∗) rectangles cut R∗ into m(R∗) + 1 regions (which are not necessarily rectangles). Now
we construct the vertical decomposition the boundaries of these m(R∗) rectangles inside
R∗ as follows (similarly to what we did in the proof of Lemma 9). For each top (resp.,
bottom) vertex of the m(R∗) rectangles, if the vertex is contained in the interior of R∗,
we shoot an upward (resp., downward) vertical ray from the vertex, which goes upwards
(resp., downwards) until hitting the boundary of R∗ or the boundary of some other R ∈ Σ.
See Figure 3 for an illustration. Including one ray cuts R∗ into one more piece, and the
total number of the rays we shoot is at most 4m(R∗). Therefore, the vertical decomposition
induces a regular OP of R∗ into at most 5m(R∗)+1 rectangles. We do this for every rectangle
R∗ ∈ Π∗. After that, we obtain our desired regular OP Π. Next, we verify that Π satisfies

Figure 3 The vertical decomposition inside R∗. The grey rectangles are those in Σ. The rectangle
with bolder boundary is R∗.
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the three conditions. We have |Π•| ≤
∑

R∗∈Π∗
•
(5m(R∗) + 1) =

∑
R∗∈Π∗

•
5m(R∗) + |Π∗

• |
since each rectangle R∗ ∈ Π∗

• is partitioned into at most 5m(R∗) + 1 smaller rectangles in
Π (note that the rectangles in Π∗\Π∗

• do not contribute any nonempty rectangle to Π).
Because |Σ| = O(

√
r) and each rectangle in Σ intersects at most |Π∗

• |/r = |Π∗
• |/r rectangles

in Π∗
• , we have

∑
R∗∈Π∗

•
m(R∗) = O(|Π∗

• |/
√

r). It follows that |Π•| − |Π∗
• | = O(|Π∗

• |/
√

r),
i.e., Π satisfies condition (i). Conditions (ii) follows directly from our construction of Π.
It suffices to show condition (iii). Let R ∈ Σ be a rectangle. By our construction of Π,
inside each R∗ ∈ Π∗ that intersects (the interior of) R, there is exactly one rectangle in
Π that is contained in R. Since R only intersects at most |Π∗

• |/r nonempty rectangles
in Π∗ and |Π∗

• | ≤ m, R contains at most m/r nonempty rectangles in Π. Let U ∈ U
be a connected component of K\(

⋃
R∈Σ R). Denote by Π∗

• (U) ⊆ Π∗
• be the subset of

rectangles that intersect U . Clearly, the number of nonempty rectangles in Π that are
contained in Closure(U) is at most

∑
R∗∈Π∗

• (U)(5m(R∗) + 1) = |Π∗
• (U)|+ O(|Π∗

• |/
√

r). By
Corollary 14, Closure(U) entirely contains at most 2

3 |Π
∗
• | rectangles in Π∗

• (U). All the other
rectangles in Π∗

• (U) are partially contained in Closure(U). Note that if a rectangle is partially
contained in Closure(U), then it intersects some R ∈ Σ. Therefore, the number of rectangles
in Π∗

• (U) that are partially contained in Closure(U) is bounded by O(|Π∗
• |/
√

r), because
|Σ| = O(

√
r) and each rectangle in Σ intersects at most |Π∗

• |/r rectangles in Π∗
• . It follows

that |Π∗
• (U)| = 2

3 |Π
∗
• |+O(|Π∗

• |/
√

r) and the number of rectangles in Π that are contained in
Closure(U) is bounded by 2

3 |Π
∗
• |+O(|Π∗

• |/
√

r), which is no more than 3
4 m because |Π∗

• | ≤ m

and we require r = ω(1).
Now we are ready to prove the lemma. Let Π be the regular OP of K we constructed

above. Condition (ii) above guarantees that each rectangle in Π is either contained in some
R ∈ Σ or contained in Closure(U) for some U ∈ U . For each R ∈ Σ, let Π(R) ⊆ Π denote
the subset of rectangles contained in R. Similarly, for each U ∈ U , let Π(U) ⊆ Π denote
the subset of rectangles contained in Closure(U). Condition (iii) above guarantees that
|Π(R)•| ≤ m/r for all R ∈ Σ and |Π(U)•| ≤ 3

4 m for all U ∈ U . So we have

σS(Π) =
∑
R∈Σ

σS(Π(R)) +
∑

R∈U∈U
σS(Π(U)) ≥

∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4 m.

On the other hand, we have σS(Π)−σS(Π∗) ≤ |Π•|− |Π∗
• | = O(|Π∗

• |/
√

r) by Lemma 12 and
condition (i) above. Because |Π∗

• | ≤ σS(Π∗), we further have σS(Π) ≤ (1+O(1/
√

r))·σS(Π∗).
Combining the two inequalities above gives us the inequality in the lemma. ◀

▶ Corollary 16. Let Πopt be the regular OP of K returned by AppxPartition(S, K, m).
Then we have σS(Πopt) ≤ (1 + O(1/

√
r))O(log m) · optK,m.

Proof. As before, let Π∗ be a (unknown) regular OP of K such that |Π∗
• | ≤ m and σS(Π∗) =

optK,m. We prove that σS(Πopt) ≤ (1 + O(1/
√

r))log3/4 m · optK,m by induction on m. In the
base case where m ≤ r, we have σS(Πopt) ≤ σS(Π∗) = optK,m after the for-loop of Line 2-6
(as argued before). Now suppose m > r. If |Π∗

• | ≤ r, then we still have σS(Πopt) ≤ optK,m

after the for-loop of Line 2-6 (as argued before). So it suffices to consider the case |Π∗
• | > r.

We show that when we correctly guess the set Σ in Line 8, the regular OP Π of K we construct
in Line 13 satisfies σS(Π) ≤ (1 + O(1/

√
r))log3/4 m · optK,m. Let U be the set of connected

components of K\(
⋃

R∈Σ R), as in Line 10. We have Π = (
⋃

R∈Σ ΠR) ∪ (
⋃

U∈U ΠU ) where
ΠR = AppxPartition(S, K ∩ R, m/r) and ΠU = AppxPartition(S, Closure(U), 3

4 m).
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Recall that r = ω(1), and hence m/r ≤ 3
4 m. By our induction hypothesis and Lemma 15,

σS(Π) =
∑
R∈Σ

σS(ΠR) +
∑
U∈U

σS(ΠU )

≤ (1 + O(1/
√

r))log3/4 m−1 ·

(∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4 m

)
≤ (1 + O(1/

√
r))log3/4 m−1 · (1 + O(1/

√
r)) · σS(Π∗)

= (1 + O(1/
√

r))log3/4 m · σS(Π∗),

which completes the proof. ◀

By Corollary 16, if we set r = c′ · (log2 n/ε2) for a sufficiently large constant c′, then
for any regular region K and any m = O(n), the procedure AppxPartition(S, K, m) will
return a regular partition Πopt of K such that σS(Πopt) ≤ (1 + ε) · optK,m. To solve our
problem, we only need to call AppxPartition(S,R2, 5n + 1), which will return a regular
partition Πopt of R2 such that σS(Πopt) ≤ (1 + ε) · optR2,5n+1. By the first statement of
Lemma 9, we have optR2,5n+1 ≤ opt. Therefore, it suffices to use the second statement of
Lemma 9 to compute a function f ∈ Γ 2

g such that σS(f) = σS(Πopt) ≤ (1 + ε) · opt.

Time complexity. If m ≤ r, the procedure AppxPartition(S, K, m) takes nO(r) =
nO(log2 n/ε2) time. In the case m > r, there are nO(

√
r) sets Σ to be considered in Line 8.

For each Σ, we have c
√

r recursive calls in Line 11 and nO(1) recursive calls in Line 12,
and all the other work in the for-loop of Line 8-15 can be done in nO(1) time. In addi-
tion, Line 1-6 takes nO(r) time. Therefore, if we use T (m) to denote the running time of
AppxPartition(S, K, m), we have the recurrence

T (m) =
{

nO(
√

r) · T (m/r) + nO(
√

r) · T
( 3

4 m
)

+ nO(r) if m > r,

nO(r) if m ≤ r,

which solves to T (m) = nO(
√

r log m+r). Since our initial call is AppxPartition(S,R2, 5n+1),
the total running time of our algorithm is nO(

√
r log n+r) = nO(log2 n/ε2).

▶ Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.

5 Conclusion and future work

In this paper, we studied the regression problem for univariate and bivariate data using
piecewise polynomial functions. The loss of a k-piece polynomial function is measured as the
sum of λk and its square error, where λ ≥ 0 is a pre-specified parameter. For univariate data,
we gave a (1 + ε)-approximation algorithm that runs in O( n

ε log 1
ε ) time, assuming the data

points are pre-sorted. For bivariate data, we presented three results, a subexponential-time
exact algorithm, a polynomial-time constant-approximation algorithm, and a QPTAS. Finally,
for completeness, we also proved the problem for bivariate data is NP-hard.

Our work suggests several open problems and future research directions. The complexity
of solving the problem exactly for the univariate data remains a challenging open problem. Is
there a subqudratic time algorithm, or is there a (conditional or unconditional) near-quadratic
lower bound? For bivariate data, does there exist a PTAS, namely, a polynomial-time (1 + ε)-
approximation algorithm for any fixed ε > 0? Finally, designing efficient approximation
algorithms for regression problems with more than two variables is an interesting problem.
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Abstract
The minimizers sampling mechanism is a popular mechanism for string sampling introduced inde-
pendently by Schleimer et al. [SIGMOD 2003] and by Roberts et al. [Bioinf. 2004]. Given two positive
integers w and k, it selects the lexicographically smallest length-k substring in every fragment of w

consecutive length-k substrings (in every sliding window of length w + k − 1). Minimizers samples
are approximately uniform, locally consistent, and computable in linear time. Although they do
not have good worst-case guarantees on their size, they are often small in practice. They thus have
been successfully employed in several string processing applications. Two main disadvantages of
minimizers sampling mechanisms are: first, they also do not have good guarantees on the expected
size of their samples for every combination of w and k; and, second, indexes that are constructed
over their samples do not have good worst-case guarantees for on-line pattern searches.

To alleviate these disadvantages, we introduce bidirectional string anchors (bd-anchors), a new
string sampling mechanism. Given a positive integer ℓ, our mechanism selects the lexicographically
smallest rotation in every length-ℓ fragment (in every sliding window of length ℓ). We show that
bd-anchors samples are also approximately uniform, locally consistent, and computable in linear time.
In addition, our experiments using several datasets demonstrate that the bd-anchors sample sizes
decrease proportionally to ℓ; and that these sizes are competitive to or smaller than the minimizers
sample sizes using the analogous sampling parameters. We provide theoretical justification for these
results by analyzing the expected size of bd-anchors samples.

We also show that by using any bd-anchors sample, we can construct, in near-linear time, an
index which requires linear (extra) space in the size of the sample and answers on-line pattern
searches in near-optimal time. We further show, using several datasets, that a simple implementation
of our index is consistently faster for on-line pattern searches than an analogous implementation of
a minimizers-based index [Grabowski and Raniszewski, Softw. Pract. Exp. 2017].

Finally, we highlight the applicability of bd-anchors by developing an efficient and effective
heuristic for top-K similarity search under edit distance. We show, using synthetic datasets, that
our heuristic is more accurate and more than one order of magnitude faster in top-K similarity
searches than the state-of-the-art tool for the same purpose [Zhang and Zhang, KDD 2020].
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1 Introduction

The notion of minimizers, introduced independently by Schleimer et al. [57] and by Roberts
et al. [55], is a mechanism to sample a set of positions over an input string. The goal of
this sampling mechanism is, given a string T of length n over an alphabet Σ of size σ, to
simultaneously satisfy the following properties:
Property 1 (approximately uniform sampling): Every sufficiently long fragment of T has a

representative position sampled by the mechanism.
Property 2 (local consistency): Exact matches between sufficiently long fragments of T are

preserved unconditionally by having the same (relative) representative positions sampled
by the mechanism.

In most practical scenarios, sampling the smallest number of positions is desirable, as long
as Properties 1 and 2 are satisfied. This is because it leads to small data structures or
fewer computations. Indeed, the minimizers sampling mechanism satisfies the property of
approximately uniform sampling: given two positive integers w and k, it selects at least
one length-k substring in every fragment of w consecutive length-k substrings (Property
1). Specifically, this is achieved by selecting the starting positions of the smallest length-k
substrings in every (w + k− 1)-long fragment, where smallest is defined by a choice of a total
order on the universe of length-k strings. These positions are called the “minimizers”. Thus
from similar fragments, similar length-k substrings are sampled (Property 2). In particular,
if two strings have a fragment of length w + k − 1 in common, then they have at least one
minimizer corresponding to the same length-k substring. Let us denote by Mw,k(T ) the set
of minimizers of string T . The following example illustrates the sampling.

▶ Example 1. The setMw,k of minimizers for w = k = 3 for string T = aabaaabcbda (using
a 1-based index) is M3,3(T ) = {1, 4, 5, 6, 7} and for string Q = abaaa is M3,3(Q) = {3}.
Indeed Q occurs at position 2 in T ; and Q and T [2 . . 6] have the minimizers 3 and 4,
respectively, which both correspond to string aaa of length k = 3.

The minimizers sampling mechanism is very versatile, and it has been employed in various
ways in many different applications [45, 63, 19, 10, 30, 34, 35, 46, 36]. Since its inception,
the minimizers sampling mechanism has undergone numerous theoretical and practical
improvements [53, 10, 51, 50, 15, 21, 68, 36, 70] with a particular focus on minimizing the
size of the residual sample; see Section 6 for a summary on this line of research. Although
minimizers have been extensively and successfully used, especially in bioinformatics, we
observe several inherent problems with setting the parameters w and k. In particular,
although the notion of length-k substrings (known as k-mers or k-grams) is a widely-used
string processing tool, we argue that, in the context of minimizers, it may be causing many
more problems than it solves: it is not clear to us why one should use an extra sampling
parameter k to effectively characterize a fragment of length ℓ = w + k − 1 of T . In what
follows, we describe some problems that may arise when setting the parameters w and k.
Indexing: The most widely-used approach is to index the selected minimizers using a

hash table. The key is the selected length-k substring and the value is the list of
positions it occurs. If one would like to use length-k′ substrings for the minimizers with
ℓ = w + k−1 = w′ + k′−1, for some w′ ̸= w and k′ ̸= k, they should compute the new set
Mw′,k′(T ) of minimizers and construct their new index based on Mw′,k′ from scratch.

Querying: To the best of our knowledge, no index based on minimizers can return in optimal
or near-optimal time all occurrences of a pattern Q of length |Q| ≥ ℓ = w + k − 1 in T .

Sample Size: If one would like to minimize the number of selected minimizers, they should
consider different total orders on the universe of length-k strings, which may complicate
practical implementations, often scaling only up to a small k value, e.g. k = 16 [21]. On
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the other hand, when k is fixed and w increases, the length-k substrings in a fragment
become increasingly decoupled from each other, and that regardless of the total order
we may choose. Unfortunately, this interplay phenomenon is inherent to minimizers. It
is known that k ≥ logσ(w) + c, for a fixed constant c, is a necessary condition for the
existence of minimizers samples with expected size in O(n/w) [68]; see Section 6.

We propose the notion of bidirectional string anchors (bd-anchors) to alleviate these
disadvantages. The bd-anchors is a mechanism that drops the sampling parameter k and its
corresponding disadvantages. We only fix a parameter ℓ, which can be viewed as the length
w + k− 1 of the fragments in the minimizers sampling mechanism. The bd-anchor of a string
X of length ℓ is the lexicographically smallest rotation (cyclic shift) of X. We unambiguously
characterize this rotation by its leftmost starting position in string XX. The set Aℓ(T ) of
the order-ℓ bd-anchors of string T is the set of bd-anchors of all length-ℓ fragments of T . It
can be readily verified that bd-anchors satisfy Properties 1 and 2.

▶ Example 2. The set Aℓ(T ) of bd-anchors for ℓ = 5 for string T = aabaaabcbda (using
a 1-based index) is A5(T ) = {4, 5, 6, 11} and for string Q = abaaa, A5(Q) = {3}. Indeed
Q occurs at position 2 in T ; and Q and T [2 . . 6] have the bd-anchors 3 and 4, respectively,
which both correspond to the rotation aaaab.

Let us remark that string synchronizing sets, introduced by Kempa and Kociumaka [41],
is another string sampling mechanism which may be employed to resolve the disadvantages of
minimizers. Yet, it appears to be quite complicated to be efficient in practice. For instance,
in [20], the authors used a simplified and specific definition of string synchronizing sets to
design a space-efficient data structure for answering longest common extension queries.

We consider the word RAM model of computations with w-bit machine words, where
w = Ω(log n), for stating our results. We also assume throughout that string T is over
alphabet Σ = {1, 2, . . . , nO(1)}, which captures virtually any real-world scenario. We measure
space in terms of w-bit machine words. We make the following three specific contributions:

1. In Section 3 we state that the set Aℓ(T ), for any ℓ > 0 and any T of length n, can
be constructed in O(n) time; and that the expected size of Aℓ for strings of length
n, randomly generated by a memoryless source with identical letter probabilities, is in
O(n/ℓ), for any integer ℓ > 0 (proofs are deferred to the full version of our work). The
latter is in contrast to minimizers which achieve the expected bound of O(n/w) only
when k ≥ logσ w + c, for some constant c [68]. We then show, using five real datasets,
that indeed the size of Aℓ decreases proportionally to ℓ; that it is competitive to or
smaller than Mw,k, when ℓ = w + k − 1; and that it is much smaller than Mw,k for
small w values, which is practically important, as widely-used aligners that are based on
minimizers will require less space and computation time if bd-anchors are used instead.

2. In Section 4 we show an index based on Aℓ(T ), for any string T of length n and any
integer ℓ > 0, which answers on-line pattern searches in near-optimal time. In particular,
for any constant ϵ > 0, we show that our index supports the following trade-offs:

it occupies O(|Aℓ(T )|) extra space and reports all k occurrences of any pattern Q of
length |Q| ≥ ℓ given on-line in O(|Q|+ (k + 1) logϵ(|Aℓ(T )|)) time; or
it occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space and reports all k occurrences of any
pattern Q of length |Q| ≥ ℓ given on-line in O(|Q|+ log log(|Aℓ(T )|) + k) time.

We also show that our index can be constructed in O(n + |Aℓ(T )|
√

log(|Aℓ(T )|)) time.
We then show, using five real datasets, that a simple implementation of our index is
consistently faster in on-line pattern searches than an analogous implementation of the
minimizers-based index proposed by Grabowski and Raniszewski in [30].

ESA 2021
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3. In Section 5 we highlight the applicability of bd-anchors by developing an efficient and
effective heuristic for top-K similarity search under edit distance. This is a fundamental
and extensively studied problem [37, 9, 11, 44, 64, 67, 54, 61, 60, 17, 33, 65, 66] with
applications in areas including bioinformatics, databases, data mining, and information
retrieval. We show, using synthetic datasets, that our heuristic, which is based on the
bd-anchors index, is more accurate and more than one order of magnitude faster in top-K
similarity searches than the state-of-the-art tool proposed by Zhang and Zhang in [66].

In Section 2, we provide some preliminaries; and in Section 6 we discuss works related to
minimizers. Let us stress that, although other works may be related to our contributions, we
focus on comparing to minimizers because they are extensively used in applications.

2 Preliminaries

We start with some basic definitions and notation following [13]. An alphabet Σ is a finite
nonempty set of elements called letters. A string X = X[1] . . . X[n] is a sequence of length
|X| = n of letters from Σ. The empty string, denoted by ε, is the string of length 0. The
fragment X[i . . j] of X is an occurrence of the underlying substring S = X[i] . . . X[j]. We
also say that S occurs at position i in X. A prefix of X is a fragment of X of the form
X[1 . . j] and a suffix of X is a fragment of X of the form X[i . . n]. The set of all strings
over Σ (including ε) is denoted by Σ∗. The set of all length-k strings over Σ is denoted by
Σk. Given two strings X and Y , the edit distance dE(X, Y ) is the minimum number of edit
operations (letter insertion, deletion, or substitution) transforming one string into the other.

Let M be a finite nonempty set of strings over Σ of total length m. We define the trie
of M , denoted by TR(M), as a deterministic finite automaton that recognizes M . Its set
of states (nodes) is the set of prefixes of the elements of M ; the initial state (root node) is
ε; the set of terminal states (leaf nodes) is M ; and edges are of the form (u, α, uα), where
u and uα are nodes and α ∈ Σ. The size of TR(M) is thus O(m). The compacted trie of
M , denoted by CT(M), contains the root node, the branching nodes, and the leaf nodes of
TR(M). The term compacted refers to the fact that CT(M) reduces the number of nodes
by replacing each maximal branchless path segment with a single edge, and that it uses a
fragment of a string s ∈M to represent the label of this edge in O(1) machine words. The
size of CT(M) is thus O(|M |). When M is the set of suffixes of a string Y , then CT(M) is
called the suffix tree of Y , and we denote it by ST(Y ). The suffix tree of a string of length n

over an alphabet Σ = {1, . . . , nO(1)} can be constructed in O(n) time [22].
Let us fix throughout a string T = T [1 . . n] of length |T | = n over an ordered alphabet Σ.

Recall that we make the standard assumption of an integer alphabet Σ = {1, 2, . . . , nO(1)}.
We start by defining the notion of minimizers of T from [55] (the definition in [57] is

slightly different). Given an integer k > 0, an integer w > 0, and the ith length-(w + k − 1)
fragment F = T [i . . i + w + k − 2] of T , we define the (w, k)-minimizers of F as the
positions j ∈ [i, i + w) where a lexicographically minimal length-k substring of F occurs.
The set Mw,k(T ) of (w, k)-minimizers of T is defined as the set of (w, k)-minimizers of
T [i . . i + w + k − 2], for all i ∈ [1, n − w − k + 2]. The density of Mw,k(T ) is defined as
the quantity |Mw,k(T )|/n. The following bounds are obtained trivially. The density of any
minimizer scheme is at least 1/w, since at least one (w, k)-minimizer is selected in each
fragment, and at most 1, when every (w, k)-minimizer is selected.

If we waive the lexicographic order assumption, the setMw,k(T ) can be computed on-line
in O(n) time, and if we further assume a constant-time computable function that gives us an
arbitrary rank for each length-k substring in Σk in constant amortized time [36]. This can be
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implemented, for instance, using a rolling hash function (e.g. Karp-Rabin fingerprints [39]),
and the rank (total order) is defined by this function. We also provide here, for completeness,
a simple off-line O(n)-time algorithm that uses a lexicographic order.

▶ Theorem 3. The set Mw,k(T ), for any integers w, k > 0 and any string T of length n,
can be constructed in O(n) time.

Proof. The underlying algorithm has two main steps. In the first step, we construct ST(T ),
the suffix tree of T in O(n) time [22]. Using a depth-first search traversal of ST(T ) we assign
at every position of T in [1, n− k + 1] the lexicographic rank of T [i . . i + k− 1] among all the
length-k strings occurring in T . This process clearly takes O(n) time as ST(T ) is an ordered
structure; it yields an array R of size n− k + 1 with lexicographic ranks. In the second step,
we apply a folklore algorithm, which computes the minimum elements in a sliding window of
size w (cf. [36]) over R. The set of reported indices is Mw,k(T ). ◀

3 Bidirectional String Anchors

We introduce the notion of bidirectional string anchors (bd-anchors). Given a string W ,
a string R is a rotation (or cyclic shift or conjugate) of W if and only if there exists a
decomposition W = UV such that R = V U , for a string U and a nonempty string V . We
often characterize R by its starting position |U | + 1 in WW = UV UV . We use the term
rotation interchangeably to refer to string R or to its identifier (|U |+ 1).

▶ Definition 4 (Bidirectional anchor). Given a string X of length ℓ > 0, the bidirectional
anchor (bd-anchor) of X is the lexicographically minimal rotation j ∈ [1, ℓ] of X with minimal
j. The set of order-ℓ bd-anchors of a string T of length n > ℓ, for some integer ℓ > 0, is
defined as the set Aℓ(T ) of bd-anchors of T [i . . i + ℓ− 1], for all i ∈ [1, n− ℓ + 1].

The density of Aℓ(T ) is defined as the quantity |Aℓ(T )|/n. It can be readily verified that
the bd-anchors sampling mechanism satisfies Properties 1 (approximately uniform sampling)
and 2 (local consistency).

Construction and Size of Aℓ. We show that Aℓ admits an efficient construction. One can
use the linear-time algorithm by Booth [6] to compute the lexicographically minimal rotation
for each length-ℓ fragment of T , resulting in an O(nℓ)-time algorithm, which is reasonably
fast for modest ℓ. (Booth’s algorithm gives the leftmost minimal rotation by construction.)
We can instead design an optimal O(n)-time algorithm for the construction of Aℓ, which is
mostly of theoretical interest, via employing some elementary combinatorial observations
and the data structure proposed by Kociumaka in [42, Theorem 20].

▶ Theorem 5. The set Aℓ(T ), for any integer ℓ > 0 and any string T of length n, can be
constructed in O(n) time.

We can also show that the expected size of Aℓ(T ) is in O(n/ℓ) via observing that Aℓ(T ) is
expected to have many common elements with Mw,k(T ), for certain values of w and k.

▶ Theorem 6. If T is a string of length n, randomly generated by a memoryless source with
identical letter probabilities, then, for any integer ℓ > 0, the expected size of Aℓ(T ) is in
O(n/ℓ).

We defer the proofs of Theorems 5 and 6 to the full version of our work.
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(a) DNA.
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(b) XML.
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Figure 1 Density vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

Density Evaluation. We compare the density of bd-anchors, denoted by BDA, to the
density of minimizers, for different values of w and k such that ℓ = w + k − 1. This is a
fair comparison because ℓ = w + k − 1 is the length of the fragments considered by both
mechanisms. We implemented bd-anchors, the standard minimizers mechanism from [55],
and the minimizers mechanism with robust winnowing from [57], which are referred to as
STD and WIN, respectively.

For bd-anchors, we used Booth’s algorithm, which is easy to implement and reasonably fast.
For minimizers, we used Karp-Rabin fingerprints [39]. (Note that such “random” minimizers
tend to perform even better than the ones based on lexicographic total order in terms of
density [68].) Throughout, we do not evaluate construction times, as all implementations are
reasonably fast, and we make the standard assumption that preprocessing is only required
once. We used five string datasets from the popular Pizza & Chili corpus [24] (see Table 1
for the datasets characteristics). All implementations referred to in this paper have been
written in C++ and compiled at optimization level -O3. All experiments reported in this
paper were conducted using a single core of an AMD Opteron 6386 SE 2.8GHz CPU and
252GB RAM running GNU/Linux.

As can be seen by the results depicted in Figure 1, the density of bd-anchors is either
significantly smaller than or competitive to the STD and WIN minimizers density, especially
for small w. This is useful because a lower density results in smaller indexes and less
computation (see Section 4), and because small w is of practical interest (see Section 5). For
instance, the widely-used long-read aligner Minimap2 [46] stores the selected minimizers of
a reference genome in a hash table to find exact matches as anchors for seed-and-extend
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Table 1 Datasets characteristics.

Dataset Length Alphabet
n size |Σ|

DNA 200,000,000 4
XML 200,000,000 95

ENGLISH 200,000,000 224
PROTEINS 200,000,000 27
SOURCES 200,000,000 229

alignment. The parameters w and k are set based on the required sensitivity of the alignment,
and thus w and k cannot be too large for high sensitivity. Thus, a lower sampling density
reduces the size of the hash table, as well as the computation time, by lowering the average
number of selected minimizers to consider when performing an alignment.

There exists a long line of research on improving the density of minimizers in special
regimes (see Section 6 for details). We stress that most of these algorithms are designed,
implemented, or optimized, only for the DNA alphabet. We have tested against two state-of-
the-art tools employing such algorithms: Miniception [68] and PASHA [21]. The former did
not give better results than STD or WIN for the tested values of w and k; and the latter
does not scale beyond k = 16 or with large alphabets. We have thus omitted these results.

We next report the average number (AVG) of bd-anchors of order ℓ ∈ {4, 8, 12, 16} over
all strings of length n = 20 (see Table 2a) and over all strings of length n = 32 (see Table 2b),
both over a binary alphabet. The results suggest that 2 may be a valid constant in O(n/ℓ).
As expected, the analogous AVG values using a ternary alphabet (not reported) were always
lower than the corresponding ones with a binary alphabet.

Table 2 Average number of bd-anchors for varying ℓ and: (a) n = 20 and (b) n = 32.

(a)

(n, ℓ) (20, 4) (20, 8) (20, 12) (20, 16)
2n/ℓ 10 5 3.33 2.5
AVG 8.53 4.37 2.77 1.76

(b)

(n, ℓ) (32, 4) (32, 8) (32, 12) (32, 16)
2n/ℓ 16 8 5.33 4
AVG 14.16 7.67 5.26 3.85

4 Indexing Using Bidirectional Anchors

Before presenting our index, let us start with a basic definition that is central to our querying
process.

▶ Definition 7 ((α, β)-hit). Given an order-ℓ bd-anchor jQ ∈ Aℓ(Q), for some integer ℓ > 0,
of a query string Q, two integers α > 0, β > 0, with α + β ≥ ℓ + 1, and an order-ℓ bd-anchor
jT ∈ Aℓ(T ) of a target string T , the ordered pair (jQ, jT ) is called an (α, β)-hit if and only
if T [jT − α + 1 . . jT ] = Q[jQ − α + 1 . . jQ] and T [jT . . jT + β − 1] = Q[jQ . . jQ + β − 1].

Intuitively, the parameters α and β let us choose a fragment of Q that is anchored at jQ.
We would like to construct a data structure over T , which is based on Aℓ(T ), such

that, when we are given an order-ℓ bd-anchor jQ over Q as an on-line query, together with
parameters α and β, we can report all (α, β)-hits efficiently. To this end, we present an
efficient data structure, denoted by Iℓ(T ), which is constructed on top of T , and answers
(α, β)-hit queries in near-optimal time. We prove the following result.

▶ Theorem 8. Given a string T of length n and an integer ℓ > 0, the Iℓ(T ) index can be
constructed in O(n + |Aℓ(T )|

√
log(|Aℓ(T )|)) time. For any constant ϵ > 0, Iℓ(T ):

occupies O(|Aℓ(T )|) extra space and reports all k (α, β)-hits in O(α + β + (k +
1) logϵ(|Aℓ(T )|)) time; or
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occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space and reports all k (α, β)-hits in O(α + β +
log log(|Aℓ(T )|) + k) time.

Let us denote by ←−X = X[|X|] . . . X[1] the reversal of string X. We now describe our data
structure.

Construction of Iℓ(T ). Given Aℓ(T ), we construct two sets SL
ℓ (T ) and SR

ℓ (T ) of strings;
conceptually, the reversed suffixes going left from j to 1, and the suffixes going right from
j to n, for all j in Aℓ(T ). In particular, for the bd-anchor j, we construct two strings:
←−−−−−
T [1 . . j] ∈ SL

ℓ (T ) and T [j . . n] ∈ SR
ℓ (T ). Note that, |SL

ℓ (T )| = |SR
ℓ (T )| = |Aℓ(T )|, since for

every bd-anchor in Aℓ(T ) we have a distinct string in SL
ℓ (T ) and in SR

ℓ (T ).
We construct two compacted tries T L

ℓ (T ) and T R
ℓ (T ) over SL

ℓ (T ) and SR
ℓ (T ), respectively,

to index all strings. Every string is concatenated with some special letter $ not occurring
in T , which is lexicographically minimal, to make SL

ℓ (T ) and SR
ℓ (T ) prefix-free (this is

standard for conceptual convenience). The leaf nodes of the compacted tries are labeled
with the corresponding j: there is a one-to-one correspondence between a leaf node and a
bd-anchor j. In O(|Aℓ(T )|) time, we also enhance the nodes of the tries with a perfect static
dictionary [26] to ensure constant-time retrieval of edges by the first letter of their label. Let
LL

ℓ (T ) denote the list of the leaf labels of T L
ℓ (T ) as they are visited using a depth-first search

traversal. LL
ℓ (T ) corresponds to the (labels of the) lexicographically sorted list of SL

ℓ (T )
in increasing order. For each node u in T L

ℓ (T ), we also store the corresponding interval
[xu, yu] over LL

ℓ (T ). Analogously for R, LR
ℓ (T ) denotes the list of the leaf labels of T R

ℓ (T )
as they are visited using a depth-first search traversal and corresponds to the (labels of the)
lexicographically sorted list of SR

ℓ (T ) in increasing order. For each node v in T R
ℓ (T ), we also

store the corresponding interval [xv, yv] over LR
ℓ (T ).

The total size occupied by the tries is Θ(|Aℓ(T )|) because they are compacted: we label
the edges with intervals over [1, n] from T .

We also construct a 2D range reporting data structure over the following points in set
Rℓ(T ):

(x, y) ∈ Rℓ(T ) ⇐⇒ LL
ℓ (T )[x] = LR

ℓ (T )[y].

Note that |Rℓ(T )| = |Aℓ(T )| because the set of leaf labels stored in both tries is precisely
the set Aℓ(T ). Let us remark that the idea of employing 2D range reporting for bidirectional
pattern searches has been introduced by Amir et al. [2] for text indexing and dictionary
matching with one error; see also [47].

This completes the construction of Iℓ(T ). We next explain how we can query Iℓ(T ).

Querying. Given a bd-anchor jQ over a string Q as an on-line query and parameters
α, β > 0, we spell

←−−−−−−−−−−−−−
Q[jQ − α + 1 . . jQ] in T L

ℓ (T ) and Q[jQ . . jQ + β − 1] in T R
ℓ (T ) starting

from the root nodes. If any of the two strings is not spelled fully, we return no (α, β)-
hits. If both strings are fully spelled, we arrive at node u in T L

ℓ (T ) (resp. v in T R
ℓ (T )),

which corresponds to an interval over LL
ℓ (T ) stored in u (resp. LR

ℓ (T ) in v). We obtain the
two intervals [xu, yu] and [xv, yv] forming a rectangle and ask the corresponding 2D range
reporting query. It can be readily verified that this query returns all (α, β)-hits.

▶ Example 9. Let T = aabaaabcbda and A5(T ) = {4, 5, 6, 11}. We have the following
strings in SL(T ):

←−−−−−
T [1 . . 4] = abaa;

←−−−−−
T [1 . . 5] = aabaa;

←−−−−−
T [1 . . 6] = aaabaa; and

←−−−−−−
T [1 . . 11] =

adbcbaaabaa. We have the following strings in SR(T ): T [4 . . 11] = aaabcbda; T [5 . . 11] =
aabcbda; T [6 . . 11] = abcbda; T [11 . . 11] = a. Inspect Figure 2.
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Figure 2 Let T = aabaaabcbda and ℓ = 5. Further let Q = aacabaaaae, the bd-anchor 6 ∈ A5(Q)
of order 5 corresponding to Q[4 . . 8], α = 3 and β = 3. The figure illustrates the Iℓ(T ) index and
how we find that Q[4 . . 8] = T [2 . . 5] = abaaa: the fragment T [2 . . 5] is anchored at position 4.

Proof of Theorem 8. We use the O(n)-time algorithm underlying Theorem 5 to construct
Aℓ(T ). We use the O(n)-time algorithm from [3, 8] to construct the compacted tries from
Aℓ(T ). We extract the |Aℓ(T )| points (x, y) ∈ Rℓ(T ) using the compacted tries in O(|Aℓ(T )|)
time. For the first trade-off of the statement, we use the O(|Aℓ(T )|

√
log(|Aℓ(T )|))-time

algorithm from [5] to construct the 2D range reporting data structure over Rℓ(T ) from [7].
For the second trade-off, we use the O(|Aℓ(T )|

√
log(|Aℓ(T )|))-time algorithm from [28] to

construct the 2D range reporting data structure over Rℓ(T ) from the same paper. ◀

We obtain the following corollary for the fundamental problem of text indexing [62, 48,
22, 38, 23, 31, 32, 4, 12, 52, 41, 27].

▶ Corollary 10. Given Iℓ(T ) constructed for some integer ℓ > 0 and some constant ϵ > 0
over string T , we can report all k occurrences of any pattern Q, |Q| ≥ ℓ, in T in time:
O(|Q|+ (k + 1) logϵ(|Aℓ(T )|)) when Iℓ(T ) occupies O(|Aℓ(T )|) extra space; or
O(|Q|+ log log(|Aℓ(T )|) + k) when Iℓ(T ) occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space.

Proof. Every occurrence of Q in T is prefixed by string P = Q[1 . . ℓ]. We first compute the
bd-anchor of P in O(ℓ) time using Booth’s algorithm. Let this bd-anchor be j. We set α = j

and β = |Q| − j + 1. The result follows by applying Theorem 8. ◀

Index Evaluation. Consider a hash table with the following (key, value) pairs: the key is the
hash value h(S) of a length-k string S; and the value (satellite data) is a list of occurrences
of S in T . It should be clear that such a hash table indexing the minimizers of T does not
perform well for on-line pattern searches of arbitrary length because it would need to verify
the remaining prefix and suffix of the pattern using letter comparisons for all occurrences of
a minimizer in T . We thus opted for comparing our index to the one of [30], which addresses
this specific problem by sampling the suffix array [48] with minimizers to reduce the number
of letter comparisons during verification.

To ensure a fair comparison, we have implemented the basic index from [30]; we denote
it by GR Index. We used Karp-Rabin [39] fingerprints for computing the minimizers of T .
We also used the array-based version of the suffix tree that consists of the suffix array (SA)
and the longest common prefix (LCP) array [48]; SA was constructed using SDSL [29] and
the LCP array using the Kasai et al. [40] algorithm.
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We sampled the SA using the minimizers. Given a pattern Q, we searched Q[j . . |Q|]
starting with the minimizer Q[j . . j + k − 1] using the Manber and Myers [48] algorithm
on the sampled SA. For verifying the remaining prefix Q[1 . . j − 1] of Q, we used letter
comparisons, as described in [30]. The space complexity of this implementation is O(n)
and the extra space for the index is O(|Mw,k(T )|). The query time is not bounded. We
have implemented two versions of our index. We used Booth’s algorithm for computing the
bd-anchors of T . We used SDSL for SA construction and the Kasai et al. algorithm for LCP
array construction. We sampled the SA using the bd-anchors thus constructing LL

ℓ (T ) and
LR

ℓ (T ). Then, the two versions of our index are:
1. BDA Index v1: Let j be the bd-anchor of Q[1 . . ℓ]. For

←−−−−−
Q[1 . . j] (resp. Q[j . . |Q|]) we used

the Manber and Myers algorithm for searching over LL
ℓ (T ) (resp. LR

ℓ (T )). We used range
trees [14] implemented in CGAL [59] for 2D range reporting as per the described querying
process. The space complexity of this implementation is O(n + |Aℓ(T )| log(|Aℓ(T )|))
and the extra space for the index is O(|Aℓ(T )| log(|Aℓ(T )|)). The query time is O(|Q|+
log2(|Aℓ(T )|) + k), where k is the total number of occurrences of Q in T .

2. BDA Index v2: Let j be the bd-anchor of Q[1 . . ℓ]. If |Q|−j +1 ≥ j (resp. |Q|−j +1 < j),
we search for Q[j . . |Q|] (resp.

←−−−−−
Q[1 . . j]) using the Manber and Myers algorithm on LR

ℓ (T )
(resp. LL

ℓ (T )). For verifying the remaining part of the pattern we used letter comparisons.
The space complexity of this implementation is O(n) and the extra space for the index is
O(|Aℓ(T )|). The query time is not bounded.

For each of the five real datasets of Table 1 and each query string length ℓ, we randomly
extracted 500,000 substrings from the text and treated each substring as a query, following [30].
We plot the average query time in Figure 3. As can be seen, BDA Index v2 consistently
outperforms GR Index across all datasets and all ℓ values. The better performance of BDA
Index v2 is due to two theoretical reasons. First, the verification strategy exploits the fact
that the index is bidirectional to apply the Manber and Myers algorithm to the largest part
of the pattern, which results in fewer letter comparisons. Second, bd-anchors generally have
smaller density compared to minimizers; see Figure 4. We also plot the peak memory usage
in Figure 5. As can be seen, BDA Index v2 requires a similar amount of memory to GR Index.

BDA Index v1 was slower than GR Index for small ℓ but faster for large ℓ in three out of five
datasets used and had by far the highest memory usage. Let us stress that the inefficiency of
BDA Index v1 is not due to inefficiency in the query time or space of our algorithm. It is
merely because the range tree implementation of CGAL, which is a standard off-the-shelf
library, is unfortunately inefficient in terms of both query time and memory usage; see
also [58, 25]. As BDA Index v2 was very efficient in all aspects, we defer the investigation of
alternative range tree implementations [58] for BDA Index v1 to the full version of our work.

Discussion. The proposed Iℓ(T ) index, which is based on bd-anchors, has the following
attributes:
1. Construction: Aℓ(T ) is constructed in O(n) worst-case time and Iℓ(T ) is constructed in
O(n + |Aℓ(T )|

√
log(|Aℓ(T )|)) worst-case time. These time complexities are near-linear in

n and do not depend on the alphabet Σ as long as |Σ| = nO(1), which is true for virtually
any real scenario.

2. Index Size: By Theorem 8, Iℓ(T ) can occupy O(|Aℓ(T )|) space. By Theorem 6, the size
of Aℓ(T ) is O(n/ℓ) in expectation and so Iℓ(T ) can also be of size O(n/ℓ). In practice
this depends on T and on the implementation of the 2D range reporting data structure.

3. Querying: The Iℓ(T ) index answers on-line pattern searches in near-optimal time.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 3 Average query time (ms) vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

4. Flexibility: Note that one would have to reconstruct a (hash-based) index, which
indexes the set of (w, k)-minimizers, to increase specificity or sensitivity: increasing k

increases the specificity and decreases the sensitivity. Our Iℓ(T ) index, conceptually
truncated at string depth k, is essentially an index based on (w, k)-minimizers, which
additionally wrap around. We can thus increase specificity by considering larger α, β

values or increase sensitivity by considering smaller α, β values. This effect can be realized
without reconstructing our Iℓ(T ) index: we just adapt α and β upon querying accordingly.

5 Top-K Similarity Search under Edit Distance

We show how bd-anchors can be applied to speed up similarity search under edit distance.
This is a fundamental problem with myriad applications in bioinformatics, databases, data
mining, and information retrieval. It has thus been studied extensively in the literature both
from a theoretical and a practical point of view [37, 9, 11, 44, 64, 67, 54, 61, 60, 17, 33, 65, 66].
Let D be a collection of strings called dictionary. We focus, in particular, on indexing D for
answering the following type of top-K queries: Given a query string Q and an integer K, return
K strings from the dictionary that are closest to Q with respect to edit distance. We follow a
typical seed-chain-align approach as used by several bioinformatics applications [1, 16, 45, 46].
The main new ingredients we inject, with respect to this classic approach, is that we use: (1)
bd-anchors as seeds; and (2) Iℓ to index the dictionary D, for some integer parameter ℓ > 0.

Construction. We require an integer parameter ℓ > 0 defining the order of the bd-anchors.
We set T = S1 . . . S|D|, where Si ∈ D, compute the bd-anchors of order ℓ of T , and construct
the Iℓ(T ) index (see Section 4) using the bd-anchors.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 4 Density vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

Querying. We require two parameters τ ≥ 0 and δ ≥ 0. The former parameter controls
the sensitivity of our filtering step (Step 2 below); and the latter one controls the sensitivity
of our verification step (Step 3 below). Both parameters trade accuracy for speed.

1. For each query string Q, we compute the bd-anchors of order ℓ. For every bd-anchor jQ,
we take an arbitrary fragment (e.g. the leftmost) of length ℓ anchored at jQ as the seed.
Let this fragment start at position iQ. This implies a value for α and β, with α+β = ℓ+1;
specifically for Q[iQ . . iQ + ℓ−1] we have Q[iQ . . jQ] = Q[jQ−α+1 . . jQ] and Q[jQ . . iQ +
ℓ − 1] = Q[jQ . . jQ + β − 1]. For every bd-anchor jQ, we query

←−−−−−−−−−−−−−
Q[jQ − α + 1 . . jQ] in

T L
ℓ (T ) and Q[jQ . . jQ + β − 1] in T R

ℓ (T ) and collect all (α, β)-hits.

2. Let τ ≥ 0 be an input parameter and let LQ,S = (q1, s1), . . . , (qk, sh) be the list of all
(α, β)-hits between the queried fragments of string Q and fragments of a string S ∈ D.
If h < τ , we consider string S as not found. The intuition here is that if Q and S are
sufficiently close with respect to edit distance, they would have a relatively long LQ,S [16].
If h ≥ τ , we sort the elements of LQ,S with respect to their first component. (This
comes for free because we process Q from left to right.) We then compute a longest
increasing subsequence (LIS) in LQ,S with respect to the second component, which chains
the (α, β)-hits, in O(h log h) time [56] per LQ,S list. We use the LIS of LQ,S to estimate
the identity score (total number of matching letters in a fixed alignment) for Q and S,
which we denote by EQ,S , based on the occurrences of the (α, β)-hits in the LIS.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 5 Peak memory usage (GB) vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

3. Let δ ≥ 0 be an input parameter and let EK be the Kth largest estimated identity score.
We extract, as candidates, the ones whose estimated identity score is at least EK − δ.
For every candidate string S, we close the gaps between the occurrences of the (α, β)-hits
in the LIS using dynamic programming [43], thus computing an upper bound on the edit
distance between Q and S (UB score). In particular, closing the gaps consists in summing
up the exact edit distance for all pairs of fragments (one from S and one from Q) that
lie in between the (α, β)-hits. We return K strings from the list of candidates with the
lowest UB score. If δ = 0, we return K strings with the highest EQ,S score.

Index Evaluation. We compared our algorithm, called BDA Search, to Min Search, the
state-of-the-art tool for top-K similarity search under edit distance proposed by Zhang and
Zhang in [66]. The main concept used in Min Search is the rank of a letter in a string, defined
as the size of the neighborhood of the string in which the letter has the minimum hash value.
Based on this concept, Min Search partitions each string in the dictionary D into a hierarchy
of substrings and then builds an index comprised of a set of hash tables, so that strings
having common substrings and thus small edit distance are grouped into the same hash table.
To find the top-K closest strings to a query string, Min Search partitions the query string
based on the ranks of its letters and then traverses the hash tables comprising the index.
Thanks to the index and the use of several filtering tricks, Min Search is at least one order of
magnitude faster with respect to query time than popular alternatives [65, 67, 18].
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We implemented two versions of BDA Search: BDA Search v1 which is based on BDA
Index v1; and BDA Search v2 which is based on BDA Index v2. For Min Search, we used the
C++ implementation from https://github.com/kedayuge/Search.

We constructed synthetic datasets, referred to as SYN, in a way that enables us to study
the impact of different parameters and efficiently identify the ground truth (top-K closest
strings to a query string with respect to edit distance). Specifically, we first generated 50
query strings and then constructed a cluster of K strings around each query string. To
generate the query strings, we started from an arbitrary string Q of length |Q| = 1000 from
a real dataset of protein sequences, used in [66], and generated a string Q′ that is at edit
distance e from Q, by performing e edit distance operations, each with equal probability.
Then, we treated Q′ as Q and repeated the process to generate the next query string. To
create the clusters, we first added each query string into an initially empty cluster and then
added K − 1 strings, each at edit distance at most e′ < e from the query string. The strings
were generated by performing at most e′ edit distance operations, each with equal probability.
Thus, each cluster contains the top-K closest strings to the query string of the cluster. We
used K ∈ {5, 10, 15, 20, 25}, d = e

|Q| ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, and d′ = e′

|Q| = d− 0.05. We
evaluated query answering accuracy using the F1 score [49], expressed as the harmonic mean
of precision and recall1. For BDA Search, we report results for τ = 0 (full sensitivity during
filtering) and δ = 0 (no sensitivity during verification), as it was empirically determined to
be a reasonable trade-off between accuracy and speed. For Min Search, we report results
using its default parameters from [66].

We plot the F1 scores and average query time in Figures 6 and 7, respectively. All methods
achieved almost perfect accuracy, in all tested cases. BDA Search slightly outperformed Min
Search (by up to 1.1%), remaining accurate even for large ℓ; the changes to F1 score for
Min Search as ℓ varies are because the underlying method is randomized. However, both
versions of BDA Search were more than one order of magnitude faster than Min Search on
average (over all results of Figure 7), with BDA Search v1 being 2.9 times slower than BDA
Search v2 on average, due to the inefficiency of the range tree implementation of CGAL.
Furthermore, both versions of BDA Search scaled better with respect to K. For example,
the average query time for BDA Search v1 became 2 times larger when K increased from
5 to 25 (on average over ℓ values), while that for Min Search became 5.4 times larger on
average. The reason is that verification in Min Search, which increases the accuracy of this
method, becomes increasingly expensive as K gets larger. The peak memory usage for these
experiments is reported in Figure 8. Although Min Search outperforms BDA Search in terms
of memory usage, BDA Search v2 still required a very small amount of memory (less than
1GB). BDA Search v1 required more memory for the reasons mentioned in Section 4.

Discussion. BDA Search outperforms Min Search in accuracy while being more than one
order of magnitude faster in query time. These results are very encouraging because the
efficiency of BDA Search is entirely due to injecting bd-anchors and not due to any further
filtering tricks such as those employed by Min Search. Min Search clearly outperforms BDA
Search in memory usage, albeit the memory usage of BDA Search v2 is still quite modest.
We defer an experimental evaluation using real datasets to the full version of our work.

1 Precision is the ratio between the number of returned strings that are among the top-K closest strings
to a query string and the number of all returned strings. Recall is the ratio between the number of
returned strings that are among the top-K closest strings to a query string and K. Since all tested
algorithms return K strings, the F1 score in our experiments is equal to precision and equal to recall.

https://github.com/kedayuge/Search
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(a) SYN. (b) SYN.

Figure 6 F1 score vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and d′ = 0.1.

(a) SYN. (b) SYN.

Figure 7 Average query time (ms) vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and
d′ = 0.1.

6 Other Works on Improving Minimizers

Although every sampling mechanism based on minimizers primarily aims at satisfying
Properties 1 and 2, different mechanisms employ total orders that lead to substantially
different total numbers of selected minimizers. Thus, research on minimizers has focused on
determining total orders which lead to the lowest possible density (recall that the density is
defined as the number of selected length-k substrings over the length of the input string).
In fact, much of the literature focuses on the average case [53, 51, 50, 21, 68]; namely, the
lowest expected density when the input string is random. In practice, many works use a
“random minimizer” where the order is defined by choosing a permutation of all the length-k
strings at random (e.g., by using a hash function, such as the Karp-Rabin fingerprints [39],
on the length-k strings). Such a randomized mechanism has the benefit of being easy to
implement and providing good expected performance in practice.

Minimizers and Universal Hitting Sets. A universal hitting set (UHS) is an unavoidable
set of length-k strings, i.e., it is a set of length-k strings that “hits” every (w + k − 1)-long
fragment of every possible string. The theory of universal hitting sets [53, 50, 41, 69] plays
an important role in the current theory for minimizers with low density on average. In
particular, if a UHS has small size, it generates minimizers with a provable upper-bound on
their density. However, UHSs are less useful in the string-specific case for two reasons [70]:
(1) the requirement that a UHS has to hit every (w + k − 1)-long fragment of every possible
string is too strong; and (2) UHSs are too large to provide a meaningful upper-bound on
the density in the string-specific case. Therefore, since in many practical scenarios the input
string is known and does not change frequently, we try to optimize the density for one
particular string instead of optimizing the average density over a random input.

ESA 2021
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(a) SYN. (b) SYN.

Figure 8 Peak memory usage (GB) vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and
d′ = 0.1.

String-Specific Minimizers. In the string-specific case, minimizers sampling mechanisms
may employ frequency-based orders [10, 36]. In these orders, length-k strings occurring
less frequently in the string compare less than the ones occurring more frequently. The
intuition [70] is to obtain a sparse sampling by selecting infrequent length-k strings which
should be spread apart in the string. However, there is no theoretical guarantee that a
frequency-based order gives low density minimizers (there are many counter-examples).
Furthermore, frequency-based orders do not always give minimizers with lower density in
practice. For instance, the two-tier classification (very frequent vs. less frequent length-k
strings) in the work of [36] outperforms an order that strictly follows frequency of occurrence.

A different approach to constructing string-specific minimizers is to start from a UHS
and to remove elements from it, as long as it still hits every (w + k− 1)-long fragment of the
input string [15]. Since this approach starts with a UHS that is not related to the string,
the improvement in density may not be significant [70]. Additionally, current methods [21]
employing this approach are computationally limited to using k ≤ 16, as the size of the UHS
increases exponentially with k. Using such small k values may not be appropriate in some
applications.

Other Improvements. When k ≈ w, minimizers with expected density of 1.67/w + o(1/w)
on a random string can be constructed using the approach of [68]. Such minimizers have
guaranteed expected density less than 2/(w + 1) and work for infinitely many w and k. The
approach of [68] also does not require the use of expensive heuristics to precompute and store
a large set of length-k strings, unlike some methods [53, 15, 21] with low density in practice.

The notion of polar set, which can be seen as complementary to that of UHS, was
recently introduced in [70]. While a UHS is a set of length-k strings that intersect with
every (w + k − 1)-long fragment at least once, a polar set is a set of length-k strings that
intersect with any fragment at most once. The construction of a polar set builds upon sets of
length-k strings that are sparse in the input string. Thus, the minimizers derived from these
polar sets have provably tight bounds on their density. Unfortunately, computing optimal
polar sets is NP-hard, as shown in [70]. Thus, the work of [70] also proposed a heuristic for
computing feasible “good enough” polar sets. A main disadvantage of this approach is that
when each length-k string occurs frequently in the input string, it becomes hard to select
many length-k strings without violating the polar set condition.
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Abstract
We introduce the visibility center of a set of points inside a polygon – a point cV such that the
maximum geodesic distance from cV to see any point in the set is minimized. For a simple polygon
of n vertices and a set of m points inside it, we give an O((n + m) log (n + m)) time algorithm to
find the visibility center. We find the visibility center of all points in a simple polygon in O(n log n)
time.

Our algorithm reduces the visibility center problem to the problem of finding the geodesic
center of a set of half-polygons inside a polygon, which is of independent interest. We give an
O((n + k) log(n + k)) time algorithm for this problem, where k is the number of half-polygons.
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1 Introduction

Suppose you want to guard a polygon and you have many sensors but only one guard to
check on the sensors. The guard must be positioned at a point cV in the polygon such that
when a sensor at any query point u sends an alarm, the guard travels from cV on a shortest
path inside the polygon to see point u; the goal is to minimize the maximum distance the
guard must travel. More precisely, we must choose cV to minimize the maximum, over points
u, of the geodesic distance from cV to a point that sees u. The optimum guard position cV

is called the visibility center of the set U of possible query points. See Figure 1. We give an
O((n + m) log (n + m)) time algorithm to find the visibility center of a set U of size m in an
n-vertex simple polygon. To find the visibility center of all points inside a simple polygon,
we can restrict our attention to the vertices of the polygon, which yields an O(n log n) time
algorithm.

To the best of our knowledge, the idea of visibility centers is new, though it is a very
natural concept that combines two significant branches of computational geometry: visibility
problems [12]; and center problems and farthest Voronoi diagrams [5].

There is a long history of finding “center points”, for various definitions of “center”. The
most famous of these is Megiddo’s linear time algorithm [20] to find the center of a set of
points in the plane (Sylvester’s “smallest circle” problem).

Inside a polygon the relevant distance measure is not the Euclidean distance but rather
the shortest path, or geodesic, distance. The geodesic center of a simple polygon is a point
p that minimizes the maximum geodesic distance from p to any point q of the polygon, or
equivalently, the maximum geodesic distance from p to any vertex of the polygon. Pollack,
Sharir, and Rote [24] gave an O(n log n) time divide-and-conquer algorithm to find the
geodesic center of a polygon. Our algorithm builds on theirs. A more recent algorithm by
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Figure 1 (left) Point cV is the visibility center of points U = {u1, . . . , u6}. Starting from cV , the
three points we need to travel (equally) farthest to see are u1, u3 and u5. The shortest paths (in
blue) to see these points must reach the half-polygons bounded by the chords (in red) emanating
from the points. (right) Equivalently, cV is the geodesic center of five half-polygons (each shown as
a red boundary chord shaded on one side).

Ahn et al. [1] finds the geodesic center of a polygon in linear time. Another notion of the
center of a polygon is the link center, which can be found in O(n log n) time [10].

Center problems are closely related to farthest Voronoi diagrams, since the center is
(modulo degeneracies) a vertex of the corresponding farthest Voronoi diagram. Finding the
farthest Voronoi diagram of points in the plane takes Θ(n log n) time – thus is it strictly
harder to find the farthest Voronoi diagram than to find the center. However, working
inside a simple polygon helps for farthest Voronoi diagrams: the farthest geodesic Voronoi
diagram of the vertices of a polygon can be found in time O(n log log n) [23]. Generalizing
the two scenarios (points in the plane, and polygon vertices), yields the problem of finding
the farthest Voronoi diagram of m points in a polygon, which was first solved by Aronov et
al. [3] with run-time O((n + m) log(n + m)), and improved in a sequence of papers [23, 6, 22],
with the current best run-time of O(n + m log m) [27].

Turning to visibility problems in a polygon, there are algorithms for the “quickest visibility
problem” – to find the shortest path from point s to see point q, and to solve the query version
where s is fixed and q is a query point [2, 26]. For a simple polygon [2], the preprocessing
time and space are O(n) and the query time is O(log n). We did not find these results useful
in our algorithm to find the visibility center cV , but they are useful afterwards to find the
actual shortest path from cV to see a query point.

A more basic version of our problem is to find, if there is one, a point that sees all
points in U . The set of such points is the kernel of U . When U is the set of vertices, the
kernel can be found in linear time [19]. For a general set U , Ke and O’Rourke [18] gave an
O(n + m log(n + m)) time algorithm to compute the kernel, and we use some of their results
in our algorithm.

Another problem somewhat similar to ours is the watchman problem [9, 11] – to find a
minimum length tour from which a single guard can see the whole polygon. Our first step is
similar in flavour to the first step for the watchman problem, namely, to replace the condition
of “seeing” everything by a condition of visiting certain “essential chords”.

Our Results

The distance to visibility from a point x to point u in P , denoted dV (x, u) is the minimum
distance in P from x to a point y such that y sees u. For a set of points U in P , the visibility
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radius of x with respect to U is rV (x, U) := max{dV (x, u) : u ∈ U}. The visibility center cV

of U is a point x that minimizes rV (x, U). Our main result is:

▶ Theorem 1. There is an algorithm to find the visibility center of a point set U in a simple
n-vertex polygon P with run-time O((n + m) log(n + m)) where m is the size of U .

The key to our algorithm is to reformulate the visibility center problem in terms of
distances to certain half-polygons inside the polygon. We illustrate the idea by means of the
example in Figure 1 where the visibility center of the 6-element point set U is the geodesic
center of a set of five half-polygons.

More generally, we will reduce the problem of finding the visibility center to the problem
of finding a geodesic center of a linear number of half-polygons. The input to this problem
is a set H of k half-polygons (see Section 2 for precise definitions) and the goal is to find
a geodesic center c that minimizes the maximum distance from c to a half-polygon. More
precisely, the geodesic radius from a point x to H is r(x, H) := max{d(x, H) : H ∈ H}, and
the geodesic center c of H is a point x that minimizes r(x, H). Our second main result is:

▶ Theorem 2. There is an algorithm to find the geodesic center of a set H of half-polygons
in a simple n-vertex polgyon P with run-time O((n + k) log(n + k)) where k is the size of H.

Our algorithm extends the divide-and-conquer approach that Pollack et al. [24] used to
compute the geodesic center of the vertices of a simple polygon.

Our main motivation for finding the geodesic center of half-polygons is to find the visibility
center, but the geodesic center of half-polygons is of independent interest. Euclidean problems
of a similar flavour are to find the center (or the farthest Voronoi diagram) of line segments
or convex polygons in the plane [7, 17]. These problems are less well-studied than the case
of point sites (e.g., see [4] for remarks on this). The literature for geodesic centers is even
more sparse, focusing almost exclusively on geodesic centers of points in a polygon. It is thus
interesting that the center of half-polygons inside a polygon can be found efficiently. As a
special case, we can find the geodesic center of the edges of a simple polygon in O(n log n)
time.

The reduction from the visibility center problem to the geodesic center of half-polygons is
in Section 3. The run time is O((n + m) log(n + m)). The algorithm that proves Theorem 2
is in Section 4. Together these prove Theorem 1.

2 Preliminaries

We add a few more basic definitions to augment the main definitions given above. We work
with a simple polygon P of n vertices whose boundary ∂P is directed clockwise. A chord of
P is a line segment inside P that intersects ∂P only at its two endpoints. Any chord divides
P into two half-polygons. A half-polygon is specified by its chord (p, q) with the convention
that the half-polygon contains the path clockwise from p to q.

The geodesic distance d(x, y) (or simply, distance) between two points x and y in P is
the length of the shortest path π(x, y) in P from x to y. For half-polygon H, the geodesic
distance d(x, H) is the minimum distance from x to a point in H.

Points x and y in P are visible (x “sees” y) if the segment xy lies inside P . The distance
to visibility from x to u, denoted dV (x, u) is the minimum distance from x to a point y such
that y sees u. If x sees u, then this distance is 0, and otherwise it is the distance from x

to the half-polygon defined as follows. Let r be the last reflex vertex on the shortest path
from x to u. Extend the ray −→ur from r until it hits the polygon boundary ∂P at a point p to
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obtain a chord rp (which is an edge of the visibility polygon of u). Of the two half-polygons
defined by rp, let H(u, r) be the one that contains u. See Figure 1.

▶ Observation 3. dV (x, u) = d(x, H(u, r)).

At their core, our methods depend on convexity properties of the distance functions. A
basic result is the following which is proved in the full version of our paper.

▷ Claim 4. The set of points x with rV (x, U) ≤ k [or with r(x, H) ≤ k] is geodesically
convex, i.e., if two points x, y lie in the set then so does π(x, y).

More detail on convexity properties can be found in the long version of our paper. These
convexity properties allow us to prove that the visibility center of a set of points U and
the geodesic center of a set of half-polygons H are unique except in very special cases. We
explain this for the geodesic center of half-polygons, but the same argument works for the
visibility center (or, alternatively, one can use the reduction from the visibility center to the
geodesic center in Section 3). First of all, if the geodesic radius is 0 then any point in the
intersection of the half-polygons is a geodesic center. So we assume that the geodesic radius
r is positive. Then we have the following (proved in the long version):

▷ Claim 5. There is a set H′ ⊆ H of two or three half-polygons such that the set of geodesic
centers of H is equal to the set of geodesic centers of H′ and furthermore
1. if H′ has size 3 then the geodesic center is unique (see Figure 1)
2. if H′ has size 2 then either the geodesic center is unique or the two half-polygons of H′

have chords that are parallel and the geodesic center consists of a line segment parallel to
them and midway between them.

3 Reducing the Visibility Center to the Center of Half-Polygons

In this section we reduce the problem of finding the visibility center of a set of points U in
a polygon P to the problem of finding the geodesic center of a linear number of “essential”
half-polygons H, which is solved in Section 4.

By Observation 3 (and see Figure 1) the visibility center of U is the geodesic center of the
set of O(mn) half-polygons H(u, r) where u ∈ U , r is a reflex vertex of P that sees u, and
H(u, r) is the half-polygon containing u and bounded by the chord that extends −→ur from r

until it hits ∂P at a point t. Note that finding t is a ray shooting problem and costs O(log n)
time after an O(n) time preprocessing step [16].

However, this set of half-polygons is too large. We will find a set H of O(n) “essential”
half-polygons that suffice, i.e., such that the visibility center of U is the geodesic center of the
half polygons of H. In fact, we give two possible sets of essential half-polygons, Hreflex and
Hhull, where the latter set can be found more efficiently. The bottleneck is still the algorithm
for geodesic center of half-polygons, but it still seems worthwhile to optimize the reduction.

We first observe that any half-polygon that contains another one is redundant. For
example, in Figure 1 H(u4, r4) is redundant because it contains H(u5, r4). At each reflex
vertex r of P , there are at most two minimal half-polygons H(u, r). Define Hreflex to be this
set of minimal half-polygons. Note that Hreflex has size O(nr) where nr is the number of
reflex vertices of P .

Observe that for the case of finding the visibility center of all points of P , Hreflex consists
of the half-polygons H(v, r) where (v, r) is an edge of P , so Hreflex can be found in time
O(n + nr log n).
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For a point set U , the set Hreflex was also used by Ke and O’Rourke [18] in their algorithm
to compute the kernel of point set U in polygon P . (Recall from the Introduction that
the kernel of U is the set of points in P that see all points of U .) They gave a sweep line
algorithm (“Algorithm 2”) to find Hreflex in time O((n + m) log(n + m)). To summarize:

▶ Proposition 6. The geodesic center of Hreflex is the visibility center of U . Furthermore,
Hreflex can be found in time O((n + m) log(n + m)).

In the remainder of this section we present a second approach using Hhull that eliminates
the O(n log n) term. This does not change the runtime to find the visibility center, but
it means that improving the algorithm to find the geodesic center of half-polygons will
automatically improve the visibility center algorithm. The idea is that Hreflex is wasteful in
that a single point u ∈ U can give rise to nr half-polygons. Note that we really only need
three half-polygons in an essential set, though the trouble is to find them!

We first eliminate the case where the kernel of U is non-empty (i.e., rV = 0) by running
the O(n + m log(n + m)) time kernel-finding algorithm of Ke and O’Rourke [18]. Next we
find Hhull in two steps. First make a subset H0 as follows. Construct R, the geodesic convex
hull of U in P in time O(n + m log(m + n)) [14, 25]. For each edge (u, r) of R where u ∈ U

and r is a reflex vertex of P , put H(u, r) into H0. Note that H0 has size O(min{nr, m}) so
ray shooting to find the endpoints of the chords H(u, r) takes time O(n + min{nr, m} log n).
Unfortunately, as shown in Figure 2, H0 can miss an essential half-polygon.

Next, construct a geodesic center c0 of H0 using the algorithm of Section 4. (Note that
the geodesic center can be non-unique and in such cases c0 denotes any one point from the
set of geodesic centers.) Then repeat the above step for U ∪ {c0}, more precisely, construct
R′, the geodesic convex hull of U ∪ {c0} in P and for each edge (u, r) of R′ where u ∈ U

and r is a reflex vertex of P , add H(u, r) to H0. This defines Hhull. Again, Hhull has size
O(min{nr, m}) and ray shooting costs O(n + min{nr, m} log n).

Figure 2 The geodesic convex hull of U = {u1, . . . , u5} is shaded grey. H0 consists of the two
half-polygons H(u2, r2) and H(u3, r3) (with solid red chords), but misses H(u1, r1), which is essential
for the visibility center cV . The point c0 denotes a geodesic center of H0.

▶ Theorem 7. Suppose the kernel of U is empty. Then the geodesic center of Hhull is the
visibility center of U . Furthermore Hhull can be found in time O(n + m log(n + m)) plus the
time to find the geodesic center of O(min{nr, m}) half-polygons.

Proof. The run-time was analyzed above. Consider the visibility center cV . By assumption,
rV > 0. We consider the half-polygons H(u, r) ∈ Hreflex such that rV = d(cV , H(u, r)).

ESA 2021
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By Claim 5 either there are three of these half-polygons, H1, H2 and H3, that uniquely
determine cV , or there are two, H1 and H2, that determine cV . Then cV is the geodesic
center of Hi i = 1, 2, 3 or i = 1, 2 depending on which case we are in. Let Hi = H(ui, ri).

If all the Hi’s are in H0, we are done. We will show that at least two are in H0 and the
third one (if it exists) is “caught” by c0. See Figure 2. Let hi be the chord defining Hi and
let Hi be the other half-polygon determined by hi.

▷ Claim 8. If U contains a point in Hi then (ui, ri) is an edge of R so Hi ∈ H0.

Proof. Let u be a point in Hi. Observe that π(ui, u) contains the segment uiri. Thus ri is a
vertex of R. Furthermore uiri is an edge of R. (Note that Hi is extreme at r since we picked
it from Hreflex.) Thus Hi is in H0. ◁

▷ Claim 9. At least two of the Hi’s lie in H0.

Proof. First observe that if two of the half-polygons are disjoint, say Hi and Hj , then they
lie in H0, because ui ∈ Hi implies ui ∈ Hj so by Claim 8, Hi ∈ H0, and symmetrically,
Hj ∈ H0.

We separate the proof into cases depending on the number of Hi’s. If there are two then
they must be disjoint otherwise a point in their intersection would be a visibility center with
visibility radius rV = 0. Then by the above observation, they are both in H0.

It remains to consider the case of three half-polygons. If two are disjoint, we are done, so
suppose each pair Hi, Hj intersects. Then the three chords hi form a triangle. Furthermore,
since

⋂
Hi is non-empty (it contains cV ), the inside of the triangle is

⋂
Hi. Now suppose

H1 /∈ H0. Then by Claim 8, u2, u3 ∈ H1. This implies (see Figure 2) that u2 ∈ H3 and
u3 ∈ H2, so by Claim 8, H2 and H3 are in H0. ◁

We now complete the proof of the theorem. We only need to consider the case of three Hi’s,
where one of them, say H1, is not in H0. Our goal is to show that c0, the geodesic center of
H0, lies in H1 and thus H1 is in Hhull. Let X = {x ∈ P : d(x, H2) ≤ rV and d(x, H3) ≤ rV }.
Observe that c0 ∈ X (because the radius is non-increasing as we eliminate half-polygons).
Now, cV is the unique point within distance rV of the half-polygons H1, H2 and H3. If
c0 ∈ H1, then c0’s distance to H1 would be 0 which contradicts the uniqueness property of
cV . Thus c0 ∈ H1. By the same reasoning as in Claim 8, this implies that u1r1 is an edge of
R′, the geodesic convex hull of U ∪ {c0}. Thus H1 is in Hhull by definition of Hhull. ◀

4 The Geodesic Center of Half-Polygons

In this section, we give an algorithm to find the geodesic center of a set H of k half-polygons
inside an n-vertex polygon P . We preprocess by sorting the half-polygons in cyclic order of
their first endpoints around ∂P in time O(k log k). We assume that no half-polygon in H
contains another – any non-minimal half-polygon is irrelevant and can be discarded. Note
that the minimal half-polygons can be found in linear time from the sorted order.

We follow the approach that Pollack et al. [24] used to find the geodesic center of the
vertices of a polygon. Many steps of their algorithm rely, in turn, on search algorithms of
Megiddo’s [20].

The main ingredient of the algorithm is a linear time chord oracle that, given a chord
K = ab of the polygon, finds the relative geodesic center, cK (the optimum center point
restricted to points on the chord), and tells us which side of the chord contains the center.
We must completely redo the chord oracle in order to handle paths to half-polygons instead
of vertices, but the main steps are the same. Our chord oracle runs in time O(n + k). Pollack
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et al.’s chord oracle was used as a black box in subsequent faster algorithms [1], so we imagine
that our version will be an ingredient in any faster algorithm for the geodesic center of
half-polygons.

Using the chord oracle, we again follow the approach of Pollack et al. to find the geodesic
center. The total run time is O((n + k) log(n + k)).

We give a road-map for the remainder of this section, listing the main steps, which are
the same as those of Pollack et al., and highlighting the parts that we must rework.

§ 4.1 A Linear Time Chord Oracle

1. Test a candidate center point. Given a point x on the chord K = ab, is the relative
geodesic center cK to the left or right of x? Is the geodesic center c to the left or right of
chord K?

2. Find shortest paths from a and from b to all half-polygons. The details of this step are
novel, because we need shortest paths to half-polygons rather than vertices.

3. Find a linear number of simple functions defined on K whose upper envelope is the
geodesic radius function. We must redo this from the ground up.

4. Find the relative center on K (the point that minimizes the geodesic radius function)
using Megiddo’s technique.

§ 4.2 Finding the Geodesic Center of Half-Polygons

1. Use the chord oracle to find a region of P that contains the center and such that for any
half-polygon H ∈ H, all geodesic paths from the region to H are combinatorially the
same. We give a more modern version of this step using epsilon nets.

2. Solve the resulting Euclidean “intersection radius problem” – to find a smallest disk that
contains given disks and intersects given lines. This is new because of the condition about
intersecting given lines.

4.1 A Linear Time Chord Oracle
In this section we give a linear time chord oracle. Given a chord K = ab the chord oracle
tells us whether the geodesic center of H lies to the left, to the right, or on the chord K. It
does this by first finding the relative geodesic center cK = argmin{r(x, H) : x ∈ K}, together
with the half-polygons that are farthest from cK . From this information, we can identify
which side of K contains the geodesic center c in the same way as Pollack et al. by testing
the vectors of the first segments of the shortest paths from cK to its furthest half-polygons.
This test is described in Subsection 4.1.1.

The chord oracle thus reduces to the problem of finding the relative geodesic center and
its farthest half-polygons. The main idea here is to capture the geodesic radius function
along the chord (i.e., the function r(x, H) for x ∈ K) as the upper envelope of a linear
number of simple functions defined on overlapping subintervals of K. In order to find the
simple functions (Section 4.1.3) we first compute shortest paths from a and from b to all the
half-polygons (Section 4.1.2). Finally we apply Megiddo’s techniques (Section 4.1.4) to find
the point cK on K that minimizes the geodesic radius function.

4.1.1 Testing a Candidate Center Point
Given the relative geodesic center cK on chord K and the first edges of the paths from cK to
its farthest half-polygons, we can test in constant time whether the geodesic center is equal
to cK or lies to the left or the right of K. We can also test, given a point x on K and the
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first edges of the paths to its farthest half-polygons, whether cK is equal to x or lies to the
left or right of x. We illustrate the tests in Figure 3, and defer a more rigorous explanation
to the long version of our paper.

Figure 3 Points xi on chord K = ab with directions of paths to farthest half-polygons in dashed
blue and the direction for improvement in dotted red. (a) x1 is not a relative center. x2 is a relative
center but not the true geodesic center. (b,c) x3 and x4 are geodesic centers.

4.1.2 Shortest Paths to Half-Polygons
In this section we give a linear time algorithm to find the shortest path tree from point a on
the polygon boundary to all the half-polygons H. Recall that each half-polygon is specified
by an ordered pair of endpoints on ∂P , and the half-polygons are sorted in clockwise cyclic
order by their first endpoints. From this, we identify the half-polygons that contain a, and
we discard them – their distance from a is 0. Let H1, . . . , Hk′ be the remaining half-polygons
where Hi is bounded by endpoints piqi, and the Hi’s are sorted by pi, starting at a.

The idea is to first find the shortest path map Ta from a to the set consisting of the polygon
vertices and the points pi and qi. Recall that the shortest path map is an augmentation
of the shortest path tree that partitions the polygon into triangular regions in which the
shortest path from a is combinatorially the same (see Figure 4). The shortest path map can
be found in linear time [13]. Note that Ta is embedded in the plane (none of its edges cross)
and the ordering of its leaves matches their ordering on ∂P . Our algorithm will traverse Ta

in depth-first order, and visit the triangular regions along the way.
Our plan is to augment Ta to a shortest path tree T̄a that includes the shortest paths

from a to each half-polygon Hi. Note that T̄a is again an embedded ordered tree. We can
find π(a, Hi) by examining the regions of the shortest path map intersected by piqi. These
lie in the funnel between the shortest paths π(a, pi) and π(a, qi). Note that edges of the
shortest path map Ta may cross the chord piqi. Also, the funnels for different half-polygons
may overlap. The key to making the search efficient is the following lemma:

▶ Lemma 10. The ordering H1, H2, . . . , Hk′ matches the ordering of the paths π(a, Hi) in
the tree T̄a.

Proof. Consider two half-polygons Hi = piqi and Hj = pjqj , with i < j. We prove that
π(a, Hi) comes before π(a, Hj) in T̄a. If Hi and Hj are disjoint, the result is immediate
since the corresponding funnels do not overlap. Otherwise (because neither half-polygon is
contained in the other) piqi and pjqj must intersect, say at point x. See Figure 4. Let ti and
tj be the terminal points of the paths π(a, Hi) and π(a, Hj), respectively. If ti lies in pix

and tj lies in xqj then the result follows since ti and tj lie in order on the boundary of the
truncated polygon formed by removing Hi and Hj . So suppose that tj lies in pjx (the other
case is symmetric). Then π(a, tj) crosses piqi at a point z in pix. From z to tj the path
π(a, tj) lies inside the cone with apex x bounded by the rays from x through z and from x

through tj . Within that cone, the path only turns left. The angle αj at tj is ≥ 90◦ (it may
be > 90◦ if tj = pj), which implies that the angle αi at z is > 90◦. Therefore ti lies to the
left of z, as required. ◀
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Figure 4 The shortest path map Ta (thin blue) and the augmentation (dashed red) to include
shortest paths to the two half-polygons bounded by chords piqi and pjqj (thick red).

Based on the Lemma, the algorithm traverses the regions of the shortest path map Ta in
depth first search order, and traverses the half-polygons Hi in order i = 1, 2, . . . , k′. It is easy
to test if one region contains the shortest path to Hi (either to pi, or to qi, or reaching an
internal point of piqi at a right angle); if it does, we increment i, and otherwise we proceed
to the next region. The total time is O(n + k).

4.1.3 Functions to Capture the Distance to Farthest Half-Polygons
In this section we give a linear time algorithm to find a linear number of simple functions
defined on the chord K = ab whose upper envelope is the geodesic radius function r(x, H)
for x ∈ K. Specifically, we use the shortest path trees T̄a and T̄b constructed in the previous
section to build a set of O(n + k) pairs f, I where:

I is a subinterval of K and f is a function defined on domain I,
each function has the form f(x) = d2(x, s) + κ where κ is a constant, d2 is Euclidean
distance, and s is a point or a line,
for any point x ∈ K the maximum of f(x) over intervals I containing x is equal to
r(x, H).

For intuition, see Figure 5a, which shows several intervals and their associated functions.
Note that we deal separately with the two pieces of the polygon on each side of K. There is
an obvious set of O(nk) pairs f, I with the above properties, one for each H ∈ H and v ∈ P ,
but we want a set of linear size.

The crucial property is that there are a limited number of farthest half-polygons associated
with each vertex, and we can restrict our attention (mostly) to longest paths in the trees
T̄a and T̄b. In particular, consider a point x ∈ K, a half-polygon H, and the shortest path
π(x, H). Suppose π(x, H) has at least two edges, say π(x, H) = x, u, v, . . . , t, where t is the
terminal point on H . If π(x, H) turns left at u, then the part of the path from u to t is part
of the tree T̄a, and symmetrically for right turns and T̄b. See Figure 5b. Furthermore, if H

is a farthest half-polygon from x, then we can show (in the full version) that the part of the
path from v to t is the longest path in T̄a descending from v to any half-polygon. Note that
using longest paths from u rather than v is not correct – see Figure 5b.

For any node u in T̄a let ℓa(u) be the maximum length of a path in T̄a descending from u

to a node representing a terminal point on some half-polygon. Define ℓb(u) similarly. We can
compute these functions in linear time in leaf-to-root order. In the situation described above,
where H is a farthest half-polygon from x and the path π(x, H) = x, u, v, . . . , t turns left at
u, we have d(x, H) = |xu| + |uv| + ℓa(v), which is a simple function of the desired form.

The algorithm will output these functions for all pairs u, v where the following conditions
hold: u is a vertex visible from a point on the chord ab (equivalently, u has different parents
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Figure 5 (a) An illustration of functions and intervals. For x in interval I1, d(x, H1) = d2(x, u)+κ1.
For x in I2, d(x, H1) = d2(x, v) + κ2. For x in I3, d(x, H2) = d2(x, H2). (b) From point x the
farthest half-polygon is H1 via the path x, u, v, t1. This matches the longest path in T̄a descending
from v (which goes to H1) but does not match the longest path descending from u (which goes to
H2).

in T̄a and T̄b); v is a child of u in one of the trees; and x lies in an appropriate interval on ab

such that u, v can be the start of a geodesic path from x. We deal separately with shortest
paths that go from a point x ∈ ab to a half-polygon without going through any vertices.
Observe that the number of such functions is O(n + k).

We defer further details of the algorithm to the long version of our paper. Besides
enhancing the method of Pollack et al. [24] to deal with half-polygons, our aim is to give a
clearer and easier-to-verify presentation.

4.1.4 Finding the Relative Geodesic Center on a Chord

The last step of the chord oracle is exactly the same as in Pollack et al. [24]. Given the set
of O(n + k) simple convex functions whose upper envelope is the geodesic radius function on
chord K (from Section 4.1.3), and given the test of whether the relative center is left/right
of a point on K (from Section 4.1.1) we want to find the relative center, cK , that minimizes
the radius function. Pollack et al. use a technique of Megiddo’s to do this in O(n + k) time.
The idea is to pair up the functions, find the intersection and domain end-points of each
pair, and test medians of those in order to eliminate a constant fraction of the functions in
each round. Further details are in the long version of this paper. Finally, to find the paths
from the relative center cK to its farthest half-polygons, use the linear time shortest path
algorithm (Section 4.1.2) on each side of K.

4.2 Finding the Geodesic Center of Half-Polygons

In this section we show how to use the O(n + k) time chord oracle from Section 4.1 to find
the geodesic center of the k half-polygons in O((n + k) log(n + k)) time. The basic structure
of the algorithm is the same as that of Pollack et al. [24].

In the first step we use the chord oracle to restrict the search for the geodesic center to a
small region where the problem reduces to a Euclidean “intersection radius problem”. In the
second step we solve the resulting problem, which involves some new ingredients to handle
our case of half-polygons. Each step takes O((n + k) log(n + k)) time.
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4.2.1 Finding a Region that Contains the Geodesic Center

Triangulate P in linear time [8]. Run the chord oracle on a chord of the triangulation
that splits the polygon into balanced pieces and recurse on the appropriate subpolygon. In
O(log n) iterations, we narrow our search down to one triangle T ∗ of the triangulation. This
step takes O((n + k) log n) time.

Next, we refine T ∗ to a region R that contains the center and such that R is homogeneous,
meaning that for any H ∈ H the shortest paths from points in R to H have the same
combinatorial structure (the same sequence of polygon vertices along the path).

The idea is to subdivide T ∗ by O(n + k) lines so that each cell in the resulting line
arrangement is homogeneous, and then to find the cell containing the center. Construct the
shortest path trees to H from each of the three corners of triangle T ∗ = (a∗, b∗, c∗) using the
algorithm of Section 4.1.2. For each edge (u, v) of each tree, add the line through uv if it
intersects T ∗. (In fact, we do not need all these lines. The situation is similar to that shown
in Figure 5a, with a∗, b∗ in place of a, b. We need the dashed lines shown in the figure. In
particular, it suffices to use tree edges (u, v) such that u is visible from an edge of T ∗.)

We add three more lines for each half-polygon H ∈ H, specifically, the chord h that
defines H, and the two lines perpendicular to h through the endpoints of h.

The result is a set of O(n + k) lines that we obtain in time O(n + k). It is easy to prove
that the resulting line arrangement has homogeneous regions.

All that remains is to find the cell of the arrangement that contains the geodesic center. It
is simpler to state the algorithm in terms of ϵ-nets instead of the rather involved description
of Megiddo’s technique used by Pollack et al. [24]. Informally, to find a homogeneous region,
we will look at a range space on ground set L whose ranges consist of the subsets of L that
intersect some triangle. Such a range space can be shown to have constant sized ϵ-nets [15].
By using the O(n + k) time chord oracle a constant number of times (on a constant sized
ϵ-net) we can restrict the search space to a region that intersects only a fraction of the
original lines. Repeating this step for O(log(n + k)) times, we arrive at a region R with the
required properties. The details are deferred to the long version due to space constraints.
The total runtime for this step is O((n + k) log(n + k)).

4.2.2 Solving an Unconstrained Problem

At this point, we know that the polygonal region R contains a geodesic center of the set H
of half-polygons in P . Furthermore, R is homogeneous. We can pick a point p in R and find
the shortest path tree from p to all half-polygons. If π(p, H) reaches an internal point of
the chord h defining H then d(x, H) = d2(x, h) for all x ∈ R. And if the first segment of
π(x, H) reaches a vertex u, then d(x, H) = d2(x, u) + κ for all x ∈ R, where κ is a constant.
Our goal is to find the point x ∈ R that minimizes the maximum over H ∈ H of d(x, H).
Since this point must lie in the region R (a guarantee we have from the earlier steps), we
can completely disregard the underlying polygon P in solving the problem.

In the Euclidean plane, the problem may be reinterpreted in a geometric manner. We
wish to find the circle of smallest radius that contains O(n) disks and intersects O(k)
lines. The disk constraints in the new interpretation correspond to half-polygons H where
d(x, H) = d2(x, u) + κ – the disk is centered at u with radius κ. The line constraints
correspond to half-polygons H where d(x, H) = d2(x, h).

This is a combination of problems referred to as the spanning circle problem [21] or
the intersection radius problem [7] in the literature. We will call it the intersection radius
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problem for disks and lines, although the name is not entirely accurate. In the long version
of this paper we prove:

▶ Lemma 11. The intersection radius problem for disks and lines can be solved in linear
time.

We outline the method. The problem for disks alone was solved by Megiddo [21] using an
ingenious idea. The two-dimensional problem is modified to a problem in three dimensions
and the constraints modified in such a way that the bisector between the constraints for
two disks becomes a plane in three dimensions. Thereafter, techniques from linear-time
algorithms for linear programming are used to prune away disks that do not define the
final answer [20]. The prune-and-search technique prunes away a constant fraction of those
disks in linear time and repeating the process reduces the number of disks to some constant
number, after which a brute force method may be employed.

To extend this to handle our line constraints, we add constraints that ensure that the
distances to the lines are less than the radius of the final disk. The bisectors between two
lines are an angle bisector pair. These bisectors become vertical planes in the transformed
three dimensional version of the problem. We thus have a set of planes in three dimensions
that are bisectors between pairs of lines or pairs of disks. Using prune-and-search in two
phases per iteration and a few other ideas ([7]), we modify Megiddo’s technique for disks to
solve our problem in linear time.

5 Conclusions

We introduced the notion of the visibility center of a set of points in a polygon and gave an
algorithm with run time O((n + m) log(n + m)) to find the visibility center of m points in
an n-vertex polygon. To do this, we gave an algorithm to find the geodesic center of a given
set of half-polygons inside a polygon, a problem of independent interest. We conclude with
some open questions.

Can the visibility center of a simple polygon be found more efficiently? Note that the
geodesic center of the vertices of a simple polygon can be found in linear time [1]. Our current
method involves ray tracing and sorting, which are serious barriers. A more reasonable goal
is to find the visibility center of m points in a polygon in time O(n + m log m).

Is there a more efficient algorithm to find the geodesic center of (sorted) half-polygons? In
forthcoming work we give a linear time algorithm for the special case of finding the geodesic
center of the edges of a polygon (this is the case where the half-polygons hug the edges).

How hard is it to find the farthest visibility Voronoi diagram of a polygon? Finally, what
about the 2-visibility center of a polygon, where we can deploy two guards instead of one?
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Abstract
Envy-freeness is one of the most widely studied notions in fair division. Since envy-free allocations
do not always exist when items are indivisible, several relaxations have been considered. Among
them, possibly the most compelling concept is envy-freeness up to any item (EFX). We study the
existence of EFX allocations for general valuations. The existence of EFX allocations is a major
open problem. For general valuations, it is known that an EFX allocation always exists (i) when
n = 2 or (ii) when all agents have identical valuations, where n is the number of agents. it is also
known that an EFX allocation always exists when one can leave at most n − 1 items unallocated.

We develop new techniques and extend some results of additive valuations to general valuations
on the existence of EFX allocations. We show that an EFX allocation always exists (i) when all
agents have one of two general valuations or (ii) when the number of items is at most n + 3. We also
show that an EFX allocation always exists when one can leave at most n − 2 items unallocated. In
addition to the positive results, we construct an instance with n = 3 in which an existing approach
does not work as it is.
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1 Introduction

Fair division of items among competing agents is a fundamental and well-studied problem in
Economics and Computer Science. We are given a set M of m items and a set N of n agents
with individual preferences. Each agent i has a valuation function vi : 2M → R≥0 for each
subset of items. The goal is to distribute items among n agents in a fair and efficient manner.
In this paper, we consider the indivisible setting: an item cannot be split among multiple
agents. Let an allocation X = (X1, X2, . . . , Xn) denote a partition of M into n bundles such
that Xi is allocated to agent i. Several concepts of fairness have been considered in the
literature, and one of the most well-studied notions of fairness is envy-freeness. An allocation
X is envy-free if for any pair of agents i, j we have vi(Xi) ≥ vi(Xj), i.e., no agent i envies
another agent j’s bundle. Unfortunately, envy-free allocations do not always exist when
items are indivisible. We can easily see this even with two players and a single item having
positive value for both of them: one of the agents has to receive the item and the other agent
envies her. This motivates the study of relaxations of envy-freeness.

The most compelling relaxations of envy-freeness is envy-freeness up to any item (EFX)
introduced by Caragiannis et al. [14]. An allocation X is EFX if for any pair of agents i, j
and for any g ∈ Xj we have vi(Xi) ≥ vi(Xj \ {g}), i.e., no agent i envies another agent
j after the removal of any item in j’s bundle. EFX is regarded as the best analogue of
envy-freeness in discrete fair division: Caragiannis et al. [13] remarked that “Arguably, EFX
is the best fairness analog of envy-freeness for indivisible items.” However, the existence of
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EFX allocations is known only in a few cases. As described in [14], “Despite significant
effort, we were not able to settle the question of whether an EFX allocation always exists
(assuming all goods must be allocated), and leave it as an enigmatic open question.”

For general valuations, i.e., each valuation function vi is only assumed to be normalized
and monotone, Plaut and Roughgarden [31] showed that an EFX allocation always exists (i)
when n = 2 or (ii) when all agents have identical valuations. Furthermore, it was shown in [31]
that exponentially many value queries may be required to identify EFX allocations even in
the case where there are only two agents with identical submodular valuation functions. It is
not known whether EFX allocations always exist even when n = 3 for general valuations.

For additive valuations, i.e., each valuation function vi is normalized, monotone, and
additive1, it is known that an EFX allocation always exists when n = 3 [16] or all agents
have one of two valuations [30]. It is not known whether EFX allocations always exist even
when n = 4 for additive valuations.

One of relaxations of EFX is EFX with charity introduced by Caragiannis et al. [13].
This is a partial EFX allocation, where all items need not be allocated to the agents. Thus
some items may be left unallocated. On the other hand, an allocation is said to be complete
if all items are allocated. For general valuations, Chaudhury et al. [18] showed that there
exist a partial EFX allocation and a set of unallocated items U such that no agent envies U ,
and |U | ≤ n− 1. For additive valuations, Caragiannis et al. [13] showed that there exists a
partial EFX allocation where every agent receives at least half the value of her bundle in an
optimal Nash social welfare allocation2. Quite recently, Berger et al. [8] showed that when
n = 4, there exists an EFX allocation with at most one unallocated item such that no agent
envies the unallocated item. Moreover, they extend their results and existing results in [16]
and [30] beyond additive valuations to nice cancelable valuations which is a class including
additive, unit-demand, budget-additive, multiplicative valuations, and so on.

1.1 Our Contributions
We investigate the existence of EFX allocations for general valuations, i.e., the valuation
of each agent is not necessarily additive. To prove the existence of EFX, we iteratively
construct an EFX allocation from an existing partial EFX allocation to advance with respect
to a certain potential function. Chaudhury et al. [16] introduced the lexicographic potential
function in order to show that they could advance an allocation while keeping EFX. We use
not only the lexicographic potential function but also a new potential function, which we
call partition leximin potential function. When we construct a new EFX allocation, which is
better than the previous one with respect to the potential function, some agent may become
worse off than in the previous allocation. The problem is that such an agent may become to
envy other agents, which results in violating EFX. Our technical contribution is to develop a
new technique to avoid such situations (see Section 1.2).

Using this new technique, we obtain some new results on the existence of EFX. Our
results are described below, and are summarized in Table 1. Our first result is for the case
where each agent has one of two given valuations. The following theorem extends the case
when all agent have the identical valuations [31].

▶ Theorem 1. There exists a complete EFX allocation when each agent has one of two
general valuations.

1 A valuation function vi is additive if vi(S) =
∑

g∈S
vi({g}) for any S ⊆ M .

2 This is an allocation that maximizes Πn
i=1vi(Xi).
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It is known that there exists an EFX allocation when each agent has one of two additive
valuations [30]. Berger et al. [8] extended this result beyond additive valuations to nice
cancelable valuations. In [30] and [8], to prove the result they iteratively construct a
Pareto dominating (see Section 2.1) EFX allocation from an existing partial EFX allocation.
However, such an approach is not likely to work for general valuations. To prove Theorem 1,
we introduce a new potential function (partition leximin potential function) and show that for
any EFX allocation with at least one unallocated item, one can obtain a new EFX allocation
that makes progress with respect to the partition leximin potential function. This implies
that there exists a complete EFX allocation. More details are discussed in Section 4.

Our second result concerns EFX with charity. As mentioned above, it is known that
there exist a partial EFX allocation and a set of unallocated items U such that no agent
envies U , and |U | ≤ n− 1 [18]. The following theorem strengthens the bound on the number
of unallocated items from n− 1 to n− 2.

▶ Theorem 2. For general valuations, there exists an EFX allocation X with at most n− 2
unallocated items. Moreover, no agent envies the set of unallocated items in X.

Berger et al. [8] showed that for nice cancelable valuations, there exists an EFX allocation X

with at most n−2 unallocated items. Theorem 2 extends this results to general valuations. To
prove Theorem 2, we show that for any EFX allocation with at least n− 1 unallocated items,
one can obtain a new EFX allocation that makes progress with respect to the lexicographic
potential function. This implies that there exists an EFX allocation with at most n − 2
unallocated items.

We also study the case with a small number of items. For additive valuations, Amanatidis
et al. [3] showed that when m ≤ n+ 2, there exists an EFX allocation. For general valuations,
to the best of our knowledge, non-trivial results are not known. The following theorem
extends the existing results in the sense that it not only increases the number of items, but
also makes valuation function general instead of additive.

▶ Theorem 3. For general valuations, there exists a complete EFX allocation when m ≤ n+3.

To prove Theorem 3, we also use the lexicographic potential function.
In addition to the above positive results, we study a limitation of the approach using

the lexicographic potential function. We construct an instance with n = 3 and m = 7 in
which there exists an EFX allocation with one unallocated item such that no progress can
be made with respect to the lexicographic potential function. This shows that Theorem 2
and Theorem 3 are the best possibilities in a sence.

Table 1 Our positive EFX results, where |U | is the number of unallocated items.

Setting Prior results Our results
EFX for one of two valuations Additive [30], Nice cancelable [8] General

EFX with charity General, |U | ≤ n − 1 [18]
Nice cancelable, |U | ≤ n − 2 [8] General, |U | ≤ n − 2

EFX for a small number of items Additive, m ≤ n + 2 [3] General, m ≤ n + 3

1.2 Our Techniques
We first fix a potential function ϕ for all allocations. For an existing partial EFX allocation,
in order to find a new EFX allocation we use the champion graph introduced in [16]. If
we have a Pareto improvable cycle (see Definition 7) in the champion graph, then we can

ESA 2021



66:4 Extension of Additive Valuations to General Valuations on the Existence of EFX

conclude that there exists an EFX allocation Y Pareto dominating X. That is, we have
vi(Yi) ≥ vi(Xi) for any agent i, and vj(Yj) > vj(Xj) for some agent j. It would imply that
ϕ(X) < ϕ(Y ). Otherwise, it may no longer be possible to Pareto dominate X. Thus, we seek
an allocation Y such that some agent i is worse off than in X and every agent other than i is
not worse off than in X, i.e., vi(Yi) < vi(Xi) and vj(Yj) ≥ vj(Xj) for j ∈ N \ {i}. We choose
such an agent i who is less important with respect to ϕ. In order to preserve EFX, we list
bundles that can appear in Y . We then allocate to agent i the best of the bundles in such a
list, which is a key ingredient in our construction. Since agent i receives the most favorite
bundles in Y , agent i does not envy any agent in Y . We can conclude that ϕ(X) < ϕ(Y ) or
the structure of the campion graph in Y is better than in X. In the latter case, we will find
a Pareto improvable cycle in the campion graph of Y , and obtain a new EFX allocation Y ′

such that ϕ(X) < ϕ(Y ′).

1.3 Related Work

Whereas fair division of divisible resources is a classical topic starting from the 1940’s [32],
fair division of indivisible items has been actively studied in recent years. One of the most
popular relaxations of envy-freeness is envy-freeness up to one item (EF1) where no agent
envies another agent after the removal of some item from the other agent’s bundle. While the
existence of EFX allocations is open, it is known that there always exists an EF1 allocations
for any number of agents, and it can be computed in polynomial time [29]. There are a lot
of studies on EF1 and EFX [1, 7–9, 13, 14, 16–18,30, 31]. Another major concept of fairness is
maximin share (MMS), which was introduced by Budish [11]. It was shown in [26] that MMS
allocations do not always exist, and there have been several studies on approximate MMS
allocations [2,6, 10,11,21,23,24,26]. In addition, study on finding efficient fair allocations
has attracted attention. Pareto-optimality is a major notion of efficiency. Caragiannis et
al. [14] showed that any allocation that has maximum Nash social welfare is guaranteed to
be Pareto-optimal and EF1. Unfortunately, finding an allocation with the maximum Nash
social welfare is APX-hard [27]. There are several studies on approximation algorithms for
maximizing Nash social welfare [4, 5, 7, 15,19–22,28].

There are many real-world scenarios where items or resources need to be divided fairly,
e.g., taxi fare division, rent division, task distribution, and so on. Spliddit (www.spliddit.org)
is a fair division website, which offers a fair solution for the division of rent, goods, and
credit [25]. This website implements mechanisms for users to log in, define what is to be
divided, enter their valuations, and demonstrate fair division. Since its launch in 2014, there
have been several thousands of users [14]. For more details on Spliddit, we refer to the reader
to [25,31]. Another fair division application is Course Allocation used at the Wharton School
at the University of Pennsylvania to fairly allocate courses among students [12,31].

1.4 Organization

In Section 2, we present the model, denote some basic notions introduced by [16,18], and
prove some useful lemmas. In Section 3, we consider EFX with charity for general valuations,
and prove Theorem 2. In Section 4, we consider the setting with only one of two types of
general valuations, and prove Theorem 1. In Section 5, we construct an instance with n = 3
and m = 7 that shows a certain limitations of the approach of the lexicographic potential
function. The proofs of other results are given in the full version.
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2 Preliminaries

Let N = {1, . . . , n} be a set of n agents and M be a set of m items. In this paper, we assume
that items are indivisible: an item may not be split among multiple agents. Each agent
i ∈ N has a valuation function vi : 2M → R≥0. We assume that (i) any valuation function
vi is normalized: vi(∅) = 0 and (ii) it is monotone: S ⊆ T implies vi(S) ≤ vi(T ) for any
S, T ⊆ M .

To simplify notation, we denote [k] by {1, . . . , k}, write vi(g) instead of vi({g}) for g ∈ M ,
and use S \ g, S ∪ g instead of S \ {g}, S ∪ {g}, respectively. We also denote S <i T instead
of vi(S) < vi(T ). In a similar way, we use the symbols >i,≤i, and ≥i.

For M ′ ⊆ M , an allocation X = (X1, X2, . . . , Xn) on M ′ is a partition of M ′ into
n disjoint subsets, where Xi is the bundle given to agent i. We say that an allocation
X = (X1, X2, . . . , Xn) on M ′ is complete if M ′ = M . Otherwise, we say that an allocation
X is partial.

Given an allocation X, we say that agent i envies a set of items S if Xi <i S. We say
that agent i envies agent j if i envies Xj . We say that agent i EFX envies a set of items S
if there exists some h ∈ S such that i envies S \ h. We say that agent i EFX envies agent
j if i EFX envies Xj . Note that if i EFX envies j then i envies j, but not vice versa. An
allocation X is called envy-free if no agent envies another. An allocation X is called EFX if
no agent EFX envies another.

An instance I is a triple ⟨N,M,V⟩, where V = {v1, . . . , vn} is a set of valuation functions.
We use an assumption on instances considered in [16].

▶ Definition 4. An instance I is non-degenerate if for any i ∈ N and S, T ⊆ M ,

S ̸= T ⇒ vi(S) ̸= vi(T ).

We can show that in order to prove the existence of an EFX allocation, we may assume
w.l.o.g. that instances are non-degenerate. This assumption was considered for additive
valuations in [16], and we can easily extend it for general valuations. More details are given
in the full version. In what follows, we only deal with non-degenerate instances.

2.1 Overall Approach

All of our results on the existence of EFX can be viewed in a unified framework as follows:
we first fix an appropriate potential function ϕ on all allocations. We then show that given
any partial EFX allocation X, one can construct a new EFX allocation Y that makes
progress with respect to the potential function, i.e., ϕ(X) < ϕ(Y ). Since there are finitely
many allocations, there must exist a complete EFX allocation. One of natural potential
functions is social welfare. Given an allocation X, we denote the social welfare of X by
φ(X) =

∑
i∈N vi(Xi). A typical notion to progress the social welfare is Pareto domination.

Given two allocations X,Y , we say that Y Pareto dominates X if Yi ≥i Xi for all i ∈ N ,
and Yj >j Xj for some agent j ∈ N . Clearly, if Y Pareto dominates X, then φ(Y ) > φ(X).
Chaudhury et al. [16] have shown that there does not always exist a Pareto-dominating
EFX allocation when n = 3 for additive case. To overcome this barrier they introduce a
lexicographic potential function, which we also use to prove Theorems 2 and 3. In addition,
to prove Theorem 1, we use a new potential function. More detail on each potential function
is presented in Sections 3 and 4.

ESA 2021
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2.2 Minimum Preferred Set and Most Envious Agent
Most envious agent is a basic notion, introduced in [18]. Consider an allocation X =
(X1, X2, . . . , Xn) and a set S ⊆ M . For an agent i such that S >i Xi, we define a minimum
preferred set PX(i, S) of agent i for S with respect to allocation X as a smallest cardinality
subset S′ of S such that S′ >i Xi. Define κX(i, S) by

κX(i, S) =
{

|PX(i, S)| if S >i Xi,

+∞ otherwise.

Let κX(S) = mini∈N κX(i, S). We define AX(S) for a set S as the set of agents with the
smallest values of κX(i, S), i.e.,

AX(S) = {i ∈ N | S >i Xi and κX(i, S) = κX(S)}.

We call AX(S) the set of most envious agents. Note that if agent i is a most envious agent
for S, it holds that i envies PX(i, S) and no agent EFX envies PX(i, S). When it is clear
from the context, we abbreviate PX(i, S) as P .

2.3 Champions and Champion Graph
In order to find a new EFX allocation from the existing partial EFX allocation, Champions
and Champion graph are important notions, introduced in [16]. Let X be a partial allocation
on M ′ ⊊M and let g ∈ M \M ′ be an unallocated item. For agents i and j (possibly i = j),
we say that i g-champions j if i is a most envious agent for Xj ∪ g. Then, we also call i a
g-champion of j. When i is a most envious agent for Xi ∪ g, we call i a self g-champion.
Note that every agent j has a g-champion. Indeed, since instances are non-degenerate, and
valuations are monotone, we have Xj ∪ g >j Xj . That is, since j envies Xj ∪ g, there exists
at least one most envious agent for Xj ∪ g.

We say that i g-decomposes j if i g-champions j, and {g} ⊊ P ⊊ Xj ∪ g, where P is a
minimum preferred set of i for Xj ∪ g. When i g-decomposes j, we can decompose Xj into
P \ g and (Xj ∪ g) \ P . If there is no ambiguity, then Tj = P \ g and Bj = (Xj ∪ g) \ P are
called top and bottom half-bundles of Xj , respectively. The following lemma illustrates a
typical situation such that i g-decomposes j.

▶ Lemma 5. If i g-champions j, i dose not envy j, and both i and j are not self g-champions,
then i g-decomposes j.

Proof. By the assumption, we have Xj <i Xi <i Xj ∪ g. Let P be a minimum preferred set
of i for Xj ∪ g. If g /∈ P , then P ⊆ Xj , and by the monotonicity, we have P ≤i Xj <i Xi.
This contradicts the definition of P . Thus, g ∈ P . If P = {g}, then κX(i,Xi ∪ g) = 1,
and hence it contradicts that i is not a self g-champion. Thus, {g} ⊊ P . Furthermore if
P = Xj ∪ g, then κX(Xj ∪ g) = |P | and hence it contradicts that j is not a self g-champion.
Therefore {g} ⊊ P ⊊ Xj ∪ g, and thus i g-decomposes j. ◀

▶ Definition 6. The champion graph MX = (N,E) with respect to allocation X is a labeled
directed multi-graph. The vertices correspond to the agents, and E consists of the following
two types of edges:
1. Envy edges: i → j iff i envies j.
2. Champion edges: i g−→ j iff i g-champions j, where g is an unallocated item.
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Envy graph which consists of only envy edges is introduced in [29]. The original champion
graph considered in [16] consists of only champion edges. Our definition of champion graph
combines these two notions for convenience. Recently, Berger et al. [8] denote the generalized
champion graph that contains more additional edges. For convenience, i → j and i

g−→ j are
sometimes denoted by i ∅−→ j and i {g}−−→ j, respectively. Berger et al. [8] denote the notion of
Pareto improvable cycle, which is very useful in our argument.

▶ Definition 7. A cycle C = a1
H1−−→ a2

H2−−→ · · · Hk−1−−−→ ak
Hk−−→ a1 in MX is called Pareto

improvable (PI) if for every i, j ∈ [k] we have Hi ∩Hj = ∅, where Hi is an empty set or a
singleton of an unallocated item.

The following lemma shows that if we have a Pareto improvable cycle in MX , then there
exists an allocation Y that Pareto dominates X while keeping EFX.

▶ Lemma 8 (Berger et al. [8]). Let X be an allocation. If MX contains a Pareto improvable
cycle, then there exists an allocation Y Pareto dominating X such that for any i, j ∈ N , if i
does not EFX envy j in X, then neither in Y . In particular, if X is an EFX allocation,
then so is Y . Furthermore, every agent i along the cycle satisfies Xi <i Yi.

▶ Corollary 9. Let X be an EFX allocation. If MX contains an envy-cycle3, a self g-
champion, or a cycle composed of envy edges and at most one champion edge, then there
exists an EFX allocation Y that Pareto dominates X.

3 Existence of EFX with at most n − 2 unallocated items

In this section, we prove Theorem 2. We use a lexicographic potential function as in [16].
Recall that N = {1, . . . , n}. For an allocation X, the lexicographic potential function ϕ(X) is
defined as the vector (v1(X1), . . . , vn(Xn)). Intuitively, agent 1 is the most important agent
and agent n is the least important agent in N .

▶ Definition 10. For two allocations X,Y , We denote Y ≻lex X if ϕ(Y ) is lexicographically
larger than ϕ(X), i.e., for some k ∈ N , we have that Yj =j Xj for all 1 ≤ j < k, and
Yk >k Xk.

Note that if Y Pareto dominates X then Y ≻lex X, but not vice versa. The following basic
lemma is shown in [8], which we also use.

▶ Lemma 11 (Berger et al. [8]). If for every partial EFX allocation X with k unallocated
items, there exists an EFX allocation Y such that Y ≻lex X, then there exists an EFX
allocation with at most k − 1 unallocated items. Moreover, no agent envies the set of k − 1
unallocated items.

By Lemma 11, in order to prove Theorem 2, it suffices to show that for every partial EFX
allocation X with at least n− 1 unallocated items, there exists an EFX allocation Y such
that Y ≻lex X. We first prove the following lemma, which is used in the proof of Theorem 2.

3 envy-cycle is a dicycle in MX composed of only envy edges.
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▶ Lemma 12. Let X be an EFX allocation with at least n− 1 unallocated items. Then, there
exists an EFX allocation Y Pareto dominating X in the following two cases.
(1) the number of unallocated items is at least n.
(2) there exists at least one envy edge j → i in MX .
Moreover, in case (2), some agent l ∈ N \ i is strictly better off than in X, i.e., Yl >l Xl.

Proof. Let {g1, . . . , gk} denote the set of unallocated items. We first prove the case of (1).
It suffices to prove that there exists a PI cycle in MX by Lemma 8. Let a1 be an arbitrary
agent. Then, some agent a2 g1-champions a1. If a2 = a1, then we have a PI cycle, and we
are done. Assume that a2 ̸= a1. Then, some agent a3 g2-champions a2. If a3 = a1 or a2,
then we have a PI cycle. Indeed, in the first case we have a cycle a1

g2−→ a2
g1−→ a1, and in

the second case we have a self g2-champion. We can continue this way to conclude that
w.l.o.g. we have a directed path an

gn−1−−−→ an−1
gn−2−−−→ · · · g1−→ a1 in MX , where a1, . . . , an are

different agents. Now, some agent gn-champions an in MX . No matter who it is, there exists
a PI cycle, and we are done.

We prove the case of (2) in a similar way. Assume w.l.o.g that some agent a2 envies
a1. By a similar argument as above, we can conclude that w.l.o.g. we have a directed path
an

gn−1−−−→ an−1
gn−2−−−→ · · · g3−→ a3

g2−→ a2 → a1 in MX , where a1, . . . , an are different agents.
Now, some agent g1-champions an. No matter who it is, there exists a PI cycle, and we are
done. Moreover, in any cases, we have a PI cycle containing some agent in N \ a1. Hence,
the last statement of lemma holds by Lemma 8. ◀

We are now ready to prove Theorem 2. We fix an arbitrary ordering of the agents.

Proof of Theorem 2. Let X be an EFX allocation with k ≥ n− 1 unallocated items, and
let {g1, . . . , gk} denote the set of unallocated items. By Lemma 11, it suffices to prove
that there exists an EFX allocation Y such that Y ≻lex X. By Lemma 12, when k ≥ n,
or k = n − 1 and there exists at least one envy edge in MX , we are done. Assume that
k = n − 1 and there exists no envy edge in MX . Let a1 be the last agent in the fixed
ordering, i.e., a1 is the least important agent in the lexicographic potential function. By
a similar argument in Lemma 12, we conclude that w.l.o.g. we have a directed path
an

gn−1−−−→ an−1
gn−2−−−→ · · · g1−→ a1 in MX , where a1, . . . , an are different agents. Furthermore,

we may assume that there are no self gi-champions for 1 ≤ i ≤ n − 1 since otherwise we
have a PI-cycle. Since there are no self-champions, and there exists no envy edge in MX ,
ai+1 gi-decomposes ai for 1 ≤ i ≤ n − 1 by Lemma 5. Let Ti and Bi are the top and
bottom half-bundles of Xai decomposed by ai+1 for 1 ≤ i ≤ n− 1, respectively. Consider
Z = maxa1{T1 ∪ g1, T2 ∪ g2, . . . , Tn−1 ∪ gn−1, Xa2 , . . . , Xan

}4. We discuss in two cases.
Case 1: Z = Ti ∪ gi or Xai

for 2 ≤ i ≤ n

We define a new allocation X ′ as follows:

X ′
a1

= Z,

X ′
aj

= Tj−1 ∪ gj−1 for 2 ≤ j ≤ i,

X ′
aj

= Xaj
for i < j ≤ n.

We show that X ′ is EFX and X ′ ≻lex X. For 1 ≤ t ≤ i− 1, since Tt ∪ gt is a minimum
preferred set of at+1 and at+1 is a most envious agent for Tt ∪ gt, no agent EFX envies

4 maxa1 {T1 ∪ g1, T2 ∪ g2, . . . , Tn−1 ∪ gn−1, Xa2 , . . . , Xan } is a1’s most favorite bundle out of T1 ∪ g1, T2 ∪
g2, . . . , Tn−1 ∪ gn−1, Xa2 , . . . , Xan .
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Tt ∪gt in X. Thus, for 2 ≤ s ≤ n, since X ′
as

≥as
Xas , agent as does not EFX envy Tt ∪gt

in X ′. For 2 ≤ s ≤ n, since X is envy-free and the fact that X ′
as

≥as
Xas

, agent as does
not envy Xau

for 1 ≤ u ≤ n in X ′. By the definition of Z, a1 does not envy any agents
in X ′. Therefore, X ′ is EFX. Furthermore, for 2 ≤ j ≤ i, each agent aj is strictly better
off than in X, and each agent aj does not change her bundle for i < j ≤ n. Thus, we
have X ′ ≻lex X, and we are done.

Case 2: Z = T1 ∪ g1
We define a new allocation X ′ as follows:

X ′
a1

= Z,

X ′
ai

= Xai for 2 ≤ i ≤ n.

We show that X ′ is EFX. Since we change only a1’s bundle from X, it is enough to check
that there is no EFX envy from or to a1. By the definition of Z, a1 does not envy any
agent in X ′. Since Z = T1 ∪ g1 is a minimum preferred set of a2 for Xa1 ∪ g1, and a2 is a
most envious agent for Xa1 ∪ g1, no agent EFX envies T1 ∪ g1 in X ′. Thus X ′ is EFX.
In addition, since Z = T1 ∪ g1 is a minimum preferred set of a2, a2 envies a1 in X ′. By
the fact that B1 ̸= ∅, we now have at least n− 1 items in {g2, . . . , gn−1} ∪ B1 that are
unallocated. Thus by the case of (2) in Lemma 12, there exists an EFX allocation X ′′

that Pareto dominates X ′. Furthermore, there exists some agent ai (2 ≤ i ≤ n) such that
X ′′

ai
>ai

X ′
ai

= Xai
. Since X ′′

aj
≥aj

X ′
aj

= Xaj
for 2 ≤ j ≤ n, we have X ′′ ≻lex X, and

we are done. ◀

4 Existence of EFX with One of Two General Valuations

In this section, we prove Theorem 1. For two general valuation functions va and vb,
let Na (resp. Nb) be the set of agents whose valuation is va (resp. vb). To prove The-
orem 1, we introduce a new potential function. For an allocation X, we write Na =
{a0, a1, . . . , as} and Nb = {b0, b1, . . . , bt}, where Xa0 <a Xa1 <a · · · <a Xas

and Xb0 <b

Xb1 <b · · · <b Xbt . Define the partition leximin potential function ψ(X) as the vector
(va(Xa0), . . . , va(Xas

), vb(Xb0), . . . , vb(Xbt
)).

▶ Definition 13. For two allocations X,Y , we denote Y ≻p.lexmin X if ψ(Y ) is lexicograph-
ically larger than ψ(X).

That is, we prioritize Na over Nb, compare agents in Na by the leximin ordering, and second
compare agents in Nb by the leximin ordering. Note that if Y Pareto dominates X, then
Y ≻p.lexmin X but not vice versa. Our goal is to show the following theorem.

▶ Theorem 14. Let X be a partial EFX allocation. Then, there exists an EFX allocation Y

such that Y ≻p.lexmin X.

If Theorem 14 holds, then since there are finitely many allocations, there must exist a
complete EFX allocation, and thus Theorem 1 holds.

We say that an allocation X is semi-EFX if there can be EFX envy only among agents
belonging to Nb in X, i.e., no agent belonging to Na EFX envies any agents, and no agent
belonging to Nb EFX envies any agent belonging to Na in X. The following lemma shows
that if we have a semi-EFX allocation, then we can obtain an EFX allocation such that all
the agents in Na and b0 ∈ Nb do not change their bundles.

▶ Lemma 15. Let X be a semi-EFX allocation such that Xb0 <b Xb1 <b · · · <b Xbt . Then,
there exists an EFX allocation Y such that Yai

= Xai
for any agent ai ∈ Na, and Yb0 = Xb0 .
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Figure 1 The champion graph MX (the edges are only partially drawn) in the proof of Theorem 14.
Every agent other than a0 and b0 is envied by some other agents, and a0 g-decomposes b0 in MX .

Proof. If X is EFX, then the lemma obviously holds. Assume that X is not EFX. Then,
for some two agents bi, bj ∈ Nb, bi EFX envies bj in X. Thus, there exists an item h ∈ Xbj

such that Xbi
<b Xbj

\ h. We define a new allocation X ′ as X ′
bj

= Xbj
\ h, and X ′

k = Xk

for any k ∈ N \ bj . Then, X ′ is also semi-EFX. Indeed, since we only change bj ’s bundle,
it suffice to consider EFX envy from or to bj . Since bj ’s bundle is a subset of Xbj , and
valuations are monotone, agents who do not EFX envy bj in X do not EFX envy bj either
in X ′. In addition, since Xbi = X ′

bi
<b X

′
bj

, and bi does not EFX envy any agent belonging
to Na in X, bj does not EFX envy any agent in Na either in X ′. Therefore X ′ is also
semi-EFX. Furthermore since bj is not b0, we have X ′

b0
= Xb0 . If X ′ is EFX, then we are

done. Otherwise, since the number of all items allocated is decreasing, we can continue
this way to obtain an EFX allocation Y such that Yai

= Xai
for any agent ai ∈ Na, and

Yb0 = Xb0 . ◀

We are now ready to prove Theorem 14.

Proof of Theorem 14. Let X be a partial EFX allocation and let g be an unallocated item.
Define Na = {a0, a1, . . . , as} and Nb = {b0, b1, . . . , bt}, where Xa0 <a Xa1 <a · · · <a Xas

and Xb0 <b Xb1 <b · · · <b Xbt
. If there exists a PI cycle in MX , then we are done by

Lemma 8. Assume that there is no PI cycle in MX . We first show that a0 g-decomposes
b0. By the assumption, neither a0 nor b0 is a self g-champion. If a0 envies b0, then every
agent other than a0 is envied by some other agents. Some agent g-champions a0. No
matter who it is, there exists a PI cycle in MX , and this is a contradiction. Thus, a0
does not envy b0. Now, some agent i g-champions b0. If i ∈ Nb, then since Xb0 ≤b Xi,
we have κX(b0, Xb0 ∪ g) ≤ κX(i,Xb0 ∪ g) = κX(Xb0 ∪ g). This implies that b0 is a self
g-champion, and this is a contradiction. Hence, we have i ∈ Na. Then, since Xa0 ≤a Xi,
we have κX(a0, Xb0 ∪ g) ≤ κX(i,Xb0 ∪ g) = κX(Xb0 ∪ g). Hence, a0 g-champions b0. As a
result, a0 g-decomposes b0 by Lemma 5. Therefore, Xb0 is decomposed into top and bottom
half-bundles. Let Tb0 and Bb0 be the top and bottom half-bundles of Xb0 . Figure 1 partially
illustrates MX . For 0 ≤ i ≤ s, we define Uai

⊆ Xai
as follows:

Uai
=

{
Xai if b0 does not envy ai in X,

X̂ai
otherwise,

where, X̂ai
is a maximum cardinality proper subset of Xai

maximizing vb(X̂ai
). Note that

we have |X̂ai | = |Xai | − 1. Consider Z = maxb{Tb0 ∪ g, Ua0 , . . . , Uas}. We define a new
allocation X ′ as follows:
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X ′
ai

=
{
Tb0 ∪ g if Z = Uai

Xai
otherwise for 0 ≤ i ≤ s,

X ′
b0

= Z,

X ′
bj

= Xbj
for 1 ≤ j ≤ t.

We can easily check that X ′ is a legal allocation. That is, X ′
a0
, . . . , X ′

as
, X ′

b0
, . . . , X ′

bt
is a

partition of a subset of M . We show that X ′ is semi-EFX.
Any two agents in Na do not EFX envy each other: Note that since Xa0 <a Tb0 ∪ g and
Xa0 <a Xak

for 1 ≤ k ≤ s, we have Xa0 ≤a X
′
ai

for 0 ≤ i ≤ s. Let ai and ai′ be two
agents in Na. If X ′

ai′ = Xai′ , then since Xa0 ≤a X
′
ai

and by the fact that X is EFX, ai

does not EFX envy ai′ in X ′. If X ′
ai′ = Tb0 ∪ g, then since Xa0 ≤a X

′
ai

and a0 does not
EFX envy Tb0 ∪ g in X, ai does not EFX envy ai′ in X ′.
Any agent in Na does not EFX envy any agent in Nb \b0: Since Xa0 ≤a X

′
ai

for 0 ≤ i ≤ s,
X is EFX, and any agent in Nb \ b0 does not change her bundle, any agent in Na does
not EFX envy any agent in Nb \ b0.
Any agent in Na does not EFX envy b0: If Z = Tb0 ∪ g, then since Xa0 ≤a X ′

ai
for

0 ≤ i ≤ s and a0 does not EFX envy Tb0 ∪ g in X, any agent in Na does not EFX envy
b0 in X ′. If Z = Uak

for some 0 ≤ k ≤ s, then since Xa0 ≤a X
′
ai

for 0 ≤ i ≤ s, and a0
does not EFX envy Uak

⊆ Xak
, any agent in Na does not EFX envy b0 in X ′.

Any agent in Nb \ b0 does not EFX envy any agent in Na: Let ai be any agent in Na

and let bj be any agent in Nb \ b0. If X ′
ai

= Xai
, then since X ′

bj
= Xbj

and X is EFX, bj

does not EFX envy ai. If X ′
ai

= Tb0 ∪ g, then since b0 is not a self g-champion in X, we
have Tb0 ∪ g <b Xbj

. Thus bj does not envy ai in X ′.
b0 does not EFX envy any agent in Na: Let ai be any agent in Na. If X ′

ai
= Tb0 ∪ g,

then since Z = maxb{Tb0 ∪ g, Ua0 , . . . , Uas
} ≥b Tb0 ∪ g, b0 does not envy ai in X ′. If

X ′
ai

= Xai , then since Z = maxb{Tb0 ∪ g, Ua0 , . . . , Uas} ≥b Uai , for any proper subset S
of Xai

, we have Z ≥b Uai
≥b S by the definition of Uai

and X̂ai
. Thus b0 does not EFX

envy ai in X ′.
Therefore X ′ is semi-EFX. By Lemma 15, there exists an EFX allocation X ′′ such that
X ′′

ai
= X ′

ai
for 0 ≤ i ≤ s, and X ′′

b0
= X ′

b0
. We discuss in the following three cases.

Case 1: Z = Ua0

In this case, we have X ′′
a0

= X ′
a0

= Tb0 ∪ g >a Xa0 and X ′′
ak

= X ′
ak

= Xak
for 1 ≤ k ≤ s.

Thus, we have X ′′ ≻p.lexmin X, and we are done.
Case 2: Z = Tb0 ∪ g

In this case, since we have X ′′
a0

= X ′
a0

= Xa0 <a Tb0 ∪ g = X ′
b0

= X ′′
b0

, a0 envies b0 in
X ′′. Thus, every agent other than a0 is envied by some other agents in X ′′. By the fact
that Bb0 ̸= ∅, there is an unallocated item g′ ∈ Bb0 . Then, some agent l g′-champions
a0 (see Figure 2). If l = ai ∈ Na, then by following agents in Na backwards we obtain a
PI cycle a0 → · · · → ai−1 → ai

g′

−→ a0 in MX′′ . If l ∈ Nb, then by following agents in Nb

backwards we also obatain a PI cycle a0 → b0 → · · · → l
g′

−→ a0 in MX′′ . Therefore, in
either case, there exists a PI cycle containing a0 in MX′′ . By Lemma 8, there exists an
EFX allocation X ′′′ such that X ′′′

a0
>a X

′′
a0

= X ′
a0

= Xa0 and X ′′′
ak

≥a X
′′
ak

= X ′
ak

= Xak

for 1 ≤ k ≤ s. Therefore, we have X ′′′ ≻p.lexmin X, and we are done.
Case 3: Z = Uar

for some 1 ≤ r ≤ s

In this case, if Uar
= Xar

, then since we have X ′′
a0

= X ′
a0

= Xa0 <a Xar
= X ′

b0
= X ′′

b0
,

a0 envies b0 in X ′′. By the fact that Bb0 ̸= ∅, there is an unallocated item g′ ∈ Bb0 .
In a similar way to Case 2, the fact that some agent g′-champions a0 implies that
there exists a PI cycle containing a0 in MX′′ (see Figure 3). By Lemma 8, there
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Figure 2 The champion graph MX′′ (the
edges are only partially drawn) in Case 2.
Every agent other than a0 is envied by some
other agents, and some agent g′-champions a0

in MX′′ .
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Figure 3 The champion graph MX′′ (the
edges are only partially drawn) in the case
where Uar = Xar in Case 3 . Every agent
other than a0 is envied by some other agents,
and some agent g′-champions a0 in MX′′ .
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Figure 4 The champion graph MX′ (the
edges are only partially drawn) in the case
where Uar = X̂ar , and some agent in Na g′-
champions a0 in Case 3.
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Figure 5 The champion graph MX′ (the
edges are only partially drawn) in the case
where Uar = X̂ar , and some agent in Nb g′-
champions a0 in Case 3. b0 g′-champions a0,
and a0 g′′-champions b0 in MX′ .

exists an EFX allocation X ′′′ such that X ′′′
a0
>a X ′′

a0
and X ′′′

ak
≥a X ′′

ak
for 1 ≤ k ≤ s.

Thus, we have X ′′′
ak

≥a X ′′
ak

= X ′
ak

= Xak
>a Xa0 for 1 ≤ k ≤ s with k ̸= r, and

X ′′′
ar

≥a X
′′
ar

= X ′
ar

= Tb0 ∪ g >a Xa0 . That is, X ′′′
ai
>a Xa0 for 0 ≤ i ≤ s. Therefore, we

have X ′′′ ≻p.lexmin X, and we are done.
If Uar

= X̂ar
, then we consider semi-EFX allocation X ′, not X ′′ in this case. some agent

l g′-champions a0 in MX′ . If l ∈ Na, then by following agents in Na backwards we obtain
a PI cycle a0 → · · · → l

g′

−→ a0 in MX′′ (see Figure 4). By Lemma 8, there exists a
semi-EFX allocation X ′′′ such that X ′′′

a0
>a X

′
a0

and X ′′′
ak

≥a X
′
ak

for 1 ≤ k ≤ s. By a
similar argument as above, we have X ′′′

ai
>a Xa0 for 0 ≤ i ≤ s. By Lemma 15, there

exists an EFX allocation X ′′′′ such that X ′′′′
ai

= X ′′′
ai

for 0 ≤ i ≤ s. Therefore, we have
X ′′′′

ai
>a Xa0 for 0 ≤ i ≤ s, thus we have X ′′′′ ≻p.lexmin X, and we are done.

If l = bj ∈ Nb, then since X ′
b0

≤b X
′
bj

, we have κX′(b0, X
′
a0

∪ g′) ≤ κX′(bj , X
′
a0

∪ g′) =
κX′(X ′

a0
∪ g′). Thus b0 g′-champions a0 in X ′. Since Uar = X̂ar , there exists an

unallocated item g′′ ∈ Xar
\ X̂ar

. Note that we have Xar
= X ′

b0
∪ g′′. We claim that

a0 g
′′-champions b0 in X ′. Indeed, since any agent u ∈ N \ {ar, b0} does not change

her bundle, and X is EFX, u does not EFX envy Xar
= X ′

b0
∪ g′′ in X ′. In addition,

since X ′
ar

= Tb0 ∪ g >a Xa0 , and a0 does not EFX envy Xar
in X, ar does not EFX

envy Xar in X ′. Furthermore, since X ′
b0

= Uar = X̂ar is a maximum cardinality proper
subset of Xar

maximizing vb(X̂ar
), b0 does not EFX envy Xar

in X ′. To sum up, for
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any proper subset S of X ′
b0

∪ g′′, any agent in N does not envy S in X ′. Furthermore,
since we have X ′

a0
= Xa0 <a Xar

= X ′
b0

∪ g′′, a0 envies X ′
b0

∪ g′′ in X ′. Thus, since
κX′(a0, X

′
b0

∪ g′′) = |X ′
b0

∪ g′′| ≤ κX′(w,X ′
b0

∪ g′′) for any w ∈ N , a0 is a most envious
agent for X ′

b0
∪ g′′. That is, a0 g

′′-champions b0 in X ′ (see Figure 5). We now have a PI

cycle a0
g′′

−→ b0
g′

−→ a0 in MX′ , and by Lemma 8, we obtain a semi-EFX allocation X ′′′

such that X ′′′
a0
>a X

′
a0

and X ′′′
ak

= X ′
ak

for 1 ≤ k ≤ s. By a similar argument as above,
we have X ′′′

ai
>a Xa0 for 0 ≤ i ≤ s. By Lemma 15, there exists an EFX allocation X ′′′′

such that X ′′′′
ai

= X ′′′
ai

for 0 ≤ i ≤ s. Therefore, we have X ′′′′
ai

>a Xa0 for 0 ≤ i ≤ s, thus
we have X ′′′′ ≻p.lexmin X, and we are done. ◀

5 Limitations of the Lexicographic Potential Function

In Section 3, in order to prove the existence of EFX, we show that given a partial EFX
allocation X, there exists an EFX allocation Y such that Y ≻lex X. Recently, Chaudhury et
al. [17] have shown that there does not always exist a lexicographically larger EFX allocation
when n = 4 for additive valuations. In this section, we show that there does not always
exist a lexicographically larger EFX allocation when n = 3 for general valuations. Thus, the
approach using the lexicographic potential funtion is not sufficient to show the existence of
EFX even when n = 3 for general valuations.

The following theorem shows that there exist an instance and a partial EFX allocation
X such that no complete EFX allocation Y such that Y ≻lex X.

▶ Theorem 16. There exist an instance I with three agents, {1, 2, 3} with general valuations,
seven items {gi | i ∈ [7]}, and a partial EFX allocation X, such that in every complete EFX
allocation, the valuation of agent 1 will be strictly worse off than in X.

Proof. We partially define the conditions of each agent’s valuation function. Assume that
agent 1 has an additive valuation satisfying the following conditions: v1(g1) = v1(g2) >
0, v1(gi) = 0 for 3 ≤ i ≤ 7. Agent 2 has a general valuation satisfying following four
conditions:
(1) {gi} <2 {g1} for 2 ≤ i ≤ 7
(2) {gi, gj} <2 {g1} for 2 ≤ i < j ≤ 7 and (i, j) ̸= (3, 4), (5, 7)
(3) {g4, g5, g6} <2 {g1} <2 {g3, g4} <2 {g5, g7}
(4) {g5, g7} <2 {g1, gi} for 2 ≤ i ≤ 7

Similarly, agent 3 has a general valuation satisfying the following four conditions:
(1’) {gi} <3 {g1} for 2 ≤ i ≤ 7
(2’) {gi, gj} <3 {g1} for 2 ≤ i < j ≤ 7 and (i, j) ̸= (5, 6), (3, 7)
(3’) {g3, g4, g6} <3 {g1} <3 {g5, g6} <3 {g3, g7}
(4’) {g3, g7} <3 {g1, gi} for 2 ≤ i ≤ 7
Note that all conditions do not violate the monotonicity of valuation functions. We now
consider a partial allocation X = ({g1, g2}, {g3, g4}, {g5, g6}). We can easily check that X
is an EFX allocation. Consider any complete EFX allocation Y . We show that Y1 <1 X1.
Assume that X1 ≤1 Y1. Then, it must be {g1, g2} ⊆ Y1 by the definition of 1’s valuation.
If {g1, g2} ⊊ Y1, then at least one of agents 2 and 3 has a bundle of size at most 2. If
|Y2| ≤ 2, then since Y2 <2 {g1, g2} by (2), (3), and (4), agent 2 EFX envies agent 1. This is
a contradiction. The similar argument holds when |Y3| ≤ 2. Thus, we have Y1 = {g1, g2}.
Therefore, by (1) and (1’), both agent 2 and agent 3 have bundles of size at least 2. This
implies that |Y2| = 2 and |Y3| = 3, or |Y2| = 3 and |Y3| = 2.
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If |Y2| = 2 and |Y3| = 3, then since agent 2 does not EFX envy agent 1, Y2 = {g3, g4}
or {g5, g7} by (2). If Y2 = {g3, g4} then Y3 = {g5, g6, g7}, and agent 2 EFX envies agent 3
by (3). This is a contradiction. If Y2 = {g5, g7} then Y3 = {g3, g4, g6}, and agent 3 EFX
envies agent 1 by (3’). This is a contradiction. The similar argument holds when |Y2| = 3
and |Y3| = 2. As a result, we conclude that Y1 <1 X1, and thus the value of agent 1 will be
strictly worse off than in X. ◀
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Abstract
We study the unsplittable flow on trees (UFT) problem in which we are given a tree with capacities
on its edges and a set of tasks, where each task is described by a path and a demand. Our goal is
to select a subset of the given tasks of maximum size such that the demands of the selected tasks
respect the edge capacities. The problem models throughput maximization in tree networks. The
best known approximation ratio for (unweighted) UFT is O(log n). We study the problem under
the angle of FPT and FPT-approximation algorithms. We prove that

UFT is FPT if the parameters are the cardinality k of the desired solution and the number of
different task demands in the input,
UFT is FPT under (1 + δ)-resource augmentation of the edge capacities for parameters k and
1/δ, and
UFT admits an FPT-5-approximation algorithm for parameter k.

One key to our results is to compute structured hitting sets of the input edges which partition the
given tree into O(k) clean components. This allows us to guess important properties of the optimal
solution. Also, in some settings we can compute core sets of subsets of tasks out of which at least
one task i is contained in the optimal solution. These sets have bounded size, and hence we can
guess this task i easily.

A consequence of our results is that the integral multicommodity flow problem on trees is FPT
if the parameter is the desired amount of sent flow. Also, even under (1 + δ)-resource augmentation
UFT is APX-hard, and hence our FPT-approximation algorithm for this setting breaks this boundary.
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1 Introduction

The unsplittable flow on trees (UFT) problem is a natural problem which models throughput
maximization in tree networks. We are given a tree G = (V, E) where each edge e has
a capacity u(e) ∈ N. Also, we are given a set of tasks T where each task i ∈ T is
described by a path P (i) ⊆ E and a demand d(i) ∈ N. Our goal is to select a set of tasks
T ′ ⊆ T of maximum cardinality whose combined demands respect the edge capacities, i.e.,∑

i∈T ′:e∈P (i) d(i) ≤ u(e) for each edge e. Hence, one application is that each task models a
possible transmission between two nodes in a (tree) network in which the edges have bounded
capacities. Note that UFT generalizes the integral multi-commodity flow on trees problem1

1 In the integral multi-commodity flow on trees problem we are given a tree G with edge capacities u,
and additionally pairs si, ti ∈ V of source and sink vertices. The goal is to select an integral amount of
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which is known to be APX-hard [19]. Also, it generalizes the well-studied unsplittable flow
on path (UFP) problem which has several applications, e.g., in caching [14], scheduling [4],
and bandwidth allocation [12]. For UFT there is a O(log n)-approximation algorithm [10]
(and O(log2 n)-approximation algorithms for the weighted case [10, 18] and for submodular
objective functions [1]). In particular, it is open to construct a O(1)-approximation algorithm
for UFT.

In order to obtain better approximation ratios for combinatorial optimization problems,
one can study them under the angle of FPT-approximation algorithms. In such algorithms,
one defines some quantity to be a fixed parameter k which we define to be the size of the
desired solution for our case of UFT, and then ensures that the running time is of the
form f(k)nO(1) for some computable function f . Furthermore, for UFT we define that an
FPT-α-approximation algorithm is an algorithm that either computes a solution of size at
least k/α or asserts that there is no solution of size k. In the last years there several such
results have been found for different problems. For example, for k-Median and k-Means
there are tight FPT-approximation algorithms known with approximation ratios of 1+2/e+ϵ

and 1 + 8/e + ϵ, respectively [15], while the best known polynomial time algorithms for the
problems have ratios of 2.611 [8] and 6.357 [3], respectively. For Facility Location there
is an FPT-approximation algorithm with a ratio of essentially 1.463 + ϵ [15] which matches a
known lower bound for (pure) approximation algorithms [21], while the best known upper
bound is 1.488 [23]. For the capacitated versions of k-Median and k-Means there are
FPT-(3 + ϵ)- and FPT-(9 + ϵ)-approximation algorithms known, respectively [16] while the
best known polynomial time approximation ratio is only O(log k) based on an algorithm
in [9] (see also [2]). For UFP there is an FPT-(1 + ϵ)-approximation algorithm [25] while
the best known polynomial time approximation ratio is only 5/3 + ϵ [20]. For some W[1]-
hard problems, there are even FPT-approximation algorithms known whose approximation
ratios beat the best possible ratios of pure approximation algorithms. For example, for the
Strongly Connected Steiner Subgraph problem, there is an FPT-2-approximation
algorithm known when parametrized by the number of terminals [13], but there is a lower
bound of O(log2−ϵ n) for (pure) approximation algorithms [22]. We refer to the surveys by
Marx [24] and Feldmann et al. [17] for more results.

Given that for the mentioned problems FPT-approximation algorithms were found with
better ratios than the best known (pure) approximation algorithms, this raises the question
whether this is also possible for UFT. In this paper we answer this question in the affirmative
and also show that certain special cases of UFT are even FPT.

1.1 Our contribution
Our first result is that UFT admits an exact FPT-algorithm if the parameters are k and the
number d̄ of different task demands in the input. Our first step is to compute a hitting set,
i.e., a subset of the edges such that each input task uses at least one of them. Via a routine
in [19] we construct a structured hitting set of size O(k) or directly a solution of size k (in
which case we are done). In particular, our hitting set partitions the tree into O(k) clean
components. Then we consider an edge e from the hitting set such that there is no edge
from the hitting set underneath e. We consider all input tasks that use e but no other edge
from the hitting set, let us denote them by T ′. Using some properties of our hitting set,
we show that that in FPT time we can compute a core set of size f(k, d̄) for T ′ (for some

flow to send between each pair (si, ti), in order to maximize the total amount of sent flow.
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function f) which is a set T ′′ ⊆ T ′ such that we can assume w.l.o.g. that T ′′ contains all
tasks from T ′ ∩ OPT. Therefore, in some sense, T ′′ forms a kernel for T ′ (in the sense of
being a smaller instance that we reduce our given instance to). This allows us to guess a
task in T ′ ∩ OPT in time f(k, d̄) or we guess that T ′ ∩ OPT = ∅. In either case we make
progress: either we find a task in OPT or we can delete one of the O(k) edges of the hitting
set. Therefore, our algorithm has only O(k) iterations overall and in each of them there are
only f(k, d̄) + 1 options for our guesses.

▶ Theorem 1. There is an FPT-algorithm for UFT for parameters k and d̄ with a running
time of kO(k·d̄k) · O(n2).

Note that the above mentioned integral multi-commodity flow problem (on trees) can be
modeled by UFT instances in which d(i) = 1 for each task i and hence d̄ = 1. Therefore,
we obtain an FPT-algorithm for this problem as a by-product. In particular, note that this
problem is APX-hard [19] while our algorithm computes an optimal solution of size k.

▶ Corollary 2. There is an FPT-algorithm for integral multi-commodity flow on trees where
the parameter k denotes the amount of sent flow.

Using the algorithm for UFT above we construct an FPT-algorithm for the general case
of UFT under (1 + δ)-resource augmentation: our algorithm either computes a solution of
size k that is feasible if we increase the capacity of each edge by a factor 1 + δ, or we assert
that there is no solution of size k for the original edge capacities. Key for this is to use the
available recource augmentation to reduce the given instance to a set of smaller instances in
which the input tasks have only O(log((k/δ)k)) different demands. On each of these instances
we invoke the algorithm from above and combine the obtained solutions. Due to the resource
augmentation, we can ensure that this union forms a feasible solution.

▶ Theorem 3. There is an FPT-algorithm for UFT under (1 + δ)-resource augmentation
with a running time of k(k/δ)O(k)

nO(1).

Note that our results implies an (exact) FPT-algorithm for UFP (i.e., on paths, rather
than trees) under (1 + δ)-resource augmentation, which was not known before. Also, already
UFP is W[1]-hard [25] for parameter k (and hence also UFT), which justifies that we use
resource augmentation or the additional parameter d̄. Furthermore, it establishes a distinction
in comparison to (pure) approximation algorithms for UFT, since UFT is still APX-hard
under resource augmentation, assuming that δ is sufficiently small.

▶ Theorem 4 (implied by [19, Section 4]). UFT is APX-hard under (1 + δ)-resource augment-
ation for any δ < 1/2.

Then we present an FPT-5-approximation algorithm for UFT (i.e., without resource
augmentation) where the fixed-parameter is only k (and not also d̄). Recall that the best
known polynomial time approximation algorithm for (unweighted) UFT has an approximation
ratio of only O(log n). Intuitively, let i∗ ∈ OPT be the task of smallest demand in OPT.
We guess which edges of our hitting set are used by i∗. Then we select the input task i of
smallest demand that uses exactly these edges of the hitting set. By an exchange argument,
we show that there are seven task in OPT such that we can replace these seven (unknown)
tasks in OPT by our (known) task i and still obtain a feasible solution. For proving this, we
again exploit some structural properties of our hitting set. Intutively, our task i pays for
seven tasks in OPT. This yields a 7-approximation algorithm when we iterate this routine
(and this argument). In order to improve the approximation ratio to 5, we guess additional
properties of i∗ such that we can compute a task i′ which we can replace by only five tasks
from OPT. This yields an FPT-5-approximation algorithm.
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▶ Theorem 5. There is an FPT-5-approximation algorithm for UFT with a running time of
kO(k)nO(1).

1.2 Other related work

For the mentioned integral multi-commodity flow problem on trees there is a 2-approximation
algorithm in the unweighted case [19] and a 4-approximation algorithm in the weighted
case [11]. Under the no-bottleneck-assumption (NBA), i.e., assuming that maxi∈T d(i) ≤
mine∈E u(e) there is a 48-approximation algorithm for UFT [11]. For uniform edge capacities
and bounded node degrees, there is a 3.542-approximation algorithm for UFT [6]. For UFP
there is no better approximation algorithm known under uniform edge capacities (and hence
neither for the NBA) than the mentioned (5/3 + ϵ)-approximation for the general case [20].
However, UFP admits a QPTAS [5, 7], i.e., a (1 + ϵ)-approximation in time n(log n)O(1)

for any constant ϵ > 0, while for UFT a QPTAS is unlikely to exist since the problem is
APX-hard [19].

2 Hitting sets and structuring the tree

In all our algorithms we will use hitting sets as the backbone of our computations. We define
that a hitting set is a set of edges E′ ⊆ E such that each input task uses at least one edge
in E′, i.e., P (i) ∩ E′ ≠ ∅ for each i ∈ T . In this section, first we show that a result in [19]
implies that in time nO(1) we can compute a hitting set of size at most 2k or directly find a
solution of size k. Then, we use this as a base to compute a more structured hitting set Ehs
of size O(k). Afterwards, we use Ehs to partition the tree G and establish some structural
properties that we can assume without loss of generality. Throughout the paper, we denote
by n the number of bits in the input.

First, we invoke the mentioned result to compute an initial hitting set E′.

▶ Lemma 6 (implicit in [19, Section 5]). There is an algorithm with a running time of nO(1)

that either outputs a set of tasks T ′ with |T ′| = k such that P (i) ∩ P (i′) = ∅ for all i, i′ ∈ T ′

with i ̸= i′, or it outputs a hitting set E′ with |E′| ≤ 2k.

If the algorithm returns a set T ′ of k tasks with the mentioned properties then we can
simply output T ′ since it forms a feasible solution. Assume now that the algorithm returns a
hitting set E′. We want to add more edges to E′ in order to obtain a more structured hitting
set. For any two edges e, e′ we define lca(e, e′) to be the vertex that is the least common
ancestor of the (up to four) vertices incident to e and e′; also, we denote by Pe,e′ ⊆ E the
(unique) path in G that contains e and e′. Intuitively, a hitting set is good if for any two
edges e, e′ ∈ Ehs the edges of Pe,e′ incident to lca(e, e′) are also in the hitting set.

▶ Definition 7. A hitting set Ehs is good if for any two edges e, e′ ∈ Ehs we have that
δ(lca(e, e′)) ∩ Pe,e′ ⊆ Ehs.

We construct a good hitting set Ehs based on E′ as follows. We take all edges in E′, and
for any two edges e, e′ ∈ E′ we add the edges in δ(lca(e, e′)) ∩ Pe,e′ , see Figure 1. By some
standard tree arguments one can show that then |Ehs| ≤ 6k. Also, Ehs is a good hitting set.

▶ Lemma 8. Given a hitting set Ē′, in time nO(1) we can construct a good hitting set Ēhs
with |Ēhs| ≤ 3|Ē′|.
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r

Figure 1 Assume that the red edges form a hitting set Ē′. Then the union of the red and orange
edges forms a good hitting set Ēhs. Given the red edges, the orange edges are selected according to
the proof of Lemma 8.

2.1 Backbone and hanging trees
Let Ehs denote the good hitting set obtained by applying Lemma 8 to E′. We use Ehs in
order to partition the edges of G into a backbone of highway edges (that will contain Ehs)
and some subtrees which we will call hanging trees. First, we are interested in the edges that
lie on some path that connects two edges in Ehs (see Figure 2). We say that an edge e ∈ E

is a highway edge if there are two edges e′, e′′ ∈ Ehs such that e ∈ Pe′,e′′ . Let E⋆
hs denote the

set of all highway edges and note that Ehs ⊆ E⋆
hs. Intuitively, E⋆

hs forms a backbone of G.
Note we cannot bound |E⋆

hs| by a function of k only. On the other hand, we observe that
G[E⋆

hs] is a tree. If an edge e ∈ E⋆
hs is incident to a leaf in G[E⋆

hs] then we say that e is a
final edge. Observe that then e ∈ Ehs and thus there are at most 6k final edges. The final
edges will play a special role later.

We say that the edges in E \ E⋆
hs are black edges. Note that they form trees. For each

connected component H of G[E \ E⋆
hs] (i.e., the subgraph of G induced by E \ E⋆

hs), we say
that H forms a hanging tree and we define its root s to be the vertex of H that is closest to
the root of G. In the sequel, we will write Hs for a hanging tree with root s. For a hanging
tree Hs we say that its depth is the maximum distance of a vertex in Hs to s.

By some easy transformations, we can ensure that the depth of each hanging tree Hs

is bounded by a function in k and d̄ := |{di|i ∈ T }|, i.e., d̄ is the number of different task
demands in the input. To this end, we note that if there are two edges e, e′ ∈ Hs appearing
in this order on the path from s to a leaf of Hs and u(e) ≤ u(e′), then we can contract e′

since any input task Ti using e′ also uses e (since P (i) uses at least one edge of Ehs and hence
P (i) must pass through s). Also, we can assume w.l.o.g. that for each edge e its capacity
u(e) is the sum of the demands of at most k input tasks. With these ideas, we can prove the
following lemma for which the intuition is that D is bounded by some parameter.

▶ Lemma 9. In time O(n2) we can construct an equivalent instance (G′, T ′) in which the
depth of every hanging tree is at most (d̄ + 1)k + 1.

3 Parameterized algorithm for UFT

In this section we present an FPT-algorithm for UFT, assuming that our fixed parameters
are k and d̄ (recall that d̄ is the number of different task demands in the input). In particular,
this shows that UFT is FPT if all tasks have unit demands (which is APX-hard).
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r E \ E⋆

hs

E
⋆

hs
\ Ehs

Ehs

Figure 2 Partition of E, where Ehs are the edges in the good hitting set, E⋆
hs are the edges in

highway paths, and E \ E⋆
hs are the edges in hanging trees.

Our strategy is to identify a subset T ′ ⊆ T of tasks for which we can compute a core set
which is intuitively a subset K ⊆ T ′ for which we can assume that it contains all tasks in
T ′ ∩ OPT for some optimal solution OPT. We will ensure that the size of our core set is
bounded by a function in k and d̄. Hence, in some sense it is a kernel for the set T ′.

▶ Definition 10. Given a set T ′ ⊆ T , we say that a set K ⊆ T ′ is a core set for T ′ if for
every feasible set of tasks S ⊆ T there exists a feasible set of tasks S ′ such that |S ′| = |S|,
S ′ \ T ′ = S \ T ′, and S ′ ∩ T ′ ⊆ K.

We will ensure that |K| ≤ f(k, d̄) for our computed core sets K, for some function f .
Hence, having computed K, in time O(f(k, d̄)) we can guess a task from T ′ ∩ OPT or guess
that T ′ ∩ OPT = ∅. In our main algorithm, we will compute O(k) core sets for different sets
T ′, guess which of their tasks are in OPT, and in this way eventually find a solution of size
k in time (f(k, d̄))O(k)nO(1).

First, we prove some basic properties of core sets.

▶ Lemma 11. Let T1, . . . , Tℓ be subsets of T . If K1, . . . , Kℓ are core sets for T1, . . . , Tℓ,
respectively, then

⋃ℓ
i=1 Ki is a core set for

⋃ℓ
i=1 Ti.

▶ Lemma 12. Let T ′ and T ′′ with T ′′ ⊆ T ′ ⊆ T . If K is a core set for T ′′ and T ′′ is a
core set for T ′ then K is also a core set for T ′.

3.1 Constructing core sets
We first present an algorithm Akr that computes a core set for any set of tasks T ′ for which
intuitively there are two hanging trees H, H ′ such that all tasks in T ′ start in H and end
in H ′. Formally, the input of Akr consists of a path P = Ps,t for two nodes s and t that lie
in two different hanging trees H, H ′, and of a value d ∈ N which is the demand of some
input task. Let T ′ denote the set of all tasks i ∈ T such that P (i) contains the path P ,
d(i) = d, and each edge of P (i) \ E⋆

hs lies in H or H ′. The algorithm Akr computes a core
set K for T ′. For each node v in some hanging tree H denote by pv the maximum distance
of v to a leaf of H . Recall that by Lemma 9 we can assume that for every v ∈ V follows that
pv ≤ (d̄ + 1)k + 1. For any two vertices v, v′ denote by Pv,v′ the (unique) path from v to v′,
and for each vertex v denote by δ(v) the set of edges incident to v.
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The algorithm Akr(P, d) works as follows:
1. If ps = pt = 0 then return an arbitrary subset of T ′ of size min{k, |T ′|}.
2. Otherwise, construct greedily a subset A ⊆ T ′ of tasks such that for every pair i ≠ j it

holds that P (i) ∩ P (j) = P : keep adding tasks to A until |A| = 2k or if the property
would not be fulfilled if we added an additional task i ∈ T ′ \ A to A.

3. If |A| = 2k then return A.
4. If |A| < 2k then let E be the set of edges in (δ(s) ∪ δ(t)) \ P that are used by tasks in A.
5. For every edge ej ∈ E compute Kj = Akr(P ∪ {ej}, d)
6. Return K =

⋃
ej∈E Kj .

We want to show that Akr(P, d) returns a core set for T ′ . Observe that |Ē| ≤ O(k), the
recursion depth is bounded by O((d̄ + 1)k), and hence we output at most kO((d̄+1)k) tasks
in total. Intuitively, if in a recursive call it holds that |A| < 2k then Ē contains all edges
in (δ(s) ∪ δ(t)) \ P that are used by tasks in T ′. Thus, for each task i ∈ T ′ there will be a
recursive call Akr(P ∪ {ej}, d) such that P (i) ⊆ P ∪ {ej}. On the other hand, if |A| = 2k in
some recursive call then A itself is a coreset for this call: if OPT contains a task i ∈ T ′ \ A

then by the pigeon hole principle there must be another task i′ ∈ A \ OPT such that no
task in OPT uses an edge in P (i′) \ P and hence we can swap i and i′ in OPT, using that
d(i) = d(i′). We formalize this in the following lemma.

▶ Lemma 13. Let s, t be two nodes in two different hanging trees, let d ∈ N, and let
T ′ = {i ∈ T |Ps,t ⊆ P (i) ∧ d(i) = d}. Then Akr(Ps,t, d) returns a core set for T ′ of size at
most (4k)ps+pt · k in time (4k)ps+pt · k · O(n).

Proof. Let Ts,t be the set of tasks i ∈ T such that Ps,t ⊆ P (i). We define the instance depth
to be ps + pt, and we give a proof by induction on the instance depth. In the base case
ps = pt = 0. Then in the first step of the algorithm two options can arise:

K = T ′. In this case it follows directly that K is a core set for T ′.
K ̸= T ′. Let OPT be a feasible solution of size k. In this case it follows that K has size
2k, and then we can replace all the tasks in OPT ∩ T ′ by tasks of K.

Now consider the case that ps + pt > 0. Given an edge ej ∈ E, let sj and tj be the end nodes
of the path P ∪ {ej}. It follows that T ′ ∩ Tsj ,tj

is the set of tasks in T ′ that uses ej . Since
|Psj ,tj

| = |Ps,t| + 1, then psj
+ ptj

= ps + pt − 1, implying by the inductive hypothesis that
Kj is a core set of T ′ ∩ Tsj ,tj

. We define T ′′ =
⋃

j∈{1,...,|E|} T ′ ∩ Tsj ,tj
. Lemma 11 implies

that K is a core set for T ′′. It remains to show that T ′′ is a core set for T ′. If |A| < 2k then
each task in T ′ uses an edge from E, which implies that T ′ = T ′′, so we conclude that T ′′ is
a core set for T ′. Since K is a core set for T ′′ and T ′′ is a core set for T ′, the Lemma 12
implies that K is a core set of T ′.

Assume now that |A| = 2k. Let OPT be a feasible solution of size k, such that among
all solutions OPT′ of size k with OPT \ T ′ ⊆ OPT′, the solution OPT is the solution that
maximizes

∣∣OPT′ ∩ A
∣∣. Let us assume that there is a task i ∈ (OPT ∩ T ′) \ A. Each task in

OPT shares an edge in E \ P with at most two tasks from A. Therefore, there are at most
2(k − 1) tasks i′ ∈ A such that P (i′) \ P contains an edge that is used by some task in OPT.
Therefore, there exists a task i′′ ∈ A such that no edge in P (i′′)\P is used by any tasks in OPT.
Therefore, OPT ∪ {i′′} \ {i} is a feasible solution and |(OPT ∪ {i′′} \ {i}) ∩ A| > |OPT ∩ A|
which is a contradiction. Therefore, A is a core set for T ′.

Now we analyse the running time of Akr. Each of the recursive calls generated by Akr is
associated to a path Psi,ti

such that |Psi,ti
| = |Ps,t| + 1, and therefore psi

+ pti
≤ ps + pt − 1.

Therefore, the recursion depth is at most ps + pt. In the recursion tree each node has at most

ESA 2021



67:8 FPT and FPT-Approximation Algorithms for UFT

v1
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e4
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Figure 3 The sets A = {i1, i2, i3, i4}, V = {v1, v2, v3, v4}, and E = {e1, e2, e3, e4} as they are
defined in algorithm Afin(P, d).

4k childrens. If in a leaf of the recursion tree a core set is returned, this core set contains
at most k tasks. We conclude that K is a core set of size at most (4k)ps+pt · k which we
compute in time (4k)ps+pt · k · O(n). ◀

We will use Akr as a subroutine in a different algorithm Afin for computing core sets which
we describe now. Let e∗ be a final edge. Let H(e∗) be the hanging tree underneath e∗, i.e.,
that is rooted at the vertex incident to e∗ that is further away from the root. The input of
Afin consists of a path P ⊆ H(e∗)∪{e∗} and of a value d ∈ N which is intuitively the demand
of some input task. Let T ′ denote the set of all tasks i such P ⊆ P (i), P (i) ∩ Ehs = {e∗}
and d(i) = d. The algorithm Afin will compute a core set for T ′. In order to present the
algorithm, we introduce some definitions. We say that a task i ∈ T ′ turns at a node v if v is
the endnode of the path P (i) ∩ E⋆

hs that is closest to the root. For each task i we denote by
v(i) the vertex at which i turns. We define that the level ℓ(i) of a task i ∈ T ′ is the distance
between v(i) and e∗, i.e., the number of edges of the path that connects v(i) with the vertex
incident to e∗ that is closer to the root.

Our algorithm Afin(P, d) works as follows (see Figure 3 for an illustration):
1. Initialize A = ∅. Consider tasks in T ′ ordered non-decreasingly by their levels, add each

task i ∈ T ′ to A if for each previously added task i′ ∈ A it holds that P (i)∩P (i′) ⊆ E⋆
hs∪P .

Stop if |A| = 2k or if no more task in T ′ can be added to A.
2. Let V =

{
v1, ..., v|V ′|

}
be the vertices at which the tasks in A turn, u be the endvertex

of P that is in H(e∗), and E be the set of edges in δ(u) \ P that are used by tasks in A.
3. For every vertex vj ∈ V we compute Kkr

j = Akr(Pvj ,u, d).
4. For every edge ej ∈ E we define Pj = P ∪ {ej} and compute Kfin

j = Afin(Pj , d).
5. Return

K =

 ⋃
j∈{1,...,|V |}

Kkr
j

 ∪

 ⋃
j∈{1,...,|E|}

Kfin
j

 .
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We want to show that Afin(P, d) computes a core set with bounded size for T ′. If |A| = 2k

we can show by an exchange argument that there is an optimal solution OPT such that
each task in OPT ∩ T ′ turns at some vertex in V ′ or use some edge in E′. If |A| < 2k one
can show that this is automatically satisfied. In the calls to Akr we obtain core sets that
together contain all tasks in OPT ∩ T ′ that turn at some vertex in V ′. The recursive calls
to Afin compute core sets that together contain all tasks in OPT ∩ T ′ that use some edge
in E′. Observe that for Afin the tasks are ordered, favoring tasks of lower level, since those
intutively use less edges on E⋆

hs and thus intersect with fewer other tasks on these edges. We
define pmax to be the maximum value pu over all nodes v ∈ V . Since due to Lemma 9 we
can assume that that pv ≤ (d̄ + 1)k + 1 for every v ∈ V , we obtain that pmax ≤ (d̄ + 1)k + 1.

▶ Lemma 14. Let e∗ be a final edge, let P ⊆ H(e∗) ∪ {e∗} be a path, and let T ′ be the set
of all tasks i such that P ⊆ P (i), P (i) ∩ Ehs = {e∗}, and d(i) = d. The algorithm Afin(P, d)
computes a core set for T ′ of size at most (4k)2pmax · k in time (4k)2pmax · k2 · O(n).

3.2 UFT Algorithm
Now we describe our main FPT-algorithm for UFT which will use Afin(e, d) as a subroutine.
Recall that there are at most 6k edges in Ehs. We take an arbitrary final edge e ∈ Ehs.
We guess whether there is a task i ∈ OPT that uses e but no other edge in Ehs, i.e., such
that P (i) ∩ Ehs = {e}. If yes, we guess d(i) for which there are only d̄ options. Then we
call Afin(e, d(i)) and obtain a core set K of size at most (4k)2pmaxk2. Assume w.l.o.g. that
OPT is an optimal solution with the property that K contains all tasks in OPT that use e

but no other edge in Ehs (using that K is a core set). In time (4k)2pmaxk2 we guess a task
i ∈ K ∩ OPT. We add i to our computed solution and remove i from the set of input tasks
T . We update the edges capacities, taking into account that we selected i, i.e., we update
u(e) := u(e) − d(i) for each edge e ∈ P (i). At this point, we remove from T each task
i′ ∈ T such that u(e) < d(i) for some edge e ∈ P (i). We keep on guessing whether there
is a task i ∈ OPT that uses e but no other edge in Ehs, i.e., P (i) ∩ Ehs = {e}. If yes, we
repeat the process above. Otherwise, we know that there is no more task i ∈ OPT with
P (i) ∩ Ehs = {e}. Then we remove e from Ehs, we remove from T all input tasks i with
P (i) ∩ Ehs = {e}, and we define E⋆

hs newly based on the changed set Ehs. Then we apply
Lemma 9 to the resulting instance.

We repeat the above process with a final edge e′ in the (changed) set Ehs (note that
possibly e′ was not a final edge in the original set Ehs). We continue until we selected k tasks
in total. If all our guesses were correct, then S forms a feasible solution. Moreover, there
are at most O(k) guesses in total with at most d̄ · (4k)2pmaxk2 possibilities for each guess: if
we guess that there is a task i ∈ OPT with P (i) ∩ Ehs = {e} then subsequently we select
such a task and this happens at most k times. On the other hand, if we guess that there is
no task i ∈ OPT with P (i) ∩ Ehs = {e} then subsequently we remove e from Ehs and the
initial set Ehs has only O(k) edges. For each guess there are at most d̄ · (4k)2pmaxk2 options.
Hence, there are only

(
d̄ · (4k)2pmaxk2)O(k) possibilities for all our guesses overall. Therefore,

we obtain a running time of kO(k·d̄k) · O(n2) overall, which yields the proof of Theorem 1.

4 Resource augmentation

In this section we present an FPT-algorithm for UFT under (1 + δ)-resource augmentation.
Formally, we present an algorithm with a running time of the form f(k, δ)nO(1) for some
computable function f that outputs a set S ⊆ T with |S| = k that is feasible under (1 + δ)-
resource augmentation, i.e.,

∑
i : i∈S∩Te

d(i) ≤ (1 + δ)u(e) for each e ∈ E, or outputs that
there is no solution of size k (for the original edge capacities).
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Our strategy is to split the input tasks T into groups such that the demands of any two
tasks in different groups differ at least by a factor k/δ. Then we can compute a solution for
each group separately and their union is a (global) solution under resource augmentation, as
the following lemma shows.

▶ Lemma 15. Consider sets of tasks {Tj}j∈N with Tj ⊆ T for each j ∈ N such that for
each j, j′ ∈ N with j ̸= j′ and any two tasks Ti ∈ Tj, Ti′ ∈ Tj′ it holds that d(i) > k

δ d(i′)
or d(i′) > k

δ d(i). For each j ∈ N let Sj ⊆ Tj be a solution with at most k tasks that is
feasible under (1 + δ′)-resource augmentation for some δ′ ≥ 0, and suppose that δ < 1/2.Then⋃

j∈N Sj is feasible under (1 + 2δ′ + 2δ)-resource augmentation.

On the other hand, if we can ensure that within each group the task demands differ by at
most a factor (k/δ)k, then we can compute a solution of size k for this group that is feasible
under (1 + δ)-resource augmentation as follows: we first round the task demands to powers
of 1 + δ and then invoke our algorithm due to Theorem 1, using that the number of different
task demands is only log1+δ((k/δ)k).

▶ Lemma 16. Consider a set of tasks T ′ ⊆ T such that for any two tasks i, i′ ∈ T ′ it
holds that ( δ

k )kd(i) ≤ d(i′) ≤ ( k
δ )kd(i). Then in time k

O
(

kk+2·(log1+δ(k/δ))k+1)
· O(n2) we can

compute for any k′ ≤ k a solution S ′ ⊆ T ′ of size k′ that is feasible under (1 + δ)-resource
augmentation, or assert that there is no solution of size k′ (for the original edge capacities).

Now with a shifting argument we can guess sets of tasks {Tj}j∈N that satisfy the condition
of Lemma 15, such that each set Tj satisfies the condition of Lemma 16, and additionally⋃

j∈N Tj contains a solution of size k. We apply Lemma 16 to each set Tj to find the largest
k′ ≤ k for which there exists a solution, denote by Sj the largest solution found, and output
the union

⋃
j∈N Sj which is feasible under (1 + 4δ)-resource augmentation due to Lemma 15.

▶ Theorem 17. There is an FPT-algorithm for UFT under (1 + δ)-resource augmentation
with a running time of k

O
(
(k·log1+δ(k/δ))k+2)

· O(n2).

5 FPT-approximation algorithm

In this section we present an FPT-5-approximation algorithm for UFT, i.e., given a para-
meter k, in time f(k)nO(1) our algorithm either finds a solution of size k/5 or asserts that
there are no solution of size k. First, we present a simpler FPT-7-approximation algorithm
and then explain how to improve it to an FPT-5-approximation.

Again, we invoke Lemmas 6 and 8 to construct a good hitting set Ehs (or directly obtain a
solution of size k). Since |Ehs| = O(k), we observe that the graph (V, E \ Ehs) has K = O(k)
connected components; we denote them by G1, ..., GK . Since Ehs is a hitting set, we obtain
the following lemma.

▶ Lemma 18. For each task i ∈ T the two endvertices of P (i) lie in two different components
in {G1, ..., GK}.

Let i∗
1 ∈ OPT denote the task with smallest demand in OPT. We guess the two

components of the two endvertices of P (i∗
1). We select the input task i1 with smallest

demand whose path has its endvertices in the same two components. It might be that i1 ̸= i∗
1;

however, we will show that we can find seven tasks i′
1, ..., i′

7 ∈ OPT such that if we replace
i′
1, ..., i′

7 by i1 then we still obtain a feasible solution. Intuitively, the task i1 (which we
select) pays for the tasks i′

1, ..., i′
7 (which we lose). We continue iteratively until we picked

⌈k/7⌉ tasks.
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Formally, our algorithm runs in ⌈k/7⌉ rounds where in each round we select one task
i. Let OPT0 = OPT. Suppose that after k′ ∈ {0, ..., ⌈k/7⌉ − 1} rounds we selected tasks
i1, ..., ik′ and defined a solution OPTk′ ⊆ OPT such that OPTk′ ∪ {i1, ..., ik′} is feasible
(note that this is clearly true for k′ = 0). Let i∗

k′+1 ∈ OPTk′ denote a task with smallest
demand in OPTk′ , i.e., such that d(i∗

k′+1) ≤ d(i) for each i ∈ OPTk′ . We guess the two
components from {G1, ..., GK} that contain the two endvertices of P (i∗

k′+1). Let ik′+1 denote
the input task i of smallest demand with the property that P (i) has its endvertices in the
same components and {i, i1, ..., ik′} forms a feasible solution. We select ik′+1 and prove in
the next lemma that intuitively we can select ik′+1 if we are willing to sacrifice at most seven
tasks from OPTk′ .

▶ Lemma 19. There exist tasks i′
1, ..., i′

7 ∈ OPTk′ such that OPTk′ \ {i′
1, ..., i′

7} ∪
{i1, ..., ik′ , ik′+1} is feasible.

Proof. Let G′ and G′′ denote the two components from {G1, ..., GK} that contain the two
endvertices of P (i∗

k′+1). The idea behind the proof is to identify seven tasks i′
1, ..., i′

7 ∈ OPTk′

such that d(i′
ℓ) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each ℓ ∈ {1, ..., 7} and such that the edges of their
paths contain all the edges of P (ik′+1) that are used by tasks in OPTk′ (i.e., edges on which
selecting ik′+1 potentially causes conflicts with other tasks in OPTk′). We will select three
tasks for the edges in P (ik′+1) ∩ E(G′), three for the edges in P (ik′+1) ∩ E(G′′), and one for
the edges in P (ik′+1) \ (E(G′) ∪ E(G′′)).

Consider the edges in P (ik′+1)∩E(G′). We partition them into P (ik′+1)∩E(G′)\E⋆
hs and

P (ik′+1)∩E(G′)∩E⋆
hs. If an edge e ∈ P (ik′+1)∩E(G′)\E⋆

hs is used by some task i ∈ OPTk′ ,
then e is also used by the task i′ ∈ OPTk′ that maximizes |P (i′) ∩ P (ik′+1) ∩ E(G′) \ E⋆

hs|.
Let i′

1 denote this task i′. Regarding the edges in P (ik′+1) ∩ E(G′) ∩ E⋆
hs, note that they

form a path, and let u and v be its end vertices. Let i′
2 denote the task i ∈ OPTk′ such

that u ∈ V (P (i)) and i maximizes |P (i) ∩ E(G′) ∩ E⋆
hs|. Similarly, let i′

3 denote the task
i ∈ OPTk′ such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(G′) ∩ E⋆

hs|. Then, if some
task i ∈ OPTk′ uses an edge e ∈ P (ik′+1) ∩ E(G′) ∩ E⋆

hs then e ∈ P (i′
2) or e ∈ P (i′

3) (see
Figure 4). In a similar way, we identify three tasks i′

4, i′
5 and i′

6 for P (ik′+1) ∩ E(G′′).
Finally, all the edges in P (ik′+1) \ (G′ ∪ G′′) are used by i∗

k′+1, and we define i′
7 := i∗

k′+1.
If an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′

ℓ) for some ℓ ∈ {1, ..., 7}. Since
d(i′

ℓ) ≥ d(i∗
k′+1) ≥ d(ik′+1) for each ℓ ∈ {1, ..., 7}, the tasks i′

1, ..., i′
7 satisfy the claim of the

lemma. ◀

We remark that the tasks i′
1, ..., i′

7 might not be pairwise distinct. We define OPTk′+1 :=
OPTk′ \ {i′

1, ..., i′
7} and iterate. Since in each iteration we picked one task and removed

at most seven tasks from OPT, one can show easily that at the end we select ⌈k/7⌉ tasks,
assuming that |OPT| ≥ k. Our running time is kO(k)nO(1) since in each of the k iterations
there are O(k2) options for our guesses.

▶ Theorem 20. There is an FPT-7-approximation algorithm for UFT with a running time
of kO(k)nO(1).

5.1 Improvement to an FPT-5-approximation
We improve our approximation factor to 5 by doing additional guesses when we select the
task ik′ in each round k′. Assume again that at the beginning of round k′ +1 we have already
selected tasks i1, ..., ik, and defined a set OPTk′ ⊆ OPT such that OPTk′ ∪ {i1, ..., ik′} is
feasible. Like before, let i∗

k′+1 ∈ OPTk′ denote the task with smallest demand in OPTk′

and we guess the components from G1, ..., GK that contain the endvertices of P (i∗
k′+1). Let
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r E \ E?
hs

E?
hs \ Ehs

Ehs

u

v

i′1

i′2

i′3

i′7

ik′+1

i′6

i′5

i′4

Figure 4 The task ik′+1 is selected, and Lemma 19 shows that if we remove the tasks i′
1, ...i′

7
from OPTk′ , we can add the task ik′+1 to OPTk′ since each edge on P (ik′+1) is used by one of the
tasks i′

1, ...i′
7 or by no task from OPTk′ .

G′ and G′′ be these components. Like before, let ik′+1 denote the input task i of smallest
demand with the property that P (i) has its endvertices in G′ and G′′ and {i, i1, ..., ik′} forms
a feasible solution. We do not select ik′+1 yet; instead, we guess some properties of P (i∗

k′+1),
more precisely, of the part of P (i∗

k′+1) within G′ and G′′. Since Ehs is a good hitting set, it
holds that G′ (or G′′) restricted to E⋆

hs is a path.

▶ Lemma 21. Let G̃ ∈ {G1, ..., GK}. Then G[E⋆
hs ∩ E(G̃)] is a path (possibly with zero

edges).

Let Ḡ′ := G[E⋆
hs ∩ E(G′)] and Ḡ′′ := G[E⋆

hs ∩ E(G′′)]. Observe that P (i∗
k′+1) uses some

edges of Ḡ′ and also P (ik′+1) uses some edges of Ḡ′. Note that the respective sets of edges
are contained in each other. The same holds for Ḡ′′. It turns out that for Lemma 19 a
particularly bad case is when P (ik′+1) uses strictly more edges of both Ḡ′ and Ḡ′′ than
P (i∗

k′+1), i.e., then we need to remove seven tasks from OPTk′ , rather than fewer tasks.
Therefore, we guess whether this bad case applies. If yes, instead of ik′+1 =: i

(1)
k′+1 we consider

a task i
(2)
k′+1 which is the input task i of smallest demand with endvertices in G′ and G′′, such

that {i, i1, ..., ik′} forms a feasible solution and P (i) uses strictly less edges than P (i(1)
k′+1) of

both Ḡ′ and Ḡ′′. Again, we guess whether the bad case applies for i
(2)
k′+1. If yes, we replace

i
(2)
k′+1 by some task i

(3)
k′+1 that uses even fewer edges of Ḡ′ and Ḡ′′ and so on. We repeat this

for at most 2k iterations. Formally, if for some ℓ ∈ {1, ..., 2k} we defined the task i
(ℓ)
k′+1 then

we guess whether the bad case applies for i
(ℓ)
k′+1, i.e., whether P (i(ℓ)

k′+1) uses strictly more
edges of both Ḡ′ and Ḡ′′ than P (i∗

k′+1). If yes, we define the task i
(ℓ+1)
k′+1 to be the input

task i of smallest demand with endvertices in G′ and G′′, such that {i, i1, ..., ik′} forms a
feasible solution and P (i) uses strictly less edges than P (i(ℓ)

k′+1) of both Ḡ′ and Ḡ′′. If for
some i

(ℓ)
k′+1 with ℓ ∈ {1, ..., 2k} the bad case does not apply then intuitively we can show that
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for adding i
(ℓ)
k′+1 we need to remove only five tasks from OPT, rather than seven. In this case

we select ik := i
(ℓ)
k′+1 and define OPTk′+1 := OPTk′ \ {i′

1, ..., i′
5} for the tasks i′

1, ..., i′
5 due to

the following lemma, and continue with the next round k′ + 2.

▶ Lemma 22. Suppose that for some ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) does not use

strictly more edges of both Ḡ′ and Ḡ′′ than P (i∗
k′+1). Then there exist tasks i′

1, ..., i′
5 ∈ OPTk′

such that OPTk′ \ {i′
1, ..., i′

5} ∪ {i1, ..., ik′ , i
(ℓ)
k′+1} is feasible.

Proof. Assume w.l.o.g. that P (i(ℓ)
k′+1) does not use strictly more edges of Ḡ′′ than P (i∗

k′+1).
Following the idea behind Lemma 19 we identify five tasks i′

1, ..., i′
5 ∈ OPTk′ such that

d(i′
j) ≥ d(i∗

k′+1) ≥ d(i(ℓ)
k′+1) for each j ∈ {1, ..., 5} and such that the edges of their paths

(together) contain all the edges of P (i(ℓ)
k′+1) that are used by tasks in OPTk′ (i.e., edges on

which selecting i
(ℓ)
k′+1 potentially causes conflicts with other tasks in OPTk′). We will select

three tasks for the edges in P (i(ℓ)
k′+1) ∩ E(G′), one for the edges in P (i(ℓ)

k′+1) ∩ E(G′′) \ E(Ḡ′′),
and one for the edges in P (i(ℓ)

k′+1) \ (E(G′) ∪ E(G′′)) and the edges in P (i(ℓ)
k′+1) ∩ E(Ḡ′′).

Consider the edges in P (i(ℓ)
k′+1) ∩ E(G′). We partition them into P (i(ℓ)

k′+1) ∩ E(G′) \ E(Ḡ′)
and P (i(ℓ)

k′+1)∩E(Ḡ′). If an edge e ∈ P (i(ℓ)
k′+1)∩E(G′)\E(Ḡ′) is used by some task i ∈ OPTk′ ,

then e is also used by the task i′ ∈ OPTk′ that maximizes |P (i′) ∩ P (i(ℓ)
k′+1) ∩ E(G′) \ E(Ḡ′)|.

Let i′
1 denote this task i′. Regarding the edges in P (i(ℓ)

k′+1) ∩ E(Ḡ′), note that they form
a path, and let u and v be its end vertices. Let i′

2 denote the task i ∈ OPTk′ such that
u ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′)|. Similarly, let i′

3 denote the task i ∈ OPTk′

such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′)|. Then, if some task i ∈ OPTk′ uses
an edge e ∈ P (i(ℓ)

k′+1) ∩ E(Ḡ′) then e ∈ P (i′
2) or e ∈ P (i′

3).
Regarding the edges in P (i(ℓ)

k′+1)∩E(G′′)\E(Ḡ′′), if an edge e ∈ P (i(ℓ)
k′+1)∩E(G′′)\E(Ḡ′′)

is used by some task i ∈ OPTk′ , then e is also used by the task i′ ∈ OPTk′ that maximizes
|P (i′) ∩ P (i(ℓ)

k′+1) ∩ E(G′′) \ E(Ḡ′′)|. Let i′
4 denote this task i′. Regarding the edges in

P (i(ℓ)
k′+1) ∩ E(Ḡ′′) and the edges in P (i(ℓ)

k′+1) \ (E(G′) ∪ E(G′′)), they are all used by i∗
k′+1,

which we now identify as i′
5.

It follows that if an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′
j) for some

j ∈ {1, ..., 5}. Since d(i′
j) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5}, the tasks i′
1, ..., i′

5
satisfy the claim of the lemma. ◀

On the other hand, if the bad case applied to each i
(ℓ)
k′+1 with ℓ ∈ {1, ..., 2k} then we

can show that there must be one task i
(ℓ∗)
k′+1 with ℓ∗ ∈ {1, ..., 2k} such that the edges of

P (i(ℓ∗)
k′+1) \ E⋆

hs are not used by any task in OPT. It turns out that this is again a good
case. Intuitively, then we do not need to remove any task from OPT in order to make
space for i

(ℓ∗)
k′+1 on the edges in P (i(ℓ∗)

k′+1) \ E⋆
hs and, therefore, it turns out that we need to

remove only five tasks from OPT. In this case we guess ℓ∗, select ik := i
(ℓ∗)
k′+1 and define

OPTk′+1 := OPTk′ \ {i′
1, ..., i′

5} for the tasks i′
1, ..., i′

5 due to the following lemma, and
continue with the next round k′ + 2.

▶ Lemma 23. Suppose that for each ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) uses strictly more

edges of Ḡ′ and Ḡ′′ than P (i∗
k′+1). Then there is an ℓ∗ ∈ {1, ..., 2k} for which there exist

tasks i′
1, ..., i′

5 ∈ OPTk′ such that OPTk′ \ {i′
1, ..., i′

7} ∪ {i1, ..., ik′ , i
(ℓ∗)
k′+1} is feasible.

Proof. Since for each ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) uses strictly more edges of Ḡ′

and Ḡ′′ than P (i∗
k′+1), then there is an ℓ∗ ∈ {1, ..., 2k} such that |P (i(ℓ∗)

k′+1) ∩ E(Ḡ′) \ E⋆
hs| =

|P (i(ℓ∗)
k′+1) ∩ E(Ḡ′′) \ E⋆

hs| = 0. Following the idea behind Lemma 19 we identify five tasks
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i′
1, ..., i′

5 ∈ OPTk′ such that d(i′
ℓ∗) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5} and such that
the edges of their paths contain all the edges of P (ik′+1) that are used by tasks in OPTk′

(i.e., edges on which selecting ik′+1 potentially causes conflicts with other tasks in OPTk′).
Now will select two tasks for the edges in P (i(ℓ∗)

k′+1) ∩ E(Ḡ′), two for the ones in that in
P (i(ℓ∗)

k′+1) ∩ E(Ḡ′′) and one for the edges in P (i(ℓ∗)
k′+1) \ (E(Ḡ′) ∪ E(Ḡ′′)).

Consider the edges in P (i(ℓ∗)
k′+1)∩E(Ḡ′′). We partition them into P (i(ℓ∗)

k′+1)∩E(G′′)\E(Ḡ′′)
and P (i(ℓ∗)

k′+1)∩E(Ḡ′′). There is no edge P (i(ℓ∗)
k′+1)∩E(G′′)\E(Ḡ′′) used by some task i ∈ OPTk′ ,

so we don’t need to define a task to cover those edges. Regarding the edges in P (i(ℓ∗)
k′+1)∩E(Ḡ′′),

we note that they form a path, and let u and v be their end vertices. Let i′
1 denote the

task i ∈ OPTk′ such that u ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′) ∩ E⋆
hs|. Similarly, let

i′
2 denote the task i ∈ OPTk′ such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′) ∩ E⋆

hs|.
Then, if some task i ∈ OPTk′ uses an edge e ∈ P (ik′+1) ∩ E(Ḡ′′) then e ∈ P (i′

1) or e ∈ P (i′
2).

In a similar way, we identify two tasks i′
3 and i′

4 for P (i(ℓ∗)
k′+1) ∩ E(G′′).

Finally, all the edges in P (i(ℓ∗)
k′+1)\(G′ ∪G′′) are used by i∗

k′+1, and we define i′
5 := i∗

k′+1. It
follows that if an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′

j) for some j ∈ {1, ..., 5}.
Since d(i′

j) ≥ d(i∗
k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5}, the tasks i′

1, ..., i′
5 satisfy the claim

of the lemma. ◀

Since in each iteration we picked one task and removed at most five tasks from OPT,
one can show easily that at the end we select ⌈k/5⌉ tasks, assuming that |OPT| ≥ k. Our
running time is kO(k)nO(1) since in each of the k iterations there are O(k2) options for our
guesses.

▶ Theorem 24. There is an FPT-5-approximation algorithm for UFT with a running time
of kO(k)nO(1).
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Abstract
How efficiently can we find an unknown graph using distance queries between its vertices? We
assume that the unknown graph is connected, unweighted, and has bounded degree. The goal is to
find every edge in the graph. This problem admits a reconstruction algorithm based on multi-phase
Voronoi-cell decomposition and using Õ(n3/2) distance queries [27].

In our work, we analyze a simple reconstruction algorithm. We show that, on random ∆-regular
graphs, our algorithm uses Õ(n) distance queries. As by-products, we can reconstruct those graphs
using O(log2 n) queries to an all-distances oracle or Õ(n) queries to a betweenness oracle, and we
bound the metric dimension of those graphs by log2 n.

Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general
graphs of bounded degree, our reconstruction algorithm has subquadratic query complexity.
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1 Introduction

Discovering the topology of the Internet is a crucial step for building accurate network
models and designing efficient algorithms for Internet applications. The topology of Internet
networks is typically investigated at the router level, using traceroute. It is a common and
reasonably accurate assumption that traceroute generates paths that are shortest in the
network. Unfortunately, sometimes routers block traceroute requests due to privacy and
security concerns. As a consequence, the inference of the network topology is rather based
on the end-to-end delay information on those requests, which is roughly proportional to the
shortest-path distances in the network.

In the graph reconstruction problem, we are given the vertex set V of a hidden connected,
undirected, and unweighted graph and have access to information about the topology of the
graph via an oracle, and the goal is to find every edge in E. Henceforth, unless explicitly
mentioned, all graphs studied are assumed to be connected. This assumption is standard
and shared by almost all references on the subject, e.g., [7, 14, 27, 39, 41]. The efficiency of
an algorithm is measured by the query complexity, i.e., the number of queries to the oracle.
Motivated by traceroute, the literature has explored several types of query oracles.

One type consists of all-shortest-paths and all-distances queries, when querying a vertex
yields either shortest paths from that vertex to all other vertices [7, 41] or distances from
that vertex to all other vertices [14]. The latter, of course, is less informative.
A more refined type of query oracles, suggested in [7, 14], consists of shortest-path and
distance queries, when querying a pair of vertices yields either a shortest path or the
distance between them [27, 38, 39]. Again, the latter is less informative.
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68:2 A Simple Algorithm for Graph Reconstruction

In this work, we focus on the weakest of those four query oracles, that takes as input
a pair of vertices a and b and returns the distance δ(a, b) between them. Reyzin and
Srivastava [38] showed that graph reconstruction requires Ω(n2) distance queries on general
graphs, so we focus on the bounded degree case. For graphs of bounded degree, Kannan,
Mathieu, and Zhou [27] gave a reconstruction algorithm based on multi-phase Voronoi-cell
decomposition and using Õ(n3/2) distance queries, and raised an open question of whether
Õ(n) is achievable.1

We provide a partial answer to that open question by analyzing a simple reconstruction
algorithm (Algorithm 1). We show that, on (uniformly) random ∆-regular graphs, where
every vertex has the same degree ∆, our reconstruction algorithm uses Õ(n) distance queries
(Theorem 1). As by-products, we can reconstruct those graphs using O(log2 n) queries to an
all-distances oracle (Corollary 2) or using Õ(n) queries to a betweenness oracle (Corollary 3),
and we bound the metric dimension of those graphs by at most log2 n (Corollary 5).

Our analysis exploits the locally tree-like property of random ∆-regular graphs, meaning
that these graphs contain a small number of short cycles. Our method might be applicable
to other locally tree-like graphs, such as Erdös-Rényi random graphs and scale-free graphs.
In particular, many real world networks, such as Internet networks, social networks, and
peer-to-peer networks, are believed to have scale-free properties [6, 25, 34]. We defer the
reconstruction of those networks for future work.

Our reconstruction algorithm has a very simple structure, and is highly parallelizable
(Corollary 4). On general graphs of bounded degree, the same reconstruction algorithm has
subquadratic query complexity (Theorem 6).

1.1 Related Work
The problem of reconstructing a graph using queries that reveal partial information has been
extensively studied in different contexts and has many applications.

Reconstruction of Random Graphs

The gist of our paper deals with random graphs. The graph reconstruction problem has already
attracted much interest in the setting of random graphs. On Erdös-Rényi random graphs,
Erlebach, Hall, and Mihal’ák [15] studied the approximate network reconstruction using all-
shortest-paths queries; Anandkumar, Hassidim, and Kelner [4] used end-to-end measurements
between a subset of vertices to approximate the network structure. Experimental results to
reconstruct random graphs using shortest-path queries were given in [8, 20].

On random ∆-regular graphs, Achlioptas et al. [2] studied the bias of traceroute
sampling in the context of the network reconstruction. They showed that the structure
revealed by traceroute sampling on random ∆-regular graphs admits a power-law degree
distribution [2], a common phenomenon as in Erdös-Rényi random graphs [31] and Internet
networks [16].

Metric Dimension and Related Problems

Our work yields an upper bound on the metric dimension of random ∆-regular graphs. The
metric dimension problem was first introduced by Slater [42] and Harary and Melter [21],
see also [5, 13, 12, 23, 29, 36, 37, 40]. The metric dimension of a graph is the cardinality of

1 The notation Õ(f(n)) stands for O(f(n) · polylog f(n)).
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a smallest subset S of vertices such that every vertex in the graph has a unique vector of
distances to the vertices in S. On regular graphs, the metric dimension problem was studied
in special cases [12, 24]. In Erdös-Rényi random graphs, the metric dimension problem was
studied by Bollobás, Mitsche, and Prałat [11]. Mitsche and Rué [32] also considered the
random forest model.

A related problem is the identifying code of a graph [28], which is a smallest subset of
vertices such that every vertex of the graph is uniquely determined by its neighbourhood
within this subset. The identifying code problem was studied on random ∆-regular graphs [17]
and on Erdös-Rényi random graphs [19]. Other related problems received attentions on
random graphs as well, such as the sequential metric dimension [35] and the seeded graph
matching [33].

Betweenness Oracle

There exists an oracle that is even weaker than the distance oracle: the betweenness oracle [1],
which receives three vertices u, v, and w and returns whether w lies on a shortest path
between u and v. Our work yields a reconstruction algorithm using Õ(n) betweenness
queries on random ∆-regular graphs. For graphs of bounded degree, Abrahamsen et al. [1]
generalized the Õ(n3/2) result in the distance oracle model from [27] to the betweenness
oracle model.

Tree Reconstruction and Parallel Setting

Our paper focuses on the distance oracle and bounded degree, and considers the parallel
setting. All of those aspects were previously raised in the special case of the tree reconstruction.
Indeed, motivated by the reconstruction of a phylogenetic tree in evolutionary biology, the
tree reconstruction problem using a distance oracle is well-studied [22, 30, 43], in particular
assuming bounded degree [22]. Afshar et al. [3] studied the tree reconstruction in the parallel
setting, analyzing both the round complexity and the query complexity in the relative distance
query model [26].

1.2 Our Results
Our reconstruction algorithm, called Simple, is given in Algorithm 1. It takes as input the
vertex set V of size n and an integer parameter s ∈ [1, n].

Algorithm 1 Simple (V, s).

1: S ← sample of s vertices selected uniformly and independently at random from V

2: for u ∈ S and v ∈ V do Query(u, v)
3: Ê ← set of vertex pairs {a, b} ⊆ V such that, for all u ∈ S, |δ(u, a)− δ(u, b)| ≤ 1
4: for {a, b} ∈ Ê do Query(a, b)
5: return set of vertex pairs {a, b} ∈ Ê such that δ(a, b) = 1

Intuitively, the set Ê constructed in Simple consists of all vertex pairs {a, b} ⊆ V that
might be an edge in E. In order to obtain the edge set E, it suffices to query uniquely
the vertex pairs in Ê. We remark that Simple correctly reconstructs the graph for any
parameter s ∈ [1, n], and that choosing an appropriate s only affects the query complexity,
see Lemma 9.
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68:4 A Simple Algorithm for Graph Reconstruction

1.2.1 Random Regular Graphs
Our first main result shows that Simple (Algorithm 1) uses Õ(n) distance queries on random
∆-regular graphs for an appropriately chosen s (Theorem 1). The analysis exploits the
locally tree-like property of random ∆-regular graphs. The proof of Theorem 1 consists of
several technical novelties, based on a new concept of interesting vertices (Definition 14). See
Section 3.

▶ Theorem 1. Consider a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n.
In the distance query model, Simple (Algorithm 1) is a reconstruction algorithm using Õ(n)
queries in expectation.

We extend Simple and its analysis to reconstruct random ∆-regular graphs in the all-
distances query model (Corollary 2), in the betweenness query model (Corollary 3), as well
as in the parallel setting (Corollary 4). These extensions are based on the observation that
the set Ê constructed in Simple equals the edge set E with high probability (Lemma 17),2
see Section 4.

▶ Corollary 2. Consider a uniformly random ∆-regular graph with ∆ = O(1). In the
all-distances query model, there is a reconstruction algorithm using O(log2 n) queries in
expectation.

▶ Corollary 3. Consider a uniformly random ∆-regular graph with ∆ = O(1). In the
betweenness query model, there is a reconstruction algorithm using Õ(n) queries in expectation.

▶ Corollary 4. Consider a uniformly random ∆-regular graph with ∆ = O(1). In the parallel
setting of the distance query model, there is a reconstruction algorithm using 1 + o(1) rounds
and Õ(n) queries in expectation.

We further extend the analysis of Simple to study the metric dimension of random
∆-regular graphs (Corollary 5), by showing (in Lemma 21) that a random subset of log2 n

vertices is almost surely a resolving set (Definition 20) for those graphs, see Section 5.

▶ Corollary 5. Consider a uniformly random ∆-regular graph with ∆ = O(1). With probability
1− o(1), the metric dimension of the graph is at most log2 n.

With extra work, the parameter s = log2 n in Theorem 1 can be reduced to log n ·
(log log n)2+ϵ, for any ϵ > 0, see the full version of the paper. As a consequence, the query
complexity in the all-distances query model (Corollary 2) and the upper bound on the metric
dimension (Corollary 5) can both be improved to O(log n · (log log n)2+ϵ).

1.2.2 Bounded-Degree Graphs
On general graphs of bounded degree, Simple (Algorithm 1) has subquadratic query com-
plexity and is highly parallelizable (Theorem 6), see Section 6.

▶ Theorem 6. Consider a general graph of bounded degree ∆ = O(polylog n). Let s = n2/3.
In the distance query model, Simple (Algorithm 1) is a reconstruction algorithm using
Õ(n5/3) queries in expectation. In addition, Simple can be parallelized using 2 rounds.

2 This property (i.e., Ê = E with high probability) does not hold on general graphs of bounded degree.
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We note that the Multi-Phase algorithm3 from [27] also reconstructs graphs of bounded
degree in the distance query model. How does Simple compare to Multi-Phase? In terms
of query complexity, on general graphs of bounded degree, Simple uses Õ(n5/3) queries, so
is not as good as Multi-Phase using Õ(n3/2) queries; on random ∆-regular graphs, Simple
is more efficient than Multi-Phase: Õ(n) versus Õ(n3/2). In terms of round complexity,
Simple can be parallelized using 2 rounds on general graphs, and even 1 + o(1) rounds
on random ∆-regular graphs; while Multi-Phase requires up to 3 log n rounds due to a
multi-phase selection process for centers.4 In terms of structure, Simple is much simpler
than Multi-Phase, which is based on multi-phase Voronoi-cell decomposition.

▶ Remark. In the worst case, the query complexity of Simple is higher than linear. For
example, when the graph is a complete binary tree, Simple would require Ω(n

√
n) queries

(the complexity of Simple is minimized when s is roughly
√

n). Thus the open question from
[27] of whether general graphs of bounded degree can be reconstructed using Õ(n) distance
queries remains open and answering it positively would require further algorithmic ideas.

2 Notations and Preliminary Analysis

Let G = (V, E) be a connected, undirected, and unweighted graph, where V is the set of
vertices such that |V | = n and E is the set of edges. We say that {a, b} ⊆ V is a vertex pair
if both a and b belong to V such that a ̸= b. The distance between a vertex pair {a, b} ⊆ V ,
denoted by δ(a, b), is the number of edges on a shortest a-to-b path.

▶ Definition 7 (Distinguishing). For a vertex pair {a, b} ⊆ V , we say that a vertex u ∈ V

distinguishes a and b, or equivalently that u is a distinguisher of {a, b}, if |δ(u, a)−δ(u, b)| > 1.
Let D(a, b) ⊆ V denote the set of vertices u ∈ V distinguishing a and b.

Let s ∈ [1, n] be an integer parameter. The set S constructed in Simple consists of s

vertices selected uniformly and independently at random from V .
The set Ê constructed in Simple consists of the vertex pairs {a, b} ⊆ V such that

a and b are not distinguished by any vertex in S, i.e., D(a, b) ∩ S = ∅, or equivalently,
|δ(u, a) − δ(u, b)| ≤ 1 for all u ∈ S. For any edge (a, b) ∈ E, it is easy to see that
|δ(u, a) − δ(u, b)| ≤ 1 for all u ∈ V , which implies that {a, b} ∈ Ê. Hence the following
inclusion.

▶ Fact 8. E ⊆ Ê.

We show that Simple is correct and we give a preliminary analysis on its query complexity
as well as on its round complexity, in Lemma 9.

▶ Lemma 9. The output of Simple (Algorithm 1) equals the edge set E. The number of
distance queries in Simple is n · s + |Ê|. In addition, Simple can be parallelized using 2
rounds.

Proof. The output of Simple consists of the vertex pairs {a, b} ∈ Ê such that {a, b} is an
edge in E. Since E ⊆ Ê (Fact 8), the output of Simple equals the edge set E.

Observe that the distance queries in Simple are performed in two stages. The number
of distance queries in the first stage is |V | · |S| = n · s. The number of distance queries in

3 Algorithm 3 in [27].
4 The number of rounds in Multi-Phase is implicit in the proof of Lemma 2.3 from [27].
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68:6 A Simple Algorithm for Graph Reconstruction

the second stage is |Ê|. Thus the query complexity of Simple is n · s + |Ê|. The distance
queries in each of the two stages can be performed in parallel, so Simple can be parallelized
using 2 rounds. ◀

From Lemma 9, in order to further study the query complexity of Simple, it suffices to
analyze |Ê|, which equals |E|+ |Ê \ E| according to Fact 8. Since |E| ≤ ∆n in a graph of
bounded degree ∆, our focus in the subsequent analysis is |Ê \ E|.

▶ Lemma 10. Let s = ω(log n) be an integer parameter. Let B be the set of vertex pairs
{a, b} ⊆ V such that δ(a, b) ≥ 2 and |D(a, b)| ≤ 3n · (log n)/s. We have ES

[
|Ê \ E|

]
≤

|B|+ o(1).

Proof. Denote Z as the set Ê \E. Observe that |Z| ≤ |B|+ |Z \B|. Since B is independent
of the random set S, we have ES

[
|Z|

]
≤ |B| + ES

[
|Z \ B|

]
. It suffices to show that

ES

[
|Z \B|

]
= o(1).

We claim that for any vertex pair {a, b} ⊆ V such that {a, b} /∈ B, the probability that
{a, b} ∈ Z is o(n−2). To see this, fix a vertex pair {a, b} /∈ B. By definition of B, either
δ(a, b) = 1, or |D(a, b)| > 3n · (log n)/s. In the first case, {a, b} /∈ Z since Z does not contain
any edge of E. In the second case, observe that the event {a, b} ∈ Z implies that {a, b} ∈ Ê,
hence D(a, b) ∩ S = ∅. Therefore,

PS

[
{a, b} ∈ Z | {a, b} /∈ B

]
≤PS

[
D(a, b) ∩ S = ∅ | {a, b} /∈ B

]
<

(
1− 3n · (log n)/s

n

)s

=o(n−2),

where the second inequality follows since |D(a, b)| > 3n · (log n)/s and the set S consists of
s vertices selected uniformly and independently at random, and the last step follows since
s = ω(log n).

There are at most n(n− 1)/2 vertex pairs {a, b} /∈ B. By the linearity of expectation, the
expected number of vertex pairs {a, b} /∈ B such that {a, b} ∈ Z is at most o(n−2)·n(n−1)/2 =
o(1), so ES

[
|Z \B|

]
= o(1). Therefore, ES

[
|Z|

]
≤ |B|+ ES

[
|Z \B|

]
= |B|+ o(1). ◀

3 Reconstruction of Random Regular Graphs (Proof of Theorem 1)

In this section, we analyze Simple (Algorithm 1) on random ∆-regular graphs in the distance
query model. We assume that ∆ ≥ 2 and that ∆n is even since otherwise those graphs do
not exist.

We bound the expectation of |Ê \ E| on random ∆-regular graphs, in Lemma 11.

▶ Lemma 11. Let G be a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n.
Let S ⊆ V be a set of s vertices selected uniformly and independently at random from V . We
have EG,S

[
|Ê \ E|

]
= o(1).

Proof of Theorem 1 using Lemma 11. By Lemma 9, Simple is a reconstruction algorithm
using n · s + |Ê| = n · log2 n + |Ê| distance queries. From Fact 8, |Ê| = |E| + |Ê \ E|.
Since G is ∆-regular, |E| = ∆n/2. By Lemma 11, EG,S

[
|Ê \ E|

]
= o(1). Therefore, the

expected number of distance queries in Simple is n · log2 n + ∆n/2 + o(1), which is Õ(n)
since ∆ = O(1). ◀

It remains to prove Lemma 11 in the rest of this section.
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Configuration Model [9, 44]. We consider a random ∆-regular graph generated according
to the configuration model. Given a partition of a set of ∆n points into n cells v1, v2, . . . , vn of
∆ points, a configuration is a perfect matching of the points into ∆n/2 pairs. It corresponds
to a (not necessarily connected) multigraph G′ in which the cells are regarded as vertices
and the pairs as edges: a pair of points {x, y} in the configuration corresponds to an edge
(vi, vj) of G′ where x ∈ vi and y ∈ vj . Since each ∆-regular graph has exactly (∆!)n

corresponding configurations, a ∆-regular graph can be generated uniformly at random by
rejection sampling: choose a configuration uniformly at random,5 and reject the result if
the corresponding multigraph G′ is not simple or not connected. The configuration model
enables us to show properties of a random ∆-regular graph by analyzing a multigraph G′

corresponding to a random configuration.
In order to prove Lemma 11, we need the following Structural Lemma.

▶ Lemma 12 (Structural Lemma). Let ∆ = O(1) be such that ∆ ≥ 3. Let G′ be a multigraph
corresponding to a uniformly random configuration. Let {v, w} be a vertex pair in G′ such
that δ(v, w) ≥ 2. With probability 1− o(n−2), we have |D(v, w)| > 3n/ log n.

We defer the proof of the Structural Lemma for the moment and first show how it implies
Lemma 11.6

Proof of Lemma 11 using the Structural Lemma (Lemma 12). Let G be a random graph
and let S be a random subset of vertices, both defined in the statement of Lemma 11.
According to Lemma 10, EG,S

[
|Ê \E|

]
≤ EG

[
|B|

]
+ o(1). It suffices to prove that EG

[
|B|

]
=

o(1).
First, we consider the case when ∆ = O(1) is such that ∆ ≥ 3. Our analysis is based

on the configuration model. Let G′ be a multigraph corresponding to a uniformly random
configuration. Let EG′

[
|B|

]
denote the expected size of the set B defined on G′. Since

each ∆-regular graph corresponds to the same number of configurations and because the
probability spaces of configurations and of ∆-regular graphs, respectively, are uniform, we
have EG

[
|B|

]
≤ EG′

[
|B|

]
/p, where p is the probability that G′ is both simple and connected.

According to [44], when ∆ ≥ 3, p ∼ e(1−∆2)/4, which is constant since ∆ = O(1). Thus
EG

[
|B|

]
= O(EG′

[
|B|

]
).

In order to bound EG′
[
|B|

]
, consider any vertex pair {v, w} in G′ such that δ(v, w) ≥ 2.

From Lemma 12, the event |D(v, w)| ≤ 3n/ log n occurs with probability o(n−2). Equivalently,
the event |D(v, w)| ≤ 3n · (log n)/s occurs with probability o(n−2), since s = log2 n. Thus
the event {v, w} ∈ B occurs with probability o(n−2) according to the definition of B in
Lemma 10. There are n(n − 1)/2 vertex pairs {v, w} in G′. By linearity of expectation,
EG′

[
|B|

]
is at most o(n−2) · n(n− 1)/2 = o(1). Hence EG

[
|B|

]
= O(EG′

[
|B|

]
) = o(1).

In the special case when ∆ = 2, a 2-regular graph G is a ring. Consider any vertex
pair {v, w} in G such that δ(v, w) ≥ 2. It is easy to see that at least n − 4 vertices u

in the ring G are such that |δ(u, v) − δ(u, w)| > 1, so |D(v, w)| ≥ n − 4 by Definition 7.
When n is large enough, n− 4 > 3n/ log n, so |D(v, w)| > 3n/ log n. Equivalently, we have
|D(v, w)| > 3n · (log n)/s, since s = log2 n. Thus {v, w} /∈ B according to the definition of B

in Lemma 10. Therefore, B = ∅ and EG

[
|B|

]
= 0.

We conclude that EG

[
|B|

]
= o(1) for any ∆ = O(1). Thus EG,S

[
|Ê \ E|

]
≤ EG

[
|B|

]
+

o(1) = o(1). ◀

5 To generate a random configuration, the points in a pair can be chosen sequentially: the first point
can be selected using any rule, as long as the second point in that pair is chosen uniformly from the
remaining points.

6 Note that Lemma 11 is an intermediate step to prove Theorem 1 using Lemma 12. We state Lemma 11
separately since it will be reused in Section 4.
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The rest of the section is dedicated to prove the Structural Lemma (Lemma 12).
Let G′ be a multigraph corresponding to a uniformly random configuration, and let V be

the vertex set of G′. Let {v, w} ⊆ V be a vertex pair such that δ(v, w) ≥ 2. For a vertex
x ∈ V , denote ℓ(x) ∈ Z as the distance in G′ between x and the vertex pair {v, w}, i.e.,
ℓ(x) = min(δ(x, v), δ(x, w)). For any integer k ≥ 0, denote Uk ⊆ V as the set of vertices
x ∈ V such that ℓ(x) = k. Denote U≤k =

⋃
j≤k Uj .

To construct the multigraph G′ from a random configuration, we borrow the approach
from [10], which proceeds in phases to construct the edges in G′, exploring vertices x ∈ V

in non-decreasing order of ℓ(x). We start at the vertices of U0 = {v, w}. Initially (i.e., in
the 0-th phase), we construct all the edges incident to v or incident to w. Suppose at the
beginning of the k-th phase (for k ∈ [1, n−1]), we have constructed all the edges with at least
one endpoint belonging to U≤k−1. During the k-th phase, we construct the edges incident to
the vertices in Uk one by one, till the degree of all the vertices in Uk reaches ∆. Let G′ be
the resulting multigraph in the end of the construction.7

An edge (a, b) in G′ is indispensable if it explores either the vertex a or the vertex b for
the first time in the edge construction. In the first case, b is the predecessor of a; and in the
second case, a is the predecessor of b. An edge is dispensable if it is not indispensable, in
other words, if each of its endpoints either belongs to {v, w} or is an endpoint of an edge
constructed previously.

▶ Fact 13. Neither v or w has a predecessor. For any vertex in V , its predecessor, if exists,
is unique. If vertex a is the predecessor of vertex b, then ℓ(b) = ℓ(a) + 1.

We introduce the concept of interesting vertices, which is a key idea in the analysis.

▶ Definition 14 (Interesting Vertices). A vertex x ∈ V is v-interesting if, for all vertices
z ∈ V \{v} with δ(v, z)+δ(z, x) = δ(v, x), the edges incident to z are indispensable. Similarly,
a vertex x ∈ V is w-interesting if, for all vertices z ∈ V \{w} with δ(w, z)+ δ(z, x) = δ(w, x),
the edges incident to z are indispensable.

For any finite integer k ≥ 1, let Ik(v) ⊆ V denote the set of v-interesting vertices x ∈ V such
that δ(v, x) = k, and let Ik(w) ⊆ V denote the set of w-interesting vertices x ∈ V such that
δ(w, x) = k.

We show in Lemma 15 that interesting vertices distinguish the vertex pair {v, w}, which
is a main technical novelty of the section.

▶ Lemma 15. For any finite integer k ≥ 1, we have Ik(v) ∪ Ik(w) ⊆ D(v, w).

Proof. Fix a finite integer k ≥ 1. From the symmetry of v and w, it suffices to prove
Ik(v) ⊆ D(v, w).

Let x be any vertex in Ik(v). By definition, x is v-interesting and δ(v, x) = k. Let
a0 = v, a1, . . . , ak = x be any shortest v-to-x path. For any vertex ai with i ∈ [1, k], the
edges incident to ai are indispensable according to Definition 14.

We claim that, for any i ∈ [1, k], ai−1 is the predecessor of ai, and in addition, ℓ(ai) = i.
The proof is by induction. First, consider the case when i = 1. The edge (a0, a1) is incident
to the vertex a1, so is indispensable. Thus either a0 is the predecessor of a1, or a1 is the

7 When a multigraph corresponding to a random configuration is not connected, the resulting G′ consists
of the union of the components of v and of w, respectively, in that multigraph. It is not necessary to
extend G′ to the entire multigraph. Indeed, any vertex x ∈ V outside the union of those two components
cannot distinguish v and w (i.e., x /∈ D(v, w)), thus x is irrelevant to |D(v, w)| in the statement of
Lemma 12.
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z(= ak−i∗ = bk′−i∗) x(= ak = bk′)

v(= a0)
a1

a2

ak−i∗−1

w(= b0)
b1

b2

y(= bk′−i∗−1)

Figure 1 a0, a1, . . . , ak is a shortest v-to-x path, and b0, b1, . . . , bk′ is a shortest w-to-x path. The
vertex z represents the branching point of these two paths. Since the vertex x is v-interesting, the
highlighted edges are indispensable.

predecessor of a0. Since a0 (= v) has no predecessor (Fact 13), a1 cannot be the predecessor
of a0, so a0 is the predecessor of a1. Again using Fact 13, we have ℓ(a1) = ℓ(a0) + 1. Since
ℓ(a0) = ℓ(v) = 0, we have ℓ(a1) = 1. Next, consider the case when i ≥ 2, and assume that
the claim holds already for 1, . . . , i− 1. The edge (ai−1, ai) is incident to the vertex ai, so is
indispensable. Thus either ai−1 is the predecessor of ai, or ai is the predecessor of ai−1. By
induction, ai−2 is the predecessor of ai−1. Since the predecessor of ai−1 is unique (Fact 13),
ai cannot be the predecessor of ai−1, so ai−1 is the predecessor of ai. Again using Fact 13,
we have ℓ(ai) = ℓ(ai−1) + 1. Since ℓ(ai−1) = i− 1 by induction, we have ℓ(ai) = i.

In order to show that x ∈ D(v, w), we prove in the following that δ(w, x) ≥ k + 2. Indeed,
since δ(v, x) = k, the event δ(w, x) ≥ k + 2 implies that x ∈ D(v, w) by Definition 7.8

Let b0 = w, b1, . . . , bk′ = x be any shortest w-to-x path, for some integer k′. See Figure 1.
Let i∗ ∈ [0, k] be the largest integer such that ak−j = bk′−j for all j ∈ [0, i∗]. Let z denote
the vertex ak−i∗ , which equals bk′−i∗ . If i∗ = k, the v-to-x path a0, a1, . . . , ak is a subpath of
the w-to-x path b0, b1, . . . , bk′ . Since δ(w, v) ≥ 2, we have δ(w, x) = δ(w, v) + δ(v, x) ≥ 2 + k,
which implies that x ∈ D(v, w). From now on, it suffices to consider the case when i∗ < k.

Let y denote the vertex bk′−i∗−1. Since y is on a shortest w-to-x path, we have

δ(w, x) = δ(w, y) + δ(y, x) = δ(w, y) + (i∗ + 1) ≥ ℓ(y) + (i∗ + 1), (1)

where the inequality follows from the definition of ℓ(y). It remains to analyze the value of
ℓ(y).

The edge (z, y) is incident to the vertex z (= ak−i∗), so is indispensable. Thus either
y is the predecessor of z, or z is the predecessor of y. From the previous claim, ak−i∗−1 is
the predecessor of z. Since the predecessor of z is unique (Fact 13) and y ̸= ak−i∗−1 (by
definition of i∗), y cannot be the predecessor of z, so z is the predecessor of y. Again by

8 When δ(w, x) is infinite (i.e., w and x are not connected in G′), it is trivial that x ∈ D(v, w), since
δ(v, x) is finite. Therefore, it suffices to consider the case when δ(w, x) is finite in the rest of the proof.
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Fact 13, ℓ(y) = ℓ(z) + 1. Since ℓ(z) = ℓ(ak−i∗) = k − i∗ by the previous claim, we have
ℓ(y) = k − i∗ + 1. We conclude from Equation (1) that

δ(w, x) ≥ (k − i∗ + 1) + (i∗ + 1) = k + 2,

which implies that x ∈ D(v, w).
We proved that Ik(v) ⊆ D(v, w). Similarly, Ik(w) ⊆ D(v, w). Therefore, Ik(v) ∪ Ik(w) ⊆

D(v, w). ◀

A lower bound on the number of interesting vertices is given in Lemma 16, which is
another technical novelty. The proof is based on the locally tree-like property in random
∆-regular graphs. It exploits the concept of interesting vertices in a non-trivial way and
extends a 3-level argument from Bollobás [10] in the context of automorphisms of those
graphs to an analysis of log log n levels. See the full version of the paper for details.

▶ Lemma 16. Let ∆ = O(1) be such that ∆ ≥ 3. Let k be any positive integer such
that k ≤ ⌈log∆−1(3n/ log n)⌉ + 2. With probability 1 − o(n−2), we have |Ik(v) ∪ Ik(w)| >

(∆− 2− o(1))(∆− 1)k−1.

Proof of the Structural Lemma (Lemma 12). We set k = ⌈log∆−1(3n/ log n)⌉ + 2. By
Lemma 15, |D(v, w)| ≥ |Ik(v) ∪ Ik(w)|. By Lemma 16, with probability 1− o(n−2), we have

|Ik(v) ∪ Ik(w)| > (∆− 2− o(1))(∆− 1)k−1 ≥ (∆− 2− o(1))(∆− 1) · (3n/ log n),

where the last inequality follows from the definition of k. Since ∆ ≥ 3, we have (∆− 2−
o(1))(∆ − 1) > 1. Thus with probability 1 − o(n−2), we have |Ik(v) ∪ Ik(w)| > 3n/ log n,
which implies that |D(v, w)| > 3n/ log n. ◀

4 Other Reconstruction Models (Proofs of Corollaries 2–4)

In this section, we study the reconstruction of random ∆-regular graphs in the all-distances
query model, in the betweenness query model, as well as in the parallel setting.

By extending the analysis from Section 3, we observe that the set Ê constructed in
Simple (Algorithm 1) equals the edge set E with high probability, in Lemma 17.

▶ Lemma 17. Let G be a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n.
Let S ⊆ V be a set of s vertices selected uniformly and independently at random from V .
With probability 1− o(1), |Ê| = ∆n/2. In addition, the event |Ê| = ∆n/2 implies Ê = E.

Proof. From Lemma 11, EG,S

[
|Ê \ E|

]
= o(1). By Markov’s inequality, the event that

|Ê \ E| ≥ 1 occurs with probability o(1). Thus with probability 1− o(1), we have Ê ⊆ E.
On the other hand, E ⊆ Ê by Fact 8. Therefore, the event that Ê = E occurs with
probability 1− o(1), and this event occurs if and only if |Ê| = |E|. The statement follows
since |E| = ∆n/2 in a ∆-regular graph. ◀

4.1 A Modified Algorithm
Lemma 17 enables us to design another reconstruction algorithm in the distance query
model, called Simple-Modified, which is a modified version of Simple, see Algorithm 2.
Simple-Modified repeatedly computes a set Ê as in Simple, until the size of Ê equals
∆n/2. The parameter s is fixed to log2 n.
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Algorithm 2 Simple-Modified (V ).

1: repeat
2: S ← sample of s = log2 n vertices selected uniformly and independently at random

from V

3: for u ∈ S and v ∈ V do Query(u, v)
4: Ê ← set of vertex pairs {a, b} ⊆ V such that, for all u ∈ S, |δ(u, a)− δ(u, b)| ≤ 1
5: until |Ê| = ∆n/2
6: return Ê

▶ Lemma 18. Let G be a uniformly random ∆-regular graph with ∆ = O(1). In the
distance query model, Simple-Modified (Algorithm 2) is a reconstruction algorithm, i.e.,
its output equals the edge set E. The expected number of iterations of the repeat loop in
Simple-Modified is 1 + o(1).

Proof. Upon termination of the repeat loop in Simple-Modified, we have |Ê| = ∆n/2,
which implies Ê = E by Lemma 17. Thus the output of Simple-Modified equals the edge
set E.

In each iteration of the repeat loop, the event that |Ê| = ∆n/2 occurs with probability
1 − o(1) by Lemma 17. Thus the expected number of iterations of the repeat loop is
1 + o(1). ◀

4.2 All-Distances Query Model (Proof of Corollary 2)
By Lemma 18, Simple-Modified is a reconstruction algorithm in the distance query model.
We extend Simple-Modified to the all-distances query model.

Observe that in Simple-Modified, the distance queries are performed between each
sampled vertex u ∈ S and all vertices in the graph. This is equivalent to a single query at
each sampled vertex u ∈ S in the all-distances query model. Hence each iteration of the
repeat loop in Simple-Modified corresponds to |S| = log2 n all-distances queries. Again
by Lemma 18, the expected number of iterations of the repeat loop in Simple-Modified is
1 + o(1). Therefore, in the all-distances query model, an algorithm equivalent to Simple-
Modified reconstructs the graph using (1 + o(1)) · log2 n = O(log2 n) all-distances queries
in expectation.

4.3 Betweenness Query Model (Proof of Corollary 3)
In the betweenness query model, Abrahamsen et al. [1] showed that Õ(∆2 · n) betweenness
queries suffice to compute the distances from a given vertex to all vertices in the graph (it
is implicit in Lemma 16 from [1]), so an all-distances query can be simulated by Õ(∆2 · n)
betweenness queries. As a consequence of Corollary 2, we achieve a reconstruction algorithm
using Õ(∆2 · n · log2 n) = Õ(n) betweenness queries in expectation, since ∆ = O(1).

4.4 Parallel Setting (Proof of Corollary 4)
By Lemma 18, Simple-Modified is a reconstruction algorithm in the distance query model.
We analyze Simple-Modified in the parallel setting.

Each iteration of the repeat loop consists of n · log2 n distance queries, and the distance
queries within the same iteration of the repeat loop can be performed in parallel. Again by
Lemma 18, the expected number of iterations of the repeat loop in Simple-Modified is
1 + o(1). Thus the expected number of rounds in Simple-Modified is 1 + o(1), and the
expected number of distance queries in Simple-Modified is (1 + o(1)) · n · log2 n = Õ(n).
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5 Metric Dimension (Proof of Corollary 5)

In this section, we study the metric dimension of random ∆-regular graphs. To begin with,
we show an elementary structural property of random ∆-regular graphs, in Lemma 19, based
on a classical result on those graphs.

▶ Lemma 19. Let G = (V, E) be a uniformly random ∆-regular graph with ∆ = O(1). With
probability 1− o(1), for any edge (a, b) of the graph G, there exists a vertex c ∈ V \ {a, b}
that is adjacent to b but is not adjacent to a.

Proof. First, consider the case when ∆ = 2. A 2-regular graph is a ring. Let (a, b) be any
edge of the graph. The vertex b has two neighbors, the vertex a and another vertex, let it be
c. We have c ∈ V \ {a, b} and c is not adjacent to a (as soon as n > 3). The statement of
the lemma follows.

Next, consider the case when ∆ = O(1) is such that ∆ ≥ 3. Let E denote the event that,
for any edge (a, b) of G, there do not exist two vertices c1 and c2 in G, such that all of the
4 edges (a, c1), (a, c2), (b, c1), (b, c2) belong to G. We show that E occurs with probability
1 − o(1). Indeed, if for some edge (a, b) of G, there exist two vertices c1 and c2 such that
(a, c1), (a, c2), (b, c1), (b, c2) are edges of G, then the induced subgraph on {a, b, c1, c2} consists
of at least 5 edges. A classical result on random ∆-regular graphs shows that, for any constant
integer k, the probability that there exists an induced subgraph of k vertices with at least
k + 1 edges is o(1), see, e.g., Lemma 11.12 in [18]. Therefore, E occurs with probability
1− o(1).

We condition on the occurrence of E . For any edge (a, b) of G, let N(a) be the set of
∆− 1 neighbors of a that are different from b, and let N(b) be the set of ∆− 1 neighbors of
b that are different from a. Since ∆ ≥ 3, we have |N(a)| = |N(b)| ≥ 2. The event E implies
that N(a) ̸= N(b), so there exists a vertex c ∈ N(b) \N(a). By definition, c is adjacent to b

but is not adjacent to a, and c ∈ V \ {a, b}. Since E occurs with probability 1 − o(1), we
conclude that, with probability 1− o(1), for any edge (a, b) of the graph G, there exists a
vertex c ∈ V \ {a, b} that is adjacent to b but is not adjacent to a. ◀

▶ Definition 20 (e.g., [5, 12]). A subset of vertices S ⊆ V is a resolving set for a graph
G = (V, E) if, for any pair of vertices {a, b} ⊆ V , there is a vertex u ∈ S such that
δ(u, a) ̸= δ(u, b). The metric dimension of G is the smallest size of a resolving set for G.

Based on the analysis of Simple from Lemma 17 and the structural property from
Lemma 19, we show that, with high probability, a random subset of log2 n vertices is a
resolving set for a random ∆-regular graph, in Lemma 21.

▶ Lemma 21. Let G = (V, E) be a uniformly random ∆-regular graph with ∆ = O(1). Let
S ⊆ V be a sample of s = log2 n vertices selected uniformly and independently at random
from V . With probability 1− o(1), the set S is a resolving set for the graph G.

Proof. Let E1 denote the event that, for any edge (a, b) of the graph G, there exists a vertex
c ∈ V \ {a, b} that is adjacent to b but is not adjacent to a. By Lemma 19, the event E1
occurs with probability 1− o(1). Let E2 denote the event Ê = E. By Lemma 17, the event
E2 occurs with probability 1 − o(1). Thus with probability 1 − o(1), both events E1 and
E2 occur simultaneously. We condition on the occurrences of both events E1 and E2 in the
subsequent analysis.

First, consider any vertex pair {a, b} ⊆ V such that δ(a, b) ≥ 2. The event E2 implies that
{a, b} /∈ Ê. By definition, there exists some vertex u ∈ S such that |δ(u, a) − δ(u, b)| ≥ 2,
which implies that δ(u, a) ̸= δ(u, b).
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Next, consider any vertex pair {a, b} ⊆ V such that δ(a, b) = 1. The event E1 implies
that there exists a vertex c ∈ V \ {a, b} that is adjacent to b but is not adjacent to a. Since
δ(a, c) ≥ 2, the event E2 implies that {a, c} /∈ Ê. By definition, there exists some vertex u ∈ S

such that |δ(u, a)− δ(u, c)| ≥ 2. Using an elementary inequality of |x− y|+ |y − z| ≥ |x− z|
for any three real numbers x, y, and z, we have

|δ(u, a)− δ(u, b)| ≥ |δ(u, a)− δ(u, c)| − |δ(u, b)− δ(u, c)|
≥ |δ(u, a)− δ(u, c)| − δ(b, c) (by the triangle inequality)
≥ 2− δ(b, c) (by the definition of u)
≥ 1 (since (b, c) is an edge in G).

Thus δ(u, a) ̸= δ(u, b).
Therefore, conditioned on the occurrences of both events E1 and E2, for any vertex pair

{a, b} ⊆ V , there exists a vertex u ∈ S such that δ(u, a) ̸= δ(u, b).
We conclude that, with probability 1− o(1), the set S is a resolving set for G. ◀

From Lemma 21, with probability 1− o(1), the metric dimension of a random ∆-regular
graph is at most log2 n. This completes the proof of Corollary 5.

6 Reconstruction of Bounded-Degree Graphs (Proof of Theorem 6)

In this section, we analyze Simple (Algorithm 1) on general graphs of bounded degree in the
distance query model. Recall that a set B of vertex pairs {a, b} ⊆ V is defined in Lemma 10.
For every vertex a ∈ V , we define the set of vertices B(a) ⊆ V as

B(a) =
{

b ∈ V | {a, b} ∈ B
}

.

Intuitively, B(a) consists of the vertices b ∈ V that has few distinguishers with a. We bound
the size of the set B(a) for any vertex a, in Lemma 22.

▶ Lemma 22. Let G be a general graph of bounded degree ∆. For any vertex a ∈ V ,
|B(a)| ≤ 9∆3 · n2 · (log2 n)/s2.

We defer the proof of Lemma 22 for the moment and first show how it implies Theorem 6.

Proof of Theorem 6 using Lemma 22. By Lemma 9, Simple is a reconstruction algorithm
using n · s + |Ê| distance queries, and in addition, Simple can be parallelized using 2 rounds.
It remains to further analyze the query complexity.

From Fact 8, |Ê| = |E| + |Ê \ E|. Since the graph has bounded degree ∆, |E| ≤ ∆n.
From Lemma 10, ES

[
|Ê \ E|

]
≤ |B| + o(1). Therefore, the expected number of distance

queries in Simple is at most n · s + ∆n + |B|+ o(1). It suffices to analyze |B|.
Observe that |B| ≤

∑
a∈V |B(a)| by definition of {B(a)}a∈V . From Lemma 22, |B(a)| ≤

9∆3 · n2 · (log2 n)/s2, for any vertex a ∈ V . Hence |B| ≤ (9∆3 · n2 · (log2 n)/s2) · n. Thus the
expected number of distance queries in Simple is at most n · s + ∆n + (9∆3 ·n2 · (log2 n)/s2) ·
n + o(1), which is Õ(n5/3) since s = n2/3 and ∆ = O(polylog n). ◀

The rest of the section is dedicated to prove Lemma 22.
Let a be any vertex in V . Let T be an (arbitrary) shortest-path tree rooted at a and

spanning all vertices in V . For any vertex b ∈ V , let the shortest a-to-b path denote the
path between a and b in the tree T . To simplify the presentation, we assume that, for any
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b ∈ B(a), δ(a, b) is even, so that the midpoint vertex of the shortest a-to-b path is uniquely
defined. We extend our analysis to the general setting in the end of the section.

For any vertex m ∈ V , define the set B(a, m) ⊆ B(a) as

B(a, m) =
{

b ∈ B(a) | the midpoint vertex of the shortest a-to-b path is m
}

.

Define the set M(a) ⊆ V as

M(a) =
{

m ∈ V | B(a, m) ̸= ∅
}

.

In other words, M(a) consists of the vertices m ∈ V that is the midpoint vertex of the
shortest a-to-b path for some b ∈ B(a). From the construction, we have

B(a) =
⋃

m∈M(a)

B(a, m). (2)

In order to bound the size of B(a), first we bound the size of B(a, m) for any midpoint
m ∈M(a), in Lemma 23, and then we bound the number of distinct midpoints, in Lemma 24.

▶ Lemma 23. For any m ∈M(a), |B(a, m)| ≤ 3∆ · n · (log n)/s.

Proof. For any b ∈ B(a, m), the vertex m is the midpoint vertex of the shortest a-to-b path
by definition. From the assumption, δ(a, b) is even for any b ∈ B(a, m), so there exists for
some positive integer ℓ, such that δ(m, a) = ℓ and δ(m, b) = ℓ for any b ∈ B(a, m).

For every neighbor m′ of m such that δ(a, m′) = δ(a, m)+1, define a set Y (m′) ⊆ B(a, m)
that consists of the vertices b ∈ B(a, m) such that m′ is on the shortest a-to-b path. Let
m̂ be a neighbor of m such that δ(a, m̂) = δ(a, m) + 1 and that |Y (m̂)| is maximized, see
Figure 2. Since the graph has bounded degree ∆, we have |B(a, m)| ≤ ∆ · |Y (m̂)|. It suffices
to bound |Y (m̂)|.

The main observation is that any vertex of Y (m̂) distinguishes a and any other vertex of
Y (m̂). To see this, let b0 be any vertex in Y (m̂). By definition, δ(a, m̂) = δ(a, m) + 1 = ℓ + 1.
Since m̂ is on the shortest a-to-b0 path, we have δ(m̂, b0) = δ(a, b0)− δ(a, m̂) = ℓ− 1, thus
δ(m̂, b0) = δ(m̂, a) − 2. For any vertex b1 ∈ Y (m̂), from the triangle inequalities on δ, we
have

δ(b1, b0) ≤ δ(b1, m̂) + δ(m̂, b0) = δ(b1, m̂) + δ(m̂, a)− 2 = δ(b1, a)− 2.

According to Definition 7, the vertex b1 distinguishes a and b0, and equivalently, b1 ∈ D(a, b0).
Thus we have Y (m̂) ⊆ D(a, b0), hence |Y (m̂)| ≤ |D(a, b0)| ≤ 3n · (log n)/s using the fact
that b0 ∈ Y (m̂) ⊆ B(a) and the definition of B in Lemma 10.

We conclude that |B(a, m)| ≤ ∆ · |Y (m̂)| ≤ 3∆ · n · (log n)/s. ◀

▶ Lemma 24. |M(a)| ≤ 3∆ · n · (log n)/s.

Proof. For each vertex m ∈M(a), denote xm as the second-to-last vertex on the shortest
a-to-m path. Denote X(a) ⊆ V as the set of vertices xm for all m ∈ M(a). See Figure 3.
Since G has bounded degree ∆, we have |M(a)| ≤ ∆ · |X(a)|. It suffices to bound |X(a)|.

Let b∗ be a vertex in B(a) such that δ(a, b∗) is maximized. From the assumption, δ(a, b∗)
is even, so we denote δ(a, b∗) = 2ℓ for some positive integer ℓ.

The main observation is that any vertex of X(a) distinguishes a and b∗. To see this, let x

be any vertex in X(a). Let m be any vertex in M(a) such that x is the second-to-last vertex
on the shortest a-to-m path.9 We have δ(a, m) ≤ ℓ and δ(a, x) = δ(a, m)− 1 ≤ ℓ− 1. By the

9 Such a vertex m exists according to the construction of X(a).
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Y (m̂)

B(a,m)

m

a

m̂

b1b0

Figure 2 The vertex m is the midpoint of the shortest path between a and any vertex in B(a, m).
The vertex m̂ is a well-chosen neighbor of m. Consider any vertex b0 ∈ Y (m̂). We can show that
any vertex b1 ∈ Y (m̂) distinguishes a and b0.

triangle inequality on the distances, δ(b∗, x) ≥ δ(a, b∗)− δ(a, x) ≥ 2ℓ− (ℓ− 1) = ℓ + 1. Thus
δ(b∗, x) − δ(a, x) ≥ 2. According to Definition 7, the vertex x distinguishes a and b∗, and
equivalently, x ∈ D(a, b∗). Thus X(a) ⊆ D(a, b∗), hence |X(a)| ≤ |D(a, b∗)| ≤ 3n · (log n)/s

using the fact that b∗ ∈ B(a) and the definition of B in Lemma 10.
We conclude that |M(a)| ≤ ∆ · |X(a)| ≤ 3∆ · n · (log n)/s. ◀

a

x

m

b∗

Figure 3 Solid circular nodes represent the vertices m ∈ M(a). Solid curves represent the shortest
a-to-m paths. Solid square nodes represent the vertices in X(a). Denote b∗ as a vertex in B(a) that
is farthest from a. We can show that any vertex x ∈ X(a) distinguishes a and b∗.

From Equation (2), |B(a)| ≤
∑

m∈M(a) |B(a, m)|. From Lemma 23, |B(a, m)| ≤ 3∆ ·
n · (log n)/s for every m ∈ M(a). From Lemma 24, |M(a)| ≤ 3∆ · n · (log n)/s. Therefore,
|B(a)| ≤ 9∆2 · n2 · (log2 n)/s2.

Finally, consider the general setting in which δ(a, b) is not necessarily even for any
b ∈ B(a). For a vertex m on the shortest a-to-b path, we say that m is the midpoint vertex
of that path if δ(a, m) = ⌊δ(a, b)/2⌋. The definitions of B(a, m) and M(a) remain the same.
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Lemma 24 holds in the same way. In Lemma 23, the upper bound of |B(a, m)| is replaced by
3∆2 · n · (log n)/s. Indeed, to extend the proof of Lemma 23, instead of considering vertex
m′ (resp., vertex m̂) that is a neighbor of m, we consider m′ (resp., m̂) that is at distance 2
from m. We have |B(a, m)| ≤ ∆2 · |Y (m̂)|. The bound |Y (m̂)| ≤ 3n · (log n)/s remains the
same, so we have |B(a, m)| ≤ 3∆2 · n · (log n)/s. Hence |B(a)| ≤ 9∆3 · n2 · (log2 n)/s2.

We complete the proof of Lemma 22. Therefore, we obtain Theorem 6.
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Generalized Max-Flows and Min-Cuts in Simplicial
Complexes
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Abstract
We consider high dimensional variants of the maximum flow and minimum cut problems in the
setting of simplicial complexes and provide both algorithmic and hardness results. By viewing flows
and cuts topologically in terms of the simplicial (co)boundary operator we can state these problems
as linear programs and show that they are dual to one another. Unlike graphs, complexes with
integral capacity constraints may have fractional max-flows. We show that computing a maximum
integral flow is NP-hard. Moreover, we give a combinatorial definition of a simplicial cut that
seems more natural in the context of optimization problems and show that computing such a cut
is NP-hard. However, we provide conditions on the simplicial complex for when the cut found by
the linear program is a combinatorial cut. For d-dimensional simplicial complexes embedded into
Rd+1 we provide algorithms operating on the dual graph: computing a maximum flow is dual to
computing a shortest path and computing a minimum cut is dual to computing a minimum cost
circulation. Finally, we investigate the Ford-Fulkerson algorithm on simplicial complexes, prove its
correctness, and provide a heuristic which guarantees it to halt.
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1 Introduction

Computing flows and cuts are fundamental algorithmic problems in graphs, which are
one dimensional simplicial complexes. In this paper, we explore generalizations of these
algorithmic problems in higher dimensional simplicial complexes. In the case of graphs if an
edge e = (u, v) is assigned k units of flow we think of the edge as sending k units of flow from
u to v. In two dimensions a flow is an assignment of real valued numbers to the triangles
of the simplicial complex. A triangle assigned a value k sends k units of flow around its
boundary. The difference in interpretation comes from the fact that the boundary of an edge
is disconnected while the boundary of a triangle is connected.

Flows and cuts in simplicial complexes have natural algebraic definitions arising from the
theory of simplicial (co)homology. A flow is an element of the kernel of the simplicial boundary
operator, and a cut is an element of the image of the simplicial coboundary operator. These
subspaces serve as generalizations of the cycle and cut spaces of a graph. This generalization
has been studied by Duval, Klivans, and Martin in the setting of CW complexes [7]. We
formulate the algorithmic problems of computing max-flows and min-cuts algebraically. By
forgetting about the underlying graph structure and focusing on the (co)boundary operators,
we obtain methods that naturally generalize to high dimensions.
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In a graph an st-flow is an assignment of real values to the edges satisfying the conservation
of flow constraints: the net flow out of any vertex other than s and t is zero, and, thus,
the net flow that leaves s is equal to the net flow that enters t. Therefore, each st-flow
can be viewed as a circulation in another graph with an extra edge that connects t to s.
Circulations are elements of the cycle space of the graph with coefficients taken over R. In a
d-dimensional simplicial complex K the d-dimensional cycles are the formal sums (over R)
of d-dimensional simplices whose boundary is zero. Because there are no (d + 1)-simplices
flows are the elements of the dth homology group Hd(K,R). The maximum flow problem
in a simplicial complex asks to find an optimal element of Hd(K,R) subject to capacity
constraints.

The max-flow min-cut theorem states that in a graph the value of a maximum st-flow is
equal to the value of a minimum st-cut. This result is a special case of linear programming
duality. By rewriting the linear program in terms of the (co)boundary operator we obtain a
similar result for simplicial complexes. The question of whether or not a similar max-flow
min-cut theorem holds for simplicial complexes was asked, and left open, in a paper by
Latorre [19]. We give a positive answer to this question, but with a caveat. When viewing
flows and cuts from a topological point of view their linear programs are dual to one another.
However, we also provide a combinatorial definition of a cut which feels more natural for a
minimization problem. Topological and combinatorial cuts are equivalent for graphs, but
they become different in dimensions d > 1. Flows in higher dimension, are dual to topological
cuts, but not combinatorial cuts in general. From a computational complexity viewpoint the
two notions of cuts are very different. We show that computing a minimum topological cut
can be solved via linear programming, but that computing a minimum combinatorial cut is
NP-hard.

A closely related problem is the problem of computing a max-flow in a graph which admits
an embedding into some topological space. The most well-studied cases are planar graphs and
the more general case when the graph embeds into a surface [2, 3, 4, 10, 12, 13, 14, 17, 18, 21,
22]. Max-flows and min-cuts are computationally easier to solve in surface embedded graphs,
especially planar graphs. We consider this problem generalized to simplicial complexes.
Planar graphs are 1-dimensional complexes embedded in R2, in Section 5 we consider the
special case when a d-dimensional simplicial complex admits an embedding into Rd+1. These
complexes naturally admit a dual graph which we use to compute maximum flows and
minimum cuts (both topological and combinatorial). We show that a maximum flow in a
simplicial complex can be found by solving a shortest paths problem in its dual graph. This
idea was used by Hassin to solve the maximum flow problem in planar graphs [13]. Further,
we show that finding a minimum topological cut can be done by finding a minimum cost
circulation in its dual graph. By setting the demand and capacity constraints equal to one
in the minimum cost circulation problem we obtain an algorithm computing a minimum
combinatorial cut.

Maximum flows in graphs can be computed using the Ford-Fulkerson algorithm. Moreover,
the fact that the Ford-Fulkerson algorithm halts serves as a proof that there exists a maximum
integral flow when the graph has integral capacity constraints. In dimensions d > 1 the
maximum flow may be fractional, even with integral capacity constraints. The problem arises
due to the existence of torsion in simplicial complexes of dimension d > 1. We show that
despite the maximum flow being fractional the Ford-Fulkerson algorithm halts on simplicial
complexes. However, in order for it to halt a special heuristic on picking the high dimensional
analog of an augmenting path must be implemented. Despite the algorithm halting it could
we could not prove a polynomial upper bound on the number of iterations it takes.
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2 Preliminaries

Given a simplicial complex K we define Cd(K, G), Zd(K, G), Bd(K, G), and Hd(K, G) to be
the d-dimensional chain, cycle, boundary, and homology spaces with coefficients over G. In
this paper we will consider coefficients over R and Z, however when working over R we will
typically drop the G in the notation; for example Cd(K) will refer to the dth chain group
over the reals. We will use ∂d and δd to denote the d-dimensional boundary and coboundary
operators and we will use Kd to denote the d-skeleton of K. We view chains and cochains as
both vectors and as functions which are equivalent viewpoints up to duality. For any chain σ

by supp(σ) we denote its support which is the set of simplices given given a non-zero value
on the chain. We call a (d − 1)-chain null-homologous if it is the boundary of some d-chain.

The fundamental theorem of finitely generated abelian groups gives us the decomposition
Hd(K,Z) ∼= Zk ⊕ Zt1 ⊕ · · · ⊕ Ztn

for some k ∈ N. We call the subgroup Zt1 ⊕ · · · ⊕ Ztn

the torsion subgroup of Hd(K,Z) and when this subgroup is trivial we call the complex
torsion-free. We say K is relatively torsion-free in dimension d if the relative homology
groups Hd(L, L0,Z) is torsion-free for all subcomplexes L and L0 of dimensions d and d − 1,
respectively. There exist complexes that are torsion-free but are not relatively torsion-free;
see [5] for examples.

Let A be a matrix; we say that A is totally unimodular if every square submatrix A′ of A

has det(A′) ∈ {−1, 0, 1}. Totally unimodular matrices are important in combinatorial optim-
ization because linear programs with totally unimodular constraint matrices are guaranteed
to have integral solutions [11]. Dey, Hirani, and Krishnamoorthy have provided topological
conditions on when a simplicial complex has a totally unimodular boundary matrix [5] stated
below. The dth boundary matrix ∂d of a simplicial complex is totally unimodular if and only
if the complex is relative torsion-free in dimension d − 1.

▶ Theorem 1 (Dey et al. [5], Theorem 5.2). Let K be a d-dimensional simplicial complex. The
boundary matrix ∂d : Cd(K) → Cd−1(K) is totally unimodular if and only if Hd−1(L, L0,Z)
is torsion-free for all pure subcomplexes L0, L of K of dimensions d − 1 and d where L0 ⊂ L.

Throughout this paper we utilize discrete Hodge theory and recommend the survey by
Lim [20] as an introduction to the topic. In particular, we use the Hodge decomposition
which can be stated as a result on real valued matrices satisfying AB = 0.

▶ Theorem 2 (Hodge decomposition [20]). Let A ∈ Rm×n and B ∈ Rn×p be matrices
satisfying AB = 0. We can decompose Rn into the orthogonal direct sum Rn = im(AT ) ⊕
ker(AT A + BBT ) ⊕ im(B).

Setting A = ∂d and B = ∂d+1 yields the Hodge decomposition for simplicial complexes.
The middle term of the direct sum becomes ker(δd+1∂d+1 + ∂dδd). The linear operator
δd+1∂d+1 + ∂dδd is known as the combinatorial Laplacian of K which is a generalization of
the graph Laplacian. Moreover, it can be shown that ker(δd+1∂d+1 + ∂dδd) ∼= Hd(K,R). We
now state the Hodge decomposition on simplicial complexes as the following isomorphism
Cd(K,R) ∼= im(δd) ⊕ Hd(K,R) ⊕ im(∂d+1).

3 Flows and cuts

In this section we give an overview of our generalizations of flows and cuts from graphs
to simplicial complexes. Flows and cuts in higher dimensional settings have been studied
previously. Duval, Klivans, and Martin have generalized cuts and flows to the setting of
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CW complexes [7]. Their definitions are algebraic; defining cuts to be elements of im(δ) and
flows to be elements of ker(∂). Our definitions are closely related, but are motivated by the
algorithmic problems of computing max-flows and min-cuts. In Section 3.1 we give definitions
of flows and cuts from from the perspective of algebraic topology, and in Section 3.2 we give
a combinatorial definition of a cut in a simplicial complex. The distinction between the two
types of cuts will be important when formulating the minimum cut problem on simplicial
complexes.

3.1 Topological flows and cuts
First we briefly recall the definition of an st-flow in a directed graph G = (V, E). An st-flow
f is a function f : E → R satisfying the conservation of flow constraint: for all v ∈ V \ {s, t}
we have

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u). That is, the amount of flow entering the vertex

equals the amount of flow leaving the vertex. The value of f is equal to the amount of flow
leaving s (or equivalently, entering t). Alternatively, we may view f as a 1-chain and we have
∂f = k(t − s) where k is the value of f . Note that t − s is a null-homologous 0-cycle. More
generally, for any null-homologous (d − 1)-cycle γ we call a d-chain f with ∂f = kγ a γ-flow
of value k. Note that under our naming convention an “st-flow” in a graph would be called a
(t − s)-flow. However, in the case of graphs we use the traditional naming convention and
call a flow from s to t an st-flow.

▶ Definition 3 (γ-flow). Let K be a d-dimensional simplicial complex and γ be a null-
homologous (d − 1)-cycle in K. A γ-flow is a d-chain f with ∂f = kγ where k ∈ R. We call
k the value of the flow f and denote the value of f by ∥f∥. We say that f is feasible with
respect to a capacity function c : Kd → R+ if 0 ≤ f(σ) ≤ c(σ) for all σ ∈ Kd.

Our definition of a γ-flow is very close to the algebraic definition which is element of
ker(∂). Given a simplicial complex K and a γ-flow f of value k we convert f into a circulation,
where a circulation is defined to be an element of ker(∂). To convert f into a circulation
we add an additional basis element to Cd(K), call it Σ, whose boundary is ∂Σ = −γ. This
operation is purely algebraic; we should think of it as operating on the chain complex rather
than the underlying topological space. Now we construct the circulation f ′ = f + kΣ. We
call any circulation built from a γ-flow a γ-circulation. Clearly, f ′ ∈ ker(∂) in the new chain
complex. Moreover, there is a clear bijection between γ-flows and γ-circulations. The value
of the circulation is the value of f ′(Σ), so this bijection preserves the value.

We now shift our focus to the generalization of cuts to a simplicial complex. The algebraic
definition, elements of im(δ), is natural. The cut space of a graph is commonly defined to be
the space spanned by the coboundaries of each vertex. In a simplicial complex K, removing
the support of a d-chain in im(δ) increases dim Hd−1(K). In a graph G, removing the support
of any 1-chain in im(δ) increases dim H0(G) which is equivalent to increasing the number of
connected components of G.

The above definition implies that a cut is a d-chain in a d-dimensional simplicial complex.
However, for our purposes we will define a cut to be a (d − 1)-cochain. To motivate our
definition we recall the notion of an st-cut in a graph. An st-cut in a graph is a partition of
the vertices into sets S and T such that s ∈ S and t ∈ T . Define p : V (G) → {0, 1} such that
p(v) = 1 if v ∈ S and p(v) = 0 if v ∈ T . The support of the coboundary of p is a set of edges
whose removal destroys all st-paths. That is, upon removing the support, the 0-cycle t − s

is no longer null-homologous. Moreover, p is a 0-cochain with p(t − s) = −1. The sign of
p(t − s) will be important when we consider directed cuts. With this in mind we define our
notion of a γ-cut.
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▶ Definition 4 (γ-cut). Let K be a d-dimensional simplicial complex with weight function
c : Kd → R+ and γ be a null-homologous (d − 1)-cycle in K. A γ-cut is a (d − 1)-cochain
p such that p(γ) = −1. Denote the coboundary of p as the formal sum δ(p) =

∑
αiσi, we

define the size of a γ-cut to be ∥p∥ =
∑

|αic(σi)|.

Because of the requirement that p(γ) = −1 we call p a unit γ-cut. By relaxing this
requirement to p(γ) < 0 the cochain p still behaves as a γ-cut, but its size can become
arbitrarily small by multiplying by some small value ϵ > 0. We justify our definition with
the following proposition which shows that removing the support of the coboundary of a
γ-cut prevents γ from being null-homologous.

▶ Proposition 5. Let K be d-dimensional simplicial complex and p be a γ-cut. The cycle γ

is not null-homologous in the subcomplex K \ supp(δ(p)).

3.2 Combinatorial cuts
Alternatively, we can view a γ-cut as a discrete set of d-simplices rather than a d-chain. In the
case of graphs a combinatorial st-cut is just a set of edges whose removal disconnects s from t.
This distinction will become important when we consider the minimization problem of finding
a minimum cost set of d-simplices whose removal prevents γ from being null-homologous.

▶ Definition 6 (Combinatorial γ-cut). Let K be a d-dimensional simplicial complex with weight
function c : Kd → R+ and γ be a null-homologous (d − 1)-cycle in K. A combinatorial
γ-cut is a set of d-simplices C ⊆ Kd such that γ is not null-homologous in K \ supp(C).
The size of a combinatorial γ-cut is defined by the sum of the weights of the d-simplices
∥C∥ =

∑
σ∈C c(σ).

The next proposition shows a relationship between γ-cuts and combinatorial γ-cuts.
Removing a combinatorial γ-cut C from K increases dim Hd−1(K). This is because removing
C must decrease the rank of ∂d and by duality this also decreases the rank of δd which
increases the dimension of Hd−1(K) ∼= Hd−1(K). It follows that C must contain the support
of some coboundary. Given an additional minimality condition on C we show that C is equal
to the support of some coboundary.

▶ Proposition 7. Let C be a combinatorial γ-cut in a d-dimensional simplicial complex K.
Further, assume that C is minimal in the sense that for all C ′ ⊂ C we have dim Hd−1(K \
C ′) < dim Hd−1(K \ C). There exists a (d − 1)-cochain p such that supp(δ(p)) = C.

In graphs the linear program solving the minimum st-cut problem takes as input a directed
graph and returns a set of directed edges whose removal destroys all directed st-paths. This
is called a directed cut. After removing the directed cut the 0-cycle t − s may still be
null-homologous; we can find a 1-chain with boundary t − s using negative coefficients to
traverse an edge in the backwards direction. In order to generalize the minimum cut linear
program to simplicial complexes we will need to define a directed combinatorial γ-cut, which
requires the additional assumption that the d-simplices of K are oriented.

▶ Definition 8 (Directed combinatorial γ-cut). Let K be an oriented d-dimensional simplicial
complex with weight function c : Kd → R and γ be a null-homologous (d − 1)-cycle in K. A
directed combinatorial γ-cut is a set of d-simplices C ⊂ Kd such that in K \ supp(C) there
exists no d-chain Γ with non-negative coefficients such that ∂Γ = γ. The size of a directed
combinatorial γ-cut is defined by the sum of the weights of the d-simplices ∥C∥ =

∑
σ∈C c(σ).
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Given a directed graph consider an st-cut given by the cochain definition. That is, a
0-cochain p : V (G) → {0, 1} with p(s) = 1 and p(t) = 0 partitioning V into S and T . The
support of δ(p) consists of two types of edges: edges leaving S and entering T , and edges
leaving T and entering S. If e ∈ E leaves S and enters T we have (p ◦ ∂)(e) = −1 and if e

leaves T and enters S we have (p ◦ ∂)(e) = 1. To construct a directed st-cut we simply take
all of the edges mapped to −1. The following proposition shows that we can build a directed
combinatorial γ-cut from a coboundary just like in the case of directed graphs.

▶ Proposition 9. Let p be a γ-cut with coboundary δ(p) =
∑

αiσi. The set of d-simplices
C = {σi | αi < 0} is a directed combinatorial γ-cut.

To conclude the section we will show that computing a minimum combinatorial γ-cut
is NP-hard. As we will see in Section 4 minimum topological γ-cuts can be computed with
linear programming. Our hardness result holds for both the directed and undirected cases.
Our hardness result is a reduction from the well-known NP-hard hitting set problem which
we will now define. Given a set S and a collection of subsets Σ = (S1, . . . , Sn) where Si ⊆ S

the hitting set problem asks to find the smallest subset S′ ⊆ S such that S′ ∩ Si ≠ ∅ for all
Si. We call such a subset S′ a hitting set for (S, Σ).

▶ Theorem 10. Let K be a d-dimensional simplicial complex and γ be a null-homologous
(d − 1)-cycle. Computing a minimum combinatorial γ-cut is NP-hard for d ≥ 2.

Proof. Our proof is a reduction from the hitting set problem. First we consider the case
when d = 2 then we generalize to any d ≥ 2. Let S be a set and Σ = (S1, . . . , Sn) where each
Si ⊆ S. We construct a 2-dimensional simplicial complex K from S and Σ in the following
way. For each Si ∈ Σ construct a triangulated disk Di such that ∂Di = γ. That is, each
Di shares the common boundary γ. To accomplish this we construct each Di by beginning
with a single triangle t with ∂t = γ and repeatedly adding a new vertex in the center of
some triangle with edges connecting it to every vertex in that triangle. By this process we
can construct a disk containing any odd number of triangles as each step increments the
number of triangles in the disk by two. Moreover, at each step the boundary of the disk
is always γ. We construct each disk Di such that Di consists of one triangle ti,s for each
element s ∈ Si and potentially one extra triangle t′

i in the case that |Si| is even. Next, for
each s ∈ S and Si with s ∈ Si, we construct the quotient space by identifying each ti,s into a
single triangle. A minimum combinatorial γ-cut C must contain at least one triangle from
each Di and without loss of generality we can assume C does not contain any t′

i. If t′
i ∈ C

then by minimality it is the only triangle in C ∩ supp(Di) and we can swap it with any other
triangle in Di without increasing the size of the cut. By construction C is a hitting set for
(S, Σ) since each C ∩ supp(Di) ̸= ∅ for all Di. The proof generalizes to d > 2 by generalizing
the subdivision processes. ◀

4 Linear programming

4.1 Max-flow min-cut
A simplicial flow network is a tuple (K, c, γ) where K is an oriented d-dimensional simplicial
complex, c is the capacity function which is a non-negative function c : Kd → R+, and γ is a
null-homologous (d − 1)-cycle. In a simplicial flow network we work with real coefficients;
that is, we consider the chain groups Ck(K,R). In order to utilize the Hodge decomposition
(Theorem 2) in a convenient way we modify Cd(K) by adding an additional basis element Σ
such that ∂Σ = −γ. Moreover, we extend the capacity function such that c(Σ) = ∞. This
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allows us to work with circulations instead of flows while leaving the solution unchanged.
The notation nd will refer to the number of basis elements in Cd(K,R) which is now one
more than the number of d-simplices in the underlying simplicial complex.

The goal of the maximum flow problem is to find a d-chain f obeying the capacity
constraints such that ∂f = kγ where k ∈ R is maximized. Equivalently, we find a d-cycle f

which maximizes f(Σ). The linear program for the max-flow problem in a simplicial flow
network is identical to the familiar linear program for graphs, but expressed in terms of
the coboundary operator. In a graph, conservation of flow at a vertex v is the constraint
δ1(v) · f = 0; to formulate the linear program in higher dimensions we simply replace
vertices with (d − 1)-simplices. The Hodge decomposition states that cycles are orthogonal
to coboundaries, so conservation of flow ensures that f is indeed a cycle. We now state the
linear program for max-flow in a simplicial flow network.

maximize f(Σ)
subject to δ(τ) · f = 0 for each τ ∈ Kd−1

0 ≤ f(σ) ≤ c(σ) for each σ ∈ Kd

(LP1)

We dualize LP1 to obtain a generalization of the minimum cut problem in directed graphs.
To make the dualization more explicit we will write out LP1 in matrix form: maximize s · f

subject to Af ≤ b and f ≥ 0, where we have A =

 ∂

−∂

Ind

 , b =

0nd−1

0nd−1

c

 , s =
[
0nd−1

1

]
. The

matrix A has dimension (2nd−1 + nd) × nd. In our notation Ik is the k × k identity matrix
and 0k is the k × 1 column vector consisting of all zeros. Since the value of the flow is equal
to f(Σ) the vector s is all zeros except for the final entry which is indexed by Σ and receives
an entry equal to one. Further, c is the nd × 1 capacity vector indexed by the d-simplices
such that the entry indexed by σ has value equal to c(σ).

We can now state the dual program in matrix form: minimize y ·b subject to yT A ≥ s and
y ≥ 0. The vector y is a (2nd−1 +nd)×1 column vector indexed by both the (d−1)-simplices
and the d-simplices. However, only the entries indexed by d-simplices contribute to the
objective function since b is zero everywhere outside of the capacity constraints. We will
denote the truncated vector consisting of entries indexed by d-simplices by yd and the entry
corresponding to the d-simplex σ ∈ Kd will be denoted by yd(σ). Similarly we have two
truncated vectors y1

d−1 and y2
d−1 corresponding to the entries indexed by the (d−1)-simplices.

Moreover, the rows of yT A ≥ s are in the form (y1
d−1 − y2

d−1)T ∂ + yd ≥ s. For simplicity we
define yd−1 = y1

d−1 − y2
d−1 and write yd−1(τ) for the entry indexed by the (d − 1)-simplex τ .

Putting this together, we state the dual linear program as follows.

minimize
∑

σ∈Kd

yd(σ)c(σ)

subject to yd−1 · ∂σ + yd(σ) ≥ 0 for each σ ∈ Kd

yd−1 · ∂Σ + yd(Σ) = 1, yd ≥ 0

(LP2)

Note the strict equality in the second constraint does not follow from the duality. However,
we can assume a strict equality since if yd−1 · ∂Σ + yd(Σ) > 1 we can multiply [yd−1, yd]T by
some scalar ϵ < 1 to make the inequality tight. This multiplication only decreases the value
of

∑
yd(σ)c(σ) so it does not change the optimal solution.
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In the case of graphs LP2 has dual variables for vertices and edges. Moreover, there
exists an integral solution such that each vertex is either assigned a 0 or a 1 since a graph
cut is a partition of the vertices. The second inequality requires y0(s) = 1 and y0(t) = 0. To
see this, when solving an st-cut on a graph, the basis element Σ is an edge with ∂Σ = s − t,
and y1(Σ) = 0 otherwise the solution is infinite. This naturally defines a partition of the
vertices: S containing vertices assigned a 1, and T containing vertices assigned a 0. The
constraints force an edge to be assigned a 1 if it leaves S and enters T , otherwise it is assigned
a 0. This solution can be interpreted as a 0-cochain p with p(st) = 1, or in the notation of
our definition of a simplicial cut: p(t − s) = −1. Further, y1(e) = 1 for every edge e that
is negative on δ(p) and a 0 otherwise, hence y1 fits our definition of a directed st-cut in a
1-complex. We will show the same result holds in higher dimensions; that is, yd is a directed
γ-cut arising from the (d − 1)-cochain yd−1.

▶ Lemma 11. Let y = [yd−1, yd]T be an optimal solution to LP2. The set supp(yd) is a
directed combinatorial γ-cut.

▶ Lemma 12. Let p be a γ-cut with coboundary δ(p) =
∑

αiσi and let δ(p)− =
∑

αi<0 αiσi.
The vector [p, −δ(p)−]T is a finite feasible solution to LP2.

Lemma 11 tells us that a solution to LP2 yields a directed combinatorial γ-cut. Recall, by
Proposition 9 every γ-cut p yields a directed combinatorial γ-cut by taking the coboundary
δ(p) =

∑
αiσi and considering the negative components δ(p)− = {σi | αi < 0}. By Lemma 12

δ(p)− is a feasible solution to LP2; the cost of this solution is c · δ(p)−. The coefficients
αi need not always equal one; hence in general we have ∥C∥ ≠ c · δ(p)−. It follows that
LP2 need not return a minimum directed combinatorial γ-cut. In Theorem 15 we will give
conditions describing when LP2 returns a directed combinatorial γ-cut. To conclude the
section we state our main theorem about LP2 whose proof is immediate from Lemmas 11
and 12.

▶ Theorem 13. Let y = [yd−1, yd]T be an optimal solution to LP2. The set supp(yd) is
a directed combinatorial γ-cut such that yd = δ(yd−1)−. Moreover, yd minimizes c · δ(p)−

where p ranges over all γ-cuts.

4.2 Integral solutions
In this section we provide an example of a simplicial flow network with integral capacity
constraints and fractional maximum flow. By Theorem 1 such a network must contain some
relative torsion. This is achieved by the inclusion of a Möbius strip in our simplicial flow
network. Our example will be used later in Theorem 14 showing that computing a maximum
integral flow in a simplicial flow network is NP-hard.

We will now explicitly describe a simplicial flow network with integral capacities whose
maximum flow value is fractional. Let M be a triangulated Möbius strip with boundary
∂M = 2α + γ such that two vertices in α have been identified making α a simple cycle.
This identification makes γ a figure-eight. Now let D be a triangulated disk oriented such
that ∂D = −α. Call the resulting complex MD. See Figure 1 for an illustration. The
capacity function c has c(t) = 1 for each triangle t ∈ MD. Now we solve the max-flow
problem on (MD, c, γ). Note that for any flow f we have f(t1) = f(t2) for all triangles
t1, t2 ∈ M; moreover, for all t1, t2 ∈ D we also have f(t1) = f(t2). The value of any flow f

on (MD, c, γ) is equal to its value on M, and in order to maintain conservation of flow we
must have f(D) = 2f(M). Now, the capacity constraints imply that the maximum flow f

has f(M) = 1/2 and f(D) = 1 . We have ∂f = 1
2 ∂M + ∂D = 1

2 γ + α − α. Hence, ∥f∥ = 1/2.
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Figure 1 A triangulated disk D (left) and Möbius strip M (right). The Möbius strip has two
points on its boundary identified forming the vertex u. In red we have the input cycle (a figure-eight)
γ and we set α = uwvu. We orient the complex such that ∂M = γ + 2α and ∂D = −α. The
capacity on each simplex in both the disk and Möbius strip is one.

Maximum integral flow. Given a simplicial flow network (K, c, γ) with integral capacities we
consider the problem of finding the maximum integral flow. That is, a d-chain f ∈ Cd(K,Z)
obeying the capacity constraints such that ∂f = kγ where k ∈ Z is maximized. We show the
problem is NP-hard by a reduction from graph 3-coloring. Our reduction is inspired by a
MathOverflow post from Sergei Ivanov showing that finding a subcomplex homeomorphic to
the 2-sphere is NP-hard [15]. Given a graph G we construct a 2-dimensional simplicial flow
network whose maximum flow is integral if and only if G is 3-colorable.

▶ Theorem 14. Let (K, c, γ) be a simplicial flow network where K is a 2-complex and c is
integral. Computing a maximum integral flow of (K, c, γ) is NP-hard.

Proof. Let G = (V, E) be a graph. We will construct a simplicial flow network (K, c, γ) such
that its maximum flow is integral if and only if G is 3-colorable.

We start our construction with a punctured sphere S containing |V | + 1 boundary
components called γ and βv for each v ∈ V . For each boundary component βv we construct
three disks Rv, Bv, Gv each with boundary −βv. These disks represent the three colors in
our coloring: red, blue, and green. We refer to these disks as color disks and use Cv to
denote an arbitrary color disk associated with v and use k ∈ {r, b, g} to denote an arbitrary
color. On each color disk Cv we add a boundary component for each edge e = (u, v) incident
to v. By βv,e,k we denote the boundary component corresponding to the vertex v, edge e,
and color k. For each edge e = (u, v) and each pair of boundary components βu,e,ku

and
βv,e,kv

with ku ̸= kv we construct a tube with boundary components −βu,e,ku
and −βv,e,kv

denoted Te,ku,kv
. When ku = kv = k we construct a tube Te,k,k and puncture it with a third

boundary component α and construct a negatively oriented real projective plane RPe,k with
boundary ∂RPe,k = −2α. We call the resulting complex K and assign a capacity c(σ) = 1
for every triangle σ in K.

We will show that a maximum integral flow f of K has ∥f∥ = 1 if and only if G is
3-colorable. The following four properties of a maximum integral flow f imply that G is
3-colorable.

f must assign exactly one unit of flow to each triangle in S since the value of f is equal
to f(S).
For each vertex v ∈ V exactly one color disk Cv is assigned one unit of flow while the
other two color disks associated with v are assigned zero units of flow. Otherwise, either
conservation of flow is violated or some color disk is assigned a fractional flow value.
For each edge e = (u, v) ∈ E exactly one tube Te,ku,kv

with ku ̸= kv must be assigned
one unit of flow with all other tubes associated with e assigned zero units of flow. The
tube Te,ku,kv

assigned one unit of flow is the tube connecting the color disks Cv and Cu

that are assigned one unit of flow by the previous property.
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f assigns zero flow to every Te,k,k and RPe,k since otherwise the triangles in RPe,k would
need to have 1/2 units of flow assigned to them to maintain conservation of flow.

These four properties imply that the set of color disks {Cv | f(σ) = 1, ∀σ ∈ Cv} corresponds
to a 3-coloring of G. Conversely, given a 3-coloring of G we assign a flow value of one to each
color disk corresponding to the 3-coloring. We extend this assignment to a γ-flow of value
one by assigning a flow value of one to S and the tubes corresponding to the 3-coloring. ◀

Integral cuts. The goal of this section is to show that for simplicial complexes that are
relative torsion-free in dimension d − 1 there exists optimal solutions to LP2 whose support
is a minimum combinatorial γ-cut. Note that by Theorem 1 a simplicial complex that is
relative torsion-free in dimension d − 1 has a totally unimodular d-dimensional boundary
matrix. The total unimodularity is key to our proof. However, we first provide an example of
a complex (with relative torsion) whose optimal solution’s support does not form a minimum
combinatorial γ-cut. Our construction is a slight modification of MD defined in Section 4.2.

Consider the simplicial complex constructed by taking MD and glueing a wedge sum
of two disks W along the figure-eight γ. That is, ∂W = γ. We give every triangle in the
resulting complex a capacity equal to one. A maximum γ-flow has value 3/2, so the dual
program finds a γ-cut of the same value. One potential optimal solution is a (d − 1)-cochain
whose coboundary assigns a value of −1/2 to two triangles in W and a value of −1/2 to one
triangle in D. The support of this coboundary has weight equal to three, however a minimal
combinatorial γ-cut has weight two by taking only one triangle from W and one from D. See
Figure 2 for an illustration.

Figure 2 The simplicial complex MD with a wedge sum of two disks W identified to the figure-
eight γ. In red we have a 1-cochain which assigns a value of −1/2 to each red edge. The coboundary
of the red cochain assigns a value of −1/2 to one triangle in D and a value of −1/2 to two triangles
in W. The value of the red cochain coincides with the value of the maximum γ-flow. However, its
support is not a minimum combinatorial γ-cut. A minimum combinatorial γ-cut picks one triangle
from D and one triangle from W.

Now, we show that when K is relative torsion-free in dimension d − 1 LP2 has an optimal
solution whose support is a minimum directed combinatorial γ-cut. Specifically, we show
that a solution existing on a vertex of the polytope defined by the constraints of LP2 is a
cochain yd−1 with negative coboundary yd such that yd(σ) ∈ {0, 1} for all σ ∈ Kd hence∑

yd(σ)c(σ) = ∥supp(yd)∥. That is, the value of a vertex solution to LP2 is equal to the cost
of supp(yd) as a directed combinatorial γ-cut.
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▶ Theorem 15. Let K be d-dimensional simplicial complex that is relative torsion-free in
dimension d − 1 and [yd−1, yd]T be an optimal vertex solution to the dual program. The set
supp(yd) is a minimum directed combinatorial γ-cut.

Proof. We can write the constraint matrix of LP2 as the 2nd × (nd + nd−1) block matrix

A =
[

δ Ind

0nd
Ind

]
.

Since K is relative torsion-free in dimension d − 1 Theorem 1 tells us that ∂d is totally
unimodular; further, we have that ∂T = δ is also totally unimodular. Total unimodularity is
preserved under the operation of adding a row or column consisting of exactly one component
equal to 1 and the remaining components equal to 0, so A is totally unimodular [23, Section
19.4]. We write LP2 as the linear system Ax ≥ b where b is a nd + nd−1 dimensional vector
with exactly one component equal to 1 and the remaining components equal to 0. Let
y = [yd−1, yd]T be an optimal vertex solution to LP2. For every (d − 1)-simplex τ ∈ Kd−1

we either have yd−1(τ) ≥ 0 or yd−1(τ) ≤ 0. Let I ′
nd−1

be the matrix whose rows correspond
to these inequalities. Note that I ′

nd−1
is a diagonal matrix with entries in {−1, 1}. Now we

consider the (2nd + nd−1) × (nd + nd−1) dimensional linear system A′x ≥ b′ where

A′ =

 δ Ind

0 Ind

I ′
nd−1

0


and b′ is constructed by appending extra zeros to b. We construct y′ from y similarly. Note
that A′ is totally unimodular and y′ is a vertex solution of the system. There exists a vertex v

of the polyhedron P ⊆ Rnd+nd−1 corresponding to the linear system such that A′y′ = v ≥ b′

such that nd−1 + nd constraints are linearly independent and tight. Hence, there is an
(nd−1 + nd) × (nd−1 + nd) square submatrix A′′ with A′′y′ = b′′ where b′′ is b′ restricted
to the tight constraints. We will use Cramer’s rule to show that the vertex solution y has
components coming from the set {−1, 0, 1}. Let A′′

i,b′′ be the matrix obtained by replacing
the ith column of A′′ with b′′. By Cramer’s rule we compute the ith component of y as
yi =

det(A′′
i,b′′ )

det(A′′) . Since both A′′
i,b′′ and A′′ are totally unimodular we have vi ∈ {−1, 0, 1}.

Further, we know that A′′ is non-singular because it corresponds to linearly independent
constraints.

By the above argument we know that an optimal solution y to LP2 has all of its components
contained in the set {−1, 0, 1}. The constraint yd ≥ 0 means that for all d-simplices σ we
have yd(σ) ∈ {0, 1} and

∑
σ∈Kd yd(σ)c(σ) = ∥supp(yd)∥. Hence, supp(yd) is a minimum

directed combinatorial γ-cut. ◀

5 Embedded simplicial complexes

In this section we consider a simplicial flow network (K, c, γ) where K is a d-dimensional
simplicial complex with an embedding into Rd+1. Alexander duality implies that Rd+1 \ K
consists of βd + 1 connected components where βd = dim Hd(K) is the dth Betti number.
We call these connected components voids; exactly one void is unbounded and we denote
the voids by Vi for 1 ≤ i ≤ βd+1. Given an embedding into Rd+1, computing the voids of K
can be done in polynomial time [6]. Further, we assume that the d-simplices are consistently
oriented with respect to the voids. The embedding guarantees that every d-simplex σ appears
on the boundary of at most two voids; by our assumption if σ appears on the boundary of
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two voids then it most be oriented positively on one and negatively on the other. We denote
the boundary of the void Vi by Bd(Vi). Every d-simplex contained in the support of some
d-cycle is on the boundaries of exactly two voids; it follows that the boundaries of any set of
βd voids is a basis of Hd(K).

In order to state our theorems we need one additional assumption on K. We assume
there exists some void Vi containing two unit γ-flows Γ1, Γ2 whose supports partition Bd(Vi):
supp(Γ1) ∩ supp(Γ2) = ∅ and supp(Γ1) ∪ supp(Γ2) = Bd(Vi). This assumption makes our
problem analogous to an st-flow network in a planar graph such that s and t appear on the
same face. The existence of two unit γ-flows partitioning the boundary is analogous to the
two disjoint st-paths on the boundary of the face. It will be convenient to take the negation
of Γ1 and treat it as a unit (−γ)-flow; otherwise the assumption conflicts with the assumed
consistent orientation. This is equivalent as it does not change the support of the flow, so for
the rest of the section we will take Γ1 to be a unit (−γ)-flow.

From K we construct its directed dual graph K∗ as follows. Each void becomes a vertex
of K∗. Each d-simplex on the boundary of two voids becomes an edge; since we assumed the
d-simplices are consistently oriented we direct the dual edge from the negatively oriented
void to the positively oriented void. The remaining d-simplices only appear on one void
and become loops in K∗. For a d-simplex σ on the boundary of voids u and v we denote
its corresponding dual edge σ∗ = (u∗, v∗) and we weight the edges by the capacity function:
c∗(σ∗) = c(σ). Let v∗

i be the vertex dual to the void whose boundary is partitioned by
supp(Γ1) and supp(Γ2). We split v∗

i into two new vertices denoted s∗ and t∗. The edges
incident to v∗

i whose dual d-simplices were contained in supp(Γ1) become incident to s∗, and
the edges whose dual d-simplices were contained in supp(Γ2) become incident to t∗. We add
the directed edge (t∗, s∗) and set its capacity to infinity; c∗((t∗, s∗)) = ∞. Returning to the
analogy of a planar graph with s and t on the same face, splitting v∗

i is analogous to adding
an additional edge from t to s which splits their common face into two. However, for our
purposes we are only concerned with the algebraic properties of the construction and do not
actually need to modify the simplicial complex.

We need to update the chain complex associated with K to account for the voids and
the splitting of v∗

i . We add an additional basis element Σ to Cd(K) such that ∂Σ = γ and
give it infinite capacity; c(Σ) = ∞. In our construction Σ is dual to the edge (t∗, s∗). In our
planar graph analogy Σ plays the role of an edge from t to s drawn entirely in the outer
face; to make this precise we will need to add an additional chain group Cd+1(K). We add
each void Vj with j ̸= i as a basis element of Cd+1(K) and define the boundary operator as
∂d+1Vj =

∑
σ∈Bd(v)(−1)kσ σ where kσ = 0 if σ is oriented positively on Vj and kσ = 1 if σ is

oriented negatively on Vj . Next we add additional basis elements S and T whose boundaries
are defined by ∂d+1S = Γ1 + Σ and ∂d+1T = Γ2 − Σ. The inclusion of Cd+1(K) results in
a valid chain complex since by definition the image of ∂d+1 under each basis element is a
d-cycle. Moreover, in the new complex we have Hd(K) ∼= 0 since the boundaries of the voids
generate Hd(K).

Given our new chain complex we can extend the dual graph K∗ to a dual complex;
this construction is reminiscent of the dual of a polyhedron. We define the dual complex
by the isomorphism of chain groups Ck(K∗) ∼= Cd−k+1(K). The dual boundary operator
∂∗

k : Ck(K∗) → Ck−1(K∗) is the coboundary operator δd−k+2, and the dual coboundary
operator δ∗

k : Ck−1(K∗) → Ck(K∗) is the boundary operator ∂d−k+2. The primal boundary
operator commutes with the dual coboundary operator, and the primal coboundary operator
commutes with the dual boundary operator. We summarize the construction with the
following commutative diagram.
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Cd+1(K) Cd(K) . . . C0(K)

C0(K∗) C1(K∗) . . . Cd+1(K∗)

∼=

∂d+1

∼=

∂d

δd+1

∂1

δd δ1

∼=
δ∗

1

∂∗
1

δ∗
2

∂∗
2

δ∗
d+1

∂∗
d+1

We now have enough structure to state our duality theorems. We show that computing a
max-flow for (K, c, γ) is equivalent to computing a shortest path from s∗ to t∗ in K∗ and
that computing a minimum cost γ-cut p is equivalent to computing a minimum cost unit
s∗t∗-flow in K∗.

Max-flow / shortest path duality. We compute a shortest path from s∗ to t∗ in K∗ using a
well-known shortest paths linear program. Details on the linear program can be found in [9].

maximize dist(t∗)
subject to dist(s∗) = 0

dist(v∗) − dist(u∗) ≤ c∗((u∗, v∗)) ∀ (u∗, v∗) ∈ E

(LP3)

The solution to LP3 is a function dist : V (K∗) → R which maps a vertex to its distance from
s∗ under the weight function c. By duality, dist is a (d + 1)-cochain mapping the voids to R.
In the following theorem we will show that dist is equivalent to a γ-flow with value equal to
dist(t∗).

▶ Theorem 16. Let (K, c, γ) be a simplicial flow network where K is a d-dimensional
simplicial complex embedded into Rd+1 with two unit γ-flows whose supports partition the
boundary of some void Bd(Vi). There is a bijection between γ-flows of (K, c, γ) and s∗t∗-paths
in K∗ such that the value of a γ-flow equals the length of its corresponding s∗t∗-path.

Min-cut / min cost flow duality. We begin this section by stating the minimum cost
flow problem in graphs. The minimum cost flow problem asks to find the cheapest way to
send k units of flow from s to t. An instance of the minimum cost flow problem is a tuple
(G, w, c, k) where G = (V, E) is a directed graph, w, c ∈ C1(G), and k ∈ R. The 1-chains
represent the weight and capacity of each edge, and k is the demand of the network. The
goal of the minimum cost flow problem is to find an st-flow satisfying both capacity and
demand constraints. The demand constraint can be stated as δ(t) · f = k and ensures that
f sends exactly k units of flow from s to t. We will compute a minimum directed γ-cut
in K by solving the minimum cost flow problem with k = 1 in K∗. We assume there is a
weight function w : Kd → R+ on the d-skeleton of K, which after dualizing becomes a weight
function w∗ on the edges of K∗. In the following theorem the capacity function is not needed,
so we will assume each edge in K∗ has infinite capacity.

▶ Theorem 17. Let K be a d-dimensional simplicial complex embedded into Rd+1 with two
unit γ-flows whose supports partitions the boundary of some void Bd(Vi). There is a bijection
between γ-cuts p in K and unit s∗t∗-flows f in K∗ such that ∥p∥ =

∑
w∗(e)f(e).

▶ Corollary 18. Let K be a d-dimensional simplicial complex embedded in Rd+1 with two
unit γ-flows partitioning some Bd(Vi). There is a polynomial time algorithm computing a
minimum directed combinatorial γ-cut.
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Proof. We solve the minimum cost circulation problem in K∗ setting the demand and every
capacity constraint equal to one. The resulting flow is dual to a γ-cut p in K. Since the
minimum cost circulation is integral we have ∥supp(δ(p))∥ = ∥p∥. That is, the cost of p as a
γ-cut equals the cost of supp(δ(p)) as a combinatorial γ-cut. ◀

6 Ford-Fulkerson algorithm

In this section we show how the Ford-Fulkerson algorithm can be used to compute a max-flow
of simplicial flow network (K, c, γ). In a simplicial flow network the Ford-Fulkerson algorithm
picks out a augmenting chain at every iteration which is a high dimensional generalization
of an augmenting path. As shown in Section 4.2 a max-flow of a simplicial flow network
with integral capacities may not be integral, so it is not immediate that Ford-Fulkerson
is guaranteed to halt. To remedy this, our implementation of Ford-Fulkerson contains a
heuristic reminiscent of the network simplex algorithm. Our heuristic guarantees that at
every iteration of Ford-Fulkerson the flow is a solution on a vertex of the polytope defined
by the linear program. Hence, our heuristic makes our implementation of Ford-Fulkerson
into a special case of the simplex algorithm. It follows that Ford-Fulkerson does halt on a
simplicial flow network, but the running time may be exponential. Our heuristic for picking
augmenting chains takes O(nω+1) time since it requires solving O(n) linear systems, each
taking O(nω) time using standard methods [16].

▶ Definition 19 (Residual complex). Let (K, c, γ) be a simplicial flow network and f be a
feasible flow on the network. We define a new simplicial flow network called the residual
complex to be the tuple (Kf , cf , γ) constructed in the following way. The d-skeleton of Kf

is the union Kd ∪ −Kd, that is, for each d-simplex σ in K we add an additional d-simplex
−σ whose orientation is opposite of σ. Kd′

f = Kd′ for dimensions d′ < d. The residual

capacity function cf : Kd
f → R is given by cf (σ) =

{
c(σ) − f(σ) σ ∈ Kd

f(σ) −σ ∈ Kd
.

▶ Definition 20 (Augmenting chain). Let Kf be a residual complex for the simplicial flow
network (K, c, γ). An augmenting chain is a d-chain Γ ∈ Cd(Kf ) such that Γ =

∑
αiσi

and ∂Γ = γ with αi ≥ 0.

Note that an augmenting chain need not obey the residual capacity constraint cf . This is
because after finding an augmenting chain the amount of flow sent through the chain will be
normalized by the coefficients αi producing a new chain respecting the capacity constraints.
We now state the main theorem of the section.

▶ Theorem 21. Let (K, c, γ) be a simplicial flow network. A flow f is a maximum flow if
and only if Kf contains no augmenting chains.

Augmenting chain heuristic. In this section we provide a heuristic for the Ford-Fulkerson
algorithm that is guaranteed to halt on a simplicial flow network. Our example in Section 4.2
shows that a maximum flow may have fractional value, so it’s not immediately clear that
Ford-Fulkerson halts on all simplicial flow networks. To remedy this our heuristic ensures
that at each step the flow corresponds to a vertex of the flow polytope (defined in the next
paragraph). As there are a finite number of vertices, and the value of the flow increases at
every step, it follows that under this heuristic Ford-Fulkerson must halt. Under our heuristic
Ford-Fulkerson becomes a special case of the simplex algorithm. Our heuristic is reminiscent
of the network simplex algorithm which maintains a tree at every iteration. See the book by
Ahuja, Magnanti, and Orlin for an overview of the network simplex algorithm [1].
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We define the flow polytope of (K, c, γ) to be the polytope P ⊂ Rnd defined by the
constraints of the maximum flow linear program LP1. A vertex of the polytope P is any
feasible solution to LP1 with at least nd tight linearly independent constraints. We will
ensure that at every step of Ford-Fulkerson our flow f is a vertex of P . To do this we will
make sure that the d-simplices corresponding to non-tight constraints of LP1 form an acyclic
complex. Some straightforward algebra implies that this condition is enough to make at least
nd constraints tight. Let Hf be the subcomplex of d-simplices “half-saturated” by f ; that
is, σ ∈ Hf if and only if its capacity constraint is a strict inequality: 0 < f(σ) < c(σ). The
half-saturated simplices do not make either of their two corresponding constraints tight, while
d-simplices not in Hf make exactly one of their corresponding constraints tight. We require
that Hf be an acyclic complex at each step of Ford-Fulkerson. In the case of graphs, this
just means that Hf is a forest. For a d-dimensional complex it means that dim Hd(Hf ) = 0.
Acyclic complexes have been studied by Duval, Klivans, and Martin who show that they
share many properties with forests and trees in graphs [8]. The following lemma shows that
if Hf is acyclic then f is a vertex of the flow polytope.

▶ Lemma 22. Let f be a feasible flow for the d-dimensional simplicial flow network (K, c, γ).
If the subcomplex of half-saturated d-simplices Hf is acyclic then f is a vertex of the flow
polytope P .

At each iteration of Ford-Fulkerson we want to pick an augmenting chain such that
the resulting flow leaves Hf acyclic. It’s not clear how to pick such an augmenting chain.
However, no matter what augmenting chain we pick we can always repair the flow in a way
that the resulting flow leaves Hf acyclic. To do so we compute a homology basis of Hf and
update the flow to make dim Hd(Hf ) = 0.

▶ Lemma 23. Let f be a feasible flow for the d-dimensional simplicial flow network (K, c, γ).
If the subcomplex of half-saturated d-simplices Hf is not acyclic then in O(nω+1) time we
can construct a new flow f ′ such that Hf ′ is acyclic and ∥f∥ = ∥f ′∥.

To wrap up the section, we state our main theorem whose proof is immediate from
Lemmas 22 and 23.

▶ Theorem 24. Given a simplicial flow network (K, c, γ) we can compute a maximum flow
f by using the Ford-Fulkerson algorithm with the following heuristic: at every iteration pick
an augmenting chain such that the subcomplex of half-saturated d-simplices Hf is acyclic.
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We present a new universal source code for distributions of unlabeled binary and ordinal trees
that achieves optimal compression to within lower order terms for all tree sources covered by
existing universal codes. At the same time, it supports answering many navigational queries on the
compressed representation in constant time on the word-RAM; this is not known to be possible for
any existing tree compression method. The resulting data structures, “hypersuccinct trees”, hence
combine the compression achieved by the best known universal codes with the operation support of
the best succinct tree data structures.

We apply hypersuccinct trees to obtain a universal compressed data structure for range-minimum
queries. It has constant query time and the optimal worst-case space usage of 2n + o(n) bits, but
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Compared to prior work on succinct data structures, we do not have to tailor our data structure

to specific applications; hypersuccinct trees automatically adapt to the trees at hand. We show that
they simultaneously achieve the optimal space usage to within lower order terms for a wide range
of distributions over tree shapes, including: binary search trees (BSTs) generated by insertions in
random order / Cartesian trees of random arrays, random fringe-balanced BSTs, binary trees with a
given number of binary/unary/leaf nodes, random binary tries generated from memoryless sources,
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left-leaning red-black trees.
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1 Introduction

As space usage and memory access become the bottlenecks in computation, working directly
on a compressed representation (“computing over compressed data”) has become a popular
field. For text data, substantial progress over the last two decades culminated in compressed
text indexing methods that had wide-reaching impact on applications and satisfy strong
analytical guarantees. For structured data, the picture is much less developed and clear.
In this paper, we develop the analog of entropy-compressed string indices for trees: a data
structure that allows one to query a tree stored in compressed form, with optimal query
times and space matching the best universal tree codes.

Computing over compressed data became possible by combining techniques from infor-
mation theory, string compression, and data structures. The central object of study in
(classical) information theory is that of a source of random strings, whose entropy rate is
the fundamental limit for source coding. The ultimate goal in compressing such strings
is a universal code, which achieves optimal compression (to within lower order terms) for
distributions of strings from a large class of possible sources without knowing the used source.

A classic result in this area is that Lempel-Ziv methods are universal codes for finite-state
sources, i.e., sources in which the next symbol’s distribution depends on the previous k

emitted symbols (see, e.g., [4, § 13]). The same is true for methods based on the Burrows-
Wheeler-transform [6] and for grammar-based compression [30]. The latter two results were
only shown around 2000, marking a renewed interest in compression methods.

The year 2000 also saw breakthroughs in compressed text indexing, with the first com-
pressed self-indices that can represent a string and support pattern matching queries using
O(nH0) bits of space [23, 24] and O(nHk) + o(n log |Σ|) bits of space [8] for Hk the kth order
empirical entropy of the string (for k ≥ 0); many improvements have since been obtained
on space and query time; (see [37, 1] for surveys and [15] for lower bounds on redundancy;
[35, 36] summarizes more recent trends). For strings, computing over compressed data has
mainly been achieved.

In this article, we consider structure instead of strings; focusing on one of the simplest
forms of structured data: unlabeled binary and ordinal trees. Unlike for strings, the
information theory of structured data is still in its infancy. Random sources of binary trees
have (to our knowledge) first been suggested and analyzed in 2009 [31]; a more complete
formalization then appeared in [43], together with a first universal tree source code.

For trees, computational results predate information-theoretic developments. Succinct
data structures date back to 1989 [28] and have their roots in storing trees space-efficiently
while supporting fast queries. A succinct data structure is allowed to use lg Un(1 + o(1)) bits
of space to represent one out of Un possible objects of size n – corresponding to a uniform
distribution over these objects. This has become a flourishing field, and several succinct data
structures for ordinal or cardinal (including binary) trees supporting many operations are
known [34]. Apart from the exceptions discussed below (in particular [29, 5]), these methods
do not achieve any compression beyond lg Un no matter what the input is.

At the other end of the spectrum, more recent representations for highly repetitive
trees [2, 3, 12, 14, 17, 18] can realize exponential space savings over lg Un in extreme cases,
but recent lower bounds [39] imply that these methods cannot simultaneously achieve
constant time2 for queries; they are also not known to be succinct when the tree is not highly
compressible.

2 All running times assume the word-RAM model with word size w = Θ(log n).
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Table 1 Navigational operations on succinct binary trees. (v denotes a node and i an integer).

parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v
left_child(v) the left child of node v
right_child(v) the right child of node v
depth(v) the depth of v, i.e., the number of edges between the root and v
anc(v, i) the ancestor of node v at depth depth(v) − i
nbdesc(v) the number of descendants of v
height(v) the height of the subtree rooted at node v
LCA(v, u) the lowest common ancestor of nodes u and v
leftmost_leaf(v) the leftmost leaf descendant of v
rightmost_leaf(v) the rightmost leaf descendant of v
level_leftmost(ℓ) the leftmost node on level ℓ
level_rightmost(ℓ) the rightmost node on level ℓ
level_pred(v) the node immediately to the left of v on the same level
level_succ(v) the node immediately to the right of v on the same level
node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN}, i.e., in

a preorder, postorder, or inorder traversal of the tree
node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}
leaf_rank(v) the number of leaves before and including v in preorder
leaf_select(i) the ith leaf in preorder

In this paper, we fill this gap between succinct trees and dictionary-compressed trees
by presenting the first data structure for unlabeled binary trees that answers all queries
supported in previous succinct data structures (cf. Table 1) in O(1) time and simultaneously
achieves optimal compression over the same tree sources as the best previously known
universal tree codes. We also extend the tree-source concepts and our data structure to
unlabeled ordinal trees. In contrast to previous succinct trees, we give a single, universal
data structure, the hypersuccinct trees3, that does not need to be adapted to specific classes
or distributions of trees.

Our hypersuccinct trees require only a minor modification of existing succinct tree data
structures based on tree covering [20, 25, 7], (namely Huffman coding micro-tree types); the
contribution of our work is the careful analysis of the information-theoretic properties of the
tree-compression method, the “hypersuccinct code”, that underlies these data structures.

As a consequence of our results, we solve an open problem for succinct range-minimum
queries (RMQ): Here the task is to construct a data structure from an array A[1..n] of
comparable items at preprocessing time that can answer subsequent queries without inspecting
A again. The answer to the query RMQ(i, j), for 1 ≤ i ≤ j ≤ n, is the index (in A) of the
(leftmost) minimum in A[i..j], i.e., RMQ(i, j) = arg mini≤k≤j A[k]. We give a data structure
that answers RMQ in constant time using the optimal expected space of 1.736n + o(n) bits
when the array is a random permutation, (and 2n + o(n) in the worst case); previous work
either had suboptimal space [5] or Ω(n) query time [21]. We obtain the same (optimal) space
usage for storing a binary search tree (BST) built from insertions in random order (“random
BSTs” hereafter). Finally, we show that the space usage of our RMQ data structure is also
bounded by 2 lg

(
n
r

)
+ o(n) whenever A has r increasing runs, and that this is again best

possible.

3 The name “hypersuccinct trees” is the escalation of the “ultrasuccinct trees” of [29].
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Outline. The rest of our article is structured as follows: A comprehensive list of the
contributions appears below in Section 2. Section 3 describes our compressed tree encoding.
In Section 4, we illustrate the techniques for proving universality of our hypersuccinct code on
two well-known types of binary-trees shape distributions – random BSTs and weight-balanced
trees – and sketch the extensions necessary for the general results. In Section 5, we present
our RMQ data structures. Finally, Section 6 concludes the paper with future directions.

Appendix A contains missing proofs for the RMQ data structures. An extended version
of this article is available online (https://arxiv.org/abs/2104.13457); it contains formal
definitions of tree sources and full proofs for all universality statements.

2 Results

In a binary tree, each node has a left and a right child, either of which can be empty (“null”).
For a binary tree t we denote by |t| the number of nodes in t. Unless stated otherwise, n = |t|.
A binary tree source S emits a tree t with a certain probability PS [t] (potentially PS [t] = 0);
we write P[t] if S is clear from the context. lg(1/0) is taken to mean +∞.

▶ Theorem 1 (Hypersuccinct binary trees). Let t be a binary tree over n nodes. The
hypersuccinct representation of t supports all queries from Table 1 in O(1) time and uses
|H(t)| + o(n) bits of space, where

|H(t)| ≤ min
{

2n + 1, min
S

lg
(

1
PS [t]

)
+ o(n)

}
,

and PS [t] is the probability that t is emitted by source S. The minimum is taken over all
binary-tree sources S in the following families (which are explained in Table 4):

(i) memoryless node-type processes,
(ii) kth-order node-type processes (for k = o(log n)),
(iii) monotonic fixed-size sources,
(iv) worst-case fringe-dominated fixed-size sources,
(v) monotonic fixed-height sources,
(vi) worst-case fringe-dominated fixed-height sources,
(vii) tame uniform subclass sources.

▶ Corollary 2 (Hypersuccinct binary trees: Examples & Empirical entropies). Hypersuccinct
trees achieve optimal compression to within lower order terms for all example distributions
listed in Table 3. Moreover, for every binary tree t, we have:

(i) |H(t)| ≤ Htype
k (t) + o(n) with Htype

k (t) the (unnormalized) kth-order empirical entropy
of node types (leaf, left-unary, binary, or right-unary) for k = o(log n).

(ii) |H(t)| ≤ Hst(t) + o(n) with Hst(t) the “subtree-size entropy”, i.e., the sum of the
logarithm of the subtree size of v for all nodes v in t, (a.k.a. the splay-tree potential).

The hypersuccinct code is a universal code for the families of binary-tree sources listed in
Theorem 1 with bounded maximal pointwise redundancy. We also present a more general
class of sources, for which our code achieves o(n) expected redundancy in the appendix; see
also Table 4.

To our knowledge, the list in Theorem 1 is a comprehensive account of all concrete
binary-tree sources for which any universal code is known. Remarkably, in all cases the
bounds on redundancies proven for the hypersuccinct code are identical (up to constant
factors) to those known for existing universal binary-tree codes. Our hypersuccinct code thus
achieves the same compression as all previous universal codes, but simultaneously supports
constant-time queries on the compressed representation with o(n) overhead.

https://arxiv.org/abs/2104.13457
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Table 2 Overview of random tree sources for binary and ordinal trees.

Name Notation Intuition Formal Definition of P[t]

Memoryless
Processes τ

A binary tree is constructed top-down, drawing
each node’s type (0 = leaf, 1 = left-unary, 2 =
binary, 3 = right-unary) i.i.d. according to the
distribution (τ0, τ1, τ2, τ3).

P[t] =
∏
v∈t

τ(type(v))

Higher-order
Processes (τz)z

A binary tree is constructed top-down, drawing
node v’s type according to τhk(v) : {0, 1, 2, 3} →
[0, 1], which depends on the types of the k closest
ancestors of v.

P[t] =
∏
v∈t

τhk(v)(type(v))

Fixed-size
Binary Tree
Sources

Sfs(p)
A binary tree of size n is constructed top-down,
asking source p at each node for its left- and right
subtree size.

P[t] =
∏
v∈t

p(|tℓ(v)|, |tr(v)|)

tℓ/r(v)= left/right subtree of v

Fixed-height
Binary Tree
Sources

Sfh(p)
A binary tree of height h is constructed top-down,
asking source p at each node for a left and right
subtree height.

P[t] =
∏
v∈t

p(h(tℓ(v)), h(tr(v)))

h(t) = height of t

Uniform
Subclass
Sources

UP

A binary tree is drawn uniformly at random from
the set Tn(P) of all binary trees of size n that
satisfy property P.

P[t] = 1
|Tn(P)|

Memoryless
Ordinal Tree
Sources

d

An ordinal tree is constructed top-down, drawing
each node v’s degree deg(v) according to distribu-
tion d = (d0, d1, . . .).

P[t] =
∏
v∈t

ddeg(v)

Fixed-size
Ordinal Tree
Sources

Sfs(p)
An ordinal tree of size n is constructed top-down,
asking source p at each node for the number and
sizes of the subtrees.

P[t] =
∏
v∈t

p(|t1[v]|, . . . , |tdeg(v)[v]|)

In terms of queries, previous solutions either have suboptimal query times [2, 3, 14], higher
space usage [39], or rely on tailoring the representation to a specific subclass of trees [29, 7]
to achieve good space and time for precisely these instances, but they fail to generalize to
other use cases. Some also do not support all queries. We give a detailed comparison with
the state of the art in the extended version of this article.

We focus here on our results for binary trees. In the extended version of this article, we
extend the above notions of tree sources (except fixed-height sources) to ordinal trees, which
has not been done to our knowledge. Moreover, we extend both our code and data structure
to ordinal trees, and show their universality for these sources.

3 From Tree Covering to Hypersuccinct Trees

Our universally compressed tree data structures are based on tree covering [20, 25, 7]:
A (binary or ordinal) tree t is decomposed into mini trees, each of which is further decomposed
into micro trees; the size of the latter, B = B(n) = lg n/8, is chosen so that we can tabulate
all possible shapes of micro trees and the answers to various micro-tree-local queries in one
global lookup table (the “Four-Russian Table” technique). For each micro tree, its local
shape is stored, e.g., using the balanced-parenthesis (BP) encoding, using a total of exactly
2n bits (independent of the tree shape). Using additional data structures occupying only
o(n) bits of space, a long list of operations can be supported in constant time (Table 1). The
space usage of this representation is optimal to within lower order terms for the worst case,
since lg Cn ∼ 2n bits are necessary to distinguish all Cn =

(2n
n

)
/(n + 1) trees of n nodes.

(This worst-case bound applies both to ordinal trees and binary trees).
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Table 3 An overview over the concrete examples of tree-shape distributions that our hypersuccinct
code compresses optimally (up to lower-order terms).

Tree-Shape Distribution Entropy Corresponding Source

(Uniformly random) binary trees of size n 2n Memoryless binary,
monotonic fixed-size binary

(Uniformly random) full binary trees of size n n Memoryless binary
(Uniformly random) unary paths of length n n Memoryless binary
(Uniformly random) Motzkin trees of size n 1.585n Memoryless binary
Binary search trees generated by insertions in random
order (“random BSTs”) 1.736n Monotonic fixed-size binary

Binomial random trees P (lg n)na) Average-case fringe-dominated
fixed-size binary

Almost paths —b) Monotonic fixed-size binary

Random fringe-balanced binary search trees —b) Average-case fringe-dominated
fixed-size binary

(Uniformly random) AVL trees of height h —b) Worst-case fringe-dominated
fixed-height binary

(Uniformly random) weight-balanced binary trees of
size n

—b) Worst-case fringe-dominated
fixed-size binary

(Uniformly random) AVL trees of size n 0.938n Uniform-subclass
(Uniformly random) left-leaning red-black trees of size n 0.879n Uniform-subclass

(Uniformly random) full m-ary trees of size n lg( m
m−1 )n Memoryless ordinal

Uniform composition trees —b) Monotonic fixed-size ordinal
Random LRM-trees 1.736n Monotonic fixed-size ordinal

a) Here P is a nonconstant, continuous, periodic function with period 1.
b) No (concise) asymptotic approximation known.

Table 4 Sufficient conditions under which we show universality of our hypersuccinct code H for
binary trees. Proofs are given in the extended version of this article (https://arxiv.org/abs/2104.
13457).

Family of sources Restriction Redundancy

Memoryless node-type — O(n log log n/ log n)
kth-order node-type — O((nk + n log log n)/ log n)

Monotonic fixed-size p(ℓ, r) ≥ p(ℓ + 1, r) and p(ℓ, r) ≥ p(ℓ, r + 1)
for all ℓ, r ∈ N0

O(n log log n/ log n)

Worst-case fringe-dominated
fixed-size

n≥B(t) = o(n/ log log n)
for all t with P[t] > 0;

n≥B(t) = #nodes with subtree size in Ω(log n)

O
(
n≥B(t) log log n

+ n log log n/ log n
)

Weight-balanced fixed-size
∑

n
c

≤ℓ≤n− n
c

p(ℓ − 1, n − ℓ − 1) = 1
for constant c ≥ 3

O(n log log n/ log n)

Average-case
fringe-dominated fixed-size

E[n≥B(T )] = o(n/ log log n)
for random T generated by source S

O
(
n≥B(t) log log n

+ n log log n/ log n
)a)

Monotonic fixed-height p(ℓ, r) ≥ p(ℓ + 1, r) and p(ℓ, r) ≥ p(ℓ, r + 1)
for all ℓ, r ∈ N0

O(n log log n/ log n)

Worst-case fringe-dominated
fixed-height

n≥B(t) = o(n/ log log n)
for all t with P[t] > 0

O
(
n≥B(t) log log n

+ n log log n/ log n
)

Tame uniform-subclass

class of trees Tn(P) is hereditary
(i.e., closed under taking subtrees),

n≥B(t) = o(n/ log log n) for t ∈ Tn(P),
lg |Tn(P)| = cn + o(n) for constant c > 0,

heavy-twigged: if v has subtree size Ω(log n),
v’s subtrees have size ω(1)

o(n)

a) Stated redundancy is achieved in expectation for a random tree t generated by the source.

https://arxiv.org/abs/2104.13457
https://arxiv.org/abs/2104.13457
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Figure 1 Example binary tree with n = 70 nodes and micro trees computed by the Farzan-Munro
tree-covering algorithm [7] with parameter B = 6. The micro trees are indicated by colors. The
algorithm guarantees that each node is part of exactly one micro tree and that each micro tree has
at most three edges shared with other micro trees, namely to a parent, a left- and a right-child micro
tree.

A core observation is that the dominant space in tree-covering data structures comes
from storing the micro-tree types, and these can be further compressed using a different
code. This has been used in an ad-hoc manner for specific tree classes [7, 5, 16], but has not
been investigated systematically. A natural idea is to use a Huffman code for the micro tree
types to simultaneously beat the compression of all these special cases; we dub this as the
“Four Russians and One American”4 trick. Applying it to the data structures based on the
Farzan-Munro tree-covering algorithm [7] yields our hypersuccinct trees.

The main contribution of our present work is the careful analysis of the potential of the
Four Russians and One American trick for (binary and ordinal) tree source coding. As an
immediate corollary, we obtain a single data structure that achieves optimal compression for
all special cases covered in previous work, plus a much wider class of distributions over trees
for which no efficient data structure was previously known.

Our analysis builds on previous work on tree compression, specifically DAG compression
and tree straight-line programs (TSLPs) [32]. Our core idea is to interpret (parts of the)
tree-covering data structures as a code for trees, the “hypersuccinct code”: it stores the
type, i.e., the local shape, of all micro trees separately from how they interface to form the
entire tree. Intuitively, our hypersuccinct code is a restricted version of a grammar-based
tree code, where we enforce having nonterminals for certain subtrees;5 we strengthen and
extend existing universality proofs from general grammar-based tree codes to the restricted
hypersuccinct code.

4 Universality for Fixed-Size Sources

In this section, we sketch the proof that our hypersuccinct trees achieve optimal compression
for two exemplary tree-shape distributions: random binary search trees and uniform weight-
balanced trees (defined below). These examples serve to illustrate the proof techniques and

4 It deems us only fair to do D. A. Huffman the same questionable honor of reducing the person to
a country of residence that V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev have
experienced ever since their table-lookup technique has become known as the “Four-Russians trick”.

5 Differences in technical details make the direct comparison difficult, though: in TSLPs, holes in contexts
must be stored (and encoded) alongside the local shapes as they are both part of the right-hand side of
productions; in our hypersuccinct code, we separately encode the shapes of micro trees and the positions
of portals, potentially gaining a small advantage. Our comment thus remains a motivational hint as to
why similar analysis techniques are useful in both cases, but falls short of providing a formal reduction.
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70:8 Hypersuccinct Trees

to showcase the versatility of the approach. The extension to the general sufficient conditions
from Table 4 and full details of computations are spelled out in the extended version of the
article.

By random BSTs, we mean the distribution of tree shapes obtained by successively
inserting n keys in random order into an (initially empty) unbalanced binary search tree
(BST). We obtain random BSTs from a fixed-size tree source Sfs(pbst) with pbst(ℓ, n−1−ℓ) = 1

n

for all ℓ ∈ {0, . . . , n−1} and n ∈ N≥1, i.e., making every possible split equally likely. (Any left
subtree size ℓ is equally likely in a random BST of a given size n.) Hence, P[t] =

∏
v∈t 1/|t[v]|

where t[v] is the subtree rooted at v and |t[v]| its size (in number of nodes).
The second example are the shapes of uniformly random weight-balanced BSTs (BB[α]-

trees, [38]): A binary tree t is α-weight-balanced if we have for every node v in t that
min{|tℓ[v]|, |tr[v]|} + 1 ≥ α(|t[v]| + 1). Here tℓ[v] resp. tr[v] are the left resp. right subtrees
of t[v]. We denote the set of α-weight-balanced trees of size n by Tn(Wα). We obtain random
α-weight-balanced trees from another fixed-size source Sfs(pwb) with

pwb(ℓ, n − 1 − ℓ) =


|Tℓ(Wα)||Tn−1−ℓ(Wα)|

|Tn(Wα)| if min{ℓ + 1, n − ℓ} ≥ α(n + 1),

0 otherwise.

It is easy to check that this yields the uniform probability distribution on Tn(Wα), i.e., with
P[t] = 1/|Tn(Wα)| for t ∈ Tn(Wα) and P[t] = 0 otherwise. We note that computing |Tn(Wα)|
is a formidable challenge in combinatorics, but we never have to do so; we only require the
existence of the fixed-size source for weight-balanced BSTs.

The hypersuccinct code H(t) is formed by partitioning the nodes of a given binary tree t

into m = Θ(n/ log n) micro trees µ1, . . . , µm, each of which is a connected subtree of at most
µ = O(log n) nodes; an example is shown in Figure 1. Previous work on tree covering shows
how to compute these and how to encode everything but the local shape of the micro trees
in o(n) bits of space [7]. (For a mere encoding, O(n log log n/ log n) bits suffice.

The dominant part of the hypersuccinct code is the list of types of all micro trees, i.e., the
(local) shapes of the induced subtrees formed by the set of nodes in the micro trees. Let C

be a Huffman code for the string µ1, . . . , µm, where we identify micro trees with their types.
For a variety of different tree sources S, we can prove that

∑m
i=1 |C(µi)|, the total length of

codewords for the micro trees, is upper bounded by lg(1/P[t]) + lower-order terms, where
P[t] is the probability that t is emitted by S; this is the best possible code length to within
lower order terms achievable for that source. We will now show this for our two example
distributions.

4.1 Random BSTs
The proof consists of four steps that can be summarized as follows:

Step 1
Construct a source-specific

micro-tree encoding
DS : {µ1, . . . , µm} → {0, 1}⋆

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of
Huffman codes:

m∑
i=1

|C(µi)| ≤
m∑

i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏

i=1

P[µi] ≳ P[t]

Step 4
Conclude

m∑
i=1

|C(µi)| ≈ lg(1/P[t])
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Steps 2 and 4 do not depend on the source and indeed follow immediately; Steps 1 and 3 are
the creative parts. Ignoring proper tracing of error terms, the result then follows as

|H(t)| ∼
n∑

i=1
|C(µi)| ≤

n∑
i=1

|DS(µi)| ≤
n∑

i=1
lg(1/P[µi]) ≲ lg(1/P[t]).

Let us consider Sfs(pbst), the fixed-size source producing (shapes of) random BSTs, and
address these steps independently.

Our task in Step 1 is to find a code DS for the micro-tree types that can occur in t, so
that |DS(µi)| = lg(1/|PS [µi]) + O(log log n). This code may rely on the decoder to have
knowledge of S. For random BSTs, DS(t) can be constructed as follows: We initially store n

using Elias gamma code6 and then, following a depth-first (preorder) traversal of the tree,
we encode the size of the left subtree using arithmetic coding. Inductively, the size of the
currently encoded node is always known, and the source-specific code is allowed to use the
probability distributions hardwired into S without storing them; for random BSTs, we simply
encode a number uniformly distributed in [0..s − 1] at a node with subtree size s, using
exactly lg s bits. Apart from storing the initial size and the small additive overhead from
arithmetic coding, the code length of this “depth-first arithmetic tree code” is best possible:
|DS(t)| ≤ lg(1/P[t]) + O(log |t|). This concludes Step 1.

For Step 3, we have to show that the probability for the entire tree t is at most the
product of the probabilities for all micro-trees. Recall that µ1, . . . , µm are the micro trees
in t. We can write P[t] as a product over contributions of individual nodes, and can collect
factors in P[t] according to micro trees; this works for any fixed-size source. For random
BSTs, we can use the “monotonicity” of node contributions to show

P[t] =
∏
v∈t

1
|t[v]| =

m∏
i=1

∏
v∈µi

1
|t[v]| ≤

m∏
i=1

∏
v∈µi

1
|µi[v]| =

m∏
i=1

P[µi].

That completes Step 3, and hence the proof that |H(t)| ≤ PSfs(pbst)[t] + o(n).

4.2 Weight-balanced trees
Let us now consider uniformly random weight-balanced trees, i.e., the source S = Sfs(pwb).
We would like to follow the same template as above; however, this is not possible: Step 3
from above is in general not true anymore. The reason is that it is not clear whether the
“non-fringe” micro trees, i.e., those that do not contain all descendants of the micro-tree
root, have non-zero probability under S. (A subtree of a tree is called fringe, if it consists
of a node and all its descendants). Such micro trees will also make Step 1 impossible as
they would require a code length of 0. While this issue is inevitable in general (Remark 4),
we can under certain conditions circumvent Steps 1 and 3 altogether by directly bounding∑m

i=1 |DS(µi)| ≤ P[t] + o(n).
As a first observation, note that it suffices to have |DS(µi)| = lg(1/|PS [µi]) + O(log log n)

for all but a vanishing fraction of the micro trees in any tree t; then we can still hope to
show

∑m
i=1 |DS(µi)| ≤ P[t] + o(n) overall. Second, it is known [12] that weight-balanced

trees are “fringe dominated” in the following sense: Denoting by n≥B(t) the number of
“heavy” nodes, i.e., v in t with |t[v]| ≥ B = lg n/8, we have n≥B(t) = O(n/B) = o(n) for

6 Elias gamma code γ : N → {0, 1}⋆ encodes an integer n ≥ 1 using 2⌊lg n⌋ + 1 bits by prefixing the
binary representation of n with that representation’s length encoded in unary.
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every weight-balanced tree t ∈ Tn(Wα). Since only a vanishing fraction of nodes are heavy,
one might hope that also only a vanishing fraction of micro trees are non-fringe, making the
above route succeed. Unfortunately, that is not the case; the non-fringe micro trees can be a
constant fraction of all micro trees.

Notwithstanding this issue, a more sophisticated micro-tree code DS allows us to proceed.
DS encodes any fringe micro tree using a depth-first arithmetic code as for random BSTs.
Any non-fringe micro tree µi, however, is broken up into the subtree of heavy nodes, the
“boughs” of µi, and (fringe) subtrees fi,j hanging off the boughs. It is a property of the
Farzan-Munro algorithm that every micro-tree root is heavy, hence all fi,j are indeed entirely
contained within µi.

DS(µi) then first encodes the bough nodes using 2 bits per node (using a BP representation
for the boughs subtree) and then appends the depth-first arithmetic code for the fi,j (in
left-to-right order). While this does not actually achieve |DS(µi)| ≈ lg(1/P[µi]) for entire
micro trees µi, it does so for all the fringe subtrees fi,j . Any node not contained in a fringe
subtree fi,j must be part of a bough and hence heavy; by the fringe-dominance property,
these nodes form a vanishing fraction of all nodes and hence contribute o(n) bits overall.
This shows that |H(t)| ≤ PSfs(pwb)[t] + o(n).
▶ Remark 3 (A simple code whose analysis isn’t). It is worth pointing out that the source
specific code DS is only a vehicle for the analysis of |H(t)|; the complicated encodings DS do
not ever need to be computed when using our codes or data structures.

4.3 Other Sources
For memoryless sources, the analysis follows the four-step template, and is indeed easier than
the random BSTs since Step 3 becomes trivial. For higher-order sources, in order to know
the node types of the k closest ancestors (in t) of all nodes of depth ≤ k in µi, we prefix the
depth-first arithmetic code by the node types of the k closest ancestors of the root of µi.
Then the k ancestor types are known inductively for all nodes in a preorder traversal of µi.

The tame uniform-subclass sources require the most technical proof, but it is conceptually
similar to the weight-balanced trees from above. The source-specific encoding for fringe
subtrees is trivial here: we can simply use the rank in an enumeration of all trees of a given
size, prefixed by the size of the subtree. Using the tameness conditions, one can show that
a similar decomposition into boughs and fringe subtrees yields an optimal code length for
almost all nodes. Details are deferred to the extended version of this article.

∗ ∗ ∗

Together with the observations from Section 3 this yields Theorem 1. We obtained similar
results for ordinal trees; details are deferred to the extended version of this article.
▶ Remark 4 (Restrictions are inevitable). We point out that some restrictions like the ones
discussed above cannot possibly be overcome in general. Zhang, Yang, and Kieffer [43]
prove that the unrestricted class of fixed-size sources (leaf-centric binary tree sources in their
terminology) does not allow a universal code, even when only considering expected redundancy.
The same is true for unrestricted fixed-height and uniform-subclass sources. While each
is a natural formalism to describe possible binary-tree sources, additional conditions are
strictly necessary for any interesting compression statements to be made. Our sufficient
conditions are the weakest such restrictions for which any universal source code is known to
exist ([43, 13, 40]), even without the requirement of efficient queries.
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5 Hypersuccinct Range-Minimum Queries

We now show how hypersuccinct trees imply an optimal-space solution for the range-minimum
query (RMQ) problem.7 Let A[1..n] store the numbers x1, . . . , xn, i.e., xj is stored at index
j for 1 ≤ j ≤ n. While duplicates naturally arise in some applications, e.g., in the longest-
common extension (LCE) problem, we assume here that x1, . . . , xn are n distinct numbers to
simplify the presentation. However, our RMQ solution works regardless of which minimum-
value index is to be returned so long as the tie breaking rule is deterministic and fixed at
construction time.

5.1 Cartesian Trees
The Cartesian tree T for x1, . . . , xn (resp. for A[1..n]) is a binary tree defined recursively as
follows: If n = 0, it is the empty tree (“null”). Otherwise it consists of a root whose left child
is the Cartesian tree for x1, . . . , xj−1 and its right child is the Cartesian tree for xj+1, . . . , xn

where j is the position of the minimum, j = arg mink A[k]. A classic observation of Gabow
et al. [11] is that range-minimum queries on A are equivalent to lowest-common-ancestor
(LCA) queries on T when identifying nodes with their inorder rank:

RMQA(i, j) = node_rankIN

(
LCA

(
node_selectIN(i), node_selectIN(j)

))
.

We can thus reduce an RMQ instance (on an arbitrary input) to an LCA instance on binary
trees of the same size; (the number of nodes in T equals the length of the array).

5.2 Random RMQ
We first consider the random permutation model for RMQ: Every (relative) ordering of the
elements in A[1..n] is equally likely. Without loss of generality, we identify the n elements
with their ranks, i.e., A[1..n] contains a random permutation of [1..n]. We refer to this as a
random RMQ instance.

We can characterize the distribution of the Cartesian tree associated with such a random
RMQ instance: Since the minimum in a random permutation is located at every position
i ∈ [n] with probability 1

n , the inorder index of the root is uniformly distributed in [n]. Apart
from renaming, the subarrays A[1..i−1] (resp. A[i+1..n]) contain a random permutation of i−1
(resp. n − i) elements, and these two permutations are independent of each other conditional
on their sizes. Cartesian trees of random RMQ instances thus have the same distribution
as random BSTs, and in particular shape t arises with probability P[t] =

∏
v∈t

1
|t[v]| . The

former are also known as random increasing binary trees [10, Ex. II.17 & Ex. III.33]).
Since the sets of answers to range-minimum queries is in bijection with Cartesian trees,

the entropy Hn of the distribution of the shape of the Cartesian tree (and hence random
BSTs) gives an information-theoretic lower bound for the space required by any RMQ data
structure (in the encoding model studied here). Kieffer, Yang and Szpankowski [31] show8

7 A technical report containing preliminary results for random RMQ, but including more details on the
data structure aspects of our solution, can be found on arXiv [33].

8 Hwang and Neininger [26] showed already in 2002 that the quicksort recurrence can be solved explicitly
for arbitrary toll functions. Hn satisfies this recurrence with toll function lg n, hence they implicitly
proved Equation (1).
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that the entropy of random BSTs Hn = ET

[
lg(1/P[T ])

]
= ET

[∑
v∈T lg(|T [v]|)

]
is

Hn = lg(n) + 2(n + 1)
n−1∑
i=2

lg i

(i + 2)(i + 1) ∼ 2n
∞∑

i=2

lg i

(i + 2)(i + 1) ≈ 1.7363771n.

(1)

With these preparations, we are ready to prove our first result on range-minimum queries.

▶ Corollary 5 (Average-case optimal succinct RMQ). There is a data structure that supports
(static) range-minimum queries on an array A of n (distinct) numbers in O(1) worst-case
time and which occupies Hn + o(n) ≈ 1.736n + o(n) bits of space on average over all possible
permutations of the elements in A. The worst case space usage is 2n + o(n) bits.

Proof. We construct a hypersuccinct tree on the Cartesian tree for A. It supports node_rankIN,
node_selectIN, and LCA in O(1) time and thus RMQ in constant time without access to A.
By Corollary 2, the space usage of hypersuccinct trees is at most min{2n, lg(1/P[t])} + o(n)
for P[t] =

∏
v∈t

1
|t[v]| . By the above observations, this is the probability to obtain t as the

Cartesian trees of a random permutation, so we store t with maximal pointwise redundancy
of o(n), hence also o(n) expected redundancy over the entropy Hn ∼ 1.736n. ◀

5.3 RMQ with Runs
A second example of compressible RMQ instances results from partially sorted arrays.
Suppose that A[1..n] can be split into r runs, i.e., maximal contiguous ranges [ji, ji+1 − 1],
(i = 1, . . . , r with j1 = 1 and jr+1 = n + 1), so that A[ji] ≤ A[ji + 1] ≤ · · · ≤ A[ji+1 − 1].

▶ Theorem 6 (Lower bound for RMQ with runs). Any range-minimum data structure in
the encoding model for an array of length n that contains r runs must occupy at least
lg Nn,r ≥ 2 lg

(
n
r

)
−O(log n) bits of space where Nn,r = 1

n

(
n
r

)(
n

r−1
)

are the Narayana numbers.

The proof follows from a bijection between Cartesian trees on sequences of length n with
exactly r runs and mountain-valley diagrams (a.k.a. Dyck paths) of length 2n with exactly r

“peaks”; the latter is known to be counted by the Narayana numbers [27]. Details are given
in Appendix A.

▶ Corollary 7 (Optimal succinct RMQ with runs). There is a data structure that supports
(static) range-minimum queries on an array A of n numbers that consists of r runs in O(1)
worst-case time and which occupies 2 lg

(
n
r

)
+ o(n) ≤ 2n + o(n) bits of space.

This follows from the observation that a node’s type in the Cartesian tree, i.e., whether or
not its left resp. right child is empty, closely reflects the runs in A: A binary node marks the
beginning of a non-singleton run, a leaf node marks the last position in a non-singleton run,
a right-unary node (i.e., left child empty, right child nonempty) is a middle node of a run,
and a left-unary node corresponds to a singleton run. With s ∈ [0..r] the number of singleton
runs, we can bound the space for a hypersuccinct tree in terms of its empirical node-type
entropy by Htype

0 (T ) + o(n) = nH
(

r−s
n , s

n , n−2r+s
n , r−s

n

)
+ o(n), which can be shown to be

no more than 2 lg
(

n
r

)
+ o(n) for any value of s; again, details are deferred to Section A.

∗ ∗ ∗

We close by pointing out that hypersuccinct trees simultaneously achieve the optimal bounds
for RMQ on random permutations and arrays with r runs without taking explicit precautions
for either. The same is true for any other shape distributions of Cartesian trees that can be
written as one of the sources from Table 4.
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6 Conclusion

We presented the first succinct tree data structures with optimally adaptive space usage for
a large variety of random tree sources, both for binary trees and for ordinal trees. This is an
important step towards the goal of efficient computation over compressed structures, and
has immediate applications, e.g., as illustrated above for the range-minimum problem.

A goal for future work is to reduce the redundancy of o(n), which becomes dominant
for sources with sublinear entropy. While this has been considered for tree covering in
principle [41], many details remain to be thoroughly investigated.

For very compressible trees, the space savings in hypersuccinct trees are no longer compet-
itive. On the other hand, with current methods for random access on dictionary-compressed
sequences, constant-time queries are not possible in the regime of mildly compressible strings;
the same applies to known approaches to represent trees. An interesting question is whether
these opposing approaches can be combined in a way to complement each other’s strengths.
We leave this direction for future work.
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A.1 Lower Bound
In this section, we proof Theorem 6.

We refer to a run of length one as a singleton run. The types of nodes in the Cartesian
tree (whether or not their left and right children exist) directly reflect their role in runs: A
binary node is a run head of a non-singleton run, a leaf is the last node of non-singleton
run, a right-unary node (i.e., unary node with a right child) is a middle node of run and a
left-unary node is a singleton run. The leftmost node, i.e., the node with smallest inorder
rank, is the only exception to this rule: if the leftmost run is a singleton run, the leftmost
node is a leaf; otherwise it is right-unary.
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In any case, a Cartesian tree for an array with r runs that has b binary nodes and uℓ

left-unary nodes thus satisfies r = b + uℓ + 1: every binary node represents the non-singleton
run that begins with it, every left-unary node represents the singleton run at that position,
and the leftmost run is counted separately. (Note that we do not double count the latter
because the leftmost node is by definition neither binary nor left-unary.) We therefore obtain
a lower bound for the number of equivalence classes among length-n arrays with r runs under
range-minimum queries by counting binary trees with a given number of nodes n and a given
number of nodes of certain types.

That r is the sum of two quantities is inconvenient, hence we instead consider the following
sequence of bijections (see Figure 2). First, we map Cartesian trees t of n nodes bijectively
to balanced-parenthesis (BP) strings of n pairs of parentheses as follows: The empty tree
corresponds to the empty string. For a nonempty tree, we recursively compute the BP strings
of the (potentially empty) left resp. right subtrees of the root; let these be denoted by L and
R. Then the BP string for the entire tree is obtained as L(R). (This is a variation of the
canonical BP representation.)

Figure 2 An example illustrating the bijections: The input array is A = (2, 3, 4, 1, 6, 5, 7, 9, 10, 8),
the min-oriented Cartesian tree is shown above with run ends highlighted in red. The BP string for
the Cartesian tree is shown above the tree, with tree nodes connected to the corresponding opening
parenthesis (note that nodes appear in inorder in the BP string). The maintain-valley (excess, Dyck
path) representation of the BP string is on top; run ends correspond to peaks there.

It is easy to check that the resulting sequence is indeed the push/pop sequence of a
max-stack [9, 19] where ‘(’ means push and ‘)’ means pop. We map this sequence to a lattice
path by replacing ‘(’ by step vector (1, +1) and ‘)’ by (1, −1); the resulting lattice path is a
mountain-valley diagram (Dyck paths).

The important property of the above bijections is that they preserve runs: A run end is
an index where the next number is smaller (or nonexistent). In the Cartesian tree, these are
the leaves and left-unary nodes, in the BP string, these are the occurrences of ‘()’ and in
the mountain-valley representations, these are the peaks. The latter is known to be counted
by the Narayana numbers: There are

Nn,r = 1
n

(
n

r

)(
n

r − 1

)
= r

n(n + 1 − r)

(
n

r

)2
(2)
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mountain-valley diagrams of length 2n with exactly r peaks [27]. This concludes the proof of
Theorem 6; the asymptotic approximation for lg Nn,r immediately follows from the above
closed form.

A.2 Hypersuccinct RMQ with Runs
In this section, we prove Corollary 7. To this end, we show that using a hypersuccinct tree
to represent the Cartesian tree of an array A[1..n] with r increasing runs has a space usage
that is bounded by lg Nn,r + o(n) bits. By Theorem 6, this space usage is optimal up to the
o(n) term.

As noted in Section A.1, the correspondence between runs and node types in the Cartesian
tree can be made more specific by also specifying the number s ∈ [r] of singleton runs:
Singleton runs correspond to the left-unary nodes in the (min-oriented) Cartesian tree t,
except possibly for a leftmost singleton run (which corresponds to a leaf). In either case, we
will have uℓ = s ± 1 left-unary nodes and ℓ = r − s ± 1 leaves. That implies a number of
binary nodes of b = ℓ − 1 ± 1; the remaining ur = n − b − ℓ − uℓ = n − 2r + s ± 1 nodes are
right-unary nodes.

By Corollary 2, the hypersuccinct representation of the Cartesian tree t for A[1..n]
supports LCA-queries on t in O(1) time and uses

|H(t)| + o(n) ≤ Htype
0 (t) + o(n)

bits of space. We show that Htype
0 (t) ≤ lg Nn,r + o(n). Let

p =
(

b

n
,

ul

n
,

ur

n
,

ℓ

n

)
denote the empirical distribution of node types in t, and let H(p) denote the entropy of this
distribution. (For probability distribution d = (d1, d2, . . . , dk), its entropy is defined by

H(d) =
k∑

i=1
di lg

(
1
di

)
,

as usual.)
By definition of the type-entropy Htype

0 , we find Htype
0 (t) = nH(p). By our previous

observations, p differs from

p′ =
(

r − s

n
,

s

n
,

n − 2r + s

n
,

r − s

n

)
only by ∥p − p′∥∞ ≤ 2

n . Using [42, Prop. 2.42], we thus find H(p) ≤ H(p′) + O(n−0.9) (this
follows from Hölder-continuity of x 7→ x ln x). It thus remains to show that n H(p′) ≤
lg Nn,r + o(n). By the grouping property of H, we have

n H(p′) = n

(
H

(
r

n
,

n − r

n

)
+ r

n
H

(
s

r
,

r − s

r

)
+ n − r

n
H

(
r − s

n − r
,

(n − r) − (r − s)
n − r

))
.

In order to estimate the right-hand side, observe that it follows from [22, Eq. (5.22)] that∑r
s=0

(
r
s

)(
n−r
r−s

)
=

(
n
r

)
. Since all summands are positive, we have

(
r
s

)(
n−r
r−s

)
≤

(
n
r

)
and hence

lg
(

r

s

)
+ lg

(
n − r

r − s

)
≤ lg

(
n

r

)
, for all s ∈ [r]. (3)
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For a number q ∈ [0, 1], we set h(q) = q lg(1/q) + (1 − q) lg(1/(1 − q)). Using the standard
inequality

2nh(q)

n + 1 ≤
(

n

qn

)
≤ 2nh(q), nq ∈ [0..n], (4)

we find

rh
(s

r

)
+ (n − r)h

(
r − s

n − r

)
≤
(4)

lg
(

r

s

)
+ lg

(
n − r

r − s

)
+ lg(r + 1) + lg(n − r + 1)

≤
(3)

lg
(

n

r

)
+ lg(r + 1) + lg(n − r + 1)

≤
(4)

nh
( r

n

)
+ lg(r + 1) + lg(n − r + 1).

We thus have

nH(p′) = n

(
H

(
r

n
,

n − r

n

)
+ r

n
H

(
s

r
,

r − s

r

)
+ n − r

n
H

(
r − s

n − r
,

(n − r) − (r − s)
n − r

))
= n

(
h

( r

n

)
+ r

n
h

(s

r

)
+ n − r

n
h

(
r − s

n − r

))
≤ 2nh

( r

n

)
+ O(log n)

≤
(4)

2 lg
(

n

r

)
+ O(log n)

≤
(2)

lg Nn,r + O(log n).

So in total, we have shown that

|H(t)| ≤ lg Nn,r + o(n),

which implies Corollary 7.
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1 Introduction

The connectivity of graphs has always been one of the fundamental concepts of graph theory.
The foremost connectivity notions in undirected graphs are the k-edge-connectedness and the
k-vertex-connectedness. Namely, a graph G is k-edge-connected for k ≥ 1 if it is connected,
and it remains connected after removing any set of at most k − 1 edges. Similarly, G is
k-vertex-connected if it contains at least k + 1 vertices, and it remains connected after the
removal of any set of at most k − 1 vertices.

These notions can be generalized to the graphs that are not well-connected. Namely, if
H is a maximal k-vertex-connected subgraph of G, we say that H is a k-vertex-connected
component of G. The edge-connected variant is, however, defined differently: we say that
a pair of vertices u, v of G is k-edge-connected if it is not possible to remove at most k − 1
edges from G so that u and v end up in different connected components. This relation
of k-edge-connectedness happens to be an equivalence relation; this yields a definition of
a k-edge-connected component of G as an equivalence class of the relation. We remark that
the notions of k-vertex-connected components and k-edge-connected components coincide
for k = 1 as both simply describe the connected components of G. However, for k ≥ 2 these
definitions diverge; in particular, for k ≥ 3 the k-edge-connected components of a graph do
not even need to be connected.
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71:2 Determining 4-Edge-Connected Components in Linear Time

There has been a plethora of research into the algorithms deciding the k-vertex- and k-
edge-connectedness of graphs, and decomposing the graphs into k-vertex- or k-edge-connected
components. However, while classical, elementary, and efficient algorithms exist for k = 1 and
k = 2, these problems become increasingly more difficult for the larger values of k. In fact,
even for k = 4, there were no known linear time algorithms to any of the considered problems.
The following description presents the previous work in this area for k ∈ {1, 2, 3, 4}, and
exhibits the related work for the larger values of k:

k = 1. Here, the notions of k-vertex-connectedness and k-edge-connectedness reduce to that
of connectivity and the connected components of a graph. In the static setting, determining
the connected components in linear time is trivial. As a consequence, more focus is being laid
on dynamic algorithms maintaining the connected components of graphs. In the incremental
setting, where the edges can only be added to the dynamic graph, the optimal solution is
provided by disjoint-set data structures [38], which solve the problem in the amortized O(α(n))
time per query, where α(n) denotes the inverse of the Ackermann’s fast-growing function.
The fully dynamic data structures are also considered [44, 7, 9, 18, 19, 20, 40, 27, 22, 25].

k = 2. One step further are the notions of 2-vertex-connectivity (biconnectivity) and 2-
edge-connectivity. In the static setting, partitioning of a graph into 2-vertex-connected or
2-edge-connected components are classical problems, both solved in linear time by exploiting
the properties of the low function [23]. The incremental versions of both problems are again
solved optimally in the amortized O(α(n)) time per query [43]. Significant research has been
done in the dynamic setting as well [36, 20, 7, 22, 11, 17, 31].

k = 3. As a next step, we consider 3-vertex-connectivity (triconnectivity) and 3-edge-
connectivity. An optimal, linear time algorithm detecting the 3-vertex-connected components
was first given by Hopcroft and Tarjan [24]. The first linear time algorithm for 3-edge-
connectivity was discovered much later by Galil and Italiano [12], where they present a linear
time reduction from the k-edge-connectivity problem to k-vertex-connectivity for k ≥ 3,
showing that in the static setting, the former problem is the easier of the two. This was later
followed by a series of works simplifying the solution for 3-edge-connectivity [41, 35, 34, 42].
The incremental setting [32, 21] and the dynamic setting [11, 7] were also considered.

We also mention that in the case of 3-vertex-connectivity, there exists a structure called
SPQR-tree which succinctly captures the structure of 2-vertex-cuts in graphs [4, 21]. Its
edge-connectivity analogue also exists, but we defer its introduction to the general setting.

k = 4. We move on to the problems of 4-vertex-connectivity and 4-edge-connectivity.
A notable result by Kanevsky et al. [26] supports maintaining 4-vertex-connected components
in incremental graphs, with an optimal O(α(n)) amortized time per query. Their result also
yields the solution for static graphs in O(m+nα(n)) time complexity. By applying the result
of Galil and Italiano [12], we derive a static algorithm determining the 4-edge-connected
components in the same time complexity. This algorithm is optimal for m = Ω(nα(n)).

Another result by Dinitz and Westbrook [6] supports maintaining the 4-edge-connected
components in the incremental setting. Their algorithm processes any sequence of queries
in O(q +m+ n log n) time where q is the number of queries, and m is the total number of
inserted edges to the graph.

However, it is striking that the fastest solutions for 4-edge-connectivity and 4-vertex-
connectivity for static graphs were derived from the on-line algorithms working in the
incremental setting. In particular, no linear time algorithms for k = 4 were known before.
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k ≥ 5. As a side note, we also present the current knowledge on the general problems of
k-vertex-connectivity and k-edge-connectivity. A series of results [29, 30, 16, 2] show that it
is possible to compute the minimum edge cut of a graph (i.e., determine the edge-connectivity
of a graph) in near-linear time. The previously mentioned work by Dinitz and Westbrook [6]
maintains the k-edge-connected components of an incremental graph which is assumed to
already have been initialized with a (k−1)-edge-connected graph. The data structure answers
any sequence of on-line queries in O(q +m+ k2n log (n/k)) time, where q is the number of
queries, and m is the number of edges in the initial graph.

Gomory and Hu [13] proved that for any weighted, undirected graph G there exists a
weighted, undirected tree T on the same vertex set such that for any two vertices s, t ∈ V (G),
the value of the minimum s-t edge cut in T is equal to the value of the minimum s-t edge
cut in G. Moreover, such a tree can be constructed using n− 1 invocations of the maximum
flow algorithm. In an interesting result by Hariharan et al. [15], the decomposition of any
graph into k-edge-connected components is constructed in O((m+ nk3) · polylog(n)) time,
producing a partial Gomory-Hu tree as its result.

Dinitz et el. [5] showed that the set of all minimum edge cuts can be succinctly represented
with a cactus graph. When the minimum edge cut is odd, this cactus simplifies to a tree
(see [8, Corollary 8]). These results imply that if the size of the minimum cut is odd, then
the number of minimum cuts is O(n) and if it is even, then the number of minimum cuts is
O(n2). The structure of k-vertex-cuts was also investigated [37].

Our results. In this work, we present a linear time, deterministic algorithm partitioning
static, undirected graphs into 4-edge-connected components. Even though the area of the
dynamic versions of the algorithms for k-edge-connectivity is still thriving, the progress
in static variants appears to have plateaued. In particular, both subquadratic algorithms
determining the 4-edge-connected components [26, 6] originate from their dynamic incremental
equivalents and are almost thirty years old, yet they did not achieve the optimal linear running
time. Hence, our work constitutes the first progress in the static setting of 4-edge-connectivity
in a long time. As a side result, our algorithm also produces the tree representation of
3-edge-cuts as explained in [8].

Organization of the work. In Section 3 [33], omitted in this abridged version of the work, we
show how to reduce the problem of determining 4-edge-connected components to the problem
of determining 4-edge-connected components in 3-edge-connected graphs. In Section 4, we
show a linear time, randomized Monte Carlo algorithm for listing all 3-edge-cuts in 3-edge-
connected graphs. In Section 5, we show how to remove the dependency on the randomness
in the algorithm from the previous section, producing a linear time, deterministic algorithm
listing all 3-edge-cuts in 3-edge-connected graphs. Then, in Section 6, we construct a tree
of 3-edge-cuts in a 3-connected graph, given the list of all its 3-edge-cuts. This tree is then
used to determine the 4-edge-connected components of the graph. Finally, in Section 7, we
present open problems related to this work.

Section 3 and the proofs of the results marked ⋆ are deferred to the full version of the
work [33] due to the space constraints.

2 Preliminaries

Graphs. In this work, we consider undirected, connected graphs which may contain self-
loops and multiple edges connecting pairs of vertices (i.e., multigraphs). The number of
vertices of a graph and the number of its edges are usually denoted n and m, respectively.
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We use the notions of k-edge-connectedness and k-edge-connected components defined in
Section 1. Moreover, we say that a set of k edges of a graph forms a k-edge-cut (or a k-cut
for simplicity) if the removal of these edges from the graph disconnects it.

DFS trees. Consider a run of the depth-first search algorithm [39] on a connected graph G.
A depth-first search tree (or a DFS tree) is a spanning tree T of G, rooted at the source of the
search r, containing all the edges traversed by the algorithm. After the search is performed,
each vertex v is assigned two values: its preorder pre(v) (also called discovery time or arrival
time) and postorder post(v) (also finishing time or departure time). Their definitions are
standard [3]; it can be assumed that the values range from 1 to 2n and are pairwise different.

The edges of T are called tree edges, and the remaining edges are called back edges
or non-tree edges. In this setup, every back edge e connects two vertices remaining in
ancestor-descendant relationship in T ; moreover, the graph T + e contains exactly one cycle,
named the fundamental cycle of e. For a vertex v of G, we define Tv to be the subtree of T
rooted at v; similarly, for a tree edge e whose deeper endpoint is v, we set Te = Tv.

When a DFS tree T of G is fixed, it is common to introduce directions to the edges of
the graph: all tree edges of T are directed away from the root of T , and all back edges are
pointed towards the root of T . Then, uv is a directed edge (either a tree or a back edge)
whose origin (or tail) is u, and whose destination (or head) is v.

For our convenience, we introduce the following definition: a back edge e = pq leaps over
a vertex v if p ∈ Tv, but q /∈ Tv; we analogously define leaping over a tree edge f .

Moreover, we define a partial order ≤T on the vertices of G and the tree edges of T as
follows: x ≤T y if the simple path in T connecting the root of T with y also contains x.
Then, ≤T has one minimal element – the root of T – and each maximal element is a leaf of
T . When the tree T is clear from the context, we may write ≤ instead of ≤T . We may also
use x < y for x ≤ y ∧ x ̸= y. Using the precomputed preorder and postorder values in T , we
can verify if x ≤T y holds for given x, y ∈ V (G) ∪ E(T ) in constant time.

We use the classical low function defined by Hopcroft and Tarjan [23]. However, for our
purposes it is more convenient to define it as a function low : E(T ) → (E \ E(T )) ∪ {⊥}
such that for a tree edge e, low(e) is the back edge uv leaping over e minimizing the preorder
of its head v, breaking ties arbitrarily; or ⊥, if no such edge exists. This function can be
computed for all tree edges in time linear with respect to the size of the graph.

Xors. For sets A and B, by A⊕B we denote their symmetric difference, which is (A∪B) \
(A∩B), and we call it a xor of A and B. Moreover, for a pair of non-negative integers a and
b, by a⊕ b we denote their xor, that is, an integer whose binary representation is a bitwise
symmetric difference of the binary representations of a and b. The definitions can be easily
generalized to the symmetric differences of multiple sets or integers.

4 Simple randomized algorithm

In this section, we will describe a randomized linear time algorithm listing 3-edge-cuts in
3-edge-connected graphs. In particular, the existence of this algorithm will imply that the
number of 3-edge-cuts in any 3-edge-connected graph is at most linear. Since the algorithm
is significantly simpler than its deterministic variant, and it already contains most of the
core ideas of this work, we believe it serves as a good intermediate step in the explanation.

The overview of the algorithm is as follows. First, we will construct a randomized oracle
(Lemma 5) that given two edges e, f of the 3-edge-connected graph G, verifies in constant
time whether there exists another edge g such that {e, f, g} is a 3-edge-cut of G; and if such
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an edge exists, it is returned by the oracle. It will be apparent from the description of the
oracle that such an edge – if it exists – is unique. Thanks to Lemma 5, the description of our
randomized algorithm will be simplified significantly: now, we only need to identify two out
of three edges of each 3-edge-cut of G. Then, the remaining edge of each cut can be easily
recovered using a single oracle call.

Next, our algorithm will consider an arbitrary DFS tree T of G, categorize all 3-edge-cuts
by the number t ∈ {0, 1, 2, 3} of tree edges of T in the cut, and find all 3-edge-cuts separately
for each value of t. The case t = 0 is trivial: T is a spanning tree of G, hence each edge cut
must contain at least one edge of T . The cases t = 1 and t = 2 will proceed by considering all
tree edges of T separately. For each such tree edge e, we will find all 3-edge cuts containing
both e and some non-tree edge leaping over e. By performing a case study, we will show that
for each e, there is only a constant number of 3-edge-cuts of this form for t ∈ {1, 2}; and
moreover, each of them can be located by us in constant time after a linear time preprocessing
of T . Finally, the case t = 3 will be solved by a recursive call to the algorithm on a properly
contracted graph.

We begin the detailed explanation with the description of some auxiliary data structures.

▶ Theorem 1 ([10]). There exists a data structure for the disjoint set union problem which,
when initialized with an undirected tree T (the “union tree”) on n vertices, creates n singleton
sets. After the initialization, the data structure accepts the following queries in any order:

find(x): returns the index of the set containing x,
union(x, y): if x and y are in different sets, then an arbitrary one of them is replaced
with their union and the other one with the empty set. This query can only be issued if
xy is an edge of T .

The data structure executes any sequence of q queries in total O(n+ q) time.

▶ Lemma 2 (⋆). It is possible to enrich the data structure from Theorem 1, so that after
rooting it at an arbitrary vertex, we are able to answer the following query in constant time:

lowest(x): returns the smallest vertex of the set containing x with respect to ≤T .

Note that each set induces a connected subgraph of T , so its smallest vertex is well-defined.

▶ Theorem 3 (⋆). There exists a deterministic algorithm that takes as input:
an undirected, unrooted tree T with n vertices,
p weighted paths P1, P2, . . . , Pp in the tree, where the path Pi has weight wi ∈ {0, 1, . . . , C},
and a positive integer k,

and for each edge e of the tree returns the indices of k paths with the lowest weight containing e,
breaking ties arbitrarily; if e is a part of fewer than k paths, all such paths are returned. The
time complexity of the algorithm is O(nk + p+ C).

We proceed to the description of our randomized algorithm. Let us choose an arbitrary
vertex r of the graph, and perform a depth-first search from r. Let T be the resulting DFS
tree. We are now going to define a hashing function H : E → P(E), where P(E) denotes the
powerset of E; the value H(e) will be called a hash of e. If e ̸∈ T , then we define H(e) = {e}.
Otherwise, we take H(e) as the set of non-tree edges leaping over e. Let us note that the set
Ce of edges f such that e ∈ H(f) forms a cycle – the fundamental cycle of e.

▶ Lemma 4 (⋆). For a connected graph G = (V,E) and a subset A of its edges, the graph
G′ := G−A is disconnected if and only if there is a nonempty subset B ⊆ A such that xor
of the hashes of the edges in B is an empty set.
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71:6 Determining 4-Edge-Connected Components in Linear Time

Since our graph has no 1-edge-cuts or 2-edge-cuts, no created hashes are empty, and no
two edges have equal hashes. Hence, removing a set of three edges disconnects a 3-edge-
connected graph if and only if xor of the hashes of all of them is the empty set. Moreover,
after removing some 3-edge-cut, the graph disconnects into exactly two components, and no
removed edge connects vertices within one component.

As storing hashes as sets of edges would be inefficient, we define compressed hashes,
resembling the notion of sketches introduced by Ahn et al. [1] and Kapron et al. [28].
We express compressed hashes as b-bit numbers where b = ⌈3 log2(m)⌉, i.e., as a function
CH : E → {0, . . . , 2b −1}. For each non-tree edge e, we draw CH(e) randomly and uniformly
from the set of b-bit numbers. For a tree edge e, we define its compressed hash CH(e) as
the xor of the compressed hashes of the edges in its hash, i.e., CH(e) =

⊕
f∈H(e) CH(f).

Note that since b = O(logm), we can perform arithmetic operations on compressed hashes in
constant time. However, this comes at a cost of allowing the collisions of compressed hashes.

For the ease of exposition, in the description of this algorithm we will use hash tables;
because of that, the algorithm described in this section will have expected linear instead of
worst-case linear running time. Formally, we create a hash table M : {0, . . . , 2b−1} → E∪{⊥},
which for any b-bit number x returns an edge whose compressed hash is equal to x; or ⊥ if
no such edge exists. In the unlikely event that there are multiple edges whose compressed
hashes are equal to x, M returns any of them.

We will now categorize 3-edge-cuts based on the number of tree edges they contain, and
show how to handle each case. We remark that each 3-edge-cut must intersect T as it is
a spanning tree of G. Therefore, a 3-edge-cut may intersect T in one edge (Subsection 4.1),
two edges (Subsection 4.2), or three edges (Subsection 4.3).

Throughout the case analysis, we will heavily rely on the following fact:

▶ Lemma 5. Given two edges e and f of some 3-edge-cut in a 3-edge-connected graph, the
remaining edge is uniquely identified by its hash: H(e) ⊕H(f).

Proof. If {e, f, g} is a 3-edge-cut, then H(e)⊕H(f)⊕H(g) = ∅, so H(g) = H(e)⊕H(f). ◀

4.1 One tree edge
Let e be an edge of T that is the only tree edge of some 3-edge-cut. The two resulting
connected components after the removal of such a cut are Te and T \ Te. As e is not a
bridge, low(e) is well-defined and connects Te with T \ Te, so it belongs to the cut as well.
By Lemma 5, this uniquely determines the third edge of this cut. Thus, in order to detect
all such cuts, we iterate over all tree edges e and for each of them, we look up in M if there
exists an edge with compressed hash equal to CH(e) ⊕ CH(low(e)). If it exists and if it
turns out to be a non-tree edge g, we output the triple {e, low(e), g} as a 3-edge-cut.

4.2 Two tree edges
Let e and f be the edges of T that form a 3-edge-cut c together with some back edge g.
Without loss of generality, we can assume that e <T f , thanks to the following fact:

▶ Lemma 6 (⋆). The edges e and f are comparable with respect to ≤T .

The two connected components of G\c are L := Te \Tf and R := T \L, and the remaining
back edge g connects L and R. We distinguish two cases, differing in the location of g (see
Figure 2 from the full version of this work): two tree edges, lower case, where g connects L
with Tf , and two tree edges, upper case, where g connects L with T \ Te.
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Two tree edges, lower case. Let A be the set of back edges between Tf and T \ Tf . It
consists of the edge g, connecting L with Tf , and of several edges connecting Tf with T \ Te.
Let B be the set of heads of edges from A (we remind that back edges are directed towards
the root r). All elements of B lie on the path from f to the root r, and the head of g is the
deepest element of B.

Using this observation, we will use the algorithm from Theorem 3. We initialize an
instance of it with the tree T , k = 1, C = 2n. Then, for each back edge e = xy, we create
one input path Pe from x to y of weight we := 2n− pre(y). The algorithm determines, for
each tree edge f , the back edge leaping over f with the largest preorder of its head; call this
edge MaxUp(f). This back edge is the only candidate for g, given f .

Hence, we can find all such cuts by firstly initializing the data structure, and then iterating
over all tree edges f . For each f , we take g = MaxUp(f). Knowing f and g, we can look up
in M whether there exists an edge whose compressed hash is CH(f) ⊕CH(g) (Lemma 5). If
it exists and if it is a tree edge, then we call it e and output the triple {e, f, g} as a 3-edge-cut.

Two tree edges, upper case. Let A be the set of non-tree edges between Te and T \ Te. It
consists of the back edge g, connecting L with T \ Te, and of several edges connecting Tf

with T \ Te. Let B be the set of the tails of the edges from A. Let v ∈ L be the tail of g.
As v /∈ Tf , then we either have pre(v) < minu∈Tf

pre(u), or pre(v) > maxu∈Tf
pre(u). In the

first case, v is the vertex with the smallest preorder which is a tail of some edge leaping over
e; while in the second case v is the analogous vertex with the largest preorder.

Based on this observation, we will again use the algorithm from Theorem 3 again. We
initialize one instance of it with the tree T , k = 1, and C = 2n. Then for each back edge
e = xy, we create one input path Pe from x to y of weight we := pre(x). We also initialize
another instance of this algorithm in the same way, only that we set we := 2n−pre(x) instead.
The first instance determines, for each tree edge e, the back edge MinDn(e) leaping over e
with the smallest preorder of its tail; while the second instance determines the analogous edge
MaxDn(e), with the largest preorder of its tail. By our considerations above, if any desired
{e, f, g} cut exists, then g ∈ {MinDn(e),MaxDn(e)}.

Hence, we can find all such cuts by firstly initializing both instances of the data structure.
Then, we iterate over all tree edges e, and for each e we check both candidates for g. If our
hash table contains an edge whose compressed hash is CH(e) ⊕ CH(g) and it is a tree edge,
then we call it f and output the triple {e, f, g} as a 3-edge-cut.

4.3 Three tree edges

Solving this case in a way similar to the previous cases seems intractable. We consider this
subsection, together with the time analysis following it, as one of the key ideas of this work.

In this case, we assume that no non-tree edges belong to the cut. Therefore, we can
contract all of them simultaneously and recursively list all 3-edge-cuts in the resulting
graph. Since 3-edge-cuts in the contracted graph exactly correspond to the 3-edge-cuts
consisting solely of tree edges in the original graph, this reduction is sound. The contraction
is performed in O(n+m) time by identifying the vertices within the connected components
of G− E(T ). Let G′ be the graph after these contractions. Since G is 3-edge-connected, G′

is 3-edge connected as well, so the assumption about the input graph being 3-edge-connected
is preserved. We do not modify the value of b in the subsequent recursive calls, even though
the value of m decreases.
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4.4 Time and correctness analysis
We will now compute the expected time complexity of our algorithm. The subroutines from
Subsections 4.1 and 4.2 clearly take expected linear time. The only nontrivial part of the
analysis is the recursion in Subsection 4.3. Let T (m) denote the maximum expected time
our algorithm needs to solve any graph with at most m edges. Since our graph is 3-edge-
connected, the degree of each vertex in G is at least 3, so |E(G)| ≥ 3

2 |V (G)| ≥ 3
2 |E(G′)| ⇒

|E(G′)| ≤ 2
3 |E(G)|. Therefore, we have that T (m) ≤ O(m) + T

( 2
3m

)
. The solution to this

recurrence is T (m) = O(m), hence the whole algorithm runs in expected linear time.
We proceed to proving that our algorithm works correctly with sufficiently high probability.

The only reason it can output wrong result comes from the compression of hashes – if we
used their uncompressed version instead, the algorithm would clearly be correct.

The maximum number of queries to our hash table is linear in terms of n, which follows
from a similar argument to the one presented in Subsection 4.4. Hence, there exists some
absolute constant c such that the number of queries is bounded by cn. For each query with
value q, and for each edge whose hash is not equal to the hash whose compressed version we
ask about, there is 2−b probability that compressed version of this hash is equal to q. Hence,
the probability that we ever get a false positive is bounded from above by cnm2−b. Since
b = ⌈3 log2(m)⌉ and n ≤ m, we infer that cnm2−b ≤ c

m . Therefore, our algorithm works
correctly with probability at least 1 − c

m .

5 Deterministic algorithm

Having established a linear time randomized algorithm producing 3-edge-cuts in 3-edge-
connected graphs, we will now determinize it by designing deterministic implementations of
the subroutines for each of the cases considered in the randomized algorithm. Three cases
need to be derandomized: “one tree edge” (Subsection 4.1), “two tree edges, lower case”, and
“two tree edges, upper case” (Subsection 4.2). In the following description, we cannot use
compressed hashes anymore: the compression is a random process which inevitably results
in false positives. Instead, we will exploit additional properties of 3-edge-cuts in order to
produce an efficient deterministic implementation of the algorithm.

Recall that in the description of the randomized implementation of the algorithm, we
defined the values low(e), MaxUp(e), MinDn(e), and MaxDn(e) for any tree edge e. For
the deterministic variant of the algorithm, we generalize these notions: we define low1(e),
low2(e), and low3(e) as the three back edges leaping over e with the minimal preorders of
their targets; in particular, we set low1(e) := low(e). We analogously define MaxUp1(e),
MaxUp2(e), MinDn1(e), MinDn2(e), MaxDn1(e), and MaxDn2(e). We remark that low3(e)
might not exist if there are fewer than three edges leaping over e; in this case, we put
low3(e) := ⊥. However, all the other values must exist – otherwise, at most one edge would
leap over e, which would mean that this edge, together with e, would form a 2-edge-cut of G.

It is straightforward to compute all the values defined above in linear time; for instance,
the generalizations of MaxUp, MinDn, and MaxDn can be determined by passing k = 2 to
the algorithm in Theorem 3 instead of k = 1. Hence, in the following description, we will
assume that all the values above have already been computed.

5.1 One tree edge
Recall that in this case, we are to find all 3-edge-cuts intersecting a fixed depth-first search
tree T in a single edge. This is fairly straightforward: if some 3-edge-cut C contains exactly
one tree edge e of T , then the border of the cut is exactly Te; hence, this cut must include
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all back edges leaping over e. Therefore, e belongs to a 3-edge-cut of this kind if and only if
low3(e) = ⊥, i.e. if there only exist two back edges leaping over e; in this case, e and these
two edges form a 3-edge-cut. Since this check can be easily performed in O(n) time for all
tree edges in T , the whole subroutine runs in O(n+m) time complexity.

5.2 Two tree edges, lower case
Recall that this case requires us to find all 3-edge-cuts intersecting a fixed depth-first search
tree T in two edges, say e and f , such that e < f and the remaining back edge g connects
Tf with Te \ Tf . Hence, g is the only back edge connecting Tf with Te \ Tf , no back edges
connect Te \ Tf with T \ Te, but there may be multiple back edges connecting Tf with T \ Te.

We shall exploit the fact that in a valid 3-edge-cut of this kind, all back edges leaping
over e must originate from Tf . This observation severely limits the set of possible tree edges
f . This is formalized by the notion of the deepest down cut of e:

▶ Definition 7 (deepest down cut). For a tree edge e in T , we define the deepest down
cut of e, denoted DeepestDnCut(e), as the deepest tree edge f ≥ e for which all back edges
leaping over e originate from Tf .

▶ Lemma 8 (⋆). For every tree edge e, DeepestDnCut(e) is defined correctly and uniquely.
Moreover, every 3-edge-cut {e, f, g} of the considered kind satisfies e < f ≤ DeepestDnCut(e).

▶ Lemma 9 (⋆). For every tree edge e, DeepestDnCut(e) = uv is the tree edge whose head
v is the lowest common ancestor of two vertices: the tails of MinDn1(e) and MaxDn1(e).

Thanks to Lemma 9, we can compute DeepestDnCut(e) in constant time for each tree
edge e as the lowest common ancestor of two vertices can be computed in constant time after
linear preprocessing [14].

We now shift our focus to the lower tree edge f . As in Section 4, the only possible
candidate g for a back edge of the cut leaping over f is given by MaxUp1(f). The only
problematic part is locating the remaining tree edge e. Previously, we utilized randomness in
order to calculate the compressed hash of e given the compressed hashes of f and g. Here,
we instead use the following fact:

▶ Lemma 10 (⋆). If {e, f, g} is a 3-edge-cut of the considered kind for some tree edges e
and f > e, then e is the deepest tree edge satisfying DeepestDnCut(e) ≥ f .

Lemmas 8 and 10 naturally lead to the following idea: given a tree edge e, the set of
edges f satisfying DeepestDnCut(e) ≥ f is a path Pe connecting the head of e with the head
of DeepestDnCut(e); we assign this path a weight we equal to the depth of e in T . We then
invoke Theorem 3 with the tree T , the weighted paths {Pe | e ∈ E(T )}, and k = 1. This
lets us find, in O(n) time, for each tree edge f ∈ E(T ), the path Pe of the maximum weight
containing f as an edge. This path naturally corresponds to the tree edge e from Lemma 10.
This way, for every tree edge f , we have uniquely identified a back edge g and a tree edge e
such that the only possible 3-edge-cut containing f as a deeper tree edge is {e, f, g}.

It only remains to verify that {e, f, g} is a 3-edge-cut. Since DeepestDnCut(e) ≥ f

guarantees that all back edges leaping over e originate from Tf , we only need to check that
exactly one edge (that is, g) connects Tf with Te \Tf . As g = MaxUp1(f), it suffices to verify
that the edge MaxUp2(f), which is a back edge leaping over f whose head is the deepest
apart from g, also leaps over e (i.e., it does not terminate in Te).

It can be easily verified that the implementation of the subroutine is deterministic and
runs in linear time with respect to the size of G.
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5.3 Two tree edges, upper case
Recall that in this case, we are required to find all 3-edge-cuts intersecting T in two edges e
and f , such that e < f and the remaining back edge g connects Te \ Tf with T \ Te. Similarly
to the randomized case, we use the fact that given a tree edge e, the tail of g has either the
smallest preorder (i.e., g = MinDn1(e)) or the largest preorder (i.e., g = MaxDn1(e)) among
all the back edges leaping over e. Without loss of generality, assume that g = MinDn1(e);
the latter case is analogous.

In a similar vein to previous case, observe that if {e, f, g} is a 3-edge-cut for some f > e,
then all back edges leaping over e other than g must originate from Tf .

This leads to the following slight generalization of DeepestDnCut (Definition 7):

▶ Definition 11. For a tree edge e in T , we define the value DeepestDnCutNoMin(e) as
the deepest tree edge f ≥ e for which all back edges leaping over e other than MinDn1(e)
originate from Tf .

The process of computation of DeepestDnCut(e) asserted by Lemma 9 can be easily modified
to match our needs: we take DeepestDnCutNoMin(e) as the tree edge whose head is the
lowest common ancestor of the tails of MinDn2(e) and MaxDn1(e). We refer the reader to
Figure 4 from the full version of the work for a helpful picture.

Now, fix the shallower tree edge e of the cut. Let f0 := DeepestDnCutNoMin(e). Then, if
some tree edge f > e belongs to the 3-edge-cut {e, f, g}, then f ≤ f0 (otherwise, there would
be multiple edges connecting Te \ Tf with T \ Te). The natural question is then: is {e, f0, g}
a 3-edge-cut? The only possible problem is that there may exist back edges connecting Tf0

with Te \ Tf0 . Fortunately, if this is the case, then the back edge MaxUp1(f0), dependent
only on f0, is one of these back edges.

Hence, let h0 := MaxUp1(f0). If h0 leaps over e, we are done, and {e, f0, g} is an edge
cut. Otherwise, the subtree Tf for the sought 3-edge-cut {e, f, g} must contain the head of
h0 (or else h0 would connect Tf with Te \ Tf ). Let then f1, e ≤ f1 < f0 be the deepest tree
edge containing the head of h0, that is, the edge whose head coincides with the head of h0.
Then, the edge f of the 3-edge-cut {e, f, g} must satisfy e < f ≤ f1. We can then repeat
this procedure: given f1, we compute h1 := MaxUp1(f1), and either h1 leaps over e and we
are done, or we calculate another edge f2 < f1 supplying a better bound on the depth of f .

Since the graph is finite, this process terminates in k = O(n) steps, producing the lowest
tree edge fk ≥ e such that no back edge connects Tfk

with Te \ Tfk
, and no back edge

other than g connects Te \ Tfk
with T \ Te. If fk = e, then no 3-edge-cut {e, f, g} exists for

f > e. Otherwise, {e, fk, g} is naturally a correct 3-edge-cut. Since two edges of a 3-edge-cut
uniquely identify the third edge (Lemma 5), we conclude that this is the only 3-edge-cut
containing e and g. We refer the reader to Figure 5 from the full version of the paper for
a helpful picture depicting the iterative process above.

In order to optimize the algorithm, we seek to optimize the iterative process described
above. Indeed, for each e ∈ E(T ), the process is very similar: start with some edge f > e,
and then repeatedly replace f with a higher edge, until a replacement would result in an edge
closer to the root than e. We can model this process with a rooted tree U defined as follows:

the vertices of U are the tree edges of T , and ⊥,
⊥ is the root of U ,
for a non-root vertex e of U , its parent is the tree edge with the same head as MaxUp1(e).
If the head of MaxUp1(e) coincides with the root of T , then the parent of e in U is ⊥.

Naturally, U can be constructed in linear time with respect to the size of T ; moreover, if
an edge p is a parent of another edge q in U , then p <T q.
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Now, the iteration is equivalent to the repeated replacement of f0 with its parent in U as
long as the parent is greater or equal than e with respect to <T . In other words, the final
edge f ′ := final(f0, e) is taken as the shallowest ancestor of f0 in U for which f ′ ≥T e.

This leads to the final idea: we simulate a forest of rooted subtrees of U using a disjoint
set union data structure FU (Theorem 1). Each subtree additionally keeps its root, which
can be retrieved from FU (Lemma 2). Initially, each subtree of U contains a single vertex.

After the initialization of FU , we iterate e over the tree edges of T in the decreasing order
of depth in T . Throughout the process, we maintain the following invariant on FU : an edge
ef ∈ E(U) for e < f has been added to the forest if and only if e has been considered at
any previous iteration as the shallower tree edge of the cut. Hence, at the beginning of the
iteration for a given edge e, we add to FU all tree edges of U originating from e. At this point
of time, for every tree edge f such that f >T e, the edge final(f, e) is given by FU .lowest(f).
This reduces the entire iterative process described above to a single lowest query on FU .

We initialized FU on a tree with n vertices, and we issued O(n) queries to it in total.
Therefore, the whole subroutine runs in time linear with respect to the size of G.

Summing up, we replaced each randomized subroutine with its deterministic counterpart,
preserving the linear guarantee on the runtime of the algorithm. We conclude that there
exists a deterministic linear time algorithm listing 3-edge-cuts in 3-edge-connected graphs.

6 Reconstructing the structure of 4-edge-connected components

In this section, we show how to build a structure of 4-edge-connected components of a 3-
edge-connected graph G, given the set C of all 3-edge-cuts in G.

First of all, recall what such a structure looks like.

▶ Theorem 12. [8, Corollary 8] For a 3-edge-connected graph G = (V,E), there exists a
tree H = (U,F ) and functions ϕ : C → F and ψ : V → U , such that ϕ is a bijection from
3-edge-cuts of G to the edges of H, and ψ maps (not necessarily surjectively) vertices of G to
the vertices of H so that whole 4-edge-connected components are mapped to the same vertex.

Moreover, if a 3-edge-cut c partitions the vertices of G into two parts V1 and V2, then
ϕ(c) partitions the vertices of H into U1 and U2 such that ψ−1(U1) = V1 and ψ−1(U2) = V2.

We refer the reader to Figure 6 in the full version for an illustrative example of a decom-
position postulated by Theorem 12.

The tree H is usually unrooted in the literature. However, we are going to root it. Namely,
we take a depth-first search tree T of G, rooted at some vertex r, and we root H at ψ(r).
For a vertex u ∈ U , we let Hu denote the subtree of H rooted at u.

▶ Definition 13. For a 3-edge-cut c, we define P (c) as the set of vertices from the connected
component of G \ c not containing r.

We remark that since c is a minimal cut, G \ c consists of two connected components, so
P (c) is determined uniquely.

▶ Lemma 14 (⋆). Let v, u ∈ U , and let e1, e2, . . . , ek ∈ F be the sequence of edges of H on
the path from v and u in H. If v is an ancestor of u, then for each pair of integers i, j such
that 1 ≤ i < j ≤ k, we have |P (ϕ−1(ei))| > |P (ϕ−1(ej))|.

▶ Lemma 15 (⋆). Given a 3-edge-connected graph G and the set of all its 3-edge-cuts C,
the sizes of P (c) for all c ∈ C can be computed in linear time with respect to the size of G.
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To reconstruct H , we will also use the following structural lemma about cuts sharing the
same edge of graph G.

▶ Lemma 16 (⋆). For an edge (u, v) = e ∈ E, let l(e) be the set of all 3-edge-cuts containing
e. The image ϕ(l(e)), i.e., the set of all edges of H corresponding to the edge cuts containing
e, forms a path in H between ψ(u) and ψ(v).

We remark an edge case in Lemma 16: if ψ(u) = ψ(v) for some edge e = (u, v), then the
image ϕ(l(e)) is empty. Moreover, since each 3-edge-cut c ∈ C contains at least one tree
edge of T , each edge ϕ(c) is covered by at least one path ϕ(l(e)) for e ∈ E(T ). Equivalently,
H is a tree, rooted at ψ(r), equal to the union of all paths ϕ(l(e)) for e ∈ E(T ). This
representation of H is the cornerstone of our algorithm reconstructing H from G and C.

▶ Lemma 17. There exists a linear time algorithm which, given a graph G and the list C of
all 3-edge-cuts of G, constructs the tree H, along with the mappings ϕ and ψ.

Sketch of the proof. For each edge e ∈ T , create a list l(e) of all 3-edge-cuts c containing
e, sorted decreasingly by the size of P (c) using radix sort. Let e1, . . . , en−1 ∈ E(T ) be the
sequence of edges visited by a depth-first search of T and let ei = uivi, where ui is the vertex
of T closer to the root r. We create H iteratively; initially, H is a single vertex ψ(r). We
maintain the following invariant after k iterations of the algorithm: H is a connected tree,
rooted at ψ(r), equal to the union of all paths ϕ(l(ei)) for i ∈ {1, 2, . . . , k}.

It is clear that after n− 1 iterations, H will be the required rooted tree. Consider the
k-th iteration of the algorithm, k ∈ [1, n− 1], in which we need to add to H the path ϕ(l(ek)),
originating from ψ(uk) and terminating at ψ(vk). It can be proved that ψ(uk), together
with the vertical path connecting it with the root of H, is already in H. Now, adding the
path ϕ(l(ek)) to H is rather straightforward: first, starting from ψ(uk), we go up the tree
H along the edges of H corresponding to the edge cuts containing ek. Then, we proceed
down the tree: we iterate the list l(ek) of cuts, excluding the cuts corresponding to the edges
visited in the first part of the traversal. For each such cut, we go down the tree along the
edge corresponding to the cut (creating it, if necessary). Each 3-edge-cut c is considered in
only a constant number of iterations of the algorithm: an edge of H corresponding to c is
traversed by the path ϕ(l(ek)) if and only if ek ∈ c. Therefore, the time complexity of all
iterations in total is O(m+ |C|) = O(m+ n). ◀

This concludes the construction of a tree representing all 3-edge-cuts in G. As a result,
each vertex of H, as long as it is not empty, contains a single 4-edge-connected component
of G. Hence, this algorithm also computes the decomposition of a 3-edge-connected graph G

into 4-edge-connected components in total linear time.

7 Open problems

As a natural open problem whose resolving would complement this result nicely, we suggest
investigating if it is possible to extend our result to vertex connectivity or to the higher-order
edge connectivity.

Problem 1. Given an undirected graph G = (V,E), is it possible to find all 4-vertex-
connected components of G in linear time?
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Problem 2. Given an undirected graph G = (V,E), is it possible to find all 5-edge-connected
components of G in linear time?

We also remark that our algorithm assumes the word RAM model in which we can
perform any arithmetic and bitwise operations on pointers and O(log n)-bit words in constant
time; this is required by the linear time data structure of Gabow and Tarjan (Theorem 1,
[10]). The natural question is whether this assumption can be avoided.

Problem 3. Given an undirected graph G = (V,E), is it possible to find all 4-edge-connected
components of G in linear time in the pointer machine model?
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Abstract

We present an isomorphism test for graphs of Euler genus g running in time 2O(g4 log g)nO(1). Our
algorithm provides the first explicit upper bound on the dependence on g for an fpt isomorphism
test parameterized by the Euler genus of the input graphs. The only previous fpt algorithm runs in
time f(g)n for some function f (Kawarabayashi 2015). Actually, our algorithm even works when the
input graphs only exclude K3,h as a minor. For such graphs, no fpt isomorphism test was known
before.

The algorithm builds on an elegant combination of simple group-theoretic, combinatorial, and
graph-theoretic approaches. In particular, we introduce (t, k)-WL-bounded graphs which provide a
powerful tool to combine group-theoretic techniques with the standard Weisfeiler-Leman algorithm.
This concept may be of independent interest.
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1 Introduction

Determining the computational complexity of the Graph Isomorphism Problem is a long-
standing open question in theoretical computer science (see, e.g., [13]). The problem is
easily seen to be contained in NP, but it is neither known to be in PTIME nor known to be
NP-complete. In a breakthrough result, Babai [1] recently obtained a quasipolynomial-time
algorithm for testing isomorphism of graphs (i.e., an algorithm running in time nO((log n)c)

where n denotes the number of vertices of the input graphs, and c is a constant), achieving
the first improvement over the previous best algorithm running in time nO(

√
n/ log n) [3] in

over three decades. However, it remains wide open whether GI can be solved in polynomial
time.

In this work, we are concerned with the parameterized complexity of isomorphism testing.
While polynomial-time isomorphism tests are known for a large variety of restricted graph
classes (see, e.g., [4, 7, 9, 11, 18, 24]), for several important structural parameters such as
maximum degree or the Hadwiger number1, it is still unknown whether isomorphism testing
is fixed-parameter tractable (i.e., whether there is an isomorphism algorithm running in time
f(k)nO(1) where k denotes the graph parameter in question, n the number of vertices of the

1 The Hadwiger number of a graph G is the maximum number h such that Kh is a minor of G.
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input graphs, and f is some function). On the other hand, there has also been significant
progress in recent years. In 2015, Lokshtanov et al. [17] obtained the first fpt isomorphism
test parameterized by the tree-width k of the input graph running in time 2O(k5 log k)n5. This
algorithm was later improved by Grohe et al. [8] to a running time of 2O(k·(log k)c)n3 (for
some constant c). In the same year, Kawarabayashi [14] obtained the first fpt isomorphism
test parameterized by the Euler genus g of the input graph running time f(g)n for some
function f . While Kawarabayashi’s algorithm achieves optimal dependence on the number
of vertices of the input graphs, it is also extremely complicated and it provides no explicit
upper bound on the function f . Indeed, the algorithm spans over multiple papers [14, 15, 16]
and builds on several deep structural results for graphs of bounded genus.

In this work, we present an alternative isomorphism test for graphs of Euler genus g

running in time 2O(g4 log g)nO(1). In contrast to Kawarabayashi’s algorithm, our algorithm
does not require any deep graph-theoretic insights, but rather builds on an elegant combination
of well-established and simple group-theoretic, combinatorial, and graph-theoretic ideas. In
particular, this enables us to provide the first explicit upper bound on the dependence on
g for an fpt isomorphism test. Actually, the only property our algorithm exploits is that
graphs of genus g exclude K3,h as a minor for h ≥ 4g + 3 [25]. In other words, our main
result is an fpt isomorphism test for graphs excluding K3,h as a minor.

▶ Theorem 1. The Graph Isomorphism Problem for graphs excluding K3,h as a minor can
be solved in time 2O(h4 log h)nO(1).

For this class of graphs, the best existing algorithm runs in time nO((log h)c) for some
constant c [21], and no fpt isomorphism test was known prior to this work.

For the algorithm, we combine different approaches to the Graph Isomorphism Problem.
On a high-level, our algorithm follows a simple decomposition strategy which decomposes
the input graph G into pieces such that the interplay between the pieces is simple. The main
idea is to define the pieces in such a way that, after fixing a small number of vertices, the
automorphism group of G restricted to a piece D ⊆ V (G) is similar to the automorphism
group of a graph of maximum degree 3. This allows us to test isomorphism between
the pieces using the group-theoretic graph isomorphism machinery dating back to Luks’s
polynomial-time isomorphism test for graphs of bounded maximum degree [18].

In order to capture the restrictions on the automorphism group, we introduce the notion of
(t, k)-WL-bounded graphs which generalize so-called t-CR-bounded graphs. The class of t-CR-
bounded graphs was originally defined by Ponomarenko [23] and was recently rediscovered in
[21, 10, 22] in a series of works eventually leading to an algorithm testing isomorphism of
graphs excluding Kh as a topological subgraph in time nO((log h)c). Intuitively speaking, a
graph G is t-CR-bounded if an initially uniform vertex-coloring χ can be turned into a discrete
coloring (i.e., a coloring where every vertex has its own color) by repeatedly (a) applying
the standard Color Refinement algorithm, and (b) splitting all color classes of size at most
t. We define (t, k)-WL-bounded graphs in the same way, but replace the Color Refinement
algorithm by the well-known Weisfeiler-Leman algorithm of dimension k (see, e.g., [5, 12]).
Maybe surprisingly, this natural extension of t-CR-bounded has not been considered so far in
the literature, and we start by building a polynomial-time isomorphism test for such graphs
using the group-theoretic methods developed by Luks [18] as well as a simple extension due
to Miller [20]. Actually, it turns out that isomorphism of (t, k)-WL-bounded graphs can even
be tested in time nO(k·(log t)c) using recent extensions [21] of Babai’s quasipolynomial-time
isomorphism test. However, since we only apply these methods for t = k = 2, there is no
need for our algorithm to rely on such sophisticated subroutines.
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Now, as the main structural insight, we prove that each 3-connected graph G that
excludes K3,h as a minor admits (after fixing 3 vertices) an isomorphism-invariant rooted tree
decomposition (T, β) such that the adhesion width (i.e., the maximal intersection between
two bags) is bounded by h. Additionally, each bag β(t), t ∈ V (T ), can be equipped with a set
γ(t) ⊆ β(t) of size |γ(t)| ≤ h4 such that, after fixing all vertices in γ(t), G restricted to β(t) is
(2, 2)-WL-bounded. Given such a decomposition, isomorphisms can be computed by a simple
bottom-up dynamic programming strategy along the tree decompositions. For each bag,
isomorphism is tested by first individualizing all vertices from γ(t) at an additional factor of
|γ(t)|! = 2O(h4 log h) in the running time. Following the individualization of these vertices, our
algorithm can then simply rely on a polynomial-time isomorphism test for (2, 2)-WL-bounded
graphs. Here, we incorporate the partial solutions computed in the subtree below the current
bag via a simple gadget construction.

To compute the decomposition (T, β), we also build on the notion of (2, 2)-WL-bounded
graphs. Given a set X ⊆ V (G), we define the (2, 2)-closure to be the set D = clG2,2(X) of all
vertices appearing in a singleton color class after artificially individualizing all vertices from
X, and performing the (2, 2)-WL procedure. As one of the main technical contributions,
we can show that the interplay between D and its complement in G is simple (assuming
G excludes K3,h as a minor). To be more precise, building on various properties of the
2-dimensional Weisfeiler-Leman algorithm, we show that |NG(Z)| < h for every connected
component Z of G − D. This allows us to choose D = clG2,2(X) as the root bag of (T, β) for
some carefully chosen set X, and obtain the decomposition (T, β) by recursion.

2 Preliminaries

2.1 Graphs
A graph is a pair G = (V (G), E(G)) consisting of a vertex set V (G) and an edge set E(G).
All graphs considered in this paper are finite and simple (i.e., they contain no loops or
multiple edges). Moreover, unless explicitly stated otherwise, all graphs are undirected. For
an undirected graph G and v, w ∈ V (G), we write vw as a shorthand for {v, w} ∈ E(G).
The neighborhood of a vertex v ∈ V (G) is denoted by NG(v). The degree of v, denoted by
degG(v), is the number of edges incident with v, i.e., degG(v) = |NG(v)|. For X ⊆ V (G), we
define NG(X) := (

⋃
v∈X NG(v)) \ X. If the graph G is clear from context, we usually omit

the index and simply write N(v), deg(v) and N(X). We write Kℓ,h to denote the complete
bipartite graph on ℓ vertices on the left side and h vertices on the right side. For two sets
A, B ⊆ V (G), we denote by EG(A, B) := {vw ∈ E(G) | v ∈ A, w ∈ B}. Also, G[A, B]
denotes the graph with vertex set A ∪ B and edge set EG(A, B). Moreover, G[A] := G[A, A]
denotes the induced subgraph on A, and G − A the subgraph induced by the complement
of A, that is, the graph G − A := G[V (G) \ A]. For F ⊆ E(G), we also define G − F to be
the graph obtained from G by removing all edges contained in F (the vertex set remains
unchanged). A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A graph H is a minor of G if H can be obtained from G by deleting vertices
and edges, as well as contracting edges. The graph G excludes H as a minor if it does not
have a minor isomorphic to H.

An isomorphism from G to a graph H is a bijection φ : V (G) → V (H) that respects
the edge relation, that is, for all v, w ∈ V (G), it holds that vw ∈ E(G) if and only if
φ(v)φ(w) ∈ E(H). Two graphs G and H are isomorphic, written G ∼= H, if there is
an isomorphism from G to H. We write φ : G ∼= H to denote that φ is an isomorphism
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from G to H. Also, Iso(G, H) denotes the set of all isomorphisms from G to H. The
automorphism group of G is Aut(G) := Iso(G, G). Observe that, if Iso(G, H) ̸= ∅, it holds
that Iso(G, H) = Aut(G)φ := {γφ | γ ∈ Aut(G)} for every isomorphism φ ∈ Iso(G, H).

A vertex-colored graph is a tuple (G, χV ) where G is a graph and χV : V (G) → C is a
mapping into some set C of colors, called vertex-coloring. Similarly, an arc-colored graph is a
tuple (G, χE), where G is a graph and χE : {(u, v) | {u, v} ∈ E(G)} → C is a mapping into
some color set C, called arc-coloring. Observe that colors are assigned to directed edges, i.e.,
the directed edge (v, w) may obtain a different color than (w, v). We also consider vertex-
and arc-colored graphs (G, χV , χE) where χV is a vertex-coloring and χE is an arc-coloring.
Typically, C is chosen to be an initial segment [n] := {1, . . . , n} of the natural numbers. To
be more precise, we generally assume that there is a linear order on the set of all potential
colors which, for example, allows us to identify a minimal color appearing in a graph in a
unique way. Isomorphisms between vertex- and arc-colored graphs have to respect the colors
of the vertices and arcs.

2.2 Weisfeiler-Leman Algorithm
The Weisfeiler-Leman algorithm, originally introduced by Weisfeiler and Leman in its 2-
dimensional version [28], forms one of the most fundamental subroutines in the context of
isomorphism testing.

Let χ1, χ2 : V k → C be colorings of k-tuples, where C is a finite set of colors. We say χ1
refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies χ2(v̄) = χ2(w̄) for all v̄, w̄ ∈ V k. The
colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 ⪯ χ2 and χ2 ⪯ χ1.

We describe the k-dimensional Weisfeiler-Leman algorithm (k-WL) for all k ≥ 1. For an
input graph G let χk

(0)[G] : (V (G))k → C be the coloring where each tuple is colored with the
isomorphism type of its underlying ordered subgraph. More precisely, χk

(0)[G](v1, . . . , vk) =
χk

(0)[G](v′
1, . . . , v′

k) if and only if, for all i, j ∈ [k], it holds that vi = vj ⇔ v′
i = v′

j and
vivj ∈ E(G) ⇔ v′

iv
′
j ∈ E(G). If the graph is equipped with a coloring the initial coloring

χk
(0)[G] also takes the input coloring into account. More precisely, for a vertex-coloring χV ,

it additionally holds that χV (vi) = χV (v′
i) for all i ∈ [k]. And for an arc-coloring χE , it is

the case that χE(vi, vj) = χE(v′
i, v′

j) for all i, j ∈ [k] such that vivj ∈ E(G).
We then recursively define the coloring χk

(i)[G] obtained after i rounds of the algorithm.

For k ≥ 2 and v̄ = (v1, . . . , vk) ∈ (V (G))k let χk
(i+1)[G](v̄) :=

(
χk

(i)[G](v̄), Mi(v̄)
)

where

Mi(v̄) :=
{{(

χk
(i)[G](v̄[w/1]), . . . , χk

(i)[G](v̄[w/k])
) ∣∣∣ w ∈ V (G)

}}
and v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w (and {{. . . }} denotes a multiset). For k = 1 the definition is similar, but we only
iterate over neighbors of v, i.e., χ1

(i+1)[G](v) :=
(

χ1
(i)[G](v), Mi(v)

)
where

Mi(v) :=
{{

χ1
(i)[G](w)

∣∣∣ w ∈ NG(v)
}}

.

By definition, χk
(i+1)[G] ⪯ χk

(i)[G] for all i ≥ 0. Hence, there is a minimal i∞ such that
χk

(i∞)[G] ≡ χk
(i∞+1)[G] and for this i∞ the coloring χk

WL[G] := χk
(i∞)[G] is the k-stable coloring

of G. The k-dimensional Weisfeiler-Leman algorithm takes as input a (vertex- or arc-)colored
graph G and returns (a coloring that is equivalent to) χk

WL[G]. This can be implemented in
time O(nk+1 log n) (see [12]).
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2.3 Group Theory
We introduce the group-theoretic notions required in this work. We refer to [26, 6] for further
background.

Permutation groups. A permutation group acting on a set Ω is a subgroup Γ ≤ Sym(Ω) of
the symmetric group. The size of the permutation domain Ω is called the degree of Γ. If
Ω = [n], then we also write Sn instead of Sym(Ω). For γ ∈ Γ and α ∈ Ω we denote by αγ

the image of α under the permutation γ. For A ⊆ Ω and γ ∈ Γ let Aγ := {αγ | α ∈ A}. The
set A is Γ-invariant if Aγ = A for all γ ∈ Γ. For a partition P of Ω let Pγ := {Aγ | A ∈ P}.
Observe that Pγ is again a partition of Γ. We say P is Γ-invariant if Pγ = P for all γ ∈ Γ.

For A ⊆ Ω and a bijection θ : Ω → Ω′ we denote by θ[A] the restriction of θ to the domain
A. For a Γ-invariant set A ⊆ Ω, we denote by Γ[A] := {γ[A] | γ ∈ Γ} the induced action of Γ
on A, i.e., the group obtained from Γ by restricting all permutations to A. More generally, for
every set Λ of bijections with domain Ω, we denote by Λ[A] := {θ[A] | θ ∈ Λ}. Similarly, for a
partition P of Ω, we denote by θ[P ] : P → P ′ the mapping defined via θ(A) := {θ(α) | α ∈ A}
for all A ∈ P . As before, Λ[P] := {θ[P] | θ ∈ Λ}.

Groups with restricted composition factors. We shall be interested in a particular subclass
of permutation groups, namely groups with restricted composition factors. Let Γ be a group.
A subnormal series is a sequence of subgroups Γ = Γ0 ≥ Γ1 ≥ · · · ≥ Γk = {id} such that Γi is
a normal subgroup of Γi−1 for all i ∈ [k]. The length of the series is k and the groups Γi−1/Γi

are the factor groups of the series, i ∈ [k]. A composition series is a strictly decreasing
subnormal series of maximal length. For every finite group Γ all composition series have the
same family (considered as a multiset) of factor groups (cf. [26]). A composition factor of a
finite group Γ is a factor group of a composition series of Γ.

▶ Definition 2. For d ≥ 2 let Γ̂d denote the class of all groups Γ for which every composition
factor of Γ is isomorphic to a subgroup of Sd. A group Γ is a Γ̂d-group if it is contained in
the class Γ̂d.

Let us point out the fact that there are two similar classes of groups usually referred by
Γd in the literature. The first is the class denoted by Γ̂d here originally introduced by Luks
[18], while the second one, for example used in [2], in particular allows composition factors
that are simple groups of Lie type of bounded dimension.

Group-Theoretic Tools for Isomorphism Testing. In this work, the central group-theoretic
subroutine is an isomorphism test for hypergraphs where the input group is a Γ̂d-group. Two
hypergraphs H1 = (V1, E1) and H2 = (V2, E2) are isomorphic if there is a bijection φ : V1 → V2
such that E ∈ E1 if and only if Eφ ∈ E2 for all E ∈ 2V1 (where Eφ := {φ(v) | v ∈ E} and
2V1 denotes the power set of V1). We write φ : H1 ∼= H2 to denote that φ is an isomorphism
from H1 to H2. Consistent with previous notation, we denote by Iso(H1, H2) the set of
isomorphisms from H1 to H2. More generally, for Γ ≤ Sym(V1) and a bijection θ : V1 → V2,
we define IsoΓθ(H1, H2) := {φ ∈ Γθ | φ : H1 ∼= H2}. In this work, we define the Hypergraph
Isomorphism Problem to take as input two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), a
group Γ ≤ Sym(V1) and a bijection θ : V1 → V2, and the goal is to compute a representation2

of IsoΓθ(H1, H2). The following algorithm forms a crucial subroutine.

2 While IsoΓθ(H1, H2) may be exponentially large, it can be represented by a single isomorphism
φ ∈ IsoΓθ(H1, H2) and a generating set for AutΓ(H1) := IsoΓ(H1, H1). For general background on how
to perform computations on permutation groups, I refer to [27].
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▶ Theorem 3 (Miller [20]). Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and
let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then IsoΓθ(H1, H2) can be
computed in time (n + m)O(d) where n := |V1| and m := |E1|.

▶ Theorem 4 (Neuen [21]). Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and
let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then IsoΓθ(H1, H2) can be
computed in time (n + m)O((log d)c) for some constant c where n := |V1| and m := |E1|.

Observe that both algorithms given by the two theorems tackle the same problem. The
second algorithm is asymptotically much faster, but it is also much more complicated and
the constant factors in the exponent of the running time are likely to be much higher. Since
this paper only applies either theorem for d = 2, it seems to be preferable to use the first
algorithm. Indeed, the first result is a simple extension of Luks’s well-known isomorphism
test for bounded-degree graphs [18], and thus the underlying algorithm is fairly simple. For
all these reasons, we mostly build on Theorem 3. However, for future applications of the
techniques presented in this work, it might be necessary to build on Theorem 4 to benefit
from the improved run time bound. For this reason, we shall provide variants of our results
building on Theorem 4 wherever appropriate.

3 Allowing Weisfeiler and Leman to Split Small Color Classes

In this section, we introduce the concept of (t, k)-WL-bounded graphs and provide a
polynomial-time isomorphism test for such graphs for all constant values of t and k. The
final fpt isomorphism test for graphs excluding K3,h as a minor builds on this subroutine for
t = k = 2.

The concept of (t, k)-WL-bounded graphs is a natural extension of t-CR-bounded graphs
which were already introduced by Ponomarenko in the late 1980’s [23] and which were
recently rediscovered in [21, 10, 22]. Intuitively speaking, a graph G is t-CR-bounded, t ∈ N,
if an initially uniform vertex-coloring χ (i.e., all vertices receive the same color) can be turned
into the discrete coloring (i.e., each vertex has its own color) by repeatedly

performing the Color Refinement algorithm (expressed by the letters “CR”), and
taking a color class [v]χ := {w ∈ V (G) | χ(w) = χ(v)} of size |[v]χ| ≤ t and assigning
each vertex from the class its own color.

A very natural extension of this idea to replace the Color Refinement algorithm by the
Weisfeiler-Leman algorithm for some fixed dimension k. This leads us to the notion of
(t, k)-WL-bounded graphs (the letters “CR” are replaced by “k-WL”). In particular, (t, 1)-
WL-bounded graphs are exactly the t-CR-bounded graphs. Maybe surprisingly, it seems that
this simple extension has not been considered so far in the literature.

▶ Definition 5. A vertex- and arc-colored graph G = (V, E, χV , χE) is (t, k)-WL-bounded if
the sequence (χi)i≥0 reaches a discrete coloring where χ0 := χV ,

χ2i+1(v) := χk
WL[V, E, χ2i, χE ](v, . . . , v)

and

χ2i+2(v) :=
{

(v, 1) if |[v]χ2i+1 | ≤ t

(χ2i+1(v), 0) otherwise

for all i ≥ 0.
Also, for the minimal i∞ ≥ 0 such that χi∞ ≡ χi∞+1, we refer to χi∞ as the (t, k)-WL-

stable coloring of G and denote it by χ(t,k)-WL[G].
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At this point, the reader may wonder why (χi)i≥0 is chosen as a sequence of vertex-
colorings and not a sequence of colorings of k-tuples of vertices (since k-WL also colors
k-tuples of vertices). While such a variant certainly makes sense, it still leads to the same
class of graphs. Let G be a graph and let χ := χk

WL[G]. The main insight is that, if there is
some color c ∈ im(χ) for which |χ−1(c)| ≤ t, then there is also a color c′ ∈ im(χ) for which
|χ−1(c′)| ≤ t and χ−1(c′) ⊆ {(v, . . . , v) | v ∈ V (G)}. In other words, one can not achieve any
additional splitting of color classes by also considering non-diagonal color classes.

We also need to extend several notions related to t-CR-bounded graphs. Let G be a
graph and let X ⊆ V (G) be a set of vertices. Let χ∗

V : V (G) → C be the vertex-coloring
obtained from individualizing all vertices in the set X, i.e., χ∗

V (v) := (v, 1) for v ∈ X and
χ∗

V (v) := (0, 0) for v ∈ V (G) \ X. Let χ := χ(t,k)-WL[G, χ∗
V ] denote the (t, k)-WL-stable

coloring with respect to the input graph (G, χ∗
V ). We define the (t, k)-closure of the set X

(with respect to G) to be the set

clGt,k(X) := {v ∈ V (G) | |[v]χ| = 1} .

Observe that X ⊆ clGt,k(X). For v1, . . . , vℓ ∈ V (G) we also use clGt,k(v1, . . . , vℓ) as a shorthand
for clGt,k({v1, . . . , vℓ}). If the input graph is equipped with a vertex- or arc-coloring, all
definitions are extended in the natural way.

Now, we concern ourselves with designing a polynomial-time isomorphism test for (t, k)-
WL-bounded graphs. Actually, we shall prove a slightly stronger result which turns out
to be useful later on. The main idea for the algorithm is to build a reduction to the
isomorphism problem for (t, 1)-WL-bounded graphs for which such results are already known
[23, 21]. Indeed, isomorphism of (t, 1)-WL-bounded graphs can be reduced to the Hypergraph
Isomorphism Problem for Γ̂t-groups. Since one may be interested in using different subroutines
for solving the Hypergraph Isomorphism Problem for Γ̂t-groups (see the discussion at the
end of Section 2.3), the main result is stated via an oracle for the Hypergraph Isomorphism
Problem on Γ̂t-groups.

▶ Theorem 6. Let G1, G2 be two vertex- and arc-colored graphs and let χi := χ(t,k)-WL[Gi].
Also let Pi = {[v]χi

| v ∈ V (Gi)} be the partition into color classes of χi. Then Pφ
1 = P2 for

all φ ∈ Iso(G1, G2).
Moreover, using oracle access to the Hypergraph Isomorphism Problem for Γ̂t-groups, in

time nO(k) one can compute a Γ̂t-group Γ ≤ Sym(P1) and a bijection θ : P1 → P2 such that

Iso(G1, G2)[P1] ⊆ Γθ.

In particular, Aut(G1)[P1] ∈ Γ̂t.

▶ Corollary 7. Let G1, G2 be two (t, k)-WL-bounded graphs. Then a representation for
Iso(G1, G2) can be computed in time nO(k·(log t)c) for some absolute constant c.

4 Structure Theory and Small Color Classes

Having established the necessary tools, we can now turn to the isomorphism test for graphs
excluding K3,h as a minor. We start by giving a high-level overview on the algorithm.
The main idea is to build on the isomorphism test for (2, 2)-WL-bounded graphs described
in the last section. Let G1 and G2 be two (vertex- and arc-colored) graphs that exclude
K3,h as a minor. Using well-known reduction techniques building on isomorphism-invariant
decompositions into triconnected3 components (see, e.g., [11]), we may assume without loss
of generality that G1 and G2 are 3-connected.

3 A triconnected component is either 3-connected or a cycle.
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The algorithm starts by individualizing three vertices. To be more precise, the algorithm
picks three distinct vertices v1, v2, v3 ∈ V (G1) and iterates over all choices of potential images
w1, w2, w3 ∈ V (G2) under some isomorphism between G1 and G2. Let X1 := {v1, v2, v3}
and X2 := {w1, w2, w3}. Also, let Di := clGi

2,2(Xi) denote the (2, 2)-closure of Xi, i ∈ {1, 2}.
Observe that Di is defined in an isomorphism-invariant manner given the initial choice of Xi.
Building on Theorems 3 and 6 it can be checked in polynomial time whether G1 and G2 are
isomorphic restricted to the sets D1 and D2.

Now, the central idea is to follow a decomposition strategy. Let Zi
1, . . . , Zi

ℓ denote the
vertex sets of the connected components of Gi − Di, and let Si

j := NGi(Zi
j) for j ∈ [ℓ] and

i ∈ {1, 2}. We recursively compute isomorphisms between all pairs of graphs Gi[Zi
j ∪ Si

j ] for
all j ∈ [ℓ] and i ∈ {1, 2}. To be able to determine whether all these partial isomorphisms can
be combined into a global isomorphism, the crucial insight is that |Si

j | < h for all j ∈ [ℓ] and
i ∈ {1, 2}.

▶ Lemma 8. Let G be a graph that excludes K3,h as a minor. Also let X ⊆ V (G) and define
D := clG2,2(X). Let Z be a connected component of G − D. Then |NG(Z)| < h.

Indeed, this lemma forms one of the main technical contributions of the paper. I remark
that similar statements are exploited in [10, 21, 22] eventually leading to an isomorphism test
running in time nO((log h)c) for all graphs excluding Kh as a topological subgraph. However,
all these variants require the (t, k)-closure to be taken for non-constant values of t (i.e.,
t = Ω(h)). For the design of an fpt-algorithm, this is infeasible since we can only afford to
apply Theorem 6 for constant values of t and k (since Di might be equal to V (Gi)).

The lemma above implies that the interplay between Di and V (Gi) \ Di is simple which
allows for a dynamic programming approach. To be more precise, we can recursively list
all elements of the set Iso((Gi[Zi

j ∪ Si
j ], Si

j), (Gi′ [Zi′

j′ ∪ Si′

j′ ], Si′

j′))[Si
j ] for all j, j′ ∈ [ℓ] and

i, i′ ∈ {1, 2} (i.e., we list all bijections σ : Si
j → Si′

j′ that can be extended to an isomorphism
between the corresponding subgraphs). To incorporate this information, we extend the graph
Gi[Di] by simple gadgets obtaining graphs Hi that are (2, 2)-WL-bounded and such that
G1 ∼= G2 if and only if H1 ∼= H2. (For technical reasons, the algorithm does not exactly
implement this strategy, but closely follows the general idea.)

In order to realize this recursive strategy, it remains to ensure that the algorithm makes
progress when performing a recursive call. Actually, this turns out to be a non-trivial task.
Indeed, it may happen that Di = Xi, there is only a single component Zi

1 of Gi − Di, and
NGi

(Zi
1) = Di. To circumvent this problem, the idea is to compute an isomorphism-invariant

extension γ(Xi) ⊋ Xi such that |γ(Xi)| ≤ h4. Assuming such an extension can be computed,
we simply extend the set Xi until the algorithm arrives in a situation where the recursive
scheme discussed above makes progress. Observe that this is guaranteed to happen as soon
as |Xi| ≥ h building on Lemma 8. Also note that we can still artificially individualize all
vertices from Xi at a cost of 2O(h4 log h) (since any isomorphism can only map vertices from
X1 to vertices from X2).

To compute the extension, we exploit the fact that Gi is (h − 1, 1)-WL-bounded by [21,
Corollary 24] (after individualizing 3 vertices). Simply speaking, for every choice of three
distinct vertices in Xi, after individualizing these vertices and performing the 1-dimensional
Weisfeiler-Leman algorithm, we can identify a color class of size at most h − 1 to be added
to the set Xi. Overall, assuming |Xi| ≤ h, this gives an extension γ(Xi) of size at most
h + h3(h − 1) ≤ h4.
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This completes the description of the general strategy. In the following sections, we
provide more detailed arguments. We first provide a sketch on the proof of Lemma 8 in
the next section. Afterwards, we compute the entire decompositions of the input graphs in
Section 6. Finally, the dynamic programming strategy along the computed decompositions is
implemented in Section 7.

5 Finding Disjoint and Connected Subgraphs

In this section, we give some details on the proof of Lemma 8. Let us start by introducing
some additional notation for the 2-dimensional Weisfeiler-Leman algorithm.

Let G be a graph and let χ := χ2
WL[G] be the coloring computed by the 2-dimensional

Weisfeiler-Leman algorithm. We denote by CV = CV (G, χ) := {χ(v, v) | v ∈ V (G)} the set
of vertex colors under the coloring χ. Also, for c ∈ CV , Vc := {v ∈ V (G) | χ(v, v) = c}
denotes the set of all vertices of color c. Moreover, we define the graph G[[χ]] with vertex set
V (G[[χ]]) := CV (G, χ) and edges E(G[[χ]]) := {c1c2 | ∃v1 ∈ Vc1 , v2 ∈ Vc2 : v1v2 ∈ E(G)}.

The next lemma builds the main technical step in the proof of Lemma 8.

▶ Lemma 9. Let G be a graph and let χ be a 2-stable coloring. Suppose that G[[χ]] is
connected and |Vc| ≥ 3 for every c ∈ CV . Then there are vertex-disjoint, connected subgraphs
H1, H2, H3 ⊆ G such that V (Hr) ∩ Vc ̸= ∅ for all r ∈ {1, 2, 3} and c ∈ CV .

Proof Idea. Let F be a spanning tree of G[[χ]] and fix an arbitrary root node c0 ∈ V (F ) = CV .
On a high-level, the graphs H1, H2, H3 are constructed in a top-to-bottom fashion along the
tree F . To start, let us select three arbitrary distinct vertices v1, v2, v3 ∈ Vc0 and add vr

to the graph Hr. Now, let d be a color which is already covered (i.e., Vd ∩ Hr ≠ ∅ for all
r ∈ {1, 2, 3}), and let c be a child of d which is not covered. Consider the graph G[Vd, Vc]. Let
vr ∈ Vd ∩ V (Hr) for r ∈ {1, 2, 3}. If there are vertices w1, w2, w3 ∈ Vc such that vrwr ∈ E(G)
then we can simply add vertex wr as well as the edge vrwr to Hr in order to cover the color
class Vc. Assuming we can always find such vertices, this strategy can be repeated going
down the tree F until all color classes are covered.

So suppose that there are no such vertices w1, w2, w3. By Hall’s Marriage Theorem, this
means there is a set V ′ ⊆ {v1, v2, v3} such that |N(V ′) ∩ Vc| < |V ′|. Since χ is 2-stable, we
get that |N(v) ∩ Vc| = |N(v′) ∩ Vc| for all v, v′ ∈ Vd. Together, this means there is some
δ ∈ {1, 2} such that |N(v) ∩ Vc| = δ for all v ∈ Vd.

First, suppose that δ = 1. Then G[Vd, Vc] is isomorphic to a disjoint union of ℓ stars
K1,h, for some ℓ ≥ 3 and h ≥ 2. In this situation, it is possible to contract the connected
components of G[Vd, Vc] to single vertices, and proceed by induction. At this point, we
crucially exploit that using the 2-dimensional Weisfeiler-Leman algorithm allows us to show
that all color classes in the contracted graph still have size at least 3 (such a statement
is not true when using the Color Refinement algorithm). By induction, we obtain graphs
H ′

1, H ′
2, H ′

3. To obtain the original graphs, we simply uncontract any contracted vertices
contained in H ′

1, H ′
2, H ′

3.
In the other case, we have δ = 2. Let us partition Vd into c-twin-classes where vertices

v, v′ ∈ Vd are declared to be c-twins if N(v) ∩ Vc = N(v′) ∩ Vc. If there are at least 3 twin-
classes, then it is again possible to contract the twin-classes to single vertices and proceed
by induction. Here, the crucial observation is that the c-twin-classes are non-trivial since
|N(V ′)∩Vc| < |V ′| for some set V ′ ⊆ {v1, v2, v3}. The critical case occurs if there are exactly
2 twin-classes meaning that G[Vd, Vc] is isomorphic to a disjoint union of 2 copies of K2,h,
for some h ≥ 3 (in this case |Vc| = 4). Now, the basic idea is to ensure that v1, v2, v3 cover
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both connected components (which means there are vertices w1, w2, w3 as above). However,
this additional requirement comes with severe additional complications. First, information
of this type needs to be propagated up the tree (i.e., vertices in the root color class may
already need to be chosen appropriately to avoid problematic situations later on). But much
more problematically, each child of c may add a different restriction which all need to be
met at the same time. Here, we again crucially rely on the 2-dimensional Weisfeiler-Leman
algorithm to show that all requirements can indeed be met at the same time. Unfortunately,
this comes at the price that each vertex of Vd has to be contained in one of the graphs Hr,
r ∈ {1, 2, 3} (this allows us to choose different triples (v1, v2, v3) for different children of d).
To ensure that Hr remains connected, we introduce a second type of restriction that is passed
down the tree, and which ensures that all vertices from Vd, which are added to Hr, end up
in the same connected component of Hr. By carefully implementing the induction, it can be
shown that all these additional requirements can indeed by realized. ◀

Proof of Lemma 8. Let χ be a 2-stable coloring such that |[v]χ| = 1 for all v ∈ D and
|[w]χ| ≥ 3 for all w ∈ V (G) \ D. Suppose towards a contradiction that |NG(Z)| ≥ h, and
pick v1, . . . , vh ∈ NG(Z) to be distinct vertices. Let C := {χ(v, v) | v ∈ Z} be the set of
vertex colors appearing in the set Z. Note that (G[[χ]])[C] is connected, and |Vc| ≥ 3 for all
c ∈ C. Let W := {w ∈ V (G) | χ(w, w) ∈ C}. Observe that W ∩ D = ∅. By Lemma 9, there
are connected, vertex-disjoint subgraphs H1, H2, H3 ⊆ G[W ] such that V (Hr) ∩ Vc ̸= ∅ for
all r ∈ {1, 2, 3} and c ∈ C.

Now let i ∈ [h]. Since vi ∈ NG(Z) there is some vertex wi ∈ Z ⊆ W such that
viwi ∈ E(G). Let ci := χ(wi, wi). Observe that ci ∈ C. Also, Vci

⊆ NG(vi) since |[vi]χ| = 1
and χ is 2-stable. This implies that NG(vi) ∩ V (Hr) ̸= ∅ for all r ∈ {1, 2, 3}, because
V (Hr) ∩ Vci

̸= ∅. But this results in a minor isomorphic to K3,h with vertices v1, . . . , vh on
the right side, and vertices V (H1), V (H2), V (H3) on the left side. ◀

Besides Lemma 8, we also require a second tool which is used to define the extension sets
γ(Xi) which we needed to ensure the recursive algorithm makes progress.

▶ Lemma 10. Let G be a graph that excludes K3,h as a minor. Also let X ⊆ V (G) and
define D := clGh−1,1(X). Let Z be a connected component of G − D. Then |NG(Z)| < 3.

The lemma essentially follows from [21, Lemma 23]. For the sake of completeness and
due to its simplicity, a complete proof is still given below.

Proof. Let χ be a 1-stable coloring such that |[v]χ| = 1 for all v ∈ D and |[w]χ| ≥ h for all
w ∈ V (G)\D. Suppose towards a contradiction that |NG(Z)| ≥ 3, and pick v1, v2, v3 ∈ NG(Z)
to be distinct vertices. Let C := {χ(v) | v ∈ Z}, and define H to be the graph with V (H) := C

and

E(H) := {c1c2 | ∃v1 ∈ χ−1(c1), v2 ∈ χ−1(v2) : v1v2 ∈ E(G)}.

Let T be a spanning tree of H. Also, for each i ∈ {1, 2, 3}, fix a color ci ∈ C such that
NG(vi)∩χ−1(ci) ̸= ∅. Let T ′ be the induced subtree obtained from T by repeatedly removing
all leaves distinct from c1, c2, c3. Finally, let T ′′ be the tree obtained from T ′ by adding
three fresh vertices v1, v2, v3 where vi is connected to ci. Observe that v1, v2, v3 are precisely
the leaves of T ′′. Now, T ′′ contains a unique node c of degree three (possibly c = ci for
some i ∈ {1, 2, 3}). Observe that |χ−1(c)| ≥ h. We define Ci to be the set of all internal
vertices which appear on the unique path from vi to c in the tree T ′′. Finally, define
Ui := {vi} ∪

⋃
c′∈Ci

χ−1(c′).
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Since χ is 1-stable and |[vi]χ| = 1 we get that G[Ui] is connected for all i ∈ {1, 2, 3}. Also,
EG(Ui, {w}) ̸= ∅ for all w ∈ χ−1(c) and i ∈ {1, 2, 3}. But this provides a minor isomorphic
to K3,h with vertices U1, U2, U3 on the left side and the vertices from χ−1(c) on the right
side. ◀

6 A Decomposition Theorem

Next, we use the insights gained in the last section to prove a decomposition theorem for
graphs that exclude K3,h as a minor. In the following, all tree decompositions are rooted,
i.e., there is a designated root node and we generally assume all edges to be directed away
from the root.

▶ Theorem 11. Let h ≥ 3. Let G be a 3-connected graph, and suppose S ⊆ V (G) such that
(A) G − E(S, S) excludes K3,h as a minor,
(B) 3 ≤ |S| ≤ h,
(C) G − S is connected, and
(D) S = NG(V (G) \ S).
Then there is a (rooted) tree decomposition (T, β) of G, a function γ : V (T ) → 2V (G), and a
vertex-coloring λ such that

(I) |V (T )| ≤ 2 · |V (G)|,
(II) the adhesion width of (T, β) is at most h − 1,

(III) for every t ∈ V (T ) with children t1, . . . , tℓ, one of the following options holds:
a. β(t) ∩ β(ti) ̸= β(t) ∩ β(tj) for all distinct i, j ∈ [ℓ], or
b. β(t) = β(t) ∩ β(ti) for all i ∈ [ℓ],

(IV) S ⊊ γ(r) where r denotes the root of T ,
(V) |γ(t)| ≤ h4 for every t ∈ V (T ),

(VI) β(t) ∩ β(s) ⊆ γ(t) ⊆ β(t) for all t ∈ V (T ) \ {r}, where s denotes the parent of t, and
(VII) β(t) ⊆ cl(G,λ)

2,2 (γ(t)) for all t ∈ V (T ).
Moreover, the decomposition (T, β), the function γ, and the coloring λ can be computed in
polynomial time, and the output is isomorphism-invariant with respect to (G, S, h).

Proof. We give an inductive construction for the tree decomposition (T, β) as well as the
function γ and the coloring λ. We start by arguing how to compute the set γ(r).

▷ Claim 12. Let v1, v2, v3 ∈ S be three distinct vertices, and define χ := χ1
WL[G, S, v1, v2, v3].

Then there exists some v ∈ V (G) \ S such that |[v]χ| < h.

Proof. Let H := (G − (S \ {v1, v2, v3})) − E({v1, v2, v3}, {v1, v2, v3}). It is easy to see that
χ|V (H) is 1-stable for the graph H. Observe that H − {v1, v2, v3} = G − S is connected.
Suppose there is no vertex v ∈ V (G)\S such that |[v]χ| < h. Then χ is (h−1)-CR-stable which
implies that clGh−1,1(v1, v2, v3) = {v1, v2, v3}. On the other hand, Z := V (H) \ {v1, v2, v3}
induces a connected component of H − {v1, v2, v3}, and NH(Z) = {v1, v2, v3} since S =
NG(V (G) \ S). But this contradicts Lemma 10. ◁

Let v1, v2, v3 ∈ S be distinct. We define χ[v1, v2, v3] := χ1
WL[G, S, v1, v2, v3]. Also, let

c[v1, v2, v3] denote the unique color such that
1. c[v1, v2, v3] /∈ {χ[v1, v2, v3](v) | v ∈ S}, and
2. |(χ[v1, v2, v3])−1(c[v1, v2, v3])| ≤ h − 1
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and which is minimal with respect to the linear order on the colors in the image of χ[v1, v2, v3].
Let γ(v1, v2, v3) := (χ[v1, v2, v3])−1(c[v1, v2, v3]). Observe that γ(v1, v2, v3) is defined in an
isomorphism-invariant manner given (G, S, h, v1, v2, v3). Now, define

γ(r) := S ∪
⋃

v1,v2,v3∈S distinct
γ(v1, v2, v3).

Clearly, γ(r) is defined in an isomorphism-invariant manner given (G, S, h). Moreover,

|γ(r)| ≤ |S| + |S|3 · (h − 1) ≤ |S|3 · h ≤ h4.

Finally, define β(r) := clG2,2(γ(r)).
Let Z1, . . . , Zℓ be the connected components of G − β(r). Also, let Si := NG(Zi) and Gi

be the graph obtained from G[Si ∪ Zi] by turning Si into a clique, i ∈ [ℓ]. We have |Si| < h

by Lemma 8. Also, |Si| ≥ 3 and Gi is 3-connected since G is 3-connected. Clearly, Gi − Si

is connected and Si = NGi
(V (Gi) \ Si). Finally, Gi − E(Si, Si) excludes K3,h as a minor

because G − E(S, S) excludes K3,h as a minor.
We wish to apply the induction hypothesis to the triples (Gi, Si, h). If |V (Gi)| = |V (G)|

then ℓ = 1 and S ⊊ Si. In this case the algorithm still makes progress since the size of S can
be increased at most h − 3 times.

By the induction hypothesis, there are tree decompositions (Ti, βi) of Gi and functions
γi : V (Ti) → 2V (Gi) satisfying Properties I - VII. We define (T, β) to be the tree decomposition
where T is obtained from the disjoint union of T1, . . . , Tℓ by adding a fresh root vertex r

which is connected to the root vertices of T1, . . . , Tℓ. Also, β(r) is defined as above and
β(t) := βi(t) for all t ∈ V (Ti) and i ∈ [ℓ]. Finally, γ(r) is again defined as above, and
γ(t) := γi(t) for all t ∈ V (Ti) and i ∈ [ℓ].

The algorithm clearly runs in polynomial time and the output is isomorphism-invariant
(the coloring λ is defined below). We need to verify that Properties I - VII are satisfied.
Using the comments above and the induction hypothesis, it is easy to verify that Properties
II, IV, V and VI are satisfied.

For Property VII it suffices to ensure that cl(Gi,λ)
2,2 (γ(t)) ⊆ cl(G,λ)

2,2 (γ(t)). Towards this
end, it suffices to ensure that λ(v) ̸= λ(w) for all v ∈ β(r) and w ∈ V (G) \ β(r). To ensure
this property holds on all levels of the tree, we can simply define λ(v) := {distT (r, t) | t ∈
V (T ), v ∈ β(t)}.

Next, we modify the tree decomposition in order to ensure Property III. Consider a node
t ∈ V (T ) with children t1, . . . , tℓ. We say that ti ∼ tj if β(t) ∩ β(ti) = β(t) ∩ β(tj). Let
A1, . . . , Ak be the equivalence classes of the equivalence relation ∼. For every i ∈ [k] we
introduce a fresh node si. Now, every tj ∈ Ai becomes a child of si and si becomes a child
of t. Finally, we set β(si) = γ(si) := β(t) ∩ β(tj) for some tj ∈ Ai. Observe that after this
modification, Properties II and IV - VII still hold.

Finally, it remains to verify Property I. Before the modification described in the last
paragraph, we have that |V (T )| ≤ |V (G)|. Since the modification process at most doubles
the number of nodes in T , the bound follows. ◀

7 An FPT Isomorphism Test for Graphs of Small Genus

Building on the decomposition theorem given in the last section, we can now prove the main
result of this paper.

▶ Theorem 13. Let G1, G2 be two (vertex- and arc-colored) graphs that exclude K3,h as a
minor. Then one can decide whether G1 is isomorphic to G2 in time 2O(h4 log h)nO(1).
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Proof Idea. Suppose Gi = (V (Gi), E(Gi), χi
V , χi

E) for i ∈ {1, 2}. Using standard reduction
techniques (see, e.g., [11]) we may assume without loss generality that G1 and G2 are 3-
connected. Pick an arbitrary set S1 ⊆ V (G1) such that |S1| = 3 and G1 −S1 is connected. For
every S2 ⊆ V (G2) such that |S2| = 3 and G2 − S2 is connected, the algorithm tests whether
there is an isomorphism φ : G1 ∼= G2 such that Sφ

1 = S2. Observe that Si = NGi
(V (Gi) \ Si)

for both i ∈ {1, 2} since G1 and G2 are 3-connected. This implies that the triple (Gi, Si, h)
satisfies the requirements of Theorem 11. Let (Ti, βi) be the tree decomposition, γi : V (Ti) →
2V (Gi) be the function, and λi be the vertex-coloring computed by Theorem 11 on input
(Gi, Si, h).

Now, the basic idea is compute isomorphisms between (G1, S1) and (G2, S2) using dynamic
programming along the tree decompositions. More precisely, we aim at recursively computing
the set

Λ := Iso((G1, λ1, S1), (G2, λ1, S2))[S1]

(here, Iso((G1, λ1, S1), (G2, λ1, S2)) denotes the set of isomorphisms φ : G1 ∼= G2 which
additionally respect the vertex-colorings λi and satisfy Sφ

1 = S2). Throughout the recursive
algorithm, we maintain the property that |Si| ≤ h. Also, we may assume without loss of
generality that Si is λi-invariant (otherwise, we replace λi by λ′

i defined via λ′
i(v) := (1, λi(v))

for all v ∈ Si, and λ′
i(v) := (0, λi(v)) for all v ∈ V (Gi) \ Si).

Let ri denote the root node of Ti. Let ℓ denote the number of children of ri in
the tree Ti (if the number of children is not the same, the algorithm concludes that
Iso((G1, λ1, S1), (G2, λ1, S2)) = ∅). Let ti

1, . . . , ti
ℓ be the children of ri in Ti, i ∈ {1, 2}.

For i ∈ {1, 2} and j ∈ [ℓ] let V i
j denote the set of vertices appearing in bags below (and

including) ti
j . Also let Si

j := βi(ri) ∩ βi(ti
j) be the adhesion set to the j-th child, and define

Gi
j := Gi[V i

j ]. Finally, let T i
j denote the subtree of Ti rooted at node ti

j , and βi
j := βi|V (T i

j
),

γi
j := γi|V (T i

j
) and λi

j := λi|V i
j
.

For every i, i′ ∈ {1, 2}, and every j, j′ ∈ [ℓ], the algorithm recursively computes the set

Λi,i′

j,j′ := Iso((Gi
j , λi

j , Si
j), (Gi′

j′ , λi′

j′ , Si′

j′))[Si
j ].

We argue how to compute the set Λ. Building on Theorem 11, Item III, we may assume that
(a) Si

j ̸= Si
j′ for all distinct j, j′ ∈ [ℓ] and i ∈ {1, 2}, or

(b) β(ri) = Si
j for all j ∈ [ℓ] and i ∈ {1, 2}

(if r1 and r2 do not satisfy the same option, then Iso((G1, λ1, S1), (G2, λ1, S2)) = ∅).
We first cover Option b. In this case |β(ri)| = |Si

j | ≤ h − 1 by Theorem 11, Item II. The
algorithm iterates over all bijections σ : β(r1) → β(r2). Now,

σ ∈ Iso((G1, λ1, S1), (G2, λ1, S2))[β(r1)] ⇔ ∃ρ ∈ Sym([ℓ]) ∀j ∈ [ℓ] : σ ∈ Λ1,2
j,ρ(j).

To test whether σ satisfies the right-hand side condition, the algorithm constructs an auxiliary
graph Hσ with vertex set V (Hσ) := {1, 2} × [ℓ] and edge set

E(Hσ) := {(1, j)(2, j′) | σ ∈ Λ1,2
j,j′}.

Observe that Hσ is bipartite with bipartition ({1} × [ℓ], {2} × [ℓ]). Now,

σ ∈ Iso((G1, λ1, S1), (G2, λ1, S2))[β(r1)] ⇔ Hσ has a perfect matching.

It is well-known that the latter can be checked in polynomial time. This completes the
description of the algorithm in case Option b is satisfied.
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Next, suppose Option a is satisfied. Here, the central idea is to construct auxiliary vertex-
and arc-colored graphs Hi = (V (Hi), E(Hi), µi

V , µi
E) and sets Ai ⊆ V (Hi) such that

1. βi(ri) ⊆ Ai and Ai ⊆ clHi
2,2(γi(ri)), and

2. Iso(H1, H2)[S1] = Iso(H1[A1], H2[A2])[S1] = Λ.
Towards this end, we set

V (Hi) := V (Gi) ⊎ {(Si
j , γ) | j ∈ [ℓ], γ ∈ Λi,i

j,j}

and

E(Hi) := E(Gi) ∪ {(Si
j , γ)v | j ∈ [ℓ], γ ∈ Λi,i

j,j , v ∈ Si
j}.

Also, we set

Ai := β(ri) ∪ {(Si
j , γ) | j ∈ [ℓ], γ ∈ Λi,i

j,j}.

The main idea is to use the additional vertices attached to the set Si
j to encode the isomorphism

type of the graph (Gi
j , λi

j , Si
j). This information is encoded by the vertex- and arc-coloring

building on sets Λi,i′

j,j′ already computed above. Let S := {Si
j | i ∈ {1, 2}, j ∈ [ℓ]}, and define

Si
j ∼ Si′

j′ if Λi,i′

j,j′ ̸= ∅. Observe that ∼ is an equivalence relation. Let {P1, . . . , Pk} be the
partition of S into the equivalence classes. We set

µi
V (v) := (0, χi

V (v), λi(v))

for all v ∈ Si,

µi
V (v) := (1, χi

V (v), λi(v))

for all v ∈ γi(ri) \ Si,

µi
V (v) := (2, χi

V (v), λi(v))

for all v ∈ βi(ri) \ γi(ri),

µi
V (v) := (3, χi

V (v), λi(v))

for all v ∈ V (Gi) \ βi(ri), and

µi
V (Si

j , γ) := (4, q, q)

for all q ∈ [k], Si
j ∈ Pq, and γ ∈ Λi,i

j,j . For every q ∈ [k] fix some i(q) ∈ {1, 2} and j(q) ∈ [ℓ]
such that S

i(q)
j(q) ∈ Pq (i.e., for each equivalence class, the algorithm fixes one representative).

Also, for every q ∈ [k] and Si
j ∈ Pq, fix a bijection σi

j ∈ Λi(q),i
j(q),j such that σ

i(q)
j(q) is the identity

mapping. Finally, for q ∈ [k], fix a numbering S
i(q)
j(q) = {uq

1, . . . , uq
s(q)}.

With this, we are ready to define the arc-coloring µi
E . First, we set

µi
E(v, w) := (0, χi

E(v, w))

for all vw ∈ E(Gi). Next, consider an edge (Si
j , γ)v where j ∈ [ℓ], γ ∈ Λi,i

j,j , and v ∈ Si
j .

Suppose Si
j ∈ Pq. We set

µi
E(v, (Si

j , γ)) = µi
E((Si

j , γ), v) := (1, c)

for the unique c ∈ [s(q)] such that

v = (uq
c)σi

jγ .
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This completes the description of the graphs Hi and the sets Ai, i ∈ {1, 2}. It can be
checked that Properties 1 and 2 are satisfied (see the full version for details).

Now, recall that the algorithm aims at computing the set Λ. Building on Property 2,
we can simply compute Iso(H1[A1], H2[A2])[S1]. Towards this end, the algorithm iterates
through all bijections τ : γ1(r1) → γ2(r2), and wishes to test whether there is an isomorphism
φ ∈ Iso(H1[A1], H2[A2]) such that φ[γ1(r1)] = τ . Note that, since γi(ri) is µi

V -invariant, it
now suffices to solve this latter problem.

So fix a bijection τ : γ1(r1) → γ2(r2) (if |γ1(r1)| ̸= |γ2(r2)| then the algorithm returns
Λ = ∅). Let µ∗

1(v) := (1, v) for all v ∈ γ1(r1), µ∗
1(v) := (0, µ1

V ) for all v ∈ V (H1) \ γ1(r1), and
µ∗

2(v) := (1, τ−1(v)) for all v ∈ γ2(r2) and µ∗
2(v) := (0, µ2

V ) for all v ∈ V (H2) \ γ2(r2).
Intuitively speaking, µ∗

1 and µ∗
2 are obtained from µ1

V and µ2
V by individualizing all

vertices from γ1(r1) and γr(r2) according to the bijection τ . Now, we can apply Theorem 6
on input graph H∗

1 = (H1, µ∗
1) and H∗

2 = (H2, µ∗
2), and parameters t = k := 2.

Building on Property 1, we obtain a Γ̂2-group Γ ≤ Sym(A1) and a bijection θ : A1 → A2
such that Iso(H∗

1 [A1], H∗
2 [A2]) ⊆ Γθ. Now, we can determine whether H∗

1 [A1] ∼= H∗
2 [A2]

using Theorem 3. Using Property 2, this provides the answer to whether τ [S1] ∈ Λ (recall
that S1 ⊆ γ1(r1) by Theorem 11, Items IV and VI).

Overall, this completes the description of the algorithm. It only remains to analyse its
running time. Let n denote the number of vertices of G1 and G2.

The algorithm iterates over at most n3 choices for the initial set S2, and computes the
decompositions (Ti, βi), the functions γi, and the colorings λi in polynomial time. For the
dynamic programming tables, the algorithm needs to compute O(n2) many Λ-sets (using
Theorem 11, Item I), each of which contains at most h! = 2O(h log h) many elements by
Theorem 11, Item II. Hence, it remains to analyse the time required to compute the set Λ
given the Λi,i′

j,j′ -sets. For Option b, this can clearly be done in time 2O(h log h)nO(1).
So consider Option a. The graph Hi can clearly be computed in time polynomial in its

size. We have that |V (Hi)| = 2O(h log h)n. Afterwards, the algorithm iterates over |γ1(r1)|!
many bijections τ . By Theorem 11, Item V, we have that |γ1(r1)|! = 2O(h4 log h). For each
bijection, the algorithm then requires polynomial computation time by Theorems 6 and 3.
Overall, this proves the bound on the running time. ◀

▶ Remark 14. The algorithm from the last theorem can be extended in two directions. First,
if one of the input graphs does not exclude K3,h as a minor, it can modified to either correctly
conclude that G1 has a minor isomorphic to K3,h, or to correctly decide whether G1 is
isomorphic to G2. Indeed, the only part of the algorithm that exploits that the input graphs
do not have minor isomorphic to K3,h is the computation of the tree decompositions (Ti, βi)
from Theorem 11. In turn, this theorem only exploits forbidden minors via Lemmas 8 and 10.
An algorithm can easily detect if one of the implications of those two statements is violated,
in which case it can infer the existence of a minor K3,h.

Secondly, using standard reduction techniques (see, e.g., [19]), one can also compute a
representation of the set of all isomorphisms Iso(G1, G2) in the same time.

Since every graph of Euler genus g excludes K3,4g+3 as a minor [25], we obtain the
following corollary.

▶ Corollary 15. Let G1, G2 be two (vertex- and arc-colored) graphs of Euler genus at most g.
Then one can decide whether G1 is isomorphic to G2 in time 2O(g4 log g)nO(1).
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8 Conclusion

We presented an isomorphism test for graphs excluding K3,h as a minor running in time
2O(h4 log h)nO(1). For this, we provided a polynomial-time isomorphism algorithm for (t, k)-
WL-bounded graphs and argued that graphs excluding K3,h as a minor can be decomposed
into parts that are (2, 2)-WL-bounded after individualizing a small number of vertices.

Still, several questions remain open. Probably one of the most important questions in the
area is whether isomorphism testing for graphs excluding Kh as a minor is fixed-parameter
tractable with parameter h. As graphs of bounded genus form an important subclass of
graphs excluding Kh as a minor, the techniques developed in this paper might also prove
helpful in resolving this question.

As an intermediate step, one can also ask for an isomorphism test for graphs excluding
Kℓ,h as a minor running in time f(h, ℓ)ng(ℓ) for some functions f, g. Observe that this paper
provides such an algorithm for ℓ = 3. Indeed, combining ideas from [10, 22] with the approach
taken in this paper, it seems the only hurdle towards such an algorithm is a generalization
of Lemma 9. Given a connected graph G for which |Vc| ≥ ℓ for all c ∈ CV (G, χ2

WL[G]), is
it always possible to find vertex-disjoint, connected subgraphs H1, . . . , Hℓ ⊆ G such that
V (Hr) ∩ Vc ̸= ∅ for all r ∈ [ℓ] and c ∈ CV (G, χ2

WL[G])?
As another intermediate problem, one can also consider the class Gh of all graphs G for

which there is a set X ⊆ V (G) of size |X| ≤ h such that G − X is planar. Is isomorphism
testing fixed-parameter tractable on Gh parameterized by h?
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Restricted t-Matchings via Half-Edges
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Abstract
For a bipartite graph G we consider the problem of finding a maximum size/weight square-free
2-matching and its generalization - the problem of finding a maximum size/weight Kt,t-free t-
matching, where t is an integer greater than two and Kt,t denotes a bipartite clique with t vertices
on each of the two sides. Since the weighted versions of these problems are N P-hard in general, we
assume that the weights are vertex-induced on any subgraph isomorphic to Kt,t. We present simple
combinatorial algorithms for these problems. Our algorithms are significantly simpler and faster
than those previously known. We dispense with the need to shrink squares and, more generally
subgraphs isomorphic to Kt,t, the operation which occurred in all previous algorithms for such
t-matchings and instead use so-called half-edges. A half-edge of edge e is, informally speaking, a half
of e containing exactly one of its endpoints.

Additionally, we consider another problem concerning restricted matchings. Given a (not
necessarily bipartite) graph G = (V, E), a set of k subsets of edges E1, E2, . . . , Ek and k natural
numbers r1, r2, . . . , rk, the Restricted Matching Problem asks to find a maximum size matching of
G among such ones that for each 1 ≤ i ≤ k, M contains at most ri edges of Ei. This problem
is N P-hard even when G is bipartite. We show that it is solvable in polynomial time if (i) for
each i the graph G contains a clique or a bipartite clique on all endpoints of Ei; in the case of a
bipartite clique it is required to contain Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint -
the endpoints of any two different sets have at most one vertex in common.
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1 Introduction

Given a positive integer t, a subset M of edges of an undirected simple graph G is called a
t-matching if every vertex is incident to at most t edges of M . A t-matching of maximum
size can be found in polynomial time by a reduction to the classical matching problem.
A 2-matching is called square-free if it does not contain any cycle of length 4. A Ck-
free 2-matching is one without any cycle of length at most k. The Ck-free 2-matching
problem consists in finding a Ck-free 2-matching of maximum size. Observe that the Ck-free
2-matching problem for n/2 ≤ k < n, where n is the number of vertices in the graph,
is equivalent to finding a Hamiltonian cycle, and thus N P-hard. Hartvigsen [13] gave a
complicated algorithm for the case of k = 3. Papadimitriou [4] showed that this problem is
N P-hard when k ≥ 5. The complexity of the C4-free 2-matching problem is unknown.

When the graph is bipartite the smallest length of a cycle contained in it is at least 4.
We refer to cycles of length four as squares. Polynomial time algorithms for the C4-free
2-matching problem in bipartite graphs were shown by Hartvigsen [14], Pap [30], Babenko [1]
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and analyzed by Király [18]. A generalization of a square-free 2-matching in a bipartite
graph is a Kt,t-free t-matching - a t-matching without any Kt,t - a bipartite clique with
t vertices on each of the two sides. Kt,t-free t-matchings were first considered by Frank
[7], who provided a min-max formula for Kt,t-free t-matchings based on a result in [8] on
crossing bi-supermodular functions. Using this formula, it is possible to compute the size
of a maximum Kt,t-free t-matching by the ellipsoid method or a combinatorial method by
Fleiner [6]. Moreover, one can compute a maximum Kt,t-free t-matching through Végh and
Benczúr’s algorithm [36] for covering pairs of sets and directly using Pap’s algorithm [29].

In the weighted version of the Kt,t-free t-matching problem, each edge e is associated
with a nonnegative weight w(e) and we are interested in finding a Kt,t-free t-matching of
maximum weight, where the weight of a t-matching M is defined as the sum of weights of
edges belonging to M . The weighted square-free 2-matching problem in bipartite graphs was
proven to be N P-hard [12, 19] even if the weight of every edge is either 0 or 1. Bérczi and
Kobayashi [2] sharpened the result and showed that the problem is N P-hard even if the
given graph is cubic, bipartite and planar. The weighted Kt,t-free t-matching problem in
bipartite graphs is solvable in polynomial time when the weights of edges are vertex-induced
on every subgraph isomorphic to Kt,t, which was shown by Makai [24] and Takazawa [33].

Apart from Kt,t-free t-matchings, we consider another problem concerning restricted
matchings. Given a (not necessarily bipartite) graph G = (V, E), a set of k subsets of edges
E1, E2, . . . , Ek and k natural numbers r1, r2, . . . , rk, the Restricted Matching Problem asks
to find a maximum size classical matching of G among such ones that for each 1 ≤ i ≤ k,
M contains at most ri edges of Ei. This problem was first studied in [17] by Itai, Rodeh and
Tanimoto for bipartite graphs and shown to be N P-hard for the general case and solvable in
polynomial time for the variant when there is only one set E1, i.e., when k = 1. The version,
in which G is bipartite and each Ei contains two edges (and hence each ri = 1) was proven to
be N P-hard by Garey and Johnson [11]. The problem was also considered in [25] and [31].

Our results We present simple combinatorial algorithms for the weighted and unweighted
version of the Kt,t-free t-matching problem in bipartite graphs. In the weighted version we
assume that the weights of edges are vertex-induced on every subgraph isomorphic to Kt,t. In
these algorithms we successively find and apply a minimum length/weight augmenting path
until it is no longer possible. The search for an augmenting path is conducted in a specially
modified graph G, called G′. Graph G′ is obtained from G by replacing some subgraphs
with so-called gadgets that contain half-edges. A half-edge of edge e is, informally speaking,
a half of e containing exactly one of its endpoints. Half-edges have been first introduced
in [27]. Each subgraph that is replaced with a gadget in a given step is isomorphic to Kt,t

and t2 − 1 of its edges belong to the current t-matching M . In previous algorithms for these
problems such or similar subgraphs were shrunk. One could say that we take an opposite
approach and expand such subgraphs. However, in our case these expansions do not build on
each other and in each step G′ is constructed only from the original graph G and a current
t-matching M . We give a detailed description of these algorithms for square-free 2-matchings
and their analyses and only an outline for the Kt,t-free t-matching problem. In addition
to being significantly simpler our algorithms are also faster than those known previously.
For the unweighted square-free 2-matching problem our algorithm has running time O(nm),
where n denotes the number of vertices in the graph and m the number of edges. Both
algorithms by Hartvigsen and Babenko run in O(n3) time and the one by Pap in O(n4). For
the weighted/unweighted version of the Kt,t-free t-matching problem we give an algorithm
with running time, respectively, O(tnm + t2n2 log n) and O(nm + tn2 +

√
tnm). For the

weighted variant the algorithm by Takazawa has runtime O(tn2m + tn3 log n) for the t-factor
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problem (each vertex has to be incident with exactly t edges) and O(t5n6 + t4n6 log n) for the
t-matching problem because of the costly reduction to the t-factor problem. The algorithm
by Makai has polynomial time but it uses the ellipsoid method.

Regarding classical matchings we devise a polynomial time algorithm for the variant
of the Restricted Matching Problem when (i) for each i the graph G contains a clique or
a bipartite clique on all endpoints of Ei; in the case of a bipartite clique it is required to
contain Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint - the endpoints of any two
different sets have at most one vertex in common.

Motivation Ck-free 2-matchings and Kt,t-free t-matchings are classical problems of com-
binatorial optimization. They have applications in traveling salesman problems, problems
related to finding a smallest 2-edge-connected spanning subgraph as well as in increasing the
vertex-connectivity (see [5, 2, 3, 34] for more details). A good survey of these applications
has been given by Takazawa [35].

Related work Some generalizations of the Ck-free 2-matching problem were investigated.
Recently, Kobayashi [21] gave a polynomial algorithm for finding a maximum weight 2-
matching that does not contain any triangle from a given set of forbidden edge-disjoint
triangles. Polynomial algorithms for square-free and/or triangle-free 2-matchings in subcubic
graphs were presented in [15, 16, 2, 3, 20, 28, 22]. An algorithm by Paluch and Wasylkiewicz
uses a similar approach as the one presented in this paper but requires only one computation
of a b-matching. When it comes to the square-free 2-matching problem in general graphs,
Nam [26] constructed a complex algorithm for it for graphs, in which all squares are vertex-
disjoint.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We denote the
number of vertices of G by n and the number of edges of G by m. We denote a vertex
set of G by V (G) and an edge set by E(G). We assume that all graphs are simple, i.e.,
they contain neither loops nor parallel edges. We denote an edge connecting vertices v and
u by (v, u). A path of graph G is a sequence P = (v0, . . . , vl) for some l ≥ 1 such that
(vi, vi+1) ∈ E for every i ∈ {0, 1, . . . , l − 1}. We refer to l as the length of P . A cycle of
graph G is a sequence c = (v0, . . . , vl−1) for some l ≥ 3 of pairwise distinct vertices of G

such that (vi, v(i+1) mod l) ∈ E for every i ∈ {0, 1, . . . , l − 1}. We refer to l as the length of c.
We will sometimes treat a path or a cycle as an edge set and sometimes as a sequence of
edges. For an edge set F ⊆ E and v ∈ V , we denote by degF (v) the number of edges of F

incident to v. For any two edge sets F1, F2 ⊆ E, the symmetric difference F1 ⊕ F2 denotes
(F1 \ F2) ∪ (F2 \ F1).

For a natural number t, we say that an edge set F ⊆ E is a t-matching if degF (v) ≤ t

for every v ∈ V . t-matchings belong to a wider class of b-matchings, where for every vertex
v of G, we are given a natural number b(v) and a subset of edges is a b-matching if every
vertex v is incident to at most b(v) of its edges. A b-matching of G of maximum weight
can be computed in polynomial time. We refer to Lovász and Plummer [23] for further
background on b-matchings.

Let M be a b-matching. We say that an edge e is matched (in M) if e ∈ M and
unmatched (in M) otherwise. Additionally, an edge belonging to M will be referred to as a
M-edge and an edge not belonging to M as a non-M-edge. We call a vertex v deficient (in
M) if degM (v) < b(v). An M-alternating path P is any sequence of vertices (v1, v2, . . . , vk)
such that edges on P are alternately M -edges and non-M -edges and no edge occurs on P
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73:4 Restricted t-Matchings via Half-Edges

more than once and v1 ̸= vk. An M-alternating cycle C has the same definition as an
M -alternating path except that v1 = vk and additionally (vk−1, vk) ∈ M iff (v1, v2) /∈ M .
Note that an M -alternating path or cycle may go through some vertices more than once but
via different edges. An M -alternating path is called M-augmenting if it begins and ends
with a non-M -edge and if it begins and ends with a deficient vertex. We say that M is a
maximum b-matching if there is no b-matching of G with more edges than M . Given a
weight function w : E → R we define weight of M as w(M) =

∑
e∈M w(e). We say that M

has maximum weight if there is no b-matching of G of weight greater than w(M).
Given a weight function w, the alternating weight of an M -alternating path or cycle P is

defined as w̃(P ) =
∑

e∈P ∩M w(e) −
∑

e∈P \M w(e). We say that an M -augmenting path P is
minimum if it has minimum alternating weight among all M -augmenting paths and cannot
be shortened without increasing its alternating weight. An M -alternating cycle is a negative
cycle if its alternating weight is negative. An application of an M -alternating path or cycle
P to M is an operation whose result is M ⊕ P . Note that w(M ⊕ P ) = w(M) − w̃(P ).

We are interested in computing a b-matching of a graph G where we are given vectors
l, u ∈ NV and a weight function w : E → R. For a vertex v ∈ V , [l(v), u(v)] is said to
be a capacity interval of v. An edge set M ⊆ E is said to be an (l, u)-matching if
l(v) ≤ degM (v) ≤ u(v) for every v ∈ V . A maximum weight (l, u)-matching can be computed
efficiently.

For a weight function w : E → R and a subgraph H of G, we say that w is vertex-
induced on H if there exists a function r : V (H) → R such that w(u, v) = r(u) + r(v) for
every edge (u, v) of H. We call r a potential function of H.

An instance of the square-free 2-matching problem consists of an undirected bipartite
graph G = (V, E) and the goal is to find a maximum square-free 2-matching of G. A
generalization of a square-free 2-matching in a bipartite graph is a Kt,t-free t-matching
- a t-matching without any Kt,t - a bipartite clique with t vertices on each of the two
sides. An instance of the Kt,t-free t-matching problem consists of an undirected bipartite
graph G = (V, E) and a natural number t ≥ 2. The aim is to compute a maximum Kt,t-
free t-matching. We also consider weighted versions of these problems, in which we are
additionally given a weight function w : E → R≥0 that is vertex-induced on each subgraph of
G isomorphic to Kt,t and the task consists in finding a maximum weight Kt,t-free t-matching.

3 Outline of the Algorithm for Square-Free 2-Matchings

The general scheme of the algorithm for each variant of the square-free 2-matching problem
is the same - we give it below.

Algorithm 1 Computing a maximum (weight) square-free 2-matching of a bipartite graph G.
1: Let M be an empty 2-matching of G.
2: Construct an auxiliary bipartite graph G′ = (V ′, E′) with O(n) vertices and O(m)

edges, and its 2-matching M ′ of size O(n) by replacing some squares of G with gadgets
containing half-edges. (Both gadgets and half-edges are defined later.)

3: Compute a shortest (resp. minimum) M ′-augmenting path P of G′. If G′ contains no
M ′-augmenting path (resp. no M ′-augmenting path with negative alternating weight),
stop the algorithm and return M .

4: Apply P to M ′ obtaining M ′′ and extract a square-free 2-matching M1 of G from M ′′

such that |M1| = |M | + 1 (resp. w(M1) > w(M)). Set M as M1 and go to 2.
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▷ Claim 3.1. Algorithm 1 runs in time O(nm + n2 log n).

Proof. It will be easy to implement all steps of an Algorithm 1 except 3 in linear time. 3 can
be implemented to run in time O(|E′|+|V ′| log |V ′|) by Fredman and Tarjan’s implementation
of Dijkstra’s algorithm [9] similarly as in the Hungarian method described by Schrijver [32].
Every step is executed O(n) times since |M | increases by one every time 4 is executed. ◁

Let us also remark that in the unweighted version of the problem Algorithm 1 runs in
O(nm) since 3 can be implemented to run in linear time.

4 Maximum square-free 2-matchings in bipartite graphs

In this section we show how to find a maximum square-free 2-matching in a bipartite graph
G. When computing a maximum 2-matching N of G, which is not required to be square-free,
we can proceed as follows. As long as G contains some N -augmenting path P , apply it to
N and repeat. When the goal is to compute a maximum square-free 2-matching of G, this
approach is not applicable for two reasons. Firstly, by applying an augmenting path to a
square-free 2-matching we may obtain a 2-matching which is not square-free. Secondly, it
may happen that a square-free 2-matching M is not maximum but G does not contain any
M -augmenting path P such that M ⊕ P is square-free. An example of such a 2-matching is
shown in Figure 1. Nevertheless, it turns out as we demonstrate below, that we may still use
this method if the search for an augmenting path is conducted in an appropriately modified
graph G, called G′.

a1

b1

Figure 1 Edges of a square-free 2-matching M are waved. M is not maximum, G contains an
M -augmenting path P (with endpoints a1, b1) but M ⊕ P is not square-free. If we apply both P

and an M -alternating cycle C (indicated by red edges), we obtain a larger square-free 2-matching.

First let us check what types of squares of G are in danger of appearing in a 2-matching
after the application of a shortest augmenting path. (In fact P does not have to be shortest -
it suffices if P has no shortcuts.)

▶ Fact 4.1. Any shortest M-augmenting path P ′ has the property that for any vertex v,
it contains at most two edges incident to v: at most one matched edge and at most one
unmatched one.

Proof. Otherwise P ′ would contain an alternating cycle C and hence could be shortened.
(This property does not hold in non-bipartite graphs.) ◀

▶ Lemma 4.2 (Proposition 2.1. in [33]). Let M be a square-free 2-matching of G and P any
shortest M-augmenting path. If M ⊕ P contains a square s, then exactly three edges of s

belong to M .
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Proof. Suppose that M ⊕ P contains a square s = (a, b, c, d) such that at least two of its
edges do not belong to M , one of which is (a, b). Therefore (a, b) ∈ P and by the fact above
we get that both (b, c) and (a, d) belong to M . Hence, (c, d) /∈ M . Thus, the edges (a, b), (c, d)
belong to P and are connected in P by an odd-length alternating M -path R. R’s endpoints
are either a and d or b and c. Also, R begins and ends with an M -edge. This means that P

can be shortened by replacing R either with (a, d) or (b, c) - a contradiction. ◀

Suppose that M is a (possibly empty) square-free 2-matching of G. We say that a square
s of G is saturated (in M) if exactly three edges of s are contained in M . The graph G′ in
which we are going to search for an augmenting path is obtained from the original graph
G by replacing a subset of saturated squares with specially constructed subgraphs called
gadgets. More details are given below.

One can observe that, since G is bipartite, any edge e of G belongs to at most two
different saturated squares.

▶ Definition 4.3. A saturated square s, which has exactly one common edge with some other
saturated square is said to be unproblematic. Otherwise, s is said to be problematic.

Unproblematic squares can be easily got rid of by replacing some edges with other ones
as explained in more detail in the proof of Lemma 4.8.

▶ Fact 4.4. If two problematic squares have a common edge, then they share exactly two
edges, both of which are in M . Any problematic square is non-edge-disjoint with at most one
other problematic square.

Proof. Let s1 and s2 be two problematic squares of G with a common edge. Since they are
problematic, they have at least two common edges. Note that s1 and s2 cannot share more
than two edges because otherwise they would share all four vertices. However, two different
squares cannot share all vertices because G is simple and bipartite. Let e1, e2 be the common
edges of s1 and s2. They cannot be vertex-disjoint because then again s1 and s2 would have
four common vertices. Hence, e1 and e2 have a common vertex v.

Next we argue that both e1 and e2 must belong to M . Suppose to the contrary that
e1 /∈ M . This implies that the endpoint v′of e2 different from v is incident to three egdes of
M - a contradiction.

To see that s1 cannot share an edge with a problematic square s3 ̸= s2, observe that
in such a case s3 would have to share with s1 exactly one of the edges of {e1, e2} and
additionally some edge e3. The edge e3 cannot belong to s2 because it is incident to a vertex
of s1 not contained in s2. Hence, s3 and s2 share exactly one edge, which implies that s2 is
not problematic - a contradiction. ◀

If G contains at least one problematic square, we build a graph G′ = (V ′, E′) together
with its 2-matching M ′, in which each problematic square s is replaced with a subgraph,
called a gadget for s. The precise construction of G′ and M ′ is the following. We start off
with G′ = G. We initialize M ′ as the set of edges of M which are not part of any problematic
square.

Let s = (a, b, c, d) be any problematic square of G such that (a, b) /∈ M . For each edge
(p, q) of s we add two new vertices vp

q and vq
p, called subdivision vertices (of s), and we

replace (p, q) with three new edges: (p, vp
q ), (vp

q , vq
p), (vq

p, q). Each of the edges (p, vp
q ), (vq

p, q)
is called a half-edge (of (p, q) and also of s). The edge (vp

q , vq
p) is called an eliminator (of

(p, q)). We remove the eliminator of the edge (a, b) from E′. Additionally, we introduce two
new vertices u1

s and u2
s, called global vertices. We connect u1

s with every subdivision vertex
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connected to a or c. Similarly, we connect u2
s with every subdivision vertex connected to b or

d. We define vectors l, u ∈ NV ′ as follows. We set a capacity interval of every vertex of the
original graph G to [0, 2] and we set a capacity interval of every other vertex of G′ to [1, 1],
i.e., every vertex of V ′ \ V is matched to exactly one vertex of G′ in any (l, u)-matching of
G′. For every edge e ∈ M of s, we add half-edges of e to M ′. Additionally, we add (u1

s, va
b )

and (u2
s, vb

a) to M ′. If two problematic squares share two edges, then their gadgets overlap,
i.e., we build a gadget for each one of them in the way described above.

The main ideas behind the gadget for a problematic square s = (a, b, c, d) are the following.
An (l, u)-matching M ′ of G′ is to represent roughly a square-free 2-matching M of G. If
M ′ contains both half-edges of some edge e, then e is included in M . If M ′ contains an
eliminator of e, then e does not belong to M (is excluded from M). We want to ensure that
at least one edge of s does not belong to M . This is done by requiring that the two global
vertices u1

s and u2
s are matched to two subdivision vertices. In this way two half-edges of s

are guaranteed not to belong to M ′ and hence to M .
Additionally, we can observe that for a 2-matching M depicted in Figure 1, there exists

one M ′-augmenting path in G′ comprising all red edges.

a b

cd

s

a b

cd

va
b vb

a

vb
c

vc
b

vc
dvd

c

vd
a

va
d

u1
s u2

s

ra rb

rb

rc

rcrd

rd

ra

Figure 2 A gadget for a problematic square s = (a, b, c, d) such that (a, b) /∈ M . Weights of the
edges for the weighted version are given in red.

It turns out that if G′ contains an M ′-augmenting path, then we can apply a shortest
one to M ′, obtaining a larger 2-matching M ′′ of G′. From M ′′ we can in turn obtain a
square-free 2-matching M2 of G of size |M | + 1. This is achieved by first changing around
the half-edges of M ′′ so that for each edge e ∈ E belonging to a problematic square we have
that either both half-edges of e are contained in M ′′ or none. Next, if needed, we get rid of
unproblematic squares.

▶ Lemma 4.5. Let P be a shortest M ′-augmenting path of G′ and let M ′′ = M ′ ⊕ P . Then
there exists exactly one 2-matching M1 of G, denoted as img(M ′′), such that:
1. for each vertex v of G it holds that degM ′′(v) = degM1(v),
2. for each edge e ∈ E not belonging to any problematic square, we have that e ∈ M1 ⇔ e ∈

M ′′.

Proof. We obtain M1 from M ′′ as follows. First for each edge e ∈ E not belonging to any
problematic square, we include e into M1 if and only if e ∈ M ′′. Next we remove all edges of
M ′′ incident to global vertices and flip the half-edges so that for each edge e ∈ E belonging
to a problematic square we have that either both half-edges of e are contained in M ′′ or
none. To see that the half-edges can indeed be changed around in such a way we use the
following observation.
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▶ Observation 4.6. Let s = (a, b, c, d) be a problematic square such that (a, b) /∈ M . If P

goes through any unmatched half-edge of (a, b), then it does not go through any matched
half-edge of s incident to a or b.

Proof. Assume that P goes through (vb
a, b). Then P must also go through the global vertex

u2
s, which in turn means that P must also go through d. (Otherwise P would contain an

alternating cycle going through vertices u2
s, vb

c, b, vb
a.) Suppose now that P also contains the

matched half-edge of s incident to b. Then P must also contain (vb
c, vc

b) and (vc
b , c). (If s

shares edges (b, c) and (c, d) with another problematic square s′, then from vb
c P may go to a

global vertex of s′, but then it also has to go to d and the case is as below.) This way we
obtain a contradiction, because we could shorten P : instead of going through d and u2

s, b, c

using seven edges P could use three edges (d, vd
c ), (vd

c , vc
d), (vc

d, c) instead.
If, on the other hand, P also contained the matched half-edge incident to a, then it would

have to contain also the eliminator of (a, d) and the second half-edge of (a, d), which would
mean that P contains four edges incident to d, using both matched edges incident to it - a
contradiction. ◀

This means the following.
1. If P goes through u1

s but not u2
s, then P also goes through c and thus P contains exactly

two half-edges of s: one matched half-edge incident to c and one unmatched half-edge
incident to a. As a result M ′′ contains exactly one matched half-edge incident to c and
two matched half-edges incident to a and thus the degrees of vertices a, b, c, d with respect
to half-edges of s contained in M ′′ are equal to, respectively, 2, 1, 1, 2. In this case we
set M1 so that it contains edges (b, a), (a, d), (d, c) but not (b, c). The case when P goes
through u2

s but not u1
s is symmetrical.

2. If P goes through both u1
s and u2

s, then P contains exactly four half-edges of s: one
matched half-edge incident to c, one matched half-edge incident to d and both half-edges
of (a, b). As a result the degrees of vertices a, b, c, d with respect to half-edges of s

contained in M ′′ are equal to, respectively, 2, 2, 1, 1. In this case we set M1 to contain
edges (b, a), (a, d), (b, c) but not (d, c).

3. If P goes neither through u1
s nor through u2

s, then P either does not go through any
half-edge of s at all or goes through two matched half-edges of exactly one of the edges
(b, c), (c, d), (a, d). As a result M ′′ has the property that for each edge e of s either both
half-edges of e are in M ′′ or none. In this case we include an edge e of s into M only if
its both half-edges are present in M ′′.

This finishes the proof. ◀

We have the analogue of Lemma 4.2.

▶ Lemma 4.7. Let P be any shortest M ′-augmenting path in G′. If M1 = img(M ′ ⊕ P )
contains a square s, then s is unproblematic (in M).

Proof. Let s = (a, b, c, d) be some square of G that is contained in M1. First, we can notice
that if each of the unmatched edges of s is also present in G′, then by Lemma 4.2, we know
that s can appear in M1 only if it is saturated and hence only if it is unproblematic (because
otherwise s is replaced with a gadget). Second, we observe that s cannot be problematic,
because the gadget for s ensures that at least two half-edges of s do not belong to M ′ ⊕ P

and hence at least one edge of s does not belong to M1.
Suppose then now that s is not saturated and at least one of its unmatched edges, say

(a, b), is not present in G′. It means that there exists a problematic square s′ that contains
(a, b). The edge (a, b) appears in M1 only if at least one of the half-edges of (a, b) is contained
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in P . Suppose it is (a, va
b ). It means that P contains also some matched (half-)edge e′

incident to a. By Observation 4.6 the edge e′ cannot be contained in s′. Neither can it be
contained in s because then s could not appear in M1. This means that the edge (a, d) of s

is unmatched. We notice however, that (a, d) cannot belong to M1 because neither (a, d) can
belong to P (as it would mean that P contains four (half-)edges incident to a and thus could
be shortened) nor any half-edge of (a, d) can belong to P (if (a, d) belongs to a problematic
square s′′ then by Observation 4.6, if P contains a half-edge of (a, d), then it does not contain
a matched half-edge incident to a). ◀

▶ Lemma 4.8. Let P be any shortest M ′-augmenting path in G′ and M1 = img(M ′ ⊕ P ).
If M1 is not square-free then it can be transformed into a square-free 2-matching M2 such
that |M1| = |M2|.

Proof. We consider every square s = (a, b, c, d) of M1. By Lemma 4.7, s is unproblematic.
Hence it shares exactly one edge with another unproblematic square s′. Assume that (a, b)
is unmatched in M . Observe that (c, d) cannot be a common edge of s and s′ because any
vertex of G can be incident to at most two edges of M . Neither can (a, b) be a common edge
of s and s′, because then P could be shortened and not go through (a, b) at all. Suppose
then that (b, c) is a common edge of s and s′ = (b, c, e, f). It means that (c, e) /∈ M and
(b, f) ∈ P ∩ M . Since apart from (a, b) none of the edges of s belongs to P , the edge (e, c)
cannot belong to P either. Therefore, s′ is an M1-alternating cycle. We apply s′ to M1. As
a result s does not occur in M1 any more. Also, this operation does not introduce any new
square into M1 because the edges (f, b), (b, a), (a, d), (d, c), (c, e) form a path of length five
and are guaranteed to belong to M1; therefore, none of them can be part of a square. ◀

▶ Lemma 4.9. If there is no M ′-augmenting path in G′, then M is a maximum square-free
2-matching of G.

Proof. It is a special case of Lemma 5.9. ◀

5 Maximum weight square-free 2-matchings in bipartite graphs

In this section we extend the results from the previous section to the weighted setting.
Recall that this problem is N P-hard for general weights, therefore we assume that the
weight funcion w is vertex-induced on every square. Some proofs are omitted due to space
constraints.

▶ Lemma 5.1. Let s and s′ be two problematic squares that have exactly two common edges.
Then w is vertex-induced on s ∪ s′.

Proof. Let s = (a, b, c, d) and s′ = (a, b, c, e). Let r and r′ be potential functions of,
respectively, s and s′. Observe that r(a) + r(b) = w(a, b) = r′(a) + r′(b) and r(b) + r(c) =
w(b, c) = r′(b) + r′(c). Let ∆ = r(a) − r′(a). We increase both r′(a) and r′(c) by ∆ and
decrease both r′(b) and r′(e) by ∆. Notice that r′ is still a valid potential function of s′ after
this operation. Additionally, now r and r′ agree on the common vertices. Therefore, r ∪ r′ is
a potential function of s ∪ s′. ◀

To the construction of G′ from Section 4 we add a weight function w′ : E(G′) → R
defined as follows. The half-edges incident to a, b, c and d get weight r(a), r(b), r(c) and
r(d), respectively, where r(a), . . . , r(d) are potentials of s. All the other edges of the gadget
get weight 0.
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Define k : E(G′) → {0, 1/2, 1} such that

k(e) =


1 if e ∈ E(G),
1/2 if e is a half-edge,
0 otherwise.

For e ∈ E(G′) we say that k(e) is the size of e.

▶ Definition 5.2. Consider any (l, u)-matching N of G′. We define the size of N as
k(N) =

∑
e∈N k(e). We say that N is extreme if it has maximum weight among all (l, u)-

matchings of size k(N) in G′. A matching M of G is said to be extreme if it has maximum
weight among all matchingss of size |M | in G′.

Algorithm 1 for computing a maximum weight square-free 2-matching differs from the
variant for computing for computing a maximum (size) 2-matching only in the fact that
we compute a minimum M ′-augmenting path instead of a shortest M ′-augmenting one.
Finding a minimum M ′-augmenting path requires computing an M ′-augmenting path P

with minimum alternating weight. To be able to do this, we need to know that there are no
negative cycles in G′. We prove the absence of negative cycles in G′ as well as the optimality
of the 2-matching computed by Algorithm 1 by using linear programming.

The weighted square-free 2-matching problem can be formulated as an integer program
as follows. We assign a variable x(e) for each edge e ∈ E. Any such variable can take on only
two values: 0 or 1, where setting a variable x(e) to 1 denotes including e in the 2-matching.
To ensure that variables x(e) encode a 2-matching we add constraint 2b. Constraint 2c means
that for any square s of the graph at most three of its edges can belong to the 2-matching.

Let S denote the set of all squares of G and x ∈ RE(G). The weighted square-free
2-matching problem can be formulated as an integer program, whose linear programming
relaxation is the following:

(P ) maximize
∑

e∈E(G)

w(e)x(e) (1a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (1b)

∑
e∈E(s)

x(e) ≤ 3 (∀s ∈ S), (1c)

∑
e∈E(G)

x(e) = k. (1d)

Let x be any feasible solution of (P ) and M = {e ∈ E : x(e) = 1}. We can check that M

is a square-free 2-matching of G. Namely, the first constraint ensures that for any vertex v at
most two edges of M are incident to v and the second constraint implies that for any square
s of the graph at most three of its edges belong to M . The linear program (P ) has been
shown to have an integral optimal solution by Makai [24]. For our purposes we need linear
programs, which are relaxations of integer programs for, correspondingly, the extreme size k

square-free 2-matching problem and the extreme size k (l, u)-matching problem. These linear
programs (Pk) and (P ′

k) and their duals (Dk), (D′
k) are given below, where x′ ∈ RE′(G).
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(Pk) maximize
∑

e∈E(G)

w(e)x(e) (2a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (2b)

∑
e∈E(s)

x(e) ≤ 3 (∀s ∈ S), (2c)

∑
e∈E(G)

x(e) = k, (2d)

0 ≤ x(e) ≤ 1 (∀e ∈ E(G)). (2e)

(Dk) minimize 2
∑

v∈V (G)

p(v) +
∑

e∈E(G)

q(e) + 3
∑
s∈S

α(s) + βk (3a)

subject to p(u) + p(v) + q(e) +
∑

s∈S:e∈E(s)

α(s) + β ≥ w(e)(∀e = (u, v) ∈ E(G)),

(3b)
p, q, α ≥ 0. (3c)

(P ′
k) maximize

∑
e∈E(G)

w′(e)x(e) (4a)

subject to
∑

e∈δ(v)

x(e) ≤ 2 (∀v ∈ V (G)), (4b)

∑
e∈δ(v)

x(e) = 1 (∀v ∈ V (G′) \ V (G)), (4c)

∑
e∈E(G′)

k(e)x(e) = k, (4d)

0 ≤ x(e) ≤ 1 (∀e ∈ E(G′)). (4e)

(D′
k) minimize 2

∑
v∈V (G)

p(v) +
∑

v∈V (G′)\V (G)

p(v) +
∑

e∈E(G′)

q(e) + βk (5a)

subject to p(u) + p(v) + q(e) + βk(e) ≥ w′(e) (∀e = (u, v) ∈ E(G′)), (5b)
p(v) ≥ 0 (∀v ∈ V (G)), (5c)
q ≥ 0. (5d)

We define the linear program (P ′) as (P ′
k) without the inequality 4d. We denote the

dual programs of (P ) and (P ′), respectively, as (D) and (D′), correspondingly. These dual
programs differ from (Dk) and (D′

k) in that they do not contain the variable β.

▶ Fact 5.3. Consider an optimal integral primal solution x∗ of (Pk) and an optimal dual
solution p∗, q∗, α∗, β∗ of (Dk). Define M∗ = {e ∈ E : x∗(e) = 1}. From complementarity
slackness we have the following:
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e ∈ M∗ =⇒ p∗(u) + p∗(v) + q∗(e) +
∑

s∈S:e∈E(s)

α∗(s) + β∗ = w(e)

(∀e = (u, v) ∈ E(G))
v is deficient in M∗ =⇒ p∗(v) = 0 (∀v ∈ V ),

e /∈ M∗ =⇒ q∗(e) = 0 (∀e ∈ E),
s is not saturated in M∗ =⇒ α∗(s) = 0 (∀s ∈ S).

Similar constraints hold for the other linear programs. We identify a 2-matching with its
incidence vector x.

Let us now explain how we use these linear programs. Observe that to show that G′

contains no negative cycles, it suffices to demonstrate that M ′ is extreme in G′, or in other
words, that M ′ is an optimal solution of (P ′

k). Below in Lemma 5.6 we prove that M ′

is extreme in G′ if M is extreme in G. This means that we need to show that for every
k, 0 ≤ k ≤ n in iteration k of Algorithm 1, the computed 2-matching M of size k is an
optimal solution of (Pk). Of course, the empty 2-matching is an optimal solution of (P0).
Assuming that we have an extreme 2-matching of size k − 1 in M , we build M ′ and G′

and find a minimum M ′-augmenting path in G′. Next we show that by applying P to M ′

we obtain an (l, u)-matching N of size k, which is extreme in G′. This (l, u)-matching N

corresponds to a 2-matching M1 of size k. We prove that the optimality of the solution N of
(P ′

k) implies the optimality of the solution M1 of (Pk).

▶ Lemma 5.4. Consider any bipartite graph H and l, u : V (H) → N≥0. Then an (l, u)-
matching polytope is defined by the following inequalities:

l(v) ≤ x(δ(v)) ≤ u(v) (∀v ∈ V (H)),
0 ≤ x(e) ≤ 1 (∀e ∈ E(H)).

Proof. It is known that an incidence matrix of a bipartite graph is totally unimodular, hence
incidence matrix AH of H is totally unimodular. Observe that P = {x ∈ RE(H) : l ≤ AHx ≤
u ∧ 0 ≤ x ≤ 1}, hence P is integral from theory of totally unimodular matrices. ◀

▶ Lemma 5.5. Linear programs (P ′
k) and (P ′) have integral optimal solutions.

To compute a minimum M ′-augmenting path in G′, we first find an M ′-augmenting path
P with minimum alternating weight. To be able to do this, we need to know that there are
no negative cycles in G′. In the following lemma we prove the absence of negative cycles in
G′. Next, if needed, we shorten P .

▶ Lemma 5.6. Assume that M is an optimal solution to (Pk). Then M ′ is an optimal
solution to (P ′

k), and thus M ′ is extreme in G′. Hence, there are no negative cycles in G′.

▶ Lemma 5.7. Let M ′ be an extreme (l, u)-matching in G′ and P a minimum M ′-augmenting
path. Then N ′ = M ′ ⊕ P is extreme in G′.

The proof is almost identical to that of Theorem 17.2 in [32].

▶ Lemma 5.8. Let P be a minimum M ′-augmenting path and let M ′′ = M ′ ⊕ P and
N = img(M ′′).

If M ′ ⊕ P is extreme in G′, then N is an optimal solution of (Pk).
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▶ Lemma 5.9. Assume that M ′ is a maximum-weight (l, u)-matching of G′. Then M is a
maximum-weight square-free 2-matching of G.

▶ Lemma 5.10. Let P be a minimum M ′-augmenting path and let M ′′ = M ′ ⊕ P and
M1 = img(M ′′). Then w(M1) = w′(M ′) − w̃′(P ) and M1 can contain only unproblematic
squares. M1 can be transformed into a square-free 2-matching M2 such that w(M2) = w(M1).

Proof. At the beginning we show that w(M1) = w′(M ′′). We have that w′(M ′′) = w′(M ′) −
w̃′(P ). Observe that the flipping of half-edges does not change the weight of M1. Hence
w(M1) = w′(M ′′).

We observe that Fact 4.1 is still valid in the weighted case, because G′ contains no
negative alternating cycles. The same is true for Observation 4.6 because of Fact 4.1 and
the following. We can shorten P going through d and u2

s, b, c so that it uses three edges
(d, vd

c ), (vd
c , vc

d), (vc
d, c) instead, because the weight of each of these two subpaths is the same

and equal to r(c) + r(d).
Next we notice that the proof of Lemma 4.7 goes through for the weighted setting as

long as Lemma 4.2 is still valid. We now argue that it indeed is. It suffices to prove that if
s = (a, b, c, d) is such that (a, b), (c, d) ∈ P \M , (b, c), (a, d) ∈ M \P , then P can be shortened.
Suppose that R is a subpath of P that consists of edges strictly between (a, b) and (c, d) and
that a and d are its endpoints. (The case that b and c are the endpoints of R is symmetrical.)
Let PR be a path obtained from P by replacing its subpath R by an edge (a, d). We show
that w′(PR) ≤ w′(P ), contradicting the choice of P . w is vertex-induced on s, therefore,
w′(P ) − w′(PR) = w′(R) − w′(a, d) = w′(R) + w(a, d) = w′(R) + w(a, b) + w(c, d) − w(b, c) =
w′(R) + w′(a, b) + w′(b, c) + w′(c, d) = w′(C) where C is an alternating cycle of G consisting
of R and three edges of s. Recall that w′(C) ≥ 0 because M is extreme. ◀

The corollary of Lemmas 4.8, 5.9 and 5.10 is:

▶ Theorem 5.11. Algorithm 1 computes a maximum (resp. maximum weight) square-free
2-matching of G.

6 Maximum-weight Kt,t-free t-matchings in bipartite graphs

In this section we solve the weighted Kt,t-free t-matching problem in bipartite graphs. Since
the case of t = 2 has already been addressed in the previous section, we assume that t ≥ 3.
Also, similarly as in Section 5, we assume that the weight function w is vertex-induced on
every Kt,t of G. The general scheme of the algorithm for the weighted Kt,t-free t-matching
problem is similar to Algorithm 1- we give it below.

Algorithm 2 Computing a maximum weight Kt,t-free t-matching of a bipartite graph G.
1: Let M be an empty t-matching of G.
2: Construct an auxiliary bipartite graph G′ = (V ′, E′) with O(tn) vertices and O(m)

edges, and its t-matching M ′ of size O(tn) by replacing some Kt,t’s of G with gadgets
containing half-edges.

3: Compute a minimum M ′-augmenting path P of G′. If G′ contains no M ′-augmenting
path with negative alternating weight, stop the algorithm and return M .

4: Apply P to M ′ obtaining M ′′ and extract a Kt,t-free t-matching M1 of G from M ′′

such that |M1| = |M | + 1 and w(M1) > w(M). Set M as M1 and go to 2.

▷ Claim 6.1. Algorithm 2 runs in time O(tnm + t2n2 log n).
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Proof. It is possible to implement all steps of an Algorithm 2 except 3 in linear time. Every
step is executed O(tn) times since |M | increases by one every time 4 is executed. ◁

Let us also remark that in the unweighted version of the problem the runtime of Al-
gorithm 2 is O(nm + tn2 +

√
tnm) because 3 can be implemented to run in linear time and

the algorithm can start not from an empty matching but from a maximum (t − 1)-matching,
whose computation takes O(

√
tnm) time. Additionally, we may want to forbid only some

subgraphs of G isomorphic to Kt,t. Then we proceed analogously, but replace only forbidden
subgraphs with gadgets.

▶ Definition 6.2. A subgraph H of G isomorphic to Kt,t is saturated if it contains exactly
one non-M -edge.

▶ Lemma 6.3. Any two different saturated Kt,t’s of G are vertex-disjoint.

Proof. Let H be any saturated Kt,t of G. We say that a vertex v of H is basic in H if v is
an endpoint of the only non-M -edge of H. Otherwise, we say that v is nonbasic in H. Let
V1(G) ∪ V2(G) denote the bipartition of V (G). Thus H has exactly two basic vertices: one
in V1(H) and the other in V2(H).

Let H1 and H2 be any two different saturated Kt,t’s of G with a common vertex v ∈ V1(G1).
We first show that it cannot happen that v is nonbasic both in H1 and H2. Suppose to the
contrary that v is nonbasic both in H1 and H2. Then all t edges of M incident to v1 belong
both to H1 and H2. Hence, we get that V2(H1) = V2(H2). Since t ≥ 3, at least one of the
vertices of V2(H1) is nonbasic both in H1 and H2, which implies that V1(H1) = V1(H2), but
this contradicts the fact that H1 and H2 are different.

Suppose next that v is basic both in H1 and H2. Then v has t − 1 incident edges of M in
H1 and t − 1 incident edges of M in H2. Since M is a t-matching, at least one of these edges,
say (v, v′), belongs both to H1 and H2. This however means that v′ is nonbasic both in H1
and H2 (because the endpoints of an M -edge cannot be both basic in the same saturated
Kt,t).

Finally, consider the case when v is basic in H1 and nonbasic in H2. It means that at least
two M -edges incident to v, say (v, v′) and (v, v′′), belong to both H1 and H2. Vertices v′, v′′

belong to V2(H2), none of them is basic in H1 and at most one is basic in H2. Therefore, at
least one of them is nonbasic both in H1 and H2 - a contradiction. ◀

▶ Observation 6.4. All saturated Kt,t’s of G can be found in linear time.

Proof. We can use a linear time algorithm by Galil and Italiano [10]. ◀

We replace every saturated Kt,t of G with a gadget described below. By Lemma 6.3, all
saturated Kt,t’s of G are vertex-disjoint.

The construction of the gadget for a saturated Kt,t is the following. Let H by any Kt,t

of G, AH = {a1, a2, . . . , at} be a set of vertices of one side of H and BH = {b1, b2, . . . , bt} -
of the other side. Let r : V (H) → R be a potential function of H . Assume that (a1, b1) /∈ M .
For every edge (ai, bj) of H, we introduce two subdivision vertices, vai

bj
, v

bj
ai , two half-edges

and one eliminator. We remove an eliminator of (a1, b1). We set the weight of every half-edge
incident to v ∈ V (H) to r(v). Additionally, we add u1

s and u2
s to G′. We connect u1

s to every
subdivision vertex adjacent to some vertex of AH and we connect u2

s to every subdivision
vertex adjacent to some vertex of BH . We add all half-edges of this gadget except for (a1, va1

b1
)

and (b1, vb1
a1

) to M ′. Additionally, we add (u1
s, va1

b1
) and (u2

s, vb1
a1

) to M ′.
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Figure 3 A gadget for a problematic K3,3.

7 Restricted matchings

In this section we consider the following variant of the Restricted Matching Problem. We are
given (1) a (not necessarily bipartite) graph G = (V, E), (2) a natural number k, (3) a set of
k subsets of edges E1, E2, . . . , Ek such that for each 1 ≤ i ≤ k (i) the graph G contains a
clique or a bipartite clique on all endpoints of Ei; in the case of a bipartite clique, it contains
the whole set Ei and (ii) the sets E1, . . . , Ek are almost vertex-disjoint - the endpoints of
any two different cliques have at most one vertex in common and (4) k natural numbers
r1, r2, . . . , rk. The task is to find a maximum size matching M of G among ones that satisfy
the condition: for each 1 ≤ i ≤ k it holds that M contains at most ri edges of Ei. Any
matching M of G that satisfies: for each 1 ≤ i ≤ k |M ∩ Ei| ≤ ri is called a restricted
matching.

To solve this problem we construct a graph G′ with gadgets for each of the sets Ei.
The construction of G′ is similar to the one used for square-free 2-matchings. The precise
construction of G′ is the following. We start off with G′ = G. For each 1 ≤ i ≤ k we build a
subgraph, called a gadget for Ei. Let ni = |Ei|. Each edge (p, q) of Ei is replaced with
three new edges (p, vp

q ), (vp
q , vq

p), (vq
p, q), two of which are half-edges of (p, q) and the third

one the eliminator of (p, q). If G contains a clique on all endpoints of Ei we introduce one
new global vertex ui and connect it with every subdivision vertex of an edge belonging
to Ei. We set the interval of ui as [2ni − 2ri, 2ni − 2ri]. If G contains a bipartite clique
Ki = (Ai ∪Bi, E′

i) on all endpoints of Ei we introduce two new global vertices u1
i and u2

i . We
connect u1

s with every subdivision vertex of an edge of Ei, which is a neighbour of a vertex
of Ai and similarly, we connect u2

s with every subdivision vertex of an edge of Ei, which is a
neighbour of a vertex of Bi. We set the interval of both u1

i and u2
i as [ni − ri, ni − ri]. Let

N =
∑k

i=1 ni, R =
∑k

i=1 ri and ER =
⋃k

i=1 Ei.
An (l, u)-matching M ′ of G′ is to represent roughly a restricted matching M of G. If M ′

contains both half-edges of some edge e ∈ ER, then e is included in M . If M ′ contains an
eliminator of e, then e does not belong to M (is excluded from M). The intuition behind the
gadget for the set Ei is that the global vertex or vertices in it are required to be matched
to 2ni − 2ri subdivision vertices of edges of Ei. In this way they block 2ni − 2ri half-edges,
which means that at most 2ni − (2ni − 2ri) = 2ri half-edges of edges of Ei can be present in
M ′. This implies that at most ri edges of Ei can appear in the matching M .
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▶ Theorem 7.1. Any maximum (l, u)-matching M ′ of G′ yields a maximum restricted
matching of G.

Proof. Any restricted matching M of G corresponds to an (l, u)-matching M1 of G′ such
that |M1| = |M | + 2N − R. To construct such M1 we proceed as follows. We set M1
to an empty (l, u)-matching. For each e ∈ M ∩ ER, we add both half-edges of e to M1.
For each edge e ∈ M \ ER, we add e to M1. Next for each 1 ≤ i ≤ k there exist at
least ni − ri edges of Ei that do not belong to M . We choose any such (ni − ri)-element
subset Fi ⊆ Ei and for each e ∈ Fi we connect in M1 the global vertex/the global vertices
ui/u1

i , u2
i to the two subdivision vertices of e. For every edge e of Ei \ (M ∪ Fi) we add the

eliminator of e to M1. Let us note that the size of any (l, u)-matching N ′ of G′ satisfies:
2|N ′| =

∑
v∈V degN ′(v) +

∑
v∈V ′\V degN ′(v) =

∑
v∈V degN ′(v) + 4N − 2R. This means that

the thus constructed M1 has size |M | + 2N − R.
Consider now any (l, u)-matching M ′ of G′. If for every edge e ∈ Er it holds that either

both half-edges of e are contained in M ′ or none, then we say that M ′ is integral. Every
integral M ′ yields a restricted matching M of G such that |M | = |M ′| − 2N + R. We next
show that even when M ′ is not integral, we are able to build a restricted matching M such
that |M | = |M ′| − 2N + R. We only need to say what to do with half-edges, i.e., with those
edges of Er for which M ′ contains only one of their half-edges. We deal with each set Ei

separately. Suppose first that Ei is such that the graph G contains a clique on all endpoints of
Ei. Let us notice that the number of edges of Ei with exactly one of its half-edges contained
in M ′ is even. Let Fi denote such edges and V ′

i denote those endpoints of edges of Fi that
are incident to some half-edge of an edge of Fi. Then |V ′

i | is even. We pair vertices of V ′
i in

an arbitrary way and for two vertices u, u′ belonging to one pair we replace two half-edge of
M ′ incident with u and u′ with one edge (u, u′) of M . The case when G contains a bipartite
clique on all endpoints of Ei is analogous. ◀
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1 Introduction

The design and analysis of approximation algorithms [37,38] is an extensively studied area
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objective within some provable factor of the optimal objective value. To understand this
formally imagine we are given some optimization problem P , which corresponds to an infinite
set of problem instances {Pi}. Each problem instance corresponds to a triple Pi = (fi, Ti, ni)
where ni ∈ N+, Ti ⊆ {0, 1}ni , and fi : Ti → R+ is an objective function. This gives rise to
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An approximation algorithm A acts on an efficient description of an instance to produce
some feasible solution to the problem: A(fi, Ti, ni) = s̄i ∈ Ti in time polynomial in the
instance size (polynomial in ni). It is said that algorithm has approximation factor α for
0 < α ≤ 1 if in the worst-case (over all instances), the solution produced by the algorithm is
a factor of α off of the optimal answer:

min
i

fi(s̄i)
OPTi

≥ α.

Since we should not expect to solve NP-hard problems in polynomial time, an interesting
question is then the approximability of NP-hard optimization problems, or the study of
which approximation factors α are obtainable for different problems. As one might expect,
approximability is highly problem sensitive and there are many classes of natural problems
with widely varying approximability [15,17,23,37,38].

2-Local Hamiltonian. In stark contrast, although QMA-hard quantum optimization prob-
lems arise naturally through well-known physically motivated problems [5, 35], they have
very few known approximation algorithms with provable approximation factors [2, 4, 8, 11, 18,
19,21,22,31]1. The QMA-hard optimization studied in these works, as well as the problem
we sill study here, is the 2-Local Hamiltonian problem [24, 25].

An instance of this problem is specified by a problem size, n, as well as a set of 2-local
interactions (i.e., interactions on pairs of qubits), {Hij}ij∈E . Each Hij ∈ C2n×2n is some local
Hamiltonian which can be written as the tensor product of n− 2 identity terms with some
nontrivial operator, Oij ∈ C4×4, that acts on at most 2 qubits, i.e. Hij = Oij ⊗ I[n]\{i,j} ∈
C2n×2n (see Section 2.1 for notation). The optimization problem corresponding to a particular
instance is to find the smallest or largest eigenvalue, λmin or λmax, of H =

∑
ij∈E Hij .

▶ Problem 1 (QLH: Quantum Max 2-Local Hamiltonian). Given a problem size, n, as well as
a classical description of a set of 2-local terms {Hij = Oij ⊗ I[n]\{i,j}}ij∈E with Hij ∈ C2n×2n

Hermitian, find:

λmax(H) := max
|ϕ⟩∈(C2)⊗n

⟨ϕ|H |ϕ⟩ = max
ρ∈C2n

×C2n

Tr(ρ)=1, ρ⪰0

Tr [Hρ] , where H :=
∑
ij∈E

Hij .

Ideally, an algorithm solving this problem would also produce a description of or access to
a corresponding eigenvector. We will focus on approximating λmax for special cases of 2-local
Hamiltonian. Although exactly computing λmax(H) is equivalent to computing λmin(−H),
the approximability of these problems can differ. An approximation algorithm, A, acts on
the description of the local Hamiltonians {Hij} to produce a classical description of a valid
quantum state, ρ̄. Once again we say that the algorithm achieves approximation factor α if:

Tr[
(∑

ij Hij

)
ρ̄]

λmax

(∑
ij Hij

) ≥ α, for all instances.

1 Here and throughout this paper we mean a classical algorithm which takes as input a classical description
of a quantum problem and produces a classical description of a quantum state. An approximation
algorithm for a QMA-hard problem can have several natural meanings distinct from this (quantum
input, quantum algorithm which produces classical output, etc.).
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Generally we assume some property of the Hamiltonian which forces λmax(H) > 0 so that this
is a sensible definition. A common assumption [18,21,24] is that the terms Hij are positive
semi-definite (PSD) and nonzero. We note that when all of the terms Hij are taken to be
diagonal projectors (in say, the standard computational basis), the corresponding instance
of 2-Local Hamiltonian corresponds precisely to an instance of the classical 2-Constraint-
Satisfaction problem (2-CSP). In this case, the 4 diagonal entries of Oij correspond to the
{0, 1} output values of a Boolean function on variables xi and xj corresponding to i and
j. See Appendix E in [30] for more details as well as a classical motivation for 2-Local
Hamiltonian. In addition Table 1 highlights classical 2-CSP specializations of quantum Max
2-local Hamiltonian problems for which approximation algorithms are known.

The 2-Local Hamiltonian problem is interesting in many different contexts of physics and
quantum information [24,25,29]. This problem is manifestly interesting to physicists because
the 2-local nature of the problem matches the local nature of many physical systems (spin
chains, Ising model, etc.). Hence, the study of eigenstates and energies is of utmost importance,
and has been since the beginnings of quantum mechanics itself [6]. From a theoretical
computer science perspective, the 2-Local Hamiltonian problem is interesting for the same
reasons that classical approximation algorithms are interesting. Under standard complexity
theoretic assumptions, we should not expect to be able to efficiently solve the problem, so the
interesting direction is the study of the approximability of the problem. Can we find rigorous
approximation algorithms, and how well can we expect to be able to approximate the answer?
Moreover, which classes of instances admit constant-factor approximation algorithms? Akin
to the classical PCP Theorem, the potential inapproximability of local Hamiltonian problems
to within constant factors is known as the Quantum PCP Conjecture. The resolution of the
conjecture would yield insight into properties of quantum mechanics and entanglement (e.g.,
Section 1.3 in [1]).

1.1 Our Contributions

The QLH problems we consider generalize a variety of classical optimization problems,
including Max 2-SAT, Max Cut, general Max 2-CSP, and the Grothendieck problem (see
Table 1 for our results). We focus on QLH where each term Hij is a projector and the special
case where each projector is strictly quadratic, both of which remain QMA-hard [32]. The
strictly quadratic case precludes non-identity 1-local terms (i.e. Oi ⊗ I[n]\{i} with Oi ̸= I)
that may be implicit in a 2-local term (see Definition 8). In this case Oij = wijPij , where Pij

is a 2-qubit projector, and wij ≥ 0 is a weight. There are three interesting cases, depending
on the rank of Pij . We will obtain approximation factors for each.

▶ Problem 2 (QLHP(k): Quantum Max 2-Local Hamiltonian on Projectors). Given a problem
size, n, as well as a classical description of a set of 2-local terms {Hij = wijPij ⊗I[n]\{i,j}}ij∈E

with wij ≥ 0 and Pij ∈ C4×4 a 2-qubit projector of rank at least k, find λmax(
∑

ij∈E Hij).

▶ Remark 3. Although Problem 2 is formulated for a single term Hij per pair of qubits i, j,
our techniques apply when multiple terms are present per pair. Since any Oij ⪰ 0 can be
written as a positive combination of rank-1 projectors, the version of QLHP(1) we solve more
generally captures instances of QLH where each Hij ⪰ 0.
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▶ Theorem 4 (Informal). Given an instance of QLHP(k), {Hij = wijPij ⊗ I[n]\{i,j}}, where
all 2-local projectors Pij are rank k ∈ {1, 2, 3}, we give a classical randomized polynomial-time
algorithm with approximation ratio α(k), where

α(k) =


0.387 if k = 1
0.565 if k = 2
0.764 if k = 3.

▶ Theorem 5 (Informal). If in addition to the assumptions of Theorem 4, the terms Hij are
strictly quadratic, we give a classical randomized polynomial-time algorithm with approxima-
tion ratio α(k), where

α(k) =


0.467 if k = 1
0.639 if k = 2
0.805 if k = 3.

The decision version of the problem we consider is known as Quantum-SAT and was
introduced in 2006 by Bravyi [10], and the approximability of QLHP was first considered in
2011 by Gharibian and Kempe [18], who observed that the maximally mixed state trivially
achieves an approximation ratio of k/4 for k ∈ {1, 2, 3}. The only nontrivial result previously
known is a 0.328-approximation for the k = 1 case by Hallgren, Lee, and Parekh [21]. In
contrast to previous works [19, 21], we are able to directly analyze the expected performance
of our algorithm rather than appealing to known but weaker black-boxes.

Significance of our work. We give the first approximation algorithms beating random
assignment for QLHP. We show how to move beyond numerical evaluation of approximation
ratios for QLH, which is not as critical in the classical case that enjoys only a handful of
parameters. This is accomplished by: (1) reducing the number of parameters for analysis of
a single term from 18 to 3 (in the strictly quadratic case), and (2) explicitly computing the
coefficients of a Hermite decomposition of a multivariate Gaussian expectation. The latter
generalizes previous results of Briët, de Oliveira Filho, and Vallentin [13] employed in [19].
We are able to analyze a natural generalization of classical hyperplane rounding that we
expect will enable approximation of other QLH problems.

Strictly quadratic instances. We believe the strictly quadratic case is an interesting special
case for several reasons. As noted, one of the difficulties in analyzing rounding schemes for
QLH is the sheer number of parameters involved. The quadratic case reduces the number of
parameters to consider, while still including physically relevant QMA-hard instances such
as the Max Heisenberg model that serves as a quantum generalization of Max Cut [19].
Indeed we believe that quadratic instances allow one to glean insights and develop techniques
that might otherwise be obscured in more general instances. Some of the first rigorous
approximation algorithms for QLH that go beyond product states were recently developed
for quantum Max Cut [2,31]. Moreover, maximally entangled instances are strictly quadratic,
and we conjecture these are the hardest cases to approximate.

Numerical results and upper bounds. We conjecture that the true performance of our
algorithm for general QLHP, including linear terms, is:
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▶ Conjecture 6. (Informal) Our rounding algorithm achieves approximation ratio:

α(k) =


0.498 if k = 1
0.653 if k = 2
0.821 if k = 3,

and these quantities match the worst-case gap between OPT and our SDP upper bound.

We have indeed confirmed the approximation ratios in Conjecture 6 through numerical
experiments. The difficulty in taking these encouraging results as fact is: (1) the increase in
complexity for an exhaustive search as the number of parameters grows, and (2) although
we do give series expansions for the expected performance of the algorithm, establishing
smoothness of the expected performance is more difficult than for classical CSP approximation
algorithms. Classical 2-CSP approximation factors are also established numerically; however,
the performance is usually a well-behaved function of a single parameter, which makes
exhaustive numerical search more plausible. There has been limited work on rigorous analysis
of 2-CSP approximation guarantees [36]. We note that for the strictly quadratic case, our
approach requires a search over only three parameters, rendering these numerical results
more plausible. We also note that the performance of a similar approximation algorithm for
quantum Max Cut, a special case of QLHP(1), is a hypergeometric function in one parameter,
and the corresponding approximation guarantee is indeed 0.498 [19].

An upper bound on α(k) is given below for an instance of QLPH(k) on 2 qubits, with
multiple edges that are each strictly quadratic rank-k projectors. These bounds are fairly
close to the values in Conjecture 6.

▶ Theorem 7. There exist an instance of QLH on a single edge e, where He ⪰ 0 is strictly
quadratic, is a convex combination of rank-k projectors, and satisfies:

max
|ϕ1⟩∈C2,|ϕ2⟩∈C2

⟨ϕ1| ⊗ ⟨ϕ2|He |ϕ1⟩ ⊗ |ϕ2⟩ ≤ β(k) · λmax (He) ,

where β(k) =


1/2 if k = 1
2/3 if k = 2
5/6 if k = 3.

Proof. The Bell states take their usual definition:

|Φ+⟩ = |00⟩ + |11⟩√
2

, |Φ−⟩ = |00⟩ − |11⟩√
2

, |Ψ+⟩ = |01⟩ + |10⟩√
2

, and |Ψ−⟩ = |01⟩ − |10⟩√
2

.

We define,

He(k) = k − 1
3 I + 4 − k

3 |Ψ−⟩ ⟨Ψ−| .

Let µ(k) = max|ϕ1⟩∈C2,|ϕ2⟩∈C2 ⟨ϕ1| ⊗ ⟨ϕ2|He(k) |ϕ1⟩ ⊗ |ϕ2⟩. From, e.g., [19], we know that
µ(1) = 1/2, while λmax(He(1)) = 1 since |Ψ−⟩ is an eigenvector of the rank-1 projector
He(1). For k > 1 we have that

µ(k) = k − 1
3 + 4 − k

3 µ(1) = k + 2
6 , and

λmax(He(k)) = k − 1
3 + 4 − k

3 λmax(He(1)) = 1,
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yielding the desired values of β(k). We give explicit descriptions of He(k) as convex combi-
nations of rank-k projectors for k = 2, 3:

He(2) =1
3(|Ψ−⟩ ⟨Ψ−| + |Φ+⟩ ⟨Φ+|) + 1

3(|Ψ−⟩ ⟨Ψ−| + |Φ−⟩ ⟨Φ−|)

+ 1
3(|Ψ−⟩ ⟨Ψ−| + |Ψ+⟩ ⟨Ψ+|), and

He(3) =1
3
(
I − |Φ+⟩ ⟨Φ+|

)
+ 1

3
(
I − |Φ−⟩ ⟨Φ−|

)
+ 1

3
(
I − |Ψ+⟩ ⟨Ψ+|

)
. ◀

1.2 Related Work
In the interest of classical approximations of a 2-Local Hamiltonian instance H, let OPT :=
λmax(H) and define

OPTprod := max
|ϕ1⟩,...,|ϕn⟩

∈C2

⟨ϕ1| ⊗ ...⊗ ⟨ϕn|H |ϕ1⟩ ⊗ ...⊗ |ϕn⟩

to be the product state2 with the largest objective value or energy.
Approximations for QLH generally make assumptions on the form of the terms Hij . One

common assumption is on the geometry of the interactions in E. Bansal, Bravyi, and Terhal
show that 2-Local Hamiltonian on bounded-degree planar graphs admits a polynomial-time
approximation scheme3 (PTAS) [4], and Brandão and Harrow generalize this to arbitrary
planar graphs [8]. On the other end, for k-Local Hamiltonian on dense graphs, Gharibian
and Kempe give a PTAS with respect to OPTprod [18], and Brandão and Harrow extend this
result to obtain a PTAS for dense graphs with respect to OPT [8]. Brandão and Harrow also
show the existence of product-states with energy nearly that of OPT or give product-state
approximations for a variety of graph classes [8].

Bravyi, Gosset, König, and Temme give an Ω( 1
log n )- approximation for traceless 4

QLH [11]. This case is general enough to capture classical problems with no constant-
factor approximations [3]. Harrow and Montanaro give an approximation algorithm for
traceless k-Local Hamiltonian with respect to the maximum degree and size of the interaction
hypergraph [22]. Note that approximating traceless QLH generalizes all problems considered
in this paper, since adding copies of the identity only improves the approximation factor;
however there is no reason to expect such analysis could be used to prove constant factor
approximations for the classes we study.

A unifying theme among recent approaches (see Table 1 for approximation guarantees)
is employing a semi-definite program (SDP) to provide an upper bound on OPT and then
using generalization of some classical randomized rounding scheme to produce a product
state [11,19,21]. Such an approach was first carried out by Brandão and Harrow [8]. Gharibian
and Parekh [19] consider a QMA-hard rank-1 QLHP problem that is a generalization of
the classical Max Cut problem. Hallgren, Lee, and Parekh [21] study QLHP and give
the first approximation beating random assignment for rank-1 QLHP. They also provide

2 As is suggested by the expression, a product state is a quantum state which factors according to tensor
product of individual quantum states. Such states have no entanglement and are considered “classical”
states.

3 This is an approximation algorithm that for a constant ε > 0, allows a 1-ε approximation factor at the
expense of a runtime that depends on 1/ε.

4 A traceless instance is one with Tr[H] = 0. Alternatively, when expressed as a polynomial in the Pauli
basis, H is traceless if it has no identity term.
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approximations when each term is a product term, Hij = Hi ⊗Hj , which is a QMA-hard class
of QLH. An approximation result of [8] leverages the quantum Lasserre hierarchy of SDPs.
The first level of this hierarchy yields a natural SDP relaxation that is employed by [11]
and [19]. Our work adopts the approach of [21] and strengthens the natural SDP relaxation
with additional constraints related that enforce positivity of 2-qubit marginals. Both [19]
and [21] appeal to approximation results of Briët, de Oliveira Filho, and Vallentin [12, 13] to
analyze the expected performance of their rounding algorithms. The rounding scheme of [11]
is a generalization of a classical approximation by Charikar and Wirth [14].

Beyond product states. Gharibian and Parekh [19] give a 0.498-approximation for their
quantum generalization of Max Cut, where 1

2 is the best possible approximation by product
states (see Theorem 7). Anshu, Gosset, and Morenz [2] demonstrate that it is possible to beat
a 1

2 -approximation for quantum Max Cut by furnishing a classical randomized approximation
that outputs a description of a tensor product of 1- and 2-qubit states rather than product
states, which are tensor products of 1-qubit states. This result does not rely on an SDP
as an upper bound on OPT , instead appealing to well-known monogamy of entanglement
bounds for the Heisenberg model. Parekh and Thompson [31] observe that a similar type
of approximation is possible using the second level of the quantum Lasserre hierarchy and
obtain a slight improvement over the approximation ratio of [2].

Although these results may seem to suggest that the future of approximation algorithms
for QLH should look beyond product states, a solid understanding of the approximability of
product states is likely necessary for any type of general approximation algorithm for QLH.
Brandão and Harrow [8] show that for (certain generalizations of) regular graphs, OPTprod
approaches OPT as the degree increases. Indeed, trading off product-state approximations
with more general quantum states is a key ingredient in both [2] and [31].

2 Semidefinite Relaxation and Rounding Approach

In this section we present a rigorous but high-level overview of our approach, with technical
lemmas deferred to later sections. We define the main problems considered and our semidefi-
nite relaxation and rounding algorithm. We conclude by motivating the analysis that will
occur in detail in the full version of this paper, [30].

2.1 Preliminaries
Quantum information notation. We adopt some standard notations used in quantum
information [28]. The kets |0⟩ := [0, 1] and |1⟩ := [1, 0] represent the standard basis vectors
for C2, while the bras ⟨0| and ⟨1| represent their conjugate transposes. The d× d identity
matrix is denoted by Id, and the subscript will be omitted when redundant. We obtain
the standard bases for C2n as |b1b2 . . . bn⟩ := |b1⟩ |b2⟩ . . . |bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ . . .⊗ |bn⟩, with
bi ∈ {0, 1}. The Pauli matrices will have the usual definition:

σ0 = I =
[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
. (1)

We will generally use subscripts to indicate quantum subsystems. If ρ is a density matrix on
n qubits, for instance, ρij will correspond to the marginal density matrix on qubits i and j,
i.e. the partial trace ρij = Tr[n]\{i,j}[ρ] (e.g. [28], Section 2.4.3). Similarly, σj

i corresponds
to Pauli j on qubit i. Subscripts will supercede position in many cases in the paper, for
instance σ1

i ⊗ σ2
j ⊗ I[n]\{i,j} is meant as I ⊗ I ⊗ ...⊗ σ1 ⊗ ...⊗ I ⊗ σ2 ⊗ ...⊗ I where σ1 is at
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Table 1 Approximation algorithms for Max 2-local Hamiltonian problems. The number of
qubits or Boolean variables is n, and the set of pairwise constraints is E. For readability in the table
below, we omit weights wij ≥ 0 that may be present in both 2-local Hamiltonian (2-LH) and related
classical constraint satisfaction (2-CSP) problems. [30] provides more details on the relationship between
2-LH and 2-CSP, as well as definitions for Xi, Yi, Zi. An “N” denotes a numerical result; the classical
results are implicitly numerical since they are obtained by numerically finding the worst-case ratio over a
range of parameters. The abbreviation “quad.” refers to strictly quadratic instances.

Max 2-LH problem
(QMA-hard)

Max 2-CSP
specialization
(NP-hard)

Classical approx.
for 2-CSP

Classical approx.
for 2-LH problem
(product state)

Traceless∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij has no I terms

Classical Ising
max -

∑
ij∈E

zizj

zi ∈ {±1}

Ω( 1
log n

) [14] Ω( 1
log n

)†[11]

Bipartite Traceless∑
e∈E

Hij ⊗ I[n]\{ij}
Hij has no I terms
E bipartite

Grothendieck
max -

∑
ij∈E

zizj

zi ∈ {±1}
E bipartite

0.561 + ε [9] 0.187†(quad.)

Positive/Rank 1∑
ij∈E

Hij ⊗ I[n]\{ij}
I ⪰ Hij ⪰ 0
(≡ Hij rank 1 projector)

Max 2-CSP
(≡ 1 satisfying
assignment
per clause)

0.874 [27] 0.25 (random)
0.328 [21]
0.387
0.467 (quad.)
0.498 (quad., N)
0.5 (upper bound)

Max Heisenberg∑
ij∈E

I − XiXj − YiYj − ZiZj

(special case of above)

Max Cut
max

∑
ij∈E

1 − zizj

zi ∈ {±1}

0.878 [20] 0.25 (random)
0.498 [19]
0.5 (upper bound)
0.53*[2]
0.533*[31]

Rank 2∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij rank 2 projector

Max 2-CSP
with 2 satisfying
assignments/clause

0.874 [27] 0.5 (random)
0.565
0.639 (quad.)
0.653 (quad., N)
0.667 (upper bound)

2-QSAT∑
ij∈E

Hij ⊗ I[n]\{ij}
Hij rank 3 projector

Max 2-SAT
(≡ 3 satisfying
assignments/clause)

0.940 [27] 0.75 (random)
0.764
0.805 (quad.)
0.821 (quad., N)
0.834 (upper bound)

* This exceeds the product-state upper bound because it is achieved by a classical approximation
algorithm that rounds to a description of a non-product state.

† For any traceless 2-LH problem, we obtain a product-state approximation ratio that is 1
3 of an

approximation ratio for a related classical CSP, using the appropriate classical approximation
algorithm as a black box (see Appendix F in the extended version of this article [30]). This
also gives another algorithm and proof for the result of [11] in the first row.
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the ith position and σ2 is at the jth position. We encourage readers familiar with classical
constraint satisfaction problems to consult Appendix E in [30], which casts such problems as
quantum local Hamiltonian problems.

2-local Hamiltonian. Our approxiations for QLHP allow multiedges, i.e. distinct edges e
and e′ on the same pair of qubits i, j. For the sake of exposition, we generally ignore this
possibility and conduct our analysis assuming we have a single term Hij for each ij ∈ E.
However, when necessary, we will use the notation e1 and e2 to refer to the qubits on
which an edge e acts. In this context a term He is 2-local if it can be written in the form
He = Oe ⊗ I[n]\{e1,e2}. Local Hamiltonians have polynomially-sized descriptions which can
be given in terms of the local operators Oe, but for our purposes the details of the description
will not be important. We will use rank(He) to mean rank(Oe). The actual rank of He is
rank(Oe)2n−2, but for ease of exposition we will say that the “rank” of a 2-local term is
equal to the rank of its non-trivial part.

The bulk of our work focuses on strictly quadratic instances of QLHP, allowing us to
express our main ideas more clearly. The strictly quadratic case precludes non-identity
1-local terms (i.e. Oi ⊗ I[n]\{i} with Oi ̸= I) that may be implicit in a 2-local term.

▶ Definition 8 (Strictly Quadratic). Let He be a 2-local term on n qubits. Write He =
Oe ⊗ I[n]\{e1,e2} for some nontrivial operator Oe. Express Oe in the Pauli basis as:

Oe =
3∑

k,l=0
αk,lσ

k ⊗ σl. (2)

We say that He is a strictly quadratic if αk,0 = 0 for all k ̸= 0, and α0,l = 0 for all l ̸= 0.

Note that the coefficients in Equation (2) may be obtained as αk,l = Tr[(σk ⊗ σl)Oe]/4 and
are real since Oe is Hermitian.

Example. An example of a strictly quadratic instance of QLH is quantum Max Cut [19],
where for all ij ∈ E, Oij = 1

4 (I−σ1 ⊗σ1 −σ2 ⊗σ2 −σ3 ⊗σ3). In this case Oij = |Ψ−⟩ ⟨Ψ−|,
with |Ψ−⟩ = 1√

2 (|01⟩ − |10⟩), so that Oij has rank 1. In general, any maximally entangled
pure state on 2 qubits gives rise to a rank-1 strictly quadratic term, since such states must
have maximally mixed reduced density matrices.

2.2 Semidefinite Relaxation
We employ a semidefinite programming relaxation for QLH (Problem 1) that is a refinement of
the now standard SDP relaxation that has been used in designing approximation algorithms [8,
11, 19]. Our relaxation is related to one used by Hallgren, Lee, and Parekh [21] and may be
viewed as a specialization of noncommutative Lasserre hierarchies proposed for quantum
information applications [16,31,34].

In this section we assume, for the sake of exposition, that there is a single edge ij on
any pair of qubits i, j ∈ [n]; however, the relaxation and rounding algorithm may be readily
extended to handle general instances of QLH with multiedges. Suppose we have an instance
of QLH on n qubits. The first set of variables in our SDPs will be marginal density matrices
{ρij}. Since there are n qubits, there are

(
n
2
)

many of these, and each of them is a 4 × 4
Hermitian matrix. While we cannot impose global consistency, we can force each ρij to
be a valid density matrix on its own: Tr[ρij ] = 1 and ρij ⪰ 0 for all i, j ∈ [n]. We could
also explicitly force overlapping marginals to be consistent on single qubit density matrices,
however this will be implicit through our use of moment matrices.
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Moment matrices. Suppose we have a quantum state on n qubits |ψ⟩ ∈ C2n . Consider the
1-local Pauli operators, M = {I}∪{σk

i ⊗I[n]\{j} | k ∈ [3], i ∈ [n]}. We apply each of the 3n+1
Pauli operators O ∈ M on |ψ⟩ to obtain columns of a matrix V = {O |ψ⟩}O∈M ∈ C2n×(3n+1).
We call M := V †V ∈ C(3n+1)×(3n+1) the moment matrix of |ψ⟩ with respect to M; note
that M is Hermitian and M ⪰ 0 by construction. The notation M(O,P) refers to the
entry of M at the row and column corresponding to O,P ∈ M respectively. We have
M(O,P) = ⟨ψ| OP |ψ⟩, for all O,P ∈ M, so that M captures all the 2-local Pauli statistics
of |ψ⟩. In particular the quantity ⟨ψ|H |ψ⟩ is a linear function of the entries of M for a
2-local Hamiltonian H. If we let Mk consist of all the k-local tensor products of Paulis,
instead of just the 1-local ones, the corresponding moment matrix Mk, of size O(nk) by
O(nk), includes all the 2k-local Pauli statistics. We may obtain SDP relaxations for QLH
problems by constructing a relaxed Mk ⪰ 0 that satisfies linear constraints of the form
Tr[AMk] = b, that a true moment matrix would satisfy. This corresponds to the kth level of
noncommutative Lasserre hierarchies introduced for quantum information [16,31,34]. Our
approach relaxes M1 and adds additional constraints enforcing positivity of 2-local marginals;
the relaxation we obtain sits between the k = 1 and k = 2 levels of the noncommutative
Lasserre hierarchy.

SDP Relaxation. We define a (relaxed) moment matrix M , which will track local statistics
of the set of marginals {ρij}. Let M be a symmetric, (3n+ 1) × (3n+ 1) real matrix whose
rows and columns correspond to operators in M. Entries of M will correspond to coefficients
of the marginal density matrices {ρij} in the Pauli basis. We use the notation M(σk

i , σ
l
j) to

refer to entries of M for i, j ∈ [n] and k, l ∈ [3]; in addition we have a row and column of M
indexed by I. We set M(σk

i , σ
l
j) = Tr[σk ⊗ σl ρij ] for (i, k), (j, l) in [n] × [3]. In addition we

set M(I, I) = 1, and M(σk
i , I) = Tr[σk ⊗ I ρij ] for all (i, k) ∈ [n] × [3] and j ∈ [n]. Note that

this constraint forces consistent single-qubit marginals since

Tru[ρiu] = Trv[ρiv] ⇔ Tr[σl ⊗ I ρiu] = Tr[σl ⊗ I ρiv] ∀l.

Since M contains all local information of {ρij}, we can use M to evaluate the objective of
our SDP. In this direction, we will define a weight matrix for each edge Hij = wijOij ⊗In\{i,j},
where Oij ∈ C4×4, and wij is a scalar weight. We define the (3n+ 1) × (3n+ 1) matrix Cij ,
which contains the coefficients of Oij in the Pauli basis:

Cij(σk
i , σ

l
j) = Cij(σl

j , σ
k
i ) = Tr[σk ⊗ σl Oij ]/8 ∀k, l ∈ [3], (3)

Cij(σk
i , I) = Cij(I, σk

i ) = Tr[σk ⊗ I Oij ]/8 ∀k ∈ [3],
Cij(σl

j , I) = Cij(I, σl
j) = Tr[I ⊗ σl Oij ]/8 ∀l ∈ [3],

and all other entries of Cij are 0. To illustrate application of the matrix Cij , suppose Oij

and the marginal density matrix ρij have Pauli decompositions:

Oij =
3∑

k,l=0
αklσ

k ⊗ σl and ρij = 1
4

3∑
k,l=0

βklσ
k ⊗ σl.

Since, for k, l ≥ 0, (σk)2 = I and Tr[σkσl] = 0 when k ̸= l, the value we gain from edge ij,
ignoring the weight wij , is written as:

Tr[Oijρij ] = α00β00 +
∑
k,l:

(k ̸=0)∨(l ̸=0)

αklβkl = Tr[Oij ]
4 + Tr[CijM ]. (4)

With these facts in hand, we may finally give the main SDP relaxation in this work:
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▶ Problem 9. Given an instance of QLH (Problem 1) on n qubits with local terms {Hij =
wijOij ⊗ I[n]\{i,j}}, let Cij be defined according to Equation (3) for each ij ∈ E. Solve the
following SDP:

max
∑
ij∈E

wij

(
Tr[Oij ]

4 + Tr[CijM ]
)

(5)

s.t. M(I, I) = 1, (6)
M(σk

i , σ
k
i ) = 1 ∀i ∈ [n] and k ∈ [3], (7)

M(σk
i , σ

l
i) = 0 ∀i ∈ [n] and k ̸= l ∈ [3], (8)

M(σk
i , σ

l
j) = Tr[σk ⊗ σl ρij ] ∀ij ∈ E and k, l ∈ [3], (9)

M(σk
i , I) = Tr[σk ⊗ I ρij ] ∀ij ∈ E and k ∈ [3], (10)

M(σl
j , I) = Tr[I ⊗ σl ρij ] ∀ij ∈ E and l ∈ [3], (11)

Tr[ρij ] = 1 ∀ij ∈ E, (12)
H(C4×4) ∋ ρij ⪰ 0 ∀ij ∈ E, (13)

S(R(3n+1)×(3n+1)) ∋ M ⪰ 0, (14)

where S(·) and H(·) refer to the symmetric and Hermitian matrices, respectively.
▶ Theorem 10. The mathematical program of Problem 9 is an efficiently computable semidef-
inite program that provides an upper bound on λmax(

∑
ij∈E Hij).

Proof. Constraints (6)–(12) are linear equalities on the entries of PSD matrices M and ρij

∀ij ∈ E, hence we do indeed have an SDP. Since there are polynomially many variables of
polynomial size, the usual considerations show computational efficiency, i.e. the program can
be solved to arbitrary additive precision in polynomial time.

A larger matrix X ⪰ 0, consisting of M and the ρij as its diagonal blocks may be used
to put the SDP into a more standard form (e.g. [7], Section 4.6.2). Although the ρij are
complex, the SDP may be solved as a real SDP by appealing to the standard approach of
tracking the real and imaginary parts separately and observing X ⪰ 0 if and only if[

Re(X) −Im(X)
Im(X) Re(X)

]
⪰ 0.

Let |ψ⟩ be an eigenvector corresponding to λmax(
∑

ij∈E Hij), and let ρ∗
ij , ∀ij ∈ E, be

the 2-qubit marginal density matrices of ρ = |ψ⟩ ⟨ψ|, so that Constraints (12) and (13) are
satisfied for the ρ∗

ij . In addition consider the moment matrix M for |ψ⟩ with respect to M,
as described above. The matrix M satisfies Constraints (6), (7), (9)–(11), and (14) by the
definition of a moment matrix, since

⟨ψ|σk
i ⊗ σl

j ⊗ I[n]\{i,j} |ψ⟩ = Tr[σk ⊗ σl ρ∗
ij ], for 0 ≤ k, l ≤ 3. (15)

Constraint (8) is the only one that remains. Note that the real part of M , M∗ := Re(M) ⪰
0 sinceM ⪰ 0. By Equation (15), for any j ∈ [n] and k ̸= l ∈ [3], M(σk

i , σ
l
i) = ±iTr[σm⊗I ρ∗

ij ],
where m ∈ [3] \ {k, l}. The quantities in Equation (15) are real since tensor products of Pauli
operators are Hermitian. This implies that M(σk

i , σ
l
i) for k ̸= l ∈ [3] is imaginary and more

generally that M∗ and the ρ∗
ij satisfy all the constraints.

Consider the objective value for this solution,
∑

ij∈E wij(Tr[Oij ]/4 + Tr[CijM
∗]) =

∑
ij∈E

wijTr[Oijρ
∗
ij ] = Tr

∑
ij∈E

Hij ρ

 = λmax

∑
ij∈E

Hij

 ,

where the first equality follows from Equation (4). It follows that the optimal solution to
Problem 9 has value at least that of the optimal solution of QLH. ◀
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2.3 Rounding Approach and Formal Statement of Results

Overview. In classical SDP-based rounding schemes, one typically seeks to randomly “round”
unit vectors vi ∈ Rd to scalars zi ∈ {±1} so that the expected value of zizj approximates
vi · vj . The seminal hyperplane rounding scheme of Goemans and Williamson [20] achieves
this by selecting a random unit vector r ∈ Rd and setting zi = r · vi/|r · vi|.

Rounding solutions from SDP relaxations for QLH to product states generalizes this
approach. Recall that a product state has the form |ψ⟩ = |ψ1⟩⊗. . .⊗|ψn⟩ where each |ψi⟩ ∈ C2

is a local state on qubit i. We obtain a density matrix ρ = |ψ⟩ ⟨ψ| = |ψ1⟩ ⟨ψ1|⊗ . . .⊗|ψn⟩ ⟨ψn|,
which is a tensor product of single-qubit density matrices ρi := |ψi⟩ ⟨ψi|. Any such ρi may be
expressed in the Pauli basis as ρi = 1

2 (I + θi1σ
1 + θi2σ

2 + θi3σ
3), where θik = Tr[σkρi] ∈ R

and
∑

k∈[3] θ
2
ik = 1. In particular, product states with θi1 = θi2 = 0 and θ2

i3 = 1 correspond
precisely to the classical setting (see Appendix E in [30] for an explicit connection between
the two). Product states exhibit no entanglement, and we may specify θik independently
for each qubit i. However, instead of producing a single z2

i = 1 as in the classical case,
we must produce a unit vector θi = [θi1, θi2, θi3] ∈ R3 for each i ∈ [n]. Briët, de Oliveira
Filho, and Vallentin were the first to consider such generalizations of scalars to unit vectors,
in the context of the Grothendieck problem [12, 13], and their analysis has fueled recent
approximation algorithms for QLH [19,21].

The classical Goemans-Williamson rounding scheme obtains the unit vectors vi from a
Cholesky decomposition of a PSD matrix V TV = R ⪰ 0. Taking the vi to be columns of V
yields Ri,j = vi · vj . Recent approximation algorithms [11,19,21] for QLH have mimicked
this approach, as do we. Let M∗ ⪰ 0 be an optimal solution to Problem 9 (the ρ∗

ij are
not necessary to describe the rounding algorithm). We find a Cholesky decomposition
V TV = M∗, and let vik ∈ Rd be the column of V associated with σk

i for i ∈ [n], k ∈ [3]; we
may assume d ≤ 3n+ 1. In addition we let v0 be the column of V corresponding to I. These
are unit vectors as a consequence of Constraints (6) and (7).

We will employ the same rounding algorithm for both the general and strictly quadratic
cases. While previous related works [11, 19, 21] have in some cases had to rely on more
sophisticated rounding schemes because they have been amenable to analysis, we are able to
shed light on what is arguably the most natural generalization of the Goemans-Williamson
approach. We draw r ∼ N (0, Id), i.e. a multivariate distribution over d independent and
standard Gaussian variables. For each qubit, we obtain the desired vector θi = [θi1, θi2, θi3]
as:

[vi1 · r, vi2 · r, vi3 · r]/Qi,

where Qi :=
√

(vi1 · r)2 + (vi2 · r)2 + (vi3 · r)2 is a normalization.
The classical Max Cut problem corresponds to a strictly quadratic Hamiltonian (see

Appendix E in [30] for justification); however, classical Max 2-SAT and more general Max
2-CSP have 1-local terms (i.e., linear terms in {±1} variables). In contrast, strictly quadratic
instances of QLHP serve as a quantum generalization of Max 2-SAT and Max 2-CSP that
have no 1-local terms. In order to obtain effective classical approximations in the presence of
1-local terms, an additional vector v0 is necessary, representing (scalar) identity. Generally,
the vector v0 is used in conjunction with more sophisticated rounding schemes (e.g. [27]) to
obtain positive expectation from the 1-local terms. For the quantum case, relatively simple
approaches suffice to get good approximations [21]. Using the vector v0 is not necessary for
the strictly quadratic case, and including it does not affect its approximation.
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Rounding algorithm. The rounding approach described above produces single-qubit density
matrices:

ρi = 1
2

(
I + vi1 · r

Qi
σ1 + vi2 · r

Qi
σ2 + vi3 · r

Qi
σ3
)
.

Hence, on any 1-local term, E[Tr[σkρi]] = E[vik · r/Qi] = 0 since Qi is an even function and
vik · r is an odd function in each entry of r. Thus, in order to get a nontrivial approximation
on 1-local terms, we will use the vector v0 to globally flip the sign of the θi vectors of all
qubits, i.e. vik · r/Qi → sign(v0 · r)(vik · r/Qi). Since sign(v0 · r) ∈ {±1}, for quadratic
objective terms this factor will cancel out, but for 1-local terms we will gain additional
objective from the correlation of v0 · r and vik · r. Formally, we can state the rounding
algorithm, which applies to any instance of QLH, in Algorithm 1.

Algorithm 1 Hyperplane rounding for 2-Local Hamiltonian.
1. Given some instance of Problem 1 formulate and solve the corresponding instance of

Problem 9. Let M∗ be the optimal moment matrix obtained from Problem 9.
2. Find the Cholesky decomposition of M∗, obtaining Cholesky vectors v0 ∈ Rd and

{vik ∈ Rd} such that M∗(σk
i , σ

l
j) = vik · vjl and M∗(I, σk

i ) = v0 · vik for i, j ∈ [n] and
k, l ∈ [3].

3. Let r be a random vector with r ∼ N (0, Id).
4. For each qubit i, set Qi =

√
(vi1 · r)2 + (vi2 · r)2 + (vi3 · r)2, and set θik = sign(v0 ·

r)(vik · r/Qi) for k ∈ [3].
5. Output the (pure) state:

ρ =
n⊗

i=1

1
2(I + θi1σ

1 + θi2σ
2 + θi3σ

3).

We will give the following approximation guarantees for QLHP:

▶ Theorem 11. Fix k ∈ {1, 2, 3}. Suppose we are given an instance of QLHP (Problem 2),
{He} where He = wePe ⊗ I[n]\{e1,e2} for we ≥ 0 and Pe a projector of rank at least k, for
all e ∈ E. Let M∗ be the optimal moment matrix for the corresponding SDP relaxation,
Problem 9, and let ρ be the random output of Algorithm 1. Then,

E

[
Tr
[∑

e∈E

He ρ

]]
≥ α(k)

(∑
e∈E

we

(
rank(Pe)

4 + Tr[CeM
∗]
))

≥ α(k)λmax

(∑
e∈E

He

)
,

where

α(k) =


2/π − 1/4 ≈ 0.387 if k = 1
16/(9π) ≈ 0.565 if k = 2
3/8 + 11/(9π) ≈ 0.764 if k = 3.

▶ Theorem 12. If, in addition to the assumptions of Theorem 11, the Pe are strictly quadratic
projectors, then the random output of Algorithm 1 satisfies:

E

Tr

∑
ij∈E

Hijρ

 ≥ α(k)λmax

∑
ij∈E

Hij

 ,
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where

α(k) =


22/(15π) ≈ 0.467 if k = 1
1/3 + 24/(25π) ≈ 0.639 if k = 2
1/2 + 388/(405π) ≈ 0.804 if k = 3.

The above results are rigorous, but non-optimal. The quadratic analysis depends crucially
on an expansion of a particular expectation in Hermite polynomials. One can consider a
higher order Hermite series to more accurately capture the expectation and achieve a better
approximation factor. We have such results, but opt to not include them in the interest of
the reader. Higher orders bring increased tedium, and our technique should be clear enough
at the end of the paper that an interested reader could do the higher order calculation.

One can ask, why not include a high enough order that the result becomes essentially
optimal? The issue is that polynomial expansions often converge slowly in the presence
of discontinuities [33]. Indeed, computationally we have determined that to get essentially
optimal results one would need to go to high enough order that the polynomial expansion
would become intractable. One can determine the optimal approximation factor by using a
high order expansion and numerically optimizing or simply by randomly sampling over some
“net” of the parameter space. Our observed approximation factors under these approaches are
stated in Conjecture 6. Proving an approximation factor as large as the observed performance
of our algorithm is the subject of future work.

2.4 Analysis Overview

We present an overview of our analysis for the strictly quadratic case, which will also carry
over to the general case with additional bookkeeping and bounding for the 1-local terms.
Suppose we are given an instance of QLHP (Problem 2) on which we execute Algorithm 1 to
produce a random solution ρ. For i, j ∈ [n], the 2-qubit marginals of ρ are

ρij = 1
4(I + θi1σ

1 + θi2σ
2 + θi3σ

3) ⊗ (I + θj1σ
1 + θj2σ

2 + θj3σ
3), (16)

and the objective value of ρ is
∑

ij∈E Tr[Hijρ] =
∑

ij∈E wijAPXij , where APXij :=
Tr[Pijρij ] is the unweighted contribution to the objective value from edge ij. Let M∗

and ρ∗
ij for ij ∈ E be the SDP solution obtained by Algorithm 1, and let SDPij := Tr[Pijρ

∗
ij ]

be the unweighted contribution to the SDP objective value from edge ij. The approximation
ratio, which we seek to bound from below, is consequently:

α = E

[∑
ij∈E wijAPXij∑
ij∈E wijSDPij

]
=
∑

ij∈E wijE[APXij ]∑
ij∈E wijSDPij

.

Observe that APXij ≥ 0 and SDPij ≥ 0 since Pij , ρij , and ρ∗
ij are all PSD. Since all the

terms in the denominator are nonnegative, it follows from an elementary argument that

α ≥
∑

ij∈E wijE[APXij ]∑
ij∈E wijSDPij

≥ min
ij∈E

E[APXij ]
SDPij

.

Thus it suffices to bound the approximation ratio for the worst case occurring on a single
edge.
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Bounding a worst-case edge. We now focus our attention on a single edge e = 12 on
qubits 1, 2. We collect the vectors vik, obtained from a Cholesky decomposition of the SDP
solution M∗, into matrices Vi = [vi1,vi2,vi3] ∈ Rd×3, for i = 1, 2. We define an objective
matrix C ∈ R3×3, containing scaled 2-local Pauli-basis coefficients of P12, in the vein of
Equation (3): C(σk

1 , σ
l
2) := Tr[σk ⊗ σl P12], for k, l ∈ [3] (note that C is not symmetric).

With these definitions in hand, observe that V T
i Vi = I3, by the SDP constraints (7) and

(8), and that 4Tr[C12M
∗] = Tr[V1CV

T
2 ]. The hyperplane rounding produces unit vectors

θT
i = [θi1, θi2, θi3] = rTVi/||V T

i r||. In terms of these variables, we have:

SDPe = Tr[P12ρ
∗
12] = 1

4
(
rank(P12) + Tr[V1CV

T
2 ]
)
, and

E[APXe] = E[Tr[P12ρ12]] = 1
4
(
rank(P12) + E

[
θT

1 Cθ2
])

=

1
4

(
rank(P12) + Er

[
rTV1CV

T
2 r

||V T
1 r|| ||V T

2 r||

])
,

by Equation (4) and because Tr[P12] = rank(P12), since P12 is a projector. Thus, setting
k = rank(P12), the quantity we seek to bound is

α ≥ min
V1,V2,C

k + Er

[
rT V1CV T

2 r
||V T

1 r|| ||V T
2 r||

]
k + Tr[V1CV T

2 ]
.

The bulk of our analysis lies in (i) simplifying the above to reduce the number of parameters
in the minimization and expectation (Appendix B in [30]), and (ii) deriving analytical bounds
on the expectation (Appendix C in [30]).

Simplifying the Gaussian expectation. The first simplification follows from observing that
V T

i r ∈ R3 are multivariate Gaussians for i = 1, 2 since they are linear combinations of
Gaussians, r ∼ N (0, I). If we let zT = [z1, z2, z3] = rTV1 and (z′)T = [z′

1, z
′
2, z

′
3] = rTV2,

then [z, z′] ∼ N (0,Σ), where

Σ =
[

I V T
1 V2

V T
2 V1 I

]
∈ R6×6.

The Gaussians zi are mutually independent as well as the z′
i, and the covariance between z

and z′ is given by M = V T
1 V2 ∈ R3×3. Our bound now depends on a constant number of

parameters, the 18 entries of C and M :

α ≥ min
M,C

k + Ez,z′

[
zT Cz′

||z|| ||z′||

]
k + Tr[CTM ] . (17)

For classical hyperplane rounding algorithms, C and M simply reduce to scalars, and one
may resort to a numerical argument to furnish the desired bound. However, in the case of
QLH above, numerical bounds exhibit poor precision or convergence due to the number of
parameters. Thus we press on, and our next observation is that only the singular values of
M matter for the analysis. The above arguments are detailed in Lemma 15 in [30], which
also shows that we may assume:

C =

p 0 0
0 q 0
0 0 r

 and M =

a 0 0
0 b 0
0 0 c

 , (18)
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where a, b, c are the singular values of V T
1 V2. This reduction to 6 parameters puts analysis of

α within reach. The special case when a = b = c turns out to be equivalent to the recently
studied quantum analog of Max Cut related to the quantum Heisenberg model [2, 19]. For
this case, a representation of the expectation,

Ez,z′

[
zTCz′

||z|| ||z′||

]
(19)

as a hypergeometric function follows from work of Briët, de Oliveira Filho, and Vallentin (the
expectation ends up being equivalent to the one in Lemma 2.1 from [13], when u · v in the
lemma equals a = b = c). To the best of our knowledge, no elementary representation is known
when a, b, c may be distinct. We appeal to Hermite analysis to express the expectation (19)
as a polynomial that we are subsequently able to bound; this is carried out in Lemmas
17-18/Appendix C of [30].

Introducing constraints from positivity. The matrices C and M from (18) are related to
the quadratic Pauli-basis coefficients of P12 and ρ∗

12, respectively. The other ingredient of
our analysis of the bound (17) is restricting C and M based on the facts that P12 ⪰ 0 and
ρ∗

12 ⪰ 0, which is undertaken in Appendix B.1 and Lemma 14 of [30]. This is where the SDP
constraint (13) is used. The bound we obtain is

α ≥ min
[a,b,c]∈S

[p,q,r]∈Pk

k + Ez,z′

[
pz1z′

1+qz2z′
2+rz3z′

3√
(z2

1+z2
2+z2

3)((z′
1)2+(z′

2)2+(z′
3)2)

]
k + ap+ bq + cr

, (20)

where S and Pk are specific polytopes (S is a simplex as is Pk for k ̸= 2) derived from the
positivity of P12 and ρ∗

12. We further observe in Lemma 34 in [30] that p, q, r may be fixed
(e.g., for k = 3, we may take p = q = r = 1). Finally, Lemmas 17 and 18 in [30] derive the
bounds in the main theorems 11 and 12, respectively.

Analysis Highlights. We utilize Hermite polynomials to evaluate the expectation given in
Equation (20). As the natural set of polynomials orthogonal under the expectation of Gaussian
variables, [26], we obtain an expression for the expectation in terms of a convergent series
which we can then truncate and bound to get rigorous results. Obtaining the coefficients in
this series requires some additional facts about Hermite polynomials, and some combinatorial
identities.

3 Conclusion

In this work we have demonstrated several new approximation algorithms for interesting cases
of the Max 2-Local Hamiltonain problem. As is the theme in many works [4, 8, 18], we have
given evidence that the geometry of 2-Local interactions can drastically effect approximability
for traceless Hamiltonians since we demonstrate the the bipartite case has a constant factor
approximation algorithm and the unconstrained case is known to have no constant factor
algorithm [11]. In addition to this, we have given a novel approximation algorithm and
analysis for 2-Local Hamiltonian with local terms that are also projectors. This is especially
interesting given the the scarcity of approximation algorithms for quantum problems. Indeed,
the rank 3 case, has been open for some time [18,21]. Furthermore, we have provided new
techniques for rounding to product states that we believe will have additional applications
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in quantum information. Our rounding algorithm is quite natural given the solution of the
SDP, and the ability to understand the expectation through Hermite polynomial analysis
seems likely to extend to other kinds of Hamiltonians or problems.
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Abstract
Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC’96], have proved extremely in-
fluential and found various applications. Precise characterisations were established for sparsifiability of
graphs with other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA’17]
and non-Boolean domains by Butti and Živný [SIDMA’20].

Bansal, Svensson and Trevisan [FOCS’19] introduced a weaker notion of sparsification termed
“additive sparsification”, which does not require weights on the edges of the graph. In particular,
Bansal et al. designed algorithms for additive sparsifiers for cuts in graphs and hypergraphs.

As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit
an additive sparsifier; that is, for every Boolean predicate P : {0, 1}k → {0, 1} of a fixed arity k, we
show that CSP(P ) admits an additive sparsifier. Under our newly introduced notion of all-but-one
sparsification for non-Boolean predicates, we show that CSP(P ) admits an additive sparsifier for
any predicate P : Dk → {0, 1} of a fixed arity k on an arbitrary finite domain D.
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1 Introduction

Graph sparsification is the problem of, given a graph G = (V, E) with quadratically many
(in |V |) edges, finding a sparse subgraph Gε = (V, Eε ⊆ E) such that important properties
of G are preserved in Gε. Sparse in this context usually means with sub-quadratically many
edges, though in this work we require (and can achieve) linearly many edges.

One of the most studied properties of preservation is the size of cuts. If G = (V, E, w) is
an undirected weighted graph with w : E → R>0, given some S ⊆ V , the cut of S in G is

CutG(S) =
∑

{u,v}∈E
|{u,v}∩S|=1

w({u, v}),

the sum of weights of all edges connecting S and Sc = V \ S. In an influential paper, Benczúr
and Karger [11] introduced cut sparsification with a multiplicative error. In particular, [11]
showed that for any graph G = (V, E, w) and any error parameter 0 < ε < 1, there exists a
sparse subgraph Gε = (V, Eε ⊆ E, w′) with O(n(log n)ε−2) edges (and new weights w′ on
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the edges in Eε), such that for every S ⊆ V we have

CutGε
(S) ∈ (1 ± ε)CutG(S).

This was later improved by Batson, Spielman and Srivastava [10] to a subgraph with O(nε−2)
many edges. Andoni, Chen, Krauthgamer, Qin, Woodruff and Zhang showed that the
dependency on ε is optimal [4].

The ideas from cut sparsification paved the way to various generalisations, including
streaming [1], sketching [4], cuts in hypergraphs [23, 27], spectral sparsification [33, 32, 34,
21, 31] and the consideration of other predicates besides cuts [20]. In this work, we focus on
the latter.

The cut sparsification result in [10] was explored for other Boolean binary predicates by
Filtser and Krauthgamer [20], following a suggestion to do so by Kogan and Krauthgamer
in [23]. Filtser and Krauthgamer found [20] a necessary and sufficient condition on the
predicate for the graph to be sparsifiable (in the sense of [10]). In particular, [20] showed that
not all Boolean binary predicates are sparsifiable. Later, Butti and Živný [14] generalised
the result from [20] to arbitrary finite domain binary predicates.

We remark that [20, 14] use the terminology of constraint satisfaction problems (CSPs)
with a fixed predicate P . This is is equivalent to a (hyper)graph G with a fixed predicate.
Indeed, the vertices of G correspond to the variables of the CSP and the (hyper)edges of
G correspond to the constraints of the CSP. If the fixed predicate P is not symmetric, the
(hyper)edges of G are directed. We will mostly talk about sparsification of (hyper)graphs
with a fixed predicate but this is equivalent to the CSP view.

Recently, while trying to eliminate the requirement for the introduction of new weights for
the sparse subgraph, Bansal, Svensson and Trevisan [7] have come up with a new sparsification
notion with an additive error term. They have shown (cf. Theorem 3 in Section 2) that
under their notion any undirected unweighted hypergraph has a sparse subhypergraph which
preserves all cuts up to some additive term.

Motivation

The relatively recent notion of additive sparsification has not yet been explored to the same
extent as the notion of multiplicative sparsification has been. We believe that this notion has
a lot of potential for applications as the sparsifiers are not weighted, unlike multiplicative
sparsifiers. Indeed, the main restriction of multiplicative sparsifiers in applications appears
to be the number of distinct weights required in sparsifiers. For some graphs (such as the
“barbell graph” – two disjoint cliques joined by a single edge), any nontrivial multiplicative
sparsifier requires edges of different weights. In any case, the authors find the notion of
additive sparsification interesting in its own right, independently of applications.

The goal of our work is to understand how the notion of additive sparsification developed
in [7] for cuts behaves on (hyper)graphs with other predicates (beyond cuts), deriving
inspiration from the generalisations of cuts to other predicates in the multiplicative setting
established in [20, 14]. In particular, already Boolean binary predicates include interesting
predicates such as the uncut edges (using the predicate P (x, y) = 1 iff x = y), covered
edges (using the predicate P (x, y) = 1 iff x = 1 or y = 1), or directed cut edges (using the
predicate P (x, y) = 1 iff x = 0 and y = 1). While such graph problems are well-known and
extensively studied, it is not clear whether one should expect them to be sparsifiable or not.
For instance, as mentioned before, not all (even Boolean binary) predicates are sparsifiable
multiplicatively [20]. Are there some predicates that are not additively sparsifiable?
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1.1 Contributions
Boolean predicates

Our main result, Theorem 9 in Section 3, shows that all hypergraphs with constant uniformity
k, directed or undirected, admit additive sparsification with respect to all Boolean predicates
P : {0, 1}k → {0, 1}; the number of hyperedges of the sparsifier with error ε > 0 is
O

(
nε−2 log 1

ε

)
, where the O(·) hides a factor that depends on k. This result has three

ingredients. First, we observe that the result in [7] also holds true for directed hypergraphs.
Second, we use a reduction via the k-partite k-fold covers of hypergraphs to the already
solved case of Boolean Cut. Finally, we use linear algebra to prove the correctness of the
reduction. While the reduction via the k-partite k-fold cover was used in previous works
on multiplicative sparsification [20, 14], the subsequent non-trivial linear-algebraic analysis
(Proposition 13) is novel and constitutes our main technical contribution, as well as our result
that, unlike in the multiplicative setting, all Boolean predicates can be (additively) sparsified.
We also show that our results immediately apply to the more general setting where different
hyperedges are associated with different predicates (cf. Remark 10). This corresponds to
CSPs with a fixed constraint language (of a finite size) rather than just a single predicate.

Non-Boolean predicates

We introduce a notion of sparsification that generalises the Boolean case to predicates on
non-Boolean domains, i.e. a notion capturing predicates of the form P : Dk → {0, 1}, where
D is an arbitrary fixed finite set with |D| ≥ 2. We call this type of sparsification “all-but-one”
sparsification since the additive error term includes the maximum volume of |D| − 1 (out
of |D|) parts, where the volume of a subset is the sum of the degrees in the subset. (The
precise definition can be found in Section 4.) By building on the techniques used to establish
our main result, we show that all hypergraphs (again, directed or undirected) admit additive
all-but-one sparsification with respect to all predicates. This is stated as Theorem 20 in
Section 4. We also show, in Section 5, that our notion of all-but-one sparsification is, in some
sense, optimal.

Comparison to previous work

As mentioned above, our sparsifiability result is obtained by a reduction via the k-partite
k-fold cover to the cut case established in [7]. A reduction via the k-partite k-fold cover was
also used (for k = 2) in previous work on multiplicative sparsification [20, 14]. In particular,
the correctness of the reduction for Boolean binary predicates in [20] is done via an ad
hoc case analysis for 11 concrete predicates. In the generalisation to binary predicates on
arbitrary finite domains in [14], the correctness is proved via a combinatorial property of
bipartite graphs without a certain 4-vertex graph1 as a subgraph and a reduction to cuts
with more than two parts.

In our case, we use the same black-box reduction via the k-partite k-fold cover. Thus
the reduction itself is pretty straightforward, although the analysis is not. In fact, we find it
surprising and unexpected that the k-partite k-fold cover works in the additive setting. Our
key contribution is the proof of its correctness. A few simple reductions get us to the most
technically involved case, in which k is even and the k-ary predicate satisfies P (1, . . . , 1) = 0.

1 A bipartite graph on four vertices with each part of size two and precisely one edge between the two
parts.
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Additive sparsifiability of such predicates is established in Proposition 13. Unlike in the
multiplicative setting, it is not clear how to do this in a straightforward way similar to [20, 14].
Instead, we associate with a given predicate P a vector vP in an appropriate vector space,
identify special vectors that can be shown additively sparsifiable directly, show that linear
combinations preserve sparsifiability, and argue that vP can be generated by the special
vectors. The latter is the most technical part of the proof. While there are several natural
ideas how to achieve this in a seemingly simpler way (such as arguing that the special vectors
form a basis), we have not managed to produce a simpler or shorter proof.

The result in [7] also works for non-constant k. We emphasise that we deal with constant
k, which is standard in the CSP literature in that the predicate (or a set of predicates) is
fixed and not part of the input. For constant k, the representation of predicates is irrelevant
(cf. Remark 18). Thus we do not keep track of (and have not tried to optimise) the precise
dependency of the reduction on the predicate arity k (or the domain size q = |D|).

Related work

The already mentioned spectral sparsification [33] is a stronger notion than cut sparsification
as it requires that not only cuts but also the Laplacian spectrum of a given graph should be
(approximately) preserved [32, 34, 21, 31, 7].

Our focus in this article is on edge sparsifiers (of cuts and generalisations via local
predicates). There are also vertex sparsifiers, in which one reduces the number of vertices.
Vertex sparsifiers have been studied for cut sparsification (between special vertices called
terminals) [22, 26, 25, 15] as well as for spectral sparsification [24].

Sparsification in general is about finding a sparse sub(hyper)graph while preserving
important properties of interest. In addition to cut sparsifiers, another well studied concept
is that of spanners. A spanner of a graph is a (sparse) subgraph that approximately
preserves distances of shortest paths. Spanners have been studied in great detail both in
the multiplicative [5, 28, 3, 17, 6, 9, 30] and additive [2, 18, 12, 8, 35, 16] setting. Emulators
are a generalisation of spanners in which the sparse graph is not required to be a subgraph
of the original graph. We refer the reader to a nice recent survey of Elkin and Neimain for
more details [19]. Some of the proofs are deferred to the full version of this paper [29].

2 Preliminaries

For an integer k, we denote by [k] the set {0, 1, . . . , k − 1}. All graphs and hypergraphs2 in
this paper are unweighted.

For an assignment a : V → S from the set of vertices of a (hyper)graph to some set S

containing 0, we denote by Za = {v ∈ V : a(v) = 0} the set of vertices mapped to 0.
If 0 ≤ i ≤ rk − 1 is an integer, we denote by repr,k(i) the representation of i in base r

as a vector in Rk, where the first coordinate stands for the most significant digit, and the
last coordinate for the least significant digit. For the special case r = 2, we use the notation
bink(i) for the binary representation of i.

We denote by v[j] the j-th coordinate of the vector v, counting from 0.
For an integer 0 ≤ i ≤ 2k − 1, we use zerosk(i) = {ℓ ∈ [k] : bink(i)[ℓ] = 0}; for example

zeros6(52) = {2, 4, 5}, since bin6(52) = (1, 1, 0, 1, 0, 0).
We now define the value of an assignment on a hypergraph with a fixed predicate.

2 We use the standard definition of hypergraphs, in which every hyperedge is an ordered tuple of vertices.
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▶ Definition 1. Let G = (V, E) be a directed k-uniform hypergraph and let P : Dk → {0, 1}
be a k-ary predicate on a finite set D. Given an assignment a : V → D of G, the value of
a is defined by ValG,P (a) =

∑
(v1,...,vk)∈E P (a(v1), . . . , a(vk)). If G is undirected and P is

order invariant,3 we define ValG,P (a) =
∑

{v1,...,vk}∈E P (a(v1), . . . , a(vk)).4

The notion of additive sparsification was first introduced in [7] for cuts in graphs and
hypergraphs. In order to define it, we will need the Cut : {0, 1}k → {0, 1} predicate defined
by Cut(b1, . . . , bk) = 1 ⇐⇒ ∃i, j, bi ̸= bj . Given a hypergraph G = (V, E) and a set U ⊆ V ,
we denote by volG(U) the volume of U , defined as the sum of the degrees in G of all vertices
in U .

▶ Definition 2. Let G = (V, E) be an undirected k-uniform hypergraph, and denote |V | = n.
We say that G admits additive cut sparsification with error ε using O(f(n, ε)) hyperedges
if there exists a subhypergraph Gε = (V, Eε ⊆ E) with |Eε| = O(f(n, ε)), called an additive
sparsifier of G, such that for every assignment a : V → {0, 1} we have∣∣∣∣ |E|

|Eε|
ValGε,Cut(a) − ValG,Cut(a)

∣∣∣∣ ≤ ε(dG|Za| + volG(Za)), (1)

where dG is the average degree of G.

Note that (1) can also be written as

|E|
|Eε|

ValGε,Cut(a) ∈ ValG,Cut(a) ± ε(dG|Za| + volG(Za)),

which explains the use of the term “additive” for the error.
Bansal, Svensson and Trevisan [7] showed the following sparsification result:

▶ Theorem 3 (Additive Cut Sparsification [7, Theorem 1.3]). Let G = (V, E) be an undirected
n-vertex k-uniform hypergraph, and ε > 0. Then G admits additive cut sparsification with
error ε using O

(
n
k ε−2 log( k

ε )
)

hyperedges.

▶ Remark 4. We call a predicate P symmetric if it is order invariant (as in Definition 1).
Since Theorem 3 deals with only undirected hypergraphs, it is not clear how to generalise
it to non-symmetric predicates directly, since the value of such predicates on undirected
hypergraphs is not defined. Therefore, our course of action will be first to prove it for the case
of directed hypergraphs, and then generalise it to other predicates on directed hypergraphs.
In fact, by doing this we also prove the result for undirected hypergraphs with symmetric
predicates, since hyperedges can be given arbitrary directions without changing the average
degree of G, or the volume in G, or the value of the predicate in any assignment.
▶ Remark 5. Throughout this paper we only discuss the existence of sparsifiers and do not
mention the time complexity to find them. However, the (implicit) time complexity results
from [7] apply in our more general setting as well since the sparsifiers we find are in fact the
same sparsifiers for all predicates, including cuts (cf. Remark 17).

An important tool we use to prove our results is the k-partite k-fold cover of a hypergraph.
This construction is a well known one, and has been used for multiplicative sparsification
(for k = 2) in [20] and [14].

3 P (b1, . . . , bk) = P (bσ(1), . . . , bσ(k)) for all b1, . . . , bk ∈ D and every permutation σ on the set {1, . . . , k}.
4 The terms are well defined since P is order invariant.
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▶ Definition 6. Let G = (V, E) be a directed k-uniform hypergraph. The k-partite k-fold
cover of G is the hypergraph γ(G) = (V γ , Eγ) where

V γ = {v(0), v(1), . . . , v(k−1) : v ∈ V },

Eγ = {(v(0)
1 , v

(1)
2 , . . . , v

(k−1)
k ) : (v1, . . . , vk) ∈ E}.

If G is undirected we define the cover in the same way except

Eγ = {{v
(0)
1 , v

(1)
2 , . . . , v

(k−1)
k } : {v1, . . . , vk} ∈ E},

so for each hyperedge in G we get k! hyperedges in γ(G) in this case.

If k = 2 then γ(G) corresponds to the well-known bipartite double cover of G [13].

3 Sparsification of Boolean Predicates

As mentioned in Section 1, we begin by observing that Theorem 3 also works for directed
hypergraphs. The simple proof of this fact can be found in the full version [29]. (We
emphasise that we treat k as a constant, cf. Remark 18.)

▶ Proposition 7. Let G = (V, E) be a directed n-vertex k-uniform hypergraph, and ε > 0.
Then G admits additive cut sparsification with error ε using O

(
nε−2 log 1

ε

)
hyperedges.

From now on, whenever we say a “hypergraph”, we mean a “directed hypergraph” with n

vertices. By Remark 4, the results also apply to undirected hypergraphs (whenever it makes
sense, i.e. if the associated predicate is symmetric). We also omit the word additive when
discussing sparsification. The following notion of sparsification is a natural generalisation of
cut sparsification (Definition 2) to arbitrary predicates.

▶ Definition 8. Let P be a k-ary Boolean predicate and G = (V, E) a k-uniform hypergraph.
We say that G admits P -sparsification with error ε using O(f(n, ε)) hyperedges if there exists
a subhypergraph Gε = (V, Eε ⊆ E) with |Eε| = O(f(n, ε)), called a P -sparsifier of G, such
that for every assignment a : V → {0, 1} we have∣∣∣∣ |E|

|Eε|
ValGε,P (a) − ValG,P (a)

∣∣∣∣ ≤ ε(dG|Za| + volG(Za)), (2)

where dG is the average degree of G.

The following theorem is our main result, extending Proposition 7 to all k-ary predicates
with Boolean domains.

▶ Theorem 9 (Main). For every k-uniform hypergraph G (k is a constant), every k-ary
Boolean predicate P : {0, 1}k → {0, 1}, and every ε > 0, G admits P -sparsification with error
ε using O

(
nε−2 log 1

ε

)
hyperedges.

Theorem 9 can be informally restated as “every k-uniform hypergraph is sparsifiable with
respect to all k-ary Boolean predicates” or “for every Boolean predicate P of constant arity,
CSP(P ) is sparsifiable”.
▶ Remark 10. It is possible to consider an even more general case where each hyperedge in
G has its own predicate. In this case, we can apply Theorem 9 to each of the hypergraphs
obtained by taking only hyperedges corresponding to a specific predicate, and so get a
sparsifier for each such predicate. Taking the union of all their hyperedges, we get a new
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hypergraph Gε, which is a sparsifier of the original hypergraph. Indeed, it has O
(
nε−2 log 1

ε

)
hyperedges since it is the union of a constant number of hypergraphs. (The number of
predicates P : {0, 1}k → {0, 1} is constant, since k is constant.) It also satisfies (2) for
any given assignment up to some constant factor, since all the sparsifiers it is composed of
do. This constant factor can be eliminated by choosing ε0 = ε

m for an appropriate m that
depends only on k.

The main work in the proof of Theorem 9 is for even values of k; a simple reduction
(Proposition 16) then reduces the case of k odd to the even case.

In order to prove Theorem 9 for even k, we use the k-partite k-fold cover of G and apply
Proposition 7 to various assignments of it. For a k-ary Boolean predicate P : {0, 1}k → {0, 1},
we consider the vector vP ∈ R2k , defined by vP [i] = P (bink(i)). For instance, for the Cut
predicate on a 3-uniform hypergraph, we have vCut = (0, 1, 1, 1, 1, 1, 1, 0).

For a given hypergraph G and an assignment a, we consider the vector vG,a ∈ R2k

defined by vG,a[i] = |{(v1, . . . , vk) ∈ E : (a(v1), . . . , a(vk)) = bink(i)}|. In other words, each
coordinate of vG,a counts the hyperedges in G whose vertices are assigned some specific set
of values by a.

▶ Example 11. Given the graph G = (V, E) in Figure 1 (so k = 2) and the assignment
a : V → {0, 1} defined as a(v1) = a(v2) = a(v3) = 0 and a(v4) = a(v5) = a(v6) = a(v7) = 1,
we have vG,a = (2, 3, 1, 5), since there are two edges with assignment (0, 0), namely (v1, v2)
and (v2, v3), three edges with assignment (0, 1), namely (v1, v4), (v2, v6), and (v2, v7), etc.

v1

v2

v3

v4

v5

v6

v7

Figure 1 Graph from Example 11.

Under these notations, we get ValG,P (a) = ⟨vP , vG,a⟩, where ⟨·, ·⟩ is the standard inner
product in R2k . We begin by proving the following useful lemma.

▶ Lemma 12. Let G = (V, E) be a k-uniform hypergraph, P1, . . . , Pm be k-ary Boolean
predicates (m is a constant). Suppose that for every ε > 0 and 1 ≤ i ≤ m, G admits Pi-
sparsification with error ε using O

(
nε−2 log 1

ε

)
hyperedges, and that the same subhypergraph

Gε = (V, Eε ⊆ E) is a Pi-sparsifier for all Pi. Suppose that P is some k-ary Boolean
predicate for which we have vP =

∑m
i=1 λivPi

for some constants λ1, . . . , λm ∈ R. Under
these conditions, G admits P -sparsification with error ε using O

(
nε−2 log 1

ε

)
hyperedges.

Proof. Let ε > 0 and denote εi = ε
m|λi| (if λi = 0 take εi = 1 instead) and ε0 =

min{ε1, . . . , εm}. Let Gε0 = (V, Eε0) be the common witness subhypergraph for ε0 promised
by the assumption. We know that every Pi satisfies∣∣∣∣ |E|

|Eε0 |
ValGε0 ,Pi(a) − ValG,Pi(a)

∣∣∣∣ ≤ ε0(dG|Za| + volG(Za)) (3)

for every assignment a : V → {0, 1}. We also have

ValG,P (a) = ⟨vP , vG,a⟩ =
〈

m∑
i=1

λivPi , vG,a

〉
=

m∑
i=1

λi⟨vPi , vG,a⟩ =
m∑

i=1
λiValG,Pi(a),
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and similarly

ValGε0 ,P (a) =
m∑

i=1
λiValGε0 ,Pi(a).

Therefore, for every assignment a we get∣∣∣∣ |E|
|Eε0 |

ValGε0 ,P (a) − ValG,P (a)
∣∣∣∣ =

∣∣∣∣∣ |E|
|Eε0 |

m∑
i=1

λiValGε0 ,Pi
(a) −

m∑
i=1

λiValG,Pi
(a)

∣∣∣∣∣
≤

m∑
i=1

|λi|
∣∣∣∣ |E|
|Eε0 |

ValGε0 ,Pi
(a) − ValG,Pi

(a)
∣∣∣∣

≤
m∑

i=1
|λi|ε0(dG|Za| + volG(Za))

≤ ε(dG|Za| + volG(Za)),

where the second line is due to the triangle inequality, the third is due to (3) and the fourth
is by the definition of ε0.

Furthermore, since m and all λi are constants,

|Eε0 | = O

(
nε−2

0 log 1
ε0

)
= O

(
nε−2 log 1

ε

)
,

and so Gε0 is a witness for the P -sparsification of G. ◀

The core of the proof of Theorem 9 is in the next proposition, which establishes the result
for Boolean predicates on even uniformity hypergraphs, with a small restriction.

▶ Proposition 13. Let k be an even number and G be a k-uniform hypergraph. Let P

be a k-ary Boolean predicate with P (1, 1, . . . , 1) = 0. Then for every ε > 0, G admits
P -sparsification with error ε using O

(
nε−2 log 1

ε

)
hyperedges.

Proof. Let ε > 0. We consider γ(G), the k-partite k-fold cover of G. Let γ(G)ε be a
subhypergraph of γ(G) promised by Proposition 7, and Gε = (V, Eε) the corresponding
subhypergraph of G, i.e. the subhypergraph which satisfies γ(Gε) = γ(G)ε (by taking the
hyperedges corresponding to the ones of γ(G)ε).

Let a : V → {0, 1}. For every subset T ⊆ [k], we look at the assignment aT : V γ → {0, 1}
defined by aT (v(i)) = 0 if i ∈ T and a(v) = 0, and aT (v(i)) = 1 otherwise. We therefore have∣∣∣∣ |Eγ |

|Eγ
ε |

Valγ(G)ε,Cut(aT ) − Valγ(G),Cut(aT )
∣∣∣∣ ≤ ε(dγ(G)|ZaT

| + volγ(G)(ZaT
)). (4)

Define the vector uT ∈ R2k as follows:

uT [j] =
{

1 T ∩ zeros(j) ̸= ∅, [k]
0 otherwise

.

In other words, the vector uT is 1 in index j if and only if there exists an index i ∈ T in
which the binary representation of j has a zero, with the exception of u[k][0] = 0. Denote
by PT the predicate corresponding to uT , that is PT (bink(j)) = 1 ⇐⇒ uT [j] = 1. Observe
that

Valγ(G),Cut(aT ) = ValG,PT
(a),
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Z(0)
a

Z(0)
a

Z(1)
a

Z(1)
a

Z(2)
a

Z(2)
a

Z(3)
a

Z(3)
a

Z(4)
a

Z(4)
a

. . .
Z(k−2)

a

Z(k−2)
a

Z(k−1)
a

Z(k−1)
a

Figure 2 An example of a representation of an assignment on γ(G). Z(i)
a consists of all vertices

in V (i) which are a copy of a vertex v ∈ V with a(v) = 0, and Z(i)
a consists of the rest of V (i). Each

hyperedge has a unique path from left to right (but a path might belong to multiple hyperedges),
choosing one of Z(i)

a , Z(i)
a for each i. Each such path is also in 1-1 correspondence with a coordinate

in uT . In this example T = {0, 3, k − 1} and the shaded sets represent a−1
T (0). By green dotted lines

we indicated a path corresponding to a hyperedge counted in Valγ(G),Cut(aT ), and by red dashed
lines we indicated a path which does not. The green dotted path corresponds to a value of 1 in
the coordinate of uT with binary representation (1, 1, 0, 0, 1, . . . , 0, 1), and the red dashed path to
a value 0 in the coordinate with binary representation (1, 0, 1, 1, 0, , . . . , 1, 1). Note that if T = [k]
then any hyperedge corresponding to a path only on Z(i)

a is not counted.

since they both count exactly hyperedges (v1, . . . , vk) which have some vertex vi with a(vi) = 0
with i ∈ T , but if T = [k] then they do not count hyperedges which have a(vi) = 0 for all
i = 1, . . . , k (see example in Figure 2). The same is true for any hypergraph, and in particular
for Gε, that is

Valγ(Gε),Cut(aT ) = ValGε,PT
(a).

Putting these results in (4), we get∣∣∣∣ |E|
|Eε|

ValGε,PT
(a) − ValG,PT

(a)
∣∣∣∣ ≤ ε(dγ(G)|ZaT

| + volγ(G)(ZaT
))

≤ ε(dG|Za| + volG(Za)),

so G admits PT sparsification with error ε using O
(
nε−2 log 1

ε

)
hyperedges for every T ⊆ [k],

and for every ε the sparsification is witnessed by the same subhypergraph Gε. (Notice that
Proposition 7, when applied to γ(G) which has kn vertices, gives us a subhypergraph with
O

(
knε−2 log 1

ε

)
hyperedges, and recall that k is a constant.)

Our next goal is to show that the vector vP is a linear combination of the vectors uT

for all T ∈ [k]. To show that, we show that every vector er in the standard basis of R2k ,
with r ̸= 2k − 1, is a linear combination of these vectors. This is sufficient since the last
coordinate of vP is 0 by the assumption. First we need to order the various sets T . We order
them in the following decreasing lexicographic order T0, T1, . . . , T2k−1, where Tj = zeros(j),
so T0 = [k], T1 = [k] \ {k − 1}, T2 = [k] \ {k − 2}, T3 = [k] \ {k − 1, k − 2}, T4 = [k] \ {k − 3}
and so on, until T2k−1 = ∅.

Let er be a vector in the standard basis of R2k . We introduce the following coefficients
for 0 ≤ m ≤ 2k − 1:

λr,m = 1
2(−1)Ham(r⊕m)+(1−1r&m),

where ⊕, & are the Xor and And binary functions respectively,5 Ham is the Hamming weight

5 The Xor of two integers is defined as the bitwise Boolean Xor of their binary representations, where the
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function, and 1d returns 1 if d ̸= 0 and 0 if d = 0. Denote

f1(m) = Ham(r ⊕ m) , f2(m) = (1 − 1r&m).

We shall prove that

er =
2k−1∑
m=0

λr,muTm
. (5)

▷ Claim 14. The sum of all coefficients is 0; i.e.,
∑2k−1

m=0 λr,m = 0.

Proof. Let b1b2 . . . bk be the binary representation of r. Since r < 2k − 1, there exists some
1 ≤ i ≤ r for which bi = 0. We can partition the coefficients into pairs, such that λr,m1 , λr,m2

is a pair if and only if m1, m2 differ in the i-th coordinate only. This is clearly a partition.
For each pair, f1 gives m1, m2 different parity values, and f2 gives them the same value
(since bi = 0), so λr,m1 , λr,m2 have opposite signs, so their sum is zero. This is true for every
pair, so the overall sum is zero, and the claim is proved. ◁

We prove (5) coordinate-wise. First we look at the coordinate r. Consider the set W of
all vectors uTm for which the coordinate r is 0. If we show that the sum of the corresponding
coefficients of the vectors in W is −1, using Claim 14 we will deduce the result in this case.
We distinguish 2 cases:

Case (I): r = 0. By the definition of uT , in this case the set W contains two vectors, u[k]
and u∅. The corresponding coefficients are λr,0 = − 1

2 and λr,2k−1 = − 1
2 (since k is even),

which sum up to −1.
Case (II): r > 0. As in the proof of Claim 14, let b1b2 . . . bk be the binary representation

of r, and choose a coordinate 1 ≤ i ≤ k for which bi = 1. Partition the vectors in W into
pairs where uTm1

, uTm2
is a pair if and only if m1, m2 differ in the i-th coordinate only. This

is clearly a partition of all vectors, and by the definition of uT , each such pair is either
contained in W or disjoint from W so this is indeed a partition of W . (Note that uTm1

[r]
is determined by Tm1 ∩ zeros(r) which is in fact zeros(m1) ∩ zeros(r), and the same for m2.
Since m1, m2 differ in the i-th coordinate only, and r is not zero in this coordinate, this
coordinate contributes nothing to the intersections, and so both these intersections are empty
or non-empty together. The intersection never equals [k] since r > 0.) For every such pair in
W , if it does not contain the negation of bin(r), then there is some other index j ≠ i in which
r, m1, m2 are all 1. (This is because in all other coordinates m1, m2 are equal, and since they
are not the negation of r, there is some coordinate j ̸= i in which they are equal to the j-th
coordinate of r. These coordinates cannot be all 0, since this would imply uTm1

, uTm2
/∈ W .)

This implies that f2 gives m1, m2 the same value, and clearly f1 gives them different parity
values, so λr,m1 + λr,m2 = 0. However, for the pair which contains the negation of r (this pair
is clearly in W ), suppose without loss of generality the negation is m1. Then f2 gives m1, m2
the values 1, 0 respectively, and f1 gives m1 an even value and m2 an odd value (since k is
even), and so λr,m1 = λr,m2 = − 1

2 , and the overall sum is −1. This finishes the proof of (5)
in the coordinate r.

Now let r′ ̸= r be some other coordinate, and let c1c2 . . . ck be its binary representation.
First, if r′ = 2k −1 then for all m we have uTm [r′] = 0 by definition, so the linear combination

Boolean Xor of two bits is their sum modulo 2. The And of two integers is defined the same way with
the Boolean And function which is defined as And(i, j) = 1 ⇐⇒ i = j = 1.
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of this coordinate is 0. So suppose r′ < 2k − 1. As before let W be the set of all vectors uTm

for which the coordinate r′ is 0. We show that the sum of the corresponding coefficients is
zero, and again deduce the result using Claim 14. Now, there exists some index i for which
bi ̸= ci. Again we have two cases:

Case (1): bi = 0, ci = 1. Partition the vectors in W into pairs where uTm1
, uTm2

is a pair
if and only if m1, m2 differ in the i-th coordinate only. This is clearly a partition of all the
vectors, and by the definition of uT , each such pair is either contained in W or disjoint from
W , so this is indeed a partition of W . For every such pair in W , f1 gives m1, m2 different
parity values, and f2 gives them the same value (since bi = 0), so λr,m1 , λr,m2 have opposite
signs, so their sum is zero. This is true for every pair in W , so the overall sum is zero.

Case (2) bi = 1, ci = 0. Here we consider two sub-cases:
Case (2a): r′ = 0. The only vectors in W in this case are u[k] and u∅. The corresponding

coefficients are λr,0 = 1
2 (−1)Ham(r)+1 and λr,2k−1 = 1

2 (−1)Ham(¬r), where ¬r denotes the
negation of the binary representation of r. Since k is even, we know that r, ¬r have the same
parity, and so the sum of the two coefficients is 0.

Case (2b): r′ ̸= 0. Choose some j for which cj = 1. Partition the vectors in W into
pairs where uTm1

, uTm2
is a pair if and only if m1, m2 differ in the j-th coordinate only. The

argument for this being a partition of W is similar to the argument in Case (1). For each
pair in W , f1 gives m1, m2 a different parity as always, and f2 gives them the same value,
since r, m1, m2 are all 1 in the index i (similar argument as before), so the sum of coefficients
is 0 for each pair, and so for all coefficients corresponding to vectors in W .

This finishes the proof of (5), and so vP is a linear combination of the vectors uT . From
the result above and Lemma 12 we deduce that G admits P -sparsification with error ε using
O

(
nε−2 log 1

ε

)
hyperedges, as required. ◀

To complete the picture for even k, we reduce to Proposition 13 by a simple “comple-
mentarity trick”; the proof can be found in the full version [29].

▶ Proposition 15. Let k be an even number, and G a k-uniform hypergraph. Let P be a
k-ary Boolean predicate. Then for every ε > 0, G admits P -sparsification with error ε using
O

(
nε−2 log 1

ε

)
hyperedges.

The final piece in the jigsaw, proved in in the full version [29], shows how to reduce
sparsification of k-uniform hypergraphs with k odd to the case of (k +1)-uniform hypergraphs
by adding a universal vertex and extending the original predicate by one dimension.

▶ Proposition 16. Let k be an odd number, and G = (V, E) a k-uniform hypergraph. Let P

be a k-ary Boolean predicate. Then for every ε > 0, G admits P -sparsification with error ε

using O
(
nε−2 log 1

ε

)
hyperedges.

Propositions 15 and 16 complete the proof of Theorem 9.
▶ Remark 17. In the proof of Proposition 13 the hypergraph Gε was chosen independently
of the predicate P . Since Propositions 15 and 16 reduce to that case, we have in fact shown
that for every ε > 0, Theorem 9 is witnessed by the same subhypergraph Gε for all different
predicates P . This will be important in the proof of Theorem 20.
▶ Remark 18. We note that our main result, Theorem 9, extends Theorem 3 in the regime
where k is a constant, which is the main focus of this paper. However, Theorem 3 also works
for non-constant k [7]. If k is not a constant, it can be seen from the proof of Lemma 12 that
the number of hyperedges of the sparse subhypergraph is multiplied by a factor of O(m2)
(since O(m) is the proportion between ε and ε0 given that the coefficients λi are constant).
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In Proposition 13 we have m = 2k, and so for k not constant we get an additional factor
of 4k. Furthermore, in Propositions 7 and 13 we obtain extra factors of k, by considering
the k-partite k-fold cover. While the regime with non-constant k is interesting for cuts, for
arbitrary predicates one needs to be careful about representation as the natural (explicit)
representation of (non-symmetric) predicates requires exponential space in the arity k.

4 Sparsification of Non-Boolean Predicates

We now focus on non-Boolean predicates; i.e., predicates of the form P : Dk → {0, 1} with
|D| > 2. Without loss of generality, we assume D = [q] for some q ≥ 2. The most natural
way of generalising Theorem 9 to larger domains appears to be to use the same bound
with Za = {v ∈ V : a(v) = 0}. This, however, cannot give the desired sparsification result
(cf. Section 5). Instead we use a different and somewhat weaker kind of generalisation of
the Boolean case, and show that all hypergraphs are still sparsifiable with respect to all
predicates using this definition.

▶ Definition 19. Let P : Dk → {0, 1} be a k-ary predicate where D = [q]. We say that
a k-uniform hypergraph G = (V, E) admits all-but-one P -sparsification with error ε using
O(f(n, ε)) hyperedges if there exists a subhypergraph Gε = (V, Eε ⊆ E) with |Eε| = O(f(n, ε))
such that for every assignment a : V → D we have∣∣∣∣ |E|

|Eε|
ValGε,P (a) − ValG,P (a)

∣∣∣∣ ≤ ε(dG|Ma| + volG(Na)), (6)

where Ma is the largest set among the sets {v ∈ V : a(v) = i}, Na is the set with the largest
volume among the sets {v ∈ V : a(v) = i} for 0 ≤ i ≤ q − 2, and dG is the average degree
in G.

Observe that the maximum in Definition 19 is over i = 0, . . . , q − 2 without i = q − 1,
hence the name “all-but-one”. We note that there is nothing special about q − 1 and any
value from [q] could be chosen in Definition 19.

Under Definition 19, Theorem 9 generalises (proof of can be found in the full version [29]).

▶ Theorem 20. For every k-uniform hypergraph G = (V, E), every k-ary predicate P :
Dk → {0, 1} with D = [q] (k, q are constants), and every ε > 0, G admits P all-but-one
sparsification with error ε using O

(
nε−2 log 1

ε

)
hyperedges.

Note that in the case of q = 2 we have P : {0, 1}k → {0, 1}, and Definition 19 and
Theorem 20 coincide with Definition 8 and Theorem 9. This is because when q = 2 the
definitions of Ma, Na coincide with the definition of Za in the Boolean case.

5 Optimality of All-But-One Sparsification

One might wonder if there is a different, perhaps stronger way to define sparsification
for predicates on non-Boolean domains. The following example shows that all-but-one
sparsification is optimal.

For a hypergraph G = (V, E) and a fixed assignment a : V → [q] denote Si = {v ∈ V :
a(v) = i} (so S0 = Za). The definition of all-but-one sparsification lets us take a bound
which depends on the sizes and volumes of all the sets Si except for Sq−1. In fact, if we try to
take a bound which depends on fewer of these sets, the definition fails to generalise even the
most basic case of the Cut predicate. To see this, it is sufficient to consider the graph case,
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i.e. k = 2. Let us suppose, without loss of generality, that our bound does not depend on
Sq−2, Sq−1. Consider the predicate Cut : [q]2 → {0, 1} defined by Cut(x, y) = 1 ⇐⇒ x ̸= y.
A simple (but lengthy) argument in the full version [29] shows that cliques do not have a
Cut-sparsifier using such a definition. In fact, the same argument works for any predicate P

with P (q − 2, q − 1) = P (q − 1, q − 2) = 1 and P (q − 2, q − 2) = P (q − 1, q − 1) = 0. Thus if
a definition does not depend on more than just Sq−2, Sq−1, it specifically does not depend
on these two, so the same argument still works. Therefore, no definition with a bound which
depends on “less” is possible, under the current assumptions.
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Abstract
We consider the Modular Subset Sum problem: given a multiset X of integers from Zm and a target
integer t, decide if there exists a subset of X with a sum equal to t (mod m). Recent independent
works by Cardinal and Iacono (SOSA’21), and Axiotis et al. (SOSA’21) provided simple and near-
linear algorithms for this problem. Cardinal and Iacono gave a randomized algorithm that runs in
O(m log m) time, while Axiotis et al. gave a deterministic algorithm that runs in O(m polylog m)
time. Both results work by reduction to a text problem, which is solved using a dynamic strings
data structure.

In this work, we develop a simple data structure, designed specifically to handle the text problem
that arises in the algorithms for Modular Subset Sum. Our data structure, which we call the
shift-tree, is a simple variant of a segment tree. We provide both a hashing-based and a deterministic
variant of the shift-trees.

We then apply our data structure to the Modular Subset Sum problem and obtain two algorithms.
The first algorithm is Monte-Carlo randomized and matches the O(m log m) runtime of the Las-
Vegas algorithm by Cardinal and Iacono. The second algorithm is fully deterministic and runs in
O(m log m · α(m)) time, where α is the inverse Ackermann function.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Algorithm design techniques

Keywords and phrases Modular Subset Sum, String Problem, Segment Tree, Data Structure

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.76

Acknowledgements I would like to thank Lech Duraj, Krzysztof Pióro, and Adam Polak for their
help with preparing the paper, and the anonymous reviewers for their useful suggestions.

1 Introduction

The Subset Sum is a fundamental problem in computer science. It is defined as follows: given
a multiset X of n positive integers and a target integer t, decide if there exists a subset of X,
such that the sum of its elements is exactly t. The problem is known to be NP-complete [14],
but only in a weak sense: a classic dynamic programming approach of Bellman [5] solves it
in pseudo-polynomial O(nt) time. In recent years, there has been a lot of research towards
improving the runtime [16, 17, 7, 12], which culminated in near-linear Õ(n + t) algorithms
[7, 12].1

In this work, we focus on the Modular Subset Sum problem. The Modular Subset Sum is
a natural variant of the Subset Sum problem, where all sums are taken modulo m, for some
given modulus m. We assume that the input multiset X is provided in a compact form: as a
list of O(m) distinct elements along with their multiplicities. This assumption allows us to
omit dependence on the number of elements n in algorithm complexities. Moreover, we focus
on algorithms that return all possible subset sums, i.e. a set of all attainable values of t.

The dynamic programming of Bellman [5] can be easily adapted to solve the modular
case in O(nm) time. Let Si be the set of all attainable subset sums using only the first
i elements. Bellman’s algorithm iteratively computes the sets S1, ..., Sn using formula

1 By writing Õ(f(n)), we mean O(f(n) polylog f(n)).
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Si = Si−1∪(Si−1 +xi), where xi is the i-th input element and Si−1 +xi = {a+xi : a ∈ Si−1}.
Most of the currently known improved algorithms simply simulate the consecutive iterations
of Bellman’s algorithm faster. An early notable exception is the Õ(m5/4) algorithm of
Koiliaris and Xu [16], which uses a divide-and-conquer approach based on results from
number theory.

Abboud et al. [1] obtained a SETH-based conditional lower bound for the Subset Sum
problem, which in particular implies that the Modular Subset Sum cannot be solved in
O(m1−ε) time for any ε > 0. The first randomized algorithm that matched their lower-bound
(up to subpolynomial factors) was introduced by Axiotis et al. in [4]. They achieved a running
time of O(m log7 m) by simulating Bellman’s dynamic programming faster using ideas from
linear sketching.

Recently, simple and practical algorithms were provided independently in [9, 3]. Both
results work by reducing the problem of computing Bellman’s iteration to a text problem,
but use different data structures to solve it efficiently. A Las-Vegas randomized O(m log m)
algorithm by Cardinal and Iacono [9] uses the dynamic strings data structure of Gawrychowski
et al. [10]. The authors also introduced a simpler alternative, called Data Dependent Trees,
with logarithmic bounds per operation. On the other hand, Axiotis et al. [3] obtained a
deterministic O(m polylog m) algorithm by employing a deterministic data structure of
Mehlhorn et al. [18] instead. More precisely, their algorithm is output-sensitive and works in
O(|X∗| polylog |X∗|) time, where X∗ is the set of all attainable subset sums. The authors
provided also a very simple, randomized O(m log2 m) algorithm that uses only an elementary
prefix sum structure.

A very recent result of Bringmann and Nakos [8] provides near-linear algorithms for
computing the sumset A1 + ... + An, for A1, ..., An ⊆ Zm. This problem generalizes the
Modular Subset Sum: the set of all attainable subset sums can be expressed as a sumset
{0, x1}+ ... + {0, xn}.

1.1 Our contributions
In this work, we develop a simple tree-based data structure, designed specifically to handle
the text problem that arises in the algorithms for Modular Subset Sum. Our data structure,
which we call a shift-tree, maintains a string s under the following operations:

(i) change a single character of s;
(ii) cyclically shift s by k positions;
(iii) given another string t with its corresponding shift-tree, and an interval [a; b], list all

positions in [a; b] where strings s and t differ.
We provide two variants of the data structure: a hashing-based one, and a deterministic one
with slightly worse time complexity (by α(n), where α is the inverse Ackermann function). By
applying shift-trees to the Modular Subset Sum problem, we obtain the following algorithms:

▶ Theorem 1. There exists an algorithm that returns all attainable modular subset sums of
a multiset of integers from Zm with high probability, in time O(m log m) and space O(m).

▶ Theorem 2. There exists a deterministic algorithm that returns all attainable modular
subset sums of a multiset of integers from Zm in time O(m log m · α(m)) and space O(m).

The first variant is Monte-Carlo randomized and matches the runtime of Las-Vegas
algorithm by Cardinal and Iacono [9]. The second variant is fully deterministic and improves
upon the result of Axiotis et al. [3]. Our algorithms are offline as they process the input
elements in specific order to achieve their running times.
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Although we provide a detailed analysis only for Monte-Carlo randomized and determin-
istic shift-trees, it is also possible to obtain a Las-Vegas implementation of the data structure.
Such an implementation automatically leads to a Las-Vegas algorithm for Modular Subset
Sum that truly matches the runtime obtained in [9]. We outline this approach in Remark 8.

Sketch of the shift-tree data structure

We now explain the high-level idea behind our data structure. The shift-tree is a perfect
binary tree built upon some string s. The leaves of the tree store the consecutive letters of
string s. Since the tree is perfect, the length of string s is required to be a power of two.
The inner nodes correspond to substrings of s formed from underlying leaves and store their
hashes. The hashes can be updated in logarithmic time after changing a single character of s.

Consider two shift-trees T1 and T2 built for strings s1 and s2 respectively, such that
|s1| = |s2| = m. We can find all positions where s1 and s2 differ by descending from the
roots of both trees simultaneously. We compare hashes in the roots and proceed recursively
with the children if the hashes differ. Assuming there is no hash collision, we end up in leaves
corresponding to positions where s1 and s2 differ. Such a procedure will take O(k log m)
time, where k is the number of differences.

The tricky operation is the cyclic shift of the maintained string. A naive approach would
be to simply rebuild the whole tree in linear time. We improve this by noticing that some
parts of the tree can be reused. Assume that the string has length m and we want to shift
the string by 2j . Such operation is equivalent to shifting subtrees of size 2j by 1, what can
be done by changing links to children on the appropriate level of the shift-tree. After such
modification, hashes on higher levels still need to be updated, but not the hashes in the
moved subtrees. This yields a total time of O(m/2j) for a cyclic shift by 2j , and it can be
easily extended to shifts of form k2j . Even though it seems like a subtle improvement, it is
enough to obtain a fast algorithm for Modular Subset Sum.

To make the shift-trees deterministic, we replace hashes with tags. Tags are identifiers
associated with strings, but unlike hashes, they are not unique: one string can be represented
by multiple tags. Each time a node is updated it receives a new tag. We propagate the
information about tags that represent the same strings lazily while searching for differences.
More specifically, if the tags are not known to be equal, the search procedure always recurs.
If the recursion was unnecessary, we know about it upon return and we can memorize that
the respective tags were equivalent.

Sketch of the algorithm for Modular Subset Sum

Our algorithm follows the ideas of [3, 9]. We simulate Bellman’s algorithm faster. We
iteratively compute the sets of new attainable subset sums Ci after adding the i-th element.
More precisely, Ci = Si \ Si−1 = (Si−1 + xi) \ Si−1. The key idea is to notice that instead of
computing Ci, we can compute the symmetric difference Di = (Si−1 + xi)△Si−1, and then
reduce it to Ci, because |Di| = 2|Ci|.

Let si ∈ {0, 1}m be the characteristic vector of the set Si, i.e. si[j] = 1 iff j ∈ Si. The
problem of finding the set Di+1 is then reduced to the problem of finding differences between
the string si and its cyclic shift. We apply shift-trees to solve this problem efficiently. The
shift-tree requires the length of the string to be a power of two, so we assume that m = 2k

for now (we show how to get rid of this assumption in section 5). Consider two shift-trees
T1 and T2 built for string si and its cyclic shift respectively. We simulate the Bellman’s
algorithm step as follows:

ESA 2021
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(i) adjust the cyclic shift of T2;
(ii) find the set Di by comparing T1 and T2;
(iii) update the trees with new attainable subset sums.
The bottleneck of the algorithm are the adjustments of cyclic shift of T2: if elements are
processed in arbitrary order, the total complexity of shift operations can be O(m2). In section
4, we show that if elements are processed in a bit-reversal order, then the shift operations
amortize to O(m log m).

1.2 Preliminaries
We introduce the following notation for strings. We use the same notation for other sequences.

▶ Definition 3. Given a string s = c0...cn−1, we refer to ci as s[i] and to substring ci...cj as
s[i : j].

▶ Definition 4. Given a string s and k ∈ Z, we denote by s+k and s−k the cyclic shift of s

by k positions to the right and left respectively. In other words, for every i ∈ {0, ..., |s| − 1}:

s[i] = s+k[(i + k) mod |s|] = s−k[(i− k) mod |s|]

2 Shift-trees

2.1 Overview
We introduce shift-trees, a variant of the segment tree data structure. A shift-tree T maintains
a string s of length m = 2n over an alphabet Σ and supports the following operations:

T.Init(s): Initialize the data structure with string s.
T.Set(i, x): Given an index i ∈ {0, ..., |s| − 1} and a letter x ∈ Σ, change s[i] to x.
T.Shift(k): Given an offset k ∈ Z, replace s with s+k, i.e. cyclically shift the string s by
k positions to the right.
T.Diff(Q, a, b): Given another shift-tree Q representing a string q such that |s| = |q|, list
all differences between s[a : b] and q[a : b], i.e. return the list L of all integers x such that
a ≤ x ≤ b and s[x] ̸= q[x].

In this section, we describe a hashing-based version of the data structure, which uses O(m)
memory and supports these operations in the following time complexities:

Init: O(m);
Set: O(log m);
Shift(k): O(m/2j), where j is the largest integer such that 2j | k;
Diff: O((d + 1) log m), where d = |L| is the number of differences.2

In section 3, we present a variant that is fully deterministic, but achieves a slightly worse
time complexity (by α(m), where α is the inverse Ackermann function).

We require an integer alphabet Σ of size O(poly(m)). We use a standard Rabin-Karp
rolling hash function [15]: we choose a sufficiently big prime p and an integer r ∈ Zp, where r is
chosen uniformly at random. The hash of a string s is defined as h(s) =

∑|s|−1
i=0 s[i] · ri mod p.

We assume that Σ ⊆ Zp, so h(x) = x for x ∈ Σ. If hashes of two strings of the same length
are equal, then the strings are equal with high probability. Moreover, given hashes of some
strings s1 and s2, one can compute hash of their concatenation using the following identity:
h(s1s2) = h1 +h2 ·r|s1|. To enable constant-time computation of this formula, we precompute
powers of r up to rm. We use these properties extensively in our data structure.

2 By writing d + 1 in the complexity, we mean that the runtime of Diff operation is O(log m) if d = 0.
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Figure 1 Shift-tree node numbering for different values of ∆.

2.2 Structure
Let s be the string maintained by the data structure and let |s| = 2n. The shift-tree is a
perfect binary tree built upon the string s. The leaves of the tree store the consecutive letters
of string s, with the leftmost one corresponding to s[0] and the rightmost one corresponding
to s[|s| − 1]. The inner nodes correspond to substrings of s formed from underlying leaves
and store hashes to enable their fast comparison. By level(v) we denote the distance from
the node v to the root node. The root node has level 0 and the leaves have level n. There
are 2k nodes on the k-th level.

We now provide a compact O(m) memory representation of the data structure that
enables us to achieve the desired complexity of Shift operation. The only data stored in
memory is an array of hashes H[1 : 2n+1 − 1] and a single integer ∆ ∈ {0, ..., 2n − 1}. The
values in H[2n : 2n+1 − 1] correspond to the leaves and are letters of the represented string.
The value of ∆ defines a cyclic shift of leaf indices, i.e. the j-th leftmost leaf of the tree has
index (j −∆) mod 2n + 2n.

The tree structure is defined implicitly based on the value of ∆ as follows. The nodes of
the tree are numbered from 1 to 2n+1 − 1. The nodes on the k-th level are numbered from
2k to 2k+1 − 1. In particular, the root node has index 1 and the leaves have indices from 2n

to 2n+1 − 1. We first introduce the following auxiliary function:

skew(k) =
⌊

∆
2n−k

⌋
mod 2

Note that floor division by a power of two is equivalent to right bitwise shift, so value
of skew(k) is simply (n − k)-th least significant bit of ∆. Let i be an inner node and let
k = level(i). We define the children of node i as follows:

left(i) = (2i− skew(k + 1)) mod 2k+1 + 2k+1

right(i) = (2i + 1− skew(k + 1)) mod 2k+1 + 2k+1

We also define the parent of node i ̸= 1 at level k.

parent(i) =
⌊

(i + skew(k)) mod 2k + 2k

2

⌋
The left, right and parent functions can be implemented in constant time. The following
lemma and corollary summarize the properties of a tree structure defined as above.

▶ Lemma 5. The functions left, right and parent define a perfect binary tree, such that
the indices of nodes on the k-th level, when ordered from left to right, form a sequence
(2k, ..., 2k+1 − 1)+⌊∆/2n−k⌋.
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Proof. We prove the lemma by induction on the level. The condition is satisfied for the 0-th
level, which contains only the root node with index 1. Assume now that the condition is
satisfied for the k-th level, i.e. the nodes on the k-th level form a sequence (2k, ..., 2k+1−1)+δ,
where δ =

⌊
∆/2n−k

⌋
. By substituting indices of children in this sequence, we obtain the

following sequence for the (k + 1)-st level:

(left(2k), right(2k), ..., left(2k+1 − 1), right(2k+1 − 1))+2δ

The shift is now 2δ, because each element has been replaced by two elements. We want to
prove that this is exactly the sequence (2k+1, ..., 2k+2−1)+⌊∆/2n−k−1⌋. The shift

⌊
∆/2n−k−1⌋

can be rewritten as 2δ + x, where x = skew(k + 1) =
⌊
∆/2n−k−1⌋

mod 2. We now simplify
the equation:

(left(2k), right(2k), ..., left(2k+1 − 1), right(2k+1 − 1))+2δ ?= (2k+1, ..., 2k+2 − 1)+2δ+x

(left(2k), right(2k), ..., left(2k+1 − 1), right(2k+1 − 1)) ?= (2k+1, ..., 2k+2 − 1)+x

(left(2k)− 2k+1, right(2k)− 2k+1, ..., right(2k+1 − 1)− 2k+1) ?= (0, ..., 2k+1 − 1)+x

After substituting the values of left and right, and simplifying, we obtain the following:

((0− x) mod 2k+1, (1− x) mod 2k+1, ..., (2k+1 − 1− x) mod 2k+1) ?= (0, ..., 2k+1 − 1)+x

The obtained equation trivially satisfies the definition of cyclic shift by x, and all transform-
ations were equivalent. This completes the induction.

We complete the proof by showing that parent function is well-defined. Consider an inner
node on the k-th level with index 2k + i. It is enough to show that it is parent of its children.
After substituting and simplifying the formulas, we get the desired result:

parent(left(2k + i)) =
⌊

2i + 2k+1

2

⌋
= 2k + i

parent(right(2k + i)) =
⌊

2i + 1 + 2k+1

2

⌋
= 2k + i ◀

▶ Corollary 6. The functions left, right and parent define a perfect binary tree such that:
(a) nodes on the k-th level have indices from 2k to 2k+1 − 1, for each valid k;
(b) the indices of leaves, when ordered from left to right, form a sequence (2n, ..., 2n+1−1)+∆;
(c) the structure of subtrees rooted at the k-th level depends only on ∆ mod 2n−k.

Proof. The first two properties follow instantly from the lemma 5. For the property (c),
notice that the links on these levels depend only on the values skew(k +1), ..., skew(n). These
values are exactly the n− k least significant bits of ∆. ◀

2.3 Invariant
Let s be the string maintained by the data structure and let |s| = 2n. We define the string
associated with a node i recursively as follows:

str(i) =
{

s−∆[i− 2n] for i ≥ 2n (i.e. i is leaf node)
str(left(i)) str(right(i)) for i < 2n (i.e. i is inner node)

By corollary 6b, the k-th letter of string s is associated with the k-th leftmost leaf. It follows
that s = str(1), i.e. string associated with the root node is s. We maintain the following
invariant:
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▶ Invariant 7. For each node i the following holds: H[i] = h(str(i)).

The invariant ensures that each node stores a hash of its associated string. We use this
property to implement the Diff operation in required time complexity.

2.4 Operations
Let s be the string maintained by the data structure and let |s| = m = 2n. We first define
an Update(i) primitive that is used by all operations that modify the data structure. The
Update procedure simply recalculates the hash of an inner node i based on hashes of its
children. This can be done in constant time using basic modular arithmetic, if appropriate
powers of r are precomputed.

Algorithm 1 The Update procedure.

1: function Update(i)
2: H[i]← (H[left(i)] + H[right(i)] · r| str(left(i))|) mod p

Init. We initialize ∆ with 0 and leaves with the letters of the input string s. Specifically,
we set H[2n + i] = s[i] for each i ∈ {0, ..., 2n − 1}, because letter s[i] is associated with the
node 2n + i. We then compute all the hashes by calling an Update on the remaining nodes,
beginning at the bottom of the tree. Overall, the Init operation updates O(m) nodes and
runs in O(m) time.

Set. Assume that we change s[i] to x. Let j = (i − ∆) mod 2n + 2n. Notice that,
str(j) = s−∆[j−2n] = s[(j +∆) mod 2n] = s[i]. In order to fix the invariant, we set H [j] = x

and update hashes of all the ancestors of j. The tree has O(log m) levels, so the total runtime
of Set operation is O(log m).

Algorithm 2 Init operation.

1: function Init(s)
2: ∆← 0
3: for i← 0, ..., 2n − 1 do
4: H[2n + i]← s[i]
5: for i← 2n − 1, ..., 1 do
6: Update(i)

Algorithm 3 Set operation.

1: function Set(i, x)
2: j ← (i−∆) mod 2n + 2n

3: H[j]← x

4: while j ̸= 1 do
5: j ← parent(j)
6: Update(j)

Shift. Assume that we apply a right cyclic shift by k positions to s. Let j be the largest
integer such that 2j | k. In order to fix the invariant, we first set ∆ to (∆ + k) mod 2n.
Notice that the invariant is now satisfied for leaves. Moreover, by corollary 6c the structure
of subtrees rooted at level n − j didn’t change, so the invariant is also satisfied for levels
n− j, ..., n. It remains to update hashes on the remaining n− j levels by calling the Update
procedure on their nodes. Overall, O(2n−j) nodes are updated and the Shift operation runs
in O(m/2j) time.3

3 Provided algorithm requires computation of j = max{d ∈ N : 2d | k}. In practice, it is sufficient to
compute 2j instead of computing j directly. This can be done in constant time using the following
bit-hack: k & ~(k-1).
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Algorithm 4 Shift operation.

1: function Shift(k)
2: if k mod 2n = 0 then
3: return
4: j ← max{d ∈ N : 2d | k}
5: ∆← (∆ + k) mod 2n

6: for i← 2n−j − 1, ..., 1 do
7: Update(i)

Diff. Assume we look for differences between the strings maintained by the trees T and
Q in interval [a; b]. We provide a recursive procedure FindDifferences(T, Q, a, b, i, j, x, y)
that returns required set of differences between substrings associated with node i of the
tree T and node j of the tree Q. The procedure additionally tracks an interval [x; y] that is
associated with both nodes, i.e. T. str(i) = T.s[x : y] and Q. str(j) = Q.s[x : y].

The FindDifferences procedure works as follows. If [a; b] ∩ [x; y] = ∅ then procedure
returns empty set instantly, because we only look for differences in the interval [a; b]. If
hashes of nodes i and j are equal then the substrings are equal w.h.p., so the procedure
returns no differences as well. Otherwise, there is at least one difference between the strings
associated with nodes i and j. If the nodes are leaves, then we report the difference. If the
nodes are inner nodes, the procedure is invoked recursively on left and right children.

The Diff operation simply calls FindDifferences on roots of the trees T and Q. The
procedure will return all the required differences as long as there is no hash collision.

Algorithm 5 The Diff operation.

1: function T.Diff(Q, a, b)
2: return FindDifferences(T, Q, a, b, 1, 1, 0, 2n − 1)
3:
4: function FindDifferences(T, Q, a, b, i, j, x, y)
5: if [a; b] ∩ [x; y] = ∅ or T.H[i] = Q.H[j] then
6: return ∅
7: if x = y then ▷ The nodes i and j are leaves if they represent an unit interval
8: return {x}
9: z ← x+y+1

2 ▷ The left nodes represent [x : z − 1] and the right nodes represent [z : y]
10: A← FindDifferences(T, Q, a, b, T. left(i), Q. left(j), x, z − 1)
11: B ← FindDifferences(T, Q, a, b, T. right(i), Q. right(j), z, y)
12: return A ∪B

We now argue the complexity of Diff operation. Let d be the number of differences that
were found. Let sk be the number of FindDifferences calls for which the processed nodes
were on the k-th level and the procedure recurred. If the procedure recurred, there existed
at least one difference between the strings associated with the nodes. We can divide such
calls into two categories:
(a) there is a difference in [x; y] ∩ [a; b] that should be reported;
(b) there is a difference in [x; y] \ [a; b] that should be ignored and [x; y] ∩ [a; b] ̸= ∅.
The number of calls that belong to the category (a) is bounded by d, i.e. number of reported
differences. There are at most 2 calls that belong to the category (b), because the interval
[x; y] must contain a or b. It follows that sk ≤ d + 2 and s0 + ... + sn−1 ≤ (d + 2) · n. We
can charge the calls that didn’t recur to their parents, so the total running time of Diff
operation is O((d + 1) log m).
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In order to complete the analysis, we bound the probability that Diff operation fails to
report all differences. Such situation may occur only if nodes processed by FindDifferences
have different associated strings, but equal hashes. Let s1 ̸= s2 be strings of length k.

Pr [h(s1) = h(s2)] = Pr
[

k−1∑
i=0

(s1[i]− s2[i])ri ≡ 0 (mod p)
]
≤ k

p

The inequality holds, because the sum on the left side is a non-zero polynomial of degree at
most k, evaluated in randomly chosen point r. By application of union bound, we obtain
that the probability of failure is at most m log m/p. Assuming operations on hashes of
size O(log m) are taking constant time, we can choose p = Θ(poly(m)) and obtain high
probability of success.

▶ Remark 8. It is also possible to achieve a Las-Vegas implementation of shift-trees. The
key observation is that the hash function doesn’t need to be associative, i.e. one can hash
“subtrees” instead of substrings. This allows us to replace the hash function with any injective
mapping h(x, y) from pairs of hashes into new hashes. Only the Update procedure needs to
be adapted to compute the hash H[i] of i-th node as h(H[left(i)], H [right(i)]).

The missing piece is how to implement the mapping h(x, y). This can be done by simply
generating it on demand, and storing the mapping in a hashtable. Some garbage collection
mechanism (such as reference counting) is required to maintain linear memory usage. This
yields a Las-Vegas implementation of shift-trees, with the same expected runtime bounds.

By replacing hashtable with a BST, one can obtain a deterministic implementation of
the data structure. Such modification introduces logarithmic runtime overhead. In the next
section, we improve upon this by allowing amortization.

3 Deterministic shift-trees

3.1 Overview
We now provide a deterministic variant of the data structure introduced in previous section.
Let m = 2n. Assume that we maintain several shift-trees T1, ..., Tr associated with strings
s1, ..., sr ∈ Σm of the same length, allowing comparisons between those strings. Let K =
|s1|+ ... + |sr| = mr, and let Ti be one of the trees. Then, we can do the shift-tree operations
on Ti with the following amortized time complexities:

Init: O(m · α(K));
Set: O(log m · α(K));
Shift(k): O(m/2j · α(K)), where j is the largest integer such that 2j | k;
Diff: O((d + 1) log m · α(K)), where d is the number of differences.

Moreover, the data structures use O(K) memory overall. The only constraint that we put
on alphabet Σ is the support for equality tests. This contrasts with the randomized variant,
where an integer alphabet of polynomial size is required.

3.2 Tags
We replace hashing with the concept of tags. Tags are simply identifiers associated with
strings. Unlike hashes, they are not unique: one string can be represented by multiple tags.
Each inner node of the shift-tree stores a tag instead of a hash. A new tag is created every
time a node is updated.
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We denote the string associated with a tag t by str(t). The strings associated with tags
are not stored in memory. Instead, we maintain an equivalence relation R over the set of
tags used in all the shift-trees. The relation R satisfies the following property:

▶ Invariant 9. For each tag a and tag b such that a ≡R b, the strings str(a) and str(b) are
equal.

Note that the inverse doesn’t need to hold. In other words, the relation R partially captures
the equality relation between strings associated with tags. The relation is refined during
operations on the shift-trees using the following operations:

NewTag(): Create a new tag x with its own singleton equivalence class, and return x.
Find(x): Given a tag x, return identifier of its equivalence class.
Union(x, y): Given tags x and y, union their equivalence classes (i.e. insert x ≡R y and
close the relation transitively).
DeleteTag(x): Given a tag x, remove it from its equivalence class and free its memory.

In order to support these operations efficiently, we represent the equivalence classes of R using
a union-find data structure. A simple extension of standard disjoint-set forest implementation
with support for element removal has been proposed by Kaplan et al. in [13].

▶ Theorem 10 ([13]). There exists a data structure that maintains an equivalence relation R
using linear memory under operations Find, Union and DeleteTag in amortized O(α(n))
time, and NewTag in O(1) time, where n is the number of maintained elements.

Their approach is based on lazy deletions: elements to be deleted are marked and the
union-find trees are rebuilt if the fraction of marked elements is greater than half. More
involved approaches with constant time deletions have been known in literature [2, 6], but
such improvement doesn’t change the amortized time complexity of our data structure.

The idea to use union-find data structure for detecting mismatches has been already
proposed by Gawrychowski et al. in [11].

▶ Remark. In general, the DeleteTag operation is not only useful for space optimization.
If unused tags are not removed, the complexity of operations is dependent on the total
number of NewTag calls, which can be large. This is not an issue if only O(poly(K)) tags
are created in total, because O(α(poly(K))) = O(α(K)).

3.3 Operations
We now adapt the Update procedure and Diff operation to work with tags. The Init, Set
and Shift operations use the Update primitive and don’t require changes.

Update. We simply create a new tag for the updated node. If the node already contains a
tag (i.e. the Update is called after initialization), we delete it in order to maintain linear
memory usage. The newly created tag is in a singleton equivalence class of R, so it trivially
satisfies the invariant.

Algorithm 6 The Update procedure.

1: function Update(i)
2: if H[i] ̸= null then
3: DeleteTag(H[i])
4: H[i]← NewTag()
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Diff. We adapt the FindDifferences procedure as follows. Assume that we are looking
for differences in interval [a; b]. Let t1 and t2 be tags in compared tree nodes, and [x; y] the
interval associated with these nodes. If t1 ≡R t2 then the compared substrings are equal,
so we exit instantly. Otherwise, we search for differences recursively in the left and right
subtrees. If no differences are found and [x; y] ⊆ [a; b], we know that str(t1) = str(t2), so we
can safely add t1 ≡R t2 to relation R via Union(t1, t2).

Algorithm 7 The FindDifferences procedure.

1: function FindDifferences(T, Q, a, b, i, j, x, y)
2: if [a; b] ∩ [x; y] = ∅ then ▷ Check if we are outside of the search interval
3: return ∅
4: if x = y then ▷ The nodes i and j are leaves if they represent an unit interval
5: if T.H[i] ̸= Q.H[j] then ▷ The leaves contain letters – compare them directly
6: return {x}
7: else
8: return ∅
9: if Find(T.H [i]) = Find(Q.H [j]) then ▷ The inner nodes contain tags – use R.

10: return ∅ ▷ T.H[i] ≡R Q.H[j] holds, so the strings are equal
11: z ← x+y+1

2 ▷ The left nodes represent [x; z − 1] and the right nodes represent [z; y]
12: A← FindDifferences(T, Q, a, b, T. left(i), Q. left(j), x, z − 1)
13: B ← FindDifferences(T, Q, a, b, T. right(i), Q. right(j), z, y)
14: if A ∪B = ∅ and [x; y] ⊆ [a; b] then
15: Union(T.H [i], Q.H [j])
16: return A ∪B

We now briefly address the correctness of the FindDifferences procedure. Observe
that if the condition [a; b] ∩ [x; y] ̸= ∅ holds then:

(i) the invariant 9 guarantees that the procedure will recur if substrings are not equal;
(ii) the procedure returns a difference for leaves iff their corresponding characters differ.

It follows by an easy induction on the level that the procedure returns all positions in
[a; b] where the strings differ and nothing more. Moreover, the procedure doesn’t break the
invariant when modifying the relation R: if the condition in line 14 is true, then there are
no differences between compared substrings.

3.4 Running time
Let K be the sum of lengths of strings maintained by all shift-trees and let m = 2n be the
length of each string. We first note that the number of elements maintained by relation R
never exceeds the total number of nodes in shift-trees, which is O(K), so any operation on
R works in amortized O(α(K)) time.

We now argue the amortized running time of the Update and Diff operations. Let the
actual cost of the i-th operation be a number ci of operations on the relation R. Let qi be
the number of equivalence classes of relation R after i operations. We define potential Φi to
be 9qi. Clearly, Φi ≥ Φ0 = 0. The amortized cost of the i-th operation is ĉi = ci + Φi−Φi−1.

The actual cost of an Update operation is ci ≤ 2. The operation creates at most one
new equivalence class, thus the amortized cost is ĉi = ci + Φi − Φi−1 ≤ 2 + 9 · 1 = 11. It
follows that the amortized time complexity of an Update operation is O(α(K)).

To estimate the amortized cost of Diff operation, we consider the FindDifferences
calls that recurred. We say that the call is wasted if the compared strings are equal, but
comparison of tags reported that they are not. Otherwise, if the compared strings are not

ESA 2021



76:12 Faster Deterministic Modular Subset Sum

equal and the procedure recurred, we say that the call is required. Let w be the number of
wasted calls and r be the number of required calls. We can charge the calls that didn’t recur
to their parents, so the total number of FindDifferences calls is bounded by 3(r + w).
Each call does at most three operations on relation R, so the cost of Diff operation is
ci ≤ 9(r + w).

Let d be the number of differences that have been found. We can bound the number
of required calls r by O((d + 1) log m), the same way as in hashing-based shift-trees. We
now focus our attention on the wasted calls. Assume that we are looking for differences in
interval [a; b]. Let w′ be the number of wasted calls such that the interval associated with
compared nodes is contained within [a; b]. Notice that upon return, each such call unions
two different equivalence classes, thus decreasing the potential by 9. It follows that Diff
operation reduces the potential in total by 9w′. On the other hand, the intervals associated
with the remaining wasted calls must contain a or b, so there are at most 2 such calls for
each tree level. It follows that the number of all wasted calls is bounded by w′ + 2 log m.
The amortized cost of Diff operation is then:

ĉi ≤ 9r + 9w − 9w′ ≤ 9r + 18 log m = O((d + 1) log m)

and the amortized time complexity is O((d + 1) log m · α(K)).
We complete analysis by providing amortized running time of Init, Set and Shift

operations. The Init operation calls Update operation O(m) times, so its amortized
running time is O(m · α(K)). By the same argument we obtain the required amortized
complexities for Set and Shift operation.

4 Traversing all cyclic shifts

In this section, we consider a problem of going over all the cyclic shifts of the shift-tree
efficiently, in some order. This means that we want to consider all shifts s+σ(0), ..., s+σ(|s|−1),
for σ being some permutation of {0, ..., |s| − 1}. This requires invoking Shift(σ(i)−σ(i− 1))
for i = 1, 2, ..., |s| − 1, assuming the shift-tree initially represents s+σ(0). We claim that
there exists a permutation σ such that the total complexity of these operations amortizes to
O(m log m) time. For simplicity, we consider the hashing-based shift-trees; the complexity
for deterministic variant is just multiplied by α(K). This technique is crucial for our Modular
Subset Sum algorithm and might be used for other problems, where the order of operations
doesn’t matter.

The time complexity of a single Shift operation depends heavily on the value of shift.
Recall that the running time of Shift(k) is O(m/2j), where j is the largest integer such that
2j | k, and m = 2n is the size of the shift-tree. For example, a shift by 1 requires rebuilding
the entire tree, while shift by m/2 takes constant time. It means that the complexity of
going over all the cyclic shifts heavily depends on the permutation σ.

It turns out that a good permutation is a bit-reversal permutation, which we define as
follows. We denote the bit-reverse of n-bit number j by bitrevn(j), i.e. if j =

∑n−1
i=0 ci2i then

bitrevn(j) =
∑n−1

i=0 ci2n−i−1. We say that σ is a bit-reversal permutation if σ(i) = bitrevn(i).

▶ Lemma 11. Let σ be a bit-reversal permutation of length m = 2n and T a shift-tree of
length O(m). The sequence of operations T.Shift(σi − σi−1) for i = 1, ..., m− 1 takes total
time O(m log m).
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Proof. Let δi = σi − σi−1 and consider a single Shift(δi) operation. Let j be the largest
integer such that 2j | δi. The complexity of this operation is then O(m/2j) = O(2n−j). If
2j | δi and 2j+1 ∤ δi then j is the least significant bit that is different between σi and σi−1.
Since σi is a bit-reverse of i, it means that n− j−1 is the most significant bit that is different
between i and i + 1. Such situation happens only if i + 1 is of form k · 2n−j−1, where k is
odd. There are 2j such numbers in range [1; 2n− 1]. It follows that shifts for a given value of
j take overall O(2n−j · 2j) = O(2n) time. There are O(n) possible values of j, so the whole
sequence of shifts takes O(2n · n) = O(m log m) time. ◀

5 Modular Subset Sum

In this section, we provide an algorithm for the Modular Subset Sum problem that uses
the shift-tree data structure. Let X = {x1, ..., xn} be a multiset of integers from Zm. Our
algorithm computes the set X∗ ⊆ Zm such that k ∈ X∗ if and only if there exists a subset of
X that sums to the value k modulo m. We assume that the input multiset X is provided in
a compact form: as a list of O(m) distinct elements along with their multiplicities.

The algorithm is based on the so-called Bellman’s iteration. Consider sets S0, ..., Sn ⊆ Zm

such that S0 = {0} and Si = Si−1 ∪ (Si−1 + xi), where Si−1 + xi = {a + xi : a ∈ Si−1}. It is
easy to see that the set Si is a set of all attainable subset sums of {x1, ..., xi} and the final
result is X∗ = Sn. In order to compute the set Si from Si−1, it is sufficient to find the set
Ci = Si \ Si−1 = (Si−1 + xi) \ Si−1. If one can compute the set Ci in time O(|Ci| · f(m)),
then the set X∗ can be computed in total time O(m · f(m)).

The key idea of [4] is to notice that instead of computing Ci = (Si−1 + xi) \ Si−1, we can
compute the symmetric difference Di = (Si−1 + xi)△Si−1. Computing the set Di doesn’t
break the time complexity, because its size is only two times larger than Ci. We can now
interpret problem of finding the set Di as a text problem [3, 9]. Let si ∈ {0, 1}m be the
characteristic vector of the set Si, i.e. si[j] = 1 iff j ∈ Si. The problem of finding the set
Di+1 is then reduced to problem of finding differences between the strings si and s

+xi+1
i .

The set Di+1 is exactly the set of indices, where these strings differ.
We now describe our algorithm. Let S be the set of all subset sums attainable using

elements processed so far, and let s be its characteristic vector. Initially, the set S contains
only 0. We maintain the characteristic vector s and its cyclic shift using two shift-trees,
T1 and T2 respectively. The length of a string maintained by a shift-tree is required to be
a power of two, but that may not be the case with the string s. We address this issue in
the following way. Let L be the smallest power of two such that L ≥ 2m. We consider the
following auxiliary strings:

s′ = s0L−m

s′′ = s0L−2ms

The strings s′ and s′′ have length L, which is a power of two. Moreover, the string s′′ has the
following property: the string s+d is a prefix of (s′′)+d, for any d ∈ {0, ..., m}. This property
allows us to find differences between s and s+d by comparing a prefix of s′ with a prefix of
(s′′)+d.

The tree T1 maintains the string s′ and the tree T2 maintains a cyclic shift of the string
s′′. Specifically, we traverse all cyclic shifts of T2 in bit-reversal order, as explained in the
previous section. Assume that the current shift of T2 is x, i.e. the string maintained by T2 is
(s′′)+x. Let µ be the multiplicity of x in the input multiset X. If µ = 0, then x /∈ X and the
algorithm proceeds to the next shift. Otherwise, we simulate µ Bellman’s iterations for the
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element x as follows. The x is contained in the multiset X, so x ∈ {0, ..., m− 1}. It implies
that we can find the set of differences D between s and s+x by comparing a prefix of s′ with
a prefix of (s′′)+x. This is done using Diff operation on T1 and T2. We then update the set
of attainable subset sums S and both shift-trees appropriately. If no differences were found,
we skip the rest of iterations for element x.

Every element of X corresponds to some cyclic shift, so all elements will be processed if all
the cyclic shifts are considered. The set S is then the set of all attainable subset sums for X.
We provide the pseudocode as Algorithm 8. In the pseudocode, we denote the multiplicity of
element x in the set X by µX(x).

Algorithm 8 The ModularSubsetSum algorithm.

1: function ModularSubsetSum(X, m)
2: S = {0}
3: k ← min{d ∈ N : 2d ≥ 2m}
4: L← 2k

5: s0 ← 10m−1 ▷ The characteristic vector of S0 = {0}
6: Initialize shift-tree T1 with s00L−m

7: Initialize shift-tree T2 with s00L−2ms0
8: for i← 1, ..., L− 1 do
9: x← bitrevk(i)

10: T2.Shift(x− bitrevk(i− 1)) ▷ Now T2 represents the string (s′′)+x

11: for j ← 1, ..., µX(x) do
12: D ← T1.Diff(T2, 0, m− 1) ▷ D is the set of all differences between s and s+x

13: if D = ∅ then ▷ Skip the rest of iterations for x if no differences were found
14: break
15: for d ∈ D \ S do
16: S ← S ∪ {d}
17: T1.Set(d, 1)
18: T2.Set((d + x) mod L, 1)
19: T2.Set((d + x−m) mod L, 1)
20: return S

We now analyse the running time of the algorithm. We assume the hashing-based shift-
trees are used; the complexity for deterministic variant is just multiplied by α(m). The
initialization of shift-trees takes O(m) time. The value of bitrevk(i) can be computed naively
bit by bit in O(k) = O(log m) time, which in total takes O(m log m) time. Moreover, the
total time of all Shift operations amortizes to O(m log m) time due to lemma 11. We now
focus on the total running time of inner loops.

Consider a single Bellman’s iteration. The complexity of a Diff operation is O((|D|+
1) log m). The algorithm adds |D \ S| = |D|/2 new elements to the set S and updates the
shift-trees. Each tree update takes O(log m) time. In total, a single Bellman’s iteration takes
O((|D|+ 1) log m) time.

The sum of sizes of all the sets of differences is at most 2m. It means that if there
are k Bellman’s iterations in total, then their total running time is O((m + k) log m). The
condition in the line 13 ensures that the total number of executed Bellman’s iterations is
O(m) by skipping the iterations if the set is empty. It follows that all the iterations take
O(m log m) time in total.

We arrive at the total time complexity of O(m log m). By replacing hashing-based shift-
trees with their deterministic variant, we obtain a deterministic algorithm with running time
of O(m log m · α(m)). We recall the theorems that summarize these results:
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▶ Theorem 1. There exists an algorithm that returns all attainable modular subset sums of
a multiset of integers from Zm with high probability, in time O(m log m) and space O(m).

▶ Theorem 2. There exists a deterministic algorithm that returns all attainable modular
subset sums of a multiset of integers from Zm in time O(m log m · α(m)) and space O(m).
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factors.

Overall, we show 3SUM-hardness of (a) detecting an Abelian square factor of an odd half-length,
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arithmetic progression (i.e., finding indices i ̸= j such that (xi + xj)/2 = x(i+j)/2) in a sequence of
integers x1, . . . , xn of magnitude nO(1).

Problem (d) is essentially a convolution version of the AVERAGE problem that was proposed in
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recently developed by Dudek et al. [STOC 2020]. Problem (d) immediately reduces to problem (c)
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1 Introduction

Abelian squares. An Abelian square, Ab-square in short (also known as a jumbled square),
is a string of the form XY , where Y is a permutation of X; we say that X and Y are
Ab-equivalent. We are interested in factors (i.e., substrings composed of consecutive letters)
of a given text string being Ab-squares.

▶ Example 1. The string

0 6 1 0 5 6 5 1 6 1 0 1 1 1 1 0 6 5 6 5 7 8 6 1 6 5 0 5 1 0 5 6 6 5 0 6 0 3 0 6 5 2

has exactly two Ab-square factors of length 12, shown above (but it has also Ab-squares of
other lengths, e.g. 5665, 11, 1111, 011110).

Ab-squares were first studied by Erdős [16], who posed a question on the smallest alphabet
size for which there exists an infinite Ab-square-free string, i.e., an infinite string without
Ab-square factors. The first example of such a string over a finite alphabet was given by
Evdokimov [18]. Later the alphabet size was improved to five by Pleasants [34] and finally an
optimal example over a four-letter alphabet was shown by Keränen [27]. Further results on
combinatorics of Ab-square-free strings and several examples of their applications in group
theory, algorithmic music and cryptography can be found in [26] and references therein.
Avoidability of long Ab-squares was also considered [36].

Strings containing Ab-squares were also studied. Motivated by another problem posed
by Erdős [16], Entringer et al. [15] showed that every infinite binary string has arbitrarily
long Ab-square factors. Fici et al. [19] considered infinite strings containing many distinct
Ab-squares. A string of length n may contain Θ(n2) Ab-square factors that are distinct as
strings, but contains only O(n11/6) Ab-squares which are pairwise Abelian nonequivalent
(correspond to different Parikh vectors), see [28]. It is also conjectured that a binary string
of length n must have at least ⌊n/4⌋ distinct [20] and nonequivalent [21] Ab-square factors.
For more conjectures related to combinatorics of Ab-square factors of strings ad circular
strings, see [39].

Several algorithms computing Ab-square factors of a string are known. All Ab-squares in
a string of length n can be computed in O(n2) time [13]. For a string over a constant-sized
alphabet, all Ab-square factors of a string can be computed in O(n2/ log2 n + output) time
and the longest Ab-square can be computed in O(n2/ log2 n) time [29, 30]. Moreover, for a
string of length n that is given by its run-length encoding consisting of r runs, the longest
Ab-square that ends at each position can be computed in O(|Σ|(r2 + n)) time [2] or in O(rn)
time [40]; both approaches require Ω(n2) time in the worst case.

In [37] a different problem of enumerating strings being Ab-squares was considered.

Additive squares. An additive square is an even-length string over an integer alphabet such
that the sums of characters of the halves of this string are the same.

▶ Example 2. The following string has exactly 4 additive squares of length 10, as shown.

1 2 0 3 2 1 2 0 2 3 2 1 0 1 2 3

All of them except for the rightmost one are also Ab-squares. This string does not contain
any longer additive square. Altogether this string has 8 additive square factors.
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An Ab-square (over an integer alphabet) is an additive square, but not necessarily
the other way around. Combinatorially, problems related to additive squares are hard, in
particular avoiding additive squares seems more difficult than avoiding Ab-squares. There
are infinitely many strings over {0, 1, 2, 3} avoiding Ab-squares, but there are only finitely
many strings over the same alphabet avoiding additive squares; see [22].

In fact it is unknown if there are infinitely many strings over any finite integer alphabet
avoiding additive squares [7, 25, 33]. For additive cubes the property was proved in [9] (see
also [32]) however.

Nowadays, combinatorial study of Ab-square and additive square factors often involves
computer experiments; see e.g. [9, 19, 36]. In addition to other applications, efficient
algorithms detecting such types of squares could provide a significant aid in this research.
In case of classic square factors (i.e., factors of the form XX), a linear-time algorithm for
computing them is known for a string over a constant [24] and over an integer alphabet [4, 12].
We show that, unfortunately, in many cases the existence of near-linear-time algorithms for
detecting Ab-square and additive square factors is unlikely, based on conjectured hardness of
the 3SUM problem.

3SUM problem. The problem asks if there are distinct elements a, b, c ∈ S such that
a + b = c for a given set S of n integers ; see [35]. It is a general belief that the following
conjecture is true for the word-RAM model.

3SUM conjecture. There is no O(n2−ϵ) time algorithm for the 3SUM problem, for any
constant ϵ > 0.
A problem with input of size n is called 3SUM-hard if an O(n2−ε)-time solution to the
problem implies an O(n2−ε′)-time solution for 3SUM, for some constants ε, ε′ > 0.

Our results.
We show that the problems of computing all centers of Ab-square factors and detecting an
odd half-length Ab-square factor, called an odd Ab-square (consequently also computing
all lengths of Ab-square factors), for a length-n string over an alphabet of size ω(1),
cannot be solved in O(n2−ε) time, for constant ε > 0, unless the 3SUM conjecture fails.
Weaker conditional lower bounds are also stated in the case of a constant-sized alphabet.
For constant-sized alphabets, we show strongly sub-quadratic algorithms for these prob-
lems based on an involved result of [11] related to jumbled indexing.
En route we prove that detection of a double 3-term arithmetic progression (see [8]) and
additive squares in a length-n sequence of integers of magnitude nO(1) is 3SUM-hard.

We obtain deterministic conditional lower bounds from a convolution version of 3SUM that
is well-known to be 3SUM-hard.

Related work. In the jumbled indexing problem, we are given a text T and are to answer
queries for a pattern specified by a Parikh vector which gives, for each letter of the alphabet,
the number of occurrences of this letter in the pattern. For each query, we are to check if
there is a factor of the text that is Ab-equivalent to the pattern (existence query) or report
all such factors (reporting query). Chan and Lewenstein [11] showed a data structure that
can be constructed in truly subquadratic expected time and answers existence queries in
truly sublinear time for a constant-sized alphabet (deterministic constructions for very small
alphabets were also shown). Amir et al. [3] showed under a 3SUM-hardness assumption
that jumbled indexing with existence queries requires Ω(n2−ε) preprocessing time or Ω(n1−δ)
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queries for any ϵ, δ > 0 for an alphabet of size ω(1). They also provided particular constants
εσ, δσ for an alphabet of a constant size σ ≥ 3 such that, under a stronger 3SUM-hardness
assumption, jumbled indexing requires Ω(n2−εσ ) preprocessing time or Ω(n1−δσ ) queries.
We use the techniques from both results in our algorithm and conditional lower bound for
Ab-squares, respectively. The lower bound of Amir et al. was later improved and extended to
both existence and reporting variants and any constant σ ≥ 2 by Goldstein et al. [23, Section
7] with the aid of randomization. Moreover, recently an unconditional lower bound for the
reporting variant was given in [1].

Our techniques. A subsequence of three distinct positions is a 3-term double arithmetic
progression (3dap in short) if it is an arithmetic progression and the elements on these
positions also form an arithmetic progression. The problem of finding a 3dap in a sequence
is denoted by 3DAP. It is an odd 3dap if the first and the third positions are odd and the
middle position is even. The corresponding problem is denoted by Odd-3DAP. First we
reduce the convolution problem 3SUM (known to be 3SUM-hard) to the 3DAP problem via
Odd-3DAP as an intermediate problem. This uses a divide-and-conquer approach and a
partition of sets into sets avoiding bad arithmetic progression of length 3.

The 3DAP problem reduces in a simple way to detection of an additive square, showing
that the latter problem is 3SUM hard.

Next, the 3DAP problem is encoded as a string. We follow the high-level idea from Amir
et al. Instead of checking equality of numbers, we can check equality of their remainders
modulo sufficiently many prime numbers. Then, each prime number corresponds to a distinct
characters. If the numbers are poly n then only O(log n) prime numbers are needed. However,
there is a certain technical complication, already present in the paper of Amir et al., which
needs an introduction of additional gadgets working as equalizers. The details, compared
with construction of Amir at al., are different, mostly because in the end we want to ask
about detection, not indexing.

Then we consider the problem of computing all centers of Ab-squares, this requires
new gadgets. We show that computing all centers of Ab-squares is 3SUM-hard, as well as
detection of any Ab-square which is well centred.

Later we extend this to detection of any odd Ab-square. We use a construction of a string
over the alphabet of size 4 with no Ab-square. The input string is “shuffled” with such a
string, with some separators added. This forces odd Ab-squares to be well centered, in this
way we reduce the previously considered problem of detection of any well-centred Ab-square
to the detection of any odd Ab-square. Ultimately, this shows that the latter problem is
3SUM-hard.

2 From Conv3SUM to finding double 3-term arithmetic progressions

For integers a, b, by [a, b] we denote the set {a, . . . , b}. We use the following convolution
variant of the 3SUM problem that is 3SUM-hard; see [10, 31, 35] for both randomized
and deterministic reductions. As already noted in [3], the range of elements can be made
[−N2, N2] using a randomized hashing reduction from [5, 35].

Conv3SUM(x̄)
Input: A sequence x̄ = [x1, . . . , xN ] ∈ [−N2, N2]
Output: Yes if there are i ̸= j such that xi + xj = xi+j ; no otherwise.
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Let us denote mid(a, b) = (a + b)/2 and define the condition:

Λx̄(i, j) = ( i ̸= j ∧ j − i is even ∧ xmid(i,j) = mid(xi, xj) ).

We omit the subscript x̄ if it is clear from the context. The last part of the condition is
equivalent to xj − xmid(i,j) = xmid(i,j) − xi.

Our first goal is to reduce the Conv3SUM problem to the following one with K = NO(1).

Double 3-Term Arithmetic Progression, 3DAP(x̄)
Input: x̄ = [x1, . . . , xn], each of xi is in [0, K].
Output: (∃ i, j) Λ(i, j).

In Section 2.1 we obtain a reduction of Conv3SUM to an intermediate version of 3DAP
with additional constraints on i, j, and in Section 2.2 we show how these constraints can be
avoided.

2.1 From Conv3SUM to Odd-3DAP
Let us fix an integer sequence x1, . . . , xN . For an arithmetic progression (arithmetic sequence)
I = i1, . . . , in, where 1 ≤ i1 < · · · < in ≤ N , i.e. i2 − i1 = · · · = in − in−1, we define the
following extended functions.

Conv3SUM(x̄, I) = ( ∃ ia, ib ∈ I : xia
+ xib

= xia+ib
, ia < ib)

OddConv3SUM(x̄, I) = ( ∃ ia, ib ∈ I : xia
+ xib

= xia+ib
, a + b is odd).

Note that it can happen that ia + ib /∈ I. For a fixed x̄ the input size is |I|.

▶ Lemma 3. An instance of Conv3SUM(x̄) can be reduced to an alternative of O(N)
instances of OddConv3SUM(x̄, I) of total size O(N log N) in O(N log N) time.

Proof. If I = i1, . . . , in, by Iodd and Ieven we denote the subsequences i1, i3, . . . and i2, i4, . . . ,
respectively. We proceed recursively as shown in the following function Conv3SUM, with
the first call to Conv3SUM(x̄, [1, 2, . . . , N ]).

function Conv3SUM(x̄, I)
Comment: I is an arithmetic progression
if |I| ≤ 2 then return false;
return OddConv3SUM(x̄, I) ∨ Conv3SUM(x̄, Iodd) ∨ Conv3SUM(x̄, Ieven);

Correctness. Let I = i1, . . . , in and assume there are two indices a, b such that xia
+ xib

=
xia+ib

. If a + b is odd, then OddConv3SUM(x̄, I) returns true. Otherwise both a, b are
of the same parity, so ia, ib ∈ Iodd or ia, ib ∈ Ieven. Consequently, the problem is split
recursively into subproblems that correspond to Iodd and Ieven .

Complexity. Let us observe that one call to Conv3SUM(x̄, I) creates an instance of
OddConv3SUM of O(|I|) size in O(|I|) time (x̄ does not change). Let #(n) and S(n)
denote the total number and size of all instances of I generated by Conv3SUM(x̄, I), when
initially |I| = n. We then have

#(n) = #(⌊n/2⌋) + #(⌈n/2⌉) + 1 and S(n) = S(⌊n/2⌋) + S(⌈n/2⌉) + Θ(n),

which yields #(N) = O(N) and S(N) = O(N log N). The reduction takes O(S(N)) time. ◀
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We say that a 3-element arithmetic progression is a good progression if the middle element
is even and two others are odd and introduce the following problem.

Odd-3DAP(x̄)
Input: x̄ = [x1, . . . , xn], each of xi is in [−O(N2), O(N2)].
Output: ( ∃ i, j ) [ Λ(i, j) and (i, mid(i, j), j) is a good progression ].

▶ Lemma 4. OddConv3SUM(x̄, I) is reducible in O(|I|) time and space to Odd-3DAP(ȳ),
where |ȳ| = O(|I|).

Proof. Let I = i1, . . . , in. Define αN = 2N2 + 1 and let ȳ be a sequence of length 2n − 1
that is created as follows:
1. put xi1 , xi2 , . . . , xin at subsequent odd positions in ȳ;
2. at each even position 2j, put xij+ij+1 or, if ij + ij+1 > N , put αN .
3. multiply elements on even positions by 2.

After the first two steps OddConv3SUM(x̄, I) is equivalent to (∃i, j) ymid(i,j) = yi + yj

for odd i, j and even mid(i, j); see Figure 1. Then, after the third step, OddConv3SUM(x̄, I)
is equivalent to Odd-3DAP(ȳ). ◀

x1 x3 x2 x5 x3 x7 x4 x9 x5 x11 x6 ∗ x7 ∗ x8 ∗ x9 ∗ x10 ∗ x11

Figure 1 The sequence constructed in Lemma 4 for x̄ = [x1, x2, x3, . . . , x11] and I = (1, 2, . . . , 11)
after the first two steps (∗ denotes α11). Note that the elements connected by arcs all have their
sum of indices equal to 7; this is because I is an arithmetic progression.

2.2 From Odd-3DAP to 3DAP
Our main tool in this subsection is partitioning a set of integers into progression-free sets. A
set of integers A is called progression-free if it does not contain a non-constant three-element
arithmetic progression. We use the following recent result that extends a classical paper of
Behrend [6].

▶ Theorem 5 ([14]). Any set A ⊆ [1, n] can be partitioned into no(1) progression-free sets in
n1+o(1) time.

▶ Lemma 6. We can construct in n1+o(1) time a family F of no(1) subsets of [1, n] satisfying:
(a) Each good 3-element progression is contained in some S ∈ F .
(b) If S ∈ F , then all 3-element arithmetic progressions in S are good.

Proof. Let us divide the elements from [1, n] into three classes:

BLUE = {i ≤ n : i is even },

RED = {i ≤ n : i mod 4 = 1}, GREEN = {i ≤ n : i mod 4 = 3}.

Each element i ∈ [1, n] has the colour blue, red or green of its corresponding class. Each
class forms an arithmetic progression.
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A progression is called multi-chromatic if its elements are of three distinct colours. Let us
observe that a 3-element progression is good if and only if it is multi-chromatic. Indeed, this
is because if i, j ∈ RED (or GREEN), then mid(i, j) is odd.

Now instead of good progressions we will deal with multi-chromatic progressions. We
treat sets of integers as increasing sequences and for a set C = {c1, . . . , cm} we denote by
Codd and Ceven the subsets {c1, c3, . . . } and {c2, c4, . . . }.

For example BLUEodd = {i ≤ n : i mod 4 = 2}, REDeven = {i ≤ n : i mod 8 = 5}.
Our construction works as follows:

1. Partition the set [1, n] into classes BLUE, RED, GREEN.
2. For each class C ∈ {BLUE, RED, GREEN} partition it in n1+o(1) time into a family FC of

no(1) progression-free sets with the use of Theorem 5.
3. Refine each partition FC , splitting each set X ∈ FC into two sets X ∩ Codd , X ∩ Ceven,

so that for each set X in the new refined partition FC we have X ⊆ Codd or X ⊆ Ceven .
Each family is still of size no(1).

4. Return F = { X ∪ Y ∪ Z : X ∈ FBLUE, Y ∈ FRED, Z ∈ FGREEN }.

Proof of point (a). Each multi-chromatic progression is contained in some S ∈ F since
each element of C is contained in a set from FC .

Proof of point (b). The proof is by contradiction. Assume that S ∈ F contains a progression
which is not multi-chromatic. There are two cases.
Case 1: the progression is monochromatic, hence it appears in a single set X ∈ FC . However

every X is progression-free (step 2), hence such a progression cannot appear in any S ∈ F ;
a contradiction.

Case 2: the progression contains exactly two different colors. Observe that if i mod p =
mid(i, j) mod p = r, then j mod p = r (if the middle element of progression belongs to
the same class as one of the other elements, then the triple is monochromatic), hence the
two-coloured arithmetic progression has to consist of i, j ∈ C and mid(i, j) /∈ C.
Since i, j both belong to Codd or Ceven (step 3), mid(i, j) must belong to C (if i mod 2p =
j mod 2p, then i mod p = mid(i, j) mod p). Consequently, the progression cannot contain
exactly two colours; a contradiction. ◀

Our next tool is a deactivation of a set of elements which indexes are not in a given set
E, that is, omitting them in the computation of a solution. For E ⊆ [1, n] the operation
restr(x̄, E) replaces each element xi on position i /∈ E by 5 max{MAX , n2} + i2, where
MAX = maxk≥1 |xk|.

▶ Lemma 7. 3DAP(restr(x̄, E)) ⇐⇒ (∃ i, j) Λx̄(i, j) ∧ i, j, mid(i, j) ∈ E.

Proof. The (⇐) part if obvious, so it suffices to show (⇒). If at least one, but not all, of
i, j, mid(i, j) is not in E, then Λȳ(i, j) cannot hold for ȳ = restr(x̄, E) because ymid(i,j) and
mid(yi, yj) differ by at least max{maxk{|xk|}, n2} (for an exhaustive check of all the cases,
see the full version). Otherwise, if all the positions i, j, mid(i, j) are not in E, then Λȳ(i, j)
does not hold because mid(i2, j2) − ( i+j

2 )2 = ( i−j
2 )2 > 0 since i ̸= j. ◀

An instance x̄ is called an odd-half instance if Λ(i, j) is false for i, j such that (j − i)/2
is even (equivalently, for i, j such that i and mid(i, j) have the same parity). Efficient
equivalence

Odd-3DAP(x̄) ⇔ (∃ S ∈ F ) 3DAP(restr(x̄, S))

follows now from Lemmas 6 and 7.
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This produces only odd-half instances because only good progressions are left in the
construction of Lemma 6. The instances have elements in [−O(N2), O(N2)]. We can increase
all the elements by O(N2) so that they become non-negative. This implies:

▶ Lemma 8. An instance of Odd-3DAP can be reduced in n1+o(1) time to no(1) odd-half
instances of 3DAP of total size n1+o(1) and with elements up to K = O(N2).

Finally, we show that the resulting instances can be glued together to a single equivalent one.

▶ Theorem 9. An instance of Conv3SUM can be reduced in N1+o(1) time to an odd-half
instance of 3DAP of size n = N1+o(1) with elements up to K = N3+o(1).

Proof. With Lemmas 3, 4, and 8 we obtain a reduction from Conv3SUM to N1+o(1) odd-
half instances of 3DAP of total size N1+o(1). The instances have elements in [0, O(N2)]. We
will show that these instances can be reduced to a single odd-half instance of 3DAP of size
N1+o(1) with elements in the range [0, N3+o(1)] in time N1+o(1). The resulting instance will
return true if and only if at least one of the input instances does.

Let t = N1+o(1) be the number of the instances of 3DAP, numbered 1 through t. We
use Theorem 5 1 and pick the largest constructed progression-free set A ⊆ [1, m], for some
m. By the pigeonhole principle, |A| ≥ m1−o(1). We select m that is large enough so that
m1−o(1) ≥ t, so m = t1+o(1) = N1+o(1), and trim the set A to the size t. Let A = {a1, . . . , at}.
For instance i we multiply all its elements by 2m and add to each element the value ai.
Finally we concatenate all the instances.

If any of the input instances returns true, then so does the output instance, since
multiplication by and addition of the same number to all elements cannot affect the outcome
of a single instance. If none of the input instances returns true, then the only possibility
for the output instance to return true is to contain a 3-element arithmetic progression
with elements from multiple parts corresponding to the input instances. However, this is
impossible since, taken modulo 2m, the progression would form an arithmetic progression in
the set A. ◀

▶ Corollary 10. The general 3DAP problem is also 3SUM-hard.

▶ Remark 11. Similarly as in Conv3SUM, techniques from [5] can be used to hash down
the range in 3DAP to integers of magnitude O(N2) (cf. [3]), using randomization.

▶ Remark 12. The AVERAGE problem (introduced by J. Erickson [17]) asks if there are
distinct elements a, b, c ∈ S such that a+b = 2c for a given set S of n integers. It was recently
shown to be 3SUM-hard [14]. The 3DAP problem can be viewed as a convolution version of
the AVERAGE problem2. The ideas based on almost linear hashing used in the reductions
from 3SUM to Conv3SUM [35, 10] can be extended with some effort to reduce AVERAGE
to 3DAP. We presented a different reduction that additionally directly leads to an instance
of 3DAP with an odd-half property, which is essential in our proof of 3SUM-hardness of
computing Ab-squares (see the proof of Lemma 19).

1 Actually, a deterministic version of Behrend’s construction from [14] or an earlier construction of Salem
and Spencer [38] would suffice here.

2 https://cs.stackexchange.com/questions/10681/is-detecting-doubly-arithmetic-
progressions-3sum-hard/10725#10725

https://cs.stackexchange.com/questions/10681/is-detecting-doubly-arithmetic-progressions-3sum-hard/10725#10725
https://cs.stackexchange.com/questions/10681/is-detecting-doubly-arithmetic-progressions-3sum-hard/10725#10725
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2.3 Hardness of detecting additive squares
If the alphabet is a set of integers, then a string W is called an additive square if W = UV ,
where |U | = |V | and

∑|U |
i=1 U [i] =

∑|V |
i=1 V [i].

▶ Theorem 13. Finding an additive square in a length-N sequence composed of integers of
magnitude NO(1) is 3SUM-hard.

Proof. We use Theorem 9 to reduce Conv3SUM to an instance of 3DAP of size n = N1+o(1)

with elements in the requested range. 3DAP returns true on an instance x1, . . . , xn if and
only if the sequence x2 − x1, x3 − x2, . . . , xn − xn−1 contains an additive square. As the
reduction works in N1+o(1) total time, the conclusion follows. ◀

3 From arithmetics to Abelian stringology

We use capital letters to denote strings and lower case Greek letters to denote sets of integers.
We assume that the positions in a string S are numbered 1 through |S|, where |S| denotes
the length of S. By S[i] and S[i..j] we denote the ith letter of S and the string S[i] · · · S[j]
called a factor of S. The reverse of string S, i.e. the string S[|S|] · · · S[1], is denoted as SR.
By ε we denote the empty string. By Alph(S) we denote the set of distinct letters in S.

We denote Ab-equivalence of U and V by U ∼= V . For a string U , by Parikh(U) we
denote the Parikh vector of U . Then U ∼= V if and only if Alph(U) = Alph(V ) and
Parikh(U) = Parikh(V ).

We use an encoding of Amir et al. [3] based on the Chinese remainder theorem to connect
Conv3SUM-type problems with Abelian stringology.

Let p1 < p2 < · · · < pk be prime numbers. The Chinese remainder theorem states that
if one knows the remainders r1, r2, . . . , rk of an integer x, such that 0 ≤ x <

∏
pi, when

dividing by pi’s, then one can uniquely determine x. Assuming that the remainders of an
integer x are r1, r2, . . . , rk, we could encode x as a possibly short string ar1

1 ar2
2 · · · ark

k over
an alphabet {a1, a2, . . . , ak} (the symbols correspond to consecutive prime numbers).

For example for primes 2,3,5 the encoding of 11 would be a1
1a2

2a1
3 since its remainders

modulo 2,3,5 are 1,2,1, respectively. However, we are interested in encodings of subtractions
of one number from another one, and it is more complicated.

Let x̄ = [x1, . . . , xn] be an instance of 3DAP and r
(i)
1 , r

(i)
2 , . . . , r

(i)
k be remainders of xi

modulo p1, p2, . . . , pk. Like Amir et al. [3], we define for 1 ≤ i < n and 1 ≤ j ≤ k,

EXPi(j) = r
(i+1)
j − r

(i)
j + d where d = kmax

j=1
pj , Si = aEXPi(1)

1 aEXPi(2)
2 · · · aEXPi(k)

k .

We choose a sequence p1, . . . , pk of k distinct primes such that p1 · · · pk > max{xi}. In this
way we encode the difference xj − xi, for j > i, by a string Si Si+1 · · · Sj−1. An obstacle is
the potentially possible inequality (a mod p) − (b mod p) ̸= (a − b) mod p. However a small
correction is sufficient, due to the following observation.

▶ Observation 14. (a mod p) − (b mod p) + q = (a − b) mod p, where q ∈ {0, p}.

If we apply the encoding to an instance x̄ = x1, . . . , xn of 3DAP, we obtain a lemma that is
analogous to [3, Lemma 1].

▶ Lemma 15. Λ(i, j) holds for i < j, j−i even, iff for each t ∈ [1, k], there are et, ft ∈ {0, pt},
such that

et + EXPi(t) + EXPi+1(t) + · · · + EXPmid(i,j)−1(t) =

EXPmid(i,j)(t) + EXPmid(i,j)+1(t) + · · · + EXPj−1(t) + ft.
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Let Ψ be a morphism such that Ψ(i) = api

i for each i = 1, . . . , k. We treat a set
U = {u1, . . . , uw} as a string u1 · · · uw, where u1 < u2 < . . . < uw. If we interpret the vector
(EXPi(1), EXPi(2), . . . , EXPi(k)) as Si, then Lemma 15 directly implies the following fact.

▶ Lemma 16. Assume i < j and j − i is even. Then

Λ(i, j) ⇐⇒ ( Ψ(α) SiSi+1 · · · Smid(i,j)−1 ∼= Smid(i,j) · · · Sj−1 Ψ(β) )

for some disjoint subsets α, β of [1, k].

4 Hardness of computing all centers of Ab-squares

We construct a text T over the alphabet {a1, . . . , ak, b, •, ⋆, #, $} such that 3DAP has a
solution if and only if T contains an Ab-square with one of specified centers, so-called
well-placed Ab-square.

First we extend each Si to have the same length M ≥ maxn−1
i=1 |Si|, to be defined later.

Intuitively, it is needed to control the number of Si’s in the strings from Lemma 16. We
append M − |Si| occurrences of a letter b to each Si. Let SI

i denote this modified string.
Lemma 16 immediately implies the following fact.

▶ Lemma 17. Assume i < j and j − i is even. Then

Λ(i, j) ⇐⇒ ( beΨ(α) SI
i SI

i+1 · · · SI
mid(i,j)−1

∼= SI
mid(i,j) · · · SI

j−1Ψ(β)bf ),

for some disjoint subsets α, β of [1, k], where e + |Ψ(α)| = f + |Ψ(β)| with min(e, f) = 0.

The parts beΨ(α), Ψ(β)bf in the above lemma can be treated as equalizers. Let us note that
in the above lemma we can assume that max(e, f) ≤ max(|Ψ(α)|, |Ψ(β)|) ≤ kd.

A pair of disjoint sets α, β that satisfies α ∪ β = [1, k] will be called a 2-partition of [1, k].
For a 2-partition (α, β) of [1, k], we use the string

Γ(α, β) = # α $ bkd # β $,

called a Γ-string. If k = 4, d = 7, an example of a Γ-string is Γ(2, 1 3 4) = # 2 $ b28 # 1 3 4 $.
Let (π1, π′

1), (π2, π′
2), . . . , (πm, π′

m) be the sequence of all m = 4k pairs of Γ-strings. Define

U = πmπm−1 . . . π1, V = π′
1 π′

2 . . . π′
m.

We have {π1, . . . , πm} = {π′
1, . . . , π′

m}, so U ∼= V .

▶ Observation 18. For disjoint subsets α, β ⊆ [1, k] and integers 0 ≤ e, f ≤ kd, there are
decompositions U = U1 be # β $ U2 and V = V1 # α $ bf V2, where U2 ∼= V1.

Let us recall the morphism Ψ such that Ψ(i) = api

i for each i ∈ [1, k]. We define additionally
Ψ(c) = c for c ∈ {b, #, $} and set

B = Ψ(U), A = Ψ(V ), M = |A| = |B|.

Let us observe that indeed maxn−1
i=1 |Si| ≤ M holds since |Si| ≤ kd +

∑k
j=1 pj and the length

of Ψ(W ) for any Γ-string W is kd +
∑k

j=1 pj + 4.

We add two new letters •, ⋆ and define the following string (the symbols “
center

↓ ” are not
parts of the string, but only show supposed centers of Ab-squares).

T = • B ⋆ SI
1 A •

center

↓ ⋆ B • SI
2 A ⋆

center

↓ • B ⋆ SI
3 A •

center

↓ ⋆ B • SI
4 A ⋆ · · · . (1)
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beΨ(α)

Ψ(π2)Ψ(π1)

B

S1

SI
1 A B

S2

SI
2 Ψ(β)bf

Ψ(π′
1)Ψ(π′

2)

A

Figure 2 Internal structure of an Ab-square, shown in a thick box (proportions are symbolic), in
BSI

1A BSI
2A. Here xmid(1,3) = mid(x1, x3) and beΨ(α), Ψ(β)bf are equalizers.

An Ab-square is called well-placed if its center is between the letters •, ⋆ in any order.
Recall that, due to Theorem 9, we can assume that the input to 3DAP guarantees that only
odd-half instances could have solutions.

▶ Lemma 19. Assume x̄ is an odd-half instance. Then 3DAP(x̄) has a solution if and only
if T contains a well-placed Ab-square.

Proof. Let x̄ = [x1, . . . , xn] be an odd-half instance of 3DAP. We show two implications.
(⇒) Assume that Λ(i, j) holds for x̄. Lemma 17 implies that for strings W, Z such that

W ∼= Z we have

be#Ψ(α)$W ⋆ SI
i A • ⋆B • SI

i+1A ⋆ · · · • B ⋆ SI
mid(i,j)−1A• ∼=

⋆ B • SI
mid(i,j)A ⋆ · · · • B ⋆ SI

j−2A • ⋆B • SI
j−1 Z#Ψ(β)$bf (2)

for some disjoint subsets α, β of [1, k], where e + |Ψ(α)| = f + |Ψ(β)| with min(e, f) = 0.
Indeed, we use the fact that A ∼= B and the counts of letters • and ⋆ on both hand sides are
equal (because (j − i)/2 is odd). By Observation 18, we obtain a well-placed Ab-square in T

(or we obtain it after exchanging all letters • with ⋆).
(⇐) Assume that T has a well-placed Ab-square factor with center immediately after

•B ⋆ SI
t A• (the case that it is immediately after ⋆B • SI

t A⋆ is symmetric). Let us investigate
what can be the position s of the first letter of this Ab-square.

Recall that |SI
i | = |A| = |B| = M for each i ∈ [1, n − 1], so T can be seen as composed of

blocks of length M ′ = M + 1. We will check which of these blocks can contain s, by checking
the counts of each of the letters •, ⋆ in both halves of the Ab-square. The positions of letters
•, ⋆ in T repeat with period 6(M + 1), so it is sufficient to inspect the first 6 blocks on each
side, as the remaining ones will behave periodically; see Figures 3 and 4.

⋆ B • SI
t−1 A ⋆ • B ⋆ SI

t A • ⋆ B • SI
t+1 A ⋆ • B ⋆ SI

t+2 A •

first none any not first first none

Figure 3 Which position in a block of T can be the starting position of a well-placed Ab-square
with the designated center, just counting letters •, ⋆.

By counting letters •, ⋆ in both halves of the Ab-square, it can be readily verified that s

cannot be in any block A• or •SI
i ; if in any block ⋆B or ⋆SI

i , it can only be the first position
of the block; it cannot be the first position in a block •B; and it can be in any position in a
block A⋆.

Moreover, s cannot be the first position in a block ⋆B, since this would imply, by
Lemma 17, that Λ(i, j) holds for i such that the block •SI

i immediately follows the ⋆B block
and j = 2t − i. However, in this case (j − i)/2 is even, which is impossible.
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If s is the first position of a block ⋆SI
i , then this implies, again by Lemma 17, that

Λ(i, j) holds for j = 2t − i. In this case (j − i)/2 is odd, so this is a valid solution to the
corresponding 3DAP instance.

We are left with the case that s belongs to a block A⋆ or •B (and in case of •B does not
coincide with the position of the letter •). Henceforth it suffices to count letters different
from •, ⋆ in the halves. Each of the gadgets A, B is a concatenation of m Ab-equivalent
strings of the form # Ψ(α) $ bkd # Ψ(β) $, where Ψ(α), Ψ(β) are composed of letters ai only.
By counting the letters # and $ in both halves of the Ab-square, we see that s can only be a
position which holds the letter b or #.

Hence, the Ab-square is necessarily of the form (2), which, by Lemma 17, implies that
Λ(i, j) holds, where ⋆SI

i is the first such block after the position s and j = 2t − i. ◀

• ⋆• ⋆ ⋆ • • ⋆ ⋆ • • ⋆

⋆ • ⋆ • ⋆ •

Ab-square

Figure 4 The global structure of a fragment containing a well-placed Ab-square; there are
three types of blocks: cB, cSI

i , Ac, where c is one of •, ⋆. The blocks of the second type (which
can be considered as essential blocks) are in color, each block is of length M + 1 (recall that
|A| = |B| = |Si| = M). The special letters •, ⋆ force each half of a well-placed Ab-square to contain
a number of full Si’s.

▶ Theorem 20. Computing all positions that are centers of Ab-square factors in a length-n
string over an alphabet of size ω(1) is 3SUM-hard.

Proof. Due to Theorem 9 we can reduce Conv3SUM in N1+o(1) time to an odd-half instance
x̄ of 3DAP of size n = N1+o(1) with elements in the range [0, N3+o(1)].

We construct the string T as shown in Eq. 1 for the sequence x̄. Then Lemma 19 implies
that 3DAP is a YES-instance if and only if T has a well-placed Ab-square. The string T has
length O(N1+o(1)M). Each of the strings A, B has length M and is composed of m = 4k

strings of length O(kd), i.e., Ψ-images of Γ-strings.
Hence, M = O(4kkd). We select k such that k = ω(1) and simultaneously k =

O(log N/ log log N). Then we have 4kk = No(1) and the k primes are of magnitude
d = O(N (3+o(1))/k) = No(1) (we can choose k consecutive primes computed using
Eratosthenes’s sieve).

Overall |T | = N1+o(1) and |Alph(T )| ≤ k + 5 = ω(1). (One can obtain any alphabet up
to O(N) by appending distinct letters to T .) ◀

With the same argument for a constant-sized alphabet we obtain the following result.

▶ Theorem 21. All positions that are centers of Ab-square factors in a length-n string over
an alphabet of size 5 + k, for a constant k, cannot be computed in O(n2− 6

3+k −ε) time, for a
constant ε > 0, unless the 3SUM conjecture fails.

5 Computing centers of Ab-squares for constant-sized alphabets

A set of vectors in [1, n]d is called monotone if its elements can be ordered so that they form
a monotone non-decreasing sequence on each coordinate.
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▶ Definition 22. For sets A and B of vectors we define A + B = {a + b : a ∈ A, b ∈ B} and
c ·A = {ca : a ∈ A}, and for a string W we define: Pl,r(W ) = {Parikh(W [1..k]) : l ≤ k ≤ r}.
Let us denote by |A| the length of a string corresponding to a Parikh vector A.

In the algorithm we use the following fact shown in [11]. The exact complexities can be
found in [11, Theorem 3.1].

▶ Fact 1 ([11]). Given three monotone sequences A, B, C in [1, n]d for a constant d, we can
compute (A + B) ∩ C in O(n2−ϵ) expected time for a constant ϵ > 0, or in O(n2−ϵ′) worst
case time for a constant ϵ′ > 0 if d ≤ 7.

Algorithm 1 CENTERS(T ).

if |T | < 2 return ∅;
m = ⌈n/2⌉;
A = P0,m−1(T ); B = Pm,n(T ); C = P0,n(T );
M = {|C| : 2C ∈ (A + B) ∩ 2 · C};
Tleft = T [1..m − 1]; Tright = T [m..n];
return M ∪ CENTERS(Tleft) ∪ {k + m : k ∈ CENTERS(Tright)}

m

D E

i k j

A

C

B

Figure 5 A ∈ A, B ∈ B, C ∈ C denote Parikh vectors of the corresponding fragments. If
A + B = 2C, then D = E and k = |C| is a center of an Ab-square.

▶ Theorem 23. For a string of length n over an alphabet of size d = O(1), we can compute
centers of all Ab-squares and centers of all odd Ab-squares in expected time O(n2−ϵ) or in
worst case time O(n2−ϵ) if d ≤ 7, for ϵ > 0.

Proof. We use the above algorithm. Correctness of the algorithm is straightforward; see
Figure 5. If

|A| < |B|, |C| = (|A| + |B|)/2, B = A + D + E, C = A + D

then A + B = 2C ⇐⇒ 2A + D + E = 2A + 2D.
Consequently, after cancelling the same parts on both sides, A + B = 2C ⇐⇒ E = D,

equivalently if and only if the factor T [i..j] corresponding to DE is an Ab-square centred in
k = |C|. The figure shows the case when k is in the right half of the strings; the other case is
symmetric.

By Fact 1 the cost of the algorithm can be given by a recurrence

S(n) = 2 · S
(

n
2

)
+ O(n2−ϵ)
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which results in S(n) = O(n2−ϵ) for ϵ > 0.
In case of of odd Ab-squares let

P c
l,r(W ) = {Parikh(W [1..k]) : l ≤ k ≤ r, k mod 2 = c}.

In the algorithm the statement M = {|C| : 2C ∈ (A + B) ∩ 2 · C} is executed for both
c ∈ {0, 1}, with

A = P c
0,m−1(T ), B = P c

m,n(T ), C = P 1−c
0,n (T ).

Other parts of the algorithm, as well as its analysis, are essentially the same. ◀

6 Detecting odd Ab-squares

Unfortunately the string T from Lemma 19 has many Ab-squares which are not well-placed.
Our approach is to embed the (slightly) modified string T into a string which is a special
composition of T and a combination of long quaternary Ab-square-free strings. The resulting
string will fix the potential centers in specified locations. We use additional letters: ♢, ◦ and
0, . . . , 6.

We show first a fact useful in fixing Ab-squares in specified places (Lemma 26). Let Pt−2
be any Ab-square-free string of length t − 2 over alphabet {3, 4, 5, 6} (it can be constructed
using Keränen’s construction [27] of quaternary Ab-square-free strings). Let us define

U2t = 0 Pt−2 1 2 P R
t−2 0.

The following lemma is proved in the full version of the paper.

▶ Lemma 24. The string (U2t)m contains exactly the following Ab-squares:
(1) of length divisible by 4t; and
(2) with the center between two 0’s and of all admissible even lengths other than (4q + 2)t,

for an integer q ≥ 0.

For equal-length strings X, Y we define the string

shuffle♢(X, Y ) = X[1]♢Y [1] X[2]♢Y [2] X[3]♢Y [3] · · · .

For example, shuffle♢(abc, ABC) = a♢Ab♢Bc♢C.
The parity condition for half lengths of Ab-squares in the following observation justifies

the usage of the additional letter ♢ in shuffle. Let U[X] be the string resulting from U by
removing all letters outside Alph(X).

▶ Observation 25. Assume X, Y are equal-length strings composed of disjoint sets of
letters distinct from ♢ and W is an Ab-square in shuffle♢(X, Y ). Then W[X], W[Y ] are Ab-
squares in X, Y , respectively (we say that these Ab-squares are implied by W ). Moreover,
|W[X]|/2, |W[Y ]|/2, W |/2 are of the same parity.

We say that an even-length factor of a string X is centred at i if it has its center between
positions i and i + 1 in X. By a | b and a ∤ b we denote that a divides b and a does not
divide b. For an illustration of the following lemma, see Figure 6.

▶ Lemma 26. Let X = (U2t)n−1, Y be a string of length |X| such that its alphabet is disjoint
with Alph(X) ∪ {♢}, W = shuffle♢(X, Y ), and let an integer ℓ satisfy 12t ∤ ℓ. Then a length-ℓ
factor of W is an Ab-square if and only if it is centred in W at r ≡ {0, −1, −2} (mod 6t),
Y contains an Ab-square factor of length ℓ/3 centred in Y at ⌊r/3⌋, and 6t ∤ ℓ.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0 3 1 2 3 0♢ ♢ ♢ ♢ ♢ ♢ 0 3 1 2 3 0♢ ♢ ♢ ♢ ♢ ♢a b b a a b b a a b b a

Figure 6 Illustration of Lemma 26. Let X = (U6)2. The string Y = (abba)3, composed of black
letters, contains many Ab-squares. However the string Z = shuffle♢(X, Y ) of length 36, shown above,
contains only Ab-squares centred at 16, 17 or 18, as in the figure. The implied Ab-squares in Z are
only those which are centred at positions 5 or 6 in Z.

Proof. By the disjointness of sets of letters in X, Y and {♢}, each Ab-square in W has length
that is divisible by 3. The following claim is then readily verified (cf. Observation 25).

▷ Claim 27. For positive integer ℓ such that 6 | ℓ, a length-ℓ factor of W centred at r is
an Ab-square if and only if the length-ℓ/3 factors in X and Y centred at

⌊
r+2

3
⌋

and
⌊

r
3
⌋
,

respectively, are Ab-squares.

Let integer ℓ > 0 satisfy 6 | ℓ and 12t ∤ ℓ. We show two implications.

(⇒) If W contains an Ab-square factor of length ℓ centred at some r, then the implied
Ab-square factor of X has length ℓ/3, where 4t ∤ ℓ/3, so by Lemma 24 it has its center
between two 0’s, i.e., 2t |

⌊
r+2

3
⌋
. Hence, r ≡ {0, −1, −2} (mod 6t).

Moreover, 2t ∤ ℓ/3 also by Lemma 24. Finally, the implied Ab-square factor of Y indeed
has length ℓ/3 and is centred at ⌊r/3⌋.

(⇐) Let r ≡ {0, −1, −2} (mod 6t), 6t ∤ ℓ, and assume that Y contains an Ab-square factor
of length ℓ/3 centred at ⌊r/3⌋. We have 2t |

⌊
r+2

3
⌋

and 2t ∤ ℓ/3, so by Lemma 24 the string
X contains an Ab-square factor of length ℓ/3 centred at

⌊
r+2

3
⌋
. Finally, the unary string

♢2tm, certainly contains an Ab-square factor of length ℓ/3 centred at
⌊

r+1
3

⌋
. By the claim,

W contains an Ab-square of length ℓ centred at r that implies the three Ab-squares. ◀

▶ Theorem 28. Checking if a length-n string over an alphabet of size ω(1) contains an
odd Ab-square is 3SUM-hard. Moreover, for a string over an alphabet of size 14 + k, for a
constant k, the same problem cannot be solved in O(n2− 6

3+k −ε) time, for a constant ε > 0,
unless the 3SUM conjecture fails.

Proof. We use the technique of fixing Ab-squares from Lemma 26. Moreover, we make the
following minor modifications upon the construction of Section 4:
(1) Each fragment bkd is extended by one letter to bkd+1, and
(2) the letters •, ⋆ are replaced each by two letters •◦, ⋆◦, respectively.
Intuitively, (1) allows to extend Ab-squares considered in the proof of Lemma 19 by one
letter b to either side, and (2) makes |A| = |B| = |SI

i | even which facilitates the usage of
Lemma 26 with Y = T . It can be verified by inspecting the proof that Lemma 19 still holds
after these two changes. We refer to all the notions from Section 4 after these modifications.

It is enough now to show the following claim for X = (U2t)n−1, where 2t = |T |/(n − 1).
We assume that n ≥ 3.

▷ Claim 29. An odd-half instance of 3DAP is a YES-instance if and only if W =
shuffle♢(X, T ) has an odd Ab-square factor.
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2t︷ ︸︸ ︷
⋆ ◦ B︸ ︷︷ ︸ • ◦ SI

1︸ ︷︷ ︸ A ⋆ ◦︸ ︷︷ ︸
2t︷ ︸︸ ︷

• ◦ B︸ ︷︷ ︸
M+2

⋆ ◦ SI
2︸ ︷︷ ︸ A • ◦︸ ︷︷ ︸

2t︷ ︸︸ ︷
⋆ ◦ B︸ ︷︷ ︸ • ◦ SI

3︸ ︷︷ ︸ A ⋆ ◦︸ ︷︷ ︸
2t︷ ︸︸ ︷

• ◦ B︸ ︷︷ ︸ ⋆ ◦ SI
4︸ ︷︷ ︸ A • ◦︸ ︷︷ ︸

Figure 7 A schematic structure of a fragment of T after insertion of symbols ◦. There are 3(n− 1)
(underbraced) blocks in T , each of size M + 2, and 2t = 3M + 6.

Proof. (⇒) Assume that x̄ is an odd-half instance and 3DAP(x̄) has a solution.
By Lemma 19, T contains a well-placed Ab-square, that is, an Ab-square centred at a

position r′ such that 2t | r′. (Recall that 3(M + 2) = 2t.) Moreover, in the proof of that
lemma it is shown that in this case there exists a well-placed Ab-square in T that satisfies
the following additional requirements: (1) it starts within the gadget B; (2) it starts and
ends within a block of b’s; (3) its maximal prefix and suffix consisting of letters b are be and
bf , where e, f ≤ kd.

Let ℓ′ denote the half length of this Ab-square. By (2) and (3), if ℓ′ is even, the Ab-square
can be extended by one letter b to either side (because we have extended each block bkd) so
that ℓ′ becomes odd. Moreover, by (1), we have ℓ′ mod (2t) ∈ [ 4

3 t, 2t), in particular, t ∤ ℓ′.
Then Lemma 26 concludes that the factor of W centred at r = 3r′ ≡ 0 (mod 6t) and of
length 6ℓ′ such that 6t ∤ 6ℓ′ is an Ab-square. Its half length, 3ℓ′, is odd, as desired.

(⇐) Assume that W has an Ab-square factor U of length ℓ such that ℓ/2 is odd. In particular,
we have 12t ∤ ℓ, so by Lemma 26 the Ab-square U is centred in W at r ≡ {0, −1, −2}
(mod 6t) and T contains an Ab-square factor V of length ℓ/3 centred in T at r′ = ⌊r/3⌋. If
6t | r, then 2t | r′ and V is well-placed.

Otherwise, V cannot be an Ab-square due to the following fact: T does not contain an
Ab-square factor of length ℓ not divisible by 4t and centred at r′ ≡ −1 (mod 2t). Indeed,
similarly as in the proof of Lemma 19, we will show that each even-length factor centred at
such r′ contains different counts of one of the letters •, ⋆, ◦ in both halves. The positions
of letters •, ⋆, ◦ in T repeat with period 6(M + 2), so it is sufficient to inspect the first 6
blocks on each side, as the remaining ones will behave periodically; see Figures 7 and 8. An
exhaustive verification of several cases can be performed by counting distances of letters from
{•, ⋆, ◦} in both directions to the center of the factor (for more details see the full version).

◦ ⋆ ◦
M
− • ◦

2M
−− ⋆ ◦ • ◦

M
− ⋆ ◦

2M
−− •

r′

| ◦ ⋆ ◦
M
− • ◦

2M
−− ⋆ ◦ • ◦

M
− ⋆ ◦

2M
−− • ◦

Figure 8 A simplified version of Figure 7. Which position in a block can be the starting position
of an Ab-square with the center at r′ (one position to the left of a good center), only counting •, ⋆, ◦.

Consequently, as in Lemma 19, the corresponding instance of 3DAP is a YES-instance.
◁

The complexities in the theorem are obtained as in Theorems 20 and 21. ◀

7 Open problems

The most interesting questions that remain open are as follows:

1. Is checking Ab-square-freeness 3SUM-hard? Our reductions allowed us to show 3SUM-
hardness of detecting an odd Ab-square.
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2. Can one detect an additive square in a length-n string over a constant-sized alphabet in
O(n2−ε) time, for some ε > 0? We have shown 3SUM-hardness of this problem for an
alphabet that is polynomial in n.
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Abstract
In the Connected F-Deletion problem, F is a fixed finite family of graphs and the objective is to
compute a minimum set of vertices (or a vertex set of size at most k for some given k) such that (a)
this set induces a connected subgraph of the given graph and (b) deleting this set results in a graph
which excludes every F ∈ F as a minor. In the area of kernelization, this problem is well known to
exclude a polynomial kernel subject to standard complexity hypotheses even in very special cases
such as F = {K2}, i.e., Connected Vertex Cover.

In this work, we give a (2 + ε)-approximate polynomial compression for the Connected
F-Deletion problem when F contains at least one planar graph. This is the first approximate
polynomial compression result for this generic problem. As a corollary, we obtain the first approximate
polynomial compression result for the special case of Connected η-Treewidth Deletion.
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1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hardness
in practice, and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms for
decision problems. The central notion in this area is that of a kernelization (also called a
kernel), which is a preprocessing algorithm that runs in polynomial time and transforms a
“large” instance of a decision problem into a significantly smaller, but equivalent instance.
Over the last decade, the area of kernelization has seen the development of a wide range of
tools to design preprocessing algorithms and lower bounds techniques. The reader may find
an introduction to the field in [24, 25, 3, 7].

An “efficient preprocessing algorithm” in this setting is referred to as a polynomial kernel
and is simply a kernel whose output has size bounded polynomially in a parameter of the
input. The central classification task in the area of kernelization is to identify NP-hard
problems and associated parameters for which polynomial kernels exist and one of the main
success stories in the area is the development of a rich theory of lower bounds based on
complexity theoretic assumptions [1, 5, 2, 18, 4, 9, 21, 6, 20] allowing one to rule out the
existence of polynomial kernels completely or lower bound the degree of the polynomial.

One fundamental class of problems for which polynomial kernels have been ruled out in this
way is the class of subgraph hitting problems with connectivity constraints. It is well-known
that placing connectivity constraints on subgraph hitting problems can have a dramatic
effect on their amenability to efficient preprocessing. A case in point is the classic Vertex
Cover problem. This problem is known to admit a kernel whose output has O(k) vertices [3],
where the parameter k is the solution size. However, the Connected Vertex Cover
problem is amongst the earliest problems shown to exclude a polynomial kernel [6] and this
lower bound immediately rules out the possibility of such a kernel for numerous well-studied
generalizations of this problem. Consequently, one cannot hope to design approximation
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algorithms for such problems via polynomial kernels in the traditional sense and so, obtaining
a finer understanding of the impact of connectivity constraints on the limits of preprocessing
is an important objective in furthering the study of preprocessing techniques in general and
in the design of approximation algorithms for connectivity constrained subgraph hitting
problems.

One of the most frequently investigated subgraph hitting problems in the literature is the
F-Deletion problem which generalizes numerous well-studied NP-complete problems. In
this problem, F is a fixed finite family of graphs and one is given a graph G and an integer k as
input. The objective is to determine whether at most k vertices can be deleted from G so that
the resulting graph is F-minor free (does not contain a minor isomorphic to a graph in F).
The optimization version of this problem asks for a minimum set of vertices whose deletion
leaves a graph which is F-minor free. Well-studied special cases of this problem include
Vertex Cover (F = {K2}), Feedback Vertex Set (F = {K3}), Planarization
(F = {K3,3, K5}) [27], Diamond Hitting Set (F = {θ3}) [14], Pathwidth One Vertex
Deletion (F = {K3, T2}) [29], and θc-Deletion [22, 15]. A common feature shared by
many such well explored special cases of this problem is that F contains at least one planar
graph. Motivated by this, Fomin et al. [17] investigated this restricted variant of the problem
(when the family F contains at least one planar graph) and obtained a polynomial kernel
for every such F . This particular variant of F-Deletion is known in the literature as the
Planar F-Deletion problem.

Motivated by the prevalence of the Planar F-Deletion problem in existing work on
subgraph hitting problems, we initiate the study of the Planar F-Deletion problem
when there is a connectivity constraint on the solution. This problem, which we call the
Connected Planar F-Deletion problem, is formally defined as follows. The input is a
graph G, and integer k (the parameter) and the goal is to determine whether there is a set
S ⊆ V (G) of size at most k such that G[S] is connected and G − S is F -minor free? The set
S is called a connected F -deletion set.

As already discussed, Connected Planar F-Deletion displays stark differences to
the version without connectivity constraints when considering the approximability as well as
amenability to efficient preprocessing even when F is a very simple family such as {K2}. To
be specific, since this problem is a clear generalization of Connected Vertex Cover, it
cannot have a (2 − ε)-approximation in polynomial time for any fixed ε > 0 under UGC [23]
and moreover, it is unlikely to have a polynomial kernel [6].

Since using the existing notion of polynomial kernels and associated reduction rules
in order to design approximation algorithms for such connectivity constrained problems
appears to be difficult, we rely on the recently developed notion of α-approximate kernels
which was introduced by Lokshtanov et al. [26] in order to facilitate the rigorous analysis of
preprocessing algorithms in conjunction with approximation algorithms.

Informally speaking, an α-approximate kernel is a polynomial-time algorithm that given
as input a pair (I, k) where I is the problem instance and k is the parameter, outputs an
instance (I ′, k′) of the same problem such that |I ′| + k′ ≤ g(k) for some computable function
g and any c-approximate solution for the instance I ′ can be turned in polynomial time into
a (c · α)-approximate solution for the original instance I. When the output is an instance of
a different problem (with the remaining conditions holding), one obtains an α-approximate
compression.

As earlier, the notion of efficiency in this context is captured by the function g being
required to be polynomially bounded, in which case we call this algorithm an α-approximate
polynomial kernelization. We refer the reader to Section 2 for a formal definition of all terms
related to (approximate) kernelization.
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In their work, Lokshtanov et al. considered several problems which are known to exclude
polynomial kernels and presented an α-approximate polynomial kernel for these problems for
every fixed α > 1. This implies that allowing for an arbitrarily small amount of error while
preprocessing can drastically improve the extent to which the input instance can be reduced,
even when dealing with problems for which polynomial kernels have been ruled out under
the existing theory of lower bounds. In particular, they showed that Connected Vertex
Cover admits an α-approximate polynomial kernel for every α > 1. Their result provided a
promising starting point towards a refined understanding of the role played by connectivity
constraints in relation to preprocessing for covering problems on graphs. Subsequently, Eiben
et al. [11] extended this result to the Connected H-hitting set problem where H is a
fixed collection of finite subgraphs and the solution is a minimum set of vertices in the given
graph G which induce a connected subgraph and hit all copies of graphs in H which are
present in G. Recently, Ramanujan [30] obtained the first α-approximate polynomial kernel
(for every α > 1) for the Connected Feedback Vertex Set problem, demonstrating
the power of approximate preprocessing for cases where the goal is to hit obstructions of
unbounded size while maintaining connectivity of the hitting set.

Our results

A formal definition of α-approximate kernels and compressions can be found in Section 2.

▶ Theorem 1. For every fixed 0 < ε < 1, Connected Planar F-Deletion has a
(2 + ε)-approximate compression of polynomial size.

As an immediate corollary of Theorem 1, we obtain a factor-(2 + ε) parameterized approx-
imation algorithm for Connected Planar F-Deletion running in time 2O(k log k)nO(1)

for every fixed 0 < ε < 11. In fact, the proof techniques we use in order to prove Theorem 1
also enable us to obtain a polynomial-time poly(OPT) approximation for this problem.

▶ Theorem 2. For every fixed F containing a planar graph, there is an algorithm that, given
a graph G and k ∈ N, runs in polynomial time and either correctly concludes that G has no
connected F-deletion set of size at most k or returns a connected F-deletion set of G of size
kO(1).

Using Theorem 2 and adopting an approach similar to that in [30], we obtain the following.

▶ Theorem 3. There is a 0 < δ < 1 such that Connected Planar F-Deletion can be
approximated within a factor min{OPTO(1), n1−δ} in polynomial time.

Related work on approximation for connected hitting set problems

Grigoriev and Sitters [19] studied the design of approximation algorithms for the Connected
Feedback Vertex Set problem on planar graphs and obtained a Polynomial Time Ap-
proximation Scheme (PTAS), building upon the result of Escoffier et al. [13] for Connected
Vertex Cover. Fiorini et al. [14] studied the Diamond Hitting Set problem (where
F = {θ3}) and obtained the first constant-factor approximation.

1 We note that this problem can be easily seen to be fixed-parameter tractable parameterized by k since
the problem is MSO-expressible and the treewidth of yes-instances must be bounded by O(k), allowing
for an invocation of Courcelle’s theorem.
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2 Preliminaries

For a graph G, we denote by CC(G) the set of connected components of G. Let G be a graph
and x, y ∈ V (G). Let P be a set of internally vertex-disjoint x-y paths in G. Then, we call
P an x-y flow. The value of this flow is |P|. Recall that Menger’s theorem states that for
distinct non-adjacent vertices x and y, the size of the smallest x-y separator is precisely
the value of the maximum x-y flow in G. For a set X ⊆ V (G), the graph obtained from G

by identifying the vertices in X is the graph G′ defined as follows. The vertex set of G′ is
(V (G) \ X) ∪ {x} where x /∈ V (G). For every edge of G which is not incident on X, G′ has
the same edge. For every edge (u, v) ∈ E(G) where u ∈ X, v /∈ X, we add a new edge (x, v).
Note that we ignore all edges which have both endpoints in X.

Parameterized problems and (approximate) kernels

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. We assume
that k is given in unary and hence k ≤ |x|. The notion of kernelization is formally defined as
follows.

▶ Definition 4 (Kernelization). Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm
referred to as a kernelization (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in time
polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π, and (b) max{|x′|, k′} ≤ g(k). If g(k) = kO(1) then we say that Π admits a
polynomial kernel.

▶ Definition 5 ([26]). A parameterized optimization (minimization or maximization) problem
is a computable function Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and
a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I| + k. The value of the
solution s is Π(I, k, s). Since the problems we come across in this paper are minimization
problems, we state some of the definitions only in terms of minimization problems when
the definition for maximization problems is analogous. For instance, the parameterized
optimization version of Connected Planar F-Deletion is defined as follows (using
the convention from [26]). This is a minimization problem with the optimization function
CPFD : Σ∗ × N × Σ∗ → R ∪ {∞} defined as follows.

CPFD(G, k, S) =
{

∞ if S is not a feasible solution,

min{|S|, k + 1} otherwise.

▶ Definition 6 ([26]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k

Π(I, k, s).

We now recall the other relevant definitions from [26] regarding approximate kernels.

▶ Definition 7 ([26]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial-time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ × N → Σ∗ × N. Given as input an instance (I, k) of Π the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).
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The second algorithm is called the solution-lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution-lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that Π(I,k,s)

OP T (I,k) ≤ α · Π(I′,k′,s′)
OP T (I′,k′) .

The size of a polynomial-time preprocessing algorithm A is a function sizeA : N → N
defined as sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

▶ Definition 8 ([26]). Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized
minimization problems. An α-approximate polynomial parameter transformation (α-appt for
short) A from Π to Π′ is a pair of polynomial-time algorithms, called reduction algorithm RA
and solution-lifting algorithm. Given as input an instance (I, k) of Π the reduction algorithm
outputs an instance (I ′, k′) of Π′ such that k′ = kO(1). The solution-lifting algorithm takes
as input an instance (I, k) of Π, the output instance (I ′, k′) = RA(I, k) of Π′, and a solution
s′ to the instance I ′ and outputs a solution s to (I, k) such that

Π(I,k,s)
OP TΠ(I,k) ≤ α · Π′(I′,k′,s′)

OP TΠ′ (I′,k′) .

▶ Definition 9 ([26], α-approximate compression). Let α ≥ 1 be a real number. Let Π and Π′

be two parameterized minimization problems. An α-approximate compression from Π to Π′ is
an α-appt A from Π to Π′ such that sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}, is
upper bounded by a computable function g : N → N, where RA is the reduction algorithm in
A. We say that A is an α-approximate polynomial compression if g is a polynomial function.

Treewidth, t-Boundaried graphs and minors

We now recall standard definitions regarding treewidth and minor models. The nota-
tion is based on [17]. Let G be a graph. A tree decomposition of G is a pair (T, X =
{Xt}t∈V (T )) where T is a tree and X is a collection of subsets of V (G) such that (a)
∀e = uv ∈ E(G), ∃t ∈ V (T ) : {u, v} ⊆ Xt and (b) ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-
empty connected subtree of T . We call the vertices of T nodes and the sets in X bags of
the tree decomposition (T, X ). The width of (T, X ) is denoted by width(T, χ) is defined
as max{|Xt| − 1 | t ∈ V (T )} and the treewidth of G is the minimum width over all tree
decompositions of G. A t-boundaried graph is a graph G and a set B ⊂ V (G) of size at
most t with each vertex v ∈ B having a label ℓG(v) ∈ {1, . . . , t}. Each vertex in B has a
unique label. We refer to B as the boundary of G. We use the notation (G, B) to refer to
the t-boundaried graph G with boundary B.

Least Common Ancestor-Closure of Sets in Graphs of Bounded Treewidth

For a graph G with a nice tree decomposition (T, χ) rooted at r ∈ V (T ) and vertex set
X ⊆ V (G) the least common ancestor-closure LCA-closure(T, χ, X) is defined as follows. We
let M ⊆ V (T ) denote a minimal set of nodes in T such that for every x ∈ X, there is a
bag u ∈ M such that x ∈ χ(u) and moreover, u is the closest such vertex to r. Finally,
we define LCA-closure(T, χ, X) as the set χ(LCA-closure(M)), where LCA-closure(M) denotes
the LCA-closure of M in the rooted tree T . We ignore the explicit reference to the root r in
the notation LCA-closure(T, χ, X) because we will be using an arbitrary vertex as the root
when invoking this definition.

The following lemma is a direct consequence of the definition of LCA-closure(T, χ, X) and
the application of LCA-closure on trees (see, for example, [17]).
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▶ Lemma 10. Let G be a graph with a nice tree decomposition (T, χ) and let X ⊆ V (G).
Let X ′ denote the set LCA-closure(T, χ, X). Then, |X ′| ≤ 2|X| · width(T, χ) and for every
connected component C of G − X ′, |N(C)| ≤ 2 · width(T, χ).

▶ Definition 11. Let G be a graph and H be a minor of G with V (H) = {h1, . . . , hℓ} and
suppose that H has no self-loops. A set PH = {P1, . . . , Pℓ} of pairwise vertex-disjoint subsets
of V (G) is said to be a minor model of H in G if

G[Pi] is connected for every i ∈ [ℓ] and
there is an injective mapping ϕ : E(H) → E(G) such that for every e = (i, j) ∈ E(H),
ϕ(e) is an edge in G with one endpoint in Pi and one in Pj.

Note that if H has parallel edges, then the minor model needs to have a unique edge
corresponding to each parallel edge. We say that H is a minimal minor model if there is no
strict subgraph of G[

⋃
i∈[ℓ] Pi] which also contains H as a minor.

▶ Definition 12. Let G1 and G2 be two graphs, and let t be a fixed positive integer. For
i ∈ {1, 2}, let fGi

be a function that associates with every vertex of V (Gi) some subset of [t].
The image of a vertex v ∈ Gi under fGi is called the label of that vertex. We say that G1 is
label-wise isomorphic to G2, and denote it by G1 ∼=t G2, if there is a map h : V (G1) → V (G2)
such that (a) h is one to one and onto; (b) (u, v) ∈ E(G1) if and only if (h(u), h(v)) ∈ E(G2)
and (c) fG1(v) = fG2(h(v)). We call h a label-preserving isomorphism.

Notice that the first two conditions of Definition 12 simply indicate that G1 and G2 are
isomorphic. Now, let G be a t-boundaried graph, that is, G has t distinguished vertices,
uniquely labeled from 1 to t. Given a t-boundaried graph G, we define a canonical labeling
function µG : V (G) → 2[t]. The function µG maps every distinguished vertex v with label
ℓ ∈ [t] to the set {ℓ}, that is µG(v) = {ℓ}, and for all other vertices we have that µG(v) = ∅.

Next we define a notion of labeled edge contraction. Let H be a graph together with a
function fH : V (H) → 2[t] and (u, v) ∈ E(H). Furthermore, let H ′ be the graph obtained
from H by identifying the vertices u and v into wuv and removing all loops. Then by labeled
edge contraction of an edge (u, v) of a graph H, we mean obtaining a graph H ′ with the
label function fH′ : V (H ′) → 2[t] defined as follows. For x ∈ V (H ′) ∩ V (H) we have that
fH′(x) = fH(x) and for wuv we define fH′(wuv) = fH(u) ∪ fH(v). Now we introduce a
notion of labeled minors of a t-boundaried graph.

▶ Definition 13. Let H be a graph together with a function f : V (H) → 2[t] and (G, Z) be a
t-boundaried graph with canonical labeling function µG. A graph H is called a labeled minor
of G, if we can obtain a labeled isomorphic copy of H from G by performing edge deletions
and labeled edge contractions. The h-folio of a t-boundaried graph (G, Z) is the set Mh(G, Z)
of all labeled minors of G (starting with the canonical labeling on G) on at most h vertices.

We also need the following well-known result bounding the treewidth of any graph which
excludes a fixed planar graph as a minor.

▶ Proposition 14 ([17]). For every fixed planar graph H, there is a constant λH such that
any graph G with tw(G) ≥ λH contains H as a minor.

Steiner Trees

For a graph G, a set R ⊆ V (G) called terminals and a cost function w : E(G) → N ∪ {0}, a
Steiner tree is a subtree T of G such that R ⊆ V (T ), and the cost of a tree T is defined as
w(T ) =

∑
e∈E(T ) w(e). In the Steiner Tree problem we are given as input the graph G,
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the set R and the cost function w : E(G) → N ∪ {0}. The task is to find an optimal Steiner
tree, which is a Steiner tree of minimum cost. However, in this paper we will only work with
edges of unit or zero cost and we denote by w1 the function that assigns a cost of 1 to every
edge of the graph under consideration. When T is a Steiner tree for the set of terminals R,
we say that T is an R-Steiner tree. An R-Steiner tree T is said to be minimal if there is
no e ∈ E(T ) such that T − e also contains an R-Steiner tree. It is well-known that there
is an algorithm for Steiner Tree with a single exponential dependence on the number of
terminals.

▶ Proposition 15 ([8, 28]). The Steiner Tree problem can be solved in time 2O(|R|)nO(1).

Let R continue to denote the set of terminals. For a k ∈ N, a k-component is a tree
with at most k leaves, all of which are in R. A k-restricted Steiner tree T is a collection
of k-components, such that the union of these components is a Steiner tree T . The cost of
T is the sum of the costs of all the k-components in T . It may be the case that multiple
k-components which are part of a k-restricted Steiner tree, share edges. As a result, some
edges may contribute multiple times to the cost of T . To keep the presentation simple, if the
k-components of a k-restricted Steiner tree are clear from the context, then we also refer to
the Steiner tree composed of their union as a k-restricted Steiner tree. Recall that according
to its original definition, a k-restricted Steiner tree is a set of k-components.

3 Overview of our Algorithms

Fix 0 < ε < 1. We identify a partition (A, B, C) of the vertex set of G, where |B| = kO(f(1/ε))

and there are no edges between A and C. In other words, B separates A and C. We then
prove that the vertices in C only play the role of “connectors” and removing them from a
hypothetical solution S may disconnect G[S], but will still leave a minimal hitting set for all
F -minor models. On the other hand, while the interaction of vertices in A with the solution
S could be much more complex, we show that the number of connected components of G[A]
is kO(f(1/ε)) and these can be shown to have a well-structured neighborhood in B. Once
we have this partition in hand, we focus on each connected component of G[A] separately
and from each component we identify a set of kO(f(1/ε)) vertices which, together with B and
a kO(f(1/ε)) sized subset of C cover a (2 + ε)-approximate solution. Finally, the remaining
vertices are discarded in an appropriate manner once the relevant information they hold is
compiled into a polynomially bounded data structure. This high level approach of identifying
“hitters” and “connectors” among the vertices is a natural first step for problems with this
flavor [11, 12, 30] and the more involved problem-specific part in each case resides in (a)
computing such a partition and (b) setting up a procedure to identify and remove redundant
parts of the input, leaving only kO(f(1/ε)) vertices or edges.

Fix ρ = 2O(1/ε) to be a constant such that 1
⌊log2 ρ⌋ ≤ ε. Our starting point is a lemma

of Fomin et al. [17] showing that there is a polynomial-time algorithm that takes as input
the pair (G, k) and either correctly concludes that G has no F -deletion set (a set of vertices
whose deletion leaves an F-minor free graph) of size at most k or outputs disjoint sets
X, Z ⊆ V (G) such that (a) |X ∪ Z| = kO(1), (b) X is an F-deletion set of G, (c) for every
connected component C of G − (X ∪ Z), |N(C) ∩ Z| ≤ 2(η + 1), and (d) for every x, y ∈ X,
either Z intersects every x, y path in G − (X \ {x, y}) or there is an x-y flow of value at least
3k + η + 3 in the graph G − (X \ {x, y}). Let Gτ denote the graph G − (X ∪ Z). In the
proposed partition (A, B, C), our intention is to set B = X ∪ Z.

Given the sets X and Z described above we will compute a subset of vertices covering a
(2+ε)-approximate connected F -deletion set (if one of size at most k exists) in two stages. In
the first stage, we mark a set of kO(ρ) vertices of Gτ such that for every subset U of X ∪ Z, if
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there is a set TU of vertices in Gτ using which the vertices in U can be connected, then there
is a set of roughly (1 + ε)|U | marked vertices which can do the same connecting task as TU

with respect to the vertices in U . In the second stage, we ignore the connectivity requirement
on the subset of the solution in X ∪ Z and for each connected component of Gτ , mark kO(ρ)

vertices such that if there is a solution which intersects a component of Gτ then there is a
way to select a sufficiently small subset of the marked vertices in the component which can
be connected to the vertices of the solution in X ∪ Z and achieve the same “F -minor hitting”
behaviour as the original set of vertices.

A major obstacle here is the fact that the number of connected components of Gτ

may be unbounded, which might mean that we mark a set of vertices whose size is not
bounded by a function of the parameter k at all. It is to overcome this obstacle that we
distribute the set V (G) \ B among the remaining partitions A and C. In other words, we
will be able to partition the components of Gτ into two sets that we call Type 1 components
(corresponding to C) and Type 2 components (corresponding to A) and then show that the
Type 1 components although unbounded in number, only provide connectivity to a minimal
F -deletion set contained in the solution while, on the other hand, the Type 2 components are
more complex but bounded polynomially (in k) in number. We then argue that there is a way
to achieve the objective of our initial marking strategy by marking only a polynomial number
of vertices of Gτ in total, and these vertices cover a factor-(2 + ε) approximate solution and
moreover, a factor-OPTO(1) approximate solution can be recovered by a straightforward
examination of the connected components of the subgraph induced by the marked vertices.

To extend this to our approximate compression, we prove the following lemma.

▶ Lemma 16. There is an algorithm that given G, k, X, Z as described above, runs in time
kO(ρ)nO(1) and either correctly concludes that G has no connected F-deletion set of size at
most k or returns a set L ⊆ V (G) such that the following statements hold.
1. L ⊇ (X ∪ Z), |L| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| contained in L.
3. For every connected component C of G − L, |N(C) ∩ (L \ X)| ≤ 2(η + 1).
4. For every F-deletion set S of G of size at most 3k and every C ∈ CC(G − L), |(N(C) ∩

X) \ S| ≤ η + 1.

The above lemma is obtained following the previously discussed marking steps that led to
the factor-OPTO(1) approximation and can be seen as an “approximate-solution-capturing”
variant of the lemma of Fomin et al. [17] in the context of our problem. Once we have this
lemma in hand, we define an annotated version of Connected Planar F-Deletion and
encode the output of the lemma above as an instance of Annotated Connected Planar
F-Deletion whose size is bounded polynomially in k, which completes the compression,
giving us Theorem 1.

4 The (2 + ε)-Approximate Compression for Connected Planar
F-Deletion

Recall that we have chosen ρ = 2O(1/ε) to be a constant such that 1
⌊log2 ρ⌋ ≤ ε. Throughout

this section, we suppress the dependence of the running time and compression size on F in
the O(.) notation. However, we make the dependencies on ε explicit. Our first aim in this
section is to prove Lemma 17, which is then invoked in the proof of Lemma 16. This lemma
says that there is a polynomial-time algorithm that identifies a set of kO(ρ) vertices that
cover a (2 + ε)-approximate solution (if one of size at most k exists).
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▶ Lemma 17. There is an algorithm that, given G and k, runs in time kO(ρ)nO(1) and either
correctly concludes that G has no connected F-deletion set of size at most k or returns a set
V ∞ ⊆ V (G) such that the following statements hold.
1. |V (G) \ V ∞| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| that is disjoint from V ∞.
Let η be a constant depending only on F such that every graph which is F-minor free

has treewidth at most η. By Proposition 14, we know that such a constant exists. Let
h = 10η + maxF ∈F |F |. Note that h is an upper bound on the number of vertices and the
number of edges in any graph in F .

We begin building towards the proof of Lemma 17 by recalling the following lemma
from [17] and some associated observations. The numbering of the lemmas in our citations
is derived from the full version of [16]. A set S ⊆ V (G) is called an F-deletion set of G if
G − S is an F -minor free graph.

▶ Lemma 18 (Lemma 25, [16]). There is a randomized polynomial-time algorithm that given
(G, k), either concludes that G has no F-deletion set of size at most k or outputs disjoint
sets X, Z ⊆ V (G) satisfying the following properties.
1. |X ∪ Z| = kO(1).
2. X is an F-deletion set of G.
3. For every connected component C of G − (X ∪ Z), |N(C) ∩ Z| ≤ 2(η + 1).
4. For every x, y ∈ X, either Z intersects every x-y path in G − (X \ {x, y}) or there is an

x-y flow of value at least 3k + η + 3 in the graph G − (X \ {x, y}).
If G has an F-Deletion set of size k, then this algorithm outputs the pair (X, Z) with
probability (1 − 1

2n ). Otherwise, the algorithm always correctly concludes that no such set
exists.

When the pair τ = (X, Z) is clear from the context, we use Gτ to refer to the graph
G − (X ∪ Z).

The randomization in Fomin et al.’s proof of this lemma arises due to the execution of a
randomized linear-time constant-factor approximation algorithm for (unconnected) Planar
F-deletion, i.e., the subroutine used to compute the set X. However, this step can be
replaced with any deterministic factor-OPTO(1) approximation for the same problem with,
again, only a constant-factor change in the degree of the polynomial in the first property of
the lemma. In particular, we can use the factor-O(log3/2 OPT) approximation from [15] and
avoid the randomization.

We now recall the following useful properties of non-solution vertices in the neighborhood
of any connected component of Gτ .

▶ Proposition 19 (Lemma 26, [16]). Let P be a set of vertices such that for every distinct
u, v ∈ P , there is a u-v flow of value 3k + η + 3, let S be an F-deletion set of G of size at
most 3k which is disjoint from P and let (T, χ) be a tree decomposition of G − S of width
at most η. Then, for every pair of vertices u, v ∈ P , there is a vertex x ∈ V (T ) such that
u, v ∈ χ(x) and moreover, there is a vertex y ∈ V (T ) such that P ⊆ χ(y).

The above proposition captures the fact that if P is disjoint from S and is a set of vertices
with pairwise-high flow, then these vertices must appear together in some bag of the tree
decomposition (T, χ). Indeed, if this were not the case, then a pair of vertices in this set can
be separated by deleting a small separator in the graph, contradicting the high flow between
them. The next statement follows as a consequence of Proposition 19.
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▶ Proposition 20 (Lemma 26, [16]). Let G, k and τ = (X, Z) be as in Lemma 18. For
every F-deletion set S of G of size at most 3k and every connected component C of Gτ ,
|(N(C) ∩ X) \ S| ≤ η + 1.

Indeed, the fourth property ensured by Lemma 18 guarantees that for every connected
component C of Gτ , N(C) ∩ X is a set of vertices with a pairwise flow of value at least
3k + η + 3 in G. If it were the case that |(N(C) ∩ X) \ S| > η + 1, then Proposition 19
would imply that some bag of a tree decomposition of G − S of width η contains the set
(N(C) ∩ X) \ S, which has size greater than η + 1, a contradiction.

Proposition 20 guarantees that for every connected component C of Gτ , all but at most
η + 1 vertices in N(C) ∩ X must be deleted (equivalently, contained in S). Combining this
with the third property ensured by Lemma 18, we may conclude that all but at most 3(η + 1)
vertices in N(C) must be contained in S.

Our marking rules rely on the following result of Du et al. [10] which has found applications
in other algorithms for connected deletion problems [11, 30].

▶ Proposition 21 ([10]). For every p ≥ 1, graph G, R ⊆ V (G), cost function w : E(G) →
N ∪ {0} and R-Steiner tree T , there is a p-restricted R-Steiner tree in G of cost at most
(1 + 1

⌊log2 p⌋ ) · w(T ).

4.1 The OPTO(1)-approximation for Connected Planar F-deletion
In what follows, we fix G, k, and τ⋆ = (X, Z) as given by Lemma 18.

▶ Definition 22. For a vertex set C disjoint from X, a set J ⊆ N(C) is called a set
compatible with C if |J ∩ X| ≤ η + 1. We denote by BC the set of all sets compatible with C.
For a set C and set J compatible with C, the |J |-boundaried graph (G[C ∪ J ], J) is denoted
by GC,J .

Recall that ∀C ∈ CC(Gτ⋆), |N(C) ∩ Z| ≤ 2(η + 1) (argued using the third property of
Lemma 18). Consequently, for every C ∈ CC(Gτ⋆), any set J ⊆ N(C) compatible with C

has size at most 3η + 3, which is a constant in our setting. Moreover, due to Proposition 20,
we have that for any solution S, the set N(C) \ S must be a set compatible with C.

▶ Lemma 23. There is an algorithm that given G, k, and τ⋆ = (X, Z), runs in polynomial
time and returns a set P ∞ ⊆ V (G) \ (X ∪ Z) and a partition of CC(Gτ⋆) into sets P and Q
such that the following statements hold.

1. |P| = kO(1) and P ∞ ⊆ V (P).
2. Every F-deletion set of G − V (Q) − P ∞ of size at most 3k is an F-deletion set of G.

▶ Definition 24. Let G, k, τ⋆ = (X, Z), P, Q be as in Lemma 23. We call every component
in Q a Type 1 component of Gτ and every component in P a Type 2 component of Gτ⋆ .

Lemma 23 implies that the vertices contained in Type 1 components are only required for
providing connectivity between those vertices of a minimal F-deletion set of size at most
3k that are contained in X ∪ Z and the Type 2 components are bounded polynomially in k.
The proof of this lemma closely follows the proof of Fomin et al. (see Lemma 36, [16]) with
the following difference: instead of discarding irrelevant vertices, we identify them and use
them to define the sets P and Q.

We are now ready to state our marking rules. We fix G, k, τ⋆ = (X, Z), P ∞, P, Q as given
by Lemma 23.
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▶ Marking Rule 1. For every R ⊆ X ∪Z of size at most ρ, we compute an optimal R-Steiner
tree TR in G with the unitary cost function (denoted w1). If |V (TR)| ≤ (2 + ε)k, then we
mark the vertices of TR.

Before we describe our next marking rule, we need the following definition.

▶ Definition 25. For a graph G and vertex p ∈ V (G), we say that a set S ⊆ V (G) is a
p-connected set in G if p /∈ S and G[S ∪ {p}] is connected. For a t-boundaried graph (G, L),
P ⊆ V (G) \ L, k ∈ N and p ∈ V (G) \ L, a set S ⊆ V (G) is called a (p, P, k)-representative
set for (G, L) if the following holds:

For every p-connected set S ⊆ V (G) \ L of size at most k in G, S contains a p-connected
set S̃ ⊆ V (G)\L of size at most |S| such that Mh(G−p−(S∪P ), L) ⊇ Mh(G−p−(S̃∪P ), L).

We extend the notion of p-connected sets in a natural way to the additional case when p

is not a vertex, but p = ∅. In this case, S is p-connected if G[S] is connected. The definition
of (p, P, k)-representative sets for p = ∅ is analogous.

The notion of p-connected sets is motivated by the following observation.

▶ Observation 26. Let S be a connected F-deletion set of G of size at most 3k and let
C ∈ CC(Gτ ). Let SC = S ∩ C and suppose that SC is non-empty. Let J = N(C) \ S and
consider the boundaried graph (GJ

C , J), where GJ
C is defined as the graph obtained from

G[N [C]] as follows. If TC = N(C) ∩ S is non-empty, then we identify the vertices in TC into
a single vertex v⋆

J to obtain GJ
C . Otherwise, GJ

C = G[N [C]] and set v⋆
J = ∅. Then, SC is a

v⋆
J -connected set of size at most 3k in the graph GJ

C .

The definition of the (p, P, k)-representative set S (Definition 25) guarantees that for
every p-connected set S ⊆ V (G) \ L of size at most k in G, there is a p-connected set in S
that provides the “same” connectivity as S with respect to p, costs at most |S|, and hits
every minor model hit by S in G − p − P (and possibly more). The case when p = ∅ covers
the case when the entire solution is contained in a single component of Gτ⋆ .

▶ Lemma 27. Let (G, L) be a t-boundaried graph for some t ≤ 3η + 3, k ∈ N, p ∈ V (G) \ L

and P ⊆ V (G) \ L. Then, there is a (p, P, k)-representative set for (G, L) of size O(k).
Moreover, if tw(G) = O(η), then such a set can be computed in polynomial time.

We are now ready to describe our second and final marking rule. Recall that P, Q and
P ∞ are as given by Lemma 23. Let C be a Type 2 component of CC(Gτ⋆). Then, C ∈ P.
Let P ∞

C denote the set P ∞ ∩ C.

▶ Marking Rule 2. For each compatible set J ∈ BC , we construct a |J |-boundaried graph
(GJ

C , J) defined as the graph obtained from (G[N [C]], J) by identifying all vertices of N(C)\J

with the resulting vertex denoted by v⋆
J . If J = N(C), then we simply define v⋆

J := ∅. We
then use Lemma 27 to compute a (v⋆

J , P ∞
C , 3k)-representative set QJ

C of size O(k) for (GJ
C , J)

and mark the vertices in it.

In the rule above, J is intended to represent the subset of N(C) that is not deleted by a
hypothetical connected F -deletion set of size at most 3k that intersects N [C]. If N(C) = J ,
then any hypothetical connected F-deletion set that intersects N [C] and has an empty
intersection with N(C) must also be contained entirely in C. Consequently, we simulate
this case by setting v⋆

J = ∅. Note that (GJ
C , J) is a t-boundaried graph for some t ≤ 3η + 3

because |J ∩X| ≤ η +1 and |J ∩Z| ≤ 2(η +1). Moreover, tw(GJ
C) ≤ 2η +2. As the treewidth

of G[C ∪ (N(C) ∩ Z)] is at most η, it follows that adding v⋆
J and a subset of X of size at

most η + 1 can increase the treewidth of G[C ∪ (N(C) ∩ Z)] to at most 2η + 2.
We are now ready to prove Lemma 17.
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Proof of Lemma 17. We first invoke Lemma 18 to either correctly conclude that G has
no F-deletion set of size at most k or compute the pair τ⋆ = (X, Z). In the former case
we return the same. Otherwise, we invoke Lemma 23 to compute the partition P ⊎ Q of
CC(Gτ⋆) and the set P ∞ ⊆ V (P). Recall that the components contained in P are called
Type 2 components and those contained in Q are called Type 1 components. We now execute
Marking Rule 1.

For each C ∈ CC(Gτ⋆), let RC denote the set of marked vertices in the connected
component C. Note that the total number of vertices marked across all components of Gτ⋆

in this step is at most 3k · |X ∪ Z|ρ = kO(ρ).
Now, for each Type 2 component C ∈ CC(Gτ⋆) we execute Marking Rule 2 with QC

denoting the subset of its vertices marked in this execution. For every Type 1 component C,
QC = ∅. Note that the number of vertices marked in each Type 2 component C in this step
is bounded by O(k · |BC |) = kO(1). Since the number of Type 2 components is bounded by
kO(1), we conclude that Marking Rule 2 marks a total of kO(1) vertices across all connected
components of Gτ⋆ .

We now argue that we have preserved a (2 + ε)-approximation in the union of the marked
set of vertices and X ∪ Z.

▷ Claim 28. If G has a connected F -deletion set S of size at most k, then it has a connected
F -deletion set of size at most (2 + ε)|S| contained in X ∪ Z ∪

⋃
C∈CC(Gτ⋆ )(QC ∪ RC).

Proof sketch. Let S′′ = S ∩ (X ∪ Z) and A = S \ S′′. Suppose that G[S′′] is not connected.
Consider the terminal set S′′ with a weight function on the edges that assigns 0 to every
edge with both endpoints in S′′ and assigns 1 to every other edge. Then, we observe
that G[S] contains an S′′-Steiner tree with weight at most |A| + β − 1 where β is the
number of connected components in G[S′′] and Proposition 21 guarantees that the set of
vertices marked by Marking Rule 1 contains a set A′′ such that G[A′′ ∪ S′′] is connected,
|A′′| + β − 1 ≤ (1 + ε)(|A| + β − 1), implying that |A′′ ∪ S′′| ≤ (1 + ε)|S|.

In order to prove the claim, we will show that once we have added A′′ to S′′, we can (a)
ignore all other vertices of Type 1 components originally contained in S and (b) consider
each Type 2 component C ∈ CC(Gτ⋆) independently and replace the set S ∩ C with a subset
of QC of size at most |S ∩ C| in such a way that the resulting set is eventually still connected
and hits all F -minor models in G. Observe that if S′′ = ∅, then A′′ = ∅. Moreover, if G[S′′]
is connected, then we set A′′ = ∅. ◁

Finally, we define V ∞ as follows. V ∞ = V (G) \ (X ∪ Z ∪
⋃

C∈CC(Gτ⋆ )(QC ∪ RC)). ◀

Theorem 2 can now be proved using Lemma 17.

4.2 The approximate compression for Connected Planar F-deletion
The crux of our approximate compression is the following stronger version of Lemma 18,
where we have now also ensured the presence of a (2 + ε)-approximate solution within a
polynomially bounded set L (which plays the role that the set X ∪ Z plays in Lemma 18).

▶ Lemma 29. There is an algorithm that given G, k, τ⋆ = (X, Z) from Lemma 18, runs in
time kO(ρ)nO(1) and either correctly concludes that G has no connected F-deletion set of size
at most k or returns a set L ⊆ V (G) such that the following statements hold.
1. L ⊇ (X ∪ Z), |L| = kO(ρ).
2. For every S which is a minimal connected F-deletion set of G of size at most k, G has a

connected F-deletion set of size at most (2 + ε)|S| contained in L.
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3. For every connected component C of G − L, |N(C) ∩ (L \ X)| ≤ 2(η + 1).
4. For every F-deletion set S of G of size at most 3k and any C ∈ CC(G − L), |(N(C) ∩

X) \ S| ≤ η + 1.

Proof. We invoke Lemma 17 to either conclude that G has no F -deletion set of size at most
k or compute the set V ∞ such that |V (G) \ V ∞| = kO(ρ) and for every S which is a minimal
connected F -deletion set of G of size at most k, G has a connected F -deletion set of size at
most (2 + ε)|S| disjoint from V ∞. In the former case we return the same. Otherwise, let
Y = V (G) \ V ∞. Although it does not follow from the statement of Lemma 17, an inspection
of the definition of V ∞ in the proof shows that V ∞ ∩ (X ∪ Z) = ∅ and so we may assume
without loss of generality that Y ⊇ X ∪ Z.

Consider the graph G − X which is known to be F -minor free and hence has treewidth at
most η. Let (T, χ) be an arbitrary tree decomposition of G−X of minimum width and suppose
that it is arbitrarily rooted. We now define L to be the set X ∪ LCA-closure(T, χ, Y \ X).
The fact that L ⊇ X ∪ Z and |L| = kO(ρ) follows from the fact that X ∪ Z ⊆ Y ⊆ L,
|Y | = kO(ρ), and Lemma 10. Moreover, Lemma 10 also implies that the third statement
holds. Similarly, the second statement follows from the fact that for every S which is a
minimal connected F-deletion set of G of size at most k, G has a connected F-deletion set
of size at most (2 + ε)|S| contained in Y which is contained in L.

For the final statement, we know from Lemma 18 that for every x, y ∈ X, either
Z ⊆ Y ⊆ L intersects every x, y path in G − (X \ {x, y}) or there is an x-y flow of value at
least 3k + η + 3 in the graph G − (X \ {x, y}). Consequently, we can invoke Proposition 20
with the pair (X, L \ X) instead of (X, Z) to conclude that for every F -deletion set S of G

of size at most 3k and any C ∈ CC(G − L), |(N(C) ∩ X) \ S| ≤ η + 1. This completes the
proof of the lemma. ◀

Before proceeding to the description of the compression (Theorem 1), we need to define
an annotated version of our problem. Recall that h ≥ max{10η, maxF ∈F |F |}. In the
Annotated Connected F-Deletion problem, the input is a graph G, integer k, and a
set R = {(Pi, Qi, Ti)}i∈[ℓ] where ∀i ∈ [ℓ], Pi ∩ Qi = ∅, Pi ∪ Qi ⊆ V (G), |Qi| ≤ 3(η + 1), and
Ti is a set of |Qi|-labeled graphs of size at most h. The goal is to decide whether there is a
set S ⊆ V (G) of size at most k such that G[S] is connected and GS has no minor isomorphic
to a graph in F , where GS is defined as the graph obtained from G by going over all i ∈ [ℓ]
and gluing a graph (Hi, Qi) on to (G, Qi) using the canonical labeling, whenever Pi ⊆ S and
Qi ∩ S = ∅, and where Mh(Hi, Qi) = Ti.

A set S (not necessarily of size at most k) satisfying the properties above is said to be a
feasible solution. Following the convention from [26], the parameterized optimization version
of Annotated Connected F-Deletion is defined to be a minimization problem with the
optimization function ACFD : Σ∗ × N × Σ∗ → R ∪ {∞} defined as follows.

ACFD(G, R, k, S) =
{

∞ if S is not a feasible solution,

min{|S|, k + 1} otherwise.

We next describe a compression algorithm that takes as input an instance of Connected
F-Deletion and outputs an instance of Annotated Connected F-Deletion with size
bounded polynomially in k and in which a (2 + ε)-approximate solution for the original
instance is preserved.

▶ Lemma 30. There is an algorithm that given G, k, runs in time kO(ρ)nO(1) and either
correctly concludes that G has no connected F-deletion set of size at most k or returns an
instance Γ = (G̃, k̃, R̃ = {(P̃i, Q̃i, T̃i)}i∈[ℓ]) of Annotated Connected F-Deletion such
that the following statements hold.
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1. |V (G̃)| = kO(ρ), ℓ = kO(ρ).
2. If G has a connected F-deletion set S of size at most k, then Γ has a feasible solution of

size at most (2 + ε)|S|.
3. Every feasible solution of Γ is a connected F-deletion set of G.

Proof sketch. We begin by executing Lemma 18 and then Lemma 29 to either conclude
that G has no connected F -deletion set of size at most k or compute τ = (X, Z) and the set
L ⊇ X ∪ Z. We set G̃ = G[L] and k̃ = (2 + ε)k. Recall that |L| = kO(ρ).

If the number of connected components of G − L is not already bounded by kO(ρ), then
we use the arguments from Lemma 23 (with L used in place of X ∪ Z) to partition them into
P and Q and compute the set P ∞ ⊆ V (P) such that every F-deletion set of size at most
3k for G − V (Q) − P ∞ is an F -deletion set of G and |P| = kO(ρ). Observe that because we
are now using L in place of X ∪ Z, the size of the set |P| is now bounded by kO(ρ) (because
|L| = kO(ρ)) as opposed to kO(1) where the degree of the polynomial only depends on F .

We now define R̃ as follows. Let Ĝ = G − V (Q) − P ∞. For every C ∈ CC(Ĝ) and
compatible set J ∈ BC in the graph Ĝ, we add to R̃ the tuple (N(C) \ J, J, Mh(ĜJ

C , J)).
This completes the definition of R̃ and consequently, the definition of Γ. We now show that
the three properties specified in the lemma hold.

Since we have kO(ρ) connected components in CC(Ĝ) and each connected component has
kO(1) compatible sets, we conclude that ℓ = kO(ρ). It remains to prove the second and third
statements of the lemma. For the second statement, Lemma 29 guarantees that if G has a
connected F-deletion set S of size at most k then it has a connected F-deletion set S′ of
size at most (2 + ε)|S| which is contained in L. We claim that S′ is also a feasible solution
for the constructed instance of Annotated Connected F-Deletion. If this were not
the case then there is an F-minor model in the graph G̃S′ as defined in the definition of
the problem. However, the definition of the tuples in P̃ implies that every F-minor model
present in G̃S′ is also present in G − S′, a contradiction to S′ being a connected F -deletion
set S′ of G. Therefore, we conclude that the second statement holds.

For the third statement, let S be a feasible solution for the constructed instance of
Annotated Connected F-Deletion and suppose that it is not a connected F-deletion
set of G. Then, there is an F-minor model in G − S. In fact, due to Lemma 23 and
the definition of the sets P ∞ and Q, we conclude that there is an F-minor model in
G − V (Q) − P ∞ − S = Ĝ − S because otherwise S must be an F -deletion set of G as well.

However, for every F -minor model in Ĝ − S, one can invoke “cut and paste” arguments
similar to those used in the proof of Lemma 23 to construct an alternate minor model in G̃S

for the same graph in F , a contradiction to our choice of S as a feasible solution of Γ. This
completes the proof of the lemma. ◀

Theorem 1 now follows from Lemma 30. The reduction algorithm uses the algorithm
of this lemma and the solution-lifting algorithm simply returns the approximate solution
computed for the instance of Annotated Connected F-Deletion.

5 Conclusion and Open Problems

Our result on the approximate compressibility of the connectivity constrained variant of
Planar F-Deletion demonstrates that preprocessing lower bounds can be side-stepped
even for very general versions of problems such as Vertex Cover and Feedback Vertex Set
as long as one allows a small loss in accuracy. While a step forward in our understanding
of preprocessing under connectivity constraints, our work leaves some natural questions for
follow-up work.
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1. Is there a (1 + ε)-approximate kernel for this problem (for every 0 < ε < 1)?
2. What is the best approximation factor one can achieve for this problem in polynomial

time?
3. Is there a fixed-parameter algorithm for Connected Planar F-Deletion with a

single-exponential dependence on k? To the best of our knowledge, such an algorithm is
not known in the literature even when F = {θc} for c ≥ 3. Here, θc is the graph on 2
vertices with c parallel edges between them.
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Abstract
We consider the stochastic scheduling problem of minimizing the expected makespan on m parallel
identical machines. While the (adaptive) list scheduling policy achieves an approximation ratio of 2,
any (non-adaptive) fixed assignment policy has performance guarantee Ω

( log m
log log m

)
. Although the

performance of the latter class of policies are worse, there are applications in which non-adaptive
policies are desired. In this work, we introduce the two classes of δ-delay and τ -shift policies whose
degree of adaptivity can be controlled by a parameter. We present a policy – belonging to both
classes – which is an O(log log m)-approximation for reasonably bounded parameters. In other words,
an exponential improvement on the performance of any fixed assignment policy can be achieved
when allowing a small degree of adaptivity. Moreover, we provide a matching lower bound for any
δ-delay and τ -shift policy when both parameters, respectively, are in the order of the expected
makespan of an optimal non-anticipatory policy.
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1 Introduction

Load balancing problems are one of the most fundamental problems in the field of scheduling,
with applications in various sectors such as manufacturing, construction, communication or
operating systems. The common challenge is the search for an efficient allocation of scarce
resources to a number of tasks. While many variants of the problem are already hard to
solve, in addition one may have to face uncertainty regarding the duration of the tasks; one
way to model this is to use stochastic information learned from the available data.

In contrast to the solution concept of a schedule in deterministic problems, we are
concerned with non-anticipatory policies in stochastic scheduling problems. Such a policy
has the ability to react to the information observed so far. While this adaptivity can be very
powerful, there are situations where assigning resources to jobs prior to their execution is a
highly desired feature, e.g. for the scheduling of healthcare services. This is especially true
for the daily planning of elective surgery units in hospitals, where a sequence of patients
is typically set in advance for each operating room. In this work, we present and analyze
semi-adaptive policies, which allow one to control the level of adaptivity of the policy.
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Figure 1 Snippets of the execution of a δ-delay policy: Realizations of jobs observed up to time t

(left) and up to some time > t + δ (right) are depicted by rectangles in dark grey; the running job
non-completed by the time of each snippet is indicated by squared dots in dark grey; jobs that did
not start yet are depicted in light grey with the corresponding machine assignment.

The problem considered in this paper is the stochastic counterpart of the problem of
minimizing the makespan on parallel identical machines, denoted by P ||E[Cmax] using the
three field notation due to Graham, Lawler, Lenstra and Rinnooy Kan [13]. The input
consists of a set of n jobs J and a set of m parallel identical machines M. Each job j ∈ J
is associated with a non-negative random variable Pj representing the processing time of
the job. The processing times are assumed to be (mutually) independent and to have finite
expectation. In this work, it is sufficient to only know the expected processing times.

Roughly speaking, a non-anticipatory policy may, at any point in time t, decide to start a
job on an idle machine or to wait until a later decision time. However, it may not anticipate
any future information of the realizations, i.e., it may only make decisions based on the
information observed up to time t. For further details we refer to the work by Möhring,
Radermacher and Weiss [26]. The task is to find a non-anticipatory policy minimizing the
expected makespan E[Cmax] := E[maxj∈J Cj ], where Cj denotes the (random) completion
time of job j under the considered policy. An optimal policy is denoted by OPT. By slight
abuse of notation we use Π for both the policy and the expected makespan of the policy.

An alternative way of understanding non-anticipatory policies is that they maintain a
queue of jobs for every machine. At any point in time t it may start the first job in the queue
of a machine if it is idle or it may change the queues arbitrarily, using only the information
observed up to time t. In this work we consider a policy to be adaptive if it has the ability
to react to the observations by changing the queues arbitrarily. The important class of
non-idling non-adaptive policies is called the class of fixed assignment policies. Such a policy
assigns all jobs to the machines beforehand, in form of ordered lists, and each machine
processes the corresponding jobs as early as possible in this order.

While the class of (fully adaptive) non-anticipatory policies and the class of (non-adaptive)
fixed assignment policies can be considered as two extremes, the purpose of this paper is to
introduce two classes of policies bridging the gap between them continuously.

▶ Definition 1.1 (δ-delay and τ -shift policies). A δ-delay policy for δ > 0 is a non-anticipatory
policy which starts with a fixed assignment of all jobs to the machines and which may, at any
point in time t, reassign not-started jobs to other machines with a delay of δ: the reassigned
jobs are not allowed to start before time t+ δ.
A τ -shift policy for τ > 0 is a non-anticipatory policy which starts with a fixed assignment of
all jobs to the machines and which may reassign jobs to other machines, but only at times
that are an integer multiple of τ .

Snippets of the execution of a δ-delay policy and a τ -shift policy can be found in Figure 1
and Figure 2, respectively. Observe that we recover the class of fixed assignment policies by
letting δ or τ go to ∞, and the class of non-anticipatory in the limit when δ or τ goes to 0.

Related Work. Minimizing the makespan on parallel identical machines is a fundamental
deterministic scheduling problem which dates back to the 60s. Graham [11] showed that the
list scheduling algorithm computes a solution which is within a factor of

(
2 − 1

m

)
away from
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Figure 2 Snippets of the execution of a τ -shift policy: Realizations of jobs observed up to time
2τ (left) and some time > 2τ (right) are depicted by rectangles in dark grey; the running job
non-completed by the time of each snippet is indicated by squared dots in dark grey; jobs that did
not start yet are depicted in light grey with the corresponding machine assignment.

an optimal solution. When the jobs are arranged in LPT-order, i.e., in non-increasing order
of their processing times, he showed that list scheduling gives a

( 4
3 − 1

3m

)
-approximation [12].

While Pm||Cmax, where the number of machines m is constant, and P ||Cmax are (weakly) and
strongly NP-complete [9], respectively, Sahni [32] and Hochbaum and Shmoys [18] obtained
a FPTAS and a PTAS, respectively. In subsequent work [3, 5, 17, 21, 22] the running time
of the PTAS was improved. More general machine environments were also considered in the
literature [19, 24].

The stochastic counterpart P ||E[Cmax] where the processing times of the jobs are random
and the objective is to minimize the expected makespan has also attracted attention. One
can easily see that the list scheduling algorithm by Graham [11] also yields a 2-approximation
compared to an optimal non-anticipatory policy for the stochastic problem, as its analysis
can be carried over to any realization. While list scheduling can be considered as a very
adaptive policy, some applications require rather restricted policies, e.g. when scheduling
operating rooms at a hospital [7, 36]. A class of non-adaptive policies analyzed in the
literature is comprised of fixed assignment policies, in which jobs must be assigned to the
machines beforehand. Although more applicable, it is well known that the performance
guarantee of an optimal fixed assignment is at least of the order Ω

(
log m

log log m

)
with respect

to an optimal non-anticipatory policy; see [14]. Much work was done in designing fixed
assignment policies that are within a constant factor of an optimal fixed assignment policy.
Kleinberg, Rabani and Tardos [23] obtain a constant factor approximation for this problem
for general probability distributions. When the processing times are exponentially and
Poisson distributed, PTASes were found [10, 6]. For the more general problem of makespan
minimization on unrelated machines, Gupta, Kumar, Nagarajan and Shen [14] obtained a
constant factor approximation. Closely related to the makespan objective, Molinaro [28]
obtained a constant factor approximation for the ℓp-norm objective. In contrast to the
literature for minimizing the makespan where approximative results were compared to an
optimal fixed assignment policy, much work on the min-sum objective was done for designing
approximative policies compared to an optimal non-anticipatory policy [27, 25, 34, 35, 15].
When minimizing the sum of weighted completion times, Skutella, Sviridenko and Uetz [35]
showed that the performance ratio of an optimal fixed assignment policy compared to an
optimal non-anticipatory policy can be as large as Ω(∆), where ∆ is an upper bound on the
squared coefficient of variation of the random variables. Lastly, Sagnol, Schmidt genannt
Waldschmidt and Tesch [31] considered the extensible bin packing objective, for which they
showed that the fixed assignment policy induced by the LEPT order has a tight approximation
ratio of 1 + e−1 with respect to an optimal non-anticipatory policy.

Closely related to the reassignment of jobs in δ-delay and τ -shift policies, various non-
preemptive scheduling problems with migration were considered in offline and online settings.
Aggarwal, Motwani and Zhu [1] examined the offline problem where one must perform
budgeted migration to improve a given schedule. For online makespan minimization on

ESA 2021
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parallel machines, different variants on limited migration, e.g. bounds on the processing
volume [33] or bounds on the number of jobs [2], were studied. Another related online
problem was considered by Englert, Ozmen and Westermann [8] where a reordering buffer
can be used to defer the assignment of a limited number of jobs.

One source of motivation for this research is the aforementioned application to surgery
scheduling. In this domain, a central problem is the allocation of patients to operating
rooms. Although additional resource constraints exist, the core of the problem can be
modeled as the allocation of jobs with stochastic durations to parallel machines [7]. In this
field, committing to a fixed assignment policy is common practice in order to simplify staff
management and reduce the stress level in the operating theatre [4, 29, 36]. Another obstacle
to the introduction of sophisticated adaptive policies is the reluctance of computer-assisted
scheduling systems among practitioners [20]. That being said, it is clear that resource
reallocations do occasionally occur in operating rooms to deal with unforeseen events, hence,
giving a reason to study some kind of semi-adaptive model. The proposed model of δ-delay
is an attempt to take into account the organizational overhead associated with rescheduling
decisions; the model of τ -shift policy by the fact that rescheduling decisions cannot be made
at any point in time, but must be agreed upon in short meetings between the OR manager
and the medical team. Moreover, we point out that the class of τ -shift policies encompasses
the popular class of proactive-reactive policies used for the more general resource constrained
project scheduling problem [16], in which a baseline schedule can be reoptimized after a
set of predetermined decision points (these approaches typically consider a penalty in the
objective function to account for deviations between the initial baseline schedule and the
reoptimized ones).

Our Contribution. We introduce and analyze two new classes of policies (δ-delay and τ -shift
policies) that interpolate between the two extremes of non-adaptive and adaptive policies.
For the stochastic problem of minimizing the expected makespan on m parallel identical
machines, we analyze the policy LEPTδ,α, which belongs to the intersection of both classes.
This policy can in fact be seen as a generalization of the list policy LEPT, which waits for
predefined periods of time before reassigning the non-yet started jobs, taking the delay of δ
into account. While an optimal fixed assignment policy has performance guarantee of at least
Ω

(
log m

log log m

)
compared to an optimal non-anticipatory policy, we show that LEPTδ,α is an

O(log logm)-approximation for some constant α > 0 and all δ = O(1) · OPT. Therefore, we
exponentially improve the performance of non-adaptive policies by allowing a small amount
of adaptivity. Moreover, we provide a matching lower bound for δ-delay policies as well as
for τ -shift policies if δ or τ are in Θ(OPT). This shows that there is no δ-delay or τ -shift
policy beating the approximation ratio of LEPTδ,α by more than a constant factor.

Organization. Section 2 is devoted for the upper bound on the performance guarantee
of LEPTδ,α. A lower bound on optimal δ-delay policies as well as τ -shift policies is given
in Section 3. At the end, we conclude and give possible future research directions. Useful
results from probability theory and detailed proofs can be found in the appendix of the full
version of this paper [30].

2 Upper Bound

In this section, we show that there exists α > 1 such that the policy LEPTδ,α (see Defini-
tion 2.5) has a performance guarantee doubly logarithmic in m if δ = O(1) · OPT.
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▶ Theorem 2.1. There exists α > 1 such that LEPTδ,α is an O(log logm)-approximation
for δ = κ · OPT for any constant κ > 0.

In the following, we show Theorem 2.1 for α = 33. We note that we did not optimize
the constants appearing in our calculation as our lower bound shows that log log(m) is the
correct order. Notice that it suffices to show the performance guarantee for m large enough
as for m = O(1) the trivial policy assigning all jobs to a single machine is a constant factor
approximation. To prove the main theorem, we proceed as follows: First, we define and
discuss properties of the fixed assignment policy FLEPT as it lies at the heart of our policy
called LEPTδ,α. After we give the formal definition of LEPTδ,α, we derive lower bounds
on OPT needed to show its performance guarantee. The remaining part is devoted to
show Theorem 2.1. The main idea of the proof is that the policy works over a sequence
of reassignment periods; at the beginning of each period, there is a constant fraction of
available machines with high probability. This can be used to show the following squaring
effect: if the remaining volume of non-started jobs is ϵ ·m · OPT in a period, it will be at
most ϵ2 ·m · OPT in the next period, with high probability.

Recall that the List Scheduling algorithm due to Graham [11] with respect to a list of
all jobs schedules the next job in the list on the next idle machine. Let us define the fixed
assignment policy induced by list scheduling in LEPT order.

▶ Definition 2.2 (The fixed assignment policy FLEPT). Let all jobs be arranged in non-
increasing order of their expected processing times. FLEPT is the fixed assignment policy
that assigns the jobs in this order to the same machines as List Scheduling would yield for
the deterministic instance in which the processing times are replaced by their expected value.

As shown by Sagnol, Schmidt genannt Waldschmidt and Tesch [31], FLEPT admits
bounds on the expected load of any machine captured in the next lemma.

▶ Lemma 2.3 ([31]: Section 3, Lemma 3). Given an assignment of jobs to machines induced
by FLEPT, let ℓi denote the expected load of machine i, i.e., the sum of expected processing
times of the jobs assigned to i. Moreover, let ni denote the number of jobs assigned to i and
let ℓ := mini∈M ℓi. Then, for all i ∈ M we have ℓ ≤ ℓi ≤ ni

ni−1ℓ, where ni

ni−1 = 1
0 := +∞

whenever ni = 1.

We immediately obtain by Lemma 2.3 the following structure on FLEPT.

▶ Corollary 2.4. Given an assignment of jobs to machines induced by FLEPT, we can
partition the set of machines into two types of machines: Either there is only a single job
assigned to a machine or the expected load of a machine is bounded by 2ℓ. Moreover, ℓ can
be bounded from above by the averaged expected load. In particular, if x denotes the total
(remaining) expected load and m′ is a lower bound on the total number of machines m, then
2ℓ ≤ 2 · x

m′ .

Corollary 2.4 will play a central role in showing Theorem 2.1 as FLEPT constitutes an
essential part of LEPTδ,α, which we define now.

▶ Definition 2.5 (Policy LEPTδ,α). Let δ, α > 0, k∗ :=
⌊
log2

( 2
3 (log2(m)) + 1

)⌋
+ 2 and let

T := 2 · max{ 1
m

∑
j∈J E[Pj ],maxj E[Pj ]}. Moreover, let τk := k(δ+αT ) for k ∈ [k∗ + 1]. At

the beginning the jobs are assigned according to FLEPT. For k = 1, . . . , k∗ + 1, LEPTδ,α

reassigns the jobs that have not started yet before τk to the machines that have processed all
jobs assigned at previous iterations 0, . . . , k − 1 by time τ1, . . . , τk, respectively, according to
FLEPT. The reassigned jobs may start at time τk + δ at the earliest.

ESA 2021
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We note that in practice it makes sense to use all available machines at each iteration
instead of the machines that were available in each previous iteration. Although our policy
is limited, we show that in its execution a constant fraction of machines is available in each
iteration with high probability. It also simplifies our analysis and matches the bound shown
in the next section. Furthermore, observe that LEPTδ,α is both a δ-delay policy and a
(δ+αT )-shift policy. Next, let us introduce some quantities which will turn out to be helpful
to analyze LEPTδ,α.

▶ Definition 2.6. Let Ξk denote the random variable describing the total expected processing
time of the remaining jobs which have not been started at time < τk divided by Tm. Moreover,
let Ak denote the random variable describing the fraction of machines which are available
at each time τ1, . . . , τk, i.e., the machines have completed all jobs assigned in each iteration
0, . . . , k − 1.

τk−1

δ

τk

αT δδ αT

Akm

Ak−1m

remaining expected load ΞkTm

τk−2

reassignment
1

2
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4 5
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Figure 3 Snippet of LEPTδ,α: Realizations of jobs observed up to time τk are depicted by
rectangles in dark grey; the running jobs non-completed by the time of the snippet are indicated
by squared dots in dark grey; the expected processing times of the jobs that did not start yet are
depicted in light gray. The remaining expected processing time of the twelve light gray jobs is ΞkT m.
These jobs are reassigned in an FLEPT fashion to the Akm machines at the bottom at time τk,
and the first job of each newly formed queue will start at time τk + δ.

A snippet of LEPTδ,α together with the introduced notation is illustrated in Figure 3.
Observe that the randomness of Ξk occurs only in the set of remaining jobs. We begin

with some simple observations.

▶ Observation 2.7. For any k, we have Ξk ≤ Ξk−1 ≤ 1 and Ak ≤ Ak−1 ≤ 1 almost surely.

Next, we want to discuss lower bounds on the expected makespan of an optimal non-
anticipatory policy. The first one justifies the use of T in the definition of LEPTδ,α.

▶ Lemma 2.8. Let T := 2·max{ 1
m

∑
j∈J E[Pj ],maxj E[Pj ]} and ℓ be defined as in Lemma 2.3.

Then, we have 2ℓ ≤ T ≤ 2 · OPT.

Proof. By Corollary 2.4 we immediately obtain the first inequality as ℓ is a lower bound on
the averaged load 1

m

∑
j∈J E[Pj ]. Clearly, for each realization p the makespan is bounded

from below by 1
m

∑
j∈J pj . Hence, taking expectations we obtain OPT ≥ 1

m

∑
j∈J E[Pj ].

Lastly, in any non-anticipatory policy obviously all jobs must be scheduled non-preemptively.
Therefore, maxj E[Pj ] is another lower bound on OPT. ◀

We obtain another lower bound when only at most m jobs have to be scheduled.
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▶ Lemma 2.9. We have E [maxj∈J Pj ] ≤ OPT.

Proof. For any realization p, a lower bound on the optimal makepsan for p is maxj∈J pj .
Taking expectations yields the statement. ◀

We have now set all necessary definitions and lower bounds on the cost of an optimal
non-anticipatory policy to devote the remaining part of this section to prove Theorem 2.1.
We first derive an upper bound on LEPTδ,α in terms of Ξk∗+1.

▶ Lemma 2.10. We have that LEPTδ,α ≤ τk∗+1 + δ + OPT + E[Ξk∗+1] · Tm.

Proof. Let C(p) denote the first point in time in realization p in which all jobs that started
before τk∗+1 are completed. We consider an auxiliary policy Π which is identical to LEPTδ,α

up to time τk∗+1 and starts processing the remaining jobs at time max{τk∗+1 + δ, C(p)} on
an arbitrary single machine. Clearly, LEPTδ,α ≤ Π since LEPTδ,α starts the remaining
jobs at time τk∗+1 + δ, hence, not later than Π and uses at least as many machines as Π.
For any realization p and the starting time of the remaining jobs S(p) we have

S(p) = τk∗+1 + max{δ, C(p) − τk∗+1} ≤ τk∗+1 + max{δ,max
j∈J

pj} ≤ τk∗+1 + δ + max
j∈J

pj .

Hence, by Lemma 2.9 the expected starting time is at most τk∗+1 + δ + OPT. By definition
of Ξk∗+1 the expected remaining load is exactly E[Ξk∗+1] · Tm. ◀

Due to the derived upper bound it only remains to bound E[Ξk∗+1]. The next central
lemma provides an upper bound on the probability that this quantity is large.

▶ Lemma 2.11. There exists α > 1 such that we have P
(
Ξk∗+1 >

1
m

)
= o

( 1
m

)
.

Let us assume for a moment that Lemma 2.11 is true. We then can prove the main
theorem.

Proof of Theorem 2.1. By Lemmas 2.10 and 2.11 and by the law of total expectation we
obtain

LEPTδ,α ≤ τk∗+1 + δ + OPT + E[Ξk∗+1] · Tm

= τk∗+1 + δ + OPT + P
(

Ξk∗+1 ≤ 1
m

)
︸ ︷︷ ︸

≤1

·E
[
Ξk∗+1

∣∣∣Ξk∗+1 ≤ 1
m

]
· Tm︸ ︷︷ ︸

≤T

+ E
[
Ξk∗+1

∣∣∣Ξk∗+1 >
1
m

]
︸ ︷︷ ︸

≤1

·P
(

Ξk∗+1 >
1
m

)
·m︸ ︷︷ ︸

=o(1)

·T

≤ (αT + δ) · O(log log(m)) + δ + OPT + T + o(1) · T
= O(log log(m)) · OPT,

where the last step follows by Lemma 2.8 and the choice of δ and α. ◀

Let us return to the proof of Lemma 2.11. The high level idea is to use induction to show
that in each iteration there is a constant fraction of available machines with high probability
and hence, the remaining expected load after k∗ iterations is small with high probability. The
first lemma provides a stochastic dominance relation of Ξk and Ak to binomially distributed
random variables in order to simplify calculations.
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▶ Lemma 2.12. For all u, ξ ∈ (0, 1), for all a ∈
[ 1

2 , 1
]

and for any iteration k we have,

P(Ξk+1 ≤ u|Ξk ≤ ξ, Ak ≥ a) ≥ P
(

2ξ
am

Y ≤ u

)
, where Y ∼ Bin

(
m,

2ξ
aα

)
(1)

and

P(Ak+1 ≥ u|Ξk−1 ≤ ξ, Ak ≥ a) ≥ P
(

1
m
Z ≥ u

)
, where Z ∼ Bin

(
⌈am⌉, 1 − 2ξ

aα

)
. (2)

Proof sketch. For (2) the key idea is that in each iteration k a machine is available with
probability at least

(
1 − 2ξ

aα

)
using Corollary 2.4 and Markov’s inequality. To show (1) we

additionally bound the (normalized) remaining expected load by 2ξ
am using Corollary 2.4. ◀

Using Lemma 2.12 we inductively prove probability bounds on Ξk and Ak without
conditioning on the random variables of the previous iterations. The next lemma handles
the base case of the induction stated in Lemma 2.14.

▶ Lemma 2.13 (Base case of induction). Let γ1 = 1 and β2 = 3
4 . Then, there exists

ϵ = e−Θ(m
1
3 ) such that

P(Ξ1 ≤ γ1) ≥ 1 − ϵ, (3)
P (A2 ≥ β2) ≥ 1 − 3ϵ. (4)

Proof sketch. The first statement (3) is clear, as Ξ1 ≤ 1 almost surely. For the second
statement, we first show that A1 is large with high probability using Corollary 2.4 and the
Chernoff bound. This bound can be used together with Lemma 2.12 and the Chernoff bound
to show (4). ◀

We use the above statement as the base case of an induction to show the next lemma.

▶ Lemma 2.14. Let γ1 = 1, γk+1 = 1
2γ

2
k (∀k ≥ 1), βk = 3

4 − 2
α

∑k−2
h=1 γh (∀k ≥ 2) and let

k∗ :=
⌊
log2

( 2
3 (log2(m)) + 1

)⌋
+ 2. Then, there exists ψ = Θ

(
1

log log(m))

)
and ϵ = e−Θ(m

1
3 )

such that

P(Ξk ≤ γk) ≥ 1 − (2k − 1)ϵ, ∀k = 1, . . . , k∗ (5)
P(Ak ≥ βk − (k − 2)ψ) ≥ 1 − (2k − 1)ϵ, ∀k = 2, . . . , k∗. (6)

Proof sketch. The doubly exponential decrease of γk and the choice of α implies that
βk > β∞ > 5

8 . Additionally, the choice of ψ yields β∞ − (k − 2)ψ ≥ 1
2 . Thus, we can assume

that at each iteration with high probability half of the machines are available. For the
induction step we make use of Lemma 2.12, the Chernoff bound and the union bound. ◀

By Lemmas 2.12–2.14 we can now show the probability bound on the remaining expected
load at iteration (k∗ + 1).

Proof of Lemma 2.11. Let u = 1
m , ξ = m− 2

3 and a = 1
2 . Lemma 2.12 (1) implies

P(Ξk∗+1 ≤ u|Ξk∗ ≤ ξ, Ak∗ ≥ a) ≥ P
(
Y ≤ 1

4m
2
3

)
,
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where Y ∼ Bin
(
m, 4

αm
− 2

3

)
. As E[Y ] = 4

αm
1
3 we obtain by applying the Chernoff bound for

ζ = α
16m

1
3 − 1 > 0

P
(
Y ≤ 1

4m
2
3

)
= P (Y ≤ (1 + ζ) · E[Y ]) ≥ exp

(
−E[Y ] · ζ2

2 + ζ

)
= 1−exp(−Θ(m 2

3 )) ≥ 1−ϵ,

for m large enough. This yields

P (Ξk∗+1 ≤ u) ≥ P
(

Ξk∗+1 ≤ u
∣∣∣Ξk∗ ≤ ξ, Ak∗ ≥ a

)
· P (Ξk∗ ≤ ξ, Ak∗ ≥ a)

≥ (1 − ϵ) ·
(
1 − (2k∗

− 1)ϵ− (2k∗
− 1)ϵ

)
≥ 1 −

(
1 + 2 · (2k∗

− 1)
)
ϵ

= 1 − (2k∗+1 − 1)ϵ,

where we used the law of total probability in the first inequality and for the second step
we used the union bound and Lemma 2.14. Therefore, as 2k∗+1 = Θ (log(m)), we have
P

(
Ξk∗+1 >

1
m

)
·m → 0 as m → ∞. ◀

3 Lower Bound

Throughout this section, we consider an instance IN with n = Nm jobs over m machines.
Each job has processing time Pj ∼ Bernoulli

( 1
N

)
, i.e. Pj = 1 with probability 1

N , and
Pj = 0 otherwise. The main result of this section is a Ω(δ log log(m)) lower bound on the
performance of any δ-delay policy for large values of N . This matches the upper bound
obtained in the previous section. Note that the hidden constant in the Ω notation does not
depend on the value of δ > 0. For δ = Θ(OPT), this implies that no δ-delay policy can
improve on the log logm performance guarantee of LEPTδ,α by more than some constant
factor. At the end of the section we show that an analogous result holds for τ -shift policies
as well.

▶ Theorem 3.1. Let δ ≤ 1. For instance IN let OPTdelay
δ and OPT denote the value of

an optimal δ-delay policy and of an optimal non-anticipatory policy, respectively. Then, for
N = Ω(

√
m) we have

OPTdelay
δ

OPT = Ω(δ · log log(m)).

The proof is split into two main lemmas. The first one relates the expected makespan of
an optimal δ-delay policy to the expected makespan of an optimal 1-delay policy.

▶ Lemma 3.2. Assume 1
δ ∈ N. Then, we have OPTdelay

δ ≥ δ · OPT1.

The second lemma shows that OPT1 grows doubly logarithmically with m.

▶ Lemma 3.3. For N = Ω(
√
m) it holds OPT1 = Ω(log log(m)).

Let us assume for now that the above lemmas hold. Then, we simply need to show that
OPT = O(1) to prove the theorem.

Proof of Theorem 3.1. On the one hand, Lemma 3.2 and Lemma 3.3 imply OPTdelay
δ =

Ω(δ · log log(m)). On the other hand, we can use the List Scheduling policy (LS) due to
Graham [11] to obtain an upper bound on the value of an optimal non-anticipatory policy.
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Whenever a machine becomes idle, LS schedules any non-scheduled job on it. For any
fixed realization p = (pj)j∈[Nm] we obtain for its makespan CLS

max(p) =
⌈

1
m

∑
j∈[Nm] pj

⌉
≤

1 + 1
m

∑
j∈[Nm] pj . As a result, taking expectations on both sides yields

OPT ≤ E[CLS
max] ≤ 1 + 1

m

∑
j∈[Nm]

E[Pj ] = 1 + 1
m

·Nm · 1
N

= 2,

concluding the proof of the theorem. ◀

To prove the lemmas, we first make an observation on the structure of optimal δ-delay
policies. When we execute a set of Bernoulli jobs on a machine, we immediately observe
whether one of the jobs was a long job (i.e., pj = 1), and also the number of vanishing jobs
(i.e., pj = 0) that have already been executed. This indicates that optimal δ-delay policies do
not insert deliberate idle time in the schedule (since waiting does not provide any information
on running jobs), and for the case 1

δ ∈ N, they may only take reassignment decisions at times
of the form kδ for k ∈ N. We call policies with this property δ-active.

Proof of Lemma 3.2. The starting time of each job in OPTdelay
δ is an integer multiple of

δ, because 1/δ ∈ N and OPTdelay
δ is δ-active. Let Jki(p) denote the set of jobs started on

machine i at time kδ by OPTdelay
δ , for a realization p ∈ {0, 1}n of the processing times.

Jki(p) may contain many vanishing jobs executed at time t = kδ, and at most one long job
executed during the time interval [kδ, kδ + 1). It is easy to construct a 1-delay policy (call it
Π1) that executes the same set of jobs Jki(p) during the interval [k, k + 1) on machine i, by
taking at time k − 1 the same reassignment decisions as OPTdelay

δ takes at time (k − 1)δ,
and by waiting until time t = k to execute the reassigned jobs. In both schedules, the
makespan is caused by the same long job (if there is at least one long job). Its starting time
is OPTdelay

δ (p) − 1 in the optimal δ-delay policy and 1
δ (OPTdelay

δ (p) − 1) in the policy Π1.
Hence the policy Π1 has makespan Π1(p) = 1

δ · (OPTdelay
δ (p) − 1) + 1 for any realization

p ̸= 0, and Π1(p) = OPTdelay
δ (p) = 0 if p = 0. Taking expectations yields

OPT1 ≤ E[Π1(p)] = 1
δ

· OPTdelay
δ + P(p ̸= 0) ·

(
1 − 1

δ

)
≤ 1
δ

· OPTdelay
δ ,

where we have used the fact that δ ≤ 1. This implies OPTdelay
δ ≥ δ · OPT1. ◀

This lemma allows us to work with 1-delay policies, which are easier to handle: At all
times t ∈ N, a 1-active policy observes the set of jobs non-started yet at time t− 1 + ϵ (for
an infinitesimal small ϵ > 0) and reassigns them to any machine, on which they will start at
time t at the earliest: we call it an iteration.

We denote by Rt the random variable describing the number of remaining jobs at time
t ∈ N0, before OPT1 runs the jobs, and by Λt = Rt

Nm the fraction of remaining jobs at time
t. For the initial state we have Λ0 = 1 (a.s.). Not surprisingly, the optimal policy balances
the remaining jobs as evenly as possible on the m machines.

▶ Proposition 3.4. In iteration t, OPT1 assigns the remaining ΛtNm jobs by balancing the
load as evenly as possible, i.e., each machine receives ⌈ΛtN⌉ or ⌊ΛtN⌋ jobs.

Proof sketch. Consider a realization of the jobs started before time t − 1 for some t ∈ N,
and in which r jobs remain at time t − 1. A 1-active policy must reassign the r jobs to
the m machines. By moving jobs between two machines, one can show that the balancing
policy, which assigns

⌊
r
m

⌋
or

⌈
r
m

⌉
jobs to each machine, minimizes the (random) number
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of remaining jobs at time t for the order of stochastic dominance, in the class of 1-active
policies. Then, the optimality of the balancing policy follows from the fact that the expected
cost-to-go from iteration t, r 7→ E[OPT1 − t|Rt = r] is monotone decreasing with respect to
the number of remaining jobs. ◀

For notational convenience let ⌊ΛtN⌉i denote the number of jobs assigned to machine i
by OPT1. By independence of the processing times, the number of jobs that must be drawn
before picking a long job is geometrically distributed with parameter 1

N . Consequently, we
obtain the following observation.

▶ Observation 3.5. For i ∈ [m] let Gi ∼ Geom( 1
N ) be i.i.d. random variables. Then, we

have

Λt+1
d= 1
Nm

m∑
i=1

(⌊ΛtN⌉i −Gi)+.

We can now prove that OPT1 is of order Ω(log log(m)). To do this, we first need a
lemma showing that Λt converges quadratically to 0.

▶ Lemma 3.6. For N = Ω(
√
m) and t ∈

{
1, . . . , ⌊log2

( 1
4 log2e(m)

)
⌋
}

we have

P
(

Λt ≥ (2e)1−2t
)

≥
(

1 − e−2
√

m
)t

.

A rigorous proof of this lemma is proved in the appendix of the full version [30]. For now,
we just explain the intuition behind the quadratic convergence of Λt to 0 in expectation, by
taking a (hand-wavy look) at the conditional expectation E[Λt+1|Λt = λ] for large values of
N . Using that ⌊λN⌉

N → λ and the well-known fact that Gi

N converges in distribution to an
exponential random variable X ∼ Exp(1), we see that when N → ∞, E[Λt+1|Λt = λ] should
approach E[(λ−X)+] =

∫ λ

x=0(λ− x)e−xdx = λ+ e−λ − 1. Then, the quadratic convergence
of Λt is suggested by the inequalities λ2

e ≤ λ+ e−λ − 1 ≤ λ2

2 , which hold for all λ ∈ [0, 1].
With this lemma, we obtain a short proof for Lemma 3.3.

Proof of Lemma 3.3. By Lemma 3.6 we obtain for t = Ω(log log(m)) and N = Ω(
√
m)

OPT1 ≥ P (Cmax ≥ t) · t ≥ P
(

Λt ≥ (2e)1−2t
)

· t ≥
(

1 − e−2
√

m
)t

︸ ︷︷ ︸
m→∞−−−−→1

·t = Ω(log log(m)).◀

A similar result can be shown for τ -shift policies, for the same instance IN .

▶ Theorem 3.7. Let τ ≤ 1, such that 1
τ ∈ N. For instance IN let OPTshift

τ and OPT denote
the value of an optimal τ -shift policy and of an optimal non-anticipatory policy, respectively.
Then, for N = Ω(

√
m) we have

OPTshift
τ

OPT = Ω(τ · log log(m)).

Proof. Similarly as for the case of δ-delay policies, for 1/τ ∈ N it is clear that an optimal
τ -shift policy for instance IN must be τ -active. Therefore, the optimal τ -active policy
coincides with both the optimal τ -shift and the optimal τ -delay policy. This shows that
OPTshift

τ = OPTdelay
τ , and the result follows from Theorem 3.1. ◀
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4 Conclusion

We considered the stochastic optimization problem of minimizing the expected makespan on
parallel identical machines. While any list scheduling policy is a constant factor approximation,
the performance guarantee of all fixed assignment policies is at least Ω

(
log m

log log m

)
. We

introduced two classes of policies to establish a happy medium between the two extremes
of adaptive and non-adaptive policies. The policy LEPTδ,α, which is both a δ-delay and a
τ -shift policy, was shown to have performance guarantee of O(log logm) if δ and τ are in the
scale of the instance. Moreover, we provided a matching lower bound for δ, τ = Θ(OPT).
Therefore, LEPTδ,α improves upon the performance of an optimal fixed assignment policy
using a small amount of adaptivity. Moreover, there exists no δ-delay or τ -shift policy beating
its performance guarantee by more than a constant.

For the case of δ, τ = O( 1
log log m ), Theorem 3.1 gives a constant lower bound, while

Theorem 2.1 only gives a doubly logarithmic upper bound. An open question is whether a
constant approximation guarantee is possible in this case.

A possible future line of research is the analysis of δ-delay and τ -shift policies for stochastic
scheduling problems with other numerous objectives, different machine environments as well as
various job characteristics. Moreover, it would be interesting to design other non-anticipatory
policies whose adaptivity can be controlled.
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Abstract
When a problem has more than one solution, it is often important, depending on the underlying
context, to enumerate (i.e., to list) them all. Even when the enumeration can be done in polynomial
delay, that is, spending no more than polynomial time to go from one solution to the next, this
can be costly as the number of solutions themselves may be huge, including sometimes exponential.
Furthermore, depending on the application, many of these solutions can be considered equivalent.
The problem of an efficient enumeration of the equivalence classes or of one representative per
class (without generating all the solutions), although identified as a need in many areas, has been
addressed only for very few specific cases. In this paper, we provide a general framework that solves
this problem in polynomial delay for a wide variety of contexts, including optimization ones that can
be addressed by dynamic programming algorithms, and for certain types of equivalence relations
between solutions.
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1 Introduction

Enumerating the solutions of an optimization problem solved by a dynamic programming
algorithm (DP-algorithm) is a classical and well-known question. However, many enumeration
problems have a huge number of solutions in practice, which might be an issue. From a
computational point of view, since the number of solutions is a lower bound on the time
complexity of any enumeration algorithm, it might make the algorithm impractical on
real instances. Furthermore, even if the number of solutions is reasonable enough to be
enumerated, the purpose of some applications is to give the output of the algorithm to a
human specialist (this is necessary, for example, when some of the constraints of the problem
are subjective and cannot be modeled).
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Indeed, one of the advantages of an enumeration algorithm compared to an optimization
one which in general outputs only one optimal solution, is to be able to understand the space
of solutions. While this is important in many cases, no human can understand an output
composed of billions of solutions.

The approach generally used to address this consists of enumerating all solutions, and
then applying some type of clustering (grouping) algorithm to the set of optimal solutions.
The final output presented to the user would then be some “representative description” of
the clusters (groups) themselves. However, since the number of solutions is a lower bound
for the total execution time of any enumeration algorithm, the first step of such a strategy
becomes impossible when the number of solutions is too big. A natural question is then
whether it would be possible to enumerate directly what we just called a “representative
description” of the clusters of solutions. This could be for instance an element per cluster.
Sometimes a cluster can also be seen as a set of characteristics that the solutions within
the cluster share. In such a case, the representative description of a cluster could then be
such a set of characteristics. A particularly convenient situation is however when the clusters
correspond to equivalence classes of an equivalence relation over the set of solutions that
we could establish a priori. The output could be in this case the quotient space of the
equivalence relation. Notice that the enumeration of equivalence classes of solutions is a
combinatorial problem that could be solved exactly given a well-defined equivalence relation,
and unlike data analysis methods such as incremental clustering, it does not require the
definition of a similarity or dissimilarity measure between solutions which, depending on the
mathematical nature of the solutions (numerical values, graphs, functions on graphs, etc.),
can be difficult to define or costly to compute.

The problem this paper addresses is how to perform the task of enumerating equivalence
classes of solutions with polynomial delay for a wide variety of problems (including optimiza-
tion problems solved by dynamic programming algorithms), for certain types of equivalence
relations between solutions.

The problem of enumerating equivalence classes, and particularly the generation of
representative solutions is a challenge in the context of enumeration algorithms. It has
been identified as a need in different areas, such as Genome Rearrangements [10], Artificial
Intelligence [1] or Pattern Matching [7, 26]. It was listed as an important open problem in a
recent Dagstuhl workshop on “Algorithmic Enumeration: Output-sensitive, Input-Sensitive,
Parameterized, Approximative” (see, e.g., Sections 4.2 and 4.10 in [15]). To the best of our
knowledge, this challenge has been addressed only for some few specific problems in the
literature (e.g., [2, 10, 24, 25]).

To enumerate equivalence classes, we go through an intermediate problem, namely the
enumeration of colored subtrees in acyclic decomposable AND/OR graphs (ad-AND/OR
graph). The paper is organized as follows: Section 2 provides an algorithm to enumerate
with polynomial delay colored subtrees in ad-AND/OR graphs; Section 3 details how this
algorithm applies to the enumeration of equivalence classes in DP-problems. In that direction,
we present some examples from well-known optimization problems in the literature. Finally,
in Section 4 we conclude with some open problems.

2 Enumeration of colored subtrees in an ad-AND/OR graph

2.1 AND/OR graphs and solution subtrees
An AND/OR graph (see, for example [23, 27]) is a well-known structure in the field of Logic
and Artificial Intelligence (AI) that represents problem solving and problem decomposition.
In this paper, we consider a particular flavor of AND/OR graphs known as explicit AND/OR
graphs for trees [12].
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This is a directed acyclic graph (DAG) G which explicitly represents an AND/OR state
space for solving a certain problem by decomposing it into subproblems. The set of nodes
(or states) S := V (G) contains OR and AND nodes (the OR nodes represent alternative
ways for solving the problem while the AND nodes represent problem decomposition into
subproblems, all of which need to be solved). There is a set of goal nodes Sg ⊆ S and a set
of start nodes S0 ⊆ S representing respectively the terminal states and the initial states.
The children (out-neighbors) of an OR node are AND nodes, and the children of an AND
node are OR nodes or goal nodes. We say that a node is an OR+ node when it is either an
OR node or a goal node. Furthermore, the AND/OR graphs that we consider must have the
property of being decomposable (they can model a problem for which every decomposition
yields disjoint subproblems that can be solved independently): for any AND node, the sets of
nodes that are reachable from each one of its child nodes are pairwise disjoint. The example
graph in Figure 1 is decomposable.

Figure 1 An acyclic decomposable AND/OR graph with four start nodes. Squares are OR+

nodes (OR nodes or goal nodes); crossed circles are AND nodes. One solution subtree of size 8 is
shown in bold.

Formally, in this paper, any graph that satisfies the properties in Definition 1 will be
called an ad-AND/OR graph. Notice that this definition corresponds only to a particular
case of the general AND/OR graphs in the AI literature; the latter may be neither acyclic
nor decomposable.

▶ Definition 1 (ad-AND/OR graph). A directed graph G is an acyclic decomposable AND/OR
graph, henceforth denoted by ad-AND/OR graph, if it satisfies the following:

G is a DAG.
G is bipartite: its node set V (G) can be partitioned into (A,O) so that all arcs of G are
between these two sets. Nodes in A are called AND nodes; nodes in O are called OR+

nodes.
Every AND node has in-degree at least one and out-degree at least one. The set of nodes
with out-degree zero is then a subset of O and is called the set of goal nodes; the remaining
OR+ nodes are simply the OR nodes. The subset of OR nodes of in-degree zero is the set
of start nodes.
G is decomposable: for any AND node, the sets of nodes that are reachable from each one
of its child nodes are pairwise disjoint.

▶ Definition 2 (solution subtree). A solution subtree T of an ad-AND/OR graph G is a
subgraph of G which: (1) contains exactly one start node; (2) for any OR node in T it
contains one of its child nodes in G, and for any AND node in T it contains all its children
in G.
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It is immediate to see that a solution subtree is indeed a subtree of G: it is a rooted tree, the
root of which is a start node. If we would drop the requirement of G being decomposable,
the object defined in Definition 2 would not be guaranteed to be a tree. One solution subtree
of the example graph in Figure 1 is shown in bold.

The set of all solution subtrees of G is denoted by T(G). Given an ad-AND/OR graph
G, counting the number of its solution subtrees and enumerating all solution subtrees can be
solved by folklore approaches based on depth-first search (DFS).

Before going further, we recall that the motivation of this paper is concerned with solutions
of dynamic programming problems. The correspondence between the solutions of DP-style
recurrence equations and the solution subtrees of general AND/OR graphs has been formally
proven in [16]. In the case where the underlying graph is acyclic, the recurrence equations
can be solved efficiently by DP-algorithms. While we will now concentrate on the solution
subtrees of an ad-AND/OR graph and on the equivalence classes of solution subtrees, we
will demonstrate in Section 3 how to apply our algorithms to analyze equivalence classes of
solutions of a very general class of problems solvable by DP. It is important to point out
that solution subtrees of general AND/OR graphs are equivalent to various other well-known
formalisms, e.g., acceptance trees of a nondeterministic tree automata, languages of regular
tree grammars, complete subcircuits of tropical circuits. The reader who is more familiar
with those may also find this paper interesting even outside of a dynamic programming
context.

2.2 Equivalence classes
Let G be an ad-AND/OR graph. Let C be an ordered set of colors. We will consider
equivalence relations on the set of solution subtrees of G which are based on a local comparison
of the colors of the OR+ nodes. Intuitively, two OR+ nodes having the same color represent
two alternative ways of solving the problem that can be considered equivalent.

▶ Definition 3 (e-coloring). An ad-AND/OR graph G is e-colored if its OR+ nodes are
colored in such a way that for any AND node all its children have distinct colors.

Notations. If s is a OR+ node of G, we denote by c(s) its color. If s is an AND node,
we denote by C̃(s) the tuple of colors of the children of s sorted in increasing order of the
colors. If T1 ∈ T(G) is a solution subtree of G, we use the notation π(T1) for the result of
contracting the AND nodes in T1: for each OR node s of T , contract the only child node of
s in T (i.e., remove the child and connect s to each one of its “grandchildren”).

▶ Definition 4 (equivalence class). A node-colored rooted tree T is an equivalence class of
solution subtrees of an e-colored ad-AND/OR graph G (or shortly an equivalence class of G)
if there exists a solution subtree T1 of G such that π(T1) is equal to T . Such a T1 is said to
be a solution subtree belonging to the class T .

More notations. We denote by C(G) the set of equivalence classes of G. The notation π can
be seen as a function π : T(G)→ C(G). We denote by π−1(T ) := {T1 ∈ T(G) | π(T1) = T}
the subset of solution subtrees of G belonging to the class T . The notations c(s) and C̃(s)
are naturally extended to the case where s is a node in an equivalence class T . The root
node of a rooted tree T is denoted by r(T ). The set of the children of a node s is denoted by
Ch(s).

An example of an e-colored ad-AND/OR graph with five equivalence classes is given
in Figure 2.
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Figure 2 An e-colored ad-AND/OR graph and its five equivalence classes. The colors of the OR+

nodes are written inside the squares.

2.3 Enumerating equivalence classes
Given an e-colored ad-AND/OR graph G, we propose a polynomial delay algorithm to
enumerate all equivalence classes of G. Given a total ordering c1, . . . , cm of the colors of G,
we define a total ordering ≺ over C(G), the set of equivalence classes of G. If T and T ′ have
their roots colored differently, we say that T is smaller than T ′, denoted by T ≺ T ′, if the
root color of T precedes the one of T ′. If T and T ′ have the same root color, let (T1, . . . , Tk)
(resp. (T ′

1, . . . , T ′
ℓ)) be the child subtrees of r(T ) (resp. r(T ′)) sorted recursively with respect

to ≺. We then say that T is smaller than T ′ if the tuple (T1, . . . , Tk) is lexicographically
smaller than (T ′

1, . . . , T ′
ℓ), i.e., if Ti ≺ T ′

i with i being the smallest index such that Ti ̸= T ′
i .

We also assume that ∅ is smaller than any tree, and therefore a single node tree colored with
color c comes before any other tree whose root is colored with c in ≺.

2.3.1 Definitions and notations
Recall that given an AND-node x, C̃(x) is the tuple of colors of the children of x sorted
in increasing order. Given an OR-node o, we denote by T (o) the set of color tuples of its
children, i.e., T (o) := {C̃(x) : x ∈ Ch(o)}. In other words, a color tuple (c1, . . . , cj) belongs
to T (o) if o has an AND-child node whose children are colored with (c1, . . . , cj). If we
consider an equivalence class T of C(G/{o}) rooted at o, the tuples of T (o) are precisely
the possible colorings of the children of r(T ). Indeed, if the AND-child node x ∈ Ch(o) is
chosen in a solution subtree, then C̃(x) will be the colors of the children of o in that solution.
Notice that several AND-children nodes of o may have the same color tuple.

We extend this definition to a set O of OR+ nodes with T (O) =
⋃

o∈O T (o). In the
same way, t = (c1, . . . , cj) is a color tuple of T (O) if and only if there exists an equivalence
class T of C(G/O) such that the children of r(T ) are colored with (c1, . . . , cj). Given a set
O of OR+ nodes, we denote by t1, . . . , t|T (O)| the different color tuples of T (O) ordered
lexicographically, and we denote by Chℓ(O) the set of AND-nodes in Ch(O) whose color
tuple is tℓ, i.e., Chℓ(O) = {x ∈ Ch(O) : C̃(x) = tℓ}. The sets Ch1(O), . . . , Ch|T (O)|(O) form
a partition of Ch(O), each part corresponding to a color tuple ti ∈ T (O).

Finally, given a color tuple tℓ := (c1, . . . , cj) ∈ T (O), for each i ≤ j, by Definition 3, each
node of Chℓ(O) has exactly one child with color ci. We denote by Cℓ

i the set of children
of Chℓ(O) colored with ci, i.e., Cℓ

i = {o ∈ Ch(x) : x ∈ Chℓ(O), c(o) = ci} (it is a set of
“grandchildren” of O).

ESA 2021



80:6 A General Framework for Enumerating Equivalence Classes of Solutions

Algorithm 1 Next solution.

1 Input: A set O of OR+ nodes having all the same color c and an equivalence class T

of G/O
2 Output: The equivalence class T ′ of G/O that follows T w.r.t the ≺ ordering.
3 Function Next(T ,O):
4 if T = ∅ and O contains terminal nodes then
5 Return A tree with a single root node colored with c

6 end
7 r ← 0
8 if T = ∅ or T is a single node tree then
9 r ← r + 1

10 if r > |T (O)| then
11 Return ⊥
12 end
13 Let (c1, . . . , cj) be the color tuple of tr ∈ T (O) and let T1, . . . , Tj ← ∅
14 O1 ← Cr

1
15 ℓ← 1
16 else
17 Let r be such that tr ∈ T (O) is the root color tuple C̃(r(T ))
18 Let (T1, . . . , Tj) be the child subtrees of r(T ), the roots of which are colored

respectively with (c1, . . . , cj) := tr

19 For all i ≤ j, let Oi ⊆ Cr
i be the set of nodes in Cr

i compatible with
(T1, . . . , Ti−1)

20 Let ℓ be the largest index i ≤ j such that Next(Ti,Oi) ̸= ⊥ if such index
exists. Otherwise, T ← ∅ and go to line 8

21 end
22 Tℓ ← Next(Tℓ,Oℓ)
23 for ℓ < i ≤ j do
24 Let Oi ⊆ Cr

i be the set of nodes in Cr
i compatible with (T1, . . . , Ti−1)

25 Ti ← Next(∅,Oi)
26 end
27 Return A tree with root color c and root child subtrees (T1, . . . , Tj)

In the left panel of Figure 3, an example graph is shown where each node is labeled by
an integer. The colors are, in increasing order, w, x, y, and z. For O = {1, 2}, the set T (O)
contains the three tuples t1 = (w, y), t2 = (x, y), and t3 = (x, y, z). We have Ch1(O) = {6},
Ch2(O) = {4, 5}, and Ch3(O) = {3}. The sets Cℓ

i are C1
1 = {12}, C1

2 = {11}, C2
1 = {9, 10},

C2
2 = {8, 11}, C3

1 = {9}, C3
2 = {8}, and C3

2 = {7}.

2.3.2 Algorithm description
Notice that by definition of ≺, given a set of OR+ nodes O, all having the same color c,
and a color tuple tℓ ∈ T (O), all equivalence classes T of G/O such that C̃(r(T )) = tℓ are
consecutive with respect to ≺.

The algorithm outputs the equivalence classes in ascending order with respect to ≺.
Given an equivalence class T of G/O for a set of OR+ nodes O of color c, it will output the
equivalence class T ′ of G/O that succeeds T w.r.t. ≺ if it exists or output the symbol ⊥ if T

is the last solution.
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Figure 3 Left panel: An e-colored ad-AND/OR graph. Right panel: For O = {1, 2}, there are
four combinations between C(G/C2

1 ) and C(G/C2
2 ); only two of them are admissible.

Assume that the children of r(T ) are colored with the root color tuple (c1, . . . , cj) =: tr ∈
T (O) and let (T1, . . . , Tj) be the child subtrees of T , the roots of which are colored with
the tuple tr. Notice that for all i ≤ j, Ti is an equivalence class of G/Cr

i . The algorithm
will output the next equivalence class T ′ such that C̃(r(T ′)) = tr if there remains one (same
color tuple at the root), or it will output the first solution such that C̃(r(T ′)) = tr+1 ∈ T (O)
otherwise (the next color tuple at the root).

To find the next solution corresponding to the root color tuple tr, the algorithm will
replace recursively Tj by its successor T ′

j w.r.t. ≺ if there exists one. We obtain the solution
T ′ whose subtrees are (T1, . . . , Tj−1, T ′

j) which is by definition the successor of T in ≺
whenever T ′

j is the successor of Tj . If Tj has no successor (that is, if it is the last one), we
replace if possible Tj−1 by its successor T ′

j−1 and we replace Tj by the smallest admissible
solution (i.e., the successor of ∅). In general, we select at each step the greatest index ℓ such
that Tℓ has a successor w.r.t. ≺, we replace it by its successor T ′

ℓ and we take the smallest
admissible solution for every ℓ < i ≤ j.

Without further care, the above described procedure would output solutions whose child
subtrees (T1, . . . , Tj) of the root correspond to the elements of the Cartesian product of
C(G/Cr

i ), i ≤ j. However, while it is true that if T is a solution, its child subtree Ti is an
equivalence class of G/Cr

i for all i ≤ j, the converse is not true. Indeed, not all elements of
C(G/Cr

1)× · · · × C(G/Cr
j ) lead to an admissible solution (an example is given in the right

panel of Figure 3). In order to find an admissible solution, we should guarantee that the
choice of a given Ti is compatible with the previous choices (T1, . . . , Ti−1). This is done by
selecting the subset of OR+ nodes Oi ⊆ Cr

i that are compatible with (T1, . . . , Ti−1) (see
Definition 5 below). An admissible choice of Ti will then be any equivalence class of G/Oi.
The two key properties are that the set Oi can be easily computed, and that it is never
empty, i.e., there is always a choice for Ti that is compatible with the previous choices of
(T1, . . . , Ti−1) (there is at least one choice that corresponds to the current solution). Notice
that if the latter were not true, the algorithm would not have a polynomial delay complexity
since we may spend exponential time without reaching a final solution. With this property,
we are guaranteed that we can always extend a partial tuple (T1, . . . , Ti) until we reach a
complete tuple (T1, . . . , Tj) that will form a solution.
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Compatible nodes

Given a set of OR+ nodes O all colored with the same color c and a tree T of C(G/O), we
denote by r(π−1(T )) := {r(S) : S ∈ π−1(T )} the subset of OR+ nodes of O, each one of
which is the root of a solution subtree of class T . The following definition formalizes the
notion of compatible nodes mentioned previously.

▶ Definition 5. Let O be a set of OR+ nodes of color c, tr =: (c1, . . . , cj) ∈ T (O), and let
T1, . . . , Tk, with k < j, be respectively equivalence classes of C(G/Cr

i ) for all i ≤ k. We say
that a node o ∈ Cr

k+1 is compatible with (T1, . . . , Tk) if there exists an AND-node x ∈ Chr(O)
such that o is a child of x and such that r(π−1(Ti)) contains a child of x for all i ≤ k.

2.3.3 Analysis
▶ Proposition 6. Let T be an equivalence class of G/O for a set O of OR+ nodes of G, all
colored with the same color c. Then, the function Next of Algorithm 1 is such that:
1. Next(∅,O) returns the smallest equivalence class of G/O w.r.t. ≺.
2. Next(T,O) returns the equivalence class of G/O that follows T w.r.t. ≺.
3. if T is the last equivalence class of G/O, Next(T,O) returns ⊥.

Due to space constraints, some proofs are omitted and can be found in the full version of
this paper [36].

▶ Theorem 7. Given an e-colored ad-AND/OR graph G, the set C(G) can be enumerated
with delay O(n · s) where n is the number of nodes of G and s is the maximum size of a
solution.

Proof. To enumerate C(G), we first split the start nodes of G into sets S0, . . . , Sk according
to their colors. For each set Si, starting with T = ∅, we repeatedly assign Next(T, Si) to T

and output it until T = ⊥. By Proposition 6, this guarantees that we output every solution
of C(G/Si) exactly once. Since any solution of C(G) belongs to C(G/Si) for a given i ≤ k,
every solution of C(G) will be outputted exactly once.

For the complexity, notice that at most one recursive call is performed by the node of the
next solution. More precisely, if Next(T,O)= T ′, there will be exactly one recursive call per
node in T ′ that is not in T , and thus at most s recursive calls will be performed.

In each recursive call, both the set T (O) and the partition {Cr
i }i≤j of grandchildren of

O can be computed in O(n) time. It remains to show that the sets of compatible nodes Oi,
i ≤ j, can be computed in O(n) time in total which will conclude the proof. To do this, we
should be able to compute the sets r(π−1(Ti)) for all i ≤ j. If Next(T,O)= T ′, the easiest
way is to return the set r(π−1(T ′)) together with T ′ when the call Next(T,O) returns. This
could be done by observing that if T ∈ C(G/O) where O is a set of goal nodes all having
the same color c, then r(π−1(T )) = O, and if T has child subtrees T1, . . . , Tj then r(π−1(T ))
is the set of nodes of O that has at least an AND-child x such that the children of x contain
exactly one node in r(π−1(Ti)) for each i ≤ j, which can be found in O(n) time. Thus only
O(n) time is necessary at each recursive call to return r(π−1(T ′)) in addition to T ′. ◀

3 Application to dynamic programming

3.1 A formalism for tree-sequential dynamic programming
Since its introduction by Karp and Held [21], monotone sequential decision processes (mSDP)
have been the classical model for problems solvable by dynamic programming (DP). This
formalism is based on finite-state automata. The solutions of DP-problems are thus equivalent
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to languages of regular expressions, or to paths in directed graphs. It is known that Bellman’s
principle of optimality [5] also applies to problems for which the solutions are not sequential
but tree-like [9]. Various generalizations have been proposed to characterize broader classes
of problems solvable by DP or DP-like techniques [11, 19]. In this paper, we consider a
framework which is the immediate generalization of the mSDP model, i.e., generalizing
finite automata (regular expressions, paths in DAGs) to finite tree automata (regular tree
grammars, solution trees of general AND/OR graphs). Further generalizations exist (from
trees to graphs of treewidth > 1); the collection of these methods is known as Non-serial
dynamic programming [6].

In this model, a tree-sequential problem can be specified by a finite (bottom-up) tree
automaton A = (Q, Σ, δ, q0, QF ), where Q is a finite set of states, Σ is a ranked alphabet,
δ is a set of transition rules of the form (q1, . . . , qn, a, q) where q1, . . . , qn, q ∈ Q and a ∈ Σ,
q0 ∈ Q is the initial state, QF ⊆ Q is a set of final states. The problem specification also
includes a cost function. The set L(A) of trees accepted by the tree automaton A defines the
set of feasible solutions. The minimization problem seeks to minimize the cost function over
the set L(A) of feasible solutions.

We will consider the simple case of a positive additive cost function that always equals
zero in the initial state. An additive cost function can be defined via an incremental cost
function I : Q∗ × Σ→ R, where Q∗ consists of tuples of states in Q of the form (q1, . . . , qn).
I(q1, . . . , qn, a) can be viewed as the cost of attaching n child subtrees to a new root of symbol
a. While it might seem restrictive to require an additive structure on the cost function, this
simple case does cover many important problems admitting a DP-algorithm, for instance,
Travelling Salesman [4, 18], Knapsack [22], or Levenshtein distance [34].

In this case, the answer of the minimization problem can be shown to be equal to
minq∈QF

D(q), where D : Q→ R≥0 is defined by the following recurrence equations:

D(q0) = 0 ,

for q ̸= q0 , D(q) = min
(q1,...,qn,a,q)∈δ

∑
1≤i≤n

D(qi) + I(q1, . . . , qn, a) . (1)

A dynamic programming algorithm for the minimization problem corresponds to an algorithm
that computes D; the function D is commonly called a dynamic programming table (a
DP-tabled, also called a DP-array, or a DP-matrix). Needless to say, such an algorithm does
not exist in general for given arbitrary tree automata and cost functions [20].

Using an algebraic approach, Gnesi and Montanari [16] have shown that solving the
functional Equation (1) corresponds to finding the solution subtrees of a general AND/OR
graph. An important special case in which DP-algorithms exist is when the underlying
AND/OR graph is acyclic.

When a fixed tree is given as an input to the problem, the underlying AND/OR graph is
acyclic and decomposable (that is, it is an ad-AND/OR graph). Such problems are hence
naturally solvable by DP-algorithms. These algorithms are known in folklore under the name
Dynamic programming on a tree. Many graph-theoretical problems (e.g., maximum matching,
longest path) can be solved optimally on trees by DP-algorithms. Numerous real-world
applications also rely on DP-algorithms on trees; examples can be found, for instance, in
Data Science [30], Computer Vision [14, 33], and Computational Biology [3, 13].

Explicit construction of the ad-AND/OR graph for DP on a fixed tree

Due to its usefulness for the examples that we will develop next, in the case of DP on a fixed
tree, an explicit construction of the ad-AND/OR graph from Equation (1) is described below.
The construction is done in two steps. In the first step, we build a graph in which every node
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retains an additional attribute, its value, and every OR+ node is labeled by a state q ∈ Q.
In the second step, we prune the graph by removing nodes that do not yield optimal values.
1. For each (q0, a, q) ∈ δ, create a goal node of value 0 labeled by q. Then, for each q ̸= q0

in post-order,
i. For each (q1, . . . , qn, a, q) ∈ δ, create an AND node, connect it to the n OR+ nodes

labeled by q1, . . . , qn. Its value is equal to the sum of the values of its children, plus
I(q1, . . . , qn, a).

ii. Create a single OR node, connect it to every AND node created in the previous step.
Its label is q, and its value is the minimum of the values of its children.

2. For each q ∈ QF , remove the OR node labeled by q unless its value is equal to
minq∈QF

G(q). For each OR node s, remove the arc to its AND-child node si if the value
of si is not equal to the value of s. Finally, remove recursively all AND nodes without
incoming arcs.

3.2 Examples

3.2.1 Optimal tree coloring problem
Description

A prototypical problem that fits into the framework of DP on a tree is Optimal tree
coloring, that is, finding an optimal node-coloring of the input tree. Many problems of
practical interest reduce to Optimal tree coloring; three concrete examples are given
later in this section.

If T is the input (rooted, ordered) tree and C is the set of colors, such a problem seeks a
coloring ϕ : V (T )→ C that minimizes the cost function. There can be many constraints on
the coloring function: some nodes of T may be forced to have a certain color, the possible
colors of a node may depend on the colors of its descendants. In our tree-sequential dynamic
programming formalism, a tree automaton and a cost function are given as part of the input.
The tree automaton defines the set L(A) of feasible coloring functions satisfying all those
constraints. A state q can be interpreted as a colored subtree of T with a particular root
color; the unique initial state is an empty coloring and transitions into a colored leaf of T ; a
final state corresponds to a fully colored T with a particular root color. A commonly used
form of cost functions considers the (possibly weighted) sum over the edges of the tree of the
cost of putting two colors on each end of an edge, that is, an incremental cost function I of
the form I(q1, . . . , qn, a, p) =

∑
1≤i≤n p(ai, a) where ai is the color of the root of the subtree

in state qi and p : C2 → R≥0 is a function that gives the cost of putting two colors at each
end of an edge.

Equivalence relations on the set of solutions

A possible strategy to define equivalence classes on the solution space of the Optimal tree
coloring problem is to consider some colors to be locally equivalent on a node. In practical
applications (see the next section), the space of colors can be quite large. Even though the
precise colors of each node are necessary for correctly computing the cost function, when the
solutions are analyzed by a human expert, it can be desirable to omit the colors and just
look at whether the color of a node belongs to some group of colors. Therefore, this kind of
equivalence relations is natural in many situations. Our Definition 4 of equivalence classes of
an e-colored ad-AND/OR graph deals exactly with equivalence relations of this type.
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Let e be a function that maps a color c to its “color group” e(c). Two solutions of the
Optimal tree coloring problem ϕ1, ϕ2 : V (T )→ C are said to be equivalent if ∀u ∈ V (T ),
e(ϕ1(u)) = e(ϕ2(u)). Let G be the ad-AND/OR graph associated with this instance. For
each OR+ node s of G labeled with the state q, where q is interpreted as a colored subtree
of T with a particular root color c, color the node s with e(c). Then G is e-colored and C(G)
corresponds to the set of equivalence classes of the solutions of the instance. Notice that the
constraint we had on the e-coloring of an ad-AND/OR graph is naturally satisfied by any
meaningful function e because in a DP setting we only consider ordered trees: the i-th and
j-th children of a node of T cannot be in the same color group unless i = j.

Concrete examples of tree coloring problems

Example 1. The first example is related to the alignment of gene sequences on a phylogenetic
tree [31]. The input is a tree T , a set Σ of letters (DNA alphabet or protein alphabet), a
function that labels each leaf node of T with a letter, and a distance function d : Σ2 → R≥0
between two letters. The goal is to extend the leaf labeling to a full labeling ϕ : V (T )→ Σ
such that the sum of the distances over the edges of T is minimized. Defining equivalence
relations of the solutions based on a grouping of the letters is uncontrived in this problem: for
the DNA or protein alphabet, the letters can be subdivided into structurally similar groups.

Example 2. The Frequency assignment problems are a family of problems that naturally
arise in telecommunication networks, and that have been extensively studied in graph theory
as a generalization of graph coloring known as the T-coloring problem [17, 29, 32]. In the
variant called the list T-coloring, the input is a graph G representing the interference between
radio stations, a set C of colors, a function S that gives for each vertex v ∈ V (G) a set
S(v) ⊆ C of colors (possible frequencies for a station), and a set T ⊆ C2 of forbidden pairs
of colors (interfering frequencies). The goal is to find a coloring ϕ : V (G)→ C such that a
∀v ∈ V (G), ϕ(v) ∈ S(v), and ∀(u, v) ∈ E(G), (ϕ(u), ϕ(v)) ̸∈ T . While this problem is hard
in general, it can be solved by DP when the underlying graph is a tree. In this case, we can
enumerate colorings of the input trees without any forbidden pair of colors on the edges.
Defining equivalence relations by grouping some of the colors together (similar frequencies)
can be a practical way of reducing the size of the output.

Example 3. The Tree Reconciliation problem is the main method for analyzing the
co-evolution of two sets of species, the hosts and their parasites [28]. The input are two
phylogenetic trees H, P (of the hosts and of the parasites, respectively), together with a
mapping ϕ0 : Leaves(P )→ Leaves(H) that reflects the present-day parasite infections. What
needs to be enumerated are then all past associations, that is, all mappings of the non-leaf
nodes of the parasite tree to the nodes of the host tree that optimize a function which overall
represents the sum of the number of different possible “events” weighted by the inverse of
their estimated probability. The number of optimal solutions is often huge and, by applying
our Algorithm 1, the enumeration of biologically inspired equivalence classes have allowed a
significant reduction (in some cases from 1042 to only 96 classes) of the size of the output
while still preserving the important biological information (see [35]).

3.2.2 Dynamic programming on tree decomposition of a graph
Many graph problems can be solved in polynomial time with a dynamic programming
algorithm when the input graph has bounded treewidth (see for example [8]). The underlying
idea is that, given a tree decomposition of a graph, the dynamic programming algorithm
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traverses the nodes (bags) of the decomposition and consecutively solves the respective sub-
problems. For vertex subset optimization problems, given a bag X, a dynamic programming
algorithm generally computes for each Z ⊆ X the optimal solution of the sub-problem whose
intersection with X is Z. In this context, we could define two solutions to be equivalent if
they intersect each bag of the decomposition in an “equivalent” way. The equivalence relation
on the solutions is then defined by an equivalence relation over the subsets of each bag, and
two solutions S1 and S2 are equivalent if for all bags X of the decomposition, S1 ∩ X is
equivalent to S2 ∩X.

One of the simplest examples is to consider that all the nonempty subsets of vertices of a
bag are equivalent. Thus, what we are interested in is whether a solution “hits” a bag (i.e.,
whether it has a nonempty intersection with the vertices in the bag). Consequently, two
solutions would be considered equivalent if they hit the same bags.

We can also consider two subsets of a bag to be equivalent if they have the same size. In
this case, two solutions would be equivalent if each bag contains the same number of vertices
in the two solutions.

We believe that considering solutions in the way they are distributed along the tree
decomposition of a graph could give a good overview of the diversity of the solution space.

4 Conclusion and perspectives

In this paper, we provide a general framework for the enumeration of equivalence classes
of solutions in polynomial delay for a wide variety of contexts. This work opens a door to
different research directions.

It would be interesting to ask whether we can efficiently enumerate groups of solutions
that result from classical clustering procedures, or one representative per group. Moreover,
in this paper we heavily rely on the decomposability property of the structure of the solution
space. It remains open whether the problem of enumerating equivalence classes is hard
without this restriction.
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1 Introduction

Priority queues (PQs) are a fundamental data structure for many applications. They manage
a set of elements and support operations for efficiently inserting elements and deleting
the smallest element (deleteMin). Whenever we have to dynamically reorder operations
performed by an algorithm, PQs can turn out to be useful. Examples include job scheduling,
graph algorithms for shortest paths and minimum spanning trees, discrete event simulation,
best first branch-and-bound, and other best first heuristics.

On modern parallel hardware, we often have the situation that p parallel threads want to
access the PQ concurrently both to insert and to delete elements. This is problematic for
several reasons. First of all, even the semantics of a parallel PQ is unclear. The classical
notion of serializability is not only expensive to achieve but also not very useful from an
application point of view. For example, in a branch-and-bound application, a serializable
parallel PQ could arbitrarily postpone insertion and corresponding deletion of a search tree
node on the path leading to the eventual solution. This makes the application arbitrarily
slower than the sequential one. The ideal semantics of a concurrent PQ (CPQ) would be that
any element for which an insertion has started becomes visible instantaneously for deletion
from any other thread. This is unattainable for fundamental physical reasons but can serve
as a basis for defining the quality of relaxed priority queues (RPQs). In Section 2 we use
this approach to define the complementary notions of the rank error of deleted elements
and the delay of elements that are overtaken by larger elements. After discussing related
work in Section 3, Section 4 describes the main contribution of this paper: MultiQueues are
a simple approach to CPQs based on c · p sequential PQs (SPQs) for some constant c > 1.
Insertions go to a random SPQ so that each of them contains a representative sample of the
globally available elements. Deleted elements are the smaller of the minima of two randomly
chosen SPQs. By choosing two rather than one queue, fluctuations in the distribution of
queue elements are stabilized. Consistency is maintained by locking queues that are changed.
See Figure 1 for an example. Since there are more queues than threads, no thread ever has
to wait for a lock. Thus, we achieve a lock-free (and even wait-free) algorithm despite using
locks which is an interesting feature of MultiQueues.

Although MultiQueues scale better than competitors both in theory and practice, they
have the practical problem that they lack cache locality – in each operation, a thread
accesses several cache lines from randomly chosen SPQs which are rarely reused but usually
cause cache invalidation costs later. We therefore introduce three orthogonal measures for
improving locality: (1) Insertion and deletion buffers ensure that most operations access only
a small number of cache lines. (2) We use sequential queues that allow bulk access in a more
cache-efficient way than using several single-element operations. (3) Threads optionally stick
to the same set of queues for several consecutive operations. In the analysis (Section 4.5),
we show that MultiQueue operations are almost as fast as their sequential counterparts –
scaling linearly with the number of threads. We are also able to analyze rank error and delay

deletion buffer

bulk deletions
deletion
inspect min.

PQ2 PQ3 PQ4 PQ5 PQ6 PQ7 PQ8 priority queue
insertion buffer

bulk insertions
insertion

lock
thread

PQ1

T2 T3 T4T1

Figure 1 A MultiQueue with 8 sequential queues and 4 threads. Thread T2 currently locks PQ7
to insert an element. T4 inspected PQ3 and PQ8 and now locks PQ8 to remove its smallest element.
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under moderately simplifying assumptions – it is linear in expectation and O(p log p) with
high probability. Section 5 summarizes an extensive experimental evaluation of MultiQueues
including a comparison with alternative approaches. Section 6 concludes the paper.

2 Preliminaries

A priority queue pq represents a set of elements. We use n = |pq| for the size of the queue.
Classical priority queues support the operations insert for inserting an element and deleteMin
for obtaining and removing the smallest element. The most frequently used SPQ is the
binary heap [29].

A relaxed CPQ does not require the deleteMin operation to return the minimum element.
The rank of an element of a set M is its position in a sorted representation of M . A natural
quality criterion for the deleteMin operation is the rank error of the returned element, i.e.,
the number of elements in the CPQ at the time of deletion that are smaller than the returned
element. Over the entire use of the CPQ, one can look at the mean rank, the largest observed
rank, or, more generally, the distribution of observed ranks. A complementary measure that
has previously been largely neglected is the delay of a queue element x. The delay of x is
the number of elements with lower priority than x that are deleted before x. This measure is
important because it can be closely tied to the performance of applications. For example,
consider a CPQ used in an optimization problem where the currently best queue element
leads to the ultimate solution. If the CPQ from now on always remove the second best
element, it has excellent rank error but will never find the solution because the best element
in infinitely delayed.

It is difficult for a CPQ to consistently and efficiently maintain its exact size. A straight-
forward way to approximate the size can for example be implemented similarly to concurrent
hash tables [16]. While knowing the size is not of direct importance for most applications,
many of them need some kind of termination detection. Sequential algorithms would often
terminate after they found the queue to be empty. Even the check for emptiness is difficult in
concurrent settings since there is no way to know whether some other thread has concurrently
called an insertion operation (or is about to do so). Hence, we view termination detection as
a problem that has to be solved by the application. We adopt the semantics of most RPQs
we are aware of that the deleteMin operation is allowed to fail – implying that the queue
could not find any remaining elements without being able to prove that the queue is actually
empty. A failed deleteMin has the current size of the queue as its rank error, i.e., as if ∞
was removed from the queue.

An algorithm is wait-free if it is guaranteed to make progress in a bounded number of
steps [13]. Since we discuss randomized algorithms, we use this term also if the bound is
probabilistic, i.e., if the expected number of steps is bounded.

3 Related Work

There has been considerable work on bulk parallel priority queues (BPQs) in the 1990s
[8, 18, 23]. BPQs differ from CPQs in that they assume synchronized batched operation
but they are still relevant as a source of ideas for asynchronous implementations. Indeed,
Sanders [23] already discusses how these data structures could be made asynchronous in
principle: Queue server threads periodically and collectively extract the globally smallest
elements from the queue moving them into a buffer that can be accessed asynchronously.
Note that within this buffer, priorities can be ignored since all buffered elements have a low
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rank. Similarly, an insertion buffer keeps recently inserted elements. Moreover, the best
theoretical results on BPQs give us an idea of how well RPQs should scale asymptotically.
For example, Sanders’ BPQ [23] removes the p smallest elements of the BPQ in time O(log n).
This indicates that the worst-case rank error and delay close to linear in the number of
threads should be achievable.

Sanders’ BPQ [23] is based on the very simple idea to maintain a local SPQ on each thread
and to send inserted elements to random threads. This idea is older, stemming from Karp
and Zhang [14]. This approach could actually be used as an RPQ. Elements are inserted into
the SPQ of a randomly chosen thread. Each thread deletes elements from its local SPQ. It is
shown that this approach leads to only a constant factor more work compared to a sequential
algorithm for a globally synchronized branch-and-bound application where producing and
consuming elements takes constant time. Unfortunately, for a general asynchronous RPQ,
the Karp-Zhang-queue [14] has limitations since slow threads could “sit” on small elements,
while fast threads would busily process elements with high rank – in the worst case, the rank
error could grow arbitrarily large. Our MultiQueue builds on the Karp-Zhang-queue [14],
adapting it to a shared memory setting, decoupling the number of queues from the number
of threads, and, most importantly, using a more robust protocol for deleteMin.

Many previous CPQs are based on the SkipList data structure [17]. At its bottom, the
SkipList is a sorted linked list of elements. Search is accelerated by additional layers of linked
lists. Each list in level i is a random sample of the list in level i − 1. Many previous CPQs
delete the exact smallest element [26, 27, 15, 6]. This works well if there are not too many
concurrent deleteMin operations competing for deleting the same elements. However, this
inevitably results in heavy contention if very high throughput is required. The SprayList
[3] reduces contention for deleteMin by removing not the global minimum but an element
among the O

(
p log3 p

)
smallest elements. However, for worst case inputs, insertions can

still cause heavy contention. This is a fundamental problem of any data structure that
attempts to maintain a single globally sorted sequence. Wimmer et al. [31] describe a
RPQ for task scheduling based on a hybrid between local and global linked lists and local
SPQs. Measurements in Alistarh et al. [3] indicate that this data structure does not scale as
well as SprayLists – probably due to a frequently accessed central linked list. Henzinger et
al. [12] give a formal specification of RPQs and mention a SkipList based implementation
without giving details. Interestingly, for a relaxed FIFO-queue, the same group proposes a
MultiQueue-like structure [11].

The contention avoiding priority queue (CAPQ) [21, 22] is based on a centralized skip-list
S but switches to thread-local insertion and deletion buffers when it detects contention on S.
To maintain some global view, operations will still occasionally use S. This combines high
accuracy in uncontended situations with high throughput under contention. However, the
quality penalty for switching to local buffers is fairly high. Assuming the centralized queue is
accessed every m ∈ Θ(p) steps (which seems necessary to avoid contention) the paper shows
that a rank error in O

(
p2)

is guaranteed for every m-th step. Nothing can be guaranteed for
the remaining fraction of 1 − 1/m operations. 1

For large SPQs, cache-efficient data structures are useful. Unfortunately, the best of these
(e.g., [24]) are not useful for CPQs since they are only efficient in an amortized sense and
locking an SPQ for an extended period of time could lead to large rank errors and delays.

1 Such a guarantee could also be achieved with a simplistic version of MultiQueues where each thread
inserts and deletes from a fixed queue except that every p steps a thread scans all queues for the globally
smallest element.
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4 MultiQueues

We first describe the basic MultiQueue in Section 4.1 and then refine it to improve cache
locality in Sections 4.2–4.4. In Section 4.5 we provide a simplified theoretical analysis of the
run time and quality of the MultiQueue. Section 4.6 discusses implementation details.

4.1 Basic MultiQueue

The basic MultiQueue data structure is an array Q of c ·p SPQs where c is a tuning parameter
and p is the number of parallel threads. Figure 1 gives an example with c = 2. Access to each
local queue is protected by a lock flag. The insert operation locks a random unlocked queue
Q[i] and inserts the element into Q[i]. Figure 2 gives pseudocode. Note that this operation is
wait-free since we never wait for a locked queue. Since at most p queues can be locked at
any time, for c > 1 we will have a constant success probability. Hence, the expected time for
acquiring a queue is constant. Together with the time for insertion we get expected insertion
time O(log n).

An analogous implementation of deleteMin would lock a random unlocked queue and
return its minimal element. However, the quality of this approach leaves a lot to be desired.
In particular, it deteriorates not only with p but also with the queue size. One can show
that the rank error grows proportional to

√
n due to random fluctuations in the number of

operations addressing the individual queues. Therefore we invest slightly more effort into the
deleteMin operation by looking at two random queues and deleting from the one with the
smaller minimum. Figure 2 gives pseudocode for the insert and deleteMin operations. Our
intuition why considering two choices may be useful stems from previous work on randomized
load balancing, where it is known that placing a ball on the least loaded of two randomly
chosen machines gives a maximum load that is very close to the average load independent of
the number of allocated balls [4].

Even when the queue is small, cache efficiency is a major issue for MultiQueues since
accessing a queue Q[i] from a thread j will move the cache lines accessed by the operation
into the cache of thread j. But most likely, some random other thread j′ will next need that
data causing not only cache misses for j′ but also invalidation traffic for j.

Procedure insert(e)
repeat

i := uniformRandom(1..cp)
try to lock Q[i]

until lock was successful
Q[i].insertToSPQ(e)
unlock Q[i]

Procedure deleteMin
repeat

i := uniformRandom(1..cp)
j := uniformRandom(1..cp)
if Q[i].min > Q[j].min then swap i, j

try to lock Q[i]
until lock was successful
e := Q[i].deleteMinFromSPQ; unlock Q[i]
return e

Figure 2 Pseudocode for basic MultiQueue insert and deleteMin. This code assumes that an
empty SPQ returns ∞ as the minimum element. A return value of ∞ from deleteMin then indicates
that no element could be found (which does not guarantee that all SPQs are empty). A practical
implementation might make additional efforts to find elements when encountering empty SPQs.
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Procedure insertToSPQ(e)
if D = ∅ ∨ e < max D then

if |D| < b then D := D ∪ {e}; return
(e, D) := (max D, (D \ {max D}) ∪ {e})

if |I| = b then flush I to M

I := I ∪ {e}

Procedure deleteFromSPQ
if D = ∅ then return ∞ // fail
e := D.deleteMin
if D = ∅ then

refill D from M ∪ I

return e

Figure 3 Pseudocode for inserting and deleting elements from an already locked sequential queue
represented by the main queue M , an insertion buffer I and a deletion buffer D.

4.2 Buffering
To reduce the average number of cache lines accessed, we represent each SPQ by the main
queue M , an insertion buffer I and a deletion buffer D that is organized as a sorted ring-
buffer. Each buffer has a fixed capacity b. We maintain the invariant that (unless the SPQ
is empty) D contains the smallest elements of M ∪ D ∪ I. This implies that min of the SPQ
is always the first element of D.

To maintain this invariant, inserting an element e into an SPQ first checks whether D is
empty or contains a larger element. If so, e is inserted into D. If D was not full, this finishes
the insertion. Otherwise, e becomes the largest element in D. If I is full, it is flushed into
the main queue. Finally, e is inserted into I. See Figure 3 for high-level pseudocode.

DeleteMin is straightforward. When D is not empty, its smallest element is removed
and returned. If this empties D, it is refilled from M ∪ I. A simple way to do this is to first
flush I into M and then extract the smallest b elements from M into D. Alternatively, we
can first refill D from M only and then scan through I to swap elements smaller than max D

with the largest elements from D in a fashion analogous to what is done in insertSPQ. This
has the advantage that all interactions between the buffers and M is in the form of batches
of predictable size. This will be exploited in Section 4.3.

Buffering implies that the operations most often only access the buffers themselves and the
lock (accessing and modifying the buffers requires the SPQ to be locked). More specifically,
an insertion “usually” reads the largest element from D and then operates on I (assuming
that inserted elements rarely go to D). deleteMin “usually” only accesses D. When buffers
are flushed or refilled, a single thread performs a batch of operations on a single queue and
thus can exploit whatever locality the main queue supports. In binary heaps for example,
insertions exhibit high locality. Deletions at least exhibit some locality near the root, at the
variable specifying the size of the queue, and at the rightmost end of the bottom layer of
the tree.

4.3 Batching
To fully exploit that MultiQueues with buffering access the main queues in a bulk fashion
we can use SPQs that directly support batch operations. In our prototype, we considered
merging binary heaps. These are structured like binary heaps but each node contains k sorted
elements. The heap invariant remains that nodes contain elements that are no smaller than
the elements in the parent node. Insertion and deletion are also analogous to ordinary binary
heaps except that compare-and-swap operations are generalized to merge-and-split.

On the one hand, merging binary heaps yield higher cache locality for bulk operations
than binary heaps since all elements in each tree node can be stored consecutively and
fewer nodes have to be accessed. On the other hand, they come with additional algorithmic
complexity and higher worst-case access time. They are also not easily combined with a-ary
heaps that are a simpler alternative to achieve somewhat higher locality than in binary heaps.
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4.4 Stickiness
As a third measure to improve cache locality we introduce the concept of stickiness. The
stickiness parameter s controls for how many consecutive operations a thread t reuses a
particular local queue for its insert and deleteMin operations. After the stickiness period of
one local queue ends for t or if locking the queue fails, t randomly chooses another queue to
stick to. The intuition behind this protocol is that for large enough s and c ≥ 3, the system
converges to a state where threads use disjoint queues most of the time. Stickiness provides
a simple mechanism to trade-off increased cache efficiency at the cost of potentially higher
rank errors and increased delay.

4.5 Analysis
In this section we analyze the theoretical performance of the MultiQueue under simplifying
assumptions.

4.5.1 Running Time
We analyze the asymptotic running time of the operations insert and deleteMin of the
MultiQueue in a realistic asynchronous model of shared memory computing where k threads
contending to write the same machine word need time O(k) to perform those operations
(e.g., the aCRQW model [25, Section 2.4.1]).

▶ Theorem 1. With c > 1, the expected execution time of the operations insert and deleteMin
is O(1) plus the time for the sequential queue access.

Proof. Whenever a thread attempts to lock a queue q, there are at most p − 1 locked queues.
Hence the success probability is at least

s := 1 − p − 1
cp

≥ 1 − 1
c

∈ Ω(1) .

Hence the expected number of attempts is
∞∑

i=1
is(1 − s)i−1 = 1

s
≤ 1

1 − 1
c

= c

c − 1 ∈ O(1) .

The stickiness does not affect the expected number of attempts since it only dictates the
first queue to attempt to lock but not subsequent attempts in case of failure. The buffers
have constant size, so all operations on them are in O(1). The bulk-inserting of the insertion
buffer into the queue and refilling the deletion buffer amortize to the same asymptotic cost
as accessing a sequential queue for each element individually. ◀

Note that the above analysis even holds when threads are blocked: In the worst case,
each thread holds a lock. The overhead for another thread to avoid these locks is already
accounted for in the above proof. Hence all other threads are guaranteed to make progress
(in a probabilistic sense). Thus MultiQueues are probabilistically wait-free.

Using different sequential queues, we get the following bounds for the comparison based
model and for integer keys:

▶ Corollary 2. MultiQueues with binary heaps need constant average insertion time and
expected time O(log n) per operation for worst case operations sequences. For integer keys in
the range 0..U , using van Emde Boas search trees [28, 7] as local queues, time O(log log U)
per operation is sufficient.
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4.5.2 Quality
Quality analysis is still a partially open problem. However, we will explain how rank errors
and delays can be estimated under simplified but intuitive assumptions in the absence of
stickiness.

Let us assume that all m current elements have been allocated uniformly at random to
the local queues. This assumption holds if there have been no deleteMin operations so far
and no locking attempt during insert failed. It is an open question whether lock contention
and deleteMin operations invalidate this assumption in practice. Furthermore, let us assume
that we choose the queues to look at for deletion randomly and no queue is currently locked.

Rank Errors

With these assumptions, the probability to delete an element e of rank i is

P(rank = i) =
(

1 − 2
cp

)i−1 2
cp

The first factor expresses that the i − 1 elements with smaller ranks are not present at the
two chosen queues. The second factor is the probability that the element with rank i is
present. Therefore, the expected rank error in the described situation is

m∑
i=1

iP(rank = i) ≤
∑
i≥1

i

(
1 − 2

cp

)i−1 2
cp

= c

2p ∈ O(p) . (1)

The cumulative probability that the rank of e is larger than k is

P(rank > k) =
(

1 − 2
cp

)k

, (2)

as none of the elements with a rank smaller than k must be present on the two chosen queues.
P(rank > k) drops to p−a for k = ca

2 p ln p, i.e., with probability polynomially large in p, we
have a rank error in O(p log p).

We can also give qualitative arguments on how the performed operations change the
distribution of the elements. Insertions are random and hence move the system towards
a random distribution of elements. Deletions tend to remove more elements from queues
with small keys than from queues with large keys, thus stabilizing the system. Alistarh et al.
[2, 1] confirm our conjecture for a slightly simplified process and also show that it suffices to
only “sometimes” look at more than one key. On the other hand, they show that the rank
error grows in an unbounded fashion if always only a single queue is considered for deletion.

Delay

The delay of an element e with rank i is equal to the number of deletions of elements with
rank higher than i. Let D denote the event that a particular deleteMin operation delays
or removes element e. Let R denote the event that e is removed. We now compute the
conditional probability that e is deleted given that it is delayed or deleted by the deleteMin
operation. By the definition of conditional probability, we have P (R | D) = P(R∩D)

P(D) .

With P(R ∩ D) = P(rank = i) =
(

1 − 2
cp

)i−1
2
cp and P(D) = P(rank ≥ i) =

(
1 − 2

cp

)i−1
,

we get P(R | D) = 2
cp . Since P(R | D) is constant, the delay follows a geometric distribution

with an expected value of cp
2 and values in O(p log p) with high probability.
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4.6 Implementation Details

Lock Ins. buffer Del. buffer Lock Ins. buffer Del. buffer

Q[i] Q[i+1]

SPQ SPQ

MinMin

Figure 4 The array containing the lock, the buffers as well the pointer to the SPQ in each entry.
The padding blocks (grey) prevent false sharing of neighboring entries.

We first give a detailed description and reasoning of the data structures used in our
implementation of the MultiQueue as described above. We then show implementations of
the insert and deleteMin operations.

At its core, a MultiQueue is an array Q with one entry for each local queue. Each entry
contains a lock, the insertion and deletion buffers, and a pointer to the main queue itself.
Moreover, the key of the minimum element in the deletion buffer is redundantly stored next
to the lock. Comparing the minima of two local queues thus only involves atomic access to
this key and does not access the deletion buffer, which would require locking. Note that
this technique allows for slight inaccuracies, as the minimum in the deletion buffer could
be different from the explicitly stored minimum key if another thread deletes the minimum
from the deletion buffer during comparison. However, consistency is not impacted by this.
The entries are padded and aligned to cache lines to prevent false sharing of neighboring
entries. On systems with nonuniform memory access (NUMA) the padding is extended to
virtual memory pages that are distributed round-robin over the NUMA-nodes. This balances
memory traffic over the nodes. See Figure 4 for an illustration. Additionally, each thread
stores local data such as stickiness counters. False sharing between these data structures is
also avoided.

The insertion buffer is implemented as a fixed array of size b, preceded by a size counter.
The deletion buffer must support efficient removal of the first element, lookup of the last
element, and insertions at arbitrary positions. We chose a ring buffer that stores its size
and the index of the first element upfront as the underlying data structure. Ring buffers
support random lookup and removing the first element in constant time, while inserts at
arbitrary positions take at most b/2 element moves. We implement both 8-ary heaps and
k-merging binary heaps as SPQs, where k is a tuning parameter. 8-ary heaps provide the same
theoretical guarantees as binary heaps but better cache locality. To achieve stable worst-case
access times, our implementation allocates enough memory so that array resizes by the local
queues are unlikely. Having stable worst-case access times is relevant for MultiQueues since
an operation that exceptionally takes very long would lock a queue for a long time. If this
queue also contains elements of low rank, their delay as well as the rank error of elements
deleted in the meantime could become large. On machines with NUMA, the memory for
each SPQ is allocated on the same NUMA node.

While our MultiQueue implementation can handle arbitrary element types, the imple-
mentation is designed and optimized with elements of small size in mind.

5 Experiments

We first compare our theoretical analysis of rank errors and delays with experimental results.
We then perform parameter tuning and examine different implementation variants of the
MultiQueue. Afterward, we compare the MultiQueue with other concurrent priority queues in
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terms of quality, throughput, and scalability. For these experiments, each thread repeatedly
either deletes an element from the queue or inserts a new one. This benchmark provides
good insights on the maximum throughput and quality of the queues under high contention.

Queue elements are key-value pairs consisting of two 32-bit unsigned integers, where
the key determines the element’s priority. The queue is filled with n0 elements prior to
the measurement. Unless otherwise noted, n0 = 106, the inserted elements are uniformly
distributed in [0, . . . , 232 − 1], and the rank errors and delays are measured over the course
of 107 deleteMin operations. To conclude this chapter, we perform a parallel single-source
shortest-path (SSSP) benchmark to shed light on the performance under more realistic
settings.

Experiments were conducted on two machines: Machine A utilizes an AMD EPYC™
7702P 64-core processor. Each core runs at 2.0 GHz and supports two hardware threads.
The system runs on Ubuntu 20.04 with Linux kernel version 5.4.0. Machine B is a dual
socket system with an Intel® Xeon® Platinum 8368 Processor with 2.4 GHz on each socket,
yielding 2 × 38 cores and 152 available hardware threads. The system runs on SUSE Linux
Enterprise Server 15 with Linux kernel version 5.3.18. The experiments in Section 5.2 were
performed on machine A, for the comparison experiments in Section 5.3 we additionally used
machine B. The implementation is written in C++17 and compiled with GCC 10.2.0 with
optimization level -O3. We use pthreads for thread management and synchronization. Each
thread is pinned to a hardware thread.

5.1 Measuring Rank Error and Delay of Relaxed PQs
Measuring the rank errors and delays in real-time imposes the practical problem that we
need to know which elements are in the queue at the time of each deleteMin operation. We
approach this problem as follows. Each thread logs its operations into a preallocated local
vector. The log entries get timestamps obtained using a low-overhead high-resolution clock
(we currently use the Posix CLOCK_REALTIME). For the evaluation, we merge these logs to
one global sequence S of operations (sorted by time-stamp). S is then sequentially replayed
using an augmented B+ tree (based on a tlx::btree_map from the tlx library [5]) whose
leaves are the current queue elements (sorted by key). By augmenting nodes with their size,
this allows determining ranks of deleted elements (and thus rank errors) in logarithmic time
(e.g., [25, Section 7.5]). We further augment the interior nodes with delay counters dv and
maintain the invariant that the delay of a leaf e is the sum of the delay counters on the
root–e path. When inserting an element, we can establish the invariant by setting de to
−

∑
v dv for v on the root–e path. When performing balancing operations on the tree, we can

maintain the invariant by pushing the delay counters of the manipulated nodes downward to
unchanged subtrees.

5.2 MultiQueue Parameter Tuning
The baseline MultiQueue uses 8-ary heaps as SDQs and does not use stickiness or buffers.
As seen in Figure 5, the measured rank errors follow the predicted distribution closely
independent of the number of threads and values for c. However, we cannot quite match the
prediction in practice.2 We now inspect the impact of various parameter configurations for

2 The discrepancy is not due to locking since it persists when threads wait for a long time after each
operation. Other sources could be noise in time measurements or inaccuracies due to our random data
distribution assumption.
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Figure 5 The rank error distribution compared to the distribution from the theoretical analysis
for p = 8 and p = 64, respectively.
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Figure 6 The impact of different buffer sizes to the throughput. The left plot is for c = 2, the
right one for c = 4. The suffix “ht” denotes active hyper-threading.

the MultiQueue on its performance. In particular, we optimize the buffer sizes and explore
different values for c and the stickiness. The throughputs are reported for a running time of
3 s and averaged over 5 runs.

Buffer Size. As Figure 6 shows, buffering increases the throughput of the MultiQueue
considerably. However, the buffer size has to be chosen carefully, as too large buffers hamper
the performance. This is due to the overhead of inserting elements into the deletion buffer.
The difference of buffer sizes 4, 8, and 16 is negligible until hyper-threading is active, where
a buffer size of 4 gains most. However, the larger the buffers, the less frequent we have
to access the SPQ to perform bulk operations. Accessing the SPQ likely generates cache
misses, which are especially expensive with NUMA if the SPQ is located on another NUMA
node. We therefore use a buffer size of b = 16 for further experiments. We have observed no
significant differences in rank errors and delays with or without buffering.
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Table 1 The throughput, average rank error and delay for p = 64. The number in parentheses
indicates the expected rank error according to the theoretical analysis.

c s Throughput (MOps/s) Avg. rank error Avg. delay
2 1 125.9 (64) 103.1 103.1

4 215.5 413.2 412.5
8 271.6 900.2 896.0

16 322.5 1853.8 1827.6
64 411.9 7443.5 7183.2

4 1 186.5 (128) 202.6 202.6
4 327.3 814.2 812.6
8 405.3 1685.4 1678.0

16 439.6 3334.9 3303.4
64 535.3 13349.6 12870.9

8 1 222.5 (256) 405.3 405.1
4 408.8 1598.6 1592.2
8 488.0 3284.9 3259.5

16 497.6 6608.4 6511.9
64 579.8 26207.6 24902.0

16 1 244.1 (512) 811.7 810.9
4 461.9 3216.8 3196.1
8 542.0 6415.2 6338.3

16 529.3 12814.4 12547.8
64 603.3 50854.5 47695.3

Stickiness and Number of Queues. Table 1 shows measurements that suggest that rank
errors and delays are not just linear in the number of queues cp but also in the stickiness s.
While rank errors and delays of MultiQueues are always very similar, this is not generally
true. We use the configurations (c, s) ∈ {(4, 1), (4, 4), (8, 8), (16, 8)} for further benchmarks,
as they provide interesting trade-offs between throughput and quality.

k-Merging Heap. Our experiments with k-binary merging heaps instead of 8-ary heaps
for the SPQs indicated that merging heaps can improve the throughput for high values of s

compared to 8-ary heaps. However, the impact is moderate (see Figure 7) in most cases and
we stick to 8-ary heaps. Our experiments further showed that using merging heaps has no
impact on the quality of the priority queue.

5.3 Comparison with Other Approaches

We compare the MultiQueue to the following state-of-the-art concurrent priority queues.
Linden [15] is a priority queue based on skip lists by Lindén and Jonsson. It only returns

suboptimal elements in case of contention on the list head.
Spraylist [3] relaxes skip lists by deleting elements close to the list head to reduce contention.
k-LSM [30] combines thread-local priority queues with a relaxed shared priority queue

component. We use the variants with k = 256 (klsm256) and k = 1024 (klsm1024).
CAPQ [21] dynamically detects contention to switch from using a shared skip list based

priority queue to thread-local buffers.
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Figure 8 Comparison of rank error and delay distribution for different priority queues for 106

deleteMin operations, p = 64.

We used the implementation found in the Github repository of the k-LSM3 for all of the
above priority queues.

Figure 8 shows the rank error distributions and delays for 64 threads. Unsurprisingly,
the Linden queue yields by far the best quality. The k-LSM achieves low rank error but high
delay. For the Spraylist it is the other way around as it has high rank error but low delay.
Multiqueues have similar delays and rank errors. With small values for c and s they are
more accurate than all the competitors except for the Linden queue. The CAPQ exhibits
quality comparable to the MultiQueue with the rather loose setting c = s = 4.

As seen in Figure 9, the CAPQ is among the fastest priority priority queues for up
to 32 threads. Beyond that, it accesses the centralized queue so often that contention
deteriorates performance. This could probably be remedied with different settings of the
tuning parameters but only with a commensurate effect on even higher rank errors and
delays. The very loose MultiQueue with c = s = 8 exhibits very good scalability. Even the
higher-quality variants can take advantage of all hardware threads and eventually outperform
the CAPQ. The k-LSM scales up to around 16 threads while Linden and Spraylist scale

3 https://github.com/klsmpq/klsm
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Figure 9 Throughput comparison between the MultiQueue and other implementations. On the
left is machine A, and on the right machine B.
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Figure 10 The SSSP benchmark on the USA graph running on machine A.

very poorly even on very few threads. The authors of the k-LSM show that the scalability
of the k-LSM can be improved by selecting higher values for k such as 4096 at the cost
of lower quality [10]. Machines A and B have similar performance with B having a slight
advantage when all threads are used but suffering from the switch from one to two sockets.
Unfortunately, the Spraylist crashed in our setup on both machines with higher thread count,
so we had to exclude it from the SSSP benchmark below.

The parallel SSSP benchmark uses Dijkstra’s algorithm to calculate the shortest paths
from one node to all other nodes in a weighted graph. Dijkstra’s algorithm has to be adapted
to be used in a parallel setting with relaxed priority queues. Sagonas and Winblad use a
similar benchmark for the CAPQ and describe the algorithm in greater detail [21]. The
algorithm terminates as soon as the queue is empty. To detect when the queue is empty,
they use the property of the CAPQ and k-LSM that if deleteMin fails for all threads some
time after the last insertion happened, the queue must be empty. This does not hold for
MultiQueues, thus we cannot rely solely on deleteMin to guarantee correct termination.
Instead, we use a dedicated emptiness detection routine, where a thread checks c designated
local queues for emptiness if it thinks that the queue is empty. The MultiQueue is empty if
all threads have successfully completed this emptiness check some time after the last insertion
has happened. For c > 2 the emptiness check is slightly more expensive than a deleteMin
operation, but it is only executed after multiple failed deleteMins, so the added overhead
is minuscule. We report the time to solve the SSSP problem for different thread counts as
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Figure 11 The SSSP benchmark on a random hyperbolic graph with 220 nodes, an average degree
of 16 and γ = 2.3 running on machine A.

well as the number of nodes that were extracted from the queue and then relaxed. We used
real road networks and artificial random hyperbolic graphs (rhg) as benchmark instances.
The road network USA4 has about 24m nodes and 58m edges. The road network GER5 has
about 20m nodes and 42m edges. The weights on these graphs represent the travel time. We
used a modified version of the KaGen framework [9] to generate random hyperbolic graphs
with 220 and 222 nodes and the geometric distances as edge weights. Figure 10 and 11 give
results for the USA road network and the rhg with 220 nodes on machine A, respectively.

On the road map graphs, all the relaxed PQs considerably outperform the Linden queue.
However, none of them scales particularly well beyond 16 threads with the MultiQueue
variants performing best. Despite having considerably better rank errors than the CAPQ,
the klsm1024 leads the algorithm to processes many more nodes on the USA graph. The
k-LSM variants have very high delays, which indicates that the delay is a distinctive metric to
measure the quality of relaxed priority queues. Rhgs paint a different picture: While only the
CAPQ leads to nodes being processed more than once, both k-LSM variants are noticeably
slower than both the CAPQ and MultiQueues. MultiQueues lead to very low overhead
considering the extracted nodes in all our benchmarks and are very competitive at the same
time. Especially in algorithms where processing the individual elements is expensive, this
could be a decisive factor.

6 Conclusions and Future Work

MultiQueues are a simple and efficient approach to relaxed concurrent priority queues. They
allow a transparent trade-off between throughput and quality and considerably outperform
previous approaches in at least one of these aspects. An important open problem is to
complete the theoretical analysis to encompass stickiness. We believe that further practical
improvements could be possible by better avoiding conflicting queue accesses of the sticky
variant even when few queues are used. It would also be interesting to make MultiQueues
contention aware to achieve higher quality and more graceful degradation than the simple
binary switch between local and global access used in the CAPQ [21].

A conceptual contribution of our paper is in introducing the quality measure of delay as a
complement to rank error. We give evidence that this is important for the actual performance
of applications such as shortest path search and explain how to measure it efficiently. We are

4 http://users.diag.uniroma1.it/challenge9/download.shtml
5 https://i11www.iti.kit.edu/resources/roadgraphs.php
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currently having a closer look at using CPQs for branch-and-bound where it seems that the
parallel performance of the applications is provably tied to the delays incurred by the CPQ.
Beyond priority queues, it would be interesting to see whether our approach to “wait-free”
locking can be used for other applications, e.g., for FIFOs.
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Abstract
Stochastic local search (SLS) is a successful paradigm for solving the satisfiability problem of
propositional logic. A recent development in this area involves solving not the original instance, but
a modified, yet logically equivalent one [23]. Empirically, this technique was found to be promising
as it improves the performance of state-of-the-art SLS solvers.

Currently, there is only a shallow understanding of how this modification technique affects the
runtimes of SLS solvers. Thus, we model this modification process and conduct an empirical analysis
of the hardness of logically equivalent formulas. Our results are twofold. First, if the modification
process is treated as a random process, a lognormal distribution perfectly characterizes the hardness;
implying that the hardness is long-tailed. This means that the modification technique can be further
improved by implementing an additional restart mechanism. Thus, as a second contribution, we
theoretically prove that all algorithms exhibiting this long-tail property can be further improved by
restarts. Consequently, all SAT solvers employing this modification technique can be enhanced.
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1 Introduction

Although algorithms for solving the NP-complete satisfiability problem, so-called SAT solvers,
are nowadays remarkably successful in solving large instances, randomized versions of these
solvers often show a high variation in the runtime required to solve a fixed instance over
repeated runs [16]. In the past, research on randomized algorithms often focused on studying
the unsteady behavior of statistical measures like the mean, variance, or higher moments of
the runtime over repeated runs of the respective algorithm. In particular, these measures
are unable to capture the long-tailed behavior of difficult instances. In a different line
of work [13, 15, 32], the focus has shifted to studying the runtime distributions of search
algorithms, which helps to understand these methods better and draw meaningful conclusions
for the design of new algorithms.
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Recently, the hybrid solver GapSAT [23] was introduced, combining a stochastic local
search (SLS) solver with a conflict-driven clause learning (CDCL) solver. In the analysis
conducted, it was empirically shown that adding new clauses is beneficial to the mean
runtime (in flips) of the SLS solver probSAT [3] underlying the hybrid model. The authors
also demonstrated that although adding new clauses can improve the mean runtime, there
exist instances where adding clauses can harm the performance of SLS. This behavior is
worth studying to help eliminate the risk of increasing the runtime of such procedures.

For this reason, we study the runtime (or more precisely, hardness) distribution of the pro-
cedure Alfa, introduced in this work, that models the addition of a set of logically equivalent
clauses L to a formula F and the subsequent solving of this amended formula F (1) := F ∪ L

by an SLS solver. Our empirical evaluations show that this distribution is long-tailed. We
want to stress the fact that studies on the runtime distribution of algorithms are quite sparse
even though knowledge of the runtime distribution of an algorithm is extremely valuable:
(1) Intuitively speaking, if the distribution is long-tailed, one knows there is a risk of ending
in the tail and experiencing very long runs; simultaneously, the knowledge that the time
the algorithm used thus far is in the tail of the distribution can be exploited to restart
the procedure (and create a new logically equivalent instance F (2)). We will prove this
statement in a rigorous manner for all long-tailed algorithms. (2) Given the distribution of
an algorithm’s sequential runtime, it was shown how to predict and quantify the algorithm’s
expected speedup due to parallelization [1]. (3) If the distribution of hardness is known,
experiments with few instances can lead to parameter estimations of the underlying distribu-
tion [13]. (4) Knowledge of the distribution can help compare competing algorithms: one
can test if the difference in the means of algorithm runtimes is significant if the distributions
are known [13].

1.1 Our Contributions
Our contributions consist of an empirical as well as theoretical part, specified below.

Statistical Runtime/Hardness Distribution Analysis. By conducting a plethora of ex-
periments (total CPU time 80 years) and using several statistical tools for the analysis
of empirical distributions, we conjecture that Alfa equipped with SLS solvers based on
Schöning’s Random Walk Algorithm [36], SRWA for short, follows a long-tailed distribution
(Conjecture 8). The evidence obtained further suggests that this distribution is, in fact,
lognormal (Conjecture 6). We measure the goodness-of-fit of our results over the whole
domain using the χ2-statistic.

Restarts Are Useful For Long-Tailed Algorithms. Lorenz [22] has analyzed the lognormal
and the generalized Pareto distribution for the usefulness of restarts and their optimal restart
times. Given that our Strong Conjecture 6 holds, this result implies that restarts are useful
for Alfa. We will also show that this is the case if only the Weak Conjecture 8 holds: We
theoretically prove that restarts are useful for the class of algorithms exhibiting a long-tailed
distribution.

1.2 Related Work and Differentiation
In [13], the authors presented empirical evidence for the fact that the distribution of the
effort (more precisely, the number of consistency checks) required for backtracking algorithms
to solve constraint satisfaction problems randomly generated at the 50 % satisfiable point
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can be approximated by the Weibull distribution (in the satisfiable case) and the lognormal
distribution (in the unsatisfiable case). These results were later extended to a wider region
around the 50 % satisfiable point [32]. It should be emphasized that this study created all
instances using the same generation model. This resulted in the creation of similar yet
logically non-equivalent formulas. We, however, will firstly use different models to rule out any
influence of the generation model and secondly generate logically equivalent modifications of a
base instance (see Algorithm 1). This approach lends itself to the analysis of existing SLS
solvers [23]. The major advantage is that the conducted work is not lost in the case of a restart:
only the logically equivalent instance could be changed while keeping the current assignment.

In [16], the cost profiles of combinatorial search procedures were studied. The authors
showed that they are often characterized by the Pareto-Lévy distribution and empirically
demonstrated how rapid randomized restarts can eliminate this tail behavior. We will
theoretically prove the effectiveness of restarts for the larger class of long-tailed distributions.

The paper [1] studied the solvers Sparrow and CCASAT and found that for randomly
generated instances the lognormal distribution is a good fit for the runtime distributions.
For this, the Kolmogorov–Smirnov statistic supt∈R |F̂n(t) − F (t)| was used. Although the
KS-test is very versatile, this comes with the disadvantage that its statistical power is rather
low. Clearly, the KS statistic is also nearly useless in the tails of a distribution: A high
relative deviation of the empirical from the theoretical cumulative distribution function in
either tail results in a very small absolute deviation. It should also be remarked that the
paper studies only few formulas in just two domains, 10 randomly generated and 9 crafted.
Our work will address both shortcomings in this paper: The χ2-test gives equal importance
to the goodness-of-fit over the entire support; and various instance domain models (both
theoretical and applied) are considered in this paper.
▶ Remark. Unfortunately, the term heavy- or long-tailed distribution is not used consistently
in the literature. We will follow [12] and use the notion given in Definition 7.

2 Preliminaries

We assume familiarity with terminologies such as Boolean variable, literal, clause, CNF
formula, the SAT problem, and assignment flips in SLS solvers and refer the reader to
e. g. [37]. We furthermore trust that the reader has basic knowledge of the proof system
Resolution [8, 33]. Stochastic local search (SLS) solvers operate on complete assignments
for a formula F . These solvers are started with a randomly generated complete initial
assignment α0. If α0 satisfies F , a solution is found. Otherwise, the SLS solver tries to find a
solution by performing a random walk over the set of complete assignments for the underlying
formula. A formula F logically implies a clause C if every complete truth assignment which
satisfies F also satisfies C, for which we write F ⊨ C. If L is a set of clauses we write F ⊨ L

if F ⊨ C for all C ∈ L.

▶ Definition 1. Let X be a random variable for the runtime of an SLS algorithm A on some
input. For t > 0, the algorithm At is obtained by restarting A after time t if no solution was
found. Restarts are useful if there is a t > 0 such that

E[Xt] < E[X],

where Xt models the runtime of At.

▶ Definition 2 ([19]). Let X be a real-valued random variable.
Its cumulative distribution function (cdf) is the function F : R→ [0, 1] with

F (t) := Pr [X ≤ t] .
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Its quantile function Q : (0, 1)→ R is given by Q(p) := inf{t ∈ R | F (t) ≥ p}.
A non-negative, integrable function f such that F (t) =

∫ t

−∞ f(u) du is called probability
density function (pdf) of X.

▶ Definition 3 ([40]). An absolutely continuous, positive random variable X is (three-
parameter) lognormally distributed with parameters σ2 > 0, γ > 0, and µ ∈ R, if log(X − γ)
is normally distributed with mean µ and variance σ2. In the following, we refer to σ as the
shape, µ as the scale, and γ as the location parameter.

▶ Definition 4. Let X1, . . . , Xn be independent, identically distributed real-valued random
variables with realizations xi of Xi. Then the empirical cumulative distribution function
( ecdf) of the sample (x1, . . . , xn) is defined as

F̂n(t) := 1
n

n∑
i=1

1{xi≤t}, t ∈ R,

where 1A is the indicator of event A.

3 Design of the Adjusted Logical Formula Algorithm Alfa

Our SLS solver Alfa (Adjusted logical formula algorithm) receives a satisfiable formula F as
input. The algorithm then proceeds by adding to F a set L of logically generated clauses. It
finally calls an SLS solver to solve the clause set F ∪ L.

Algorithm 1 Alfa acts as a base algorithm that can use different SLS algorithms.

Input: Boolean formula F , Promise: F ∈ SAT

Generate randomly a set L of clauses such that F ⊨ L

Call SLS(F ∪ L) for some SLS solver SLS

Definition 5 is used in Algorithm 2 as a natural way to sample a set L of logically
equivalent clauses with respect to a base instance F .

Algorithm 2 Generation of the random set L with resolution.

Input: Boolean formula F , integer w, probability p ∈ (0, 1], Boolean shuffle

foreach R ∈ Res∗
w(F ) \ F do

with probability p do L := L ∪ {R}
if shuffle then return Shuffle(L) else return L;

▶ Definition 5. Let F be a clause set, and w be a positive integer. We define the operator

Resw(F ) := F ∪
{

R
∣∣ R is a resolvent of two clauses in F and |R| ≤ w

}
.

Also, we inductively define Res0
w(F ) := F and

Resn+1
w (F ) := Resw

(
Resn

w(F )
)
, for n ≥ 0.

Finally, we set

Res∗
w(F ) :=

⋃
n≥0

Resn
w(F ).
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4 Empirical Evaluation

4.1 Experimental Setup, Instance Types, and Solvers Used
Hoos and Stützle [18] introduced the concept of runtime distribition to characterize the cdf
of Las Vegas algorithms, where the runtime can vary from one execution to another, even
with the same input. To obtain enough data for a fitting of such a distribution, for each
base instance F we created 5000 modified instances F (1), . . . , F (5000) by generating resolvent
sets L(1), . . . , L(5000) each by using Algorithm 2 with w = 4 and a value of p such that the
expected number of resolvents being added was 1

10 |F |. Note that we also conducted a series
of experiments to rule out the influence of p on our results. Each of these modified instances
was solved 100 times, each time using a different seed. For i = 1, . . . , 5000 and j = 1, . . . , 100
we thus obtained the values flipsS(F (i), sj) indicating how many flips were used to solve the
modified instance F (i) with solver S when using the seed sj . Next, we calculated the mean
number of flips meanS(F (i)) := 1

100
∑100

j=1 flipsS(F (i), sj) required to solve F (i) with solver S

whose hardness distribution we are going to analyze.
All experiments were performed on bwUniCluster 2.0 and three local servers. Sputnik [39]

was used to distribute the computation and to parallelize the trials. Due to the heterogeneity
of the computer setup, measured runtimes are not directly comparable to each other.
Consequently, we instead measured the number of variable flips performed by the SLS
solver. This is a hardware-independent performance measure with the benefit that it can also
be analyzed theoretically. To give an indication of how flips relate to wall-clock time, one
million flips take about one second of computing time on one of our servers. To give an idea
of the computational effort involved, obtaining the data for the ecdf of a 100 variable base
instance with SRWA took an average of 17,193,517 seconds (≈ 199 days) when unparallelized.
This clearly prohibited examining instances having a number of variables currently being
routinely solved by the state-of-the-art SLS algorithms. For the experiments the following
instance types were used:
1. Hidden Solution: We implemented the CDC algorithm [5, 6] in [24] to generate

instances with a hidden solution. For this, at the beginning, a complete assignment α is
specified to ensure the generated formula’s satisfiability. Then, repeatedly a randomly
generated clause C is added to the formula with a weighted probability pi depending on
the number i of correct literals in C with respect to α. We included this type of instances
because SLS solvers struggle to solve such instances. Experiments like these might be
beneficial to find theoretical reasons for this behavior.

2. Hidden Solution With Different Chances: We also created sets of formulas with
different underlying pi values to rule out the influence of these.

3. Uniform Random: To generate uniform, random k-SAT instances with n variables and
m clauses, each clause is generated by sampling k literals uniformly and independently.
Using Gableske’s kcnfgen [14], we generated formulas with n ∈ {50, 60, 70, 80, 90} variables
and a clause-to-variable ratio r close to the satisfiability threshold [29] of r ≈ 4.267. We
checked each instance with Glucose3 [2, 11] for satisfiability until we had 5 formulas of
each size.

4. Factoring: These formulas encode the factoring problem in the interval {128, . . . , 256}
and were generated with [10].

5. Coloring: These formulas assert that a graph is colorable with 3 colors. We generated
these formulas, using [21], over random graphs with n vertices and m = 2.254n edges
in expectation, which is slightly below the non-colorability threshold [20]. We obtained
32 satisfiable instances in 150 variables.
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Our experiments investigated leading SLS solvers where the dominating component is
based on the random walk procedure proposed in [36]. In this paper, Schöning’s Random
Walk Algorithm SRWA was introduced, which is one of the solvers we used. The probSAT
solver family [3] is based on this approach. One of these solvers won the random track of the
SAT competition 2013 [4]. Another advancement of SWRA was implemented as YALSAT [7],
which won the random track of the SAT competition 2017 [17]. These performances and
similarities were reasons for choosing SRWA, probSAT, and YALSAT as SLS solvers for this
paper. The connection to GapSAT [23] is another case in point.

We excluded the solvers DCCAlm [25] and CSCCSat [28] (combining FrwCB [26] and
DCCASat [27]) as all of these depend on heuristics (like CC, BM, CSDvars, NVDvars, SDvars)
that ultimately reduce the probabilistic nature when choosing the next variable to flip.

For SRWA we conducted most of our experiments: All instance types were tested, including
different change values for the generation of the hidden solution. For probSAT, 55 hidden
solution instances with n ∈ {50, 100, 150, 200, 300, 800} were used. Since YALSAT can be
regarded as a probSAT derivate, we tested YALSAT with 10 hidden solution instances with
300 variables each.

4.2 Experimental Results and Statistical Evaluation
The goal of this section is to explore the scenarios described above in more detail. We are
particularly interested in how the hardness of an instance changes when logically equivalent
clauses are added in the manner described above. To characterize this effect as accurately as
possible, studying the ecdf is the most suitable method for this purpose. In turn, the ecdf
can be described using well-known distribution types such as e. g., the normal distribution.
In the following, we shall demonstrate that the three-parameter lognormal distribution, in
particular, provides an exceptionally accurate description of the runtime behavior, and this
is true for all considered problem domains and all solvers. The results are so compelling that
we ultimately conjecture that the runtimes of Alfa-type algorithms all follow a lognormal
distribution, regardless of the considered problem domain.

To illustrate this point, we first demonstrate our approach using two base instances. The
first one is a factorization instance that was solved by SRWA. The second instance has a hidden
solution and was solved by probSAT. For later reference, we refer to the first instance as A

and to the second instance as B. As described above, we obtain 5000 samples for each base
instance. Using these data points, we estimate the lognormal distribution’s three parameters
by applying the maximum likelihood method (see [42]). After that, one can visually evaluate
the suitability of the fitted lognormal distribution for describing the data. A useful method
of visualizing the suitability is to plot the ecdf and the fitted cdf on the same graph.

Such a comparison is illustrated in Figure 1 for the two instances A and B. In both
cases, no difference between the empirical data of the ecdf and the fitted distribution can be
detected visually. In other words, the absolute error between the predicted probabilities from
the fitted cdf versus the empirical probabilities from the ecdf is minuscule. Even though
these are only two examples, it should be noted that these two instances are representative
of the behavior of the investigated algorithms. Hardly any deviation could be observed in
this plot type for all instances and all algorithms. All data is published under [42].

For the analysis, however, one should not confine oneself to this plot type. Although
absolute errors can be observed easily, relative errors are more difficult to detect. Such a
relative error may have a significant impact when used for decisions such as restarts. To
illustrate this point, suppose that the true probability of a run of length ℓ is 0.0001. In
contrast, the probability estimated based on a fit is 0.001. As can be seen, the absolute error
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Figure 1 The ecdf and fitted cdf of the hardness distribution of instance A (left) and B (right).

of 0.0009 is small, whereas the relative error of 10 is large. If one were to perform restarts
after ℓ steps, the actual expected runtime would be ten times greater than the estimated
expected runtime. Thus, the erroneous estimate of that probability would have translated
into an unfavorable runtime. This example should illustrate the importance of checking the
tails of a distribution for errors as well.

The left tail, i. e., the probabilities for very small values, can be checked visually by plotting
the ecdf and fitted cdf with both axes logarithmically scaled. Thereby, the probabilities for
extreme events (in this case, especially easy instances) can be measured accurately.
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Figure 2 Logarithmically scaled ecdf and fitted cdf of instances A (left) and B (right).

The two instances A and B are being examined in this manner in Figure 2. As can be
observed, the lognormal fit accurately predicts the probabilities associated with very short
runs. For the other instances, lognormal distributions were mostly also able to accurately
describe the probabilities for short runs. However, the behavior of the ecdf and the fitted
lognormal distribution differed very slightly in a few instances.

Lastly, the probabilities for particularly hard instances should also be checked. Any
mistakes in this area could lead to underestimating the likelihood of encountering an excep-
tionally hard instance. For analyses of this type, the survival function S is a useful tool;
if F is the cdf, S(x) := 1− F (x). Therefore, the survival function’s value S(x) represents
the probability that an instance is (on average) harder than x in our case. If we plot the
empirical survival function, i. e., Ŝn(x) := 1− F̂n(x), and the fitted survival function together
on a graph with logarithmically scaled axes, we can easily detect errors in the right tail.
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Figure 3 Logarithmically scaled empirical survial function and fitted survival function of in-
stances A (left) and B (right).

Figure 3 illustrates this type of plot for the instances A and B. Here, there is a discernible
deviation between A and B. While for A, the lognormal fit provides an accurate description
of the probabilities for long runs, in the case of B, the empirical survival function seems to
approach 0 somewhat slower than the lognormal estimate. In the vast majority of cases, these
extreme value probabilities are accurately reflected by the lognormal fit. In most other cases,
the empirical survival function approaches 0 more slowly than the lognormal fit. Thus, in
these cases, the likelihood of encountering an exceptionally hard instance is underestimated.

So far, we discussed the behavior of lognormal fits based on this visual inspection.
Altogether, we concluded that lognormal distributions seem to be well suited for describing
the data. Next, we shall concretize this through a statistical test. To be more precise, we
apply the χ2-test as a goodness-of-fit test for each base instance. For each such instance, the
fitted lognormal distribution used the 5000 data points, and afterwards, the χ2-test statistic
is computed. Subsequently, the probability that such a value of the test statistic occurs
under the assumption of the so-called null hypothesis is determined. We will refer to this
probability as the p-value. In our case, the null hypothesis is the assumption that the data
follow a lognormal distribution. If the fit is poor, then a small p-value will occur. If p is
sufficiently small, the null hypothesis is rejected. We reject the null hypothesis if p < 0.05.

Two more remarks are due on this matter. First, from a high p-value, one cannot prove
that the assumption that the data are lognormally distributed is correct. However, we use a
sufficiently high p-value as a heuristic whether this assumption is reasonable.

Secondly, there is an obstacle that complicates statistical analysis by this method. As
described, each of the 5000 data points is obtained by first sampling 100 runtimes of the
corresponding instance and then calculating the mean. This means that we do not work with
the actual expected values but only estimates. In other words, this implies that our data
is noisy. The greater the variance in the respective instance, the greater the corresponding
noise. If one were to apply the χ2-test to this noisy data, some cases would be incorrectly
rejected, especially if the variance is large. To overcome this limitation, we additionally use
a bootstrap-test, which is based on Cheng [9]. This test is presented in Algorithm 3.

Briefly summarized, this test simulates how our data points were generated, assuming
the null hypothesis. For this purpose, particular attention should be paid to how the test
sample is rendered noisy. Owing to the central limit theorem, it is reasonable to assume
that the initial data’s sample mean originates from a normal distribution around the true
expected value. We use this assumption in the bootstrap-test using a noise signal drawn
from a normal distribution with expected value 0. The variance of this normal distribution
is determined from the initial data and divided by 100 (cf. central limit theorem).
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Algorithm 3 Bootstrap-test for noisy data.

Input: (noisy) random sample y = (y1, y2, . . . , yn), integer N , significance α ∈ (0, 1)

θ̂ ← MLE(y, F ), lognormal maximum likelihood estimation, F is the lognormal cdf
X2 ← ChiSquare(y, θ̂), Chi-squared goodness of fit test statistic
for j = 1 to N do

y′ ← (y′
1, . . . , y′

n), where all y′
i are i. i. d. samples from the fitted lognormal

distribution with parameters θ̂

y′ ← y′ + noise, where noise is sampled from an n-dimensional normal distribution
θ̂′ ← MLE(y′, F )
X2

j ← ChiSquare(y′, θ̂′)
Let X2

(1) ≤ X2
(2) ≤ · · · ≤ X2

(N) be the sorted test statistics.
if X2

(⌊(1−α)·N⌋) < X2 then reject else accept;

If there is a large difference between the respective p-values of the χ2- and bootstrap-tests,
this suggests that the variance in the initial data is too high and that the number of samples
used to calculate the sample mean should be increased. However, this case has only occurred
twice, and we explicitly indicate it later. In all other cases, the p-values of the χ2- and the
bootstrap-tests were similar. To illustrate this point, let us consider the p-values of the two
instances A and B. The excellent representation of the runtime behavior over the entire
support on instance A is also reflected in the two p-values. Using the χ2-test, one obtains
a p-value of approximately 0.783, and using the bootstrap-test, one obtains a p-value of
0.76. Since these two p-values are both above 0.05, we conclude that the assumption that
lognormal distributions describe the runtimes is reasonable.

In contrast, for instance B, we observed that while a lognormal distribution accurately
describes the main part of the distribution, the probabilities for extremely long runs are
inadequately represented. This observation is again reflected in the respective p-values. The
χ2-test yields a p-value of ≈ 0.008, and the bootstrap-test yields a p-value of 0.013. Since
both p-values are below 0.05, the assumption that these data originate from a lognormal
distribution is rejected.

Overall, this example is intended to demonstrate that these two statistical tests can show
an inadequate fit, even if the problems only arise for extreme values. Second, it should
demonstrate that the p-values of the two tests are generally similar; if the p-values differ
significantly, then more samples should be used to calculate the sample mean.

We now proceed by considering the adequacy of lognormal distributions for describing
SRWA runtimes. The results of the statistical analysis are reported in Table 1 and can be
found in [42].

Table 1 Statistical goodness-of-fit results for Alfa+SRWA runtimes over various problem domains.
The rejected row contains the number of instances where the lognormal distribution is not a good fit
according to the χ2-test at a significance level of 0.05. To put these results into perspective, the
second row contains the total number of instances of each domain. Out o a total of 230 instances, 5
got rejected.

hidden different chances uniform factoring coloring total
rejected 0 2 1 2 0 5
# of instances 20 120 25 33 32 230
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The first line in the table represents for how many instances the statistical tests rejected
the lognormal distribution hypothesis. The second line indicates how many instances have
been checked in total. It should be noted that the same number of instances was rejected by
the χ2-test as was by the bootstrap-test. Thus, there is no need to distinguish between the
tests here. It should also be mentioned that in statistical tests, there is always a possibility
that a hypothesis will be rejected even though the null hypothesis holds (type 1 error). At
a significance level of 0.05, this probability is at the most 5%. Accordingly, the total of
5 rejected instances may be attributed to so-called type 1 errors. This statement is also
supported by the fact that no exceptionally low p-value was observed, i. e., no p-value that is
unusual for a total of 230 samples.

For probSAT, on the other hand, the situation appears to be different. The results
are summarized in Table 2 and [42]. The columns refer to the number of variables in the

Table 2 Goodness-of-fit results for Alfa+probSAT over various hidden solution instance sizes.
The rejected row contains the number of instances where the lognormal distribution is not a good fit
according to the χ2-test at a significance level of 0.05. To put these results into perspective, the
second row contains the total number of instances of each instance size.

number of variables 50 100 150 200 300 800 total
rejected 2 2 1 0 2 0 7
# of instances 10 10 10 10 10 5 55

corresponding SAT instances. The number of rejected instances is again identical regardless
of whether the χ2- or bootstrap-test is applied. As can be seen, the lognormal distribution
hypothesis was rejected for 7 of the 55 instances. This number can no longer be accounted for
by type 1 errors at a significance level of 0.05. However, one can observe that the majority
of rejected instances occur for a small number of variables. If one were to consider only
the instances from 150 variables onwards, then the remaining rejected instances may be
attributed to type 1 errors. This raises the suspicion that there may be a limiting process,
i. e., that the lognormal distribution hypothesis is only valid for n→∞.

Lastly, a difference between the two static tests emerges for YALSAT. According to the
χ2-test, 2 of the total 10 instances are rejected. However, using the bootstrap-test, the
lognormal distribution hypothesis is not rejected for any instance. Therefore, one cannot
rule out the possibility that lognormal distributions are the natural model to describe the
instances, but more experiments are required to make a more precise statement.

In summary, the presumption that lognormal distributions are the appropriate choice
for describing runtimes has been reinforced for SRWA. For probSAT, this appears plausible at
least above a certain instance size. Likewise, the choice of lognormal distributions also seems
reasonable for YALSAT. These observations lead us to the following conjecture.

▶ Conjecture 6 (Strong Conjecture). The runtime of Alfa with SLS∈{SRWA,probSAT,YalSAT}
follows a lognormal distribution.

If this statement is true, then it would be intriguing in that one can infer how modifying
the base instance affects the hardness of instances. This effect is likely to be the result of
generating models for lognormal distributions. Just as the normal distribution is a natural
model for the sum of i. i. d. random variables, the lognormal distribution is a natural model
for the multiplication of i. i. d. random variables. Thus, one can hypothesize that each added
clause exerts a small multiplicative effect on the instance’s hardness.

Simultaneously, the three parameters of the lognormal distribution also provide insight
into how the hardness of the instance changes. For example, the location parameter γ implies
an inherent problem hardness that cannot be decreased regardless of the added clauses’
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choice. At the same time, γ also serves as a numerical description for the value of this
intrinsic hardness. Using Bayesian statistics, it is possible to infer the parameters while the
solver is running. These estimated parameters can, for example, be used to schedule restarts.
This would lead to a scenario similar to that discussed in [34].

Conjecture 6 is a strong statement. However, a small deviation of the probabilities, for
example, at the left tail, would render the strong conjecture invalid from a strict mathematical
point of view. Particularly, visual analyses revealed that the left tail’s behavior, i. e., for
extremely short runs, is occasionally not accurately reflected by lognormal distributions.
Conversely, the right tail, i. e., the probabilities for particularly long runs, are usually
either correctly represented by lognormal distributions or, occasionally, the corresponding
probability approaches 0 even more slowly. We, therefore, rephrase our conjecture in a
weakened form. Our observations fit a class of distributions known as long-tail distributions
defined purely in terms of their behavior at the right tail.

▶ Definition 7 ([12]). A positive, real-valued random variable X is long-tailed, if and only if

∀x ∈ R+ : Pr [X > x] > 0 and ∀y ∈ R+ : lim
x→∞

Pr [X > x + y]
Pr [X > x] = 1.

▶ Conjecture 8 (Weak Conjecture). The runtime of Alfa with SLS ∈ {SRWA, probSAT, YalSAT}
follows a long-tailed distribution.

It should be noted that lognormal distributions have the long-tail property [12, 30]. That
is, if the Strong Conjecture holds, the Weak Conjecture is implied. The reverse is, however,
not true. In the next section, we show an important consequence in case the Weak Conjecture
holds.

5 Restarts Are Useful For Long-Tailed Distributions

If the Strong Conjecture holds, i. e., if the runtimes are lognormally distributed, then restarts
are useful [22]. This section extends this result and mathematically proves that restarts are
useful even if only the Weak Conjecture holds. This will be achieved by showing that restarts
are useful for long-tailed distributions.

A condition for the usefulness of restarts, as defined in Definition 1, was proven in [22].
We will show the result using this theorem that is restated below.

▶ Theorem 9 ([22]). Let X be a positive, real-valued random variable having quantile
function Q, then restarts are useful if and only if there is a quantile p ∈ (0, 1) such that

R(p, X) := (1− p) · Q(p)
E[X] +

∫ p

0 Q(u) du

E[X] < p.

Even if the quantile function and the expected value are unknown, R(p, X) can be
characterized for large values of p.

▶ Lemma 10. Consider a positive, real-valued random variable X with pdf f and quantile
function Q such that E[X] <∞. Also, assume that the limit limt→∞ t2 · f(t) exists. Then,

lim
p→1

R(p, X) = lim
p→1

(
(1− p) · Q(p)

E[X] +
∫ p

0 Q(u) du

E[X]

)
= 1.
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Proof. In the following, let F and f be the cdf and pdf of X, respectively. We start by
specifying the derivative of Q with respect to p as a preliminary consideration. From F = Q−1

and the application of the inverse function theorem [35] it follows:

Q′(p) := d
dp

Q(p) = 1
f
(
Q(p)

) . (1)

As the first step in our proof, we consider the limiting value of the second summand
of R(p, X). This value can be determined by integration by substitution with x = Q(u)
followed by applying the change of variable method with p = F (t):

lim
p→1

∫ p

0 Q(u) du

E[X] = lim
p→1

∫ Q(p)
0 x · f(x) dx

E[X] = lim
t→∞

∫ t

0 x · f(x) dx

E[X] = 1.

The last equality holds because the numerator matches the definition of the expected value.
Next, we examine the limit of (1− p)Q(p)/ E[X]. Since limp→1(1− p) = 0, the limit of

(1− p) ·Q(p)/ E[X] needs to be examined more closely. For this purpose, L’Hospital’s rule is
applied twice as well as the change of variable method with p = F (t) is used in the following:

lim
p→1

(1− p) ·Q(p) = lim
p→1

Q(p)2 · f
(
Q(p)

)
= lim

t→∞
t2 · f(t).

It is well-known that if lim inft→∞ t2 · f(t) > 0 were to hold, then the expected value E[X]
would be infinite (this statement is, for example, implicitly given in [12]). This would
contradict the premise of the lemma; therefore, lim inft→∞ t2 · f(t) = 0. Moreover, since, by
assumption, limt→∞ t2 · f(t) exists, we may conclude that

lim
t→∞

t2 · f(t) = lim sup
t→∞

t2 · f(t) = lim inf
t→∞

t2 · f(t) = 0. ◀

A frequently used tool for the description of distributions is the hazard rate function.

▶ Definition 11 ([31]). Let X be a positive, real-valued random variable having cdf F and
pdf f . The hazard rate function r : R+ → R+ of X is given by

r(t) := f(t)
1− F (t) .

In particular, there is an interesting relationship between the long-tail property and the
hazard rate function’s behavior.

▶ Lemma 12 ([30]). Let X be a positive, real-valued random variable with hazard rate
function r such that the limit limt→∞ r(t) exists. Then, the following three statements are
equivalent:
1. X is long-tailed.

2. lim
x→∞

x+y∫
x

r(t) dt = 0, ∀y > 0.

3. lim
t→∞

r(t) = 0.

Proof. The full length-version of this paper [41] contains a proof of this lemma since the
manuscript [30] was still unpublished at the time of writing. ◀

With the help of these preliminary considerations, we are now ready to show that restarts
are useful for long-tailed distributions.
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▶ Theorem 13. Consider a positive, long-tailed random variable X with continuous pdf f

and hazard rate function r. Also assume that either E[X] =∞ holds or the limits limt→∞ r(t)
and limt→∞ t2 · f(t) both exist. In both cases, restarts are useful for X.

Proof. Let F be the cdf and Q the quantile function of X. We begin with the case E[X] =∞.
According to Theorem 9, restarts are useful if and only if

(1− p) · Q(p)
E[X] + 1

E[X] ·
∫ p

0
Q(u) du < p

for some p ∈ (0, 1). However, if the expected value E[X] is infinite, then the left side of this
inequality is zero and the inequality is obviously satisfied. Hence, the statement follows.

Secondly, we assume that E[X] < ∞ and that both limt→∞ r(t) and limt→∞ t2 · f(t)
exist. Equation (1) can now be used to calculate the following derivative:

d
dp

(
R(p, X)− p

)
= d

dp

(
(1− p) · Q(p)

E[X] +
∫ p

0 Q(u) du

E[X] − p

)
= 1− p

E[X] · f
(
Q(p)

) − 1.

Consider the limit of this expression for p→ 1. Once again, the change of variable method is
applied with p = F (t), resulting in:

lim
p→1

1− p

E[X] · f
(
Q(p)

) − 1 = lim
t→∞

1− F (t)
E[X] · f(t) − 1 = lim

t→∞

1
E[X] · r(t) − 1.

By assumption, X has a long-tail distribution and the limit of limt→∞ r(t) exists. For this
reason, limt→∞ r(t) = 0 follows as a result of Lemma 12. Furthermore, since E[X] < ∞
holds, we may conclude that

lim
p→1

1− p

E[X] · f
(
Q(p)

) − 1 = lim
t→∞

1
E[X] · r(t) − 1 =∞. (2)

The condition from Theorem 9 can be rephrased in such a way that restarts are useful if
and only if R(p, X)− p < 0. According to Lemma 10, the left-hand side of this inequality
approaches 0 for p → 1. However, as has been shown in Equation (2), the derivative of
R(p, X) − p approaches infinity for p → 1. These two observations imply that there is a
p ∈ (0, 1) satisfying R(p, X)− p < 0. Consequently, restarts are useful for X. ◀

It should be noted that the conditions of this theorem are not restrictive since all naturally
occurring long-tail distributions satisfy these conditions (see also [30]).

▶ Conjecture 14 (Corollary of the Weak Conjecture). Restarts are useful for Alfa with
SLS ∈ {SRWA, probSAT, YalSAT}.

If Conjecture 8 is true, then this statement follows immediately by Theorem 13.

6 Conclusion

We have provided compelling evidence that the runtime of Alfa follows a long-tailed or
lognormal distribution. According to [38], the usefulness of restarts is a necessary, however
not a sufficient, condition to obtain super-linear speedups by parallelization. Since we have
shown that the necessary condition is (presumably) satisfied, this immediately raises the
question of whether super-linear speedups are obtained by parallelizing Alfa-type algorithms.

ESA 2021



82:14 Evidence for Long-Tails in SLS Algorithms

We additionally want to pose the question whether some of the Conjectures 6 or 8 can be
theoretically proven. A first line of attack would be to analyze the special case of an solver
like SRWA whose runtime was already theoretically analyzed.

The technique of analyzing the runtime distribution of Alfa could be further developed to
help better understand the behavior of CDCL solvers. These kind of solvers heavily employ
the technique of adding new clauses and deleting some clauses. This can be thought of as
solving a new logically equivalent formula of the base instance.

Preliminary results on the solvers excluded for heuristic reasons seem to suggest that the
Alfa-method forces the runtime of the base solver to exhibit a multimodal behavior. Thus,
the lognormal distribution is not a good fit in this case. However, an initial visual inspection
of the data indicates an even heavier tail.
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