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Abstract
Variable ordering heuristics play a central role in solving constraint satisfaction problems. In this
paper, we propose failure based variable ordering heuristics. Following the fail first principle, the new
heuristics use two aspects of failure information collected during search. The failure rate heuristics
consider the failure proportion after the propagations of assignments of variables and the failure
length heuristics consider the length of failures, which is the number of fixed variables composing a
failure. We performed a vast experiments in 41 problems with 1876 MiniZinc instances. The results
show that the failure based heuristics outperform the existing ones including activity-based search,
conflict history search, the refined weighted degree and correlation-based search. They can be new
candidates of general purpose variable ordering heuristics for black-box CSP solvers.
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1 Introduction

Constraint satisfaction problems (CSP) are a powerful framework to model and solve
combinatorial search problems occurring in various fields. The challenge in a CSP is to
determine an assignment of values to all variables that satisfies all the constraints, or otherwise,
to prove there is no such an assignment. Backtracking search is a complete method that has
been used to solve general CSPs. It performs a depth-first traversal of a search tree to solve
CSPs. At each node of the search tree, an unassigned variable is selected to assign a value.
The ordering in which the variables are assigned is crucial to the efficiency of backtracking
algorithms for solving CSPs. It is a computationally difficult task to find an optimal ordering
that results in a search tree exploring the fewest number of nodes [11], thus, the ordering is
determined by variable ordering heuristics (VOH) in practice.
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In the past decades, much effort has been done in developing efficient variable ordering
heuristics. Many VOHs have been designed according to the fail first principle that “to
succeed, try first where you are likely to fail” [6]. The aim is to first process the variables that
belong to the most difficult part of a CSP. Modern VOHs are adaptive, which learn during
search to find the variables that are most likely to cause a failure. To select the next variable
to assign a value at a search tree node, the VOHs estimate how likely a variable causing a
failure from various aspects. For instances, the minimum domain size VOH considers the
variables with the smallest domain sizes [6], the weighted degree VOH considers the variables
involved in the constraints causing more failures have a larger chance to cause a failure [2, 20],
some VOHs consider the variables involved in the constraints with higher tightness have a
larger chance to cause a failure [3, 10], the conflict history search considers the variables
involved in the constraints causing recent failures have a larger chance to cause a failure [5].

In this paper, we propose failure based variable ordering heuristics pursuing the fail first
principle from new aspects. The new VOHs do not consider which constraint leads to a
failure but which variable causes the failure. They consider the straightforward information
between an assignment of a variable and the propagation result of the assignment, failure or
success. To estimate how likely a variable causing a failure, the failure rate based heuristic
collects the information of proportion of failures caused by assignments of a variable, and
the failure length based heuristic collects the information of length of failures caused by
assignments of a variable, i.e., the depth of the search tree when a failure occurs. There is
no parameter to set in the failure based heuristics. We employ the decaying strategy of the
conflict history search to make the new VOHs favor the variables causing recent failures. The
failure based VOHs behave like the last conflict based reasoning [9], so the difference between
them is discussed. We perform experiments in the benchmark set of MiniZinc containing
1876 instances of 41 problems. Besides the naive VOHs, we compare the VOHs equiped with
a geometric fast restart strategy and last conflict based reasoning. The results show that the
failure rate based VOH with the decaying strategy solves the largest number of instances. It
outperforms the state of the arts VOHs including ABS [12], CHS [5] and dom/wdegca.cd [20]
and CRBS [18] and performs best in general.

The paper is organized as follows. Section 2 provides the background of CSPs. Some
related works are mentioned in Section 3. The failure based VOHs are introduced in Section 4.
Section 5 presents the experimental results. Finally, the conclusion is in Section 6.

2 Background

A constraint satisfaction problem (CSP) P is a triple P = ⟨X , D, C⟩, where X is a set of n
variables X ={x1, x2 ... xn}, D is a set of domains D ={dom(x1), dom(x2) ... dom(xn)},
where dom(xi) is a finite set of possible values for variable xi, and C is a set of e constraints
C={c1, c2 ... ce}. Each constraint c consists of two parts, an ordered set of variables scp(c) =
{xi1, xi2 ... xir} and a subset of the Cartesian product dom(xi1) × dom(xi2) × ... × dom(xir)
that specifies the disallowed (or allowed) combinations of values for the variables {xi1, xi2 ...
xir}. An assignment of a variable x is in the form (x = v) where v is a value in dom (x).

A solution to a CSP is an assignment of a value to each variable such that all the
constraints are satisfied. Solving a CSP P involves either finding one (or more) solution of P
or proving that P is unsatisfiable. Backtracking search performs a depth-first traversal of a
search tree to solve general CSPs. In the context of a search tree, each edge is associated
with an assignment, a node at level k is associated with a set of k assignments which are
attached to the path from the root to this node. The root node at level 0 is an empty set.
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We use PastVar to denote the set of fixed variables which have been assigned and FutVar to
denote the set of future variables which have not been assigned. At each search tree node,
a future variable is selected by a VOH and a new node is generated after the assignment
to this variable, then a propagation algorithm filtering those inconsistent values from the
domains of variables is applied. If the propagation leads to a domain wipe out, then a failure
is encountered, one or more assignments must be canceled and a backtracking occurs.

3 Related Works

Following the fail first principle, the most popular variable ordering heuristic, minimum
domain size, selects the variable with smallest domain size [6]. It has been combined with
many efficient VOHs. The dom/deg [1] and dom/ddeg [16] combine minimum domain size
with largest variable degree. The weighted degree associates a weight with each constraint,
which records the number of failures caused by the constraint [2]. It identifies the variables
involved in difficult parts of problems. Combined with minimum domain size, the dom/wdeg
has been one of the most efficient general purpose VOHs and has been used as default
VOH by some solvers, such as Choco [14]. Its variants use different strategies to update the
weights of constraints, such as constraint tightness [10] and the explanation information of a
failure [7]. Its recent refinement, wdegca.cd, combines current arity and current domains to
update the constraint weights, has been shown to outperform the classic weighted degree
heuristic [20]. The impact-based search (IBS) estimates the search space reduction after the
propagation of an assignment of a variable [15]. It prefers the variables which may lead to the
greatest search space reduction. The count-based search (CBS) considers solution densities
of constraints [13]. It prefers the variable-value pair with the largest solution density. The
activity-based search (ABS) estimates how active a variable is, e.g., how often the variable
is affected by the assignments of other variables [12]. It prefers the most active variables.
The correlation based heuristic (CRBS) measures the possibility of having conflict between
each pair of variables and estimates the degree of conflicts when choosing a variable [18]. It
prefers the variable which is estimated to causing more conflicts. The conflict history search
(CHS) considers the history of constraint failures [5]. It prefers the variables involved in
those constraints causing recent failures. Given a set of candidate VOHs, the Multi-Armed
Bandit(MAB) techniques have been used to estimate the best VOH on a CSP instance. It has
been shown that the MAB-based methods are more efficient than any single candidate VOH
[21, 19]. The last-conflict based reasoning can be combined with any VOH, called underlying
VOH. Whenever an assignment of a variable x is canceled, such as the propagation of the
assignment leads to a failure, x is stored as a last conflict variable. The strategy always
selects the last conflict variable until its assignment succeeds. It makes the next selection by
the underlying VOH if there is no last conflict variable stored.

4 Failure Based Search

The failure based variable ordering heuristics

Given a CSP, a CP solver applies a propagation algorithm F after an assignment of a variable
x. If the propagation of the assignment of a variable x leads to a failure (a domain wipeout),
then we say the failure is caused by x. Although the actual reason of the failure may contain
other assignments, we consider only the last assignment as the reason here, because only
the last assignment must be one of the reasons of the failure, whereas some of the previous
assignments may not be the reasons.

CP 2021
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▶ Definition 1 (Failure Rate). In the context of backtracking search, the Failure Rate of
a variable x FR(x) is failNum(x)

assignNum(x) where the failNum(x) is the total number of failures
caused by x and the assignNum(x) is the total number of x being assigned (or selected) since
the beginning of search.

The failure rate based (FRB) variable ordering heuristic collects the information of
failNum(x) and assignNum(x) to calculate the failure rate for each variable x. It selects
the variable with the largest F R(x)

|dom(x)| . For each variable x, failNum(x) and assignNum(x)
are initialized to 0.5 and 1 respectively. The initialization indicates that the default failure
rate of each variable is 50% before the failure information is collected. After the searching
starts, if a variable x leads to a failure soon, FR(x) will increase. If the variable leads to a
failure after being assigned several times, FR(x) will decrease.

▶ Definition 2 (Failure Length). If the propagation of an assignment of a variable x leads to
a failure, then the length of the failure is |PastV ar| + 1, where PastVar is the set of fixed
variables before the assignment.

Failure length is the depth of the search tree when a failure occurs. The length of a failure
caused by a variable x is denoted by |failure(x)|. The failure length based (FLB) variable
ordering heuristic associates an accumulated failure length with each variable x, denoted by
AFL(x). For each variable, AFL(x) is initialized to 0. If a failure is caused by a variable x

during search, then AFL(x) is updated as follows.

AFL(x) = AFL(x) + 1
|failure(x)| (1)

The FLB variable ordering heuristic selects the variable with the largest AF L(x)
|dom(x)| . The

heuristic prefers the variables causing more shorter failures, i.e., the variables causing failures
at higher levels of the search tree.

Modern VOHs usually use some decaying strategies to give the recent information more
priority, such as CHS and ABS. We employ the strategy of CHS to make the failure based
variable ordering heuristics prefer the variables causing recent failures. For each variable x,
the factor of the decaying strategy is defined as,

A(x) = 1
#TotalFailure − LastFailure(x) + 1 (2)

where #TotalFailure is the total number of failures detected since the beginning of search,
and LastFailure(x) stores the #TotalFailure value of the last failure caused by x.

Based on the A(x) factor, we propose a new VOH combining the FRB with A(x), namely
FRBA. We use addition to combine them here. The FRBA variable ordering heuristic selects
the variable with largest FRBA(x) defined as,

FRBA(x) = FR(x) + A(x)
|dom(x)| (3)

Similarly, we propose a new VOH combining the FLB with A(x), namely FLBA. The
AFL(x) may be much larger than A(x) and the former may obscure the latter if we use
addition here, so we use multiplication to combine them. The FLBA variable ordering
heuristic selects the one with largest FLBA(x) defined as,

FLBA(x) = AFL(x) × A(x)
|dom(x)| (4)
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In backtracking search of CSPs, CP solvers usually use the binary branching (i.e., 2-way
branching) strategy which has been shown to be more efficient than the non-binary branching
strategy [8]. With binary branching, if the propagation of an assignment (x = v, a left branch)
leads to a failure, a backtracking occurs and a propagation of the refutation (x ≠ v, a right
branch) is performed. Note that the failure based VOHs collect only the failure information
of left branches, so the failures of right branches do not affect FR(x) and AFL(x). For
A(x), although #TotalFailure counts the failures of both left branches and right branches,
LastFailure(x) is updated only after a failure of left branch is detected.

Discussion

The failure based VOHs behave like the last conflict based reasoning that tend to select the
variable causing the last failure, but the new VOHs do not strictly select the last one. We
have mentioned FR(x), AFL(x), A(x) and |dom(x)| as scores to design the new heuristics.
Given a variable x causing the last failure, we discuss how these scores change after the last
failure detected.

FR(x): FR(x) increases because failNum(x)+1
assignNum(x)+1 is always larger than failNum(x)

assignNum(x) .
AFL(x): AFL(x) is increased by 1

|failure(x)| .
A(x): If x causes the last failure, then #TotalFailure equals to LastFailure(x). A(x)
will be the largest one.
|dom(x)|: After the failure is detected, the value of the assignment of x will be removed
from dom(x), so |dom(x)| decreases.

From the analysis, we can see if x causes the last failure, then all the four scoring function
give x a score better than that before the failure. Its score was the best one, so the better
score has a large chance to be selected. Thus, both the failure rate based VOHs and the
failure length based VOHs tend to select the variable causing the last failure.

In binary branching strategy, a failure of a left branch is followed by a propagation of a
refutation. Although the propagation of the refutation does not affect FR(x) and AFL(x),
it may reduce the domains of other variables, so some other variables may have much smaller
domain sizes. In this case, the variable x gets a better score after the backtracking, but it may
not be the best one due to the propagation of the refutation. In addition, if the propagation
of the refutation leads to a failure, the search will backtrack to a higher level, then some
fixed variables with a score better than that of x may become available for branching. Thus,
the failure based VOHs do not strictly select the variable causing the last failure.

5 Experiments

The experiments were run in Choco 4.10.6 [14]. The environment is JDK8 under CentOS 6.4
with Intel Xeon CPU E7-4820@2.00GHz processor and 58 GB RAM.

To examine the robustness of the proposed VOHs, we tested the VOHs with MiniZinc
benchmark from https://github.com/MiniZinc/MiniZinc-benchmarks. Solving a prob-
lem with different modelling may get different performances, so we tested all the MiniZinc
models of CSPs. The instances are flattened offline. After eliminating some large instances
which cannot be flattened in 1 hour and the problems where infeasibility is proved at the root
node, we include 41 problems with 1876 instances of 46 MiniZinc models in the experiments.

The performance of searching for the first solution or proving unsatisfiable are measured
by CPU time in seconds. Timeout is set to 1200 seconds. We have used a random seed
0 throughout the experiments. Besides the naive version of the VOHs, we compare these
VOHs equiped with a geometric restart strategy [4, 17] and last conflict based reasoning

CP 2021
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strategies [9] storing one (LC-1) and five (LC-5) conflict variables respectively. The restart
strategy uses 10 as the initial cutoff of failure count and 1.1 as the growing factor. The ABS
uses its default value selector and all other VOHs use lexicographic ordering as the value
selector.

In the following tables, we present the number of instances solved (#solved) by each VOH,
the accumulated CPU time of each VOH solving the instances solved by all the compared
VOHs (all solved time, ast) and the total CPU time of each VOH solving the instances solved
by at least one of the compared VOHs (total time, tt). The integer in the brackets after ast
is the number of all solved instances, so is the one after tt. The time cost of a timeout run is
count as 1200s and we eliminated the results of the instances where all compared VOHs are
timeout. The best one in each row is in bold.

In Table 1, we compare the failure based VOHs. We have three observations from the
table. Firstly, FRBA performs better than FRB and FLBA performs better than FLB, so
the decaying strategy improves the original failure based VOHs. Secondly, FLBA performs
best when the restart strategy is not equiped, and FRBA performs best when the restart
strategy is equiped. This is because the effective FR scores may be quickly learned after
several restarts, so FRBA could make good decisions after some restarts. Finally, the VOHs
get better performance when equiped with last conflict based reasoning. In general, the
FRBA VOH solves the largest number of instances, so we use it as the representative one of
the failure based VOHs in the following experiments.

Table 1 Comparing the failure based VOHs.

FRB FRBA FLB FLBA

no
restart

LC-0
#solved 702 711 818 870
ast(596) 9,401 9,344 18,740 8,140
tt(972) 348,961 340,532 224,463 162,034

LC-1
#solved 738 741 828 879
ast(618) 11,574 12,558 22,436 15,572
tt(980) 320,280 325,257 222,613 168,985

LC-5
#solved 767 763 862 894
ast(638) 15,494 16,119 15,777 12,316
tt(1,012) 339,881 344,336 217,003 184,585

restart

LC-0
#solved 949 985 984 1000
ast(864) 21,357 11,730 19,218 15,504
tt(1,087) 201,929 162,862 160,376 145,543

LC-1
#solved 1,024 1,037 969 992
ast(911) 14,895 11,813 17,361 17,014
tt(1,094) 132,819 119,706 180,152 165,624

LC-5
#solved 1,027 1,037 958 973
ast(910) 14,676 13,990 21,305 29,482
tt(1,097) 128,496 119,595 200,505 200,291

In Table 2, we compare FRBA with the state of the art VOHs. The ABS, CHS and
dom/wdegca.cd have been implemented in Choco and we implemented the CRBS and the
proposed VOHs2. We use the default parameters for these VOHs, which are recommended in

2 The source code is available at https://github.com/lihb905/fbs/.

https://github.com/lihb905/fbs/


H. Li, M. Yin, and Z. Li 9:7

the literatures [12, 5, 20, 18]. For each MiniZinc model, we calculate the rate of the number
of instances solved by each VOH to the number of instances solved by at least one VOH.
The aggregated 46 rates are shown in the solvedRates rows. The results show that, when
the restart strategy is equiped, FRBA gets the best performance. When the restart strategy
is not equiped, FRBA is competitive with the existing ones and the CHS with LC-5 solves
more instances than the other VOHs. The FRBA equiped with the restart strategy and last
conflict based reasoning solves instances of largest number and its total time cost is less than
that of the existing ones. The FRBA has the largest aggregated solved rate in most of the
rows.

Table 2 Comparing the failure based VOHs with the existing VOHs.

ABS CHS dom/wdegca.cd CRBS FRBA

no
restart

LC-0

#solved 530 665 596 616 711
ast(415) 7,104 6,306 16,860 13,007 5,603
tt(801) 350,965 194,178 274,969 250,625 135,332

solvedRates 36.65 35.96 32.31 34.4 37.47

LC-1

#solved 557 744 647 770 741
ast(427) 10,073 5,362 11,038 11,859 3,964
tt(961) 528,055 303,136 415,091 274,381 302,457

solvedRates 38.42 36.92 34.09 35.32 38.50

LC-5

#solved 583 796 704 790 763
ast(464) 10,279 9,213 18,073 17,000 6,998
tt(998) 530,479 287,299 391,992 291,255 327,536

solvedRates 39.90 38.88 36.19 35.88 38.73

restart

LC-0

#solved 630 730 700 864 985
ast(443) 9,687 9,276 22,666 18,829 8,360
tt(1,106) 618,393 492,387 536,574 356,115 185,662

solvedRates 39.82 38.49 33.39 36.88 40.48

LC-1

#solved 655 905 883 911 1,037
ast(474) 13,022 8,552 14,409 18,480 8,493
tt(1,134) 630,983 362,924 349,635 320,169 167,706

solvedRates 40.37 39.74 36.22 37.47 41.32

LC-5

#solved 674 960 929 879 1,037
ast(475) 9,618 5,810 17,482 20,766 7,935
tt(1,162) 661,177 300,729 331,411 397,650 197,595

solvedRates 40.33 40.47 37.37 37.45 40.55

It has been shown that the VOHs equiped with restart and LC-5 is the best strategy in
general, so we present the detailed results of the strategy in Table 3. The table includes
all the 46 MiniZinc models of 41 problems. The integer in the brackets after each problem
name is the total number of instances of the problem. In each cell, we present the number of
solved instances and the number in the brackets is the total time cost of the instances solved
by at least one VOH. The last row shows the numbers of problems where the corresponding
VOH performs best. To decide which VOH performs best in a problem, we give a rule that
considers the VOH solving instances of largest number as the best one. If a tie exists, we
further compare the total time cost. It is shown that, the VOHs get best performance in
different problems. Both ABS and FRBA get best performance in 13 problems, which is the
largest number.

CP 2021
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Table 3 Detailed results of all problems.

Problems ABS CHS dom/wdegca.cd CRBS FRBA
alpha(1) 1(0.13) 1(0.11) 1(0.17) 1(0.31) 1(0.35)

amaze2(47) 10(1,117) 7(4,820) 4(7,693) 7(4,034) 7(4,102)
amaze3(47) 45(391) 44(1,242) 44(2,393) 43(2,727) 43(3,038)

areas(4) 4(0.21) 4(0.06) 4(0.1) 4(0.08) 4(0.07)
bibd(16) 15(805) 13(2,509) 9(7,617) 15(127) 15(15)

black-hole(21) 21(24) 21(51) 21(28) 21(72) 20(1,213)
carseq(79) 23(7,795) 0(27,600) 0(27,600) 0(27,600) 0(27,600)
cars(79) 37(17,480) 10(46,048) 14(42,313) 5(54,652) 18(37,850)

CostasArray(10) 8(1,880) 7(2,683) 8(1,642) 8(1,769) 9(1,270)
step1-aes(7) 2(2,417) 3(1,882) 3(1,739) 3(1,658) 2(2,408)

debruijn-binary(11) 4(3,678) 7(1,088) 7(1,094) 7(1,180) 7(1,013)
elitserien-noseasonal(10) 10(184) 10(56) 10(26) 10(113) 10(48)

eq20(1) 1(0.05) 1(0.17) 1(0.09) 1(0.12) 1(0.04)
fillomino(20) 17(170) 16(2,372) 16(3,976) 16(2,970) 16(2,983)
golfers1(9) 6(794) 6(117) 6(1,089) 6(259) 6(142)

golfers1b(9) 6(223) 6(15) 6(20) 6(47) 6(31)
golfers2(9) 5(2,347) 5(1,338) 2(4,820) 2(5,876) 3(3,775)
kakuro(6) 6(0.18) 6(0.15) 6(0.12) 6(0.11) 6(1.38)
knights(4) 4(2.18) 4(0.61) 4(0.53) 4(1.13) 4(6.79)

langford(25) 20(119) 20(87) 20(88) 20(112) 20(616)
latin-squares-fd(7) 7(24) 6(1,291) 5(2,594) 4(3,893) 5(3,640)
latin-squares-fd2(7) 7(1.66) 7(0.91) 7(0.97) 7(1.90) 7(10)
latin-squares-lp(7) 7(161) 7(1,294) 4(3,626) 4(3,684) 6(1,909)

magicseq(9) 7(2,503) 9(386) 9(191) 7(2,408) 7(2,468)
market-split(60) 39(9,858) 33(10,567) 30(15,614) 33(10,749) 36(11,169)
mknapsack(7) 7(2,035) 5(3,299) 2(6,717) 4(3,924) 5(3,388)

nmseq(20) 9(6,293) 13(3,687) 11(5,407) 11(6,266) 14(2,290)
non(26) 21(11,151) 23(4,783) 15(17,988) 15(16,631) 24(3,847)

nsp-1(200) 56(95,939) 71(66,452) 55(78,245) 18(130,871) 114(10,801)
nsp-2(200) 6(18,424) 0(22,800) 6(19,884) 0(22,800) 13(12,459)

oocsp-racks(6) 6(898) 6(46) 6(29) 6(86) 6(45)
pentominoes-int(7) 7(252) 7(96) 7(181) 7(41) 7(193)

QCP(60) 60(4,385) 59(5,488) 55(8,914) 51(13,722) 53(11,441)
quasigroup7(10) 5(16) 5(11) 5(14) 5(38) 5(40)

queens(7) 7(1.11) 7(129) 7(108) 7(4.10) 7(1.49)
rect-packing(56) 56(56) 56(12) 56(12) 56(10.02) 56(10.24)

rect-packing-mznc2014(56) 56(54) 56(13) 56(9.16) 56(12) 56(10)
rubik(5) 4(2,298) 5(541) 1(4,826) 3(2,771) 3(2,458)
schur(3) 3(0.07) 3(0.05) 3(0.08) 3(0.06) 3(0.06)

search-stress2(1) 1(0.63) 1(0.59) 1(0.56) 1(0.46) 1(0.48)
search-stress(3) 2(3.00) 2(3.97) 2(40) 2(3.30) 2(2.91)

slow-convergence(10) 10(8.57) 10(9.39) 10(519) 10(355) 10(8.30)
solbat(39) 36(6,491) 32(10,813) 28(18,975) 24(22,157) 26(19,404)
tents(3) 3(0.33) 3(0.19) 3(0.24) 3(0.08) 3(0.07)

wwtpp-random(251) 0(168,000) 125(20,864) 133(11,650) 134(13,203) 138(5,298)
wwtpp-real(401) 7(292,879) 218(56,216) 226(33,711) 223(40,806) 232(20,576)

Sum of bests 13 10 5 5 13

In Table 4, we compare each pair of the VOHs according to the previous rule. The
number of problems where each VOH performs better is present in the table. We can see
that FRBA performs better than the others in general.
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Table 4 Comparing FRBA with the existing VOHs by pairs.

ABS FRBA CHS FRBA dom/wdegca.cd FRBA CRBS FRBA

no
restart

LC-0 21 25 20 26 17 29 19 27
LC-1 22 24 21 25 13 33 15 31
LC-5 26 20 31 15 21 25 16 30

restart
LC-0 24 22 24 22 13 33 18 28
LC-1 20 26 22 24 13 33 9 37
LC-5 21 25 23 23 18 28 15 31

The numbers of instances of each MiniZinc model vary greatly. If a VOH works well in
some models containing a large number of instances, it may get a good overall performance.
To balance the effect of instance set size, we randomly select 1876

46 = 41 instances from the
instance set of each MiniZinc model to generate a smaller benchmark set (46 is the number
of MiniZinc models). If an instance set contains less than 41 instances, we select them all.
The smaller benchmark set contains 832 instances. The results are present in Table 5. We
can see that, when the restart strategy is not equiped, FRBA clearly outperforms the others.
When the restart strategy is equiped, FRBA is competitive with the existing ones. In general,
FRBA gets the best performance in the smaller benchmark set.

Table 5 Comparing FRBA with the existing VOHs in the smaller benchmark set.

ABS CHS dom/wdegca.cd CRBS FRBA

no
restart

LC-0
#solved 451 455 420 430 478
ast(351) 6,504 5,476 15,569 11,961 4,630
tt(538) 127,769 119,427 167,554 150,743 89,434

LC-1
#solved 461 467 431 454 490
ast(360) 9,579 4,594 9,509 9,833 3,219
tt(552) 142,492 124,518 175,928 143,740 92,591

LC-5
#solved 484 491 466 461 497
ast(391) 8,600 7,692 16,355 15,180 6,156
tt(565) 121,385 110,707 148,158 148,961 104,365

restart

LC-0
#solved 505 488 427 477 521
ast(371) 7,116 8,002 22,176 12,087 7,574
tt(598) 142,153 161,329 239,873 177,064 120,197

LC-1
#solved 508 510 470 482 527
ast(389) 10,017 5,897 13,847 11,099 8,068
tt(590) 133,624 126,346 169,283 155,500 106,790

LC-5
#solved 514 525 489 480 533
ast(400) 6,316 3,890 16,542 12,876 7,399
tt(608) 150,353 124,973 176,728 181,416 122,106

6 Conclusion

In this paper, we propose failure based variable ordering heuristics for solving CSPs. The
new VOHs consider failure rate and failure length to estimate how likely an assignment of a
variable causing a failure. All the heuristic information are collected during search, so the
new heuristics are parameter-free. The experiments in the MiniZinc benchmark set show
that the failure based VOHs outperform the state of the art VOHs in general. They can be
new candidates of general purpose variable ordering heuristics for black-box CSP solvers.

CP 2021
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