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Abstract
The classical degree realization problem is defined as follows: Given a sequence d̄ = (d1, . . . , dn)
of positive integers, construct an n-vertex graph in which each vertex ui has degree di (or decide
that no such graph exists). In this article, we present and study the related selected neighbor degree
realization problem, which requires that each vertex ui of G has a neighbor of degree di. We solve
the problem when G is required to be acyclic (i.e., a forest), and present a sufficient and necessary
condition for a given sequence to be realizable.
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1 Introduction

Background and motivation. Different properties of a given network can be described
using “profiles” of the network. As a classical example, the degree profile (or degree sequence)
of an n-vertex graph G is the sequence DEG(G) = (d1, . . . , dn), where di = deg(ui) is the
degree of the vertex ui.

The extensively studied degree realization problem concerns the situation where given
a sequence of positive integers d̄ = (d1, . . . , dn), we are asked whether there exists a graph
whose degree sequence conforms to d̄. (If so, then the sequence d̄ is called graphic.) Erdös
and Gallai [15] gave a necessary and sufficient condition for deciding if a given degree profile
is realizable (also implying a Θ(n) time decision algorithm), and Havel and Hakimi [18, 19]
gave a Θ(

∑
i di) time algorithm that given a degree profile d̄ computes a realizing graph, or

proves that the profile is not realizable. The problem is known to be particularly simple
when the realizing graph is required to be acyclic, in which case the necessary and sufficient
condition for realizability is simply that

∑
i di = 2(n − k), where k ∈ {1, . . . , n} (see [16] for

a short analysis for trees). Many extensions and variations of the degree realization problem
were studied in the past, cf. [1, 11, 20, 24, 26, 31, 32, 34, 35]. Interesting applications in the
context of social networks are studied in [9, 13, 21].

Other aspects of the graph structures may be described using other types of profiles. We
focus on profiles that capture aspects of the vertex neighborhoods in the given graph. One
reason for our interest in neighbor degrees is that in the context of social networks, it is often
informative to observe not only the individual degree of each vertex, but also the degrees of
nearby vertices, since obtaining a more complete picture of the degree distribution in a given
neighborhood may reveal useful information regarding the interrelationships among vertices,
and their relative standing in their immediate society.
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27:2 Selected Neighbor Degree Forest Realization

Let N [u] denote the closed (inclusive) neighborhood of the vertex u in G, namely
N [u] = {v | (v, u) ∈ E} ∪ {u}. Clearly, the profile N(G) = ⟨N [u1], . . . , N [un]⟩ tells us
everything we may need to know. However, this profile is costly, or “heavy”, in the sense
that storing it requires as much memory as storing the entire graph. Instead, one is often
interested in studying “lighter” profiles, storing only a small amount of information per
vertex.

For a graph G(V, E), V = {u1, . . . , un}, let ctr : V → V be a neighbor selection function,
such that ctr(u) ∈ N [u] for each vertex u. We refer to the vertex ctr(u) as u’s selected
neighbor or center. For each vertex u, denote the degree of u’s selected neighbor by snd(u) =
deg(ctr(u)). Then the sequence SND(G, ctr) = (snd(u1), . . . , snd(un)) is referred to as the
selected neighbor degree (SND) profile of the pair (G, ctr).

Interesting special cases of the selected neighbor degree profile SND arise when the neighbor
selection function ctr targets some specific neighbor for each vertex. The ordinary degree
profile is obtained by using ctrself (u) = u. Picking the function ctrmax, which selects for
every vertex u its neighbor of maximum degree, yields

maxnd(u) = deg(ctrmax(u)) = max{deg(w) | w ∈ N [u]} ,

which gives the maximum neighbor degree profile MaxND(G) = (maxnd(u1), . . . , maxnd(un)).
The functions ctrmin and minnd and the minimum neighbor degree profile MinND(G) can be
defined analogously. Note that the profile MaxND(G) (resp., MinND(G)) is independent of
the choice of ctrmax (resp., ctrmin). This is not the case for general SND profiles.

Recently, we studied the realization problem for the MinND and MaxND profiles. In
particular, the minimum neighbor degree realization problem, where given a sequence d̄ of n

integers one must decide if there is a graph G such that MinND(G) = d̄ and construct such a
graph (if exists), was studied in [3]. A complete characterization was given for realization by
forests (i.e., acyclic graphs), but the problem over general graphs was left open. Surprisingly,
when studying the realizability of the maximum neighbor degree profile MaxND [6], the
picture was reversed: we were able to give a complete characterization for the realization
problem of maximum neighbor degrees on general graphs, but on forests the problem appears
to be harder, and was left open.

It is therefore natural to investigate the problem’s behavior when, instead of MaxND and
MinND, we look at general selected neighbor degree profiles. The current study addresses
this question. We resolve the realizability of SND profiles by forests, although surprisingly
even this more relaxed variant turned out to be subtle and considerably more difficult
than anticipated initially. Formally, we study the selected neighbor degree Forest realization
(SNDF) problem. Consider a given n-integer SNDF-specification d̄. We say that d̄ is a
forest-realizable SNDF-profile if there exists an n-vertex forest F , and a neighbor selection
function ctr, whose SNDF-profile satisfies SND(F, ctr) = d̄.

Our Contribution. We study an optimization version of the SNDF problem. As mentioned
earlier, not every SNDF-specification d̄ is realizable. To cope with unrealizable profiles, we
define a measure for the deviation of a given profile d̄ from realizability in Sect. 2, where we
also introduce the basic elements of the problem, as well as some preliminary notions used in
our solution. In Sect. 3 we introduce the framework, give a high-level overview of the general
approach and present basic tools for handling SNDF profiles. In Section 4 we present a
tight lower bound on the deviation of SNDF-profiles. This lower bound lays the foundation
for our algorithm. We also outline our construction algorithm for the problem, which is
optimal in the sense that when d̄ is realizable by a forest, the resulting construction (F, ctr)
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is a realization of d̄, and when it is not realizable, the resulting (F, ctr) has the minimum
possible deviation (matching the lower bound). Both the lower bound and the algorithm are
rather involved, hence most of the details are omitted for lack of space and can be found
in [36]. As a byproduct, our analysis also yields necessary and sufficient conditions for a
specification d̄ to be realizable by a forest, as well as a fast algorithm for deciding realizability,
thus providing a complete solution for the SNDF problem. Finally, our algorithm can be
easily modified into one that minimizes the number of centers.

Related Work. Over the years, various extensions of the degree realization problem were
studied, cf. [1, 34]. Many studies have addressed related questions such as finding all
the (non-isomorphic) graphs that realize a given degree sequence, counting all the (non-
isomorphic) realizing graphs of a given degree sequence, sampling a random realization for a
given degree sequence as uniformly as possible, or determining the conditions under which
a given degree sequence defines a unique realizing graph (a.k.a. the graph reconstruction
problem), cf. [11, 15, 18, 19, 20, 24, 26, 31, 32, 35]. Interesting applications in the context
of social networks are studied in [9, 21, 13]. The somewhat related shotgun assembly
problem [22] studies graph specifications consisting of a description of the r-neighborhood
(up to radius r) of each vertex i. Realization questions of a similar nature were studied
for other applications, where given some type of information profile specifying the desired
vertex properties (concerning distances, connectivity, centrality, or any other property of
significance), one may ask whether there exists a graph conforming to the specified profile
(see, e.g., [2, 4, 5, 7, 8, 12, 14, 10, 17, 23, 25, 27, 28, 29, 30, 33, 37]). The selected neighbor
degree realization problem belongs to this class of problems.

2 Preliminaries

Let F = (V, E) be a forest. For a vertex set U ⊆ V , let N [U ] =
⋃

u∈U N [u] be the closed
neighborhood of U . Let ctr : V → V be a neighbor function on F ’s vertices such that
ctr(u) ∈ N [u] for each u ∈ V . For every u ∈ V , define

snd(u) = snd(F,ctr)(u) = degF (ctr(u)) .

When F and ctr are clear from the context, we omit them and write snd(u). We refer to
snd(u) as the snd value of u. The SND profile of (F, ctr) is the sequence

SND(F, ctr) = (snd(u))u∈V .

It is convenient to represent an SNDF profile in a condensed form as a list of non-
negative integers (kni

i )ℓ
i=1, meaning that each value ki appears in the list ni times and the

list contains ℓ distinct values, i.e. there are ni vertices that have snd value ki. We assume
n − 1 ≥ k1 > . . . > kℓ ≥ 0. Overall n =

∑ℓ
i=1 ni.

We are interested in the following SNDF realization problem. A given sequence d̄ =
(kni

i )ℓ
i=1 is viewed as an SNDF profile. It is realizable if there exists a pair, (F, ctr), where

F is a forest, such that SND(F, ctr) = d̄. We call (F, ctr) an SNDF realization of d̄. (Note
that d̄ may or may not be realizable.) The problem concerns finding a realizing (F, ctr) for
a given profile d̄, if exists. Observe that the snd value 0 can only be realized by singleton
vertices, independently of the rest of the profile. So hereafter assume that kℓ ≥ 1.

Star formations. When ki + 1 vertices are required by the profile to have a neighbor
of degree ki, the requirement can be easily satisfied in a self-sufficient manner by a star
composed of a root v and ki leaves, all pointing at the root (i.e., with ctr(u) = v). Likewise,
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27:4 Selected Neighbor Degree Forest Realization

if the profile contains kni
i where ni = c · (ki + 1) for some integer c, then this component of

the profile can be realized on its own, using c stars of size ki (where by the size of a star we
refer to the number of leaves). This motivates the following alternative representation for a
profile d̄, using two sequences (ci)ℓ

i=1 and (ρi)ℓ
i=1 such that

ni = ci(ki + 1) − ρi and 0 ≤ ρi ≤ ki, (1)

where ρi = ci(ki + 1) − ni is the ith residue. We refer to the tuple (ci, ρi)ℓ
i=1 as the star

formation of d̄. Note that

n =
ℓ∑

i=1
ni =

ℓ∑
i=1

(ci(ki + 1) − ρi) .

As mentioned before, not every profile d̄ is realizable. We therefore seek approximate solutions
to the SNDF realization problem.

Upper realizations and deviation. Let F = (V, E) be a forest and let ctr : V → V . We
say that (F, ctr) is an upper realization (or U-realization) of the profile d̄ = (kni

i )ℓ
i=1 if

the SNDF profile of (F, ctr) is of the form SND(F, ctr) = d̄′ = (kn′
i

i )ℓ
i=1 (so in particular

snd(u) ∈ {k1, · · · , kℓ} for every u) and n′
i ≥ ni for every i. Denote n(F ) =

∑ℓ
i=1 n′

i. Denote
by cc(F ) the number of connected components in F . Define the deviation of (F, ctr) from
the profile d̄ as

Dev(d̄, (F, ctr)) =
ℓ∑

i=1
(n′

i − ni) = n(F ) − n .

The trivial U-realization. Observe that there is a straightforward way for constructing a
U-realization to a given profile d̄ = (kni

i )ℓ
i=1. Define (ci)ℓ

i=1 and (ρi)ℓ
i=1 as above. For each

1 ≤ i ≤ ℓ create ci stars of size ki, and for each leaf v in a star with center u define ctr(v) = u

and ctr(u) = u. The resulting forest F̃ contains cc(F̃ ) =
∑ℓ

i=1 ci connected components and∑ℓ
i=1 ci(ki + 1) vertices. We refer to this construction as the trivial construction and denote

it by (F̃ (d̄), c̃tr(d̄)). Note that

Dev(d̄, (F̃ , c̃tr)) =
ℓ∑

i=1
(ci(ki + 1) − ni) =

ℓ∑
i=1

ρi . (2)

While this realization may in some cases be near-optimal, our goal is to construct a U-
realization (F, ctr) whose number of vertices, n(F ), is as close as possible to n, the specified
number of vertices. Define the realizable size of a given profile d̄ as the minimal size of any
U-realization for it,

n∗(d̄) = min{n(F ) | ∃ctr : (F, ctr) is a U-realization for d̄}.

Define the deviation of a given profile d̄ as the minimum deviation over all of its U-realizations,

Dev(d̄) = n∗(d̄) − n = min{Dev(d̄, (F, ctr)) | (F, ctr) is a U-realization for d̄}. (3)

In this way, we can redefine realizability of SNDF profiles as follows. A given SNDF profile
d̄ is realizable if and only if n∗(d̄) = n, or alternatively, Dev(d̄) = 0. Denote by (F ∗, ctr∗) an
optimal U-realization of d̄ (note that (F ∗, ctr∗) is not necessarily unique), namely, such that
n(F ∗) = n∗(d̄), or, Dev(d̄, (F ∗, ctr∗)) = Dev(d̄). Our goal is to find such a realization.
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6
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Figure 1 Realization of d̄1 = (61, 316) using s = (1, 5). The centers are marked by their degrees.

Centers and members. The sets of ki-centers and ki-members in upper realization (F, ctr)
for a profile d̄ = (kni

i )ℓ
i=1 are

Ci(F, ctr) = {u ∈ F | deg(u) = ki, ∃v ∈ N [u] s.t. ctr(v) = u} ,

Mi(F, ctr) = {u ∈ F | snd(u) = ki} .

(We may write simply Ci and Mi when clear from context.) Clearly, Ci ∩ Cj = ∅ and
Mi ∩ Mj = ∅ for every i ≠ j, and

⋃
i Mi = V , i.e., the sets Mi form a partition of the vertices

of F . Set σi(F, ctr) = |Ci(F, ctr)|, and let

C(F, ctr) =
ℓ⋃

i=1
Ci(F, ctr)

and

σ(F, ctr) = (σ1(F, ctr), . . . , σℓ(F, ctr)) .

Center specification sequences (CSS). Clearly, any U-realization (F, ctr) for d̄ must use
at least ci centers on layer i, so σi ≥ ci for every i (see also Lemma 5(1)). Unfortunately, for
some profiles, using exactly ci centers for every i yields a suboptimal upper realization (with
deviation greater than Dev(d̄)). A key component of the problem is thus to decide, given d̄,
on the right number of centers for each layer. These numbers are represented as a center
specification sequence (or CSS) s = (s1, . . . , sℓ), which must satisfy si ≥ ci for every i. A
U-realization (F, ctr) conforms to (d̄, s) if the number of centers on each layer is as specified
by s, i.e., σ(F, ctr) = s. In our construction, we first select a CSS s, and then look for a
conforming U-realization (F, ctr) for it.

For example, the profile d̄1 = (61, 316) requires at least c = (1, 4) centers, but any U-
realization with this many centers has deviation at least 1 (as follows from Thm. 8), whereas
using the CSS s = (1, 5) yields the optimal Dev(d̄1) = 0, as demonstrated in the Figure 1.

Intuitively, in a conforming U-realization (F, ctr), each x ∈ Ci acts as the center of a
star of degree ki, potentially allowing its “clients” y ∈ Mi to have snd(y) = ki by setting
ctr(y) = x. Each center is also a member, possibly for a different i. Also, ctr(u) ∈ Ci ∩ N [u]
for every i ∈ [ℓ] and u ∈ Mi, so Mi ⊆ N [Ci] and |Mi| ≤ si(ki + 1). Define the residue of ki

w.r.t. a CSS s as

ρs
i = si(ki + 1) − ni. (4)

Note that Eq. (4) for s = σ(F, ctr) = (s1, . . . , sℓ) and ρs = ρσ(F, ctr) = (ρs
1, . . . , ρs

ℓ) is
analogous to Eq. (1) for our star formation (c, ρ), since

ni = si(ki + 1) − ρs
i = ci(ki + 1) − ρi, (5)

which is related to our definition of star formation, since each ki-center u has |N [u]| = ki + 1.
We break the forest F into (possibly overlapping) stars centered around the ki-centers in Ci.

ISAAC 2021



27:6 Selected Neighbor Degree Forest Realization

The following two assumptions on U-realizations (F, ctr) are used hereafter without loss
of generality.
Member independence. In (F, ctr), the non-centers are independent, namely, F contains no

edge (u, v) between any u, v /∈ C. (Such edges can always be removed without changing
the profile of F , and our constructions never use them.)

No cross-pointing. In (F, ctr), there is no cross-pointing, i.e., there are no two centers u

and v such that ctr(u) = v and ctr(v) = u. (If cross-pointing occurs, one can change the
two ctr values to ctr(u) = u and ctr(v) = v without changing the profile. Again, our
constructions never use cross-pointing.)

3 Framework and basic tools

In this section, we describe the basic framework and the tools we use for realizing SNDF
profiles.

Handling leaf centers

We first show how to handle the cases where kℓ = 1. Consequently, in the rest of this article,
we consider only SNDF profiles d̄ = (kni

i )ℓ
i=1 where kℓ ≥ 2.

Trivial profiles of the form d̄ = (1n) for n ≥ 2 can be realized by a star (F, ctr) with n − 1
leaves, such that ctr(u) = u for each leaf u, and for the center, v, ctr(v) is defined to be one
of the leaves.

It remains to handle profiles d̄ = (kni
i )ℓ

i=1 where ℓ ≥ 2 and kℓ = 1. This is done by the
following approach. Given such a profile d̄, denote the truncated profile (without kℓ) by
d̄′ = (kni

i )ℓ−1
i=1 . We show that the deviation of d̄ is Dev(d̄) = max

{
Dev(d̄′) − nℓ, 0

}
, and

moreover, there is a polynomial time algorithm that given an optimal U-realization (of a
special type, referred to as a leaf-covered U-realization) for d̄′, transforms it into an optimal
U-realization for d̄. Hence the problem is reduced to finding optimal leaf-covered realizations
for truncated profiles (with kℓ ≥ 2).

Leaf-covered U-realizations

Let d̄ = (kni
i )ℓ

i=1 be an SNDF profile with U-realization (F, ctr). Denote ei = |Mi| − ni,
namely, the number of excess vertices with snd value ki. Let L = {u ∈ V (F ) | deg(u) = 1} be
the set of leaves of F . We say that (F, ctr) is a leaf-covered U-realization for d̄ if |L∩Mi| ≥ ei

for every i.
Intuitively, a leaf-covered U-realization is easy to work with, since we may think of all

the excess vertices as being among the leaves.
The reduction and its analysis are deferred to the full paper (see [36]). We get:

▶ Proposition 1. Let d̄ = (kni
i )ℓ

i=1 be a profile with ℓ ≥ 2 and kℓ = 1. Let (F ′, ctr′) be an
optimal leaf-covered U-realization for d̄′ = (kni

i )ℓ−1
i=1 , namely, Dev(d̄′, (F ′, ctr′)) = Dev(d̄′).

Then (F ′, ctr′) can be converted, in polynomial time, into an optimal U-realization (F, ctr)
for d̄, with Dev(d̄, (F, ctr)) = Dev(d̄).

By Prop. 1, it suffices to focus on finding optimal leaf-covered U-realizations for profiles
without degree 1. Our main result is the following.

▶ Theorem 2. Let d̄ = (kni
i )ℓ

i=1 be an SNDF profile such that kℓ ≥ 2. There exists an al-
gorithm that constructs an optimal U-realization (F ∗, ctr∗) for d̄, namely, Dev(d̄, (F ∗, ctr∗)) =
Dev(d̄). In addition, (F ∗, ctr∗) is leaf-covered. The run-time of the algorithm is O(n∗(d̄)),
which is optimal.



A. Bar-Noy, D. Peleg, D. Rawitz, and E. Yehezkel 27:7

Overview of the general approach

Consider a profile d̄ = (kni
i )ℓ

i=1 and let (F, ctr) be some U-realization of d̄ with center classes
C1, . . . , Cℓ and C =

⋃
i Ci. Consider a collection of stars {Su}u∈C , where Su is centered at

u and contains all of u’s neighbors in F and their respective edges. Note that Su and Sv are
not necessarily disjoint, but they can share at most two vertices, namely, |N [u] ∩ N [v]| ≤ 2,
since otherwise, there is a cycle in F . The trivial U-realization for d̄, (F̃ , c̃tr) is wasteful,
since it employs

∑ℓ
i=1 ci pairwise disjoint stars, resulting in

∑ℓ
i=1 ci(ki + 1) vertices. To

improve it, we construct a realization by starting from disjoint stars and then forcing them
to share vertices by performing certain merge operations. The key operation performed by
our algorithm involves merging stars. Specifically, the algorithm employs two operations,
referred to as head-merges and leaf-merges.

1
23

4 5

6
78

9 10

(a) (F2, ctr2).

1

2+83

4 5
6

7

9 10

(b) (F3, ctr3).

1
3

4 5
6

7

9 10

⟨2, 8⟩

(c) (F4, ctr4).

Figure 2 The forests F2, F3 and F4.

To illustrate these operations, consider the example profile d̄2 = (410). As 10 = 2 · (4 + 1),
an exact realization of this profile is obtained by the trivial U-realization composed of the
following pair (F2, ctr2), consisting of two stars of size 4 (see Figure 2a). The directional
edges represent the value of the ctr pointer of a specific vertex.

A leaf-merge of two stars fuses together two leaves, one of each star, into a single vertex,
thus creating a single tree. Consider, for example, the profile d̄3 = (49). As 9 = 2 · (4 + 1) − 1,
the trivial U-realization composed of two stars of size 4, has one excess vertex (namely, a
deviation of 1). To overcome this problem, we can leaf-merge vertices 2 and 8 of the forest
F2 into a single vertex denoted 2 + 8, yielding the following pair (F3, ctr3) (see Figure 2b).

A head-merge of two stars is obtained by discarding one leaf of each star and connecting
the star roots by a new edge. For example, to realize the profile d̄4 = (48), whose trivial
U-realization has a deviation of two excess vertices, we can head-merge the two stars of forest
F2 by completely removing vertices 2 and 8 and connecting the star heads by a new edge
(marked by ⟨2, 8⟩ in the figure), yielding the following pair (F4, ctr4) (see Figure 2c).

Generally, satisfying part kni
i of the profile requires using stars with ki leaves, but this

will satisfy the profile only if ni is a multiple of ki + 1. For other ni values, using ci = ⌈ ni

ki+1 ⌉
stars yields more vertices than needed. We therefore use head and leaf merges to get rid of
the excess vertices.

For example, consider the profile d̄5 = (412, 37). As 12 = 3(4 + 1) − 3 and 7 = 2(3 + 1) − 1,
we start by creating three size 4 stars and two size 3 stars, yielding the pair (F5, ctr5) shown
in Figure 3.

The forest F5 has three excess vertices with snd value 4 and one excess vertex with snd
value 3. To correct it, we apply a head-merge operation and a leaf-merge operation on the
size 4 stars, and a leaf-merge operation on the size 3 stars. This creates the following desired
forest (F ′

5, ctr′
5) depicted in Figure 4, which satisfies d̄.

ISAAC 2021
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1
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Figure 3 (F5, ctr5).
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9 10+14

⟨2, 8⟩
11

1213

15

16

17+22
18

19

20
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23

Figure 4 (F ′
5, ctr′

5).

Our algorithm also exploits the fact that the value of ctr can be set so as to change the
snd value of a vertex, by applying head or leaf merge operation to two stars of different sizes.

To illustrate this point, let us consider the following example. The profile d̄6 = (44, 34)
has one excess vertex with snd value 4. This profile is realizable in this way by starting from
stars of size 3 and 4, and applying a leaf merge, to get the forest (F6, ctr6) shown in Figure 5.

1
23

4 5+8
6

7

9

Figure 5 (F6, ctr6).

The analysis of our algorithm, and its proof of optimality, are based on the crucial
observation that the only way to merge two individual stars is by head or leaf merges, namely,
discarding one or two vertices, since trying to modify two stars by fusing together three or
more vertices will create a cycle. This implies that certain profiles cannot be satisfied. For
example, consider the profile d̄7 = (47). Again, we must start with a forest F2. However,
there is no way to discard three vertices from F2 and end up with a satisfying forest of 7
vertices. Indeed, based on Lemma 5 one can show that Dev(d̄7) ≥ 1.

The LM operation and Procedure Connect

We now present Procedure LM , which reduces the deviation (and the number of connected
components in the forest) by 1, by performing a single leaf merge. Formally, given a profile
d̄ = (kni

i )ℓ
i=1 and a U-realization (F, ctr) of d̄ with Dev(d̄, (F, ctr)) > 0, such that F has

q = cc(F ) ≥ 2 connected components, the operation constructs a U-realization (F ′, ctr′) for
d̄ with Dev(d̄, (F ′, ctr′)) = Dev(d̄, (F, ctr)) − 1, such that F ′ has cc(F ′) = q − 1 connected
components.

While the leaf merge operation is straightforward, applying it to an arbitrary forest raises
some subtle points, as discussed next. Let i ∈ [ℓ] such that |Mi(F, ctr)| > ni namely, the
snd value ki appears in (F, ctr) more than ni times. Let u ∈ V (F ) be a ki-center in F . The
procedure aims to remove one of its ki-members from F (possibly, u itself) in order to reduce
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the number of appearances of the snd value ki in F (hence reducing the deviation of (F, ctr)
from d̄). However, this cannot always be done directly, since removing vertices from F results
in an undesired change in the degree of their neighbors, which might affect the snd values
of other vertices in F . Hence, removing vertices from F needs to be done carefully. The
method details, as well as formal code and analysis, are deferred to the full paper (see [36]).

▶ Lemma 3. Given d̄ and (F, ctr) such that cc(F ) ≥ 2 and Dev(d̄, (F, ctr)) ≥ 1, LM

returns a U-realization (F ′, ctr′) for d̄ such that cc(F ′) = cc(F ) − 1 and Dev(d̄, (F ′, ctr′)) =
Dev(d̄, (F, ctr)) − 1.

We now present a simple construction algorithm named Connect, based on performing
only leaf merges. Given a profile d̄ and a U-realization (F, ctr), The algorithm produces a
new U-realization (F ′, ctr′) by repeatedly invoking LM and applying leaf merges as long as
possible. It halts when either the forest becomes connected, or the deviation becomes zero,
yielding a proper realization.

Note that if the constructed (F ′, ctr′) is a U-realization of d̄, then Dev(d̄, (F ′, ctr′)) = 0.
Otherwise, LM was invoked exactly cc(F ) − 1 times, each decreasing the deviation by 1. We
thus have the following.

▶ Lemma 4. Let d̄ = (kni
i )ℓ

i=1 be a profile with a U-realization (F, ctr). Also, let (F ′, ctr′)
be the construction returned by Algorithm Connect. Then

Dev(d̄, (F ′, ctr′)) = max{Dev(d̄, (F, ctr)) − cc(F ) + 1, 0}.

A basic lower bound on Dev(d̄). We next establish preliminary lower bounds on Dev(d̄)
and on the number of connected components in specific types of U-realizations.

For a forest F and a vertex subset U ⊆ V (F ), denote by F [U ] the induced forest on
U ’s vertices, i.e., V (F [U ]) = U and E(F [U ]) = E(F ) ∩ (U × U). For an SNDF profile
d̄ = (kni

i )ℓ
i=1 with a U-realization (F, ctr), our first lower bound expression involves σ and

ρσ as defined in Sect. 2, and cc(F [C]), the number of connected components in the centers
forest F [C] induced by the centers:

LBdev
1 = LBdev

1 (d̄, F, ctr) = max
{

ℓ∑
i=1

ρσ
i − 2

ℓ∑
i=1

σi + cc(F [C]) + 1, 0
}

. (6)

The intuition for the lower bound is as follows. To minimize the deviation, we use head and
leaf merges, each of which reduces cc(F ), the number of connected components, by 1. Hence
the total number of both head and leaf merges that can be performed on some U-realization
(F, ctr) is bounded by cc(F ) − 1. However, a head-merge reduces the deviation by 2, whereas
a leaf-merge reduces the deviation by 1. Since both of these merges “cost” the same (in the
sense that they both decrease cc(F ) by 1), it is desirable to use as many head-merges as
possible.

Now consider a given U-realization (F̃ , c̃tr) consisting of si stars with ki leaves for each
i ∈ [ℓ], for some predetermined CSS s. This U-realization has deviation Dev(d̄, (F̃ , c̃tr)) =∑ℓ

i=1 ρs
i and the number of connected components in F̃ is cc(F̃ ) =

∑ℓ
i=1 si. In the best case,

one can perform only head-merges to construct the final (F, ctr). Each head-merge reduces
the deviation by 2 and cc(F ) by 1, therefore

Dev(d̄, (F, ctr)) =
ℓ∑

i=1
ρs

i − 2
ℓ∑

i=1
si + 2 .
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However, in many profiles it is not possible to use only head-merges. So assume we used
only x head-merges, and removed 2x excess vertices. Since the total number of merges is
bounded by cc(F ) − 1 =

∑ℓ
i=1 si − 1, it is now possible to perform up to

∑ℓ
i=1 si − x − 1

leaf-merges, removing
∑ℓ

i=1 si − x − 1 additional excess vertices, totalling to
∑ℓ

i=1 si + x − 1
excess vertices being removed. Note that each head-merge adds an edge (u, v) for some
u, v ∈ C, so we have x = |E(F [C])|, where E(F [C]) is the set of edges in the centers forest
F [C]. Since F [C] is a forest,

|E(F [C])| = |V (F [C])| − cc(F [C]) =
ℓ∑

i=1
si − cc(F [C]) ,

and therefore x =
∑ℓ

i=1 si − cc(F [C]). In summary, at most

ℓ∑
i=1

si + x − 1 = 2 ·
ℓ∑

i=1
si − cc(F [C]) − 1

out of the
∑ℓ

i=1 ρs
i initial excess vertices were removed.

This lower bound idea is formalized in the following lemma. (Proofs are deferred to the
full paper, see [36].)

▶ Lemma 5. For every profile d̄ and U-realization (F, ctr):
1. σi(F, ctr) ≥ ci, for every i,
2. Dev(d̄, (F, ctr)) ≥ LBdev

1 .

Reducing the error via head merges

We now present the main idea used later to construct an optimal U-realization (F, ctr) for a
profile d̄, namely, s.t. Dev(d̄, (F, ctr)) = Dev(d̄). Our construction has two stages. In the first,
we select a CSS s = (s1, . . . , sℓ) specifying the number of ki-centers for every i. The selection
ensures s is a CSS and has minimum deviation. The second stage builds a realization (F, ctr)
that conforms to (d̄, s). A key observation, formalized by combining Lemmas 5(2) and 6, is
that while (d̄, s) has many different conforming realizations (F, ctr), with different deviations,
their deviations directly depend on cc(F [C]), the number of connected components in the
centers forest F [C] (where C = C(F, ctr) is the set of centers). Recall that a head merge is
performed by taking two centers u, v ∈ C, removing one neighbor with degree 1 from each,
and connecting u, v by an edge, thus it decreases the deviation by 2 while decreasing cc(F [C])
by 1. This means that in order to construct an optimal U-realization (with minimal cc(F [C]))
that conforms to (d̄, s) for a CSS s, we need to perform the maximal number of head merges.
Suppose the resulting U-realization (F, ctr) allows no more head-merges. By Lemma 5(2),
Dev(d̄, (F, ctr)) ≥ LBdev

1 (d̄, F, ctr). This bound can be matched by transforming (F, ctr)
using leaf-merges.

▶ Lemma 6. Consider a profile d̄ = (kni
i )ℓ

i=1 with a U-realization (F, ctr). There exists a
U-realization (F ′, ctr′) with deviation Dev(d̄, (F ′, ctr′)) = LBdev

1 (d̄, F, ctr).

We conclude the discussion by stating that, given a profile d̄, constructing an optimal
U-realization for d̄ boils down to
1. Choosing the “right” CSS s.
2. Constructing a U-realization (F, ctr) that conforms to (d̄, s), such that cc(F [C]) is minimal

among all other U-realizations with this property.
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To formalize this workplan, we make the following definitions. Let d̄ = (kni
i )ℓ

i=1 be a
profile with star formation (ci, ρi)ℓ

i=1, and let s be a CSS for d̄. Define the minimum number
of connected components in a centers forest F [C] for F that admits a conforming realization
for d̄ as

cc∗(d̄, s) = min
{

cc(F [C]) | ∃ctr : (F, ctr) conforms to (d̄, s)
}

, (7)

and define the expression obtained from Eq. (6) by replacing cc(F [C]) with cc∗(d̄, s) as

LBdev
3 (d̄, s) = max

{
ℓ∑

i=1
ρs

i − 2
ℓ∑

i=1
si + cc∗(d̄, s) + 1, 0

}
(8)

A CSS s∗ is optimal for d̄ if s∗ minimizes LBdev
3 (d̄, s∗) over all CSS’s for d̄. With the above

definition, we state the following lemma.

▶ Lemma 7. Dev(d̄) = LBdev
3 (d̄, s∗) = min{LBdev

3 (d̄, s) | s is a CSS for d̄}.

Hereafter, we focus on constructing, for a given profile d̄ and any s, a leaf-covered
U-realization (F, ctr) conforming to (d̄, s). This U-realization has a minimal number of
connected components in the centers forest, namely, cc(F [C]) = cc∗(d̄, s). In addition, in
Section 4 we show how to find an optimal CSS s∗ for d̄. Combining these results, Theorem 2
follows.

Layer classification

To construct an optimal solution and analyze the structure of a profile d̄ = (kni
i )ℓ

i=1, we
classify each of its ℓ layers according to the values si and the residues ρs

i ; later, the algorithm
and analysis treat each class differently.

Consider a profile d̄ = (kni
i )ℓ

i=1 with a U-realization (F, ctr). Recall that the centers
forest F [C] is the induced forest of F on C. Note that for each u ∈ V (F ), ctr(u) ∈ C. For d̄,
(F, ctr), a residue sequence (ρs

i )ℓ
i=1 and I ⊆ [ℓ], define the partial residual deviation of I as

DI =
∑

i∈I ρs
i .

For a profile d̄ and a CSS s, define the following four sets of layers, referred to as very
good, good, bad, and very bad layers.

V G = {i | ρs
i ≤ si − 1},

G = {i | si ≤ ρs
i ≤ 2si − 1},

B = {i | 2si ≤ ρs
i ≤ 3si − 1},

V B = {i | ρs
i ≥ 3si}.

As intuition for the terminology, note that a “very good” layer i ∈ V G can take care of its
deviation on its own (namely, by merging its own stars into a single tree) using leaf-merges
alone. A good layer i ∈ G can also take care of its deviation on its own, but it must apply
some head-merges. In contrast, bad layers (in B ∪ V B) require the help of other layers in
order to reduce their deviation.

In particular, our SNDF problem is easy for benign profiles, namely, profiles in which all
layers are good or very good w.r.t. c, as well as for profiles in which each layer is either very
good for c or (ci = 1 and ρi = 2). (See the full paper or [36].) Hereafter, we consider only
profiles that are not benign.
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The completion forest

As described earlier, given a profile d̄ and a CSS s, it is sufficient to construct a U-realization
(F, ctr) conforming to (d̄, s), such that the number of connected components in the centers
forest cc(F [C]) is minimal. The completion forest serves as a basic tool in our algorithm for
constructing a U-realization for d̄, where we first construct the centers forest and then add
the non-centers. This tool allows us to focus only on the centers forest for some U-realization
(F, ctr), and use its structure to deduce lower and upper bounds on properties of F .

Consider a profile d̄ = (kni
i )ℓ

i=1 with star formation (ci, ρi)ℓ
i=1, a forest F = (C, E) and a

neighbor function ctr : C → C where ctr(u) ∈ N [u] for every u ∈ C. (Note that (F , ctr) is
not a U-realization of d̄.) Let C = (C1, . . . , Cℓ) be a partition of C. The tuple (d̄, F , ctr, C)
is legal if deg(u) ≤ ki for every u ∈ Ci.

The completion forest for a legal (d̄, F , ctr, C) is a pair (F, ctr) constructed by the following
Procedure CompForest. For every i and every u ∈ Ci, the procedure adds ki − deg(u) new
vertices to the forest, connects them to u thus increasing its degree to ki and making it a
proper ki-center. For each vertex v that was connected to u, the procedure sets ctr(v) = u,
thus making it a ki-member of its center.

Note that the tuple (d̄, F , ctr, C) is legal if and only if its completion forest is well defined,
since it has to satisfy deg(u) ≤ ki for each u ∈ Ci. Also note that the completion forest (F, ctr)
for (d̄, F , ctr, C) is not necessarily a U-realization of d̄, since the number of ki-members in
(F, ctr) might happen to be smaller than ni. For convenience, we refer to (F, ctr) as the
completion forest for F .

For example, consider the profile d̄ = (48, 36), where k1 = 4, k2 = 3. Let (F = (C, E), ctr),
where the center set C = {1, 2, 3, 4} is partitioned into C1 = {1, 2} and C2 = {3, 4}, the
sets of k1 and k2 centers respectively. The completion forest of the above tuple is defined
by “completing” the neighborhoods of C centers according to d̄ and the layers of C. See
Figure 6.

1 2

3 4

F = (C, E)

1 2

3 4

The completion forest of F

Figure 6 Completion forest example.

4 Lower bound and algorithm

Tight lower bound for SNDF profiles

Finally, we derive a tight lower bound on the minimum deviation of a given SNDF profile.
To do that, we first lower bound cc∗(d̄, s), defined in Eq. (7), and then combine it with our
lower bound on LBdev

3 (d̄, s) from Lemma 7. Our bound on cc∗(d̄, s) depends only on the
CSS s and the profile d̄. Our method of proving the bound is by considering an arbitrary
U-realization (F, ctr), that conforms to (d̄, s), and proving a lower bound on cc(F [C]), which
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imply a lower bound on cc∗(d̄, s). This is done by decomposing the centers forest F [C] in
a special manner, and then reconstructing F [C] while keeping track of the number of its
connected components. As mentioned earlier, we may assume that the profile d̄ is not benign.

The entire derivation of the lower bound is deferred to the full paper (see [36]). Letting

LBdev
4 (d̄, s) = max

{
0 , 2 +

ℓ∑
i=1

ρs
i − 2

ℓ∑
i=1

si

+ max
{ ∑

i∈V G

si −
(

DV G +
∑

i∈G∪B

⌊(ρs
i − si)/2⌋ +

∑
i∈V B

si

)
, 0

}}
we get the following.

▶ Theorem 8. Let d̄ = (kni
i )ℓ

i=1 be an SNDF-profile and let s′ be a CSS for d̄. Assume that
s′ minimizes LBdev

4 over all choices of CSS s (Note that s′ does not necessarily minimizes
LBdev

3 ). Then Dev(d̄) ≥ LBdev
4 (d̄, s′).

Optimal algorithm

While our algorithm is based on the components introduced above, its actual operation is
rather involved, hence its description is deferred to the full paper (see [36]) due to space
constraints. It provides an optimal explicit construction of SNDF-realizations, which for a
given profile d̄ and sequence s yields a realization with deviation at most LBdev

4 (d̄, s), and
also show how to select a sequence s′ that minimizes LBdev

4 . Combining the above with
Theorem 8 yields an explicit construction for optimal realizations. In the full paper (see [36])
we also show a more efficient solution for the decision version of SNDF, namely, decide if a
given SNDF-profile d̄ is realizable (i.e., Dev(d̄) = 0).

5 Discussion

In this paper we introduced the selected neighbor degree realization problem and solved it
when the graph is required to be acyclic. We presented a necessary and sufficient condition
for realizability. In addition, we provided an algorithm that given a specification computes
an upper realization with minimum deviation from the given specification. In particular, if
the specification is realizable, the algorithm computes a realization.

A natural open question is to solve the realization problem on general graphs. One may
also consider the problem on other graph families, such as trees or bipartite graphs. (Note
that the realization problem is easy in regular graphs.) Finally, another interesting direction
for future study is to consider variants of the realization problem on directed graphs.
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