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Abstract
We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard
geometric problems, all of which can be reduced to the following question: Given two sets A, B,
each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the
plane, we want to count, for each triangle ∆ ∈ C, the number of intersection points between the
segments of A and those of B that lie in ∆. The problems considered in this paper have been
studied by Chan (2020), who gave algorithms that solve them, in the standard real-RAM model,
in O((n2/ log2 n) logO(1) log n) time. We present solutions in the algebraic decision-tree model whose
cost is O(n60/31+ε), for any ε > 0.

Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level
polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl (2020).

A key step in the procedure is a variant of point location in arrangements, say of lines in the
plane, which is based solely on the order type of the lines, a “handicap” that turns out to be beneficial
for speeding up our algorithm.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational geometry, Algebraic decision-tree model, Polynomial parti-
tioning, Primal-dual range searching, Order types, Point location, Hierarchical partitions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.3

Related Version Full Version: https://arxiv.org/abs/2109.07587

Funding Boris Aronov: Partially supported by NSF Grants CCF-15-40656 and CCF-20-08551, and
by Grant 2014/170 from the US-Israel Binational Science Foundation.
Mark de Berg: Partially supported by the Dutch Research Council (NWO) through Gravitation
Grant NETWORKS (project no. 024.002.003).
Jean Cardinal: Partially supported by the F.R.S.-FNRS (Fonds National de la Recherche Scientifique)
under CDR Grant J.0146.18.
Esther Ezra: Partially supported by NSF CAREER under Grant CCF:AF-1553354 and by Grant
824/17 from the Israel Science Foundation.
John Iacono: Partially supported by Fonds National de la Recherche Scientifique (FNRS) under
Grant no. MISU F.6001.1.

© Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:jcardin@ulb.ac.be
https://orcid.org/0000-0002-2312-0967
mailto:ezraest@cs.biu.ac.il
https://orcid.org/0000-0001-8133-1335
mailto:john@johniacono.com
https://orcid.org/0000-0001-8885-8172
mailto:michas@tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.ISAAC.2021.3
https://arxiv.org/abs/2109.07587
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

Micha Sharir : Partially supported by ISF Grant 260/18, by Grant 1367/2016 from the German-
Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv
University.

Acknowledgements We thank Zuzana Patáková for helpful discussions on multilevel polynomial
partitioning.

1 Introduction

Let A and B be two sets, each consisting of n pairwise disjoint line segments in the plane,
and let C be a set of n triangles in the plane. We study the problem of counting, for each
triangle ∆ ∈ C, the number of intersection points between the segments of A and those of B
that lie inside ∆. We refer to this problem as within-triangle intersection-counting. This is
one of four 3Sum-hard problems (among many others) studied by Chan [11], all of which
can be reduced to the problem just mentioned.1 The other three problems are:2

(i) Intersection of three polygons. Given three simple n-gons A, B, C in the plane, determine
whether A ∩B ∩ C is nonempty.

(ii) Coverage by three polygons. Given three simple n-gons A, B, C in the plane, determine
whether A ∪B ∪ C covers a given triangle ∆0.

(iii) Segment concurrency. Given sets A, B, C, each consisting of n pairwise disjoint
segments in the plane,3 determine whether A×B × C contains a concurrent triple.

Chan [11] presents slightly subquadratic algorithms for all four problems, whose run-
ning time in the standard real-RAM model (also referred to as the uniform model) is
O((n2/ log2 n) logO(1) logn). He has observed that, as already mentioned, all these problems
can be reduced in near-linear time to the within-triangle intersection-counting problem, so it
suffices to present an efficient subquadratic solution for that problem.

We study the within-triangle intersection-counting problem in the algebraic decision-tree
model. In this model only sign tests of polynomial inequalities of constant degree that
access explicitly (the endpoint coordinates of) the input segments or vertices of the input
triangles count towards the running time. All other operations cost nothing in the model, but
are not allowed to access the input segments explicitly. Although originally introduced for
establishing lower bounds [7], the algebraic decision-tree model has become a standard model
for upper bounds too, used in the study of many problems, including the 3Sum-problem
itself [10, 17, 20, 23, 25] and various 3Sum-hard geometric problems [5, 6, 17]. One can
interpret the decision-tree model as an attempt to isolate and minimize the cost of the part
of the algorithm that explicitly accesses the real representation of the input objects, and
ignore the cost of the other purely discrete steps. This has the potential of providing us
with an insight about the problem complexity, which might eventually lead to an improved
solution also in the uniform real-RAM model.

We show that the within-triangle intersection-counting problem and, hence, also prob-
lems (i)–(iii), can be solved in this model with O(n60/31+ε) sign tests, for any ε > 0. Chan [11]
also remarks (without providing details) that his algorithm can be implemented in O(n2−δ)
time in the algebraic decision-tree model, for some δ > 0 that he left unspecified. (With
some care, as was communicated to us, one can obtain δ ≈ 0.01.) Our algorithm is rather

1 Chan [11] refers to this problem as “triangle intersection-counting.”
2 The fact that these problems are 3Sum-hard, and the connections between them, are stated in [11].
3 The segments of one set, say C, need not be pairwise disjoint. Although not explicitly stated, the

technique in [11] for the uniform model can also handle this situation.
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different from Chan’s, and gives a concrete value for δ (any positive δ < 2/31), as mentioned
above. Our techniques appear to be of independent interest and to have the potential to
apply to other problems, as we demonstrate in the full version [4, Section 4].

If the segments in A and B and the triangles in C were all full lines,4 then, in general,
determining the existence of a concurrent triple of lines in A×B×C (the so-called concurrency
testing problem) is the dual version of the classical 3Sum-hard collinearity testing problem,
in which we are given three sets of points in the plane, and wish to determine whether their
Cartesian product contains a collinear triple. This problem has recently been studied in the
algebraic decision-tree model by Aronov et al. [5], in a restricted version where two of the
sets are assumed to lie on two constant-degree algebraic curves, where an algorithm with
roughly O(n28/15) comparisons has been presented.

The problems studied here can be regarded as other dual versions of collinearity testing,
where restrictions of a different kind are imposed. As noted by Chan [11], the additional
disjointness properties that are assumed here make the problem simpler than collinearity
testing (albeit by no means simple), and its solution appears to have no bearing on the
unconstrained collinearity problem itself. In the full version [4, Section 5] we comment on
the substantial differences between this work and the work by Aronov et al. [5].

Our technique is based on hierarchical cuttings of the plane, as well as on tools and
properties of segment-intersection range searching. We also use the so-called Fredman’s
trick in algebraic-geometric settings, in which the problem is mapped into a primal-dual
range searching mechanism involving points and surfaces in R6. This reduction exploits the
very recent multi-level polynomial partitioning technique of Agarwal et al. [2] (or a similar
technique of Matoušek and Patáková [27]). Our range-searching mechanism of points and
algebraic surfaces in higher dimensions is a by-product of our analysis, which appears to be
broadly applicable in other range-searching contexts, and we thus regard it as a technique of
independent interest; see, for example, Proposition 2 and its proof.

Point location in arrangements. An additional key ingredient of our approach involves
point location in an arrangement of lines in the plane (or an arrangement of curves, or of
hyperplanes in higher dimensions). This is of course a well studied problem with several
optimal solutions [29], but we adapt and use techniques that are handicapped by the
requirement that each operation that examines the real parameters specifying the lines
involves at most three input lines. In contrast, the persistent data structure of [29], for
example, needs to sort the vertices of the arrangement from left to right, thus requiring
comparisons of the x-coordinates of a pair of vertices, which are in general determined by the
parameters of four input lines. The persistent data structure method has been used in [5, 11]
for the study of other 3Sum-hard geometric problems. Here we replace this approach with
one that uses solely the relative positions of triples of lines, the so-called order type of the
arrangement. In this approach each comparison involves only three input lines, which, as we
show, eventually leads to improved performance of the algorithm.

In standard settings, separating the order-type computation from the rest of the processing
makes no sense. This is because obtaining the full order-type information for N lines already
takes Θ(N2) time. This makes the approach based on the order type noncompetitive, as
one can just do point location in the line arrangement, in the uniform model, with O(N2)
preprocessing. Nevertheless, in the applications considered in this paper (see Section 3 and

4 Disjointness then of course cannot be assumed in general, although it might occur when the lines in
each set are parallel, as in the dual version of the 3sum-hard GeomBase problem [19].
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the full version [4, Section 4]), the input lines have a special representation, which allows us
to avoid an explicit construction of their order type and obtain this information implicitly in
subquadratic time in the decision-tree model. The rest of the preprocessing, which takes
quadratic time and storage in the uniform model, costs nothing in the decision-tree model.

The problem of determining whether and how the order type of an arrangement is sufficient
to construct an efficient point-location data structure has, to the best of our knowledge,
never been addressed explicitly. As we believe that this kind of “handicapped” point location
will be useful for other applications (some of which are mentioned in the full version [4,
Section 4]), we present it in some detail in Section 2 and in the full version [4, Section 2.2].
We also present extensions of this technique to arrangements of constant-degree algebraic
curves in R2, and to arrangements of planes or hyperplanes in higher dimensions, which will
be used in the applications presented in the full version [4, Section 4].

The algorithm for solving the within-triangle intersection-counting problem in the algebraic
decision-tree model, and, consequently, also of the other three problems listed at the beginning
of this section, is presented in Section 3. Additional applications of our technique are presented
in the full version [4, Section 4]; they include: (i) counting intersections between two sets
of pairwise disjoint circular arcs inside disks, and (ii) minimum distance problems between
lines and two sets of points in the plane.

2 Order-type–based point location in arrangements

Order types. An arrangement of non-vertical lines in the plane (and, later, curves in the
plane, or hyperplanes in higher dimension) can be described in the following combinatorial
fashion. We use the notion of an order type, defined for a set L of lines as follows: Given any
ordered triple of lines (ℓ1, ℓ2, ℓ3) from L, where both ℓ2 and ℓ3 intersect ℓ1, we record the
left-to-right order of the intersections ℓ1 ∩ ℓ2 and ℓ1 ∩ ℓ3 along ℓ1; note that the intersections
might coincide. The totality of this information gives, for each line in L, the left-to-right order
of its intersections with every other line it meets. Furthermore, we assume the existence of an
“infinitely steep” line ℓ∞, placed sufficiently far to the left, the order of whose intersections
with the “normal” lines encodes the order of their slopes. This information is dual to the
perhaps more familiar notion of an order type for a set of points in the plane (see, e.g., [21]).
A higher-dimensional analog of this information involves recording the order in which a line
that is the intersection of d − 1 hyperplanes in Rd meets the remaining hyperplanes that
meet but do not contain it. We also assume a suitable analog of the “infinitely steep line,”
recursively defined over the dimension.

Back in the plane, the permutations along each line of the intersection points with the
other lines are called local sequences [22]. This view allows us to extend the definition of
the order type to x-monotone curves, where each pair of curves is assumed to intersect at
most s points, for some constant s. In this case the order type gives, for each curve γ in
the collection, the labeled left-to-right sequence of intersection points with the other curves,
where each intersection point is labeled by the triple (i, j, k), where i and j are the indices
of the two curves that form the intersection, and k indicates that it is the kth leftmost
intersection point of the two curves. The order type also includes the vertical order of the
curves at x = −∞. See the full version [4, Section 2.2] for further details.

The significance of the order type is that (a) it only records information for (d+ 1)-tuples
of objects, and (b) it contains enough information that lets us construct the arrangement and
preprocess it for fast point location, without having to access further the actual parameters
that define the objects.
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The problem we tackle now is the following: Given the order type of an arrangement,
preprocess this information into a point location data structure. The preprocessing stage is
not allowed to access the actual geometric description of the objects, such as the coefficients
of the equations defining the lines or hyperplanes, but can only exploit the discrete data
given by the order type. A query, in contrast, is allowed to examine the coefficients of the
few objects that it encounters.

We present two solutions for this problem. First, we show that, for d-dimensional
hyperplane arrangements, for any d ≥ 2, the sampling method of Meiser [28] (see also [16])
can be implemented using only order-type information. Second, we show that for arrangements
of x-monotone curves in the plane, a simple variant of the separating-chain method for point
location [15, 26] can be implemented such that only order-type information is used during
the preprocessing. We present only the first technique in this version of the paper, and
delegate the second one to the full version [4, Section 2.2].

2.1 Sampling-based approach for hyperplane arrangements
Let H be a set of N non-vertical hyperplanes in Rd, where d ≥ 2 is a fixed constant. We
want to construct a point-location data structure for the arrangement A(H) induced by H,
where we are only given the order type of H. Essentially, we are given, for each intersection
line formed by d− 1 hyperplanes, the order of its intersections with the other hyperplanes.
(Alternatively, we are given, for each simplex σ formed by d + 1 of the hyperplanes, the
x1-order of the vertices of σ.) We only require H not to contain vertical hyperplanes. We
do permit more than d hyperplanes to share a point, as well as other degeneracies. This is
indeed a natural scenario for our applications including segment intersection counting and
its related problems.

We briefly sketch the randomized method first proposed by Meiser [28] and analyzed in
detail by Ezra et al. [16] (see also [10]), and show that the order-type information is sufficient
to construct the data structure.

Before considering the point-location structure, we note that the order type suffices to
construct a discrete representation of the arrangement A(H), in which each j-dimensional
cell of A(H), for j = 1, . . . , d, stores the set of all (j − 1)-dimensional cells that form its
boundary (and consequently of all cells, of all dimensions, on its boundary), with respective
back pointers from each cell to all higher-dimensional cells that contain it on their boundary.
This can be done, e.g., by the Folkman–Lawrence topological representation theorem for
oriented matroids [18], which, roughly speaking, implies that, given the order type of H,
one can construct a combinatorial representation for the arrangement A(H), consisting of
all sign conditions. That is, each face f of A(H) (of any dimension) is encoded by a sign
vector {−1, 0,+1}|H| representing the above/below/on relation of f with respect to each
hyperplane in H; see [9] for an inductive proof for the planar case, and its generalization to
higher dimensions in [8]. Given this property, a naïve actual construction of the combinatorial
representation of A(H) is easy to derive, and is free of charge in the decision-tree model,
once the order type of H is computed. When we perform a point-location query we report a
pointer to the sign vector of the cell of A(H) that contains the query point – see below.

Preprocessing. Given the arrangement A(H) and a fixed ε > 0, we first construct a
random sample S of O( d2

ε log d
ε ) hyperplanes of H; the size of S does not depend on n. We

then compute a canonical triangulation of the arrangement A(S). For each face of A(S),
of any dimension at least 2, we use a fixed rule to designate a reference vertex p of this
face. For example, we can take p to be the lexicographically smallest vertex of the face,
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3:6 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

with each vertex represented by the lexicographically smallest d-tuple of the indices of the
hyperplanes that contain it and whose intersection is a single point.5 We then triangulate
each face f of A(S) by the fan obtained by adding the vertex p to each simplex in the
triangulations of the lower-dimensional faces composing the boundary of f and not incident
to p. Next, we construct the conflict list L(∆) for each simplex ∆ of the triangulation, of any
dimension, defined as the set of hyperplanes of H that cross ∆, i.e., intersect, but not fully
contain, it. L(∆) can indeed be constructed using only the order type: Deciding whether a
hyperplane h ∈ H belongs to L(∆) amounts to testing whether there exist two vertices of ∆
that lie on different sides of h, and each such test is an orientation test of the corresponding
(d+ 1)-tuple of hyperplanes: h and the d hyperplanes forming the vertex.

From standard results on ε-nets [24], a suitable choice of the constant of proportionality
in the bound on the sample size guarantees that, with high probability, the conflict list size
is not larger than εn, for each simplex ∆. It remains to recurse, for each simplex ∆ of the
triangulation, with the hyperplanes in L(∆). (If ∆ is not full-dimensional, we also record the
hyperplanes containing it and the recursive processing involves building a lower-dimensional
arrangement within ∆.) This leads to a hierarchical data structure in which the number
of hyperplanes decreases by a factor ε at each level. The construction continues until the
number of hyperplanes falls below a suitable constant, at which point we simply store the
remaining hyperplanes. Let w be a leaf in this hierarchy. It will be convenient to further
preprocess the set H(w) of hyperplanes stored at w into a tree Tw that allows us to locate
a query point in the arrangement A(H(w)). The structure Tw is simply a ternary tree of
depth |H(w)| = O(1), where a node at level j stores the j-th hyperplane hj of H(w), so we
can test if a query point is below, on, or above hj . Observe that each leaf of Tw corresponds
to a unique cell in the arrangement A(H(w)) and, hence, also in A(H) – indeed, the sign
with respect to every hyperplane in H \H(w) is determined by the search path to the node
w in the hierarchy.

Answering queries. Queries are answered as follows. First, we locate the (open) simplex ∆
of the canonical triangulation of A(S) containing the query point q. Since d is assumed to
be constant, S is also of constant size, and so locating ∆ can be done in O(1) time. Next,
we recurse in the data structure attached to ∆. When we reach a leaf w of the hierarchy, we
continue to search in the tree Tw. When we reach a leaf in Tw we have located q and can
report (a pointer to) the sign vector of the cell containing q.

The overall number of these recursive steps is O(logn), and thus answering a query costs
O(logn) arithmetic operations, where the hidden constant6 is polynomial in d. As noted, in
our applications we only need to determine whether q lies on a hyperplane of H.

The following lemma summarizes the result.

▶ Lemma 1. Let H be a set of n hyperplanes in Rd, where d ≥ 2 is a constant. Using
only the order type of H, we can construct a polynomial-size data structure that guarantees
O(logn)-time point-location queries in the arrangement A(H); the implied constant depends
polynomially on d. The (polynomial) preprocessing time and the storage of the data structure
cost nothing in the decision-tree model.

5 When p is chosen as the bottommost vertex, the resulting triangulation is referred to as the bottom-vertex
triangulation, but in general the order type does not provide us with this information.

6 The value of this constant depends on the storage allocated to the structure. For example, spending
n2d log d+O(d) on storage guarantees query cost of O(d4 log n) [16].
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Remark. The query time for d = 2 is better than the time in the second, level-based approach
presented in the full version [4, Section 2.2] for curves in the plane (which is O(log2 n)).
However, the sampling-based method does not extend to non-straight curves, since there is
no obvious way to extend the notion of a canonical triangulation to the case of curves. The
only viable way of doing this seems to use the standard vertical-decomposition technique.
Unfortunately (for us), constructing the vertical decomposition requires that we compare the
x-coordinates of vertices defined by different, unrelated pairs of curves. Such a comparison
involves four input curves and it cannot be resolved from the order-type information alone.
For lines in the plane, however, the above technique does yield the improved logarithmic
query time.

3 The algorithm for within-triangle intersection-counting

Our input consists of two sets A, B, each of n pairwise disjoint segments in the plane, and of
a set C of n triangles in the plane. To simplify the presentation, we assume that the input is
in general position, namely that, among the segments of A, B, and edges of triangles of C,
no two share a supporting line, and no endpoint of one segment lies on another (with the
obvious exception of the vertices of a triangle in C).7 These are the only general position
assumptions that we need. A triple of segments (one from A, one from B, and an edge of a
triangle from C) are allowed to be concurrent.

A high-level roadmap of the algorithm. To avoid various technical issues that complicate
the description of our algorithm, we focus in this overview on the simpler segment concurrency
problem, where C is a set of (not necessarily disjoint) segments, and the goal is to determine
whether there is a triple (a, b, c) ∈ A×B ×C of concurrent segments. To make the overview
even simpler, assume that C is a set of lines.

We fix a parameter g ≪ n and put r := n/g. We construct a (1/r)-cutting Ξ(A) for the
segments of A, and another such cutting Ξ(B) for the segments of B. Since the segments of A
are pairwise disjoint, we can construct Ξ(A) of size O(r), and similarly for Ξ(B) (see [14]).
We overlay the two cuttings and obtain a planar decomposition Ξ. While the complexity
of Ξ is O(r2), any line of C crosses only O(r) of its cells.

For each two-dimensional cell σ of Ξ (lower-dimensional cells are simpler to handle), we
preprocess the sets Aσ ⊆ A and Bσ ⊆ B of those segments that cross σ, each of size at most
n/r = g, into a data structure that supports efficient queries, each specifying a line c and
asking whether c passes through an intersection point of a segment of Aσ and a segment of
Bσ. We pass to the dual plane, obtain sets A∗

σ and B∗
σ of at most g points (dual to the lines

containing the segments) each. (We ignore here “short” segments that have an endpoint
inside σ; see below.) The query is a point c∗ and the task is to determine whether c∗ is
collinear with a pair of points (a∗, b∗) ∈ A∗

σ ×B∗
σ. For a ∈ Aσ and b ∈ Bσ we define γa,b to

be the line that passes through a∗ and b∗, and let Γσ denote the collection of these lines.
The query with c∗ then reduces to point location in the arrangement A(Γσ), where we only
need to know whether c∗ lies on any of the lines.

We cannot perform this task explicitly in an efficient manner, since the complexity
of A(Γσ) is O(g2) and we have O(r2) = O(n2/g2) such arrangements, of overall size O(n2).
We can do it, though, in the algebraic decision-tree model, in an implicit manner, using the
so-called Fredman’s trick; see [23] for a simpler yet representative application of Fredman’s

7 For technical reasons, we also allow a triangle in C to degenerate to a segment.
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3:8 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

trick, as well as [5, 6] for geometric applications of Fredman’s trick. Concretely, we apply
the order-type–based machinery of Section 2 to construct A(Γσ) and preprocess it for fast
point location. More precisely, we first construct the order type of Γσ: this involves, for each
triple of lines γa1,b1 , γa2,b2 , γa3,b3 , determining the ordering of their intersection points along
each of these lines. We express this test, in a straightforward manner, as the sign test of
some 12-variate constant-degree polynomial G(a1, a2, a3; b1, b2, b3).

We map the triple (b1, b2, b3) to a point in a six-dimensional parametric space, and
(a1, a2, a3) to an algebraic surface ψa1,a2,a3 in this space, which is the locus of all triples
(b1, b2, b3) with G(a1, a2, a3; b1, b2, b3) = 0. We now need to locate the points (b1, b2, b3) in
the arrangement of the surfaces ψa1,a2,a3 , from which all the sign tests can be resolved, at
no extra cost in the algebraic decision-tree model, thereby yielding the desired order type.
The subsequent construction of the arrangement A(Γσ), and its preprocessing for fast point
location, using the machinery in Section 2, also cost nothing in our model.

To make this process efficient, we group together all the points (b1, b2, b3), for b1, b2, b3
in the same cell σ, over all cells σ, into one global set P , and group the surfaces ψa1,a2,a3

into another global set Ψ. We have |P |, |Ψ| = O(r) ·O(g3) = O(ng2) (since there are only
O(r) cells of Ξ(A) (resp., of Ξ(B)) from which the triples (a1, a2, a3) (resp. (b1, b2, b3)) are
drawn).

Using the recent machinery of Agarwal et al. [2] or of Matoušek and Patáková [27], we
can perform this batched point location in 6-space in time

O
(

|P |6/7+ε|Ψ|6/7+ε + |P |1+ε + |Ψ|1+ε
)

= O
(

(ng2)12/7+2ε
)
,

for any ε > 0. Full details of this step, crucial, albeit rather technical, are given in the full
version [4, Section 3.1].

Searching with the dual points c∗ takes O
(

n2

g log g
)

time, because we have n query
lines c, each line crosses O(r) = O(n/g) cells σ, and each point location with c∗ in each
of the encountered arrangements takes O(log g) time. Balancing (roughly) this cost with
the preprocessing cost, we choose g = n2/31, and obtain the total subquadratic running
time O(n2−2/31+ε) = O(n60/31+ε).

Quite a few issues were glossed over in this overview. Since the segments of A and of B are
bounded, a cell σ may contain endpoints of these segments, making the passage to the dual
plane more involved. The same applies in the original within-triangle intersection-counting
problem, where the triangles of C may have vertices or more than one bounding edge that
lie in or meet σ. We thus need to handle the presence of such “short” segments and/or
“short” triangles. Moreover, we need to count intersection points within each triangle, and the
number of cells in overlay of the cuttings Ξ(A), Ξ(B) that a triangle can fully contain is much
larger than O(r). All these issues require more involved techniques, which are developed
below, with some details delegated to the full version [4, Section 3]. Still, the overall runtime
of the resulting algorithm remains O(n60/31+ε), for any ε > 0.

Hierarchical cuttings. This ingredient is needed for counting intersection points in cells
that are fully contained inside a query triangle. The application of hierarchical cuttings
to our problem significantly reduces the query time – see below. Fix a parameter g ≪ n

and put r := n/g. We construct a hierarchical (1/r)-cutting Ξ(A) for the segments of A,
which is a hierarchy of (1/r0)-cuttings, where r0 is some sufficiently large constant. The
top-level cutting Ξ1(A) is constructed for A. Since the segments of A are pairwise disjoint,
we can construct Ξ1(A) so that it consists of only O(r0) trapezoids (for concreteness, we
write this bound as br0, for some absolute constant b), each of which is crossed by at most
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n/r0 segments of A, which comprise the so-called conflict list of the cell σ, denoted as Aσ.
The construction time of Ξ1(A), in the real-RAM model, is O(n log r0) = O(n). See [14,
Theorem 1] for details.

For each cell σ of Ξ1(A), we clip the segments in its conflict list Aσ to within σ and apply
the cutting-construction step recursively to this set, clipping also the cells of the new cutting
to within σ (and ignoring cells, or portions thereof, that lie outside σ, as they are not met by
any of the clipped segments of Aσ). We denote the union of all the resulting (1/r0)-cuttings
as Ξ2(A). We continue recursively in this manner, until we reach a level s at which all
the cells are crossed by at most n/r segments. We thus obtain a hierarchy of cuttings
Ξ1(A),Ξ2(A), . . . ,Ξs(A), for some index s = O(log r). We denote the collective hierarchy
as Ξ(A). Since we stop the recursion as soon as n/rs

0 ≤ n/r, the overall number of cells
of all the levels is O((br0)s) = O(r1+ε), for any prespecified ε > 0, for a suitable choice of
r0 = r0(ε). Technically, the trapezoids in the cutting are relatively open, and the cutting
also includes one- and zero-dimensional cells; as the latter are easier to deal with, we will
focus below on the two-dimensional cells of the cutting. At any level j of the hierarchy, the
cells of Ξj(A) are pairwise disjoint. As these cells partition the plane, each intersection point
between a segment of A and a segment of B lies in precisely one cell of a suitable dimension
at each level. See Figure 1 for an illustration.

Figure 1 Interaction of a hierarchical cutting with a triangle. The dark gray cells are the ones
inside the triangle at the top level of the hierarchy; the medium gray cells are the ones inside the
triangle at the second level (and whose parent cells are not inside the triangle). The light gray cells
will be refined and handled at lower levels, since they intersect the triangle boundary.

We apply a similar hierarchical construction for B, and let Ξ(B) = {Ξj(B)}j≤s denote
the resulting hierarchical cutting, which has analogous properties. (We assume for simplicity
that the highest index s is the same in both hierarchies.)

We now overlay Ξ(A) with Ξ(B), that is, at each level j of the hierarchy, we overlay the
cells of Ξj(A) with the cells of Ξj(B). We denote the jth level overlay as Ξj , and the entire
hierarchical overlay structure as Ξ = {Ξj}j≤s. Since each of Ξj(A) and Ξj(B) consists of
at most (br0)j cells, the number of cells of Ξj is at most O((br0)2j). Since we have rs

0 ≈ r

(up to a factor of r0), it follows that the overall complexity of all the overlays is O(r2+2ε),
provided that we choose r0, as above, to be sufficiently large, as a function of ε.

For simplicity of exposition, we ignore lower-dimensional faces of the cuttings, and regard
each of the overlays Ξj as a decomposition of the plane into pairwise openly disjoint convex
polygons, each of complexity linear in j ≤ s = O(log r). Each cell σ of the overlay is
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3:10 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

identified by the pair (τ, τ ′), where τ and τ ′ are the respective cells of Ξj(A) and Ξj(B)
whose intersection is σ; we simply write σ = (τ, τ ′). Each bottom-level cell σ of the final
overlay Ξs is crossed by at most n/r = g segments of A and by at most g segments of B.

Classifying the segments and triangles. Let σ = (τ, τ ′) be a cell of Ξj , for any level j of
the hierarchy. Call a segment e of A long (resp., short) within σ if e crosses σ and neither of
its endpoints lies in σ (resp., at least one endpoint lies in σ). Let Al

σ (resp., As
σ) denote the

set of long (resp., short) segments of A within σ. Apply analogous definitions and notations
to the segments of B. Denote by Cσ (resp., C(0)

σ ) the set of triangles with at least one edge
that crosses σ (resp., that fully contain σ). Call a triangle ∆ ∈ Cσ long (resp., short) in σ if
σ does not (resp., does) contain a vertex of ∆, and denote by Cl

σ (resp., Cs
σ) the set of long

(resp., short) triangles in Cσ.
For each triangle ∆ ∈ C, each of its edges crosses only O((br0)j) cells of Ξj . Indeed,

as such an edge crosses from one cell of Ξj to an adjacent cell, it does so by crossing the
boundary of either a cell of Ξj(A) or a cell of Ξj(B), and the total number of such crossings
is O((br0)j). In particular, the edge crosses at most O(r1+ε) cells of the final overlay Ξs. It
follows that

∑
σ∈Ξ |Cl

σ| ≤
∑

σ∈Ξ |Cσ| = O(nr1+ε), but clearly
∑

σ∈Ξ |Cs
σ| is only O(n log r).

In contrast, ∆ can fully contain many more cells of Ξs, perhaps almost all of them, but the
hierarchical nature of the construction allows us to deal with a much smaller number of such
interior cells, by collecting them at higher levels of the hierarchy; see below for details.

The algorithm: A quick review. The high-level structure of the algorithm is as follows (see
also the “roadmap” overview given earlier). We construct the hierarchies Ξ(A) = {Ξj(A)}j≥1
and Ξ(B) = {Ξj(B)}j≥1. For each cell τ of Ξj(A) (resp., τ ′ of Ξj(B)), we compute its
conflict list Aτ (resp., Bτ ′), which, as we recall, is the set of all segments of A that cross τ
(resp., segments of B that cross τ ′). We then form the hierarchical overlay Ξ = {Ξj}j≥1, and
for each cell σ = (τ, τ ′) of any overlay Ξj , we compute the subset Aσ of the segments of Aτ

that cross σ, and the subset Bσ of the segments of Bτ ′ that cross σ. We partition Aσ into
the subsets Al

σ and As
σ of long and short segments (within σ), respectively, and apply an

analogous partition to Bσ. The additional overall cost for constructing these sets, over all
hierarchical levels, is O(r2+ε · n/r) = O(nr1+ε) = O(n2+ε/g). (The cost at the bottom level
dominates the entire cost over all levels.)

We also trace each triangle c ∈ C through the cells of Ξ that are crossed by its edges,
and form, for each cell σ of the overlay, the list Cσ of triangles of C with at least one edge
that crosses σ. We partition Cσ into the subsets Cl

σ and Cs
σ, as defined earlier. As we show

below, we can handle, in a much more efficient way, the short triangles of Cs
σ, as well as

the triangles of Cl
σ all three of whose edges cross σ, simply because the overall number of

such triangle-cell interactions is small. We therefore focus on the triangles of Cl
σ that have

only one or two edges crossing σ. For triangles with two crossing edges we use a standard
two-level data structure (where in each level we consider only one crossing edge). This lets
us assume, without loss of generality, that each triangle in Cl

σ is a halfplane. Each of these
halfplanes can be represented by its bounding line, that is the line supporting the appropriate
crossing edge of the triangle. We flesh out the details below.

We also assume, for now, that all the segments of Aσ and of Bσ are long in σ (and so
we drop the superscript l). This is the hard part of the analysis, requiring the involved
machinery presented below. After handling this case, we will address the much simpler
situations that involve short segments and/or short triangles (or triangles with three edges
crossing σ). The cost of handling short segments or short triangles within cells is lower, even
in the uniform model, since the overall number of short objects within cells is smaller.
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Handling the long segments. We preprocess each level j of the overlay, to compute, for
each of its cells σ = (τ, τ ′), the number of intersection points between the (long) segments
of Aσ and those of Bσ (which, due to the clipping, lie in σ). This is a standard procedure that
involves computing the number of pairs of segments from Aσ ×Bσ whose intersection points
with the boundary of σ interleave (these are precisely the pairs of intersecting segments),
and can be implemented to take O((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|)) time; see, e.g., [1]. We
store the resulting count at σ.

Consider a two-dimensional cell σ, a segment a ∈ Aσ, a segment b ∈ Bσ, and a triangle
∆ ∈ Cσ. By assumption, ∆ has only one edge c or two edges c1, c2 crossing σ. When a

and b intersect inside σ, the intersection lies in ∆ if and only if the triple (a, b, c), or each
of the triples (a, b, c1), (a, b, c2), has a prescribed orientation, reflecting the condition that
the point a ∩ b lies on the side of c (or the sides of c1, c2) that contain ∆. This orientation
(or orientations) can be positive, negative, or zero, depending on the relative order of the
slopes of a, b, and c (or of c1 and c2), and on whether ∆ lies to the left or to the right of c
(or of c1, c2).

For each halfplane c+ that represents a triangle ∆ ∈ Cσ (the halfplane contains ∆ and is
bounded by the line supporting the single (relevant) edge c of ∆ that crosses σ), we want
either (i) to represent the set of pairs (a, b) ∈ Aσ × Bσ that have a prescribed orientation
of the triple (a, b, c), as the disjoint union of complete bipartite graphs, or (ii) to count the
number of such pairs. The subtask (i) arises in cases where ∆ has two edges crossing σ and
is needed for the first level of the data structure, which we query with the first crossing edge
of ∆. The subtask (ii) arises in the second level of the structure, which we query with the
second crossing edge of ∆, and in cases where only one edge of ∆ crosses σ.

We also count the number of intersections within σ, in O ((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|))
time. As a matter of fact, with a simple modification of the procedure, we can, within the
same time bound, represent the set of all pairs of segments (a, b) ∈ Aσ ×Bσ that intersect
each other (inside σ) as the disjoint union of complete bipartite graphs, so that the overall
size of their vertex sets is O ((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|)). This follows from standard
planar segment-intersection range searching machinery; see, e.g., [1]. In what follows we
focus on just one such graph, and to simplify the presentation we denote it as Aσ ×Bσ, with
a slight abuse of notation.

Preparing for Fredman’s trick. We use the infrastructure developed by Aronov et al. [5],
with suitable modifications, but adapt it to the order-type context. We preprocess A and B
into a data structure that we will then search with the points dual to the lines supporting
the edges of the triangles of C. For each a ∈ A, b ∈ B, we define γa,b to be the line that
passes through a∗ and b∗, where a∗ (resp., b∗) is the point dual to a (resp., b). By our general
position assumption, a∗ ≠ b∗, so γa,b is well defined. Let Γ0 denote the set of these n2 lines.
Our goal in task (ii) is to count, for each cell σ of any of the overlays, for each point c∗ dual
to an edge of a triangle ∆ ∈ Cσ, the number of lines of Γ0 that lie above c∗, the number of
lines that are incident to c∗, and the number of lines that lie below c∗. In task (i), we want to
represent each of these sets of lines as the disjoint union of a small number of precomputed
canonical sets. This calls for preprocessing the arrangement A(Γ0) into a suitable point
location data structure, which we will then search with each c∗ ∈ C∗, and retrieve the desired
data from the outcome of each query.

As in, e.g., [5], a naïve implementation of this approach will be too expensive. Instead, we
return to the hierarchical partitions Ξ(A), Ξ(B), and Ξ, and iterate, over all cells σ = (τ, τ ′)
of the bottom level Ξs, defining Γσ := {γa,b | (a, b) ∈ Aσ × Bσ}. In principle, we want to
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3:12 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

construct the separate arrangements A(Γσ), over the cells σ, preprocess each of them into a
point location data structure, and search, for each triangle ∆ ∈ C, in the structures that
correspond to the cells of Ξ that are either crossed by (at most) one or two edges of ∆, or
fully contained in ∆. This is also too expensive if implemented naïvely, so we use instead
Fredman’s trick, combined with the machinery developed in Section 2.

We first observe that, for each triangle ∆ ∈ C, finding the cells σ (at any level of the
hierarchy) that ∆ fully contains is easy and inexpensive. We go over the hierarchy of the
overlays Ξj . At the root we find, by brute force, all the (constantly many) cells of Ξ1 that ∆
fully contains, and add their intersection counts to our output counter. We then recurse, in
the same manner, in the at most br0 cells of Ξ1 that ∆ crosses. Thus the number of cells we
visit is at most O(r2

0) ·
(
1 + br0 + (br0)2 + · · · + (br0)s

)
= O(r1+ε), so the overall cost of this

step8 is O
(
nr1+ε

)
= O

(
n2+ε/g

)
.

We therefore focus, for each triangle ∆ of C, only on the cells that it crosses (at every
level of the hierarchy), and restrict the analysis for now to cells at which ∆ is long, with
at most two of its edges crossing the cell. Repeating most of the analysis just given, the
number of these cells is O(r1+ε) (with a smaller constant of proportionality, since we now do
not have the factor O(r2

0), as above).

Constructing A(Γσ) in the decision-tree model. Consider the step of constructing A(Γσ)
for some fixed bottom-level cell σ. Following the technique in Section 2, we perform this step
using only the order type of Γσ, and we begin by considering the task of obtaining the order-
type information. That is, we want to determine, for each ordered triple (γa1,b1 , γa2,b2 , γa3,b3)
of lines of Γσ, whether the point γa1,b1 ∩ γa2,b2 lies to the left or to the right of the point
γa1,b1 ∩γa3,b3 . Let G(a1, a2, a3; b1, b2, b3) denote the 12-variate polynomial (of constant degree)
whose sign determines the outcome of the above comparison. (The immediate expression for
G is a rational function, which we turn into a polynomial by multiplying it by the square
of its denominator, without affecting its sign; our general position assumption ensures that
none of the denominators vanishes.)

Once the signs of all expressions G(a1, a2, a3; b1, b2, b3) are determined, we can apply
Lemma 1. The rest of the preprocessing, which constructs a discrete representation of the
arrangement, say, in the DCEL format [13], and turns this representation into an efficient
point location data structure, can be carried out at no cost in the algebraic decision-tree
model.

We search the structure with each triangle ∆ ∈ Cσ. We may assume that ∆ is long
in σ and that only one or two edges of ∆ cross σ, as the other cases are easy to handle.
Assuming further that there is only one such edge c, locating the dual point c∗ in A(Γσ)
takes O(log g) time, as shown in Section 2 (noting that Γσ consists of only g2 lines). With
suitable preprocessing, locating c∗ gives us, for free in our model, the three sets of the lines
that pass above c∗, are incident to c∗, or pass below c∗. The case where two edges of ∆
cross σ is handled using a two-level version of the structure; see below for details. The point
location cost now goes up to O(log2 g).

Consider then the step of computing the order type of the lines of Γσ, that is, of computing
the sign of G(a1, a2, a3; b1, b2, b3), for every triple of segments a1, a2, a3 ∈ Aσ and every triple
of segments b1, b2, b3 ∈ Bσ. To this end, we play Fredman’s trick. We fix a bottom-level cell
τ of Ξ(A). For each triple (a1, a2, a3) ∈ A3

τ , we define the surface

ψa1,a2,a3 = {(b1, b2, b3) ∈ R6 | G(a1, a2, a3; b1, b2, b3) = 0},

8 It is for making this step efficient that we use hierarchical partitions. A single-shot partition would have
forced the query to visit up to Θ(r2) such cells, which would make it too expensive.
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and denote by Ψ the collection of these surfaces, over all cells τ . We have N := |Ψ| =
O((n/g)1+ε · g3) = O(n1+εg2). Similarly, we let P denote the set of all triples (b1, b2, b3), for
b1, b2, b3 ∈ B3

τ ′ , over all cells τ ′ of Ξ(B). We have M := |P | = O(n1+εg2). These bounds
pertain to the bottommost level of the hierarchy; they are smaller at levels of smaller indices.

We apply a batched point-location procedure to the points of P and the surfaces of
Ψ. The output of this procedure is a collection of complete bipartite subgraphs of P × Ψ,
so that, for each such subgraph Pα × Ψα, G(a1, a2, a3; b1, b2, b3) has a fixed sign for all
(b1, b2, b3) ∈ Pα and all (a1, a2, a3) ∈ Ψα, see, e.g., [3, 12] for the use of such structures in
similar contexts. This tells us the desired signs of G(a1, a2, a3; b1, b2, b3), for every pair of
triples (a1, a2, a3) ∈ A3

τ , (b1, b2, b3) ∈ B3
τ ′ , over all pairs of cells (τ, τ ′) ∈ Ξ(A) × Ξ(B), and

these signs give us the orientation (i.e., the order of the intersection points) of every triple
of lines γa,b. That is, we obtain the order type of the lines. As remarked in Section 2, we
may assume that this also includes the sorting of the lines at x = −∞, but, for the sake of
concreteness, we address this simpler task in the full version [4, Section 3].

The batched point location step proceeds by using the recent multilevel polynomial
partitioning technique of Agarwal et al. [2, Corollary 4.8]. We delegate the full, and rather
technical, details of the analysis to the full version [4, Section 3.1], and just summarize the
result here.

▶ Proposition 2. Let T (M,N) denote the maximum possible sum of the sizes of the vertex
sets of the complete bipartite graphs produced by the recursive process described above, over
all input sets of at most M points and at most N surfaces. Then we have

T (M,N) = O
(
M6/7+εN6/7+ε +M1+ε +N1+ε

)
,

for any ε > 0, where the constant of proportionality depends on ε. The same asymptotic
bound also holds for the cost (in the uniform model) of constructing these graphs.

In summary, the information collected so far allows us to obtain the combinatorial
structure of each of the arrangements A(Γσ), over all cells σ of Ξ, and subsequently construct
an order-type–based point-location data structure for each of them, at no extra cost in
the algebraic decision-tree model. The overall cost of this phase, in this model, is thus
O

(
(n1+εg2)12/7+ε

)
, for any ε > 0. By replacing ε by some small multiple thereof, we can

write this bound as O
(
(ng2)12/7+ε

)
, for any ε > 0.

Fredman’s trick, as applied above, separates the handling of the conflict lists Aτ , over
the trapezoids τ of Ξ(A), and the conflict lists Bτ ′ , over the trapezoids τ ′ of Ξ(B). For a
cell σ = (τ, τ ′) of Ξ, not all the segments in Aτ necessarily cross σ, so we have to retain
(for σ) only those that do cross it, and apply a similar pruning to Bτ ′ . As we show in the
full version [4, Section 3], the cost of this filtering step is O(g) for each σ, for an overall cost
of O((n/g)2 · g) = O(n2/g).

Searching with the elements of C. We now need to search the structures computed in the
preceding phase with the dual features of the triangles of C. Due to lack of space, we delegate
the description to the full version [4, Section 3], where we show that the total searching
time, for all the elements of C, is O

(
n2+ε log2 g

g

)
, concluding (see once again our high-level

roadmap):

▶ Theorem 3. Let A and B be two sets each consisting of n pairwise disjoint segments in the
plane, and let C be a set of n triangles in the plane. We can count, for each triangle ∆ ∈ C,
the number of intersection points of segments of A with segments of B that lie inside ∆, in
the algebraic decision-tree model, at the subquadratic cost O(n60/31+ε), for any ε > 0.
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3:14 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

▶ Corollary 4. We can solve, in the algebraic decision-tree model, at the cost of O(n60/31+ε),
for any ε > 0, each of the problems (i) intersection of three polygons, (ii) coverage by three
polygons, and (iii) segment concurrency, as listed in the introduction.
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