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—— Abstract

We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In

this model, we have n agents and m available public goods, and we want to select £ < m goods
in a fair and efficient manner. We first establish fundamental connections between the models of
private goods, public goods, and public decision making by presenting polynomial-time reductions
for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms
are known to provide remarkable fairness and efficiency guarantees in private goods and public
decision making settings. We show that they retain these desirable properties even in the public
goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to
one good (Propl), 1/n approximation to Round Robin Share (RRS), and the efficiency guarantee of
Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal
allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in
sharp contrast to the private goods setting that admits polynomial-time algorithms under binary
valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or
leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many
goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW
which also satisfies RRS, Propl, and 1/2-Prop.
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1 Introduction

The problem of fair division was formally introduced by Steinhaus [32], and has since been
extensively studied in economics and computer science [10, 28]. Recent work has focused on
the problem of fair and efficient allocation of indivisible private goods. We label this setting
as the PrivateGoods model. Here, goods have to be partitioned among agents, and a good
provides utility only to the agent who owns it. However, goods are not always private, and
may provide utility to multiple agents simultaneously, e.g., books in a public library. The
fair and efficient allocation of such indivisible public goods is an important problem.

In this paper we study the setting of PublicGoods, where a set of n agents have to select
a set of at most k goods from a set of m given goods. This simple cardinality constraint
models several real world scenarios. While previous work has largely focused on the k < n
case, e.g., for voting and committee selection [2, 13], there is much less work available for
the case of k > n. This setting is important in its own right. We present a few compelling
examples.
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» Example 1. A public library wants to buy k books that adhere to preferences of n people
who might use the library. Clearly, the number of books has to be much greater than the
number of people using the library, hence k > n.

» Example 2. A family (or a group of friends) of size n wants to decide on a list of k& movies
to watch together for a few months. Here too, k > n. Another example of the same flavor is
a committee tasked with inviting speakers at a year-long weekly seminar.

» Example 3. Another important example is that of diverse search results for a query.
Given a query (say of “computer scientist images”) on a database, we would like to output &
search results which reflect diversity in terms of n specified features (like “gender, race and
nationality”). Once again, k > n.

A related setting PublicDecisions of public decision making [15] models the scenario in
which n agents are faced with m issues with multiple alternatives per issue, and they must
arrive at a decision on each issue. Conitzer et al. [15] showed that this model subsumes the
PrivateGoods setting.

Connections between the models. A central question motivating this work is:

» Question 1. Can we establish fundamental connections between the three models
PrivateGoods, PublicGoods, and PublicDecisions ?

To answer this question, we first describe two well-studied solution concepts for allocating
goods in the PrivateGoods and PublicDecisions models, namely the mazimum Nash welfare
(MNW) and lexzimin mechanisms. These mechanisms have been shown to produce allocations
that are fair and efficient in the models of PrivateGoods and PublicDecisions. The MNW
mechanism returns an allocation that maximizes the geometric mean of agents’ utilities,
and the leximin mechanism returns an allocation that maximizes the minimum utility, and
subject to this, maximizes the second minimum utility, and so on. We label the problems of
computing the Nash welfare maximizing (resp. leximin optimal) allocation in the three models
as PrivateMNW, PublicMNW, DecisionMNW (resp. PrivateLex, PublicLex, DecisionLex).

We answer Question 1 positively by presenting novel polynomial-time reductions from
the model of PrivateGoods to PublicGoods, and from PublicGoods to PublicDecisions for the
problem of computing a Nash welfare maximizing allocation.

PrivateMNW < PublicMNW < DecisionMNW (1)

More notably, these reductions also work for the MNW problem when restricted to binary
valuations. Apart from establishing fundamental connections between these models, our
reductions also determine the complexity of the MNW problem, as we detail below. We also
develop similar reductions between the models for the leximin mechanism, showing:

PrivateLex < PublicLex < DecisionLex (2)

Fairness and efficiency considerations. We next describe the fairness and efficiency proper-
ties that the MNW and leximin mechanisms have been shown to satisfy in the PrivateGoods
and PublicDecisions models.

The standard notion of economic efficiency is Pareto-optimality (PO). An allocation
is said to be PO if no other allocation makes an agent better off without making anyone
worse off. The classical fairness notion of proportionality requires that every agent gets her
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proportional value, i.e., 1/n-fraction of the maximum value she can obtain in any allocation.
However, proportional allocations are not guaranteed to exist.! Hence, we study the notion
of Proportionality up to one good (Propl) for PublicGoods. We say an allocation is Propl if
for every agent ¢ who does not get her proportional value, i gets her proportional value after
swapping some unselected good with a selected one. For PrivateGoods and PublicDecisions,
Propl is defined similarly — in the former, an agent is given an additional good [6, 27]; and
in the latter, an agent is allowed to change the decision on a single issue [15]. While Propl is
an individual fairness notion, it is still important for allocating public goods. For instance, in
Example 1, we want allocations in which every agent has some books that cater to her taste,
even if her taste differs from the rest of the agents. Likewise, in Example 2, a fair selection
of movies must ensure that there are some movies every member can enjoy.

We also consider the fairness notion of Round-Robin Share (RRS) [15], which demands
that each agent i receives at least the utility which she would get if agents were allowed to
pick goods in a round-robin fashion, with i picking last.

In the PrivateGoods and PublicDecisions models, an MNW allocation satisfies Propl in
conjunction with PO [11, 15]. Similarly in both these models, the leximin-optimal allocation
satisfies RRS and PO [15]. It is therefore natural to ask:

» Question 2. What guarantee of fairness and efficiency do the MNW and leximin mechan-
isms provide in the PublicGoods model?

Answering this question, we show that an MNW allocation satisfies Propl, 1/n-
approximation to RRS, and is PO. Further, for all agents, a leximin-optimal allocation
satisfies RRS?, Propl and PO.

Complexity of computing MNW and leximin-optimal allocations. Given the desirable
fairness and efficiency properties of these mechanisms, we investigate the complexity of
computing MNW and leximin-optimal allocations in the PublicGoods model. It is known that
PrivateMNW is APX-hard [26, 21] (hard to approximate) and DecisionMNW [15] is NP-hard.
Likewise, PrivateLex too is NP-hard [9]. Therefore, we ask:

» Question 3. What is the complexity of PublicMNW and PublicLex ¢

Since PrivateMNW and PrivateLex are known to be NP-hard, our reductions (1) and
(2) immediately show that PublicMNW and PublicLex are NP-hard. However, we show
stronger results that PublicMNW and PublicLex remain NP-hard even when the valuations
are binary. These results are in stark contrast to the PrivateGoods case, which admits
polynomial-time algorithms for binary valuations [16, 20]. Further, our reductions between
PublicGoods and PublicDecisions also directly enable us to show NP-hardness of DecisionMNW
and DecisionLex. Note that the hardness of these problems is known through the connection
between PrivateMNW (PrivatelLex) and DecisionMNW (DecisionLex) [15]. However, a feature
of our reductions (Observation 8) enables us to shows that DecisionMNW is NP-hard even for
binary valuations, highlighting the utility of our reductions. We also show that PublicMNW
and PublicLex remain NP-hard even when there are only two agents. We note that for the case

Consider for example, two agents A and B and six public goods {g1, 92,93, 94, g5, g6 }. Agent A has
value 1 for g1, g2, 93 and B has value 1 for g4, g5, gs. All other valuations are 0. Suppose we want to
select three of these goods. The proportional share of both agents is 1.5. However, in any allocation,
the value of at least one agent is at most 1, implying that proportional allocations need not exist.
Note that here we assume we scale the valuations so that RRS = 1 for every agent.
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Table 1 Complexity of computing MNW and leximin-optimal allocations.

Problem PrivateGoods PublicGoods PublicDecisions
MNW {0, 1} valuations P [8, 16] NP-hard (Theorem 16) | NP-hard (Corollary 23)
Leximin {0, 1} valuations P [8, 16] NP-hard (Theorem 21) ?
MNW two agents NP-hard NP-hard (Theorem 20) ?
Leximin two agents NP-hard NP-hard (Theorem 22) ?

of two agents, the NP-hardness of PrivateMNW and PrivateLex does not imply NP-hardness
of PublicMNW and PublicLex because our reductions between the models do not preserve the
number of agents.

We summarize our results in Table 1.

In light of the above computational hardness, we turn to approximation algorithms and
exact algorithms for special cases. We design a polynomial-time algorithm that returns an
allocation which approximates the MNW to a O(n)-factor when k > n, and is also Propl
and satisfies RRS.

Finally, we obtain pseudo-polynomial time algorithms for computing MNW and leximin-
optimal allocations for constant n. These are essentially tight in light of the NP-hardness for
constant n. In interest of space, we skip some proofs from this version. All these proofs can
be found in full version of the paper [23].

1.1 Other related work

Maximum Nash welfare. The problem of approximating maximum Nash welfare for private
goods is well-studied, see e.g., [14, 7, 12, 22]. [18] showed that the MN'W problem is NP-hard
for allocating public goods subject to matroid or packing constraints. It has also been studied
in the context of voting, or multi-winner elections [1]. Fluschnik et al. [19] studied the fair
multi-agent knapsack problem, wherein each good has an associated budget, and a set of
goods is to be selected subject to a budget constraint. In this context, they studied the
objective of maximizing the geometric mean of (1 + ;) where u; is the utility of the *"
agent. They showed that maximizing this objective is NP-hard, even for binary valuations
or constantly many agents with equal budgets and presented a pseudo-polynomial time
algorithm for constant n.

Leximin. Leximin was developed as a fairness notion in itself [30]. Plaut and
Roughgarden [29] showed that for private goods, leximin can be used to construct allocations
that are envy-free up to any good. Freeman et al. [20] showed that in the PrivateGoods model
the MNW and leximin-optimal allocations coincide when valuations are binary.

Core. Core is a strong property that enforces both PO and proportionality-like fairness
guarantees for all subsets of agents. It is well-studied in many settings, including game theory
and computer science [31, 25]. The core of indivisible public goods might be empty. Fain et
al. [18] proved that under matroid constraints, a 2-additive approximation to core exists. On
an individual fairness level, 1-additive core is weaker than Propl [18].

Participatory Budgeting. The participatory budgeting problem [3, 4] consists of a set of n
agents (or voters), and a set of k projects that require funds, a total available budget, and
the preferences of the voters over the projects. The problem is to allocate the budget in a fair
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and efficient manner. Here typically & < n. Fain et al. [17] showed that the fractional core
outcome is polynomial-time computable. This could be modeled as a public goods problem
with goods as the projects.

Voting and Committee Selection. These settings involve selecting a set of £ members from
a set of m candidates based on the preferences of n agents. Usually, here k& < n and the
fairness notions studied are group fairness like Justified Representation [2], and a core-like
notion called stability [13].

2 Notation and Preliminaries

Problem setting. For ¢ € N, let [¢] denote {1,...,t}. An instance of the PublicGoods
allocation problem is given by a tuple Z = (A, G, k, {v; }ica) of a set A = [n] of n € N agents,
a set G = [m] of m € N public goods, an integer 0 < k < m, and a set of valuation functions
{v;i}ica, one per agent, where each v; : 29 — Z>o. Unless specified, we assume that k& > n.
For a subset of goods S C G, v;(S) denotes the utility agent ¢ derives from the goods in S.
Unless specified, we assume the valuations are additive. In this case, each v; is specified by
m non-negative integers {v;;}jeg, where v;; denotes the value of agent ¢ for good j. Then
for S C G, v;(S) = >_;cqvij. We assume without loss of generality that for every agent i,
there is at least one good j with v;; > 0. For brevity, we write v;(g1,...,g,) in place of
vi({g1,-..,9-}) for a set {g1,...,9-} € G. An allocation is a subset x C G of goods which
satisfies the cardinality constraint |x| < k.

Nash welfare. The Nash welfare (NW) of an allocation x is given by NW(x) =
(ITicq vi(x))*/™. An allocation with the maximum NW is called an MNW allocation or
a Nash optimal allocation.? We also refer to the product of the agents’ utilities as the Nash
product. An allocation x approzimates MNW to a factor of a if NW(x) > a - NW(x*), where
x* is an MNW allocation.

Leximin. Given an allocation x, let X denote the vector of agent’s utilities under x, sorted
in non-decreasing order. For two allocations x,y, we say x leximin-dominates y if there
exists ¢ € [n] such that %; > §; and Vj < i,%; = §;. An allocation is leximin-optimal if no
other allocation leximin-dominates it.

Fairness notions. We now discuss fairness notions for the PublicGoods setting. The propor-
tional share of an agent i, denoted by Prop, is a 1/n-share of the maximum value she can
obtain from any allocation. Formally:
1
Prop, = — - max wv;(x).
P xca i<k i(x)

The round-robin share of agent i, denoted by RRS;, is the minimum value an agent can be
guaranteed if the agents pick k goods in a round-robin fashion, with ¢ picking last. Therefore,
this value equals the maximum value of any |k/n| sized subset. Formally:

RRS; = max v;(X).
xCG, |x|<|k/n]

3 If the NW is 0 for all allocations, MNW allocations are defined as those which give non-zero utility to
maximum number of agents, and then maximize the product of utilities for those agents. Note if k > n,
every agent positively values at least one good and thus MNW > 0.
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For a € (0,1], an allocation x is said to satisfy:

1. a-Proportionality (a-Prop) if Vi € A, v;(x) > aProp;;

2. a-Proportionality up to one good (a-Propl) if Vi € A, g € x,¢’ € G, such that
vi((x\ g)Ug’") > aProp,,

3. a-RRS if for all agents i € A, v;(x) > aRRS,;.

Due to the cardinality constraints in the PublicGoods model, the notion of Propl requires

that for every agent, there is a way to swap one preferred unpicked good with one picked

good, after which the agent gets her proportional share. Since Propl in PrivateGoods requires

only giving an extra good, this makes the definition of Propl in PublicGoods slightly more

demanding than that in PrivateGoods.

Pareto-optimality. An allocation y is said to Pareto-dominate an allocation x if for all
agents ¢ € A, v;(y) > v;(x), with at least one of the inequalities being strict. We say x is
Pareto-optimal (PO) if there is no allocation that Pareto-dominates x.

Related models.

1. PrivateGoods. The classic problem of private goods allocation concerns partitioning a set
of goods G among the set A of agents. Thus, a feasible allocation x is an n-partition
(x1,...,X,) of G, where agent i is allotted x; C G, and derives utility v;(x;) only from x;.

2. PublicDecisions. In this model, a set A of agents are required to make decisions on
a set G of issues. Each issue j € G has a set G; of k; alternatives, given by G; :=
{(4,1),(4,2),...,(4,k;)}. A feasible allocation or outcome x = (z1,...,Z,,) comprises of
m decisions, where x; € [k;] is the decision made on issue j. Assuming the valuations are
additive, each agent has a value v;(j, £) for the £*" alternative of issue j. The valuation
of the agent for the outcome x is then v;(x) = 37,5 vi(J, ;).

3 Relating the models

We first show rigorous mathematical connections between the PrivateGoods, PublicGoods and
PublicDecisions models w.r.t. computing optimal MNW and leximin allocations.

» Theorem 4. PublicMNW polynomial-time reduces to DecisionMNW.

Proof. Let T = (A, G, k,{v;}ica) be an instance of the PublicGoods model. For k = m,
the MNW problem is trivial, since we can select all the m goods. For n < k < m, we can
construct an instance Z' = (A’,G’,{G;}jcg'{v;}ica’) of PublicDecisions from Z in polynomial
time, such that given an MNW allocation of Z’, we can compute an MNW allocation of Z
in polynomial time. Let V = max; j v;;. We create m public issues: corresponding to each
good j € G, we create an issue j with two alternatives (j,1) and (j,2). That is, G’ = [m],
and G; = {(4,1),(4,2)} for j € G'. We create A" = [n+mT], where T' = [2mnlogmV']. The
first n agents here correspond to the n agents in Z. The last mT agents are of two types:
kT agents {n+1,...,n+ kT} of type A, and (m — k)T agents {n + kT +1,...,n+mT}
of type B. The valuations are as follows: each agent ¢ € [n] values alternative “1” of the
issue j € G’ at v;;, the agents of type A value only alternative “1”, agents of type B value
only alternative “2”. Formally, for i € A’, and an alternative (j, c) of the issue j € G’, where
ce{l,2}:
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vi;, if c=1and i € [n];

. 1, ifn<i<n+kT and c = 1;

vilde) = 1, ifn+ kT <i<n+ml and c = 2;
0, otherwise.

Let x’ be an allocation for the instance Z’. For ¢ € {1,2}, let S. be the set of issues j
with decision ¢ in x’. That is, S. = {j € [m] : x; = c}. Let &' = [S1]. Then we have:

W) = (T ot (04 - )07 -

i€[n]

We now relate x’ to the PublicGoods instance Z. The decision (j,1) corresponds to
selecting the public good j. Let x =57 C G be the corresponding set of public goods. Then
for any i € [n] we have that v;(x) = v(x'), since v}(j,2) = 0 for every j € [m]. Thus:

NW(x') = (NW(x)" - ()M - (m — k) (=0T )7 (3)

We now have to prove that x satisfies |x| < k. Let W, be the Nash product of any
MNW allocation for the PublicGoods instance Z, = (A, G, ¢, {v;}ica), 0 < £ < m. Clearly,
0=Wo<W; <.. W, <(mV)". Ask >n, Wi > 1, since we assume every agent has at
least one good that she values positively. Define g : [m] — Z, as g(a) = a*(m —a)™ *. Then
if x" is an MNW allocation for Z’, (3) becomes:

NW(x') = (W - g(k')T)1/ (D). (4)

Let G; and G4 denote the largest and second-largest values that g attains over its domain.

We observe that g increases in [0, k], and decreases in [k, m]. Hence, G; = g(k) implying:
G1 = kF(m — k)™ % Gy = max(g(k — 1), g(k + 1)).

We now claim the following and prove it in Appendix A:

> Claim 5. G¥ >W,,-G%L.

Using Claim 5, we have for all k' € [m] \ {k}:
Wi - g(k)" > G > Wi - G5 > Wi - g(K)7,

Hence, the quantity Wy - g(k')T is maximized when k' = k. Recalling (4), we conclude
that for the MNW allocation x’ of Z’, the corresponding set x has cardinality exactly k.
Further x also maximizes the NW among all allocations of the instance Z satisfying this
cardinality constraint. Thus, x in fact is an MNW allocation for Z. Finally, it is clear that
this is a polynomial time reduction. |

We next relate the MNW problem in the PrivateGoods model with the PublicGoods model.

» Theorem 6. PrivateMNW polynomial-time reduces to PublicMNW.
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Proof. Let T = (A = [n],G = [m],V) be a PrivateGoods instance, using which we create
a PublicGoods instance I’ as follows. We create n + 2m agents, i.e. A" = [n+ 2m]. The
first n agents correspond to the n agents in Z. The last 2m are dummy agents. We create
n - m public goods: for each good j € [m], we create a set of n copies Sj = {j1,j2,...,Jn},
G =U,eg Sj- We set k =m. The valuations for i € A, j, € G are:

v;j, if i = £ and i € [n];
Vi(je) =< 1, ifi € {n+2j —1,n+2j};
0, otherwise,

i.e. each agent i € [n] values exactly one copy, j; for each j € G at v;;, and for each good
j € G, there are exactly two dummy agents who value all copies of j.
We use the following claim in our proof. We prove it in Appendix A.

> Claim 7. Any MNW allocation x’ of Z' does not select two goods from same S;, j € [m].

Consider any MNW allocation x’ of Z'. We construct a partition, x of goods for Z from
this in the following way. For i € [n], j € [m], define z;; = 1 if j; € X/, and 0 otherwise. Let
x; ={j € G : 2;; = 1}. Thus, the value that agent i gets in x is

vi(xi) = Z'Uijxij = Zvijl(ji €x'),
j€G j€g
=Y ()10 € X)),
JjEG

— vi(x)).

Thus, if m > n, NW(x) = NW(x')""2™/™ and the partition corresponding to x’ as defined
above gives an MNW solution for Z. On the other hand, if m < n, then x’ already gives
non-zero value to all dummy agents by Claim 7. Thus, to maximize the total number of
agents who get non-zero value, it maximizes the number of agents in [n] who get non-zero
value. Call this set S*. Thus partition x has maximum number of agents getting a non-zero

value. Finally, it maximizes the Nash product over S* U{n+1,...,n+ 2m}. Claim 7 also
implies that all dummy agents get value 1. Thus, [[,cg. vi(xi) = [];cg~ vi(x’). Thus even in
this case the allocation x corresponds to an MNW allocation in 7. |

» Observation 8. A desirable feature of the above reductions for the MNW problem from
instance T = (A, G, V) to T' = (A',G", V') is that V! =V U {0, 1}, i.e., the reduction only
creates instances T' which have 0 and 1 as the only potentially additional values as compared
to T. We use this feature in establishing the computational complexity of computing an MNW
allocation in the PublicDecisions model with binary values, see Corollary 23.

Similar polynomial-time reductions hold between the three models for the problem of
computing a leximin-optimal allocation. We give the theorem statements here and the proofs
can be found in full version of the paper.

» Theorem 9. PublicLex polynomial-time reduces to DecisionLex.

» Theorem 10. PrivateLex polynomial-time reduces to PublicLex.
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4 Properties of MNW and Leximin

We prove that MNW and leximin-optimal allocations satisfy desirable fairness and efficiency
properties in the PublicGoods model as well. First, we show some interesting relations
between our three fairness notions — Prop, Propl, and RRS in the PublicGoods model where
k > n.* Our results are presented in Table 2.

Table 2 Relations between the fairness notions for £ > n. Each cell (R, C) contains a factor «
s.t. any allocation satisfying the row property R implies an a-approximation to the column property
C. Cells with a = 1 are marked with v/, and with @ = 0 are marked with X.

RRS Prop Prop1
RRS v 57 (Lem. 12) | v/(Lem. 11)
Prop | 1/n (Lem. 13) v v
Propl X(Ex. 14) X(Ex. 14) v

» Lemma 11. Any allocation that satisfies RRS also satisfies Propl.

Proof. Fix any agent i. Let x = {hy, ha,..., hi} be any allocation that satisfies RRS. Let
x; = {g1,92,---,9r} denote the top k goods for agent i. We assume that the goods both in
x and x;, are ordered in decreasing order of valuations according to agent i. Now, suppose
that top ¢ goods of x match with top ¢ goods of x}, i.e. v;(h;) = v;(g;),¥j < £ and
v;(hes1 < vi(ge+1)). Note that since x}, is the top k goods of agent ¢, we cannot have that
vi(hj) > vg;) for any j < £. We want to prove that RRS implies Propl. If x was already
satisfying proportionality, it is obvious that x is Propl. If £ > d, it is again easy to see that
x is Propl. This is because, if k = d then we already have top k goods, giving a proportional
allocation. If k > d, then we can remove any good from hgy1,...,h; and exchange it with
gd+1 to ensure proportionality, making the original allocation Propl. Finally, if n divides k
then we have proportionality implied by RRS from Lemma 12.

Thus, we now assume that ¢ < d, k = nd + r with r < n — 1 and that x is not already
a proportional allocation. We know that v(hy,...,he) = v(g1,...,9¢) and v(hq, ..., hg) <

%’U(gla 92, ---,9x). Thus,
1

v(h5+1a"'7hk) < ﬁv(g£+17"’agk) (5)
Now, v(hi) < 725v(hes1, - -, hy). Thus,
e — ) (6)
k 7ﬂ(k—€) glJrlv"'vgk

Now, consider the good g¢41. It is the good with highest value that is not in x. We prove
that removing hy and adding g,41 gives us an allocation that is proportional. Since ¢ < d,
Vi(ge+1) > vi(gnd+;), ¥j < r. Combining with the fact that r < n,

(n—1) - vi(ge41) > Vi(Gnd+1s - - - » Grd+r)- (7)

4 Note that when k < n, RRS is 0. Any agent who gets 0 value satisfies Propl when k < n trivially. Thus,
RRS and Propl coincide when k < n. On the other hand, the proportional value will be non-zero even
when k =1 if the agent likes at least one good. Thus, there can be no multiplicative relation between
RRS and Prop when k < n.
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Again since the goods are arranged in decreasing order of valuations, v;(g1,...,94) >
Vi(Gjds1s- - 9G+1)a), V1 < j < (n —1). Thus,

(n—1)vi(g1,---,94) = vi(gat1-- -, gna)- (8)
Define, LHS = (n — 1)v;i(ges1) + (n — )v;(g1, ..., gq). Combining (7) and (8),
LHS > vi(gna+1; - - -+ Gnd+r) + Vi(gdt1s - - - » Gnd)

= Ui(gd—‘rla cee 7gk)

=i(get15- -5 9k) = Vi(Ges1, - -, 9a)
Thus we get,
(n —Dvi(ges1) + (n — Dvig, - -, 90) = vi(ges1, -, gk) — ni(Ges1s - - -5 ga)
Now, vi(ge+1) = 77vi(ge+1,-- -, gr). Hence,
nvi(get1) + (n — Dvi(gs .-+, g¢) > vi(getts -, gr) — nvi(Getrs - - -5 ga) + ﬁvi(géﬁ—l» s k)
> vi(get1, -5 gr) — nvi(hega, ..., hg) + nvi(he),

where the second inequality follows because x is RRS and from (6). Rearranging the above
terms and using the fact that v;(g1,...,9¢) = vi(h1,..., he), we get

n; (ges1) + nvi(ha, ... hg) — nvg(he) > vi(g1, ..., gk)

which implies that x is Propl. |

» Lemma 12. Any allocation that is a-RRS is also a - 5.*=-Prop. Further, when n divides
k, a-RRS implies a-Prop.

Proof. We will prove a stronger result assuming the valuations are monotone and subadditive.
Let x denote any subset of k items that satisfies a - RRS. Fix any agent i. We have,
vi(x) > a- max v(y).

) 2y )

Let x* denote the set of top k goods of agent i. Let k = n *d + r where r < n. We can

partition x* by dividing it into n bundles, each of size |k/n| and r more bundles, each of size

1. Note that when k > n, |k/n] > 1 and r < n. Thus, we get at most 2n — 1 bundles each

of size at most |k/n]. We denote these bundles by S1,Ss, ..., S;, with [ < 2n — 1. Thus, we

have,

i€[l]
1

< s
= o Uz(x)a (9)

i€[l]

2n—1

<
< (%) o

Here the second inequality follows from subadditivity and third follows because x is RRS.
Thus, we have

vi(x) > @

Z gl =a

n
e Prop;.
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Further, when n divides k, 7 = 0 and we get { = n bundles each of size k/n. Thus, we have
from (9)

s
®
A%

3|2

v;(x*) = aProp;. <

» Lemma 13. Any allocation that satisfies a-Prop gives an a/n multiplicative approzimation
to RRS, and this is tight.

Proof. Suppose a given allocation, x satisfies a-Prop. Fix any agent 1.

1
vi(x) > a- . ‘r;l‘gvi(y),
1
>a-— -+ max v;

nlyl<[k/n]
— 2 _RRs.
n

For the tightness of lemma, consider the following example: We have n = 2 agents and
m =5 goods. Agent 1 values goods 1 and 2 at 1 each, does not value goods 3,4,5. Agent 2

values all goods at 1. If kK = 4, the RRS value of agent 1 is 2. Her proportional value is 1.

Thus, picking goods 1,3,4,5 gives agent 1 her Prop share but only ensures 1/n of her RRS
share. <

Finally, we note in the following example that Propl will not give any approximation to
either Prop or RRS.

» Example 14 (Propl does not approximate Prop or RRS). Finally, we note that a Propl
allocation might not give an « approximation to RRS for any a > 0. Consider an instance of
public goods allocation with n = 2. We have 3 goods. Agent 1 values goods 1, 2 at value of
1 and values good 3 at 0. Agent 2 values goods 1, 2 at 0 and values good 3 at 1. If we want
to select k = 2 goods, then, selecting goods 1 and 2 gives agent 2 value 0. This allocation is
Prop1, but provides no multiplicative approximation to either RRS or Prop for agent 2.

Next, we show that MNW allocations are fair:
» Lemma 15. All MNW allocations satisfy Propl.

Proof. Suppose there exists an MNW allocation x that is not Propl. This implies for some
agent ¢ € A, for all pairs of goods j € x and j' ¢ x, v;((x\ j)Uj’) < Prop,. If k < n,
Prop; < max;cg vi;, and swapping any good in x with this good will give her her proportional
share.

Consider now k£ > n. Since we assume each agent positively values at least one good,
the MNW value is non-zero. Since MNW is scale-invariant, we scale the valuations of
agents so that v (x) = 1 Vh # i. Let ¢’ be the highest-valued good of ¢ not in x, i.e.,
g = argmax;cq\xVij- Let Xo = {j € x : v;; < viy } be the set of goods in x that give i strictly
lesser value than ¢’. Since i does not satisfy Propl, x¢ # 0. Suppose we order the goods in
G according to the valuation of ¢ as {g1,...,gm}, where v;(g,) > v;(gs) for 1 <r < s <m.
Then n - Prop, = v;(g1,--.,gk) by definition. Since ¢’ is the highest-valued good for i not
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in x, and further since every good in xg is valued at less than v;y by 4, we can bound the
total value to i of the top k goods g1,. .., gr as follows: v;(g1,...,9x) < vi(x\ Xo) + |Xo|vig
which, using additivity of v;, can alternatively be written as:

)+ Z (vigr — v35) > nProp,. (10)

JEX0

Consider a good g given by®:

. ZheA\{i} Uhj
g €argmin;e, ——————.
Vig! — Vij

Then by definition of g, we have:
D_heA\{i} Vhg < D jexo 2oheA\{i} Uhi < D oheA\{i} 2jexo Uh

Vig — Vig Zjexg Vigl — Vij ~—  nProp; — v;(x) (11)

n—1

~ nProp; — v;(x)’

where the first transition follows by rearranging terms in the numerator, and using (10) in
the denominator, and the final transition follows by recalling that v, (x) = 1 for all h # i.

Let 6 = v;yy — vig. We know v;(x) + 6 < Prop,. Substituting this in (11), and noting
d > 0 gives:

ZheA\{i} Uhg < 1
1 vi(x)+ 6

(12)

Let us now consider the allocation x’ = (x\ g) Ug¢’. We show NW(x') > NW(x), thus
contradicting the Nash optimality of x. Since for any h # i, vy (X") > v (X) — vpg = 1 — Vi,
we have:

H vp(x") > v;(x)) H (1 —vpg) > (vi(x) +0) (1 - Z Uhg>

he A he A\{i} he A\{i}

> 00 +9) (1= 55 ) = w0

where the first transition uses Weierstrass’ inequality [24], and the second transition uses
(12). This leads to NW(x’) > NW(x), giving the desired contradiction. Hence any MNW
allocation satisfies Propl. <

Besides Propl, the MNW allocation satisfies several other desirable properties, as our next
result shows.

» Theorem 16. All MNW allocations satisfy PO, Propl, and 1/n-RRS. Further when k > n,
MNW allocation implies

2n 7-Prop.

Proof. If any MNW allocation did not satisfy Pareto optimality, then at least one of the
agents gets a strictly higher value with values of all other agents not decreasing. Thus, if the
MNW value is non-zero, we get an allocation with strictly higher Nash Product, contradicting

5 [15] considered an issue similarly.
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the optimality of value of MNW. On the other hand, if MNW value is zero and the strict
increase of value holds for one of the agents with non-zero value, then the Nash Product over
these agents increases contradicting maximality of Nash Product of these agents. On the
other hand, if the strict inequality holds for an agent who receives zero value, the number of
agents with non-zero value increases, contradicting the maximality of number of agents who
get non-zero value. In both cases, the optimality of MNW is contradicted. Thus any MNW
allocation satisfies Pareto Optimality.

Next we prove that all MNW allocations satisfy 1/n-RRS. Suppose there exists an MNW

allocation x that is not 1/n-RRS. This implies that for some agent i € A, v;(x) < %RRSZ'.

Let us order the goods according to i’s valuation: let G = {g1,92,...,9m}, such that
vi(gr) = vi(gs), forall 1 < 7 < s < m. Let p=[%]. When k < n, p = 0, in that
case RRS; = 0. Therefore, £ > n. Observe that the round-robin share of i is given by
RRS; = v;({g1,---,9p})- We scale the valuations of the agents so that for every agent 1,
v;(x) = 1. In particular, this implies RRS; > n.

Let us order the goods in x according to i’s valuation: let x = {41, j2,...,Jjr }, such that
vi(jr) > vi(js), for all 1 < r < s < k. Define for r € [p], Sy = {jrn—n+1,---+Jrn}, and
gr = aArgMIiN;cs, > e (i} Vhi-

We now construct another allocation x’ as follows. We first check if g; € x. If not, we
begin constructing x’ by removing ¢} from x and adding ¢;. If g; € x, then we proceed
to check whether g € x or not. For every r € [p], we remove g/ and add g, if g, is not in
x. If g, is already in x then for such an r no operation is done. Since we are removing g..
and v;(g,.) < vi(gr) < vi(gs) for all s < r, this ensures that {g1,...,g9,} C x’, which shows
v;(x") > RRS; > n. Observe that:

P P
1
Z Z vn(g)) < Z - Z Z Vhj (def. of g,)
r=1 he A\{i} r=1"" heA\{i} €S,
12
< -~ Z Z Uhj (rearranging)
r=1j €S, he A\{i}
1
<= (def. of Sy)
" ex heavti}
1
< - * i
< Z vp (x¥) (rearranging)
he A\{i}
~n—1
=—

Then we have:

th ) > v (x)) H vp(x),

heA heA\{i}
p
2u6d) IT (1= ).
he A\{i} r=1
n—1
> vi(x (1—2 > vhgr> (1— ):NW(X)",
r=1 he A\{i} "

which contradicts the fact that x is Nash optimal.
Combining this with Lemma (12) and Lemma (15), we get the proof of the theorem. <
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Similar fairness and efficiency properties for the leximin-optimal allocation. In particular,
one can prove the following theorem (proof is in full version of the paper).

» Theorem 17. All leximin-optimal allocations are PO, satisfy RRS and Propl. Further,
when k > n, a leximin-optimal allocation is also (n/(2n — 1))-Prop.

5 Complexity of MNW and Leximin

In this section, we show that PublicMNW and PublicLex are NP-hard. Our hardness results
also hold for instances with binary values, which is in stark contrast to the private goods
setting, where MNW and leximin-optimal allocations can be computed in polynomial-time.
All proofs for this section can be found in the full version of paper. Since the cases of k > n
and k£ < n are interesting in their own right, we consider them separately.

» Theorem 18. Given a PublicGoods allocation instance where k < n, computing an -
approximation to MNW is NP-hard for any a > 0, even when all valuations are binary.

» Theorem 19. PublicMNW is NP-hard, even when all valuations are binary.

Proof. (Sketch) We reduce from the exact regular set packing (ERSP) problem. In the input
to ERSP, there are n elements X = {z1,...,z,}, a family of subsets F = {F1, ..., F},} where
each F; C X and |F;| = d. The problem is to compute a subfamily 7' C F, |F'| = r, s.t.
for all F; # F; € F',F;NF; =0. Let T = (X, F,d,r) be an instance of ERSP. We construct
a PublicGoods instance Z' = {A, G, k, {v;}ica, T} as follows. We create a set A = [n] of n
agents, a set G = {g1,...,gmU{d1,...,dn} of m+n public goods. For any agent i € A and
good g; € G, v;(g;) =1 if z; € Fj else 0. For any agent ¢ € A and good d; € G, v;(d;) = 1.
We set k=7 +nand T = ((n+ 1)%n?=9)1/? We show that Z is a yes-instance for ERSP
iff the MNW for 7’ is at least T. <

» Theorem 20. PublicMNW is NP-hard, even for two agents.

We next show a similar hardness results for computing leximin-optimal allocations, which
as we show, apply even for instances with binary values.

» Theorem 21. PublicLex is NP-hard, even when the valuations are binary.

» Theorem 22. PublicLex is NP-hard, even for two agents.

Proof. (Sketch) We prove this by reducing from the NP-complete problem Monotone c-
SAT. In an instance of Monotone ¢-SAT we have X = {xi,...,2,} variables, formula,
F=CiNCyAN---NC,, in CNF form with additional constraint that all literals in it are
positive. We want to determine if we can satisfy F' by setting at most ¢ variables to true.
To create T = (A, G, k,{v;}ica), corresponding to each clause C;, we create an agent, i
and corresponding to each variable, x; we create a good, j. Each agent likes the goods
corresponding to the variables that show up in her corresponding clause. To ensure that
k > | A| in the public goods instance, we create one dummy agent and m —c+1 dummy goods.
Finally, set kK = m + 1. We show that F' has a satisfying assignment with ¢ true variables iff
in the Leximin-optimal the minimum utility is m — ¢+ 1, and the second minimum utility is
at least m — c+ 2. <



J. Garg, P. Kulkarni, and A. Murhekar

Using the reductions of Theorems 4 and 9 and the NP-hardness results of this section, we
obtain NP-hardness results for computing MNW and leximin allocations in the public decision
making model. In fact, Observation 8 implies that this NP-hardness remains for the MNW
problem even with the valuations are binary.

» Corollary 23. DecisionMNW is NP-hard, even when all values are binary.

Using our reductions (Theorems 4 and 9) together with the NP-hardness of PublicMNW
and PublicLex (Theorems 19 and 21) implies that:

» Corollary 24. The problems DecisionMNW and DecisionLex are NP-hard.

6 Algorithms for MNW and Leximin

In light of the above computational hardness, we turn to approximation algorithms and
exact algorithms for special cases. The proofs of results in this section and the algorithms
for special cases can be found in the full version of paper. We first present an algorithm
that provides an O(n) factor approximation to MNW and satisfies fairness properties of
RRS, Propl when valuations {v;}ica are monotone (v;(S) < v;(S U g) for all S C G and
g € G\ S) and subadditive (for all S; C G,S2 C G, v;(S1) + v;(S2) > v;(S1 U S2)). The class
of subadditive valuations captures complement-free goods, and subsumes additive valuations.
Our algorithm assumes access to demand oracles® for the subadditive valuations. We use the
following subroutine, Maximize, from [5] which takes:

Input: Set of goods, G, the valuation function v; of the agent i, and an integer r; and

returns:

Output: x C G, s.t. v;(x) > %mangg,|S|§r v;(S)
Our algorithm, AlgGreedy, has two steps:

For all i € A, x; + Maximize(G,v;, | £])

Return x < Ujeax;
For additive valuations, we assume that Maximize returns a set of |k/n] most-preferred
goods for each agent. This algorithm enables us to show that:

» Theorem 25. There exists a polynomial-time algorithm for the problem of PublicGoods
allocation (where k > n and agents have monotone, subadditive valuations) that returns an
allocation which satisfies RRS, %—Prop, and approzimates the MNW to a factor of O(n).
Further, when the valuations are additive, the allocation satisfies Propl.

We now present pseudo-polynomial time algorithms for two special cases, namely con-
stantly many types of agents, and constantly many types of goods. Our results apply to
the more general model of budget constraints. We denote an instance of this model by
Z=(A,G,B,{cj}jec,{vi}ica). Each good j € G has an associated integral cost ¢;, and in a
feasible allocation the sum of costs of the picked goods must not exceed the budget B. The
MNW and leximin-objectives are defined as before, but over feasible allocations that satisfy
the budget constraints. Since cardinality constraints are a special case of budget constraints
with uniform cost, our hardness results apply for the budget model also.

6 Subadditive valuations are set functions and cannot in general represented efficiently. We thus assume
access to the functions through some oracles. Given a set of prices p; for each good j € G, a demand

oracle returns any set S that maximizes v;(S) — Z]. csPi-
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Constantly many types of agents

We consider instances where the number of agent types is constant. We say agents ¢ and h
have the same type if Vj € G, vi; = vp;.

» Theorem 26. For a PublicGoods allocation instance, T = (A, G, B,{c;}jeg, {vitica) with
t distinct types of agents, (i) an MNW allocation can be computed in time O(m - (mV)?),
(ii) a leximin-optimal allocation can be computed in time O(m - nlogn - (mV)?), where
V = max;e 4, jeg vij-

We prove this by presenting a dynamic-programming based algorithm which computes such
allocations. We also get:

» Corollary 27. For binary valuations, with constantly many types of agents PublicMNW
and PublicLex are polynomial-time solvable.

Constantly many types of goods

We now consider instances where the number of types of goods is constant. We say two goods
Ji,j2 € G have same type if for all agents i € A, v;;, = vy, and ¢;, = ¢j,. In this case, we
can enumerate all feasible allocations efficiently, implying that an MNW or leximin-optimal
allocation can be computed in polynomial-time.

» Theorem 28. For a PublicGoods allocation instance T = (A, G, B,{c;j}jeg, {Vi}icm)) with
t different types of goods, (i) an MNW, can be computed in time O(m') (i) a leximin-optimal
allocation can be computed in time O(nlogn - m?).

7 Discussion

In this paper, we considered the problem of allocating indivisible public goods to agents subject
to a cardinality constraint. We showed fundamental connections between the models of private
goods, public goods, and public decision making, by presenting polynomial-time reductions
for the popular solution concepts of maximum Nash welfare (MNW) and leximin. We also
showed that MNW and leximin-optimal allocations satisfy desirable fairness properties like
Propl and RRS, and the efficiency property of PO. Further we showed that these objectives
are computationally NP-hard, including for several special cases like constantly many agents
and binary valuations. Lastly, we designed an approximation algorithm for MNW and
pseudo-polynomial time algorithms for the case of constantly many agents.

Our work opens up several interesting research directions. Firstly, extending our reductions
to the budget model presents a challenging problem. A second question is devising an
algorithm to compute a Prop1+PO or RRS+PO allocations in polynomial time, bypassing
the hardness of computing MNW or leximin-optimal allocations. Appropriately defining
properties like Propl in the budget model and investigating whether MNW and leximin
satisfy them would be a third interesting research direction. Finally, designing constant-factor
approximation algorithms, even for restricted cases like binary valuations, which captures a
large class of voting-like scenarios, is another important open problem.
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A Missing Proofs from Section 3
> Claim 5. G¥ >W,,-G}.

Proof. Recall that W, denotes the Nash product of any MNW allocation for the PublicGoods
instance Zy = (A, G, 0, {v; }ica), for 0 < <m. We have 0 =Wy < Wy <...W,, < (mV)",
and we assume Wy, > 1. Recall that function g : [m] — Z, was defined as g(a) = a*(m—a)™~*.
Let G1 and G4 denote the largest and second-largest values that g attains over its domain.
We observe that g increases in [0, k], and decreases in [k, m]. Hence:

G1 = g(k) = kK*(m — k)m*.
Go = max(g(k — 1), g(k + 1)).

Now observe that for k € [m]\ {0,1,m}:

log g(k) —logg(k — 1) = k(logk — log(k — 1)) + (m — k)(log(m — k) — log(m — k + 1)),
-1 1 1

k) — > >
tm=k) o 2 T 2o

1
> k-
=

and for k € [m]\ {0,m —1,m}:
log g(k) —logg(k + 1) = k(logk — log(k + 1)) + (m — k)(log(m — k) — log(m — k — 1)),
-1 1
>t 1
“2m—k)—17~

DO

2m’

using standard properties of logarithms. Thus:

1
logGy —log Gy > —.
2m
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Then we have by recalling that T' = 2mnlogmV,
1
T(log G1 — log G2) > 2mnlogmV - % > log Wi,
m

which gives:

Gt >w,, -G¥,
as required. Lastly, we consider the cases of k = 1 and k = m — 1. In both cases,
T(log Gy —log G2) = T[(m — 1)log(m — 1) —log 2 — (m — 1) log(m — 2)] > 2mnlogmV 3t >
log W,,,, which gives GT > W,,,GT, as claimed. <

Proof of Claim 7. Consider first m > n. Suppose 3j € [m] for which two goods j;,jir €
x',i # i'. Since exactly m goods are picked in x’, there is some j’ € [m], for which no good
ji is picked in x’ for any ¢ € [n]. This implies that the agents 2" + n — 1,2j' + n get zero
value in x’, making NW(x’) = 0. However, choosing a good from each j € [m] gives non-zero
value to all dummy agents. At the same time, since m > n, these goods can be chosen so
that they give non-zero value to distinct agents in [n]. This makes NW(x') # 0 contradicting
Nash optimality of x'.

Now, if m < n Nash welfare of all allocations in Z is 0. Thus, the MNW allocation is the
one that maximizes the number of agents who get non zero value and then maximizes the
product of values for these agents. Consider any allocation X, suppose 3j € [m] for which
two goods j;, ji € X,1 # 4'. then again for some j', agents n + 25’ — 1 and n + 25’ get value 0
making NW(x) = 0. At the same time, even if X has goods from all different S}, since m < n,
and each one item from S; gives value only to one agent ¢ € [n], the NW(x) = 0 even in
this case. Thus, if m < n, all allocations have Nash welfare 0 in Z’ also. Suppose the MNW
allocation, x’ had two goods from same S; for some j € [m]. Then, there exists a j’ € [m]
such that no good is selected from S;,. The two goods from S; give value to exactly four
agents - the two dummy agents 25 +n — 1,25 + n and two agents who receive their copy of
good j. Instead, if we exchange one of these goods to a good from S;/, we give non-zero value
to at least five agents - dummy agents 2 +n — 1,25 +n,25' +n — 1,25’ +n and at least one
of the agents in [n]. We did not change the value of any other agents in this process. Thus,
we increase the number of agents who get non-zero value, contradicting the maximality of x’.
Thus, in both cases, all m goods are picked from different S;, j € [m]. <
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