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—— Abstract

We study the existence of polynomial kernels for parameterized problems without a polynomial kernel
on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in
[Bonnet et al., ICALP’21] that the problem k-INDEPENDENT SET allows no polynomial kernel on
graph of bounded twin-width by a very simple argument, which extends to several other problems
such as k-INDEPENDENT DOMINATING SET, k-PATH, k-INDUCED PATH, k-INDUCED MATCHING. In
this work, we examine the k-DOMINATING SET and variants of k-VERTEX COVER for the existence
of polynomial kernels.

As a main result, we show that k-DOMINATING SET does not admit a polynomial kernel on
graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is
intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to
work for CONNECTED k-DOMINATING SET and TOTAL k-DOMINATING SET with a slightly worse
bound on the twin-width.

On the positive side, we obtain a simple quadratic vertex kernel for CONNECTED k-VERTEX
COVER and CAPACITATED k-VERTEX COVER on graphs of bounded twin-width. These kernels rely
on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any
vertex set X, the number of distinct neighborhoods in X is at most ¢ - | X|, where ¢ is a constant
depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1,
and does not require a witness sequence. We also present a more intricate O(k1'5) vertex kernel
for CONNECTED k-VERTEX COVER.

Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial
time, and observe that most graph optimization/decision problems can be solved in polynomial time
on graphs of twin-width at most 1.
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1 Introduction

The twin-width of a graph can be defined in the following way. A partition sequence of an
n-vertex graph G, is a sequence P,,, ..., Py of partitions of its vertex set V(G), such that
Py, is the set of singletons {{v} : v € V(G)}, P; is the singleton set {V(G)}, and for every
2 < i < n, P;_1 is obtained from P; by merging two of its parts into one. Two parts P, P’ of
a same partition P of V(G) are said homogeneous if either every pair of vertices u € P,v € P’
are non-adjacent, or every pair of vertices u € P,v € P’ are adjacent. Finally the twin-width
of GG is the least integer d such that there is partition sequence P,,...,P; of G with every
part of every P; (1 < ¢ < n) being homogeneous to every other parts of P; but at most d.
We call such a partition sequence a d-sequence.

On the one hand, a surprisingly wide variety of graphs have low twin-width. Graph
classes with bounded twin-width include classes with bounded treewidth, or even rank-
width, proper minor-closed classes, every hereditary proper subclass of permutation graphs,
bounded-degree string graphs [6], classes with bounded queue or stack number, some expander
families [4]. Furthermore on those particular classes, we can find (non necessarily optimum)
O(1)-sequences in polynomial time. We observe that such an approximation algorithm is
still missing in general graphs, but exists for ordered binary structures [5].

On the other hand, bounded twin-width classes have interesting algorithmic and structural
properties. Remarkably, given a partition sequence witnessing that an n-vertex graph G
has twin-width at most d, and a first-order sentence ¢, one can decide if ¢ holds in G
in time f(|¢|,d)n for a computable, but non-elementary, function f [6]. That general
framework is called first-order model checking, and generalizes problems like k-INDEPENDENT
SET with ¢ = 3z1... 32 \ ;o j<p, ~(i = 25 V E(24,25)) and k-DOMINATING SET with
¢ =Fry... Vo V(= 2; V E(x,7;)). For these two particular problems, though,
a much better running time of 294(¥) n, is possible [3]. In contrast, an algorithm running in
time f(k)n°®) for either of these problems on general graphs, with f being any computable
function, would imply the improbable (or at least breakthrough) result that 3-SAT can be
solved in subexponential time [10].

Now we know that k-INDEPENDENT SET and k-DOMINATING SET are fixed-parameter
tractable (FPT), i.e., solvable in time f(k)n®™), on graphs of bounded twin-width given with
an O(1)-sequence, one can then ask whether polynomial kernels exist. A kernel is a polytime
algorithm that produces, given an instance of a parameterized problem II, an equivalent
instance of IT (i.e., the output is a YES-instance if and only if the input is a YES-instance)
of size only function of the parameter. A polynomial kernel is a kernel for which the latter
function is polynomial. Any decidable problem with a kernel is FPT, and any FPT problem
admits a kernel. However not every FPT problem is believed to have a polynomial kernel.
And indeed such an outcome would imply an unlikely collapse of complexity classes.

We already observed that there is a constant d such that k-INDEPENDENT SET is highly
unlikely to have a polynomial kernel on graphs with twin-width at most d [3]. The OR-
composition is straightforward from the following facts: (1) cliques have twin-width 0
and planar graphs have bounded twin-width [6], (2) the twin-width of every graph is the
maximum twin-width of its modules and quotient graph (see Lemma 8), and (3) MAXIMUM
INDEPENDENT SET is NP-hard in (subcubic) planar graphs [30]. Then one can blow every
vertex of a clique K; into a distinct graph among t planar MAXIMUM INDEPENDENT SET-
instances. Facts (1) and (2) imply that the constructed graph has bounded twin-width,
while the correctness of the OR-composition is easy to check. Incidentally the exact same
reduction rules a polynomial kernel out for k-INDEPENDENT DOMINATING SET. Furthermore
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MINIMUM INDEPENDENT DOMINATING SET is NP-hard in grid graphs [11], and MAXIMUM
INDEPENDENT SET is NP-hard in subdivisions of grid graphs (since these coincide with planar
graphs of degree at most 4). Since these graphs have twin-width at most 4 (see Lemma 9), no
polynomial kernel is likely to exist for both problems (even when a 4-sequence is given in the
input). It should be noted that this simple reduction fails for k~-DOMINATING SET: one can
dominate the constructed graph by picking only two vertices (from two distinct instances).

The parameterized complexity (FPT algorithms and kernels) of k-DOMINATING SET!
on “sparse”? classes has a rich and interesting history. Subexponential FPT algorithms with
running time 2°00V® O are known in planar graphs [28, 21], bounded-genus graphs and
more generally classes excluding a fixed minor [19, 25, 33], and an FPT algorithm with
running time 29(%) n exists in classes excluding a fixed topological minor [2]. On these
classes the mere existence of an FPT algorithm (but not the particular, enhanced running
time) is subsumed by an algorithmic meta-theorem of Grohe, Kreutzer, and Siebertz [32]
that says that first-order model checking is FPT in any nowhere dense class.®> More general
than nowhere dense classes are bounded-degeneracy graphs, or further, K; ;-free classes, i.e.,
excluding the biclique Ky, as a subgraph. Alon and Gutner [2] give an FPT algorithm in
d-degenerate graphs running in time k°(?*) n. And Philip, Raman, and Sikdar [40] extend
the fixed-parameter tractability of k-DOMINATING SET to any K, ;-free class (for a fixed t).
Telle and Villanger [43] further show that k~-DOMINATING SET on K, ;-free graphs is FPT
for the combined parameter k + t.

In parallel to these algorithms, the existence of polynomial, or even linear, kernels have
been thoroughly investigated. In 2004, Alber, Fellows, and Niedermeier [1] presented a
linear kernel for k-DOMINATING SET on planar graphs that triggered a series of works.
Linear kernels are known on planar graphs [1, 9], bounded-genus graphs [27], apex-minor-
free graphs [26], but more generally in any class excluding a fixed topological minor [25].
k-DOMINATING SET admits a polynomial kernel on graphs of girth 5 (that is, excluding the
triangle and the biclique Ks o as a subgraph) [42]. A polynomial kernel of size O(k(t“)Q)
is obtained for K, ;-free graphs [40], the most general “sparse” class. Contrary to the FPT
algorithm, a polynomial kernel in the parameter k + ¢ is highly unlikely [20]. More precisely,
for any € > 0, a kernel of size k¢~ =3)=¢ would imply that coNP C NP/poly [15]. On
classes of bounded expansion* k-DOMINATING SET has a linear kernel, while the seemingly
closely related CONNECTED k-DOMINATING SET has no polynomial kernel [23]. The latter
result refines a reduction showing the same lower bound on 2-degenerate graphs [17].

Beyond sparse classes, for which most answers turn out positive, the parameterized
complexity of k-DOMINATING SET seems to conceal many surprises, some of which recently
unraveled. We already mentioned that k-DOMINATING SET is FPT on bounded twin-width
graphs given with an O(1)-sequence. Let us also mention that the same problem is actually
W(1]-hard (hence unlikely FPT) on circle graphs [7]. This is somewhat unexpected since
DOMINATING SET is polytime solvable on permutation graphs [24], a large subclass of circle
graphs. On the positive side, k-DOMINATING SET admits a polynomial kernel on so-called
c-closed graphs [36], a far-reaching dense generalization of bounded d-degenerate graphs.

All the subsequent results also hold for k-INDEPENDENT SET.

Sparse is an overloaded term; here we use it as not containing arbitrarily large bicliques as subgraphs.
The definition of nowhere denseness being technical and unnecessary to the current paper, we refer the
interested reader to [39]. Let us just mention that bounded-degree graphs, planar graphs, and proper
(topological) minor-closed classes are all nowhere dense.

We will not need a definition of expansion here. Bounded expansion classes are more general than
topological-minor-free classes and less general than nowhere dense classes.
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Our results

We are back to wondering whether k-DOMINATING SET admits a polynomial kernel on
graphs given with an O(1)-sequence. On the one hand, a polynomial kernel would “fit all the
data points” considering that the examples of bounded twin-width classes previously given
are either Ky ;-free (and one concludes with [40]) or are dense classes on which MINIMUM
DOMINATING SET is polytime solvable, like bounded rank-width graphs [12], and (subclasses
of) permutation graphs [24]. On the other hand, the same could be said of k-INDEPENDENT
SET for which we already ruled out such a kernel. Yet we will see in Section 3.1 that
the above OR-composition not working for k-DOMINATING SET is part of a more general
obstacle toward establishing its incompressibility. In the same section we lay down our plan
to overcome that obstacle and show the following. Recall that the input to k~~-DOMINATING
SET is a graph G and an integer k, k construed as the parameter, and the task is to decide
whether G has a dominating set of size at most k.

» Theorem 1. Unless coNP C NP /poly, k-DOMINATING SET on graphs of twin-width at
most 4 does not admit a polynomial kernel, even if a 4-sequence of the graph is given.

We mentioned that the same statement holds much more directly for k-INDEPENDENT SET
and k-INDEPENDENT DOMINATING SET. With analogous arguments, we can add k-PATH,
k-INDUCED PATH, k-INDUCED MATCHING to the list. Local gadget modifications of the
proof of Theorem 1 yield the same kernel lower bound for variants of k-DOMINATING SET
such as CONNECTED k-DOMINATING SET and TOTAL k-DOMINATING SET, on graphs of
bounded twin-width. More work would be necessary to get the lower bound for twin-width
at most 4.

On the positive side, CONNECTED k-VERTEX COVER® and CAPACITATED k-VERTEX
CovER® admit polynomial kernels on graphs of bounded twin-width, while such kernels are
unlikely on general graphs [20]. Interestingly, our kernelization algorithm does not require
an O(1)-sequence.

» Theorem 2. CONNECTED k-VERTEX COVER and CAPACITATED k-VERTEX COVER admit
a kernel with O(k?) vertices on any class of bounded twin-width.

A linear kernel (in the number of vertices) is known for apex-minor-free classes [26] via
the generic framework of bidimensionality, and even for topological-minor-free classes [35].
Another powerful meta-theorem by Gajarsky et al. [29] says that every problem with the
so-called finite integer index (intuitively, that its boundaried graphs provide finitely many
distinct contexts) has a linear kernel on bounded expansion classes when parameterized by
the vertex cover number (and more generally by the size of a smallest vertex subset whose
deletion leaves the graph with bounded treedepth). In particular this yields a linear kernel
for CONNECTED k-VERTEX COVER, further extending the two previous results. Besides
CONNECTED k-VERTEX COVER has a polynomial kernel on K, ;-free graphs [17].

5 The problem CONNECTED k-VC takes as input a graph G and a parameter k, and asks whether G has
a vertex cover of size at most k which induces a connected subgraph of G.

6 Given a graph G and a capacity function c : V(G) — N, a capacitated vertex cover X of G is a vertex
cover of G which admits a mapping p : E(G) — X assigning to each vertex z € X no more edges than
its capacity, i.e., |p~ ()| < ¢(z) for every & € X. The goal of CAPACITATED k-VC is to decide, given
a graph G with a capacity function ¢ : V(G) — N and an integer k as the parameter, if G admit a
capacitated vertex cover X of size at most k.
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Theorem 2 is based on the following useful lemma stating that, in graphs of bounded
twin-width, the number of distinct neighborhood traces inside a subset of vertices is at most
linear in the size of the subset.

» Lemma 3. There is a function [ such that for every graph G of twin-width d and X C V(G),
the number of distinct neighborhoods in X, {N(v)NX : ve V(G)}, is at most f(d)| X|.

A more compact rewording, using the language of Vapnik-Chervonenkis parameters, is that
the neighborhood set-system of graphs of bounded twin-width has VC density 1. By extension,
we will say that a graph class has VC density at most 1, if its neighborhood hypergraphs do.
That bounded twin-width classes have VC density 1 is an interesting property, that is shared
with classes of bounded expansion. For example it implies a constant-factor approximation
for MIN DOMINATING SET (obtained in a rather different manner in [3]) via small e-nets [8].
Lemma 3 was independently obtained by Wojciech Przybyszewski in his master thesis [41].

For CONNECTED k-VERTEX COVER, an improved kernel can be obtained with a more
elaborate argument.

» Theorem 4. CONNECTED k-VERTEX COVER admits a kernel with O(k'-3) vertices on
classes with VC density at most 1.

Table 1 Kernelization results for arguably the three main problems without a polynomial kernel
in general graphs, but an interesting story in sparse classes. PK stands for polynomial kernel, LK
for linear kernel (in the number of vertices). The indicated lack of a kernel is under the assumption
that coNP C NP /poly. Our new results are in bold (the results without a reference nor in bold are
consequences of results in bold).

k-DOMINATING SET CONNECTED k-DS CONNECTED k-VC

general W/[2]-complete [22] W([2]-complete [22] FPT [13], no PK [20]
bounded expansion LK [23] FPT [18], no PK [23] LK [29]
bounded biclique PK [40] FPT [43], no PK [17] PK, no LK [17]
bounded degeneracy  PK [40] FPT [31], no PK [17] PK, no LK [17, 15]
K 3-free PK [34] FPT, no PK [34] LK (trivial)
K 4-free W/2]-complete [16] W(2]-complete [16] LK (trivial)

bounded twin-width ~ FPT [6], no PK FPT [6], no PK O(Ek*?)-vertex kernel
twin-width at most 4  FPT [6], no PK FPT [6] O(Kk"?)-vertex kernel
twin-width at most 1 in P in P in P

VC density at most 1 no PK no PK O(k'®)-vertex kernel

Finally we extend cograph recognizability (cographs are exactly the graphs with twin-
width 0) and prove:

» Theorem 5. One can decide in polynomial time if a graph has twin-width at most 1.

In case the input graph has indeed twin-width at most 1, a 1-sequence is found in polynomial
time. Furthermore we observe that a wide class of graph problems is efficiently solvable on
inputs of twin-width at most 1. See Table 1 for a summary of most of our results, together
with the relevant pointers on other graph classes.
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2 Preliminaries

We make this section light to keep the extended abstract legible; a complete preliminary section
can be found in the full version. We denote by [i, j] the set of integers {¢,i +1,...,5 — 1,5},
and by [i] the set of integers [1,]. If X is a set of sets, we denote by UX their union. The
notation Og4(+) gives an asymptotic behavior when d is seen as a constant.

An injective mapping 1 : V(H) — V(G) witnesses that H is a subgraph of G if uv € E(H)
implies n(u)n(v) € E(G). A bijective mapping 7 : V(H) — V(G) witnesses that H is a
spanning subgraph of G if wv € E(H) implies n(u)n(v) € E(G).

The strict half-graph of height t is (up to isomorphism) the graph with vertex set
{a1,...,a¢,b1,...,b;} and edge set {a;b; : i < j,i € [t],j € [t]}. One can see {as,...,a:}
oriented toward {by,...,b;} in their realization of the relation < over the indices. The
L-cycle of strict half-graphs of height t is (up to isomorphism) the graph with vertex set
{af,....a} : pe[0,6—1]} and edge set {afa?™ ™ 1 i< jielt],jet],pel0,f—1]}
Informally it is the graph obtained from an /-vertex cycle by replacing every edge by a strict
half-graph of height ¢ with a consistent, say, clock-wise orientation. See Figure 2 for an
example of a 5-cycle of strict half-graphs of height 6 (realized by the black edges on the
rounded black boxes). A strict half-graph is, for some natural ¢, the strict half-graph of
height t. A cycle of strict half-graphs is, for some natural £, the ¢-cycle of strict half-graphs
of same height.

The n x m grid is the graph with vertex set [n] x [m] and edges between any pair of
vertices (z,y), (z + 1,y) or (z,y), (z,y+ 1). A grid is an n x m grid for some integer n and
m. A grid graph is an induced subgraph of a grid. To insist that we consider a grid and not
a mere grid graph, we may use the term complete grid.

The neighborhood hypergraph of a graph G has vertex set V(G) and edge set {N(v) : v €
V(G)}. A family of hypergraphs H has Vapnik-Chervonenkis (VC) density at most 1
if there is a constant ¢ such that for every hypergraph H € H and every X C V(H),
HXnNe : ec E(H)} <c-|X]

2.1 Contraction sequences and twin-width

A trigraph G has vertex set V(G), black edge set E(G), and red edge set R(G), with E(G)
and R(G) disjoint. The total graph of trigraph G is the graph G’ with V(G’') = V(G) and
E(G') = E(G)UR(G). The subtrigraph of G induced by S is the trigraph H with V(H) = S,
E(H)=E(G)N (g), and R(H) = R(G)N (g) H is then called an induced subtrigraph of G.

The set of neighbors Ng(v) of a vertex v in a trigraph G consists of all the vertices
adjacent to v by a black or red edge. A d-trigraph is a trigraph G such that the red graph
(V(G), R(G)) has degree at most d. In that case, we also say that the trigraph has red
degree at most d. A contraction or identification in a trigraph G consists of merging two
(non-necessarily adjacent) vertices u and v into a single vertex z, and updating the edges of
G in the following way. Every vertex of the symmetric difference Ng(u)ANg(v) is linked to
z by a red edge. Every vertex x of the intersection Ng(u) N Ng(v) is linked to z by a black
edge if both ux € E(G) and vz € E(G), and by a red edge otherwise. The rest of the edges
(not incident to u or v) remain unchanged. See Figure 1 for an illustration.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs G,,,Gp—1,...,G1,
where G,, = G, G; = K is the graph on a single vertex, and G;_; is obtained from G; by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
G; has precisely ¢ vertices, for every i € [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence. Note that, in what precedes, the
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Figure 1 Contraction of vertices u and v, and how the edges of the trigraph are updated.

initial structure G,, = G may be a trigraph instead of a graph. Thus we defined twin-width
more generally for trigraphs. Similarly a partial d-sequence from a n-vertex trigraph G to an
i-vertex trigraph H is a sequence of d-trigraphs G = G,,,Gy,—1,...,G; = H. Observe that if
G has a partial d-sequence to H, and H has itself a d-sequence, then the concatenation of
these sequences is a d-sequence for G.

Here are useful facts about twin-width, whose proofs are trivial or can be found in the
full version.

» Observation 6. Let G be a trigraph and H be an induced subtrigraph of G. Then,
tww(H) < tww(G).

» Observation 7. Let G,G be two trigraphs such that V(G) = V(G'), R(G) C R(G),
E(G") C E(G), and R(G)UE(G) C R(G")U E(G"). Then tww(G) < tww(G’).

» Lemma 8. Let G be a graph and H = {Hy, Ha, ..., Hy} be its modular partition. Then,

tww(G) = max{m?g]( tww(H;), tww(G/H)}.
1€
» Lemma 9. Any trigraph whose total graph is a subdivision of a subgraph of a grid has
twin-width at most /.

2.2 Kernels or lack thereof

For a parameterized problem Q, a kernel of size bounded by a function f is a polynomial-
time reduction p : X* x N — X* x N such that (z,k) € Q if and only if p(z,k) € Q,
and |p(x, k)| < f(k). A kernel is said linear, quadratic, or polynomial, if the function f
can be chosen linear, quadratic, or polynomial, respectively. We recall the framework of
OR-cross-compositions [14], which we will rely on to show the absence of a polynomial kernel
in Theorem 1.

» Definition 10. A polynomial equivalence relation on X* is an equivalence relation R when
(i) for z,y € X*, the equivalence xRy can be decided in time polynomial in |z| + |y|, and
(ii) R restricted to instances of size at most n admits polynomially many equivalence classes.

We can now formally define an OR-cross-composition.

» Definition 11. Let £ be a language, R a polynomial equivalence relation on X* and Q
a parameterized problem. An OR-cross-composition from L to Q with respect to R is an
algorithm taking as input t R-equivalent instances 1, ...,xy € X*, running in time polynomial
in 22:1 |z;|, and outputting an instance (y,N) € ¥ x N such that:

(i) N is polynomially bounded in max;epy |z;] + logt,

(ii) (y,N) € Q if and only if there exists some j such that z; € L.

10:7
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We say that £ cross-composes into Q, and we sometimes refer to output instance (y, N)
as the composed instance. The following result provides the lower bound under coNP C
NP /poly.

» Theorem 12 ([14]). If an NP-hard language L admits an OR-cross-composition into a
parameterized problem Q, then Q does not admit a polynomial kernel unless coNP C NP /poly.

2.3 Selected results for the short version of the paper

Due to space constraints, most proofs of the results announced in the introduction were
omitted, and can be found in the long version of the paper. Section 3 is devoted to our main
result: the kernel lower bound for £-DOMINATING SET in graphs of twin-width at most 4.
We provide the intuition behind it, the definition of the particular instances we are reducing
from, and finally give the construction as well as a sketch of how we can reach the twin-width
bound. In Section 4, we present a sketch of proof that bounded twin-width graphs have
VC density 1, and use it to get a kernel with O(k'®) vertices for CONNECTED k-VERTEX
COVER.

3 Kernel lower bound for k-Dominating Set

3.1 Outline

Let us start explaining why we should not expect a simple OR-composition. A standard way
to OR-~-compose ¢ DOMINATING SET-instances is to have for each instance a “switch”, that
is, one vertex dominating all but one instance. Then picking the corresponding vertex in
the solution, one is left with dominating one chosen instance with a given remaining budget.
This is precisely what we want, but how to ensure that one does not activate two switches?

As we previously observed [3], one can use larger weights for the switches. However
removing the vertex-weights cannot be done without increasing the twin-width. Another
possibility is to force all the budget but one unit (for the switch) within the instances. This
requires, say, k vertices called “forcers”, each adjacent to a k-th fraction of each instance.
Now consider the induced subgraph made by these k vertices, the ¢ switches, and tk vertices
of the instances realizing the tk possible neighborhoods toward the former ¢ + k vertices. The
two neighborhoods of every pair of vertices in this graph has a large symmetric difference.
Thus in particular the overall graph has unbounded twin-width. (Finally known tricks to
condense the ¢ switches into O(logt) vertices do not help, since we want the twin-width to
be bounded by an absolute constant.)

So we need a more elaborate way of selecting one instance among t; one, thought primarily
to keep the twin-width low. In the previous attempts, the twin-width was increasing too
much because of attachments —switches and forcers— external to the instances. We will
therefore have instances themselves play these roles. Say that each instance comes with a
partition of its vertex set into N parts, each of which containing a vertex solely adjacent to
vertices in its part. We place the ¢ instances in a t x N two-dimensional layout, where each
instance occupies a “row,” while the j-th part of all the instances form the j-th “column.”
The switch mechanism is as follows. Every vertex in the j-th part of the i-th instance —say
I,— dominates the j — 1-st part of the instances with a smaller index, and the j + 1-st part of
the instances with a larger index. In other words, we put a strict half-graph over the parts
of two consecutive columns. This is done cylindrically, see Figure 2.
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Figure 2 The overall picture. Instances I, ...,
with their edge also in blue. For the sake of legibility, we only represented the edges of I;. The red
dotted edges are the red edges appearing after contracting every part (boxed in black) into a single
vertex. Example of what three vertices picked in the first three parts of I4 dominates in the other
instances. Continuing consistently in I, would result in “switching off” all the other instances, while
deviating would leave at least one part “white” and not intersected, thus one vertex not dominated.

I; (here with t = 6) are in rows, boxed in blue,

With that mechanism, a dominating set of a fixed instance I; (intersecting each of its
parts once) is a dominating set of the overall graph. We skip here the details of the reverse
direction, but the use of half-graphs and of vertices whose neighborhood in their instance is
confined to their own part (the last ingredient is to have a dummy, edgeless top instance I;)
should give a feel for why no other kind of dominating sets of size N can exist.

What about the twin-width bound? Cycles of half-graphs have bounded twin-width. So
a natural first step is to contract every part of every instance into a single vertex. Doing so
will create some red edges within each row. To ensure that the red degree remains bounded

in this first step, a part should be partially adjacent to only a bounded number of other parts.

In the second step, we contract the cycle of half-graphs row by row. Thus the red edges of
the different instances will progressively stack up. We need to control the accretion with the
red edges of each instance mapping onto a common bounded-degree red graph. Finally in
the third step, we contract the residual red graph. It should be itself of bounded twin-width,
for instance by being planar.

In the next subsection, we show that MINIMUM DOMINATING SET remains NP-hard even
when inputs are equipped with a vertex-partition satisfying all the properties that we came
across in this outline.

3.2 Tailored NP-hardness for Dominating Set

We present a new hardness reduction for DOMINATING SET. The reduction is designed
so as to produce carefully tamed instances, even when compared to existing NP-hardness
reductions of DOMINATING SET (including those on planar instances of bounded degree),
and this will be crucial for the subsequent OR-cross-composition, as hinted in the previous
section.
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The next theorem involves what we will call snaking grids. See Figure 3 for an illustration
of the 5 x 10 snaking grid, which has (3-(5—1)+1)(3- (10 — 1) + 1) vertices. One may
observe that the snaking grids are subdivisions of a wall with some extra isolated vertices.
We will prefer to think of the snaking grid as a spanning subgraph of a (complete) grid,
hence the particular embedding of the figure. The snaking grid is useful as it allows us to
superpose a canonical hamiltonian cycle such that the maximum degree remains 3, and thus
to bound the twin-width of the composed instance.

Figure 3 The 5 x 10 snaking grid.

The following result is obtained through a reduction from the NP-hard problem PLANAR
3-SAT [37].

» Theorem 13. DOMINATING SET remains NP-hard when its input (G, N) comes with a
vertex-partition B = {By, ..., By}, two positive integers s and t, and a bijective mapping 1
from {Bi,...,Bn} to the vertex set of the s X t snaking grid such that:

() G has a partial 4-sequence to the quotient trigraph G /B,

(i) G/B is a spanning subgraph of the s X t snaking grid, with t even, witnessed by n, and
(iii) every dominating set of G intersects each B;, for i € [N].

3.3 The construction

We now describe the cross-composition from the NP-hard DOMINATING SET restricted as in
Theorem 13 to k-DOMINATING SET. We use the polynomial equivalence R to partition all
well-formed instances for the restricted k-DOMINATING SET (those satisfying Theorem 13)
with respect to the given parameter N and dimensions (p, q) of the corresponding snaking
grid. For any two well-formed instances (I;, N;, By, pi, @i, 1:), (Le, No, Be, e, qe, me), we can
check in polynomial time that N; = N, and (p;,q;) = (pe,qe), yielding the polynomial
equivalence relation. All ill-formed instances form a single class.

Consider t well-formed instances of the restricted DOMINATING SET which are taken
from an equivalence class with respect to R, and we may consider these instances as
(I, N, Bi, p,q,mi)iefy- We will construct a k-DOMINATING SET instance (H, N), with the same
parameter, admitting a solution if and only if at least one input instance (I;, N, B;, p, q,7;)
admits a solution for the restricted k-DOMINATING SET. Before composing the input graphs,
we introduce a dummy instance in the form of graph I;;; serving to ensure that any valid
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(H, N) further admits a solution picking vertices in each column. I;;; is an independent
set of size 2N on which we partition V(I;11) through B;;1 into N classes of exactly two
vertices. Note that since I;41/B;41 is an independent set, it is a spanning subgraph of the
p X q snaking grid as witnessed by any bijective 7,41 onto the latter.

We first show how to order the partition classes of each instance in the same way
with respect to their mapping onto the snaking grid. This ordering will follow a fictitious
hamiltonian cycle (y1, ..., yn) on the p x ¢ snaking grid, in the way depicted as the darker red
cycles in Figure 4. Referring to the partition of instance i € [t + 1] as B; = {B; 1, ..., Bin},
we can assume up to the reordering above that n;(B; ;) = y;.

Now, considering all instances over H, a representation of the construction that follows

is given in Figure 2. It will be useful to consider the instances in a grid such that B; ; is
the cell in the i-th row and j-th column, and we will use the term partition class or cell
interchangeably. We can then see instance I; as row 4, and define regular instance columns,
omitting the dummy instance, as Cj = ;¢ Bi,; for j € [N].
Construction. We start building our composed graph H as the union of all instances
(Ii)ie(+1), that is, V(H) = U,cpqq V(L) and E(1;) € E(H) for i € [t + 1]. Then, our
cross-composition proceeds by adding a cycle of strict half-graphs over columns (C});ec[n41]:
fori € [t +1],j € [N], B;; forms a biclique with (J;_,<;,1 Be,j+1 (accounting for indices j
modulo N). Notice then that the only edges added above lie between columns C;, C;j, with
|7/ — jl =1, so any edge between two columns differing by at least two indices is an edge of
1;. Each instance class B4 ; is then adjacent exactly to C;_;. Having ordered the classes of
each instance in the same way with respect to their mapping onto the snaking grid, column
C; consists of homologous vertices, all in the same position on their respective grids, see
Figure 4. Then, the cycle of half-graphs follows the darker red fictitious hamiltonian cycles
mapping to (y1, ..., yn). The following lemma allows to conclude the proof of Theorem 1.

» Lemma 14. The composed instance has twin-width at most 4, and is positive if and only
if one of the input instance is positive.

Figure 4 The different layers (instances) linked by the cycle of half-graphs. Only four half-graphs
are drawn for the sake of legibility.
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How to get twin-width 4, sketch. Let us sketch how to bound the twin-width of the
composed graph H. One first contract each B;; and obtain a trigraph as in Figure 4.
It can be shown that the composed graph H admits a partial 4-contraction sequence to
H/ (Uie[tJrl] Bi). Now, for the purpose of bounding the twin-width of the composed graph,
it is useful to note that Observation 7 allows us to add red edges. At this point, the only
vertices of large degree stem from the strict half-graphs. We keep those edges black, and we
now turn each instance into a red augmented (i.e. additional edges) snaking grid as follows.
Since each instance is a spanning subgraph of the p x ¢ snaking grid, we can first assume
that it is a (fully) red snaking grid. Then, the red augmented snaking grid is built by further
adding red cycle (B; 1, ..., B; n). By our choice of ordering in the composition, this cycle is
the same on every instance with respect to their mapping on the p x ¢ snaking grid.

We can now describe the contraction of ¢ + 1 red augmented snaking grids (I;);e[i41],
abusing notation for the now quotiented instances, with the black edges of our composition.
We will exhibit a partial 4-contraction sequence eventually contracting every column, now
consisting of ¢ + 1 homologous vertices, that is, all vertices at the same position on their
respective snaking grid into a single one. The proof will proceed by induction on the number
of augmented snaking grids, our hypothesis at step ¢ being that there exists a partial 4-
contraction sequence from ¢ augmented snaking grids to a single one, accounting for the black
edges added in the composition. This being true for ¢ = 1, assume the result holds for some
t and let us consider case t + 1. We will deal with the two bottommost augmented snaking
grids Iy, I5 in the half-graphs, contracting pairs of homologous vertices, corresponding to the
quotiented (B ;, Ba ;) thanks to the ordering chosen in the composition.

We argue that the contraction of the first two red snaking grids can be done while
bounding the red degree by four. Since the only contracted pairs were homologous, this
results in a red augmented snaking grid with no red edges towards grids ¢+ > 2. The remaining
edges of the strict half-graph cycle still form one of height ¢, which is exactly the induction
case for t and achieves to prove the induction. Therefore, there is a partial 4-contraction
sequence from our composed graph into a red augmented snaking grid. Then, as the latter is
a subgraph of the red complete grid, Lemma 9 yields twin-width at most 4.

4 Polynomial kernels

Let us prove Lemma 3 which, we repeat, is equivalent to saying that the neighborhood
hypergraphs of graphs of bounded twin-width have VC density 1. This feature is shared with
classes of bounded expansion. Lemma 3 is of independent interest as it opens the door to a
common algorithmic treatment for classes of bounded twin-width and of bounded expansion.

We need to introduce some vocabulary on 0, 1-matrices. A row (resp. column) division is
a row (resp. column) partition where every part is a consecutive set of rows (resp. columns).
A cell or zone of a matrix M with row and columns divisions (R, C) is a submatrix M[R;, C;]
with R; € R and C; € C. A t-division is a division (R,C) with |R| = |C| =t. A matrix is
mized if it has at least two distinct rows and at least two distinct columns. A corner is a
2 X 2 contiguous submatrix which is mixed.

» Lemma 3. For every graph G of twin-width t and X C V(G), the number of distinct
neighborhoods in X, [{N(v)NX : v e V(G)}|, is at most 24¢2+2| X | for some constant c;
depending only on t.

Proof sketch. We assume for the sake of contradiction that {N(v)NX : v € V(G)}| >
24c2t+2| X|. For every vertex ordering of G, its adjacency matrix M along this order contains an
| X| x 2%¢2¢+2 submatrix without two equal columns; namely the submatrix of the adjacencies
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between X and 2%°2t+2 vertices with a pairwise distinct neighborhood in X. It can be shown
that M has a 2t + 2-mixed minor in the following way. Let s := |X| and create a column
division C1,...,C, into s column parts, each consisting of 24°**+2 consecutive columns. Note
that the submatrix of M consisting of the part C; has rank at least 4co;42 in the binary
field F5, for all i € [s]. Therefore the rows of M[R, C,] allow a row division into at least
2co149 parts so that each cell has rank at least 2, thus is mixed, and, by an observation
in [6], contains a corner. Let us consider R! the row division grouping each pair of rows
with indices 2i — 1, 2i, and R?, grouping each pair of rows 2i,2i + 1, for i € [[s/2]]. Observe
that one of the two divisions (R}, {C;}), (R?,{C;}) of M[R, C;] contains at least cos12 zones
with a corner, hence mixed.

Without loss of generality, we may assume that at least [s/2] column parts among
C1,...,C, have at least co¢ 12 mixed zones when divided by, say, R*. Consider the column
division C' = {C1, ..., C. } with s’ > [s/2], coarsening of {C1,...,Cs} such that each part
CJ’- contains exactly one column part C; with the property of the previous sentence. Now
the number of mixed zones in the division (R!,C’) is at least cos1 2 - 8, and with the correct
choice of the constant cotyo, the celebrated Marcus-Tardos theorem [38] concludes that the
division can be further coarsened into 2t + 2-division, where each cell contains a corner. By
Grid Minor Theorem of [6], this in turn implies that G has twin-width more than ¢. <

Using the previous lemma, we present here a kernelization algorithm for CONNECTED
k-VERTEX COVER on bounded twin-width graphs which leads to an instance on O(k!:%)
vertices. Let X be a vertex cover of G, and let X (resp. X*) be the subsets of X containing
all vertices of X with at least k + 1, respectively at most k, neighbors in V(G) \ X. Let
Y1,...,Y, be the partition of V(G) \ X into maximal modules. For each i € [¢], let X be
the neighbors of Y; in X*®. We use one reduction rule, for which the proof of safeness can be
found in the full version.

» Reduction Rule 1. If there is 7 € [¢] with X; # () and |Y;| > | X;| + 2, delete a vertex of Y;.

» Proposition 15. CONNECTED k-VERTEX COVER admits a kernel on O(k'-3) vertices
when the input graphs have twin-width at most t.

Proof. Let (G, k) be the input instance of CONNECTED k-VERTEX COVER. We can safely

remove any isolated vertex, and assume that G is connected (otherwise it is a NO-instance).

With a 2-approximation algorithm for VERTEX COVER, one can find a vertex cover X of G
and assume that | X| < 2k. Indeed if this is not the case, we can correctly output a trivial
NO-instance because G does not admit a connected vertex cover of size at most k.

Note that Reduction Rule 1 does not disconnect the given graph as we remove a vertex only
when it has a twin. Let (G’, k) be an instance obtained by exhaustively applying Reduction
Rule 1 with the vertex cover X at hand. We classify X into X® and X* as before, and
Yi,...,Y, denote the partition of ¥ := V(G’) \ X into maximal modules. For each i € [g],
X; is the neighbors of Y; in X*. By Lemma 3, we have ¢ < f(¢) - 2k. Because the edge set
between X*® and Y is decomposed into the edge sets of complete bipartite graphs on (Y, X;)
over i € [q], the number of edges between X® and Y is at least

q q q 2
SOV > Yo =17 (Zumm) >

i=1 =1 i=1

(Y] - )%

SN

Suppose that Y| —¢ > 2- f(¢)°5 - k!5, Now,

1 4-f(t)- k>
6'(|Y|*Q)2>m—2k27
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and hence there are more than 2k? edges between X* and Y. With |X*| < 2k, this implies
that there exists a vertex in X°® which has more than k neighbors in Y, contradicting the
definition of X*. To conclude, the number of vertices of G’ is at most

IX|+ Y] <2k +2f )k 4 ¢ < 2k + 2f (kY + 2f (t)k = Oy (k') <

Note that the proof of Proposition 15 only uses the fact that the input graphs have VC

density at most 1, so we in fact established Theorem 4.
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