
Close Relatives (Of Feedback Vertex Set),
Revisited
Hugo Jacob #

ENS Paris-Saclay, France

Thomas Bellitto #

Sorbonne Université, CNRS, LIP6 UMR 7606, Paris, France

Oscar Defrain #

Aix-Marseille Université, CNRS, LIS UMR 7020, Marseille, France

Marcin Pilipczuk #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Abstract
At IPEC 2020, Bergougnoux, Bonnet, Brettell, and Kwon (Close Relatives of Feedback Vertex Set
Without Single-Exponential Algorithms Parameterized by Treewidth, IPEC 2020, LIPIcs vol. 180,
pp. 3:1–3:17) showed that a number of problems related to the classic Feedback Vertex Set
(FVS) problem do not admit a 2o(k log k) · nO(1)-time algorithm on graphs of treewidth at most k,
assuming the Exponential Time Hypothesis. This contrasts with the 3k · kO(1) · n-time algorithm for
FVS using the Cut&Count technique.

During their live talk at IPEC 2020, Bergougnoux et al. posed a number of open questions,
which we answer in this work.

Subset Even Cycle Transversal, Subset Odd Cycle Transversal, Subset Feedback
Vertex Set can be solved in time 2O(k log k) · n in graphs of treewidth at most k. This matches a
lower bound for Even Cycle Transversal of Bergougnoux et al. and improves the polynomial
factor in some of their upper bounds.

Subset Feedback Vertex Set and Node Multiway Cut can be solved in time 2O(k log k) · n,
if the input graph is given as a cliquewidth expression of size n and width k.

Odd Cycle Transversal can be solved in time 4k · kO(1) · n if the input graph is given as a
cliquewidth expression of size n and width k. Furthermore, the existence of a constant ε > 0
and an algorithm performing this task in time (4 − ε)k · nO(1) would contradict the Strong
Exponential Time Hypothesis.

A common theme of the first two algorithmic results is to represent connectivity properties of the
current graph in a state of a dynamic programming algorithm as an auxiliary forest with O(k) nodes.
This results in a 2O(k log k) bound on the number of states for one node of the tree decomposition
or cliquewidth expression and allows to compare two states in kO(1) time, resulting in linear time
dependency on the size of the graph or the input cliquewidth expression.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases feedback vertex set, treewidth, cliquewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.21

Related Version Full Version: https://arxiv.org/abs/2106.16015

Funding This research is part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant
Agreement 714704. This research was conducted while Hugo Jacob was doing a research internship
at the University of Warsaw.

© Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.jacob@ens-paris-saclay.fr
mailto:thomas.bellitto@lip6.fr
mailto:oscar.defrain@lis-lab.fr
mailto:malcin@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.IPEC.2021.21
https://arxiv.org/abs/2106.16015
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Close Relatives (Of Feedback Vertex Set), Revisited

1 Introduction

Treewidth, introduced by Robertson and Seymour in their seminal Graph Minors series [28],
but also independently introduced under different names by other authors, is probably the
most successful graph width notion. (For the formal definition of treewidth and other width
notions mentioned in this introduction, we refer to Section 2.) From the algorithmic point of
view, its applicability is described by Courcelle’s theorem [10] that asserts that every problem
expressible in monadic second order logic with quantification over vertex sets and edge sets,
can be solved in linear time (in the size of the graph) on graphs of bounded treewidth.

Due to the abundance of algorithms for graphs of bounded treewidth, their use in practice,
and since Courcelle’s theorem provides a very weak bound on the dependency of the running
time of the algorithm on the treewidth of the input graph, a lot of research in the last decade
has been devoted to understanding optimal running time bounds for algorithms on graphs of
bounded treewidth. One of the first methodological approaches was provided by two works
of Lokshtanov, Marx, and Saurabh [22, 23, 24, 25]. Their contribution can be summarized as
follows.

For a number of classic problems, the known (and very natural) dynamic programming
algorithm, given an n-vertex graph G and a tree decomposition of width k, runs in time
ck · nO(1) for a constant c > 1. [22,24] shows that in most cases the constant c is optimal,
assuming the Strong Exponential Time Hypothesis.1
[23,25] introduces a framework for proving lower bounds (assuming the Exponential Time
Hypothesis) against 2o(k log k) · nO(1)-time algorithms with the same input as above.

Both aforementioned works seemed to point to a general conclusion that the natural and
naive dynamic programming algorithms on graphs of bounded treewidth are probably optimal
in essentially all interesting cases. This intuition has been refuted by Cygan et al. [16] who
presented the Cut&Count technique which allowed 2O(k) · nO(1)-time algorithms on graphs
of treewidth k for many connectivity problems where the natural and naive algorithm runs
in time 2O(k log k) · nO(1). One of the prominent examples of such problems is Feedback
Vertex Set (FVS) where, given a graph G and an integer p, one asks for a set of at most
p vertices that hits all cycles of G.

Since then, the intricate landscape of optimal algorithms parameterized by the treewidth
has been explored by many authors, see e.g. [1, 2, 3, 4, 7, 8, 14,15,27,29]. Last year at IPEC
2020, Bergougnoux, Bonnet, Brettell, and Kwon [5] presented an in-depth study of problems
related to FVS, showing that for most of them 2O(k log k) is the optimal (assuming ETH)
dependency on treewidth in the running time bound. During their live talk at IPEC 2020,
they asked a number of open questions. In this work, we continue this line of research and
answer all of them.

Hitting cycles in graphs of bounded treewidth

We first focus on the problems Odd Cycle Transversal (OCT) and Even Cycle
Transversal (ECT) where, given a graph G and an integer p, the goal is to pick a set of
at most p vertices of G that hits all odd cycles (resp. even cycles) of G. These problems are
thus closely related to the aforementioned FVS problem that asks to hit all cycles. Using
the fact that graphs without odd cycles are exactly bipartite graphs, it is relatively easy to
obtain a 3k · kO(1) ·n-time algorithm for OCT for graphs equipped with a tree decomposition
of width k [17], and the base 3 of the exponent is optimal assuming SETH [22,24].

1 For a discussion on the complexity assumptions used, namely the Exponential Time Hypothesis (ETH)
and the Strong Exponential Time Hypothesis (SETH), we refer to Chapter 14 of [13].

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:3

In contrast to FVS and OCT, Bergougnoux et al. [5] showed that, assuming ETH, ECT
admits no 2o(k log k) · nO(1)-time algorithm and asked for a matching upper bound. Our first
result is a positive answer to this question, even in a more general setting of Subset Even
Cycle Transversal (SECT). In Subset Feedback Vertex Set (SFVS), Subset Odd
Cycle Transversal (SOCT), and Subset Even Cycle Transversal, given a graph G,
a set S ⊆ V (G), and an integer p, the goal is to find a set of at most p vertices that hits
every cycle (resp. odd cycle, even cycle) that passes through a vertex of S.

▶ Theorem 1. Subset Feedback Vertex Set, Subset Odd Cycle Transversal and
Subset Even Cycle Transversal, even in the weighted setting, can be solved in time
2O(k log k) · n on n-vertex graphs of treewidth k.

Here, and in later statements, by weighted setting we mean the following: every vertex has
its positive integer weight, and the input integer p becomes an upper bound on the total
weight of the solution.

Misra, Raman, Ramanujan, and Saurabh [26] showed that a graph G does not contain
an even cycle if and only if every block (2-connected component) of G is an edge or an odd
cycle. The key ingredient of the proof of Theorem 1 for SECT is a characterization (in the
same spirit, but more involved) of graphs G with sets S ⊆ V (G) that do not contain an even
cycle passing through a vertex of S.

This improves the polynomial factor of the running time bound of [5] for SOCT and
SFVS from cubic to linear.

Clique-width parameterization

We then switch our attention to clique-width. Clique-width is a width measure aiming
at capturing simple yet (contrary to treewidth) dense graphs. It originates from works of
Courcelle, Engelfriet, and Rozenberg [11] and of Wanke [30] from early 90s. Informally
speaking, a graph G is of clique-width at most k if one can provide an expression (called a
k-expression) that constructs G using only k labels which essentially are names for vertex sets.
Clique-width plays the role of treewidth for dense graphs in the following sense: any problem
expressible in monadic second order logic with quantification over vertex sets (but not edge
sets) can be solved in time f(k) · n, given a k-expression of size n constructing the input
graph, where f is some computable function [12]. Similarly as for treewidth, it is natural
to investigate optimal functions f in such running time bounds. Here, the most relevant
works are due to Bui-Xuan, Suchý, Telle, and Vatshelle [9] who showed an algorithm with
f(k) = 2O(k log k) for FVS, and Bergougnoux and Kanté [6] who later showed an algorithm
with f(k) = 2O(k) by adapting the algorithm of Bodlaender et al. [7] for graphs of bounded
treewidth to the context of bounded clique-width.

One should also mention a long line of work [18,19,20] searching for optimal running time
bounds on graphs of bounded clique-width for problems not captured by the aforementioned
meta-theorem and that provably (unless FPT = W[1]) do not have algorithms with the
running time bound f(k) · nO(1), given a k-expression building the input graph.

Following on the open questions provided by Bergougnoux et al., we focus on SFVS and
Node Multiway Cut (NMwC). In the second problem, given a graph G, a set T ⊆ V (G),
and an integer p, the goal is to find a set of at most p vertices that does not contain any
vertex of T , but hits all paths with both endpoints in T . We show the following.

▶ Theorem 2. Subset Feedback Vertex Set and Node Multiway Cut, even in
the weighted setting, can be solved in time 2O(k log k) · n if the input graph is given as a
k-expression of size n.

IPEC 2021

21:4 Close Relatives (Of Feedback Vertex Set), Revisited

Note that the running time bound of Theorem 2 matches the lower bound of Bergougnoux
et al. [5] for pathwidth parameterization2 of SFVS and NMwC, and it is straightforward to
turn a path decomposition of width ℓ into a k-expression for k = ℓ +O(1).

Observe also that, if vertex weights are allowed, NMwC reduces to SFVS. Namely, given
a NMwC instance (G, T, p), set the weights of all vertices of T to +∞, create a graph G′

by adding to G a new vertex s of weight +∞ adjacent to all vertices of T and set S := {s};
the SFVS instance (G′, S, p) is easily seen to be equivalent to the input NMwC instance
(G, T, P). Since it is straightforward to turn a k-expression of G into a (2k)-expression of G′,
in Theorem 2 it suffices to focus only on the SFVS problem.

A common theme in the dynamic programming algorithm of Theorem 1 and of Theorem 2
is the representation of the connectivity in the currently analyzed graph as an auxiliary
forest of size O(k) with some annotations. This allows a neat description of the essential
connectivity features, avoiding involved case analysis. The O(k) bound serves two purposes.
First, it implies a bound of 2O(k log k) on the number of states of the dynamic programming
algorithm at one node of the tree decomposition or k-expression. Second, it allows to perform
computations on states in kO(1) time, giving the final linear dependency on the size of the
graph or the input k-expression in the running time bound.

Hitting odd cycles in graphs of bounded clique-width

Finally, we restrict our attention to Odd Cycle Transversal. Recall that in graphs of
treewidth k, OCT admits an algorithm with running time bound 3k · kO(1) · n [17] and the
base 3 is optimal assuming SETH [22,24]. We show that for clique-width, the optimal base
is 4.

▶ Theorem 3. Odd Cycle Transversal, even in the weighted setting, can be solved in
time 4k · kO(1) · n if the input graph is given as a k-expression of size n. Furthermore, the
existence of a constant ε > 0 and an algorithm performing the same task in time (4−ε)k ·nO(1)

contradicts the Strong Exponential Time Hypothesis.

The key insight in the OCT algorithm of [17] is to reformulate the problem into finding
explicitly a partition V (G) = X ⊎A ⊎B that minimizes |X| while keeping G[A] and G[B]
both edgeless. Then, in a dynamic programming algorithm on a tree decomposition, one
remembers the assignment of the vertices of the current bag into X, A, and B; this yields
the 3k factor in the time complexity. For clique-width, a similar approach yields 4k states:
every label may be allowed to contain only vertices of X, allowed to contain vertices of X or
A but not B, allowed to contain vertices of X or B but not A, or allowed to contain vertices
of any of the three sets. To obtain the upper bound of Theorem 3, one needs to add on top
of the above an appropriate convolution-like treatment of the disjoint union nodes of the
k-expression. The lower bound of Theorem 3 combines a way to encode evaluation of two
variables of a CNF-SAT formula into one of the four aforementioned states of a single label
with a few gadgets for checking in the OCT regime if a clause is satisfied, borrowed from
the corresponding reduction for pathwidth from [22,24].

This extended abstract contains only an overview of the proofs of Theorems 1 and 2.

2 We do not formally define pathwidth in this work, as it is not used except for this paragraph.

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:5

2 Preliminaries

For most standard definitions and notations used in this paper, we refer to the preliminaries
section in the full version of the paper. We recall here only more nonstandard definitions.

A rooted tree is a tree T together with a special vertex r ∈ V (T), called the root. It
induces a natural ancestor-descendent relation ≤ on its vertex set, where a vertex s ∈ V (T)
is said to be a descendent of a vertex t ∈ V (T), denoted s ≤ t, if t is on the (unique) path
from s to r in T .

To capture the parity of lengths of paths in a robust manner, we use graphs with edges
labeled with elements of F2. Let G be a graph where every edge e ∈ E(G) is assigned an
element λ(e) ∈ F2. With a walk W in G we can associate then the sum of the elements
assigned to the edges on W (with multiplicities, i.e., if an edge e appears c times in W , then
we add c · λ(e) to the sum). An important observation is that if in G in every closed walk
the edge labels sum up to 0, then for every u, v ∈ V (G), in every walk from u to v the edge
labels sum up to the same value, depending only on u and v. Furthermore, one can in linear
time (a) check if every closed walk in G sums up to 0 and, if this is the case, (b) compute
for every u a value xu ∈ F2, called henceforth the potential, such that for every u, v ∈ V (G)
and every walk W from u to v in G, the sum of the labels of W equals xv − xu. Indeed, it
suffices to take any rooted spanning forest F of G, define xu to be the sum of the labels on
the path from u to the root of the corresponding tree in F , and check for every uv ∈ E(G) if
λ(uv) = xv − xu.

▶ Definition 4 (Nice tree decomposition). A nice tree decomposition of a graph G is a rooted
tree decomposition (T, {Xt}t∈V (T)) such that:

the root and leaves of T have empty bags; and
other nodes are of one of the following types:

Introduce vertex node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v}
with v /∈ Xt′ . We say that v is introduced at t;
Forget vertex node: a node t with only one child t′ such that Xt = Xt′ \ {v} with
v ∈ Xt′ . We say that v is forgotten at t; and
Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

For each node t of the decomposition, we define a partial graph Gt = G
[⋃

s≤t Xs

]
−E(G[Xt]).

Note that edges of partial graphs appear at forget vertex nodes and that they correspond to
adding edges between the forgotten vertex and its neighbours.

From a tree decomposition T = (T, {Xt}t∈V (T)) of G of width k, a nice tree decomposition
of width k with O(k|V (G)|) nodes can be computed in time O(k2 ·max(|V (T)|, |V (G)|)), see
[21].

A k-labeled graph is a graph G together with a labeling function Γ : V (G) → [k]. For
k-labeled graphs H, G, and integers i, j ∈ [k], we consider the following operations:

Vertex creation: i(v) is the k-labeled graph consisting of a single vertex v with label i;
Disjoint union: H ⊕ G is the k-labeled graph consisting of the disjoint union of H and
G;
Join: ηi×j(G) is the k-labeled graph obtained by adding an edge between any pair of
vertices one being of label i, the other of label j, if the edge does not exist; and
Renaming label: ρi→j(G) is the k-labeled graph obtained by changing the label of
every vertex labeled i to label j: ∀v ∈ Γ−1({i}), Γ(v) := j

The clique-width of a graph G, denoted cw(G), is the least integer k such that a k-labeled
graph isomorphic to G can be constructed using these operations. We call k-expression of a
k-labeled graph G a sequence of operations that leads to the construction of G. Note that
such a sequence defines a tree, called tree associated to the k-expression in the following.

IPEC 2021

21:6 Close Relatives (Of Feedback Vertex Set), Revisited

Consider a k-expression of a k-labeled graph G, and its associated tree T . For a node
t ∈ V (T), we denote by Tt the subtree of T rooted at t, and associate it with the labeled
graph Gt it describes. For an integer i ∈ [k], we denote by Vi(G) the set of vertices of label i

in G. By an abuse of notations in the following, by “label i” for a labeled graph G we may
refer to both the integer i, or the set Vi(G).

We define partially k-labeled graphs as labeled graphs with a labeling function Γ(G) :
V (G)→ [k] ∪ {⊥} and call unlabeled the vertices of Γ−1({⊥}).

Given a graph G and a set of vertices S ⊆ V (G), we call S-vertex a vertex that is part of
S and we call S-path (resp. S-cycle) a path that contains at least one S-vertex.

When a 2-connected multigraph contains a cycle, we call it nontrivial. Other 2-connected
multigraphs are the degenerate cases of a single vertex and a bridge, i.e., two vertices
connected by a single edge. A nontrivial 2-connected component of a multigraph is a
2-connected component which is a nontrivial 2-connected multigraph, it is not an isolated
vertex or a bridge.

Since our algorithms solve weighted variants of the problems, we will denote by c :
V (G)→ Z ∪ {+∞} the weight function of the instance. We extend this notation to sets of
vertices with c(U) =

∑
v∈U c(v). The unweighted variant corresponds to having c(v) = 1 for

all v ∈ V (G).
In the context of a dynamic programming algorithm, a state is a tuple of parameters

used to index the table in which computations are done. We denote our table by d. We call
transition from a set of states A to a single state B the action of updating the entry indexed
by B based on the values of states in A. Since we consider only minimizing problems, for a
function f , such a transition will consist in applying the operation

d[B] := min{d[B], f(A)}.

We denote this operation by d[B]← f(A) and say that value f(A) is propagated to state B.

3 Hitting even cycles in graphs of bounded treewidth

In this section we highlight the main ideas behind Theorem 1. Rather than simply giving
an algorithm for just SOCT and SECT, we also show how our method gives less involved
algorithms for SFVS and ECT. All these problems can be seen as looking for a minimum
deletion set such that the resulting graph has no odd S-cycle, no even S-cycle, no S-cycle,
and no even cycle. In order to have a common notation, we will call □-cycles the cycles that
have to be hit in the problem and □-cycle-free the graphs that do not contain □-cycles.

To transform a □-cycle-free graph into a forest, we will replace its nontrivial 2-connected
components with tree structures. We use labeled vertices to store efficiently the properties of
these nontrivial 2-connected components.

We begin by giving a characterisation of nontrivial 2-connected □-cycle-free graphs for
each problem. This implies characterisations of □-cycle-free graphs.

▶ Lemma 5. Let G be a nontrivial 2-connected multigraph.
1. G contains no S-cycle if and only if it contains no S-vertex.
2. G contains no even cycle if and only if it is an odd cycle.
3. G contains no odd S-cycle if and only if it has one of the following forms:

G contains no S-vertex and is not bipartite
G contains no S-vertex and is bipartite
G contains at least one S-vertex and is bipartite.

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:7

4. G contains no even S-cycle if and only if it has of one of the following forms:
G contains no S-vertex and is not bipartite
G contains no S-vertex and is bipartite
G contains at least one S-vertex, the connected components of G − S are bipartite,
together with S-vertices they form a cycle: each S-vertex has degree 2 and each
connected component of G−S has degree 2. One S-cycle is odd. We later call bipartite
subcomponents the connected components of G− S. This is illustrated in Figure 1a.

The first point is immediate, the second follows from [26, Lemma 1], and the third was
observed in [5, Lemma 13]. The last point was not known to us and we provide a proof.

Proof. Suppose that G is a nontrivial 2-connected multigraph containing no even S-cycle.
If G contains no S-vertex, it is either bipartite or not, leading to the first possible forms.
If G contains an S-vertex, it must contain an S-cycle C due to being a nontrivial

2-connected multigraph and C is odd because G contains no even S-cycle.

▷ Claim 6. If two vertices are connected by three disjoints paths at least two of which are
S-paths then two of the paths form an even S-cycle.

Proof. The three cycles formed by combining the paths are S-cycles and they cannot all be
odd: if we denote them C1, C2, C3, |C3| = |C1|+ |C2| − 2|C1 ∩ C2|. ◁

Consider a connected component A of G− V (C).
Consider an S-vertex v of A, because G is a nontrivial 2-connected multigraph, there

exist two disjoint paths that connect v to distinct vertices a, b of C, a and b satisfy the
conditions of claim 6 leading to a contradiction. Hence, A cannot contain an S-vertex.

Since G is a nontrivial 2-connected multigraph, there are at least 2 edges between A and
distinct vertices of C. Consider 2 arbitrary distinct such edges, they cut C into two paths
P1 and P2 with extremities u and v. Since A is connected, there is a third u–v path P3
through A. Only one of P1 and P2 may contain an S-vertex, by claim 6 applied to P1, P2, P3.
In particular, u and v cannot be S-vertices, this implies that the only edges incident to
S-vertices in G are edges of cycle C, so S-vertices have degree 2.

Let Ã be the connected component of G− S containing A. Ã contains a maximal S-free
path of C because A is connected to C and cannot be adjacent to S-vertices. Ã contains
only one maximal S-free path of C because otherwise either we get two edges from A to C

that separate C in two S-paths and this was excluded in the previous paragraph, or we have
a chord ab in C that connects two distinct maximal S-free-paths and this is excluded by
Claim 6. In particular, note that this shows that Ã has outdegree 2 in G.

Consider a cycle C ′ of Ã, then there are 2 disjoint paths from it to the S-vertices adjacent
to Ã. If they are distinct we can connect them with a disjoint path via C. This constructions
contains two S-cycles C and C∆C ′ which must both be odd so C ′ can only be even. Hence
Ã contains no odd cycle so it is bipartite.

We can conclude that all connected components of G− S are bipartite and that together
with S-vertices they form a cycle.

Conversely, if G contains no S-vertex it does not contain any even S-cycle. If it is a cycle
of bipartite components and S-vertices with one S-cycle C being odd, then each S-cycle
C ′ goes through all bipartite components and S-vertices. Replacing the path of C by the
path of C ′ in each bipartite component preserves parity because endpoints are unique. We
conclude that all S-cycles are odd in G. ◀

IPEC 2021

21:8 Close Relatives (Of Feedback Vertex Set), Revisited

▶ Definition 7. Given a □-cycle-free graph G, we define its underlying forest F (G) as the
graph obtained from G by modifying independently each nontrivial 2-connected component C

as follows:
SFVS. Remove edges inside C and add an unlabeled vertex adjacent to all vertices of C.
ECT. Remove edges inside C and add a vertex adjacent to all vertices of C and label it “odd

cycle”.
SOCT. Remove edges inside C and add a vertex adjacent to all vertices of C, label it

“bipartite” or “not bipartite” based on the property of C and make it an S-vertex if C

contains an S-vertex.
SECT. In the two first forms we remove edges inside C and add a vertex adjacent to all

vertices of C and label it “bipartite” or “not bipartite” based on the property of C. For
the last form, for each bipartite subcomponent of C, we remove its edges, add a vertex
labeled “internal bipartite” adjacent to its vertices. Then remove edges of C incident to S,
add an S-vertex labeled “odd cycle” adjacent to S-vertices and vertices labeled “internal
bipartite”. This is illustrated in Figure 1b.

(a) An example of graph with no even S-cycle.
The vertices of S are depicted in red. The blue
boxes denote the bipartite subcomponents.

(b) The underlying forest we build from the graph
on Figure 1a. The “internal bipartite” vertices are
depicted in blue and the “odd cycle” vertex is black.

Figure 1 The last form of SECT: “internal bipartite” vertices.

Observe that, because labeled vertices are only introduced by this underlying forest, to
each labeled vertex v, we can associate a nontrivial 2-connected component C: the one that
resulted in the creation of v. Observe also that for a path P between two unlabeled vertices,
if it contains a labeled vertex, then it contains a vertex of its associated component before it
on P and another vertex of its associated component after it on P .

We now introduce reduction rules that allow us to maintain a simplified description of
underlying forests relatively to a given subset of vertices, that we call active. Vertices that
are not active are called inactive. Theses rules and this terminology largely resemble what is
done in [5].

▶ Definition 8. Given a □-cycle-free graph G, its underlying forest F (G) and subset of active
vertices X, a reduced underlying forest Fr is obtained by applying exhaustively the following
rules on F (G):

Delete inactive vertices of degree at most one.
For each maximal path P with internal inactive vertices of degree 2, we replace it with a
path P ′ with same endpoints, such that P ′ contains exactly one occurrence of each label
present in P and a single S-vertex if P contained one, where endpoints are considered to
be contained in P and P ′.

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:9

For SECT we add another rule: if a maximal path with internal inactive vertices of degree 2
contains at least 2 vertices labeled “internal bipartite” but no vertex labeled “odd cycle”, we
keep 2 occurences of the label “internal bipartite”.

The set of reduced underlying forests obtained from F (G) with active vertices X is denoted
F (G, X).

Observe that a reduced forest is not unique, however properties that we will show on
them will not depend on the choice of representative.

Standard arguments show that a reduced forest has bounded size.

▶ Lemma 9. In a problem using K label symbols (including S-membership), F ∈ F (G, X)
has at most (K + 1)(2|X| − 2) + 1 vertices.

The crucial property preserved by a reduced forest is the following.

▶ Lemma 10. For F ∈ F (G, X), for each pair of active vertices u and v, there is a path
between them in G if and only if there is a path between them in F . For each type of nontrivial
2-connected component, a u–v path in G goes through at least one such component if and
only if the u–v path in F contains a vertex with the corresponding label symbol (“internal
bipartite” counts for the bipartite subcomponent but also the S-cycle containing it). There
exists a u–v path in G containing an S-vertex if and only if there exists a u–v path in F

containing an S-vertex or a vertex labeled “internal bipartite”. If there is a u–v path in F ,
every unlabeled vertex that is on the u–v path in F is also on all u–v paths in G.

A property that is not preserved by a reduced forest is the length of paths. Since we
are only interested in parity, we maintain a F2-labeling α of edges. We say that α is a valid
F2-labeling of F ∈ F (G, X) if, there exists β a F2-labeling of the edges of F (G) such that
edges incident to vertices labeled “bipartite” or “internal bipartite” are labeled 0 for one side
of the bipartition and 1 for the other side, edges incident to other labeled vertices are labeled
0, and edges between unlabeled vertices are labeled 1, and for each edge uv of F , its label is
the sum of labels on the edges of the u–v path in F (G). During the application of reduction
rules, each edge is given as its label the sum of labels of the path that was connecting its
endpoints.

▶ Lemma 11. For F ∈ F (G, X), for each pair of active vertices u and v connected in G,
all u–v paths in G have same parity if and only if the path between u and v in F contains
no vertex with label symbol “odd cycle”, “not bipartite” or “internal bipartite”. Furthermore,
when this condition is satisfied, the parity of the paths in G is given by the sum of labels on
the edges of F .

The main technical engine of our algorithms is the following join operation.

▶ Lemma 12. There exists a polynomial-time algorithm that, for every pair of □-cycle-
free graphs G1 and G2 with V (G1) ∩ V (G2) = X, given on input two reduced forests with
valid F2-labelings (F1, α1) and (F2, α2), with F1 ∈ F (G1, X) and F2 ∈ F (G2, X), decides
whether G1 ∪G2 is □-cycle-free and, in case of a positive answer, computes a reduced forest
F ∈ F (G1 ∪G2, X) and, except for the SFVS problem, a valid F2-labeling α.

With Lemma 12 in hand, assembling a dynamic programming algorithm of Theorem 1 is a
tedious but straightforward exercise. The proof of Lemma 12 requires a careful consideration
of all possible 2-connected components the graph F1 ∪F2 may contain and how to treat them
in the considered problems.

IPEC 2021

21:10 Close Relatives (Of Feedback Vertex Set), Revisited

4 Subset Feedback Vertex Set in graphs of bounded cliquewidth

We describe a dynamic programming algorithm to solve Subset Feedback Vertex Set
on clique-width expressions. With a bottom-up computation, it builds small labeled forests
that describe the graphs that can be obtained by vertex deletion.

A state of our dynamic programming will consist of a node of the k-expression, a partially
labeled forest, and a label state assignment P : [k] → Q, with Q = {Q∅, Q1, Q∗

1, Q2, Qw,

Q∗
w, Qf} the set of label states. State Q∅ is assigned to labels that are completely contained

in the current deletion set. States Q1 and Q∗
1 are assigned to labels consisting of a single

non-S-vertex, or a single S-vertex, respectively. States Qw and Q∗
w are called waiting states:

they are assigned to labels for which we have guessed that they will be joined (only once) to a
non-S-vertex from a label in state Q1, or to an S-vertex from a label in state Q∗

1, respectively.
State Q2 is assigned to labels having at least two vertices not in S: it is assigned to labels
for which we have guessed that they will be joined (potentially several times) to either a
vertex from a label in state Q1, or to vertices from a label in state Q2. These guessing tricks
can be seen as a form of what is called “expectation from the outside” in [9]. We point that
guessing these joins implies that labels in states Qw, Q∗

w, Q2 will eventually be connected
– this is detailed below. At last, state Qf is called final state: it will contain vertices that
will not be joined anymore, and hence that may be unlabeled. To summarize, states in Q
express the following constraints on joins:

joins with a label in state Q∅ will be ignored;
no join with a label in state Qf will be performed;
labels in state Qw (resp. Q∗

w) will only be joined with those in state Q1 (resp. Q∗
1); and

labels in state Q2 will never be joined with those in state Q∗
1.

Now, considering an S-cycle-free graph G̃ obtained by vertex deletion, we will say that a
label i is compatible with label state:

Q∅ if no vertex of G̃ is labeled i;
Q1 if exactly one vertex of G̃ is labeled i, and it is not in S;
Q∗

1 if exactly one vertex of G̃ is labeled i, and it is in S;
Q2 if at least two vertices of G̃ are labeled i, they are not in S, and no S-path in G̃ has
both its endpoints labeled i;
Qw if at least two vertices of G̃ are labeled i, at least one S-vertex is labeled i, and no
S-path in G̃ has both its endpoints labeled i;
Q∗

w if at least two vertices of G̃ are labeled i, no path in G̃ has both its endpoints labeled
i; and
Qf if at least two vertices of G̃ are labeled i.

These conditions, together with the constraints on joins that are expressed above, aim to
capture cases for which a join between labels of pairs of label states will not create S-cycles –
this will be explicited in proofs and illustrated in Figure 2. In the following, we say that
a label state assignment P is compatible with G̃ if each label is compatible with its state
in this graph. Note that looking at the properties of vertices in a label in part gives the
label state assignment that it should have: the conflicts are for choosing between Qf , Q∗

w

and, based on the presence or not of an S-vertex, either Qw or Q2. This is expected because
these states contain the information on a guess on what will later be added to the graph.

Let us now introduce an auxiliary partially labeled graph which will conveniently represent
the connectedness implied by guesses we made so far when assigning labels to label states,
while simplifying the manipulation of labels. We point that this auxiliary graph will not be
computed by the algorithm: it shall only be used in the proofs. Given a labeled graph G̃

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:11

A B

(a) Case 1: |A| ≥ 2, |B| ≥ 2,
and |A ∩ S| + |B ∩ S| ≥ 1.

A B

(b) Case 2: |A| ≥ 1, |B| ≥ 2, and there
is an S-path with endpoints in B.

A B

(c) Case 3: |A| ≥ 1, |B| ≥ 1,
and there is an S-path connect-
ing a vertex of A to one of B.

Figure 2 The three cases when a join (depicted in green) creates an S-cycle. The figures illustrates
the smallest number of vertices of S required. Thus, up to symmetry, the vertices depicted in red
have to be in S while the vertices in white may or may not be in S.

and a label state assignment P, we denote by H(G̃,P) the partially labeled graph obtained
from G̃, by conducting the following modifications for each label i:

if i is in state Q2 or Qw, we add a vertex labeled i, connect it to other vertices labeled i,
and unlabel these vertices, making the added vertex the only vertex labeled i;
if i is in state Q∗

w, we add an S-vertex labeled i, connect it to other vertices labeled i,
and unlabel these vertices, making the added vertex the only vertex labeled i; and
if i is in state Qf , we unlabel vertices labeled i.

Note that in the auxiliary graph, we add vertices that are not part of the original graph.
The role of these vertices – for states Q2, Qw, and Q∗

w – is to represent the label i as if
it was connected (which will eventually be the case as we guessed a later join), as well as
manipulating nonempty labels as single vertices: for G̃ compatible with P, each nonempty
label i contains exactly one vertex in H(G̃,P), which we call representative of i in H(G̃,P),
and that we denote by h(i).

Recall that, when P is compatible with G̃, some connectedness conditions are satisfied
by label states. We say that a partially labeled multigraph F̂ expresses the connectedness in
H(G̃,P), for G̃ and P compatible, if:

for each label i, there is at most one vertex labeled i in F̂ ;
to every vertex h(i) in H(G̃,P) corresponds a vertex r(i) labeled i in F̂ : we call it the
representative of label i in F̂ , and r(i) is an S-vertex if and only if h(i) is an S-vertex;
and
for any two vertices h(i), h(j) in H(G̃,P), there exists a h(i)–h(j) path in H(G̃,P) if and
only if there exists a r(i)–r(j) path in F̂ , and there exists a h(i)–h(j) S-path in H(G̃,P)
if and only if there exists a r(i)–r(j) S-path in F̂ .

We are now ready to introduce reduction rules which, when applied on the multigraph F̂

expressing the connectedness in H(G̃,P), will produce the aforementioned partially labeled
forest. The idea behind this forest is that, to check the existence of (S-)paths linking
representatives of labels i and j, unlabeled vertices of degree at most two in such (S-)paths
may be “contracted” as long as we do not remove all (S-)vertices on these paths. In the
following for a partially labeled multigraph F̂ , we denote by Red(F̂) the forest obtained from
F̂ by applying the following reduction rules:

for each nontrivial 2-connected component C, we introduce an unlabeled vertex, call it
central vertex of C, connect it to vertices of C, and remove all other edges inside the
component;

IPEC 2021

21:12 Close Relatives (Of Feedback Vertex Set), Revisited

we iteratively remove unlabeled vertices of degree at most one;
for each maximal S-path with internal unlabeled vertices of degree two, we replace it by
connecting the endpoints to a single new unlabeled S-vertex; and
for each maximal path with internal unlabeled vertices of degree two that is not an
S-path, we replace it by a single edge between its endpoints.

It is easily seen that the produced graph is indeed a forest as the graph of nontrivial
2-connected components of any graph is a tree, and each nontrivial 2-connected component
is replaced by a star. Furthermore, reducing F preserves the fact that it expresses the
connectedness in H(G̃,P): the formal statement is omitted here. As in Lemma 9, we can
bound the size of the reduced forest:

▷ Claim 13. Red(F̂) has O(k) vertices.

A state of the dynamic programming algorithm is a tuple (t, F,P), where t ∈ V (T), F is
a partially labeled forest, and P : [k]→ Q is a label state assignment. We say that (t, F,P) is
admissible if there exists X ⊆ V (G) such that P is compatible with Gt−X, H(Gt−X,P) is
S-cycle-free, and F expresses the connectedness in H(Gt−X,P). Our dynamic programming
algorithm will not consider all possible states, but compute a value d[t, F,P] for some states
(t, F,P). We call reachable a state that is considered by the algorithm. We will show that
reachable states are admissible, that for every t ∈ V (T), for each X ⊆ V (Gt), if Gt −X is
S-cycle-free, then there exists a reachable state (t, F,P) such that d[t, F,P] ≤ |X|, and that
the optimal value for SFVS on the given instance is the minimum of values d[r, F,P] where
r is the root of the k-expression.

First, let us slightly modify our clique-width expression in order to simplify the description
of our computations. We double the set of labels, denoting them by {1, ..., k, 1′, ..., k′},
and replace each disjoint union node t with children t1, t2 by the following subexpression:
ρ1′→1(. . . ρk′→k(Gt1 ⊕ (ρ1→1′(. . . ρk→k′(Gt2))))). This gives the property that in disjoint
union nodes, each label is used by at most one of the children nodes.

We now describe the bottom-up computation of reachable states for each possible type of
node in the clique-width expression.
Leaf node. If t is a leaf node with Gt = i(v), two cases arise. Either v is deleted which is

described by state (t, F∅,P∅) initialized with value c(v), where F∅ is the empty graph,
and P∅ is the function that maps every i ∈ [k] to Q∅. Otherwise we keep v, which is
described by state (t, F,P) where F consists of the isolated vertex v, P(i) = Q∗

1 if v ∈ S,
P(i) = Q1 otherwise, and, for all j ̸= i, P(j) = Q∅.

Join node. Let t be a join node with Gt = ηi×j(Gt′). For each reachable state (t′, F ′,P ′),
we proceed as follows. If the representatives of i and j are connected by an S-path in F ′,
we do nothing. Otherwise, we will construct states (t, F,P) defined in the following cases,
depending on P ′(i) and P ′(j), starting with F := F ′ and P := P ′:

if one of i and j is in state Q∅, we do not modify F nor P;
if i and j are in states Q1 or Q∗

1, we add an edge between the representatives of i and
j in F ;
if i and j are in states Q1 or Q2, we add an edge between the representatives of i and
j in F , and if i or j are in state Q2 they are allowed to change to Qf in P, if they do
we also unlabel their representative: we enumerate all possibilities here;
if i and j are in states Q∗

1 and Q∗
w, we identify their representative in F : the resulting

vertex has its label in state Q∗
1, and the label in state Q∗

w is assigned state Qf in P;
and
if i and j are in states Q1 and Qw, we identify their representative in F : the resulting
vertex has its label in state Q1, and the label in state Qw is assigned state Qf in P.

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:13

For each such cases, we reduce F and propagate the value d[t′, F ′,P ′] to the states
(t, F,P), where P is the modified label state assignment.

Renaming label node. Let t be a renaming label node with Gt = ρi→j(Gt′). For each
reachable state (t′, F ′,P ′), we construct states (t, F,P) starting with P := P and F := F ′

by first setting P(i) = Q∅, and proceeding as follows depending on P ′(i) and P ′(j):
if i and j are in a state among {Qf , Q1, Q∗

1}, we unlabel the representatives of i and j

in F ′, and set P(j) = Qf ;
if one of i and j is in state Q∅, then either i is in state Q∅ and we do nothing, or j

is in state Q∅, we assign it to the other label state, and the vertex of F labeled i is
relabeled j;
if i and j are in state Q1, and the representatives of i and j are not connected by
a path in F ′, in F , we add an S-vertex labeled j, connect it to these vertices, and
unlabel them. Label j is then assigned state Q∗

w in P;
if one of i and j is in state Q∗

1, the other is in state Q1 or Q∗
1, and the representatives

of i and j are not connected by a path in F ′, we consider two possibilities depending
on whether they will be joined to a vertex of S, or to a vertex of V (G) \ S. First, in
F , we add a new vertex labeled j, connect it to the representatives of i and j, and
unlabel the representatives of i and j. Then, if the new vertex is chosen to be in S, j

is assigned state Q∗
w in P. Otherwise, j is assigned state Qw in P;

if i and j are in states Qα and Qβ , for α, β ∈ {1, 2, w}, and the representatives of i

and j are not connected by an S-path in F ′, in F , we identify the representatives
of i and j: the resulting vertex is of label j, and j is assigned state Qδ in P with
δ := max

1<2<w
{2, α, β};

if one of i and j is in state Q∗
1, the other is in state Qw or Q2, and the representatives

of i and j are not connected by a path in F ′, in F , we add an edge between the
representatives of i and j, and the representative of the label in state Q∗

1 becomes
unlabeled, while the other vertex is given label j. Label j is assigned state Qw in P;
and
if one of i and j is in state Q∗

w, the other is in state Q1 or Q∗
1, and the representatives

of i and j are not connected by a path in F ′, in F , we add an edge between the
representatives of i and j, and the representative of the label in state Q1 or Q∗

1
becomes unlabeled, while the other vertex is given label j. Label j is assigned state
Q∗

w in P.
For each such cases, we reduce F , and we propagate the value d[t′, F ′,P ′] to the state
(t, F,P), where P is the modified label state assignment.

Disjoint union node. If t is a disjoint union node with Gt = Gt1 ⊕ Gt2 , for each pair of
reachable states (t1, F1,P1), (t2, F2,P2), since they use disjoint sets of labels, we can
simply define F = F1 ⊕ F2. The label state assignment P is defined by P(i) = P1(i) for
i ∈ [k] and P(i′) = P2(i′) for i′ ∈ {1′, . . . , k′}. The value d[t1, F1,P1] + d[t2, F2,P2] is
propagated to state (t, F,P).

We conclude the section noting that, with the above described transitions, proving the
correctness of the algorithm by induction is a tedious, but rather straightforward exercise. It
basically consists on considering all the different label states in which labels i and j may lie
when performing join and relabel operations, together with the compatibility of the current
S-cycle-free graph and label states assignments.

IPEC 2021

21:14 Close Relatives (Of Feedback Vertex Set), Revisited

References
1 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth

graphs. IV. an optimal algorithm. CoRR, abs/1907.04442, 2019. arXiv:1907.04442.
2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth

graphs. I. general upper bounds. SIAM J. Discret. Math., 34(3):1623–1648, 2020. doi:
10.1137/19M1287146.

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. single-exponential algorithms. Theor. Comput. Sci., 814:135–152, 2020. doi:
10.1016/j.tcs.2020.01.026.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. lower bounds. J. Comput. Syst. Sci., 109:56–77, 2020. doi:10.1016/j.jcss.2019.
11.002.

5 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close Relatives
of Feedback Vertex Set Without Single-Exponential Algorithms Parameterized by Treewidth.
In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium on Parameterized
and Exact Computation (IPEC 2020), volume 180 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 3:1–3:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.IPEC.2020.3.

6 Benjamin Bergougnoux and Mamadou Moustapha Kanté. Fast exact algorithms for some
connectivity problems parameterized by clique-width. Theor. Comput. Sci., 782:30–53, 2019.
doi:10.1016/j.tcs.2019.02.030.

7 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

8 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in
Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29,
2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer,
2018. doi:10.1007/978-3-030-00256-5_6.

9 Binh-Minh Bui-Xuan, Ondrej Suchý, Jan Arne Telle, and Martin Vatshelle. Feedback vertex
set on graphs of low clique-width. Eur. J. Comb., 34(3):666–679, 2013. doi:10.1016/j.ejc.
2012.07.023.

10 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

11 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph
grammars. J. Comput. Syst. Sci., 46(2):218–270, 1993. doi:10.1016/0022-0000(93)90004-G.

12 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

13 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

14 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

15 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Inf. Comput., 256:62–82, 2017. doi:10.1016/j.
ic.2017.04.009.

16 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on

http://arxiv.org/abs/1907.04442
https://doi.org/10.1137/19M1287146
https://doi.org/10.1137/19M1287146
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.4230/LIPIcs.IPEC.2020.3
https://doi.org/10.1016/j.tcs.2019.02.030
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1007/978-3-030-00256-5_6
https://doi.org/10.1016/j.ejc.2012.07.023
https://doi.org/10.1016/j.ejc.2012.07.023
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1007/s002249910009
https://doi.org/10.1145/3148227
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1016/j.ic.2017.04.009

H. Jacob, T. Bellitto, O. Defrain, and M. Pilipczuk 21:15

Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

17 Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Planar graph bipartization in
linear time. Discret. Appl. Math., 156(7):1175–1180, 2008. doi:10.1016/j.dam.2007.08.013.

18 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

19 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

20 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019. doi:10.1145/3280824.

21 Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

22 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 777–789. SIAM, 2011.

23 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 760–776. SIAM, 2011. doi:10.1137/1.9781611973082.60.

24 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

25 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.

26 Pranabendu Misra, Venkatesh Raman, MS Ramanujan, and Saket Saurabh. Parameterized
algorithms for even cycle transversal. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 172–183. Springer, 2012.

27 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland,
August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

28 Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

29 Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded
treewidth graphs. In Javier Esparza and Daniel Král’, editors, 45th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague,
Czech Republic, volume 170 of LIPIcs, pages 82:1–82:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.82.

30 Egon Wanke. k-nlc graphs and polynomial algorithms. Discret. Appl. Math., 54(2-3):251–266,
1994. doi:10.1016/0166-218X(94)90026-4.

IPEC 2021

https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1016/j.dam.2007.08.013
https://doi.org/10.1137/080742270
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.1145/3280824
https://doi.org/10.1137/1.9781611973082.60
https://doi.org/10.1145/3170442
https://doi.org/10.1137/16M1104834
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.4230/LIPIcs.MFCS.2020.82
https://doi.org/10.1016/0166-218X(94)90026-4

	1 Introduction
	2 Preliminaries
	3 Hitting even cycles in graphs of bounded treewidth
	4 Subset Feedback Vertex Set in graphs of bounded cliquewidth

