
Asynchronous Gathering in a Torus
Sayaka Kamei
Hiroshima University, Japan

Anissa Lamani
Strasbourg University, CNRS, ICUBE, France

Fukuhito Ooshita
Nara Institute of Science and Technology, Japan

Sébastien Tixeuil
Sorbonne University, CNRS, LIP6, France

Koichi Wada
Hosei University, Tokyo, Japan

Abstract
We consider the gathering problem for asynchronous and oblivious robots that cannot communicate
explicitly with each other but are endowed with visibility sensors that allow them to see the positions
of the other robots.

Most investigations on the gathering problem on the discrete universe are done on ring shaped
networks due to the number of symmetric configurations. We extend in this paper the study of the
gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity
detection. That is, robots cannot make the difference between nodes occupied by only one robot
from those occupied by more than one robot unless it is their current node. Consequently, solutions
based on creating a single multiplicity node as a landmark for the gathering cannot be used. We
present in this paper a deterministic algorithm that solves the gathering problem starting from any
rigid configuration on an asymmetric unoriented torus shaped network.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Autonomous distributed systems, Robots gathering, Torus

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.9

Related Version Full Version: https://arxiv.org/abs/2101.05421 [17]

Funding This work was partially funded by the ANR project ESTATE, ref. ANR-16-CE25-0009-03,
the ANR project SAPPORO, ref. 2019-CE25-0005-1, JSPS KAKENHI No. 19K11828, 20H04140,
20K11685, and 21K11748, and by JST SICORP (Grant#JPMJSC1806).

1 Introduction

We consider autonomous robots [21] that are endowed with visibility sensors and motion
actuators, yet are unable to communicate explicitly. They evolve in a discrete environment,
i.e., their space is partitioned into a finite number of locations, conveniently represented by a
graph, where the nodes represent the possible locations that a robot can be, and the edges
denote the possibility for a robot to move from one location to another.

Those robots must collaborate to solve a collective task despite being limited to computing
capabilities, inputs from the environment, etc. In particular, the robots we consider are
anonymous, uniform, yet they can sense their environment and make decisions according to
their own ego-centered view. In addition, they are oblivious, i.e., they do not remember their
past actions. Robots operate in cycles that include three phases: Look, Compute, and Move
(LCM for short). The Look phase takes a snapshot of the other robots’ positions using a
robot’s visibility sensors. During the Compute phase, a robot computes a target destination

© Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2021.9
https://arxiv.org/abs/2101.05421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Asynchronous Gathering in a Torus

based on its previous observation. The Move phase consists in moving toward the computed
destination using motion actuators. Three execution models have been considered in the
literature using LCM cycles, capturing the various degrees of synchrony between robots.
According to current taxonomy [11], they are denoted as FSYNC, SSYNC, and ASYNC, from
the stronger to the weaker. FSYNC stands for fully synchronous. In this model, all robots
execute the LCM cycle synchronously and atomically. In the SSYNC (semi-synchronous)
model, robots are asynchronously activated to perform cycles, yet at each activation, a robot
executes one cycle atomically. With the weaker model, ASYNC (asynchronous), robots
execute LCM in a completely independent manner. Of course, the ASYNC model is the
most realistic.

In the context of robots evolving on graphs, the two benchmarking tasks are explora-
tion [13] and gathering [4]. In this paper, we address the gathering problem, which requires
that robots eventually all meet at a single node, not known beforehand, and terminate upon
completion.

We focus on the case where the network is an anonymous unoriented torus (or simply
torus, for short). The terms anonymous and unoriented mean that no robot has access to any
kind of external information (e.g., node identifiers, oracle, local edge labeling, etc.) allowing to
identify nodes or to determine any (global or local) direction, such as North-South/East-West.
Torus networks were investigated for the purpose of exploration by Devismes et al.[9].

1.1 Related Work
Mobile robot gathering on graphs was first considered for ring-shaped graphs. Klasing
et al. [18], proposed gathering algorithms for rings with global-weak multiplicity detection.
Global-weak multiplicity detection enables a robot to detect whether the number of robots
on each node is one or more than one. However, the exact number of robots on a given node
remains unknown if more than one robot is on the node. Then, Izumi et al. [14] provided a
gathering algorithm for rings with local-weak multiplicity detection under the assumption
that the initial configurations are non-symmetric and non-periodic, and that the number of
robots is less than half the number of nodes. Local-weak multiplicity detection enables a
robot to detect whether the number of robots on its current node is one or more than one.
This condition was slightly relaxed by Kamei et al. [15]. D’Angelo et al. [6] proposed unified
ring gathering algorithms for most of the solvable initial configurations, using local-weak
multiplicity detection. Overall, for rings, relatively few open cases remain [1], as algorithm
synthesis was demonstrated feasible [19].

The case of gathering in tree-shaped networks was investigated by D’Angelo et al. [7] and
by Di Stefano et al.[20]. Hypercubes were the focus of Bose at el. [2]. Complete and complete
bipartite graphs were outlined by Cicerone et al. [5], and regular bipartite by Guilbault et
al. [12]. Finite grids were studied by D’Angelo et al. [7], Das et al. [8], and Castenow et
al. [3], while infinite grids were considered by Di Stefano et al. [20], and by Durjoy et al. [10].
Results on grids and infinite grids do not naturally extend to tori. On the one hand, the
proof arguments for impossibility results on the grid can be extended for the torus, since
their indistinguishability criterium remains valid. So, if a torus admits an edge symmetry
(the robot positions are mirrored over an axial symmetry traversing an edge), is periodic (a
non-trivial translation leaves the robot positions unchanged), or admits a rotation whose
center is not a robot, the gathering is impossible on a torus. On the other hand, both the
finite and the infinite grid allow algorithmic tricks to be implemented. For example, the finite
grid has three classes of nodes: corners (of degree 2), borders (of degree 3), and inner nodes
(of degree 4), and those three classes permit the robots to obtain some sense of direction. By

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:3

contrast, the infinite grid makes a difference between two locations: the inner space (the set
of nodes within the convex hull formed by the robot positions) and the outer space (the rest
of the infinite grid), which also give some sense of direction. Now, every node in a torus has
degree 4, and no notion of inner/outer space can be defined. To our knowledge, torus-shaped
networks were never considered before for the gathering problem. The previous work by
Devismes et al [9] only considers the exploration task.

1.2 Our Contribution
We consider the problem of gathering on torus-shaped networks. In more detail, for initial
configurations that are rigid (i.e. where each robot has a unique view of the configuration),
we propose a distributed algorithm that gathers all robots to a single node, not known
beforehand. We only make use of local-weak multiplicity detection: robots may only know
whether at least one other robot is currently hosted at their hosting node but cannot know
the exact number and are also unable to retrieve multiplicity information from other nodes.
Furthermore, robots have no common notion of North and no common notion of handedness.
Finally, robots operate in the most general and realistic ASYNC execution model.

2 Model

We consider a distributed system that consists of a collection of K ≥ 3 robots evolving on a
non-oriented and anonymous (ℓ, L)-torus (or simply torus for short) of n nodes. Values ℓ
and L are two integers such that L < ℓ and (definition borrowed from Devismes et al. [9]):
1. n = ℓ× L.
2. Let E be a finite set of edges. There exists an ordering v1, . . . , vn of the nodes of the

torus such that ∀i ∈ {0, . . . , n− 1}:
if i+ ℓ < n, then {vi, v(i+ℓ)} ∈ E, else {vi, v(i+ℓ) mod n} ∈ E.
if i+ 1 mod ℓ ̸= 0, then {vi, vi+1} ∈ E, else {vi, vi−ℓ+1} ∈ E.

Given the previous ordering v0, . . . , vn−1, for every j ∈ {0, . . . , L− 1}, the sequence vj×ℓ,
v1+j×ℓ, . . . , vℓ−1+j×ℓ is called an ℓ-ring. Similarly, for every k ∈ {0, . . . , ℓ− 1}, the sequence
vk, vk+ℓ, vk+2×ℓ, . . . , vk+(L−1)×ℓ is called an L-ring.

On the torus operate K ≥ 3 identical robots, i.e., they all execute the same algorithm
using no local parameters, and one cannot distinguish them using their appearance. In
addition, they are oblivious, i.e., they cannot remember the operations performed before.
No direct communication is allowed between robots; however, we assume that each robot
is endowed with visibility sensors that allow him to see the position of the other robots on
the torus. Robots operate in cycles that comprise three phases: Look, Compute and Move.
During the first phase (Look), each robot takes a snapshot to see the positions of the other
robots on the torus. In the second phase (Compute), they decide to either stay idle or move.
In the case they decide to move, a neighboring destination is computed. Finally, in the last
phase (Move), they move to the computed destination (if any).

At each instant, a subset of robots is activated for the execution by an external entity
called scheduler. We assume that the scheduler is fair, i.e., all robots are activated infinitely
many times. The model considered in this paper is the asynchronous model (ASYNC), where
the time between Look, Compute, and Move phases is finite but unbounded. We however
assume that the move phase is instantaneous, so that when a robot performs a look operation,
it sees all robots on nodes and none on edges. Still, even with instant moves, each robot may
move according to an outdated view, i.e., the robot takes a snapshot to see the positions of
the other robots, but when it decides to move, some other robots may have moved already.

OPODIS 2021

9:4 Asynchronous Gathering in a Torus

Axes of symmetry ℓ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡

(A) Symmetric (B) Periodic (C) 𝐶𝐶𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡

Figure 1 Instance of some defined configurations.

Let ℓ0, ℓ1, . . . , ℓL−1 be the sequence of ℓ-rings and let vi,0, vi,1, . . . , vi,ℓ−1 be the sequence
of nodes on ℓi (all operations on the indices are modulo ℓ for the nodes and modulo L for the
ℓ-rings). By #ri,j(t) we denote the number of robots on vi,j at time t. Node vi,j is empty if
#ri,j(t) = 0. Otherwise, vi,j is occupied. In the case where #ri,j(t) = 1, we say that there is
a single robot on vi,j . By contrast, if #ri,j(t) ≥ 2, we say that there is a multiplicity on vi,j .

In this paper, we assume that robots have a local weak multiplicity detection i.e., for
any robot r, located at node u, r can only detect a multiplicity on its current node u (local).
Moreover, r cannot be aware of the exact number of robots part of the multiplicity (weak).

During the process, some robots move and occupy some nodes of the torus, and their
positions form the configuration of the system at that time. Initially, we assume that each
node hosts at most one robot, i.e., the initial configuration contains no multiplicities.

For each robot r, only a degraded vision of occupied locations is available. So, the local
vision di,j(t) of r about node vi,j at time t is 1 if #ri,j(t) > 0 and 0 otherwise.

For any i, j ≥ 0, let δ+
i,j(t) denote the sequence < di,j(t), di,j+1(t), . . . , di,j+ℓ−1(t) >,

and let δ−
i,j(t) denote the sequence < di,j(t), di,j−1(t), . . . , di,j−(ℓ−1)(t) >. Similarly, let

∆+s
i,j (t) be the sequence < δsi,j(t), δsi+1,j(t), . . . , δsi+(L−1),j(t) > and ∆−s

i,j (t) to be the sequence
< δsi,j(t), δsi−1,j(t), . . . , δsi−(L−1),j(t) > with s ∈ {+,−}.

The view of a given robot r located on node vi,j at time t is defined as the pair viewr(t) =
(Vi,j(t),mj) where Vi,j(t) consists of the four sequences ∆++

i,j ,∆
+−
i,j ,∆

−+
i,j ,∆

−−
i,j ordered in

the lexicographical order and mj = 1 if vi,j hosts a multiplicity and mj = 0 otherwise.
By viewr(t)(1), we refer to Vi,j(t) in viewr(t). Given two robots r and r′, we say that

r has a larger view than r′ at time t, denoted viewr(t)(1) > viewr′(t)(1), if viewr(t) is
lexicographically larger than viewr′(t). Similarly, r is said to have the largest view at time t,
if for any robots r′ ̸= r, not located on the same node as r, viewr(t)(1) > viewr′(t)(1) holds.

A configuration is said to be rigid at time t, if for any two robots r and r′, located on
two different nodes of the torus, viewr(t)(1) ̸= viewr′(t)(1) holds.

A configuration is said to be periodic at time t if there exist two integers i and j such
that i ̸= j, i ̸= 0 mod ℓ, j ̸= 0 mod L, and for every robot r(x,w) located on ℓx at node
vx,w, viewr(x,w)(t)(1) = viewr(x+i,w+j)(t)(1) (An example is given in Figure 1).

As defined by D’Angelo et al. [7], a configuration is said to be symmetric at time t, if the
configuration is invariant after a reflection with respect to either a vertical or a horizontal
axis. This axis is called the axis of symmetry (An example is given in Figure 1).

In this paper, we consider asymmetric (ℓ, L)-torus, i.e., ℓ ̸= L. We assume w.l.o.g. that
L < ℓ. In this case, we can differentiate two sides of the torus. We denote by nbℓi

(C) the
number of occupied nodes on ℓ-ring ℓi, in configuration C. An ℓ-ring ℓi is said to be maximal
in C if ∀ j ∈ {0, . . . , L− 1} \ {i}, nbℓj

(C) ≤ nbℓi
(C).

Given a configuration C and two ℓ-rings ℓi and ℓj . We say that ℓj is adjacent to ℓi if
|i − j| = 1 mod L holds. Similarly, we say that ℓj is neighbor of ℓi in configuration C if
nbℓj

(C) > 0 and nbℓk
(C) = 0 for any k ∈ {i+1, i+2, . . . , j−1} or k ∈ {i−1, i−2, . . . , j+1}.

We also define dis(xi, xj) to be a function which returns the shortest distance, in terms of
hops, between xi and xj where xi and xj are two nodes of the torus. We sometimes write
xi = ri where ri is a robot. In this case, xi refers to the node that hosts ri. Finally, we use

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:5

the notion of d.block to refer to a sequence of consecutive nodes in which there are occupied
nodes each d hops (distance) with no other robot in between. The size of a d.block is the
number of its occupied nodes.

Due to the lack of space, some details and proofs are omitted but can be found in [17].

3 Impossibility Results

This section presents impossibility results that motivate our settings.
Given a graph G = (V,E) and a function m : V → N associating the number of robots on

a vertex v of V to v, (G,m) is a configuration whenever
∑
v∈V m(v) is bounded and greater

than zero. Let ϕ be a permutation of G’s vertices that preserves its adjacency relation, so if
(u, v) ∈ E, then (ϕ(u), ϕ(v)) ∈ E′, with ϕ(G) = (V ′, E′). Note that ϕ always exists as the
identity permutation fits this definition. Similarly, given a configuration (G,m), let ψ be
a permutation of G’s vertices that preserves its adjacency relation and such that for every
node v of V , m(v) = m(ψ(v)). Again, ψ always exists as the identity permutation fits this
definition. Given such a permutation ψ, the cycle Cψ of order p that is generated by ψ is
{ψ0, ψ1 = ψ,ψ2 = ψ ◦ ψ, . . . , ψp−1} such that ψp = ψ0, where ϕ0 is the identity. Note that
Cψ has order 1 if and only if ψ is the identity. Given a cycle Cψ, the orbit of a vertex v

of V is Cψ(v) = {γ(v)|γ ∈ Cψ}. Now, given a configuration (G = (V,E),m), ψ is partitive
if Cψ has order p > 1, and for every v ∈ V , |Cψ(v)| = p. That is, ψ is not reduced to the
identity, and all nodes have the same orbit size. We now recall the Theorem of Di Stefano
and Navarra for general topologies:

▶ Theorem 1 ([20] Restated). If a configuration (G,m) admits a partitive permutation ψ,
then (G,m) cannot be gathered.

We specialize the general theorem to our setting:

▶ Corollary 1. If a torus configuration is invariant by a non-empty series of non-null
translations, a reflection through an edge-axis, or a non-empty series of non-null rotations
whose center does not hold a robot; it is not gatherable.

Next, we show that two robots cannot gather on a torus, even in FSYNC.

▶ Theorem 2. Starting from a configuration with two robots a and b on different vertices in
a torus with at least two vertices, gathering cannot occur, even in FSYNC.

Finally, we show by induction that without multiplicity detection, the gathering is impossible.

▶ Theorem 3. Starting from any configuration with K ≥ 2 robots with no multiplicity
detection, gathering in a torus is impossible, even in SSYNC.

4 Algorithm

When robots have only local weak multiplicity detection, multiplicities should be carefully
created as the gathering becomes impossible from a configuration in which there are only two
occupied nodes that both host a multiplicity. In ASYNC model, we need to be extra careful
when it comes to robots with outdated views as they might create unwanted multiplicities
(recall that when a robot moves the configuration might have changed as one or several
robots might have moved once or many times).

OPODIS 2021

9:6 Asynchronous Gathering in a Torus

Our strategy is to create a sense of direction on a torus to identify the gathering node
and keep this node invariant, preventing the creation of unwanted multiplicities (if the
configuration contains only two occupied nodes, one of these two nodes hosts for sure a
single robot). For this purpose, robots proceed in two phases: first, they create the desired
direction allowing them to identify a single node and then gather on the identified node.
More precisely, let Ctarget be the set of configurations such that C ∈ Ctarget if the following
properties are satisfied: C contains three ℓ-rings ℓsecondary, ℓmax and ℓtarget such that:

(1) ℓmax is the unique maximal ℓ-ring in C, (2) ℓsecondary and ℓtarget are adjacent to ℓmax .
(3) nbℓsecondary (C) = 0, (4) ℓtarget satisfies exactly one of the following conditions:

nbℓtarget (C) = 1. We refer to the occupied node on ℓtarget by vtarget .
nbℓtarget (C) = 2 and ℓtarget hosts a 2.block. We refer to the unique empty node in the
2.block by vtarget .
nbℓtarget (C) = 3 and ℓtarget hosts a 1.block of size 3. By vtarget, we refer to the occupied
node in the middle of the 1.block.

From a configuration C ∈ Ctarget, a direction can be identified: from vtarget to ℓmax. The
idea is to make all robots neither on ℓmax nor on ℓtarget move to join vtarget and then make
the remaining robots gather on the node that is on ℓmax which is adjacent to vtarget. To
summarize, the proposed algorithm consists of two phases:
1. Preparation Phase. This phase starts from an arbitrary rigid configuration C0 in which

each node hosts at most one robot. Its aim is to reach a configuration C ∈ Ctarget .
2. Gathering Phase. Starting from a configuration C ∈ Ctarget, the gathering node is

identified, and all robots eventually move to join it i.e., the gathering is achieved.
Let us refer by Cp1 (respectively Cp2) to the set of configurations that appear during the
Preparation (respectively the Gathering) phase. Let C be the current configuration, robots
execute Protocol 1. Observe that Cp1 ∩ Cp2 = ∅ and Ctarget ⊂ Cp2 .

Protocol 1 Main protocol.

if C ∈ Cp2 then
Execute Gathering phase

else
Execute Preparation phase

To ease the description of our strategy, we define predicates on a given configuration C:
Unique(C): There exists a unique i ∈ {0, . . . , L− 1} such that ∀ j ∈ {0, . . . , L− 1} \ {i},
nbℓj

(C) < nbℓi
(C).

Empty(C): (C ∈ Ctarget) ∧ (∀ i ∈ {0, . . . , L− 1}, such that ℓi ̸= ℓtarget and ℓi ≠ ℓmax ,
nbℓi

(C) = 0).
Partial(C): (C ∈ Ctarget) ∧ (∃ i ∈ {0, . . . , L− 1}, such that ℓi ̸= ℓtarget and ℓi ̸= ℓmax ,
nbℓi

(C) ̸= 0).
Given a configuration C, Unique(C) indicates that C contains a unique maximal ℓ-ring.
Empty(C) indicates that C ∈ Ctarget and all the ℓ-rings, except for ℓmax and ℓtarget, are
empty. By contrast, Partial(C) indicates that C ∈ Ctarget and there exists at least one ℓ-ring
besides ℓmax and ℓtarget that is occupied (hosts at least one occupied node).

In our algorithm, in several cases, robots in a single ℓ-ring, say ℓi, need to move and align
themselves with respect to the positions of other robots which are on another ℓ-ring, say
ℓk. To ease the description of the algorithm, we define a procedure referred to by Align(ℓi,
ℓk) which makes the robots to perform such alignment i.e., align robots on ℓi with respect
to robots positions on ℓk. When the procedure is called in a configuration C, the following
properties hold on both ℓi and ℓk:

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:7

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶) is false

is true

𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐶𝐶𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐶𝐶𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑂𝑂𝐸𝐸𝑠𝑠𝑂𝑂−1

𝐶𝐶𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑂𝑂𝐸𝐸𝑠𝑠𝑂𝑂−2

𝐶𝐶𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠−𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑂𝑂𝐸𝐸𝑠𝑠𝑂𝑂𝐶𝐶𝑈𝑈𝑂𝑂𝑂𝑂𝑠𝑠𝑈𝑈𝑠𝑠𝑂𝑂𝑠𝑠𝑂𝑂

𝐶𝐶𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑂𝑂𝐸𝐸𝑠𝑠𝑂𝑂

𝐶𝐶𝐸𝐸1
𝐶𝐶𝐸𝐸𝑡𝑡𝑂𝑂𝑡𝑡𝑠𝑠𝐸𝐸 𝐶𝐶𝐸𝐸𝑂𝑂

𝐶𝐶𝑙𝑙𝑠𝑠

𝐶𝐶𝐸𝐸2

𝐶𝐶𝑠𝑠𝐸𝐸

𝐶𝐶𝑠𝑠𝐸𝐸−1 𝐶𝐶𝑠𝑠𝐸𝐸−2 𝐶𝐶𝑠𝑠𝐸𝐸−3

𝐶𝐶𝑠𝑠𝐸𝐸−4

Gathering

Preparation Phase Gathering Phase

Figure 2 Transitions among all configurations.

𝐴𝑙𝑖𝑔𝑛ሺℓ, ℓሻ

𝑢

𝑢

ℓ

ℓ

ℓ

ℓ

𝐴𝑙𝑖𝑔𝑛ሺℓ, ℓሻ

𝑢

𝑢

ℓ

ℓ

ℓ

ℓ

𝑢

𝑢

ℓ

ℓ

ℓ

ℓ

𝑢

𝑢

ℓ

ℓ

ℓ

ℓ

𝐴𝑙𝑖𝑔𝑛ሺℓ, ℓሻ

𝐴𝑙𝑖𝑔𝑛ሺℓ, ℓሻ

Figure 3 Some examples of Align(ℓi, ℓk).

1. nbℓi
(C) = j with j ∈ {2, . . . , 5}, i.e., there are at least two and at most five robots on ℓi.

2. nbℓi
(C) > nbℓk

(C) holds, and either (1) nbℓk
(C) = 1 or (2) nbℓk

(C) = 2 and ℓk contains
a 2.block or (3) nbℓk

(C) = 3 and ℓk contains a 1.block of size 3.
Let umark be the node on ℓk that is: occupied if nbℓk

(C) = 1, empty in the 2.block if
nbℓk

(C) = 2, occupied in the middle of the 1.block if nbℓk
(C) = 3. Node umark is used as a

land mark to align robots on ℓi (a detailed description can be found in [17]). To give a better
idea on the purpose of procedure Align, some examples are given in Figure 3. The procedure
makes sure that if a multiplicity is created on ℓi then it is adjacent to umark. This allows
the robots to keep track on multiplicities’ positions and also make sure that the occupied
nodes at a border of a 1.block on ℓi host only a single robot.

Figure 2 presents an overview of our strategy showing all the transitions among the
different defined configurations in sections 4.1-4.2.

4.1 Preparation Phase
Let C ∈ Cp1. The purpose of this phase is to reach a configuration C ′ ∈ Ctarget from C so
that a direction is defined and the gathering node is identified. For this aim, robots first need
to decrease the number of maximal ℓ-rings to reach a configuration C ′′ in which Unique(C ′′)
is true. Then, from configuration C ′′, robots need to create both ℓtarget and ℓsecondary to
reach a configuration C ′ ∈ Ctarget . To prevent the creation of unwanted multiplicities due to
robots with outdated views, most of the configurations in this phase are kept rigid.

First, let us address the case in which Unique(C) is false (C contains at least two maximal
ℓ-rings). Robots need to decrease the number of maximal ℓ-rings to reach a configuration C ′

in which Unique(C ′) holds. Two cases are possible depending on whether there is an empty
node on a maximal ℓ-ring: if a maximal ℓ-ring hosts at least one empty node then, the idea
is to fill one of these empty nodes on a single maximal ℓ-rings. By contrast, if all the nodes
of the maximal ℓ-rings are occupied, the idea is to create a single multiplicity on one of the
maximal ℓ-rings to decrease their number gradually. Robots to move are chosen carefully

OPODIS 2021

9:8 Asynchronous Gathering in a Torus

r

Configuration C Configuration C’ Configuration C

r
𝑢𝑢 𝑢𝑢 𝑢𝑢

Figure 4 On the left, r is suppose to move but by moving, it creates a symmetric configuration
C′ shown in the middle. The robot on target-ℓ on the same L-ring as r moves to u.

in both cases, so that the configuration remains rigid. This is important to prevent having
robots with outdated views. In the following, we refer to a maximal ℓ-ring by ℓmax. Robots
behavior in a configuration C in which Unique(C) holds is as follows:
1. If nbℓmax (C) = ℓ (all the nodes of ℓmax are occupied). Let Rmax(C) be the set of robots

on a maximal ℓ-ring. As C is rigid, all robots in Rmax(C) have a unique view. Let ℓm be
the maximal ℓ-ring in C that hosts the robot with the maximal view in Rmax(C). One
robot r is elected on ℓm to move. Its destination is one of its adjacent occupied nodes
on ℓm. Robot r is selected as follows: Let Rm(C) ⊂ Rmax(C) be the set of robots on ℓm
which by moving to one of their adjacent occupied node on ℓm, the configuration reached
remains rigid. Robot r is the robot in Rm(C) which has the biggest view (|Rm(C)| > 0).

2. If nbℓmax (C) < ℓ (There is at least one empty node on ℓmax), the idea is to fill exactly one
of the empty nodes on exactly one of the maximal ℓ-ring. Let R(C) be the set of robots
closest to an empty node on a maximal ℓ-ring in C. Under some conditions, using the
rigidity of C, one robot of R(C), say r, is elected to move (the one with the largest view).
Its destination is its adjacent empty node toward the closest empty node on a maximal
ℓ-ring, say u, taking the shortest path. Among robots in the set R(C), the one to move is
the one that does not create a symmetric configuration. If no such robot exists in R(C),
some extra steps are taken beforehand to ensure that the configuration remains rigid. We
discuss the various cases:

If C contains exactly two occupied ℓ-rings then, C contains only two maximal ℓ-rings.
Robot r (the one to move) is the robot with the maximal view in C. Its destination is
its adjacent empty node on an empty ℓ-ring (Note that this ℓ-ring exists since L > 4).
If C contains more than two occupied ℓ-rings then: let r be the robot in R(C) with
the largest view. By u and target-ℓ we refer to the closest empty node on a maximal
ℓ-ring to r and the ℓ-ring including u. If by moving, r does not create a symmetric
configuration, then r simply moves to its adjacent node toward u taking the shortest
path. By contrast, if r creates a symmetric configuration by moving, then let C ′ be
the configuration reached once r moves. Using configuration C ′ that each robot can
compute without r moving, another robot r′ in C is selected to move. We show later
on that a symmetric configuration can only be reached when r either joins an empty
node on the same L-ring as u for the first time or when it joins u. For the other cases,
the configuration remains rigid. Hence, we only address the following two cases:

a. Robot r joins an empty node on the same L-ring as u for the first time in C ′. In
this case, in C, the robot that is on target-ℓ being on the same L-ring as r moves
to u (refer to Figure 4).

b. Robot r joins u in C ′. If in C ′ there are only two occupied ℓ-rings. The robot with
the largest view which does not create a symmetric configuration is elected to move.
Its destination is its adjacent empty node on an empty ℓ-ring. By contrast, if there
are more than two occupied ℓ-rings in C ′ then robots proceed as follows:

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:9

If the axis of symmetry lies on the unique ℓmax in C ′ then, we are sure that there
are two ℓ-rings which are maximal in C and that are symmetric with respect to
the unique maximal ℓ-ring in C ′. Let r be the robot located on a maximal ℓ-ring
which is not on the axis of symmetry in C ′, that has the smallest view. Robot r
is the one to move; its destination is its adjacent empty node on its ℓ-ring.
If the axis of symmetry is perpendicular to the unique maximal ℓ-ring in C ′ then
let T be the set of occupied ℓ-rings in C without target-ℓ. If there is an ℓ-ring
in T which does not contain two 1.blocks separated by a single empty node on
each side, then using the rigidity of C, a single robot on such an ℓ-ring which is
the closest to the biggest 1.block is elected to move. Its destination is the closest
1.block. If there no such ℓ-ring in T (all ℓ-rings contains two 1.blocks separated
by a unique empty node), then using the rigidity of C, one robot being on an
ℓ-ring of T who has an empty node as a neighbor on its ℓ-ring is elected to move.
Its destination is its adjacent empty node on its current ℓ-ring.

Note that we have only discussed the cases in which the reached configuration is either
rigid or symmetric. This is because when r moves, it create neither a periodic nor an
edge-edge symmetric configuration. This is mainly due to the fact that in C ′, there is
a unique maximal ℓ-ring and C is assumed to be rigid.

We address now the case in which Unique(C) holds i.e., C contains a unique maximal
ℓ-ring, ℓmax. To reach a configuration C ′ ∈ Ctarget, robots need to move to build both
ℓsecondary and ℓtarget i.e., one of the two adjacent ℓ-rings to ℓmax needs to become empty
while the other one needs to host either a single occupied node, a 2.block of size 2 or a
1.block of size 3. Let ℓi and ℓk be the two adjacent ℓ-rings to ℓmax. Assume w.l.o.g. that
nbℓi

(C) ≤ nbℓk
(C). To ease the description of this phase, we distinguish five main cases

describing the possible states of ℓi and ℓk: (i) the case in which both ℓi and ℓk are empty
(C ∈ CEmpty). The idea, in this case, is to elect a single robot to join either ℓi or ℓk. (ii) the
case in which ℓi is empty and ℓk hosts more than one occupied node (C ∈ CSemi−Empty).
The idea is to make the robots on ℓk gather in a single node. Note that in both cases (i) and
(ii), a configuration C ′ ∈ Ctarget is created. (iii) the case in which ℓi hosts a single occupied
node while ℓk hosts at least two robots (C ∈ COriented). The unique occupied node on ℓi is
used as a landmark to make robots on ℓk move and create either a 2.block of size 2 or a
1.block of size 3 (C ∈ COriented−2). Once such a block is created (C ∈ COriented−1), it is easy
to free ℓi as the robots move to their adjacent node on ℓmax (since the configuration reached
C ′ ∈ Ctarget, the multiplicity created on ℓmax can be identified as it is adjacent to vtarget).
(iv) the case in which both ℓi and ℓk host a unique occupied node (C ∈ CSemi−Oriented). The
idea is to add a single robot to either ℓi or ℓk. Finally, (v) the case in which both ℓi and ℓk
host more than one robot (CUndefined). The idea is to make robots elect either ℓi or ℓk and
then make the robots on the elected ring gather on a single node. Both cases (iv) and (v)
aim at reaching a configuration in COriented. More formally:
1. Set CEmpty: C ∈ CEmpty if nbℓi

(C) = nbℓk
(C) = 0.

2. Set CSemi−Empty: C ∈ CSemi−Empty if w.l.o.g. nbℓi
(C) = 0 and nbℓk

(C) > 1.
3. Set COriented: C ∈ COriented if w.l.o.g. nbℓi

(C) = 1 and nbℓk
(C) > 1. Set COriented

includes:
a. COriented−1. In this case either (i) nbℓk

(C) = 3 and ℓk contains a 1.block of size 3
whose middle robot is on the same L-ring as the unique occupied node on ℓi. (ii)
nbℓk

(C) = 2 and ℓk contains a 2.block. Moreover, the unique empty node in the 2.block
is on the same L-ring as the unique robot on ℓi.

OPODIS 2021

9:10 Asynchronous Gathering in a Torus

ℓ𝑚𝑚𝑚𝑚𝑚𝑚

ℓ𝑚𝑚𝑚𝑚𝑚𝑚ℓ𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶 ∈ 𝐶𝐶𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸(a) 𝐶𝐶 ∈ 𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆−𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸(b) 𝐶𝐶 ∈ 𝐶𝐶𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝑆𝑆𝑂𝑂−1(c)

𝐶𝐶 ∈ 𝐶𝐶𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝑆𝑆𝑂𝑂−2(d) 𝐶𝐶 ∈ 𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆−𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝑆𝑆𝑂𝑂(e) 𝐶𝐶 ∈ 𝐶𝐶𝑈𝑈𝑂𝑂𝑂𝑂𝑆𝑆𝑈𝑈𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂(f)

ℓ𝑆𝑆

ℓ𝑘𝑘
ℓ𝑚𝑚𝑚𝑚𝑚𝑚
ℓ𝑆𝑆

ℓ𝑘𝑘

ℓ𝑆𝑆

ℓ𝑘𝑘

ℓ𝑚𝑚𝑚𝑚𝑚𝑚
ℓ𝑆𝑆

ℓ𝑘𝑘
ℓ𝑚𝑚𝑚𝑚𝑚𝑚
ℓ𝑆𝑆

ℓ𝑘𝑘

ℓ𝑆𝑆

ℓ𝑘𝑘

Figure 5 Instance of configurations C when Unique(C) is true.

b. COriented−2. Contains all the configuration in Coriented that are not in COriented−1.
That is, COriented−2 = COriented − COriented−1.

4. Set CSemi−Oriented: C ∈ CSemi−Oriented if w.l.o.g. nbℓi
(C) = 1 and nbℓk

(C) = 1.
5. Set CUndefined: C ∈ CUndefined if nbℓi(C) > 1 and nbℓk

(C) > 1.
Figure 5 presents instances of configurations in which there is a unique maximal ℓ-ring.

The behavior of the robots in each set of configurations is as follows:
1. C ∈ CEmpty. Let ℓni and ℓnk

be the two neighboring ℓ-rings of ℓmax (one neighboring
ℓ-ring from each direction). In the case in which ℓni

= ℓnk
= ℓmax (C contains a single

occupied ℓ-ring) then, using the rigidity of C, one robot from C is selected to move to
its adjacent empty node outside its ℓ-ring (the scheduler chooses the direction to take).
Otherwise, let Rm be the set of robots which are the closest to either ℓi or ℓk. If |Rm| = 1
then, the unique robot in Rm, referred to by r, is the one allowed to move. Assume
w.l.o.g. that r is the closest to ℓi. The destination of r is its adjacent empty node outside
its current ℓ-ring on the shortest empty path toward ℓi. If r is the closest to both ℓi and
ℓk then the scheduler chooses the direction to take (it moves either toward ℓi or ℓk). In
the case where |Rm| > 1 (Rm contains more than one robot) then, by using the rigidity
of C, one robot r is selected. Its behavior is the same as r in the case where |Rm| = 1.

2. C ∈ CSemi−Empty. Assume w.l.o.g. nbℓk
(C) > 1 and nbℓi

(C) = 0. We consider two cases:
a. nbℓk

(C) > 3 or nbℓk
(C) = 2. Recall that C ̸∈ Ctarget. Let ↑ be the direction defined

from ℓmax to ℓk taking the shortest path and let ℓn be the ℓ-ring that is neighbor of
ℓi. Observe that ℓn = ℓk is possible (if only two ℓ-rings are occupied in C). Using the
rigidity of configuration C, one robot from ℓn is elected to move. Its destination is its
adjacent node outside ℓn and towards ℓi with respect to the direction ↑.

b. nbℓk
(C) = 3. Again, recall that C ̸∈ Ctarget . The aim is to make the three robots form

a single 1.block. To this end, if the configuration contains a single d.block of size 3
with d > 1 then the robot in the middle of the d.block moves to its adjacent node
on ℓk (the scheduler chooses the direction to take). By contrast, if the configuration
contains a single d.block of size 2 (d ≥ 1) then the robot not part of the d.block moves
towards its adjacent empty node towards the d.block taking the shortest empty path.

3. C ∈ COriented. Let ri be the single robot on ℓi.
a. C ∈ COriented−1. If nbmax(C) > 4 then the unique robot on ℓi moves to its adjacent

node on ℓmax . Otherwise, let u be the node on ℓmax adjacent to a robot on ℓi.
If nbmax(C) = 3 and the robots form a 1.block of size 3 whose middle robot is
adjacent to u then the unique robot on ℓi moves to its adjacent node on ℓmax .
Otherwise, robots on ℓmax execute Align(ℓmax , ℓi).
If nbmax(C) = 4 and u is empty, then the unique robot on ℓi moves to u. Otherwise
(u is occupied), then let r be the robot on u.

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:11

If r has an adjacent empty node on ℓmax then r moves to one of its adjacent
nodes (the scheduler chooses the node to move to in case of symmetry).
If r does not have an adjacent empty node on ℓmax , then let r′ be the robot on
ℓmax which is adjacent to r and which does not have a neighboring robot on ℓmax
at distance ⌊ℓ/2⌋. Robot r′ moves to its adjacent empty node on ℓmax .

b. C ∈ COriented−2. If nbℓk
(C) = 2 or nbℓk

(C) = 3 then Align(ℓk, ℓi) is executed.
Otherwise, if nbℓk

(C) > 3 then, nbℓk
(C) − 2 robots gather on the node uk located

on ℓk and which is on the same L-ring as the unique occupied node on ℓi. For this
purpose, the robot on ℓk which is the closest to uk with the largest view is the one
allowed to move. Its destination is its adjacent node on ℓk toward uk.

4. C ∈ CSemi−Oriented. Let ℓni
and ℓnk

be the two neighboring ℓ-rings of ℓi and ℓk respect-
ively. First, if w.l.o.g. ℓi = ℓnk

(ℓk = ℓni
) then, C contains only 3 occupied ℓ-rings ℓi,

ℓmax and ℓj . Using the rigidity of C, one robot from either ℓni
or ℓnk

(not both) is
selected to move. Its destination is its adjacent empty node outside its current ℓ-ring in
the opposite direction of ℓmax . Next, if ℓi ̸= ℓnk

(ℓk ̸= ℓni
) then, using the rigidity of C,

a unique robot is selected to move from either ℓni or ℓnk
(not both). Its destination is its

adjacent empty node outside its current ℓ-ring toward ℓi (respectively ℓk) if the robot
was elected from ℓni (respectively ℓnk

). If ℓni = ℓnk
, the scheduler chooses the direction

to take.
5. C ∈ CUndefined. Depending on the number of robots on ℓi and ℓk, we consider two cases::

a. nbℓi
(C) < nbℓk

(C). The idea is to make robots on ℓi gather on ℓi. We define a
configuration, denoted Γ(C), built from C ignoring some ℓ-rings that will be used
to identify a single node on ℓi on which all robots on ℓi will gather. If there are at
least four occupied ℓ-rings in C then Γ(C) is the configuration built from C ignoring
both ℓi and ℓk. By contrast, if there are only three occupied ℓ-rings then Γ(C) is the
configuration built from C ignoring only ℓi. The following cases are possible:
i. Configuration Γ(C) is rigid. Using the rigidity of Γ(C), one node on ℓi, say u, is

elected as the gathering node. Robots on ℓi move in turn to the elected node.
ii. Configuration Γ(C) has exactly one axis of symmetry. The axis of symmetry of

Γ(C) either intersects with ℓi on a single node (edge-node symmetric), or on two
nodes (node-node symmetric) or only on edges (edge-edge symmetric):
- Γ(C) is node-edge symmetric: The node on ℓi that is on the axis of symmetry of
Γ(C) is the gathering node. Robots on ℓi move in turn to join it.
- Γ(C) is node-node symmetric: Let u1 and u2 be the two nodes on ℓi on which the
axis of symmetry passes through. If both nodes are occupied, then using the rigidity
of C, exactly one of the two nodes is elected. Assume w.l.o.g. that u1 is elected.
Robots on u1 move to their adjacent node. If both u1 and u2 are empty then let R
be the set of robots on ℓi that are at the smallest distance from either u1 or u2. If
|R| = 1 (Let r ∈ R and assume w.l.o.g. that r is the closest to u1) then, r moves
on ℓi toward u1 taking the shortest path. By contrast, if |R| > 1 then using the
rigidity of C, exactly one robot of R is elected to move. The elected robot moves
on ℓi toward the closest node among u1 and u2 taking the shortest path.
- Γ(C) is edge-edge symmetric: assume w.l.o.g. that Γ(C)’s axis of symmetry of
passes through ℓi on the two edges e1 = (u1, u2) and e1 = (u3, u4) with u1 and u3
being on the same side. Let U = {uj , j ∈ [1 − 4]}. We consider the following cases:

For all u ∈ U , u is occupied. Using the rigidity of C, a single node u ∈ U is
elected. Robots on u move to their adjacent node u′ ∈ U (refer to Figure 6, (A)).
Three nodes of U are occupied. Assume w.l.o.g. that u1 ∈ U is the one empty.
If there are robots on ℓi which are located on the same side as u1 and u3 with
respect to Γ(C)’s axis of symmetry then, the robots among these which are the

OPODIS 2021

9:12 Asynchronous Gathering in a Torus

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(A)

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(B)

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(C)

Empty
𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(D)

Empty

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(E)

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(F)

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(G)

𝑢ଵ 𝑢ଶ

𝑢ଷ 𝑢ସ(H)

Figure 6 Case in which Γ(C) is edge-edge symmetric.

closest to u3 move to their adjacent node on ℓi toward u3 taking the shortest
path (refer to Figure 6, (B)). By contrast, if there are no robots on ℓi which are
on the same side of u1 and u3 then, robots on u2 move to their adjacent node in
the opposite direction of u1 (refer to Figure 6, (C)).
Two nodes of U are occupied. First, assume w.l.o.g. that u1 and u2 are occupied
(the case in which the two nodes are neighbors). If all robots on ℓi are on the
same side of the axis of symmetry (assume w.l.o.g. that they are at the same
side as u2). Robots on u1 are the ones to move. Their destination is u2 (refer to
Figure 6, (D)). By contrast, if there are robots on both sides of Γ(C)’s axis of
symmetry then, let U ′ be the set of occupied nodes on ℓi which are the farthest
from the occupied node of U which is on the side (of the axis of symmetry). If
there are two such nodes (one at each side), as C is rigid, the scheduler elects
exactly one of these two nodes. Let us refer to the elected node by u. Robots on
u are the ones to move. Their destination is their adjacent node on ℓi towards
the occupied node of U being on their side (refer to Figure 6, (E)). By contrast, if
there is only one node in U ′ then, robots on the other side of the axis of symmetry
are the ones to move to start from the robots that are the closest to the occupied
node of U being on their side. Their destination is their adjacent ℓi toward the
occupied node of U on their side (refer to Figure 6, (F)). Finally, if there are no
robots on both sides of the axis of symmetry, then using the rigidity of C, one
occupied node of U is elected. Robots on the elected node are the ones to move.
Their destination is their adjacent occupied node in U .
Next, assume w.l.o.g. that u1 and u3 are occupied (the case in which the
two nodes of U are not neighbors but are at the same side of Γ(C)’s axis of
symmetry). Robots on a node of U with the largest view are the ones to move.
Their destination is their adjacent node in the opposite direction of a node of
U (refer to Figure 6, (H)). Finally, assume w.l.o.g. that u1 and u4 are occupied
(the case in which the two nodes of U are not neighbors and are in opposite sides
of Γ(C) axis of symmetry). Robots on a node of U with the largest view are
the ones to move. Their destination is their adjacent node on ℓi, in the opposite
direction of their adjacent node in U (refer to Figure 6, (G)).
There is only one node of U that is occupied. Assume w.l.o.g. that u1 is occupied.
If all robots on ℓi are on the same side as u1 with respect to Γ(C)’s axis of
symmetry then, the closest robot to u1 on ℓi are the ones to move. Its destination
is its adjacent node towards u1 taking the shortest path. By contrast, if all robots
on ℓi are in the opposite side of the axis of symmetry of u1 then robots on u1 are
the ones to move. Their destination is u2. Finally, if robots on ℓi are on both

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:13

sides of the axis of symmetry then the closest robot to u1 being on the same side
of Γ(C)’s axis of symmetry as u1 are the ones to move. Their destination is their
adjacent node on ℓi towards u1 taking the shortest path.
All nodes of U are empty. Let d be the smallest distance between a node of
u ∈ U and a robot on the same side of Γ(C)’s axis of symmetry as u. Let R be
the set of robots at distance d from a node u ∈ U . If |R| = 1 then the robot in
R moves towards the closest node u ∈ U . By contrast, if |R| > 1 then, using
the rigidity of C, a unique robot in R is selected to move. Its destination is its
adjacent node on ℓi toward the closest node u ∈ U .

iii. Configuration Γ(C) has more than one axis of symmetry. Using the rigidity of C,
a single robot from Γ(C) is elected to move. Its destination is its adjacent empty
node on its current ℓ-ring. This reduces the number of axis of symmetries to either
1 or 0.

b. nbℓi(C) = nbℓk
(C). The strategy is similar to the one used in the case in which

nbℓi
(C) ̸= nbℓk

(C). That is, by using the state of configuration Γ(C), robots on either
ℓi or ℓk gather in a single node. The difference in this case is that the robots need to
elect either ℓi or ℓk. The detailed description of this case can be found in [17].

▶ Lemma 1. From any initial rigid configuration C0 ∈ Cp1 , a configuration C ′ ∈ Ctarget
which does not contain any robot with an outdated view, is eventually reached. Moreover,
the unique maximal ℓ-ring in C ′ hosts at most one multiplicity node. This node (if any) is
adjacent to vtarget.

4.2 Gathering Phase
This phase starts from a configuration C ∈ Ctarget in which a direction is defined in C (from
ℓtarget to ℓmax). The idea is to make all robots that are neither on ℓtarget nor ℓmax move
to join vtarget. Then, make some robots on ℓmax move to join vtarget while the other align
themselves with respect to vtarget to finally gather all on the node of ℓmax adjacent to vtarget.
To ease the description of our algorithm, we define the following set of configurations:
1. Set Csp which includes the following four sub-sets:

a. SubSet Csp−1: C ∈ Csp−1 if there are exactly two occupied ℓ-rings in C denoted ℓi
and ℓj respectively on which the following conditions hold: (1) ℓi and ℓj are adjacent.
(2) nbℓj

(C) < nbℓi
(C) (3) either :

nbℓi
(C) = 4 and ℓi contains two 1.blocks of size 2 being at distance 2 from each

other. Let u be the unique node between the two 1.blocks on ℓi.
nbℓi

(C) = 3 or 5 and ℓi contains a 1.block of size nbℓi
(C). Let u be the middle node

of the 1.block of size nbℓi
(C).

(4) Either nbℓj
(C) = 3 and ℓj contains a 1.block of size 3 whose middle node is adjacent

to u or nbℓj
(C) = 2 and ℓj contains either a 2.block of size 2 whose middle node is

adjacent to u or a 1.block of size 2 having one extremity adjacent to u (refer to Figure 7
for some examples).

b. SubSet Csp−2: C ∈ Csp−2 if C ∈ Ctarget and nbℓtarget (C) = 1. In addition either one
of the following conditions are verified: (1) nbℓmax (C) = 4 and on ℓmax there are two
1.blocks of size 2 being at distance 2 from each other. Let u be the unique node
between the two 1.blocks then u is adjacent to vtarget. (2) nbℓmax = 5 and on ℓmax
there is a 1.block of size 5 whose middle robot is adjacent to vtarget . (3) nbℓmax (C) = 4
and on ℓmax there is a 1.block of size 3 having a unique occupied node at distance 2.
Let u be the unique empty node between the 1.block of size 3 and the 1.block of size 1.
Then u is adjacent to vtarget (refer to Figure 7).

OPODIS 2021

9:14 Asynchronous Gathering in a Torus

𝐶𝐶𝑠𝑠𝑠𝑠−1

𝐶𝐶𝑠𝑠𝑠𝑠−2 𝐶𝐶𝑠𝑠𝑠𝑠−2𝐶𝐶𝑠𝑠𝑠𝑠−2

ℓ𝑖𝑖
ℓ𝑗𝑗

ℓ𝑖𝑖
ℓ𝑗𝑗

𝐶𝐶𝑠𝑠𝑠𝑠−1 𝐶𝐶𝑠𝑠𝑠𝑠−1
𝐶𝐶𝑠𝑠𝑠𝑠−3 𝐶𝐶𝑠𝑠𝑠𝑠−3

𝐶𝐶𝑠𝑠𝑠𝑠−4 𝐶𝐶𝑠𝑠𝑠𝑠−4

Figure 7 Set Csp.

c. SubSet Csp−3: C ∈ Csp−3 if C ∈ Ctarget , Empty(C) is true, nbℓtarget (C) = 1 and one of
the two following conditions holds: (1) nbℓmax (C) = 3 and ℓmax contains an 1.block of
size 3 whose middle robot is adjacent to vtarget . (2) nbℓmax (C) = 2 and the two robots
form a 2.block on ℓmax . Let u be the unique empty node between the two robots on
ℓmax , then u is adjacent to vtarget (refer to Figure 7).

d. SubSet Csp−4: C ∈ Csp−4 if there is a unique ℓ-ring that is occupied and on this ℓ-ring
there are either two or three occupied nodes that form a 1.block (refer to Figure 7).

2. Set Cpr: C ∈ Cpr if C ∈ Ctarget and Partial(C) is true. That is, ∃ i ∈ {0, . . . , L− 1} such
that ℓi ̸= ℓmax and ℓi ̸= ℓtarget and nbℓi(C) > 0. Note that we are sure that C ̸∈ Csp.

3. Set Cls: C ∈ Cls if C ∈ Ctarget and C ̸∈ Csp and Empty(C). In other words, there are
only two ℓ-rings that are occupied: ℓmax and ℓtarget .

We now present the behavior of robots during the gathering phase. If the current
configuration C ∈ Ctarget, then we define ↑ as the direction from ℓtarget to ℓmax taking the
shortest path. Observe that ↑ can be computed by all robots and ↑ is unique (recall that
ℓmax is unique, and ∀ C ∈ Ctarget, nbℓtarget (C) ̸= nbℓsecondary (C)). Using ↑, we define a total
order on the ℓ-rings of the torus such that ℓi ≤ ℓj if ℓi is not further from ℓtarget than ℓj with
respect to ↑. Note that Cp2 = Cpr ∪ Cls ∪ Csp. Let C be the current configuration, robots
behavior for each defined set is as follows:
1. C ∈ Cpr. Let us refer by ℓi to the ℓ-ring that is adjacent to ℓtarget such that ℓi ̸= ℓmax .

Depending on the number of robots on ℓi, two cases are possible:
a. nbℓi

(C) > 0. Let Rm be the set of robots on ℓi that are the closest to vtarget , if
i. there is an occupied node ui on ℓi that is adjacent to vtarget , then robots on ui are

the ones to move. Their destination is vtarget .
ii. there is no robot on ℓi that is adjacent to vtarget and nbℓi(C) < ℓ− 1, then robots

in Rm are the ones to move. Their destination is their adjacent empty node on ℓi
on the empty path toward vtarget .

iii. there is no robot on ℓi adjacent to vtarget and nbℓi
(C) = ℓ− 1, then let Rm′ be the

set of robots that share a hole with ui, where ui is the node on ℓi that is adjacent to
vtarget . Robots in Rm′ are allowed to move only if they are not part of a multiplicity
location. Their destination is the node towards ui on the empty path.

b. nbℓi(C) = 0. Let ℓk be the closest neighboring ℓ-ring to ℓtarget with respect to ↑. Let
Rm be the set of robots on ℓk that are closest to vtarget . Robots on Rm are the ones
to move, their destination is the node outside ℓk and toward ℓtarget with respect to ↑.

2. C ∈ Cls. Robots aims at reaching a configuration C ′ ∈ Csp. If nbℓmax (C) ≤ 5, robots on
ℓmax execute Align(ℓmax , ℓtarget). Otherwise, robots behave as follows: Let u1, u2, u3, u4
and u5 be a sequence of five consecutive nodes on ℓmax such that u3 is adjacent to vtarget .
If u3 is occupied and has exactly one adjacent occupied node on ℓmax (assume w.l.o.g.
that this node is u2) then the robot on u2 is the one to move. Its destination is u3. By
contrast, if u3 has either no adjacent occupied nodes on ℓmax , or two adjacent occupied

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:15

nodes on ℓmax , then robots on u3 move to vtarget. Finally, if u3 is empty then let R be
the set of robots that are closest to u3 on ℓmax . If |R| = 2 then both robots move to their
adjacent node on ℓmax toward u3. By contrast, if |R| = 1, then first assume that the
distance between the robot in R and u3 is d. If there is a robot rm on ℓmax that shares a
hole with u3 and at distance d+ 1 from u3, then rm moves towards u3 taking the shortest
path. If no such robot exists, the robot in R moves toward u3 taking the shortest path.

3. C ∈ Csp. We distinguish:
a. C ∈ Csp−1. If C ∈ Ctarget , then the robots on ℓtarget that are at the extremities of the

1.block or the 2.block move to their adjacent occupied node on ℓmax . By contrast, if
C ̸∈ Ctarget , then the robot not on ℓmax that has two adjacent occupied nodes moves
to its adjacent node on ℓmax .

b. C ∈ Csp−2. If there is a 1.block of size 3 on ℓmax then the robots that are in the
middle of the 1.block of size 3 move to their adjacent occupied node that has one robot
at distance 2. If ℓmax contains a 1.block of size 5 then the robots on ℓmax that are
adjacent of the extremities of the 1.block move on ℓmax in the opposite direction of
the extremities of the 1.block. Finally, if ℓmax contains two 1.blocks of size 2 then the
robots that share a hole of size 1 move toward each other.

c. C ∈ Csp−3. Robots on vtarget move to their adjacent node on ℓmax (note that vtarget
can be occupied by either a single robot or a multiplicity).

d. C ∈ Csp−4. If C contains a 1.block of size 3 then the robots at the extremities of the
1.block move to their adjacent occupied node. By contrast, if C contains a 1.block of
size 2 then the robot that is not part of a multiplicity moves to its adjacent occupied
node (it will be shown that one of the occupied nodes hosts only one robot).

We now state our main positive result.

▶ Theorem 4. Assuming an (ℓ, L)-torus in which L < ℓ and L > 4 and starting from an
arbitrary rigid configuration, Protocol 1 solves the gathering problem for any K ≥ 3.

5 Concluding Remarks

We presented the first algorithm for gathering asynchronous oblivious mobile robots in a fully
asynchronous model in a torus-shaped space graph. Our work raises several open questions:
1. What is the exact set of initial configurations that are gatherable? Our work considers

initial rigid configurations only, and we know that periodic, edge-symmetric, and invariant
through rotation (with no center robot) configurations make the problem impossible to
solve. As in the case of the ring, special classes of non-rigid configuration may exist that
are still gatherable.

2. The case of a square torus is intriguing: the robots would loose the ability to distinguish
between the big side and the small side of the torus, so additional constraints are likely
to hold if gathering remains feasible.

3. Following recent work by Kamei et al. [16] on the ring, it would be interesting to consider
myopic (i.e. robot whose visibility radius is limited) yet luminous (i.e. robots that
maintain a constant size state that can be communicated to other robots in the visibility
range) robots in a torus.

References
1 François Bonnet, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous gathering in

rings with 4 robots. In Ad-hoc, Mobile, and Wireless Networks - 15th International Conference,
ADHOC-NOW 2016, Lille, France, July 4-6, 2016, Proceedings, volume 9724 of Lecture Notes
in Computer Science, pages 311–324. Springer, 2016. doi:10.1007/978-3-319-40509-4_22.

OPODIS 2021

https://doi.org/10.1007/978-3-319-40509-4_22

9:16 Asynchronous Gathering in a Torus

2 Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Optimal
gathering by asynchronous oblivious robots in hypercubes. In Algorithms for Sensor Systems -
14th International Symposium on Algorithms and Experiments for Wireless Sensor Networks,
ALGOSENSORS 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers,
volume 11410 of Lecture Notes in Computer Science, pages 102–117. Springer, 2018. doi:
10.1007/978-3-030-14094-6_7.

3 Jannik Castenow, Matthias Fischer, Jonas Harbig, Daniel Jung, and Friedhelm Meyer auf der
Heide. Gathering anonymous, oblivious robots on a grid. Theoretical Computer Science,
815:289–309, 2020. doi:10.1016/j.tcs.2020.02.018.

4 Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous robots on graphs:
Gathering. In Distributed Computing by Mobile Entities, Current Research in Moving and
Computing, volume 11340 of Lecture Notes in Computer Science, pages 184–217. Springer,
2019. doi:10.1007/978-3-030-11072-7_8.

5 Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Gathering robots in graphs:
The central role of synchronicity. Theoretical Computer Science, 849:99–120, 2021. doi:
10.1016/j.tcs.2020.10.011.

6 Gianlorenzo D’Angelo, Alfredo Navarra, and Nicolas Nisse. A unified approach for gathering
and exclusive searching on rings under weak assumptions. Distributed Computing, 30(1):17–48,
2017. doi:10.1007/s00446-016-0274-y.

7 Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of
robots on anonymous grids and trees without multiplicity detection. Theoretical Computer
Science, 610:158–168, 2016. doi:10.1016/j.tcs.2014.06.045.

8 Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio, and Euripides Markou. Gathering of
robots in a grid with mobile faults. In SOFSEM 2019: Theory and Practice of Computer Science
- 45th International Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, January 27-30, 2019, Proceedings, volume 11376 of Lecture Notes
in Computer Science, pages 164–178. Springer, 2019. doi:10.1007/978-3-030-10801-4_14.

9 Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. Optimal torus
exploration by oblivious robots. Computing, 101(9):1241–1264, 2019. doi:10.1007/
s00607-018-0595-8.

10 Durjoy Dutta, Tandrima Dey, and Sruti Gan Chaudhuri. Gathering multiple robots in a ring
and an infinite grid. In Distributed Computing and Internet Technology - 13th International
Conference, ICDCIT 2017, Bhubaneswar, India, January 13-16, 2017, Proceedings, volume
10109 of Lecture Notes in Computer Science, pages 15–26. Springer, 2017. doi:10.1007/
978-3-319-50472-8_2.

11 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

12 Samuel Guilbault and Andrzej Pelc. Gathering asynchronous oblivious agents with local
vision in regular bipartite graphs. Theoretical Computer Science, 509:86–96, 2013. doi:
10.1016/j.tcs.2012.07.004.

13 David Ilcinkas. Oblivious robots on graphs: Exploration. In Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in
Computer Science, pages 218–233. Springer, 2019. doi:10.1007/978-3-030-11072-7_9.

14 Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. Time-optimal gath-
ering algorithm of mobile robots with local weak multiplicity detection in rings. IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences,
96-A(6):1072–1080, 2013. doi:10.1587/transfun.E96.A.1072.

15 Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil. Gathering an even
number of robots in an odd ring without global multiplicity detection. In Mathematical Found-
ations of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava,
Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science,
pages 542–553. Springer, 2012. doi:10.1007/978-3-642-32589-2_48.

https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1016/j.tcs.2020.02.018
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1016/j.tcs.2020.10.011
https://doi.org/10.1016/j.tcs.2020.10.011
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1016/j.tcs.2014.06.045
https://doi.org/10.1007/978-3-030-10801-4_14
https://doi.org/10.1007/s00607-018-0595-8
https://doi.org/10.1007/s00607-018-0595-8
https://doi.org/10.1007/978-3-319-50472-8_2
https://doi.org/10.1007/978-3-319-50472-8_2
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1016/j.tcs.2012.07.004
https://doi.org/10.1016/j.tcs.2012.07.004
https://doi.org/10.1007/978-3-030-11072-7_9
https://doi.org/10.1587/transfun.E96.A.1072
https://doi.org/10.1007/978-3-642-32589-2_48

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:17

16 Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Gathering on rings for myopic asynchronous robots with lights. In 23rd International Conference
on Principles of Distributed Systems, OPODIS 2019, December 17-19, 2019, Neuchâtel,
Switzerland, volume 153 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.OPODIS.2019.27.

17 Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Asynchronous gathering in a torus. CoRR, abs/2101.05421, 2021. arXiv:2101.05421.

18 Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries:
Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science,
411(34-36):3235–3246, 2010. doi:10.1016/j.tcs.2010.05.020.

19 Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil. On the
synthesis of mobile robots algorithms: The case of ring gathering. In Stabilization, Safety,
and Security of Distributed Systems - 16th International Symposium, SSS 2014, Paderborn,
Germany, September 28 - October 1, 2014. Proceedings, volume 8756 of Lecture Notes in
Computer Science, pages 237–251. Springer, 2014. doi:10.1007/978-3-319-11764-5_17.

20 Gabriele Di Stefano and Alfredo Navarra. Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distributed Computing, 30(2):75–86, 2017.
doi:10.1007/s00446-016-0278-7.

21 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

OPODIS 2021

https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
http://arxiv.org/abs/2101.05421
https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/s00446-016-0278-7
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Model
	3 Impossibility Results
	4 Algorithm
	4.1 Preparation Phase
	4.2 Gathering Phase

	5 Concluding Remarks

