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—— Abstract

We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set D
of n unit disks inducing a unit-disk graph Gp and a number p € [n], one can partition D into p
subsets Dx, ..., D, such that for every i € [p] and every D’ C D;, the graph obtained from Gp by
contracting all edges between the vertices in D;\D’ admits a tree decomposition in which each bag
consists of O(p + |D’|) cliques. Our theorem can be viewed as an analog for unit-disk graphs of the
structural theorems for planar graphs and almost-embeddable graphs proved very recently by Marx
et al. [SODA’22] and Bandyapadhyay et al. [SODA’22].

By applying our structural theorem, we give several new combinatorial and algorithmic results for
unit-disk graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem
(CDT) for unit-disk graphs, resolving an open question in the work Panolan et al. [SODA’19]. On
the algorithmic side, we obtain a new FPT algorithm for bipartization (also known as odd cycle

90(Wklogk) )y O(1) time, where k denotes the solution

transversal) on unit-disk graphs, which runs in
size. Our algorithm significantly improves the previous slightly subexponential-time algorithm given
by Lokshtanov et al. [SODA’22] (which works more generally for disk graphs) and is almost optimal,
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as the problem cannot be solved in 2° time assuming the ETH.
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1 Introduction

For a set D of unit disks in the plane, the unit-disk graph Gp induced by D has the unit
disks in D as its vertices, where two vertices are connected by an edge whenever the two
corresponding unit disks intersect. As one of the simplest but most important classes of
geometric intersection graphs, unit-disk graphs have been extensively studied in various
areas (e.g., computational geometry, graph theory, algorithms) and find applications such as
modeling the topology of ad-hoc communication networks [27, 49]. The research on unit-disk
graphs focused on both combinatorial aspects and algorithmic aspects.
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In this paper, we establish a structural theorem for unit-disk graphs, which leads to
interesting new results in both combinatorial and algorithmic aspects. Our theorem can be
viewed as a unit-disk-graph analog of the very recent theorems proved for planar graphs [39]
and more generally for the so-called “almost-embeddable” graphs [5]. Thus, before introducing
our theorem, let us first briefly review their results. Specifically, it was shown in [5, 39] that
for a planar graph G = (V, E) and a number p € [n] where n = V|, one can partition V into
W1,...,V, such that for every i € [p] and V' C V;, the graph obtained from G by contracting
all edges between the vertices in V;\V’ has treewidth O(p + |V’|). Unfortunately, one can
easily see that such a statement cannot hold for unit-disk graphs'. However, if we use the
number of cliques (instead of vertices) in the bags of the tree decomposition to define its
width, this statement is actually true for unit-disk graphs!

Let D be a set of n unit disks and p € [n] be any number. Our theorem (roughly)
states that one can partition D into p subsets D1, ..., D, such that for every ¢ € [p] and
every D' C D;, the graph obtained from the unit-disk graph Gp by contracting all edges
between the vertices in D;\D’ admits a tree decomposition in which each bag consists of
O(p + |D’']) cliques. Furthermore, this partition can be computed in polynomial time. The
formal statement of our theorem is more technical, and will be presented in Theorem 2 after
we introduce some preliminaries in Section 2. Note that the notion of tree decomposition
with bags consisting of cliques is not new. In fact, this kind of tree decomposition has been
widely applied on unit-disk graphs and other geometric intersection graphs to design efficient
algorithms; see for example [12, 21, 43]. In what follows, we discuss the new combinatorial
and algorithmic results derived from our main theorem.

Combinatorial application: the first CDT on unit-disk graphs. In graph theory, a Con-
traction Decomposition Theorem (CDT) is a statement of the following form: given a graph
G = (V, E) from some graph class, for any p € N, one can partition F into E, ..., E, such
that contracting the edges in each F; in G yields a graph of treewidth at most f(p), for some
function f: N — N. CDT is classical tool useful in designing efficient approximation and pa-
rameterized algorithms in certain classes of graphs. Graph classes for which CDTs are known
include planar graphs [31, 32], graphs of bounded genus [15], and H-minor free graphs [14].
However, little was known about CDTs on geometric intersection graphs. Recently, Panolan
et al. [44] made the first progress towards proving a CDT for unit-disk graphs. Specifically,
they gave a weak version of CDT (which they call a relazed CDT), in which the edge sets
Ey, ..., Ep need not to be disjoint; instead, it is required that each edge e € E is contained
in O(1) sets in E1, ..., E,. It remains open whether unit-disk graphs admit a “true” CDT
(where Ei, ..., E, is a partition of E). In this paper, by applying our main theorem, we
give the first CDT for unit-disk graphs and hence resolve an open question of [44] (and also
Hajiaghayi [26]). The function f in our CDT is quadratic, i.e., f(p) = O(p?), matching the
bound in the weak CDT of [44].

Algorithmic application: almost ETH-tight bipartization on unit-disk graphs. Designing
efficient algorithms on unit-disk graphs is a central topic in the study of unit-disk graphs.
Many classical algorithmic problems have been studied on unit-disk graphs. Polynomial-time
solvable problems include shortest paths [7, 8, 47], diameter computing [9, 24], maximum
clique [10], etc. Compared to these problems, NP-hard problems received more attentions

! Indeed, the clique K, is a unit-disk graph, and if we partition the vertices of K, into p parts for p > 2,
after contracting the smallest part, we get a clique of size at least n/2 which has treewidth Q(n).
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on unit-disk graphs. In particular, studying parametrized algorithms [11] for these hard
problems on unit-disk graphs (or other geometric intersection graphs) is one of the most
active themes in recent years [2, 3, 20, 21, 22, 23, 43] (also see the survey [44]). A well-
known fact about parametrized complexity on planar graphs (or more generally, bounded-

genus graphs and H-minor-free graphs) is the so-called “square root phenomenon”: many
VE) 1, O O(VE)
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problems on planar graphs admit algorithms with running time 2°(
where k is the parameter (usually the solution size), and also admit (almost) matching
lower bounds [6, 13, 16, 18, 19, 33, 34, 40, 42, 46]. Recently, it was shown that such a
“square root phenomenon” also appears in many problems on unit disk graphs. Specifically,
algorithms with running time 200VHnO0MW) or nOKR) were obtained on unit-disk graphs
for VERTEX COVER [12], INDEPENDENT SET [41], FEEDBACK VERTEX SET [4, 20|, k-
PAaTH/CYCLE [20, 22], etc. and (almost) matching lower bounds were also known [12]. In this
paper, we apply our main theorem to add another classical problem to this family, namely,

BIPARTIZATION.

In the BIPARTIZATION problem, one aims to make a graph bipartite by deleting few
vertices. Formally, the input of BIPARTIZATION is a graph G = (V, E) and a number k, and
the goal is to determine whether there exists X C V of size at most k£ such that G — X
is bipartite. In the literature, BIPARTIZATION is also called ODD CYCLE TRANSVERSAL,
as making a graph bipartite is equivalent to hitting all its odd cycles. As one of the
most fundamental NP-complete problems in graph theory [48], BIPARTIZATION has been
studied extensively over years [1, 17, 25, 28, 29, 30, 35, 45]. The best existing algorithm
for BIPARTIZATION on general graphs runs in 2.3146¥7°() time [36]. On planar graphs,
a randomized algorithm with running time 20(Vklogk) nO(1) was known [38, 39], and the
same running time was achieved also for bounded-genus graphs and H-minor-free graphs
very recently [5]. However, little was known about BIPARTIZATION on geometric intersection
graphs. In fact, even achieving slightly subexponential-time parameterized algorithm for
BIPARTIZATION on unit-disk graphs was a long-standing open problem, prior to the very
recent work by Lokshtanov et al. [37]. The authors of [37] gave a randomized algorithm

27
running in 202 ogk)nO() time for BIPARTIZATION on disk graphs (and thus unit-disk
graphs), achieving the first 2°(*) bound for the problem. This result, however, is still far
away from showing the “square root phenomenon” for BIPARTIZATION on unit-disk graphs.

By applying our main theorem, we solve BIPARTIZATION on unit-disk graphs with a ran-
domized algorithm running in 20(Vklog k), O(1) time, significantly improving the ZO(k% log k)
bound given by [37]. On the other hand, we establish an almost matching lower bound,
showing that the problem cannot be solved in in 20(VE) p0(1) time, assuming the Exponential
Time Hypothesis (ETH). Our results thus add BIPARTIZATION to the “square root” family
of problems on unit-disk graphs. In terms of techniques, our algorithm solves the problem by
first constructing the partition {D1,...,Dp} of the unit-disk set D in our main theorem for
p = Vk and then applying the well-known Baker’s technique on Dy, . .. , D), together with a
DP procedure similar to the one in [5] on tree decomposition. Such a scheme based on our
theorem can possibly also be applied to solve other problems on unit-disk graphs. To give an
example, we extend our algorithm to the problem of GROUP FEEDBACK VERTEX SET with
non-identity labels, with the same running time.

Due to limited space, some proofs/details are omitted in this version, and will
appear in the full paper.

11:3
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Figure 1 The boundary and outer boundary of U (the heavier curve is the outer boundary).

2 Preliminaries

The canonical grid. Consider the grid formed by vertical lines {z = ¢ : ¢ € N} and horizontal
lines {y =4 : ¢ € N}. We shall use it as the canonical grid throughout this paper (in the rest
of the paper, we shall refer it as “the grid”). Each cell in the grid is a unit square, and we
usually use the notation [J to denote a cell. For a unit disk D, we denote by Op the grid cell
that contains the center of D. For a set D of unit disks and a cell [J, we denote by D m [ the
subset of unit disks in D whose centers lie in (. We say a subset D’ C D is grid-respecting if
for any cell O such that D' MmO # 0, we have D’ MmO =D mO. A partition {Dy,...,Dp} of
D is grid-respecting if D1, ..., D, are all grid-respecting subsets of D.

Basic graph notions. Let G = (V, E) be a graph. For a subset V/ C V|, the subgraph of
G induced by V' is the graph consisting of the vertices in V’ and the edges in E with both
endpoints in V’. An induced subgraph of G is a subgraph of G induced by a subset of V.
A vertex v € V is neighboring to a subset V/ C V in G if there exists v’ € V' such that
(v,v") € E. A subset V' C V is neighboring to another subset V' C V if there exist v’ € V'
and v” € V" such that (v/,v") € E.

Unit disks and unit-disk graphs. Let D be a set of unit disks in the plane. For D € D,
we denote by ctr(D) the center of the unit disk D. The union U = |Jpp D is a closed
region in the plane, whose boundary consists of a set of disjoint closed curves. The outer
boundary of U is defined as the part of the boundary of U that is incident to the unbounded
connected component of R?\U; see Figure 1 for an illustration. The exposed unit disks in
D refers to the unit disks in D that intersect the outer boundary of U. In Figure 1, all
unit disks in D are exposed. We denote by Exp(D) the set of exposed unit disks in D. The
unit-disk graph induced by D, denoted by Gp, has the unit disks in D as its vertices, where
two vertices are connected by an edge whenever the two corresponding unit disks intersect.
We use Ep to denote the edge set of Gp. Note that for a cell I, the unit disks in D N0
pairwise intersect and hence form a clique in Gp, which we call a cell clique. We denote by
E% C Ep the set of edges in all cell cliques in Gp. For a subset D’ C D, the unit-disk graph
Gop- is canonically isomorphic to the subgraph of Gp induced by D’. Thus, for convenience,
we shall not distinguish between them: we shall also use Gp: to denote the induced subgraph
of Gp and use Ep/ to denote the set of edges in Gp between the vertices in D’.
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Tree decomposition and treewidth. A tree decomposition of a graph G = (V, E) is a pair
(T, B) where T is a tree and 3 : T — 2V maps the nodes of T to subsets of V such that
(i) Uer B(t) = V, (ii) for each edge (u,v) € E, there exists ¢t € T with u,v € §(t), and

(iii) for each vertex v € V, the nodes t € T with v € 8(t) form a connected subset in T.

Conventionally, we call S(t) the bag of the node t € T. The width of the tree decomposition
(T, B) is maxier |B(t)| — 1. The treewidth of a graph G, denoted by tw(G) is the minimum

width of a tree decomposition of GG. It is sometimes more convenient to consider rooted trees.

Thus, throughout this paper, we always view the tree in a tree decomposition as a rooted
tree. A tree decomposition (T, 8) is binary if T is binary.

Edge contraction. From a graph G = (V, E), one can obtain a new graph via a so-called
edge contraction operation. Specifically, by contracting an edge e = (u,v) € E, we merge u
and v into one vertex with edges connecting to both the neighbors of u and the neighbors of v
in V\{u,v}. More generally, we can contract a subset Ey C F of edges simply by contracting
these edges “one-by-one”. Formally, the resulting graph by contracting Ey in G, which we
denote by G/Ey, is defined as follows. The vertices of G/E, one-to-one corresponds to the
connected components of the graph Go = (V, Ey), and two vertices have an edge connecting

them whenever the corresponding two connected components of Gy are neighboring in G.

Let V, denote the vertex set of G/Ey. Associated to this edge contraction, there is a natural
map 7 : V — V, which maps each vertex v € V to the vertex of G/E, corresponding to
the connected component of Gy that contains v. We call 7 the quotient map of the edge
contraction. The following fact is a well-known (and can be easily verified).

» Fact 1. Let G = (V, E) be a graph obtained from another graph G' = (V' E") via edge
contraction with quotient map w: V' — V. The following statements are true.
(i) If (T, B) is a tree decomposition of G, then (T, 3") is a tree decomposition of G' where
B'(t) =n"1(B(t)) for all nodes t € T.
(i) If (T",B') is a tree decomposition of G', then (T', ) is a tree decomposition of G where
B(t) =n(B'(t)) for all nodes t € T".

3 The main theorem

In this section, we present the main theorem of this paper, which establishes a structural
property of unit-disk graphs. Formally, the theorem is the following.

» Theorem 2 (main theorem). Given a set D of n unit disks and an integer p € [n], one can
compute in polynomial time a grid-respecting partition {D1,...,Dp} of D such that for every
i € [p] and every D' C Dy, tw(Gp/(EH U Ep,\pr)) = O(p + |D']).

Recall that in Section 1, we gave an informal version of the above theorem, which
states that Gp/Ep,\p/ admits a tree decomposition in which each bag contains O(p + [D’|)
cliques. One may ask how Theorem 2 implies this statement. To see this, observe that

Gp/(EH U Ep,\pr) can be viewed as a graph obtained from G'p/Ep,\p/ via edge contraction.

Thus, if we start from a tree decomposition of Gp/(E}x U Ep,\p/) of width O(p + [D'[) and
apply Fact 1 to obtain a tree decomposition of Gp/Ep,\pr, one can check that each bag
of the latter tree decomposition consists of O(p + |D’|) cliques. We omit the details of this

argument as it is not important. The rest of this section is dedicated to proving Theorem 2.
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3.1 A layering for the unit disks

The first step of proving Theorem 2 is to compute a layering for the unit disks in D, that
is, a decomposition of D into layers. We shall use a function ¢ : D — N to represent the
layering: the unit disks which are mapped to i by ¢ form the i-th layer of D. This layering ¢
respects the grid partition of D in the sense that £=1({i}) is a grid-respecting subset of D
for all i € N. Besides, ¢ possesses some nice properties which will be used later to prove
Theorem 2. Algorithm 1 presents the procedure for computing ¢. In words, it iteratively
finds the exposed unit disks in D (line 4) and removes from D the unit disks whose centers
lie in the same cells as the centers of the exposed ones (line 5 and 7), and finally combines
the unit disks removed in every 100 iterations into one layer (line 8).

Algorithm 1 LAYERING(D). > Output a layering ¢ : D — N.

1: g+ 0

2: while D # () do

3: q+—q+1

4 X + Exp(D)

5 Xt =Uxexr(PDnOx)

6: Tagy < g forall X € X+
7 D« D\X™*

8: return ¢ : D — [Tagp/100]

It is clear that the layering ¢ returned by Algorithm 1 respects the cell partition of D,
because in line 6 we always assign the same tag to all unit disks with centers in the cells
Op. We write £; = ¢~1({i}) and call it the i-th layer of D. Suppose there are in total m
layers. We define L, = UL, L), L>i = UL, L), L<i = U;;ll Ly, L<i =Uj, L), and

Ly in = U;lzl L;. Next, we establish some nice properties of the layering ¢.

» Lemma 3. The layering ¢ and the layers L1, ..., Ly, satisfy the following three properties.
(i) For any D,D" € D such that D N D' # 0, we have |[{(D) — ¢(D’)| < 1.
(ii) For a connected component of Gr_, with vertex set C C Ls;, the unit disks in L;
neighboring to C lie in the same connected component of G, .

(iii) For any 4,1 € [m] with i <, tw (Gg[m_,] /EZ[M/] ) =0 —i+1).

We remark that the construction of our layering ¢ on unit-disk graphs is analogous to
(and also inspired by) the outerplanarity layering on planar graphs (which is obtained by
iteratively removing the vertices on the boundary of the outer face of the planar graph).
While for the outerplanarity layering the three properties in Lemma 3 follow easily, it requires
considerably more work to show them for our layering on unit-disk graphs.

In the rest of this section, we prove Lemma 3. We begin with introducing some notations
for ease of exposition. Since D changes during Algorithm 1, we denote by D@ the set D at
the beginning of the g-th iteration of the while-loop (line 2-7). Define X4 = Exp(D@) and
U@ as the union of the unit disks in D@,

Verifying property (i). Let D, D’ € D such that DN D’ # (). To show |[¢(D)—£(D")] < 1, it
suffices to show |Tagp — Tagp/| < 100. Let ¢ = Tagp and ¢’ = Tagp,. If ¢ = ¢/, we are done.
If ¢ # ¢', we may assume ¢ < ¢’ without loss of generality. Since Tag, = ¢, D € DmOx
for some X € X(9. By the definition of X(9) X intersects the outer boundary of U@ and
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thus there exists a point 2 € X that is on the outer boundary of U(@). Let o be the segment
connecting x and d’ = ctr(D’). We say a cell O is relevant if there exists a unit disk in Dm0
that intersects o. We observe that there are at least ¢’ — ¢ + 1 relevant cells.

» Observation 4. For eachi € {q,...,q'}, there exists a unit disk D; € D with Tagp, =i
that intersects o. Thus, the number of relevant cells is at least ¢ — q + 1.

Note that the length of ¢ is at most 3 because DN D’ # ) and DN X # (). As such, there
can be no more than 100 relevant cells (actually much fewer), because each relevant cell must

contain a point with distance at most 1 from o. Thus, ¢’ —g+1 < 100 and |[¢(D) —¢(D")| < 1.

Property (i) in Lemma 3 holds.

Verifying property (ii). Consider a connected component of G_, with vertex set C C L;.

Define @ = {q : [¢/100] = i}. For a fixed g € Q, the outer boundary of D@ consists of some
closed curves in the plane, each of which encloses a region that is topologically homeomorphic
to a disk. These regions are clearly disjoint; we call the union of these regions the domain of
D@, We claim that one of these regions should contain all unit disks in C. First, observe
that the domain of D@ contains all unit disks in D@, and hence contains all disks in C
since C C L+; = D100+ € D@ Furthermore, because the regions are disjoint but G is
connected, all unit disks in C must lie in the same region. We denote by R, the region that
contains the unit disks in C. We do this for all ¢ € @, and thus obtain a set {R,}scq of
regions. We observe that these regions are nested.

» Observation 5. R, C R, for all q,¢' € Q with ¢ > ¢'.

To prove property (ii), consider two unit disks D, D’ € L; that are neighboring to C. Let
q = Tagp (resp., ¢ = Tagp,), then the tag of any unit disk in D mOp (resp., DM Op/) is g

(resp., ¢'). As D, D' € L;, we have ¢,q' € Q and we assume ¢ > ¢’ without loss of generality.

Since D is neighboring to C and Tagp = ¢, D must be contained in R, and thus all unit
disks in D M Op are contained in R,. Furthermore, there exists a unit disk X € DmOp
which is exposed in D@, ie., X € X@. Note that X must intersect the boundary of Ry,
because X intersects the outer boundary of U@ and is contained in R,. Similarly, there
exists a unit disk X’ € D @ Op: exposed in D) which intersects the boundary of R, .

» Observation 6. D' U X' intersects the boundary of R,.

Now both DU X and D’ U X’ are connected and intersect the boundary of R,. Note
that the unit disks in D@ that intersect the boundary of R, form a connected unit-disk
graph. Thus, the unit-disk graph induced by these unit disks together with D, X, D', X’
is also connected. All these unit disks belong to £;, and are hence in the same connected

component of G,. In particular, D and D’ are in the same connected component of G, .

Property (ii) in Lemma 3 holds.

Verifying property (iii). We notice that, in order to verify property (iii), it suffices to
show that tw(G._,/E;_ ) = O(j) for all j € [m], because Lj; i is nothing but the first
j =1 —1i+ 1 layers of the unit-disk set £>;. To this end, we first construct a drawing of the
graph G_, /EZSJ, on the plane (possibly with edge crossings). The vertices of G¢_, /EZSJ_
one-to-one correspond to the cells O for which £<; MmO # 0, and we denote by v(0O) the
vertex corresponding to the cell 0. We draw each vertex v(0J) at an arbitrary point inside
the cell OJ that lies in the intersection of all unit disks in D MmO (such a point always exists,
e.g., the center of OJ). For simplicity, we also use v(0J) to denote the point in the plane where
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we draw the vertex v(0J). For each edge e = (v(0),v(0))) of G_, /E}__, we draw it as a
polyline (or polygonal chain) in the plane connecting v(0J) and v(J') as follows. Since v(0)
and v([J') are connected by an edge in Gz_;/E}__, there exist unit disks D € L<; MmO and
D' € L<; MmO such that D N D’ # (. We choose an arbitrary point € D N D’ and let o
be the segment connecting x and v(0J), and ¢’ be the segment connecting  and v((0'). We
then draw the edge e as the two-piece polyline consisting of the segments o and o', and
denote this polyline by ~.. See the left part of Figure 2 for an illustration. Note that ~. is
contained in D U D’. In this way, we obtain a plane drawing of G_,/ Ezq (possibly with
edge crossings), and denote this drawing by 7. For convenience, we call the polylines 7. edge
curves. Let I' be the image of 77 in the plane, which is equal to the union of all edge curves
and all v(0J); see the right part of Figure 2. By our construction, I" is contained in the union
of all unit disks in D. Next, we establish some properties of I', which will be used later for
bounding tw(G_, /Ez<j). For two points a,b € R?, a path from a to b is a continuous map
f:[0,1] — R? with f(0) = a and f(1) = b. We write A(f,I") = {z € [0,1] : f(z) € I'}|; if
{z €10,1] : f(z) € I'} is not finite, we simply set A(f, ") = oo.

()

Figure 2 Illustrating the drawing 7. The left part is the construction of one edge curve 7. and
the right part is an example of how the drawing 7 finally looks like.

» Observation 7. For any two points a,b € R? with distance O(1), there exists a path
f:00,1] = R? from a to b such that A(f, ") = O(1).

» Observation 8. For any point a € R?, there exists a point b in the unbounded connected
component of R2\I" and a path f:[0,1] — R? from a to b such that A(f,I") = O(j).

Proof sketch. We sketch a quick proof of this observation. First, by using Observation 7,
one can easily see that for any point a € R?, there is a path f from a to a vertex v(J) of
Gro,/EL_, with A(f,I") = O(1). So it suffices to consider the case where a = v(0J) for
some vertex v((J) of G¢_, /EZQ_. Let ¢ be the tag of the unit disks in D m . We show the
existence of a path f with A(f,I") = O(1) from v(O) to some other vertex v(C0') such that
the tag of the unit disks in D M [’ is smaller than q. Combining this with a simple induction
argument completes the proof of the lemma. There are two cases: there exists such a vertex
v(0') with distance O(1) from v(0) or there does not exist. In the former case, we directly
apply Observation 7 to obtain the path f from v(0) to v(') with A(f,I") = O(1). In the
latter case, we know there is no unit disk in D\D@ that is “close” to v((J). However, some
unit disk in D MO is exposed in D@ but not D1, That means v(0) is close to a bounded
connected component C' of R*\ |J,cp D, which is contained in the unbounded connected
component of R?2\U(9), In this case, we must have another vertex v(C)’) close to C' such that
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n (Po 770)

Figure 3 Illustrating the planar graph P obtained by adding vertices to the crossings of 7.

the tag of the unit disks in DM’ is smaller than q. We then construct the path f from v(0)
to v(0') by first moving from v(OJ) into C, then moving inside C to get close to v(J'), and
finally moving out from C to v([0'). This summarizes the basic idea of the proof (though the
complete proof is more complicated). <

The plane drawing n of G_; / Ez<j naturally induces a planar graph P as follows. The
vertex set of P consists of the vertices of GLSj/EZSj and the edge-crossing points in the
drawing 7 (called crossings for short). Two vertices of P are connected by an edge if they are
“adjacent” on some edge curve .. Formally, consider an edge e = (v(1),v(1)) of Gz_, /E7_ .
Suppose the crossings on 7, are c1, ..., ¢, ordered from the v(dJ) end to the v(O)) end. Then
we include in P the edges (v(0), 1), (c1,¢2), ..., (¢cr_1,¢), (cryv(00')). After considering all
edges of G¢_, / Ezgj, we complete the construction of P. Note that n naturally induces a
planar drawing of P (thus P is planar), which we denote by 7. Clearly, the image of nq is
equal to the image of 7, which is I'. See Figure 3 for an illustration of the construction of P.
The following observation gives a relation between the treewidths of G_,/ EZSJ_ and P.

» Observation 9. tw(G._,/E;_ ) < O(tw(P)).

Based on the above observation, it now suffices to show that tw(P) = O(j). To this
end, we need to introduce a notion called vertez-face incidence graph. We consider the
plane-embedded graph (P,ng). The vertez-face incidence graph PT of (P,n9) is a bipartite
graph defined as follows. One part of P consists of the vertices of (P, 1), while the other
part consists of the faces of (P, 7). A vertex v of (P,19) and a face F' of (P, 1) are connected
by an edge in P if v is incident to F. Let o be the outer face of (P, 1), which is a vertex of
P*. The depth of a vertex v in (P, 1) is defined as the shortest-path distance between o and
v in PT. It is well-known that tw(P) is linear in the maximum depth of a vertex in (P, 1);
see for example [5]. So we only need to show the depth of each vertex in (P, 1) is O(j).

Consider a vertex v of (P,np). By Observation 8, there exists a point b in the unbounded

connected component of R?\I" and a path f : [0, 1] — R? from v to b such that A(f, I") = O(j).

Suppose {z € [0,1] : f(z) € I'} = {z1,...,2;} where k = O(j) and 21 < -+ < x. We
have 1 = 0 because f(0) =v € I. Let I, = {z : z; < © < z;41} for i € [k — 1] and
I, = {z : x, < x < 1}. Since f is continuous, the image of each I; under f is connected and
disjoint from I, and hence lies in one face of (P,7y), which we denote by F;. We say two
faces of (P, no) are adjacent if they are incident to a common vertex of (P, 7). Clearly, the
shortest-path distance between two adjacent faces of (P, 1g) in PT is 2. Note that for each
i € [k —1], F; and F;;1 are adjacent, as they are both incident to the point f(z;41) € I',
which is either a vertex of (P,n9) or on an edge e of (P,n); in the latter case, F; and F;y;
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are both incident to the two endpoints of e. Therefore, the shortest-path distance between
Fy and Fy in Pt is at most 2k — 2, which is O(j). Now F} is incident to f(z1) = f(0) =v
and Fy, is the outer face o of (P, 1) since b € Fy. It follows that the shortest-path distance
between v and o is O(j), and thus the depth of v is O(j). This implies tw(P) = O(j) and
hence tw(G._;/E}_) = O(j) by Observation 9. Property (iii) in Lemma 3 holds.

3.2 Constructing the partition {D;,...,D,}

Given the layering ¢ of D presented in the previous section, we are able to construct the
partition {D1,...,Dp,} of D in Theorem 2. The basic idea is similar to that used in Baker’s
technique: combining the congruent layers modulo p. Recall that £q,...,L,, are the layers
of D. We define D; = UJL(:"S_W ?) Ljp+i, i-e., D; consists of all layers whose index is congruent
to ¢ modulo p. Clearly, D, ..., D, can be computed in polynomial time. As {£4,..., L} is
a partition of D, {D1,...,D,} is also a partition of D. Also, since each £; is a grid-respecting
subset of D, the partition {D4,...,D,} of D is grid-respecting. To prove Theorem 2, it
suffices to show tw(Gp/(Ep5 U Ep,\p)) = O(p + [D'|) for any i € [p] and D' C D;.

3.3 Bounding the treewidth when D’ = ()

We first consider a special case of the treewidth bound in Theorem 2 where D’ = (). In other
words, we prove tw(Gp/(Ep»UEp,)) = O(p) for any i € [p]. The argument for this is similar
to the one used in [5] for planar graphs. So we only sketch the high-level ideas and the
details will appear in the full paper. For simplicity, let us just consider the case ¢ = p. Define
r=|m/p]+1andi; = (j—1)-p for j € N. So we have D, = [J;_, L;;. We define a support
tree Tyypp as follows. The depth of Ty,pp is . The root (i.e., the node at the 0-th level) of
Toupp is @ dummy node. For all j € [r], the nodes at the j-th level of Tgyp, are one-to-one
corresponding to the connected components of G Lo The parent of the nodes at the first
level is just the root. Consider a node t € Ty, at the j-th level for j > 2. Since G£>¢j isa
subgraph of G Loty the connected component of G Lo corresponding to ¢ is contained in a
unique connected component of G Loips which corresponds to a node ¢’ at the (j — 1)-th level
of Tgypp. We then define the parent of ¢ as ¢’. For each node t € Ty,pp, we associate to ¢ a set
A; C D defined as follows. If ¢ is the root, A; = (). Suppose ¢ is at the j-th level for j € [r]
and let C; C L~;; be the vertex set of the connected component of G Lo, corresponding
to t. Then we define A, = {D € C; : i; < (D) < 41}, i.e., A, consists of all unit disks
in C; which lie in the layers £;;41,...,L;, ;. We then carefully use the three properties
shown in Lemma 3 to argue that {A;}ic1,,, is a grid-respecting partition of D, and G 4,
is adjacent to G 4,, only if ¢ and t' is adjacent in T". Property (iii) implies that each graph
Ji = Ga,/(EY, U Ea,np,) has treewidth O(p). Using this fact, we construct an O(p)-width
tree decomposition for Gp/(E} U Ep,) by “gluing” O(p)-width tree decompositions for the
graphs J; along the edges of Typp. This eventually implies tw(Gp/(E5 U Ep,)) = O(p).

3.4 Handling the general case

In the previous section, we have proved that the partition {D;, ..., D,} satisfies the condition
in Theorem 2 for the special case where D’ = (). In this section, we shall consider the
general case and complete the proof for Theorem 2. Let i € [p]. Our goal is to show
tw(Gp/(EpUEp,\pr)) = O(p+|D'|) for every D' C Dy, knowing tw(Gp/(EpUED,)) = O(p).

For convenience, we denote by V' the vertex set of Gp/(E} U Ep,) and V' the vertex
set of Gp /(B U Ep,\pr). Since Gp/(E} U Ep,) is obtained from Gp via edge contraction,
there is a corresponding quotient map 7 : D — V. Similarly, there is a quotient map
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Figure 4 The three components of Gr\(py hit by D are merged into one connected component
in Gr, while the others remain the same.

7' : D — V' corresponding to the edge contraction for obtaining G'p/(E} U Ep,\p/). Note
that £, U Ep\pr € EL, U Ep,. So there exists a unique map p : V' — V such that # = pon’,
and Gp/(E} U Ep,) can be viewed as a graph obtained from Gp/(Ep U Ep,\pr) via edge
contraction with quotient map p.

Astw(Gp/(E»UED,)) = O(p), there exists a tree decomposition (7, 3) of Gp/(EHUED,)
of width O(p). We define a map ' : T — 2V as §/(t) = p~*(8(t)) for all nodes t € T. By
Fact 1, (T, 3') is a tree decomposition of Gp/(E}p U Ep,\pr). Now it suffices to show that the
width of this tree decomposition is O(p + |D’|). To this end, we establish a basic property of
unit-disk graphs. For a graph G, we use the notation ||G|| to denote the number of connected
components of G. We have the following lemma.

» Lemma 10. For a set R of unit disks and R’ C R, ||Gr\r/|| — [|Gr|| = O(|R']).

Proof. We show that ||Gr\(py| — |[Gr| = O(1) for any unit disk D € R. Then the lemma
can be proved via a simple induction argument. We say D hits a connected component of
GRr\(py if D intersects some unit disk in this connected component. Note that all connected
components of Gr\(py hit by D are merged into one connected component in Gz, and all the

other connected components of Gr\(p} remain the same in Gr. See Figure 4 for an example.

Thus, the quantity ||Gr\¢p} | — |G|l is equal to the number of connected components of
Gr\({py hit by D minus 1. So it suffices to show that D only hits O(1) connected components
of Gr\(py- Suppose D hits k connected components of Gr\(py. Pick a unit disk from each
such connected component, and let Dy,..., Dy be these unit disks. Note that Dy,..., D
are disjoint as they are from different connected components of Gr\(pjy. On the other hand,
Dy, ..., Dy are all contained in the disk D centered at ctr(D) of radius 3, as they intersect
D. The area of D7 is 97, so it can contain at most 9 disjoint unit disks. Thus, k¥ = O(1). =

Using the above lemma, we show that |p~1(U)| = O(|U| + |D’|) for any U C V. Since
D; is a grid-respecting subset of D, for each v € V, 7~ 1({v}) is either (the vertex set of)
a cell clique of Gp that is disjoint from D; or (the vertex set of) a connected component
of Gp,; we say v is a type-1 vertex in the former case and a type-2 vertex in the latter
case. Let Uy (resp., Us) be the type-1 (resp., type-2) vertices in U. For each u € Uy, we
have |p~1({u})| = |7/ (77 1({u}))| = 1, as every cell clique of Gp is contracted into one
vertex in Gp/(Ej U Ep,\p/). Thus, [p~*(U1)| = |U1]. To bound |[p~!(Us)|, we consider
7-1(Uy) C D. By definition, 7=*({u}) is a connected component of Gp, for each u € Us,
and thus ||Gr-1(p,)|| = |U2|. Set Z = 7~(U;) ND’. By Lemma 10, we have

1Gr=1 w0 | = Gr=1va) | = |G =1 ozl = |Gr-1 (vl = O(IZ]),
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which implies |G -1\ | = O(|U2| +|D']) because |Z] < |D’|. Since 7~ (U2)\D' C D;\ T/,
7’ maps the vertices in each connected component of G'r-1(y,)\ps to the same vertex in V'.
Therefore, [/ (7~ (U2)\D')| < [|Gr-1wno | = O(|U2| + |D’]). Now we have the inequality

|7 (x 7 (U2))] < |7’ (77 (U2)\D')] + |7 (D')] = O(|U2| + [ D).

It follows that [p~1(Us)| = O(|Us| + |D'|), and thus [p~}(U)| = O(JU| + |D’|). As a result,
for all t € T, |3'(t)] = [p~*(B(t))] = O(IB(®)| + [D']) = O(p +|D']). So (T,5') is a tree
decomposition of Gp/(EpU Ep,\p) of width O(p+|D’|), completing the proof of Theorem 2.

4 Applications

4.1 Contraction decomposition for unit-disk graphs

In this section, we use Theorem 2 to prove the first Contraction Decomposition Theorem
(CDT) for unit-disk graphs, which is shown below.

» Theorem 11 (Contraction Decomposition Theorem). Given a set D of n unit disks and
an integer p € [n], one can compute in polynomial time a partition {E1,...,E,} of Ep such
that for every i € [p], tw(Gp/E;) = O(p?).

To prove the above theorem, it suffices to compute in polynomial time p disjoint subsets
E1,...,E, C Ep such that tw(Gp/E;) = O(p?) for every i € [p] (that is, we do not require
{E1,..., E,} to be a partition of Ep), as contracting more edges only decreases the treewidth.

We start by applying the algorithm of Theorem 2 on D to obtain in polynomial time a
grid-respecting partition {D1,..., Dy} of D. Consider any ¢ € [p]. Setting D’ = () in Theorem
2 gives us tw(Gp/(E5 U Ep,)) = O(p). We are going to use this fact later in our analysis.
Next, we state a lemma which will be used in our construction of the edge sets Ei, ..., Ej.

» Lemma 12. The edge set of a clique K of size larger than 4p can be partitioned in
polynomial time into p parts such that each part contains a spanning tree of K.

We construct the edge sets Ei,...,E, in the following way. Consider any edge e =
(u,v) € Ep. If u € D; and v € D; for i # j, then we totally ignore e (i.e., do not add it to
any of E1,...,Ep,). Otherwise, let u,v € D; for some i € [p]. If e is not a part of any cell
clique, we add e to the part F;. If e is a part of a cell clique of size at most 4p, we also add
e to the part E;. The only remaining edges are those in the cell cliques of size larger than 4p.
Consider any such cell clique K. Using the algorithm in Lemma 12, we partition the edge set
of K into exactly p parts Hi,..., H, each of which contains a spanning tree of K, and then
add the edges in H; to E; for i € [p]. This completes the construction of E1, ..., E, C Ep.
It is clear that E4, ..., E, are disjoint. Now it suffices to bound tw(Gp/E;) for every i € [p].

» Lemma 13. For alli € [p], tw(Gp/E;) = O(p?).

4.2 Near-optimal bipartization for unit-disk graphs

In this section, we use Theorem 2 to solve BIPARTIZATION on unit-disk graphs. Due to
limited space, we only provide a high-level description of our algorithm with details omitted.
Let D be a set of n unit disks and k be the parameter. Recall that we want to find X C D
of size at most k such that Gp\ x is bipartite. We refer to such a set X' as an OCT.

An easy but crucial remark is that, for every clique K in Gp, an OCT contains all vertices
of K except at most two. We start by checking if there is some cell clique in Gp with size
at least k + 3, in which case it trivially answers NO. From now on, we may assume all cell
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cliques have size at most k + 2. The first step of our algorithm is to apply the following
randomized algorithm to obtain a small candidate set Cand C D for OCT. This can be done
via the technique of representative sets, see Lemma 5 in [5] for more details.

» Lemma 14. Given a graph G = (V, E) and a number k, one can compute Cand CV of
size k9N such that G has an OCT of size k iff G has an OCT of size k that is a subset of
Cand, using a polynomial-time randomized algorithm with success probability 1 — 1/2|V‘.

By the above lemma, |Cand| = k°()) and it suffices to find an OCT X C Cand of Gp of
size at most k. Suppose such an OCT X exists (but is unknown to us). Next, we apply the
algorithm of Theorem 2 with p = [v/k| to obtain the grid-respecting partition {D, ... ,Dp}
of D in polynomial time. As |X| < k and {D1,...,D,} is a partition of D, there exists an
index i € [p] such that |D; N X| < k/p. By trying all indices in [p], we can assume that the
algorithm knows the index i. Moreover, we know that D;,NX C D;NCand as X C Cand. Thus,
by trying all the subsets of D,; N Cand of size at most k/p, we can assume that the algorithm
knows S = D; N X; note that the number of such subsets is |Cand|O(*/P) = 20(Vklogk) The
above is a variant of Baker’s technique, which is also used in [5].

Now it suffices to find an OCT X of size at most k& which contains S but is disjoint from
D;\S. By Theorem 2, we have tw(Gp/(EjUEp,s)) = O(p+|S|) = O(Vk). Let (T, 5%) be
a tree decomposition of Gp/(EL U Ep,\s) of width O(Vk). We can then use Fact 1 to obtain
a tree decomposition (7', 8) of Gp from (T, 5*). Then we compute the OCT X via dynamic
programming on (7, 3). The main difficulty here is that although the width of (T, 5*) is
O(Vk), the width of (T, 3) is unbounded. Fortunately, we can exploit the O(vk) width of
(T, B*) to show that the size of the DP table at each node t € T as well as the total number
of different DP configurations to be considered are both bounded by 20 (Vklog k)
reason is that (essentially) each vertex of Gp/(E}: U FEp,\s) corresponds to either a cell clique
in G'p or a connected component of Gp,\s. A cell clique K can have O(k?) different possible

. The main

configurations in the solution as by assumption the size of K is O(k) and at most two vertices
in K are not in the OCT. A connected component of G'p,\s can only have two different
configurations as nothing in D;\S is contained in the OCT and a connected graph can have
at most two different 2-colorings. As such, we can do DP on (7', 8) in 20(Vklogk) pO(1) time

despite of its unbounded width. The details of our algorithm will appear in the full paper.

Also, the generalization of our algorithm to GROUP FEEDBACK VERTEX SET is deferred to
the full version.

» Theorem 15. There exists a randomized algorithm that solves, for given a set D of n unit
disks in the plane and a number k, the BIPARTIZATION problem on Gp in 20(Vklog k), O(1)
time, with success probability at least 1 — 1/2|D‘.

We show that the algorithm in the above theorem is near optimal. Specifically, we cannot
hope for a 20(VR) pO(1) running time, assuming ETH.

» Theorem 16. Assuming the ETH, BIPARTIZATION on unit-disk graphs cannot be solved in
20(VR) pO0(1) time, where k is the solution size and n is the number of vertices.
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