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Abstract
Let T be a set of n planar semi-algebraic regions in R3 of constant complexity (e.g., triangles, disks),
which we call plates. We wish to preprocess T into a data structure so that for a query object γ,
which is also a plate, we can quickly answer various intersection queries, such as detecting whether
γ intersects any plate of T , reporting all the plates intersected by γ, or counting them. We focus on
two simpler cases of this general setting: (i) the input objects are plates and the query objects are
constant-degree algebraic arcs in R3 (arcs, for short), or (ii) the input objects are arcs and the query
objects are plates in R3. These interesting special cases form the building blocks for the general case.

By combining the polynomial-partitioning technique with additional tools from real algebraic
geometry, we obtain a variety of results with different storage and query-time bounds, depending
on the complexity of the input and query objects. For example, if T is a set of plates and
the query objects are arcs, we obtain a data structure that uses O∗(n4/3) storage (where the
O∗(·) notation hides subpolynomial factors) and answers an intersection query in O∗(n2/3) time.
Alternatively, by increasing the storage to O∗(n3/2), the query time can be decreased to O∗(nρ),
where ρ = (2t − 3)/3(t − 1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the
query arcs.
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4:2 Intersection Queries for Flat Semi-Algebraic Objects
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1 Introduction

This paper studies intersection-searching problems in R3, where both input and query objects
are planar semi-algebraic regions of constant complexity (e.g., triangles, disks), which we
refer to as plates.1 We also consider two simpler cases of this setup: (i) the input objects
are plates and the query objects are constant-degree algebraic arcs in R3, referred to simply
as arcs, and (ii) the input objects are arcs and the query objects are plates in R3. Besides
being interesting in their own right, the data structures for these two simpler cases form
the building blocks for handling the general case. In each case, we wish to preprocess a
set T of input objects (plates or arcs) in R3 into a data structure that supports various
intersection queries for a query object (again a plate or an arc) γ, where we want to determine
whether γ intersects any object of T (intersection-detection queries), report all objects of T
that γ intersects (intersection-reporting queries), count the number of objects of T that
γ intersects (intersection-counting queries), or, when the query object is a directed arc γ,
report the first input object intersected by γ (ray-shooting queries). Intersection queries arise
in many applications, including robotics, computer-aided design, and solid modeling.

Notwithstanding a considerable amount of work on segment-intersection or ray-shooting
queries amid triangles in R3 (see, e.g., the survey by Pellegrini [23]), little is known about
more general intersection queries in R3, e.g., how quickly one can answer arc-intersection
queries amid triangles in R3, or triangle-intersection queries amid arcs in R3. The present
work makes significant and fairly comprehensive progress on the design of efficient solutions
to general intersection-searching problems in R3.

1.1 Related work
The general intersection-searching problem asks to preprocess a set O of geometric objects
in Rd, so that one can quickly report or count all objects of O intersected by a query object γ,
or just test whether γ intersects any object of O at all. One may also want to perform some
other aggregate operations on these objects (see [2] for a general framework). Intersection
searching is a generalization of range searching (in which the input objects are points) and
point enclosure queries (in which the query objects are points).

A popular approach to answering intersection queries is to write a first-order formula
for the intersection condition between an input object and a query object. Using quantifier
elimination, intersection queries can be reduced to semi-algebraic range queries, by working
in object space, where each input object O ∈ O is mapped to a point Ô and a query object γ
is mapped to a semi-algebraic region γ̂, such that γ̂ contains a point Ô if and only if γ
intersects the corresponding input object O. Alternatively, the problem can be reduced to a
point-enclosure query, by working in query space, where now each input object O is mapped
to a semi-algebraic region Õ and each query object γ is mapped to a point γ̃, so that γ̃ lies
in Õ if and only if γ intersects O. The first approach leads to a linear-size data structure

1 Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd satisfying a Boolean predicate
over a set of polynomial inequalities; the complexity of the predicate and of the set is defined in terms
of the number of polynomials involved and their maximum degree. See [11] for details.
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with sublinear query time, and the second approach leads to a large-size data structure with
logarithmic or polylogarithmic query time; see, e.g., [6, 8, 14, 20, 26] for the first approach
and [4, 12] for the second one.

The performance of these data structures depends on the number of parameters needed to
specify the input and query objects. We refer to these numbers as the parametric dimension
(or the number of degrees of freedom (dof)) of the input and query objects, respectively.
Sometimes the performance can be improved using a multi-level data structure, where each
level uses a lower-dimensional sub-predicate [2]. One can also combine these two approaches
to obtain a query-time/storage trade-off. For example, using standard techniques (such as
in [22]), a ray-shooting or segment-intersection query amid n triangles in R3 can be answered
in O∗(n3/4) time using O∗(n) storage, in O(logn) time using O∗(n4) storage, or in O∗(n/s1/4)
time using O∗(s) storage,2 for n ≤ s ≤ n4, by combining the first two solutions [22, 23].
As in the abstract, the O∗(·) notation hides subpolynomial factors, e.g., of the form O(nε),
for arbitrarily small ε > 0, and their coefficients which depend on ε. A similar multi-level
approach yields data structures in which a ray-shooting query among n planes or spheres
in R3 can be answered in O∗(n/s1/3) time using O∗(s) storage, for n ≤ s ≤ n3 [21, 22, 23, 25].

A departure from this approach is the pedestrian approach for answering ray-shooting
queries. For instance, given a simple polygon P with n edges, a Steiner triangulation of P is
constructed so that a line segment lying inside P intersects only O(logn) triangles. A query is
answered by traversing the query ray through this sequence of triangles [19]. The pedestrian
approach has also been applied to polygons with holes in R2 [5, 19], to a convex polyhedron
in R3 [15], and to polyhedral subdivisions in R3 [5, 10]. Some of the ray-shooting data
structures combine the pedestrian approach with the above range-searching tools [1, 9, 14].

Recently, Ezra and Sharir [16] proposed a new approach for answering ray-shooting
queries amid triangles in R3, using the pedestrian approach in the context of the polynomial-
partitioning scheme of Guth [17]. Roughly speaking, they construct a partitioning polyno-
mial F of degree O(D), for a sufficiently large constant D, using the algorithm in [4]. The
zero set Z(F ) of F partitions R3 into cells, which are the connected components of R3 \Z(F ).
The partitioning scheme guarantees that, with a suitable choice of the degree, each cell τ is
intersected by at most n/D input triangles, but for only at most n/D2 of them their (relative)
boundary intersects τ .3 These latter triangles are called narrow at τ , and the other intersect-
ing triangles are called wide. For each cell τ , the algorithm of [16] recursively preprocesses
the narrow triangles of τ and constructs a secondary data structure for the wide triangles
at τ . A major technical result of [16] is to reduce a ray-shooting or intersection-detection
query among wide triangles to a similar query amid a set of planes in R3 (those supporting
the input triangles), and to use the fact that such a query amid planes can be answered
in O∗(n/s1/3) time when O∗(s) storage is available, for any n ≤ s ≤ n3; see [22, 23]. This
leads to a data structure with O∗(n3/2) storage and O∗(n1/2) query time, which improves
upon the earlier solution [22]. The approach of [16] can also support reporting queries
in O∗(n1/2 + k) time, where k is the output size, but, for certain technical reasons, it does
not support counting queries.

2 We sometimes refer to s as the “storage parameter,” to distinguish it from the actual storage being
used, which is O∗(s).

3 One actually has to construct two polynomials, one for ensuring the first property and one for the
second property, and take their product, still a polynomial of degree O(D), as the desired polynomial.
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4:4 Intersection Queries for Flat Semi-Algebraic Objects

Table 1 Summary of results. Storage and query time are O∗(nα) and O∗(nβ), respectively, and
we specify the values of α and β for each result. The data structures for type (i) and (ii) intersection
queries count the number of intersection points between the input objects and the query object, and
not the number of input objects intersected by the query object.
⋆ Counts the number of triangles intersected by a query triangle in O∗(n5/9) time.
⋆⋆ This data structure does not extend to counting queries. In addition, the first term 2tQ−7

3(tQ−3) in
the bound applies when tQ is the maximum parametric dimension of the bounding arcs of the query
plates; if each plate is bounded by a single endpoint-free curve, the first term in the bound becomes

2tQ−3
3(tQ−1) .

Input Query Storage Query Time
Plates Arc/Curve 4/3 2/3
Plates Arc/Curve (t ≥ 3 dof) 3/2 (2t − 3)/3(t − 1)
Plates Planar arc (t ≥ 4 dof) 3/2 (2t − 7)/3(t − 3)
Plates Circular arc 3/2 3/5

Triangles Arc/Curve 1 4/5
Triangles Arc/Curve 11/9 2/3

Spherical caps Segment 5/4 3/4
Spherical caps Segment 3/2 27/40

Segments Plate 3/2 1/2
Arcs/Curves (t dof) Plate 3/2 3(t − 1)/4t

Triangles⋆ Triangle 3/2 1/2
Plates (tO dof)⋆⋆ Plate (tQ dof) 3/2 max{ 2tQ−7

3(tQ−3) , 3(tO−1)
4tO

}
Tetrahedra⋆ Tetrahedron 3/2 1/2

1.2 Our results

We refer to a connected path π as an (algebraic) arc if it is the restriction of a real algebraic
curve γ : I → R3 to a subinterval [a, b] ⊆ I. The parametric dimension t of π, also referred
to as the number of degrees of freedom (dof) of π, is the number of real parameters needed
to describe π. Two of these parameters specify the endpoints a and b. We assume that the
degree of the curve is also bounded by t.

We present efficient data structures for three broad classes of intersection searching in R3:
(i) the input objects are plates and the query objects are arcs in R3, (ii) the input objects
are arcs and the query objects are plates in R3, and (iii) both input and query objects are
plates in R3. Our algorithms combine the polynomial-partitioning technique of Guth [17]
and of Guth and Katz [18] with some additional tools from real algebraic geometry.

For simplicity, we mostly focus on answering intersection-detection queries. Our data
structures extend to answering intersection-reporting queries by spending additional O(k)
time, where k is the output size. For type (i) intersection queries, using the parametric-search
framework of Agarwal and Matoušek [7], our data structures can also answer arc-shooting
queries, where the goal is to find the first plate of T hit by a (directed) query arc, if such a
plate exists. Most of the data structures can be extended to answering intersection-counting
queries as well – for type (i) and (ii) intersection queries, our data structures count the
number of intersection points between the query arc/plate and the input plates/arcs, and for
type (iii) queries, our approach can count the number of intersecting pairs if both input and
query objects are triangles. Table 1 summarizes the main results of the paper. When we
say that an intersection query can be answered in O∗(t(n)) time, we mean that detection,
counting, and shooting queries can be answered in O∗(t(n)) time and reporting queries in
O∗(t(n) + k) time, where k is the output size.
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Intersection-searching with arcs amid plates. We present several data structures for
answering arc-intersection queries amid a set T of n plates in R3 (cf. Section 2 and the full
version [3]). Our first main result is an O∗(n4/3)-size data structure that can be constructed
in O∗(n4/3) expected time and that supports arc-intersection queries in O∗(n2/3) time. The
asymptotic query time bound depends neither on the parametric dimension of the query
arc nor on that of the input plates, though the coefficients hiding in the O∗-notation do
depend on them. Although our high-level approach is similar to that of Ezra and Sharir [16],
handling wide plates in our setup is significantly more challenging because the query object
is an arc instead of a line segment. We handle wide input plates using a completely different
approach that not only generalizes to algebraic arcs but also simplifies, in certain aspects,
the technique of [16] for segment-intersection searching. Handling this much more general
setup, using a battery of tools from range searching and real algebraic geometry, is one of
the main technical contributions of this work. The most interesting among these tools is the
construction of a carefully tailored cylindrical algebraic decomposition (CAD) (see [11, 13, 24]
for details concerning this technique, which are also reviewed later in Section 3.1 in this work)
of a suitable parametric space, where the CAD is induced by the partitioning polynomial.

Next, we present a data structure for answering arc-intersection queries amid wide plates
within a cell of the polynomial partition. It reduces the query time by increasing the storage
used. Roughly, the improvement is a consequence of using a combined primal-dual range-
searching approach, where the primal part works in object space, as in the aforementioned
main algorithm. The dual part works in query space, regarding the query arc γ as a t-
dimensional point γ̃, where t is the parametric dimension of the query arcs. Each input
plate ∆ is mapped to a semi-algebraic range ∆̃ in query space, and the query reduces to a
point-enclosure query that determines whether γ̃ lies in any of these semi-algebraic ranges ∆̃.
Specifically, we build a data structure of size O∗(n3/2) with O∗

(
n

2t−3
3(t−1)

)
query time, for

parametric dimensions t ≥ 3.
Another significant contribution of this work is a general technique for reducing the

parametric dimension t by 2, for planar query arcs, eliminating the dependence of the
asymptotic query time bound on the endpoints of the arc. For example, if the query objects
are circular arcs, their parametric dimension is eight (three for specifying the supporting
plane, three for specifying the containing circle in that plane, and two for the endpoints).
We show how to improve the query time from O∗(n13/21) (the query time bound for t = 8)
to O∗(n3/5) (the bound for t = 6), with the same asymptotic storage complexity O∗(n3/2).
We note that t = 6 when the query objects are line segments in R3; by reducing this to t = 4,
we get the query time O∗(n5/9) for this case, which is slightly worse than O∗(n1/2) in [16].
This deterioration in the performance is the cost we pay for proposing a general approach
that extends to query objects being arcs, as well as to answering counting queries.

Next, if T is a set of triangles in R3, we present an alternative near-linear-size data
structure that can answer an arc-intersection query, for a constant-degree algebraic arc,
in O∗(n4/5) time. Using this result in our main algorithm, we improve the storage size
to O∗(n11/9), keeping the query time O∗(n2/3).

Intersection searching with plates amid arcs. Next, we present data structures for the
complementary setup where the input objects are arcs and we query with a plate. We
first show that we can preprocess a set T of n line segments, in expected time O∗(n3/2),
into a data structure of size O∗(n3/2), so that an intersection query with a plate can be
answered in O∗(n1/2) time. Next, we extend this result to the case where the input is a set

SoCG 2022



4:6 Intersection Queries for Flat Semi-Algebraic Objects

of n arcs of (constant degree and) parametric dimension t, and the query object remains a
plate. We obtain a data structure of size O∗(n3/2) that can answer an intersection query
in O∗

(
n

3(t−1)
4t

)
time; see the full version [3].

Intersection searching with plates amid plates. The above results can be used to provide
simple solutions for the case where both input and query objects are plates. For simplicity,
first assume that both input and query objects are triangles in R3. We observe that if a
query triangle ∆ intersects an input triangle ∆′ then ∆ ∩ ∆′ is a line segment, and each of
its endpoints is either an intersection of an edge of ∆ with ∆′ or of ∆ with an edge of ∆′.
The former (resp., latter) kind of intersection can be detected using type (i) intersection
queries (resp., type (ii) queries). Using O∗(n3/2) storage, this results in the query time bound
O∗(n1/2), if we use the data structure from [16] for type (i) queries. For counting queries,
we have to use our arc-intersection data structure, leading to a query time of O∗(n5/9).

The technique can be extended to the case where both input and query objects are
arbitrary plates. In this case, the boundary of a plate consists of O(1) algebraic arcs of
constant complexity. Let tO and tQ be the parametric dimensions of the boundary arcs of
input and query plates, respectively. We obtain a data structure of O∗(n3/2) size with query
time O∗(nρ), where ρ = max

{
2tQ−7

3(tQ−3) ,
3(tO−1)

4tO

}
.4

Our data structure for the plate-plate case also works if the input and query objects are
constant-complexity, not necessarily convex three-dimensional polyhedra. This is because
an intersection between two polyhedra occurs when their boundaries meet, unless one of
them is fully contained in the other, and the latter situation can be easily detected. We can
therefore just triangulate the boundaries of both input and query polyhedra and apply the
triangle-triangle intersection-detection machinery.

The case of spherical caps. Finally, we present an application of our technique to an
instance where the input objects are not flat. Specifically, we show how to answer segment-
intersection queries amid spherical caps (each being the intersection of a sphere with a
halfspace), using either a data structure with O∗(n5/4) storage and O∗(n3/4) query time, or
a structure with O∗(n3/2) storage and O∗(n27/40) query time.

2 Intersection searching with query arcs amid plates

Let T be a set of n plates in R3, and let Γ be a family of algebraic arcs that has parametric
dimension t for some constant t ≥ 3. We present algorithms for preprocessing T into a data
structure that can answer an arc-intersection query for an arc γ ∈ Γ efficiently. We begin by
describing a basic data structure, and then show how its performance can be improved.

2.1 The overall data structure
Our primary data structure consists of a partition tree Ψ on T , which is constructed using
the polynomial-partitioning technique of Guth [17]. More precisely, let X ⊆ T be a subset of
m plates and let D > 1 be a parameter. Using the result by Guth, a real polynomial F of

4 The first term 2tQ−7
3(tQ−3) in the bound applies only when the query plate is bounded by more than one arc,

of maximum parametric dimension tQ. When the query plates are bounded by a single endpoint-free
curve (such as circular or elliptical disks) with parametric dimension tQ, the term becomes 2tQ−3

3(tQ−1) .
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degree at most c1D can be constructed, where c1 > 0 is an absolute constant, such that each
open connected component (called a cell) of R3 \ Z(F ) is crossed by boundary arcs (which
we refer to as edges from now on) of at most m/D2 plates of X and by at most m/D plates
of X ; the number of cells is at most c2D

3 for some absolute constant c2 > 0. Agarwal et
al. [4] showed that such a partitioning polynomial can be constructed in O(m) expected time
if D is a constant. Using such polynomial partitionings, Ψ can be constructed recursively in
a top-down manner as follows.

Each node v ∈ Ψ is associated with a cell τv of some partitioning polynomial and a
subset Tv ⊆ T . If v is the root of Ψ, then τv = R3 and Tv = T . Set nv = |Tv|. We set
a threshold parameter n0 ≤ n, which may depend on n, and we fix a sufficiently large
constant D. For the basic data structure described here, we set n0 = n1/3; the value of n0
will change when we later modify the structure.

Suppose we are at a node v. If nv ≤ n0 then v is a leaf and we store Tv at v. Otherwise,
we construct a partitioning polynomial Fv of degree at most c1D, as described above, and
store Fv at v. We construct a secondary data structure Σ0

v on Tv for answering arc-intersection
queries with an arc γ ∈ Γ that is contained in Z(Fv). Σ0

v is constructed in an analogous
manner as Ψ by using the polynomial-partitioning scheme of Agarwal et al. [4], which, given
a (constant) parameter D1 ≫ D, constructs a polynomial G of degree at most c1D1 so that
each cell of Z(F ) \Z(G) intersects at most nv/D1 plates of Tv and the boundaries of at most
nv/D

2
1 plates. Further details of Σ0

v (see [3]) are omitted from this version, and we conclude:

▶ Proposition 2.1. For a partitioning polynomial F of sufficiently large constant degree and
a set T of n plates, one can construct, in O∗(n) expected time, a data structure of size O∗(n)
that can answer an arc-intersection query with an arc contained in Z(F ) in O∗(n2/3) time.

Next, we compute (semi-algebraic representations of) all cells of R3 \ Z(Fv) [11]. Let τ
be such a cell. We create a child wτ of v associated with τ . We classify each plate ∆ ∈ Tv

that crosses τ as narrow (resp., wide) at τ if an edge of ∆ crosses τ (resp., ∆ crosses τ , but
none of its edges does). Let Wτ (resp., Tτ ) denote the set of the wide (resp., narrow) plates
at τ . We construct a secondary data structure Σ1

τ on Wτ , as described in Section 3 below,
for answering arc-intersection queries amid the plates of Wτ with arcs of Γ that lie inside
τ . Σ1

τ is stored at the child wτ of v. The construction of Σ1
τ for handling the wide plates is

the main technical step in our algorithm. By Proposition 3.2 in Section 3, Σ1
τ uses O∗(|Wτ |)

space, can be constructed in O∗(|Wτ |) expected time, and answers an arc-intersection query
in O∗(|Wτ |2/3) time. Finally, we set Twτ

= Tτ , and recursively construct a partition tree
for Twτ

and attach it as the subtree rooted at wτ . Note that two secondary structures are
attached at each node v, namely, Σ1

v and Σ0
v, for handling wide plates and for handling query

arcs that are contained in Z(Fv), respectively.
Denote by S(m) the maximum storage used by the data structure for a subproblem

involving at most m plates. For m ≤ n0, S(m) = O(m). For m > n0, Propositions 2.1
and 3.2 imply that S(m) obeys the recurrence:

S(m) ≤ c2D
3S(m/D2) +O∗(m), (1)

where c2 is the constant as defined above. Since the recursion terminates at m ≤ n0 = n1/3,
it can be shown that the solution to the above recurrence is S(m) = O∗(m3/2/n1/6 + m).
Hence, the overall size of the data structure (for m = n) is O∗(n4/3). A similar analysis
shows that the expected preprocessing time is also O∗(n4/3).

SoCG 2022



4:8 Intersection Queries for Flat Semi-Algebraic Objects

2.2 The query procedure
Let γ ∈ Γ be a query arc. We answer an arc-intersection query, say, intersection-detection,
for γ by searching through Ψ in a top-down manner. Suppose we are at a node v of Ψ. Our
goal is to determine whether γv := γ ∩ τv intersects any plate of Tv. For simplicity, assume
that γv is connected, otherwise we query with each connected component of γv.

If v is a leaf, we answer the intersection query naïvely, in O(n0) time, by inspecting all
plates in Tv. If γv ⊂ Z(Fv), then we query the secondary data structure Σ0

v with γv and
return the answer. So assume that γv ̸⊂ Z(Fv). We compute all cells of R3 \ Z(Fv) that γv

intersects; there are at most c3D such cells for some absolute constant c3 > 0 [11]. Let τ be
such a cell. We first use the secondary data structure Σ1

τ to detect whether γv intersects any
plate of Wτ , the set of wide plates at τ . We then recursively query at the child wτ to detect
an intersection between γ and Tτ , the set of narrow plates at τ .

For intersection-detection queries, the query procedure stops as soon as an intersection
between γ and T is found. For reporting/counting queries, we follow the above recursive
scheme, and at each node v visited by the query procedure, we either report all the plates
of Tv intersected by the query arc, or add up the intersection counts returned by various
secondary structures and recursive calls.

Denote by Q(m) the maximum query time for a subproblem involving at most m plates.
Then Q(m) = O(m) for m ≤ n0. For m > n0, Propositions 2.1 and 3.2 imply that Q(m)
obeys the recurrence:

Q(m) ≤ c3DQ(m/D2) +O∗(m2/3), (2)

where c3 is the constant as defined above. Again, using the fact that the recursion terminates
at m ≤ n0 = n1/3, it can be shown that Q(m) = O∗(m2/3 +m1/2n1/6) = O∗(m1/2n1/6). For
m = n we get Q(n) = O∗(n2/3). Putting together everything, we obtain the following:

▶ Theorem 2.2. A given set T of n plates in R3 can be preprocessed, in expected time
O∗(n4/3), into a data structure of size O∗(n4/3) so that an arc-intersection query amid T
can be answered in O∗(n2/3) time.

In the full version [3], we present a different technique for preprocessing a set T of triangles,
in expected time O∗(n), into a data structure of O∗(n) size that can answer arc-intersection
queries in O∗(n4/5) time. Using this data structure, we can modify our main structure Ψ,
as follows: We set n0 = n5/9, i.e., a node v is a leaf if nv ≤ n5/9. We construct the above
structure at each leaf of Ψ. The recursion now terminates at depth i satisfying n/D2i ≈ n5/9,
or Di = n2/9. The overall query procedure is the same as above except that we use at each
leaf the aforementioned improved procedure. This can be shown to yield:

▶ Theorem 2.3. A set T of n triangles in R3 can be processed, in expected time O∗(n11/9),
into a data structure of size O∗(n11/9) so that an arc-intersection query amid the triangles
of T can be answered in O∗(n2/3) time.

2.3 Space/query-time trade-offs
As we show in the full version [3], we can improve the query time for the secondary structure
on wide plates by increasing the size of the structure. Specifically, we show that a set Wτ

of n wide plates at some partition cell τ can be preprocessed, in expected time O∗(n3/2),
into a data structure of size O∗(n3/2), so that the query time improves to O∗

(
n

2t−3
3(t−1)

)
,

where t ≥ 3 is the parametric dimension of the query arcs. We adapt our primary data
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structure Ψ, as follows: (a) we now set n0 to be a sufficiently large constant; and (b) we
apply a standard primal-dual range-searching algorithm for the wide plates, instead of the
primal-only approach of [20] used in the basic solution. Omitting all the details, we conclude:

▶ Theorem 2.4. Let T be a set of n plates in R3, and let Γ be a family of arcs of parametric
dimension t ≥ 3. T can be preprocessed, in expected time O∗(n3/2), into a data structure
of size O∗(n3/2), so that an arc intersection query with an arc in Γ can be answered in
O∗(n

2t−3
3(t−1) ) time.

3 Handling wide plates

Let T be a set of n plates in R3, Γ a family of arcs, and F a partitioning polynomial, as
described in Section 2. In this section we describe the algorithm for preprocessing the set of
wide plates, Wτ , for each cell τ of R3 \ Z(F ), for intersection queries with arcs of Γ. Fix a
cell τ . Let ∆ ∈ Wτ be a plate that is wide at τ , and let h∆ be the plane supporting ∆. Since
∆ is wide at τ , each connected component of ∆ ∩ τ is also a connected component of h∆ ∩ τ
(though some connected components of h∆ ∩τ may be disjoint from ∆). Roughly speaking, by
a careful construction of a cylindrical algebraic decomposition (CAD) Ξ of F (see Section 3.2),
we decompose ∆ ∩ τ into O(1) pseudo-trapezoids, each contained in a connected component
of ∆ ∩ τ . We collect these pseudo-trapezoids of all wide plates at τ and cluster them into
O(1) families, using Ξ so that, for each family Φ, all pseudo-trapezoids within Φ can be
represented by a fixed constant-complexity semi-algebraic expression (that is, predicate).
Each such predicate only depends on F and on the (coefficients of the) plane supporting the
pseudo-trapezoid φ (but not on the boundary of the plate containing φ). Roughly speaking,
the predicate is of the form σ(a, b, c, x, y), so that a plane z = a0x + b0y + c0 contains a
pseudo-trapezoid φσ so that σ(a0, b0, c0, x, y) holds precisely for those points (x, y, z) in that
plane that lie in φσ; see Section 3.3. This semi-algebraic representation of Φ enables us
to reduce the arc-intersection query on Φ to semi-algebraic range searching in only three
dimensions (Section 3.4).

3.1 An overview of cylindrical algebraic decomposition
We begin by giving a brief overview of cylindrical algebraic decomposition (CAD), also known
as Collins’ decomposition, after its originator Collins [13]. This tool is a central ingredient of
our algorithm – see Section 3.2. A detailed description can be found in [11, Chapter 5]; a
possibly more accessible treatment is given in [24, Appendix A].

Given a finite set F = {f1, . . . , fs} of d-variate polynomials, a cylindrical algebraic
decomposition induced by F , denoted by Ξ(F), is a (recursive) decomposition of Rd into a
finite collection of relatively open simply-shaped semi-algebraic cells of dimensions 0, . . . , d,
each homeomorphic to an open ball of the respective dimension. These cells refine the
arrangement A(F) of the zero sets of the polynomials in F , as described next.

Set F =
∏s

i=1 fi. For d = 1, let α1 < α2 < · · · < αt be the distinct real roots of F .
Then Ξ(F) is the collection of cells {(−∞, α1), {α1}, (α1, α2), . . . , {αt}, (αt,+∞)}. For d > 1,
regard Rd as the Cartesian product Rd−1 ×R and assume that xd is a good direction, meaning
that for any fixed a ∈ Rd−1, F (a, xd), viewed as a polynomial in xd, has finitely many roots.

Ξ(F) is defined recursively from a “base” (d− 1)-dimensional CAD Ξd−1, as follows. One
constructs a suitable set E := E(F) of polynomials in x1, . . . , xd−1 (denoted by ElimXk

(F)
in [11] and by Qb in [24]). Roughly speaking, the zero sets of polynomials in E , viewed
as subsets of Rd−1, contain the projection onto Rd−1 of all intersections Z(fi) ∩ Z(fj),
1 ≤ i < j ≤ s, as well as the projection of the loci in each Z(fi) where Z(fi) has a tangent
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4:10 Intersection Queries for Flat Semi-Algebraic Objects

hyperplane parallel to the xd-axis, or a singularity of some kind. The actual construction of
E , based on subresultants of F , is somewhat complicated, and we refer to [11, 24] for more
details.

One recursively constructs Ξd−1 = Ξ(E) in Rd−1, which is a refinement of A(E) into
topologically trivial open cells of dimensions 0, 1, . . . , d− 1. For each cell τ ∈ Ξd−1, the sign
of each polynomial in E is constant (zero, positive, or negative) and the (finite) number of
distinct real xd-roots of F (x, xd) is the same for all x ∈ τ . Ξ(F) is then defined in terms
of Ξd−1, as follows. Fix a cell τ ∈ Ξd−1. Let τ × R denote the cylinder over τ . There is an
integer t ≥ 0 such that for all x ∈ τ , there are exactly t distinct real roots ψ1(x) < · · · < ψt(x)
of F (x, xd) (regarded as a polynomial in xd), and these roots are algebraic functions that
vary continuously with x ∈ τ . Let ψ0, ψt+1 denote the constant functions −∞ and +∞,
respectively. Then we create the following cells that decompose the cylinder over τ :

σ = {(x, ψi(x)) | x ∈ τ}, for i = 1, . . . , t; σ is a section of the graph of ψi over τ , and
σ = {(x, y) | x ∈ τ, y ∈ (ψi(x), ψi+1(x))}, for 0 ≤ i ≤ t; σ is a portion (‘layer’) of the
cylinder τ × R between the two consecutive graphs ψi, ψi+1.

The main property of Ξ is that, for each cell τ ∈ Ξ, the sign of each polynomial in F is
constant for all x ∈ τ . Omitting all further details (for which see [11, 13, 24]), we have the
following lemma:

▶ Lemma 3.1. Let F = {f1, . . . , fs} be a set of s d-variate polynomials of degree at most D
each. Then, assuming that all coordinates are good directions, Ξ(F) consists of O(Ds)2d

cells, and each cell can be represented semi-algebraically by O(D)2d polynomials of degree at
most O(D)2d−1 . Ξ(F) can be constructed in time (Ds)2O(d) in a suitable standard model of
algebraic computation.

3.2 Constructing a CAD of the partitioning polynomial
Let E3 denote the space of all planes in R3. More precisely, E3 is the (dual) three-dimensional
space where each plane h : z = ax+by+c is mapped to the point (a, b, c). For (a0, b0, c0) ∈ E3,
we use h(a0, b0, c0) to denote the plane z = a0x+ b0y + c0. We consider the five-dimensional
parametric space E := E3 × R2 with coordinates (a, b, c, x, y). We construct in E a CAD of
the single 5-variate polynomial F (x, y, ax+ by + c). We use a generic choice of coordinates
to ensure that all the axes of the coordinate frame are in good directions for the construction
of the CAD, coming up next. Such a generic choice of coordinates also allows us to assume
that none of the input plates lies in a vertical plane.

The construction of the CAD recursively eliminates the variables in the order y, x, c, b, a.
That is, unfolding the recursive definition given in Section 3.1, each cell of the CAD is given
by a sequence of equalities or inequalities (one from each row) of the form:

a = a0 or a−
0 < a < a+

0

b = f1(a) or f−
1 (a) < b < f+

1 (a)
c = f2(a, b) or f−

2 (a, b) < c < f+
2 (a, b) (3)

x = f3(a, b, c) or f−
3 (a, b, c) < x < f+

3 (a, b, c)
y = f4(a, b, c;x) or f−

4 (a, b, c;x) < y < f+
4 (a, b, c;x),

where a0, a−
0 , a+

0 are real parameters, and f1, f
−
1 , f

+
1 , . . . , f4, f

−
4 , f

+
4 are constant-degree

continuous algebraic functions (any of which can be ±∞), so that, whenever we have an
inequality involving two reals or two functions, we then have a−

0 < a+
0 , and/or f−

1 (a) < f+
1 (a),

f−
2 (a, b) < f+

2 (a, b), f−
3 (a, b, c) < f+

3 (a, b, c), and f−
4 (a, b, c;x) < f+

4 (a, b, c;x), over the cell
defined by the preceding set of equalities and inequalities in (3).
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Let Ξ5 = Ξ5(F ) denote the five-dimensional CAD just defined, and let Ξ3 denote the
projection of Ξ5 onto E3, which we refer to as the base of Ξ5 and which itself is a CAD of a
suitable set of polynomials. Each base cell of Ξ3 is given by a set of equalities and inequalities
from the first three rows of (3), one per row. For a point (a0, b0, c0) ∈ E3, let Ξ2(a0, b0, c0)
denote the decomposition in the xy-subspace that is induced by Ξ5 over (a0, b0, c0). This is
the decomposition of the xy-plane into pseudo-trapezoids, each of which is given by equalities
and/or inequalities from the last two rows of (3), with a = a0, b = b0, c = c0. We refer to
Ξ2(a0, b0, c0) as the two-dimensional fiber of Ξ5 over (a0, b0, c0). As a matter of fact, and
this is the main rationale for the CAD construction, Ξ2(a0, b0, c0) can be identified with
the xy-projection of a refinement of the partition induced by Z(F ) in the plane h(a0, b0, c0).
That is, each 2-cell of this two-dimensional fiber of Ξ5 is contained in the projection of a
single connected component of h(a0, b0, c0) \Z(F ), and each 0-cell, as well as each 1-cell that
is not y-vertical, of the fiber is contained in the projection of a portion of Z(F ) ∩h(a0, b0, c0).
See Figure 1 for an illustration.

The topology of the partition induced by Z(F ) in h(a0, b0, c0) does not change as long as
(a0, b0, c0) stays in the same cell C0 of Ξ3, and changes in the topology occur only when we
cross between cells of Ξ3. In particular, each cell C of Ξ5 can be associated with a fixed cell
of R3 \Z(F ), denoted as τC , such that for all points (a0, b0, c0) in the base cell C↓ ⊂ E3 of C,
which is the projection of C onto E3, the two-dimensional portion C2 of the fiber Ξ2(a0, b0, c0)
for which {(a0, b0, c0)} × C2 ⊆ C is the xy-projection of a pseudo-trapezoid of a connected
component of h(a0, b0, c0)∩τC . This property will be useful in constructing the data structure
to answer arc-intersection queries amid the wide plates at τ .

(a0, b0, c0)

C0

Z(F )

Ξ2(a0, b0, c0)

Figure 1 An illustration of the CAD construction. C0 is a three-dimensional cell of Ξ3. For a
point (a0, b0, c0) ∈ C0, its two-dimensional fiber Ξ2(a0, b0, c0) is shown. Formally, the purple curve
is the xy-projection of Z(F ) ∩ h(a0, b0, c0).

3.3 Decomposing wide plates into pseudo-trapezoids
We are now ready to describe how to decompose each plate ∆ ∈ Wτ , for each cell τ
of R3 \Z(F ), into pseudo-trapezoids, and how to cluster the resulting pseudo-trapezoids. Let
∆ ∈ T be a plate, let h∆ be the plane supporting ∆, and let ∆∗ = (a0, b0, c0) be the point in
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4:12 Intersection Queries for Flat Semi-Algebraic Objects

the abc-subspace E3 dual to h∆. We locate (in constant time, by brute force) the cell C0 of Ξ3
(in E3) that contains ∆∗. Let φ be a cell of Ξ2(∆∗), let φ↑ = {(x, y, a0x+b0y+c0) | (x, y) ∈ φ}
be the lifting of φ onto h∆, and let C be the cell of Ξ5 that contains {∆∗} ×φ. We determine
whether φ↑ is fully contained in ∆, lies fully outside ∆, or intersects ∂∆. We keep φ only
if φ↑ is contained in ∆, and associate φ↑, as well as the plate ∆, with C. (In general, ∆ is
associated with many cells C, one for each cell φ of Ξ2(∆∗) whose lifting is contained in ∆.)
In this case, we use ∆C to denote the pseudo-trapezoid φ↑, which is uniquely determined by
∆ and C and which lies in a connected component of ∆ ∩ τC . For a cell C ∈ Ξ5, let TC ⊆ T
be the subset of plates that are associated with C, and let ΦC = {∆C | ∆ ∈ TC} be the
subset of pseudo-trapezoids associated with C. Finally, for a plate ∆ ∈ T , let Ξ∆ be the set
of all cells of Ξ5 with which ∆ is associated. Again, see Figure 1 for an illustration.

The advantage of this approach is that for each plate ∆ ∈ T , the set ∆∥ := {∆C | C ∈ Ξ∆}
is a refinement into pseudo-trapezoids of those cells of h∆ \ Z(F ), referred to as inner cells,
that lie fully inside ∆. Furthermore, the set Ξ∆ provides an operational “labeling” scheme for
the pseudo-trapezoids in ∆∥ – the pseudo-trapezoid ∆C is labeled with C, or rather with the
semi-algebraic representation that it inherits from C. That is, each such pseudo-trapezoid
φ↑ on the plate ∆, with the point ∆∗ belongs to some base cell C0 of Ξ3, is represented by
equalities and inequalities of the form

x = f3(∆∗) or f−
3 (∆∗) < x < f+

3 (∆∗) and y = f4(∆∗) or f−
4 (∆∗) < y < f+

4 (∆∗),

where f3, f
−
3 , f

+
3 , f4, f

−
4 , f

+
4 are constant-degree continuous algebraic functions over the

corresponding domains, as in (3). This is a simple semi-algebraic representation, of constant
complexity, of the xy-projection φ of φ↑, which does not explicitly depend on ∆ (but only on
its plane h∆). Moreover, this representation is fixed for all plates ∆ for which the points ∆∗

lie in the same cell of Ξ3, and is therefore also independent of h∆,5 as long as ∆∗ belongs
to that cell. See Figure 2 for an illustration. This constant-size “labeling” is used for
clustering the pseudo-trapezoids into which the inner cells of h∆, for ∆ ∈ T , are partitioned.
Namely, we put all pseudo-trapezoids labeled with the same cell C of Ξ5 into one cluster,
and {ΦC | C ∈ Ξ5} is the desired clustering of the pseudo-trapezoids.

3.4 Reduction to semi-algebraic range searching

Fix a cell C of Ξ5. For an arc γ ∈ Γ, contained in the cell τC of R3 \ Z(F ), we wish
to answer an arc-intersection query on ∆C with γ. To this end, we define the predicate
ΠC : Γ × E3 → {0, 1} so that ΠC(γ; a, b, c) is 1 if and only if γ crosses h(a, b, c) at a point
(x, y, z) such that (x, y) belongs to C (that is, (a, b, c, x, y) ∈ C), and (x, y, z) lies in τC .
It is easy to verify that ΠC(γ; a, b, c) is a semi-algebraic predicate of constant complexity
(that depends on D and t, the parametric dimension of arcs in Γ). We now define the semi-
algebraic range QC,γ := {(a, b, c) | ΠC(γ; a, b, c) = 1}, which is of constant complexity too.
By construction, γ crosses ∆C if and only if the point ∆∗ ∈ QC,γ . Set T ∗

C := {∆∗ | ∆ ∈ TC}.
For each cell C ∈ Ξ5, we preprocess T ∗

C ⊂ E3, in O(|TC | logn) expected time, into a
data structure ΣC of size O(|TC |), using the range-searching mechanism of Matoušek and
Patáková [20] (see also [8]). For a query range QC,γ , the range query on T ∗

C can be answered
in O∗(|TC |2/3) time.

5 More precisely, its dependence on h∆ is only in terms of the coefficients (a, b, c) of h∆ that are substituted
in the fixed semi-algebraic predicate given above.
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C0

Z(F )
h∆

∆

φC

h∗
∆

Figure 2 The labeling scheme provided by the CAD (the plate depicted in this figure is a triangle).
The cell C labels, by an explicit semi-algebraic expression, the highlighted inner pseudo-trapezoidal
subcell φC within the plate ∆. Another inner subcell, with a different label, in a different partition
cell τ , is also highlighted.

Finally, for a cell τ of R3 \ Z(F ), let Ξτ = {C ∈ Ξ5 | τC = τ} be the set of all CAD
cells associated with τ . We store the structures ΣC , for all C ∈ Ξτ , at τ as the secondary
structure Σ1

τ . To test whether an arc γ ∈ Γ, which lies inside τ , intersects a plate of Wτ , we
query each of the structures ΣC stored at τ with QC,γ and return yes if any of them returns
yes. Putting everything together, we obtain the following:

▶ Proposition 3.2. A set W of n wide plates at some cell τ can be preprocessed into a
data structure of size O∗(n), in O∗(n) expected time, so that an arc-intersection query, for
intersections within τ , can be answered in O∗(n2/3) time.

This at last completes the analysis for the wide plates, which implies the main result of
this paper.
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