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—— Abstract

For a set P of n points in RY, for any d > 2, a hyperplane b is called k-rich with respect to P if it
contains at least k£ points of P. Answering and generalizing a question asked by Peyman Afshani,
we show that if the number of k-rich hyperplanes in R?, d > 3, is at least Q(n?/k® + n/k), with a
sufficiently large constant of proportionality and with d < « < 2d — 1, then there exists a (d — 2)-flat
that contains Q(k@d_l_a)/(d_l)) points of P. We also present upper bound constructions that give
instances in which the above lower bound is tight. An extension of our analysis yields similar lower
bounds for k-rich spheres.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Rich hyperplanes, Incidences, Covering points by hyperplanes
Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.57

Funding Zuzana Patdkovd: Work partially supported by Charles University projects UNCE/SCI/022
and PRIMUS/21/SCI/014.
Micha Sharir: Work partially supported by ISF Grant 260/18.

Acknowledgements The authors thank Peyman Afshani for sharing his thoughts with us concerning
this problem.

1 Introduction

Let P be a set of n points in R%. A hyperplane h is called k-rich with respect to P if
it contains at least k points of P. Assume that the number of k-rich hyperplanes is at
least Q(n?/k™*! + n/k), with a sufficiently large constant of proportionality. Is there a
lower-dimensional flat containing “a lot of points” of P? This question was raised by Peyman
Afshani (personal communication), motivated by his recent work [1] on point covering
problems. We answer Afshani’s problem in the affirmative, in the following stronger form.

» Theorem 1. Let d > 3,k > d be integers, and d < o < 2d — 1. Let P be a set of n
points in R, for which the number of k-rich hyperplanes is at least c(n/k® + n/k), for
some sufficiently large constant ¢ (depending only on d). Then there exists a (d — 2)-flat that
contains ) (k(zd_l_a)/(d_l)) points of P.

We also present two upper bound constructions that give instances of the problem in which
the bound in Theorem 1 is tight. The first instance involves @« = d + 1 (as in Afshani’s
original question) and certain values of k, and in the second instance we have a = d = 3.
We also extend our analysis to the case of k-rich spheres (spheres that contain at least &
points of P). We show (see Theorem 4) that if the number of k-rich (d — 1)-spheres is at
least c(n?t!/k* 4+ n/k), for d +1 < a < 2d + 1 and for some sufficiently large constant c,
then there exists a (d — 2)-sphere that contains Q (k(23+1=2)/4) points of P.
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The result is interesting by itself, but it may also find a potential application in the so
called hyperplane cover problem, one of the classical problems in computational complexity:
given a set S of n points in R? and a number h, can we find h hyperplanes that cover
all points of S? It is a geometric variant of a set cover problem, and it was shown that
already for d = 2 the hyperplane cover problem is both NP-hard [13] and APX-hard [11].
However, several FPT-algorithms (in the fixed parameter k) are known, best of which is [16].
In the special cases d = 2 and d = 3 it has been further improved [1]. The improvement
is based on incidence bounds and builds on a simple observation that given a hyperplane
cover of cardinality h, some of the hyperplanes might contain many more points than the
others. The main idea is to deal with such hyperplanes first and the performance of the
algorithm depends on the number of such hyperplanes. For example, it follows from the
Szemerédi-Trotter theorem that there are at most O(n?/k3) k-rich hyperplanes defined by
n points in R%. However, in the approach of [1] this bound turned out to be useful only in
the plane, in which case the exponent of n is strictly smaller than the exponent of k. The
3-dimensional case is treated using another incidence bound [9], but this approach also does
not extend to higher dimensions [1]. What could help for d > 4 is to show that if there are
too many rich hyperplanes the points cannot be distributed arbitrarily, in fact, many of them
must lie on a common lower dimensional flat. The results of our paper address this issue.

The problem is also closely related to the problem of bounding the number of incidences
between n points and m hyperplanes, and we will indeed use tools from incidence theory to
tackle this problem. A major hurdle in obtaining sharp point-hyperplane incidence bounds,
in d > 3 dimensions, is the possibility that there exists a (d — 2)-flat that contains many of
the points and is contained in many of the hyperplanes. In the worst case all the n points
could be contained in such a flat, and all the m hyperplanes could contain the flat, and
then the number of incidences would be nm, the largest possible value. To obtain sharper
bounds one usually needs to require that no (d — 2)-flat contains too many points, or that
is not contained in too many hyperplanes, or to impose other restrictions on the setup.
See [2, 4, 5, 7, 9, 14, 15] for a sample of earlier works on this topic. For example, better
bounds can be obtained if the points are restricted to be vertices of the arrangement of the
hyperplanes [2], or when the incidence graph between the points and hyperplanes does not
contain a complete bipartite subgraph of some small size (see [5]). Improved bounds can also
be obtained by assuming that no lower-dimensional flat is contained in too many hyperplanes,
or does not contain too many points [7]. Some of these works also derive lower bounds,
but for different quantities, which do not seem directly related to the setup considered in
this paper. See, for example, Apfelbaum and Sharir [4] and Brass and Knauer [5] for lower
bounds on the maximum size of a complete bipartite subgraph in the incidence graph of
points and hyperplanes.

2 Proof of Theorem 1

Let P be a set of n points in R? that has many k-rich hyperplanes, in the sense of Theorem 1,
and let ¢ denote the maximum number of points of P contained in any (d — 2)-flat. We seek
a lower bound on /.

Overview of the proof. Before we dive into the details, we describe the overall idea first.
Let H be the set of all k-rich hyperplanes spanned by P. By a simple argument we show that
H is finite and then we establish a lower and an upper bound on the number of incidences
between P and H. Comparing these bounds yields the desired result. As the lower bound
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on the number of incidences is trivially k| H|, the actual work here is to obtain a reasonable
upper bound — for that we use simplicial partitions (Theorem 3), point-hyperplane duality,
and the Cauchy-Schwartz inequality.

We start with a simple incidence bound.

» Lemma 2. Let P and H be finite sets of points and hyperplanes in R?, respectively. We
have the following simple bound on the number I(P, H) of incidences between the points of P
and the hyperplanes of H.

I(P,H) = O(|H||P|"*¢'/ + |P]). (1)

Proof. This is a simple geometric application of the well known K&vari-Sés-Turan Theorem
(see, e.g., [3, 10]), which says that a K o-free bipartite graph with n left and m right vertices
has at most O(mnl/ 2¢1/2 +n) edges. The proof is based on the observation that the incidence
graph between P and H does not contain K412 as a subgraph. Indeed, any pair of non-
parallel hyperplanes from H intersect in a (d — 2)-flat, which, by assumption, contains at
most ¢ points of P. <

Using simplicial partitions. We now proceed to sharpen the upper bound in Lemma 2. We
recall the following result, due to Matousek [12].

» Theorem 3. Let Q be a set of m points in RY, for any d > 2, and let 1 < r < m be a
given parameter. Then @ can be partitioned into g < 2r subsets, Q1,...,Qyq, so that, for
each i, m/(2r) < |Q;| < m/r, and Q; is contained in the relative interior of a (possibly
lower-dimensional) simplex A;, so that every hyperplane crosses (i.e., intersects but does not
contain) at most O(r*='/4) of these simplices.

The partition in Theorem 3 is referred to as a simplicial partition of (. We remark that the
theorem guarantees that none of the simplices is a single point when r < m/4. This result
has more recently been refined by Chan [6], but the original version suffices for our purpose.

Proof of Theorem 1. First note that if there is a (d — 2)-flat containing at least k points of
P, the theorem trivially holds, as we then have £ > k > k(zdfl’o‘)/(dfl), since o« > d. Hence
we can assume that each (d — 2)-flat contains at most k£ — 1 points of P. This guarantees
that the number of all k-rich hyperplanes (with respect to P) is finite, as every k-tuple of
points of P spans at most one k-rich hyperplane.

Let then H be the finite set of all k-rich hyperplanes, k > d, set m := |H|, and recall
that we assume that m = |H| > ¢ (n?/k® 4+ n/k), for some sufficiently large constant ¢ (that
depends on d) and for some d < a < 2d — 1.

Our strategy is to derive an upper bound on the number of incidences between the points
of P and the hyperplanes of H, and combine it with the obvious lower bound mk on this
number, which follows since each of these hyperplanes is k-rich. A combination of these
bounds will lead to the desired lower bound on /.

We apply standard geometric duality in R? and get a set H* of m dual points and a set
P* of n dual hyperplanes. The dual version of the fact that no (d — 2)-flat contains more
than ¢ points of P is that no line is contained in more than ¢ hyperplanes of P*. We also
know, as just mentioned, that I(P, H) > mk, as each primal hyperplane in H contains at
least k points of P.

We fix some r, which we determine later, and apply Theorem 3 in the dual setting. We
obtain ¢ < 2r subsets Hy,..., Hy, so that m/(2r) < |H}| <m/r for eachi=1,...,q, and
each hyperplane crosses O(rl_l/ 4) of the corresponding simplices. Denote also by P} the set
of dual hyperplanes that cross the i-th simplex A; D H7, for each i. Let P; and H; denote
the corresponding sets of points and hyperplanes in the primal space.
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The number of incidences of dual points inside the partition cells and dual hyperplanes
crossing the corresponding simplices can be bounded as follows:

zq:I(HfaPi*) ZI(Pi;Hi) =0 (Zq: |P;| 2 H| 0 + zq: |Pz|> (2)

i=1 i=1 i=1 i=1
=0 (m(én)lﬂr_l/(m) + nrl_l/d> i

The first inequality follows by applying the bound (1) of Lemma 2 in the primal. For the
second inequality we use the property that each dual hyperplane crosses at most 0(7"1*1/ 4)
cells, so we have, using the Cauchy-Schwarz inequality, and recalling that ¢ < 27,

Hi| = H <" Y IRI= Y IB=06"" "), and

q q 1/2
POILIREE (Z |Pz-l> (20)!/% = O(u! /2420 20),

i=1 i=1

and the second inequality follows.

It remains to count the incidences between points in a cell (simplex) and hyperplanes
that contain the simplex. Any such simplex o is j-dimensional, for some 1 < j < d—1
(zero-dimensional simplices do not arise when r < m/4). When j = d — 1, each such o is
contained in at most one hyperplane of P*, contributing in total at most m’ incidences,
where m’ is the number of dual points contained in such cells. When 1 < 5 < d -2, o
spans (affinely) a j-flat g, which cannot be contained in more than ¢ dual hyperplanes in
P*, for otherwise any line in g would also be contained in these hyperplanes, contrary to
our assumption. Hence the number of resulting incidences is at most £m’”, where m” is
the number of dual points contained in such simplices. In total, all the lower-dimensional
simplices contribute at most ¢m incidences.

Hence, combining this with (2), we get:

mk < I(P,H) < O (mel/%l/?r*l/(?d) + rl’l/dn) + m. (3)

We now balance the first two terms by choosing

€m2 d/(2d—1)
n

For this to make sense r has to be between 1 and m/4. We note that r < 1 when m < (n/¢)'/?
and r > m/4 when m > ¢;n?/¢?, for some constant ¢; that depends on d. In the former case
we take 7 = 1 and the first two terms become O(n). (Note that the choice r = 1 corresponds
to a direct application of Lemma 2.) In the latter case we take r = m/4 and the first two
terms become

O(m2d=D/ @) 1/2,1/2 4 p1=1/dpy — (m(2d71)/(2d)€1/2n1/2) = O(mo),

where both inequalities hold because m > c¢;n/¢%. When neither of these two extreme cases
occurs, the first two terms become O(m(2d-2)/(2d=1) p(d=1)/(2d=1)pd/(2d=1)) = Altogether we
thus get

mk < O (m(2d72)/(2d71)£(d71)/(2d71)nd/(2d71) b+ n) . (4)
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The inequality in (4) implies that either £ = Q(k) = Q (k@4~1=)/(4=D) "since a > d, or

=1pd

where we have distinguished two cases depending on whether the first or the last term in
the right-hand side of (4) dominates. Let ¢’ be the O-notation constant from (5). Since we
assume that m > c¢(n?/k® 4+ n/k), where c is a sufficicently large constant, we get

nt n (0 nd
N T%) = et 71 )

For ¢ > ¢ it simplifies to

O P
k- - koc k - de—l ’
which implies that ¢ = Q(k(2¢=1=®)/(¢=1))  This completes the proof of Theorem 1. <

2.1 Upper bound constructions

First construction. The following construction only handles the case & = d+ 1 (the original
question of Afshani) and certain restricted values of k; it is a variation of a construction of
Elekes [8].

Fix two integer parameters u > v > 1 where v is a suitable constant. Let P be the set of
vertices of the u x - -+ x u x duv integer grid in R?. That is,

P={(i1,...,ia) | 0<i1,...,0q-1 <u—1,0<ig<duv—1}.

We have n := |P| = dudv and we set k := u%"!. Any hyperplane of the form z; =
a1y + agxo + -+ + ag_1T4—1 + aq, with integer coefficients satisfying 0 < a; < v — 1, for
1<i<d-1,and 0 <agq <wuv—1, is trivially seen to be k-rich with respect to P. Hence
the number of k-rich hyperplanes is at least uv?. On the other hand, we have

d d, d*, d
n® _ d*u® v gty
fd+1 w(d+1)(d—1) :

It is easily verified that a (d — 2)-flat A that is not vertical (i.e., not parallel to the x4-axis)
contains at most u%~? points of P, and that a vertical (d — 2)-flat can contain u? 3duv =
O(u?=2) = O(k(4=2/(d=1)) points of P (but not more). Hence, setting £ to be ck(¢=2)/(d=1),
for a suitable coefficient ¢, we have a construction with at least #;1 k-rich hyperplanes,
but no (d — 2)-flat contains more than ck(?=2/(¢=1) points of P. In other words, our bound
is asymptotically worst-case tight for this special setup.

We remark that in this construction we have k = ©(n'~1/9), so one still needs to show
that the bound is tight for other values of k. We leave this as an open problem.

Second construction. A more significant open challenge is to extend the construction to
other values of a in the range d < a < 2d — 1. We make a first step towards this goal, by
presenting, for « = d = 3, another simple construction. Let k > 3, kK > u > 2 be integer
parameters. Consider a set L of u pairwise skew lines in R?, each containing & distinguished
points. Let P be the set of all these points. We have n := |P| = ku. Note that there are
infinitely many k-rich planes with respect to P as any plane containing a single line from L
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is k-rich. On the other hand, it follows from the construction that no line contains strictly
more than k points of P. Indeed, any line not contained in L intersects at most k lines from
L (since u < k), so it can contain at most k points of P. Hence, £ = k, which shows that the
bound in Theorem 1 is tight for d =« =3 and n/2 > k > ni/2.

3 The case of spheres

The analysis can be extended to the case of spheres in a straightforward manner. Specifically,
we have a set P of n points in R?, for d > 3. We say that a sphere ¢ is k-rich with respect
to P if it contains at least k points of P. The goal now is to show that if there are many
k-rich (d — 1)-spheres in R? then there exists a (d — 2)-sphere that contains many points of
P. The concrete statement is:

» Theorem 4. Letd > 3,k > d+ 1 be integers, and let d+ 1 < o < 2d 4+ 1 be a parameter.
Let P be a set of n points in R?, for which the number of k-rich (d — 1)-spheres is at least
c(n™/k® 4+ n/k), for some sufficiently large constant c. Then there exists a (d — 2)-sphere
that contains Q (kR4H1=2)/4) points of P.

Note that if there is a k-rich (d — 2)-sphere, the theorem holds trivially, as we then have
>k and oo > d + 1. Hence we can assume that no (d — 2)-sphere is k-rich, which implies,
as in the case of hyperplanes, that the number of k-rich (d — 1)-spheres is finite.

The proof is an adaptation of the preceding analysis. Let P be a set of n points in R¢,
for d > 3, that has many k-rich (d — 1)-spheres, in the sense of Theorem 4. Let ¢ denote the
maximum number of points of P contained in any (d — 2)-sphere. As before, we seek a lower
bound on /.

Lemma 2 continues to hold in the case of spheres, with more or less the same proof, using
the obvious property that two non-disjoint (d — 1)-spheres intersect in a (d — 2)-sphere or a
single point. To sharpen the bound we proceed as follows.

Let X be the set of all k-rich (d — 1)-spheres, k > d + 1, and recall that we assume that
m = |S| > ¢(n®™/k* + n/k), for some sufficiently large constant ¢ (that depends on d)
and ford+1<a<2d+1.

We apply the standard lifting transform (z1,...,2q) = (21,...,24,27 + - - - + 27), which
transforms (d — 1)-spheres in R to hyperplanes in R%*!. Applying standard duality in R4+,
we get a set ©* of m dual points and a set P* of n dual hyperplanes in R%*!. The lifted-dual
version of the fact that no (d — 2)-sphere, which is lifted to a (d — 1)-flat in R*!, contains
more than ¢ points of P is that no line is contained in more than ¢ hyperplanes of P*. As in
the case of rich hyperplanes, we also know that I(P,X) > mk.

In other words, after this transform we reach the same problem involving points and
hyperplanes in R%*t!, and we can apply the preceding analysis verbatim with d + 1 replacing
d, and obtain the assertion in Theorem 4.

4 Discussion

The problem studied in this work can be considered as a variant in the study of incidences
between points and hyperplanes. As far as we can tell, the results in the previous works that
have studied such problems (e.g., [4, 5]) do not imply our results.

Several open problems arise. For example, are there variants of our assumptions, in d > 4
dimensions, that imply the existence of an even lower-dimensional flat that contain many
points of P? This does not hold without any further assumptions, because we can place the
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points of P in general position in some (d — 2)-flat g, and then there are infinitely many
k-rich hyperplanes, for any k (all hyperplanes that contain g), but no (d — 3)-flat contains
more than d — 2 points of P.

Other problems, already mentioned earlier, are to obtain upper bound constructions,

other than the one in Section 2.1, for other values of k£ and of «.
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