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Abstract
This paper addresses the classical problem of characterizing degree sequences that can be realized by
a bipartite graph. For the simpler variant of the problem, where a partition of the sequence into the
two sides of the bipartite graph is given as part of the input, a complete characterization was given
by Gale and Ryser over 60 years ago. However, the general question, in which both the partition
and the realizing graph need to be determined, is still open. This paper provides an overview of
some of the known results on this problem in interesting special cases, including realizations by
bipartite graphs and bipartite multigraphs.
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1 Introduction

1.1 Background and Motivation
A sequence d = (d1, . . . , dn) of nonnegative integers is graphic if there exists an n-vertex
graph G whose degree sequence deg(G) satisfies deg(G) = d. The question of recognizing
graphic degree sequences was studied extensively in the past six decades. Given a sequence
d, the graphic degree realization (GDR) problem requires deciding whether d is graphic and
constructing a graph G realizing it, if one exists. A complete characterization (implying
also an O(n) time decision algorithm) for graphic degree sequences was given by Erdös and
Gallai [16]. An algorithm that, given a sequence d, generates a realizing graph or proves that
the sequence is not graphic, was given by Havel and Hakimi [19, 22]. This algorithm runs in
time O(

∑
i di), which is optimal1.

A natural variant of the graphic degree realization problem requires the realizing graph
to be bipartite. A sequence admitting a bipartite realizing graph is called bigraphic, and
the corresponding problem is called the bigraphic degree realization (BDR) problem. This
problem has appeared as an open problem over 40 years ago [33], but did not receive a lot of
attention.

1 Note that
∑

i
di = 2m where m is the number of edges in a realizing graph if exists.
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1:2 On Realizing a Single Degree Sequence by a Bipartite Graph

In contrast, the simpler variant where the partition of d is given as part of the input
was studied extensively. Here, the input consists of a partition of d into two sequences,
a = (a1, . . . , ap) and b = (b1, . . . , bq), and it is required to decide whether there exists a
bipartite graph G(A, B, E) such that |A| = p, |B| = q, and the sequences of degrees of the
vertices of A and B are equal to a and b, respectively. Hereafter, we refer to such a pair
(a, b) as a bigraphic degree partition, and to the problem as the given partition version of the
bigraphic degree realization problem, BDRP .

Necessary and sufficient conditions for a pair of sequences (a, b) to be a bigraphic degree
partition were given in 1957 by Gale and Ryser [17, 34]. These conditions yield also a
polynomial time decision algorithm for BDRP , which can be thought of as a variant of the
Havel-Hakimi algorithm for general graphs applied to one side of the partition.

An obvious question is whether the Gale-Ryser conditions can be used for attacking the
(single sequence) bigraphic degree realization problem BDR. One natural strategy is to search
for a bigraphic degree partition for the given sequence d, relying on the fact that d1 < n

is a necessary condition for a sequence d to be graphic (or bigraphic), and for such d, a
partition can be found (if one exists) in polynomial time, since the PARTITION problem is
pseudo-polynomial (cf. [5, 13]). Unfortunately, it is possible that some partitions of d are
bigraphic while other partitions are not (see Example 1 in Sect. 5). Moreover, the number of
different partitions for a given sequence may be exponential in its length (see Examples 2 & 3
in Sect. 5). Still, one may hope that the special structure required by a bigraphic degree
partition may assist us in searching for them. Unfortunately, so far we have not been able
to fully characterize the class of bigraphic degree sequences, or to determine whether the
problem is NP -hard. In this paper we report what we perceive to be some of the more
interesting findings on the problem.

1.2 Results
We present two types of results. We first identify special instances for which one can solve
the BDR problem, i.e., decide whether a given sequence is bigraphic or not and if so, generate
a realizing graph. Second, we describe realizations by bipartite multigraphs (namely, graphs
that allow parallel edges) for special instances where the BDR problem is decided in the
negative or is unsolved. The multigraph realizations are generated with the objective of
minimizing the maximum multiplicity in order to come close to resolving the bipartite
realization problem, i.e., finding approximate realizations.

The notation of graphic and bigraphic sequences is extended to handle multigraphs.
A sequence d of non-negative integers is said to be t-graphic (t-bigraphic) if it admits a
(bipartite) multigraph realizations with maximum multiplicity of at most t parallel edges. If
a bipartite multigraph realization is based on a partition (a, b), we say that partition (a, b) is
t-bigraphic.

In the following, we classify the known results into several categories depending on the
type of instances that are being considered.

Small Instances. The first category of instances concerns cases where the BDR problem can
be resolved exactly due to the fact that the instance is “small” in some sense. In Section 3, we
focus on two such cases. The first is when the given sequence d admits only a small number
of partitions NP art(d). Formally, it is required that NP art(d) = O(nc) for some constant
c. For such sequences, it is possible to exploit the fact that the PARTITION problem is
pseudo-polynomial. To do that, we use an output-sensitive algorithm for generating all the
partitions of d, namely, an algorithm requiring time O(nc′) per partition for some constant
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c′. A special subcase of this case involves sequences with a constant number of distinct
degrees, since a sequence with only a constant number of different degrees can have at most
polynomially many different partitions.

The second case of “small” instances concerns sequences whose maximum degree is
small. Specifically, we show that for every partitionable nonincreasing n-integer sequence
d = (d1, . . . , dn), if d2

1 ≤ t ·
∑

i di/2, then d is a t-bigraphic degree sequence, and moreover,
any partition (a, b) of d is a t-bigraphic degree partition. An alternative (weaker) condition
on d1 is that d2

1 ≤ t · n/2.

High-Low Partitions. We then shift our attention to specific and significant types of
partitions, referred to as High-Low partitions. A High-Low partition of a non-increasing
sequence d has the form HL(d) = (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn) for
some k. Clearly, this pair (H, L) is a balanced partition only if

∑k
i=1 di =

∑n
i=k+1 di.

For High-Low partitions, the first Gale-Ryser conditions are key to the realizability of
the sequence. These conditions state that the largest degree on each side does not exceed
the number of vertices on the other side (formally, d1 ≤ n− k and dk+1 ≤ k). A (balanced)
High-Low partition (H, L) that satisfies the first Gale-Ryser conditions is referred to as a
well-behaved High-Low partition.

The fact that a High-Low partition is well-behaved does not guarantee that it is bigraphic
(see Example 4 in Sect. 5). However, as described in Sect. 4, for a non-increasing sequence
d that admits a well-behaved High-Low partition (H, L), the BDR problem turns out to
be solvable [4]. This follows from the fact that for a sequence d admitting a well-behaved
High-Low partition (H, L), if (H, L) is not bigraphic, then no partition of d is bigraphic,
hence d itself is not bigraphic. It follows that if d has a well-behaved High-Low partition,
then it can be decided in polynomial time whether d is bigraphic or not. Moreover, if d

happens to be bigraphic, a bipartite graph realizing d can be computed in polynomial time
(e.g., using the adapted Havel-Hakimi algorithm described in Section 2).

In Section 4 we also discuss bipartite multigraph realizations based on High-Low partitions.
It turns out that even in case a well-behaved High-Low partition fails to be bigraphic, it is still
2-bigraphic. More generally, defining a parameter t(d) indicating the extent to which HL(d)
violates the first Gale-Ryser conditions, we have the following: If an r-graphic sequence d

admits a High-Low partition HL(d), then HL(d) is t-bigraphic where t = max{t(d), 2r}.

Equal Partitions. We explore another specific and important type of partitions, referred
to as equal partitions. An n-integer sequence d admits an equal partition if d is even,
namely, each integer occurring in d appears in it an even number of times. At the cost
of a slight notational inconsistency, resolved by context, we adopt the compact notation
d = (dn1

1 , . . . , d
nq
q ), where

∑q
i=1 ni = n, for a sequence consisting of ni copies of the integer

di for 1 ≤ i ≤ q. Then the sequence d is even if ni is even for every 1 ≤ i ≤ q. For such a
sequence d, the equal partition is EQP (d) = (a, b) where a = b = (dn1/2

1 , . . . , d
nq/2
q ).

The equal partition does not display a property similar to that of well-behaved High-Low
partitions, i.e., a ”well-behaved” equal partition does not allow us to resolve the BDR problem.
Specifically, there are even sequences d with a well-behaved equal partition EQP (d) = (a, b)
such that (a, b) is not bigraphic but other partitions of d are bigraphic (see Example 5 in
Sect. 5). However, as shown in [3], if the sequence d is graphic and even, then the equal
partition is 2-bigraphic. More generally, for multigraph realizations with bounded maximum
multiplicity, the following holds. Let d be an even and r-graphic degree sequence with equal
partition EQP (d) = (a, b). Then (a, b) is 2r-bigraphic.
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1:4 On Realizing a Single Degree Sequence by a Bipartite Graph

High-Low vs. Equal Partitions. In some sense, the High-Low partition and the equal
partition are two extremes: whereas the High-Low partition tries to differentiate the two
sides as much as possible, taking all the largest elements to one side and all the smallest
elements to the other, the equal partition attempts to equalize the two parts as much as
possible.

Interestingly, there are bigraphic even sequences for which the High-Low partition is
bigraphic while the equal partition is not, or vice versa (see Examples 5 and 6 in Sect. 5).
One might speculate that if d is bigraphic and has both a High-Low partition and an equal
partition, then at least one of them must be bigraphic, but even that turns out to be false
(see Example 1 in Sect. 5).

1.3 Related Work

The two key questions on degree sequences studied in the literature concern identifying
necessary and sufficient conditions for a sequence to be graphic, and developing efficient
algorithms for computing a realizing graph if exists. As mentioned above, Erdös and
Gallai [16] are the first to present a characterization of graphic sequences (several alternative
proofs exist, see [10, 2, 40, 14, 38, 39, 47, 26].) Havel [22] and Hakimi [19] provide a different
characterization, also, implying an algorithm to construct a realizing graph.

Several related questions are considered in the literature: Given a degree sequence d,
(1.) find all the (non-isomorphic) graphs that realize it. (2.) count all its (non-isomorphic)
realizing graphs. (3.) sample a random realization as uniformly as possible. These questions
are extensively studied, see [10, 16, 19, 22, 24, 36, 38, 44, 45, 46]. Applications to network
design, randomized algorithms, social networks [6, 12, 15, 29] and chemical networks [37]
exists. Miller [30] shows that only a subset of the Erdös and Gallai inequalities needs to
be checked in order to decide if a degree sequence is graphic. The literature also includes
surveys on degree sequences, see [41, 42, 43].

Additional intriguing directions include finding characterizations for degree sequences of
specific graph families. To that end, we call a degree sequence potentially P -graphic if it has a
realizing graph having the graph theoretic property P . Rao [33] surveys results (see references
therein) on various properties like k-edge connected, k-vertex connected, hamiltonian and
tournament. As an open problem characterizing potentially bipartite sequences is mentioned,
i.e., the BDR problem.

Moreover, a characterization is known for trees (cf. [18]). The family of planar graphs was
studied to some extend. The existing results provide a characterization for planar graphic
k-sequences, where the difference between the largest and the smallest degree is bounded by
k, for k = 0, 1, 2 [1, 35]. Full characterizations for the degree sequences of threshold graphs
(see [20]), split graphs (see [21]), matrogenic graphs (see [28]) and difference graphs (see [20])
are known. Degree sequences of chordal, interval, and perfect graphs are considered in [9].

As mentioned above, the BDRP was solved in [17, 34] (for an alternative proof see [27]).
As the title “Combinatorial properties of matrices of zeros and ones” suggests, the problem
motivating Ryser [34] has, naturally, a pair of sequences as its input. Sufficient conditions
for a pair of sequences to be bigraphic were studied in [7, 48].

Owens and Trent [31] were interested in the realization problem for multigraphs. Given a
degree sequence, their results provide a multigraph realizations minimizing the total number
of parallel edges or loops (improved algorithms are presented in [32, 25]). The opposite
objective of maximizing the total number of parallel edges is, however, proven to be NP -hard
(see [23]).
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2 Preliminaries

Let H = (V, E) be a multigraph without loops. In this case, E is a multiset. Denote by
EH(v, w) the multiset of edges connecting v, w ∈ V . The maximum multiplicity of H is

MaxMult(H) = max
(v,w)∈E

(|EH(v, w)|).

2.1 Degree Sequences of Graphs and Multigraphs
Let d = (d1, d2, . . . , dn) be a sequence of nonnegative integers in nonincreasing order2. The
volume of d is

∑
d =

∑n
i=1 di. Note that every graphic sequence must have even volume.

We call a sequence with even volume a degree sequence.
The characterization of Erdös and Gallai [16] for graphic degree sequences is as follows.

▶ Theorem 1 (Erdös-Gallai [16]). A degree sequence d = (d1, d2, . . . , dn) is graphic if and
only if

ℓ∑
i=1

di ≤ ℓ(ℓ− 1) +
n∑

i=ℓ+1
min{ℓ, di}, (1)

for ℓ = 1, . . . , n.

We call Equation (1) the ℓ-th Erdös-Gallai inequality EGℓ. Theorem 1 implies an O(n)
algorithm to verify whether a sequence is graphic.

Let r be a positive integer. Then, a degree sequence d is r-graphic if there exists a
multigraph H such that deg(H) = d and MaxMult(H) ≤ r. A characterization for r-graphic
sequences was shown by Chungphaisan [11].

▶ Theorem 2 (Chungphaisan [11]). Let r be a positive integer. Degree sequence d =
(d1, d2, . . . , dn) is r-graphic if and only if

ℓ∑
i=1

di ≤ rℓ(ℓ− 1) +
n∑

i=ℓ+1
min{rℓ, di}, (2)

for ℓ = 1, . . . , n.

The minimum r such that a sequence d is r-graphic can be computed in polynomial time.

2.2 Degree Sequences of Bipartite Graphs and Multigraphs
Let d be a degree sequence such that

∑
d = 2m for some integer m. A block of d is

a subsequence a such that
∑

a = m. The set of all blocks of sequence d is defined as
B(d) := {a ⊂ d |

∑
a = m}. For each a ∈ B(d) there is a disjoint b ∈ B(d) that completes

it to form a partition of d (so that merging them in sorted order yields d). We call such a
pair a, b ∈ B(d) a (balanced) partition of d since

∑
a =

∑
b. Denote the set of all degree

partitions of d by BP(d) = {{a, b} | a, b ∈ B(d), d \ a = b}.
The Gale-Ryser theorem characterizes bigraphic degree partitions.

2 All sequence that we consider are assumed to be in a non-increasing order.
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1:6 On Realizing a Single Degree Sequence by a Bipartite Graph

▶ Theorem 3 (Gale-Ryser [17, 34]). Let d be a degree sequence and partition (a, b) ∈ BP(d)
where a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). The partition (a, b) is bigraphic if and
only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓ, bi} (3)

for ℓ = 1, . . . , p.

We refer to Equation (3) as the ℓ-th Gale-Ryser inequality GRL
ℓ on the left. By symmetry,

the partition (a, b) is bigraphic if and only if
∑ℓ

i=1 bi ≤
∑p

i=1 min{ℓ, ai}, for ℓ = 1, . . . , q. We
refer to this equation as the ℓ-th Gale-Ryser inequality GRR

ℓ on the right.
Let t be a positive integer. A degree sequence d is t-bigraphic if d has a partition (a, b) ∈

BP(d) such that there is a bipartite multigraph H = (A, B, E) such that MaxMult(H) ≤ t,
|A| = |a|, |B| = |b|, and the sequences of degrees of the vertices of A and B are equal to
a and b, respectively. We also say that partition (a, b) is t-bigraphic. Miller [30] cites the
following result of Berge characterizing t-bigraphic partitions.

▶ Theorem 4 (Berge [30]). Consider a positive integer t, a degree sequence d and a partition
(a, b) ∈ BP(d) where a = (a1, . . . , ap) and b = (b1, . . . , bq). The partition (a, b) is t-bigraphic
if and only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓt, bi}, (4)

for ℓ = 1, . . . , p.

2.3 Havel-Hakimi Algorithm for Bipartite Graphs
Kleitman and Wang [26] generalize the Havel-Hakimi theorem implying an algorithm where
the ’pivot’ can be chosen freely. It is folklore that the same approach can be extended to
bigraphic sequences and a given partition. In the following, we formalize this result and
start with introducing some notation. Let d be a degree sequence and (a, b) ∈ BP(d) where
a = (a1, . . . , ap) and b = (b1, . . . , bq). We assume that partition (a, b) satisfies the first
Gale-Ryser conditions, i.e., a1 ≤ q and b1 ≤ p hold. Let i ≤ p be some index. Define

a−i = a \ ai = (a1, . . . , ai−1, ai+1, . . . , ap),

and

RED(b, ai) = (b1 − 1, . . . , bai
− 1, bai+1, . . . , bq).

Moreover, let G = (A, B, E) be a bipartite graph realizing (a, b). For a positive integer
ℓ ≤ |B|, define the subset MaxDeg(B, ℓ) ⊆ B to contain vertices with degrees b1, . . . , bℓ. Ties
are broken arbitrarily to ensure that |MaxDeg(B, ℓ)| = ℓ.

▶ Lemma 5. Let d be a degree sequence and (a, b) ∈ BP(d). Let i ≤ |a| be some index. If
(a, b) is bigraphic, then there is a bipartite graph G = (A, B, E) where vertex v ∈ A has degree
ai and is adjacent to each vertex in MaxDeg(B, ai).

Proof. Let d, (a, b), and index i as in the theorem. Assume that (a, b) is bigraphic, and let
G = (A, B, E) be a bipartite graph realizing (a, b) where vertex v ∈ A has degree ai. Denote
B′ = MaxDeg(B, ai). If v is adjacent to each vertex in B′, we are done. Otherwise there are
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vertices u ∈ B′ and w ∈ B \B′ such that (v, u) /∈ E and (v, w) ∈ E. By definition of B′, we
have that deg(u) ≥ deg(w). It follows that there is a vertex v′ ∈ A such that (v′, u) ∈ E and
(v′, w) /∈ E. Now, we construct a graph G′ = (A, B, E′) by applying an edge flip operation
to G such that G′ is bipartite, realizes (a, b) and v is adjacent to one more vertex in B′

(comparing G and G′). For the edge flip operation, remove edges (v, w), (v′, u) ∈ E and add
edges (v, u), (v′, w) to E′. Verify that G′ satisfies the claimed properties. The operation can
be applied until v is adjacent to each vertex in B′, and the lemma is shown. ◀

▶ Theorem 6. Let d be a degree sequence and (a, b) ∈ BP(d). Also, let i ≤ |a| be some index,
a′ = a−i, and b′ = RED(b, ai). Then, (a, b) is bigraphic if and only if (a′, b′) is bigraphic.

Proof. Let d, (a, b), index i, and (a′, b′) be as in the theorem.
First, assume that (a, b) is bigraphic. Due to Lemma 5 there is a bipartite graph

G = (A, B, E) realizing (a, b) where vertex v ∈ A has degree ai and v is adjacent to vertices
u1, . . . , uai ∈ B having degrees b1, . . . , bai . Let G′ be the result of removing vertex v and
its incident edges from graph G. Verify that G′ realizes (a′, b′), and consequently (a′, b′) is
bigraphic.

Now, assume that (a′, b′) is bigraphic. Let G = (A, B, E) be a bipartite graph realizing
(a′, b′). Construct a graph G′ = (A′, B, E′) from G by adding a new vertex v to A, i.e., A′ =
A∪v. Next, connect vertex v to vertices u1, . . . , uai

∈ B having degrees b1−1, b2−1, . . . , bai
−1.

Verify that G′ is bipartite, vertex v has degree ai, and that G′ realizes (a, b). It follows that
(a, b) is bigraphic. ◀

Similar to the Havel-Hakimi [19, 22] characterization for graphic degree sequences, The-
orem 6 implies a polynomial time algorithm that, given a partition (a, b), constructs a
bipartite graph realizing (a, b) or decides that (a, b) is not bigraphic.

3 Small Instances

3.1 Output-Sensitive Algorithms: Small Number of Partitions
Typically, the running time of an algorithm is measured as a function of the input size.
However, in situations where the output may be very long, it is of interest to bound the time
complexity also as a function of the output size. More explicitly, we say that A is a polynomial
time output-sensitive algorithm for a problem Π if for every input I of length ℓ(I), whose
output Π(I) is of length ℓ(Π(I)), A computes Π(I) in time polynomial in max{ℓ(I), ℓ(Π(I))}.

This notion may be useful in the context of the bigraphic degree realization problem. For
a degree sequence d, let NP art(d) = |BP(d)| denote the number of different block partitions of
d. The BDR problem can be solved on d by enumerating all possible partitions and applying
Theorem 3 for each of them. This may lead to a polynomial time output-sensitive algorithm
for the problem provided that the enumeration procedure requires O(nc) time, for some
constant c, to generate the next partition.

We design an output-sensitive algorithm for BDR based on the natural enumeration
procedure for block partitions. Recall that given an integer sequence d = (d1, d2, . . . , dn),
such that di < n for every i, it is possible to find a block partition of d in polynomial time,
by using the pseudo-polynomial dynamic programming algorithm for the partition problem,
which in this case becomes polynomial. We claim that it is possible to find all block partitions
of d in time O(TP art(n) · n ·NP art(d)), where TP art(n) is the time complexity of the best
pseudo-polynomial time algorithm for deciding the PARTITION problem. To establish this,
we describe a straightforward recursive algorithm. The algorithm uses a procedure DP(d, A)
that receives as input a sequence

SWAT 2022



1:8 On Realizing a Single Degree Sequence by a Bipartite Graph

d = (dn1
1 , dn2

2 , . . . , dnq
q ) (5)

of n = n1 + . . . + nq integers and a subsequence

A = (dj1
1 , . . . , djk

k ) (6)

of d, where 0 ≤ k ≤ q and 0 ≤ ji ≤ ni for i = 1, . . . , k. Setting

B = B(A, d) = (dn1−j1
1 , . . . , dnk−jk

k ), (7)

the procedure decides, in time polynomial in n, if A ∥ B can be completed into a partition
(A′, B′) of d (namely, such that A′ ∥ B′ = d,

∑
A′ =

∑
B′ =

∑
d/2, A ⊆ A′, B ⊆ B′).

Our recursive algorithm, ALG(d, A, j), gets as input a sequence d and a subsequence A as
in Eq. (5) and (6). and 0 ≤ j ≤ nk. Setting B = B(A, d) as in Eq. (7), the algorithm returns
a set P containing all partitions (A′, B′) of d such that A′ ∥ B′ = d,

∑
A′ =

∑
B′ =

∑
d/2,

A ◦ (dj
k+1) ⊆ A′, B ◦ (dnk+1−j

k+1 ) ⊆ B′. The set of all partitions of d is obtained by invoking
ALG(d, ∅, 0) (thinking of d as augmented with an “empty prefix” dn0

0 = 00).

Algorithm 1 Algorithm ALG(d, A).
Input: d, A as in Eq. (5) and (6).

Set B ← B(d, A) as in Eq. (7).

1. Set P ← ∅.
2. Invoke Procedure DP(d, A).
3. If the procedure returned “YES” then do:

a. If k = q then set P ← {(A, B)}.
b. Else (* k < q *)

repeat for jk+1 = 0 to nk+1:
i. Set A′ ← A ◦ (djk+1

k+1 )
Set B′ ← B ◦ (dnk+1−jk+1

k+1 )
ii. Recursively invoke Algorithm ALG(d, A′), which returns Pjk+1 .
iii. Set P ← P ∪ Pjk+1 .

4. Return P.

▶ Observation 7. The algorithm returns all partitions of d.

▶ Observation 8. The algorithm runs in time O(NP art(d) · n · TP art).

Note that the complexity of Algorithm ALG is dominated by the total time spent on
the invocations of Procedure DP. Therefore, to prove Obs. 8, we need to show that when
executing Algorithm ALG on a sequence d, the number of invocations of Procedure DP, KDP,
satisfies

KDP ≤ O(NP art(d) · n) (8)

To see this, let us illustrate the recursive execution of the algorithm on d by an execution
tracing tree TEX consisting of q + 1 levels. Each node in the tree is labeled by a pair (A, R),
where R ∈ {Y, N}, and corresponds to one invocation of Procedure DP. The first entry
in the label corresponds to the parameter A in the invocation, i.e., the root of the tree is
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marked (∅, R), and all nodes on level 1 ≤ k ≤ q are marked (A, R) for some subsequence A

of d as in Eq. (6). The path leading to a node (A, R) in the tree captures the set A in the
corresponding invocation. R = N indicates that there are no partitions of d matching A and
B = B(A, d), whereas R = Y indicates that there is at least one partition of d matching A

and B. See Figure 1.

Figure 1 Illustration of the execution tracing tree TEX of algorithm ALG, in the case where d

has only one partition.

Note that in this tree, every node labeled (A, N) is a leaf, as the algorithm does not
perform any additional recursive calls for this subsequence A. We refer to leaves labeled
(A, N) (respectively, (A, Y )) as N -leaves (resp., Y -leaves), and denote their number by LN

(resp., LY ). Also, denote the number of internal nodes on level k of the tree (which are also
labeled by (A, Y )) by I(k).

Observe that KDP, the number of invocations of Procedure DP during the execution of
Algorithm ALG, equals the number of nodes in TEX , i.e.,

KDP = |V (TEX)| = LY + LN +
q−1∑
k=0

I(k). (9)

To bound this number, we redistribute the “charge” for the invocations of Procedure DP
as follows. For 0 ≤ k ≤ q − 1, we reassign the charge for the invocation at an N -leaf v on
level k + 1 to its parent w on level k. Note that w can be charged by at most nk+1 N -leaves,
since it has nk+1 + 1 children and at least one of them is marked Y . It follows that

KDP ≤ LY +
q−1∑
k=0

I(k) · (nk+1 + 1). (10)

Observe that I(k) ≤ LY for every 0 ≤ k ≤ q − 1, since every internal node has at least one
child labeled (A, Y ). It follows that

KDP ≤ LY + LY ·
q−1∑
k=0

(nk+1 + 1) = LY + LY · (n + k). (11)

Observe also that LY = NP art(d), the number of distinct partitions of d, hence

KDP ≤ NP art(d) · (n + k + 1), (12)

establishing Eq. (8) and proving Obs. 8. We get the following.
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▶ Lemma 9. The BDR problem admits a polynomial time output sensitive algorithm. More
specifically, given an integer sequence d = (d1, d2, . . . , dn), such that di < n for every i, it is
possible to find all block partitions of d in time O(TP art(n)·n·NP art(d)), where TP art(n) is the
time complexity of the best pseudo-polynomial time algorithm for deciding the PARTITION
problem.

Due to Theorem 4, the minimum t such that a given partition is t-bigraphic can be
computed efficiently implying the following result.

▶ Corollary 10. Let d be a degree sequence of length n such that NP art(d) = O(nc) for some
constant c. Then, the minimum t such that d is t-bigraphic can be computed in polynomial
time. As a special case, the BDR problem for d can be solved in polynomial time.

We remark that a useful special subclass consists of sequences with a constant number
of different degrees since such a sequence can have at most polynomially many different
partitions.

▶ Corollary 11. Let p be some constant and d = (dn1
1 , dn2

2 , . . . , d
np
p ) a degree sequence where

n =
∑p

i=1 ni. Then, NP art(d) = O(nc) for some constant c.

3.2 Small Maximum Degree

Towards attacking the realizability problem of general bigraphic sequences, we first look at
the question of bounding the total deviation of a nonincreasing sequence d = (d1, . . . , dn) as
a function of its maximum degree, ∆ = d1.

Burstein and Rubin [8] consider the realization problem for directed graphs with loops,
which is equivalent to BDRP . They give the following sufficient condition for a pair of
sequences to be the in- and out-degrees of a directed graph with loops.

▶ Theorem 12 ([8]). Consider a degree sequence d with a partition (a, b) ∈ BP(d) assuming
that a and b have the same length p. Let

∑
a =

∑
b = pc where c is the average degree. If

a1b1 ≤ pc + 1, then d is realizable by a directed graph with loops.

In the following, their result is extended to bipartite multigraphs with bounded maximum
multiplicity, i.e., to t-bigraphic sequences. We make use of the following straightforward
technical claim.

▶ Observation 13. Consider a nonincreasing integer sequence x = (x1, . . . , xk) of total sum∑
x = X. Then,

∑
(x[ℓ]) ≥ ℓX/k, for every 1 ≤ ℓ ≤ k.

Proof. Since x is nonincreasing, avg(x1, . . . , xℓ) ≥ avg(xℓ+1, . . . , xk), or more formally,
(
∑ℓ

i=1 xi)/ℓ ≥ (
∑k

i=ℓ+1 xi)/(k − ℓ). Consequently,

X =
k∑

i=1
xi =

ℓ∑
i=1

xi +
k∑

i=ℓ+1
xi ≤

ℓ∑
i=1

xi + k − ℓ

ℓ

ℓ∑
i=1

xi = k

ℓ

ℓ∑
i=1

xi ,

implying the claim. ◀
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▶ Lemma 14. Let t be a positive integer. Consider a degree sequence d of length n with a
partition (a, b) ∈ BP(d). If a1 · b1 ≤ t ·

∑
d/2, then (a, b) is t-bigraphic.

Proof. Let t, d and (a, b) as in the lemma. We first verify that the condition a1 · b1 ≤ t
∑

d/2
implies that b1 ≤ t|a|. Towards a contradiction, suppose that |a| < b1/t. It follows that∑

a ≤ a1 · |a| < a1 · b1/t ≤
∑

d/2 =
∑

a,

a contradiction.
Let X =

∑
a =

∑
b =

∑
d/2. By the assumption, a1 · b1 ≤ tX. Note that the conjugate

sequence b̃ is nonincreasing,
∑

(̃b[b1]) = X, and b̃i = 0 for i > b1. By Observation 13,∑
(̃b[ℓt]) ≥ ℓtX/b1 ≥ ℓa1

for every 1 ≤ ℓ ≤ b1/t. As ai ≤ a1 for every i, we also have∑
(a[ℓ]) ≤ ℓa1

for every 1 ≤ ℓ ≤ b1/t. Combined, we have∑
(a[ℓ]) ≤

∑
(̃b[ℓt])

for every 1 ≤ ℓ ≤ b1/t. The same inequality holds also for |a| ≥ ℓ > b1/t, since
∑

(a[ℓ]) ≤∑
a = X =

∑
(̃b[ℓt]). Note that

∑
(̃b[ℓt]) =

∑m
i=1 min{ℓt, bi}. It follows that

∑
(a[ℓ]) ≤∑m

i=1 min{ℓt, bi} for 1 ≤ ℓ ≤ |a|, implying the lemma due to Theorem 4. ◀

Example 7 (see Sect. 5) establishes the following.

▶ Lemma 15. The above bound is tight for some degree sequences.

Lemma 14 is stated for a given partition (BDRP ). For BDR, we immediately have the
following (with the second observation following from the first as

∑
d ≥ n).

▶ Corollary 16. Let t be a positive integer. For every partitionable degree sequence d =
(d1, . . . , dn),
(1.) if d2

1 ≤ t ·
∑

d/2, then any partition (a, b) ∈ BP(d) is t-bigraphic.
(2.) if d2

1 ≤ t · n/2, then any partition (a, b) ∈ BP(d) is t-bigraphic.

This allows us to state the following for bounded-degree sequences whose maximum
degree ∆ is constant.

▶ Corollary 17. Let ∆, t be positive integers. For every n ≥ 2∆2/t, and for every degree
sequence d = (d1, . . . , dn) such that d1 ≤ ∆, if d is partitionable then it is t-bigraphic.

The extreme bound of this type is obtained when the sequence d has a balanced High-Low
partition, in which case we get the following.

▶ Corollary 18. Let t be a positive integer. Consider a degree sequence d = (d1, . . . , dn) with
a balanced High-Low partition (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn). If
d1 · dk+1 ≤ t ·

∑
d/2, then (H, L) is t-bigraphic.
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4 Realizations based on the Equal or High-Low partitions

4.1 Realizations using the High-Low partition
Recall that a well-behaved High-Low partition is a balanced High-Low partition (H, L),
H = (d1, . . . , dk) and L = (dk+1, . . . , dn), which satisfies the first Gale-Ryser conditions, i.e.,
d1 ≤ n− k and dk+1 ≤ k. Such a partition may or may not be bigraphic (see Example 4 in
Sect. 5). However, for a non-increasing sequence d that admits a well-behaved High-Low
partition (H, L), the BDR problem turns out to be solvable [4].

More explicitly, when d admits a well-behaved High-Low partition (H, L), it suffices to
test the (entire collection of) Gale-Ryser conditions on (H, L). The realizability of d is then
decided as follows.

If all the Gale-Ryser conditions are met, then (H, L) is a bigraphic degree partition, hence
d is a bigraphic degree sequence.
Conversely, if one or more of the Gale-Ryser conditions is violated for (H, L), then every
partition of d must violate one Gale-Ryser condition and d has no bigraphic degree
partition. Consequently, d itself is not a bigraphic degree sequence.

Relying on the adapted Havel-Hakimi theorem described in Sect. 2, and on the resulting
algorithm for computing a realizing bipartite graph given a bipartite degree partition, we
conclude the following.

▶ Theorem 19 ([4]). Let d be a degree sequence with a well-behaved High-Low partition. It
can be decided in polynomial time whether d is bigraphic or not. If d happens to be bigraphic,
a bipartite graph realizing d can be computed in polynomial time.

Hereafter, we examine degree sequences that have a balanced High-Low partition but
are not well-behaved. Our goal is to generate bipartite multigraphs with low maximum
multiplicity of parallel edges based on the High-Low partition.

In the following, let r be a positive integer, and let d be an r-graphic degree sequence
with High-Low partition HL(d) = (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn),
for some integer k ∈ [1, n− 1]. We quantify the violation of the first Gale-Ryser conditions
with the following definitions. Let

tH(d) =
⌈

d1
n− k

⌉
and tL(d) =

⌈
dk+1

k

⌉
,

and define t(d) = max{tH(d), tL(d)}. (Note that sequence d has a well-behaved High-Low
partition if t(d) = 1.) First, we observe that tH(d) is bounded for r-graphic sequences.

▶ Lemma 20 ([4]). Let d be an r-graphic degree sequence with High-Low partition HL(d) =
(H, L). Then, tH(d) ≤ 2r.

The main result is the following.

▶ Theorem 21 ([4]). Let d be an r-graphic degree sequence with High-Low partition HL(d) =
(H, L) and let t = max{t(d), 2r}. Then, (H, L) is t-bigraphic.

Example 8 in Sect. 5 shows that the conclusion of Theorem 21 does not hold if the degree
sequence d is not r-graphic. Theorem 21 is complemented by an existential lower bound.
In [4], it is shown that there are degree sequences d with High-Low partition HL(d) such
that t(d) > 1, and d is not t′-bigraphic for any t′ < t(d).

For graphic degree sequences, we state the following result.
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▶ Corollary 22 ([4]). Let d be a graphic degree sequence with High-Low partition (H, L) and
t = t(d).

(i) If t = 1, then (H, L) is 2-bigraphic.
(ii) If t > 1, then (H, L) is t-bigraphic.

In case there is a well-behaved High-Low partition, Theorem 19 implies the following.

▶ Corollary 23 ([4]). Let d be a graphic degree sequence with well-behaved High-Low partition
HL(d) = (H, L). Then, either

(i) (H, L) is bigraphic, or
(ii) d is not bigraphic and (H, L) is 2-bigraphic.

To close this section, we present bounds on tL(d) and tH(d) in case degree sequence d

is r-graphic or bigraphic. The next theorem establishes a bound on tL(d) for an r-graphic
sequence. (A bound on tH(d) is already shown with Lemma 20.)

▶ Theorem 24 ([4]). Let d be an r-graphic sequence with High-Low partition (H, L). Then,

tH(d) ≤ 2r, and tL(d) ≤
⌈

r(k + 1)
2

⌉
.

Examples 9 & 10 in Sect. 5 show that the bound of Theorem 24 is tight and that for
graphic sequences, tL(d) < tH(d) as well as tH(d) < tL(d) can occur.

Finally, the next theorem gives improved bounds for bigraphic degree sequences.

▶ Theorem 25 ([4]). Let d be a bigraphic sequence with High-Low partition HL(d). Then,

tH(d) ≤ 1, and tL(d) ≤
⌈

k + 2 + 1/k

4

⌉
.

4.2 Realizations using the Equal partition
We next consider degree sequences that are even, i.e, where each degree occurs an even
number of times. Let q be a positive integer, and let d be an even degree sequence consisting
of ni copies of the integer di for 1 ≤ i ≤ q where

∑q
i=1 ni = n. We adopt the notation

d = (dn1
1 , . . . , d

nq
q ). As ni is even, for every 1 ≤ i ≤ q, the equal partition EQP (d) = (a, b)

where a = b = (dn1/2
1 , . . . , d

nq/2
q ) is well-defined.

As mentioned earlier, a well-behaved equal partition does not seem to enable resolving the
BDR problem, as there are even sequences d with an equal partition EQP (d) = (a, b) that
satisfies the first Gale-Ryser conditions where (a, b) is not bigraphic but other partitions of d

are bigraphic (see Example 5 in Sect. 5). However, it is shown in [3] that if the sequence d is
graphic and even, then the equal partition is 2-bigraphic. In general, we have the following
result.

▶ Theorem 26 ([3]). Let d be an even and r-graphic degree sequence of length n with equal
partition EQP (d) = (a, b). Then, (a, b) is 2r-bigraphic.

5 Examples

We adopt the notation d = (dn1
1 , . . . , d

nq
q ), where

∑q
i=1 ni = n, for a sequence consisting of

ni copies of the integer di for 1 ≤ i ≤ q.

SWAT 2022



1:14 On Realizing a Single Degree Sequence by a Bipartite Graph

▶ Example 1. Consider the sequence d = (62, 42, 26).
This sequence is even, so it has an equal partition. It also has a balanced High-Low partition,
as well as a third partition:

(i.) a = (6, 4, 23) and b = (6, 4, 23) (the equal partition),
(ii.) a′ = (62, 4) and b′ = (4, 26) (the High-Low partition),
(iii.) a′′ = (62, 22) and b′′ = (42, 24).

However, only the last partition, (a′′, b′′), is bigraphic.

▶ Example 2. Consider the (non-graphic) sequence d = (n − 1, n − 2, . . . , 3, 2, 1) for n

divisible by 4. Split d into length-4 subsequences

B1 = (1, 2, 3, 4), B2 = (5, 6, 7, 8), . . .

For each subsequence Bj = (x, x + 1, x + 2, x + 3) for x = 4(j − 1) + 1, it is possible to place
(x, x + 3) on one side of the partition and (x + 1, x + 2) on the other side. This yields 2n/4

different partitions of d.

▶ Example 3. Consider the graphic sequence d = (n, n, n− 1, n− 1, . . . , 2, 2, 1, 1) of length
2n, for n divisible by 4. Split d into length-8 subsequences

B1 = (1, 1, 2, 2, 3, 3, 4, 4), B2 = (5, 5, 6, 6, 7, 7, 8, 8), . . .

Each subsequence Bj = (x, x, x + 1, x + 1, x + 2, x + 2, x + 3, x + 3), for x = 4(j − 1) + 1, has
three partitions:

(i.) a = (x, x + 1, x + 2, x + 3) and b = (x, x + 1, x + 2, x + 3),
(ii.) a′ = (x, x, x + 3, x + 3) and b′ = (x + 1, x + 1, x + 2, x + 2),
(iii.) a′′ = (x + 1, x + 1, x + 2, x + 2) and b′′ = (x, x, x + 3, x + 3).

This yields 3n/4 different partitions of d.

▶ Example 4. Consider the sequence d = ((6m)m, (2m)5m+1, 12m).
This sequence has a well-behaved High-Low partition

H = ((6m)m, (2m)m+1), L = ((2m)4m, 12m),

but it is not bigraphic.

▶ Example 5. Consider the sequence d = ((k2)k, kk2
, 1k2).

Its High-Low partition

H = ((k2)k, kk/2), L = (kk2−k/2, 1k2
)

is bigraphic, while its equal partition

a = b = ((k2)k/2, kk2/2, 1k2/2)

is not.

▶ Example 6. Consider the sequence d = (kk, 1k2−2k).
Its equal partition

a = b = (kk/2, 1k2/2−k)

is bigraphic, while its High-Low partition

H = (kk−1), L = (k, 1k2−2k)

is not.
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▶ Example 7. Consider the sequence d = (t2k) for positive integers t, k such that t > k.
This sequence has a unique partition

(a, a) ∈ BP(d) where a = (tk).

One can verify that

2(a1 · a1)∑
d

= t

k
≤

⌈
t

k

⌉
.

The partition (a, a) is ⌈t/k⌉-bigraphic but no better.

▶ Example 8. Consider the non-graphic sequence d = ((9m)m−1, 6m + 1, (3m)3m−1, 11) for
some positive integer m. Its High-Low partition is

H = ((9m)m−1, 6m + 1), L = ((3m)3m−1, 11).

We have tH(d) = tL(d) = 3, but the conditions of Theorem 4 for 3-bigraphic degree sequences
are violated. Specifically, the condition for index m− 1 requires

9m(m− 1) ≤ (3m− 1) · 3 · (m− 1) + 1,

which is false.

▶ Example 9. Consider the graphic sequence d = (6, 36) which has exactly one (High-Low)
partition (H, L) with

H = (6, 32), L = (34).

One can verify that tL(d) = 2 and tH(d) = 1.

▶ Example 10. Consider the degree sequence d′ = (( k(k+1)
2 )k+1, 1

k(k+1)
2 (k−1)), for a positive

integer k. To see that d′ is graphic, observe that
∑

d′ is even, and that the (k + 1)th-EG
inequality holds (For such a block sequence this is sufficient, see, e.g., [30]). The (k +1)th-EG
inequality requires

(k(k + 1)/2) · (k + 1) ≤ k(k + 1) + (k(k + 1)/2) · (k − 1),

which trivially holds. Moreover, HL(d′) = (H ′, L′) where

H ′ = ((k(k + 1)
2 )k), L′ = ((k(k + 1)

2 ), 1
k(k+1)

2 (k−1)).

Hence, |H ′| = k and dk+1 = k(k+1)
2 .
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