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Abstract

If a graph G is such that no two adjacent vertices of G have the same degree, we say that G is
locally irregular. In this work we introduce and study the problem of identifying a largest induced
subgraph of a given graph G that is locally irregular. Equivalently, given a graph G, find a subset S

of V (G) with minimum order, such that by deleting the vertices of S from G results in a locally
irregular graph; we denote with I(G) the order of such a set S. We first examine some easy graph
families, namely paths, cycles, trees, complete bipartite and complete graphs. However, we show
that the decision version of the introduced problem is N P-Complete, even for restricted families of
graphs, such as subcubic planar bipartite, or cubic bipartite graphs. We then show that we can not
even approximate an optimal solution within a ratio of O(n1− 1

k ), where k ≥ 1 and n is the order
the graph, unless P=N P, even when the input graph is bipartite.

Then, looking for more positive results, we turn our attention towards computing I(G) through
the lens of parameterised complexity. In particular, we provide two algorithms that compute I(G),
each one considering different parameters. The first one considers the size of the solution k and
the maximum degree ∆ of G with running time (2∆)knO(1), while the second one considers the
treewidth tw and ∆ of G, and has running time ∆2twnO(1). Therefore, we show that the problem
is FPT by both k and tw if the graph has bounded maximum degree ∆. Since these algorithms
are not FPT for graphs with unbounded maximum degree (unless we consider ∆ + k or ∆ + tw as
the parameter), it is natural to wonder if there exists an algorithm that does not include additional
parameters (other than k or tw) in its dependency.

We answer negatively, to this question, by showing that our algorithms are essentially optimal.
In particular, we prove that there is no algorithm that computes I(G) with dependence f(k)no(k) or
f(tw)no(tw), unless the ETH fails.
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1 Introduction

A graph G is said to be locally irregular, if every two adjacent vertices of G have different
degrees. In this paper, we introduce and study the problem of finding a largest locally
irregular induced subgraph of a given graph. This problem is equivalent to identifying what
is the minimum number of vertices that must be deleted from G, so that what remains is a
locally irregular graph.

Locally irregular graphs. The notion of locally irregular graphs was first introduced in [6].
The most interesting aspect of locally irregular graphs, comes from their connection to the
so-called 1-2-3 Conjecture, proposed in [22]. Formally, the 1-2-3 Conjecture states that for
almost every graph, we should be able to place weights from {1, 2, 3} on the edges of that
graph, so that the colouring, that assigns a colour to each vertex equal to the sum of the
weights on its adjacent edges, is a proper vertex-colouring of the graph.

As we said earlier, the 1-2-3 Conjecture seems to have some very interesting links to
locally irregular graphs. An obvious connection is that this conjecture holds for locally
irregular graphs. Indeed, placing weight equal to 1 to all the edges of a locally irregular
graph, suffices to produce a proper vertex-colouring, as each vertex receives a colour equal to
its degree. Furthermore, there have been some steps towards proving that conjecture, which
involve edge-decomposing a graph into a constant number of locally irregular subgraphs,
i.e., given G, find an edge-colouring of G using a constant number of colours, such that each
colour induces a locally irregular subgraph of G. This is the main motivation behind [6], and
it seems to remain interesting enough to attract more attention [8, 25, 30].

Note that the class of locally irregular graphs can be seen as an antonym to that of regular
graphs, i. e., graphs such that all of their vertices have the same degree. It is important to
state here that there exist several alternative such notions. This is mainly due to the very well
known fact that there are no non-trivial irregular graphs, i. e., graphs that do not contain two
vertices (not necessarily adjacent) with the same degree (see [12]). Thus, the literature has
plenty of slightly different definitions of irregularity (see for example [2, 12, 13, 20, 29]). One
way to deal with the nonexistence of irregular graphs, is to define a notion of local irregularity.
Intuitively, instead of demanding for all vertices of a graph to have different degrees, we are
now considering each vertex v separately, and request that the vertices “around” v to verify
some properties of irregularity. For example, the authors of [3] study graphs G such that for
every vertex v of G, no two neighbours of v have the same degree. For an overview of other
interesting notions of irregularity (local or otherwise), we refer the reader to [4].

Largest induced subgraph verifying specific properties. The problem we introduce belongs
in a more general and well studied family of problems, which is about identifying a largest
induced subgraph of a given graph that verifies a specific property Π. That is, given a graph
G = (V, E) and an integer k, is there a set V ′ ⊆ V such that |V ′| ≤ k and G[V \ V ′] has
the specified property Π? In our case, the property Π is “the induced subgraph is locally
irregular”. This generalised problem is indeed classic in graph theory, and it is known as the
Induced Subgraph with Property Π (ISPΠ for short) problem in [21]. Unfortunately,
it was shown in [24], that ISPΠ is a hard problem for any property Π that is hereditary, i. e.,
all induced subgraphs of G verify Π if G itself verifies that property.

However, the ISPΠ problem remains interesting (one could say that it actually becomes
more interesting) even if the property Π is not hereditary. Recently, the authors of [7] studied
the problem for Π being “all vertices of the induced subgraph have odd degree”, which
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clearly is not a hereditary property. Nevertheless, they showed that this is an NP-hard
problem, and they gave an FPT algorithm that solves the problem when parameterised by
the rank-width. Also, the authors of [1, 5, 28] studied the ISPΠ problem, where Π is the
rather natural property “the induced subgraph is d-regular”, where d is an integer given in
the input (recall that a graph is said to be d-regular if all of its vertices have the same degree
d). In particular, in [5] it is shown that finding a largest (connected) induced subgraph that
is d-regular, is NP-hard to approximate, even when restricted on bipartite or planar graphs.
The authors of [5] also provide a linear-time algorithm to solve this problem for graphs with
bounded treewidth. In contrast, the authors of [1] take a more practical approach, as they
focus on solving the problem for the particular values of d = 1 and d = 2, by using bounds
from quadratic programming, Lagrangian relaxation and integer programming.

It is quite clear that, in some sense, the property that interests us lies on the opposite
side of the one studied in [1, 5, 28]. However, both properties, “the induced subgraph is
regular” and “the induced subgraph is locally irregular” are not hereditary. This means that
we do not get an NP-hardness result directly from [24]. Furthermore, the ISPΠ problem
always admits an FPT algorithm, when parameterised by the size of the solution, if Π is
a hereditary property (proven in [11, 23]), but for a non-hereditary one, this is not always
true. Indeed in [28], the authors proved that when considering Π as “the induced subgraph
is regular”, the ISPΠ problem is W[1]-hard when parameterised by the size of the solution.
That is, there should be no f(k)nc time algorithm for this problem, where c is a constant.
For such problems, it is also interesting to see if there exists any algorithm with running
time no(k) or f(k)no(k). The authors of [14, 15, 16] provide techniques that can be used to
strongly indicate the non-existence of such algorithms, by applying them on a variety of
W[1]-hard and W[2]-hard problems, such as the Independent Set and the Dominating
Set, parameterised by the size of their solutions. Usually these lower bounds are shown
under the assumption of a weaker version of the Exponential Time Hypothesis, which
states that SAT can not be solved in time 2o(n+m).

Our contribution. We begin in Section 2 by providing the basic notations and definitions
that are going to be used throughout this paper. In Section 3, we deal with the complexity
of the introduced problem. In particular, we show that the problem belongs in P if the
input graph is a path, cycle, tree, complete bipartite or complete graph. We then prove that
finding the maximum induced locally irregular subgraph of a given graph G is NP-hard,
even if G is restricted to being a subcubic planar bipartite, or a cubic bipartite graph.

As the introduced problem seems to be computationally hard even for restricted families
of graphs, we then investigate its approximability. Unfortunately, we prove in Section 4 that
for any bipartite graph G of order n and k ≥ 1, there can be no polynomial time algorithm
that finds an approximation of I(G) within ratio O(n1− 1

k ), unless P=NP . Nevertheless, we
do provide a (simple) d-approximation algorithm for d-regular bipartite graphs.

We then decide to look into its parameterised complexity. In Section 5, we present two
algorithms that compute I(G), each one considering different parameters. The first considers
the size of the solution k and the maximum degree ∆ of G, and and has running time
(2∆)knO(1), while the second considers the treewidth tw and ∆ of G, and has running time
∆2twnO(1). Unfortunately, these algorithms can be considered as being FPT only if ∆ is part
of the parameter. In Section 5.1, we present two linear fpt-reductions which prove that the
problem is W[2]-hard when parameterised only by the size of the solution and W[1]-hard
when parameterised only by the treewidth. These reductions also show that we can not even
have an algorithm that computes I(G) in time f(k)no(k) or O∗(f(tw)no(tw)), unless the ETH
fails. The O∗ notation is used to suppress polynomial factors in regards to n and tw.

SWAT 2022
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2 Preliminaries

For notions and definitions on graph theory not explained here, we refer the reader to [18].
Let G = (V, E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting

vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created
only by deleting vertices of G. That is, for each edge uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For
any vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E} denote the neighbourhood of v in G, and let
dG(v) = |NG(v)| denote the degree of v in G. We also define NG[v] = NG(v) ∪ {v}. Finally,
for any X ⊆ V , we define NG[X] =

⋃
v∈X NG[v]. Note that, whenever the graph G is clear

from the context, we will omit the subscript and simply write N(v), d(v), N [v] and N [X].
One way to show that a problem can not be approximated within a certain ratio, is

through a gap reduction. The goal of such a reduction is to show that it is NP-hard to
differentiate between instances that have a solution of size ≤ α and those for which any
solution has size > β. If such is the case, then we know that we cannot approximate the
optimal solution within a ratio of β

α , as otherwise we would get that P=NP.
Finally, recall that a fixed parameter-tractable (FPT for short) algorithm, is an algorithm

with running time f(k)nO(1), where f is a computable function and k is the considered
parameter. We also make use of what is known as a linear fpt-reduction, a type of polynomial
reduction such that the size of the parameter of the new problem is linear in regards to the
size of the parameter of the original problem. Observe that if we have a linear fpt-reduction
from a problem Q with parameter k to a problem Q′ with parameter k′ and the assumption
that Q can not be solved in time f(k)no(k)

1 (where n1 is the size of the input of Q), then we
can conclude that there is no f(k′)no(k′)

2 time algorithm for Q (where n2 is the size of the
input of Q).

Let G = (V, E) be a graph. We say that G is locally irregular if for every edge uv ∈ E, we
have d(u) ̸= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any set
S that has this property is said to be an irregulator of G. For short, we will say that S is an
ir(G). Moreover, let I(G) be the minimum order that any ir(G) can have. We will say that
S is a minimum irregulator of G, for short S is an ir∗(G), if S is an ir(G) and |S| = I(G).

We also define the following notion, which generalises ir(G). Let G = (V, E) be a graph,
S, X ⊆ V and let G′ = G[V \ S]. Now, let S ⊆ V be such that, for each two neighbouring
vertices u, v in X \ S, we have that dG′(u) ̸= dG′(v); any set S that has this property is said
to be an irregulator of X in G, for short ir(G, X). We define the notions of ir∗(G, X) and
I(G, X) analogously to the previous definitions.

We will now provide some lemmas and an observation that will be useful throughout this
paper. As the proofs of the following lemmas mainly follow from the definitions, we chose to
only include them in the full version of this paper. In the three lemmas below, we investigate
the relationship between I(G) and I(G, X).

▶ Lemma 1. Let G = (V, E) be a graph and let X ⊆ V . Then I(G, X) ≤ I(G).

▶ Lemma 2. Let G = (V, E) be a graph and S, X ⊆ V such that S is an ir∗(G, X). Then,
S ⊆ N [X] and I(G, X) = I(G[N [X]], X).

▶ Lemma 3. Let G = (V, E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi] ∩N [Xj ] = ∅
for every 1 ≤ i < j ≤ n. Then

∑n
i=1 I(G, Xi) ≤ I(G).

▶ Lemma 4. Let G = (V, E) be a graph, X be a subset of V and S be an ir(G). The set
S ∩N [X] is an ir(G, X) and an ir(G[N [X]], X).

The following, almost trivial, observation, will be useful throughout the rest of the paper.
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Figure 1 The gadget used in the proof of Theorem 7. The white and black vertices are used to
denote vertices belonging to different bipartitions.

▶ Observation 5. Let G = (V, E) be a graph and S be an ir(G). Then, for each edge uv ∈ E,
if d(u) = d(v), then S contains at least one vertex in N [{u, v}]. Additionally, for a set
X ⊆ V , let S∗ be an ir(G[N [X]], X). Then for each edge uv ∈ E(G[X]), if d(u) = d(v),
then S∗ contains at least one vertex in N [{u, v}].

3 (Classic) complexity

In this section, we deal with the complexity of the problem we introduced. In the following
theorem, we sum up all the families of graphs for which we prove that I(G) is computed in
polynomial time.

▶ Theorem 6. Let G be a graph. If G is a path, cycle, tree, complete bipartite or a complete
graph, then the problem of computing I(G) is in P.

The result for the case of paths and cycles is proven through induction on the order of
the graph. Then, complete and complete bipartite graphs have a rather trivial structure
in regards to the problem studied here. Finally, the polynomial algorithm for trees follows
directly from upcoming Theorem 14.

3.1 N P-Hard Cases
We now show that finding a minimum irregulator of a graph is NP-hard. Interestingly,
this remains true even for quite restricted families of graphs, such as cubic (i. e., 3-regular)
bipartite, and subcubic planar bipartite graphs, i. e., planar bipartite graphs of maximum
degree at most 3.

▶ Theorem 7. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even when
G is a planar bipartite graph with maximum degree ∆ ≤ 3.

Proof. Since the problem is clearly in NP , we will focus on proving it is also NP-hard. The
reduction is from the Vertex Cover problem, which remains NP-complete when restricted
to planar cubic graphs [27]. In that problem, a planar cubic graph G and an integer k ≥ 1
are given as an input. The question is, whether there exists a vertex cover of G of order at
most k. That is, whether there exists a set V C ⊆ V (G) such that for every edge uv ∈ E(G),
at least one of u and v belongs in V C and |V C| ≤ k.

Let G′ be a planar cubic graph and k ≥ 1 given as input for Vertex Cover. Let
|E(G′)| = m. We will construct a planar bipartite graph G as follows; we start with the
graph G′, and modify it by using multiple copies of the gadget, illustrated in Figure 1. Note
that we will be following the naming convention illustrated in Figure 1 whenever we talk
about the vertices of our gadgets. When we say that we attach a copy H of the gadget to
the vertices v and v′ of G′, we mean that we add H to G′, and we identify the vertices w1
and w2 to the vertices v and v′ respectively. Now, for each edge vv′ ∈ E(G′), attach one

SWAT 2022
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v2

v1

v3

(a) G′

v3

v2

v1
r

u

(b) G

Figure 2 The construction in the proof of Theorem 7. The graph G′ is the initial planar cubic
graph, and G is the graph built during our reduction. In G, the white and black vertices are used to
denote vertices belonging to different bipartitions.

copy H of the gadget to the vertices v and v′, and then delete the edge vv′ (see Figure 2).
Clearly this construction is achieved in linear time (we have added m copies of the gadget).
Note also that the resulting graph G has ∆(G) = 3 and that the planarity of G′ is preserved
since G is constructed by essentially subdividing the edges of G′ and adding a tree pending
from each new vertex. Also, G is bipartite. Indeed, observe that after removing the edges
of E(G′), the vertices of V (G′) form an independent set of G. Furthermore, the gadget is
bipartite, and the vertices w1, w2 (that have been identified with vertices of V (G′)) belong
to the same bipartition (in the gadget). Finally, for any 1 ≤ i ≤ m, let Hi be the ith copy of
the gadget attached to vertices of G′. We will also be using the vertices ri and ui to denote
the copies of the vertices r and u (respectively) that also belong to Hi.

We are now ready to show that the minimum vertex cover of G′ has size k′ if and only if
I(G) = k′.

Let V C be a minimum vertex cover of G′ and |V C| = k′. We will show that the set
S = V C is an ir(G). Let G∗ = G[V (G) \ S]. First, note that S contains only vertices of G′.
Thus, for each i, the vertices of Hi except from ri, which also remain in G∗, have the same
degree in G′ and in G∗. Also note that each vertex of G′ is adjacent only to copies of r. It
follows that it suffices to only consider the vertices ri to show that V C is an ir(G). Now,
for any 1 ≤ i ≤ m, consider the vertex ri. Since V C is a vertex cover of G′, for each edge
vv′ ∈ E(G′), V C contains at least one of v and v′. It follows that dG∗(ri) ≤ 2. Note also
that NG∗(ri) contains the vertex ui ∈ V (Hi) and possibly one vertex v ∈ V (G′).

Also, since we only delete vertices in V (Hi)∩ V (G′), we have that dG∗(ui) = 3 > dG∗(ri).
In the case where NG∗(ri) also contains a vertex v ∈ V (G′), the vertex v is adjacent only to
vertices which do not belong in V (G′). Thus, dG∗(v) = dG(v) = 3 > dG∗(ri). It follows that
ri has a different degree from all of its neighbours and that V C is an ir(G).

Now, we prove that if I(G) = k′ then there exists a vertex cover of size at most k′. Assume
that I(G) = k′ and let S be an ir∗(G). Observe that since S is an ir∗(G), S contains at least
one vertex of Hi (for each 1 ≤ i ≤ m). Let Xi = V (Hi)∩ V (G′). To construct a vertex cover
V C of G′ with |V C| ≤ k′, we work as follows. For each 1 ≤ i ≤ m:
1. for each vertex v ∈ Xi, if v ∈ S then put v in V C. Then,
2. if S ∩Xi = ∅, put any one of the two vertices of Xi in V C.
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Observe now that any vertex that is added to V C during step 1. of the above procedure,
also belongs to S and any vertex that is added during step 2. of the above procedure
corresponds to at least one vertex in S. It follows that |V C| ≤ k′. Also note that V C

contains at least one vertex of Xi, for each i, and that for each uv ∈ E(G′), there exists an i

such that V (Xi) = {u, v}. Thus V C is indeed a vertex cover of G′.
Therefore G′ has a minimum vertex cover of size k′ if and only if I(G) = k′. To complete

the proof note that deciding if I(G) = k′ < k for a given k, answers the question whether G′

has a vertex cover of size less than k or not. ◀

In the following theorem we show that calculating I(G) is NP-hard even if G is a cubic
bipartite graph.

▶ Theorem 8. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete even in
cubic bipartite graphs.

This theorem is shown through a reduction from the 2-Balanced 3-SAT, which was
proven to be NP-complete in [9].

4 (In)approximability

In the previous section we showed that computing I(G) is NP-hard, even for graphs G

belonging to quite restricted families of graphs. So the natural question to pose next, which
we investigate in this section, is whether we can approximate I(G). Unfortunately, most of
the results we present below are once again negative.

We start with a corollary that follows from the proof of Theorem 7 and the inapproxim-
ability of Vertex Cover in cubic graphs [17]:

▶ Corollary 9. Given a graph G, it is NP-hard to approximate I(G) to within a ratio of 100
99 ,

even if G is bipartite and ∆(G) = 3.

Now, we are going to show that there can be no algorithm that approximates I(G) to
within any decent ratio in polynomial time, unless P=NP, even if G is a bipartite graph
(with no restriction on its maximum degree).

▶ Theorem 10. Let G be a bipartite graph of order N and k ∈ N be a constant such that
k ≥ 1. It is NP-hard to approximate I(G) to within O(N1− 1

k ).

Proof. The proof is by a gap producing reduction from 2-Balanced 3-SAT, which was
proven to be NP-complete in [9]. In that problem, a 3CNF formula F is given as an input,
comprised by a set C of clauses over a set of Boolean variables X. In particular, we have
that each clause contains exactly 3 literals, and each variable x ∈ X appears in F exactly
twice as a positive and twice as a negative literal. The question is, whether there exists a
truth assignment to the variables of X satisfying F .

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that is
given as input to the 2-Balanced 3-SAT problem. Let 2k = k′ + 1. Based on the instance
F , we are going to construct a bipartite graph G = (V, E) where |V | = O(nk′+1) and

I(G) ≤ n if F is satisfiable
I(G) > nk′ otherwise.

To construct G = (V, E), we start with the following graph: for each literal xi (¬xi resp.)
in F , add a literal vertex vi (v′

i resp.) in V , and for each clause Cj of F , add a clause vertex
cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′

icj resp.) if the literal xi (¬xi resp.)

SWAT 2022
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(b) The constructed graph G for nk′ = z

Figure 3 The construction in the proof of Theorem 10. In subfigure (b), we illustrate how each
pair of literal vertices is connected to the rest of the graph. Whenever there is an upper index
1 ≤ l ≤ nk′

on a vertex, it is used to denote the lth copy of that vertex. The dashed lines are used
to represent the edges between the literal and the clause vertices.

appears in Cj according to F . Observe that the resulting graph is bipartite, for each clause
vertex c we have d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F , each
variable appears twice as a positive and twice as a negative literal). To finish the construction
of G, we will make use of the gadget shown in Figure 3(a), as well as some copies of S5, the
star on 5 vertices. When we say that we attach a copy H of the gadget to the vertices vi

and v′
i (for some 1 ≤ i ≤ n), we mean that we add H to G, and we identify the vertices w1

and w2 to the vertices vi and v′
i respectively. Now:

for each 1 ≤ i ≤ n, we attach nk′ copies of the gadget to the vertices vi and v′
i of G.

For convenience, we will give unique names to the vertices corresponding to each gadget
added that way. So, the vertex ul

i (for 1 ≤ l ≤ nk′ and 1 ≤ i ≤ n) is used to represent
the vertex u of the lth copy of the gadget attached to vi and v′

i, and ul
i,1 (ul

i,2 resp.) is
used to denote the vertex u1 (u2 resp.) of that same gadget. Then,
for each 1 ≤ j ≤ m, we add nk′ − 1 copies of the clause vertex cj to G, each one of these
copies being adjacent to the same literal vertices as cj . For 1 ≤ l ≤ nk′ , the vertex cl

j is
the lth copy of cj . Finally,
for each 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , we add a copy of the star on 5 vertices S5 to G and
identify any degree-1 vertex of S5 to cl

j . Let sl
j be the neighbour of cl

j that also belongs
to a copy of S5.

Observe that the resulting graph G (illustrated in Figure 3(b)) remains bipartite and that
this construction is achieved in polynomial time in regards to n + m.

From the construction of G, we know that for every 1 ≤ i ≤ n, d(vi) = d(v′
i) = Θ(nk′).

So, for sufficiently large n, the only pairs of adjacent vertices of G that have the same degrees
are either the vertices ul

i and ul
i,2, or the vertices cl

j and sl
j (for every 1 ≤ i ≤ n, 1 ≤ l ≤ nk′

and 1 ≤ j ≤ m).
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First, let F be a satisfiable formula and let t be a satisfying assignment of F . Also, let S

be the set of literal vertices vi (v′
i resp.) such that the corresponding literals xi (¬xi resp.)

are assigned value true by t. Clearly |S| = n. We will also show that S is an ir(G). Consider
the graph G′ = G[V \ S]. Now, for any 1 ≤ i ≤ n, we have that either vi or v′

i, say vi,
belongs to the vertices of G′. Now for every 1 ≤ l ≤ nk, we have that dG′(ul

i) = 3, while
dG′(ul

i,1) = 2 and dG′(ul
i,2) = 4 (since none of the neighbours of ul

i,1 and ul
i,2 belongs to S).

Also, for every 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , since t is a satisfying assignment of F , N(cl
j)

contains at least one vertex in S. It follows that dG′(cl
j) = 3 < 4 = dG′(sl

j). Finally, since S

does not contain any neighbours of vi, we have that dG′(vi) = dG(vi) = O(nk′). It follows
that S is an ir(G) and thus that I(G) ≤ n.

Now let F be a non-satisfiable formula and assume that there exists an S that is an ir(G)
with |S| ≤ nk′ . As usual, let G′ = G[V \ S]. Then:
1. For every 1 ≤ j ≤ m, there exists a literal vertex v such that v ∈ N(cl

j) for every
1 ≤ l ≤ nk′ . Assume that this is not true for a specific j. Then, since dG(cl

j) = dG(sl
j) = 4,

for every 1 ≤ l ≤ nk′ , we have that S contains at least one vertex in N [{cl
j , sl

j}], which
does not belong to the literal vertices. That is, S contains at least one (non-literal) vertex
for each one of the nk′ copies of cj . Observe also that even if this is the case, S would
also have to contain at least one more vertex to, for example, stop u1

i,2 and u1
i , from

having the same degree in G′. It follows that |S| > nk′ , which is a contradiction.
2. For every 1 ≤ i ≤ n, S does not contain both vi and v′

i. Assume this is not true for a
specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul

i) = dG′(ul
i,1) = 2, unless S

also contains an additional vertex of the gadgets attached to vi and v′
i, for each one of

the nk′ such gadgets. It follows that |S| ≥ nk′ . Since we have also assumed that for a
specific i, both vi and v′

i belong to S, we have that |S| > nk′ , a contradiction.
3. For every 1 ≤ i ≤ n, S contains at least one of vi and v′

i. Assume this is not true for
a specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul

i) = dG′(ul
i,2) = 4, unless

S also contains an additional vertex of the gadgets attached to vi and v′
i, for each one

of the nk′ such gadgets. Even if this is the case, S would also have to contain at least
one more vertex to, for example, stop c1

1 and S1
1 from having the same degree in G′. It

follows that |S| > nk′ , which is a contradiction.

So from items 2. and 3. above, it follows that for each 1 ≤ i ≤ n, S contains exactly one
of vi and v′

i. Now consider the following truth assignment: we assign the value true to every
variable xi if the corresponding literal vertex vi belongs in S, and value false to every other
variable. Now, from item 1. above, it follows that each clause Cj contains either a positive
literal xi which has been set to true, or a negative literal ¬xi which has been set to false.
Thus F is satisfied, which is a contradiction.

Up to this point, we have shown that there exists a graph G = (V, E) with |V (G)| =
N = O(nk′+1) where

I(G) ≤ n if F is satisfiable
I(G) > nk′ otherwise.

Therefore, we have that I(G) is not O(nk′−1) approximable in polynomial time unless P=NP .
Now, since N = |V (G)| = Θ(nk′+1) and 2k = k′ + 1 we have O(nk′−1) = O(N

k′−1
k′+1 ) =

O(N1− 2
k′+1 ) = O(N1− 1

k ). This ends the proof of this theorem. ◀

Now, we consider the case where G is regular bipartite graph. Below we present an
upper bound to the size of I(G). This upper bound is then used to obtain a (simple)
∆-approximation of an optimal solution.
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▶ Theorem 11. For any d-regular bipartite graph G = (L, R, E) of order n we have that
I(G) ≥ n/2d.

Now recall that in any bipartite graph G, any bipartition of G is a vertex cover of G.
Also observe that any vertex cover of a graph G, is also an irregulator of G. Indeed, deleting
the vertices of any vertex cover of G, leaves us with an independent set, which is locally
irregular. The next corollary follows from these observations and Theorem 11:

▶ Corollary 12. For any d-regular bipartite graph G = (L, R, E), any of the sets L and R is
a d-approximation of ir∗(G).

5 Parameterised complexity

As the problem of computing a minimal irregulator of a given graph G seems to be rather
hard to solve, and even to approximate, we focused our efforts towards finding parameterised
algorithms that can solve it. First we present an FPT algorithm that calculates I(G) when
parameterised by the size of the solution and ∆, the maximum degree of the graph.

▶ Theorem 13. For a given graph G = (V, E) with |V | = n and maximum degree ∆, and
for k ∈ N, there exists an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).

The main tool we use to show Theorem 13 is Observation 5. Let G = (V, E) be a graph
and k ∈ N. A high level description of our recursive algorithm is as follows: first find an edge
uv ∈ E such that d(u) = d(v). Now, assume that we are making a correct guess of a vertex
w ∈ N [{u, v}] ∩ S where S is a minimum irregulator. Then, Gw = G[V \ w] must have a
minimum irregulator of size |S| − 1. Note that if we repeat the above process and we make
correct guesses, we are going to stop after deleting |S| vertices or when we have deleted k

vertices (meaning that I(G) > k ). Then, by considering all the 2∆ choices for w, we have a
running time of (2∆)k.

We now turn our attention towards graphs that are “close to being trees”, that is graphs
of bounded treewidth. In particular, we provide an FPT algorithm that finds a minimum
irregulator of G, when parameterised by the treewidth of the input graph and by ∆.

▶ Theorem 14. For a given a graph G = (V, E) and a nice tree decomposition of G, there
exists an algorithm that returns I(G) in time ∆2twnO(1), where tw is the treewidth of the
given decomposition and ∆ is the maximum degree of G.

The idea of the proof of Theorem 14, is based on the classic dynamic programming
technique on the given nice tree decomposition of G. Let us denote by Bc the bag of vertices
of a node c of a nice tree decomposition of G. In essence, for each node c of the tree
decomposition, we store the necessary information that allows us to find all the sets that
are ir(G, B↓

c \Bc), where B↓
c denotes the vertices appearing in a sub-tree rooted at c. Then

for the root r of the tree decomposition, we can check which of the stored sets that are
ir(G, B↓

r \Br), are also ir(G); the minimum such set is an ir∗(G).
The running time of our algorithm follows from the size of the tables we keep for these

sets. In particular, for each set stored for a node c, for each vertex v of Bc, we keep the
degree that we want v to have in the final, locally irregular graph (i. e. the graph G after the
removal of ir(G)) and the degree that v has in G[B↓

c \ S]. This gives us ∆2 choices for each
vertex of Bc.

It is worth noting that the algorithms of Theorem 13 and 14 can be used in order to also
return an ir∗(G).
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5.1 W-Hardness
Observe that both of the algorithms presented above, have to consider ∆ as part of the
parameter if they are to be considered as FPT. The natural question to ask at this point is
whether we can have an FPT algorithm, when parameterised only by the size of the solution,
or the treewidth of the input graph. In this section, we give a strong indication towards
the negative answer for both cases, proving that, in some sense, the algorithms provided in
Section 5 are optimal.

▶ Theorem 15. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when
parameterised by k.

The proof of Theorem 15 is done through a linear-fpt reduction from the Dominating
Set problem, when parameterised by the size of the solution.

▶ Theorem 16. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k is
W [1]-hard when parameterised by tw.

Proof. We will present a reduction from the List Colouring problem: the input consists
of a graph H = (V, E) and a list function L : V → P({1, . . . , k}) that specifies the available
colours for each vertex u ∈ V . The goal is to find a proper colouring c : V → {1, . . . , k} such
that c(u) ∈ L(u) for all u ∈ V . When such a colouring exists, we say that (H, L) is a yes-
instance of List Colouring. This problem is known to be W [1]-hard when parameterised
by the treewidth of H [19].

Now, starting from an instance (H, L) of List Colouring, we will construct a graph
G = (V ′, E′) (see Figure 4 (a)) such that:
|V ′| = O(|V |6),
tw(G) = tw(H) and
I(G) = nk if and only if (H, L) is a yes-instance of List Colouring.

Before we start with the construction of G, let us give the following observation.

▶ Observation 17. Let (H, L) be an instance of List Colouring where H = (V, E) and
there exists a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \ {u}], L′),
where L′(v) = L(v) for all v ∈ V \ {u}, is a yes-instance of List Colouring if and only if
(H, L) is a yes-instance of List Colouring.

Indeed, observe that for any vertex u ∈ V , by any proper colouring c of H, c(u) only has to
avoid d(u) colours. Since |L(u)| > d(u), we will always have a spare colour to use on u that
belongs in L(u). From the previous observation, we can assume that in our instance, for all
u ∈ V , we have |L(u)| ≤ d(u). Furthermore, we can deduce that k ≤ n(n− 1) as the degree
of any vertex is at most n− 1. Finally, let us denote by L(u) the set {0, 1, . . . , k} \ L(u). It
is important to note here that for every u ∈ V , the list L(u) contains at least one element
belonging in {1, . . . , k}. It follows that L(u) also contains at least one element, the colour 0.
To sum up, we have that 1 ≤ |L(u)| ≤ k.

Now, we present the three gadgets we are going to use in the construction of G. First,
we have the “forbidden colour gadget” Hi, which is a star with i leaves (see Figure 4(c)).
When we say that we attach a copy of Hi on a vertex v of a graph G, we mean that we
add Hi to G and we identify the vertices v and w2 (where here and in what follows, we are
using the naming illustrated in Figure 4 when talking about the vertices w1, w2, w3, v1 and
v2). The second, will be the “degree gadget”, which is presented in Figure 4(b). Finally, we
have the “horn gadget”, which is a path on three vertices (see Figure 4(d)). We define the
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u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U

(a) The graph G

m horn gadgets

. . .

Hk1

. . .

Hk2

. . .

Hkl

. . .

. . .

. . .

l forbidden colour gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden colour gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 4 In (a) we illustrate the construction of G, as it is described in the proof of Theorem 16.
The black vertex represents every vertex that belongs in U . For the specific vertex u′ shown in
the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci for all i = 1, . . . , l. We also have that
m = 2n3 − dG(u) − k − l.

operation of attaching these two gadgets on a vertex v of a graph G similarly to how we
defined this operation for the forbidden colour gadget (each time using the appropriate w1
or w3, according to if it is a degree or a horn gadget respectively).

In order to construct G, we start from a copy of H. Let us use G|H to denote the copy of
H that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′. We will call the
set of these vertices U . That is, U = {v ∈ V (G|H)}. Then, we are going to attach several
copies of each gadget to u′, for each vertex u′ ∈ U . We start by attaching k copies of the
degree gadget to each vertex u′ ∈ U . Then, for each u ∈ V and each i ∈ L(u), we attach one
copy of the forbidden colour gadget H2n3−i to the vertex u′. Finally, for each u′ ∈ U , we
attach to u′ as many copies of the horn gadget as are needed, in order to have dG(u′) = 2n3.

Before we continue, observe that, for sufficiently large n, we have attached more than n3

horn gadgets to each vertex of U . Indeed, before attaching the horn gadgets, each vertex
u′ ∈ U has dG(u) ≤ n − 1 neighbours in U , k neighbours from the degree gadgets and at
most k < n2 neighbours from the forbidden colour gadgets (recall that |L(u)| ≤ k). We will
now show that |V ′| = O(n6). For that purpose, let us calculate the number of vertices in
all the gadgets attached to a single vertex u′ ∈ U . First, we have 5k < 5n2 vertices in the
degree gadgets. Then, we have less than 4n3 vertices in the horn gadgets (as we have less
that 2n3 such gadgets). Finally, we have at most k < n2 forbidden colour gadgets, each
one of which containing at most 2n3 vertices. So, for each vertex u′ ∈ U , we have at most
2n5 + 4n3 + 5n2 vertices in the gadgets attached to u′. Therefore, we have |V ′| = O(n6).

Before we prove that I(G) ≤ nk if and only if (H, L) is a yes-instance of List Colouring,
we need to argue about two things. First, about the treewidth of the graph G and second,
about the minimum value of I(G). Since our construction only attaches trees to each
vertex of G|H (and recall that a tree has a treewidth of 1 by definition), we know that
tw(G) = tw(G|H) = tw(H). As for I(G), we will show that it has to be at least equal to nk.
For that purpose we have the following two claims.

▷ Claim 18. Let S be an ir(G) and S ∩ U ̸= ∅. Then |S| > n3.

▷ Claim 19. Let S be an ir(G) and S ∩ U = ∅. Then |S| ≥ nk. In particular, S includes at
least one vertex from each copy of the degree gadget used in the construction of G.
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By the previous two claims, we conclude that I(G) ≥ nk. We are ready to show that, if
(H, L) is a yes-instance of List Colouring, then there exists a set S ⊆ V ′ such that S is
an ir(G) and |S| = nk. Let c be a proper colouring of H such that c(u) ∈ L(u) for all u ∈ V .
We will construct an ir(G) as follows. For each u ∈ V , we partition (arbitrarily) the k degree
gadgets attached to the vertex u′ to c(u) “good” and (k − c(u)) “bad” degree gadgets. For
each good degree gadget, we add the copy of the vertex v1 of that gadget to S and for each
bad degree gadget we add the copy of the vertex v2 of that gadget to S. This process creates
a set S of size nk, as it includes k distinguished vertices for each vertex u′ ∈ U .

Now we need to show that S is an ir(G). Let G′ = G[V ′ \ S]; observe that each vertex
u′ ∈ U has degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree as any
of its neighbours that do not belong in U . Indeed, for every v ∈ NG′(u′) \ U , we have that
dG′(v) ∈ {1, 2} (if v belongs to a bad degree or a horn gadget) or dG′(v) ∈ {2n3−i : i ∈ L(u)}
(if v belongs to a forbidden colour gadget). Furthermore, since c is a proper colouring of H,
for all uv ∈ E, we have that c(u) ̸= c(v). This gives us that for any edge u′v′ ∈ E′ with
u′, v′ ∈ U , we have that dG′(u′) = 2n3 − c(u) ̸= 2n3 − c(v) = dG′(v′).

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that
dG′(u′) = dG′(w). It remains to show that, in G′, there exist no two vertices belonging to the
same gadget, which have the same degrees. First of all, we have that S does not contain any
vertex from any of the horn and forbidden colour gadgets, nor from U . Thus any adjacent
vertices belonging to these gadgets have different degrees. Last, it remains to check the
vertices of the degree gadgets. Observe that for any copy of the degree gadget, S contains
either v1 or v2. In both cases, after the deletion of the vertices of S, any adjacent vertices
belonging to any degree gadget have different degrees. Therefore, S is an ir(G) of order nk

and since I(G) ≥ nk we have that I(G) = nk.
Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S is an

ir∗(G) and |S| = nk. Let G′ = (V ′′, E′′) be the graph G[V ′ \ S]. It follows from Claim 18
and Claim 19, that S ∩ U = ∅ and that S contains exactly one vertex from each copy of
the degree gadget in G and no other vertices. Consider now the colouring c of H defined as
c(u) = 2n3 − dG′(u′). We will show that c is a proper colouring for H and that c(u) ∈ L(u).
First, we have that c is a proper colouring of H. Indeed, for any edge uv ∈ E, there exists an
edge u′v′ ∈ E′′ (since S∩U = ∅). Since G′ is locally irregular we have that dG′(u′) ̸= dG′(v′),
an thus c(u) ̸= c(v). It remains to show that c(u) ∈ L(u) for all u ∈ V . First observe that,
during the construction of G, we attached exactly k degree gadgets to each u′ ∈ U . It follows
that dG′(u′) = 2n3 − j and c(u) = j for a j ∈ {0, 1, . . . , k}. It is sufficient to show that
j /∈ L(u). Since S contains only vertices from the copies of the degree gadgets, we have that
each u′ ∈ U has exactly one neighbour of degree 2n3 − i for each i ∈ L(u) (this neighbour
is a vertex of the Hi forbidden colour gadget that was attached to u′). Furthermore, for
all u′ ∈ U , since G′ is locally irregular, we have that dG′(u′) ̸= 2n3 − i for all i ∈ L(u).
Equivalently, dG′(u′) = 2n3 − j for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V . ◀

Note that the reductions presented in the proofs of Theorem 15 and Theorem 16 are
linear fpt-reductions. Additionally we know that

there is no algorithm that answers if a graph G of order n has a Dominating Set of size
at most k in time f(k)no(k) unless the ETH fails [26] and
there is no algorithm that answers if an instance (G, L) of the List Colouring is a
yes-instance in time O∗(f(tw)no(tw)) unless the ETH fails [19].

So, the following corollary holds.
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▶ Corollary 20. Let G be a graph of order n and assume the ETH. For k ∈ N, there is no
algorithm that decides if I(G) ≤ k in time f(k)no(k). Furthermore, assuming that G has
treewidth tw, there is no algorithm that computes I(G) in time O∗(f(tw)no(tw)).

6 Conclusion

In this work we introduce the problem of identifying the largest locally irregular induced
subgraph of a given graph. There are many interesting directions that could be followed for
further research. An obvious one is to investigate whether the problem of calculating I(G)
remains NP-hard for other, restricted families of graphs. The first candidate for such a family
would be the one of chordal graphs. On the other hand, there are some interesting families,
for which the problem of computing an optimal irregulator could be decided in polynomial
time, such as split graphs. Also, it could be feasible to conceive approximation algorithms for
regular bipartite graphs, which have a better approximation ratio than the (simple) algorithm
we present. The last aspect we find intriguing, is to study the parameterised complexity of
calculating I(G) when considering other parameters, like the size of the minimum vertex
cover of G, with the goal of identifying a parameter that suffices, by itself, in order to have an
FPT algorithm. Finally, it is worth investigating whether calculating I(G) could be done in
FPT time (parameterised by the size of the solution) in the case where G is a planar graph.
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A Omitted proofs

A.1 Proof of Theorem 13
Let us first present the following lemma:

▶ Lemma 21. Let G = (V, E) be a graph such that, G is not locally irregular, and S be an
ir∗(G). Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S. Then
I(Gv) = I(G)− 1.

Proof. First observe that S′ = S \ {v} must be an ir(Gv) as Gv[V ′ \ S′] = G[V \ S]. It
follows that I(Gv) ≤ I(G)− 1. Assume that I(Gv) < I(G)− 1. Then these exists an S′′ such
that |S′′| < I(G)− 1 and S′′ is an ir(Gv). Since Gv[V ′ \ S′′] = G[V \ (S′′ ∪ {v})], we have
that S′′ ∪ {v} is an ir(G) and |S′′ ∪ {v}| = |S′′|+ 1 < I(G). This is a contradiction. ◀

Now, we are ready to present the proof of the theorem.

Proof of Theorem 13. In order to decide if I(G) ≤ k we are going to use a recursive
algorithm. The algorithm has input (G, k), where G = (V, E) is a graph and k ≥ 0 is an
integer. The basic idea of this algorithm, is to take advantage of Observation 5. We present
the exact procedure in Algorithm 1.

Algorithm 1 [IsIrregular(G, k) decision function].

Input: A graph G = (V, E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?

1: if G is irregular then
2: return yes

3: else if k = 0 then
4: return no

5: else ▷ k > 0 and G is not irregular
6: ans← no

7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]

10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes

12: return ans

Now, let us argue about the correctness and the efficiency of this algorithm. We claim
that for any graph G = (V, E) and any integer k ≥ 0, Algorithm 1 returns yes if I(G) ≤ k

and no otherwise. Furthermore, the number of steps that the algorithm requires, is f(k, n) =
(2∆)knO(1), where n = |V |. We will prove this by induction on k.

Base of the induction (k = 0): Here, we only need to check if G is locally irregular.
Algorithm 1 does this in line 1 and returns yes if it is (line 2) and no otherwise (line 4).
Furthermore, we can check if G is locally irregular in polynomial time. So, the claim is true
for the base.

Induction hypothesis (k = k0 ≥ 0): We assume that we have a k0 ≥ 0 such that
Algorithm 1 can decide if any graph G with n vertices and maximum degree ∆ has I(G) ≤ k0
in f(k0, n) = (k0 + 1)(2∆)k0nO(1) steps.
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Induction step (k = k0 + 1): Let G = (V, E) be a graph. If G is locally irregular then
I(G) = 0 and Algorithm 1 answers correctly (in line 2). Assume that G is not locally irregular;
then there exist an edge vu ∈ E such that dG(v) = dG(v). Now, let S be an ir∗(G). It
follows from Observation 5 that S must include at least one vertex w ∈ NG[{v, u}]. Since
Algorithm 1 considers all the vertices in NG[{v, u}], at some point it also considers the
vertex w ∈ S ∩ NG[{v, u}]. Now, observe that for any x ∈ S, the set Sx = S \ {x} is an
ir∗(Gx), where Gx = G[V \ {x}]. Furthermore, by Lemma 21, we have I(Gx) ≤ k − 1 = k0
iff I(G) ≤ k. By the induction hypothesis, we know that the algorithm answers correctly for
all the instances (Gx, k0). Thus, if I(G) ≤ k = k0 + 1, there must exist one instance (Gw, k0),
where w ∈ S ∩NG[{v, u}], for which the Algorithm 1 returns yes. Therefore the algorithm
answers for (G, k0 + 1) correctly. Finally, this process request nO(1) steps in order to check
if the graph is locally irregular and 2∆f(k − 1, n − 1) steps (by induction hypothesis) in
order to check if for any graph Gx we have I(Gx) ≤ k − 1 = k0 (where x ∈ N [{u, v}]). So,
the algorithm decides in nO(1) + 2∆f(k − 1, n − 1) ≤ nO(1) + 2∆k(2∆)k−1(n − 1)O(1) ≤
nO(1) + k(2∆)knO(1) ≤ (k + 1)(2∆)knO(1) steps. Finally, note that k ≤ n− 1, and the result
follows. ◀

A.2 Proof of Theorem 14
Proof. As the techniques we are going to use are standard, we are sketching some of the
introductory details. For more details on tree decompositions (definition and terminology)
see [19]. We are going to perform dynamic programming on the nodes of the given nice tree
decomposition (see [10] for the definition of a nice tree decomposition). For a node t of the
given tree decomposition of G, we denote by Bt the bag of this node and by B↓

t the set of
vertices of the graph that appears in the bags of the nodes of the subtree with t as a root.
Observe that Bt ⊆ B↓

t .
The idea behind our algorithm, is that for each node t we store all the sets S ⊆ B↓

t such
that S is an ir(G, B↓

t \Bt). We will also store the necessary “conditions” (explained more
in what follows) such that if there exists a set S′, where S′ \ S ⊆ V \B↓

t , that meets these
conditions, then S′ is an ir(G, B↓

t ). Observe that if we manage to do such a thing for every
node of the tree decomposition, then we can find I(G). To do so, it suffices to check the
size of all the irregulators we stored for the root r of the tree decomposition, which also
meet the conditions we have set. In that way, we can find a set S that is an ir(G, B↓

r \Br),
satisfies our conditions and is of minimum order, and since B↓

r = V , this set S is a minimum
irregulator of G and I(G) = |S|.

Let us now present the actual information we are keeping for each node. Assume that t

is a node of the tree decomposition and S ⊆ B↓
t is an irregulator of B↓

t \Bt in G, i. e., S is
an ir(G, B↓

t \Bt). For this S we want to remember which vertices of Bt belong to S as well
as the degrees of the vertices v ∈ Bt \ S in G[B↓

t \Bt]. This can be done by keeping a table
D of size tw + 1 where, if v ∈ Bt \ S we set D(v) = dG[B↓

t \Bt](v) and if v ∈ Bt ∩ S we set
D(v) = ∅ (slightly abusing the notation, by D(v) we mean the position in the table D that
corresponds to the vertex v). Like we have already said, we are going to keep some additional
information about the conditions that could allow these sets to be extended to irregulators
of B↓

t in G if we add vertices of V \B↓
t . For that reason, we are also going to keep a table

with the “target degree” of each vertex; in this table we assign to each vertex v ∈ Bt \ S

a degree dv such that, if there exists S′ where S′ \ S ⊆ V \ B↓
t and for all v ∈ Bt \ S we

have dG[V \S′](v) = dv, then S is an ir(G, B↓
t ). This can be done by keeping a table T of size

tw + 1 where for each v ∈ Bt \ S we set T (v) = i, where i is the target degree, and for each
v ∈ Bt ∩ S we set T (v) = ∅. Such tables T will be called valid for S in Bt. Finally, we are
going to keep the set X = S ∩ Bt and the value min = |S|. Note that the set X does not
gives us any extra information, but we keep it as it will be useful to refer to it directly.
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To sum up, for each node t of the tree decomposition of G, we keep a set of quadruples
(X, D, T, min), each quadruple corresponding to a valid combination of a set S that is
an ir(G, B↓

t \ Bt) and the target degrees for the vertices of Bt \ S. Here it is important
to say that when treating the node Bt, for every two quadruples (X1, D1, T1, min1) and
(X2, D2, T2, min2) such that for all v ∈ Bt we have that D1(v) = D2(v) and T1(v) = T2(v)
(this indicates that X1 = X2 as well), then we are only going to keep the quadruple with the
minimum value between min1 and min2 as we will prove that this is enough in order to find
I(G).

▷ Claim 22. Assume that for a node t, we have two sets S1 and S2 that are both
ir(G, B↓

t \Bt), and that T is a target table that is common to both of them. Furthermore,
assume that (X1, D1, T, |S1|) and (X2, D2, T, |S2|) are the quadruples we have to store for
S1 and S2 respectively (both respecting T ), with D1(v) = D2(v) for every v ∈ Bt. Then
for any set S ⊆ V \ B↓

t such that dG[V \(S1∪S)](v) = T (v) for all v ∈ Bt, we also have that
dG[V \(S2∪S)](v) = T (v) for all v ∈ Bt.

Proof. Assume that we have such an S for S1, let v be a vertex in Bt and H = G[v ∪
(
(V \

B↓
t ) \ S

)
] (observe that H does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v), we

know that in the graph H, v has exactly T (v)−D1(v) neighbours (as D1(v) = dG[B↓
t \S1)](v)).

Now, since D1(v) = D2(v) = dG[B↓
t \S2](v) we have that dG[V \S2∪S](v) = T (v). Therefore,

the claim holds. ◁

Simply put, Claim 22 states that for any two quadruples Q1 = (X, D, T, min1) and
Q2 = (X, D, T, min2), any extension S of S1 is also an extension of S2 (where S1 and S2 are
the two sets that correspond to Q1 and Q2 respectively). Therefore, in order to find the
minimum solution, it is sufficient to keep the quadruple that has the minimum value between
min1 and min2.

Now we are going to explain how we create all the quadruples (X, D, T, min) for each
type of node in the tree decomposition. First we have to deal with the Leaf Nodes. For a Leaf
node t we know that Bt = B↓

t = ∅. Therefore, we have only one quadruple (X, D, T, min),
where the size of both D and T is zero (so we do not need to keep any information in them),
S = ∅ and min = |S| = 0.

Now let t be an Introduce node; assume that we have all the quadruples (X, D, T, min) for
its child c and let v be the introduced vertex. By construction, we know that v is introduced
in Bt and thus it has no neighbours in B↓

t \Bt. It follows that if S ⊆ B↓
c is an irregulator

for B↓
c \Bc, then both S and S ∪ {v} are irregulators for B↓

t \Bt in G. Furthermore, there
is no set S ⊆ B↓

t \ {v} that is an irregulator of B↓
t \Bt and is not an irregulator of B↓

c \Bc.
So, we only need to consider two cases for the quadruples we have to store for c; if v belongs
in the under-construction irregulator of B↓

t \Bt in G or not.
Case 1. (v is in the irregulator): Observe that for any S that is an ir(G, B↓

c \ Bc),
which is stored in the quadruples of Bc, for every u ∈ Bc \ S, we have that dG[B↓

c \S](u) =
dG[B↓

t \(S∪{v})](u). Moreover, for any target table T which is valid for S in c, the target table
T ′ is valid for S∪{v} in t, where T ′ is almost the same as T , the only difference being that T ′

also contains the information about v, i.e, T ′(v) = ∅. So, for each quadruple (X, D, T, min)
in c, we need to create one quadruple (X ∪ {v}, D′, T ′, min + 1) for t, where D′ is the almost
the same as D, except that it also contains the information about v, i. e., D′(v) = ∅.

Case 2. (v is not in the irregulator): Let q = (X, D, T, min) be a stored quadruple of
c and S be the corresponding ir(G, B↓

c \Bc). We will first explain how to construct D′ of
t, based on q. Observe that the only change between G[B↓

c \ S] and G[B↓
t \ S], is that in

the latter there exist some new edges from v to some of the vertices of Bc. Therefore, for
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each vertex u ∈ Bc \X we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u) otherwise.
Finally, for the introduced vertex v, we set D′(v) = |N(v) ∩ (Bc \X)|. We will now treat
the target degrees for t. Observe that the target degrees for each vertex in Bt \ {v} are the
same as in T , since v only has edges incident to vertices in Bt. Now, we only need to decide
which are the valid targets for v. Since dG[B↓

t \S](v) = D′(v), we know that for every target
t′, we have that D′(v) ≤ t′ ≤ ∆. Furthermore, we can not have the target degrees of v to
be the same as the targets of one of its neighbours in Bc (these values are stored in T ), as,
otherwise, any valid target table T ′ of t would lead to adjacent vertices in Bt having the
same degree. Let {t1, . . . , tk} ⊂ {D(v), . . . , ∆} be an enumeration of all the valid targets
for v (i.e. ti ̸= T (u) for all u ∈ N [v] ∩ Bc \ X). Then, for each quadruple (X, D, T, min)
in c, and for each i = 1, . . . , k, we need to create the quadruple (X, D′, Ti, min), such that
Ti(u) = T (u) for all u ∈ Bc and Ti(v) = ti. In total, we have k ≤ ∆ such quadruples.

Now, let us explain how we deal with the Join nodes. Assume that t is a Join Node with
c1 and c2 as its two children in the tree decomposition. Here, it is important to mention that
Bc1 = Bc2 and (B↓

c1
\Bc1) ∩ (B↓

c2
\Bc2) = ∅. Assume that there exists an irregulator S of

B↓
t \Bt in G, a valid target table T of S, and let (X, D, T, min) be the quadruple we need to

store in t for this pair (S, T ). Observe that this pair (S, T ) is valid for both c1 and c2, so we
must already have stored at least one quadruple in each node. Let X ⊆ Bt and a target table
T such that (X, D1, T, min1) and (X, D2, T, min2) are stored for c1 and c2 respectively. We
create the quadruple (X, D, T, min) for t by setting D(u) = D1(u) + D2(u)− dG[Bt\X](u) for
all u ∈ Bt \X, D(u) = ∅ for all u ∈ X and min = min1 +min2−|X|. Observe that these are
the correct values for the D(u) and min, as otherwise we would count dG[Bt\X](u) and |X|
twice. Finally, we need to note that we do not store any quadruple (X, D, T, min) we create
for the Join Note such that D(u) > T (u) for a vertex u ∈ Bt \X. This is because for such
quadruples, the degree of vertex u will never be equal to any of the target degrees we have
set, as it can only increase when we consider any of the ancestor (i. e. parent, grantparent
etc.) nodes of t.

Finally, we need to treat the Forget nodes. Let t be a Forget node, c be the its child and
v be the forgotten vertex. Assume that we have to store in t a quadruple (X, D, T, min).
Then, since X = Bt ∩ S for an irregulator S of Bt in G, we know that in c we must have
already stored a quadruple (X ′, D′, T ′, min′) such that, X ′ = S ∩Bc, D′(u) = D(u) for all
u ∈ Bc, T ′(u) = T (u) for all u ∈ Bc and min′ = min. Therefore, starting from the stored
quadruples in c, we can create all the quadruples of t. For each quadruple (X ′, D′, T ′, min′)
in c, we create at most one quadruple (X, D, T, min) for t by considering two cases; the
forgotten vertex vf belongs to X ′ or not.

Case 1. (v belongs to X ′): then the quadruple (X, D, T, min) is almost the same as
(X ′, D′, T ′, min′), with the following differences: X = X ′ \ {v}, min = min′, D(u) = D′(u)
and T (u) = T ′(u) for all u ∈ Bt and the tables D and T do not include any information for
v as this vertex does not belong to Bt anymore.

Case 2. (v does not belong to X ′): we will first check if D′(vf ) = T ′(vf ) or not. This
is important because the degree of the v will never again be considered by our algorithm,
and thus its degree will remain unchanged. So, if D′(vf ) = T ′(vf ), we create the quadruple
(X, D, T, min) where X = X ′, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all u ∈ Bt

and the tables D and T do not include any information for v.
For the running time, observe that the number of nodes of a nice tree decomposition is

O(tw ·n) and all the other calculations are polynomial in n + m. Thus we only need to count
the different quadruples in each node. Now, for each vertex v, we either include it in X or
we have ∆ + 1 options for the value D(u) and ∆ + 1− i for the value T (u) if D(u) = i. Also,
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for sufficiently large ∆, we have that 1 +
∑∆

i=0(∆ + 1− i) < ∆2. Furthermore, the set X

and the value min do not increase the number of quadruples because X = {u | D(u) = ∅}
and from all quadruples (X, D1, T1, min1), (X, D2, T2, min2) such that D1(u) = D2(u) and
T1(u) = T2(u) for all u ∈ Bt, we only keep one of them (by Claim 22).

In total, the number of different quadruples in each node is ∆2tw, and therefore the
algorithm decides in ∆2twnO(1) time. ◀
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