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—— Abstract

We show how confluence criteria based on decreasing diagrams are generalized to ones composable
with other criteria. For demonstration of the method, the confluence criteria of orthogonality, rule
labeling, and critical pair systems for term rewriting are recast into composable forms. In addition
to them, we prove that Toyama’s parallel closedness result based on parallel critical pairs subsumes
his almost parallel closedness theorem.
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1 Introduction

Confluence is a property of rewriting that ensures uniqueness of computation results. In
the last decades, various proof methods for confluence of term rewrite systems have been
developed. They are roughly classified to three groups: (direct) confluence criteria based
on critical pair analysis [18, 15, 30, 32, 10, 36, 23, 37, 40], decomposition methods based on
modularity and commutation [31, 3, 27], and transformation methods based on simulation of
rewriting [2, 17, 20, 27].

In this paper we present a confluence analysis based on compositional confluence criteria.
Here a compositional criterion means a sufficient condition that, given a rewrite system R
and its subsystem C C R, the confluence of C implies that of R. Since such a subsystem
can be analyzed by any other (compositional) confluence criterion, compositional criteria
can be seen as a combination method for confluence analysis. Because the empty system is
confluent, by taking the empty subsystem C compositional criteria can be used as ordinary
(direct) confluence criteria.

In order to develop compositional confluence criteria we revisit van Qostrom’s decreasing
diagram technique [35, 37], which is known as a powerful confluence criterion for abstract
rewrite systems. Most of existing confluence criteria for left-linear rewrite systems, including
the ones listed above, can be proved by decreasingness of parallel steps or multi-steps.
Recasting the decreasing diagram technique as a compositional criterion, we demonstrate
how confluence criteria based on decreasing diagrams can be reformulated as compositional
versions. We pick up the confluence criteria by orthogonality [26], rule labeling [40], and
critical pair systems [11].
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In addition, we elucidate the hierarchy of Toyama’s two parallel closedness theorems [30,
32] and rule labeling based on parallel critical pairs [40]. As a consequence, it turns out
that rule labeling and its compositional version are generalizations of Huet’s and Toyama’s
(almost) parallel closedness theorems.

The remaining part of the paper is organized as follows: In Section 2 we recall notions
from rewriting. In Section 3 we show that Toyama’s almost parallel closedness is subsumed
by his earlier result based on parallel critical pairs. In Section 4, we introduce an abstract
criterion for our approach, and in the subsequent three sections we derive compositional
criteria from the confluence criteria of orthogonality (Section 5), rule labeling (Section 6),
and the criterion by critical pair systems (Section 7). Section 8 reports experimental results.
Discussing related work and potential future work in Section 9, we conclude the paper.

2 Preliminaries

Throughout the paper, we assume familiarity with abstract rewriting and term rewriting [4, 29].
We just recall some basic notions and notations for rewriting and confluence.

An (I-indexed) abstract rewrite system (ARS) A is a pair (A, {—4}aer) consisting of a
set A and the family of relations —,, on A. Given a subset J of I, we write x —; y if x —4 y
for some index o € J. The relation — is referred to as — 4. An ARS A is called confluent
or locally confluent if < - =% C =% - 74 or g¢ - —4 C —7% - 1< holds, respectively.
We say that ARSs A and B commute if j«+ - = C —% - 1< holds. A conversion of form
b 4 a —p cis called a local peak (or simply a peak) between A and B. An ARS A is
terminating if there exists no infinite sequence ag —4 a1 —a4 ---. We define — 4,5 as
—% - — 4 - —p- We say that A is relatively terminating with respect to B, or simply A/B is
terminating, if — 4,5 is terminating.

Positions are sequences of positive integers. The empty sequence ¢ is called the root
position. We write p - ¢ or simply pq for the concatenation of positions p and ¢q. The prefix
order < on positions is defined as p < ¢ if p-p’ = ¢ for some p’. We say that positions p and
q are parallel if p £ g and ¢ £ p. A set of positions is called parallel if all its elements are so.

Terms are built from a signature F and a countable set V of variables satisfying F NV = @.
The set of all terms is denoted by T(F,V). Let ¢t be a term. The set of all variables in ¢
is denoted by Var(t), and the set of all function positions and the set of variable positions
in t by Posz(t) and Posy(t), respectively. The subterm of ¢ at position p is denoted by t|,.
It is a proper subterm if p # €. By t[u], we denote the term that results from replacing
the subterm of ¢ at p by term w. The size || of ¢ is the number of occurrences of functions
symbols and variables in t. A term ¢ is said to be linear if every variable in ¢ occurs exactly
once.

A substitution is a mapping o : V — T(F,V) whose domain Dom(c) is finite. Here
Dom(o) stands for the set {x € V | o(x) # x}. The term to is defined as o(t) for t € V, and
fltio,... tyo) for t = f(ty,...,t,). A term u is called an instance of t if u = to for some o.
A substitution is called a renaming if it is a bijection on variables.

A term rewrite system (TRS) over F is a set of rewrite rules. Here a pair (¢,7) of terms
is a rewrite rule or simply a rule if £ ¢ V and Var(r) C Var(¢). We denote it by ¢ — r. The
rewrite relation —x of a TRS R is defined on terms as follows: s —x t if s|, = o and
t = s[ro], for some rule £ — r € R, position p, and substitution o. We write s L, tif the
rewrite position p is relevant. We call subsets of R subsystems. A TRS R is left-linear if £ is
linear for all £ — r € R. Since any TRS R can be regarded as the ARS (T (F,V),{—=xr}), we



K. Shintani and N. Hirokawa

use notions and notations of ARSs for TRSs. For instance, a TRS R is (locally) confluent if
the ARS (T(F,V),{—r}) is so. Similarly, two TRSs commute if their corresponding ARSs
commute.

Local confluence of TRSs is characterized by notion of critical pair. We say that a rule
{1 — rq is a variant of a rule o — 7o if £1p = {5 and 71 p = ro for some renaming p.

» Definition 1. Let R and S be TRSs. Suppose that the following conditions hold:

1 — r1 and £y — ro are variants of rules in R and in S, respectively,

{1 — r1 and ly — ro have no common variables,

p € Posz({2),

o is a most general unifier of {1 and l3,, and

if p =€ then {1 — r1 is not a variant of fo3 — 2.
The local peak (¢20)[r10]p = & lyo S5 190 is called a critical peak between R and S. When
t & s Ss uis a critical peak, the pair (t,u) is called a critical pair. To clarify the
orientation of the pair, we denote it as the binary relation t g <xSg u, see [6]. Moreover,
we write t R—X-s u if t g <XxSg u for some position p.

» Theorem 2 ([15]). A TRS R is locally confluent if and only if rx-g C —k - S+
holds.

Combining it with Newman’s Lemma [21], we obtain Knuth and Bendix’ criterion [18].

» Theorem 3 ([18]). A terminating TRS R is confluent if and only if p—x-—g C —k% - ¢
holds.

We define the parallel step relation, which plays a key role in analysis of local peaks.

» Definition 4. Let R be a TRS and let P be a set of parallel positions. The parallel step
P . )
+>r s inductively defined on terms as follows:
T —5—>R x if x is a variable and P = @.
lo tsp ro if € — 1 is an R-rule, o is a substitution, and P = {e}.
f(s1y .0y 80) —5—>R f(t1, ... tn) if f is an n-ary function symbol in F, s; —I:i—>7g t; holds
foralll<i<n,and P={i-p|1<i<nandp€E P;}.

We write s g t if s 5—)73 t for some set P of positions.

Note that ++ is reflexive and the inclusions - C ++r C —% hold. As the latter
entails =5 = +=%, we obtain the following useful characterizations.

» Lemma 5. A TRS R is confluent if and only if +»x is confluent. Similarly, TRSs R and
S commute if and only if g and s commute.

3 Parallel Closedness

Toyama made two variations of Huet’s parallel closedness theorem [15] in 1981 [30] and in
1988 [32], but their relation has not been known. In this section we recall his and related
results, and then show that Toyama’s earlier result subsumes the later one. For brevity we
omit the subscript R from —g, ++x, and g+ x5 when it is clear from the contexts.

» Definition 6 ([15]). A TRS is parallel closed if +~x- C + holds.

» Theorem 7 ([15]). A left-linear TRS is confluent if it is parallel closed.

28:3
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In 1988, Toyama showed that the closing form for overlay critical pairs, originating from
root, overlaps, can be relaxed. We write ¢ E9%S wif t £ x5 u holds for some D> €.

» Definition 8 ([32]). A TRS is almost parallel closed if <=3 C +» - *— and <=x5 C +»
hold.

» Theorem 9 ([32]). A left-linear TRS is confluent if it is almost parallel closed.

» Example 10. Consider the following left-linear and non-terminating TRS, which is a
variant of the TRS in [10, Example 5.4].

a(x) — b(x) f(a(z),a(y)) — g(f(a(z),a(y)))
f(b(z),y) — g(f(a(z),y)) f(z,b(y)) — g(f(z,a(y)))

Out of the three critical pairs, two critical pairs including the next diagram (i) are closed by
single parallel steps. The remaining pair (ii) joins by performing a single parallel step on

each side:
f(a(z),a(y)) —— g(f(a(z),a(y))) f(b(z), b(y)) —— g(f(b(z),a(y)))
J o | v
f(b(z),a(y)) _---~ g(f(a(z),b(y))) - #> g(f(b(z),b(y)))

(i) (if)
Thus, the TRS is almost parallel closed. Hence, the TRS is confluent.

Inspired by almost parallel closedness, Gramlich [10] developed a confluence criterion
based on parallel critical pairs in 1996. Let ¢ be a term and let P be a set of parallel positions
in t. We write Var(t, P) for the union of Var(t|,) for all p € P. By t[up]p,ep we denote the
term that results from replacing in ¢ the subterm at p by a term w, for all p € P.

» Definition 11. Let R and S be TRSs, { — r a variant of an S-rule, and {{, — rp}pep a
family of variants of R-rules, where P is a set of positions. A local peak

(bo)[rpolpep e+ lo S5 1O

is called a parallel critical peak between R and S if the following conditions hold:
P C Posx({) is a non-empty set of parallel positions in ¢,
none of rules £ — r and £, — r, for p € P shares a variable with other rules,
o is a most general unifier of {£, ~ (€|,)}pep, and
if P ={e} then £, — r. is not a variant of £ — r.

When t 72<—€“ s Ss u is a parallel critical peak, the pair (t,u) is called a parallel critical pair,
and denoted by t R(—I:Mdim w. In the case of P ¢ {e} the parallel critical pair is written as
t R@HE—XIL)S w. Whenever no confusion arises, we abbreviate RN 10 X

Consider a local peak ¢ Reﬁ» s S5 u that employs a rule £, — rp at p € P in the left step
and a rule £ — r in the right step. We say that the peak is orthogonal if P N Posz({) = @.
A local peak t g<& s Ss u is orthogonal if t R(ﬁﬁ}» s Ssuis.

» Theorem 12 ([10]). A left-linear TRS is confluent if the inclusions <> C -+ - *— and
SEx5 C —* hold.

Unfortunately, this criterion by Gramlich does not subsume (almost) parallel closedness.
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» Example 13 (Continued from Example 10). The TRS admits the parallel critical peak
1,2 € %

f(b(x), b(y)) <42 f(a(x),a(y)) < g(f(a(x), a(y))). However, f(b(x), b(y)) —* g(f(a(z), a(y)))

does not hold.

As noted in the paper [10], Toyama [30] had already obtained in 1981 a closedness result
that subsumes Theorem 12. His idea is to impose variable conditions on parallel steps +».
» Theorem 14 ([30]). A left-linear TRS is confluent if the following conditions hold:

(a) The inclusion <> C + - *+ holds.
(b) For every parallel critical peak t & s S w there exist a term v and a set P’ of parallel

positions such that t —* v &4 u and Var(v, P’) C Var(s, P).

» Example 15 (Continued from Example 13). The confluence of the TRS in Example 10 can
be shown by Theorem 14. Since condition (a) of Theorem 14 follows from the almost parallel
closedness, it is enough to verify condition (b). The following parallel critical peak, which
Theorem 12 fails to handle, admits the following diagram:

f(a(x).a(y) —— g(f(a(x).a(y)))
1,2) “{12)
g(f(b(x),b(y))) - -~ g(f(a(x), b(y)))
Because Var(g(f(a(z),b(y))),{1-2}) = {y} C {z,y} = Var(f(a(z),a(y)),{1,2}) holds, the

parallel critical peak satisfies condition (b) in Theorem 14. Similarly, we can find suitable
diagrams for the other parallel critical peaks. Hence, (b) holds for the TRS.

Now we show that Theorem 14 even subsumes Theorem 9. Revisiting the Parallel Moves
Lemma [4, Lemma 6.4.4], we show that the variable condition of Theorem 14 is generalized
to local peaks of form <+ - <. We write o 5 7T if 2o +»5 o7 for all variables .

» Lemma 16. Let R be a TRS and £ — r a left-linear rule. Consider a local peak T' of the
form t R(—I;— s ;{Zﬁr} u.

(a) IfT is orthogonal, t i>{eﬂ,«} v Rle— u and Var(v, P') C Var(s, P) for some v and P’.
(b) Otherwise, there exist a parallel critical peak to R<—0P?— S0 5{4%,,} ug and substitutions o

P\P,
and T such that s = sqo, t = tgT, u = ugo, 0 >R T, too —}4—(’)71 tor, and Py C P.

Proof. As (b) is a known result [40, Lemma 55|, we only show (a). Suppose that I' is

orthogonal. Since s i>{g_>.,n} u holds, there exists a substitution o with s = o and u = ro.

As ¢ is linear and T' is orthogonal, t = 7 and o + 7 for some 7. Take v = r7 and define P’
as follows:

P' = {p} -p2 | pr-p2 € P, py € Posy(r), and £|,,, = 7|, for some p; € Posy(£)}

Clearly, t i{gﬁr} v holds. So it remains to show u —ﬁ/—m v and Var(v, P") C Var(s, P). Let
p’ be an arbitrary position in P’. There exist positions p; € Posy (), pj € Posy(r), and
p2 such that p’ = p) - pa, p1-p2 € P, and £|,,, = 7|,;. Denoting p; - p2 by p, we have the
identities:

uly = (TU)‘p’l-pQ = (7"|p’10)|pz = (Up,0)lps = (€0)|py-ps = Slp

U|p/ = (’I“T)|p’1‘p2 = (T|P/1T)|p2 = (£|P17-)|I)2 = (ET)|I)1'P2 - t|1’

28:5
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From s —ﬁ-)n t we obtain sl Sr t|, and thus u, Sr v|pr. Therefore, u —Pir/—>7g v is obtained.
Moreover, we have Var(v|,/) = Var(t|,) C Var(s|,) C Var(s, P). As Var(v, P’) is the union of
Var(v|, ) for all p’ € P’, the desired inclusion Var(v, P’) C Var(s, P) follows. <

For almost parallel closed TRSs the above statement is extended to local peaks <+ - -+
of parallel steps. In its proof we measure parallel steps s 45 ¢ in such a local peak by the
amount of contractums |t|p, namely the sum of |(¢|,)| for all p € P. Note that this measure
attributes to [24, 19].

» Lemma 17. Consider a left-linear almost parallel closed TRS. If t s B2 then

P/
t —* vy <+ u for some vy and P| with Var(vi, P]) C Var(s, P1), and

/

P
t & vy *<— u for some vy and P} with Var(ve, Py) C Var(s, P,).

Proof. Let I': t &+ s %% u be a local peak. We show the claim by well-founded induction
on (|t|p, + |u|p,,s) with respect to . Here (m,s) = (n,t) if either m > n, or m =n and ¢
is a proper subterm of s. Depending on the shape of I', we distinguish six cases.

1. If P, or P; is empty then the claim follows from the fact: Var(v, P) C Var(w, P) if w .
2. If P, or Py is {e} and T is orthogonal then Lemma 16(a) applies.

3. If P, = P, = {€} and T is not orthogonal then I" is an instance of a critical peak.

By almost parallel closedness ¢t —* vy S u and t —Qn42—> vg *« wu for some vy, vo, @1,
and Q2. For each k € {1,2} we have s —* vy, so Var(vx) C Var(s) follows. Thus,
Var(vg, Qr) C Var(vi) C Var(s) = Var(s, {e}). The claim holds.

4. If Py ¢ {€}, P, = {e}, and I is not orthogonal then there is p € P; such that s’ <~ s < u

is an instance of a critical peak and s —1\#{2) t follows by Lemma 16(b) where P = {p}.

By the almost parallel closedness s’ 22, 4 for some Pj. Since Pj is a set of parallel
positions in u, we have |u|y = |u] > |ulp;. As |ul(y = |ulp; and [t|p, > [t]p\(py yield
[t[p, + [ulgey > [tlpy\(py + |ulp;, we obtain the inequality:

([tlp, + lulpys s) = ([t e\ (py + lulpg, s7)
Thus, the claim follows by the induction hypothesis for ¢ AN I M —}3";—> u and the
inclusions Var(s', Py \ {p}) C Var(s, P;) and Var(s', P}) C Var(s, {c}).

5. If P, = {e}, P» € {e}, and T is not orthogonal then the proof is analogous to the last
case.

6. If P, ¢ {e} and P, ¢ {e} then we may assume s = f(s1,...,8,), t = f(t1,...,tn),

pi pi _
w = f(ui,...,uy), and t; ¢+ s; -+ u; for all 1 < i < n. Here P} denotes the set
{p|i-pe P} Foreachie€ {1,...,n}, we have |t|p, > [t;|p; and |u|p, > |u;|p;, and
therefore [t|p, + |u[p, > [ti|p; + |ui|ps. So we deduce the following inequality:

([tlpy + lulpy, 5) = (il py + Juil oy 51)

Consider an i-th peak t; e#» Si «o«?» u;. By the induction hypothesis it admits valleys of the

forms t; —* v} 3&» u; and t; 2N v Fem such that Var(vi, Q%) C Var(s;, P}) for both
k € {1,2}. For each k, define Q) = {z g|1<i<mnandqeQi}and v, = f(v},...,00).

Then we have t —* v <9H— u and t —H—> v9 *<— u. Moreover,

Var(vg, Qr) = U Var(vi, QL) C U Var(s;, Pi) = Var(s, Py)

i=1 =1

holds. Hence, the claim follows. <
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» Theorem 18. Ewvery left-linear and almost parallel closed TRS satisfies conditions (a) and
(b) of Theorem 14. In other words, Theorem 14 subsumes Theorem 9.

Proof. Since (parallel) critical peaks are instances of <+ - +, Lemma 17 entails the claim. <

Note that Theorem 9 does not subsume Theorem 14 as witnessed by the TRS consisting
of the four rules f(a) = ¢, a = b, f(b) — b, and ¢ — b. In Section 6 we will see that
Theorem 14 is subsumed by a variant of rule labeling.

4 Decreasing Diagrams with Commuting Subsystems

We make a variant of decreasing diagrams [35, 37]. First we recall the commutation version
of the technique [37]. Let A = (A, {—=1,a}acr) and B = (A4, {—23}pes) be I-indexed and
J-indexed ARSs on the same domain, respectively. Let > be a well-founded order > on I U J.
By Yo we denote the set {f € TUJ | a > S}, and by Yaf we denote (Ya) U (Y3). We say
that a local peak b 1 o< a —2 g c is decreasing if
L I S T
Yo 2,8 Yaf la Y8

holds. Here <= stands for the union of ; < and —, for all v € K. The ARSs A4 and B
are decreasing if every local peak b 1 o4 a —2 5 ¢ with (o, 8) € I x J is decreasing. In the
case of A = B, we simply say that A is decreasing.

» Theorem 19 ([37]). If two ARSs are decreasing then they commute.

We present the abstract principle of our compositional criteria. The idea of using the
minimum index in the decreasing diagram technique is taken from [16, 9, 7].

» Theorem 20. Let A = (A, {—1.a}acr) and B = (A, {—23}pecr) be I-indezed ARSs
equipped with a well-founded order > on I. Suppose that L is the minimum element in I
and —1,1 and =9 commute. The ARSs A and B commute if every local peak 1 o - —2.8
with (o, B) € I? \ {(L, L)} is decreasing.

Proof. We define the two ARSs A’ = (4, {=1.a}acr) and B’ = (A, {=2.4}tacr) as follows:

{—>;a if o= 1

=ia =
—i, Otherwise

Since =% = =% and —% = =}, the commutation of A and B follows from that of A" and
B’. We show the latter by proving decreasingness of A’ and B’ with respect to the given
well-founded order >. Let I' be a local peak of form ; o< - =2 3. We distinguish four cases.
If neither o nor B is 1 then decreasingness of I follows from the assumption.
If both o and 3 are L then the commutation of —; | and —4 | yields the inclusion:

1,1 2,1 2,1 1,1

Thus T is decreasing.
If 8> a =1 then we have 1 o4+ =23 C =5 5 - <27 3 Therefore, easy induction on n
shows the inclusion ; g4 - =25 C =5 5 - <>} 4 for all n € N. Thus,

R R e

La 28 La 2,8 2,8 YB 2,8 YB3
holds, where < ; stands for ; j< U =3 ;. Hence I' is decreasing.
The case that o > § = L is analogous to the last case. <

FSCD 2022
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5 Orthogonality

As a first example of compositional confluence criteria and its derivation, we pick up Rosen’s
confluence criterion by orthogonality [26]. Orthogonal TRSs are left-linear TRSs having no
critical pairs. Their confluence property can be shown by decreasingness of parallel steps.
We briefly recall its proof. Left-linear TRSs are mutually orthogonal if g+ x-s = & and
sXSp = &. Note that orthogonality of R and mutual orthogonality of R and R are
equivalent.

» Lemma 21 ([4, Theorem 9.3.11]). For mutually orthogonal TRSs R and S the inclusion
R4 - g C +rg - réH holds.

» Theorem 22 ([26]). Every orthogonal TRS R is confluent.

Proof. Let A = (T(F,V),{+1}) be the ARS equipped with the empty order > on {1},
where +»1= -+g. According to Lemma 5 and Theorem 19, it is enough to show that
A is decreasing. Since Lemma 21 yields 14+ - 1 C +>1 - 14+, the decreasingness of A
follows. |

The theorem can be recast as a compositional criterion that uses a confluent subsystem
C of a given TRS R. For this sake we switch the underlying criterion from Theorem 19 to
Theorem 20, setting the relation of the minimum index L to +¢.

» Theorem 23. A left-linear TRS R is confluent if R and R\ C are mutually orthogonal
for some confluent TRS C with C C R.

Proof. Let A = (T(F,V),{+0, +>1}) be the ARS equipped with the well-founded order
1 > 0, where +9 = +¢ and +; = +g\¢. According to Lemma 5 and Theorem 19,
it is enough to show that A is decreasing. Since R and R \ C are mutually orthogonal,
Lemma 21 yields p<# -+, C +,, - g+ for all (k,m) € {0,1}?\ {(0,0)}, from which the
decreasingness of A follows. Hence, Theorem 20 applies. |

We can derive a more general criterion by exploiting the flexible valley form of decreasing
diagrams. We will adopt parallel critical pairs. It causes no loss of confluence proving power
of Theorem 23 as g+ X—g = & is equivalent to g X—g = &.

» Theorem 24. A left-linear TRS R is confluent if p<#+x-—xr C =& holds for some confluent
TRS C with C CR.

Proof. Recall the ARS used in Theorem 23. According to Lemma 5 and Theorem 20, it is
sufficient to show that every local peak

F:t&s—%u
k m

with (k,m) # (0,0) is decreasing. To this end, we show ¢ +, - <+ - <+ u by structural
induction on s. Depending on the shape of I', we distinguish four cases.

1. If P or @ is empty then the claim is trivial.

2. If Por Q is {e} and I is orthogonal then Lemma 16(a) yields the join form ¢ -+, - g4+ u.

3. If P# @, Q = {e}, and T is not orthogonal then by Lemma 16(b) there exist a parallel
critical peak to r¢+ So —m uo and substitutions o and 7 such that s = sgo, t = toT,
u = ugo, and ¢ +, 7. The assumption ¢ty <=5 ug yields to7 <+=§ ugT. Therefore,
t =toT ¢§ UT K4+ upo = u follows.
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4. If P = {e}, Q@ # @, and T is not orthogonal then the proof is analogous to the last case.
5. If P ¢ {e} and Q ¢ {€} then s, ¢, and u can be written as f(s1,...,sn), f(t1,... tn),

and f(uq,...,u,) respectively, and moreover, t; 4+ $; >, u; holds for all 1 < i < n.
For every ¢ the induction hypothesis yields ¢; ++,, v; ¢+§ w; ¢+ u; for some v; and w;.
Therefore, the desired conversion t +,, v ¢4 w g+ u holds for v = f(vy,...,v,) and
w= f(wi,...,wy). <

From Takahashi’s proposition [28] (see also [29, Proposition 9.3.5]) we can deduce that
RN C = is equivalent to RENSR C =, Thus, Theorem 24 subsumes Theorem 23.
Note that when C = &, Theorem 24 simulates the weak orthogonality criterion.

» Example 25. By successive application of Theorem 24 we show the confluence of the
left-linear TRS R (COPS [13] number 62), taken from [25]:
1 r—0—z 7 ged(z,0) —» 13: if(true,z,y) —» =
2 0—xz—0 8: ged(0,2) — 14: if(false,z,y) — y
3: s(x)—s(y) —x—y 9: ged(z,y
4 r < 0—false 10: mod(z, 0
5 0 <s(y) — true  11: mod(0, y
— if(z <s(y), z,mod(z —s(y),s(y)))

Let C = {5,7,8,10,11,13}. The six non-trivial parallel critical pairs of R are
(z,8cd(0, mod(x,0)))  (y,gcd(y, mod(0,y)))  (0,if(0 < s(y),0,mod(0 —s(y),s(y))))

and their symmetric versions. All of them are joinable by C. So it remains to show that
C is confluent. Because C only admits trivial parallel critical pairs, ¢<#+x-—¢ C =% holds.
Therefore, the confluence of C is concluded if we show the confluence of the empty system.
The latter claim is trivial. This completes the proof.

6: s(z) <s(y) »z <y 12: mod(x,s(y)

Theorem 24 is a generalization of Toyama’s yet another theorem:

» Corollary 26 ([33]). A left-linear TRS R is confluent if g+ x-gr C <% holds for some
terminating and confluent TRS C with C C R.

6 Rule Labeling

In this section we recast the rule labeling criterion [37, 40, 7] in a compositional form. Rule
labeling is a direct application of decreasing diagrams to confluence proofs for TRSs. It
labels rewrite steps by their employed rewrite rules and compares indexes of them. Among
others, we focus on the variant of rule labeling based on parallel critical pairs, introduced by
Zankl et al. [40].

» Definition 27. Let R be a TRS. A labeling function for R is a function from R to N.
Given a labeling function ¢ and a number k € N, we define the TRS Ry . as follows:

Rop={l—reR|o(l—r)<k}

The relations =R, , and g, , are abbreviated to — ¢ and ++¢ . Let ¢ and 1) be labeling

functions for R. We say that a local peak t (;5]: s Ze—% u is (¢, ¢)-decreasing if
3 ,m

T I S L R
Yk P,m Ykm &,k Ym
and Var(v, P") C Var(s, P) for some set P’ of parallel positions and term v. Here <= stands

for the union of ¢+ and —y . for all k € K.
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The following theorem is a commutation-based version of the rule labeling method [40,
Theorem 56].

» Theorem 28. Let R be a left-linear TRS, and ¢ and v its labeling functions. The TRS R
is confluent if the following conditions hold for all k,m € N.

Every parallel critical peak of form t T}: S EE—» w is (1, @)-decreasing.
N ,m

FEvery parallel critical peak of form t th— s ﬁ u is (¢, )-decreasing.
With a small example we illustrate the usage of rule labeling.

» Example 29. Consider the left-linear TRS R:
(T+y)+z—=2a+(y+2) r+y+z) =@ty +2

We define the labeling functions ¢ and v as follows: ¢(¢ — r) =0 and (¢ — r) =1 for all
¢ — r € R. Because R is reversible, all parallel critical peaks can be closed by —4 ¢-steps,
like the following diagram:

(z+y)+ (2 +w)

¢71 !
{1}{%0 @%¢,0

Y

@ 42t w oo () ) b e @)+ () =

As Var(v, @) = @ C {z,y,z} = Var(s, {1}), this parallel critical peak is (1, ¢)-decreasing. In
a similar way the other peaks can also be verified. Hence, the TRS R is confluent.

We make the rule labeling compositional. The following lemma is used for composing
parallel steps.

» Lemma 30 ([40, Lemma 51(b)]). If s Hr t, o wr T, and 0 = a1 for all x € Var(s, P)
then so +>g t7.

The next theorem is a compositional version of the rule labeling criterion. Note that by
taking C := Rg,0 = Ry,0 it can be used as a compositional confluence criterion parameterized

by C.

» Theorem 31. Let R be a left-linear TRS, and ¢ and 1 its labeling functions. Suppose that
Rgeo0 and Ry o commute. The TRS R is confluent if the following conditions hold for all
(k,m) € N2\ {(0,0)}.

Every parallel critical peak of form t e;k» S ﬁ w is (1, @)-decreasing.
N ,m

FEvery parallel critical peak of form t ?H— s ﬁ u is (¢, )-decreasing.
;M s

Proof. Consider the ARSs (T (F,V),{+ 4.k }ren) and (T (F,V), {+>p.m}men). According
to Lemma 5 and Theorem 20, it is sufficient to show that every local peak

with (k,m) # (0,0) is decreasing. To this end, we perform structural induction on s.
Depending on the shape of I', we distinguish five cases.
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. If P or @ is empty then the claim is trivial.

. If Por Q is {e} and T is orthogonal then Lemma 16(a) yields the join form ¢ —+— - <+ w.

p,m &k
AMP#£2,Q= {e} and I" is not orthogonal then by Lemma 16(b) there exist a parallel

critical peak tg <;H— So — up and substitutions o and 7 such that ¢ = ¢y, u = ugo,
m

o+ T, tgo —\H—>R tor, and P; C P. Since ++7% = =% holds in general, the assumption
yields

/

t0<—H—> —H— - <—H—>110<—H—wo<—H—>U0
Yk P,m Ykm ¢,k

and Var(vg, P{) C Var(sg, Py) for some vg, wg, and P;. Since the rewrite steps are closed
under substitutions, the following relations are obtained:

* * *
toT ¢H> - —H— - —+H— VT WO +H=> Ugo
Yk P,m Ykm Ym

Since tgo|, = toT|, holds for all p € Py, the identity xo = 7 holds for all = € Var(sg, P1).

Therefore, zo = 7 holds for all x € Var(vg, P{). Because vy z#% vg, 0 +> 7, and xo = xT

)

for all = € Var(vg, P{) hold, Lemma 30 yields woo _¢Hk_> vo7. Hence, the decreasingness of

I" is witnessed by the following sequence:

t—t07'<—++—> —H— - <—H—>v07<—ﬂ—woa<—++—>uoo—u
Yk P,m Y km ¢,k

Note that the construction is depicted in Figure 1.
. If P={e}, Q@ # &, and T is not orthogonal then the proof is analogous to the last case.

It P ¢ {e} and Q ¢ {e} then s, ¢, and u can be written as f(s1,...,8,), f(t1,...,¢,), and
f(uq,...,uy,) respectively, and moreover, t; Tk'_ s; —+— u; holds for all 1 < i < n. By

) w,m

the induction hypotheses we have t; Ly i e i u; forall 1 <7< n.
Yk P,m Y km ¢,k Ym

Therefore, we obtain the desired relations:

t= f(ty, ... by) 44> - —H> - > - b - =
f( b 7n) Yk P,m Ykm b,k Ym f(Uh 7’U/n) u

Hence I' is decreasing. |

The original version of rule labeling (Theorem 28) is a special case of Theorem 31: Suppose

that labeling functions ¢ and 1 for a left-linear TRS R satisfy the conditions of Theorem 28.

By taking the labeling functions ¢’ and ¢’ with
dUl—=r)=¢(l >r)+1 Yl—=r)=0pl —r)+1
Theorem 31 applies for ¢, ¢’, and the empty TRS C.

The next example shows the combination of our rule labeling variant (Theorem 31) with

Knuth-Bendix’ criterion (Theorem 3).
» Example 32. Consider the left-linear TRS R:

1: 04+2—=z 2: (z+y)+z—ac+(y+2) 3:zx+y+z2)—(r+y) +=
Let C = {1,2}. We define the labeling functions ¢ and ¢ as follows:

0 if¢—-recC

1 otherwise

¢(€—>r)—w(€—>r)—{

For instance, the parallel critical pairs involving rule 3 admit the following diagrams:
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S00 f Upo = u
v,m ,
F=Ym
*y
Pl =+ (]5,]6 woo _
! \\
|
P{:::qs’k \\
* * v \1
too <-lt-> - -~ Hl--> - <[k > Vo0 = ¢,k
Yk v, m Ykm | !
-+ ,]f :F¢7k //
v
* * -
t=10T <=t —> - - -4l--> - <-|f > VT *
Yk v, m km

Figure 1 Proof of Theorem 31.

PO+ — @0z oty w) (@ +9)+ (4 w)
2) 0.0 16,0 ofer 10,0

phzes et 042) e () u) et (4 w)

) )

They fit for the conditions of Theorem 31. The other parallel critical pairs also admit suitable
diagrams. Therefore, it remains to show that C is confluent. Since C is terminating and all its
critical pairs are joinable, confluence of C follows by Knuth and Bendix’ criterion (Theorem 3).

Thus, Rg,0 and Ry, commute because R0 = Ry,0 = C. Hence, by Theorem 31 we conclude
that R is confluent.

While a proof for Theorem 24 is given in Section 3, here we present an alternative proof
based on Theorem 31.

Proof of Theorem 24. Define the labeling functions ¢ and % as in Example 32. Then
Theorem 31 applies. |

We conclude the section by stating that rule labeling based on parallel critical pairs
(Theorem 28) subsumes parallel closedness based on parallel critical pairs (Theorem 14):
Suppose that conditions (a,b) of Theorem 14 hold. We define ¢ and 1 as the constant rule
labeling functions ¢(¢ — r) = 1 and ¢¥(¢ — r) = 0. By using structural induction as well as
Lemmata 16 and 30 we can prove the implication

P/
¢ 6;311 s U = t —>w*0 v z&l— u and Var(v, P{) C Var(s, P;) for some P|

Thus, the conditions of Theorem 28 follow. As a consequence, our compositional version

(Theorem 31) is also a generalization of parallel closedness.

7 Critical Pair Systems

The last example of compositional criteria is a variant of the confluence criterion by critical
pair systems [11]. It is known that the original criterion is a generalization of the orthogonal
criterion (Theorem 22) and Knuth and Bendix’ criterion (Theorem 3) for left-linear TRSs.
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» Definition 33. The critical pair system CPS(R) of a TRS R is defined as the TRS:
{s =t s > u|tr s =g uisa critical peak}

» Theorem 34 ([11]). A left-linear and locally confluent TRS R is confluent if CPS(R)/R
is terminating (i.e., CPS(R) is relatively terminating with respect to R ).

The theorem is shown by using the decreasing diagram technique (Theorem 19), see [11].

» Example 35. Consider the left-linear and non-terminating TRS R:

s(p(z)) = p(s(z)) p(s(z)) = = 00 = 5(00)

The TRS R admits two critical pairs and they are joinable:

s(p(s(z))) p(s(p(x)))
N VRN
s(z) /(S(S(w))) p(p(S(fﬂ)}) p(x)

s(p(s(2))) — s(x) p(s(p())) = p(p(s(z)))
s(p(s(z))) —= p(s(s(x))) p(s(p(x))) = p(x)

Termination of CPS(R)/R can be shown by, e.g., the termination tool NaTT [38]. Hence the
confluence of R follows by Theorem 34.

We argue about the parallel critical pair version of CPS(R):
PCPS(R) = {s = t,5 = u | t gé#+ s S u is a parallel critical peak}

Interestingly, replacing CPS(R) by PCPS(R) in Theorem 34 results in the same criterion
(see [40]). Since —cpsr) € —pcps(r) S —rcps(r) * R holds, —cps(r)/R = —PcPs(rR)/R
follows. So the termination of PCPS(R)/R is equivalent to that of CPS(R)/R. However, a
compositional form of Theorem 34 may benefit from the use of parallel critical pairs, as seen
in Section 5.

» Definition 36. Let R and C be TRSs. The parallel critical pair system PCPS(R,C) of R
modulo C is defined as the TRS:

{s = t,s > u|tre s g uis a parallel critical peak but not t <% u}

Note that PCPS(R, @) C PCPS(R) holds in general, and PCPS(R, @) C PCPS(R) when
R admits a trivial critical pair. The next lemma relates PCPS(R,C) to closing forms of
parallel critical peaks.

» Lemma 37. Let R be a left-linear TRS and Ry, Rz, and C subsets of R, and let P =
PCPS(R,C). Suppose that g x—gr C —% - A< holds. Ift g, <+ s +r, u then

(i) t +oR, - 2f - R+ u, or

(i) t g+t p— s —=pu +r, u and t’ =% - f ' for somet’ and u'.

Proof. LetI': t », & s —0%732 u be a local peak. We use structural induction on s. Depending
on the form of I', we distinguish five cases.
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1. If P or Q is the empty then (i) holds trivially.
2. If Por Q is {e} and T is orthogonal then (i) follows by Lemma 16(a).
3. If P# @, Q = {e}, and T is not orthogonal then we distinguish two cases.
If there exist Fp, to, uo, and o such that “Py C P, t g, <+ too ngg— s i>7g2 UYT = U,
and ty re+-XSg ug” but not to ¢ up. Take t' = tyo and v = ugo. Then
toT R, ¢+ too p<— § —p upo = u holds and by the assumption ' —% - 5« u’ also
holds. Hence (ii) follows.
Otherwise, whenever Py, to, ug, and o satisfy the conditions quoted in the last item,
to <= up holds. Because T is not orthogonal, by Lemma 16(b) there exist Py, to, uo,
o, and 7 such that Py C P, t = toT g, ¢+ too R1<—0P5)— s i>Rz Upo = U, 0 ++gr, 7. Thus
to ¢ ug follows. Therefore, t = toT <=5 uoT ®, ¢+ upo = u, and hence (i) holds.
4. If P = {¢}, Q € {e}, and T is not orthogonal then the proof is analogous to the last case.
5. If P ¢ {e} and Q ¢ {¢} then s, ¢, and u can be written as f(s1,...,sn), f(t1,-..,tn),
and f(uy,...,u,) respectively, and T';: ¢; g, <+ s; +>R, u; holds for all 1 <4 < n. For
every peak I'; the induction hypothesis yields (i) or (ii). If (i) holds for all T'; then (i) is
concluded for T'. Otherwise, some T'; satisfies (ii). By taking t' = f(s1,...,¢;,...,$n) and
u = f(s1,...,ui,...,5,) we have t g, ¢+t pé— s =p v +»p u. From t; =% - S u;
we obtain t' —% - A< v'. Hence I satisfies (ii). <

The next theorem is a compositional confluence criterion based on parallel critical pair
systems.

» Theorem 38. Let R be a left-linear TRS and C a confluent TRS with C C'R. The TRS
R is confluent if < x-—gr C =% - A+ and P/R is terminating, where P = PCPS(R,C).

Proof. Let L be a fresh symbol and let I = T (F,V) U {L}. We define the relation > on I
as follows: a > fifa# 1L =0 or« —>7J§/R B. Since P/R is terminating, > is a well-founded
order. Let A = (T(F,V),{+a}acr) be the ARS, where +,, is defined as follows: s >, ¢ if
either = L and s +¢ t, or a # L and o =% s +g\¢ t. Since the commutation of C and
C follows from confluence of C, Lemma 5 yields the commutation of —, and — . According
to Lemma 5 and Theorem 20, it is sufficient to show that every local peak

Titsrs+u
a B
with (o, 8) € I? \ {(L, 1)} is decreasing. By the definition of A we have s 5, t and

s +»p, u for some TRSs Ry, Rz € {R \ C,C}. Using Lemma 37, we distinguish two cases.

1. Suppose that Lemma 37(i) holds for I'. Then t g, t’ <= v’ &, <+ u holds for some
t" and u'. If Ry = R\ C then t +4 t’ follows from § —% s =5 t +g\c t'. Otherwise,
Ry = C yields t +» t'. In either case t +>5 1 t' is obtained. Similarly, u + 4 1} o’
is obtained. Moreover, t' <% o’ follows from ¢ <=} u/. Since (a, ) # (L, L) yields
1 € Yaf and the reflexivity of + | yields +(5 1} C ++5 -+ for any J, we obtain the

desirable conversion t —+B+—> t/ <—f? u' &+ u. Hence, T is decreasing.
Yo (e

2. Suppose that Lemma 37(ii) holds for I'. We have t g, <+ t’ p+ s —=p v/ +>g, u and
t' =% v g« v for some ¢/, v/, and v. As (o, ) # (L, L), we have o« =% s —p t/ or
B =% s —p t/, from which a > ¢/ or § > t’ follows. Thus, ¢’ € Yaf. If Ra = R\C
then ¢’ +»4 t. Otherwise, Ry = C yields ¢ +, ¢. So in either case t +»yq4p ¢’ holds.
Consider terms w and w’ with ¢ =% w —x w —% v. We have w +»y w' or w + | w'.
So w -H—>Ya5 w' follows by {t/, L} C Yaf. Thus, ¢ “vap t <‘H‘>Yaﬁ v. In a similar way
U ¢yap U 07,5 v is obtained. Therefore ¢ <—+#— ¢’ —+#— v <—— u’ —+— u, and hence

I' is decreasing. Yaf  YaB  Yap Yap <
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We claim that Theorem 34 is subsumed by Theorem 38. Suppose that C is the empty
TRS. Trivially C is confluent. Because PCPS(R,C) is a subset of PCPS(R), termination
of PCPS(R,C)/R follows from that of PCPS(R)/R, which is equivalent to termination of
CPS(R)/R. Finally, ¢+ x-—=r C —% - 24 is a necessary condition of confluence. Thus,
whenever Theorem 34 applies, Theorem 38 applies.

Theorem 38 also subsumes Theorem 24 too. Suppose that C is a confluent subsystem of R.
If ¢+ x-=g C <5 then PCPS(R,C) = @, which leads to the termination of PCPS(R,C)/R.
Hence, Theorem 38 applies. Note that if C = R then PCPS(R,C) = @.

» Example 39. Consider the left-linear TRS R:

3: v+0—=x 5:
4: 04+x—ax+0

z+s(y) = s(z+y)
6: z+p(y) = pl@+y)

We show the confluence of R by the combination of Theorem 38 and orthogonality. Let
C = {3}. The TRS PCPS(R,C) consists of the eight rules:

0+s(z) = s(0+ ) z+s(p(y)) — s(z+p(y))
0+s(z) = s(z)+0 z+sp(y) > z+y
0+p(z) = p(0+x) z+p(s(y)) = plz +s(y))
0+ p(z) = p(z)+0 z+psy) 2 z+y

Termination of PCPS(R,C)/R can be shown by, e.g., the termination tool NaTT [38]. Since
C is orthogonal and R is locally confluent, Theorem 38 applies. Note that the confluence of
R can neither be shown by Theorem 28 nor Theorem 34. The former fails due to the lack of
suitable labeling functions for the following diagrams:
€

2 +5(p(y)) —> s(z + p(y))

{2} 71 6
Y
Ty <-r--slplz +y)

€
z+p(s(y)) —> pla +s(y)
{2} 2 5

A\

Ty <-5--p(s(@+y)

The latter fails due to non-termination of CPS(R)/R. The culprit is the rule 0+0 — 040

in CPS(R), originating from the critical peak 0 +~ 04 0 — 0+ 0. In contrast, the rule does
not belong to PCPS(R,C) because the conversion 0 <=5 0+ 0 holds.

8 Experiments

In order to evaluate the presented approach we implemented the main three compositional
confluence criteria (Theorems 24, 31, and 38) and their original versions (Theorems 22, 28,
and 34) in our prototype confluence tool Hakusan.! The problem set used in experiments

consists of 448 left-linear TRSs taken from the confluence problems database COPS [13].

Out of 448 TRSs, at least 179 are known to be non-confluent. The tests were run on a PC
with Intel Core i7-1065G7 CPU (1.30 GHz) and 16 GB memory of RAM using timeouts
of 120 seconds. Table 1 summarizes the results. The columns in the table stand for the
following confluence criteria:

! The tool and the experimental data are available from: https://www.jaist.ac.jp/project/saigawa/
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Table 1 Experimental results on 448 left-linear TRSs.

0} R C OO0 RC CR ACP  ColL-Saigawa CSI
# of proved TRSs 20 132 58 85 149 140 195 168 209
timeouts 0 20 8 13 82 32 47 169 3

O: Orthogonality (Theorem 22).

R: Rule labeling (Theorem 28).

C: The criterion by critical pair systems (Theorem 34).

00: Successive application of Theorem 24, as illustrated in Example 25.

RC: Theorem 31, where confluence of a subsystem C is shown by Theorem 38 with the

empty subsystem.

CR: Theorem 38, where confluence of a subsystem C is shown by Theorem 31 with the

empty subsystem.

For the sake of comparison the results of the confluence tools ACP version 0.62 [3], CoLL-
Saigawa version 1.6 [27], and CSI version 1.25 [39] are also included in the table.

We briefly explain how these criteria are automated in our tool. Suitable subsystems for
the compositional criteria are searched by enumeration. Relative termination, required by
Theorems 34 and 38, is checked by employing the termination tool NaTT version 1.9 [38].
Joinability of each (parallel) critical pairs (¢,u) is tested by the relation:

<5 <5
s .

For rule labeling, the decreasingness of each parallel critical peak ¢ ¢7k<—ﬁ— 5 5y.m u is checked
by existence of a conversion of the form

. . . . . ’ .
t I N I 3,73 ,UJZQP LIy u
Yk P,m Ykm Y km (oW Ym

such that i1,143,71,73 € N, ia,j2 € {0,1}, i1 +ia + 43 < 5, j1 + J2 + j3 < 5, and the inclusion
Var(v, P') C Var(s, P) holds. This is encoded into linear arithmetic constraints [11], and
they are solved by the SMT solver Z3 version 4.8.11 [5].

As theoretically expected, in the experiments O, R, and C are subsumed by their
compositional versions OO0, RC, and CR, respectively. Moreover, OO is subsumed by R, RC,
and CR. Due to timeouts, CR misses three systems of which R can prove confluence. While
the union of R and C amounts to 142, the union of RC and CR amounts to 150. Differences
between RC and CR are summarized as follows:

Three systems are proved by RC but not by CR nor R.2 One of them is the next TRS

(COPS number 994). RC uses the subsystem {2,4,6} whose confluence is shown by C.

1: a(b(z)) — a(c(z)) 3: c(b(x)) — a(b(z)) 5: c(c(x)) — c(c(x))

2: a(c(z)) — c(b(x)) 4: b(c(x)) — a(c(x)) 6: c(c(z)) — c(b(x))
The only TRS where CR is advantageous to RC is COPS number 132:

L: = (@z+y) = (-z)+(-y) 3: —(-z) >

2: (x4+y)+z—=a+ (y+2) 4: z+y—>y+ux

Its confluence is shown by the composition of Theorem 38 and Theorem 28, the latter of
which proves the subsystem {1,2,4} confluent.

2 The three systems are COPS numbers 994, 1001, and 1029. The aforementioned confluence tools also
fail to prove confluence of these systems.
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9 Conclusion

We studied how compositional confluence criteria can be derived from confluence criteria
based on the decreasing diagrams technique, and showed that Toyama’s almost parallel
closedness theorem is subsumed by his earlier theorem based on parallel critical pairs. We
conclude the paper by mentioning related work and future work.

Simultaneous critical pairs. van Oostrom [36] showed the almost development closedness
theorem: A left-linear TRS is confluent if the inclusions

EXS TS e RARVEN G

hold, where -e+ stands for the multi-step [29, Section 4.7.2]. Okui [23] showed the simultaneous
closedness theorem: A left-linear TRS is confluent if the inclusion

*
- X— C = - 4o

holds, where «e-x— stands for the set of simultaneous critical pairs [23]. As this inclusion
characterizes the inclusion <e- - — C —* - «e—, simultaneous closedness subsumes almost
development closedness. The main result in Section 3 is considered as a counterpart of this
relationship in the setting of parallel critical pairs.

Critical-pair-closing systems. A TRS C is called critical-pair-closing for a TRS R if
R(—X]i)n - (—>Z

holds. It is known that a left-linear TRS R is confluent if C4/R is terminating for some
confluent critical-pair-closing TRS C with C C R, see [14]. Here C4 denotes the set of all
duplicating rules in C. Theorem 24 imposes closedness by C on all parallel critical pairs in
return to removal of the relative termination condition. Investigating whether the latter
subsumes the former is our future work.

Rule labeling. Dowek et al. [7, Theorem 38] extended rule labeling based on parallel critical
pairs [40] to take higher-order rewrite systems. If we restrict their method to a first-order
setting, it corresponds to the case that a complete TRS is employed for C in Theorem 31,
and thus, it can be seen as a generalization of Corollary 26 by Toyama [33].

Critical pair systems. The second author and Middeldorp [12] generalized Theorem 34 by
replacing CPS(R) by the following subset:

CPS'(R) ={s = t,5 = u |t g s —x u is a critical peak but not t =5 u}

This variant subsumes van Qostrom’s development closedness theorem [36]. We anticipate
that in a similar way our compositional variant (Theorem 38) is extended to subsume the
parallel closedness theorem based on parallel critical pairs (Theorem 14).

Modularity and Automation. Compositional criteria are conceived as a criterion that
confluence of a subsystem implies confluence of the original system. In their automation
searching suitable subsystems is a serious bottleneck. If a criterion for the converse direction
is established, the bottleneck is resolved as a confluence problem reduces to that of a
subsystem. Modularity-based decomposition methods [31, 34, 1, 22, 8] are capable of this
type of reduction. Integrating modularity results in compositional criteria is our another
future work.
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