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Abstract
We study synthesis of reactive systems interacting with environments using an infinite data domain.
A popular formalism for specifying and modelling such systems is register automata and transducers.
They extend finite-state automata by adding registers to store data values and to compare the
incoming data values against stored ones. Synthesis from nondeterministic or universal register
automata is undecidable in general. However, its register-bounded variant, where additionally a
bound on the number of registers in a sought transducer is given, is known to be decidable for
universal register automata which can compare data for equality, i.e., for data domain (N, =). This
paper extends the decidability border to the domain (N, <) of natural numbers with linear order.
Our solution is generic: we define a sufficient condition on data domains (regular approximability)
for decidability of register-bounded synthesis. The condition is satisfied by natural data domains
like (N, <). It allows one to use simple language-theoretic arguments and avoid technical game-
theoretic reasoning. Further, by defining a generic notion of reducibility between data domains, we
show the decidability of synthesis in the domain (Nd, <d) of tuples of numbers equipped with the
component-wise partial order and in the domain (Σ∗, ≺) of finite strings with the prefix relation.
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1 Introduction

Synthesis. Reactive synthesis aims at the automatic construction of an interactive system
from its specification. A system is usually modelled as a transducer. In each step, it reads
an input from the environment and produces an output. In this way, the transducer, reading
an infinite sequence of inputs, produces an infinite sequence of outputs. Specifications are
modelled as a language of desirable input-output sequences. The synthesis problem then
asks to automatically construct a transducer whose input-output sequences belong to a given
specification. Traditionally [30, 4], the inputs and outputs have been modelled as letters from
a finite alphabet. This, however, limits the application of synthesis. Recently researchers have
started investigating synthesis of systems working on data domains [12, 24, 15, 25, 2, 14].
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122:2 A Generic Solution to Register-Bounded Synthesis

Automata as specifications. In the finite-alphabet setting, specifications are usually given
as logical formulas and a synthesiser performs a series of translations: first, from the formula
to an automaton, then from the automaton to a game, and finally it searches for a winning
strategy in the game. It is the second step, from automata to games, that captures the
game-theoretic essence of synthesis, whereas the first step is an orthogonal problem of finding
a convenient logical formalism. In the context of synthesis over data domains, this first step
is problematic as there is no decidable, and expressive enough, logic having a corresponding
automaton model. For that reason, in this paper we focus on the second step and use
automata for specifications.

Register automata. A well-studied automata formalism for specifying and modelling data
systems are register automata and transducers [22, 28, 23, 33]. Register automata extend
classical finite-state automata to infinite alphabets D by introducing a finite number of
registers. In each step, the automaton reads a data value d ∈ D, compares it with the values
held in its registers, then depending on this comparison it decides to store d into some
of its registers, and finally moves to a successor state. This way, it builds a sequence of
configurations (pairs of state and register values) representing its run on reading a word from
Dω: it is accepting if the visited states satisfy a certain condition, e.g. parity. Transducers
are similar except that in each step they also output the content of one register.

Universal register automata. Unlike classical finite-state automata, the expressive power of
register automata depends on whether they are deterministic, nondeterministic, or universal
(a.k.a. co-nondeterministic). Among these, universal register automata suit synthesis best.
First, they can specify request-grant properties: every requested data shall be eventually
outputted. This is a key property in reactive synthesis, and in the data setting it can be
expressed by a universal register automaton but not by a nondeterministic one. Furthermore,
universal register automata are closed, in linear time, under intersection. Hence they allow
for succinct conjunction of properties, which is desirable in synthesis as specifications usually
consist of many independent properties. Finally, in the register-free setting universal automata
are often used to obtain synthesis methods feasible in practice [26, 31, 17, 4].

Data domains with order. Another factor affecting expressivity of register automata is the
data-comparison operators. Originally, register automata compared data for equality only,
i.e., operated in data domain (D, =) [22]. This limits synthesis applications as we cannot
specify priority arbiters [8] that should give a resource to a requesting process with the lowest
ID. Such properties require data domains with linear order < (in addition to =). Further,
there are data domains with dense order, like (Q, <), and those with discrete order, like
(N, <). The domain (Q, <) is well-suited for abstracting physical phenomena like changing
temperature in a room. However, for abstracting hardware, the domain (N, <) suits better
as it excludes Zeno-like behaviours (when a process ID gets infinitely closer to another ID
but never reaches it). The domain (N, <) is also interesting from the theoretical point of
view as it demands new proof techniques.

Known synthesis results for register automata. Already for (D, =), the synthesis problem
of register transducers from universal register automata is undecidable [12, 15]. Decidability
is recovered in the deterministic case [15, 14], but, as argued above, universal automata are
more desirable in synthesis. To circumvent undecidability, the works [24, 15, 25] studied
register-bounded synthesis: given a universal register automaton and a bound k on the number
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Table 1 Decidability of register-
unconstrainted synthesis.

(D, =) (Q, <) (N, <)
DRA ✓[14] ✓[14] ✓[14]
NRA ✗[15] ✗ ✗

URA ✗[15] ✗ ✗

Table 2 Decidability of register-bounded
synthesis.

(D, =) (Q, <) (N, <)
DRA ✓[24] ✓[13] ✓[this paper]
NRA ✗[15] ✗ ✗

URA ✓[24] ✓[13] ✓[this paper]

of transducer registers, return a k-register transducer realising the automaton or “No” if no
such transducer exists. They showed the decidability of register-bounded for (D, =), and it is
not hard to adapt their techniques to (Q, <) and other oligomorphic domains [6], however the
domain (N, <) remained elusive. Tables 1 and 2 summarise known and new results, where
DRA/NRA/URA stand for deterministic/nondeterministic/universal register automata.

Contributions. We prove that register-bounded synthesis is decidable for (N, <) in time
doubly exponential in the number of registers of the specification automaton and of the
sought transducer. Our procedure is effective: it constructs a transducer if one exists. When
the total number of registers is fixed, it is ExpTime-c, matching the complexity of classical
(register-free) synthesis. This result generalises the works of [15, 25, 24] on (D, =). We then
extend the decidability boundary farther to include the domain (Nd, <d) of tuples of naturals
with the component-wise partial order, and the domain (Σ∗,≺) of strings with the prefix
relation.

Technical contributions. Our proof technique is generic and greatly simplifies the task of
proving new synthesis decidability results by removing the need to reason about synthesis
alltogether. We now describe the technique in detail.

The key idea of existing approaches [24, 15, 25] is to reduce the register-bounded synthesis
problem in a data domain to a two-player Church game with a finite alphabet and an
ω-regular winning condition. In such a game, two players alternately play for an infinite
number of rounds. Adam, modelling the environment, picks a test over the k registers
describing how its input data compares with the current content of the registers of a sought
transducer. Eve, modelling the system, picks a subset of the k registers, meant to store the
data, and a register whose value is meant for output. No data are manipulated in the game.
Infinite plays in the game induce infinite sequences of tests, assignments, and outputs over
the k registers, called action words; they are over a finite alphabet. Action words are meant
to abstract data words; an action word is feasible if there is at least one data word that
satisfies all its tests and assignments. The reduction ensures that any strategy of Eve winning
in the game can be converted into a k-register transducer realising the specification, and
vice versa. To this end, the game winning condition declares a play to be won by Eve if all
data words satisfying the action word induced by the play are accepted by the specification
automaton. In particular, a play whose action word is unfeasible is won by Eve as it does
not correspond to any environment-system interaction in the data domain. In the case of
(D, =), such winning conditions are known to be ω-regular [24, 15, 25]. However, in (N, <)
the set of feasible action words is not ω-regular [14], and neither is the winning condition.
Such winning conditions could be expressed by nondeterministic ωS automata [5], but games
with such objectives are not known to be decidable, to the best of our knowledge.

To overcome the latter obstacle, we introduce the notion of ω-regularly approximable
(regapprox) data domains. A regapprox data domain has an ω-regular over-approximation of
the set of feasible action words that is exact on the lasso-shaped action words (of the form
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uvω). Thus, in regapprox domains the set of feasible lasso-shaped action words is ω-regular.
This allows us to avoid dealing with non-ω-regularity and reduce synthesis to solving classic
ω-regular games. Our first technical contribution is the generic decidability result:

For regapprox domains, register-bounded synthesis from URA is decidable.

The procedure is constructive: for realisable specifications it outputs a transducer. Note
that all oligomorphic domains [6], e.g. (D, =) and (Q, <), are regapprox, because their sets of
feasible action words are ω-regular, so our result subsumes works [15, 25, 24]. For (N, <), we
construct its over-approximation relying on the result [14], and then instantiate the theorem.

There are many domains with discrete order resembling (N, <): the domain (Z, <) of
integers, the domain (Nd, <d) of tuples of naturals with the component-wise partial order, and
even the domain (Σ∗,≺) of strings with the prefix relation. To further simplify decidability
proofs on these domains, we define a natural and generic notion of reducibility between
data domains. Intuitively, a data domain D reduces to D′ if there is a rational transduction
that relates action words in D and D′ while preserving feasibility. Our second technical
contribution is the reduction result:

If D reduces to D′, and D′ is regapprox, then D is regapprox.

This implies that a synthesis procedure for D′ can be used to solve synthesis in D. We illustrate
the technique by reducing to (N, <) the domains (Nd, <d) and (Σ∗,≺). The reduction for
(Σ∗,≺) relies on the work [10]. These reductions entail the decidability of register-bounded
synthesis on these domains.

Related works. We already mentioned the works [24, 15, 25, 13] on synthesis of register
transducers in domains (D, =) and (Q, <), and that our result generalises them for the
case of URAs. The paper [14] studies Church’s synthesis for DRA specifications, where a
data strategy not necessarily with finitely-many states is sought. However, they show that
considering register transducers is sufficient, with with the number of registers equal that of
the specification automaton. Hence our register-bounded synthesis procedure for URAs can
also be used to solve the Church’s synthesis problem.

Another formalism for specifications of data systems is that of variable automata [20]. The
paper [16] studies synthesis of symbolic transducers from specifications given in a fragment
of nondeterministic variable automata. They solve synthesis for data domain (Q, <) and
leave the domain (N, <) for future work. Variable automata are incomparable with register
automata, and their particular fragment cannot express request-grant properties of arbiters
that we believe is desirable in synthesis.

Our proof techniques resemble those from some works on satisfiability of data logics.
Constraint LTL [11] extends Linear Temporal Logic (LTL) by atoms allowing one to compare
data values within the horizon or pre-defined length. The satisfiability of this logic is decidable
for data domains (D, =), (Q, <), (N, <) [11], and (Σ∗,≺) [10]. Their proof technique relies
on the abstraction of data values at different moments by relations between each other. For
the data domain (N, <), they additionally prove that considering lasso-shaped witnesses
of satisfiability is sufficient. Our generic synthesis result uses a similar idea by defining
regapprox domains. We note that formulas in Constraint LTL can always be translated into
universal register automata (which are more expressive) [32]. Hence our approach can be
used to solve register-bounded synthesis from Constraint LTL.

The papers [19, 27] suggest a sound/incomplete procedure to synthesis from Temporal
Stream Logic. This logic extends LTL by adding the atoms that are either first-order predicate
terms or are assignments of variables to a first-order function term. Similarly, transducers
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can test data using the predicate terms and update its values by the function terms. A
transducer satisfies a specification if it does so under every interpretation of predicates and
functions. It is possible to model domains like (D, =) and (Q, <) in their formalism, by
encoding the axioms for > and = into specification. This would give a sound/incomplete
synthesis approach. Our approach is less general but retains the completeness.

More generally, our notion of regular approximation echoes a general idea common to
verification techniques, for example of programs manipulating data variables (see, e.g., [21]),
to abstract concrete behaviours by regular ones. When an over-approximation is used, it is
guaranteed that if the abstract program satisfies some safety properties, so does the concrete
program. This yields sound algorithm which are not necessarily complete. Here in the
context of register automata, instead, we require that the over-approximation is exact on
lasso-like executions, and show that this implies completeness (for the synthesis problem).

2 Synthesis Problem

Let N = {0, 1, . . . } denote the set of natural numbers including 0.

Data domain and data words. A data domain is a tuple D = (D, P, C, c0) consisting of
an infinite countable set D of data values, a finite set P of interpreted predicates (predicate
names with arities and their interpretations) which must contain the equality predicate =, a
finite set C ⊂ D of constants, and a distinguished initialiser constant c0 ∈ C. For example,
(N, {<, =}, {0}, 0) is the data domain of natural numbers with the usual interpretation of <, =,
and 0. In the tuple notation, we often omit the brackets, as well as the mention of = and of c0
when the initialiser constant is clear from the context. E.g., we write (N, <, 0) for (N, {<, =},
{0}, 0). Another familiar example is (Z, <, 0), which is the data domain of integers with
the usual <, =, and 0. Throughout the paper we assume that the satisfiability problem of
quantifier-free formulas built on the signature (P, C) is decidable in D, and whenever we
state complexity results, the satisfiability problem is additionally assumed to be decidable in
PSpace. This is the case for all data domains considered in this paper. Finally, data words
are infinite sequences d0d1 . . . ∈ Dω, and for two sets I and O and a language L ⊆ (I ·O)ω,
we call I and O its input and output alphabets respectively.

Action words. Fix a data domain D = (D, P, C, c0) and a finite set R of elements called
registers. A register valuation (over D) is a mapping ν : R → D. Given a valuation ν, a
variable x (not necessarily in R), and a data value d ∈ D, define ν[x← d] to be the valuation
R ∪ {x} → D that maps x to d and every r ∈ R \ {x} to ν(r). We extend this notation to
any finite set A = {a1, . . . , an} by letting ν[A← d] = ν[a1← d] . . . [an← d].

A test (over D) is a conjunction (∧) of distinct literals over predicates P and constants
C, encoded as a set of literals p(x1, . . . , xa) and ¬p(x1, . . . , xa), where p ∈ P , a is the arity
of p and x1, . . . , xa ∈ R ∪ C ∪ {⋆}. The symbol ⋆ is a fresh symbol used as a placeholder
for incoming data values. By convention, ∧∅ = ⊤, and the empty set encodes the test that
is always true. Depending on the context, we use the formula or set notation. A register
valuation ν : R → D and data value d ∈ D satisfy a test φ, written ν, d |= φ, if ν[⋆← d]
satisfies φ, where predicates and constants are interpreted in the data domain D. A test φ is
maximal if it specifies the relation between all variables and constants wrt. the predicates,
i.e. it is a maximally consistent conjunction of literals: φ =

∧
p∈P

p of arity r

∧
x1,...,xr

∈R∪C∪{⋆}
lp,x1,...,xr

,

where lp,x1,...,xr ∈ {p(x1, . . . , xr),¬p(x1, . . . , xr)}. Maximal tests are mutually exclusive: a
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given valuation cannot satisfy simultaneously two of them. Observe that a test is equivalent
to a (possibly exponential) disjunction of maximal ones. Let TstDR denote the set of all
possible tests over registers R in domain D, and MTstDR ⊂ TstDR the subset of maximal ones.

▶ Example. Consider domain (N, <, 0) and R = {r}. Atomic formulas are r < ⋆, ⋆ = r,
r < 0, ⋆ = 0, etc. The test 0 < r ∧ r < ⋆ specifies that the content of register r is strictly
positive and that the incoming data is greater than it. It is not maximal, since it does not
contain the atoms 0 < ⋆, ¬(⋆ = r), ¬(⋆ = 0), ¬(r = 0). For readability, we write 0 < r < ⋆.

An assignment is a set asgn ⊆ R of registers meant to store the current input data
value. Let AsgnR = 2R denote the set of all possible assignments. An action is a pair
(tst, asgn) ∈ TstR×AsgnR. We now describe how valuations are updated: given a valuation
ν, a data value d, a test tst and an assignment asgn, we say that the valuation ν′ is the
successor of ν following action (tst, asgn) on reading d, written ν

d,tst,asgn−−−−−→ ν′, if the data
value satisfies the test, i.e. ν, d |= tst, and ν′ = ν[asgn← d].

An automaton action word, or simply action word, is an infinite sequence of actions
a = (tst0, asgn0)(tst1, asgn1) . . . ∈ (TstR×AsgnR)ω. It is feasible by a sequence of valuation-
data pairs (ν0, d0)(ν1, d1) . . . if ν0 : r ∈ R 7→ c0, i.e. ν0 maps every r ∈ R to c0, and for all
i: νi

di,tsti,asgni−−−−−−−→ νi+1. We then say that the data word d0d1 . . . is compatible with a. Let

AWD
R denote the set of action words over R in D, and FEASD

R the subset of feasible ones. We
may write either AWR, or AWD or just AW when D, R or both are clear from the context,
similarly for FEAS.

▶ Example. Consider domain (N, <, 0) and R = {r}. For r ∈ R, the assignment {r} is
denoted ↓ r. The action word (0 < ⋆, ↓ r)(⋆ < r, ↓ r)ω is unfeasible in (N, <, 0), because it
requires having an infinite chain of strictly decreasing values, which is not possible since N
is well-founded. The same action word can be interpreted in (Z, <, 0) and in (Q, <, 0) and
there it is feasible, as well as in (Q+, <, 0) since Q+ is dense.

Register automata. A register automaton over data domain D is a tuple S = (Q, q0, R, δ, α),
where Q is a finite set of states containing the initial state q0, R is a finite set of registers,
δ ⊆ Q×TstR×AsgnR×Q is a transition relation, and α : Q→ {1, ..., c} is a priority function
where c is the priority index. A configuration of S is a pair (p, ν) ∈ Q×DR; it is initial if
p = q0 and ν : r ∈ R 7→ c0. The configuration (q, ν′) is a successor of (p, ν) on reading data
value d ∈ D and taking transition p′ tst,asgn−−−−→ q′ ∈ δ, written (p, ν) d,tst,asgn−−−−−→

S
(q, ν′) or simply

(p, ν) d−→
S

(q, ν′), if p = p′, q = q′ and ν
d,tst,asgn−−−−−→ ν′, i.e. ν, d |= tst and ν′ = ν[asgn← d].

A run of S over a data word d0d1 . . . is a sequence of configurations ρ = (q0, ν0)(q1, ν1) . . .

such that (q0, ν0) is initial and for every i, (qi+1, νi+1) is a successor of (qi, νi) on reading
di, on taking some transition qi

tsti,asgni−−−−−→ qi+1 ∈ δ. We then say that the automaton action
word (tst0, asgn0)(tst1, asgn1) . . . labels ρ; note that it is feasible by ν0d0ν1d1 . . .. The run ρ is
accepting if the maximal priority appearing infinitely often in α(q0)α(q1) . . . is even, otherwise
it is rejecting. A data word may have several runs of S. For universal register automata,
abbreviated URA, a word is accepted if all its runs are accepting; for nondeterministic
automata, there should be at least one accepting run. The set of all data words over D

accepted by S is called the language of S and denoted L(S). We may write LD(S) to
emphasise that L(S) is defined over D.

A finite (parity) automaton (without registers) is a tuple (Σ, Q, q0, δ, α), where Σ is a
finite alphabet, δ ⊆ Q×Σ×Q, and the definition of runs, accepted words, and language is
standard. Such automata operate on words from Σω.
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p q
0 < ⋆, ↓m

r < ⋆ < m, ↓r

⋆ = 0, ↓r

(a) A register automaton over (N, <, 0) (state q
is accepting).

0

value

execution

m

r

(b) An example of the sequence of values taken by re-
gisters r and m along the run.

Figure 1 A register automaton whose action words do not form an ω-regular language.

Syntactical language of a register automaton. A register automaton S = (Q, q0, R, δ, α) can be
treated syntactically, it then induces a universal finite automaton Ssynt = (Σ, Q, q0, δ, α) with
Σ = TstR×AsgnR. Note that since Ssynt is universal, words that have no run are accepted.
Notice that the language of Ssynt may contain action words which are not feasible.

▶ Example. Consider the automaton of Figure 1a. Its syntactical language is
(0 < ⋆, ↓m)

(
(r < ⋆ < m, ↓r) | (0 = ⋆, ↓r)

)ω

which includes not only feasible but also unfeasible action words, e.g. (0 < ⋆, ↓m)(r < ⋆ <

m, ↓r)ω. The feasible accepted action words have the form

(0 < ⋆, ↓m)
∞∏

i=1

(
(r < ⋆ < m, ↓r)ni(0 = ⋆, ↓r)

)
such that the numbers (ni)i are uniformly bounded by some value; the bound corresponds
to the first read data value. This language is not ω-regular but an ωB-language [5].

Register transducers. A k-register transducer is a tuple T = (Q, q0, R, δ), where Q, q,
R (|R| = k) are as in automata but δ : Q×MTst → Asgn×R×Q. Note that δ is a total
function; moreover, since we restrict to maximal tests, exactly one test holds per incom-
ing data value, so the transducers are deterministic and complete. A configuration is a
pair (p, ν) ∈ Q×DR. From configuration (p, ν), on reading d ∈ D, the transducer takes
the unique transition p

tst,asgn|r−−−−−→ q such that ν, d |= tst, updates its configuration to (q, ν′)

where ν
d,tst,asgn−−−−−→ ν′, and outputs the value ν′(r). Note that the output is produced after

assignment. We then write (p, ν) d,tst,asgn|r,ν′(r)−−−−−−−−−−→
T

(q, ν′), or simply (p, ν) d|ν′(r)−−−−→
T

(q, ν′).
A run of T on an input data word di0d

i
1 . . . is a sequence (q0, ν0)(q1, ν1) . . . such that

(q0, ν0) is initial and for all i ≥ 0, (qi, νi)
dii ,tsti,asgni|ri,doi−−−−−−−−−−−→ (qi+1, νi+1) for some unique

doi ∈ D. The sequence do0d
o
1 . . . is the output word of T on reading di0d

i
1 . . .; since the

transducers are deterministic and have a run on every input word, the output word is
uniquely defined. The sequence di0d

o
0d

i
1d

o
1 . . . is called the input-output word. We then

say that the transducer action word tst0(asgn0, r0)tst1(asgn1, r1) . . . ∈
(
MTst·(Asgn×R)

)ω

is feasible by (ν0, di0, do0)(ν1, di1, do1) . . .. It is naturally associated with the automaton ac-
tion word (tst0, asgn0)(⋆ = r0,∅)(tst1, asgn1)(⋆ = r1,∅) . . ., which is then feasible by
ν0d

i
0ν1d

o
0ν1d

i
1ν2d

o
1 . . . . The set of all transducer action words over R in data domain D

is denoted by TWD
R. The language L(T ) consists of all input-output words of T .
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A finite transducer is a standard Mealy machine: it is a tuple (Σ, Γ, Q, q0, δ), where Σ and
Γ are finite input and output alphabets, δ : Q×Σ→ Γ×Q, and the definition of language is
standard. Treating a register transducer T syntactically gives a finite transducer denoted
Tsynt of the same structure as T with Σ = MTstR and Γ = AsgnR×R.

Synthesis problem. Fix a data domain (D, P, C, c0). A register transducer T realises a
register automaton S if L(T ) ⊆ L(S). The register-bounded synthesis problem is:

input: k ∈ N and a URA S;
output: yes iff there exists a k-register transducer which realises S.

In this paper, when the synthesis problem is decidable, we are able to synthesise, i.e.,
effectively construct, a transducer realising the specification. We now make two remarks.
First, notice that the number of transducer states is finite but unconstrained. Thus, register-
bounded synthesis generalises classical register-free synthesis from (data-free) ω-regular
specifications. Second, observe that transducers are complete, and therefore produce an
ouptput word on every input word. Thus, a specification for which some input words do not
have an associated output word is unrealisable. It is known that in the finite-alphabet case,
the refined synthesis problem of good-enough synthesis [1], which requires a transducer to
react only to inputs that belong to the domain of the specification, is still decidable. However,
the good-enough register-bounded synthesis is undecidable [13, Chapter 8].

▶ Example. We illustrate the synthesis problem by describing a specification, its URA, and
a register transducer realising it.

Let us start with the specification of priority arbiters. Such an arbiter reads an ID of
a process requesting the resource, and outputs an ID of a process to whom the resource
is granted. The specification requires that every requesting process is either acknowledged
consecutively twice on the output, or this is done for a process of higher ID. We model the
specification using the URA over (N, <, 0) with a single register from Figure 2a.

win

wout

pout

pin

p2
in p2

out sin

fin fout

⊤ ⊤

⊤, ↓r

⋆ < r ⊤

¬(⋆<r), ↓r ⊤ ⋆ = r

¬(⋆ = r)

⊤

⊤

(a) URA for the priority-arbiter specification.

q0 q1

q2q3

⋆ > r1 | ↓r1, ↑r1

¬(⋆>r1) | ↑r1
¬(⋆>r1) | ↑r1

⋆ > r1 | ↓r2, ↑r1
⋆ > r2 | ↓r2, ↑r2

¬(⋆>r2) | ↑r2

¬(⋆>r2) | ↑r2

⋆ > r2 | ↓r1, ↑r2

(b) Register transducer realising the specifica-
tion.

Figure 2 A URA specification and a transducer implementing it.

The automaton reads words interleaving between arbiter data input and output, so its states
are partitioned into box states (for reading input) and circle states (for reading output). The
double-circle states are rejecting and can be visited only finitely often. Thus, a run looping in
wait states win and wout is accepting. Branching is universal, hence some run always loops
around win and wout. On reading an ID of a requesting process, a copy of the automaton
moves from win to a pending state pout while storing the ID into register r. It stays in states
pout and pin as long as the request is not acknowledged, and such an infinite run is rejecting.
If the request is eventually acknowledged (transitions from pout to a sink state sin), the run
dies, so it is accepting. If a run reaches the failure state fin, it is rejecting.
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Figure 2b depicts a transducer with two registers r1 and r2 realising the above specification.
On the left of the vertical bar are the tests over the inputs received by the transducer (in
red), and on the right is the output action performed by the transducer (in green). For
example, from state q0 to q1, if the input data d is larger than the data stored in register
r1, the transducer stores it into r1, and outputs the content of r1. The transducer uses one
register to store the maximal value seen so far, while outputting the content of the other
register, and the roles of these registers interchange as the transducer transits along the
states. Thus, the instance of register-bounded synthesis with the described URA and k = 2
has a positive answer. However, when k = 1 the answer is negative.

3 Sufficient Condition for Decidable Synthesis for URA

In this section, we first show a reduction from register-bounded synthesis to (register-free)
finite-alphabet synthesis. In the following, we fix a data domain D. Given a specification S

(as a URA over D) and a bound k, we show how to construct a finite-alphabet specification
W F

S,k on action words over k registers, which is realisable by a finite-alphabet transducer iff
S is realisable by a k-register transducer (Lemma 1). The main idea is to see the actions of
the URA and of the sought k-register transducer as finite-alphabet letters. In particular,
the specification W F

S,k accepts a transducer action word ak iff every action word aS of the
specification S, such that both ak and aS are feasible by the same data word, is accepted by
Ssynt. One can compose automata and transducer action words through a form of parallel
product, which allows to talk about their joint feasibility. Then, in general, W F

S,k is not
necessarily ω-regular, and in a second step, we provide sufficient conditions on the data
domain making synthesis wrt. W F

S,k decidable, namely, that it can be under-approximated by
an ω-regular language which coincides with W f

S,k over lasso words (Section 3.1). We obtain
a general decidability result for data domains having this property (Theorem 4). We then
instantiate this result for data domain (N, <, 0) (Section 3.2).

In the following, we fix a URA S with registers RS and a disjoint set Rk consisting of k

registers, and let R = RS ⊎Rk. Given a transducer action word ak = tstk
0 (asgnk

0 , rk
0 ) . . . ∈

TWD
Rk

and an automaton action word aS = (tstSi0 , asgnSi
0 )(tstSo0 , asgnSi

0 ) . . . ∈ AWD
RS

, the
product ak ⊗ aS of ak and aS is the automaton action word over registers R defined as
(tstk

0∧tstSi0 , asgnk
0∪asgnSi

0 )((⋆ = rk
0 )∧tstSo0 , asgnSi

0 ) . . . , which is essentially the parallel product
of aS and of the automaton word associated with ak.

We now show how to abstract a data specification given as URA S with registers RS by
a finite-alphabet specification over k-register transducer action words. Let FEASD

R be the set
of automata action words over R feasible in D, then we define

W F
S,k =

{
ak ∈ TWRk

| ∀aS ∈ AWRS
: ak ⊗ aS ∈ FEASD

R ⇒ aS ∈ L(Ssynt)
}

.

Thus, W F
S,k rejects a feasible transducer action word ak iff there is an automaton action word

aS feasible by the same data word as ak and rejected by S.

▶ Lemma 1. These two are equivalent:
a URA S is realisable by a k-register transducer,
W F

S,k is realisable (by a finite-alphabet transducer).

Proof. ⇒: Assume that S is realisable by a register transducer T , i.e. LD(T ) ⊆ LD(S). Let
ak ∈ L(Tsynt), and let aS ∈ AWRS

such that ak ⊗ aS ∈ FEASD
R. Then, ak ⊗ aS is feasible by

some input-output data word w = di0d
o
0d

i
1d

o
1 . . . . By definition of the product, both ak and

aS are feasible by w. Since LD(T ) ⊆ LD(S), if aS labels a run of S on w, it means that it is
accepting otherwise w /∈ LD(S) since S is a universal automaton. Thus, aS ∈ L(Ssynt).
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⇐: Conversely, assume that W F
S,k is realisable by some finite transducer M , and let T

be the associated register transducer, i.e. such that Tsynt = M . Let w ∈ LD(T ) and let ak

be the action word labelling the run of T on w. Let aS be an action word labelling a run
of S on w if it exists (it might be that w is accepted by S by having no run on it). Then,
ak ⊗ aS is feasible by w. By definition of W F

S,k, it means that aS ∈ L(Ssynt), so aS labels an
accepting run of S on w. Overall, all runs of S on w are accepting, so w ∈ LD(S). Thus,
LD(T ) ⊆ LD(S), i.e. T realises S. ◀

3.1 General Decidability Result
In (N, <, 0), W F

S,k is not ω-regular in general. To overcome this obstacle, we define the notion
of ω-regularly approximable data domains. Such domains have an ω-regular equi-realisable
subset of W F

S,k.
Let lassoR be the set of lasso-shaped1 action words over a given set of registers R; we

write lasso when R is clear. A data domain D is ω-regularly approximable (regapprox) if for
every R there exists an ω-regular language QFEASR ⊆ (TstR×AsgnR)ω satisfying

QFEASR ∩ lassoR ⊆ FEASR ⊆ QFEASR

and recognisable by a nondeterministic Büchi automaton that can be effectively constructed
given R. The definition implies that FEASR and QFEASR coincide on lasso words. Such a
set QFEASR is called regular approximation and written as QFEAS when R is clear.
▶ Example. The data domains (D, =) and (Q, <) are regapprox because their sets FEASR for
every R are ω-regular, so there is no need to approximate them. On these domains, to check
whether a given action word is feasible, one can track the relations between the registers and
check if the read tests are consistent with these relations. For instance, if r1 < r2 but we
read the test ∗ = r1 = r2, then the action word is unfeasible.

The domain (N, <, 0) is also regapprox. Here, it is not sufficient to track the relations
between the registers. We also need to ensure that between any two stored data values only
a bounded number of different values is inserted along the action word. (Recall the example
on page 7 with Figure 1a.) However, when an action word is lasso-shaped, it suffices to
check the absence of an infinite number of such insertions. The latter can be checked by an
ω-regular automaton, which allows for proving the regapproximability of (N, <, 0).

Finally, consider the data domain (N, {S, =}, {0}, 0), where S is the successor relation,
i.e. S(a, b) holds iff a = b + 1. This domain is not regapprox. Intuitively, this is because the
domain allows for counting, which enables non ω-regular phenomena even in lasso words.
We prove this by contradiction. Consider the following ω-regular language of action words
over a single register r:

L =
{(

S(∗, r), ↓r
)n(

S(r, ∗), ↓r
)m(
∗ = 0 = r,∅

)ω | n, m ∈ N
}

,

i.e. the value in r is incremented n times, then decremented m times, then compared to zero
and not updated. L contains feasible as well as unfeasible action words. Every feasible word
of L has n = m, hence FEAS ∩ L is not ω-regular. Moreover, every word of L is a lasso, thus
L ∩ lasso = L. Let us assume that the data domain is regapprox, witnessed by QFEAS for
R = {r}. Since QFEAS ∩ lasso = FEAS ∩ lasso by definition, we get

QFEAS ∩ L = QFEAS ∩ lasso ∩ L = FEAS ∩ lasso ∩ L = FEAS ∩ L.

The language QFEAS ∩ L is ω-regular, but FEAS ∩ L is not. Contradiction. Therefore
(N, {S, =}, {0}, 0) is not regapprox. ◀

1 A word w is lasso-shaped (or regular, or ultimately periodic) if it is of the form w = uvω for some finite
words u and v.
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Given a URA S with registers RS and k, we define
W QF

S,k =
{

ak | ∀aS : ak ⊗ aS ∈ QFEASR ⇒ aS ∈ L(Ssynt)
}

,

where R = RS ⊎Rk. The definition of W QF
S,k differs from W F

S,k only in using QFEASR instead
of FEASR. Since FEASR ⊆ QFEASR, we have W QF

S,k ⊆W F
S,k.

We now show that W QF
S,k is ω-regular (which essentially follows from ω-regularity of QFEAS

and Ssynt), and estimate the size of an automaton recognising W QF
S,k and the time needed to

construct it. For that we use the following terminology for functions of asymptotic growth:
a function is poly(t) if it is O(tκ), exp(t) if it is O(2tκ), and 2exp(t) if it is O(22tκ

), for a
constant κ ∈ N. When poly, exp, and 2exp are used with several arguments, the maximal
among them shall be taken for t. The construction and complexity analysis rely on standard
automata techniques; see the full version for details.

▶ Lemma 2. Let S be a URA and let k ≥ 1. Then, W QF
S,k is ω-regular. Moreover, W QF

S,k

is recognisable by a universal co-Büchi automaton with O(2kNnc) many states that can be
constructed in time poly(N, n, exp(r, k)), where n, r, and c are the number of states, registers,
and priorities in S, and N is the number of states in a nondeterministic Büchi automaton
recognising QFEASRS⊎Rk

.

We now prove that W F
S,k and W QF

S,k are equi-realisable. For ω-regular specifications (like
W QF

S,k) there is no distinction between realisability by finite- and infinite-state transducers [7].
This is not known for W F

S,k specifications over domains such as (N, <, 0); we leave this
question for future work, and in this paper focus on realisability by finite-state transducers.

▶ Lemma 3. W F
S,k is realisable by a finite-state transducer iff W QF

S,k is realisable by a finite-
state transducer.

Proof. Direction ⇐ follows from the inclusion FEAS ⊆ QFEAS, which implies W QF
S,k ⊆W F

S,k.
Consider direction ⇒. Let T be a finite-state transducer that T does not realise W QF

S,k. We
show that T does not realise W F

S,k either. First, we have that L(T ) ̸⊆W QF
S,k, so the language

{ak ⊗ aS ∈ AWD
R | ak ∈ L(T ) ∧ ak ⊗ aS ∈ QFEAS ∧ aS /∈ L(Ssynt)} is nonempty. Since

QFEAS and L(Ssynt) are ω-regular, and since T is a finite-state transducer, this language is
ω-regular. Thus, it contains a lasso-shaped word ak ⊗ aS ; by definition of the product, both
ak and aS are then lasso-shaped. Since QFEAS ∩ lasso ⊆ FEAS, we get that aS is feasible,
i.e. ak ⊗ aS ∈ {ak ⊗ aS | ak ∈ L(T ) ∧ ak ⊗ aS ∈ FEAS ∧ aS /∈ L(Ssynt)}, which implies that
L(T ) ̸⊆W F

S,k: T does not realise W F
S,k. ◀

We are now able to prove the main result of this paper.

▶ Theorem 4. Let D be a regapprox data domain such that for every set of registers R, one
can construct a nondeterministic Büchi automaton with nQF states recognising QFEASR in
time f(|R|) for some function f . Then:

register-bounded synthesis for URAs over D is decidable in time exp(exp(k, r), nQF, n, c) +
f(k + r), where n is the number of states of the URA, c its number of priorities, r its
number of registers, k is the number of transducer registers. It is ExpTime-c for fixed r

and k.
For every positive instance of the register-bounded synthesis problem, one can construct,
within the same time complexities, a register transducer realising the specification.

Proof. Lemmas 1,2,3 reduce register-bounded synthesis to (finite-alphabet) synthesis for the
ω-regular specification W QF

S,k. Since synthesis wrt. to ω-regular specifications is decidable,
we get the decidability part of the theorem. Let us now study the complexity. Let RS
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be the set of r registers of the URA and Rk be a disjoint set of k registers. First, one
needs to construct an automaton recognising QFEASRS∪Rk

. This is done by assumption
in time f(k + r). Then, one can apply Lemma 2 and get that W QF

S,k can be recognised by
universal co-Büchi automaton A with O(2knqf nc) states, which can be constructed in time
poly(nqf , n, exp(r, k)). A universal co-Büchi automaton with m states can be determinised
into a parity automaton with exp(m) states and poly(m) priorities (see e.g. [29]). Recall
that the alphabet of A is Tstk ∪ (Asgnk × Rk). Hence by determinising A, and seeing it
as a two-player game arena, we get a parity game with exp(k) edges (corresponding to
the actions of Adam and Eve), exp(exp(k), nQF, n, c)) states, and poly(exp(k), nQF, n, c))
priorities. The latter can be solved in polynomial time in the number of its states, as
the number of priorities is logarithmic in the number of states (see e.g. [9]), giving the
overall time complexity exp(exp(k), nQF, n, c)) for solving the game. If we sum this to the
complexity of constructing an automaton for W QF

S,k plus the complexity for construction
an automaton for QFEAS, we get exp(exp(k), nQF, n, c)) + poly(nQF, n, exp(r, k)) + f(r + k),
which is exp(exp(k, r), nQF, n, c)) + f(r + k). If both r and k are fixed, then exp(k, r) and
f(r + k) are constants, so the complexity is exponential only. It is folklore that the hardness
holds in the register-free setting (for r = k = 0). See for example [18, Proposition 6] for a
proof in the finite word setting over a finite alphabet (which straightforwardly generalises
to infinite words). There, the proof is done for nondeterministic finite automata, but by
determinacy, hardness also holds for universal automata, as they are dual.

Now, if a URA specification is realisable for some given k, then by Lemmas 1 and 3,
W QF

S,k is realisable by a finite-alphabet transducer M . Since W QF
S,k ⊆W F

S,k, M also realises the
specification W F

S,k. The mapping ·synt which turns a register transducer into a finite-alphabet
transducer is bijective, and hence there exists a register transducer T such that Tsynt = M .
The proof of Lemma 1 exactly shows that T realises S, hence we are done. ◀

3.2 Register-bounded Synthesis over Data Domain (N, <, 0)

We instantiate Theorem 4 for the data domain (N, <, 0). In [14], though there was no general
notion of ω-regular approximability for data domains, it was implicitly used for (N, <, 0).
The following fact follows from [14, Thm.8] after adapting to our notions.2

▶ Fact 5. For all R, (N, <, 0) has a witness QFEASR of ω-regular approximability expressible
by a nondeterministic parity automaton with exp(|R|) states and poly(|R|) priorities, which
can be constructed in time exp(|R|).

A parity automaton can be translated to a nondeterministic Büchi automaton with a quadratic
number of states, so we can instantiate Theorem 4 on domain (N, <, 0) and get:

▶ Theorem 6. For a URA in (N, <, 0) with r registers, n states, and c priorities, k-register-
bounded synthesis is solvable in time exp(exp(r, k), n, c): it is singly exponential in n and c,
and doubly exponential in r and k. It is ExpTime-c for fixed k and r.

2 Strictly speaking, their paper considers maximal tests only. However, using their deterministic automaton
for QFEASR over action words with maximal tests, we can construct a nondet. automaton recognising
quasi-feasible action words with all tests, incl. partial ones. Our nondet. automaton, on reading a partial
test, guesses its completion into a maximal test and simulates the original automaton on it.
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4 Reducibility Between Data Domains

Theorem 6 relies on the study of feasibility of action words in (N, <, 0) of [14], which requires
some effort. Such a study could in principle be generalised to domains such as Z-tuples,
as well as finite strings with the prefix relation, by leveraging the results of [10]. However,
this would come at the price of a high level of technicality. We choose a different path, and
introduce a notion of reducibility between domains, which allows us to reuse the study of
(N, <, 0) and yields a compositional proof of the decidability of register-bounded synthesis
for the quoted domains.

▶ Definition. A data domain D reduces to a data domain D′ if for every finite set of registers
R, there exists a finite set of registers R′ and a rational relation3 K between R-automata
action words in D and R′-automata action words in D′ that preserves feasibility, in the
sense that for every R-action word a ∈ (TstDRAsgnR)ω: a is feasible in D iff there exists an
R′-action word in K(a) ∈ (TstD

′

R′ AsgnR′)ω feasible in D′.4

▶ Remark. Reducibility is a transitive relation, since rational relations are closed under
composition [3, Theorem 4.4], and feasibility preservation is transitive.

Since K is rational and preserves feasibility, for all R, K−1(QFEASR′) is a witness of
regapproximability, where R′ is as in the above definition (see the proof below for details),
thus we get:

▶ Lemma 7. If D reduces to D′ and D′ is regapprox, then D is regapprox.

Proof. Let R be a fixed set of registers, and let R′ be a set of registers satisfying the definition
of reducibility. Let FEAS (respectively, FEAS′) be the set of R-action words feasible in D

(resp., feasible R′-action words in D′).
Our goal is to define an ω-regular set QFEAS (for R) s.t. QFEAS∩lasso ⊆ FEAS ⊆ QFEAS.

Since D′ is regapprox, there is an ω-regular set QFEAS′ (for R′) s.t. QFEAS′ ∩ lasso ⊆
FEAS′ ⊆ QFEAS′. Define QFEAS = K−1(QFEAS′); as the preimage of an ω-regular set by a
rational relation, it is (effectively) ω-regular, thus satisfying one of the condition for D to be
regapprox.

We now show that FEAS ⊆ QFEAS. Before proceeding, notice that FEAS = K−1(FEAS′),
since K preserves feasibility. Since FEAS′ ⊆ QFEAS′, we have K−1(FEAS′) ⊆ K−1(QFEAS′),
hence FEAS ⊆ QFEAS.

It remains to show that QFEAS ∩ lasso ⊆ FEAS. The inclusion QFEAS′ ∩ lasso ⊆ FEAS′

implies K−1(QFEAS′ ∩ lasso) ⊆ K−1(FEAS′) = FEAS (the latter equality is because FEAS =
K−1(FEAS′)). We prove that QFEAS ∩ lasso ⊆ K−1(QFEAS′ ∩ lasso), which entails the
desired result. Pick an arbitrary a ∈ QFEAS ∩ lasso. Since K is rational, K(a) is ω-regular.
Moreover, QFEAS′ is ω-regular, which entails that K(a)∩QFEAS′ is ω-regular as well. Since
a ∈ K−1(QFEAS′), the intersection K(a) ∩ QFEAS′ is nonempty. Since K(a) ∩ QFEAS′ is
ω-regular and nonempty, it contains a lasso word a′. Thus, a′ ∈ K(a) ∩ QFEAS′ ∩ lasso,
hence a ∈ K−1(QFEAS′ ∩ lasso). ◀

As a direct consequence of Lemma 7 and Theorem 4, we get the following result:

3 Given two finite alphabets Σ and Γ, a relation K ⊆ Σω × Γω is rational if there exists an ω-regular
language L ⊆ (Σ ∪ Γ)ω such that K = {(projΣ(u), projΓ(u)) | u ∈ L}. This is equivalent to saying that
it can be computed by a nondeterministic asynchronous finite-state transducer over input Σ with output
in Γ∗. See, e.g., [3, Section 3].

4 Note that we do not forbid the existence of unfeasible action words in the image.
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▶ Theorem 8. If a data domain D reduces to a regapprox data domain, then register-bounded
synthesis is decidable for D. Moreover, for any positive instance of the register-bounded
synthesis problem over D, one can effectively construct a register transducer realising the
specification of that instance.

4.1 Adding Labels to Data Values
As a first application, we show that one can equip data values with labels from a finite
alphabet while preserving regapproximability. By Theorem 8, this yields decidability of
register-bounded synthesis for such domains.

Formally, given a data domain D = (D, P, C, c0) and a finite alphabet Σ, we define the
domain of Σ-labeled data values over D as Σ×D = (Σ×D, P ∪{labσ | σ ∈ Σ}, Σ×C, (σ0, c0)),
where σ0 ∈ Σ is a fixed but arbitrary element of Σ and, for each σ ∈ Σ, labσ(γ, d) holds if
and only if γ = σ.

▶ Lemma 9. For all finite alphabet Σ and data domain D, Σ×D reduces to D.

Proof. Wlog we assume that the set of constants C is the singleton {c0} (modulo adding new
predicates to P ). Let Σ = {σ0, σ1, . . . , σn}, where σ0 is such that (σ0, c0) is the initialiser
of Σ × D. We first define an encoding at the level of data words. Let µ : Σ → D be
an injective mapping such that µ(σ0) = c0. A data word u over D is a µ-encoding of
v = (σi1 , d1)(σi2 , d2) . . . if it is equal to µ(σ1) . . . µ(σn)µ(σi1)d1µ(σi2)d2 . . . . The data word
u is a valid encoding of v if it is a µ-encoding of v for some µ.

Now, the idea is to define a rational relation K from action words a over Σ×D to actions
words b over D such that a is feasible by some u iff there exists b such that (a, b) ∈ K

and b is feasible by a valid encoding of u. Let R be a set of registers and assume a is
built over R. Let R′ = {rσ | σ ∈ Σ} ⊎ R. Then, any b such that (a, b) ∈ K should
ensure that the n first data values are distinct and store them in rσ1 , . . . , rσn

respectively.
So, we require that b is of the form b = bΣ · ba where bΣ = (tstσ1 , ↓ rσ1) . . . (tstσn , ↓ rσn)
such that for all 1 ≤ i ≤ n, tsti =

∧
1≤j≤i ⋆ ≠ rσj

. The second part ba is an encoding
of the tests and assignments of a = (tst0, asgn0)(tst1, asgn1) . . . . It is of the form ba =
(tstlab

0 ,∅)(tstdata
0 , asgn0)(tstlab

1 ,∅)(tstdata
1 , asgn1) . . . , where for all i ≥ 0:

for every predicate p ∈ P of arity n, for every x1, . . . , xn ∈ R∪ {⋆}: if (¬)p(x1, . . . , xn) ∈
tsti, then (¬)p(x1, . . . , xn) ∈ tstdata

i , and
for all σ ∈ Σ and x ∈ R ∪ {⋆}: labσ(x) ∈ tstlab

i iff (rσ = x) ∈ tsti.
Correctness follows from the construction; see the extended paper for details. ◀

The latter result combined with Theorem 8 yields:

▶ Corollary 10. Let D be an regapprox data domain and Σ be a finite alphabet, then
register-bounded synthesis is decidable for Σ×D.

4.2 Quantifier-Free Interpretations
When the relation between valuations over D and over D′ is local, it is more convenient
to operate directly at the level of tests. To that end, we define a notion of quantifier-free
interpretation (see [13, Section 12.3.6] for a presentation of the notion in the context of data
words), that allows us to encode elements of D as tuples of elements of D′.

A quantifier-free interpretation (or interpretation for short) of dimension l ≥ 1 with
signature (P, C) over a data domain D′ = (D′, P ′, C ′) is given by quantifier-free for-
mulas over signature (P ′, C ′). The formula ϕdomain(x1, . . . , xl) defines the domain D =



L. Exibard, E. Filiot, and A. Khalimov 122:15

{(d1, . . . , dl) | D′ |= ϕdomain(d1, . . . , dl)}. Then, for each constant symbol c ∈ C, the
formula ϕc(x1, . . . , xl) defines the encodings5 of c as the tuples (dc

1, . . . , dc
l ) ∈ D that

satisfy ϕc, i.e. such that D′ |= ϕc(dc
1, . . . , dc

l ). Finally, for each predicate p ∈ P of ar-
ity a (including =), the formula ϕp(x1

1, . . . , x1
l , . . . , xa

1 , . . . , xa
l ) defines the predicate pD ={

(d1
1 , . . . , d1

l , . . . , da
1 , . . . , da

l )
∣∣D′ |= ϕR(d1

1 , . . . , d1
l , . . . , da

1 , . . . , da
l )

}
.

▶ Lemma 11. (Z, <, 0) can be defined as a 2-dimensional interpretation of (N, <, 0).

Proof. The encoding consists of two copies of N, one for positive and one for negative integers,
whose order is reversed. Formally, ϕdomain(x1, x2) := x1 = 0 ∨ x2 = 0. Then, ϕ0(x1, x2) :=
x1 = 0 ∧ x2 = 0; ϕ=((x1, x2), (y1, y2)) := x1 = y1 ∧ x2 = y2 and ϕ<((x1, x2), (y1, y2)) :=
(x2 = y2 = 0 ∧ x1 < y1) ∨ (x1 = y1 = 0 ∧ x2 > y2) ∨ (x1 = 0 ∧ y1 > 0). Then, (Z, <, 0) is
isomorphic to this structure, through the bijection n ≥ 0 7→ (n, 0) and n < 0 7→ (0,−n). ◀

More generally, d-uples of integers can be easily encoded. In the following, we fix d ≥ 1.
For (n1, ..., nd), (m1, ..., md) ∈ Zd, define (n1, ..., nd) <d (m1, ..., md) iff for all i ∈ {1, ..., d},
ni ≤ mi and nj < mj for some j ∈ {1, . . . , d}; it is a partial order on Zd. The predicate =d

is defined as expected.

▶ Lemma 12. (Zd, =d, <d, 0d) can be defined as a d-dimensional interpretation of (Z, <, 0).

Proof. Any tuple belongs to the domain, so we let ϕdomain := ⊤. Then, ϕ0(x1, . . . , xd) :=∧
1≤i≤d xi = 0, ϕ=((x1, . . . , xd), (y1, . . . , yd)) :=

∧
1≤i≤d xi = yi, and similarly for ϕ<. ◀

The following theorem allows us to lift our results to the two domains above:

▶ Theorem 13. If D is a quantifier-free interpretation over D′, then D reduces to D′.

Proof (Sketch). We outline the proof, and refer to the extended paper for details. Let
D′ = (D′, P ′, C ′) be a data domain, and D be an interpretation over D′ of dimension l ≥ 1
with signature (P, C). The main idea is, given a set of registers R, to consider l copies of
this set, meant to store each dimension of the interpretation. We also add l copies of C to
store the encoding of constants, and, since tests are conducted before assignment, l registers
to store each component of the input tuple. Overall, an action word a over R is sent to
one over (R ∪ C ∪ {d})× {1, . . . , l}, where d is a fresh register variable. Then we construct
the sought relation K as follows: first, it prefixes its image with a sequence of actions that
store the encoding of constants in the corresponding registers, check that they indeed satisfy
their respective ϕc, and ensure that all registers in R × {1, . . . , l} are initialised with the
encoding of c0. Note that the formulas are not necessarily conjuncts, so we put them in
disjunctive normal form and consider all tests that are conjuncts of the DNF. Then, each
action is processed separately: an action (tst, asgn) of a is associated with a sequence of
2l + 1 actions that consist in reading each component of the input data value ⋆, store it in
the corresponding copy of d, check that ⋆ indeed belongs to the domain (ϕdomain), and that
it satisfies tst (using the (ϕp)p∈P to encode the predicates). Again, this implies converting
the formulas in DNF, so a given action is in general associated with multiple ones. Since K

consists in adding a prefix and then processing each action separately, it is rational. Moreover,
it preserves feasibility; more precisely for any action word a, each of its corresponding data
word can be associated with its encoding in K(a). ◀

By Theorems 6, 13 and 8, as well as Lemma 11, we get:

5 Note that we do not assume the encoding to be unique.
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▶ Corollary 14. Register-bounded synthesis is decidable for (Z, <, 0).

Then, since (Z, <, 0) reduces to (N, <, 0), and reducibility is transitive, we get, by
Lemma 12 and Theorems 13 and 8:

▶ Corollary 15. Register-bounded synthesis is decidable for (Zd, =d, <d, 0d).

▶ Remark. One can similarly show that Nd reduces to N. More generally, the above method
allows one to lift decidability of register-bounded synthesis to tuples of data values where
predicates are applied component-wise. Besides, note that Nd also reduces to Zd, by restricting
Zd to nonnegative values.

4.3 Finite Strings with the Prefix Relation
In this section, we show that synthesis is decidable over the data domain (Σ∗, =,≺, ϵ), where
Σ is a finite alphabet and ≺ denotes the prefix relation, leveraging a result of [10] that
encodes prefix constraints as integer ones. This still requires some work, as we cannot use
the notion of interpretation: a string valuation is encoded as an integer valuation with a
quadratic number of registers. In the sequel, Σ is a fixed finite set of size l ≥ 2.

First, (Σ∗, =,≺, ϵ) reduces to the richer domain (Σ∗, =, clen=, clen<, ϵ), where, given
u, v ∈ Σ∗, clen(u, v) denotes the length of the longest common prefix of u and v, and,
for ◁ ∈ {<, =}, clen◁(u, v, u′, v′) holds whenever clen(u, v) ◁ clen(u′, v′). The reduction is
direct, and follows the same lines as [10, Lemma 3]: u ≺ v is encoded as (clen(u, u) =
clen(u, v)) ∧ (clen(u, u) < clen(v, v)), and K is a morphism on tests and the identity over
assignments.

▶ Lemma 16. (Σ∗, =,≺, ϵ) reduces to (Σ∗, =, clen=, clen<, ϵ).

Note also that satisfiability of tests over both domains is decidable, and NP-complete [10,
Lemma 7]. It now remains to show that (Σ∗, =, clen=, clen<, ϵ) reduces to (N, =, <, 0).
The proof draws on ideas similar to that of [10, Lemmas 8,9], which mainly relies on [10,
Lemmas 5,6]. Here, it remains to lift them to our synthesis framework, and ensure that
feasibility is preserved despite the dependencies induced by registers.

▶ Lemma 17. (Σ∗, =, clen=, clen<, ϵ) reduces to (N, =, <, 0).

Proof. We describe the main ideas of the proof; a full proof can be found in the extended
version. From [10, Lemma 5,6], we know that a string valuation is characterised by the length
of the longest common prefixes of all its pairs of values, when prefix constraints are concerned.
This allows to encode Σ∗ in N: given a set R of registers, we introduce a register πr,s for each
(r, s) ∈ R′ = (R ∪ {x})2, where x is an additional register name that denotes the input data
value ⋆ in Σ∗. Along the execution, a register πr,s is meant to contain clen(ν(r), ν(s)). Note
that in particular, πr,r contains the length of the word stored in r. At each step, we read
a sequence of |R| integers that each corresponds to the value of clen(⋆, r) for some r ∈ R,
that we store in the corresponding register π⋆,r. We then check that they satisfy the clen
constraints, as well as the properties of [10, Proposition 2]. The latter consist in logical
formulas that can be encoded as tests in (N, =, <, 0), as they only use = and <.

Using [10, Lemma 6], from a sequence of integer valuations (called counter valuations
in [10]) that satisfy those properties, we can reconstruct a sequence of string valuations. As
the integer valuations additionally satisfy the clen constraints, so does the string valuations.
Thus, if an image R′-action word is feasible, the original action word is feasible. The converse
direction is easier: given a sequence ν0ν1 . . . of string valuations that is compatible with the
R-action word, at step i one fills each πr,s with clen(νi(r), νi(s)). ◀
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By Theorems 6 and 8, we get:

▶ Corollary 18. Register-bounded synthesis is decidable for (Σ∗, =,≺, ϵ).

▶ Remark 19 (Complexity analysis). Note that the data domains in Corollaries 14, 15 and 18
all reduce to (N, <, 0) (all via some rational relations K depending on a set of registers R).
The time complexities of those corollaries depend on the complexities of constructing, given
a set of registers R, a nondeterministic Büchi automaton recognising K−1(QFEAS(N,<,0)

R ) for
all the rational relations K defined in the proofs of those corollaries. It can be seen from those
proofs that for any such rational relation K, it is possible to construct a nondeterministic
Büchi transducer AK with polynomially many states in |R| recognising K. By taking the
synchronized product of AK with a nondeterministic automaton recognising QFEAS(N,<,0)

R ,
say of size nqf , and by projecting it on its inputs, one obtains a nondeterministic Büchi
automaton recognising K−1(QFEAS(N,<,0)

R ). It can be computed in time poly(nqf ). By Fact 5
and Theorem 4, one gets that the time complexities of k-register-bounded synthesis for data
domains (Z, =, <, 0), (Zd, =d, <d, 0d) (for a fixed d) and (Σ∗, =,≺, ϵ) is doubly exponential
in k and r the number of registers of the specification, and singly exponential in the number
of states of the URA and its number of priorities.

5 Conclusion

We have shown that register-bounded synthesis from specifications expressed by universal
register-automata over (N, <, 0) is decidable within the same time complexity class as the
case of URA over (N, =), completing the picture on synthesis from register automata over
(N, =) and (N, <, 0): (unbounded) synthesis is undecidable for nondeterministic register
automata [15], decidable for deterministic register automata over (N, =) [15] and over
(N, <) [14], and register-bounded synthesis is decidable for URA over (N, =) [24, 15, 25] and
(N, <, 0) (this paper), and undecidable for nondeterministic register automata [15]. We also
get decidability for the data domains of integers, of tuples of integers and of finite words with
the prefix relation, by reducing them to (N, <, 0). A simple complexity analysis (Remark 19)
yields a doubly exponential decision procedure for register-bounded synthesis over these
domains. Systematising this complexity analysis calls for a notion of polynomial reduction
between data domains, that we leave for future work.

There are other challenging future research directions: first, universal automata, as argued
in the introduction, are well suited for synthesis, and have been show in the register-free
setting to be amenable to synthesis procedures which are feasible in practice [26, 31, 17, 4].
We plan on investigating extensions of these works to the register setting. In particular, our
synthesis algorithm first reduces the problem to a synthesis problem over a finite alphabet with
a specification given by a universal co-Büchi automaton. The latter problem is classically
solved by reduction to a parity game obtained by determinising the universal co-Büchi
automaton, e.g. by using Safra’s determinization procedure. It is an interesting question
whether Safraless procedures from [26, 31, 17] could be combined with our game reduction to
get more practical algorithms. Another challenging research direction is to consider synthesis
problems from logical specifications instead of automata, as the nice correspondences between
automata and logics for word languages over finite alphabets do not carry over to data words.
Nevertheless, URA encompass Constraint LTL [32], and we believe their expressive power
could allow one to target other temporal-like logics with data.
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