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—— Abstract

The stochastic shortest path problem (SSPP) asks to resolve the non-deterministic choices in a
Markov decision process (MDP) such that the expected accumulated weight before reaching a target
state is maximized. This paper addresses the optimization of the variance-penalized expectation
(VPE) of the accumulated weight, which is a variant of the SSPP in which a multiple of the variance
of accumulated weights is incurred as a penalty. It is shown that the optimal VPE in MDPs with
non-negative weights as well as an optimal deterministic finite-memory scheduler can be computed
in exponential space. The threshold problem whether the maximal VPE exceeds a given rational
is shown to be EXPTIME-hard and to lie in NEXPTIME. Furthermore, a result of interest in its
own right obtained on the way is that a variance-minimal scheduler among all expectation-optimal
schedulers can be computed in polynomial time.
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1 Introduction

Markov decision processes (MDPs) are a standard operational model comprising randomiza-
tion and non-determinism and are widely used in verification, articifical intelligence, robotics,
and operations research. In each state of an MDP, there is a non-deterministic choice from a
set of actions. Each action is equipped with a weight and a probability distribution according
to which the successor state is chosen randomly. In the analysis of systems modelled as
MDPs, one typically is interested in the worst- or best-case behavior, where worst and best
case range over all resolutions of the non-determinism. So, the resulting algorithmic problems
on MDPs usually ask to resolve non-deterministic choices by specifying a scheduler such
that the resulting probabilistic behavior is optimized with respect to an objective function.
If the weights are used to model one of various quantitative aspects of a system such as
costs, resource consumption, rewards, or utility, a frequently encountered such optimization
problem is the stochastic shortest path problem (SSPP) [5,8]. It asks to optimize the expected
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value of the accumulated weight before reaching a target state. Example applications include
the analysis of worst-case expected termination times of probabilistic programs or finding
the optimal controls in a motion planning scenario with random external influences.

While a solution to the SSPP provides guarantees on the behavior of a system in all
environments or indicates the optimal control to maximize expected rewards, it completely
disregards all other aspects of the resulting probability distribution of the accumulated weight
besides the expected value. In almost all practical applications, however, the uncertainty
coming with the probabilistic behavior cannot be neglected. In traffic control systems or
energy grids, for example, large variability in the throughput comes at a high cost due to the
risk of traffic jams or the difficulty of storing surplus energy. Also a probabilistic program
employed in a complex environment might be of more use with a higher expected termination
time in exchange for a lower chance of extreme termination times.

To overcome these shortcomings of the SSPP, various additional optimization problems
have been studied in the literature: Optimizing conditional expected accumulated weights
under the condition that certain system states are reached allows for a more fine-grained
system analysis by making it possible to determine the worst- or best-case expectation in
different scenarios [4,20]. Given a probability p, quantiles on the accumulated weight in
MDPs, also called values-at-risk in the context of risk analysis, are the best bound B such
that the accumulated weight exceeds B with probability at most p in the worst or best
case [11,27]. The conditional value-at-risk and the entropic value-at-risk are more involved
measures that have been studied in this context [1,14]. They quantify how far the probability
mass of the tail of the probability distribution lies above the value-at-risk. The arguably
most prominent measure for the deviation of a random variable from its expected value is
the variance. The computation of the variance of accumulated weights has been studied in
Markov chains [28] and in MDPs [16,17]. The investigations of variance in MDPs in the
literature is discussed in more detail in the “Related Work” section below.

Variance-penalized expectation (VPE). In this paper, we investigate a variant of the SSPP
in which the costs caused by probabilistic uncertainty are priced in to the objective function:
We study the optimization of the variance-penalized expectation (VPE), a well-known measure
that combines the expected value p and the variance o2 into the single objective function
i — X-o? where ) is a parameter that can be varied to aim for different tradeoffs between
expectation and variance. In the context of optimization problems on MDPs, the VPE has
been studied, e.g., in [7,9].

Furthermore, the VPE finds use in an area of research primarily concerned with the
tradeoffs between expected performance and risks, namely, the theory of financial markets
and investment decision-making: In 1952, Harry Markowitz introduced modern portfolio
theory that evaluates portfolios in terms of expected returns and variance of the returns
[18], for which he was later awarded the Nobel Prize in economics. A portfolio lies on the
Markowitz efficient frontier if the expected return cannot be increased without increasing the
variance and, vice versa, the variance cannot be decreased without decreasing the expectation.
The final choice of a portfolio on the efficient frontier depends on the investors preferences.
In this context, the VPE y — X - o2 is a simple, frequently used way to express the preference
of an investor using the single parameter X\ capturing the risk-aversion of the investor (see,
e.g., [10]). In more involved accounts, the investor’s preference is described in terms of a
utility function mapping returns to utilities. For the commonly used exponential utility
function u(x) = —e~** and normally distributed returns, the objective of an investor trying
to maximize expected utility turns out to be equivalent to the maximization of the VPE
with parameter A = «/2 [2,23].
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Figure 1 The left hand side shows the MDP M for Example 1. On the right hand side, all possible
combinations of expected accumulated weight and variance for schedulers for M are depicted. The

points corresponding to the four deterministic schedulers are marked by the corresponding action.

Furthermore, the blue line indicates all points at which u — 1 - 0% = 20/9 and the arrow indicates
the direction in which the value of this objective function increases.

For an illustration of the VPE, consider the following example:

» Example 1. Consider the MDP M depicted in Figure 1 where non-trivial probability values
as well as the weights accumulated are denoted next to the transitions. We want to analyze
the possible trade-offs between the variance and the expected value of the accumulated
weight that we can achieve in this MDP.

The only non-deterministic choice is in the state s,,;. Choosing action « leads to goal
with expected weight and variance 0. For the remaining actions, the accumulated weight
follows a geometric distribution where in each step some weight k is accumulated and goal is
reached with some probability p after the step. For such a distribution, it is well-known that
the expected accumulated weight is k/p and the variance is (k/p)? - (1 — p). Plugging in the
respective values for the distributions reached after actions g, 7, and 4, we obtain the pairs
of expectations and variances as depicted on the right-hand side of Figure 1. In particular,
choosing v leads to an expectation of 10/3 and a variance of 10/9.

Making use of randomization over two different actions 7 and o with probability p and
1 —p, respectively, for some p € (0, 1), we will see in Remark 12 in Section 4 that the expected
values and variances under the resulting schedulers lie on a parabolic line segment depicted

in black that is uniquely determined by the expected values and variances under 7 and o.

By further randomization over multiple actions, combinations of expectation and variance in
the gray region in Figure 1 can be realized.

Consider now the VPE with parameter A = 1. The dashed blue line in Figure 1 marks all
points at which p —1- 02 = 20/9. The arrow indicates in which direction the value of the
VPE increases. So, it turns out that choosing action v maximizes the VPE in this case; the

slightly lower expectation compared to § is compensated by a significantly lower variance.

Geometrically, we can observe that the optimal point for the VPE for any parameter will
always lie on the border of the convex hull of the region of feasible points in the y-o2-plane as
the VPE is a linear function of expectation and variance. For varying values of A, also « (for
A >3) and § (for A < 1/13) can constitute the optimal choice in s,,, for the maximization of
the VPE, while § is not optimal for any choice of A as it lies in the interior of the convex
hull of the feasible region. The results of Section 4 will show that in general, the optimal
point for the VPE can be achieved by a deterministic finite-memory scheduler. 1
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Contribution. The main results of this paper are the following:

1. Among all schedulers that optimize the expected accumulated weight before reaching a
target, a variance-minimal scheduler can be computed in polynomial time and chosen to
be memoryless and deterministic (Section 3).

2. The maximal VPE in MDPs with non-negative weights can be computed in exponential
space. The maximum is obtained by a deterministic scheduler that can be computed in
exponential space as well (Section 4). As memory, an optimal scheduler only needs to keep
track of the accumulated weight up to a bound computable in polynomial time. As soon as
the bound is reached, optimal schedulers can switch to the behavior of a variance-minimal
scheduler among the expectation-minimal schedulers that can be computed by result 1.

3. The threshold problem whether the maximal VPE is greater or equal to a rational ¥ is in
NEXPTIME and EXPTIME-hard (Section 4).

Related work. Accumulated rewards. In [16], a characterization of variance-minimal scheul-
ders among the schedulers maximizing the expected accumulated weight in MDPs is given.
Here, we provide a simpler proof based on the calculations of [28]; we moreover show how to
compute such schedulers in polynomial time. [16] also contains hints for a similar character-
ization of discounted reward, and developments for mean payoff. Another closely related
work is [17] which study the following multi-objective problem for the accumulated weight in
finite-horizon MDPs: given 7, v is there a scheduler achieving an expectation of at least n, and
a variance of at most v? This problem is shown to be NP-hard, and exact pseudo-polynomial
time algorithm is given for the existence of a scheduler with expectation n and variance
< v. Furthermore, pseudo-polynomial approximation algorithms are given for optimizing
the expectation under a constraint on the variance, and optimizing the variance under a
constraint on the expectation.

Discounted rewards. In [12], the author proves that memoryless moment-optimal sched-
ulers exist for the discounted reward, that is, schedulers that maximize the expectation,
minimize the variance, maximize the third moment, and so on. Moreover, an algorithm is
described to compute such schedulers. In [25], a formula for the variance of the discounted
reward is given for memoryless schedulers and for the finite-horizon case, in MDPs and
semi-MDPs. Variance-minimal schedulers among those maximizing the expected discounted
reward until a target set is reached are studied in [29] for MDPs with varying discount
factors. [31] presents a policy iteration algorithm to minimize variance of the discounted
weight among schedulers achieving an expectation equal to a given constant.

Mean payoff. For mean payoff objectives, variance was studied in [26] for memoryless
strategies, and algorithms were given to compute schedulers that achieve given bounds on
the expectation and the variance [6]. The latter paper also considers the minimization of the
variability, which is the average of the squared differences between the expected mean-payoff
and each observed one-step reward. In [15], the author considers optimizing the expected
mean payoff and the average variance. Average variance is defined as the limsup of the
variances of the partial sums. They show how to minimize average variance among e-optimal
strategies for the expected mean payoff. Policy iteration algorithms were given in [30,32] to
minimize variance or variability of the mean payoff (without constraints on the expectation).

Variance-penalized expectation. The VPE was studied for finite-horizon MDPs with
terminal rewards in [7]. In [9], this notion was studied for the expectation and the variability
of both mean payoff and discounted rewards. [33] presents a policy iteration algorithm
converging against local optima for a similar measure.
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2 Preliminaries

We give basic definitions and present our notation (for details, see, e.g., [24]). Afterwards,
we provide auxiliary results on expected frequencies used in the subsequent sections.

2.1 Notation and definitions

Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S, Act, P, 8,4, goal, wgt) where S is a finite set of states, Act a finite set of actions,
P: S x Act x § — [0,1] N Q the transition probability function, s, € S the initial state,
goal € S a designated target state, and wgt: S x Act — Z the weight function. We require
that ) ,.q P(s,a,t) € {0,1} for all (s,a) € S x Act. We say that action « is enabled
in state s iff >, g P(s,,t) = 1 and denote the set of all actions that are enabled in
state s by Act(s). In this paper, for all MDPs, we assume that goal is the only trap
state in which no actions are enabled, that goal is reachable from all other states s, and
that all states are reachable from s;,;. The paths of M are finite or infinite sequences
S0 g 81 1 . .. where states and actions alternate such that P(s;, a;, s;41) > 0 for all 4 > 0.
For m = sgap s1 1 ...ax—1 Sk, wgt(m) = wgt(se, o) + ... + wgt(sg—1,ax—1) denotes the
accumulated weight of 7, P(7) = P(so,0,81) ...  P(Sk—1,ax—1,8k) its probability, and
last(m) = sy its last state. A path is called mazimal if it is infinite or ends in the trap state
goal. The size of M is the sum of the number of states plus the total sum of the logarithmic
lengths of the non-zero probability values P(s, «, s’) as fractions of co-prime integers and the
weight values wgt(s, «).

An end component of M is a strongly connected sub-MDP formalized by a subset S’ C S
of states and a non-empty subset 2(s) C Act(s) for each state s € S” such that for each
se S te Sand ae As) with P(s,a,t) > 0, we have t € §" and such that in the resulting
sub-MDP all states are reachable from each other. An end-component is a 0-end-component
if it only contains cycles whose accumulated weight is 0 (so-called 0-cycles) so that the
accumulated weight is bounded on all (infinite) paths in the end component. We will further
use the mean payoff measure as tool to classify end-components. For an infinite path (,
the mean payoff is defined as MP(¢) = lim inf,,—,c =wgt(pref(¢,n)) where pref(¢,n) is the
prefix of length n of (.

Scheduler. A scheduler for M is a function & that assigns to each non-maximal path 7 a
probability distribution over Act(last(m)). If the choice of a scheduler & depends only on the
current state, i.e., if §(r) = &(n’) for all non-maximal paths 7 and 7’ with last(7) = last(n’),
we say that & is memoryless. In this case, we also view schedulers as functions mapping states
s € S to probability distributions over Act(s). A scheduler & that satisfies &(7) = &(n’)
for all pairs of finite paths m and 7’ with last(m) = last(n") and wgt(w) = wgt(n’) is called
weight-based and can be viewed as a function from state-weight pairs S x Z to probability
distributions over actions. If there is a finite set X of memory modes and a memory update
function U : S x Act xS x X — X such that the choice of & only depends on the current state
after a finite path and the memory mode obtained from updating the memory mode according
to U in each step, we say that & is a finite-memory scheduler. A scheduler & is called
deterministic if &(r) is a Dirac distribution for each path 7 in which case we also view the
scheduler as a mapping to actions in Act(last(w)). Given a scheduler &, { = spag s a1 ...
is a G-path iff ¢ is a path and &(sp g ... ax—1 sx)(ag) > 0 for all k > 0. Given a scheduler
G and a finite G-path 7, we define the residual scheduler &17 by &1n(p) = &(w o p) for
each finite path p starting in last(r).
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Probability measure. We write P]rf,l’S to denote the probability measure induced by a
scheduler G and a state s of an MDP M. It is defined on the o-algebra generated by the
cylinder sets Cyl(m) of all maximal extensions of a finite path 7 = spags1 a1 ... k1 Sk
starting in state s, i.e., so = s, by assigning to Cyl(7) the probability that 7 is realized under &,
which is &(sg) (o) P (50, o, $1)-S(soans1)(a1)-.. .-G (soq - . . Sg—1)(@k—1) - P(Sk—1, W1, Sk)-
For details, see [24].

For a random variable X that is defined on (some) maximal paths in M, we denote the
expected value of X under the probability measure induced by a scheduler & and state s
by E%,S(X). We define EX% (X ) = infg E%"S(X) and E%(X) = supg E%AX) where &
ranges over all schedulers for M under which X is defined almost surely. The variance of X
under the probability measure determined by & and s in M is denoted by V§, (X) and
defined by

V.(/\‘B/I,S(X) d:Cf E.%/l,s((X - E%,S(X))Q) = E.%/I,S(XQ) - E.%/I,S(X)Q'
Furthermore, for a measurable set of paths ¢ with positive probability, E%,S(X |1)) denotes
the conditional expectation of X under ¥. If s = s,,,, we sometimes drop the subscript s.
These notations are extended to end-components of a given MDP, which are themselves
seen as MDPs. We may, for instance, write E?g“(X ) where £ is an end-component of M,
and s is a state in &£, and the minimization ranges over schedulers of M that do not leave &.

Accumulated weight. For maximal paths ¢ of M, we define the following random variable
®goal:

wgt(¢) if ¢ E Qgoal,
undefined otherwise.

®goal(¢) = {

Recall that we only take schedulers under which a random variable is defined almost surely
into account when addressing minimal or maximal expected values. For the expected value
of ©goal to be defined, it is necessary that goal is reached almost surely. We call a scheduler
S with Pr$(Ogoal) = 1 proper. So, in the definition of the maximal (or minimal) expected
accumulated weight ER%(®goal) = supg ES(Pgoal), & ranges over all proper schedulers.

2.2 Auxiliary conclusions from results on expected frequencies

In this section, we present conclusions from well-known results on the expected frequencies
of state-weight pairs in MDPs in the formulation in which we use them in the paper. Let
M = (S, Act, P, s,,,, goal, wgt) be an MDP with weights in Z and let & be a scheduler. For
each state-weight pair (s,w) € S x Z, we define the expected frequency ﬁgw under & by

ﬁfw = ES, (number of visits to s with accumulated weight w)

where the random variable “number of visits to s with accumulated weight w” counts the
number of prefixes 7 of a maximal paths ¢ with last(m) = s and wgt(mw) = w. Note also that
in MDPs M in which all end components have negative maximal expected mean-payoff, the
expected frequencies of all state-weight pairs are finite under any scheduler.

» Lemma 2. Let M be an MDP and let & be a scheduler such that the expected frequency
ﬁSw are finite for all state-weight pairs (s,w) € S x Z. Then, there is a weight-based
(randomized) scheduler T with 9, = 95, for all (s,w) € S x Z.

s,w
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Proof sketch. Analogous to [24, Theorem 5.5.1]: For each state-weight pair (s,w) and each
action o € Act(s), let ﬁgw’a be the expected number of times that o is chosen under &

after finite path ending in state s with weight w. Define the scheduler ¥ as a function from
S X Z — Distr(Act) by letting

def ﬂsG,u)7a
T, w)(e) & «
» Corollary 3. Let M be an MDP. Let & be a scheduler for which ES; (®goal) and V5, ($goal)
are defined and for which the expected frequency 1956@ are finite for all state-weight pairs

(s,w) € S x Z. Then, there is a weight-based scheduler T with
ES, (®goal) = EX,($goal) and VS (@goal) = Vi, ($goal).

Proof. The expected value and the variance of $goal under a scheduler & depend only on
the expected frequencies 9€ with w € Z. <

goal,w

In this paper, we address questions concerning the possible combinations of expected
value and variance of the random variable $goal. Due to this corollary, we can restrict our
attention to weight-based schedulers for all investigations in the sequel.

Given two scheduler G and ¥, our definition of schedulers does not directly allow us
to define a new scheduler 2 that behaves according to & with probability p € (0,1) and
according to T with probability 1—p. For each state-weight pair (s, w) the expected frequency
under the hypothetical scheduler & would be p - 9¢,, + (1 — p) - ¥5,,. The following lemma
states that a scheduler achieving these frequencies exists:

» Lemma 4. Let M be an MDP as above and let & and T be schedulers such that the
expected frequency 9S,, and 9T, are finite for all state-weight pairs (s,w) € S x Z. Further,

let p € (0,1). Then,‘ there eists a scheduler St such that I, =p- 95, + (1 —p) 05, for
all state-weight pairs (s, w).
Proof sketch. Let ﬁgw’a be defined as in the proof above. We define the weight-based

scheduler R as follows: For all state-weight pairs (s,w) and all a € Act(s), let

P Suat (L=p) V500
Al wle) == e v (=) 05,

The proof of the correctness is analogous to [13, Theorem 9.12]. |
This lemma allows us to introduce the following notation:

» Definition 5. Given M, & and ¥ as in the previous lemma, we denote the scheduler R
whose existence is stated in the lemma by p-S & (1 —p) - %.

3 Minimal variance among expectation-optimal schedulers

Let us call a scheduler expectation-optimal if it maximizies the expectation of ¥goal from a
given state s. In this section, we prove a result that is of interest in its own right and that
will play a crucial role in our investigation of the optimization of the VPE in the following
section. Namely, we show how to compute a scheduler that minimizes the variance among
expectation-optimal schedulers in polynomial time. Note that in MDPs with weights in
7, the mimimization of the expectation of $goal can be reduced to the maximization by
multiplying all weights with —1. This change of weights does not affect the variance and
hence all results of this section also apply to expectation-minimal schedulers.
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We assume that in a given MDP M = (S, Act, P, s,,,, wgt, goal), the maximal achievable
expectation of ©goal is finite. This can be checked in polynomial time [3] and, when this value
is finite, it is achievable by memoryless deterministic strategies. By [3], all end components E
of M are then either 0-end components or satisfy ER**(MP) < 0.

The algorithm proceeds as follows. First, a transformation is applied so as to ensure
that the only end-components in M are such that the maximal achievable expected mean
payoff is negative; while preserving the expectation and the variance of ©goal (Lemma 6).
We then prune the MDP so that all actions are optimal for maximizing the expected $goal
(Lemma 7). Tt follows that all schedulers then achieve the same expected ©goal. We then
derive an equation system in which the variances at each state are unknowns, while the
expectations are known constants (Lemma 8). We conclude by showing that this equation
system admits a unique solution and is solvable in polynomial time. Omitted proofs can be
found in [22].

» Lemma 6 ([3]). Let M = (S, Act, P, $,,4, wgt, goal) be an MDP with E}3*($goal) < oco.

There is a polynomial transformation which outputs an MDP M’ with the following properties:

1. M’ has no 0-end-components,

2. there is a mapping [ from schedulers of M to those of M’ such that for all proper
schedulers & for M, E§,($goal) = Eﬁ@(@goal), and VS, (®goal) = V%ﬁ;)(@goal).

3. there is a mapping g from schedulers of M’ to those of M such that for all proper
schedulers & for M, Ei(f’)(@goal) =ES, (®goal), and Viﬁl@)(@goal) =V, (Pgoal).

From now on, by the previous lemma, we assume that M only has end-components F
with ER2*(MP) < 0. We start by computing E*($goal) with the following equation:

/0 if s = goal, (%)
Hs = MaXae Act(s) D geg P(8,a,8" ) (wgt(s,a) + ps)  otherwise.

By [5], (*) has the unique solution p, = EY*(®goal) and this solution is computable
in polynomial time via linear programming. Let us define Act™**(s) as the set of actions
from s which satisfy (x) with equality, i.e. Act™(s) = {a € Act(s) | ps = wgt(s,a) +
Y eg P(s,a,8)ps}, and let M’ be obtained by restricting M to actions from Act™. By

standard arguments (see [22]), we can show the following lemma:

> Lemma 7. Let (us)scs be the solution of (%) for an MDP M. Let M’ obtained from M
as above. Then, M’ has no end-components. Moreover, for all s € S, all schedulers & of
M’ achieve ESy, [$goal] = ps.

So, in order to find the variance-minimal scheduler among expectation optimal schedulers
for M, it is sufficient to find a variance-minimal scheduler for M’. We derive the following
lemma by adapting [28] to MDPs.

» Lemma 8. Consider an MDP M, and assume that there is a vector (us)secs of values
such that all schedulers & satisfy Vs € S, E%A7s(<1>goal) = ps. Then, (Vij{l/f,s@goal))seg is the
unique solution of the following equation:

V. 0 if s = goal, (55)
s Milge Ace(s) D res P(8:a,t) ((wgt(s, a) + pe — ps)? + V}) otherwise.

Note that the equation system (xx) is the same as the equation system used to minimize
the expected accumulated weight before reaching goal under the weight function wgt’ that
assigns the non-negative weight (wgt(s,a) + us — ps)? to the transition (s, a,t). So, this
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equation system is solvable in polynomial time [8]. Using that all schedulers in M’ achieve
an expected accumulated weight of ps when starting in state s, the results of this section
can be combined to the following theorem.

» Theorem 9. Given an MDP M such that ER*[@goal] < oo, a memoryless deterministic,
expectation-optimal scheduler & such that V%,s[@]oal] is minimal among all expectation-
optimal schedulers for any state s is computable in polynomial time.

4 Variance-penalized expectation

The goal of this section is to develop an algorithm to compute the optimal variance-penalized
expectation (VPE). Given a rational A > 0, we define the VPE with parameter A under a
scheduler & as

VPE[N S = ES, (Sgoal) — \- VS, (@goal) = ES, (goal) — \-ES, (goal®) + \- (ES, (©goal))?.

Task. Compute the maximal variance-penalized expectation

VPE[N* = sup VPE[N S,
S

where the supremum ranges over all proper schedulers. Furthermore, compute an optimal
scheduler & with VPE[A]$, = VPE[A]'%~.

Throughout this section, we will restrict ourselves to MDPs M = (S, Act, P, s, wgt, goal)
with a weight function wgt: S x Act — N i.e., we only consider MDPs with non-negative
weights. Key results established in this section do not hold in the general setting with
arbitrary weights and further complications arise. In the conclusions we will briefly discuss
these complications.

As before, we are only interested in schedulers that reach the goal with probability 1. If
the maximal expectation ER*(Pgoal) < oo, it is well-known that in this case of non-negative
weights, all end components of M are 0-end components [3,8]. Hence, w.l.o.g., we can assume
that M has no end components throughout this section by Lemma 6. In this case, goal is
defined on almost all paths under any scheduler. So, in particular the values E%A (®goal) and
V% (®goal) are defined for all schedulers &. Furthermore, as we have seen in Corollary 3,
it is sufficient to consider weight-based schedulers for the optimization of VPEs. The main
result of this section is the following:

» Main result. Given an MDP M and A as above, the optimal value VPE[A]'}* and an
optimal scheduler & can be computed in exponential space. Given a rational ¥, the threshold
problem whether VPE[A]'}* > ¢ is in NEXPTIME and EXPTIME-hard.

To obtain the main result, we will first prove that the maximal VPE is obtained by
a deterministic scheduler (Section 4.1). This result can then be used for the EXPTIME-
hardness proof for the threshold problem (Section 4.2). The key step to obtain the upper
bounds of the main result is to show that optimal schedulers have to minimize the weight
that is expected to still be accumulated after a computable bound of accumulated weight
has been exceeded. We call such a bound a saturation point (Section 4.3). Finally, we show
how to utilize the saturation point result to solve the threshold problem and to compute the
optimal VPE (Section 4.4). Proofs omitted in this section can be found in [22].
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» Remark 10. In the formulation presented here, the goal is to maximize the expected
accumulated weight with a penalty for the variance. All results and proofs in this section,
however, hold analogously for the variant supg —IEIJG\/1 (Pgoal) — X - Vfa (Pgoal) of the maximal
VPE in which the goal is to minimize the expected accumulated weight while receiving a
penalty for the variance. In particular, the same saturation point works and optimal schedulers
still have to minimize the expected accumulated weight as soon as the accumulated weight
exceeds the saturation point. a

4.1 Existence of optimal deterministic schedulers

We begin this section with a lemma describing how the variance of accumulated weight
behaves under convex combinations of schedulers. This will allow us to show that the maximal
VPE can be approximated by deterministic schedulers with the help of Lemma 14 describing
a connection between randomization and convex combinations. This first lemma follows via
basic arithmetic form the fact that the expected values of $goal and $goal® depend linearly
on the expected frequencies of the state-weight pairs (goal, w) with w € N.

» Lemma 11. Let M = (S, Act, P, 8,4, wgt, goal) be an MDP with non-negative weights and
no end components. Let & and T be two schedulers for M. Let p € (0,1). The scheduler

def

R=p-6d (1l —p)- T satisfies
V% (@goal) = p- VS (®goal) + (1 —p) - Vi (®goal) +p- (1—p) - (EF(®goal) — Ex(@goal))>.

Proof sketch. The claim follows from straight-forward calculations using that the expected
values of ®goal and $goal® depend linearly on the expected frequencies of the state-weight
pairs (goal, w) with w € N. <

» Remark 12. Given two schedulers & and &’ under which the expectation and variance
are (n,v) and (n', '), respectively, such that n < 7/, there is a unique convex combination ¥
of the two schedulers with expectation z for all z € [n,n/]. Viewing the variance of these
convex combinations as a function V : [, 1] = R, we can observe the following using the
previous Lemma 11:

r—n r—n -z T—n /
Viz) =v+ (V' =)+ : (n'=n)” =v+ (V' =v)+(@—n)-(n —x).
n = n—=nn-n n—=n
The coefficient before 22 in this quadratic polynomial hence is always —1. a

The following lemma stating the continuity of the VPE will be useful in several ways:
If we manipulate schedulers at one state-weight pair at a time, we can reason about the
scheduler we obtain in the limit after manipulating the scheduler at all state-weight pairs, e.g.,
in the proof of Theorem 15 below. Further, it will allow us to prove that there is an optimal

max

scheduler, i.e., that the supremum in the definition of VPE[A]%¢* is in fact a maximum.

» Lemma 13 (Continuity of VPE). Let M and XA > 0 be as above. The variance-penalized
expectation as a function from weight-based schedulers to R is (uniformly) continuous in the
following sense: Given € > 0, there is a natural number N such that for all weight-based
schedulers & and T that agree on all state-weight pairs (s,w) with w < N, we have

VPE[N S — VPEN 3| < e.

Proof sketch. The claim follows from the fact that the probability that a high amount of
weight w is accumulated under any scheduler decreases exponentially as w tends to co. <
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For the final ingredient to show that deterministic schedulers approximate the optimal
VPE, we take a closer look at the relation of randomization to convex combinations of
schedulers. For the following lemma, let & be a weight-based scheduler for an MDP M as
before. Assume that there is a state-weight pair (s, w) € S x N reachable under & such that
& chooses two different actions o and g with probabilities ¢ and 1 — g, respectively, for some
g € (0,1). Let &, be the scheduler that agrees with & on all state-weight pairs except for
(s,w) and that chooses o with probability 1 at (s,w). Define &4 analogously. The technical
proof of the following lemma can be found in [22].

» Lemma 14. Let M, S, &,, G, and g be as above. There is a value p € (0,1) such that
the expected frequencies of all state-weight pairs are the same under & and p-S,® (1—p)-Sg.

» Theorem 15 (Deterministic schedulers approximate optimal VPE). Let M be an MDP with
non-negative weights and without end components and let A > 0. For each scheduler &, there
is a deterministic weight-based scheduler ¥ with

VPE[N3, > VPE[N S,

Proof sketch. W.l.o.g., we can assume that & is weight-based by Corollary 3. At a single
state-weight pair (s, w) at which & makes use of randomization between, we can (potentially
repeatedly) apply Lemma 14 and Lemma 11 to find a scheduler &’ that does not make use
of this randomization but satisfies VPE[\|§, > VPE[A|,. Coing through all state-weight
pairs in this fashion, we can construct an infinite sequence of schedulers with non-decreasing
VPE in which randomization is successively removed at all state-weight pairs. In the limit,
we obtain a well defined deterministic weight-based scheduler ¥. Lemma 13 allows us to
conclude that VPE[A|3, > VPE[NS,. <

In the definition of the maximal variance-penalized expectation VPE[N|75* = supg VPE[NS,,
it is sufficient to let the supremum range over deterministic weight-based schedulers & in the
light of this theorem. For the proof of the existence of optimal schedulers, we make use of
an analytic argument: Continuous functions on compact space obtain their maximum. The
continuity shown in Lemma 13 applied to the space of deterministic weight-based schedulers
can be reformulated as continuity with respect to a metric on this space. Namely, we define
the metric daq on the set of deterministic weight-based schedulers as follows: Given two
deterministic weight-based schedulers & and ¥ for M, first let

m(&,%) = min{w | there is a state s € S with &(s,w) # T(s,w)}.

We then define dp(6,%) L 9-m(6.T) This metric indeed turns the set of deterministic
weight-based schedulers into a compact space as shown in [20]:

» Lemma 16 (Compactness of the space of deterministic weight-based schedulers [20]). Let M
be as above. The space of all deterministic weight-based schedulers with the topology induced
by the metric daq is compact.

» Theorem 17 (Existence of an optimal deterministic weight-based scheduler). Let M and
A >0 be as above. There is a deterministic weight-based scheduler & with

VPE[N S = VPE[NRS™.

Proof. The claim follows from Lemma 13, Theorem 15, and Lemma 16, as continuous
functions on compact spaces obtain their maximum. <

129:11

ICALP 2022



129:12 The Variance-Penalized Stochastic Shortest Path Problem

Figure 2 The MDP M used in Example 19.

4.2 Hardness of the threshold problem

The result that the maximal variance-penalized expectation can be achieved by a deterministic
scheduler can be used for the following hardness result:

» Theorem 18. Given an MDP M with non-negative weights and two rationals A\,9 > 0,
deciding whether VPENY* > 9 is EXPTIME-hard. Furthermore, for acyclic MDPs M, the
problem is PSPACE-hard.

Proof sketch. We reduce from the following problem which is shown to be EXPTIME-hard
in general and PSPACE-hard for acyclic MDPs in [11]: Given an MDP M and a natural
number 7' > 0 such that goal is reached in M almost surely under all schedulers, decide
whether there is a scheduler & such that Pr$($goal=T) = 1.

The idea is to construct an MDP M’ that reaches goal with weight T' with probability
1/2 directly and otherwise behaves like M. By choosing A sufficiently large, we can show
that VPE[A|R¢* > T is only possible if and only if there is a scheduler with V% (Pgoal) = 0.
This scheduler then has to reach goal with weight T' on all paths. The necessary technical
calculations can be found in [22]. <

4.3 Saturation Point

In the sequel, we will provide a series of results that allow us to further restrict the class of
deterministic schedulers that we have to consider when maximizing the variance-penalized
expectation. In the end, we obtain a finite set of deterministic finite-memory schedulers
among which there is a scheduler achieving the optimal variance-penalized expectation. In
particular, this means that the optimum is computable.

The key step is the insight that we can provide a natural number K computable in
polynomial time such that an optimal scheduler & for the variance-penalized expectation has
to minimize the expected accumulated weight before reaching goal once a weight of at least
K has already been accumulated on a run. Furthermore, the behavior of G after a weight of
at least K has been accumulated must minimize the variance of the weight that will still be
accumulated among all expectation-minimal schedulers. We call this value K a saturation
point.

» Example 19. The MDP M in Figure 2 aims to provide some intuition on the results of
this section. The state ¢ in this MDP is reached with accumulated weight n with probability
(1/2)"*! for all n € N. Then, the choice has to be made whether to collect weight +1 or
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0 before moving to goal. We want to take a closer look at a family of special weight-based
deterministic finite-memory schedulers for M: Let &y be the scheduler that chooses action
« in c if the accumulated weight is less than k£ and otherwise chooses action .

For these schedulers, we can explicitly provide expectation and variance: The probability
that the scheduler &;, chooses « in cis 1 — (1/2)*. As the expected accumulated weight
before reaching c is 1, we obtain a total expected accumulated weight of

1

ES (@goal) = 2 — 7

To obtain the variance, we compute IEIJ\G/{c (©goal?):

N

—1 o)

~ 1 1
ES (@goal®) = ST (n+1)%+ Z Ty -n?
0

n

n==k

oo (oo}
| , 1 2%k + 3

n=0 n=k

We can then easily compute the variance

1 -2k 1
Vivi (bgoal) = B} (9goal”) — (EXf (dgoal))* =2+ —— — 7.

For A = 1, we obtain the following VPE:

k-1 1

Comparing scheduler &y, to G471, we obtain: VPE[A]?}“ - VIP’]E[/\]/%;“ =2—k/2k - 3/4%.
This difference is negative for k£ > 2 and positive for £ = 1. We conclude that among the
schedulers Gy, the scheduler G5 is VPE-optimal. Interestingly, this means choosing not to
accumulate the additional weight 4+1 by choosing « is better already for small amounts of
accumulated weight. Intuitively, the reason is that choosing « for an accumulated weight
> 2 has a larger effect on the variance than on the expectation. Increasing the expectation
in particular also increases the squared deviation of the path that reach goal with weight 1
which has probability 1/2 under &y, for k > 2. The saturation point result of this section
will tell us that an optimal scheduler always has to minimize the weight that is expected to
still be accumulated weight once sufficiently much weight has already been accumulated. _

Let M = (S, Act, P, s, wgt, goal) be an MDP without end components and with non-
negative weights as above and let A > 0 be a rational. Before we define K and show that it
can be computed in polynomial time, we need some additional notation.

For each state s € S, define e, = EX4" (Pgoal). For each state s € S\ {goal}, we define
the subset Act™"(s) C Act(s) of actions allowing to minimize the expectation analogously to
Act™ before: Act™(s) = {o€ Act(s) | es = wgt(s,a) + 3 ,c5 P(s, o, 1) - e, }. Choosing an
action not belonging to Act™"(s) in state s ensures that the expected accumulated weight
before reaching goal is higher than the minimal possible value. Further, we can define the
minimal amount by which choosing a non-minimizing action increases the expectation:

5 = min{(ugt(s,a) + Y Ps,a,1)-er) — e, | 5 € S\ {goal} and a € Act(s) \ Act™™(s)}.
tesS

If the set on the right hand side is empty, all schedulers minimize the expected accumulated
weight before reaching goal and the claims of this section hold trivially. So, we can assume
that this set is non-empty. By the definition of Act™", we observe that ¢ > 0.
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Next, we can compute an upper bound U; for ET™ (Pgoal) for all states s by computing
the maximal value U; < max,cg ERs “(@goal).

Finally, let € be the minimal transition probability present in M. As M has no end
components, the only trap state goal is reached within n = |S| steps under each scheduler
with probability at least €. Let W be the largest weight in M. Within n steps at most a
weight of n - W is accumulated. We use these observations for the following two values:

First, we can provide a value By, such that the probability that a weight above By o

is accumulated under any scheduler is at most 1/2: For this, let b;/, be such that

((1 —e™))br/2 < 1/2. This is the case if and only if by 5 is at least

log(1/2) 1

= < —.
log(1 —em) log(l —em) e

So, we can choose by /5 to be Ei Then, with probability at most 1/2, a path has length

at least n - by /5. This allows us to defined By /o S bijg-n-W.

Second, we compute an upper bound Us for maxses B (@goal ): With probability "
a path has weight at most n - W; with probability (1 —em)-em
2 -n - W; with probability (1 —&™)?-e™ it has weight at most 3 -n - W; and so on. So, we
get that max,cs R (dgoal®) < 3272 (1 — ™)' - e ((i+ 1) - n - W)2 This allows us to
define

it has weight at most

M2, 2 _n) L2, 2 >
def2 n W >(2 E) n W :Z(l—gn)l

Us = e ((i4+1)-n-W)2

€2n —
We are now in the position to define the saturation point K: Let K be the least natural
number with

. A 2 2/2
KZB1/2:TLW and KZUl/ +U24:5U1+U1/ i1
En

The definition of K is arguably a bit cumbersome, but the choices will become clear in the
proof of Theorem 20. All values involved except for § and U; can be computed directly
from n, W, and € in polynomial time. The values é and U require to maximize or minimize
the expected value of Ygoal from all states, i.e., to solve an SSPP which can be done in
polynomial time by linear programming [5, 8].

» Theorem 20 (Saturation point). Let M, A > 0 and K be as above. Let & be a scheduler
with VPE[N|S; = VPE[NR5*. Then, for each finite G-path m with wgt(r) > K, the residual
scheduler &1 satisfies

E./G\/I?ast «bgoa’l) T/;?last(ﬂ') (@goal) .

Proof sketch. Let & be a scheduler with VPE[NS, = VPE[A'%*. Suppose there is a &-path

7' with wgt(r') > K such that Efj’;ﬂst(ﬂ,)(@goal) > Eﬁ’}lnlast (@goal) Then, there must
be an G-path 7 that extends 7’ such that & chooses an actlon a ¢ Act™™(last(r)) with
positive probability.

The residual scheduler ¥ of & after 7 in case & chooses o then satisfies E% last(n) (®goal) >
Eﬁj“last(w (Pgoal) + 6. We let &’ be a scheduler that behaves like & unless & chooses « after
. In this case, 6' minimizes the expected value of ®goal from then on. We consider the
difference VPE[N§, — VPE[A|%,. Using the bounds U; and Us and that the probability of 7
is at most 1/2 as K > By /3, we obtain a lower bound for this difference that consists of an

expression in terms of Uy, Uy, and A plus the term

A U)gt( ) (E/\/{ last(m ($g0al) EM last(m ($goal))
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Observing that this term is greater or equal to A - K - §, the definition of K was chosen
exactly so that we can conclude that VPE[A|$, — VPE[N§, > 0. So, & was not VPE-maximal
yielding a contradiction. |

By the results of Section 3, there is a memoryless deterministic scheduler ¥ that minimizes
the variance among all schedulers minimizing the expected accumulated weight before reaching
goal. More precisely, for all states s, the scheduler U satisfies E%ys@goal) = ]Ej{l,f; (Dgoal)
and V3 ,(®goal) = infox VIV ,($goal) where the infimum ranges over all schedulers 9 with

EY o (©goal) = E", (Sgoal). We use the existence of this scheduler in the following theorem.

» Theorem 21. Let M, A > 0, K, and 0 be as above. Let & be a deterministic scheduler with
VPE[N§, = VPE[NR5*. Let T be the scheduler that agrees with & on all paths m with weight
less than K and that chooses actions according to the memoryless deterministic scheduler U
after paths ©' with wgt(n') > K. This scheduler T satisfies VPE[X%, = VPE[A]'>, too.

Proof sketch. Given a scheduler & with VPE[\|§, = VPE[A'2, and a path 7 with wgt(7) >
K, we compare the scheduler & to the scheduler &’ that behaves like &, but switches
to the behavior of U after 7. We obtain that VPE[AS, > VPE[NS, is equivalent to
EY,(@goal®) < Efjﬂ (®goal®). This holds because V3, ($goal) < ij” (®goal) as Y and &Gt
achieve the same expectation. Using a continuity argument as before, we show that changing
the behavior of & to U after all paths with weight at least K does not decrease the VPE. <«

Put together, we have shown that the maximal VPE is obtained by a weight-based
deterministic scheduler that switches to the memoryless behavior of 2 as soon as a weight of
at least K has been accumulated, which also means that it uses only finite memory.

4.4 Computation of the optimal VPE

Given an MDP M = (S, Act, P, $;4, wgt, goal) with non-negative weights and without end
components and A > 0 as before, let K be the saturation point given above. Note that K is
computable in polynomial time and that hence its numerical value is at most exponential
in the size of M. We construct the following MDP M’ that encodes the weights that
are accumulated until the saturation point is exceeded into the state space: Let W be

the maximal weight occurring in M. The set of states is S’ = S x {0,1,..., K + W — 1}.

The set of actions remains unchanged. The new probability transition function is given
def

by P’((s,w), (t,w 4+ wgt(s,a))) = P(s,a,t) for all s,t € S, all w < K, and all « € Act(s).

All remaining transition probabilities are 0. Note that this means that all states of the
form (goal,w) with w € {0,1,..., K + W — 1} and of the form (s,w) with s € S and

we{K,K+1,...,K +W — 1} are trap states in M’. The initial state is s/, = (5.4, 0).

The weight function is not relevant in M’.

Let U be the memoryless deterministic scheduler for M as in Theorem 21 that specifies
the optimal behavior in order to maximize the variance-penalized expectation as soon as a
weight of at least K has been accumulated. Let us call the set of weight-based deterministic
schedulers for M that behave like U after a weight of at least K has been accumulated
by WD g (M). Clearly, there is a natural one-to-one-correspondence between memoryless
deterministic schedulers for M’ and schedulers in WD g (M).

By the results of Section 3, for each state s € S, we can compute the values

es = E%)S@goal) and gs = IE;‘?A,S (®goal®) = V?A’S@goal) + 2

in polynomial time. The following lemma now allows us to express the VPE in M in terms
of reachability probabilities in M’.
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» Lemma 22. Let M, M’, K and X be as above. Given a scheduler & € WDg (M) also
viewed as a memoryless deterministic scheduler for M', let

p= Y Priu(O(goal,w)) -w+ Y Prie(O(s,w)) - (w +ey). (1)
w< K seS,w>K
Then,
VPEINS, = = A+ (D P& (0lgoal, ) - (w — p)?)
w<K

+ Y PO w) - (- ) 42w - pes + ). (3)

s€Sw>K
Proof. It is clear that u = E§,(®goal). So, we have to show that
Vi (@goal) = EF (Pgoal — p)?)
= Y PrR(0(goal, w)) - (w — p)?)

w< K
>0 PO w) - (w = ) 420w — pes +q.). (©)
seS,w>K
The event O(s,w) that (s,w) is reached in M’ corresponds to the event that a path in
M has a prefix of weight w ending in s. We denote this event in M also by ¢(s,w). If
Pr (O(s,w)) > 0 for w > K, then

ES(((9goal — 1)?|0(s, w))
=E% .(®goal +w — p1)?)
—(w— )+ 2(w — ) - EF, . (Sgoal) + EX, , (bgoal?).

So, the sums in equation (o) sum up the conditional expectation of ($goal — 1) in M under
the conditions that (goal, w) is reached for w < K or that the state s is the first one reached
when the accumulated weight exceeds K with weight w > K, multiplied by the respective
probabilities of the conditions. <

Putting everything together, we arrive at the main result.

» Theorem 23. Let M and X be as above. Given a rational ¥, the threshold problem whether
VPEAR* > ¢ is in NEXPTIME. The optimal value VPE[NR? and an optimal scheduler
can be computed in exponential space.

Proof. The threshold problem can be decided in non-deterministic exponential time as
follows: Given M and A, compute K in polynomial time and construct M’ as above (of
exponential size) in exponential time. Guess a memoryless deterministic scheduler & for M’
also viewed as a scheduler in WD (M). The reachability probabilities for all trap states in
M’ under & can then be computed in time polynomial in the size of M’. With the help of
equations (1) and () from Lemma 22, VPE[A|§, can be computed from these reachability
probabilities in time polynomial in the size of M. If VPE[A|§, > ¥, accept. By Theorem
21, VPE[Ae* > ¢ iff there is a scheduler & in WD g (M) with VPE[A]§, > . Due to the
one-to-one correspondence between schedulers in WD (M) and memoryless deterministic
schedulers for M’; this establishes the correctness of the algorithm.

To compute the optimal value VPE[A]%3*, we compute VPE[A|G, for all schedulers &
in WD g (M) in the same fashion and always store the highest value found so far. As the
memoryless schedulers for M’ have an exponentially large representation, this can be done
in exponential space and the optimal scheduler can be returned as well. <



J. Piribauer, O. Sankur, and C. Baier 129:17

5 Conclusion

In our results, there remains a complexity gap between the EXPTIME-lower bounds and
the exponential-space and NEXPTIME-upper bounds for the optimization of the VPE in
MDPs with non-negative weights and the corresponding threshold problem, respectively.
Here, we want to shed some light on this complexity gap: It is well-known that the possible
vectors of expected frequencies of all states in an MDP can be characterized by a linear
equation system (see, e.g., [13]). Using this linear equation system for the exponentially
large MDP constructed in Section 4.4 and equations (f) and (I) from that section, the
threshold problem for the maximal VPE can be reformulated as the satisfiability problem
of an exponentially sized system of quadratic inequalities. The optimization problem can
likewise be formulated as an exponentially large quadratically constrained quadratic program
(QCQP). This satisfiability problem and QCQPs are NP-hard in general. The question
whether the inequality system of exponential size we obtain here has a special structure
which allows it to be solved in exponential time remains open here.

This observation stands in contrast to conceptually similar saturation point results
straight-forwardly leading to exponential time algorithms (see, e.g., [21]). For example, the
threshold problem for conditional expectations: “Given a set T' C S, is there a scheduler &
with E§;(®goal | OT) > 9?7 admits a saturation point result in MDPs with non-negative
weights as well [4]. Deriving a system of inequalities as above, however, leads to a system of
linear inequalities after straight-forward transformations. Hence, this approach directly leads
to an exponential time algorithm for the threshold problem for conditional expectations. For
the VPE, the system of inequalities seems to be inherently of a polynomial nature which can
be seen as an indication that the situation here is fundamentally more difficult.

Further, we restricted our attention to MDPs with non-negative weights. When allowing
positive and negative weights, the key result, the existence of a saturation point, does not
hold anymore. For conditional expectations and other problems relying on the existence
of a saturation point, the switch to integer weights makes the problems even at least as
hard as the Positivity problem for linear recurrence sequences, a number theoretic problem
whose decidability has been open for many decades (see [19,21]). The question whether such
a hardness result for the threshold problem of the VPE, rendering decidability impossible
without a breakthrough in number theory, can be established remains as future work.

Further possible directions of research include the investigation of the following multi-
objective threshold problem: Given 1 and v, is there a scheduler with expectation at least
7 and variance at most v? As the variance treats good and bad outcomes symmetrically,
replacing the variance in the VPE by a one-sided deviation measure, such as the lower
semi-variance that only takes the outcomes worse than the expected value into account,
constitutes another natural extension of this work.
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