
Max Weight Independent Set in Graphs with No
Long Claws: An Analog of the Gyárfás’ Path
Argument
Konrad Majewski !

Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Tomáš Masařík !

Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Jana Novotná !

Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Karolina Okrasa !

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland
Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Marcin Pilipczuk !

Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Paweł Rzążewski !

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland
Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Marek Sokołowski !

Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw,
Poland

Abstract
We revisit recent developments for the Maximum Weight Independent Set problem in graphs
excluding a subdivided claw St,t,t as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk,
Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running
time 2O(

√
n log n) and a quasipolynomial-time approximation scheme with improved running time

2O(ε−1 log5 n).
The Gyárfás’ path argument, a powerful tool that is the main building block for many algorithms

in Pt-free graphs, ensures that given an n-vertex Pt-free graph, in polynomial time we can find a
set P of at most t − 1 vertices, such that every connected component of G − N [P] has at most
n/2 vertices. Our main technical contribution is an analog of this result for St,t,t-free graphs:
given an n-vertex St,t,t-free graph, in polynomial time we can find a set P of O(t log n) vertices
and an extended strip decomposition (an appropriate analog of the decomposition into connected
components) of G − N [P] such that every particle (an appropriate analog of a connected component
to recurse on) of the said extended strip decomposition has at most n/2 vertices.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms; Mathematics of computing → Approximation algorithms

Keywords and phrases Max Independent Set, subdivided claw, QPTAS, subexponential-time algo-
rithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.93

Category Track A: Algorithms, Complexity and Games

Related Version Preprint Version: https://arxiv.org/abs/2203.04836 [22]

EA
T
C
S

© Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk,
Paweł Rzążewski, and Marek Sokołowski;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 93; pp. 93:1–93:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.majewski@mimuw.edu.pl
https://orcid.org/0000-0002-3922-7953
mailto:masarik@mimuw.edu.pl
https://orcid.org/0000-0001-8524-4036
mailto:jnovotna@mimuw.edu.pl
https://orcid.org/0000-0002-7955-4692
mailto:k.okrasa@mini.pw.edu.pl
https://orcid.org/0000-0003-1414-3507
mailto:m.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-5680-7397
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
mailto:marek.sokolowski@mimuw.edu.pl
https://orcid.org/0000-0001-8309-0141
https://doi.org/10.4230/LIPIcs.ICALP.2022.93
https://arxiv.org/abs/2203.04836
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

93:2 Max Independent Set in Graphs with No Long Claws

Funding This research is part of projects that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant
Agreement 714704 (JN, KO, MP, PRz) and 948057 (KM, TM, MS).
Paweł Rzążewski: Partially supported by Polish National Science Centre grant no.
2018/31/D/ST6/00062.

1 Introduction

The complexity of the Maximum Weight Independent Set problem (MWIS for short),
one of the classic combinatorial optimization problems, varies depending on the restrictions
imposed on the input graph from polynomial-time solvable (e.g., in bipartite or chordal graphs)
through known to admit a quasipolynomial-time algorithm (graphs with bounded longest
induced path [15]), a polynomial-time approximation scheme and a fixed-parameter algorithm
(planar graphs [8]), a quasipolynomial-time approximation scheme (graphs excluding a fixed
subdivided claw as an induced subgraph [10, 11]), to being NP-hard and hard to approximate
within n1−ε factor in general graphs [20, 26]. A methodological study of this behavior leads
to the following question:

For which structures in the input graph, the assumption of their absence from the
input graph makes MWIS easier and by how much?

The “absence of structures” notion can be made precise by specifying the forbidden structure
and the containment relation, for example as a minor, topological minor, induced minor,
subgraph, or induced subgraph. The last one – induced subgraph relation – is the weakest
one, and thus the most expressible. This leads to the study of the complexity of MWIS in
various hereditary graph classes, that is, graph classes closed under vertex deletion and thus
definable by a (possibly infinite) list of forbidden induced subgraphs.

While a general classification of all hereditary graph classes with regards to the complexity
of MWIS (or other classic graph problems) may be too complex, classifying graph classes
with one forbidden induced subgraph looks more feasible. That is, we focus on H-free graphs,
graphs excluding a fixed graph H as an induced subgraph. Furthermore, the complexity of a
given problem (here, MWIS) in H-free graphs may indicate the impact of forbidding H as
an induced subgraph on the complexity of MWIS in more general settings.

As observed by Alekseev [5, 6], the fact that MWIS remains NP-hard and APX-hard
in subcubic graphs, together with the observation that subdividing every edge twice in a
graph increases the size of the maximum independent set by exactly the number of edges of
the original graph, leads to the conclusion that MWIS remains NP-hard and APX-hard in
H-free graphs unless every connected component of H is a path or a tree with three leaves.

In what follows, for integers t, a, b, c > 0, by Pt we denote the path on t vertices, and
by Sa,b,c we denote the tree with three leaves within distance a, b, and c from the unique
vertex of degree 3 of the tree. Since 1980s, it has been known that MWIS is polynomial-time
solvable in P4-free graphs (because of their strong structural properties) and in S1,1,1-free
graphs [23, 25] (because the notion of an augmenting path from the matching problem
generalizes to MWIS in S1,1,1-free, i.e., claw-free graphs). For many years, only partial
results in subclasses were obtained until the area started to develop rapidly around 2014.

Lokshtanov, Vatshelle, and Villanger [21] adapted the framework of potential maximal
cliques [9] to show a polynomial-time algorithm for MWIS in P5-free graphs; this was later
generalized to P6-free graphs [17] and other related graph classes [3, 4]. More importantly
for this work, Bacsó et al. [7] observed that the classic Gyárfás’ path argument, developed to

K. Majewski et al. 93:3

show that for every fixed t the class of Pt-free graphs is χ-bounded [18, 19], also easily gives
a subexponential-time algorithm for MWIS in Pt-free graphs. The crucial corollary of the
Gyárfás’ path argument lies in the following.

▶ Theorem 1. Given an n-vertex graph G, one can in polynomial time find an induced path
Q in G such that every connected component of G − N [V (Q)] has at most n/2 vertices.

For Pt-free graphs the said path Q has at most t − 1 vertices. Bacsó et al. [7] observed that
branching either on the highest degree vertex (if this degree is larger than

√
n) or on the

whole set N [V (Q)] for the path Q coming from Theorem 1 (otherwise) gives an algorithm
with running time bound exponential in

√
n · poly(t, log n).

Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé [10, 11] added to the mix an observation
that a simple branching algorithm is able to get rid of heavy vertices: vertices of the
input graph whose neighborhood contains a large fraction of the sought independent set.
Once this branching is executed and the graph does not have heavy vertices, the set N [Q]
from Theorem 1 contains only a small fraction of the sought solution and, if one aims
for an approximation algorithm, can be just sacrificed, yielding a quasipolynomial-time
approximation scheme (QPTAS) for MWIS in Pt-free graphs. Using this as a starting point
and leveraging on the celebrated three-in-a-tree theorem of Chudnovsky and Seymour [13],
they developed a much more involved QPTAS and a subexponential algorithm (with running
time bound 2n8/9poly(log n,t)) for MWIS in St,t,t-free graphs.

Consider the following simple template for a branching algorithm for MWIS: if the
current graph is disconnected, solve independently every connected component; otherwise,
pick a vertex (pivot) v and branch whether v is in the sought independent set (recursing on
G − N [v]) or not (recursing on G − v). The performance of such an algorithm highly depends
on how we choose the pivot v. Theorem 1 suggests that in Pt-free graphs the vertices of Q

may be good choices: there is only a bounded number of them, and the deletion of the whole
neighborhood N [V (Q)] splits G into multiplicatively smaller pieces. In a breakthrough result,
Gartland and Lokshtanov [15] showed how to choose the pivot and measure the progress of the
algorithm, obtaining a quasipolynomial-time algorithm for MWIS in Pt-free graphs. Later,
Pilipczuk, Pilipczuk, and Rzążewski [24] provided an arguably simpler measure, leading to
an improved (but still quasipolynomial) running time bound. These developments have been
subsequently generalized to a larger class of problems beyond MWIS and to C>t-free graphs
(graphs without induced cycle of length more than t) [16].

This progress suggests that MWIS may be actually solvable in polynomial time in H-free
graphs for all open cases, that is, whenever H is a forest whose every connected component
has at most three leaves. However, we seem still far from proving it: not only we do not
know how to improve the quasipolynomial bounds of [15, 24] to polynomial ones, but also it
remains unclear how to merge the approach of [15, 24] with the way how [10, 11] used the
three-in-a-tree theorem [13].

In this work, we make a step in this direction, providing an analog of Theorem 1 for
St,t,t-free graphs. Before we state it, let us briefly discuss what we can hope for in the class
of St,t,t-free graphs.

Consider an example of a graph G being the line graph of a clique K. The graph G

is S1,1,1-free, but does not admit any (balanced in any useful sense) separator of the form
N [P] for a small set P ⊆ V (G). The MWIS problem on G translates back to the maximum
weight matching problem in the clique K; this problem is polynomial-time solvable, but
with very different methods than branching. In particular, we are not aware of any way of
solving maximum weight matching in a clique in quasipolynomial time by simple branching.

ICALP 2022

93:4 Max Independent Set in Graphs with No Long Claws

Thus, we expect that an algorithm for MWIS in St,t,t-free graphs, given such a graph G,
will discover that it is actually working with the line graph of a clique and apply maximum
weight matching techniques to the preimage graph K.

Chudnovsky and Seymour, in their project to understand claw-free graphs [12], developed
a good way of describing that a graph “looks like a line graph” by the notion of an extended
strip decomposition. The formal definition can be found in Section 2. Here, we remark that
in an extended strip decomposition of a graph, one can distinguish particles being induced
subgraphs of the graph; an algorithm for MWIS can recurse on individual particles, compute
the maximum weight independent sets there, and combine the results into a maximum
weight independent set in the whole graph using a maximum weight matching algorithm on
an auxiliary graph (cf. [10, 11]). Thus, an extended strip decomposition of a graph with
particles of multiplicatively smaller size is very useful for recursion; it can be seen as an
analog of splitting into connected components of multiplicatively smaller size, as it is in the
case of the components of G − N [V (Q)] in Theorem 1.

With the above discussion in mind, we can now state our main technical result.

▶ Theorem 2. Given an n-vertex graph G and t ⩾ 1, one can in polynomial time either:
output an induced copy of St,t,t in G, or
output a set P consisting of at most 11 log n + 6 induced paths in G, each of length at
most t + 1, and a rigid extended strip decomposition of G − N [

⋃
P ∈P V (P)] whose every

particle has at most n/2 vertices.

Combining Theorem 2 with previously known algorithmic techniques, we derive two
algorithms for MWIS in St,t,t-free graphs. Actually, our algorithms work in a slightly more
general setting. For integers s, t ⩾ 1, by sSt,t,t we denote the graph with s connected
components, each isomorphic to St,t,t. Recall that by the observation of Alekseev [5, 6] the
only graphs H, for which we can hope for tractability results for MWIS in H-free graphs,
are forests whose every component has at most three leaves. We observe that each such H

is contained in sSt,t,t, for some s and t depending on H. Thus algorithms for sSt,t,t-free
graphs, for every s and t, cover all potential positive cases.

First, we observe that the statement of Theorem 2 seamlessly combines with the method
how [7] obtained a subexponential-time algorithm for MWIS in Pt-free graphs. As a result,
we obtain a subexponential-time algorithm for MWIS in sSt,t,t-free graphs with improved
running time as compared to [10, 11].

▶ Theorem 3. Let s, t ⩾ 1 be constants. Given an n-vertex sSt,t,t-free graph G with weights
on vertices, one can in time exponential in O(

√
n log n) compute an independent set in G of

maximum possible weight.

Second, we observe that the statement of Theorem 2 again seamlessly combines with the
method how [10, 11] obtained a QPTAS for MWIS in Pt-free graphs, obtaining an arguably
simpler QPTAS for MWIS in sSt,t,t-free graphs with improved running time (compared
to [10, 11]).

▶ Theorem 4. Let s, t ⩾ 1 be constants. Given an n-vertex sSt,t,t-free graph G with
weights on vertices, and a real ε > 0, one can in time exponential in O(ε−1 log5 n) compute
an independent set in G that is within a factor of (1 − ε) of the maximum possible weight.

After preliminaries in Section 2, we prove Theorem 2 in Section 3. Proofs of Theorems 3
and 4 are provided in Section 4. Finally, we discuss future steps in Section 5.

K. Majewski et al. 93:5

2 Preliminaries

Notation. For a family Q of sets, by
⋃

Q we denote
⋃

Q∈Q Q. If the base of a logarithmic
function is not specified, we mean the logarithm of base 2, i.e., log n := log2 n. For a function
w : V → Z⩾0 and subset V ′ ⊆ V , we denote w(V ′) :=

∑
v∈V ′ w(v).

Let G be a graph. For X ⊆ V (G), by G[X] we denote the subgraph of G induced by X,
i.e., (X, {uv ∈ E(G) : u, v ∈ X}). If the graph G is clear from the context, we will often
identify induced subgraphs with their vertex sets. The sets X, Y ⊆ V (G) are complete to
each other if for every x ∈ X and y ∈ Y the edge xy is present in G. Note that this, in
particular, implies that X and Y are disjoint. We say that two sets X, Y touch if X ∩ Y ̸= ∅
or there is an edge with one end in X and another in Y .

For a vertex v, by NG(v) we denote the set of neighbors of v, and by NG[v] we denote
the set NG(v) ∪ {v}. For a set X ⊆ V (G), we also define NG(X) :=

⋃
v∈X NG(v) − X, and

NG[X] = NG(X) ∪ X. If it does not lead to confusion, we omit the subscript and write
simply N(·) and N [·].

By T (G), we denote the set of all triangles in G. Similarly to writing xy ∈ E(G), we will
write xyz ∈ T (G) to indicate that G[{x, y, z}] ≃ K3.

Extended strip decompositions. Now let us define a certain graph decomposition which
will play an important role in the paper. An extended strip decomposition of a graph G is a
pair (H, η) that consists of:

a simple graph H,
a set η(x) ⊆ V (G) for every x ∈ V (H),
a set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),
a set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties (also see Figure 1):
1. {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G),
2. for every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to

η(xz, x),
3. every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H) ∪ E(H) ∪ T (H), or is

as follows:
u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

Note that for an extended strip decomposition (H, η) of a graph G, the number of vertices
of H can be much larger than the number of vertices of G. However, in such case many sets
η(·) are empty and thus H is “unnecessarily complicated.” An extended strip decomposition
(H, η) is rigid if (i) for every xy ∈ E(H) it holds that η(xy, x) ̸= ∅, and (ii) for every
x ∈ V (H) such that x is an isolated vertex it holds that η(x) ̸= ∅. Observe that if we restrict
η to V ′ ⊂ V (G), i.e. we keep in η only vertices of V ′, (H, η) after the restriction remains an
extended strip decomposition, but it might not be rigid any more.

▶ Observation 5. Let (H, η) be a rigid extended strip decomposition of an n-vertex graph G.
Then |E(H)| ⩽ n and |V (H)| ⩽ 2n.

Proof. Recall that since (H, η) is rigid, for every xy ∈ E(H) we have that ∅ ≠ η(xy, x) ⊆
η(xy), and for every isolated vertex x of H we have η(x) ̸= ∅.

ICALP 2022

93:6 Max Independent Set in Graphs with No Long Claws

x

x′

z
z′

y
y′

H

η(xy, x)

η(xy, y)

η(xy)

η(x)

η(xyz)

Figure 1 A graph H and an extended strip decomposition (H, η) of a graph G. Sets η(·)
corresponding to vertices, edges, and the triangle of H are marked green, blue, and orange, respectively.
The edges between distinct sets are drawn thick if they must exist, and thin if they may exist.

Let V0 and V+ denote, respectively, the sets of vertices of H with degree 0 and more
than 0. As the family {η(xy) | xy ∈ E(H)} ∪ {η(x) | x ∈ V0} consists of pairwise disjoint
nonempty subsets of V (G), we conclude that |E(H)| + |V0| ⩽ n and therefore |E(H)| ⩽ n.

Note that by the handshaking lemma we have |E(H)| ⩾ |V+|/2, and so |V (H)| =
|V0| + |V+| ⩽ |V0| + 2|E(H)| ⩽ 2n by the previous argument. ◀

We say that a vertex v ∈ V (G) is peripheral in (H, η) if there is a degree-one vertex
x of H, such that η(xy, x) = {v}, where y is the (unique) neighbor of x in H. For a set
Z ⊆ V (G), we say that (H, η) is an extended strip decomposition of (G, Z) if H has |Z|
degree-one vertices and each vertex of Z is peripheral in (H, η).

The following theorem by Chudnovsky and Seymour [13] is a slight strengthening of their
celebrated solution of the famous three-in-a-tree problem. We will use it as a black-box to
build extended strip decompositions.

▶ Theorem 6 (Chudnovsky, Seymour [13, Section 6]). Let G be an n-vertex graph and consider
Z ⊆ V (G) with |Z| ⩾ 2. There is an algorithm that runs in time O(n5) and returns one of
the following:

an induced subtree of G containing at least three elements of Z,
a rigid extended strip decomposition (H, η) of (G, Z).

Let us point out that actually, an extended strip decomposition produced by Theorem 6
satisfies more structural properties, but of our purpose, we will only use the fact that it is
rigid.

Particles of extended strip decompositions. Let (H, η) be an extended strip decomposition
of a graph G. We introduce some special subsets of V (G) called particles, divided into five
types.

K. Majewski et al. 93:7

vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy) − (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Ax
xy := η(x) ∪ η(xy) − η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

Observe that the number of all particles of (H, η) is at most O(|V (H)|3). However, the
number of nonempty particles is linear in the number of vertices of G.

▶ Observation 7. Let (H, η) be an extended strip decomposition of an n-vertex graph. Then
the number of nonempty particles of (H, η) is bounded by 4n.

Proof. Let V ′, E′, T ′, respectively, be the subsets consisting of those elements o of V (H),
E(H), or T (H), for which η(o) ̸= ∅. Observe that each o ∈ V ′ ∪ T ′ gives rise to one
nonempty particle Ao, and each xy ∈ E′ gives rise to at most four nonempty particles:
A⊥

xy, Ax
xy, Ay

xy, Axy
xy. Moreover, since {η(o) | o ∈ V ′ ∪ E′ ∪ T ′} are pairwise disjoint subsets

of V (G), we have that |V ′| + |E′| + |T ′| ⩽ n. Hence, the number of nonempty particles is
bounded by |V ′| + |T ′| + 4|E′| = (|V ′| + |T ′| + |E′|) + 3|E′| ⩽ 4n. ◀

A vertex particle Ax is trivial if x is an isolated vertex in H. Similarly, an extended strip
decomposition (H, η) is trivial if H is an edgeless graph. The following observation follows
immediately from the definitions of an extended strip decomposition and particles.

▶ Observation 8. Let (H, η) be an extended strip decomposition of a graph G. For each
xy ∈ E(H) the following hold:
1. A⊥

xy ⊆ Ax
xy ⊆ Axy

xy,
2. for any vx ∈ η(xy, x) and vy ∈ η(xy, y) we have N(Axy

xy) = N(vx) ∪ N(vy) − Axy
xy.

We conclude this section by recalling an important property of particles of extended strip
decompositions, observed by Chudnovsky et al. [10].

▶ Theorem 9 (Chudnovsky et al. [10, Lemma 6.8]). Let (H, η) be an extended strip decompo-
sition of G. Suppose P1, P2, P3 are three induced paths in G that do not touch each other,
and moreover each of P1, P2, P3 has an endvertex that is peripheral in (H, η). Then in (H, η)
there is no particle that touches each of P1, P2, P3.

3 Main result

In this section, we prove our main result, i.e., Theorem 2. Let us first give an overview of
our approach. We present a recursive algorithm that, for a given graph G, will return one of
the outcomes of Theorem 2. Let n := |V (G)| be the number of vertices in the input graph;
the value of n will not change throughout the recursive steps of the algorithm. We start
with finding a Gyárfás path Q navigating towards the largest component in G. That is, by
Theorem 1, we find Q such that each connected component of G − N [Q] is of size at most
n
2 . Finding such a small connected component is a great outcome as we can readily include
it as a small trivial vertex particle of an extended strip decomposition we are constructing.
We say that a particle is small if its size is at most n

2 , and an extended strip decomposition
is refined if all its particles are small. Observe that if |Q| ≤ 3t + 1, we immediately get the

ICALP 2022

93:8 Max Independent Set in Graphs with No Long Claws

desired refined extended strip decomposition of G. Otherwise, we proceed to the main part
of the algorithm. At each step, we will remove some vertices from Q, and will measure the
progress of our algorithm in the number of the remaining vertices of Q.

Formally, we create a set Q of at most two non-touching induced paths such that
⋃

Q ⊆ Q.
At each step of recursion we obtain a set Q̂ with |

⋃
Q̂| ≤ 2

3 |
⋃

Q| that represents Q for the
next step. Hence, in 11 log n recursive steps, |

⋃
Q| drops below 3t+1. In the base case of the

recursion, when |
⋃

Q| ≤ 3t + 1, we return the refined trivial extended strip decomposition
ensured by maintaining the property that G − N [

⋃
Q] has connected components of size at

most n
2 throughout the recursive steps. In each step of recursion, we further split the induced

path(s) in Q so we are able to use Theorem 6 to obtain an extended strip decomposition
(H, η). If (H, η) is already refined, then we are done. Otherwise, it contains a particle A

that is not small. We use Theorem 9 to select at most two paths touching A. Then it is
easy to separate A with the respective touching paths from the rest of the graph. The graph
induced by A and the touching paths form a smaller instance, i.e., an instance where |

⋃
Q|

drops by a factor of 2
3 . We need to ensure that at every recursive step, we include only a

constant number of paths of length t + 1 into P (i.e., the set of paths in the second outcome
of Theorem 2). We now prove the core recursive formulation of the algorithm formally.

▶ Lemma 10 (Recursion). Given a graph G and a set Q of at most two induced paths
(vertex disjoint non-adjacent), and a refined extended strip decomposition of G − N [

⋃
Q]. In

polynomial time, we can output one of the following:
an induced copy of St,t,t in G, or
P, X ⊆ N [

⋃
P], and a refined extended strip decomposition (H, η) of G − X, so that

|P| ≤ 6 log3/2 (|
⋃

Q|) + 6 and the longest path in P has at most t + 1 vertices.

Proof. If the longest path of Q has at most 3t + 1 vertices, return P := Q where each path
in P may be further split in at most three paths on at most t + 1 vertices, and X := N [

⋃
P].

Hence, we output the extended strip decomposition we were given by the assumptions of the
lemma.

Otherwise, let Q1 be the longest path in Q. Let u1 and u2 be the
(⌊

|Q1|
3

⌋
+ 1

)
-th and

the
(

2
⌊

|Q1|
3

⌋
+ 2

)
-th vertex of Q1, respectively. The removal of u1 and u2 from Q1 divides

the path into three induced non-touching subpaths Q1
1, Q2

1, and Q3
1, each of length at least t.

Let Q2 be the remaining path of Q, should it exist. We define S := {Q1
1, Q2

1, Q3
1, Q2} if Q2

exists, or S := {Q1
1, Q2

1, Q3
1}, otherwise. Consult Figure 2 to see an overview of the definitions

described in this paragraph. For each path P ∈ S we define pref(P) as the set comprising:
first t − 1 vertices of P (or all vertices of P if |P | < t − 1), and
the separating vertex of Q1 directly preceding P if P ∈ {Q2

1, Q3
1}.

It can be easily seen that the set of vertices pref(P) forms an induced path of length at most t.
We finally define shells of paths in S. Given a path P ∈ S, we set shell(P) := N [pref(P)]−

⋃
S

if |P | ≥ t and shell(P) := N [pref(P)] otherwise. Intuitively, if |P | < t, the shell of P takes the
whole neighborhood as we do not have a use for a short path in the next stage of our algorithm.
For a long enough path P (|P | > t), the shell of P intersects all short paths (shorter than t)
connecting the first vertex of P with the rest of the graph. In other words, each path from
the first vertex of P to any vertex of G − shell(P) outside of P will have length at least t.
To ease the notation, we define S≥t := {P ∈ S | |P | ≥ t}, shell(S) :=

⋃
P ∈S shell(P), and

pref(S) :=
⋃

P ∈S pref(P).
Now, we use the algorithm from Theorem 6 on Z being the set of the first vertices of

paths in S≥t and the graph defined as G − shell(S). If Theorem 6 produced an induced
tree with three leaves among Z, it contains an induced St,t,t, since those must have been

K. Majewski et al. 93:9

pref(Q1
1) pref(Q1

2)

u1 u2

Q1
1 Q2

1

{ {{ {
shell(Q1

1) shell(Q2
1) shell(Q2

1)

pref(Q2)
{
shell(Q2)

Q1

Q2

pref(Q1
3)

{
Q3

1

{
Figure 2 Definitions of pref(S) and shell(S) in case of |Q2| ≥ t.

induced branches at least t vertices long in G − shell(S). Hence, we obtained an extended
strip decomposition (H ′, η′) of G − shell(S). If the obtained decomposition is refined, we
return P := pref(S), X := shell(S), and the extended strip decomposition (H := H ′, η := η′).

Therefore, the obtained extended strip decomposition (H ′, η′) of G − shell(S) contains
a particle A which is not small, i.e., A is composed of at least n

2 vertices. As every vertex
in Z is peripheral in (H ′, η′), we know that no three paths in S≥t touch one particle by
Theorem 9. Therefore, we take the set Q̂ of at most two paths, say P1 and P2, touching A

(for convenience, let P1 or P2 be an empty set if it does not exist). We now compute the
maximum proportion of

⋃
Q put to Q̂. If both P1, P2 ⊆ Q1, then this fraction is at most

2
3 as by the definition |Qi

1| ≤ |Q1|
3 , for i ∈ {1, 2, 3}. If one is Q2 and the other comes from

Q1, then we estimate a + 1−a
3 = 2a+1

3 ≤ 2
3 for a = |Q2|/|

⋃
Q| ≤ 1

2 . Hence, we know that
|
⋃

Q̂| ≤ 2
3 |

⋃
Q|. We define Ĝ := A ∪ P1 ∪ P2 to use Lemma 10 on a smaller instance. Now,

we need to verify that the assumption of the lemma holds. We claim the following:

▷ Claim 11. Ĝ − N [
⋃

Q̂] has a refined extended strip decomposition.

Proof. As Ĝ is an induced subgraph of G and G − N [
⋃

Q] has a refined extended strip
decomposition, we know that Ĝ − N [

⋃
Q] has a refined extended strip decomposition.

First, recall that N [u1] − (Q1
1 ∪ Q2

1) ⊆ shell(Q2
1), which is disjoint with V (Ĝ). Analogously

N [u2] − (Q2
1 ∪ Q3

1) is disjoint with V (Ĝ). Also, if |Q2| < t then Q2 is disjoint with V (Ĝ) as
well. Hence, Ĝ − N [

⋃
Q] ≃ Ĝ − N [

⋃
S≥t]. Also, recall that the only paths among S≥t that

touch A are in Q̂. Hence, observe that Ĝ − N [
⋃

S≥t] ≃ Ĝ − N [
⋃

Q̂]. ◁

Therefore, we can apply Lemma 10 inductively on Ĝ and Q̂, obtaining P̂ and X̂, and
a refined extended strip decomposition (Ĥ, η̂) of Ĝ − X̂. We need to combine the extended
strip decomposition obtained from the recursion with the extended strip decomposition
(H ′, η′) we obtained earlier.

We can always suppose that particle A is of type Axy
xy for some edge xy ∈ E(H ′), unless

A is of type Ax for an isolated vertex x ∈ V (H ′). That is because Axy
xy is the superset of all

possible particle types. As Theorem 6 gives us that both η′(xy, x) and η′(xy, y) are nonempty,
we can select vx ∈ η′(xy, x) and vy ∈ η′(xy, y) (possibly vx = vy). By Observation 8, the set

X ′ := (N(vy) ∪ N(vx)) − V (A)

ICALP 2022

93:10 Max Independent Set in Graphs with No Long Claws

separates A from the rest of G. Set P ′ := {{vx}, {vy}}. In the case of Ax such that x ∈ V (H)
is an isolated vertex, we set P ′ := ∅ and X ′ := ∅ and still such A is separated from the rest
of G by X ′. We return:

P := P̂ ∪ P ′ ∪ pref(S),
X := X̂ ∪ X ′ ∪ shell(S),
an extended strip decomposition (H, η) of G − X, where H is Ĥ with an additional
isolated vertex w, and η is η̂ restricted only to vertices in A − X with an additional trivial
vertex particle η(w) containing all vertices of G − X − A.

Recall that during the recursion, we do not require rigidity, therefore, we do not mind
restricting η only to a subset of vertices. Note that indeed, G − X − A may contain parts of
P1 or P2, however, η(w) does not touch any vertices contained in η̂ restricted to A − X as
X ′ ⊆ X completely separated A − X from G − X − A.

We compute that |P| ≤ 6 + 6 log3/2

(∣∣∣⋃ Q̂
∣∣∣) + 6 ≤ 6 log3/2 (|

⋃
Q|) + 6 as we added at

most six new paths into P . Observe that the described algorithm runs in polynomial time as
we just computed that the depth of recurrence is logarithmic in |

⋃
(Q)| ≤ |V (G)| and each

recursive call takes polynomial time in the size of G. ◀

Proof of Theorem 2. Using Theorem 1 we find a Gyárfás path Q. We get the desired
outcome by Lemma 10 on G with Q := {Q}. The extended strip decomposition needed
by the lemma’s assumption is trivial. That is, each connected component of G − Q is
represented by a vertex particle of small size. Note that Lemma 10 provides an extended
strip decomposition of G − X, where X ⊆

⋃
P and Theorem 2 only requires an extended

strip decomposition of G −
⋃

P , so we can restrict the obtained extended strip decomposition
to V (G) −

⋃
P. We conclude the proof of Theorem 2 by the following calculation:

6 log3/2 n + 6 ≤ 11 log n + 6.

Note that for any extended strip decomposition (H, η) we can easily add the assumption
that sets η(xy, x) ̸= ∅ for any edge xy ∈ E(H). As suppose η(xy, x) = ∅; then we can
update (H, η) by adding η(xy) to η(y) and removing xy from H. Moreover, we can simply
remove any empty trivial vertex particle form η and the corresponding isolated vertex from
H. Therefore, we may suppose that the obtained extended strip decomposition is rigid. ◀

In the following simple corollary we apply Theorem 2 to sSt,t,t-free graphs, for some
s, t ≥ 1.

▶ Corollary 12. Let s ⩾ 1, t ⩾ 1 be constants. Let G be an sSt,t,t-free graph on n vertices.
Then in polynomial time we can find a set X consisting of at most

(s − 1)(3t + 1) + (11 log n + 6)(t + 1)

vertices and a rigid extended strip decomposition of G − N [X] whose every particle has at
most n/2 vertices.

Proof. Induction on s. If s = 1, then we obtain the result immediately by Theorem 2. Thus
let us assume that s ⩾ 2 and the theorem holds for (s − 1)St,t,t-free graphs.

We exhaustively check if there is some Y ⊆ V (G) with |Y | = 3t+1, such that G[Y] ≃ St,t,t;
we can do it in time n3(t+1)+O(1) = nO(1). If such Y does not exist, then we can immediately
apply Theorem 2, and the proof is complete. Thus suppose that Y exists.

We observe that the graph G′ := G − N [Y] is (s − 1)St,t,t-free. Denote n′ := |V (G′)|. By
the inductive assumption, in time (n′)O(1) = nO(1) we can obtain a set X ′ ⊆ V (G′) of size at
most (s − 2)(3t + 1) + (11 log n′ + 6)(t + 1) and a rigid extended strip decomposition (H, η)
of G′ − N [X ′] whose every particle is of size at most n′/2.

K. Majewski et al. 93:11

We set X = Y ∪ X ′. Now X and (H, η) satisfy the statement of the theorem, as
G′ − N [X ′] = G − N [X] and n′ ⩽ n. The total running time is polynomial in n as the depth
of the recursion is s − 1. ◀

4 Algorithmic applications

In this section we will show how to combine Theorem 2 with the approach of Chudnovsky et
al. [10, 11] in order to obtain a QPTAS and a subexponential-time algorithm for MWIS in
St,t,t-free graphs, i.e., we prove Theorems 3 and 4.

Both algorithms follow the same general outline; let us sketch it before we get into the
details of each particular case. Each algorithm is a recursive procedure, which consists of
two phases. In the first one, we deal with the vertices of G that are heavy, which means that
their neighborhood is “large”, where the exact meaning of “large” depends on the particular
algorithm.

Once there are no heavy vertices, i.e., the neighborhood of each vertex is “small”, we
proceed to the second phase. We call Corollary 12 for the current instance G, obtaining
a small-sized set X and a rigid extended strip decomposition (H, η) of G − N [X], whose
every particle is of small size. The crux is that since we are in the second phase, all vertices
in X are not heavy, and since X is of small size, the whole set N [X] is “small”. We treat
N [X] separately in a way that depends on the particular algorithm.

Next, for each particle A of (H, η), we call the algorithm recursively for G[A], obtaining
(a good approximation of) a maximum-weight independent set in G[A]. Finally, we combine
the obtained results to derive (a good approximation of) a maximum-weight independent set
in G. This last step is based on the idea of Chudnovsky et al. [10, 11] to reduce the problem
to finding a maximum-weight matching in a graph obtained by a simple modification of H.
Since the size of H is linear in |V (G)| (by Observation 5), this problem can be solved in
time polynomial in |V (G)| using, e.g., the classic algorithm of Edmonds [14]. The last step is
encapsulated in the following lemma, whose exact statement comes from Abrishami et al. [1].

▶ Lemma 13 (Chudnovsky et al. [10, 11]). Let ς ∈ [0, 1] be a real number. Let G be an
n-vertex graph equipped with a weight function w : V (G) → Z⩾0. Suppose that G is given
along with an extended strip decomposition (H, η), where H has N vertices.
Let I0 ⊆ V (G) be a fixed independent set in G. Furthermore, assume that for each particle
A of (H, η) we are given an independent set I(A) in G[A] such that w(I(A)) ⩾ ς · w(I0 ∩ A).
Then in time polynomial in n + N we can compute an independent set I in G such that
w(I) ⩾ ς · w(I0).

Let us stress out that the algorithm from Lemma 13 does not need to know the value of
ς or the independent set I0.

The main difference between our approach and the one of Chudnovsky et al. [11] is that
we use Theorem 2 and its consequence, i.e., Corollary 12. The previous algorithms used
a similar statement but with a worse (and much more involved) guarantee on the size of X

and each particle. Furthermore, the way we obtain our set X is significantly simpler.

4.1 Proof of Theorem 3
Before we proceed to the proof, let us first explain the meaning of “small”, and how to deal
with N [X] in this particular case. Here the neighborhood of a vertex is “small” if it has few
vertices (more specifically, at most

√
n/t). In the first phase, we deal with heavy vertices v

(i.e., of large degree) with simple branching: we guess whether v is included in our optimum
solution or not. Since the degree of v is large, in the first branch, we obtain significant
progress, which is enough to obtain a subexponential running time.

ICALP 2022

93:12 Max Independent Set in Graphs with No Long Claws

In the second phase, since N [X] is the neighborhood of O(log n) vertices, each of degree
O(

√
n), the total size of N [X] is O(

√
n log n). Thus we can afford to exhaustively guess the

intersection of our optimum solution with N [X].

Proof of Theorem 3. Let s, t ⩾ 1 be constants and let (G,w) be an instance of MWIS,
where G is sSt,t,t-free and has n vertices. We observe that if n is small, i.e., bounded by a
constant, then we can solve the problem by brute force. Thus we assume that n ⩾ n0, where
n0 is a constant (depending on s and t) whose exact value follows from the reasoning below.

First, consider the case that there exists v ∈ V (G) such that deg v ⩾
√

n/t. We branch
on including v in the final solution: we either delete v from G, or we delete N [v] and add v

to the solution returned by the recursive call. Then we output the one of these two solutions
that has a larger weight. The correctness of this step of the algorithm is straightforward.

Hence, we can assume that for every v ∈ V (G) it holds that deg v ⩽
√

n/t. By
Corollary 12, since G is sSt,t,t-free, we obtain a set X of size (s−1)(3t+1)+(11 log n+6)(t+
1) ⩽ 12(t + 1) log n (here we use that n is large), and a rigid extended strip decomposition
(H, η) of G′ = G − N [X] whose every particle has at most n/2 vertices.

We exhaustively guess an independent set J ⊆ N [X]; think of it as an intersection of the
intended optimum solution with N [X]. Consider the graph G′′ := G′ − N [J]. We modify
(H, η) by removing the vertices from N [J] from the sets η(·). Let us call the obtained strip
decomposition (H, η′); note that it might not be rigid. We call the algorithm recursively for
the subgraph G′′[A] for every nonempty particle A of (H, η′). Let I(A) be the solution. If
A = ∅, then I(A) = ∅. By the inductive assumption I(A) is a maximum-weight independent
set in G′′[A]. Then we use Lemma 13 for ς = 1 to combine the solutions into a maximum-
weight independent set IJ of G′′. Finally, we return the independent set J ∪ IJ whose weight
is maximum over all choices of J . Note that the correctness of this step is guaranteed by the
exhaustive guessing of J and Lemma 13.

Running time. Let F (n) denote the running time of our algorithm for n-vertex instances.
We prove that F (n) = 2O(√

tn log n). If n < n0, then the claim clearly holds. So let us assume
that n ⩾ n0.

In the first case we call the algorithm for two instances, one of size n − 1 and one of size
at most n −

√
n/t. Hence,

F (n) ⩽ F (n − 1) + F (n −
√

n/t) = 2
O

(
n log n√

n/t

)
⩽ 2O(√

tn log n).

Here we skip the description how this recursion is solved, as it is pretty standard. For
a formal proof we refer the reader to Bacsó et al. [7, Lemma 1].

It remains to analyze the running time of the step in which the maximum degree of
vertices in G is bounded by

√
n/t. Corollary 12 asserts that we obtain X and the rigid

extended strip decomposition (H, η) of G′ = G − N [X] in time polynomial in n. There are
2O(

√
n/t·t log n) = 2O(

√
nt log n) ways of choosing the set J . In polynomial time we modify

(H, η) into (H, η′).
Observe that while (H, η′) might not be rigid, it was obtained from a rigid extended

strip decomposition (H, η) by deleting some vertices from the sets η(·). In particular, both
decompositions have the same sets of particles, and every nonempty particle of (H, η′) is also
a nonempty particle of (H, η). Thus by Observation 7 we call the algorithm recursively for at
most 4n nonempty particles, each of size at most n/2. By Observation 5, the total number
of particles of (H, η′) is polynomial in n. Finally, having computed a maximum-weight

K. Majewski et al. 93:13

independent set contained in each particle, by Lemma 13, we can compute the final solution
in time polynomial in n. Hence, there are constants c, c1, c2, where c ≫ c1, c2, such that
total running time of this step is bounded by:

F (n) ⩽ 2c1·
√

nt log n
(

nc2 + 4n · 2c·
√

tn/2 log (n/2)
) c≫c1,c2

⩽ 2c·
√

tn log n, (1)

and so is the total complexity of the algorithm. ◀

4.2 Proof of Theorem 4
Again let us start with explaining the algorithm-specific details of the outline presented at
the start of Section 4.

We will use the notion of β-heavy vertices from [10, 11]. Consider a graph G, a weight
function w : V (G) → Z⩾0, and an independent set I ⊆ V (G). Let β ∈ (0, 1/2] be a real. We
say that a vertex v ∈ V (G) is β-heavy (with respect to I) if w(N [v] ∩ I) > β · w(I). A set J

is good for I if J ⊆ I and N [J] contains all vertices that are β-heavy with respect to I.

▶ Lemma 14 (Chudnovsky et al. [10, 11]). Let G be an n-vertex graph for n > 2, w : V (G) →
Z⩾0 be a weight function, I ⊆ V (G) be an independent set, and β ∈ (0, 1/2] be a real. Then
there exists a set J of size at most ⌈β−1 log n⌉ which is good for I.

Now the vertex is heavy if it is β-heavy for some carefully chosen parameter β. This
means that a neighborhood of a vertex is “large” if it contains a significant (⩾ β) fraction
of the weight of IOPT. In the first phase, we exhaustively guess the set J that is good for a
fixed optimum solution IOPT. Note that J is of small size and since J ⊆ IOPT, we know that
N(J) contains no vertices from IOPT and thus can be safely removed from the graph.

Since J is good for IOPT, we know that G − N [J] contains no heavy vertices, and for this
graph we call Corollary 12. Now, as N [X] is a neighborhood of few non-heavy vertices, we
know that the total weight of IOPT ∩ N [X] is small and thus can be sacrificed, as we aim for
an approximation.

Proof of Theorem 4. Let s, t ⩾ 1 be constants and let (G,w) be an instance of MWIS,
where G is sSt,t,t-free and has n vertices. Let ε ∈ (0, 1) be fixed. Fix a maximum-weight
independent set IOPT in G with respect to w. We describe a procedure that finds in G

an independent set I of weight at least (1 − ε) · w(IOPT).
Let N be the minimum power of two greater than or equal to the size of our initial

instance. Note that n ⩽ N < 2n. The value of N will not change throughout the execution
of the algorithm.

The algorithm itself is a recursive procedure. The arguments of each call are a graph G′,
which is an induced subgraph of G, the weight function on V (G′) obtained by restricting
the domain of w, and an integer h, which can be intuitively understood as the depth of the
current call in the recursion tree. Since it does not lead to confusion, we will always denote
the weight function by w. We will keep the invariant that for each call (G′,w, h) it holds
that |V (G′)| ⩽ N/2h. The initial call, corresponding to the root of the recursion tree, is for
(G,w, 0).

Consider a call for the instance (G′,w, h). If |V (G′)| < n0, where n0 is a constant
(depending on s and t) that follows from the reasoning below, then we can solve the problem
by brute force. Thus let us assume that n ⩾ n0. In particular, N > 1.

ICALP 2022

93:14 Max Independent Set in Graphs with No Long Claws

We set

β(h, ε) := ε

12(t + 1) log (N/2h) · ((1 − ε) log N + ε(h + 1)) . (2)

It is straightforward to verify that for h < log N we have β(h, ε) ∈ (0, 1/2]. On the other
hand, if h ⩾ log N , then G′ is of constant size and thus β(h, ε) is not computed for such h.

Let J be the family of all independent sets in G′ of size at most ⌈β(h, ε)−1 log (N/2h)⌉.
For each J ∈ J we proceed as follows. If |V (G′ − N [J])| < n0, then we compute a maximum-
weight independent set IJ in G′ − N [J] by brute force. Otherwise, we use Corollary 12,
to obtain a set XJ ⊆ V (G′ − N [J]) and a rigid extended strip decomposition (H, η) of
G′ − N [J] − N [XJ] such that each particle of (H, η) is of size at most |V (G′ − N [J])|/2. By
Corollary 12, we obtain

|XJ | ⩽ (s − 1)(3t + 1) + (11 log |V (G′ − N [J])| + 6)(t + 1)
⩽ 12(t + 1) log |V (G′)| ⩽ 12(t + 1) log(N/2h). (3)

Let YJ := N(J) ∪ N [XJ]. We modify (H, η) into an extended strip decomposition of G′ − YJ

as follows. For each v ∈ J , we add to H an isolated vertex xv, and set η(xv) = {v}.1 Let us
call this extended strip decomposition (H ′, η′). Observe that each particle of (H ′, η′) is of
size at most |V (G′ − N [J])|/2 ⩽ |V (G′)|/2. Furthermore, since (H, η) is rigid, so is (H ′, η′).

For each nonempty particle A of (H ′, η′) we call the algorithm recursively on an instance
(G′[A],w, h + 1). Let I(A) be the value returned by the algorithm. For each empty particle
A we set I(A) := ∅. Finally, we apply the algorithm from Lemma 13, in order to obtain
an independent set IJ of G′ − YJ and thus of G′. Recall that the value of ς is not needed to
apply Lemma 13; we will define it in the next paragraph when we discuss the approximation
guarantee. As the solution, we return the set IJ of maximum weight, over all choices of
J ∈ J .

Approximation guarantee. Consider the recursion tree of our algorithm. We mark some
nodes of the recursion tree. First, we mark the root. Now consider some marked node z

corresponding to a call (G′,w, h), such that z is not a leaf node. Observe that by Lemma 14,
there is some J ∈ J (for this particular instance) which is good for IOPT ∩ V (G′). Fix such
J . If there is more than one, we choose one arbitrarily. We mark the children of z that
correspond to the calls on the particles of the extended strip decomposition of G′ − YJ .

Let T be the subtree of the recursion tree induced by the marked nodes. Note that each
leaf of T is a leaf of the whole recursion tree, i.e., it corresponds to an instance of constant
size. Since at each level of the recursion, the size of the instance drops by at least half, we
observe that each instance at level h (where the root is at level 0) is of size at most N/2h.
Consequently, the depth of T is at most log N .

Consider a call for an instance (G′,w, h) and let J be good for IOPT. Let us estimate
w(IOPT ∩ YJ). First, observe that since J ⊆ IOPT, we have that w(IOPT ∩ N(J)) = 0.
Moreover, since J was chosen to be good, there are no β(h, ε)-heavy vertices in V (G′ −N [J]),
and in particular, in N [XJ]. Hence,

w(IOPT ∩ YJ) = w(IOPT ∩ N [XJ]) ⩽ |XJ | · β(h, ε) · w(IOPT ∩ V (G′))
(2) and (3)

⩽
ε

(1 − ε) log N + ε(h + 1) · w(IOPT ∩ V (G′)). (4)

1 Another possible way of dealing with the set J would be to add it directly in the computed solution.
However, we decided to restore J to the graph, so that these vertices are handled by Lemma 13 and do
not require any special treatment.

K. Majewski et al. 93:15

The following claim shows that the solution computed for the instance (G′,w, h) at each
node of T is a reasonable approximation of IOPT ∩ V (G′).

▷ Claim 15. Let z be a node of T , and let (G′,w, h) be the instance corresponding
to z. Let I be the independent set returned by the algorithm for the call at z. Then
w(I) ⩾

(
1 − ε + εh

log N

)
· w (IOPT ∩ V (G′)).

Proof. First, observe that if z is a leaf of T , then the statement of the claim is satisfied.
Indeed, in this case I is computed by brute force, and hence w(I) = w(IOPT ∩ V (G′)).

Recall that the algorithm returns the solution of maximum weight among all choices of
J ∈ J , so clearly we have w(I) ⩾ w(IJ), where J is good for IOPT ∩ V (G′).

We proceed by induction on h. First, consider a node z at the level h = log N . As the
depth of T is at most log N , we observe that z must be a leaf, so the claim follows by the
observation above.

Assume that the claim holds for h + 1 ∈ [log N] and consider a node z at level h. If
z is a leaf, then again, we are done. Otherwise, let A be the set of nonempty particles
of the extended strip decomposition of G′ − YJ . For every such particle A, we recursively
computed an independent set I(A). By the inductive assumption, we have that w(I(A)) ⩾(

1 − ε + ε(h+1)
log N

)
w(IOPT ∩V (G′[A])); note that these recursive calls are at level h+1. Clearly,

the same holds for empty particles because ∅ is there an optimum solution.
Thus, by Lemma 13 applied to IOPT and ς = 1 − ε + ε(h+1)

log N , we obtain an independent
set IJ in G′ − YJ , such that

w(IJ) ⩾
(

1 − ε + ε(h + 1)
log N

)
w(IOPT ∩ V (G′ − YJ))

=
(

1 − ε + ε(h + 1)
log N

) (
w(IOPT ∩ V (G′)) − w(IOPT ∩ YJ)

)
. (5)

Combining (5) with (4) and simplifying the formula, we obtain

w(IJ) ⩾
(

1 − ε + εh

log N

)
w(IOPT ∩ V (G′)),

which concludes the proof of the claim. ◁

Since the root of the recursion tree belongs to T , the final result I returned for the call
at the root (i.e., for (G,w, 0)) satisfies

w(I) ⩾ (1 − ε) · w (IOPT ∩ V (G)) = (1 − ε) · w(IOPT).

This concludes the discussion of the approximation guarantee.

Running time. Recall that the recursion tree has depth at most log N . Let us show the
following claim concerning the running time.

▷ Claim 16. Let z be a node of the recursion tree, and let (G′,w, h) be the instance
corresponding to z. Then the algorithm solves this instance in time 2O(ε−1 log4 N log(N/2h−1)).

Proof. Let F (h) denote the upper bound for the running time of our algorithm, depending on
the level of the call in the recursion tree. We aim to show that there is an absolute constant
c, such that for N sufficiently large we have

F (h) ⩽ 2c·ε−1 log4 N log(N/2h−1).

ICALP 2022

93:16 Max Independent Set in Graphs with No Long Claws

Recall that |V (G′)| ⩽ N/2h. If z is a leaf, then the instance is of constant size, and thus
the claim holds (assuming that c is sufficiently large). In particular this happens if h = log N .
So let us assume that the claim holds for the calls at level h + 1 and that h < log N .

Recall that we first enumerate the family J of all independent sets of size at most
⌈β(h, ε)−1 log(N/2h)⌉. Observe that

|J | ⩽ |V (G′)|⌈β(h,ε)−1 log(N/2h)⌉ ⩽ 2log(N/2h)⌈β(h,ε)−1 log(N/2h)⌉,

and the family J can be enumerated in time polynomial in its size.
For each J ∈ J , using Corollary 12 and modifying its outcome, in polynomial time

we obtain a set XJ and a rigid extended strip decomposition (H ′, η′) of G − YJ , where
YJ = N [XJ] ∪ N(J).

Next, we call the algorithm recursively for at most 4 · |V (G′)| ⩽ 4 · N/2h instances, each
at depth h + 1. Finally, use use Lemma 13 to obtain our solution in time polynomial in
|V (G′)| and thus in N/2h.

Thus the running time is bounded by the following expression (here c1, c2, c3 are absolute
constants, such that c1 and c2 are much smaller than c3, and c3 = c/12(t + 1)):

F (h) ⩽ 2c1·β(h,ε)−1 log2(N/2h) ·
(
(N/2h)c2 + 4 · (N/2h) · F (h + 1)

)
c3≫c1,c2

⩽ 2c3·β(h,ε)−1 log2(N/2h) · 2c·ε−1 log4 N log(N/2h)

= exp
{

c3 · β(h, ε)−1 log2(N/2h) + c · ε−1 log4 N log(N/2h)
}

⩽ exp
{

c3 · 12(t + 1) ·
(

1 − ε

ε
log N + (h + 1)

)
log3(N/2h) + c · ε−1 log4 N log(N/2h)

}
h<log N

⩽ exp
{

c · ε−1 log4 N + c · ε−1 log4 N log(N/2h)
}

= exp
{

c · ε−1 log4 N(log(N/2h) + 1)
}

= exp
{

c · ε−1 log4 N log(N/2h−1)
}

.

This completes the proof of the claim. ◁

Now we apply Claim 16 to the initial call (G,w, 0) and obtain that the overall running time
is

2O(ε−1 log5 N) = 2O(ε−1 log5 n),

as N < 2n. This completes the proof. ◀

5 Conclusion

In the QPTAS of Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé [10, 11] it was more
convenient to measure the weight of parts of the graph not by the number of vertices, but by
the weight of the intersection of the sought solution with the part in question. We observe
that we can adapt Theorem 2 to this setting of unknown weight function.

▶ Theorem 17. Given an n-vertex graph G and an integer t, one can in time nO(t log n)

either:
output an induced copy of St,t,t in G, or
output a family F satisfying the following:

1. every element of F is a pair of a set P consisting of at most 11 log n + 6 induced paths
in G, each of length at most t + 1, and an extended strip decomposition of G − N [

⋃
P];

K. Majewski et al. 93:17

2. for every weight function w : V (G) → Z⩾0 there exists a pair in F such that every
particle in the extended strip decomposition of the pair has weight at most half of the
total weight of G;

3. the size of F is bounded by nO(log n).

Proof sketch. As observed in [10, 11], in G one can identify at most n2 induced paths
such that for every weight function w : V (G) → Z⩾0, at least one of the identified path is
a Gyárfás’ path for w, that is, a path Q such that every connected component of G − N [Q]
is of weight at most half of the weight of G. Thus, we can guess the path Q as in the proof
in Theorem 2 out of at most n2 candidates.

Then, in the recursive step in the proof of Theorem 2, instead of choosing the heavy
particle to recurse on, we guess which particle is heavy (or that none exists). It is easy to see
that any extended strip decomposition in the process will have fewer than n inclusion-wise
maximal particles; thus, this gives nO(log n) possible outputs to enumerate. ◀

We think the log n factor in Theorem 2 is an artifact of our technique, and is not necessary.
Therefore, we pose the following conjecture.

▶ Conjecture 18. For every integer t ⩾ 1 there exists a constant ε > 0 and an integer s such
that every St,t,t-free graph G admits a set P ⊆ V (G) of size at most s such that G − N [P]
admits a rigid extended strip decomposition whose every particle has at most (1 − ε)|V (G)|
vertices.

Abrishami, Chudnovsky, Dibek, and Rzążewski [2] very recently announced a polynomial-time
algorithm for MWIS in St,t,t-free graphs of bounded degree. Their argument is quite involved
and revisits the proof of the three-in-a-tree theorem [13].

Confirming Conjecture 18 would imply the same result almost immediately, possibly with
a better running time. Indeed, one needs to branch on N [P] and recurse on the remainder
of every particle of (H, η). The maximum degree of H is bounded by a function of the
maximum degree of G (i.e., is a constant), which ensures that the sum of sizes of all particles
is linear in |V (G)|. This in turns implies that the total complexity of the algorithm can be
bounded by a polynomial function. Note that the same approach using Theorem 2 yields
quasipolynomial running time bound.

We see Theorem 2 as the analog of Theorem 1 in the classes of St,t,t-free graphs: with
its help, obtaining a QPTAS or a subexponential algorithm was relatively simple, following
the ideas of [7, 10, 11]. We expect it is a first step to get a quasipolynomial-time algorithm
for MWIS in St,t,t-free graphs, similarly as Theorem 1 is an essential ingredient of the
algorithms for Pt-free graphs [15, 24]. However, there is a lot of work to be done: the way
how [15, 24] measure the progress of the branching algorithm is quite intricate; furthermore,
for the class of C>t-free graphs (graphs excluding all cycles of length more than t as induced
subgraphs, a proper superclass of Pt-free graphs) while an analog of Theorem 1 is known, the
corresponding measure of the progress of the branching algorithm is much more involved [16].

References
1 Tara Abrishami, Maria Chudnovsky, Cemil Dibek, and Paweł Rzążewski. Polynomial-time

algorithm for maximum independent set in bounded-degree graphs with no long induced claws.
CoRR, abs/2107.05434, 2021. arXiv:2107.05434.

2 Tara Abrishami, Maria Chudnovsky, Cemil Dibek, and Paweł Rzążewski. Polynomial-time
algorithm for maximum independent set in bounded-degree graphs with no long induced
claws. In Niv Buchbinder Joseph (Seffi) Naor, editor, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference, January 9-12, 2022,
pages 1448–1470. SIAM, 2022. doi:10.1137/1.9781611977073.61.

ICALP 2022

http://arxiv.org/abs/2107.05434
https://doi.org/10.1137/1.9781611977073.61

93:18 Max Independent Set in Graphs with No Long Claws

3 Tara Abrishami, Maria Chudnovsky, Cemil Dibek, Stéphan Thomassé, Nicolas Trotignon, and
Kristina Vušković. Graphs with polynomially many minimal separators. J. Comb. Theory,
Ser. B, 152:248–280, 2022. doi:10.1016/j.jctb.2021.10.003.

4 Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, Paweł Rzążewski, and Paul D. Sey-
mour. Induced subgraphs of bounded treewidth and the container method. In Dániel
Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1948–1964. SIAM, 2021.
doi:10.1137/1.9781611976465.116.

5 Vladimir E. Alekseev. The effect of local constraints on the complexity of determination of
the graph independence number. Combinatorial-algebraic methods in applied mathematics,
pages 3–13, 1982.

6 Vladimir E. Alekseev. On easy and hard hereditary classes of graphs with respect to the indepen-
dent set problem. Discret. Appl. Math., 132(1-3):17–26, 2003. doi:10.1016/S0166-218X(03)
00387-1.

7 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-time algorithms for Maximum Independent Set in Pt-free and
broom-free graphs. Algorithmica, 81(2):421–438, 2019. doi:10.1007/s00453-018-0479-5.

8 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

9 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31(1):212–232, 2001. doi:10.1137/S0097539799359683.

10 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. Quasi-
polynomial time approximation schemes for the Maximum Weight Independent Set Problem
in H-free graphs. CoRR, abs/1907.04585, 2019. arXiv:1907.04585.

11 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. Quasi-
polynomial time approximation schemes for the Maximum Weight Independent Set Problem
in H-free graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2260–2278. SIAM, 2020. doi:10.1137/1.9781611975994.139.

12 Maria Chudnovsky and Paul D. Seymour. The structure of claw-free graphs. In Bridget S.
Webb, editor, Surveys in Combinatorics, 2005 [invited lectures from the Twentieth British
Combinatorial Conference, Durham, UK, July 2005], volume 327 of London Mathematical
Society Lecture Note Series, pages 153–171. Cambridge University Press, 2005. doi:10.1017/
cbo9780511734885.008.

13 Maria Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Comb., 30(4):387–417,
2010. doi:10.1007/s00493-010-2334-4.

14 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

15 Peter Gartland and Daniel Lokshtanov. Independent set on Pk-free graphs in quasi-polynomial
time. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 613–624. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00063.

16 Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski.
Finding large induced sparse subgraphs in C>t-free graphs in quasipolynomial time. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 330–341.
ACM, 2021. doi:10.1145/3406325.3451034.

17 Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1257–1271. SIAM, 2019.
doi:10.1137/1.9781611975482.77.

https://doi.org/10.1016/j.jctb.2021.10.003
https://doi.org/10.1137/1.9781611976465.116
https://doi.org/10.1016/S0166-218X(03)00387-1
https://doi.org/10.1016/S0166-218X(03)00387-1
https://doi.org/10.1007/s00453-018-0479-5
https://doi.org/10.1145/174644.174650
https://doi.org/10.1137/S0097539799359683
http://arxiv.org/abs/1907.04585
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1017/cbo9780511734885.008
https://doi.org/10.1017/cbo9780511734885.008
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1137/1.9781611975482.77

K. Majewski et al. 93:19

18 András Gyárfás. On Ramsey covering-numbers. In Infinite and finite sets (Colloq., Keszthely,
1973; dedicated to P. Erdős on his 60th birthday), Vol. II, number 10 in Colloq. Math. Soc.
Janos Bolyai, pages 801–816. North-Holland, Amsterdam, 1975.

19 András Gyárfás. Problems from the world surrounding perfect graphs. In Proceedings of the
International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985),
number 19 in Zastos. Mat., pages 413–441, 1987. doi:10.4064/am-19-3-4-413-441.

20 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–142, 1999.
doi:10.1007/BF02392825.

21 Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. Independent set in P5-free graphs
in polynomial time. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 570–581. SIAM, 2014. doi:10.1137/1.9781611973402.43.

22 Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł
Rzążewski, and Marek Sokołowski. Max weight independent set in graphs with no long claws:
An analog of the gyárfás’ path argument, 2022. doi:10.48550/ARXIV.2203.04836.

23 George J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Series B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

24 Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time algorithm
for independent set in Pt-free graphs via shrinking the space of induced paths. In Hung Viet
Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual
Conference, January 11-12, 2021, pages 204–209. SIAM, 2021. doi:10.1137/1.9781611976496.
23.

25 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe
sans etoile. Discrete Mathematics, 29(1):53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

26 David Zuckerman. Linear degree extractors and the inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.
v003a006.

ICALP 2022

https://doi.org/10.4064/am-19-3-4-413-441
https://doi.org/10.1007/BF02392825
https://doi.org/10.1137/1.9781611973402.43
https://doi.org/10.48550/ARXIV.2203.04836
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1137/1.9781611976496.23
https://doi.org/10.1137/1.9781611976496.23
https://doi.org/10.1016/0012-365X(90)90287-R
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	2 Preliminaries
	3 Main result
	4 Algorithmic applications
	4.1 Proof of Theorem 3
	4.2 Proof of thm:qptas

	5 Conclusion

