A Fully-Constructive Discrete-Logarithm
Preprocessing Algorithm with an Optimal
Time-Space Tradeoff

Lior Rotem &4
School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Gil Segev 9a

School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

—— Abstract

Identifying the concrete hardness of the discrete logarithm problem is crucial for instantiating a vast
range of cryptographic schemes. Towards this goal, Corrigan-Gibbs and Kogan (EUROCRYPT ’18)
extended the generic-group model for capturing “preprocessing” algorithms, offering a tradeoff
between the space S required for storing their preprocessing information, the time 7" required for
their online phase, and their success probability. Corrigan-Gibbs and Kogan proved an upper bound
of O(ST?/N) on the success probability of any such algorithm, where N is the prime order of the
group, matching the known preprocessing algorithms.

However, the known algorithms assume the availability of truly random hash functions, without
taking into account the space required for storing them as part of the preprocessing information,
and the time required for evaluating them in essentially each and every step of the online phase.
This led Corrigan-Gibbs and Kogan to pose the open problem of designing a discrete-logarithm
preprocessing algorithm that is fully constructive in the sense that it relies on explicit hash functions
whose description lengths and evaluation times are taken into account in the algorithm’s space-time
tradeoft.

We present a fully constructive discrete-logarithm preprocessing algorithm with an asymptotically
optimal space-time tradeoff (i.e., with success probability Q(STQ/N)). In addition, we obtain an
algorithm that settles the corresponding tradeoff for the computational Diffie-Hellman problem. Our
approach is based on derandomization techniques that provide rather weak independence guarantees.
On the one hand, we show that such guarantees can be realized in our setting with only a minor
efficiency overhead. On the other hand, exploiting such weak guarantees requires a more subtle
and in-depth analysis of the underlying combinatorial structure compared to that of the known
preprocessing algorithms and their analyses.

2012 ACM Subject Classification Security and privacy — Information-theoretic techniques; Security
and privacy — Mathematical foundations of cryptography; Theory of computation — Computational
complexity and cryptography

Keywords and phrases Discrete logarithm, Preprocessing

Digital Object Identifier 10.4230/LIPIcs.ITC.2022.12

Funding Supported by the European Union’s Horizon 2020 Framework Program (H2020) via an
ERC Grant (Grant No. 714253).

Lior Rotem: Supported by the Adams Fellowship Program of the Israel Academy of Sciences and
Humanities.

1 Introduction

Identifying the concrete hardness of the discrete logarithm problem in prime-order groups is
crucial for instantiating a vast range of cryptographic schemes. Shoup’s seminal work [23]
introduced the generic-group model, capturing all computations that do not exploit any

© Lior Rotem and Gil Segev;
37 licensed under Creative Commons License CC-BY 4.0

3rd Conference on Information-Theoretic Cryptography (ITC 2022).
Editor: Dana Dachman-Soled; Article No. 12; pp. 12:1-12:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lior.rotem@cs.huji.ac.il
https://liorrotem.github.io/
mailto:segev@cs.huji.ac.il
https://www.gilsegev.net/
https://doi.org/10.4230/LIPIcs.ITC.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

specific property of the representation of the underlying group, and provided a tight bound
on the hardness of the discrete logarithm problem in this model. Specifically, Shoup proved
that any generic-group algorithm that runs in time at most 7" (thus, in particular, performs
at most T' group operations), computes the discrete logarithm of a uniformly-distributed
group element with probability O(T?/N), where N is the prime order of the group.

Although generic-group algorithms seem somewhat restricted, the generic hardness of the
discrete logarithm problem may nevertheless be used for setting concrete security parameters
in any group in which non-generic discrete logarithm algorithms do not seem to outperform
the known generic ones (most notably, in popular elliptic-curve groups [16, 13]). However,
as recently observed by Corrigan-Gibbs and Kogan [6], the bound established by Shoup
and Maurer does not apply to “preprocessing” algorithms, as introduced by Hellman in the
context of the function inversion problem [15, 12, 7]. For the discrete logarithm problem,
a preprocessing algorithm may first preprocess the group in an offline phase. Then, in an
online phase, the algorithm receives a group element h € G, and may use the preprocessing
information to compute its discrete logarithm. The efficiency of such algorithms is measured
via the tradeoff between the space S required for storing their preprocessing information, the
time T required for their online phase, and their success probability.

Motivated by elegant preprocessing algorithms for the discrete logarithm problem due
to Lee, Cheon, and Hong [17] and by Bernstein and Lange [4], Corrigan-Gibbs and Kogan
extended the generic-group model to capture preprocessing algorithms, and proved an upper
bound on the success probability of any such algorithm in computing discrete logarithms.
Specifically, for essentially any S and T, they proved that any preprocessing algorithm
computes the discrete logarithm of a uniformly-distributed group element with probability
5(.S'T2 /N). Alternatively, denoting by e the success probability of such algorithms, they
proved the lower bound ST? = §~2(6N) on the required space and time resources.

The tradeoff established by Corrigan-Gibbs and Kogan matches the performance provided
by the algorithms of Lee et al. and of Bernstein and Lange. However, these algorithms
assume the availability of truly random hash functions, without taking into account the space
required for storing them as part of the preprocessing information, and the time required
for evaluating them in essentially each and every step of the online phase.? A standard
approach in the design and analysis of algorithms for eliminating this assumption is to rely
on derandomization techniques based on k-wise independent hash functions, guaranteeing
that their outputs are independently and uniformly distributed when restricted to any set of
most k inputs. Unfortunately, as we discuss in Section 1.3, for the level k of independence
that seems required for the probabilistic analysis of the above two algorithms, explicit
constructions of k-wise independent hash functions inherently result in a significant increase
either in the space required for storing them as part of the preprocessing information or in
the time required for evaluating them in the online phase [24].

This state of affairs has led Corrigan-Gibbs and Kogan to pose the open problem of design-
ing a preprocessing algorithm for computing discrete logarithms that is fully constructive in
the sense that it relies on explicit hash functions whose description lengths and evaluation
times are taken into account in the algorithm’s space-time tradeoff. That is:

L An alternative generic-group model was later introduced by Maurer [18], admitting the same tight
bound on the hardness of the discrete logarithm problem.

2 The lower bound of Corrigan-Gibbs and Kogan allows the offline and online phases to share an arbitrary-
long common random string which is not accounted for in the space required for storing the preprocessing
information. Thus, on the one hand, their lower bound applies even to algorithms that assume the
availability of truly random hash functions. On the other hand, however, when taking the required
storage into account, a comparable yet more direct solution is to just store the discrete logarithms of all
group elements.

L. Rotem and G. Segev

Is there an explicit (i.e., fully constructive) preprocessing algorithm
for computing discrete logarithms that matches the ST? = ©(eN) tradeoff?

This question is in fact relevant not only to the discrete logarithm problem, but also to
various other problems in prime-order groups for which the known preprocessing algorithms
assume the availability of truly random functions without taking into account the space
required for storing them and the time required for evaluating them. These include, in
particular, the computational Diffie-Hellman problem, for which Corrigan-Gibbs and Kogan

proved a similar ST? = Q(eN) lower bound.

1.1 Existing Approaches

The seminal work of Fiat and Naor [12] considered the function-inversion variant of this
problem, given that Hellman’s preprocessing function inversion algorithm [15] assumed the
availability of truly random hash functions in a similar manner. Fiat and Naor presented
an explicit algorithm that relies on concrete hash functions, and were able to match the
tradeoff established by Hellman. The algorithm of Fiat and Naor can be seen as an explicit
preprocessing algorithm for computing discrete logarithms. However, the bound that it
achieves when applied to the discrete logarithm problem is ST = ©(eN?), far from matching
the ST? = é(eN) tradeoff. It is worth stressing that this gap stems from the fact that the
setting considered by Fiat and Naor is much more general: Their algorithm can invert any
function, and thus cannot exploit the algebraic structure of the underlying group in the
discrete logarithm problem. Nevertheless, one could hope that relying on the same ideas of
Fiat and Naor, one could make the algorithms of Lee, Cheon, and Hong [17] and of Bernstein
and Lange [4] explicit. Unfortunately, as we discuss in Section 1.3, the standard amortization
technique that enabled Fiat and Naor to rely on concrete hash functions while still matching
Hellman’s tradeoff does not seem applicable for the known preprocessing algorithms for the
discrete logarithm problem.

The recent work of Maurer, Portman, and Zhu [19] considered the task of replacing the
random function assumed by Lee, Cheon, and Hong [17] and of Bernstein and Lange [4]
by an explicit k-wise independent hash function for a suitable choice of k. However, the
focus of their work is different, as they consider idealized models which only account for the
number of oracle queries that the online algorithm issues. As a result, their analysis does
not take into account the time required for evaluating the k-wise independent hash function,
and they only consider the space required for representing it. As we discuss in Section 1.3,
instantiating their approach in the standard model results in a space-time tradeoff that is far
from optimal.

Finally, it should be noted that preprocessing algorithms that assume the availability
of truly random hash functions can be viewed as algorithms within the random-oracle
model [2].> When instantiating the random oracle with cryptographic hash functions, most
applications rely on the standard assumption that such functions are “sufficiently random”
with respect to a polynomial (or, say, moderately super-polynomial) number of queries.
However, the known preprocessing algorithms issue a nearly exponential number of queries
(e.g., N 1/3 queries), and this holds even when considering only the queries issued in their online
phase. From the theoretical perspective, this requires a substantially stronger assumption
regarding the heuristic security of cryptographic hash functions. Moreover, from the more

3 See also [25, 11, 5], and the references therein, for the related line of work on bounding the usefulness of
auxiliary inputs in the random-oracle model.

12:3

ITC 2022

12:4

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

practical perspective of setting concrete security parameters against preprocessing attacks,
this unnecessarily ties the assumed concrete security of discrete logarithm problem (and of
additional related problems) to that of cryptographic hash functions.

1.2 Qur Contributions

In this work we resolve the above-stated question by presenting an explicit (i.e., fully
constructive) discrete logarithm preprocessing algorithm that is asymptotically optimal in
terms of its space-time tradeoff. In fact, our algorithm does not explicitly settle the space-time
tradeoff only for the discrete logarithm problem, but also yields an explicit algorithm that
settles the corresponding tradeoff for the computational Diffie-Hellman problem (CDH).
Within the unit-cost RAM model, which is the standard model for analyzing the efficiency
of explicit data structures and algorithms (see Section 2), we prove the following theorem:

» Theorem 1 (informal). For any integers S and T such that S —T = Q(S), there exists an
explicit algorithm A = (Ao, A1) such that for any cyclic group (G, N, g) it holds that

~ . 2
Pr 1A (@, Nog).07) =] =1 (35

erN

where the offline algorithm Ay outputs S bits of preprocessing information, and the online
algorithm Ay runs in time T.

Note that our algorithm A consists of a pair (A, A1) of algorithms: The offline algorithm
Ap takes as input the description (G, N, g) of a cyclic group of order N that is generated
by g € G and produces the preprocessing information, and the online algorithm A; takes
as input a uniformly-distributed group element ¢ € G (together with the preprocessing
information) and tries to compute its discrete logarithm = € Zy with respect to the given
generator g. Similarly to the previously-known algorithms [17, 4], our algorithm does not rely
on any specific property of the representation of the underlying group, and can be formally
presented within Shoup’s generic-group model [23].

In addition, note that we require the parameters S and T to satisfy S —T = Q(S) (i.e., we
require that (1—«)S > T for some constant & > 0), and this results from the additional space
overhead we incur for explicitly storing descriptions of hash functions.* This is a somewhat
natural restriction given the nature of preprocessing algorithms (relying on preprocessing
information in order to reduce the online running time), which captures in particular the
choice of S = O(N'/3) and T = ©(N'/?) that balances the space and time resources of the
algorithm, as well as any other choice of S = O(N'72%) and T = O(N”) for 5 > 1/3.

Finally, note that any preprocessing algorithm for the discrete logarithm problem directly
yields a preprocessing algorithm for the computational Diffie-Hellman (CDH) problem with
the same space-time tradeoff. Thus, given that Corrigan-Gibbs and Kogan [6] additionally
proved the lower bound ST? = S~2(6N) for the CDH problem with preprocessing, the following
corollary of Theorem 1 provides an explicit preprocessing algorithm that asymptotically
matches the optimal tradeoff for the CDH problem as well:

» Corollary 2 (informal). For any integers S and T such that S — T = Q(S), there exists an
explicit algorithm A = (Ao, A1) such that for any cyclic group (G, N, g) it holds that

x x S (ST
Pr [A; (40(G,N,9),9",9") = g"] = Q ;
Ty LN N

where the offline algorithm Ay outputs S bits of preprocessing information, and the online
algorithm Ay runs in time T.

4 An interesting technical question is whether the requirement S — T = ©(S) can be avoided while still
matching the ST? = O(eN) tradeoff with an explicit algorithm.

L. Rotem and G. Segev

1.3 Overview of Our Approach
Our starting point: Preprocessing with a truly random function

The starting point for our explicit preprocessing algorithms is the approach which underlies
the preprocessing algorithms of Lee, Cheon, and Hong [17] and Bernstein and Lange [4].
This approach relies on the existence of a truly random hash function f : G — Zy, shared
between the preprocessing algorithm Ay and the online algorithm A;. This function defines
a random walk on the elements of G via the step function h — h - /().

The preprocessing algorithm Ag preforms S such random walks, starting from S uniformly-
random group elements g*,...,g%*s, and taking T steps in each walk. It then stored the
end point h; of each walk, together with its discrete logarithm §; with respect to g. Note
that Ay can indeed compute f3;, since f3; = a; + Zle f9)(g*), where f(.) = f(-) and
fO) = f(fU=D(.) for j > 2. The endpoints hy,...,hg and their respective discrete
logarithms 1, ..., s are passed as the state to the online algorithm Aj.

The online algorithm A; receives as input the above state and a challenge group element
h = ¢, and its goal is to compute x. To this end, it performs a random walk of length at
most 27", starting from the challenge . The hope is that eventually, this walk will “hit”
one of the stored endpoints hi,...,hg. Say that the online walk hits h; after ¢ steps. In

this case, we know that gm+zj:1 AU = h; = ¢”. Since g is a generator of the group, this
implies that z = f3; — Z§:1 fU)(h). Since B; and h are both known to Ay, it can compute
and output x.

The description length of the state passed from Ag to A; is roughly S (assuming that
the function f does not need to be stored as part of the state). The computation executed
by A involves roughly 27" invocations of H, and T exponentiations in the group, resulting
in a running time of roughly 7' (when ignoring the time required for evaluating f).’

We now sketch the analysis for bounding the success probability of these algorithms (see
also [6] and the references therein). First, observe that if the online random walk collides with
at least one of the precomputed paths within the first T" steps, then it will inevitably hit a
precomputed endpoint and A; will successfully output the discrete logarithm of the challenge
element h. Hence, it is sufficient to bound the probability that such a collision occurs.
This bound follows from two simple probabilistic arguments. The first argument shows
that with constant probability, the expected number of distinct group elements “touched”
by the precomputed paths is at least 2(ST). The second argument shows that when the
precomputed paths touch at least Q(ST) group elements, the collision probability that we
wish to bound is at least Q(ST?/N), since each new group element in the online walk hits
any of the elements touched by the precomputed elements with probability (ST /N). Both
of these probabilities are taken also over the choice of the truly random function f, and both
arguments inherently rely on the assumption that f is sampled uniformly at random from
the set of all functions from the group G to Zy.

Accounting for the description length of the hash function

As previously mentioned, the above attack attains the optimal tradeoff between the prepro-
cessed state size, the online running time and the success probability only when we do not
take into count the description length of the truly random hash function f as part of the
state size. When we do account for the description length of the function f, the state size

5 Both the state size and the running time ignore log N factors.

12:5

ITC 2022

12:6

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

blows up to more than N -log N bits. This clearly renders the entire approach useless, since
with this many bits, the preprocessing algorithm can simply pass to the online algorithm the
discrete logarithm of every group element.

A standard way of reducing the representation size of such functions while still enjoying
certain independence guarantees, is by sampling them from a family of k-wise independent
hash functions for a suitable choice of k. Observe that f is applied by Ay and A; to O(ST)
group elements. Hence, instead of using a truly uniform function, one can use a hash function
sampled from a family of O(ST)-wise independent functions while keeping the analysis intact
and without damaging the success probability. Alas, this is still far from satisfactory, since
the space for storing a function from such families and its evaluation time will yield a tradeoff
which is far from optimal. For example, instantiating such functions via randomly-sampled
polynomials of degree O(ST') will result in a state of size S’ = O(ST) and online running time
of T" = O(ST?). In other words, the success probability is only Q(7"/N), smaller by a factor
of roughly S’T" from the lower bound of Corrigan-Gibbs and Kogan. This non-optimality
seems to be inherent when instantiating f using full-fledged k-wise independence: A lower
bound by Siegel [24] shows that any construction reducing the evaluation time of k-wise
independent functions below Q(k) entails a polynomial increase in the space required for
representing each function, thus once again leading to a non-optimal tradeoff.

Relying on O(T')-wise independence via a local analysis

As a first step, we present a more nuanced analysis for the success probability of the above
algorithms, which enables us to reduce the level of independence required for the family of
hash functions from O(ST) to just O(T). Note that indeed, due to its global nature, the
analysis presented above for a truly random hash function breaks down when replacing it
with a function sampled from an O(T')-wise independent family. In particular, we can no
longer argue that the random walks in the preprocessing stage cover Q(ST) distinct group
element with high enough probability. The key observation is that such a global argument
is unnecessary. What we are really interested in is the probability that the online walk
collides with one of the walks from the preprocessing stage. Indeed, this probability can be
sufficiently large even if the fraction of group elements covered by the preprocessed walks is
very small. Intuitively, this is even likely: The more skewed the distribution over endpoints
of T-step random walks is, the greater the probability is for a collision.%

Our refined analysis relies on a local argument that only considers the application of
the hash function f on O(T) group elements at a time. Therefore, it holds even when f
is sampled from a family of O(T')-wise independent functions. First, we prove that the
probability that the online walk collides with any specific precomputed walk within 7" steps is
at least Q(72/N). Then, we prove that the probability that it collides with any two specific
precomputed walks within 7" steps is at most O(T*/N?). Since these arguments only consider
at most 27" and 37T distinct group elements, respectively, we are able to prove them relying on
H being sampled from a 3T-wise independent family. Finally, we use the inclusion-exclusion
principle to bound the probability that the online walk hits a precomputed walk with T
steps by Q(ST?/N).

6 As an extreme example, consider a function f* that maps every group element h € G to an integer
« € Zn such that h - g% = g. If this function is used, the preprocessed walks cover at most S + 1 group
elements, but the online walk collides with all of them with probability 1. Of course, the function f*
essentially computes the discrete logarithm of every group element without the random-walks-based
algorithms. We use it here merely to exemplify the above point.

L. Rotem and G. Segev

The remaining gap: The evaluation time of k-wise independent functions

Sampling the hash function f from a family of O(T')-wise independent functions still does
not suffice to match the lower bound of Corrigan-Gibbs and Kogan. Consider again using
a randomly-sampled polynomial of degree O(T'). In this case, the size of the state passed
from Ag to A; is indeed reduced to S’ = O(S 4 T), simplifying to S’ = O(S) in the natural
case in which S — T = Q(S). However, the running time of A; is much greater than 7. Each
evaluation of a degree O(T) polynomial takes time at least Q(T), and at worst, A; makes
2T such evaluations. This results in a running time of at least 7" = Q(7?). In other words,
the success probability is only Q(S’T’/N), a factor of roughly 7”7 away from the lower bound
of Corrigan-Gibbs and Kogan. The lower bound of Siegel [24] again suggests that other
instantiations of O(T)-wise independent families will also result in far-from-optimal tradeoffs.

The unsuitability of Fiat-Naor’'s derandomization

The work of Fiat and Naor [12] undertakes a similar endeavor to ours, presenting expli-
cit preprocessing algorithms for the function inversion problem. They too start from (a
modification of) previously-known algorithms that assume the existence of truly random
functions shared between the preprocessing and the online algorithms [15] and encounter
a similar problem to the one described above: Trying to instantiate the random functions
naively by choosing them independently from a k-wise independent family (for a suitable
value of k) results in a sub-optimal running time. Their solution to this problem is to choose
these functions in a pairwise independent manner, instead of choosing them completely
independently. Concretely, each function in their construction is a random polynomial of
degree k — 1, but the coefficients of the different polynomials are sampled using pairwise
independent functions. Fiat and Naor show that this change does not hurt the success
probability of the attack too much, while at the same time, it enables a valuable speed-up
in the online running time by evaluating these polynomials concurrently using the Fast
Fourier Transform. Such an approach does not seem to fit our setting, where we are need
to derandomize only a single truly random function. Moreover, attempts to modify the
algorithms of Lee, Cheon, and Hong [17] and Bernstein and Lange [4] to use several different
random functions (to instantiate them in a correlated manner like Fiat and Naor did) seem
to yield sub-optimal tradeoffs.

Our Solution: Reducing running time via weaker independence

To reduce the overhead in the online running time caused by the T hash evaluations, we
prove that the O(T)-wise independent family can be replaced with a function family that
offers weaker independence guarantees. Concretely, we sample our hash function f from
function families put forth by Pagh and Pagh [21] (following Siegel [24]). Functions within
these families can be evaluated in constant time in the standard unit-cost RAM model (as
described in Section 2), effectively eliminating the overhead in running time relative to using
full-fledged O(T)-wise independent families. The process of sampling a function from these
families can be thought of as occurring in two steps: First, a function family F, parameterized
by a parameter k € N, is drawn from a collection of families. Then, a function f is sampled
from F. Simplifying, the independence guarantee is that for any specific set S of k elements
in the domain, F is “fully” independent with respect to & with high probability. This differs
from the standard notion of k-wise independence, which requires a randomly chosen function
to satisfy this property for any set S of size k.

12:7

ITC 2022

12:8

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

We would like to argue that the above analysis, for a function f sampled from an
O(T)-wise independent family, carries over to the case where f is sampled from a family
with this weaker independence guarantee (where the parameter k is set to be O(T)). The
problem, though, is that according to the original analysis of Pagh and Pagh, the family F
is guaranteed to be k-wise independent with high probability only with respect to subsets
which are fixed before F is chosen. It immediately follows that F is k-wise independent
with high probability also with respect to subsets which are sampled from a distribution
which is independent of the choice of F. In our case, however, the analysis of the discrete
log algorithms requires F to be fully independent with respect to random subsets that do
depend on the choice F. Concretely, we want the function f, sampled from F, to behave
like a random function on the union of two or three T-step random walks induced by f.
Fortunately, a lemma proved by Berman, Haitner, Komargodski, and Naor [3] in a different
context implies that F remains essentially fully independent with sufficiently high probability
on such adaptively-chosen subsets as well. Overcoming various additional technical difficulties,
this enables us to rely on explicit hash functions whose description lengths and evaluation
times are taken into account in the algorithm’s asymptotically optimal space-time tradeoff.

2 Preliminaries

In this section we present the basic notions and standard cryptographic primitives that
are used in this work. For an integer n € N we denote by [n] the set {1,...,n}. For a
distribution X we denote by x < X the process of sampling a value = from the distribution
X. Similarly, for a set X we denote by x < X the process of sampling a value = from the
uniform distribution over X.

The computational model

We consider the unit-cost RAM model which has been the subject of much research, and is
the standard model for analyzing the efficiency of explicit data structures and algorithms
in terms of the running time of their operations (see, for example, [20, 14, 8, 21] and the
references therein). In this model, any operation in a rather minimal instruction set can
be executed in constant time on w-bit operands, where w = O(logu), and all elements
are taken from a universe of size u. In our case, u may be any polynomial in the order
N of the underlying group G in which we wish to compute discrete logarithms, and thus
w = O(log N). We consider the standard instruction set for the unit-cost RAM model, which
includes integer addition, subtraction, bit-wise Boolean operations, left and right bit shifts,
and integer multiplication (we emphasize that the integers considered in the analysis of our
algorithms will all be in the range 0,..., N — 1).

Additionally, for an underlying cyclic group G of order p we denote by tmuir and tep the
running times of computing the group operation and the group exponentiation, respectively.
Within the unit-cost RAM model we then state the running time of our algorithms as
functions of {my and texp. Assuming that both operations can be implemented in time
polynomial in log N, this translates into (at most) a multiplicative lower-order factor of

poly(log).

Uniform hashing

A function family # is said to be uniform over a set S of elements in its domain, if a
uniformly-sampled function h < H is indistinguishable from a truly random function when
evaluated on §. This is formally captured via the following definition:

L. Rotem and G. Segev 12:9

» Definition 3. Let X and Y be sets and let S = {x1,...,2x} C X be a subset of size
k. We say that a function family H mapping X to Y is uniform over S if for every tuple
(Y1,---,yk) € V¥ it holds that

1

hE%{ Vie[k] : h(z;)=y] = G

We say that H is k-wise independent if it is uniform over all subsets of X of size at most k.

Functions families which are k-wise independent have repeatedly proven to be useful for
the design and analysis of data structures in general, and for cryptographic preprocessing
attacks in particular [12]. Alas, all known constructions of such families provide functions
which take time at least k to evaluate; this will, unfortunately, prove to be too costly for our
attack. However, Pagh and Pagh [21], following Siegel [24], constructed families of functions
which can be evaluated in constant time, offering weaker guarantees than full-fledged k-wise
independence, but such that still suffice for our needs. Concretely, they consider a randomized
algorithm which generates a random family H of functions, such that for any predetermined
set S of at most k elements in the domain, the family H is uniform over & with high
probability.

» Theorem 4 ([21] — simplified). Let X and) be sets. Then, there exists an algorithm
HashGen that on input any integer k € N and any constant ¢ > 0, outputs a description of a
function family H mapping X to Y such the following hold:
1. For every set S C X of size at most k it holds that

1

[H is uniform over §] > 1 — —

T .
H<—HashGen(k,c) ke

2. Every function in H can be represented using at most 2k -log|Y| + O(k + loglog | X|) bits,
and evaluated on any input in constant time within the unit-cost RAM model.

We note that the construction of Pagh and Pagh was later improved in various ways (see,
for example, [10, 9, 1]), but the parameters it offers already suffice for our needs. In addition,
note that Theorem 4 guarantees only that H sampled by HashGen is uniform with high
probability over sets of elements which are a-priori fixed, and do not depend on H. Looking
ahead, we will want to reason about the output distribution of H on sets of elements that do
depend on ‘H. To this end, we will rely on a lemma by Berman et al. [3] who proved that
‘H sampled by HashGen is uniform with high probability also on sets of elements which are
chosen by an unbounded adversary which queries a random function in H at most k times.

» Lemma 5 ([3] — simplified). Let X and) be sets, let k be an integer, let Fy, be a k-wise
independent family of functions f: X — Y, and let HashGen be the algorithm guaranteed by
Theorem 4 producing families of functions f : X — Y. Then, for any k-query algorithm D
and constant ¢ > 0 it holds that
1
<O(—].
<0(x)

3 Our Discrete-Logarithm Preprocessing Algorithm

fo=1] - oy —
HHH;E;GI};(IC,C) [D () - 1] fszk [D () - 1]

In this section we present our preprocessing algorithm for computing discrete logarithms in
a cyclic group G of order N relative to a generator g € G. For simplicity, throughout the
section we fix the group G, the order N and the generator g, and note that these can in

ITC 2022

12:10

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

fact be provided as inputs to our algorithm. Our algorithm A consists of a pair (Ag, A1)
of algorithms, where Ay and A; are the preprocessing algorithm and the on-line algorithm,
respectively. Additionally, our algorithm is parameterized by integers ¢,s € N and by a
constant ¢ > 0, and uses as a building block the algorithm HashGen described in Section 2
for producing families of hash functions f : G — Zy.

The preprocessing algorithm Ay

Input: A description (G, N,g) of a cyclic group G of order N that is generated by g € G,
integers ¢ and s, and a constant ¢ > 0.

1. Sample H < HashGen(3¢,c) and f < H.

2. Foreachi=1,...,s:
a. Sample z;1 <+ Zy and compute g;,1 = g“!.
b. For each j =2,...,¢ compute x; ; = 25 ;-1 + f(gs,j—1) and g¢;,; = g“*4.
c. Set y; = xz;¢ and ¢; = gi -

3. Output st = (f,{(ghyi)}ie[s])-

The online algorithm A,

Input: A description (G, N,g) of a cyclic group, a group element h € G, and a state st =
(f,{(gi,yi) Yies)) produced by Ao.

1. If h = g; for some i € [s], then output y; and terminate.

2. Set h1 = h and A; =0, and for each i =2,...,2¢:
a. Compute 6; = f(h;—1) and A; = Aj—1 + d;.
b. Compute h; = h;—1 ~g‘si.
c. If hy = g; for some j € [s], then output z = y; — A; and terminate.

3. Output L.

Note that the description of the online algorithm A; includes two non-trivial lookup
operations in Steps 1 and 2c¢ for the elements h and h;, respectively. For avoiding a noticeable
overhead in the running time of A, these lookup operations can be implemented by having
the preprocessing algorithm Ay store the pairs {(g:, ¥i) }ic[s) Within an explicit data structure
that supports efficient lookup operations and uses linear space (i.e., O(s) space). In the
unit-cost RAM model, existing such data structures range, for example, from the most basic
solution of a sorted list that supports lookup operations in time O(log s), to more advanced
solutions such as cuckoo hashing that supports lookup operations in constant time [22].

The following theorem states our bounds on the amount of space required for storing
the state produced by the preprocessing algorithm Ag, on the running time of the online
algorithm A;, and on the success probability of A; in computing the discrete logarithm
dlog, (h) of a uniformly-distributed group element h.

» Theorem 6. Let G be a cyclic group of order N that is generated by g € G. Let s and ¢
be any integers such that s - {2 < N/64, and let ¢ > 0 be any constant. Then,

Pr [A; (G, N, g, h,st) = diog, ()] > - =L _o(L
1) y 9, 1, - gg =8 N (3£)c)

where st < Ag(G,p, g) and h < G. In addition, Ay outputs O((£ + s) -log N) bits, and Ay
runs in time O£ - tep) in the unit-cost RAM model, where tey, denotes the running time of
exponentiation in the group G.

L. Rotem and G. Segev

Assuming that exponentiation in the group G can be implemented in time tep =
poly(log N), the following corollary captures the specific setting of s = £ = O(N'/3):

> C(follary 7. When setting s = £ = O(N'/3), the preprocessing algorithm Ay outputs
S = O(N'/3) bits, and the online algorithm Ay runs in time T = O(N'/3) in the unit-cost
RAM model and succeeds with a constant probability.

We now turn to the proof of Theorem 6.

Proof. First, note that the state st = (f,{(g:,%:)}ic[s)) produced by Ay consists of the
description of a hash function f sampled from the family H produced by HashGen(3¢, ¢), and
of s pairs (g;,y;) where g; € G and y; € Zy for each i € [s]. By Theorem 4 the description
of f is of length at most 2-3¢- O(log N) 4+ O({ + loglog N) bits, and additionally each pair
(9i,y:) can be represented using O(log N) bits. Therefore, Ay outputs O((£ + s) - log N) bits.

Second, note that A;’s running time is dominated by that of Step 2, which is repeated
for at most 2/ iterations. Each such iteration consists of an evaluation of the hash function f
(which by Theorem 4 takes constant time in the unit-cost RAM model), a group multiplication,
a group exponentiation, and an additional constant number of constant-time operations.
Therefore, overall A; runs in time O(£ - tesp).

In the remainder of this proof, we analyze the success probability of our algorithm. For
any function f: G — Zy, define the function f: G — G by f(h) =h.g/),

> Claim 8. Let H be a family of functions f: G — Zy and let Gy = {f}f " Then, for
€
any integer k € N, if H is k-wise independent then Gy, is k-wise independent.

Proof. Assume that H is k-wise independent, and let hy,...,hr € G be distinct group

elements. Then, for every k group elements uq,...,ur € G it holds that
Pr |Vielk] : f(hi)= u} = Pr {w ek ¢ flh) = u}
FeGu f<H

; oo f(R)
fErH [Vze k] : hi-g ul}

f(filgi Vi € [k] : f(hi) = dlog,(u;) — dlog, (hs)]

()

where for a group element u € G, dlog,(u) is the unique Zy element x such that g* = u, and
Eq. (1) follows from the k-wise independence of H. <

For a group element u € G, a function f and an integer k € N, denote

Cup e = (f(j)(U)) :

je{0,....k—1}

where fU)(u) = f(fU=D(u)) and fO(u) = u. That is, Cl, 1,k is the ordered multi-set of
all group elements visited by a (k — 1)-step walk in G, which starts from u and progresses

according to the function f. For & = 0 we use the convention that C, ¢ is the empty set.

We define the following random variables:
Let F' denote the random variable corresponding to the hash function f chosen by Ag in
Step 1 by sampling H < HashGen(3/,¢) and f < H.
For each i € [s] let G; 1 denote the random variable corresponding to the group element
gi1 € G sampled uniformly by A; in Step 2a.
Let H be the random variable corresponding to the uniformly-distributed group element
h € G that is given as input to Aj.

12:11

ITC 2022

12:12

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

Note that using this notation, for each i € [s] it holds that Cg, , ¢ is a random variable
corresponding to the multi-set of group elements computed by Ag in each iteration of Step 2.
Similarly, Cgr r2¢ is a random variable corresponding to the multi-set of group elements
computed by A; in Step 2.

Observe that if Cy pe (which contains the first ¢ elements computed by A;) intersects
Ca; ,,r for some j € [s], then A; successfully outputs X for which g% = H. This is the
case since Cy,pe N Cq, , re # 0 implies that G; € Cp, p2¢, where G; is included in the state

st along with the corresponding exponent Y; such that G; = g¥i. Moreover, if G; is the

J.1s

ith element computed by A;, then the integer A; computed by A; satisfies G; = H - goi.
Therefore, we obtain

which implies that
H=g"i5,

and that the output X =Y; — A; of A; is indeed the discrete logarithm of H with respect
to g. Hence, in the remainder of the proof we will focus on bounding the probability that

Cu,reNCaq,, re# 0 for some j € [s]. By the inclusion-exclusion principle, it holds that

J,1s
Pr \/ CureNCa,re#0
JEls]

> Z Pr [CH,F,e NCq, ., Fe # (D] - Z Pr {

1<j<s 1<i<j<s

CureNCa,re#0

(2
ANCrareNCaq;, re# 0 @)
We now bound each of the sums in Eq. (2) separately, in Claims 9 and 10 below.

> Claim 9. For every j € [s] it holds that

1 0 1
Pr|C NCq, — —=-0(—==.
r[CurpenCa,, e # 0] > e N <(3£)C>
Proof. Let j € [s], and let F* denote a random variable describing a function from G to Zy
distributed uniformly in a 3¢-wise independent family F. We will prove that
A
2\/e N’

and the claim then follows immediately from Lemma 5. By total probability,

Pr [Crpe 0N Ca,y pe 0 # 0] >

Pr [CH,F*,Z NCq;,,Fr o # @} > Pr [CH,F*,Z NCaq;,,ree 70 | |Ch,rx el =N |Caq;,7e 0] = f]
X Pr [|CH,F*,Z| =/IA |CGJ.,1,F*,[‘ = 4] .

Moreover, it holds that

Pr UCH,F*,A =LA |CGj,1,F*75

:f] = 1—Pr UCH,F*,A <£\/|CG,-,1,F*,Z‘ <£j|
Z 1*2'Pr[|OH,F*,Z| <€] (3)
where Eq. (3) follows from the union bound and the fact that the random variables |Cp, g« ¢|

and |Cg, , r- | are identically distributed. We now turn to bound Pr[|Cy p~¢| < {]. By
total probability

PrHCH,F*,Z‘ < Z] = Z Pr [H = h] . Pr[lch’p*’ﬂ < g] . (4)
heG

L. Rotem and G. Segev

Since for every h € G, the events {|Cy p+ i—1] =i — LA |Ch 5+
the event |C, g+ ¢| < ¢, for every h € G it holds that

< i}iepq form a partition of

4
PI‘HC}L’F*’d < f] = ZPI“ [‘O}L7F*7i—1| =1—1A |Ch,F*,i < ’L]
=1
£
< Y Pr{|Chpeia| =i— 1] |Chpe il <)
=1

:g Z Pr

ho,...,hy_1 €G:
V1<k<t<i—1, hp#hy

:ihz ZPr

2, h 1 €G: mei—1]
V1<k<t<i—1, hp#hg

Vk € [i—2]: F*(hi) = hipst
N F*(hi—1) € {h1,... hi_1}

Vk € [i—2]: F*(hg) = hpia
AN F*(hq,ﬂ = hy, ’

where hy = h and F* is the function define by I/;*(u) = u- ¢ W By the fact that Gr
is 3/-wise independent, then it is in particular /-wise independent, and thus the following
holds: For every i € [{], for every hq,...,h;—1 € G and for every m € [i — 1], the fraction of
functions f in G which satisfy f(hy) = byt for all k € [i — 2] and f(hi—1) = Ay is N=CD.
Hence, we obtain that for every h € G,

> (i—1) N~GD

ho,...,hj_1€GC:
V1<k<t<i—1, hp#hy

PI‘HC’}%F*’A < E] <

)
i1
i

B fi-1
; N
=1
62

< =,

- N

Together with Eq. (3) and (4), this implies that

62
Pr(|Cr ool =N [Cqyyreel =€) > 1—22Pr[H:h]~N
heG
202
= 1-=.
~ (5)

For each ¢ € [¢], let E; denote the event in which
(Crreic1NCa,,re0=0)A(Crpe i N Cay,y peu #0) .

That is, E; is the event in which the ith element in Cy p- ¢ is the first element in Cy p= ¢
that also appears in Cg, , r+ ¢. Then, the 3(-wise independence of F implies in particular its
2¢-wise independence, and thus for each i € [¢] it holds that

(E(lfwfv_l))'fv

Pr [Ei ‘ |Ch, el = LA ‘CGJ;LF*’E

=/

IV
7 N
—
|
|
N———
=l

12:13

ITC 2022

12:14 A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

and since 1 —z < e~22 for all € [0,1/2], the fact that £ < N/4 implies that

:f] > 67241‘/1\7.&

Pr [Ei | |CH,F*,Z = N.

=LA |CG_7‘,17F*7E

It thus follows that

Pr[ChpeeNCa,,rp 70| |Crr-ol =N |Cq,, pe 0| = (]
4
=Y PrEi | |Cupil = LA |Cq, 0 mel = 1]
i=1
¢
> <t Z o200/ N
NI
> Lop e (6)
- N
Taken together, Eq. (5) and Eq. (6) imply that
202\ 12 o2
. . 2)L gT20/N
Pr [CH,F 7@(70@_7»,1)17 7@#@] > <1 N> N e ,
and since £ < v/N /2, we obtain
Pr[C aye; #0] > e
mreNCa;, Feu e N
By Lemma 5, this implies that
o (GG e 0] > (2 .
H,F/t Gjyl,Fl 2\/6 N (3€)C .

> Claim 10. For every 1 <1i < j < s it holds that

8¢t 1
Pr[CreNCo,, re # 0N CrpeN Ca,,re # 0] < nz o ((3£)C) '

Proof. Let 4,j such that 1 < i < j < s, and as before let F* denote a random variable
describing a function from G to Zy distributed uniformly in a 3/-wise independent family F.

We will prove that
84
Pr(ChreeNCa,,rt #ONCapyNCq,, pep # 0] < N

and the claim then follows immediately from Lemma 5. Since the event Cy g+ ¢NCaq, , r+ ¢ 7 0

is contained in the event Cg, , ¢ N (CH7F*7@ U CGith*’g) # (9, it holds that

Pr[Cupe N CG, 1 ret # DA Crpe e NCa,y pe 0 # 0]
< Pr[Cup e NCay,pp £ ONCayr N (Crpe e UGG,y pe i) # 0]
<Pr[ChpeeNCo,, e # 0] (7)
CH.r* 0
-Pr [ch,l,F*x n (e) #0|Crpe N Ca, e # 0 (8)
UCGi,Yl,F*,f

For upper bounding Eq. 7, note that |Cy g+ ¢| < £ and |CG1.11’F*)Z </, and therefore the
3¢-wise independence of F (which implies, in particular, 2¢-wise independence) guarantees
that

/ 4
Pr [CH,F*,Z N CG'L',LF*’Z ?é (Z)] S <1 B (1 a N) > '

L. Rotem and G. Segev

Similarly, for upper bounding Eq. 8, note that [Cg, , r+¢| < £ and |Cy p- ¢ UCq, , r= | < 20,
and therefore the 3/-wise independence of F guarantees that

20\
Pr[Cq,, reN (Crp-eUCq,, r-0) #0|Crp e NCa,, pep # 0] < (1 - <1 - N) > :
Since 1 — (1 — z)¥ < 2zy for all z,y € N such that z < 1/2, and since ¢ < p/4, these
imply that
202 402 8¢t
Pr [CH,F*,Z N CGi,l,F*,Z 7é 0 A CH,F*,Z N CGj’l,F*,Z 7é (Z)] < W . W = ﬁ’
and from Lemma 5 we obtain that
84 1
Pr [C’H7F7g n CGi,l,F,IZ #+ 0 A CH,F,@ N CG,‘J,F,K #+ @] < Nz + O W . <

From Claims 9 and 10 and from Eq. (2), we obtain that

1 2 8¢ 1
Pr[Al((G,N,g,h,st):dlogg(h)] > Z —_— = — Z 2—0(p>
1<j<s 2ye N 1<i<j<s N (36)
1 02 2.1 1
> 2 —g.2 -0
2/e N N2 (30)c
1 s- 42 5204
S A o _O((3£)c>
Since s - £2 < N/64, this implies that
3 5204 < 1 s-42
N2 —8 N
and hence
1 s-02 1
Pr|A N,g,h,st) =dI h - — = — .
I'[1(G7 » 9, 75) Ogg()] > 8 N O<<3€)C)
This concludes the proof of Theorem 6. |
—— References

1 Martin Aumiiller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash
families suffice for cuckoo hashing with a stash. Algorithmica, 70(3):428-456, 2014.

2 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62-73, 1993.

3 Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness-preserving reductions
via cuckoo hashing. Journal of Cryptology, 32(2):361-392, 2019.

4 Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power of free
precomputation. In Advances in Cryptology — ASIACRYPT ’13, pages 321-340, 2013.

5 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In Advances in Cryptology — CRYPTO
’18, Lecture Notes in Computer Science, pages 693—721, 2018.

6 Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing.
In Advances in Cryptology — EUROCRYPT ’18, pages 415-447, 2018.

12:15

ITC 2022

12:16

A Fully-Constructive Discrete-Logarithm Preprocessing Algorithm

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and PRGs. In Advances in Cryptology — CRYPTO ’10, pages 649—665,
2010.

Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate
membership. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, pages 385—-396, 2008.

Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick. ICALP 2009:
Automata, Languages and Programming, pages 354-365, 2009.

Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash functions.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 629-638,
2003.

Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In Advances in Cryptology — EUROCRYPT ’17, volume
10211, pages 473-495, 2017.

Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM
Journal on. Computing, 29(3):709-803, 1999.

David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. Journal of Cryptology, 23(2):224-280, 2010.

Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. Journal
of Algorithms, 41(1):69-85, 2001.

Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transaction on Information
Theory, 26(4):401-406, 1980.

Neal Koblitz, Alfred Menezes, and Scott A. Vanstone. The state of elliptic curve cryptography.
Designs, Codes and Cryptography, 19(2/3):173-193, 2000.

Hyung Tae Lee, Jung Hee Cheon, and Jin Hong. Accelerating ID-based encryption based on
trapdoor DL using pre-computation. Cryptology ePrint Archive, Report 2011/187, 2011.
Ueli Maurer. Abstract models of computation in cryptography. In Proceedings of the 10th
IMA International Conference on Cryptography and Coding, pages 1-12, 2005.

Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic group models. Crypto-
logy ePrint Archive, Report 2020/996, 2020.

Peter Bro Miltersen. Cell probe complexity — a survey. In Proceedings of the 19th Conference
on the Foundations of Software Technology and Theoretical Computer Science, Advances in
Data Structures Workshop, 1999.

Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM
Journal on Computing, 38(1):85-96, 2008.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122—
144, 2004.

Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology — EUROCRYPT ’97, pages 256—266, 1997.

Alan Siegel. On universal classes of extremely random constant-time hash functions. STAM
Journal on Computing, 33(3):505-543, 2004.

Dominique Unruh. Random oracles and auxiliary input. In Advances in Cryptology — CRYPTO
07, pages 205223, 2007.

	1 Introduction
	1.1 Existing Approaches
	1.2 Our Contributions
	1.3 Overview of Our Approach

	2 Preliminaries
	3 Our Discrete-Logarithm Preprocessing Algorithm

