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Abstract
Stochastic Boolean Satisfiability (SSAT) generalizes quantified Boolean formulas (QBFs) by allowing
quantification over random variables. Its generality makes SSAT powerful to model decision or
optimization problems under uncertainty. On the other hand, the generalization complicates the
computation in its counting nature. In this work, we address the following two questions: 1) Is there
an analogy of quantifier elimination in SSAT, similar to QBF? 2) If quantifier elimination is possible
for SSAT, can it be effective for SSAT solving? We answer them affirmatively, and develop an SSAT
decision procedure based on quantifier elimination. Experimental results demonstrate the unique
benefits of the new method compared to the state-of-the-art solvers.
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1 Introduction

Stochastic Boolean satisfiability (SSAT) [27] generalizes the satisfiability of the well-known
quantified Boolean formula (QBF). In addition to the standard exist-quantifiers, a variable
in SSAT can be specified as a random variable with a probability for it to be valuated to
True through the random-quantifier. The SSAT formulas provide a convenient language to
encode decision or optimization problems under uncertainty. Various applications have been
studied, e.g., probabilistic planning [25], trust management [9], belief network inference [25],
probabilistic design verification [20], fairness evaluation of machine learning models [10],
solving partially observable Markov decision processes (POMDPs) [31], etc. Although the
decision version of SSAT is PSPACE-complete, the same computational complexity as QBF,
it is considered more challenging than pure propositional reasoning due to its intrinsic
characteristics of counting.

Despite their broad applications, SSAT solvers are much underdeveloped compared to
QBF solvers. Among the existing SSAT solvers, there are special-form solvers, such as
reSSAT [22] for solving random-exist quantified SSAT formulas, ComPlan [13], maxcount [8]
and erSSAT [23] for solving the exist-random quantified SSAT formulas, a.k.a., the E-
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MAJSAT problem [24]. There are also general-form solvers, which impose no restriction
on the quantification levels, such as DC-SSAT [26] and ClauSSAT [6]. In this work, we are
primarily concerned with solving general SSAT formulas.

The existing SSAT solvers exploit various techniques from SAT, QBF and knowledge
compilation domains. E.g., DPLL SAT search is adopted in [26], QBF clause selection [14] is
applied in [6], knowledge compilation is used [13]. To the best of our knowledge, quantifier
elimination in SSAT has not been studied previously. Quantifier elimination is a common
technique in QBF rewriting and preprocessing. Essentially, the quantifiers of a QBF can
be eliminated via formula expansion or formula composition [15]. AIGSolve [29] is a QBF
solver relying on quantifier elimination. However, extending quantifier elimination to SSAT
is not as trivial because of the random-quantifiers. In this work, we present a framework
to perform quantifier elimination in SSAT. Through the proposed quantifier elimination,
an SSAT formula with an arbitrary number of quantification levels can be rewritten into
a quantifier-free formula such that the satisfying probability of the SSAT formula can be
derived by a linear-time model counting on the quantifier-free formula. We further develop an
SSAT solver, named ElimSSAT, based on quantifier elimination. Experiments on a variety of
benchmarks demonstrate the strength of ElimSSAT compared to the state-of-the-art solvers.

The rest of the paper is organized as follows. Section 2 first provides the essential
preliminaries. After the motivation and intuition are explained in Section 3, the quantifier
elimination in SSAT is formulated in Section 4. The overall algorithm of quantifier elimination
for SSAT solving is presented in Section 5. Section 6 discusses implementation issues and
enhancements. The experimental evaluation is performed in Section 7, and conclusions are
drawn in Section 8.

2 Preliminaries

As notational convention, the Boolean domain B = {⊤,⊥}, or {1, 0}, where ⊤, or 1, and ⊥,
or 0, denote Boolean values True and False, respectively. Boolean connectives are denoted
with “∧” (sometimes omitted) for conjunction, “∨” for disjunction, “→” for implication,
“↔” for biconditional, and “¬” for negation. A literal is a variable or the negation of a
variable. A clause is a disjunction of literals; a cube is a conjunction of literals. A conjunctive
normal form (CNF) formula is a conjunction of clauses. As a Boolean formula uniquely
determines a Boolean function, in this work we refer to Boolean formulas and Boolean
functions interchangeably.

An assignment α over a set of variables X is a mapping from X to B and alternatively
represented as a cube, e.g., the assignment x1 = 1, x2 = 0 is alternatively represented as
x1¬x2. The set of all assignments over X is denoted as [[X]]. An assignment is full if every
x ∈ X is mapped to some Boolean value; otherwise, it is partial. The value of variable x ∈ X
in an assignment α is denoted by α(x). Given a formula φ and a full assignment α over
variables X, let φ[α] denote the valuation of φ by substituting every occurrence of variables
x ∈ X in φ with α(x). For a full assignment α, if φ[α] = ⊤, then α is a satisfying assignment
of φ. A satisfying assignment of a given Boolean formula is often referred to as a model. A
Boolean formula is satisfiable if it has a model; otherwise, it is unsatisfiable. Given a formula
φ and a (full or partial) assignment α, substituting every x ∈ X with α(x) in φ yields a new
formula, denoted as φ|α, which is referred to as the cofactor of φ with respect to α.
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2.1 Model Counting
Given a Boolean formula (often in CNF) φ over variable X, the model counting problem
asks to count the number, denoted #φ, of solutions of φ.

▶ Definition 1. Two Boolean formulas/functions are called counting equivalent if they
possess the same number of satisfying assignments.

Two extended variants of model counting, namely, weighted model counting and projected
model counting, are closely related to SSAT. The former allows different solutions being
counted differently by imposing different weights on different variables. The latter permits
counting the number of different solutions with respect to a specified subset of variables.

2.2 Stochastic Boolean Satisfiability
A stochastic Boolean satisfiability (SSAT) formula can be expressed in the prenex form as

Φ = Q1X1, . . . , QnXn.φ, (1)

where quantifier Qi ∈ {∃,

R

}, Qi ̸= Qi+1, variable set Xi ̸= ∅, and φ is a quantifier-free
Boolean formula. The quantifier part is referred to as the prefix and the Boolean formula is
referred to as the matrix, which is commonly expressed in CNF. In addition to the well-known
existential quantifier ∃, the random quantifier

Rpi on variable xi indicates xi = ⊤ (resp. ⊥)
with the probability pi ∈ [0, 1] (resp. 1− pi). For variable x ∈ Xi, the quantification level of
x equals i. The formula Φ of Eq. (1) is said to have n quantification levels.

For the semantics of an SSAT formula Φ, it is interpreted with the satisfying probability
computed by the following rules. Let x be the outermost quantified variable in Φ.
1. Pr[⊤] = 1,
2. Pr[⊥] = 0,
3. Pr[Φ] = max{Pr[Φ|¬x],Pr[Φ|x]}, for x being existentially quantified, and
4. Pr[Φ] = (1− p) Pr[Φ|¬x] + pPr[Φ|x], for x being randomly quantified with probability p.
Note that the cofactor Φ|x on an SSAT formula Φ with prefix π and matrix φ corresponds to
a new SSAT formula Φ′ with prefix π′ same as π expect for the quantifier of x being removed
and matrix φ′ = φ|x.

We remark that an SSAT formula Φ in which the probabilities of random quantifiers
represented in binary fractions can be converted in linear time to a new SSAT formula Φ′

such that Pr[Φ′] = Pr[Φ] and all random quantifiers are specified with probability 0.5. This
conversion can be done similar to converting a weighted model counting problem into an
unweighted model counting problem as was done in [20]. E.g.,

∃x1,

R0.75x2,∃x3,

R0.25x4.φ

= ∃x1,

R0.5y2, z2,∃x2, x3,

R0.5y4, z4,∃x4.φ ∧ (¬x2 ↔ (y2 ∧ z2)) ∧ (x4 ↔ (y4 ∧ z4))

Although an SSAT formula with irrational probability values cannot be precisely converted
into one with a probability value of 0.5 only, the conversion can be approximated within a
given precision. In the sequel, unless otherwise stated we assume that the probabilities of
random quantifiers have been converted to 0.5 and omit specifying the probability.

SSAT is closely related to model counting. Specifically, for an SSAT formula

R

X.φ of
only one level of random quantifiers with arbitrary probability values, it corresponds to the
weighted model counting problem. Furthermore, if the probabilities are normalized to 0.5, it
is equivalent to (unweighted) model counting. Also, for an SSAT formula

R

X1,∃X2.φ of two
levels of random-exist quantifiers, it corresponds to the projected (weighted) model counting
problem.

SAT 2022
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3 Motivation and Intuition

By Rule 4 of the SSAT semantics, when p = 0.5, the probability Pr[Φ] = 0.5(Pr[Φ|¬x] +
Pr[Φ|x]). For Φ =

R

X.φ with X = {x1, . . . , xn}, the probability Pr[Φ] is simply (0.5)n ·#φ,
that is, a model counting problem.

To eliminate random quantifiers of an SSAT formula, one important task is to represent
the counting results after quantifier elimination. One approach may be to use binary numbers
of n+ 1 bits to represent the 2n + 1 possible counting results, i.e., 0, 1, . . . , 2n, for a formula
with n variables. However, as an SSAT formula involves not only random quantifiers but
also exist quantifiers, the binary number representation may not be ideal to perform the
subsequent elimination of exist quantifiers. Rather than representing the model count with a
binary number, we devise a mechanism of bookkeeping the counting results using a n-variable
Boolean function with the settlement property defined as follows.

▶ Definition 2. A Boolean function f over variables X = {x1, . . . , xn} is called settled
with respect to the variable order (x1, . . . , xn), for x1 (resp. xn) being the most (resp. least)
significant bit, if the implication f |α → f |β holds for any assignments α and β on X with
their respective binary coded numbers Nα and Nβ satisfying Nα > Nβ.

∃x1

R

x2

R

x2

R

x3

R

x3

R

x3

R

x3

10 1101 01

(a)

∃x1

x∗
2 x∗

2

x∗
3 x∗

3x∗
3 x∗

3

11 0111 00

(b)

x∗
2

x∗
3 x∗

3

1 01 1

(c)

Figure 1 Decision trees under the process of quantifier elimination.

To illustrate, consider the SSAT formula

Φ = ∃x1,

R

x2, x3.φ, , (2)

for φ = (x1∨¬x3)∧ (¬x1∨x2∨x3). The decision tree of Φ is shown in Figure 1(a), where the
dashed and solid edges correspond to Else and Then branches, respectively, of a decision
node.

First, by eliminating the innermost random quantifiers, the two cofactors φ|¬x1 and φ|x1

are settled with respect to the variable order (x2, x3) while their model counts are preserved.
The corresponding decision tree is shown in Figure 1(b). In the sequel, we reuse the names
of the random quantified variables and annotate them with superscript “*” for the variables
of the settled functions. The resulting SSAT formula becomes

Φ′ = ∃x1.φ
′, (3)

for φ′ = (x1 ∨ ¬x∗
2) ∧ (¬x1 ∨ ¬x∗

2 ∨ ¬x∗
3), where x∗

2 and x∗
3 are free variables.

Second, we eliminate the remaining exist quantifier of variable x1 from Φ′ of Eq. (3).
Note that the max operation, i.e., max{Pr[Φ′|¬x],Pr[Φ′|x]}, of Rule 3 of the SSAT semantics
reduces to the standard disjunction operation, i.e., φ′|¬x ∨ φ′|x, when the inner random
quantifiers has been eliminated and represented with settled functions. It yields the final
quantifier-free formula

φ′′ = ¬x∗
2 ∨ ¬x∗

3, (4)

of a settled function, whose decision tree is shown in Figure 1(c).
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Lastly, the model count of φ′′ in Eq. (4) can be determined by a binary search strategy
to find the number Nα of assignment α such that φ′′|α = ⊤ and φ′′|β = ⊥ for Nβ = Nα + 1.
That is, α = x∗

2¬x∗
3 which represents number 3. Therefore, Pr[Φ] = (0.5)2 · 3.

4 Quantifier Elimination of SSAT Formula

We elaborate the elimination of random- and exist-quantifiers for SSAT solving.

4.1 Elimination of Random-Quantifier
In the above exposition, one of the most critical issues to be addressed is how to settle a
function while maintaining its model count. We eliminate random-quantifiers via function
settlement with in-place sorting as follows.

▶ Problem Statement 1. Given a Boolean function f(X,Y ) over variable sets X and Y ,
we are concerned with settling f to f ′ with respect to Y under a fixed order such that f |α
and f ′|α are counting equivalent for any assignment α on variables X.

To achieve the stated function settlement, we rely on an implicit approach to sorting the
satisfying solutions inside function f . Let Sort(f, Y ) be the procedure that sorts in an
ascending order of the function values of f |α∧β for any assignment α on X variables with
respect to the binary numbers Nβ coded by the assignment β of Y variables.

▶ Proposition 3. Given a function f(X,Y ) and an order of Y variables, Sort(f, Y ) yields a
new function f ′ such that f ′|α is settled and counting equivalent to f |α for any assignment α
on the X variables.

We note that Sort(f, Y ) can done by iteratively sorting f with respect to the Y variables
one at a time in the order of ym, ym−1, . . . , y1. For example, the Boolean function f of
formula

(x ∨ y ∨ z)(x ∨ ¬y ∨ ¬z)(¬x ∨ y ∨ z)(¬x ∨ y ∨ z)(¬x ∨ y ∨ ¬z)

can be settled with respect to the ordered variables (x, y, z) through three iterations of
sorting from z, to y, and then x. The corresponding truth tables in sorting f are shown in
Table 1. In Columns 3-5, each block is sorted independently, and the satisfying assignments
are moved to the top of each block.

Table 1 Function settlement through sorting.

x y z f Sort(f, {z}) Sort(f, {y, z}) Sort(f, {x, y, z})
0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 0 0 0 1
1 0 0 0 0 1 0
1 0 1 0 0 1 0
1 1 0 1 1 0 0
1 1 1 1 1 0 0

As eliminating random-quantifiers of an SSAT formula correspond to model counting,
function settlement provides an effective representation of the counting results.

SAT 2022
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4.1.1 Function Settlement with Implicit Sorting
To compute Sort(f, Y ) for a given function f(X,Y ), we resort to an implicit approach based
on the data-oblivious sorting algorithm Bitonic Sort [2], a well-known sorting network. Before
introducing the implicit construction, we first present the explicit counterpart for illustration.
In our context, the bitonic sorting network is composed of 1-bit Boolean sorters, whose
operations are depicted in Figure 2, where a sorter or comparator (represented by a vertical
wire that connects two horizontal wires) has two inputs y1, y2 (the left two terminals) and two
outputs z1, z2 with z1 = y1 ∨ y2 (the upper-right terminal) and z2 = y1 ∧ y2 (the lower-right
terminal). To sort the function values of an n-variable Boolean function, a 2n-input and
2n-output bitonic sorter is required. We adopt the normalized bitonic sorting network [28]
for our implementation. Figure 3 shows a normalized bitonic sorter for sorting the function
values of a 3-input Boolean function f(x, y, z). After the sorting, the True function values
are pushed upward above the False function values while the number of True values at
the outputs remains the same as that at the inputs. It, therefore, does achieve the desired
properties of function settlement and counting equivalence.

0
0

0
0

(a)
1
0

0
1

(b)
0
1

0
1

(c)
1
1

1
1

(d)

Figure 2 Operations of the 1-bit Boolean sorter.

f(1, 1, 1)
f(1, 1, 0)
f(1, 0, 1)
f(1, 0, 0)
f(0, 1, 1)
f(0, 1, 0)
f(0, 0, 1)
f(0, 0, 0)

f ′(1, 1, 1)
f ′(1, 1, 0)
f ′(1, 0, 1)
f ′(1, 0, 0)
f ′(0, 1, 1)
f ′(0, 1, 0)
f ′(0, 0, 1)
f ′(0, 0, 0)

Figure 3 Bitonic sorter for sorting the function values of a 3-input Boolean function.

The above exposition provides an explicit way of sorting the function values of a given
function for the purpose of function settlement. However, it is impractical to enumerate
the 2n function values of an n-variable Boolean function and sorting them explicitly. To
avoid the exponential blow-up, we rely on implicit sorting instead. In general, an implicit
bitonic sorter for sorting f with respect to the ordered variable set (x1, . . . , xn) can be
constructed by Algorithm 1 with λ = n for the third input argument. By observing the
repetitive structure of the normalized bitonic sorting network, we can construct a bitonic
sorter using the building blocks marked in orange (resp. red) as shown in Figure 3. We refer
to their corresponding operations as the OrangeBlockTransform (resp. RedBlockTransform) in
Algorithm 1. Figures 4 and 5 provide the implicit constructions of OrangeBlockTransform and
RedBlockTransform, respectively. In Figure 4, the orange-block transformation on variable y
(resp. x) is shown on the left (resp. right). In Figure 5, the orange-block transformation on
variable z (resp. y) is shown on the left (resp. right). The four formulas listed below these
four sorters implicitly summarize the corresponding transformations. These formulas in their
general form for function f(x1, . . . , xn) can be expressed as follows.
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Algorithm 1 BSort(f, (x1, . . . , xn), λ).

1 for i← λ to 1 do
2 f := OrangeBlockTransform(f, xi);
3 for j ← i + 1 to n do
4 f := RedBlockTransform(f, xj);
5 end
6 end
7 return f ;

f(1, 1, 1)

f(1, 1, 0)

f(1, 0, 1)

f(1, 0, 0)

f(0, 1, 1)

f(0, 1, 0)

f(0, 0, 1)

f(0, 0, 0)

f(1, 1, 1) ∧ f(1, 0, 0)

f(1, 1, 0) ∧ f(1, 0, 1)

f(1, 0, 1) ∨ f(1, 1, 0)

f(1, 0, 0) ∨ f(1, 1, 1)

f(0, 1, 1) ∧ f(0, 0, 0)

f(0, 1, 0) ∧ f(0, 0, 1)

f(0, 0, 1) ∨ f(0, 1, 0)

f(0, 0, 0) ∨ f(0, 1, 1)

f ′(x, y, z) = (¬y ∧ (f(x, 0, z) ∨ f(x, 1, ¬z)))
∨(y ∧ (f(x, 0, ¬z) ∧ f(x, 1, z)))

f(1, 1, 1)

f(1, 1, 0)

f(1, 0, 1)

f(1, 0, 0)

f(0, 1, 1)

f(0, 1, 0)

f(0, 0, 1)

f(0, 0, 0)

f(1, 1, 1) ∧ f(0, 0, 0)

f(1, 1, 0) ∧ f(0, 0, 1)

f(1, 0, 1) ∧ f(0, 1, 0)

f(1, 0, 0) ∧ f(0, 1, 1)

f(0, 1, 1) ∨ f(1, 0, 0)

f(0, 1, 0) ∨ f(1, 0, 1)

f(0, 0, 1) ∨ f(1, 1, 0)

f(0, 0, 0) ∨ f(1, 1, 1)

f ′(x, y, z) = (¬x ∧ (f(0, y, z) ∨ f(1, ¬y, ¬z)))
∨(x ∧ (f(0, ¬y, ¬z) ∧ f(1, y, z)))

Figure 4 Orange-block transformation on variable y (left) and x (right) of function f(x, y, z).

OrangeBlockTransform(f, xi) yields f ′(x1, . . . , xn) equal to

(¬xi ∧ (f(x1, . . . , xi−1, xi = 0, xi+1, . . . , xn) ∨ f(x1, . . . , xi−1, xi = 1,¬xi+1, . . . ,¬xn)))∨
(xi ∧ (f(x1, . . . , xi−1, xi = 0,¬xi+1, . . . ,¬xn) ∧ f(x1, . . . , xi−1, xi = 1, xi+1, . . . , xn)))

(5)

RedBlockTransform(f, xi) yields f ′(x1, . . . , xn) equal to

(¬xi ∧ (f(x1, . . . , xi−1, xi = 0, xi+1, . . . , xn) ∨ f(x1, . . . , xi−1, xi = 1, xi+1, . . . , xn))) ∨
(xi ∧ (f(x1, . . . , xi−1, xi = 0, xi+1, . . . , xn) ∧ f(x1, . . . , xi−1, xi = 1, xi+1, . . . , xn))) (6)

▶ Proposition 4. Eq. (5) and Eq. (6) correctly implement OrangeBlockTransform and
RedBlockTransform, respectively.

Notice that in quantifier elimination for SSAT formulas with multiple quantification
levels, we have to resort the variables for inner quantification levels. For example, eliminating
the quantifiers of formula

R

X,∃Y,

R

Z.f(X,Y, Z) corresponds to Sort(∃Y.Sort(f, Z), (X,Z∗)).
That is, first eliminate Z by Sort(f, Z) yielding a quantifier-free formula f ′(X,Y, Z∗). Then
eliminate Y for ∃Y.f ′(X,Y, Z∗) yielding a quantifier-free formula f ′′(X,Z∗). Finally, elimi-
nate X for

R

X.f ′′(X,Z∗) by Sort(f ′′, (X,Z∗)). Observe that f ′′ is already partially sorted
on variables Z∗. To skip redundant sorting, the argument λ in Algorithm 1 is herein used to
explicitly specify the starting point for the loop in line 1.

For implicit sorting for function f over n variables, Algorithm 1 requires O(n2) trans-
formations. Because each transformation has four appearances of f , in the worse case the
formula or circuit of f may grow four times after each transformation. Therefore, the formula
may grow in O(4n2). However, in practice the four copies of f share a significant amount of
structural similarity and often can be simplified substantially.

SAT 2022
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f(1, 1, 1)

f(1, 1, 0)

f(1, 0, 1)

f(1, 0, 0)

f(0, 1, 1)

f(0, 1, 0)

f(0, 0, 1)

f(0, 0, 0)

f(1, 1, 1) ∧ f(1, 1, 0)

f(1, 1, 0) ∨ f(1, 1, 1)

f(1, 0, 1) ∧ f(1, 0, 0)

f(1, 0, 0) ∨ f(1, 0, 1)

f(0, 1, 1) ∧ f(0, 1, 0)

f(0, 1, 0) ∨ f(0, 1, 1)

f(0, 0, 1) ∧ f(0, 0, 0)

f(0, 0, 0) ∨ f(0, 0, 1)

f ′(x, y, z) = (¬z ∧ (f(x, y, 0) ∨ f(x, y, 1)))
∨(z ∧ (f(x, y, 0) ∧ f(x, y, 1)))

f(1, 1, 1)

f(1, 1, 0)

f(1, 0, 1)

f(1, 0, 0)

f(0, 1, 1)

f(0, 1, 0)

f(0, 0, 1)

f(0, 0, 0)

f(1, 1, 1) ∧ f(1, 0, 1)

f(1, 1, 0) ∧ f(1, 0, 0)

f(1, 0, 1) ∨ f(1, 1, 1)

f(1, 0, 0) ∨ f(1, 1, 0)

f(0, 1, 1) ∧ f(0, 0, 1)

f(0, 1, 0) ∧ f(0, 0, 0)

f(0, 0, 1) ∨ f(0, 1, 1)

f(0, 0, 0) ∨ f(0, 1, 1)

f ′(x, y, z) = (¬y ∧ (f(x, 0, z) ∨ f(x, 1, z)))
∨(y ∧ f((x, 0, z) ∧ f(x, 1, z)))

Figure 5 Red-block transformation on variable z (left) and y (right) of function f(x, y, z).

4.2 Elimination of Exist-Quantifier
Function settlement paves a convenient way to existential quantification as the following
proposition asserts.

▶ Proposition 5. Given a function f(X,Y ), let f ′(X,Y ∗) = Sort(f, Y ). Then
∃X.f ′(X,Y ∗) =

∨
α∈[[X]] f

′|α.

That is, the max operation of exist-quantification in SSAT can be reduced to the simple
disjunction operation.

For quantifying n exist-variables, in the worse case the formula or circuit of f may grow
exponentially in O(2n). However, in practice the 2n copies of f may share a significant
amount of structural similarity and often can be simplified substantially.

5 Algorithm

With the aforementioned quantifier elimination techniques, we can combine them for SSAT
solving based on the following proposition.

▶ Proposition 6. Given the SSAT formula Φ = ∃X1,

R

Y1, . . . ,∃Xk,

R

Yk.φ for non-empty
Xi’s and Yi’s with the exception of X1 and Yk possibly empty, the probability

Pr[Φ] = Pr[∃X1,

R

Y1, . . . ,

R

Yk−1,∃Xk.φ
(k)],

= Pr[∃X1,

R

Y1, . . . ,∃Xk−1,

R

Yk−1.ψ
(k)],

...
= Pr[∃X1.φ

(1)],
= Pr[ψ(1)],

= #ψ(1)

2|Y |

where φ(i) = Sort(ψ(i+1), (Yi, Y
∗

i+1 . . . , Y
∗

k )), ψ(i) =
∨

α∈[[Xi]] φ
(i)|α, ψ(k+1) = φ, and Y =⋃

i Yi.

The proposition naturally translates into the procedure of Algorithm 2. For the input SSAT
formula Φ, recall our assumption that all the probabilities of the random quantifiers in Φ
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have been converted to 0.5. Also, we assume the variable sets Xi’s are ordered. The n
levels of quantifiers are iteratively eliminated from the innermost level to the outermost
one. Depending on the quantifier type, the corresponding quantifier elimination technique
presented in Section 4 is applied. In line 6, λ of Algorithm 1 is set to |Xi| to avoid resorting
the partially sorted variables Y as discussed in Section 4.1.1. In line 7, Y is updated by
appending Y to X∗

i . After all quantifiers being eliminated, the final quantifier-free formula
that corresponds to a settled function can be model counted to derive the satisfying probability
of Φ. We further elaborate how model counting can be done on settled functions.

Algorithm 2 Quantifier Elimination Based SSAT Solving.

input : SSAT formula Φ = Q1X1, . . . , QnXn.ϕ

output : Satisfying probability of Φ
1 Y := ∅;
2 for i← n to 1 do
3 if Qi = ∃ then
4 φ := ExistElim(φ,Xi);
5 else
6 φ := BSort(φ, (Xi, Y ), |Xi|);
7 Y := Append(X∗

i , Y );
8 end
9 end

10 Pr := ModelCount(φ)
2|Y | ;

11 return Pr;

5.1 Model Counting for Settled Function
Given a settled function f over ordered variables (y1, . . . , yn), the model counting problem
corresponding to finding the satisfying assignment α largest in terms of the corresponding
binary coded number Nα. Finding the minimum or maximum satisfying assignment in a
general setting is also known as the lexicographic Boolean satisfiability (LEXSAT) problem [18].
For a settled function, LEXSAT can be done efficiently as shown in Algorithm 3. It first tests
whether f is unsatisfiable by checking f |α = ⊥ for Nα = 0 in lines 1-4. It then iteratively
flips variable yi for i from 1 to n to locate the largest Nα making f |α = ⊤ in lines 5-10. The
final count Nα + 1 is returned in line 11. The computation is done in O(mn) for m being
the formula size of f .

6 Implementation Issues and Enhancement Techniques

We detail implementation issues and enhancement techniques for the proposed SSAT solving.

6.1 Boolean Formula Representation
We exploit And-Inverter Graphs (AIGs) [19] and Binary Decision Diagrams (BDDs) as
the main data structures to represent Boolean functions. BDDs are very efficient when
computing existential elimination and generating sorted functions using Algorithm 1, while
AIGs are more scalable in handling complex and large Boolean functions. Consequently,
when solving an SSAT instance, we start by building a BDD of the matrix with an empirically

SAT 2022
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Algorithm 3 Model Counting for Settled Boolean Function.

input : A settled function f over ordered variable set Y = (y1, . . . , yn)
output : Model count of f

1 α :=
∧

i ¬yi;
2 if f |α = ⊥ then
3 return 0;
4 end
5 for i← 1 to n do
6 α := Flip(α, yi);
7 if f |α = ⊥ then
8 α := Flip(α, yi);
9 end

10 end
11 return Nα + 1;

decided number of nodes as the limit. If the number of nodes exceeds the limit in the
process of building BDDs, we assume the formula is too complicated and AIGs are used
as an alternative. After eliminating a level of exist-quantifiers or random-quantifiers, the
new formula may potentially become easier to represent by BDDs because of the removal of
some variables or because of the simplification of the function. Since building BDDs with the
pre-defined limit on node counts is not a very time-consuming task, we tried converting AIGs
into BDDs after each quantifier elimination. We remark that AIGSolve [29] also adopts this
strategy. We observe that most solvable cases are convertible to BDDs after some iterations
of quantifier elimination and those that cannot be converted often struggle in the later stage
of elimination and thus exceed the time-out limit.

Since most SSAT formulas are in the prenex CNF form, directly translating them into
AIGs may result in inefficient circuit representation because many variables in CNF formulas
are functionally defined by other variables but they are treated as primary inputs of the AIG.
In our implementation, we take advantage of the interpolation-based gate extraction [32] to
alleviate the problem. It helps derive compact AIGs from CNF formulas and thus reduce the
runtime for quantifier elimination.

6.2 Elimination of Exist-Quantifiers using Boolean Functional Synthesis
When representing the matrix formula with an AIG, elimination of exist-quantifiers by
disjunctive expansion may cause the AIG size to increase rapidly. Our practical experi-
ence suggests that disjunctive expansion often has poor performance and only works for
small instances. We solve this problem by using function composition for exist-quantifier
elimination [15], and exploit Boolean functional synthesis tools for good scalability.

Given an existentially quantified Boolean formula ∃Y.F (X,Y ) over the set of variables
X and Y , the problem of Boolean functional synthesis [16, 17] is to compute a vector
of Boolean functions Ψ = (ψ1, . . . , ψ|Y |), referred to as the Skolem function vector, such
that ∃Y.F (X,Y )↔ F (X,Ψ(X)). The existentially quantified formula can be computed by
substituting the original variables in the set yi ∈ Y by the generated Skolem function ψi ∈ Ψ.

Several approaches have been proposed to address the scalability issue of this problem.
We mainly consider three prominent tools in this paper. R2F [16] uses AIGs as the underlying
data structure and exploits interpolation to determinize the given Boolean relation. CADET [30]
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lifts the QBF solving algorithm incremental determinization to perform Boolean functional
synthesis. Manthan [11, 12] uses a data-driven method by generating a set of training data
with the help of constraint sampling and learns the candidate Skolem functions with decision
trees. While the candidate functions might be incorrect, Manthan applies proof-guided
refinement until all generated functions can be used as a valid Skolem function vector. As
both Manthan and CADET require converting AIGs to CNF formulas, the conversion may
deteriorate their effectiveness. For future work, we plan to try other Boolean functional
synthesis tools, e.g., [1], that work directly on AIGs.

Among the three considered tools, R2F is a natural choice for us since it shares the same
data structure as our solver. On the other hand, the performance of R2F highly depends
on the size of the interpolant which may still cause the size of the AIG to increase out of
control. For the other two tools working on CNF formulas, we observe that CADET is very
efficient on easier benchmarks while Manthan can handle hard instances and produce smaller
Skolem functions. Our implementation for exist-quantifier elimination is a hybrid approach
combining these tools. We first try to solve the formula using CADET with a short time-out
limit. If the runtime of CADET exceeds the limit, we switch to R2F and carefully monitor the
size of the AIG. Manthan is used only if we observe that the AIG size becomes too large in
the process of R2F computation. Nevertheless, most of the unsolvable instances fail because
Manthan requires too many iterations of refinement. We notice that the current publicly
available version of Manthan does not use self substitution to handle the Skolem function
after a certain number of refinements. In future work, we plan to integrate R2F into the
refinement procedure of Manthan to achieve better scalability.

6.3 Bitonic Sorting
In general, computing partially sorted functions using bitonic sort is not the bottleneck of
the proposed algorithm because most SSAT instances have fewer random-variables than
exist-variables. Nevertheless, there still exist families of benchmarks that require carefully
implemented bitonic sorting to be easily solvable. For example, for the conformant planning
benchmark set Sand-Castle, the BDDs of the formulas can be built in the early quantifier
elimination stage but the node count of the BDD quickly grows in the process of performing
Algorithm 1. We solve this problem by heuristically adjusting the ordering of the BDD.
Observe that in the ith iteration of the loop in Algorithm 1, the function values of f are sorted
with respect to variables xn−i+1, . . . , xn. The heuristics for BDD reordering is to group
sorted variables to remove identical nodes. Accordingly, we move the sorted variables on top
of the BDD variable ordering after each outer-loop iteration in Algorithm 1, then perform
the traditional BDD reordering algorithm to further reduce the number of nodes. We observe
that the number of nodes can be greatly reduced compared to performing reordering directly.
As for bitonic sorting on AIG, we notice that we may create a large amount of functionally
equivalent nodes in the process of bitonic sort. Consequently, we use SAT sweeping with a
small number of conflict limits on the satisfiability solver to reduce the AIG size by merging
some of the easily identified functionally equivalent nodes.

6.4 Projected Model Counting on Partially Sorted Function
Observe that if the outermost level is existentially quantified, the problem is reduced to
projected model counting if all other quantification levels have been eliminated. Surely we
can perform existential elimination on the last quantification level, but as mentioned in
Section 6.2, performing exist-quantifier elimination on AIGs can be costly. Hence, we may
directly solve the projected model counting problem on a partially sorted function of the
form ∃X.Sort(f, Y ).

SAT 2022
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Table 2 Performance comparison of SSAT solvers.

DC-SSAT ClauSSAT ElimSSAT
Solved 193 203 242
PAR-2 3378.12 3192.46 2356.06

Uniquely Solved 18 16 46

The target here is trying to find the assignment α of variable set Y with the largest
binary coded value Nα such that f |α has a satisfying solution. This can solved by checking
the satisfiability of f |α, in contrast to checking the value of f |α in Algorithm 3. The process
requires |Y |+ 1 calls to a satisfiability checker. Based on our experience, this strategy can be
more efficient compared to solving a Boolean functional synthesis problem. This enhancement
works particularly well for the E-MAJSAT instances, where projected model counting can be
applied after the innermost random-quantifiers being eliminated.

7 Experimental Results

The proposed SSAT solver, named ElimSSAT, was implemented in C++ within the ABC
system [4] and is available at https://github.com/NTU-ALComLab/elimssat. We used the
ABC built-in AIG package, CUDD [33], and Minisat-2.2 [7] for AIG manipulation, BDD
manipulation, and SAT solving, respectively. We compared the performance of ElimSSAT
with the state-of-the-art general SSAT solvers ClauSSAT [6] (under its best performing option
-sguwc) and DC-SSAT [26]. All experiments were conducted on a Linux machine with Intel
Xeon 2.1 GHz CPU and 256 GB RAM. We used Benchexec[3] as the benchmarking framework
for reliable resource measurement. A runtime limit of 3600 seconds and memory limit of 32
GB were imposed on each instance for every solver. In the rest of the discussion, we use the
Penalized Average Runtime PAR-2 score to compare each solver, where an unsolved instance
is given the penalty of 2 times the time-out limit.

We evaluate the solver performance on 20 different benchmark families with a total of 357
SSAT formulas, which were taken from those used in ClauSSAT [6]. Because ElimSSAT requires
SSAT formulas with normalized probability 0.5 on random variables, we approximated the
SSAT formulas for ElimSSAT using WMCRewriting [20] with 4-bit precision while DC-SSAT
and ClauSSAT took the original formulas for solving. (We note that DC-SSAT and ClauSSAT
performed similarly on formulas with original and approximated probabilities.) Table 2
reports the number of solved cases within runtime and memory limit and the PAR-2 score of
each solver. As seen, ElimSSAT outperformed the state-of-the-art solvers by solving 242 out of
357 instances while DC-SSAT and ClauSSAT solved 193 and 203 cases, respectively. ElimSSAT
also dominated previous work in terms of the PAR-2 score 2356.06 in contrast to 3378.12 of
DC-SSAT and 3192.46 of ClauSSAT. For the number of uniquely solved instances, ElimSSAT
can solve 46 cases that are not solvable by any of prior solvers DC-SSAT and ClauSSAT.
Figure 6 shows the cactus plot that compares the runtime performance of different SSAT
solvers. The x-axis represents the number of solved benchmarks and the y-axis represents
the runtime in seconds. The plot suggests that ElimSSAT can solve easier benchmarks within
a short time while having better scalability than other solvers.

A pairwise comparison with the other solvers is summarized in Table 3, where the row
Less shows the number of formulas that can be solved by the competing solver but not
ElimSSAT, the row More shows the number of formulas that can be solved by ElimSSAT
but not the competing solver. As can be seen, DCSSAT and ClauSSAT can solve 28 and 26

https://github.com/NTU-ALComLab/elimssat
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Figure 6 ElimSSAT versus state-of-the-art solvers in runtime behavior.

Table 3 ElimSSAT versus state-of-the-art solvers in relative solving performance.

DCSSAT ClauSSAT

ElimSSAT Less 28 26
More 75 66

formulas, respectively, that ElimSSAT cannot solve. Most of these cases are multi-level SSAT
formulas where ElimSSAT struggled to perform existential elimination by Boolean functional
synthesis [11]. On the other hand, ElimSSAT can solve 75 and 66 formulas that were not
solved by DCSSAT and ClauSSAT, respectively.

It is worth mentioning that in the above experiments ElimSSAT actually solved harder
instances than the other two solvers because WMCRewriting complicated the formulas. To
assess the effects of formula complication due to WMCRewriting, we modified the original 357
formulas by making all the random variables have probability 0.5 so that no WMCRewriting
is required and all solvers work on exactly the same set of benchmarks. Table 4 shows the
new results. ElimSSAT can solve up to 266 cases with PAR-2 score as 2067.89. Comparing
Tables 2 and 4, we found that the efficiency of ElimSSAT was improved while the other two
solvers did not benefit from the simplified probability values. This phenomenon suggests the
potential advantage of ElimSSAT on solving instances of unbiased probabilities.

Table 4 Performance comparison of SSAT solvers on modified 0.5-probability benchmarks.

DC-SSAT ClauSSAT ElimSSAT
Solved 193 203 266
PAR-2 3368.66 3192.46 2067.89

For the experiment of Table 2, we examine the solver performance on specific benchmarks
in Table 5. For each of the benchmarks, the prefix information is given in the #blk column,
where we use Σi (resp. Πi) to denote the outermost quantifier is exist (resp. random) and i

quantification levels in total. The runtime and the computed satisfying probability are given
for each solver in columns T and Pr, where symbol “-” indicates a time-out or memory-out
case. Since ClauSSAT can report the upper bound and lower bound even if it fails to give
the exact answers before time-out, we report the upper bound in column UB and lower
bound in column LB. Some interesting aspects of ElimSSAT are also shown in the table, with
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Table 5 Solver comparison on specific benchmarks.

benchmarks DC-SSAT ClauSSAT ElimSSAT
formula #blk Pr T UB LB T Pr T E R
ev-pr-4x4

5-...-lg Σ5 1 0.93 1 1 3.36 1 640.66 0 BDD
7-...-lg Σ7 1 4.41 1 0 - - - 0 AIG

Connect2
3x3_w Σ11 0.2689 0.05 0.2689 0.2689 2.09 0.2828 89.86 11 BDD
3x4_w Σ13 0.1474 0.09 0.1474 0.1474 7.24 0.1706 281.07 13 BDD
Adder

2-unsat Σ3 0.9998 0.98 0.9998 0.9998 43.86 0.9999 0.58 3 BDD
4-unsat Σ3 - - 1 1 226.69 1 1142.73 3 BDD
Arbiter

depth-23 Π48 - - 1 0.9999 - - - 0 AIG
depth-24 Π50 - - 1 0.2607 - - - 0 AIG
Counter

cnt03e Σ7 - - 1 0.9942 - 1 1.45 7 BDD
cnt03r Σ7 - - 1 0.9930 - 1 3.69 7 BDD

k_ph_p
4 Σ5 - - 0.9681 0.9681 562.17 0.9656 3.91 5 BDD
5 Σ5 - - 1 0 - 0.9993 76.40 5 BDD

QIF
pwd Σ3 - - 1 0 - 1 1.91 3 BDD

reverse2 Σ3 - - 1 0 - 1 232.63 3 BDD
conformant
empty...-10 Σ3 - - 1 0.5469 - 1 58.77 2 AIG
empty...-19 Σ3 - - 1 0.75 - 0.875 162.46 2 AIG

ToiletA
10_01.12 Σ3 - - 1 0.0313 - 0.0313 154.59 2 AIG
10_01.13 Σ3 - - 1 0.0625 - 0.0625 142.38 2 AIG

sand-castle
14 Σ3 0.9918 0.68 1 0.9912 - 0.9926 2199.20 3 BDD
15 Σ3 0.9999 1.38 1 0.9934 - - - 1 BDD

PEC
c1908-re Π2 0.0007 242.88 - - - 0.0007 0.43 2 BDD
c3540-re Π2 - - 0.0034 0.0034 4.61 0.0034 0.55 2 BDD

stracomp
x75.9 Π2 - - 1 1 601.26 - - 0 AIG

x75.14 Π2 - - 1 1 463.05 - - 0 AIG

the column E indicates the number of eliminated quantifier blocks and R shows the final
representation for Boolean function when complete solving or terminated due to runtime
or memory limit. We only reported certain families with at most 2 formulas due to the
page limit; other families are either too hard or too easy for all solvers. Families 1-6 listed
in the table are multi-level benchmarks converted from QBFLIB by substituting random
quantifiers for universal quantifiers with p randomly chosen in [0, 1]. The next 5 families
and the last 2 families are E-MAJSAT and random-exist SSAT families, respectively, where
family 7 encodes the quantitative information flow (QIF) problem; families 8-10 encode the
conformant planning problems; families 11 encode the probability equivalence checking[20]
problem and family 12 encodes the strategic companies problem[5].
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Table 6 Comparison between ElimSSAT with projected model counting and ElimSSAT without
projected model counting.

w/ projected MC w/o projected MC
Solved 121 106
PAR-2 2163.42 2745.11

As can be seen, ElimSSAT struggled the most in the multi-level benchmarks where
existential elimination on AIG spent too much time. For families such as ev-pr-4x4 and
arbiter, ElimSSAT cannot even finish the innermost quantifier elimination. More advanced
preprocessing techniques may be further development to assist ElimSSAT to solve these
challenging benchmarks. If the BDD of a formula can be built after some levels of quantifier
elimination, such as families Counter and k_ph_p, ElimSSAT may solve it efficiently. On
the other hand, search-based solvers like DC-SSAT can deal with some of these families
quite well by outperforming other solvers on families ev-pr-4x4 and Connect2. For the
E-MAJSAT benchmarks, DC-SSAT performed very well on the sand-castle families. On
the other hand, ElimSSAT dominates other solvers in terms of runtime and solved several
cases that could not be solved previously. One of the reasons is the enhancement proposed
in Section 6.4. We can observe that for the families ToiletA and conformant, ElimSSAT
can solve the formulas after two levels of quantifiers being eliminated and by leaving the
last level of exist-quantifiers for projected model counting. In contrast, ClauSSAT performs
the best in some of the random-exist SSAT families such as stracomp. In addition, for a
large percentage of the benchmarks, ClauSSAT can achieve quite a tight bound even for the
unsolvable instances for all solvers such as family arbiter. ClauSSAT can be a preferred
approximate solver for hard instances.

We evaluate the benefit of performing projected model counting, mentioned in Section 6.4,
on the outermost exist-quantification level by evaluating the 164 E-MAJSAT instances. From
Table 6, we can see that with projected counting turned on, we can solve 15 more E-MAJSAT
instances and the PAR-2 score dropped significantly from 2745.11 to 2163.42.

Table 7 shows the usage of different tools when performing existential elimination in
ElimSSAT. The row Used indicates the number of instances used with the tools and Solved
indicates the number of successfully solved instances. We note that the number of failed
cases in CADET (resp. R2F) may not be exactly the same as the number of Used cases in R2F
(resp. Manthan) because a case may be time-out or memory-out in the CADET (resp. R2F)
phase. We use CADET with a 100-second time-out to filter out the easy instances. Despite
given a short period of runtime, CADET still performed well by solving 159 out of the 314
instances. R2F is used in 154 instances, while 81 instances solved successfully, others exceed
total time limit or the AIG size becomes too large to handle. Manthan can only handle 2 of
the 58 instances, but these instances should be exceptionally hard since they also failed in
R2F and CADET. As we expect, existential elimination using BDDs is the most efficient and is
used the most in ElimSSAT.

Table 7 Performance of different tools used for exist-quantifier elimination in ElimSSAT.

BDD CADET R2F Manthan
Used 488 314 154 58

Solved 488 159 81 2

SAT 2022
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8 Conclusions

We developed a new approach to solving SSAT formulae using quantifier elimination. With
the usage of BDDs and AIGs and the help of modern Boolean functional synthesis tools, the
prototype solver ElimSSAT demonstrates the superiority of the proposed framework compared
to prior works. For future work, we would like to develop SSAT preprocessing techniques
and hybrid methods for existential elimination. Also, it would be interesting to extend the
current framework to dependency SSAT (DSSAT) [21] solving.
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