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Abstract
In this paper, we present an online (incremental) algorithm for checking the satisfiability of qualitative
spatio-temporal data, with direct implications to other fundamental knowledge representation and
reasoning problems for such data, like the problems of deductive closure and redundancy removal. In
particular, qualitative data come in the form of human-like, symbolic, descriptions such as “region x

contains or overlaps region y”, which are abundant in the Web of Data. Our approach is also able to
maintain, to some extent, any sparse graph structure that may be inherent in the data, i.e., it acts
parsimoniously and only tries to infer new information when needed for soundness and completeness.
To this end, we complement our practical algorithm with certain theoretical results to assert its
correctness and efficiency. A subsequent evaluation with publicly available large-scale real-world and
random datasets against the state of the art, shows the interest and promise of our method.
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1 Introduction

Real-world spatially or temporally annotated Big Data, largely due to their huge size,
naturally pose significant technical challenges in terms of implementing efficient tools for
associated practical tasks such as verification, repair, and visualization.23 An Artificial
Intelligence area that aims to handle such challenges relating to spatio-temporal data is
Qualitative Spatio-Temporal Reasoning (QSTR) [19]. QSTR abstracts away the exact metric
information that may be associated with such data, e.g., geometries or time points, and
instead uses some natural language, qualitative, descriptions, e.g., is right of, before, or inside,
to represent and reason about the data [19, 27]. This qualitative approach has applications
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5:2 An Incremental Algorithm for Handling Qualitative Spatio-Temporal Information

in a plethora of areas and domains that include cognitive robotics [9], spatio-temporal
design [28], qualitative model generation from video [6], ambient intelligence [3], visual
sensemaking [29], and qualitative case-based reasoning and learning [14], to name a few. A
survey of representation languages, called qualitative constraint languages (or calculi) in
QSTR, for various aspects of space and time, e.g., orientation or intervals, appears in [7].

Motivation

We are particularly interested in offering a parsimonious and incremental (online) algorithm
for verifying, or, more formally, checking the admissibility/satisfiability of big qualitative
spatio-temporal data of dynamic nature, which is an NP-hard task in the general case for
most spatio-temporal calculi [7]. As satisfiability checking lies at the heart of most (if
not all) reasoning tasks for such data, this algorithm also has direct implications to other
fundamental knowledge representation and reasoning problems for the data, such as the
problems of deductive closure (minimal labeling) and redundancy removal [25]; these are in
fact polynomial-time Turing reducible to the satisfiability checking problem [12]. In sum,
deductive closure concerns identifying all the information that either is or can be inferred to
be true/valid and subsequently building a minimal knowledge base (KB), and redundancy
removal concerns removing any information that can be inferred from the rest of the data and
and subsequently building a non-redundant or prime KB. Clearly, these problems also relate
to one another [18]. As noted in [13], a minimal KB is a quite useful knowledge compilation,
since it can allow one to answer some queries in polynomial time that would otherwise be (at
least) NP-hard. Indeed, in the context of QSTR, for instance, one could exploit minimality
of a qualitative spatio-temporal KB to immediately deduce whether some task a should be
scheduled before another task b. A non-redundant KB is particularly important in cases
where we want to have our knowledge to be as concise as possible, yet without sacrificing
essential information, like in the cases of pattern discovery or search in data mining [15, 16];
for instance, in [15] qualitative temporal data signatures are used for sepsis prediction, and
explanation thereof, in intensive care medicine, and the authors identify the need to optimize
such data with redundancy removal.

Related Work

We build upon the work of [26], where a technique for checking the satisfiability of a particular,
so called distributive [21], class of qualitative spatio-temporal data is proposed, that performs
a single pass over the spatial or temporal entities in the data and hence results in a dramatic
performance boost with respect to the state of the art. That technique is based on a notion of
weak local consistency, called ←−⋄G -consistency (directional partial path consistency with weak
composition [20], to be detailed in Section 2), and was subsequently used as the backbone of a
stronger consistency, called ⋄G-consistency, in a later work [22]. However, the aforementioned
technique is static in nature, i.e., it solely operates on fixed input data, which dramatically
limits its applicability in real-world, dynamic, and time-critical situations; clearly, this
limitation extends to other methods that rely on it, such as the one in [22] mentioned earlier.
Here, we address this limitation and propose an online variant of the technique in [26] that
is able to perform on-demand satisfiability checking of dynamic, incrementally-available,
qualitative spatio-temporal data. Our approach mirrors to some extent that of [4], where an
online algorithm is proposed for satisfiability checking of quantitative temporal data. Our
own method is firstly distinguished by the fact that the involved consistency notions and
operations are tailored to handle infinite domains and qualitative relations. Further, in our
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Figure 1 A 2D representation of the 8 base relations of RCC8, each one relating two potential
regions x and y as in x b y; here, bi denotes the converse of b (formally b−1).

work we handle more generic updates to existing (past) information, i.e., not just refinements
of such information as in [4], but information that may be completely different to (or even
contradicting) what exists in the KB. In our discussion, we focus on the spatial calculus of
RCC8 [23] (to be detailed in Section 2) as far as examples, datasets, and evaluations are
concerned, but it must be noted that the approach presented here is generic and applies to
most widely adopted qualitative constraint languages, as they are listed in [7] (we explicitly
state the required properties for a calculus in Section 2).

Contributions

In this paper, we make the following contributions: (i) we present an online and parsimonious
algorithm for checking the satisfiability of qualitative spatio-temporal data, and recall certain
implications to other fundamental knowledge representation and reasoning problems for such
data, viz., deductive closure and redundancy removal, (ii) we establish the correctness of
our algorithm with some theoretical results that relate to both its decision (output) and the
triangulation technique that it uses to maintain any sparsity that may be inherent in the
data, and (iii) we implement the algorithm and compare it against the state of the art with
real-world and random datasets that scale up to thousands of variables, and subsequently
demonstrate the efficiency of our approach.

The rest of the paper is organized as follows. In Section 2 we introduce some necessary
terminology and notations that are followed thoughout the paper. In Section 3 we present our
algorithm along with the results that establish its soundness and completeness. In Section 4
we evaluate an implementation of our algorithm against the state of the art. Finally, in
Section 5 we conclude with a discussion and some directions for future work.

2 Preliminaries

A binary qualitative constraint language is based on a finite set B of jointly exhaustive
and pairwise disjoint relations, called the set of base relations (atoms), that is defined over
an infinite domain D (e.g., some topological space) [20]. These base relations represent
definite knowledge between two entities of D; indefinite knowledge can be specified by
a union of possible base relations, and is represented by the set containing them. The
set B contains the identity relation Id, and is closed under the converse operation (−1).
The entire set of relations 2B is equipped with the set-theoretic operations of union and
intersection, the converse operation, and the weak composition operation denoted by ⋄ [20].
The weak composition (⋄) of two base relations b, b′ ∈ B is the smallest relation r ∈ 2B that
includes b ◦ b′; formally, b ⋄ b′={b′′ ∈ B : b′′∩(b ◦ b′) ̸= ∅}, where b ◦ b′={(x, y) ∈ D × D :
∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′}. Finally, for all r ∈ 2B, r−1 =

⋃
{b−1 : b ∈ r}, and

for all r, r′ ∈ 2B, r ⋄ r′ =
⋃
{b ⋄ b′ : b ∈ r, b′ ∈ r′}.

COSIT 2022
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Figure 2 Illustration of a QCN N and
←−⋄
G -consistency: N is

←−⋄
G -consistent w.r.t. the ordering

(z, y, x), i.e., x is “eliminated” first and z last, but not w.r.t. the ordering (x, y, z) (the base relation
EQ between variables x and y would have to be removed).

As an illustration, consider the Region Connection Calculus (RCC), which is a first-order
theory for representing and reasoning about mereotopological information [23]. The domain D
of RCC comprises all possible non-empty regular closed subsets of some topological space [24];
these subsets serve as regions in RCC. A fragment of the Region Connection Calculus (RCC),
denoted by RCC8, is the dominant qualitative spatial constraint language for representing
and reasoning about qualitative spatial information [23]. In particular, RCC8 makes use of
the mereotopological relations disconnected (DC), externally connected (EC), equal (EQ),
partially overlapping (PO), tangential proper part (TPP ) and its inverse (TPPi), and non-
tangential proper part (NTPP ) and its inverse (NTPPi) to encode knowledge about the
spatial relations between two potential regions, as depicted in Figure 1. Relation EQ is the
identity relation Id of RCC8.

The problem of representing and reasoning about qualitative spatial (or temporal) in-
formation may be tackled via the use of a Qualitative Constraint Network, defined in the
following manner:

▶ Definition 1 (QCN). A qualitative constraint network (QCN) is a tuple (V, C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity of
an infinite domain D;
and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = C(v′, v)−1 for all v, v′ ∈ V .

An example of a QCN is shown in Figure 2; for clarity, neither converse relations nor Id
loops are shown in the figure, but they are part of any QCN.

▶ Definition 2. Let N = (V, C) be a QCN, then:
a solution of N is a mapping σ : V → D such that ∀v, v′ ∈ V , ∃b ∈ C(v, v′) such that
(σ(v), σ(v′)) ∈ b, and N is satisfiable iff it admits a solution;
N is trivially inconsistent, denoted by ∅ ∈ N , iff ∃v, v′ ∈ V such that C(v, v′) = ∅;
a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′) such that C ′(v, v′) ⊆ C(v, v′)
∀v, v′ ∈ V ;
N is atomic iff ∀v, v′ ∈ V , C(v, v′) = {b} with b ∈ B;
the constraint graph of N , denoted by G(N ), is the graph (V, E) where {v, v′} ∈ E iff
C(v, v′) ̸= B and v ̸= v′;

Given a QCN N = (V, C), a relation C(u, v) = R of N can be denoted by N [u, v] and
(u R v) too, if it facilitates presentation.

We recall the definition of ←−⋄G -consistency [26], which is a fundamental local consistency for
reasoning with QCNs. For simplicity, in what follows, a set of variables V = {v1, v2, . . . , vn}
and an ordering (v1, v2, . . . , vn) is implied whenever a bijection α : V → {1, 2, . . . , n} is
defined.
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▶ Definition 3 (←−⋄G -consistency). A QCN N = (V, C) is ←−⋄G -consistent with respect to a graph
G = (V, E) and an ordering (α−1(1),α−1(2),. . .,α−1(n)) defined by a bijection α : V →
{1, 2, . . . , n} iff for all vi, vj , vk ∈ V such that {vk, vi}, {vk, vj}, {vi, vj} ∈ E, α(vi) < α(vk),
and α(vj) < α(vk) we have that C(vi, vj) ⊆ C(vi, vk) ⋄ C(vk, vj).

In sum, ←−⋄G -consistency entails consistency for all ordered triples of variables of a QCN
that correspond to triangles of a given graph G. This ordering can be specified by a bijection
between the set of the variables of a QCN and a set of integers, and can be chosen randomly,
or via an algorithm or some heuristic [26]. Figure 2 shows an example of how ←−⋄G -consistency
may relate to a QCN.

In what follows, we assume that the following two properties for a given qualitative
constraint language L hold; these hold for most well-known calculi [7, 8]:

L is a relation algebra. (1)
Every atomic ⋄ -consistent QCN of L is satisfiable. (2)

These properties are only needed to simplify our algorithms and establish certain syntactic
satisfiability conditions that allow us to be consistent with our claims. However, they can
be further relaxed to accommodate some more “exotic” calculi, subject to complicating the
algorithms and related operations and conditions of course.

3 Approach

In Algorithm 1 we present our online method for checking the satisfiability of a spatial
or temporal QCN by means of ←−⋄G -consistency; we call this method DPCI. First, we briefly
describe how DPCI works, and later we establish the assumptions under which it is sound
and complete.

The basic idea of DPCI is that, when a constraint C(vi, vk) in a ←−⋄G -consistent QCN is
updated, we often do not need to run a full pass of the static algorithm for enforcing ←−⋄G -
consistency as in [26]. Instead, an updated constraint C(vi, vk) (α(vi) < α(vk)) may affect
the constraints C(vi, vj) where {vk, vi}, {vk, vj}, {vi, vj} ∈ E and α(vi) < α(vj) < α(vk),
and any further updates might propagate in this way. In addition, if a constraint C(vi, vj)
in a ←−⋄G -consistent QCN is updated, then it might invalidate the previously established
relation C(vi, vj) ⊆ C(vi, vk) ⋄ C(vk, vj) for some k s.t. {vk, vi}, {vk, vj}, {vi, vj} ∈ E and
α(vi) < α(vj) < α(vk); this must be checked before propagating the updates.

As DPCI is an online algorithm, it assumes that some input has already been processed
piece-by-piece in a serial fashion, and specifically that a ←−⋄G -consistent QCN has been formed.
Clearly, in the base case, the initial QCN would not contain any constraints (or, equivalently,
every constraint would be defined by a universal relation), which would make the QCN by
default ←−⋄G -consistent. This base case of constructing an ←−⋄G -consistent QCN from scratch is
presented in Algorithm 2. Specifically, a QCN N with no constraints is initialized in line 1 of
the algorithm, which is then continuously updated with new constraints via calls to DPCI
(lines 3–6); it is assumed that the new constraints are taken from some QCN M that is
defined on the same set of variables as N . The number m of m unprocessed constraints in
line 4 may vary from 1 to the total number of (non-universal) constraints in N . When m = 1,
the simulation acts in a fully online manner, since it adds constraints 1 by 1, and when m =
total number of constraints, the simulation acts in a fully static manner, since it degenerates
into a single application of DPCI. Next, we continue to describe how a call to DPCI behaves.

DPCI receives as input a ←−⋄G -consistent QCN N = (V, C) w.r.t. a graph G = (V, E) and an
ordering (α−1(1),α−1(2),. . .,α−1(n)) defined by a bijection α : V → {1, 2, . . . , n}, and a set
of additional constraints C ′. In the first two lines of the algorithm we introduce a dictionary

COSIT 2022



5:6 An Incremental Algorithm for Handling Qualitative Spatio-Temporal Information

Algorithm 1 DPCI(N , G, α, C′): Incremental Directional Path Consistency Algorithm.

Input: A
←−⋄
G -consistent QCN N = (V, C) w.r.t. a graph G = (V, E) and an ordering

(α−1(1),α−1(2),. . .,α−1(n)) defined by a bijection α : V → {1, 2, . . . , n}; and a set
of constraints C′ of the form (vi0 R′i0,j0 vj0 ), where {vi0 , vj0} ∈ E′ ⊆ V × V .

Output: True or False, the updated graph G, and the updated QCN N .
1 foreach vi ∈ V do
2 P [vi]← ∅;
3 Q← ∅;
4 foreach (vi0 R′i0,j0 vj0 ) ∈ C′ do
5 foreach vk s.t. {vi0 , vk}, {vk, vj0} ∈ E, α(vk) > α(vj0 ) > α(vi0 ) do
6 R′i0,j0 ← R′i0,j0 ∩ (N [vi0 , vk] ◦ N [vk, vj0 ]);
7 if R′i0,j0 = ∅ then
8 return (False, ∅, ∅)

9 if R′i0,j0 ̸= N [vi0 , vj0 ] then
10 N [vi0 , vj0 ] = R′i0,j0 ;
11 N [vj0 , vi0 ] = R′j0,i0 ;
12 P [vj0 ]← P [vj0 ] ∪ {vi0};
13 Q← Q ∪ {α(vj0 )};

14 while Q ̸= ∅ do
15 p← max(Q);
16 vk ← α−1(p);
17 Q← Q \ {p};
18 foreach {vi, vj} s.t. α(vi) < α(vj) < α(vk) ∧ {vi, vk}, {vj , vk} ∈ E ∧ (vi ∈ P [vk] or

vj ∈ P [vk]) do
19 Tij ← N [vi, vj ] ∩ (N [vi, vk] ⋄ N [vk, vj ]);
20 E ← E ∪ {{vi, vj}};
21 if Tij = ∅ then
22 return (False, ∅, ∅);
23 if Tij ̸= N [vi, vj ] then
24 N [vi, vj ]← Tij ;
25 N [vj , vi]← T−1

ij ;
26 Q← Q ∪ {α(vj)};
27 P [vj ]← P [vj ] ∪ {vi};

28 return (True, G,N ).

of lists P to keep track of affected edges (corresponding to constraints) that need to be
processed. Every key in the dictionary corresponds to a vertex v ∈ V and maps to a list, and
the edges that are incident on v and need to be processed are stored in the form of adjacent
vertices to v in the respective list. In lines 4–13 the new constraints are added to the QCN.
Specifically, in lines 5–8 a simple preprocessing takes place to ensure that no inconsistency is
introduced, and in lines 9–13, in lack of such inconsistency, we move on and perform the
constraint updates on the QCN and store all affected edges to be processed later on. Here,
we also keep track of where the update occured with respect to our ordering, by pushing
the respective index information into a queue Q (line 13). The main functionality of the
algorithm occurs in lines 14–27. We start from the highest index in our ordering where an
earlier corresponding constraint update occurred (line 15), and propagate the constrainedness
of that update to constraints that are associated with variables that are indexed earlier in
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Algorithm 2 FullSimulation(M, G, α): Simulating the run of Algorithm 1 from scratch.

Input: A QCN M = (V, C), a graph G = (V, E), and an ordering
(α−1(1),α−1(2),. . .,α−1(n)) defined by a bijection α : V → {1, 2, . . . , n}.

Output: True or False, the updated graph G, and a new QCN N .
1 N ← a QCN (V, C∗) s.t. C∗(v, v′) = B for all v, v′ ∈ V with v ̸= v′;
2 decision ← True;
3 while ∃ unprocessed constraints (vi Ri,j vj) ∈ C ∧ decision ̸= False do
4 Choose a subset C′ of m unprocessed constraints (vi Ri,j vj) ∈ C;
5 Mark the chosen constraints as processed;
6 (decision, G, N ) ← DPCI(N , G, α, C′);
7 return (decision, G,N ).

the ordering; as a reminder, this is the definition of ←−⋄G -consistency (see again Definition 3).
It is important to note that when an edge {vi, vk} or {vj , vk} of G has been affected and
we have that α(vi) < α(vj) < α(vk), i.e., vi is indexed earlier than vj and vj is indexed
earlier than vk in the ordering, we must also consider the edge {vi, vj} in order for the
constraints to propagate soundly with respect to enforcing ←−⋄G -consistency (line 20). Clearly,
whenever further constraint updates occur, and no inconsistency is reported (lines 21–22),
the information about the affected edges and the respective indices are maintained in the way
that we have explained so far. This process is repeated until no more indices that correspond
to constraint updates exist (Q empties), and consequently no more affected edges exist either.

v5

v4

v3

v2

v1

R2

R1
R3

R4

R5
R6

R7

R8

R9

Figure 3 DPCI illustration.

▶ Example 4. Figure 3 illustrates how DPCI works. Initially, the QCN N contains the
constraints shown as labelled black arrows in the figure, e.g., (v4 R1 v5), and it is ←−⋄G -
consistent w.r.t. the ordering (v1, v2, v3, v4, v5). A new and different constraint (v5 R8 v1)
is then added to the QCN, which is the same as updating the constraint between v5 and
v1. Since there is no vk satisfying the conditions in line 5, the loop in lines 5–8 will be
skipped. The condition in line 9 is then satisfied by R8 ̸= N [vi0 , vj0 ]. Therefore, N [vi0 , vj0 ]
is updated to R8, P [v5] is set to {v1}, and Q = {5}. The process then moves to the loop
in lines 14–27. In Q there is currently only one element, and vk = v5. The edges {vi, vj}
satisfying the conditions in line 18 are {v1, v3} and {v1, v4}, because P [v5] = {v1}. Note
that the edge {v3, v4} will not be processed here because v3, v4 ̸∈ P [v1], which is one of the
benefits of our online algorithm. The contraints for the edges {v1, v3} and {v1, v4} may then
get updated, and the edge {v1, v4} is added to the graph (see the dashed edge). Suppose
that only the constraint for {v1, v4} is changed, then α(v4) = 4 is added to Q, and P [v4]
is changed to {v1}. In the next iteration of the loop, vk would be v4 and a similar process
would be executed. On the other hand, if the initial QCN includes all the constraints shown

COSIT 2022



5:8 An Incremental Algorithm for Handling Qualitative Spatio-Temporal Information

in Fig. 3, and the constraint (v4 R9 v1) is updated by another new constraint (v4 R′9 v1),
then R′9 ← R′9 ∩ (R1 ◦R8) needs to be calculated. This is because we need to ensure that the
updated QCN N is ←−⋄G -consistent w.r.t. the ordering (v1, v2, v3, v4, v5), and thus for v4, v1, v5
we should have N [v4, v1] ⊆ N [v4, v5] ◦ N [v5, v1] (see lines 5–8).

Next, we recall and prove some results to establish the correctness of our algorithm. First,
we introduce some necessary graph theoretic and other necessary concepts.

▶ Definition 5 (PEO). Given an undirected graph G = (V, E) and an ordering (α−1(1),
α−1(2),. . .,α−1(n)) defined by a bijection α : V → {1, 2, . . . , n}, let Fk = {vj ∈ adj(vk) :
α(j) < α(k)}; the ordering is a perfect elimination ordering (PEO) if and only if Fk induces
a complete subgraph of G for every k.

We can now recall the following result:

▶ Lemma 6 ([11]). A graph G is chordal iff G admits a PEO.

A recall of distributive subclasses of relations is also required [21].

▶ Definition 7. A subclass of relations is a subset A ⊆ 2B that contains the singleton
relations of 2B and is closed under converse, intersection, and weak composition.

Given three relations r, r′, r′′ ∈ 2B, we say that weak composition distributes over
intersection if we have that r ⋄ (r′∩ r′′) = (r ⋄ r′)∩ (r ⋄ r′′) and (r′∩ r′′)⋄ r = (r′ ⋄ r)∩ (r′′ ⋄ r).

▶ Definition 8 (distributive subclass). A subclass A ⊆ 2B is distributive iff weak composition
distributes over non-empty intersections for all relations r, r′, r′′ ∈ A.

We will use the following result to link ←−⋄G -consistency to chordal graphs, which are graphs
that may allow for retaining the sparsity of a QCN [26]:

▶ Proposition 9 ([26]). Let N = (V, C) be a QCN defined over a distributive subclass of
relations of a qualitative constraint language that satisfies properties 1 and 2, and G = (V, E)
a chordal graph s.t. G(N ) ⊆ G and (α−1(1),α−1(2),. . ., α−1(n)) defined by a bijection α : V

→ {1, 2, . . . , n} is a PEO of G. If N is ←−⋄G -consistent w.r.t the PEO and ∅ ̸∈ N , then N is
satisfiable.

We are ready to introduce our novel results.

▶ Lemma 10. Let G = (V, E) be a chordal graph, (α−1(1),α−1(2),. . .,α−1(n)) defined by a
bijection α : V → {1, 2, . . . , n} a PEO of G, and |V | = n. If E′ is a set of new edges on
V , and G(n+1) = (V, E(n+1)), where E(n+1) = E ∪E′, and E(k) = E(k+1) ∪Ek, where Ek =
{{vi, vj} : {vi, vk}, {vk, vj} ∈ E(k+1) and α(vi) < α(vj) < α(vk)}, then G(1) = (V, E(1)) is
also a chordal graph with a same PEO.

Proof. By Lemma 6, we only need to show that for any vk(k = n, . . . , 1), the induced
subgraph of G(1) on the set Fk = {vi : {vi, vk} ∈ E(n) and α(vk) > α(vi)} is a complete
graph. In fact, by the definition of Ek, for any two vertices vi, vj ∈ Fk s.t. α(vi) < α(vj),
there will be an edge {vi, vj} in Ek. Since Ek ⊆ E(1), we know that the subgraph of G(1) on
Fk is complete. Therefore, G(1) = (V, E(1)) is chordal and admits a same PEO. ◀

The previous lemma tells us that after adding new edges to a chordal graph G, we can easily
construct a new chordal graph G(1) containing all the edges of G and maintain its PEO,
by simply making sure that the induced subgraph on every Fk is complete. The following
theorem shows the correctness of Algorithm 1.
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▶ Theorem 11. Let N = (V, C) be a QCN defined over a distributive subclass of relations
of a qualitative constraint language that satisfies properties 1 and 2, G = (V, E) a chordal
graph s.t. G(N ) ⊆ G and (α−1(1),α−1(2),. . .,α−1(n)) defined by a bijection α : V →
{1, 2, . . . , n} is a PEO of G, and C ′ a set of new constraints of the form (vi0 R′i0,j0

vj0),
where {vi0 , vj0} ∈ E′ ⊆ V × V and α(vi0) < α(vj0). If N is ←−⋄G -consistent w.r.t the PEO and
∅ ̸∈ N , then algorithm DPCI terminates and returns (True, G′,N ′), where G′ ⊇ G is still
chordal and admits a same PEO, and N ′ ⊆ N is ←−⋄G -consistent w.r.t. the PEO, if and only
if N \ {(vi0Ri0,j0vj0) : {vi0 , vj0} ∈ E′} ∪ C ′ is satisfiable.

Proof. The “only if” part is obvious by Proposition 9. For the “if” part we reason as
follows. The algorithm returns False only when there is some vi, vj , vk, where α(vi) < α(vk),
α(vj) < α(vk), such that N [vi, vj ] ∩ (N [vi, vk] ◦ N [vk, vj ]) = ∅. If N \ {(vi0Ri0,j0vj0) :
{vi0 , vj0} ∈ E′} ∪ C ′ is satisfiable, then by Proposition 9 this cannot happen. Next, we
assume that the algorithm returns True.

First, we show that the returned graph G′ ⊇ G is chordal. If we update G in the manner
exactly as in Lemma 10 after adding E′ and obtain G′, then by Lemma 10 we know that G′

is also chordal with a same PEO. In the sequel, we show that G′ is exactly G(1) as defined in
Lemma 10. Let M (n+1) = E ∪ E′ and M (k) = M (k+1) ∪Mk, where Mk is the set of edges
added in line 20 in the iteration for vk. We want to prove M (k) = E(k) (with E(k) as in
Lemma 10) for any k. Suppose by induction that M (k) = E(k) holds for u + 1 ≤ k ≤ n; we
will show M (u) = E(u). To this end, we show that {vi, vu} ∈ M (u) for any vi, vj ∈ V s.t.
{vi, vu}, {vu, vj} ∈ E(u+1) and α(vi) < α(vj) < α(vu). In fact, if the condition in line 18
of the algorithm is satisfied, i.e., vi ∈ P [vu] or vj ∈ P [vu], then {vi, vu} ∈ Mu ⊆ M (u).
If vi ̸∈ P [vu] or vj ̸∈ P [vu], by the definition of P [vu] in the algorithm, we can see that
{vi, vu} and {vj , vu} must have been in M (u+1) ⊆M (u) already. Therefore, in either case,
{vi, vu} ∈M (u) and thus E(u) ⊆M (u). Note that it is easy to see M (u) ⊆ E(u), because the
condition to add edges to Mu is stronger than to include an edge in Eu and thus Mu ⊆ Eu.
In this way, we showed that the chordal graph G(1) = (V, E(1)) as defined in Lemma 10 is the
same as the graph G′ = (V, M (1)) returned by the algorithm. Therefore, G′ is also chordal
and with a same PEO as G.

To show that the returned N ′ is ←−⋄G -consistent w.r.t. the PEO, suppose vi, vj , vk ∈ V ,
{vi, vk}, {vk, vj} ∈ E(n), and α(vi) < α(vj) < α(vk); we will show N ′[vi, vj ] ⊆ N ′[vi, vk] ◦
N ′[vk, vj ]. If vi ∈ P [vu] or vj ∈ P [vu], then by the operations in lines 19, 24, and 25 of the
algorithm, it is easy to see N ′[vi, vj ] ⊆ N ′[vi, vk] ◦ N ′[vk, vj ]. If vi ̸∈ P [vu] or vj ̸∈ P [vu],
then N [vi, vj ] ⊆ N ′[vi, vk] ◦ N ′[vk, vj ] already holds from the beginning, because N ′[vi, vk]
and N ′[vi, vk] are not changed by the algorithm, and N ′[vi, vj ] can only be refined (w.r.t.
⊂) by the algorithm. Therefore, the returned N ′ is ←−⋄G -consistent w.r.t. to the PEO. ◀

We invite the reader to view Corollaries 3.2 and 3.3 in [26] for implications of the
satisfiability checking result of Theorem 11 here to the fundamental knowledge representation
and reasoning problems of deductive closure (minimal labeling) and redundancy removal
respectively for spatial or temporal QCNs. The implications are direct, since we already
mentioned in the introduction that these problems are polynomial-time Turing reducible to
the satisfiability checking problem [12].

Complexity

Algorithm DPCI has a runtime of O((|C ′|+ ∆2)|V |) for a given QCN N = (V, C) and a set of
(new) constraints C ′, where ∆ is the maximum vertex degree of the graph G returned through
its output. In the worst case, the constraint updates may trigger a full-pass application of
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←−⋄
G -consistency on the entire QCN, thus emulating the static algorithm of [26] with a runtime
of O(∆2|V |). Specifically, if max(Q) = n, i.e., the variable with order n is in Q, then a
full-pass application of ←−⋄G -consistency will be triggered. Our algorithm also has some overhead
costs for preprocessing the new constraints in C ′ (lines 4–13). In the worst case, for each of
the new constraints, all vertices vk ∈ V satisfy the conditions in line 5, which in total will
take O(|C ′||V |) time. Thus, the overall runtime of DPCI is O((|C ′|+ ∆2)|V |).

4 Experimental Evaluation

We make use of the publicly available datasets from previous studies in QSTR, including
real-world datasets from [18], i.e., Footprint-k (F-k, k = 1, . . . , 6) and StatArea-k (SA-k,
k = 1, . . . , 6), and synthetic datasets from [26]. The datasets F-1 to F-6 have 108, 217, 434,
867, 1 736, and 3 470 variables, respectively, and SA-1 to SA-6 have 51, 100, 196, 376, 659, and
1 562 variables, respectively; all of them are satisfiable atomic QCNs of RCC8. The synthetic
datasets range from 103 to 104 variables with a step size of 103. For each size n, we have 10
satisfiable QCNs of RCC8 over a distributive subclass of relations, generated using the model
BA(n, m = 2) [1] for scale-free networks; networks of this type imitate real-world ones [1, 26].
All evaluations were performed on a PC with Ubuntu 18.04, CPU i7-8700 3.2GHz, RAM
64GB, and Python 3.8, and the time for each n is averaged over 10 tests.

We compare the proposed online algorithm, viz., DPCI, against the state-of-the-art static
algorithm of [26] for applying ←−⋄G -consistency on QCNs, viz., DPC. We note that we consider
two ways of processing the additional constraints in C ′: (i) 1 by 1 and (ii) altogether at once.
Regarding 1 by 1, each time we call DPCI we feed it a single new constraint from C ′, and we
repeat this process until no constraints are left in C ′; this method of using DPCI is denoted
by DPCI-1. Regarding altogether at once, we feed all the additional constraints in C ′ at once
to DPCI; this method is denoted by DPCI-A. Likewise, DPC-1 and DPC-A denote the 1 by 1
and altogether at once ways of processing constraints for the static algorithm, respectively.
All of these approaches are analysed in our evaluations.

We want to measure the efficiency of enforcing ←−⋄G -consistency when new constraints arrive.
Thus, we use the runtime as our performance metric. Specifically, we randomly generate 20
new constraints for each QCN, which can correspond to either existing or non-existing edges
of each accompanying graph G. As a reminder, when edges do not exist in G, they have to
be added to G and establish/maintain its chordality.

Results and Analysis

The results are shown in Figures 4 and 5, and it is clear that DPCI-A dominates all other
approaches for all datasets. This is expected, as DPCI-A only updates part of a network,
and processes the new constraints in bulk to avoid repeated updates triggered by individual
new constraints. Notably, DPCI-1 is more efficient than DPC-1, by at least about an order of
magnitude, which shows that our algorithm can indeed save a lot of time on calculations
when single updates are considered. In fact, due to the time saved on calculations even when
repeated single updates are considered, i.e., constraints are added in 1 by 1 fashion, DPCI-1 is
also comparable to DPC-A on real-world datasets and more efficient on synthetic ones.

As the number of variables (and hence the number of constraints) increases, the runtime
for all methods increases too, except for DPCI-A on the Footprint datasets due (to quick
detection of inconsistency). This behaviour verifies that the runtimes of these methods are
strongly related to the number of variables. Regarding the performance of DPCI-A on the
Footprint datasets, it is due to the fact that these datasets are atomic networks, and are
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(b) StatArea: Adding new constraints.

51 10
0
10

8
19

6
21

7
37

6
43

4

Number of variables (n)

10 2

10 1

100

101

102

103

104

105

Ti
m

e 
(s

)

One-shot DPC
DPC-1
DPCI-1

(c) Footprint (F-{1, . . . , 3}) + StatArea (SA-
{1, . . . , 4}): Adding original constraints 1 by 1.

Figure 4 Results on real-world datasets, where 20 random new constraints are added in 4a and
4b and all original constraints are added in 1 by 1 fashion in 4c, i.e., QCNs are built from scratch
(basically, Algorithm 2 with m = 1 in line 4). One-shot DPC applies

←−⋄
G -consistency on the entire

original QCN in a single step (our baseline, which serves as a practical lower bound).
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(b) Adding original constraints 1 by 1.

Figure 5 Results on synthetic datasets, where 20 random new constraints are added in 5a, and
all original constraints are added in 1 by 1 fashion in 5b, i.e., QCNs are built from scratch.

hence more likely to become inconsistent when some constraints are altered; DPCI-A can
quickly detect this (due to its bulk constraint processing). Such inconsistencies appear very
often in real-world data. For example, with the ever-increasing enrichment of the Semantic
Web with geospatial data [10, 17], it is often the case that the geometries of geographical
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objects are not captured correctly due to contradictory data of different sources. Thus, we
can obtain inconsistent topological information when extracting topological relations from
such geometries (e.g., two overlapping regions may be stated to be identical to a third region,
which is impossible as they would also have to be identical to each other if that was the
case); see also [5] in this respect.

Figure 5(b) shows the results of building ←−⋄G -consistent QCNs from scratch. For each QCN,
we manually set all of its constraints to be the universal relation (viz., B), keep the graph G

as is, and then add the original constraints back in 1 by 1 fashion. From this experiment, we
can see how the proposed algorithm scales compared to the static algorithm for enforcing
←−⋄
G -consistency, and subsequently how much better our online algorithm is compared to the
static algorithm when new information arrives in a serial manner. It can be seen that,
although the online algorithm takes more time to process new information serially (than in
bulk, see baseline), it is much faster than using the static one in a serial manner.

In summary, we can conclude that the proposed online algorithm for enforcing ←−⋄G -
consistency improves the static algorithm in processing dynamic information.

▶ Remark 12. To keep our evaluation concise, the number m of new constraints to add
was fixed to 20 in Figures 4a, 4b, between 1 and n, the performance difference between
DPCI-1 and DPC-1 largely remains qualitatively similar. On the other hand, the performance
difference between DPCI-A and DPC-A might be affected by m, because the preprocessing
step in lines 4–13 of Algorithm 1 might be more costly than the overhead of enforcing
←−⋄
G -consistency in a static manner when m is close to n; in such cases, where almost the entire
network is updated, DPC-A is by design the better choice.

5 Conclusion and Future Work

In this paper, we proposed an incremental (online) algorithm for checking the satisfiability
of qualitative spatio-temporal data, which has important implications to other fundamental
knowledge representation and reasoning problems for such data too, such as the problems of
deductive closure and redundancy removal. Contrary to the state of the art, our approach
acts parsimoniously and only infers new information when needed, subsequently maintaining
soundness and completeness. An evaluation with publicly available large-scale real-world
and random datasets against the state of the art, showed the interest and efficiency of
our method. For future work, we would like to extend the current method with vertex-
incremental capabilities [2], i.e., handle also the cases where new variables are incrementally
made available, and not just new constraints among established variables.
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