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—— Abstract

The DISTANCE REALIZATION problem is defined as follows. Given an n X n matrix D of nonnegative
integers, interpreted as inter-vertex distances, find an n-vertex weighted or unweighted graph G
realizing D, i.e., whose inter-vertex distances satisfy distg(i,j) = D;,; for every 1 < i < 7 < n,

or decide that no such realizing graph exists. The problem was studied for general weighted and
unweighted graphs, as well as for cases where the realizing graph is restricted to a specific family of
graphs (e.g., trees or bipartite graphs). An extension of DISTANCE REALIZATION that was studied in
the past is where each entry in the matrix D may contain a range of consecutive permissible values.
We refer to this extension as RANGE DISTANCE REALIZATION (or RANGE-DR). Restricting each
range to at most k values yields the problem k-RANGE DISTANCE REALIZATION (or k-RANGE-DR).
The current paper introduces a new extension of DISTANCE REALIZATION, in which each entry D; ;
of the matrix may contain an arbitrary set of acceptable values for the distance between i and 7,
for every 1 < i < j < n. We refer to this extension as SET DISTANCE REALIZATION (SET-DR),
and to the restricted problem where each entry may contain at most k values as k-SET DISTANCE
REALIZATION (or k-SET-DR).

We first show that 2-RANGE-DR is NP-hard for unweighted graphs (implying the same for
2-SET-DR). Next we prove that 2-SET-DR is NP-hard for unweighted and weighted trees. We then
explore SET-DR where the realization is restricted to the families of stars, paths, or cycles. For
the weighted case, our positive results are that for each of these families there exists a polynomial
time algorithm for 2-SET-DR. On the hardness side, we prove that 6-SET-DR is NP-hard for stars
and 5-SET-DR is NP-hard for paths and cycles. For the unweighted case, our results are the same,
except for the case of unweighted stars, for which k-SET-DR is polynomially solvable for any k.
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1 Introduction

Background. Network realization problems are fundamental graph-algorithmic questions
in which one is asked to construct a network conforming to some predefined requirements.
Given a specification (or information profile) that consists of constraints on some network
parameters, such as the vertex degrees, distances, or connectivity, one is required to construct
a network conforming to the given specification, i.e., satisfying the requirements, or to
determine that no such network exists. The motivation for network realization problems
stems from both “exploratory” contexts where one attempts to reconstruct an ezisting
network of unknown structure based on the outcomes of experimental measurements, and
engineering contexts related to network design.
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In the DISTANCE REALIZATION problem, the given profile is an n X n matrix D such
that each entry D; ; € NU {oo}, for 1 <i < j <n, and D;; = {0}, for every 1 <i <n. We
view D; ; as specifying the required distance between the vertices ¢ and j in the network. A
graph G = (V, E) is a realization of D if distq(i,7) = D, j,
distg(i,j) denotes the distance between ¢ and j in G. Generally, we may be interested in
two types of realizing graphs. In unweighted DISTANCE REALIZATION it is assumed that
each edge of the realizing graph is of length 1. In weighted DISTANCE REALIZATION the
edges of the realizing graph may have any positive integral lengths.

for every 1 < i < j < n, where

Observe that an unweighted realizing graph is fully determined by D: the edge (i,7)
exists in the graph if and only if D; ; = 1. It follows that there is only one graph Gp that
may serve as a candidate realizing graph. This was observed by Hakimi and Yau [12], who
provided a characterization for distance realization by unweighted graphs, implying also a
polynomial-time algorithm for unweighted DISTANCE REALIZATION. Notice also that in the
case where the realization is required to be a specific graph H, one can solve unweighted
Di1STANCE REALIZATION by deciding whether H and Gp are isomorphic. This GRAPH
ISOMORPHISM problem is computationally easy when H belongs to certain graph types, such
as stars, paths, and cycles, and therefore the problem of distance realization by such graphs
can be solved in polynomial time.

Hakimi and Yau [12] also studied weighted DISTANCE REALIZATION. They proved that the
necessary and sufficient condition for the realizability of a given martix D is that D is a metric.
Furthermore, they gave a polynomial-time algorithm that computes a realization for any
given metric distance matrix. More specifically, their algorithm constructs a minimum-edge
realizing graph whose edges are necessary in every realization of D.

Patrinos and Hakimi [14] considered the case where weights can be negative. They
showed that any symmetric matrix (with zero diagonal) is a distance matrix of some graph G.
They gave necessary and sufficient conditions for realizing such a matrix by a tree, and they
showed that if a tree realization exists it is unique. DISTANCE REALIZATION in weighted trees
was considered in [2], which presented a characterization for realizability. For unweighted
trees, there is a straightforward realization algorithm, based on the algorithm of [12] for
general unweighted graphs, and on the fact that the realization, if exists, is unique. Distance
realization restricted to bipartite graphs was studied in [4], where it was observed that it is
sufficient to check the unique realization in the unweighted case or the minimal realization in
the weighted case.

A natural extension of DISTANCE REALIZATION is when each entry in the distance matrix
may contain a range of consecutive values instead of a single value. Range specifications
may arise, for example, when D reflects the properties of an unknown network, and its
values are obtained by imprecise measurements, or alternatively, when D represents a design
specification for a planned network in a setting where distance constraints are not rigid and
allow some flexibility. Formally, we are given two values D;; and Dif j for every i, j and the
realizing G must satisfy D;; < distc (i,5) < Dif ;- We refer to this extended version of the
problem as RANGE DISTANCE REALIZATION (or RANGE-DR).

Tamura et al. [18] obtained necessary and sufficient conditions for the realizability of
a range distance matrix by weighted graphs, generalizing the result of [12] from precise to
range specifications. A polynomial-time algorithm for weighted RANGE-DR was given in [15].
The unweighted version of RANGE-DR was shown to be NP-hard in [4], where it was also
shown that if the realizing graph is required to be a tree, then both the unweighted and
weighted versions of RANGE-DR are NP-hard.
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Realization with Distance Sets. In this paper we introduce a novel extension of RANGE
DISTANCE REALIZATION, called SET DISTANCE REALIZATION (SET-DR). Instead of a range,
we assume that each entry D; ; in the distance matrix specifies a set of acceptable values
for the distance between ¢ and j, for every 1 < i < j < n. More formally, consider an n X n
matrix D, such that each entry D; ; C NU {oo}, for 1 <i < j < n, is a non-empty set, and
D;; = {0}, for every 1 <i < n. We view D; ; as specifying a list of acceptable values of the
distance between i and j, where i and j are vertices in some network. A graph G = (V, E) is
a realization of the D if dist(i,j) € D, j, for every 1 < i < j < n.

One of the main questions studied in this paper involves the effect of limiting the number
of values in each entry of the matrix D. This question is equally interesting for SET-DR,
and RANGE-DR. Given an integer k, we say that the matrix D is a k-set distance matrix
it |D; ;| < k for every 1 <i < j < n. A distance matrix D is a k-range distance matrix, if
D, ; is a range that contains at most k consecutive values for every 1 <i < j <n. A 1-set
distance profile is called precise. Restricting the SET DISTANCE REALIZATION problem to
k-set distance matrices yields the problem k-SET DISTANCE REALIZATION (or k-SET-DR).
Similarly, restricting the RANGE DISTANCE REALIZATION problem to k-range distance
matrices yields the problem k-RANGE DISTANCE REALIZATION (or k-RANGE-DR).

Henceforth, we assume that entry D;; in a 2-set distance matrix D consists of two
integers, D; ; = {d?,j, d}yj}, which need not be distinct.

Our Results. In this paper we study the computational complexity of k-SET-DR and
k-RANGE-DR, as a function of k, in various graph families.

Inspecting the proof given in [4] for the hardness results for RANGE-DR by trees and
unweighted graphs reveals that 3-RANGE-DR is already NP-hard over these graph families,
implying that 3-SET-DR is NP-hard as well. We modify the reductions from [4] to show that
already 2-RANGE-DR is NP-hard for general unweighted graphs, where precise realization is
known to be polynomial [12]. For general weighted graphs, it is known that RANGE-DR is
computationally easy [15]. We note that the algorithm from [15] does not work for SET-DR,
since it relies on the continuity of the given ranges. In fact, SET-DR for general weighted
graphs remains an open problem. We show that both unweighted 2-SET-DR and weighted
2-SET-DR are NP-hard for trees. Thus, we obtain a dichotomy between 2-set distance
realization and precise realization for trees, since precise realization is known to be solvable
in polynomial time [12, 2].

Next, we show that 2-SET-DR is polynomial time solvable for stars, paths, and cycles.

Our realization algorithms are based on a reduction to the 2-SAT problem (satisfiability of a
2-CNF formula), which can be solved in linear time [10]. The idea is to use one vertex ig
as a point of reference for all other vertices. Thus, a Boolean variable b; is associated with
each vertex j and determines which of the two values of D;, ; should be used. The 2-CNF
formula is constructed according to the rest of the entries of D. Applying this approach for
stars is rather straightforward, but it becomes more complicated for paths, and especially for
cycles. In addition, we prove that there exists a polynomial time algorithm for k-SET-DR
on unweighted stars, for any k. For weighted stars, we present a polynomial time realization
algorithm for RANGE-DR when the range values are polynomially bounded. This algorithm
is based on a reduction to the feasibility problem of linear integer programs with at most
two variables per constraint, which can be solved efficiently [5].

On the hardness side, we show that SET-DR is NP-hard for weighted stars already with
6-set distance profiles. We obtain slightly tighter results for paths and cycles, for which
both unweighted SET-DR and weighted SET-DR are already NP-hard already with 5-set
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Table 1 Results for realization with unweighted graphs.

Graph family Range-DR Set-DR
General 2-RANGE-DR is NP-hard (Thm 1) 2-SET-DR is NP-hard (Thm 1)
1-RANGE-DR is polynomial [12] 1-SET-DR is polynomial [12]
Tree 3-RANGE-DR is NP-hard [4] 2-SET-DR is NP-hard (Thm 2)
1-RANGE-DR is polynomial [12] 1-SET-DR is polynomial [12]
Star RANGE-DR is polynomial (Thm 4) SET-DR is polynomial (Thm 4)
Path 2-RANGE-DR is polynomial (Thm 8) 2-SET-DR is polynomial (Thm 8)
RANGE-DR is NP-hard (Thm 9) 5-SET-DR is NP-hard (Thm 10)
Cycle 2-RANGE-DR is polynomial (Thm 12) | 2-SET-DR is polynomial (Thm 12)
RANGE-DR is NP-hard (Thm 14) 5-SET-DR is NP-hard (Thm 15)

Table 2 Results for realization with weighted graphs.

Graph family Range-DR Set-DR,
General RANGE-DR is polynomial [15] Open problem
Tree 3-RANGE-DR is NP-hard [4] 2-SET-DR is NP-hard (Thm 2)
1-RANGE-DR is polynomial [2] 1-SET-DR is polynomial [2]

Star RANGE-DR is polynomial’ (Thm 6) 2-SET-DR is polynomial (Thm 3)
6-SET-DR is NP-hard (Thm 5)

Path 2-RANGE-DR is polynomial (Thm 7) 2-SET-DR is polynomial (Thm 7)
RANGE-DR is NP-hard (Thm 9) 5-SET-DR is NP-hard (Thm 10)

Cycle 2-RANGE-DR is polynomial (Thm 13) | 2-SET-DR is polynomial (Thm 13)
RANGE-DR is NP-hard (Thm 14) 5-SET-DR is NP-hard (Thm 15)

distance profiles. Our hardness results are based on reductions from the 3-COLORABILITY
problem. However, the reductions are not similar. Specifically, in the case of weighted stars,
the possible colors of a vertex are encoded in the distance matrix by possible edge weights,
while in the case of weighted and unweighted paths, the colors are encoded by vertices and
their location on the path. The hardness result for 5-SET-DR on the cycle is obtained by a
reduction from 5-SET-DR on the path.

Tables 1 and 2 summarize our results.

Related Work. An optimization variant of DISTANCE REALIZATION problem was introduced
in [12]. In this problem, a distance matrix D is given over a set S of n vertices, and the
goal is to find a graph G including S, with possibly auziliary vertices, that realizes the
given distance matrix for S. Necessary and sufficient conditions are given for a matrix to
be realizable by a weighted or an unweighted graph. It is shown in [9] that an optimal
realization can have at most n* vertices, and therefore, there is a finite (but exponential) time
algorithm to find an optimal realization. In [1] it is shown that finding optimal realizations
of distance matrices with integral entries is NP-complete, and evidence to the difficulties in
approximating the optimal realization is provided in [6]. Over the years, various heuristics
for optimal realizations were considered [13, 16, 17, 19]. Since optimal realization seems hard
even to approximate, special cases and other variations have been studied [6, 11].

! This result requires that the entries of D are polynomially bounded.
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Special attention has been given to the optimal distance realization problem where the
realizing graph is a tree. In [12], a procedure is given for finding a tree realization of D if
exists. It is also shown therein that a tree realization, if exists, is unique and is the optimum
realization of D. Necessary and sufficient conditions for a distance matrix to be realizable by
a tree were given in several papers [3, 8, 17]. Finally, an O(n?) time algorithm for optimal
tree-realization is described in [7].

2 Realizations by Trees and Unweighted Graphs

In this section we consider unweighted realizations in general graphs and both unweighted
and weighted realizations in trees.

2.1 Realizations by Unweighted Graphs

For general graphs, recall that the range realization problem in weighted graphs and the
precise realization problem in unweighted graphs both have a polynomial time algorithm.
We provide an NP-hardness result for RANGE-DR by unweighted graphs, even for 2-range
distance profiles.

» Theorem 1. 2-RANGE-DR is NP-hard in unweighted graphs.

Proof. We prove the theorem using a reduction from the 3-COLORING problem.

Consider an instance G of the 3-COLORING problem. We construct a 2-range distance
matrix D for n + 3 vertices, i.e., for the vertex set {uy,...,u,+3}. Intuitively, we think of
the first n vertices, Vorig = {u1,...,un}, as representing the original vertices of the given
graph G, and of additional 3 vertices of D, V.o = {tn41, Un+2, Unt3}, as representing the
three colors. Let

{1} i=n+1,....n+3, j=n+1,...,n+3,
{2y i=t1n j=n+1,..n+3,
Y28 1<i<j<n, (vivy) ¢ E(G),
{3} 1<i<j<n, (v,v;)€ EG).

We now prove that the input G is 3-colorable if and only if D is realizable by an unweighted
graph. (See Figure 1 for an illustration.)

Suppose G is 3-colorable. Let x : V(G) — {1,...,3} be the coloring function. For the
matrix D defined from G, construct a realizing graph G as follows. Start with a triangle
containing the color vertices ,+1, Un+2,Un4+3. Connect each original vertex u; to the color
Vertex 4 (;)- It is easy to verify that G realizes D (see Figure 1b for an example).

Suppose there exists an unweighted graph G which realizes the matrix D. Consider two
original vertices u; and u;. Since 1 ¢ D, ;, it follows that u; and u; are not connected by
an edge. Therefore, every original vertex u; must be connected to at least one of the color
vertices. Define a coloring function for G as follows. For every original vertex u;, let n + ¢ be
some color vertex connected to u;, and let x(v;) = ¢. Since 1,2 ¢ D; ;, if two vertices v; and
v; are connected by an edge in G, then their distance in G must be at least 3. This ensures
that none of the color vertices are connected to both u; and u; (as this would make their
distance 2). It follows that if (v;,v;) € E(G), then v; and v; are assigned different colors. <«
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(a) A 3-colorable graph. (b) A realization of D.

Figure 1 An example of the reduction in the proofs of Theorem 1 for n = 4. White, gray, and
black correspond to nodes n + 1, n + 2, and n + 3, respectively.

2.2 Tree Realizations

Next, we show that distance realization in unweighted or weighted trees is hard even for
2-set distance profiles. The reduction we use is almost identical to a reduction from [4] that
(implicitly) shows hardness for 3-range distance profiles. The proof is ommited for lack of
space.

» Theorem 2. 2-SET-DR is NP-hard for both unweighted trees and weighted trees.

3 Star Realizations

In this section we study SET-DR in stars. We show that there exists a polynomial time
algorithm that solves weighted 2-SET-DR in stars. On the other hand, we show that 5-SET-
DR on weighted stars is NP-hard. Furthermore, we present a polynomial time algorithm
that solves k-RANGE-DR on weighted stars, for any k, provided that matrix entries are
polynomially bounded.

To put these results in context, it may be useful to observe that the unweighted case in
stars is easier: unweighted k-SET-DR in stars can be solved in polynomial time for any k.

3.1 2-Set-DR on Stars is Easy

We show that the 2-SET-DR problem in stars can be solved efficiently.
» Theorem 3. There exists a polynomial time algorithm for 2-SET-DR on stars.

Proof. Assume that ¢ is the center of the star. It follows that the weight of any edge (i, j),
for j # i can be either dgj or dz{j. Define a Boolean variable x;, where x; = FALSE, if the
weight of the edge (4, ) is df ;, and x; = TRUE, if the weight of the edge (i,7) is dj ;. The
rest of the entries of D are used to create a 2-CNF formula that is satisfiable if and only if
there exists a star realization of D in which 7 is the center.

Consider two vertices j,k # 4. Since there are two possible weights for the edges (3, j)
and (i, k), it follows that there are four possible distances from j to k:

1 d);+dy,

2.
3. dl); + d%k, and
4
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For each one of the above four options, check whether it equals dg-{ & O d}, x- This induces
a truth table on the variable z; and zj, that can be represented by at most two 2-CNF
clauses.? Doing this for all pairs of vertices creates a 2-CNF formula that contains at most
O(n?) clauses by concatenating all the above mentioned clauses.

Suppose that there exists a star realization P of D with i as a center. This induces an
assignment to the variables Boolean variables that satisfies the 2-CNF formula. On the other
hand, assume that the 2-CNF formula that is obtained by assuming that ¢ is the center is
satisfiable. A satisfying assignment induces a star, which complies with the profile.

Since there are n candidates for the center vertex, we need to run the above process n
times. It follows that the total running time of the algorithm is O(n?3). <

We remark that the running time for unweighted case can be improved to O(n?).

» Theorem 4. There exists a polynomial time algorithm for k-SET-DR on unweighted stars,
for any k.

Proof. Since all distances in an unweighted star are either 1 or 2, one may assume that
D; ; C {1,2}, for every i # j. The theorem follows due to Theorem 3. <

3.2 6-Set-DR on Weighted Stars is Hard

We show that the star realization problem is NP-hard even on 6-set distance profiles.
» Theorem 5. 6-SET-DR is NP-hard in weighted stars.

Proof. We prove the lemma using a reduction from the 3-COLORING problem.

Consider a graph G, where V(G) = {v1,...,v,}. We construct a distance matrix D on
n + 3 vertices, denoted by {u1,...,u,+3}. Informally, the distance matrix is defined to force
Upy1 to be the center of the star while u, 12 and wu,+3 must be two of the leaves whose
distance from the center is 1. The rest of the vertices, u1,...,u, that are associated with

the n vertices vy,...,v, of G, are leaves whose distance from the center is either 1, 2, or 4.

The idea is that distance 2¢ is associated with the color ¢ (0, 1, or 2). Finally, the distances
between these n leaves is defined to guarantee that the two endpoints of any edge of G are
associated with different colors, if a realization exists. More formally, the 6-set distance
matrix D is defined as follows for any two indices 1 < k </ <n+ 3:

{3,5,6} k€ <n,(vg,v) € E(G),
{2,3,4,5,6,8} k.0 <n,(vy,v0) € E(G),
{1,2,4} k<nl=n+1,

Dy =
{27335} kgna£:n+27n+37
{11 k=n+14=n+2,n+3,
{2} k=n+2{=n+3.

We show that G is 3-colorable if and only if D is realizable by weighted star.

2 For example, let D;; = {2,3}, Dix = {3,4}, and D, = {5,7}. There are two possible weight
assignments: either w(i,j) = df ; and w(i, k) = df , or w(i,j) = d} ; and w(i,k) = d} , This can be
represented by the clause (—x; V —xi) A (25 V xk).
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u1
v1 V2 2 Un+2
u2
Un+1
us 4
va U3 U4 Unt3
(a) A 3-colorable graph. (b) A realization of D.

Figure 2 An example of the reduction in the proof of Theorem 5 for n = 4. White, gray, and
black correspond to the weights of the edges of the star. Edges without a label are of weight 1.

Assume that G is 3-colorable and x : V — {0,1,2} is a 3-coloring of G. We describe a
star realization S. First, let u,1 be the center of the star. Vertices u, 2 and u, 43 are leaves
such that w(up41, Wnt2) = W(Upt1, Wnt2) = 1. Next, for every ¢ € {1,...,n}, if x(v;) = ¢,
then w(up41,u;) = 2x(vi) Tt is straightforward to verify that S realizes D. In particular, we
observe that the first requirement of D is satisfied, since x is a 3-coloring.

For the other direction, suppose that S is a star realization of D. First, notice that
the above distance matrix makes sure that w, 2, Upt1,Un+3 form a path with two edges of
weight 1. Hence, u, 1 must be the center of the star. We define a coloring x of V(G) according
to the weights of the edges to the center: x(v;) = logy w(up41,u;). X is a proper 3-coloring,
since the first requirement of D ensures that w(un+1,u;) # wW(Unt1,u;) if (vi,v;) € E. This
is because 2 =1+4+1,4 =2+ 2, and 8 = 4 4+ 4 are not members of {3,5,6} which are the
possible distances between u; and u;. (See Figure 2.) <

3.3 Range-DR on Weighted Stars

In [4] it was shown that there exists a polynomial time algorithm that solves the RANGE-DR
problem on a given fixed weighted tree, assuming that non-integral edges weights are allowed.
Let D be a range distance matrix, where D;; = {Di_j, .. ,Djj}. Also, let T = (V, Er) be
a known tree, and let Py, = (k = io, 1, ...,%, , = £) be the unique path from vertex k to
vertex ¢ in T. For each edge (4, j) € Er, let w; ; be the variable that denotes the weight of

this edge. Consider the following linear program:

J=tk,e—1
Z Wi 54, = Dy VP
j=0
j=trk,e—1
+
E Wisi;, < Diy VP
7=0

The algorithm from [4] finds a realization by obtaining a feasible solution to the above
program.

As mentioned above this approach may obtain a realization with non-integral edge weights
and distances. Moreover, it may be the case that there exists a realization with non-integral
edge weights, while a realization with integral edge lengths does not exist. For example,
consider the following distance matrix:
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{oy 8 {3 {12
p_ | B {0y {3y {12}
8t 88 {0y {12

{12y {1,2} {12} {0}

D admits no star realization with integral weights, but if one allows edge lengths and distances
of 1.5, then a realization exists (where vertex vy is the center, and all edge weights are 1.5).

We show that the realization problem with integral edge weights is solvable on stars,
assuming that the entries of D are polynomially bounded.

» Theorem 6. Assume that the entries of D are polynomially bounded. Then there exists a
polynomial time algorithm for RANGE-DR on weighted stars.

Proof. Fix the center of the star, and consider the above LP. Since all paths are of length
one or two, the resulting integer linear program contains at most two variables per inequality.
Since we require integral weights, we add the following integrality constraints: w; € N,
for every i. The feasibility problem of integer programs with at most two variables per
constraint is solvable in O(mU), where m is the number of constraints and U is the range of
the variables [5]. In this case U = max; ;(D;;). <

Notice that the above mentioned NP-hardness for 6-SET-DR, applies to profiles in which
each entry is composed of at most 6 constants, which means that it is polynomially bounded.

4 Path Realizations

In this section we study the realization of distance profiles by paths. We first show that if
each entry of the distance matrix consists of at most two different values then a realization
by a path (if exists) can be found by a polynomial time algorithm. On the other hand, we
show that SET-DR on paths is NP-hard, even on 5-set distance profiles. Both results hold
both for weighted and unweighted paths.

4.1 Algorithm for 2-Set-DR on Paths

A path P realizes the 2-set distance profile D if either distp(i,j) = d} ; or distp(i,j) = d ;
holds for every 7 and j.

We show that 2-SET-DR on weighted paths can be solved by a reduction to 2-CNF
satisfiability, which can be solved in O(m) time [10], where m is the number of clauses.

» Theorem 7. There exists a polynomial time algorithm for 2-SET-DR on weighted paths.

Proof. Assume that the weighted path is embedded on the real line where the vertices are

located at integers and the distance between any two vertices is their distance on the line.

Furthermore, assume that the leftmost vertex is vertex ¢ and it is located at 0.

Any realization of D in which i is the left-most node, implies that vertex j # i is located
either at d(i), ; or at dll,j. Define a Boolean variable x;, where x; = FALSE represents that j is
located at d?yj and x; = TRUE represents that j is located at dZ{ ;- The rest of the entries of
D will create a 2-CNF formula that is satisfiable if and only if there exists a realization of D
on the path in which 7 is the left-most vertex.

Consider the possible placements of two vertices j, k # i. Since each one of them has two
possible placements, it follows that there are four possible placements of j and k:
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; 0 0
J at dé’j and k at d%k,
Jatd;;and k at d;

J at dg,j and k at dak, and
J at dzl,j and k at dik.

For each one of the above four options, check whether it complies with d%k or with d;, k-

ol o\

This induces a truth table on the variable x; and xj that can be represented by at most two
2-CNF clauses. Doing this for all pairs of vertices creates a 2-CNF formula that contains at
most O(n?) clauses by concatenating all the above mentioned clauses.

If there exists a path realization P of the profile, then embed it on the real line such
that the left-most vertex ¢ of P is located at 0. Then, consider the formula that we get
by assuming that i is the left-most vertex of P, and assign values to the Boolean variables
according to the distances from 4. Since P realizes the profile, the 2-CNF formula must be
satisfied. On the other hand, assume that the 2-CNF formula that is obtained by assuming
that i is placed on 0 is satisfiable. A satisfying assignment induces a placement of the vertices
on the real line, and this implies a realization of the profile.

Since there are n candidates for the left-most vertex we need to run the above process n
times. It follows that the total running time of the algorithm is O(n3). <

The same proof works for the unweighted case. One only need to notice that in this case
all the distances are integers in the range {1,...,n — 1} and therefore the placement of the
vertices is a bijection from {1,...,n} to {0,...,n —1}.

» Theorem 8. There exists a polynomial time algorithm for 2-SET-DR. on unweighted paths.

4.2 Hardness Result

RANGE-DR in weighted paths was shown to be NP-hard in [4] using a reduction from
the LINEAR ARRANGEMENT problem. This result also applies to unweighted paths. It is
important to note that the reduction constructs a matrix with unlimited ranges.

We start the section with an alternative and simpler proof that also requires unlimited
ranges.

» Theorem 9. RANGE-DR is NP-hard in both weighted and unweighted paths.

Proof. We prove the theorem using a reduction from HAMILTONIAN PATH. Given a graph
G, construct the following distance matrix:

D“:{{l,...,n—l} (vi,v;) € B(G) ,
T2, on =1} (ui,v) € B(G) .

If G has a Hamiltonian path, then this path induces a realization of D. On the other hand,
a realization of D corresponds to a Hamiltonian path in G. |

Next we show that the SET-DR problem on paths is NP-hard even on 5-set distance
profiles.

» Theorem 10. 5-SET-DR is NP-hard in unweighted and weighted paths.

Proof. We prove the lemma using a reduction from the 3-COLORING problem.

Consider a graph G, where V(G) = {vy,...,v,}. We construct a distance matrix D
on 3n + 2 vertices, denoted {ug, ..., usn+1}. Intuitively, the vertices us;_2, us;—1 and ug;
represent vertex v; in the original graph, and the location of us3;_s encoded the color of v;.
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The vertices uy and ug, 41 are the end-points of the path, and they serve as preference points.

More formally, for every x, we define Z = [2/3]. The matrix is defined as follows for any
two indices 0 < k < ¢ < 3n + 1:

{3n + 1} k=0,0=3n+1,
{30—2,30—1,30} E=0,0€{l,...,n},
{3n—3k+1,3n—3k+2,3n—3k+3} ke{l,....n},(=3n+1,
{1,2} k=1,
Dpy=<{3(—k)+A:Ae{-2-1,01,2}}

o~

1
)

<Y,
kmod3#1orfmod3#1
or (vg,vp) € E(G),
{3(0—k)+A:Ae{-2,-1,1,2}} k<t
k,¢ mod 3 =1, (vz,v;) € E(G) .

)

Observe that D is a 5-set distance matrix. Also, notice that only the last requirement is not
a range, and it consists of a union of two ranges of size 2.

We show that G is 3-colorable if and only if D is realizable using an unweighted path.

Assume that G is 3-colorable and x : V — {0,1,2} is a 3-coloring of G. We describe a
path realization as a placement of the vertices on integral points from 0 to 3n + 1. First,
ug is placed on 0 and ug,41 is placed on 3n + 1. Next, for every i € {1,...,n}, if x(v;) = ¢,
then wug;_o is placed at location 3¢ — 2 + ¢. The vertices us;_1 and ug; are placed at the
two remaining free locations from {3i — 2,3i — 1, 3i}. It is straightforward to verify that P

realizes D. We observe that the last requirement of D is satisfied, since x is a 3-coloring.

See example in Figure 3.

Now suppose that P is a path realization of D. First, notice that the above distance
matrix makes sure that the distance between uy and ug, 41 must be 3n+ 1. Moreover, all the
other distances are strictly less than 3n + 1. Hence, if a path realization exists, then we may
assume without loss of generality that ug is placed on 0 and ug, 41 is placed on 3n+ 1. In the

weighted case, it follows that all other vertices are located at {1,...,3n}, which means that
all edges are of unit length. Since the distances between usz;_o, us;—1 and ug; are 1 or 2, for
every i € {1,...,n}, these three nodes are forced to appear as a sub-path of P consisting of

two edges. Moreover, the required distances from ug and ugy, 41 forces ug;—o, us;—1 and ug;
to be assigned to the three consecutive positions 3¢ — 2,37 — 1, 3¢ on the path. We define a
coloring x according to the positions of {ug;—2 : i € {1,...,n}}. More specifically, x(v;) = ¢
if ug;_o is located at 3¢ — 2 4+ ¢. x is a 3-coloring, since the last requirement of D ensures
that x(vi) # x(v;) if (v;,v;) € E. <

The above proof implies an even stronger result, that we will need in the sequel for the
hardness of 5-SET-DR in cycles.

» Theorem 11. 5-SET-DR is NP-hard in unweighted and weighted paths, even when the
required end-points of the path are given in the input.

5 Cycle Realizations

As was the case with the path, we first show that for 2-set distance profiles a realization by
a cycle, if exists, can be found with a polynomial time algorithm. On the other hand, we
show that the SET-DR problem on cycles is NP-hard even on 5-set distance profiles, by a
reduction from the path realization problem.

13:11
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U1 V2
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(a) A 3-colorable graph G.
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(b) A realization of D.

Figure 3 An example of the reduction in the proof of Theorem 10. White, gray, and black are
colors 0, 1, and 2, respectively. The location of full nodes correspond to the chosen colors.

5.1 Realization of 2-set distance Profiles by Cycles

A cycle C realizes the 2-set distance profile D if either distc (i, j) = dj ; or distc(i,j) = d7 ;
holds for every ¢ and j.
The proofs of theorems 12 and 13 are omitted due to the page restriction.

» Theorem 12. There exists a polynomial time algorithm for 2-SET-DR on unweighted
cycles.

» Theorem 13. There exists a polynomial time algorithm for 2-SET-DR on weighted cycles.

5.2 Hardness Result
We start the section with a hardness proof that requires unlimited ranges.
» Theorem 14. RANGE-DR is NP-hard in both weighted and unweighted cycles.

Proof. We prove the theorem using a reduction from HAMILTONIAN CYCLE. Given a graph
G, construct the following distance matrix:

o {{17---, [5]} (viv) € B(G),
i,j — n

If G has a Hamiltonian cycle, then this cycle induces a realization of D. On the other hand,
a realization of D corresponds to a Hamiltonian cycle in G. <

Next we show that SET-DR on cycles is NP-hard even on 5-set distance profiles using
reductions from the problem on paths, where the required end-points of the paths are given
in the input.

» Theorem 15. 5-SET-DR is NP-hard in unweighted and weighted cycles.

Proof. We use a reduction from the SET-DR in unweighted paths, where D is a 5-set distance
matrix and the required end-points of the path are given in the input, which was shown to
be NP-hard in Theorem 11.

Intuitively, we add 3n vertices n + 1,...,4n, unit weight edges between i and i + 1, for
i €{n,...,4n — 1}, and the unit weight edge (4n,1). Formally, given a matrix D € N**"
we construct a matrix D’ € N4*4n a5 follows:

) 1<k £<n,
Djp = min{({ — k), (4n — £+ k)} n<k</{<dn,
{min{({—-0—-1),dn+1—-£0+4+0)}:0€ D1} 1<k<n,n<{<dn,

Note that we assume without loss of generality that § € Dy, ; if and only if n —1 — 9 € Dy .
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u1i
Udan Un

U3n U2n

Figure 4 Depiction of the reduction in the proof of Theorem 15, from path realization to cycle
realization. The thick line between u; and u, corresponds to the location of the original vertices.

Suppose that D is realizable. In this case, D’ is realizable by using a cycle of total length
4n, where the vertices uq, ..., u, are placed at positions 1,..,n as they are placed in the path
realization. Vertex u;, for i > n is placed at i. (See Figure 4.)

On the other hand, assume that D’ is realizable, and assume that u; and u,, are placed
at locations 1 and n on the cycle. It follows that u; is located at i, for every ¢ > n. In this
case, D can be realized by the arc from 1 to n. |

6 Summary and Open Problems

This paper introduces the parametric SET DISTANCE REALIZATION (SET-DR) problem,
which is an extension of the RANGE DISTANCE REALIZATION (RANGE-DR) problem. We
study the computational complexity of k-SET-DR and k-RANGE-DR, as a function of k, in
various graph families.

Several questions remain open, including the following.

RANGE-DR in weighted general graphs can be solved in polynomial time, but the status

of SET-DR is currently unclear.

For trees, 3-RANGE-DR and 2-SET-DR are NP-hard, but the status of the 2-RANGE-DR

problem remains unsettled.

For stars, the hardness of the k-SET-DR, problem is unsettled for & = 3,4, 5.

For paths and cycles the k-SET-DR problem is unsettled for k = 3, 4.

The status of RANGE-DR for paths and cycles is an open problem.
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