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—— Abstract

We consider the problem of characterizing degree sequences that can be realized by a bipartite

graph. If a partition of the sequence into the two sides of the bipartite graph is given as part of
the input, then a complete characterization has been established over 60 years ago. However, the
general question, in which a partition and a realizing graph need to be determined, is still open. We
investigate the role of an important class of special partitions, called High-Low partitions, which
separate the degrees of a sequence into two groups, the high degrees and the low degrees. We
show that when the High-Low partition exists and satisfies some natural properties, analysing the
High-Low partition resolves the bigraphic realization problem. For sequences that are known to be
not realizable by a bipartite graph or that are undecided, we provide approximate realizations based
on the High-Low partition.
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1 Introduction

1.1 Background and Motivation

Graphic degree sequences are among the most well-researched objects in the domain of
graph realizations, studied extensively for over 60 years. A sequence d = (dy,...,d,) of
non-negative integers is said to be a graphic degree sequence if there exists an n-vertex simple
graph G such that deg(G) = d, where deg(G) denotes the sequence of vertex degrees of
G. The graphic degree realization (GDR) problem requires, given a sequence d, to decide
whether d is graphic, and if so, to construct a graph G realizing it. Erdos and Gallai [18]
gave a complete characterization for graphic degree sequences. However, their method does
not provide a realizing graph. Havel and Hakimi [21, 24] gave an algorithm that, given a
sequence d, generates a realizing graph, or proves that the sequence is not graphic, in time
O(>_,; di) which is optimal.

In this paper we consider the natural variant of the graphic degree realization problem,
referred to as the bigraphic degree realization (BDR) problem, where the realizing graph is
required to be bipartite. A sequence admitting a bipartite realizing graph is called a bigraphic
degree sequence. This problem was mentioned in [33] as an open problem over 40 years ago,
but we are unaware of any attempt to solve it.
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The literature does contain, however, a sizeable amount of research on the simpler variant,
hereafter referred to as the given partition version of the bigraphic degree realization problem,
BDRP" | where the partition of d is given as part of the input. More explicitly, the input
consists of a partition, namely, two sequences a = (a1,...,a,) and b = (b1,...,b,), and
the question is to decide whether there exists a bipartite graph G = (A, B, E) such that
|A| = p, |B| = q, and the sequences of degrees of the vertices of A and B are equal to a and
b, respectively. We refer to such a pair (a,b) as a bigraphic degree partition.

Interestingly, the history of bigraphic degree partitions is as ancient as that of graphic de-
gree sequences. In 1957, Gale and Ryser [19, 35] gave a well-known complete characterization,
known as the Gale-Ryser conditions, for a pair of sequences (a,b) to be a bigraphic degree
partition. These conditions imply also a polynomial time decision algorithm for BDRY (by
applying a variant of the Havel-Hakimi construction procedure).

Given the Gale-Ryser characterization, the fact that the well-known PARTITION problem
is pseudo-polynomial (cf. [9, 16]) would appear to suggest a plausible approach for attacking
the (plain) bigraphic degree realization problem BDR, by searching for a bigraphic degree
partition for the given sequence d. This approach makes sense because d; < n is a necessary
condition for a sequence d to be graphic (or bigraphic), and for such d, finding one of the
partitions (if one exists) is achievable in polynomial time. However, this approach encounters
several immediate obstacles. First, it is possible that some partitions of d are bigraphic
while other partitions are not!. Second, there may be exponentially many different partitions
for a given sequence®. Other approaches may be attempted, based on the special structure
required by a bigraphic degree partition. So far, however, the bigraphic degree realization
remains unresolved: There is no characterization for the class of bigraphic degree sequences,
and it is unknown whether the BDR problem is N P-complete.

Towards attacking the bigraphic degree realization problem we study a specific and
significant type of partitions that separate the degrees of a sequence by their size, i.e., into
two blocks, a block of high degrees and a block of low ones. We refer to such partitions as
High-Low partitions. These partitions represent an extreme approach, striving to maximize
the difference between the degrees on the two sides of the partition. (An opposite extreme
approach would be to try to make the two sides as similar as possible; we study the role
of such partitions, referred to as equal partitions, in [8].) High-Low partitions are thus
interesting in their own right, and can also be viewed as bipartite counterparts of other
partition types considered in the literature, such as core-periphery partitions, which commonly
occur in social networks, see [3, 4, 5, 11, 34, 46].

1.2 Our Contribution

Our key observation concerning the role of High-Low partitions is that there are special
instances where deciding the realizability of the High-Low partition resolves also the BDR
problem, i.e., decides whether the given sequence is bigraphic or not (and if so, provides
an ezxact realization). Moreover, when the BDR problem is decided in the negative or is
unsolved, we are able to generate approzimate realizations for the given sequence based on
its High-Low partition.

1 Consider the sequence (6,6,4,4,2,2,2,2,2,2) which has three partitions: (i.) (6,6,4)(4,2,2,2,2,2,2),
(i.) (6,4,2,2,2)(6,4,2,2,2), and (ii.) (6,6,2,2)(4,4,2,2,2,2). However, only the last partition is
bigraphic.

2 Consider the sequence d = (n,n,n—1,n—1,...,2,2,1,1) of length 2n, for n divisible by 4. Split d into
subsequences Bj = (z,z,z+1,z+1,2+2,2+2,2+3,2+3), for x = 4(j — 1)+ 1, noting that each B; has
three partitions: (.) (z,z+1, 242, 2z+3)(z, z+1, z+2,2+3), (ii.) (z,z,2+3,z+3)(z+1, 241, 242, 2+2),
and (%i.) (x + 1,z + 1,2+ 2,2 + 2)(x,z,z + 3,z + 3). This yields 3"/4 different partitions for d.
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Apart from being easier to generate, approximate realizations are desirable for several
other reasons. In many applications it is required to design a network given some partial
specifications, and returning that there is no suitable network (even provably) is not satis-
factory. Additionally, specifications often rely on imprecise data making exact realizations
unattractive. Bar-Noy et al. [6] survey different applications and types of approximate
network realizations. Our approximate realizations are either

(i) bipartite multigraphs (namely, graphs that allow parallel edges) with low mazimum
multiplicity of parallel edges or

(ii) super-realizations which are bipartite (plain) graphs where a subset of the vertices
adheres to the given degree sequence and with a small number of additional vertices
and edges.

The High-Low partition of a non-increasing sequence d = (dy,...,dy,) has the form
H = (dy,...,dx) and L = (dgy1,...,dy) for some k. The partition (H, L) is balanced if
S di=Yr, 41 di- Clearly, a bigraphic degree partition is necessarily balanced.

Well-behaved High-Low Partition. It turns out that for High-Low partitions, the first
Gale-Ryser conditions are of paramount significance. These conditions stipulate that the
largest degree on each side must not exceed the number of vertices on the other side (or
formally, dy < n — k and dgy1 < k). We refer to a balanced High-Low partition (H, L) that
satisfies the first Gale-Ryser conditions as a well-behaved High-Low partition.

Being well-behaved does not, in itself, ensure that the partition is bigraphic3. It does,
however, enable us to resolve the BDR problem: as we show in Section 3 that the BDR
problem is solvable for a non-increasing sequence d that admits a well-behaved High-Low
partition (H, L). Specifically, when d admits a well-behaved High-Low partition (H, L), it
suffices to test the entire collection of Gale-Ryser conditions on (H, L). If all the conditions
are met, then (H, L) is a bigraphic degree partition, hence d is a bigraphic degree sequence.
If, on the other hand, one or more of the Gale-Ryser conditions is violated for (H, L), then
every partition of d must violate one Gale-Ryser condition and d has no bigraphic degree
partition. It follows that d itself is not a bigraphic degree sequence. On the positive side, we
show in Section 4 that even in case a well-behaved High-Low partition fails to be bigraphic,
it is still what we call 2-bigraphic, namely, it has a realizing bipartite multigraph whose
maximum edge multiplicity is 2.

Multigraph Realizations. Next, we look at sequences that have a balanced High-Low
partition that is not well-behaved, i.e., the first Gale-Ryser conditions are violated. Based
on the High-Low partition we provide approximate realizations by bipartite multigraphs
(without loops) measuring their quality by the maximum multiplicity of edges. We consider
this notion for general graphs and bipartite graphs. Let r, ¢ be positive integers. A sequence
d of non-negative integers is said to be r-graphic if there exists a multigraph G such that
deg(G) = d and the maximum multiplicity of an edge in G is at most r. Similarly, a partition
(a,b) is t-bigraphic if there exists a bipartite multigraph G(A4, B, E) such that the maximum
multiplicity of an edge in G is at most ¢ and the sequences of degrees of the vertices of A
and B are equal to a and b, respectively.

3 Consider the sequence ((6m)™, (2m)>™+1, 12™) (superscripts denote multiplicities of degrees) which has
a well-behaved High-Low partition H = ((6m)™, (2m)™1), L = ((2m)*™,1*™), but it is not bigraphic.
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In Section 4, we show that the balanced High-Low partition (H, L) of an r-graphic
sequence is t-bigraphic where t = max{t(d),2r} and ¢(d) is a parameter indicating the extent
to which (H, L) violates the first Gale-Ryser conditions.

Super-Graph Realizations. In Section 5, we deal with sequences where the High-Low
partition is not balanced, and study the High-Low near-partition obtained by taking H =
{di,...,di} and L = {dj41,...,d,} for the smallest k such that Zle d; > Z?:kﬂ d;. For
sequences where (H, L) satisfies the first Gale-Ryser conditions (called quasi-well-behaved),
we come close to resolving its realizability status: Either we provide a bipartite super-
realization, i.e., a bipartite graph G where deg(G) = d’, and d is a subsequence of d’ such
that |d’'| — |d| < 2(dy — 1) or we decide that d is not bigraphic.

Finally, in Section 6 we show how to combine the results on the two different types of
(single-criterion) approximate realizations to yield bi-criterion approximate realizations, i.e.,
realizations by bipartite super-multigraphs.

1.3 Related Work

Next to characterizing graphic degree sequences, several related questions were considered:
Given a degree sequence, find all the (non-isomorphic) graphs that realize it, count all
its (non-isomorphic) realizing graphs, and uniformly sample a random realization. These
questions are well-studied, cf. [13, 18, 21, 24, 26, 37, 39, 40, 44, 45], and have important
applications in network design, randomized algorithms, social networks [10, 15, 17, 29] and
chemical networks [38]. Miller [30] recapitulates reduced criteria for a sequence to be graphic.
For surveys on graphic sequences, see [41, 42, 43].

Extensive literature exists on finding realizations having certain properties. A degree
sequence is potentially P-graphic if it has a realization with property P where P is some graph
theoretic property. Rao [33] surveys results (see references therein) on several properties
including k-edge/k-vertex connected, hamiltonian and tournament. Characterizing potentially
bipartite sequences, i.e., the BDR problem, is mentioned as an open problem.

Additional results include a characterization for trees (cf. [20]). The existing results on
planar graphs are restricted to k-sequences, in which the difference between max d; and
mind; is at most k, for k = 0,1,2 [1, 36]. Degree sequences of split graphs (see [23]),
threshold graphs (see [22]), matrogenic graphs (see [28]) and difference graphs (see [22]) are
fully characterized. Moreover, Degree sequences of chordal, interval, and perfect graphs were
studied in [12].

Realizations by multigraphs were considered by Owens and Trent [32] showing how to
realize degree sequences with minimum total number of parallel edges or loops (see [31, 27]
for improved algorithms). Interestingly, computing a realization with maximum total number
of parallel edges is known to be N P-hard, see [25].

2 Preliminaries and Definitions

Let G = (V, E) be a multigraph without loops. Denote by E¢ (v, w) the multiset of edges con-
necting v, w € V. The mazimum multiplicity of G is MaxMult(G) = max(, w)ep(|Ea(v, w)]).

2.1 Degree Sequences of Graphs and Multigraphs

Let d = (d1,da, ..., d,) be a sequence of nonnegative integers in nonincreasing order. The
volume of d is y_d =Y, d;. We call a sequence with even volume a degree sequence.
We present the characterization of Erdés and Gallai [18] for graphic degree sequences.
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» Theorem 1 (Erdds-Gallai [18]). A degree sequence d = (di,ds,...,d,) is graphic if and
only if, for£=1,... n,

n

4
S odi<e(t—1)+ Y min{l,d;}. (1)
i=1

i=(+1

We refer to Equation (1) as the ¢-th Erdos-Gallai inequality EGy. The Erdos-Gallai charac-
terization allows us to check if a sequence is graphic or not in polynomial time.

A degree sequence d is r-graphic, for a positive integer r, if there is a multigraph G
such that deg(G) = d and MaxMult(G) < r. The Erdés-Gallai inequalities were extended to
characterize r-graphic sequences.

» Theorem 2 (Chungphaisan [14]). Let r be a positive integer. The degree sequence d =
(d1,da,...,dy) is r-graphic if and only if, for £ =1,...,n,

n

¢
Zdi <rf(f—1)+ Z min{ré, d;}, (2)
i=1

i=0+1

Note that, for a given sequence d, the minimum r such that d is r-graphic can be determined
in polynomial time.

2.2 Degree Sequences of Bipartite Graphs and Multigraphs

Let d be a degree sequence for which > d = 2m for some integer m. A block of d is a
subsequence a such that > a = m. Define B(d) := {a C d | > a =m} as the set of all blocks
of sequence d. For each a € B(d) there is a disjoint b € B(d) that completes it to form a
partition of d (so that merging them in sorted order yields d). We call such a pair a,b € B(d)
a (balanced) partition of d since Y a = > b. Denote the set of all degree partitions of d by
BP(d) = {{a,b} | a,b € B(d), d\ a = b}.

The Gale-Ryser theorem characterizes bigraphic degree partitions.

» Theorem 3 (Gale-Ryser [19, 35]). Let d be a degree sequence and partition (a,b) € BP(d)
where a = (a1,as,...,ap) and b = (b1,ba,...,by). The partition (a,b) is bigraphic if and
only if

L q
Zai < Zmin{ﬂ, b}, (3)
i=1 i=1
fort=1,... p.

We refer to Equation (3) as the (-th Gale-Ryser inequality GRF on the left. By symmetry,
the partition (a, b) is bigraphic if and only if Zle by <Y  min{l,a;}, for £=1,...,q. We
refer to this equation as the ¢-th Gale-Ryser inequality GR? on the right.

Let ¢ be a positive integer. A degree sequence d is t-bigraphic if d has a partition (a, b) €
BP(d) such that there is a bipartite multigraph G = (4, B, E) such that MaxMult(G) < ¢,
|A| = la|, |B| = |b|, and the sequences of degrees of the vertices of A and B are equal to
a and b, respectively. We also say that partition (a,b) is t-bigraphic. Miller [30] cites the
following result of Berge characterizing ¢-bigraphic partitions.

14:5

MFCS 2022



14:6

On High-Low Partitions and Bipartite Realizations of Degree Sequences

» Theorem 4 (Berge [30]). Consider a positive integer t, a degree sequence d and a partition
(a,b) € BP(d) where a = (a1,...,ap) and b= (b1,...,by). The partition (a,b) is t-bigraphic
if and only if

¢ q
Z a; < Zmin{ét, b}, 4)
i=1 i=1
fort=1,... p.

2.3 Ferrers Diagrams, Conjugate Sequences and Majorization

Ferrers diagrams (cf. [2]) are instrumental in illustrating integer sequences and partitions
graphically (see Figure 1).

a b

4 3|e@|@
2 j|e@®|@®
2 00 3|e@|@
2 00 2|l @

Figure 1 The Ferrers diagram of the partition a = (4,2,2,2) and b = (3,3,3,1).

Conjugate sequences provide us with a convenient alternative way to represent the Gale-
Ryser conditions. The prefiz-sum of a sequence d up to index 4 is Y (d[i]) = 23:1 d;. Let the
sequences a, b have the same length, i.e., p = ¢. (If two sequences are not of the same length,
the shorter sequence can be padded with 0’s.) Given a degree sequence d, its conjugate
sequence d = (dy,ds, ..., dq,) is defined by dy = |{i | d; > k}|.

The duality between 3 a[i] and 3" bi] is captured graphically in the Ferrers diagram: a;
is the i-th row on the left, and b; is the i-th column on the right. Consequently, > ali] is the
sum of the first ¢ rows on the left, whereas ZE[Z] is the sum of the first i columns on the
right. (In the figure, the green ovals capture " a[2] and " b[2].)

Majorization is a partial order on degree sequences: a majorizes b (b < a) if and only if
ST[E]) < > (ald]) for every i € [1,4].

Observe that if a > b, then EE a. The Gale-Ryser theorem can now be reformulated using
majorization and conjugates, noting that > 7, min{¢,b;} = Zlegz*

» Theorem 5 (Gale-Ryser [19, 35|, conjugate representation). Let d be a degree sequence and
(a,b) € BP(d). The partition (a,b) is bigraphic if and only if a <b.

Furthermore, a graphic description of the ¢-th Gale-Ryser condition on the left is that the
sum of the first ¢ rows on the left Ferrers diagram (representing a), must be no greater than
the sum of the first ¢ columns on the right Ferrers diagram (representing b). (The sequence
is bigraphic if and only if these conditions hold for every ¢ < p.) As the sequences a and
b (or equivalently their Ferrers diagrams) can switch sides, it is clear that the Gale-Ryser
conditions are symmetric, i.e., a < b if and only if b < a.

3 Well-Behaved High-Low Partitions

In this section, we study sequences that have a well-behaved High-Low partition. Let
d = (di,...,d,) be a degree sequence with a High-Low partition HL(d) = (H, L) where
H = (dy,...,dy) and L = (dg+1,-..,dy), for some positive integer k < n. We assume that
dy <n—k and that di1 <k, i.e., (H, L) is well-behaved.
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In the following, we suppose that (H, L) is not bigraphic implying that at least one
Gale-Ryser condition on H and L, respectively, is not satisfied. Let z be the index of the
first violated Gale-Ryser condition on L, i.e., such that > (L[¢]) < > (H[i]), for i < x, and

> (Lla]) > 3 (Hlz)). (5)
» Observation 6. For a well-behaved HL(d) = (H, L), dj, < z.

Proof. For i < dj, we have that 3 (H[i]) = i-k, and 3 (L[i]) < i - d+1_(see Figure 2).
Since (H, L) is well-behaved, di4+1 < k, and it follows that > (L[i]) < > (H][i]), hence the

ith Gale-Ryser condition on L holds, for i < di. Consequently, = > d. <
i di41
— —

dy,

Figure 2 Y HJi] vs. Y L[i].

» Observation 7. For a well-behaved HL(d) = (H,L), x > k.

Proof. If dj, > k, Ehen the claim follows from Observation 6. Now suppose di < k. We need
to show that > (H[j]) > > (L[j]) for every di < j < k. This follows because

S (H) = S (Hd]) = k- dy = k- dyey = 3 (LE]) = 3 (L[j)- <
Our main goal is to prove the following result.

» Theorem 8. Consider a degree sequence d with a well-behaved High-Low partition HL(d) =
(H,L). If (H, L) is not bigraphic, then d is not bigraphic (i.e., no partition of d is bigraphic).
First, we prove a weaker statement. For some other partition (A, B) € BP(d), define

H™=H\ A, L™ =L\ B, H* = HN A, and L*=LNB.

Moreover, we denote h = |[H™| and ¢ = |L™|. Hence, the partition (A, B) can be viewed as
obtained from (H, L) by moving a subset H™ from the left to the right, and a subset L™
from the right to the left. The subsets H® and L® stay on their respective sides. Note that,
keeping A and B sorted in nonincreasing order, the elements of H™ appear at the beginning

of B and the elements of L™ appear at the end of A. Figure 3 illustrates this transformation.
For an index i and an ordered set of integers S, denote the first ¢ elements of S by S[i].

Moreover, we use ) (S) = > .. g2 to denote the sum of elements in S. In line with our
previous definition, > (S[¢]) is the prefix-sum of S up to index 1.

» Definition 9. Call the partition (A, B) benign if L™ contains at most h of the top x
elements of L, i.e., |L[x] N L™| < h or equivalently |L[x]\ L™| > x — h.

» Lemma 10. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H,L). If (H,L) is not bigraphic, then no benign partition of d is bigraphic.

14:7

MFCS 2022



14:8

On High-Low Partitions and Bipartite Realizations of Degree Sequences

<+« = —>|:TI

Figure 3 Illustration of the transformation from (H, L) to (A, B). Partition (A, B) is benign
since L{z] N L™ is empty.

Proof. Let d and HL(d) = (H,L) be as in the lemma, and let (A4, B) be some benign
partition of d. To show the lemma, we show that ) (B[z]) > Y (A[z]) holds, i.e., the
partition (A, B) violates GRE. First, verify that

22 (Bla]) = 22 (H™) + 32 (L*[x — h)),

and that

5 (Ala]) = X (L) + 5 (H*[#]) (6)
since x > di4+1 by Observation 6. We need to show that Y (L°[z — h]) > > (ﬁ;[x]) since
ST(H™) =>(L™). By Equation (5), it follows that

5 (L)) = S (Lfe = ) + X (L°le — b)) > 2 (Hla)) = 5 (H*[#]) + X (H™[a]).

To finish the proof, we argue that 3 (ﬁ’/”[x]) > > (L[z]) = > (L®[x — h]). Since (A, B) is
benign, L*[x — h] contains at least @ — h rows of L[z], or equivalently L[x]\ L*[z — h] are at
most h rows of L. It follows that

> (Llz]) = X (L[z = h) < h-dp < 52 (H™[x])
where the last inequality holds due to Observation 6. <

Using the symmetry of the Gale-Ryser conditions we prove the following corollary. We
introduce another notation, s = |L[z] N L™|.

» Corollary 11. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H,L). If (H, L) is not bigraphic, then no partition of d where x — s < k — h is bigraphic.

Proof. The result is obtained from switching the definitions of the moving and staying parts.
Partition (B, A) can be viewed as obtained from (H, L) by moving H® from H to L and L*
from L to H. Note that |[H®| = k — h and |L® N L[z]| = x — s. The condition z —s <k —h
implies that (B, A) is benign, and the corollary follows with Lemma 10. |

Another benign case is when the largest element of H™ or H? is smaller or equal to x.
Denote A = min {max {H™} ,max {H*}}.

» Lemma 12. Consider a degree sequence d with well-behaved High-Low partition HL(d) =
(H,L). If (H,L) is not bigraphic, then no partition of d where X\ < x is bigraphic.
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Proof. Consider d and (H, L) as in the lemma. First, we verify the claim for A = max {H™}.

To that end, let (4, B) be a partition of d such that max {H™} < z. To prove the claim, we
show that Y~ (Blz]) > >_ (Alz]) holds. With Equations (5) and (6) it follows that

S (Lla]) > ¥ (He)) = X () + 3 (H7[o)) & 5 (Hola]) + X (H™) = 3 (Af)),

where (%) holds since max { H™} < . Because (H, L) is a High-Low partition, B majorizes
L and, in particular, 3 (B[z]) > 3 (L[z]) > 3 (A[z]) holds.

With the arguments used to prove Corollary 11, the claim also holds in case A = max { H®},
and the lemma follows. |

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Consider d and HL(d) = (H, L) as in the lemma, and let (4, B) be
some partition of d. Towards a contradiction suppose that (A, B) is bigraphic. It follows that

(a) 2 (Blz]) < (Alx)),

(b) > (Alz]) < > (Blx])

(c) A< (B[1) <3 (A[ll)) =k —h+¢,
(d) A<D (AlL) <> (BA)) =n—k+h—1
(e) = <A,

(f) s> h, and

(g) s<z—k+h.
Equations (a), (b), (¢), (d) are Gale-Ryser conditions (see Theorem 3), and the upper

bounds on A hold by definition. As (A, B) is bigraphic, Equation (e) is implied by Lemma 12.

Moreover, Equations (f) and (g) are implied by Lemma 10 and Corollary 11, respectively.
Recall that Equation (5) reads

S (L[2]) > X (Hz]) = X (He[x]) + X (H™[x)).

Note that (d) and (e) imply z < A <n —k+ h — ¢ =|B| (i.e., B[x] is a proper subset of B).

With Equation (a) we have that
Y (H[2]) + X (L™) = 3 (Af2]) > ¥ (Ba]) = ¥ (Lo[x — ) + X (H™).
Since 2 (L™) = 3 (H™) we get a lower bound on Y. (H*[z]):
> (Ho[2]) > 30 (L*[x — h)). (7)

Note that (c¢) and (e) imply x < A <k —h+ ¢ = |A] (i.e., A[z] is a proper subset of A).

Since k — h < x and di4+1 < z, it follows from Observations 6 and 7 that

(L) + 3 (H™[2)) = 32 (Bla]) > Y (Al2]) = X (H®) + 32 (L™ — k + h)).
Since Y (L*) = 3 (H?) we get a lower bound on 3. (H™[z]):

Y (H™[]) > 30 (L™ & — k + h)). (8)
Equation (5) together with Equations (7) and (8) yields

> (Llz]) > >0 (L8[ — h]) + 32 (L™ [z — k + h]).

Observe that L°[x — h| contains L[z] \ L™ as s > h. Since s < z — k + h, L™[z — k + h]
contains L[z] N L™. Tt follows that > (L*[z — h]) U (L™[xz — k + h]) contains L[z], and so

2 (Lre = hl) + 52 (L™ e — k + h]) = 52 (L[2])

holds contradicting the previous equation. Consequently, (A, B) cannot be bigraphic. <
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Theorem 8 implies that the bigraphic realizability status can be fully resolved for a degree
sequence with a well-behaved High-Low partition.

» Theorem 13. Let d be a degree sequence with a well-behaved High-Low partition. It can
be decided in polynomial time whether d is bigraphic or not. If d happens to be bigraphic, a
bipartite graph realizing d can be computed in polynomial time.

Proof. Let d be as in the theorem. Computing the High-Low partition HL(d) = (H, L) is
straight forward. Using the Gale-Ryser theorem (Theorem 3), we decide if (H, L) is bigraphic
or not, and due to Theorem 8 if d is bigraphic or not. If (H, L) is bigraphic, a bipartite
graph realizing d can be computed by applying the Havel-Hakimi algorithm to one side of
the partition (see [7] for details). All steps are performed in polynomial time. <

4 Realizations by Bipartite Multigraphs

Our goal is to provide realizations based on multigraphs without loops where the maximum
multiplicity of parallel edges is used to measure their quality. We examine degree sequences
that have a balanced High-Low partition but are not necessarily bigraphic. Let r be a
positive integer. In the following, we consider an r-graphic degree sequence d with High-Low
partition HL(d) = (H, L) where H = (dy,...,d;) and L = (dg41,...,dn), for some integer
k € [1,n — 1]. We do not assume that d is well-behaved, and quantify the violation of the
first Gale-Ryser conditions with the following definitions. Let

tr(d) = [ndjk] and  tr(d) = {d’“ﬂ :

and define t(d) = max{ty(d),t(d)}. (Note that sequence d has a well-behaved High-Low
partition if ¢(d) = 1.) First, we observe that ¢z (d) is bounded for r-graphic sequences.

» Lemma 14. Let d be an r-graphic degree sequence with High-Low partition HL(d) = (H, L).
Then, ty(d) < 2r.

Proof. Let d be as in the lemma with H = (dy,...,d;) and L = (dk41,...,dy). Since (H, L)
is a High-Low partition, we have that k < n — k. Moreover, d; < r(n — 1) as d is r-graphic.
It follows that

i = |20 < [ < [ < .

The main result of this section is the next theorem. Its proof is omitted in the conference
version of the paper.

» Theorem 15. Let d be an r-graphic degree sequence with High-Low partition HL(d) = (H, L)
and let t = max{t(d),2r}. Then, (H, L) is t-bigraphic.

We remark that the conclusion of Theorem 15 does not hold if the degree sequence d is not
r-graphic. To see this, consider the non-graphic sequence d = ((9m)™ 1, 6m-+1, (3m)3™ 1 11)
for some positive integer m. (We use superscripts to denote the multiplicities of degrees.)
Verify that d has a High-Low partition (H, L) where H = ((9m)™ 1, 6m + 1) and L =
((3m)3m=1 11). We have ty(d) = tr(d) = 3, but the conditions of Theorem 4 for 3-
bigraphic degree sequences are violated. Specifically, the condition for index m — 1 requires
9m(m —1) < (B3m—1)-3-(m — 1)+ 1, which is false.

We complement Theorem 15 by providing an existential lower bound.
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» Lemma 16. There are degree sequences d with High-Low partition HL(d) such that t(d) > 1,
and d is not t'-bigraphic for any t' < t(d).

Proof. Let ¢ be a positive integer, and let p be some prime number. Set & > t(p+1) such that
p is not a prime factor of x, and consider the sequence d = (xP*2 p®). Verify that sequence
d has a High-Low partition HL(d) = (H, L) with blocks H = (zP*!) and L = (z,p®). By
the choice of x and p, d does not have other partitions. We have that ¢(d) = ¢1(d) > ¢. It
follows that d is not #’-bigraphic for any ¢’ < t. <

For graphic degree sequences, we get the following result.

» Corollary 17. Let d be a graphic degree sequence with High-Low partition HL(d) = (H, L)
and t = t(d).

(i) Ift =1, then (H, L) is 2-bigraphic.

(ii) Ift > 1, then (H, L) is t-bigraphic.

If there is a well-behaved High-Low partition, Theorem 8 implies the following result.

» Corollary 18. Let d be a graphic degree sequence with well-behaved High-Low partition
HL(d) = (H,L). Then, either

(i) (H,L) is bigraphic, or

(ii) d is not bigraphic and (H, L) is 2-bigraphic.

Combinatorial Bounds. In the last part of this section, we show bounds on ¢,(d) and ¢5(d)
in case the degree sequence d is r-graphic or bigraphic. The proofs of the following two
theorems are omitted in the conference version of the paper.

We start with r-graphic degree sequences. Lemma 14 provides a bound on tg(d). The
next theorem establishes a bound on tr,(d).

» Theorem 19. Let d be an r-graphic sequence with High-Low partition HL(d) = (H, L).
Then,

tr(d) < PUCT—H)-‘ .

We note that the bound of Theorem 19 is tight and that for graphic sequences, t1,(d) <
tr(d) as well as ty(d) < tr(d) can occur. To see this, consider the following two examples.
(1) The graphic sequence d = (6,3, 3,3, 3,3,3) has exactly one (High-Low) partition (H, L)

with blocks H = (6,3,3) and L = (3,3,3,3). Verify that ¢t (d) = 2 and tg(d) = 1.

(2) The degree sequence d' = ((%)k“, 1MU€_1))7 for a positive integer k, is graphic
(to see this, observe that > d’ is even, and that the (k + 1)th-EG inequality holds; for
such a block sequence this is sufficient, see, e.g., [30]). The (k + 1)th-EG inequality
reads (k(k+1)/2) - (k+1) < k(k+1)+ (k(k+1)/2) - (k — 1), which trivially holds.
Moreover, HL(d") = (H', L") where H' = ((%)k) and L' = ((%)7 1%%—1)).
Hence, |H'| = k and d11 = @

The next result improves the bounds on ¢7,(d) and ¢y (d) for bigraphic degree sequences.

» Theorem 20. Let d be a bigraphic sequence with High-Low partition HL(d). Then,

ty(d) <1, and  tp(d) < [%“/’ﬂ .
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5 Realizations by Bipartite Super-Graphs

We next focus on the situation when the given sequence does not admit a balanced High-Low
partition (with Y H = > L). In this case, we consider the High-Low near-partition (HLnP)
(H, L) of d, obtained by taking H = {dy,...,d;} and L = {dj1,...,d,} for the smallest k
such that Y. H > > L (ie., >, H—dr <> L+dy).

Define the imbalance gap of the sequence d to be IG(d) = > H — > L. Rearranging the
above two inequalities, we get the following.

» Observation 21. 0 < IG(d) < 2d.

In the remainder of this section we assume that IG(d) > 0. We refer to such sequences d as
High-Low-imbalanced. We call the High-Low near-partition (H, L) quasi-well-behaved if it
satisfies the first Gale-Ryser condition on both sides.

The main result of this section is that when the given sequence d is High-Low-imbalanced
but enjoys a quasi-well-behaved High-Low near-partition, it is possible to come close to
resolving its realizability status, in the sense that there is a poly-time algorithm that either
decides that d is not bigraphic, or constructs a bipartite super-realization for d with a small
number of new vertices and edges. We use the operator o to merge two sequences.

» Definition 22. A bipartite (n',m’) super-realization of an n-integer sequence d, for n' > n
and m' > >"d, is a bipartite graph G(A, B, E) such that |[AUB|=n+n', |E| =Y. d+m/,
and deg(AU B) =dod' for some sequence d' of n' integers.

Our algorithm hinges on the idea of completing a High-Low near-partition of a given
imbalanced sequence d into a (balanced) High-Low partition of a larger sequence in a suitable
way. Consider a family D of quasi-well-behaved n-integer nonincreasing sequences. A
mapping ¢ : D — D’ is said to be a valid completion mapping for D if for every d € D such
that HLnP(d) = (H,L) and k = |H|, the generated n'-integer sequence d’ = (d) satisfies
the following properties.

(P1) (H,Lod') is a well-behaved High-Low partition of d o d'.
(P2) If d is bigraphic then d o d’ is bigraphic as well.

The generated sequence d’ = ¢(d) is referred to as the valid completion of d.

We now describe a generic Algorithm A(d,d’) that, given a High-Low-imbalanced n-
integer nonincreasing sequence d with IG(d) =t and a valid completion d’ of p integers for
d, generates a bipartite (p,t) super-realization for d. The algorithm operates as follows.

Construct the High-Low near-partition HLnP(d) = (H, L) for the given sequence d.
Let t < IG(d) =Y H —> L.

Set L' «— L od' (sorted in nonincreasing order).

Test all Gale-Ryser conditions on (H,L’).

If (H, L) is bigraphic, then construct and return a realizing bipartite graph G’ for it.

o ewbh=

Otherwise  (* (H,L') is not bigraphic *)  return “d is not bigraphic”.

» Lemma 23. Consider a sequence d and let d' be a valid completion for d. If Algorithm
A(d,d") returns a graph G’ (Step 5), then it is a bipartite (p,t) super-realization for d. If the
algorithm returns a negative response (Step 6), then d is indeed not bigraphic.

Proof. The first claim follows immediately by the definition of p and ¢ and the fact that G’
is a bipartite realization of (H,L').
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To prove the second claim, suppose (H, L) is non-bigraphic. As d’ is a valid completion
of d, property (P1) implies that (H, L’) is a well-behaved High-Low partition of d o d’. Tt
follows from Theorem 8 that d o d’ is also non-bigraphic. This, in turn, implies by property
(P2) that d is not bigraphic. <

» Lemma 24. Consider a quasi-well-behaved n-integer nonincreasing sequence d with t =
IG(d). The sequence d' = (1) is a valid completion for d.

Proof. To see that (P1) holds, observe that

(1) (H,Lod) is a High-Low partition of d o d’ because the elements of d’ are no greater
than the elements of H.

(2) it is balanced because Y H = > (L od') by the choice of ¢.

(3) it satisfies the first Gale-Ryser condition on the left since (H, L) is quasi-well-behaved,
sodi<n—-k<n-+t-—k.

(4) it satisfies the first Gale-Ryser condition on the right since dj1 satisfies di+1 < k by
the fact that (H, L) is quasi-well-behaved, and dj =1 < k, so max(Lod') < k.

To see that (P2) holds, suppose d is bigraphic, and let G be a bipartite graph realizing it.

Noting that 7G(d) must be even (as it is the difference of two integers whose sum is even), let

M be a matching consisting of ¢/2 edges. Then G U M is a bipartite realization of dod’. <«

We conclude the following.

» Theorem 25. Consider a quasi-well-behaved n-integer nonincreasing sequence d and let
d' = (116D, Then Algorithm A(d,d’), in poly-time, either yields a bipartite (IG(d), IG(d))
super-realization for d or decides that d is not bigraphic.

Our goal is to find a poly-time algorithm that constructs a bipartite super-realization for

d with less new vertices. We continue this analysis in the journal version of the paper.

6 Realizations by Super-Multigraphs

We consider super-multigraph realizations based on the High-Low near-partition. Together,
Theorems 15 and 25 imply the following.

» Corollary 26. Let d be an r-graphic sequence, d' = d o 176D and t = max{2r,t(d")}.
Then, there is a t-bipartite (IG(d), IG(d)) super-realization for d.

If d is quasi-well-behaved and graphic, we apply Corollary 18 yielding the following.

» Corollary 27. Consider a quasi-well-behaved and graphic sequence d and let d' = (11G(@).
Either d is undecided and Algorithm A(d,d') yields in poly-time a bipartite (IG(d), IG(d))
super-realization for d, or d is not bigraphic and has a 2-bipartite (IG(d),IG(d)) super-
realization.
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