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—— Abstract

We define two new computational problems in the domain of perfect genome rearrangements, and
propose three algorithms to solve them. The rearrangement scenarios modeled by the problems
consider Reversal and Block Interchange operations, and a PQ-tree is utilized to guide the allowed
operations and to compute their weights. In the first problem, Constrained TreeToString Divergence
(CTTSD), we define the basic structure-informed rearrangement based divergence measure. Here,
we assume that the gene order members of the gene cluster from which the PQ-tree is constructed
are permutations. The PQ-tree representing the gene cluster is ordered such that the series of gene
IDs spelled by its leaves is equivalent to the reference gene order. Then, a structure-informed gene
rearrangement measure is computed between the ordered PQ-tree and the target gene order. The
second problem, TreeToString Divergence (TTSD), generalizes CTTSD, where the gene order members
are not necessarily permutations and the structure-informed rearrangement based divergence measure
is extended to also consider up to ds and dr gene insertion and deletion operations, respectively,
when modelling the PQ-tree informed divergence process from the reference order to the target
order.

The first algorithm solves CTTSD in O(n~? - (my, - 1.3817 +my)) time and O(n?) space, where y
is the maximum number of children of a node, n is the length of the string and the number of leaves
in the tree, and m, and m, are the number of P-nodes and Q-nodes in the tree, respectively. If one of
the penalties of CTTSD is 0, then the algorithm runs in O(nm~?) time and O(n?) space. The second
algorithm solves TTSD in O(n?y2dr?ds®*m?(my - 57y +my)) time and O(drdsm(mn + 57)) space,
where v is the maximum number of children of a node, n is the length of the string, m is the number
of leaves in the tree, m, and mg, are the number of P-nodes and Q-nodes in the tree, respectively,
and allowing dr deletions from the tree and dg deletions from the string. The third algorithm is
intended to reduce the space complexity of the second algorithm. It solves a variant of the problem
(where one of the penalties of TTSD is 0) in O(ny2dr2ds®m?(my - 47y*n(dr + ds +m +n) +my))
time and O(v2nm2des(dT + ds +m +n)) space.

The algorithm is implemented as a software tool, denoted MEM-Rearrange, and applied to the
comparative and evolutionary analysis of 59 chromosomal gene clusters extracted from a dataset of
1,487 prokaryotic genomes.
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1 Introduction

Recent advances in pyrosequencing techniques, combined with global efforts to study infectious
diseases, yield huge and rapidly-growing databases of microbial genomes [32, 34]. These
big new data statistically empower genomic-context based approaches to functional and
evolutionary analysis: the biological principle underlying such analyses is that groups of
genes that are located close to each other across many genomes often code for proteins that
interact with one another, suggesting a common functional association.

Groups of genes that are co-locally conserved across many genomes are denoted gene
clusters. The order of the genes in distinct genomic occurrences of a gene cluster may not be
conserved. A specific order of the genes of a gene cluster, that is co-linearly conserved across
many genomes, is denoted a gene order of the gene cluster. The distinct genomes in which
a gene order occurs are denoted instances of the gene order. Gene clusters in prokaryotic
genomes often correspond to (one or several) operons; those are neighbouring genes that
constitute a single unit of transcription and translation.

In this paper, our biological goal is to study the evolution of gene clusters in prokaryotes,
by computing the divergence between pairs of gene orders that belong to the same gene
cluster, based on genome rearrangement scenarios. When defining this computational task
as an optimization problem, one needs to take into account that parsimony considerations
may not be sufficient: driven by the objective to keep the genome small and efficient, in
spite of the high rate of gene shuffling in the prokaryotic genome, only gene orders that are
reinforced by conveying some advantage in adaptation will be kept in the genome. This
calls for a structure-informed genome rearrangement divergence measure that will interleave
parsimony considerations with some learned structural and functional information regarding
the gene cluster under study. Such a measure could more accurately assess the degree of
divergence from one order of a gene cluster to another, and provide further understanding of
gene-context level environmental-specific adaptations [20, 1].

To this end, we propose a new structure-informed rearrangement-based divergence measure
and provide efficient algorithms to compute it. According to our approach, information
regarding the structure of the gene cluster is learned from the known gene orders of the gene
cluster and represented by a PQ-tree (defined in Section 2). The PQ-tree is then utilized to
both guide the allowed operations and to compute their weights.

PQ-trees have been advocated as a representation for gene clusters [10, 6, 38]. A PQ-
tree describes the possible permutations of a given sequence, and can be constructed in
polynomial-time [25]. The PQ-tree representing a given gene cluster describes its hierarchical
inner structure and the relations between instances of the gene cluster succinctly, assists in
predicting the functional association between the genes in the gene cluster, yields insights
into the evolutionary history of the gene cluster, and provides a natural and meaningful way
of visualizing complex gene clusters. We refer the reader to Figure 6 (Section 5.2) for two
exemplifications of gene clusters and their representative PQ-trees. The figure also illustrates
a couple of gene orders per each exemplified gene cluster.

The biological assumptions underlying the representation of gene clusters as PQ-trees is
that operons evolve via progressive merging of sub-operons, where the most basic units in this
recursive operon assembly are colinearly conserved sub-operons [19]. In the case where an
operon is assembled from sub-operons that are colinearly dependent, the conserved gene order
could correspond, e.g., to the order in which the transcripts of these genes interact in the
metabolic pathway in which they are functionally associated [35]. Thus, rearrangement events
that shuffle the order of the genes (or of smaller sub-operons) within this sub-operon could
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affect the function of its product. On the other hand, inversion events in which the genes
participating in this sub-operon remain colinearly ordered with respect to the transcription
order, have less of an affect on the interactions between the sub-operon’s gene products.

The case of colinearly conserved sub-operons is represented in the PQ-tree by a Q-node
(marked with a rectangle), and by a Reversal operation in the corresponding pairwise gene
order rearrangement scenario. In the case where an operon is assembled from sub-operons
that are not colinearly co-dependent, convergent evolution could yield various orders of the
assembled components [19]. This case is represented in the PQ-tree by a P-node (marked
with a circle), and by a Block Interchange operation in the corresponding pairwise gene order
rearrangement scenario.

Background on Structure Informed Rearrangement Scenarios. A generic formulation of
genome rearrangement problems is, given two genomes and some allowed edit operations, to
transform one genome into the other using a minimum number of edit operations [17, 11, 14,
26]. A famous algorithmic result related to genome rearrangements concerns the problem
of sorting signed permutations by Reversals. This problem aims at computing a shortest
sequence of Reversals that transforms one signed permutation into another, and can be
solved in polynomial time [22, 7, 30]. It was later generalized to handle, still in polynomial
time, multichromosomal genomes with linear chromosomes, using rearrangements such as
Translocations, chromosome Fusions and Fissions [21, 24]. Then, a general operation called
Double Cut-and-Join (DCJ), was introduced in [36] for handling problem instances where
the common intervals are organized in a nonlinear structure. A DCJ can be, among others,
a Reversal, a Translocation, a Fusion or a Fission, but two consecutive DCJ operations can
also simulate a Block-Interchange or a Transposition.

Previous works proposed related forms of structure-informed genome rearrangements
by considering rearrangement scenarios on two permutations that preserve their common
intervals (groups of co-localized genes). Such scenarios, which may not be shortest among all
scenarios, are called perfect [18]. Computing a Reversal scenario of minimum length that
preserves a given subset of the common intervals of two signed permutations is NP-hard [18]
and several papers have explored this problem, describing families of instances that can
be solved in polynomial time [2, 3, 28, 16], fixed parameter tractable algorithms [3, 5],
heuristics [8], and an exponential time algorithm (which works also in the more general
weighted case) [23]. We note that all the perfect scenarios mentioned above considered
only Reversal operations, while for our settings Block-Interchange operations should also be
considered.

In [4] the notion of perfect scenario was extended to the Perfect DCJ model, thus capturing
additional operations in perfect scenarios, including Cut, Join and Block-Interchange. When
considering the perfect rearrangement scenarios that best fit our problem, this is the model
that is most relevant to our settings, as the other previous works do not include the Block-
Interchange operation. The operations considered by the Perfect DCJ model are very general,
which renders the problem computationally intractable in its general setting. Indeed, Berard
et al. [4] thus only obtain positive algorithmic results for special cases that, in particular,
do not encompass the structure of a PQ-tree, and with a parameter that can often be of
the magnitude of the entire input size. For us, the aforementioned special cases are too
restricted, and cannot model the problem we have at hand. On the other hand, fortunately,
for us, considering Cut and Join operations is an unjustified overhead. Specifically, we seek
to model the considered evolutionary scenarios by a formulation that is more specific to our
biological problem, in order to increase the divergence measure accuracy as well as tighten the
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parameters driving the complexity of the algorithms for the problem. Since, in our problem,
we are dealing with prokaryotic gene clusters and the data in our experiment is typically
confined to one chromosome per genome, we need not consider Cut and Join operations.
In addition, the intervals in prokaryotic gene clusters follow a strongly conserved hierarchy,
naturally modeled by the PQ-tree learned from the members of the gene cluster. In terms of
divergence measure accuracy, we would like to enforce the PQ-tree structure as a constraint
to the considered rearrangements. Furthermore, while the Perfect DCJ model is unweighted
(and simply counts the number of DCJ operations applied), we use the PQ-tree as a guide
affecting the weights of the applied rearrangement operations. In terms of tightening the
parameters driving the complexity of the computation, the PQ-tree constraint enables us to
use dynamic programming algorithms and to reduce the parameter from n to the out degree
of the tree. In particular, this means that the more hierarchical the input is, the smaller our
parameter is likely to be, and the faster our algorithm is — in other words, the running time
of our algorithm naturally scales with the amount of structure given by the PQ-tree.

Our Contribution. We propose a new, two-step approach to structure-informed gene order
rearrangement: In the first step, given the gene orders of the gene cluster under study,
the internal topology properties of a gene cluster are learned from its corresponding gene
orders and a PQ-tree is constructed accordingly. Then, in the second step, given a reference
gene order and a target gene order, a structure informed rearrangement is computed from
the reference to the target, such that colinear dependencies among genes and between sub-
operons, as learned by the PQ-tree, are taken into account by the penalties assigned to the
rearrangement operations.

To this end, we define two new theoretical problems and propose three algorithms to solve
them. In the first problem, denoted Constrained TreeToString Divergence (CTTSD), we define
the basic structure-informed rearrangement based divergence measure. Here, we assume
that the gene order members of the gene cluster from which the PQ-tree is constructed are
permutations. The rearrangement operations considered by this problem include (weighted)
Reversals and Block-Interchange operations. In this problem, the PQ-tree representing the
gene cluster (Figure 6.A) is ordered such that the series of gene IDs spelled by its leaves is
equivalent to the reference gene order (Figure 6.B). Then, a structure-informed, weighted
genome rearrangement measure is computed from the ordered PQ-tree to the target gene
order (Figure 6.C).

The second problem, denoted TreeToString Divergence (TTSD), is a generalization of the
first problem, where the gene order members are not necessarily permutations and the genome
rearrangement measure is extended to also consider up to dg gene insertion operations and
up to dr gene deletion operations.

The first fixed parameter tractable (FPT) algorithm (in Section 3) solves CTTSD in
O(ny? - (my, - 1.3817 4+ my)) time and O(n?) space, where 7 is the maximum number of
children of a node, n is the length of the string and the number of leaves in the tree, and
my and m, are the number of P-nodes and Q-nodes in the tree, respectively. If one of the
penalties of CTTSD is defined to be 0, then the algorithm runs in O(nm~?) time and O(n?)
space.

The second FPT algorithm (in the full version) solves TTSD in O(n?y2dr2ds*m?(m,, -
57y+4my)) time and O(dpdsm(mn+57)) space, where  is the maximum number of children
of a node, n is the length of the string, m is the number of leaves in the tree, m, and m, are
the number of P-nodes and Q-nodes in the tree, respectively, and allowing d deletions from
the tree and dg deletions from the string.
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While our first algorithm is simple and intuitive (based on one dynamic programming
and two greedy procedures), for our second algorithm (based on three dynamic programming
procedures), more technical ingredients are required. For example, one challenge is the
need to compute a vertex cover in a graph that is not fully known by any single entry of
our dynamic programming table. Specifically, when we consider a single entry, some of the
relevant vertices are not yet processed, and for those that are processed, we cannot store

enough information (for the sake of efficiency) so as to deduce which edges exist between them.

The third FPT algorithm (in the full version) is intended to reduce the space complexity
of the second algorithm. It solves a variant of the problem (where one of the penalties of
TTSD is defined to be 0) in O(ny2dr*ds*m?(m, - 47v*n(dr + ds +m + n) +m,)) time
and O(y?nm?2drds(dr + ds + m + n)) space. This algorithm employs the principle of
inclusion-exclusion for the sake of space reduction, which, to the best of our knowledge, is
not commonly used in the study of problems in computational biology.

The proposed algorithms are implemented as a software tool, denoted MEM-Rearrange,
and applied to the comparative and evolutionary analysis of 59 chromosomal gene clusters
extracted from a dataset of 1,487 prokaryotic genomes (in Section 5). Our preliminary results,
based on competitive analysis of the 59 gene clusters, indicate that our proposed measure
correlates well with an index that is computed by comparing the class composition of the
genomic instances of the two compared gene orders. The correlations yielded by our measure
show some advantage over the correlations computed for the basic (not structurally informed)
Signed Break-point Distance [9], an advantage that grows monotonically with increase in the
number of Q-nodes in the PQ-tree. Two of the gene clusters from the benchmark are used to

illustrate how our approach can be applied to the study of rearrangement-based adaptations.

Roadmap. The rest of the paper is organized as follows. In Section 2, we formally define the
terminology used throughout the paper, and, in particular, the two problems studied in this

paper. Some of the more standard definitions are deferred to the full version of this paper.

Due to space constraints, our second algorithm, which solves the TTSD problem, is given
only in the full version. In Section 3, we present our first algorithm, which solves the CTTSD
problem. Due to space constraints, some details — in particular, pseudocode and complexity
analysis — are deferred to the full version. Our third algorithm, which reduces the space
complexity of our second algorithm to be polynomial in a special case, is also deferred to the
full version. In Section 4, we specify the details of our data set construction and experiment.
In Section 5, we compare the performance of our proposed rearrangement measure versus
that of signed break-point distance on a benchmark of 59 chromosomal gene clusters and
provide a detailed exemplification of the difference between the two rearrangement measures
on two of the gene clusters from the benchmark.

2 Preliminaries

Let S = s1...s, be a string, S[i] = s;, and S[i : j] = s;...s;.

PQ-Tree: Representing the Pattern. A PQ-tree is a rooted tree with three types of nodes:
P-nodes, @-nodes and leaves. The children of a P-node can appear in any order, while the
children of a Q-node must appear in either left-to-right order or right-to-left order. The
possible reordering of the children nodes in a PQ-tree can potentially create many equivalent
PQ-trees. Booth and Lueker [10] defined two PQ-trees T' and T” as equivalent (denoted
T =T') if and only if one tree can be obtained by legally reordering the nodes of the other,
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as described above. A generalization of their definition, to allow insertions and deletions, is
defined as follows. Two PQ-trees T, T’ are quasi-equivalent with parameter d, denoted by
T =4 T', if and only if 77 can be obtained by (a) randomly permuting the children of the
P-nodes of T, (b) reversing the children of the Q-nodes of T, (c) deleting up to d leaves of
T. Denote by T, the subtree of a PQ-tree T rooted in the node z. Denote by Leaves(x) the
set of leaves of T, span(z) = |Leaves(x)|, and for a set of nodes U, span(U) = >, -, span(v).
Denote by children(z) the set of children of z, and let rootr be the root node of T.

Given a PQ-tree T, we denote the label of a leaf x by label(z). The frontier T, denoted
F(T), is the sequence of labels on the leaves of T read from left to right. In addition, for
each node in a PQ-tree (internal node or leaf), we define a unique “color”, which will help us
distinguish and map between nodes of two quasi-equivalent PQ-trees. Specifically, we use
colors to keep track of which operations are performed on a tree when reordering it. From
now on, when we say that two PQ-trees T, T" are quasi-equivalent, we assume that the
equivalence is with parameter d. In addition, we assume that the PQ-trees T, T’ are colored
as follows: each color is assigned to one node in T and at most one node in 7”, and the nodes
in 7" have the same colors as their corresponding nodes in T'. In addition, we say that the
frontier of T', F(T"), is derived from T, and we call this a derivation. We also say that T” is
ordered as F(T”). When a string S is derived from T, we also say that S is derived from z.
Given two quasi-equivalent PQ-trees T, T” and two nodes x € T and ' € T’, x and 2’ are
equivalent nodes if they share the same color.

Break-Point Distances. A signed string is a string where each character is assigned a sign
(‘47 or 7). Specifically, we suppose to have a function sign that returns the sign of the
character in each position in S. A gene mapping M of two strings, G = g1,...,9, and
H =h,..., hny, is aset of pairs (g;, h;) € G x H such that g; = h; and every position in G
and H is in exactly one pair in M. Now, we can define the notion of a signed break-point:

» Definition 1 (Signed Break-Point). Given two signed strings G = g1,... ,gn, H =
hi,...,hy and a gene mapping M, a signed break-point between G and H is a pair of consec-
utive genes g;gi+1 i G (resp. hjh;jy1 in H) such that g; and g;41 (resp. h; and h;+1) belong
to M, say, (gi,h;), (git1,hi) € M (resp. (hi,g;), (hix1,9x) € M), but neither k = j+ 1,
signg (i) = signg (j) and signg(i + 1) = signp (k), nor k = j — 1, signg(i) = —signy (j) and
signg(i + 1) = —signy (k).

Denote by NUMsgp (G, H, M) the number of signed break-points of G between G and
H with respect to M. The signed break-point distance between G and H, denoted by
dsgp(G, H), is the minimum of NUMsgp (G, H, M) among all gene mappings M. For example,
let S1 = 4+a+b+c+d and Sy = +a —b—d — c. Then, there exists exactly one gene mapping
of S1 and Sy. The signed break-points of Sy are the pairs (a,b), (b, ¢), and dsgp(S1,S2) = 2.
To accommodate deletions, we will use the notion of signed break-point distance with respect
to strings obtained from the given ones after deleting characters.

Problem Preliminaries. Given an internal node z in a PQ-tree T, let sign(x) be the majority
sign of Leaves(x). If the number of negative signs is equal to the number of positive signs, we
abuse notation and consider sign(x) as + as well as —. Given a node x in a PQ-tree, let S(z)
denote the signed string of colors of the nodes in children(x) as they are ordered in the tree
(from left to right). For example, consider Figure 1.a where letters represent colors; then,
S(z)=4b+¢, S(y)=4+a+z+dand S(zx) =4y +e+ f.
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Towards defining the divergence from an (ordered) PQ-tree T to a string S, we define a
penalty for taking an action on an internal node of a PQ-tree, denoted by Ayiolation, Which is
a combination of several types of penalties. The first type concerns large units that “jump’
while reordering the children of a P-node x to have the same order as those of its equivalent

Y

node z’. If the size of a unit that jumps is ¢, then we penalize this operation by (¢ —1)/2. In
particular, a leaf does not get penalized. To do so, we build a graph G|z, '], whose vertex
set is the children of z. Each ¢ € children(x) has a weight of (span(c) — 1)/2. This weight
represents the penalty for a jump of a large unit; we divide by 2 so that this penalty, even
when the unit size is 2, will be smaller than the penalty for a break-point. G|z, '] has an
edge for each pair of children that change their signed order, defined as follows.

» Definition 2 (Change Of Signed Order). Let x, 2’ be two equivalent P-nodes of two quasi-
equivalent PQ-trees T and T' with parameter d, S(x) = c1, ... , ¢, be the signed string of colors
of the nodes in children(x) that were not deleted, as they ordered in T, S(z') =¢},... ¢, be
the signed string of colors of the nodes in children(a’), as they ordered in T', and M be the
gene mapping of S(x) and S(z'). Given two nodes y (with color ¢; and y' is the equivalent
node of y in T') and z (with color c; and 2’ is the equivalent node of z in T") in children(x),
say, j > 1, and such that (c;, c},), (¢j,¢c;) € M for some ¢, and ¢}, y and z change their signed
order if the following are both false: (1)t >k, sign(y) = sign(y’) and sign(z) = sign(z’) (2)
t <k, sign(y) = —sign(y’) and sign(z) = —sign(z’).

Let G = (V, E) be a graph with a vertex weight function w. The minimum weight of
a vertex cover of G is the minimum weight among all vertex covers of G (where a vertex
cover is a set S C V such that every edge of G has at least one endpoint in S, and its weight
is the sum of weights of its vertices). After building G|z, '], we find the minimum weight
of a vertex cover of G[z,z’] in order to sum all penalties for the units that jumped while
reordering the children of a P-node. Observe that by computing the minimum weight of a
vertex cover, we identify a “best” (in terms of penalty) set of nodes that jump. The vertices
of the vertex cover itself are considered to be the units that jump.
» Definition 3 (Aﬁmp(x,x')). Given two equivalent P-nodes x and x' of two quasi-equivalent
PQ-trees with parameter d, and the weight t of a minimum weighted vertex cover of Glx,z'],

the jump violation between x and x', denoted by Aﬁmp(x,x'), is t.

Given two equivalent nodes z, z’ of two quasi-equivalent PQ-trees T' and T (where z is
not deleted), let isFlipped(x, 2’) return 1 if z and 2’ “flipped”, and 0 otherwise. That is, if
and 2’ are leaves, isFlipped(x,2’) = 1 if sign(z) = —sign(a’); otherwise, isFlipped(x,z’) = 0.
If  and 2’ are internal nodes, isFlipped(z,2’) = 1 if for each child y € children(z) that is
not deleted, isFlipped(y,y’) = 1 where y’ is the child of z’ equivalent to y, and the order of
children(z’) in T” is the reversal of the order of children(z) in T'; otherwise, isFlipped(z, z’) = 0.
Given an internal node x, denote by S;(x) the set of signed strings where S € Sy(x) if S
is obtained from S(z) by deleting up to d leaves from T,. Now, we are ready to define the
penalty for violation between z and z':

» Definition 4 (A% ... (7, 7). Given two equivalent internal nodes x and ' of two quasi-
equivalent PQ-trees with parameter d, and input numbers 53(1 and 5]%,, the violation between
x and ', denoted by A% (x,2'), is defined as follows.

violation

If x is a P-node, AP . (z,2") = gerfléir(lx)dsgp(g, S(@) + Afomp (. 2").
If x is a Q-node, AS . (z,2') =62, - min dsgp(S,S(x")) + isFlipped(z, z') - 5]§|fp.

SeSi(x)
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(a) (b)

Figure 1 (a) A PQ-tree T. (b) A PQ-tree that is equivalent to 7" and is ordered as S. Note that
a P-node is denoted by a circle and a Q-node is denoted by a rectangle.

When d is clear from the context, we will use the notation Ayiojation instead. In Definition 4,
one of the penalties for reordering the children of a Q-node x is the flip penalty (6%3), and it
is performed if x flipped. Here, notice the case where x flipped and all of its non-deleted
children flipped as well (including the P-nodes). Then, we penalise each of the non-deleted
children and z as well for flipping, but, the event is flipping only z. Thus, we unnecessarily
penalise the non-deleted children. Therefore, we define a “flip correction” procedure:

» Definition 5 (FlipCorrection(z, z’)). Given two equivalent internal nodes x and x’ of two
quasi-equivalent PQ-trees with parameter d, the flip correction between them, denoted by
FlipCorrection(x, '), is 0 if not all of children(x) flipped or deleted, and otherwise it is the
sum of the flip penalties of all of the Q-nodes and leaves in children(z) that were not deleted.

Finally, we sum up the violations (and corrections) of all internal nodes to define the
divergence from an ordered and labeled PQ-tree to a signed string:

» Definition 6 (Mpivergy,. 4. (7,5)). Let T be an (ordered and leaf-labeled) PQ-tree, and S
be a signed string. Let Op be the set of all quasi-equivalent T' PQ-trees of T with parameter
dr (i.e. T 2. T') such that T' is ordered as a substring of S obtained by deleting up to dg
characters from S. For any T' € Op, let M7 be the unique' mapping of each node in T’ to
its equivalent node in T'. Then,

Mpiverg g, 45 (155) = minT Z (Ayiolation (z, ") — FlipCorrection(x, z')).

In case dr = 0 and dg = 0, let Mpjverg (T, 5) = MDiverg . ds (T,5S).

For example, consider the PQ-tree T' in Figure 1, which is ordered as +a+b+c+d+e+ f,
and the signed string S=+4+f —c—b—a—d+e. Toorder T as S, flip the Q-node z, and
pay AQ (2,2) = 52 . For the P-node y, swap between a and z, so dsgp(S(y), S(y')) = 1;

violation flip®
hence, AP . (y,y') = 1 (there is no jump of a large unit, because the leaf a can jump).

Finally, for the P-node x, AL (z,2’) = 0 (order the children by moving the leaf f to

Jump

the left-most position), and dsgp(S(z),S(2’)) = 1. Thus, AP (z,2’) = 1. In total,

violation

mDiverg(Ta S) = ASolation (27 Z/) + A\F/)iolatic;n (y7 y/) + A\l/piolation (x’ .7,‘/) = 61’%}3 +2.

! Note that uniqueness follows from our use of colors.
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Problem Definitions

Constrained TreeToString Divergence. The input to CTTSD consists of two signed per-
mutations of length n, S1 = o1...0, € ¥", |X| = n, such that o; # o; for all 1 <i < j <n,
and So = A;...\, € X" such that A\; # \; forall 1 < i < j < n; a PQ-tree T' ordered
as S7 with m, P-nodes and m, Q-nodes; and two numbers 5§rd and (5%). The output is
Mpiverg (I, S2) or “NO” if Sy cannot be derived from T

TreeToString Divergence. Generalizing CTTSD, in TTSD we do not assume that the
strings are permutations, and we allow deletions. The input to TTSD consists of two signed
strings, S1 =01...0, € X and So = A1 ... A, € £Y; a PQ-tree T ordered as S; with m,
P-nodes and m, Q-nodes; dr € NU{0}, which specifies the number of allowed deletions from
T; dg € NU {0}, which specifies the number of allowed deletions from Sz; and two numbers
53(1, 6fcﬁp indicating the penalty of the events of changing order and flipping, respectively,
a Q-node. The output is MDiverg 4. d (T, S2) or “NO” if Sy cannot be derived from T with
respect to dr and dg.

3 Constrained TreeToString Divergence Algorithm

In this section, we present a greedy FPT algorithm to solve CTTSD. Our algorithm consists
of three components: the main algorithm, and two procedures called P-Mapping and Q-
Mapping. We first present and explain the main algorithm and the procedures. Afterwards,
we demonstrate the execution of the algorithm. We remark that, since we consider a string
and its reversal (with all signs negated) to be equal, we run the algorithm twice: once on the
input string, and once on its reversal.

The Main Algorithm. Recall that the input to CTTSD consists of two signed permutations
S1 and Ss of length n, two numbers (5§€d and 6]%), and a PQ-tree T ordered as S;. If Sy
can be derived from T, then the output of the algorithm is the divergence from T to Ss,
Mpiverg (T, S2). Otherwise, the output is “NO” (specifically, the algorithm returns o).

The main algorithm constructs a 2-dimensional DP table A of size m’ x n where m/ =
n + my, + my is the number of nodes in 7. For each node z in T and index ¢, A has an
entry A[z, f]. In the algorithm, for each node z, we keep two indices £ and r (denoted by
x.£ and z.r respectively) such that Sa[z.¢ : z.r] is derived from T,. Then, the purpose of
an entry of the DP table, Alz,z.f], is to hold the divergence from the subtree T, to the
substring Sa[z.¢ : x.r] of So. That is, A[x, z.£] = Mpiverg(T, S2[z.¢ : z.7]). If any substring
of Sy starting at position ¢ cannot be derived from Ty, then Az, ¢] = co.

Some entries of the DP table define illegal derivations. Such are derivations where the
length of the frontier of the subtree is larger than the length of the longest subsrting starting
at the specified index ¢. These entries are called invalid entries and their value is defined as
oo throughout the algorithm. Formally, an entry A[x, ¢] is invalid if span(z) > n — £ + 1.

The algorithm first initializes the entries of A that are meant to hold divergences of
derivations of every possible substring of Sy (a single character) from the leaves of T.
Specifically, for a leaf x, if it did not flip, we put 0 in the corresponding entry. If x did
flip, we put 5&. After that, we update z./ and x.r. As described in the initialization, if
label(x) = Sa[f], Sa[¢] (S2[¢ : ¢]) is derived from label(z) = S3[¢], then we put 0 or 5%) in
Alz, (] and we put £ in z.£ and x.r.

After the initialization, all other entries of A are filled as follows. Go over the internal
nodes of T' in postorder. For every internal node z, go in descending order over every index
1 < ¢ < n that can be a start index for the substring of Sy derived from T}, (in case of invalid
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entry, we continue to the next iteration). For every x and ¢, use the algorithm for P-mapping
or Q-mapping according to the type of x. Both algorithms receive the following input: the
node x, Sy, start and end indices £, e of a substring of S;, and the collection of derivations of
the children of x (entries of A that have already been computed and hold the divergence of a
derivation). In addition, the Q-Mapping algorithm receives as input the penalty parameters
63(1 and 6%3. After being called, both algorithms return the divergence from T} to Sa[¢ : €],
that is, Mpiverg(T%, S2[¢ : €]).

Finally, having filled the DP table, A[rootr, 1] holds the divergence from T to So
(Mpiverg (T, .52)), and so we return Afrootr, 1].

P-Node Mapping: The Algorithm. Recall that the input consists of a P-node z, a string
So, two indices ¢ and e, and a set of derivations D. Notice that each value in D is the
divergence from the subtree rooted in a child ¢ of x to Sa[c.f : c.e], where Safc.l : c.e] is a
substring of S3[¢ : €] that is derived from T.. These values, A|c, c.f] for each ¢ € children(x),
were calculated in earlier iterations and saved in D. If Sa[¢ : €] can be derived from T,
then the output of the algorithm is the divergence from T}, to S2[¢ : €], Mpiverg (T, S2[¢ : €]).
Otherwise, the output is “NO” (specifically, the algorithm returns oo). Denote by T, the
quasi-equivalent PQ-tree of T, ordered as S3[¢ : €]. Note that if T, exists, then it is unique
(because we deal with permutations and forbid deletions).

The algorithm first checks if the interval [¢,e] can be “completed” by all of the intervals
defined by the indices of the children of x. Specifically, we check if there is any order
of the children of x, say, ordered as ci, ..., Cjchildren(z)] € children(x), such that ¢;.0 = ¢,
Clchildren(z)|-€ = €, and for each 1 < j < |children(z)| — 1, ¢j.e + 1 = ¢;41.£. If there is no such
order, then the interval [/, e] cannot be completed, and so Sa[¢, ] cannot be derived from
T.. In this case, we return co. Otherwise, Sa[¢ : €] can be derived from T, by reordering
the children of z according to the unique order that completes the interval [¢,e]. Second, we
sum up all of the values in D (and store the sum in the variable childrenDist). Next, we
calculate the violation between z and its equivalent node z’ in 70, AP .
to Definition 4 (and store the result in the variable violation). Finally, we return the sum of
childrenDist and violation, which is the divergence from T, to S2[l : €], Mpiverg (x, S2[¢ : €])
(according to Definition 6).

(x,2), according

Q-Node Mapping: The Algorithm. Recall that the input consists of a Q-node z, a string
So, two indices ¢ and e, a set of derivations D and penalty parameters 5§fd and 5]%). Notice
that each value in D is the divergence from the subtree rooted in a child ¢ of x to Sa[c.f : c.e],
where Sz[c. : c.e] is a substring of S3[¢ : €] and is derived from T,. These values, Alc, c./]
for each ¢ € children(z), were calculated in earlier iterations and saved in D. If Sa[¢ : €] can
be derived from T}, then the output of the algorithm is the divergence from T}, to S3[¢ : €],
Mpiverg (T, S2[ : €]). Otherwise, the output is “NO” (specifically, the algorithm returns co).
Denote by T, the (unique) quasi-equivalent PQ-tree of T, ordered as Sz[¢ : €].

The algorithm first checks if the interval [¢, e] can be “completed consecutively” by all of
the intervals defined by the indices of the children of x. Specifically, we check if there is a
consecutive order of the children of x, say, ordered as ci, ..., Cchildren(z)| € children(z), such
that c1.£ = £, C|children(z)|-€ = €, and for each 1 < j < |children(x)| — 1, ¢j.e +1 = cjy1.0. As
apposed to a P-node, here the order of the children completing the interval [¢, e] must be
consecutive with respect to their indices (the same order as the children of z in T or the reverse
order). If there is no such order, then the interval [¢, e] cannot be completed consecutively,
and so Sz[{ : €] cannot be derived from T,.. In this case, we return co. Otherwise, S3[¢ : €] can
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be derived from T}, by keeping the order of the children of x, or flipping it. Second, we sum up
all of the values in D (and store the sum in the variable childrenDist). Next, we calculate the
Q (x,2"), according to Definition 4
(and store the result in the variable violation). Afterwards, we calculate the flip correction
according to Definition 5 (and store the result in the variable childrenFlipCorrection).
Finally, we return the sum of childrenDist and violation minus childrenFlipCorrection,
which is the divergence from T, to Sa[{ : €], Mpiverg(, S2[¢ : €]) (according to Definition 6).

. . . P
violation between x and its equivalent node x’ in 17, A iion

Example. Consider the following input: S1 = +a+b+c+d+e+f, So =+f—c—b—a—d—e,
PQ-tree T ordered as S, 53:1 =3 and 51%) = 3. We iterate through the nodes of the tree in
post-order, thus we initiate the leaves before their parents. For each leaf = € Leaves(rootr),
if label(z) = S3[¢], then A(z,¢) = 0; otherwise, A(z, {) = cc.

Figure 2 describes the PQ-tree T and its quasi-equivalent PQ-tree 7" ordered as Ss, after
the initialization of the leaves only. Notice that the order of the initialization is in fact
different, in postorder; for simplicity, we show the tree where only the leaves are initialized.
In addition, in the figures, the equivalent nodes of T and T” are shown as the same nodes.
But in the explanations, in order to distinguish between them, for each node =z € T’, we
denote it by x’. The pair of numbers shown in the figure near a node represent its £ and r
values. In addition, the sign + or — near a node represents its sign. For example, for a € T,
a.l = a.r = 4 and sign(a) = +. For each internal node, the character assigned to it represents

) AN , \
+e +f +f +e
66
P S ©9 11 1) /) ©69

its color.

X / \
+a g v “
44 (5,5

u
+d
(5,5)

v v
+b tc
- -b
(33 (22 22 (33
(a) (b)

Figure 2 (a) PQ-tree T. (b) PQ-tree T", which is quasi-equivalent to 7" and ordered as Ss.

First, consider the iteration where A[z, 2] is calculated (the values for all other entries
with node z is c0). The intervals of the children of z, [3,3] and [2, 2], complete the interval
(2, e) consecutively where e = 2+span(z) —1 = 3. Thus, the substring S5[2 : 3] is derived from
T., and in order to generate it we need to flip the order of children(z). For this the penalty of
flipping, (SfCl’gip, is applied, and so AQ (2,7) = 69 = 3. childrenDist = A[b, 3]+ Alc, 2] = 6

violation flip

because A[b, 3] = Alc, 2] = 3. FlipCorrection(z, z') = 6 because both b and ¢ have been flipped.

Therefore, A[z, 2] = childrenDist+violation—childrenFlipCorrection = 3. Now, we update
z’s indices, z.£ = 2 and z.r = 3. Figure 3 describes the PQ-tree T and its quasi-equivalent
PQ-tree T" after calculating Az, 2].

Next, consider the iteration where A[y, 2] is calculated (the values for all other entries
with node y is 00). Recall that Figure 3 describes T and T after calculating the entries
of the children of the P-node y. The intervals of the children complete the interval (2,e),
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Figure 3 (a) PQ-tree T. (b) PQ-tree T', which is quasi-equivalent to 7" and ordered as Ss.

where e = 2 + span(y) — 1 = 5, so we can continue with the iteration. childrenDist =
Ala, 4] + Alz, 2] + Ald,5] = 9. dsgp(S(y), S(y')) = 1 where the pair (z,d) is the only singed
break-point (note that S(y) = +a+2+4d, S(¥') = —2—a—d). Aﬁmp(y,y’) = 0 because
to reorder the children of y as S3[2 : 5] we can move z only (and its size is 1). Therefore,
A\F:iolation (y,y") = dsep(S(y), S(¥')) + Ajljmp(y’ y') = 1. Then, Ay, 2] = 10 and we can update
y’s indices, y.£ = 2 and y.r = 5. Figure 4 describes the PQ-tree T and its quasi-equivalent
PQ-tree T" after calculating Aly, 2].

© 0O
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Figure 4 (a) PQ-tree T. (b) PQ-tree T', which is quasi-equivalent to T and ordered as S.

Finally, consider the iteration where A[z, 1] is calculated (the values for all other entries
with node z is 00). Figure 4 describes T and T” after calculating the entries of the children of
the P-node z. The intervals of the children complete the interval (1, ), where e = 1+span(z)—
1 = 6, so we can continue with the iteration. childrenDist = Aly, 2] + Ale, 6] + A[f, 1] = 10.
dsgp(S(x), S(2')) = 2 where the pairs (y,e) and (e, f) are the signed break-points (note
that S(z) = vy +e+ f, S(&') = +f —y +e). Aﬁmp(x,x’) = 0 because to reorder the

children of x as So we can move f only (and its size is 1). Therefore, AP . (7, 2') =
dsgp(S(z), S(z')) + Aﬁ:mp(x,x’) = 2. Then, Alz,1] = 104+ 2 = 12 and the algorithm returns

12. Figure 5 describes the PQ-tree T' and its quasi-equivalent PQ-tree T” after calculating
Alz, 1].
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Figure 5 (a) PQ-tree T. (b) PQ-tree T", which is quasi-equivalent to T and ordered as Ss.

4 Methods and Datasets

Dataset and Gene Cluster Generation. 1,487 fully sequenced prokaryotic strains with
COG ID annotations were downloaded from GenBank (NCBI; ver 10/2012). The gene
clusters were generated from this data using the tool CSBFinder-S [29]. CSBFinder-S was
applied to all the genomes in the dataset after removing their plasmids, using parameters
g = 10 (a colinear gene cluster is required to appear in at least ten genomes) and k = 0 (no

insertions are allowed in a colinear gene cluster), resulting in 79,017 colinear gene orders.

From these gene orders, only gene orders whose number of distinct COGs is between 4 and 9
were kept, leaving 28,537 gene orders. Next, ignoring strand and gene order information,
colinear gene orders that contain the exact same COGs were united to form the generalized
set of 91 gene clusters that abide by the requirements that each gene cluster contains at least
3 gene orders and each COG appears only once in each gene order. For each gene cluster, the
most abundant gene order was designated as the “reference” (centroid) gene order. Based
on this, the clusters were further filtered to keep only 63 gene clusters whose designated
reference has instances in at least 30 genomes. Finally, clusters containing one or more gene
orders that are identical to the designated reference gene order, in terms of the list of classes
in which they have instances, were removed, leaving a benchmark set of 59 gene clusters.

PQ-tree construction. The input PQ-trees for our algorithm where constructed using the
tool PQFinder (available on GitHub [37]). PQFinder was applied to each of the gene clusters
in the dataset, to build the PQ-tree representing each cluster. In addition, each Q-node with
exactly two children, whose height in the tree is greater than 1, was changed to a P-node (in
this special case all children of the node were observed in all shuffling options, which in our
opinion better fits the syntax of a P-node than that of a Q-node.)

Parameter Settings.

0@y =15,00 =05, dr =0, ds =0.
5 Results

5.1 Evaluation

In this section we evaluate the accuracy of our approach in measuring the evolutionary
divergence between two gene orders that belong to the same gene cluster. To this end, we
aim to generate a set of “control” distances, computed from real data, against which the
divergence scores computed by our tool can be compared and evaluated.

In our experiment, we set the parameters of the algorithm as follows.
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Recall that in our application, each of the input sequences does not correspond to a
specific genomic sequence but rather represents a gene order that occurs in multiple genomes.
Furthermore, abundant gene clusters typically display several paralogous occurrences of
distinct gene orders, and possibly several paralogous occurrences of a specific gene order,
within the same genome. Furthermore, each distinct occurrence of a specific gene order
could differ substantially from another occurrence of the same gene order in terms of its
encoding genomic sequence, since each COG represents a cluster of genomic sequences that
are not identical however are similar enough (possibly based on local sequence similarity) to
be clustered to the same orthology group.

Thus, we chose to represent each gene order by the assemblage of its instances, i.e.
the set of genomes in which it occurs. Several similarity (or overlap) indices based on
presence/absence (incidence) data have been proposed in the literature [27, 12]. A classical
and widely used index in comparative assemblage analysis is the Jaccard index [12]. In our
comparative evaluation the instance assemblages are used to estimate divergence rather than
similarity, and therefore we use the inverse Jaccard Index as an estimator of the instance
assemblage based divergence between two gene orders.

Our divergene measure was evaluated, per each cluster, as follows: first, we applied our
approach (Alg. 1) to measure the structure informed divergence from the cluster’s designated
reference (explained in Section 4) to each of the other gene orders. Then, we calculated the
Inverse Jaccard based distance from the set of instances of the reference gene order to the sets
of instances of each of the other gene orders. In order to tolerate the noise due to inter-specie
and inter-genus horizontal transfer of gene orders, we first converted the assemblages of
genomes to the assemblages of (taxonomic) classes to which these genomes belong. This
resulted in two series of scores, which were then subjected to the computation of (weighted
average) Spearman and Pearson correlations between them. The same evaluation procedure
was repeated per each cluster, this time using the signed break-point distance instead of our
structure-informed divergence measure.

The results are given in Table 1. The 59 gene clusters were distributed to three groups
in increasing level of colinear component dependency, according to the number of Q-nodes
in their representative PQ-trees. This yielded 8 gene clusters whose representative tree
has no Q-nodes, 41 gene clusters whose representative tree has one Q-node, and 10 gene
clusters whose representative tree has two or more Q-nodes. For each group, the average
Spearman and Pearson correlation scores were computed for both divergence measures. The
average score for each group, per each measure, was computed as a weighted arithmetic
mean, normalized by the size of each cluster in the group.

Table 1 A comparison between our proposed rearrangement measure (Mpiverg) and signed break-
point distance (dsgp), based on their correlation to a taxonomical instance abundance measure.

H num of Q-nodes Correlation  mpiverg  dsap H

0 Pearson 0.759 0.761
Spearman 0.666 0.665
1 Pearson 0.861 0.844
Spearman 0.745 0.716
9 Pearson 0.924 0.844
Spearman 0.898 0.823

Table 1 indicates that, in general, the rearrangement-based divergence between a reference
gene order and its target gene order correlates well with the divergence in the taxonomic
distribution of their corresponding instances, which is an interesting result on its own.
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For our proposed measure mpijverg, the correlation increases with the number of Q-nodes
in the representative trees. The advantage obtained by applying our structure-informed
rearrangement approach, in comparison to signed break-point distance, also increases with
the number of Q-nodes in the PQ-trees representing the gene clusters.

5.2 Examples

ABC transporters are among the most intensively studied gene clusters, as they form the
largest group of paralogous genes in bacterial and archaeal genomes [31]. ABC transporters
tend to form operons, and several studies indicate that the ancestral ABC transporter
operons may have arisen early in evolution, before the speciation of bacteria and archaea [33].
We exemplify the application of the proposed structure-informed rearrangement approach
via two ABC transporter gene clusters from our benchmark: a gene cluster encoding for a
Dpp dipeptide uptake system, and another gene cluster encoding for a Ugp sugar uptake
system. In both examples, the correlation between the mpjerg series for the cluster and the
corresponding series of taxonomic instance abundance scores, was higher than that obtained
for the dsgp measure.

The examples are illustrated in Fig. 6. Due to space constraints, we analyze only one
rearrangement scenario per example. Additional information can be found in our GitHub
directory, where we publish the extensive log information for each of the 59 gene clusters
analyzed in our experiment.

Example 1: A gene cluster encoding a dipeptide uptake system, Figure 6.A-E. The Dpp
transporter encoded by this gene cluster is composed of two integral membrane proteins
(heterodimer TMDs), two peripheral membrane proteins that bind and hydrolyze ATP
(heterodimer NBPs), and a periplasmic (or lipoprotein) substrate-binding protein (SBP)
that delivers the substrate to a core importer (Figure 6.H). TMDs and NBDs dimerize and
assemble the minimal unit of an importer, with the SBP as the fifth component of the
complex.

The signed break-point distance for the reference and target gene orders is 2, based on
the break-points (1,2) and (3,4). However, there is no experimental evidence for any special,
asymmetric interactions between the products of genes 1 (SBP) and 2 (TMD1). On the
contrary, it is well-known that the two lobes of the SBP interact with both of the TMDs
[15] after a substrate has been bound by the SBP. Similary, there is no biological basis for
assuming an assymmetric interaction between the products of the two genes 3 (TMD2) and
4 (NBP1) that would require direct positional adjacency.

Previous studies indicate that the importer complex is composed of two heterodimer
components: NBP1-NBP2, and TMD1-TMD?2 [15]. However, this structural information is
not taken into account by the signed break-point distance computation. Thus, the break-point
distance seems to poorly model the gene order divergence from the reference, ancestral gene
order of this gene cluster to the target, rearranged copy.

Interestingly, when considering the conserved structure of the gene orders in this family
(represented by the PQ-tree in Figure 6.A), the pattern by which the second gene order
diverges from the first gene order becomes evident: the first gene order spells an “outside-in”
transcription (and possibly assembly) order of the components of the complex (Figure 6.D),
while the second gene order spells an “inside-out” transcription (and possibly assembly)
order. This observation is better reflected by the mpiyerg score for this gene order pair, which
is 2.5. This score is obtained by assigning a cost of 1 for a break-point between two Q-nodes
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D - TMD18&2 NBD1&2
E  nsPig2 TMD1&2 ‘

Figure 6 Examples from two ABC transporter gene clusters. A,B,C. Reference and target gene
orders from the dipeptide uptake gene cluster DppBCD-GsiA-DdpA, and the representative PQ-tree
for the corresponding gene cluster. D,E. Structure-informed encoding of the gene orders from B
and C, respectively, reveals that the transcription order of their structural sub-components has been
reversed by the re-arrangement. F,G. Substrate binding and import in ABC transporter in gram
negative bacteria versus gram positive bacteria, respectively. H,I,J. Reference and target gene
orders from the sugar uptake system UgpABE-MalK with the corresponding transcription factor
PurR, and the representative PQ-tree for the corresponding gene cluster.

(representing the heterodimers TMD and NBD), increased by an additional penalty of 0.5 for
a “jump” of a component of size 2, plus a cost of 1 for a break-point between the SBP gene
and the Q-node representing TMD12. Thus, our structure-informed rearrangement approach
is able to utilize the PQ-tree to capture the order reversal of the dimer-scale components of
the encoded uptake machine.

When considering the taxonomical distribution of these two gene orders, we note that the
reference order has instances in 263 genomes from our dataset: it is widely spread and spans
both archea and bacteria, with many instances in both gram positive and gram negative
bacteria. The second gene order, on the other hand, has 53 instances, 50 of which are confined
to gram positive bacilli. Gram positive bacteria lack an outer membrane and consequently
have no periplasm, and therefore their SPBs are lipoproteins that are tethered to the external
surface of the cell membrane (Figure 6.G), anchoring the binding protein in the proximity of
the external face of the TMDs of the transport system. To obtain such proximity, the TMDs
need to be integrated to the cell membrane prior to the anchoring of the SBPS within their
proximity. This could perhaps explain why a Dpp operon with “inside-out” transcription
confers adaptation in some gram positive bacteria.

Example 2: A gene cluster encoding a sugar uptake system, and the transcription factor
that regulates it. Figure 6.H-J. Here, the signed break-point distance between the reference
gene order (Figure 6.I) and the target gene order (Figure 6.J) is 2, due to the break-points
(1,2) and (4,5). In contrast, the mpjerg score is only 1. Using the structural information
encoded by the PQ-tree, our engine recognizes that the break-point (1,2) may be functionally
irrelevant, since the rearrangement events are confined to the P-node encapsulating the
sub-cluster that encodes the uptake system machine, including gene 2 which codes for the
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NBD MalK. Within the P-node encapsulating the Ugp operon, the NBD is separate from the
rest of the genes in the transporter, which are confined to the Q-node, due to stochiometry
(MalK is a homodimer [13]). Thus, it is realized by the PQ-tree, and conveyed via structure-
informed re-arrangement, that the positional order between the uptake system operon and

the transcription factor that regulates it (gene 1), remains intact during the rearrangement
from the reference gene order to the target one.
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