
Intersection Searching Amid Tetrahedra in 4-Space
and Efficient Continuous Collision Detection
Esther Ezra !

School of Computer Science, Bar Ilan University, Ramat Gan, Israel

Micha Sharir !

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract
We develop data structures for intersection detection queries in four dimensions that involve
segments, triangles and tetrahedra. Specifically, we study two main problems: (i) Preprocess a set
of n tetrahedra in R4 into a data structure for answering segment-intersection queries amid the
given tetrahedra (referred to as segment-tetrahedron intersection queries), and (ii) Preprocess a set
of n triangles in R4 into a data structure that supports triangle-intersection queries amid the input
triangles (referred to as triangle-triangle intersection queries). As far as we can tell, these problems
have not been previously studied.

For problem (i), we first present a “standard” solution which, for any prespecified value n ≤
s ≤ n6 of a so-called storage parameter s, yields a data structure with O∗(s) storage and expected
preprocessing, which answers an intersection query in O∗(n/s1/6) time (here and in what follows,
the O∗(·) notation hides subpolynomial factors). For problem (ii), using similar arguments, we
present a solution that has the same asymptotic performance bounds.

We then improve the solution for problem (i), and present a more intricate data structure that
uses O∗(n2) storage and expected preprocessing, and answers a segment-tetrahedron intersection
query in O∗(n1/2) time. Using the parametric search technique of Agarwal and Matoušek [3], we
can obtain data structures with similar performance bounds for the ray-shooting problem amid
tetrahedra in R4. Unfortunately, so far we do not know how to obtain a similar improvement for
problem (ii).

Our algorithms are based on a primal-dual technique for range searching with semi-algebraic
sets, based on recent advances in this area [2, 11]. As this is a result of independent interest, we
spell out the details of this technique.

As an application, we present a solution to the problem of “continuous collision detection” amid
moving tetrahedra in 3-space. That is, the workspace consists of n tetrahedra, each moving at its own
fixed velocity, and the goal is to detect a collision between some pair of moving tetrahedra. Using
our solutions to problems (i) and (ii), we obtain an algorithm that detects a collision in O∗(n12/7)
expected time. We also present further applications, including an output-sensitive algorithm for
constructing the arrangement of n tetrahedra in R4 and an output-sensitive algorithm for constructing
the intersection or union of two or several nonconvex polyhedra in R4.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational geometry, Ray shooting, Tetrahedra in R4, Intersection
queries in R4, Polynomial partitioning, Range searching, Semi-algebraic sets, Tradeoff

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.51

Related Version Full Version: http://arxiv.org/abs/2208.06703

Funding Esther Ezra: Work partially supported by NSF CAREER under Grant CCF:AF-1553354
and by Grant 824/17 from the Israel Science Foundation.
Micha Sharir : Work partially supported by Grant 260/18 from the Israel Science Foundation.

© Esther Ezra and Micha Sharir;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 51; pp. 51:1–51:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ezraest@cs.biu.ac.il
https://orcid.org/0000-0001-8133-1335
mailto:michas@tauex.tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.ESA.2022.51
http://arxiv.org/abs/2208.06703
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Intersection Searching Amid Tetrahedra in 4-Space

1 Introduction

In this paper we consider various intersection problems involving segments, triangles and
tetrahedra in R4. In four dimensions, the interesting setups involve (i) intersections between
(one-dimensional) segments and (three-dimensional) tetrahedra, and (ii) between (two-
dimensional) triangles and (two-dimensional) triangles. We study both problems, and derive
efficient solutions to each of them.

As an interesting application, we consider the continuous collision detection problem,
where the input consists of n tetrahedra in R3, each of which is moving at some constant
velocity of its own, and the goal is to detect whether any pair of them collide. Adding the
time as a fourth coordinate, this becomes a batched version of intersection detection in R4,
involving both setups (i) and (ii). Other applications include output-sensitive construction
of the arrangement of n tetrahedra in R4, and an output-sensitive algorithm for computing
the intersection or the union of two or several not necessarily convex polyhedra in R4. In
the three-dimensional versions of these problems, which were recently studied in [7], the
only setup that needed to be considered was segment intersection amid triangles. In four
dimensions, though, we also face the triangle-triangle intersection problem, since we also
need to find intersections between pairs of 2-faces of the input objects.

Setup (i): Segment-tetrahedron intersection queries. Consider first the case of segments
vs. tetrahedra. In the setup considered here, the input objects are n (not necessarily pairwise
openly disjoint) tetrahedra in R4 and the query objects are segments, and the goal is to
detect, count, or report intersections between the query segment and the input tetrahedra.

As far as we can tell, this problem has not been explicitly studied so far. We first present,
in Section 2, a “traditional” (albeit novel) solution, in which the problem is reduced to a range
searching problem in a suitable parametric space, which, in the case of (lines supporting)
segments in R4, is six-dimensional. We carefully adapt and combine recent techniques,
developed by Agarwal et al. [2] and Matoušek and Patáková [11], which provide algorithmic
constructions of intricate space decompositions based on partitioning polynomials. Using
this machinery, we solve the problem so that, with a so-called storage parameter s, a segment
intersection query can be answered in1 O∗(n/s1/6) time, for any n ≤ s ≤ n6, and the storage
and preprocessing cost are both O∗(s).

A special case of this setup is an extension to four dimensions of the classical ray shooting
problem, which has mostly been studied in two and three dimensions. In a general setting, we
are given a collection S of n simply-shaped objects, and the goal is to preprocess S into a data
structure that supports efficient ray shooting queries, where each query specifies a ray ρ and
asks for the first object of S hit by ρ, if such an object exists. In this work we only consider
the (already challenging) case of input tetrahedra. Using the parametric search technique
of Agarwal and Matoušek [3], ray shooting queries can be reduced to segment-intersection
detection queries, up to a polylogarithmic factor in the query cost. By the above discussion,
we obtain the following result:

▶ Theorem 1. Given a collection T of n tetrahedra in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess T into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any segment-intersection or ray-shooting query in T
in O∗(n/s1/6) time. The query time bound applies to segment-intersection detection and
counting queries (and to ray shooting queries). The cost is O∗(n/s1/6) +O(k) for reporting
queries.

1 As in the abstract, the O∗(·) notation hides subpolynomial factors, typically of the form nε, for any
ε > 0, and their coefficients which depend on ε.

E. Ezra and M. Sharir 51:3

We later improve upon this standard algorithm in Section 4, where we show:

▶ Theorem 2. A collection S of n arbitrary tetrahedra in R4 can be preprocessed into a
data structure of size O∗(n2), in expected time O∗(n2), which supports segment-intersection
detection and counting queries and ray-shooting queries in time O∗(n1/2) per query.

This indeed improves the bounds stated in Theorem 1, which, with s = O∗(n2) storage, has
query time O∗(n2/3). Furthermore, with the storage bound specified in Theorem 2, the query
bound is similar to that obtained for ray-shooting amid hyperplanes (rather than tetrahedra)
in R4 [3].

We then go on, in the full version of the paper2 to extend the result to obtain a tradeoff
between storage (and expected preprocessing time) and query time. We show that, with
storage parameter s, which can vary between n and n6, we can answer a segment intersection
or a ray shooting query in time

Q(n, s) =

O
∗
(
n7/6

s1/3

)
for s = O(n2)

O∗
(
n3/4

s1/8

)
for s = Ω(n2).

(1)

See Figure 1 for an illustration. This yields algorithms that answer m segment intersection or
ray-shooting queries on n tetrahedra in max

{
O∗(m3/4n7/8 + n), O∗(m8/9n2/3 +m)

}
time

and storage. The first (resp., second) bound dominates when m ≤ n3/2 (resp., m ≥ n3/2).

1 2 3 4
0

5 6

1/6

1/3

1/2

2/3

5/6

query time

storage

Figure 1 The tradeoff between storage and query time. The breakpoint in the graph represents the
case studied in Section 4. Both axes are drawn on a logarithmic scale.

Setup (ii): Triangle-triangle intersection detection. We next consider the other setup of
intersection queries, where both input and query objects are triangles in R4. We show that
this setup can also be reduced, similar to setup (i), to a multi-level range searching problem
in R6 involving semi-algebraic ranges. This allows us to obtain the same performance bounds
here too. Namely we have:

▶ Theorem 3. Given a collection ∆ of n triangles in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess ∆ into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any triangle-intersection query in ∆ in O∗(n/s1/6)
time.

2 Soon to be available on arXiv.

ESA 2022

51:4 Intersection Searching Amid Tetrahedra in 4-Space

Since both input and query objects are triangles, it is also interesting to consider the
bichromatic batched version of the problem. Namely we have:

▶ Theorem 4. Given two collections R and B of triangles in R4, of respective sizes m and
n, We can detect an intersection between some triangle of R and some triangle of B, or
count all such intersections, in time O∗(m6/7n6/7 + m + n). We can also report all these
intersections in time O∗(m6/7n6/7 +m+ n+ k), where k is the output size.

As a consequence, integrating this bound with the one obtained in Theorem 1 (in which,
similar to the preceding argument, we need to set s = n12/7 to match the performance
with that stated above, as is easily verified), we obtain an overall O∗ (n12/7) expected time
solution for the continuous collision detection problem, that is:3

▶ Theorem 5. Given n tetrahedra in R3, each of which is moving at some constant velocity
of its own, one can detect a collision between any pair of moving tetrahedra in O∗ (n12/7)
expected time.

Collision detection has been widely studied – see Lin, Manocha and Kim [10] for a
recent comprehensive survey, and the references therein. We are not aware of any work that
addresses the exact algorithmic approach for the specific setup considered here, although
there are some works, such as Canny [6] or Schömer and Thiel [12], that address similar
contexts.

We then consider the applications of our techniques to the problems of output-sensitive
construction of an arrangement of tetrahedra in R4, and of constructing the intersection or
union of two or several (nonconvex) polyhedra in R4. Using the bounds for setups (i) and
(ii), we obtain, in Section 5:

▶ Theorem 6. (i) Let T be a collection of n tetrahedra in general position in R4. We can
construct the arrangement A(T) of T in O∗(n12/7 + n1/2k2 + k4) expected time, where k2
is the number of intersecting pairs of tetrahedra in T , and k4 is the number of vertices of
A(T). (ii) Given two arbitrary polyhedra R and B in R4, each of complexity O(n), that lie
in general position with respect to one another, the intersection R ∩B can be computed in
expected time O∗(n12/7 + n1/2k2 + k4), where k2 is the number of 2-faces of A(R ∪B), and
k4 is the number of vertices of A(R ∪B).

As another application of our technique we present, in the full version, an efficient
algorithm for detecting or reporting intersections between n 2-flats and n lines in R4. We
show that, given n lines and n 2-flats in R4, one can detect whether some line intersects some
2-flat in O∗(n13/8) expected time. One can also report all k intersections in O∗(n13/8 + k)
expected time. This result is a degenerate special case of the triangle-triangle intersection
setup, and admits a faster solution. (Note that in general position 2-flats and lines are not
expected to meet in R4, which makes this special case interesting.)

Setup (iii): Tetrahedron-segment intersection queries. We can also handle a symmetric
setup, in which the input consists of n segments in R4 and the query is with a tetrahedron T ,
where the goal is to detect, count or report intersections between T and the input segments.
Using a similar machinery, we obtain the same asymptotic performance bounds, as in the
standard solution, for this setup too.

3 Here we use an obvious divide-and-conquer approach in order to reduce the general (non-bichromatic)
problem to the bichromatic version.

E. Ezra and M. Sharir 51:5

▶ Theorem 7. Given a collection S of n segments in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess S into a data structure of size O∗(s), in randomized O∗(s)
expected time, so that we can answer any tetrahedron-intersection query in S in O∗(n/s1/6)
time. The query time bound applies to tetrahedron-intersection detection and counting queries.
The cost is O∗(n/s1/6) +O(k) for reporting queries.

2 Segment-Intersection amid Tetrahedra: An Initial Algorithm

In this section we present an initial solution to the problem of segment-intersection detection
amid tetrahedra in four dimensions, which is based on a careful combination of the recent
range searching machinery of [2, 11]. We do so because (a) as far as we can tell, such a
solution has not yet been spelled out in the literature, (b) the adaptation of the available
techniques to this problem is not simple, requires nontrivial and careful enhancements, and
is of independent interest, and (c) this gives a yardstick for appreciating the improvement
obtained by our improved algorithm, presented in Section 4.

The parametric search technique of Agarwal and Matoušek [3] reduces ray shooting
queries to segment-intersection detection queries, so it suffices to consider the latter problem.
The reporting and counting variants are simple extensions of the same technique, as will be
discussed as we go.

To obtain a tradeoff between the storage of the structure and the query time, our algorithm
uses a primal-dual approach. However, both the primal and dual setups suffer from the fact
that, in four dimensions, segments and tetrahedra require too many parameters to specify.
Specifically, a segment requires eight parameters (e.g., by specifying its two endpoints), while
a tetrahedron requires 16 parameters (e.g., by specifying the coordinates of its four vertices).

To address this issue, we use a multi-level data structure, where each level caters to one
aspect of the condition that a segment crosses a tetrahedron. This is done so that, at each of
these levels, the number of parameters that a segment or a tetrahedron requires is at most
six. Specifically, the condition that a segment e, that lies on a line ℓ, intersects a tetrahedron
∆, supported by a hyperplane h∆, is the conjunction of the following conditions:

(i) The two endpoints of e lie on different sides of h∆.

(ii) With a suitable choice of a direction of ℓ and an orientation of ∆, ℓ has a positive
orientation with respect to each of the 2-planes that support the four 2-faces of ∆.

Conditions (i) and (ii) are the conjunction of a total of six sub-conditions: the first two
conditions tests the position of some endpoint of e with respect to the hyperplanes h∆, and
the other four conditions tests the orientation of ℓ with respect to the 2-planes supporting
specific 2-faces of the tetrahedra. Thus, the dual structure has six levels, two for testing the
sub-conditions of condition (i) and four for testing the sub-conditions of condition (ii).

More precisely, each but the last level collects all the tetrahedra ∆ that satisfy the
corresponding sub-condition for the query segment (that a specific endpoint of e lies in a
specific side of h∆ for the first two levels, and that the oriented 2-plane supporting a specific
2-face of ∆ is positively oriented with respect to the directed line ℓ for the last four levels),
as the disjoint union of precomputed canonical sets of tetrahedra. The last level just tests
whether the last sub-condition is satisfied for any tetrahedron in the current canonical set.

We use the fact that lines in R4 require six real parameters to specify. The space of
lines in R4 is actually projective, but for simplicity of presentation we regard it as a real
space, and ignore the special cases in which the real representation fails. Handling these
cases follows the same approach, and is in fact simpler. Alternatively, a generic (say random)
rotation of the coordinate frame allows us to ignore them altogether.

ESA 2022

51:6 Intersection Searching Amid Tetrahedra in 4-Space

One simple way to represent a line ℓ in R4 is by the points u0
ℓ = (x0, y0, z0, 0) and

u1
ℓ = (x1, y1, z1, 1) at which ℓ crosses the hyperplanes w = 0 and w = 1, respectively

(ignoring lines that are orthogonal to the w-axis), so the line ℓ can be represented as the
point pℓ = (x0, y0, z0, x1, y1, z1) in R6, as desired.

Similarly, 2-planes in R4 also require six parameters to specify. This is simply because
the duality in R4 maps lines to 2-planes and vice versa, but a concrete way to represent
2-planes by six parameters is to specify three points on a 2-plane π that are intersections of
π with three fixed 2-planes, such as, say, x = y = 0, x = 0 and y = 1, and x = y = 1 (again
ignoring special directions of π). Each of the intersection points has two degrees of freedom
(as two of its coordinates are fixed), for a total of six. Denote these points as v(00)

π , v(01)
π , and

v
(11)
π , and put qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
, listing only the w- and z-coordinates of each point,

so qπ is a point in R6.
These observations are meaningful only for the last four levels of the structure. The

first two levels are simpler, as they deal with points (the endpoints of e) and hyperplanes
(those supporting the tetrahedra of T) in R4. Thus each of the first two levels is a halfspace
range searching structure for points and halfspaces in R4. (Actually, this is the case when
we pass to the dual 4-space; in the primal we have a point-enclosure problem, where the
query is a point and the input consists of halfspaces bounded by the relevant hyperplanes.)
Using standard techniques (see, e.g., [1]), this can be done, for N halfspaces in the current
canonical subset and using O∗(N) storage, so that a query costs O∗(N3/4) time.4 This cost
will be subsumed by the query time bounds for the last four levels. The cost of a query
includes the cost of reporting its output, as a list of canonical sets.

We next consider the (more involved) situation in the last four levels of the structure. Here
the query segment is replaced by its supporting line ℓ, and each tetrahedron ∆ is replaced by
the 2-plane supporting a specific 2-face of ∆. In the primal setup, the line ℓ is represented
as a point pℓ in (projective) 6-space, in the manner just described, and a tetrahedron ∆,
represented by a suitable 2-plane π, is represented as a semi-algebraic region Kπ, consisting
of all points that represent (directed) lines that are positively oriented with respect to π.
The problem that we face is a point-enclosure query, in which we want to determine whether
pℓ lies in any of the regions Kπ (alternatively, count or report all these regions). In the
dual setup, the 2-planes π are represented as points in R6, and the (directed) query line ℓ is
represented as a semi-algebraic region Qℓ that consists of all (oriented) 2-planes that are
positively oriented with respect to ℓ. The problem here is a semi-algebraic range searching
query, where we want to determine whether Qℓ contains any input point (alternatively, count
or report all these points).

The orientation test of ℓ with respect to π amounts to computing the sign of the 5 × 5
determinant∣∣∣∣∣∣∣∣∣∣∣

u0
ℓ 1
u1
ℓ 1

v
(00)
π 1
v

(01)
π 1
v

(11)
π 1

∣∣∣∣∣∣∣∣∣∣∣
, (2)

with a suitable orientation of the pair of points u0
ℓ , u1

ℓ on ℓ (dictating the direction of ℓ), and
of the triple of points v(00)

π , v(01)
π , v(11)

π on π (dictating the orientation of π).

4 A tradeoff between storage and query time is also available, but we do not need it here.

E. Ezra and M. Sharir 51:7

To compute these signs, at each of the four latter levels of the structure, we use a
primal-dual approach, where the top part of the structure is in the primal, and at each of its
leaf nodes we pass to the dual.

The dual setup. The dual setup is simpler, so we begin with its description. In the dual
setup, each tetrahedron ∆ of the current canonical subset of T is mapped to the point
qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
in R6, where π is the 2-plane supporting the 2-face of ∆ that

corresponds to the present level. The query line ℓ is mapped to a semi-algebraic region Qℓ of
constant complexity in R6, consisting of all points qπ that represent (oriented) 2-planes that
have positive orientation with respect to ℓ, that is, the corresponding determinant in (2) is
positive. (The resulting polynomial is cubic in qπ.)

As already mentioned, the task at hand, at each but the last level, is to collect the points
qπ that lie in Qℓ, as the disjoint union of a small number of precomputed canonical sets of
tetrahedra, and the task at the last level is to determine whether Qℓ contains any point qπ,
for π corresponding to the last 2-faces of the tetrahedra in the present canonical subset of T .
In other words, we have, at each of these levels, a problem involving range searching with
semi-algebraic ranges in R6. Using the algorithm of Matoušek and Patáková [11], which is a
simplified version of the algorithm of Agarwal et al. [4], this can be done, for N tetrahedra
with O∗(N) storage, so that a query takes O∗(N5/6) time (including the cost of reporting,
without enumerating, the output canonical sets). See [1, Theorem 6.1] for more details.

The primal setup. With this procedure at hand, we go back to the primal structure, at
each of the last four levels. As noted, the problem that we face there is a point enclosure
problem, where the input consists of some N constant-complexity semi-algebraic regions in
R6 of the form Kπ, and the query is the point pℓ that represents ℓ, as defined earlier, and the
task is to collect all the regions Kπ that contain pℓ, as the disjoint union of a small number
of precomputed canonical sets, or, at the last level, to determine whether pℓ is contained in
any such region.

This problem has recently been studied in Agarwal et al. [2], using a multi-level polynomial
partitioning technique, for the case where we allow maximum storage for the structure (that
is, O∗(N6) in our case) and want the query time to be logarithmic. We next show that the
structure can be modified so that its preprocessing stops “prematurely” when its overall
storage attains some prescribed value, and each of the subproblems at the new leaves can be
handled via the dual algorithm presented above.

The crucial technical tool in [2], on which their technique is based, is the following result.
We give here a restricted specialized version that suffices for our purposes. (When applying
this tool in d dimensions, the parameter 6 has to be replaced by d.)

▶ Theorem 8 (A specialized version of Agarwal et al. [2, Corollary 4.8]). Given a set Ψ of
N constant-degree algebraic surfaces in R6, and a parameter 0 < δ < 1/6, there are finite
collections Ω0, . . . ,Ω6 of semi-algebraic sets in R6 with the following properties.

For each index i, each cell ω ∈ Ωi is a connected semi-algebraic set of constant complexity.
The size |Ωi| of Ωi (the number of its sets) is a constant that depends on δ.
For each index i and each ω ∈ Ωi, at most N

4|Ωi|1/6−δ surfaces from Ψ cross ω (intersect
ω without fully containing it).

The cells partition R6, in the sense that R6 =
6⊔
i=0

⊔
ω∈Ωi

ω, where
⊔

denotes disjoint union.

ESA 2022

51:8 Intersection Searching Amid Tetrahedra in 4-Space

The sets in Ω0, . . . ,Ω6 can be computed in O(n+m) expected time, where the constant of
proportionality depends on δ, by a randomized algorithm. For each i and for every set ω ∈ Ωi,
the algorithm returns a semi-algebraic representation of ω, a reference point inside ω, and
the subset of surfaces of Ψ that cross ω.

In our case, the surfaces of Ψ are the boundaries of the regions Kπ. A straightforward
enhancement of the algorithm of [2] also yields, for each i and each ω ∈ Ωi, the set of regions
Kπ that fully contain ω, within the same asymptotic time bound.

We compute the partition of Theorem 8 and find, for each ψ = ∂Kπ ∈ Ψ, the sets ω ∈ Ωi,
over all i = 0, . . . , 6, that ψ crosses, and those that are fully contained in Kπ. For each i and
ω ∈ Ωi, let Ki,ω (resp., K0

i,ω) denote the set of tetrahedra ∆ ∈ T for which ∂Kπ crosses ω
(resp., Kπ fully contains ω).

The overall size of the sets K0
i,ω, over all i and ω ∈ Ωi, is O(N), with a constant that

depends on δ (that is, on the sizes |Ωi|, which depend on δ).
For each i and ω we also have a recursive subproblem that involves the subset Ki,ω of

the tetrahedra ∆ for which ∂Kπ crosses ω. Putting ri := |Ωi|, for i = 0, . . . , 6, we have, for
each i and ω, |Ki,ω| ≤ N

4r1/6−δ
i

. We run the recursion, but not all the way through, as in [2].

Instead, we use the following storage allocation rule. We fix the storage that we are willing
to allocate to the structure, and distribute it among the nodes of the recursion, as follows.
To simplify the analysis, we distinguish between the storage itself, and the so-called storage
parameter s, which is what we actually manage, but we have the property that the actual
storage will always be O∗(s).

Let s be the storage parameter that we allocate at the root of the structure. For each
i and each set ω ∈ Ωi, we allocate the storage parameter s/(4|Ωi|) for ω. Hence, when we
reach some set ω at a deeper level of recursion, say level j, the storage parameter allocated
to ω is s

4j |Ω(1)
i1

| · |Ω(2)
i2

| · · · |Ω(j)
ij

|
, where Ω(1)

i1
, Ω(2)

i2
, . . . ,Ω(j)

ij
, for indices 0 ≤ i1, i2, . . . , ij ≤ 6,

are the partition families at the ancestors of ω in the recursion.
We stop the recursion when we reach nodes for which the allocated storage parameter is

(roughly) equal to the number of tetrahedra at the node; a more precise statement of the
termination rule is given shortly.

Put, for each set ω, rω := |Ω(1)
i1

| · |Ω(2)
i2

| · · · |Ω(j)
ij

|, using the above notation for ω. The
storage parameter allocated to ω is thus s/(4jrω). Also, by Theorem 8, the number of
tetrahedra ∆ that participate in the subproblem at ω is at most

n

4j |Ω(1)
i1

|1/6−δ · |Ω(2)
i2

|1/6−δ · · · |Ω(j)
ij

|1/6−δ
= n

4jr1/6−δ
ω

,

and the stopping condition that we use is that s

4jrω
= n

4jr1/6−δ
ω

, or rω = (s/n)(6/5)/(1+6δ/5).

The size of a subproblem at a leaf is (using the O∗(·) notation to hide exponents that are
proportional to δ and constants of proportionality that depend on δ)

nω = n

4jr1/6−δ
ω

= 1
4jO

∗
(
n6/5

s1/5

)
= O∗

(
n6/5

s1/5

)
.

In more detail, since all the parameters rj in Theorem 8 are at least some sufficiently large
constant that we can control, we can make the factor 4j to be O(sδ), for any δ > 0 of our
choice. To be more precise, the choice of δ determines how large the parameters rj have
to be taken to ensure that 4j = O(sδ), and the choice of these parameters adds a constant
factor to the query cost (incurred by the cost of locating, in brute force, the cells ω, at the
various recursive levels, that contain pℓ), which depends on these parameters, and thus on δ.

E. Ezra and M. Sharir 51:9

At each leaf ω we pass to the dual structure reviewed above. It uses O∗(nω) storage and
answers a query in time O∗(n5/6

ω) = O∗(n/s1/6). To answer a query with a line ℓ in the
combined structure, we search with its point pℓ in the primal substructure, in O(logn) time
(with a constant of proportionality that depends on δ; see below), to locate the leaf cell ω
that contains pℓ (using the properties that (a) each recursive step involves a partitioning of
constant size, and (b) the cells in the partition are pairwise disjoint). We then search with
Qℓ in the dual structure at ω, which takes, as just noted, O∗(n/s1/6) time. The overall cost
of the query is therefore O∗(n/s1/6).

As to the actual storage used by the structure, the allocation mechanism ensures that
each level of the recursion uses storage that is at most 7/4 times larger than the storage used
in the previous level, because each node has seven child collections Ω0, . . . ,Ω6, each of which
is allocated an amount of storage s/4. Hence the overall storage used is O((7/4)js), where j
is the recursion depth. Arguing as in the query time analysis, we can make the factor (7/4)j
to be O(sδ), for any δ > 0. That is, the overall storage used is O(s1+δ), or, in our notation,
O∗(s).

The above description of the structure applies to any single level among the four latter
levels of the structure. The first two levels are considerably simpler and more efficient. The
primal-dual approach is straightforward for halfspace range searching, and the parametric
dimension is only four for the first two levels. The standard machinery (reviewed, e.g., in [1])
implies that, with s storage and N input tetrahedra, the cost of a query at each of these
levels is O∗(N/s1/4).

Putting everything together, and using standard arguments in the analysis of multi-level
structures (see [1, Theorem 6.1] for details), the overall size of the six-level structure is O∗(s),
for any prescribed storage parameter s between n and n6, and a query takes O∗(n/s1/6)
time. That is, this finally concludes the proof of Theorem 1 for the case of intersection
detection queries. Counting and reporting queries are handled similarly, with a similar
analysis, exploiting the fact that the decomposition in Theorem 8 is into disjoint subsets,
as is a similar decomposition used in the machinery of [11]. For reporting query, their cost
involves an additional term O(k), where k is the output size. 2

Remark. Our mechanism is in fact a special instantiation of the following general result,
which is of independent interest, and which yields a trade-off bound for semi-algebraic range
searching in any dimension d. That is, consider a general problem of this kind, that involves n
points in Rd, and aims to answer semi-algebraic range queries, where the ranges have constant
complexity, and each range has d degrees of freedom (so the problem has a symmetric dual
version). One can solve such a problem in time O∗(n/s1/d) per query, using O∗(s) space and
preprocessing, where s is any parameter between n and nd. These queries include detecting
whether a query range contains any point from the input, counting the number of such points,
or reporting them (with an additional term O(k) in the query cost, where k is the output
size). Using duality, we obtain the same performance bounds for point-enclosure queries,
where the input consists on n constant-complexity semi-algebraic regions in Rd, and the query
is with a point p, where the goal is to detect, count or report containments of p in the input
regions. The same asymptotic bound is obtained for simplex range searching [1], but our
analysis shows that this bound corresponds to a much more general family of query ranges.
The two extreme cases s = n and s = nd have been treated in [11] and [2], respectively, but
the tradeoff between these extreme cases has not been treated explicitly (for d > 4), as far as
we can tell. As evidenced in the preceding analysis, this tradeoff is not as routine as one
might think, because of the complicated nature of the partitioning used in Theorem 8 (as
well as in [11, Theorem 1.1]). We summarize this result in the following corollary:

ESA 2022

51:10 Intersection Searching Amid Tetrahedra in 4-Space

▶ Theorem 9. Let P be a set of n points in Rd, for any dimension d, and let Γ be a family
of semi-algebraic ranges of constant complexity in Rd, each of which has d degrees of freedom.
Let n ≤ s ≤ nd be a prespecified storage parameter. Then one can preprocess P into a data
structure of storage and preprocessing O∗(s), such that a range-query, with a range γ ∈ Γ,
can be answered in O∗(n/s1/d) time. Such queries include detecting whether γ contains any
point of P , counting the number of such points, and reporting them (with an additional O(k)
term in the latter case, where k is the number of these points). The same performance bounds
apply to the dual point-enclosure case, where the input consists of n regions from Γ and the
query is with a point p ∈ Rd.

Remarks.
(i) Theorem 9 can be extended to the case where the number of degrees of freedom of the

ranges is different from d, but the resulting performance bound has a more complicated
expression, which is not spelled out in this work.

(ii) We note that our technique can be extended to segment intersection detection queries
amid a collection of n (d−1)-simplices in any dimension d. In that case the structure has
d+ 2 levels. The first two levels ensure that the endpoints of the query segment e lie on
different sides of the hyperplane containing the input simplex ∆, and are implemented
by halfspace range searching structures in Rd. The last d levels ensure that the line
containing e has positive orientation with respect to each of the (d− 2)-flats containing
the facets of ∆, with suitable orientations of the line and the flats. Since lines and
(d− 2)-flats in Rd have 2d− 2 degrees of freedom, these levels are implemented using
semi-algebraic range searching structures, where both primal and dual parts are in
R2d−2. Hence the cost of the query at each of the last d levels dominates the overall
cost, which is thus O∗(n/s1/(2d−2)). The parameter s can vary between n and n2d−2.

(iii) A very similar mechanism, with the same performance bounds, handles the reverse
situation, mentioned in the introduction, in which the input is a set of n segments in
R4, and the query is with a tetrahedron T , and the goal is to detect, count, or report
intersections between T and the input segments. This property is stated in Theorem 7;
we defer the relatively easy details to the full version.

3 Triangle-Triangle Intersection Queries in R4

Let ∆ be a set of n triangles in R4. We consider various triangle-triangle intersection
problems, the simplest of which is just to detect whether the query triangle intersects any
input triangle. Alternatively, we may want to count or to report all such intersections. For
concreteness we consider only the detection problem in what follows, but, as in the previous
section, the algorithm can be extended to also handle the other kinds of problems.

Similar to the preceding section, we use a multi-level data structure, where each level
caters to one aspect of the condition that a triangle crosses another triangle. Specifically,
let ∆1 and ∆2 be two triangles, and let π1, π2 be the respective 2-planes that contain them.
Assuming general position, π1 and π2 always intersect at a single point ξ, and ∆1 intersects
∆2 if and only if ξ belongs to both triangles. As is easily verified, this latter condition is
equivalent, with suitable orientations of π1, π2, and of the lines supporting the edges of both
triangles, to the conjunction of the following conditions:

(i) π1 is positively oriented with respect to each of the lines that support the edges of ∆2.

(ii) π2 is positively oriented with respect to each of the lines that support the edges of ∆1.

E. Ezra and M. Sharir 51:11

Conditions (i) and (ii) are the conjunction of a total of six sub-conditions, each of which
tests the orientation of, say, the 2-plane π1 with respect to the line supporting some specific
edge of ∆2, or vice versa.

We can therefore apply a suitable variant of the same machinery of the preceding section,
and obtain a proof of Theorem 3.

The batched bichromatic version. For the batched version of the triangle-triangle inter-
section problem, with m red triangles and n blue triangles (see Theorem 4), we choose
the storage parameter s to be such that the cost of m queries with the red triangles is
asymptotically roughly the same as the cost of preprocessing the blue triangles. That is, we
set s = mn/s1/6, or s = m6/7n6/7. For this choice to make sense, we need to ensure that
n ≤ s ≤ n6, or that n1/6 ≤ m ≤ n6. When m > n6 we only use the data structure of [2] and
obtain the running time O∗(m + n6) = O∗(m), and when m < n1/6 we only use the data
structure of [11] and obtain the running time O∗(mn5/6 + n) = O∗(n). Altogether we obtain
the bound in Theorem 4.

4 Segment-Intersection amid Tetrahedra: An Improved Solution

In this section we present an improved algorithm for setup (i) of the paper, for a data structure
of roughly quadratic size. Let T be a collection of n tetrahedra in R4. Our improved solution
constructs a data structure that uses O∗(n2) storage (and expected preprocessing time),
and answers a query in O∗(n1/2) time. This is indeed a significant improvement over the
standard algorithm in Section 2, in which, with storage O∗(n2), the query cost is O∗(n2/3).
With a suitable tradeoff, presented in the full version, the improvement can be extended for
any storage parameter between n and n6, although it is most substantial when the storage is
nearly quadratic; see Figure 1.

Assume, without loss of generality, that the query segment is bounded. The algorithm
constructs a partitioning polynomial F in R4 of degree O(D), for some large but constant
parameter D, so that each cell of the partition is crossed by at most n/D2 2-faces of the
tetrahedra in T and by a total of at most n/D tetrahedra. The existence of such a polynomial
follows from Guth [8], and an expected linear-time algorithm for its construction (for constant
D) is given in [2]. We classify each tetrahedron ∆ ∈ T as being narrow (resp., wide) with
respect to a partition cell τ if a 2-face of ∆ crosses τ (resp., ∆ crosses τ but none of its
2-faces crosses τ). Let Nτ (resp., Wτ) denote the set of narrow (resp., wide) tetrahedra at τ .

There are two cases to consider in our analysis, depending on whether the query segment
ρ is contained or not contained in the zero set Z(F) of F . Each of these cases requires its
own data structure. The latter case is an extension of the analysis in [7] (given there for the
three-dimensional version of the problem), and the case where ρ ⊂ Z(F) requires a different
approach than that taken in [7] for handling queries on the zero set. Due to lack of space we
only sketch the general framework; the details are given in the full version.

A sketch of the analysis. A query segment ρ that is not contained in Z(F) crosses at
most O(D) cells of the partition. For each partition cell τ (an open connected component
of R4 \ Z(F)) we construct an auxiliary data structure on the wide tetrahedra at τ , and
preprocess the narrow tetrahedra at τ recursively. As we show below, the structure for the
wide tetrahedra uses S0(n) = O∗(n2) storage, and a query amid them takes Q0(n) = O∗(n1/2)
time. We then output the wide tetrahedron returned by querying the auxiliary structure
at τ , if such a tetrahedron exists. Otherwise, we return the tetrahedron produced by the

ESA 2022

51:12 Intersection Searching Amid Tetrahedra in 4-Space

recursive call, if one exists. If no tetrahedron, wide or narrow, has been found, we proceed to
the next cell τ ′ crossed by ρ, repeat the whole procedure at τ ′, and keep doing this till we
either find a tetrahedron hit by ρ or run out of cells, and then conclude that ρ does not hit
any tetrahedron of T .

The correctness of this procedure is clear (modulo that of the procedure for handling
wide tetrahedra). Denote by S(n) (resp., Q(n)) the maximum storage (resp., query time)
required by the overall structure for n tetrahedra. Also denote by S1(n) (resp., Q1(n))
the maximum storage (resp., query time) required for processing the input tetrahedra for
intersection queries with segments contained in Z(F), for any set of n tetrahedra in R4. We
then have, for a suitable absolute constant c > 0 (where the constant hidden in the OD(·)
notation depends on D),

S(n) = OD(S0(n/D)) + S1(n) + cD4S(n/D2)
Q(n) = max

{
OD(Q0(n/D)) + cDQ(n/D2), Q1(n)

}
.

We show, in the full version, that S1(n) = O∗
D(n2) and Q1(n) = O∗

D(n1/2). Substituting
these bounds, as well as the bounds for S0(n) and Q0(n), the solutions of these recurrences
is S(n) = O∗(n2) and Q(n) = O∗(n1/2). This establishes Theorem 2.

Handling the wide tetrahedra. Handling the wide tetrahedra is done via a secondary
recursion, as follows. We choose some large constant parameter r0 ≫ D, and partition ∂τ

into OD(1) x1x2x3-monotone strata (assuming a generic choice of the coordinate frame). This
is fairly standard to do, see, e.g. [5]. We construct, for each stratum σ, a (1/r0)-cutting for
the set of (constant-degree algebraic) 2-surfaces of intersection of σ with the wide tetrahedra
in Wτ . The cutting is constructed by projecting σ and the 2-surfaces that it contains onto
the x1x2x3-subspace, constructing a (1/r0)-cutting, within that subspace, on the projected
surfaces, and then lifting the resulting cutting back to σ. Using standard results on vertical
decomposition in three dimensions (see, e.g., [13]) and the theory of cuttings [9], we obtain
O∗(r3

0) cells of the cutting (referred to as (pseudo-)prisms, in accordance with the way in
which the vertical-decomposition–based cutting is constructed), each of which is crossed by
(intersects but not contained in) at most n/r0 wide tetrahedra.

For each pair ψ1, ψ2 of prisms, we define Sψ1,ψ2 to be the set of all segments e so that e
has an endpoint in ψ1 and an endpoint in ψ2, and the relative interior of e is fully contained in
τ . Clearly, Sψ1,ψ2 is a semi-algebraic set of constant complexity in a 6-dimensional parametric
space,5 and we decompose it into its O(1) connected components.

For each segment e ∈ Sψ1,ψ2 , let T (e) denote the set of all wide tetrahedra ∆ of Wτ that
e crosses. We have the following crucial technical lemma, akin to Lemma 2.2 in [7]:

▶ Lemma 10. Each connected component C of Sψ1,ψ2 can be associated with a fixed set TC
of wide tetrahedra ∆ of Wτ , none of which crosses ψ1 ∪ ψ2, so that, for each segment e ∈ C,
TC ⊆ T (e), and each tetrahedron ∆ in T (e) \ TC crosses either ψ1 or ψ2.

We illustrate the proof in Figure 10, and delegate the rest of the details to the full version
of this paper.

5 Each segment is specified by its two endpoints; since they lie on ∂τ , each has three degrees of freedom.

E. Ezra and M. Sharir 51:13

e0

ψ1

ψ2

τ

e

Figure 2 The set TC (consisting of the tetrahedra depicted as black segments), and an illustration of
the proof of Lemma 10: The tetrahedra that cross some fixed segment e0 between ψ1 and ψ2 are the
same tetrahedra that cross any other such segment e, except for those that cross ψ1 or ψ2 (like those
depicted as magenta segments).

The analysis for wide tetrahedra. For each prism ψ, the conflict list Kψ of ψ is the set of
all wide tetrahedra that cross ψ. By construction, |Kψ| ≤ n/r0. The same bound for crossing
tetrahedra holds when ψ is lower-dimensional. If a lower-dimensional prism is contained in
some tetrahedron there is no need to process ψ further, since any segment that meets ψ hits
all these tetrahedra.

For each pair of prisms ψ1, ψ2, we compute Sψ1,ψ2 and decompose it into its connected
components. For each component C we compute the set TC of the wide tetrahedra, as in
Lemma 10 (see the full version for details). This requires OD(r6

0n) = OD(n) storage and
computation time.

Let s be the storage parameter associated with the problem; we require that n ≤ s ≤ n3.
For each canonical set TC , we replace its tetrahedra by their supporting hyperplanes, and
preprocess the resulting collection of hyperplanes for efficient segment intersection queries
amid hyperplanes in R4. Using the technique of Agarwal and Matoušek [3], this problem can
be solved using O∗(s) storage (and preprocessing), and a query takes O(n polylog(n)/s1/4) =
O∗(n/s1/4) time (see also [1]). Lemma 10 guarantees the correctness of this procedure
(namely, that replacing each tetrahedron in TC by its supporting hyperplane does not cause
any “false positive” answer).

We now process recursively each conflict list Kψ, over all prisms ψ of the partition. Each
recursive subproblem uses the same parameter r0, but the allocated storage parameter is
now s/r3

0. We keep recursing until we reach conflict lists of size close to n3/2/s1/2. More
precisely, after j levels of recursion, we get a total of at most (c0r

3
0)j = cj0r

3j
0 subproblems,

each involving at most n/rj0 wide tetrahedra, for some constant c0 that depend on D (but is
considerably smaller than r0).

We stop the recursion at the first level j∗ at which n

rj∗
0

≤ n3/2/s1/2. As a result, we

have r0
j∗ = O(s1/2/n1/2), and we get cj

∗

0 r
3j∗

0 = O∗(s3/2/n3/2) subproblems. Each of these
subproblems involves at most n

rj∗
0

= O∗
(
n3/2

s1/2

)
tetrahedra. Hence the overall size of the

inputs, as well as of the canonical sets, at all the subproblems throughout the recursion, is

O∗
(
s3/2

n3/2 · n
3/2

s1/2

)
= O∗(s). In particular, this is the asymptotic cost at the bottom level of

the recursion.

ESA 2022

51:14 Intersection Searching Amid Tetrahedra in 4-Space

As just described, at the bottom of the recursion, each subproblem contains at most
O∗(n3/2/s1/2) wide tetrahedra, and we detect intersections with them by brute force. We
thus obtain the following recurrence for the overall storage S0(NW , sW) for the structure
constructed on NW wide tetrahedra, where sW denotes the storage parameter allocated to
the structure (at the root NW = n, sW = s).

S0(NW , sW) =
{

O∗
D(r6

0sW) + c0r
3
0S0

(
NW

r0
, sW

r3
0

)
for NW ≥ Θ∗(n3/2/s1/2),

O(NW) for NW < Θ∗(n3/2/s1/2).

}
Unfolding the recurrence up to the terminal level j∗, where NW = O∗(n3/2/s1/2), the sum
of the nonrecursive overhead terms, over all nodes at a fixed level j, is

cj0r
3j
0 ·O∗

(
sW

r3j
0

)
= O∗ (sW) .

Hence, starting the recurrence at (NW , sw) = (n, s), the overall contribution of the overhead
terms is O∗(s). We showed above that this is also the asymptotic cost at the bottom of the
recurrence. Therefore, the overall storage used by the data structure is O∗(s). Using similar
considerations, one can show that the overall expected preprocessing time is O∗(s) as well,
since the time obeys a similar asymptotic recurrence.

Answering a query. Given a query segment ρ, which is not contained in Z(F), we find its
O(D) intersections with Z(F), which decompose it into O(D) segments, each fully contained
in some partition cell. Moreover, except for the first and last segment, the endpoints of each
of the other segments lie on the boundary of its cell. We process the segments in their order6

along ρ. Let e be the currently processed segment. If e is not the first or last segment, we
find the prisms ψ1, ψ2 that contain its endpoints, and find the component C of Sψ1,ψ2 that
contains e. If e is the first or last segment, we extend it backwards or forwards, respectively,
till it meets the boundary of its cell, and call the resulting segment e′. We now compute for
e′ the corresponding set Sψ1,ψ2 and its component C that contains e′. Since D and r0 are
constants, all this takes constant time.

The query, on the wide tetrahedra at the present cell τ , performs a segment intersection
detection query with e (or with e′ when e is the first or last segment) in the set of hyperplanes
containing the tetrahedra of TC , and, if no intersection is detected, continues recursively with
Tψ1 and Tψ2 (at the bottom of recursion we apply a brute-force search). If no tetrahedron
is found, in all the r0-recursive steps, we conclude that (the present subsegment of) ρ does
not hit any wide tetrahedron within τ . Once again, the correctness of this procedure follows
from Lemma 10.

The query time Q0(NW , sW) satisfies the recurrence

Q0(NW , sW) =

 OD(1) +O∗
(
NW

s
1/4
W

)
+ 2Q

(
NW

r0
, sW

r3
0

)
for NW ≥ Θ∗(n3/2/s1/2),

O(NW) for NW < Θ∗(n3/2/s1/2).


Unfolding the recurrence, the overall bound for the nonrecursive overhead terms, starting
from (NW , sW) = (n, s), is at most

O∗

∑
j≥0

(
2
r

1/4
0

)j
· n

s1/4

 = O∗
(n

s1/4

)
.

6 The order is immaterial for segment intersection detection queries, but is important for ray shooting.

E. Ezra and M. Sharir 51:15

Adding the cost at the 2j∗ subproblems at the bottom level j∗ of the recursion, where the
cost of each subproblem is at most O∗(n3/2/s1/2), we obtain the query time

Q0(n, s) = O∗
(

n

s1/4 + n3/2

s1/2

)
. (3)

Therefore, for s = n2 the query time is O∗(n1/2). The bounds S0(n) := S0(n, n2) = O∗(n2)
and Q0(n) := Q0(n, n2) = O∗(n1/2) are the bounds promised earlier for the wide tetrahedra
at a cell.

5 Output-Sensitive Construction of Arrangements of Tetrahedra and
of Intersections of Polyhedra in R4

The results of Section 3 can be applied to construct the arrangement A(T) of a set T of n
tetrahedra in R4 in an output-sensitive manner. A complete discrete representation of A(T)
requires, at the least, the collection of all faces, of all dimensions, of the arrangement, and
their adjacency structure. Concretely, for each j-dimensional face φ, for j = 0, 1, 2, 3, we
want the set of all (j + 1)-dimensional faces that have φ on their boundary. Conversely, for
each j-dimensional face φ, for j = 1, 2, 3, 4, we want the set of all (j − 1)-dimensional faces
that comprise ∂φ.

We begin by considering the task of computing all the nonempty intersections of pairs,
triples, and quadruples of tetrahedra of T . This will yield the set of vertices, and provide
an infrastructure for computing the j-faces, for j = 1, 2, 3. Denote the number of these
intersections as k2, k3, and k4, respectively. Note that we always have k4 ≥ k3 ≥ k2.

To simplify the description we assume that the tetrahedra are in general position, although
a suitable adaptation of the following machinery can handle degenerate cases too.

Reporting pairwise intersections. Two tetrahedra in general position in R4 intersect in a
two-dimensional convex polygon of constant complexity, and it suffices to report one vertex
of each nonempty polygon, in order to detect all intersecting pairs of tetrahedra. As is easily
checked, such a vertex is either an intersection of an edge of one tetrahedron with the other
tetrahedron, or an intersection of two 2-faces (triangles), one from each tetrahedron.

Reporting vertices of the first kind (edge-tetrahedron intersections) can be done using the
machinery in Theorem 1, whose details are provided in Section 2, which takes O∗(n12/7 + k2)
time.7 Reporting vertices of the second kind (triangle-triangle intersections) is done using
the machinery in Section 3, which also takes O∗(n12/7 + k2) time.

Reporting triple and quadruple intersections. We iterate over the input tetrahedra. For
each fixed tetrahedron T0, the previous step provides us with all the other tetrahedra that
intersect T0. Denote their number as kT0 , and observe that

∑
T0
kT0 = 2k2. We form the

nonempty intersections T0 ∩T , and triangulate each of them. We obtain a collection of O(kT0)
triangles, all contained in (T0 and therefore also in) the hyperplane hT0 supporting T0.

We have thus reduced our problem to that of reporting all pairwise and triple intersections
in a set of m = O(kT0) triangles in R3. This can be solved using the algorithm in [7], by a
procedure that runs in O∗(m3/2 + ℓT0) time, where ℓT0 is the number of triple intersections
of the triangles. Note that

∑
T0
ℓT0 = O(k4).

7 Although this part can be performed faster, as described in Section 4, we use the standard solution,
since we do not have a similar improvement for the construction of vertices of the second kind.

ESA 2022

51:16 Intersection Searching Amid Tetrahedra in 4-Space

Adding up this cost over all tetrahedra T0, the overall running time is

O∗

(∑
T

k
3/2
T + k4

)
= O∗

(
n1/2

∑
T

kT + k4

)
= O∗(n1/2k2 + k4).

Constructing the arrangement. For each tetrahedron T0, it is fairly routine to obtain, from
the information collected so far, the full three-dimensional arrangement within T0, using
standard techniques in three dimensions; we omit here these standard details. This gives us
all the j-faces of the four-dimensional arrangement A, for j = 0, 1, 2, 3, and their adjacency
information. The local adjacency information in R4 is also available from this data. By
local adjacency we mean the adjacency between a j-face and the j′-faces on its boundary,
for j′ < j, over all such pairs of faces. For completion we need to identify disconnected
pieces of the boundary of each four-dimensional cell, and record their adjacency to that cell.
This can be done by x4-vertical ray shooting from the x4-highest point of each connected
three-dimensional complex of faces. This calls for performing O(n) x4-vertical ray shooting
queries in a set of n tetrahedra in R4, which can be done using the machinery presented in
Theorem 1, or by an even simpler mechanism (since all the rays are vertical).

We have thus established the bound stated in Theorem 6.

Output-sensitive construction of the intersection of polyhedra in R4. As another applica-
tion, consider the problem where we have two not necessarily convex polyhedra R and B in
R4, whose boundaries consist of, or can be triangulated into O(n) faces of all dimensions,
which are segments, triangles, and tetrahedra. The goal is to construct their intersection
R ∩ B in an output-sensitive manner; a similar application has been shown in [7] for the
three-dimensional problem. We note that computing the union B ∪R can be done using a
very similar approach, within the same asymptotic time bound.

In order to compute R∩B, we first apply the above algorithm to construct, in an output-
sensitive manner, the arrangement A(R ∪B) of the two polyhedra R and B (specifically, we
build the arrangement of the tetrahedra comprising the boundaries of B and R). We then
label each cell (of any dimension) of A(R ∪B) with the appropriate Boolean operation, that
is, whether it either lies in R \B, B \R, B ∩R, or in the complement of B ∪R. Collecting
all the cells of the desired kind (e.g., those in B ∩R), and computing the adjacency relation
between them, we obtain a suitable representation of the intersection. This establishes the
bound stated in Theorem 6(ii).

We comment that extending the analysis to the intersection of more than two (albeit,
still a constant number of) input polyhedra can also be done, following the same machinery
as in the construction of an arrangement of tetrahedra, as presented above. It is easy to
verify that in this case we obtain the same asymptotic bound stated in Theorem 6(ii).

References
1 P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete

Mathematics: A Tribute to Jiří Matoušek, pages 1–30. Springer Verlag, Berlin-Heidelberg,
2017.

2 P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized
polynomial partitioning and its applications. SIAM J. Comput., 50:760–787, 2021. Also in
Proc. Sympos. on Computational Geometry (SoCG), 2019, 5:1–5:14. Also in arXiv:1812.10269.

3 P. K. Agarwal and J. Matoušek. Ray shooting and parameric search. SIAM J. Comput.,
22:794–806, 1993.

https://arxiv.org/abs/1812.10269

E. Ezra and M. Sharir 51:17

4 P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II.
SIAM J. Comput., 42:2039–2062, 2013. Also in arXiv:1208.3384.

5 S. Basu, R. Pollcak, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer-Verlag,
Berlin–Heidelberg, 2nd edition, 2006.

6 J. Canny. Collision detection for moving polyhedra. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), 8:200–209, 1986.

7 E. Ezra and M. Sharir. On ray shooting for triangles in 3-space and related problems. SIAM J.
Comput., to appear. Also in Proc. 37th Sympos. on Computational Geometry, 2021, 34:1–34:15,
and in arXiv:2102.07310.

8 L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Camb. Phil. Soc.,
159:459–469, 2015. Also in arXiv:1410.8871.

9 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom.,
2:127–151, 1987.

10 M. C. Lin, D. Manocha, and Y. J. Kim. Collision and proximity queries. In Handbook on
Discrete and Computational Geometry, chapter 39, pages 1029–1056. CRC Press, Boca Raton,
Florida, 3rd edition, 2017.

11 J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching.
Discrete Comput. Geom., 54:22–41, 2015.

12 E. Schömer and Ch. Thiel. Efficient collision detection for moving polyhedra. In Proc. 11th
Sympos. on Computational Geometry, pages 51–60, 1995.

13 M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, Cambridge-New York-Melbourne, 1995.

ESA 2022

https://arxiv.org/abs/1208.3384
https://arxiv.org/abs/2102.07310
https://arxiv.org/abs/1410.8871

	1 Introduction
	2 Segment-Intersection amid Tetrahedra: An Initial Algorithm
	3 Triangle-Triangle Intersection Queries in R^4
	4 Segment-Intersection amid Tetrahedra: An Improved Solution
	5 Output-Sensitive Construction of Arrangements of Tetrahedra and of Intersections of Polyhedra in R^4

