An Empirical Evaluation of k-Means Coresets

Chris Schwiegelshohn &

Department of Computer Science, Aarhus University, Denmark

Omar Ali Sheikh-Omar &

Department of Computer Science, Aarhus University, Denmark

—— Abstract

Coresets are among the most popular paradigms for summarizing data. In particular, there exist
many high performance coresets for clustering problems such as k-means in both theory and practice.
Curiously, there exists no work on comparing the quality of available k-means coresets.

In this paper we perform such an evaluation. There currently is no algorithm known to
measure the distortion of a candidate coreset. We provide some evidence as to why this might be
computationally difficult. To complement this, we propose a benchmark for which we argue that
computing coresets is challenging and which also allows us an easy (heuristic) evaluation of coresets.
Using this benchmark and real-world data sets, we conduct an exhaustive evaluation of the most
commonly used coreset algorithms from theory and practice.

2012 ACM Subject Classification Theory of computation — Data compression; Information systems
— Clustering

Keywords and phrases coresets, k-means coresets, evaluation, benchmark
Digital Object ldentifier 10.4230/LIPIcs.ESA.2022.84
Related Version Full Version: https://arxiv.org/pdf/2207.00966

Supplementary Material Software (Source Code): https://github.com/sheikhomar/eval-k-means-
linebreak coresets, archived at swh:1:dir:53066aa034ea87cdf2fd2f5cb2077400aaf341c3

Funding Chris Schwiegelshohn: Independent Research Fund Denmark (DFF) Sapere Aude Research
Leader grant No 1051-00106B.
Omar Ali Sheikh-Omar: Innovation Fund Denmark under grant agreement No 0153-00233A.

1 Introduction

The design and analysis of scalable algorithms has become an important research area over
the past two decades. This is particularly important in data analysis, where even polynomial
running time might not be enough to handle proverbial big data sets. One of the main
approaches to deal with the scalability issue is to compress or sketch large data sets into
smaller, more manageable ones. The aim of such compression methods is to preserve the
properties of the original data, up to some small error, while significantly reducing the
number of data points.

Among the most popular and successful paradigms in this line of research are coresets [40].
Informally, given a data set A, a coreset 2 C A with respect to a given set of queries @) and
query function f: A x @ — R>(approximates the behaviour of A for all queries up to some

f(A,q) f(2,q)
to a number of problems such as computational geometry [2, 9], linear algebra [30, 34],

and machine learning [36, 41]. But the by far most intensively studied and arguably most
successful applications of the coreset framework is the k-clustering problem.
© Chris Schwiegelshohn and Omar Ali Sheikh-Omar;
oY licensed under Creative Commons License CC-BY 4.0
30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 84; pp. 84:1-84:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

multiplicative distortion D via sup,c max (f (Qa) f (A’Q)) < D. Coresets have been applied

mailto:schwiegelshohn@cs.au.dk
mailto:omar@cs.au.dk
https://orcid.org/0000-0002-0042-5231
https://doi.org/10.4230/LIPIcs.ESA.2022.84
https://arxiv.org/pdf/2207.00966
https://github.com/sheikhomar/eval-k-means-coresets
https://github.com/sheikhomar/eval-k-means-coresets
https://archive.softwareheritage.org/swh:1:dir:53066aa034ea87cdf2fd2f5cb2077400aaf341c3;origin=https://github.com/sheikhomar/eval-k-means-coresets;visit=swh:1:snp:7a52c3a62cd792b44d7fb235f83b626b39c0e278;anchor=swh:1:rev:2b55808958b280e012043157119458ff23ab5a27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2

An Empirical Evaluation of k-Means Coresets

Here we are given n points A with (potential unit) weights w : A — R>¢ in some metric
space with distance function dist and aim to find a set of k centers C such that

1
costa(C) := - Hélél w(p) - dist*(p, ¢)
pEA ¢

is minimized. The most popular variant of this problem is probably the k-means problem in

d-dimensional Euclidean space where z = 2 and dist(z,y) = Z?:I(x,' — ;).
A (k,e)-coreset is now a subset Q C A with weights w : Q@ — Rx>(such that for any set
of k centers C

<costA(C’) costn(C)
cost(C) cost4(C)

sup max
c

)§1+5. (1)

The coreset definition in Equation (1) provides an upper bound for the distortion of all
candidate solutions i.e., all possible sets of k centers. A weak coreset is a relaxed guarantee
that holds for optimal or nearly optimal clusterings of A instead of all clusterings.

In a long line of work spanning the last 20 years [4, 8, 10, 14, 15, 19, 20, 26, 25, 27,
29, 8, 33, 44], the size of coresets has been steadily improved with the current state of the
art yielding a coreset with O(ke~2 - min(d, k,~2)) points for a distortion D < (1 + ¢) due
to [13]1.

While we have a good grasp of the theoretical guarantees of these algorithms, our
understanding of the empirical performance is somewhat lacking. There exist a number of
coreset implementations, but it is usually difficult to assess which implementation summarizes
the data best. To accurately evaluate a given coreset, we would need to come up with a k
clustering C' which results in a maximal distortion. Solving this problem is likely difficult:
related questions such as deciding whether a 3-dimensional point set A is an e-net of a set B
with respect to convex ranges is co-NP hard [24].

Due to this difficulty, a common heuristic for evaluating coresets is as follows [1, 22].
First, compute a coreset {2 with the available algorithm(s) using some input data A. Then,
run an optimization algorithm on €2 to compute a k clustering. The best coreset algorithm is
considered to be the one which yields a clustering with the smallest cost.

This practice has substantial drawbacks. The first is that this evaluation method conflates
the two separate tasks of coreset construction and optimization. It is important to note
that the first step of virtually all coreset algorithms is a low-cost (bicriteria) constant factor
approximation, i.e. a solution with /3 - k clusters that costs at most o - OPT, where OPT is
the cost of an optimal k clustering. Given that this initial solution has an « approximation to
the cost, a routine calculation shows that the additive error of the coreset, i.e. the maximum
difference |cost 4 (C) — costp(C)| over all solutions C'is at most O(«)-cost 4(C). In particular,
in the case that the initial bicriteria approximation has o < 2, which is not too difficult to
achieve with more than k centers, any v approximation algorithm will find solutions with
approximation factor O(vy + «) - OPT. In particular, the distortion may be unbounded, for
example if B only consists of the k centers, while simply returning B itself yields a low cost
clustering. Thus, it is difficult to measure coreset quality in this way.

The second drawback is that this practice will mainly measure the performance of the
optimization algorithm, rather than the performance of the coreset algorithms. During its
execution it might simply not consider any solution with high distortion. For example, if the

! We use O(x) to hide log® z terms for any constant c.

C. Schwiegelshohn and O. A. Sheikh-Omar

approximation factor v of the solution returned by the algorithm is large then this solution
(as well as any even higher cost solution considered during the algorithm’s execution) will
have a low distortion.

The third drawback of this evaluation method is that it does not consider the main use
cases of coresets, nor the full power of their guarantee. Indeed, if speeding up the computation
of an optimization algorithm, one would hardly need a strong coreset; approximating the cost
of every candidate solution, as weaker coreset definitions (or indeed a bicriteria approximation)

would be suitable as well. A coreset’s main and most powerful feature is composability, i.e.

given two disjoint point sets X and Y, the union of a coreset of X and a coreset of Y is a
coreset. Composability is what enables coresets to scale to massively parallel computation
models and enables simple streaming algorithms via the merge and reduce technique. To
which degree a coreset is composable is generally not a property of an optimal clustering of
the point set, as optimal solutions C'x of X or Cy of Y may have little in common with an
optimal solution of X UY.

The purpose of this study is to systematically evaluate the quality of various coreset
algorithms for k-means. As such, we develop a new evaluation procedure which estimates
the distortion of coreset algorithms. On real-world data sets, we observe that while the
evaluated coreset algorithms are generally able to find solutions with comparable costs, there
is a stark difference in their distortions. This shows that differences between optimization
and compression are readily observable in practice.

As a complement to our evaluation procedure on real-world data sets, we propose a
benchmark framework for generating synthetic data sets. We argue why this benchmark has
properties that results in hard instances for all known coreset constructions. We also show
how to efficiently estimate the distortion of a candidate coreset on the benchmark.

2 Coreset Algorithms

Though the algorithms vary in details, coreset constructions come in one of the following

two flavours:

1. Movement-based constructions: Such algorithms compute a coreset {2 with T points
given some input point set A such that costo(C) < OPT, where OPT is the cost of an
optimal k-means clustering of A. The coreset guarantee then follows as a consequence
of the triangle inequality. These algorithms all have an exponential dependency on the
dimension d, and therefore have been overtaken by sampling-based methods. Nevertheless,
these constructions are more robust to various constrained clustering formulations [28, 43]
and continue to be popular. Examples from theory include [23, 26].

2. Importance sampling: Points are sampled proportionate to their impact on the cost
of any given candidate solution. The idealized distribution samples proportionate to the

mineeo dist*(p.c) o, g weighted

cost 4 (C)
by their inverse sampling probability. The sensitivities are hard to compute exactly but

sensitivity which for a point p is defined as sens(p) := supq

much work exists on how to find other distributions with very similar properties. In terms
of theoretical performance, sensitivity sampling has largely replaced movement-based
constructions, see for example [19, 33].

Of course, there exist algorithms that draw on techniques from both, see for example [15].

In what follows, we will survey implementations of various coreset constructions that we will
evaluate later.

StreamKM++ [1]. The popular k-means++ algorithm [3] computes a set of centers K
by iteratively sampling a point p in A proportionate to minge g distZ(p7 g) and adding it to
K. The procedure terminates once the desired number of centers has been reached. The

84:3

ESA 2022

84:4

An Empirical Evaluation of k-Means Coresets

first center is typically picked uniformly at random. The StreamKM-++ paper runs the
k-means++ algorithms for T iterations, where T is the desired coreset size. At the end, every
point ¢ in K is weighted by the number of points in A closest to it. While the construction
has elements of importance sampling, the analysis is largely movement-based. The provable

bound required for the algorithm to compute a coreset is O (g;ﬁfg’; . logd/ 2 g;;’fgﬁ) Despite

its simplicity, its running time compares unfavourably to all other constructions.

BICO [22]. BICO combines the very fast, but poor quality clustering algorithm BIRCH [47]
with the movement-based analysis from [23, 26]. The clustering is organized by way of a
hierarchical decomposition: When adding a point p to one of the coreset points) at level i,
it first finds the closest point ¢ in 2. If p is too far away from ¢, a new cluster is opened
with center at p. Otherwise p is either added to the same cluster as g, or, if adding p to ¢’s
cluster increases the clustering cost beyond a certain threshold, the algorithm attempts to
add p to the child-clusters of q. The procedure then continues recursively. The provable
bound required for the algorithm to compute a coreset is O (k:a_d_2 log n)

Ray Maker [25]. The algorithm computes an initial solution with %k centers which is a
constant factor approximation of the optimal clustering. Around each center, O(1/e?~1)
random rays are created which span the hyperplane. Next, each point p € A is snapped to its
closest ray resulting in a set of one-dimensional points associated with each ray. Afterwards, a
coreset is created for each ray by computing an optimal 1D clustering with k2 /€2 centers and
weighing each center by the number of points in each cluster. The final coreset is composed
of the coresets computed for all the rays. The provable bound required for the algorithm to
compute a coreset is O(k3 - e7971). The algorithm has recently received some attention due
to its applicability to the fair clustering problem [28].

Sensitivity Sampling [19]. The simplest implementation of sensitivity sampling first com-
putes an (O(1),0(1)) bicriteria approximation?, for example by running k-means++ for 2k

iterations [46]. Let K be the 2k clustering thus computed and let K; be an arbitrary cluster of
dist®(p,q) + L
costr; ({gi}) ' [Kil

and weighs any point by its inverse sampling probability. Let |K;| be the estimated number
of points in the sample. Finally, the algorithm weighs each ¢; by (1 +¢) - |K;| — |K;|. The
provable bound required for the algorithm to compute a coreset is O (kde=*) ([19)), 0 (ke™9)
(129]), or O (K2==%) ([8)).

K with center g;. Subsequently, the algorithm picks points proportionate to

Group Sampling [15]. First, the algorithm computes an O(1) approximation (or a bicriteria
approximation) K. Subsequently, the algorithm preprocesses the input into groups such that
(1) for any two points p,p’ € K;, their cost is identical up to constant factors and (2) for
any two clusters K, K, their cost is identical up to constant factors. In every group, Group
Sampling now samples points proportionate to their cost. The authors of [15] show that there
always exist a partitioning into log2 1/e groups. Points not contained in a group are snapped
to their closest center ¢ in K. ¢ is weighted by the number of points snapped to it. The
provable bound required for the algorithm to compute a coreset is O (k£_2 min(d, k, 6_2))
([13]). While this improves over sensitivity sampling, it is generally slower and not as easy to
implement.

2 An (a, B) bicriteria approximation computes an a approximation using § - k many centers.

C. Schwiegelshohn and O. A. Sheikh-Omar

Finally, we note that some of the more popular algorithms in theory have not been
mentioned here. For example, Chen’s [10] construction is particularly popular among
theoreticians. The Group Sampling algorithm by [15] is an extension and improvement
of Chen’s method. Thus, the performance of Group Sampling is also indicative of Chen’s
algorithm.

Dimension Reduction

Finally, we also combine coreset constructions with a variety of dimension reduction techniques.
Starting with [17], a series of results [4, 5, 6, 7, 12, 16, 20, 21, 32, 37, 44] explored the possibility
of using dimension reduction methods for k-clustering, with a particular focus on principal
component analysis (PCA) and random projections. The seminal paper by Feldman, Schmidt,
and Sohler [20] was the first to use dimension reduction to obtain smaller coresets for k-
means. Movement-based coresets in particular often have an exponential dependency on the
dimension, which can be alleviated with some form of dimension reduction, both in theory [43]
and in practice [31]. There are essentially two main dimension reduction techniques for
coresets.

Principal Component Analysis. Feldman, Schmidt, and Sohler [20] showed that projecting
an input A onto the first O(k/e?) principal components is a coreset. This coreset still
consists of n points, but they now lie in low dimension. The analysis was subsequently
tightened by [12] and extended to other center-based cost functions by [44]. Although its
target dimension is generally worse than those based on random projections and terminal
embeddings, there is nevertheless reasons for using PCA regardless: It removes noise and
thus may make it easier to compute a high quality coreset. For more applications of PCA to
k-means clustering, we refer to

Terminal Embeddings. Given a set of points A in R”, a terminal embedding f : R — R?
preserves the pairwise distance between any point p € A and any point ¢ € R” up to a
(1 £¢) factor. The statement is related to the famous Johnson-Lindenstrauss lemma but
it is stronger as it does not apply to only the pairwise distances of A. Nevertheless, the
same target dimension is sufficient. Terminal embeddings were studied by [11, 18, 35, 42],
with Narayanan and Nelson [42] achieving an optimal target dimension of O(e~2logn),
where n is the number of points. We note that terminal embeddings, combined with an
iterative application of the coreset construction from [8], can reduce the target dimension
to a factor O~(5*2 log k). This is mainly of theoretical interest, as in practice the deciding
factor wrt the target dimension is the precision, rather than dependencies on logn and
log k. For applications to coresets, we refer to [4, 15, 29]. For an empirical evaluation of
random projections, which form the basis of all known terminal embeddings, we refer to
Venkatsubramanian and Wang [45].

3 Benchmark Construction

In this section, we describe our benchmark. We start by describing the aims of the benchmark,

followed by giving the construction. Our aim is to generate a data set containing many

clusterings with the following properties.

1. The benchmark has many clusterings that, in a well defined sense, are highly dissimilar.
Specifically, we want the overlap between any two clusters of different clusterings to be
small.

84:5

ESA 2022

84:6

An Empirical Evaluation of k-Means Coresets

2. The different clusterings have very similar and low cost. This ensures that despite the
solutions being different in terms of composition and center placement, a good coreset
has to consider them equally regarding distortion.

3. The clusterings are induced by a minimal cost assignment of input points to a set of
centers in R?. This final property ensures that the coreset guarantee has to apply to
these clusterings.

To generate the benchmark, we now use the following construction. The benchmark has
a parameter o which controls the number of points and dimensions of the generated data
instance. For a given value of k, the benchmark instance consists of n = k“ points and
d = « - k dimensions, i.e. we will construct and n x d matrix A where every row corresponds
to an input point and every column corresponds to one of the dimensions.

Let 1; be the k-dimensional all-one vector and v} be the k-dimensional vector with
1

ifi#j
entries (v}); = { k 7&‘7 For ¢ < a, recursively define the k* dimensional vector

L if i =
(v; D11y
Ug_l) -1
¢ _ 01) —1 i)2 Lk
v; =v;, ® 1, where ® denotes the Kronecker product, i.e. v;” ® 1} =
(G P S
Finally, set the t-th column of A, fort =a-k+b,a€{0,...a—1} and b € {1,...k}, to be

]lkafankl 04 U?Jrl.

To get a better feel for the construction, we have given two small example instances for
k =2 and k = 3 in Figue Figure 1.

r2 1 _1 2 _1 17
1 _1 1 _1 1 _ 17 3 3 3 3 3 3
2 2 2 2 2 2 _1 2 _1 2 1 1
_1 1 1 _1 1 _1 3 3 3 3 3 3
2 2 2 2 2 2 1 1 2 2 1 1
1 1 1 1 1 _1 3 3 3 3 3 3
2 2 2 2 2 2 2 1 1 _1 2 _1
_1 1 _1 1 1 _1 3 3 3 3 3 3
2 2 2 2 2 2 _1 2 1 1 2 _1
1 _1 1 1 1 1 3 3 3 3 3 3
2 2 2 2 2 2 _1 1 2 _1 2 _1
_1 1 1 1 1 1 3 3 3 3 3 3
2 2 2 2 2 2 2 11 1 1 2
1 1 1 1 _1 1 3 3 3 3 3 3
2 2 2 2 2 2 _1 2 1 1 _1 2
_1 1 _1 1 _1 1 3 3 3 3 3 3
L™ 2 2 2 2 2 2 1 1 2 1 1 2
L3 3 3 3 3 3

Figure 1 Benchmark construction for £k = 2 and o = 3 (left) and k£ = 3 and o = 2 (right).

Properties of the Benchmark

We now summarize the key properties of the benchmark. To this end, we require a few
notions. Let A be the input matrix. We slightly abuse notation and refer to A; as both the
ith point as well as the ith row of the matrix A. For a clustering C = {C1,...,Cy}, we define

.. .o R 1 ifAiECj
that the n x k indicator matrix X induced by C via X ; = 0 el Furthermore, we
else.
L if A; € Cj
will also use the n x k normalized clustering matrix X defined as X; ; = ¢ VICl

0 else.

C. Schwiegelshohn and O. A. Sheikh-Omar

We also recall the following lemma which will allow us to express the k-means cost of a
clustering C with optimally chosen centers in terms of the cost of X and A.

» Lemma 1 (Folklore). Let A be an arbitrary set of points and let p(A) = ﬁ > peab be the
mean. Then Y- 4 |Ip —cll* = |A] - [|#(A) = c|® + X2 e a llp = n(A)|1? for any point c.

This lemma proves that for any given cluster C}, the mean is the optimal choice of center.
We also note that any two distinct columns of X are orthogonal. Furthermore %llTA copies
the mean into every entry of A. Combining these two observations, we see that the matrix
XXT A maps the ith row of A onto the mean of the cluster it is assigned to. Finally, define

the Frobenius norm of an n x d A by ||A|lp = /> iy Z?Zl A? ;. Then the k-means cost of
the clustering C is precisely |A — X XT A||%.

We also require the following distance measure on clusterings as proposed by Meila [38, 39].
Given two clusterings C and C’, the k x k~ confusion matrix M is defined as M; ; = [C; N C}].
Furthermore for the indicator matrices X and X’ induced by C and C’ we have the identity
M = XTX’. Denote by II;, the set of all permutations over k elements. Then the distance

between C and C’ is defined as d(C,C’) =1 — %né%x Zle M; =(;)- Observe that for clusters
melly

that are identical, their distance is 0. The maximum distance between any two k clusterings
is always %

The solutions we consider are given as follows. For the columns a-k+1,...(a+ 1) - k,
we define the clustering C* = {C{,...Cp} with A; € Cf if and only if A; ; > 0. Let X and
X denote the indicator matrix and clustering matrix, respectively, as induced by C*. These
clusterings satisfy the properties we stated at the beginning of this section, that is:

1. The distance between these clustering is 1 — %, i.e. it is maximized.
2. The clusterings have equal cost and the centers in each clustering have equal cost.

3. The clusterings are induced by a set of centers in R

Benchmark Evaluation

We now describe how we use the benchmark to measure the distortion of a coreset. Assume
for now that the coresets are subsets of the original input points. The extension to coresets
that do not consist of input points is described at the end of this section.

Consider the clustering C* = {C7, ... Cy} for some a and let with weights w : @ — Rxg
be the coreset and let § > 0 be a parameter. Note that there are o many such clusterings,
for each value of a. We use w(C? N Q) := Zpecgrm w(p) to denote the mass of points of

C? in Q. For every cluster C? with w(C? N Q) > |C;|(1 — §), we place a center at u(C?).

Conversely, if w(C# N Q) < |C#(1 —6), we do not place a center at pu(C?). We call such
clusters deficient. Let S be the centers of these deficient clusters.

We now compare the cost as computed on the coreset and the true cost of S. Due to
Lemma 1 and the fact that all clusters have equal cost, we may write for any deficient cluster
C costea(S) = costoe {u(CH}) + kHu(CF) — n(C)l13, where Cpt is a non-deficient
cluster. Thus, the cost is costce (S) (1+2) - costee {u(C)}).

Conversely, the cost on the coreset is

. w(CrNQ)
costcjr_»({u(C’j‘?

) (1 " Z) -costes ({u(C)}).

costonce (S)

Thus for each deficient clustering individually, the distortion will be close to — - L

If there are many deficient clusters, then this will also be the overall distortion. For all
possible (suitably discretized) thresholds for deficiency, i.e. all values of §, we can now identify
the clustering C* with a maximum number of deficient clusters and use the aforementioned

construction to get a lower bound on the distortion.

w(C*NQ) > 1-¢-

84:7

ESA 2022

84:8

An Empirical Evaluation of k-Means Coresets

To extend this evaluation to coresets where the points are not part of the input, we
consider a point p € Q to be in C? if it is closer to u(C?) than to to ,u(CJ‘?).

4 Experiments

In this section, we present how we evaluated different algorithms. First, we propose our
evaluation procedure which gauges the quality of coresets. Then, we describe the data sets
used for the empirical evaluation and our experimental setup. Finally, we detail the outcome
of the experiments and our interpretation of the results.

Evaluation Procedure

Accurately evaluating a k-means coreset of a real-world data set requires constructing a
solution (a set of k centers) which results in a maximal distortion. Finding such a solution,
however, is difficult. Instead, we can estimate the quality of a given coreset by finding
meaningful candidate solutions.

A first attempt can be to randomly generate candidate solutions. It is not readily apparent
how to define a distribution of meaningful solutions from which to sample. One could, for
instance, generate k random points inside the convex hull or the minimum enclosing ball
(MEB) of a coreset 2. Convex hulls in high dimensions are infeasible to compute, so we
sample a center by choosing random convex combination of the centers of the initial bicriteria
approximation computed for every coreset. A better way to generate candidate solutions
turns out to be k-means++, where we sample k points with respect to the k-means+-+
distribution and use the resulting centers as a solution. The main advantage of this approach
is that k-means++ can uncover natural cluster structures in the data, which uniform sampling
generally does not. For all variants, we generated 5 candidate solutions, where the candidate
solution with the largest distortion being a lower bound for the true distortion of the coreset.

Given the usefulness of evaluating coresets on real-world data sets, it can be tricky to
gauge the general performance of coreset algorithms using only a small selection of data sets.
For this reason, we used our benchmark to complement the evaluation on real-world data
sets. The benchmark accomplishes two important tasks. First, the benchmark allows us to
quickly find a bad solution because both good and bad clusterings are known a priori. It is
unclear how to find bad clusterings for real-world data sets. Second, it is easier to make a fair
comparison of different coreset constructions because the benchmark is known to generate
hard instances for all known coreset algorithms. This cannot be said for real-world data sets.
For the benchmark, we computed the distortion following the evaluation procedure described
in Section 3.

Every randomized coreset construction was repeated 10 times. We aggregated the
reported maximum distortions for every run by taking the average over all 10 evaluations.
It is important to not aggregate the distortions here by taking the maximum over all runs:
If one run of the coreset algorithm fails but the others succeed, then such an aggregation
predicts far worse distortion than what we could typically expect.

Data sets

We conducted experiments on five real-world data sets Census, Covertype, Tower, Caltech,
NYTimes, and four instances of our benchmark. Benchmark instances were generated to
match approximately the sizes of the real-world data sets. The sizes of the considered data
sets are given in Table 1.

C. Schwiegelshohn and O. A. Sheikh-Omar

Table 1 The sizes of the real-world datasets used for the experimental evaluation.

Data points Dimensions

Caltech 3,680,458 128
Census 2,458,285 68
Covertype 581,012 54
NYTimes 500,000 102,660
Tower 4,915,200 3

Table 2 The parameter values and the sizes of the benchmark instances used for the experimental
evaluation.

k « Data points Dimensions
10 6 1,000,000 60
20 5 3,200,000 100
30 4 810,000 120
40 4 2,560,000 160

The Census® dataset is a small subset of the Public Use Microdata Samples from 1990
US census. It consists of demographic information encoded as 68 categorical attributes of
2,458,285 individuals.

Covertype* is comprised of cartographic descriptions and forest cover type of four wilder-
ness areas in the Roosevelt National Forest of Northern Colorado in the US. It consists of
581,012 records, 54 cartographic variables and one class variable. Although Covertype was
originally made for classification tasks, it is often used for clustering tasks by removing the
class variable [1].

The data set with the fewest number of dimensions is Tower®. This data set consists of
4,915,200 rows and 3 features as it is a 2,560 by 1,920 picture of a tower on a hill where each
pixel is represented by a RGB color value.

Inspired by [22], Caltech was created by computing SIFT features from the images in the
Caltech101% image database. This database contains pictures of objects partitioned into 101
categories. Disregarding the categories, we concatenated the 128-dimensional SIFT vectors
from each image into one large data matrix with 3,680,458 rows and 128 columns.

NYTimes” is a dataset composed of the bag-of-words (BOW) representations of 300,000
news articles from The New York Times. The vocabulary size of the text collection is 102,660.
Due to the BOW encoding, NYTimes has a very large number of dimensions and is highly
sparse. To make processing feasible, we reduced the number of dimensions to 100 using
terminal embeddings.

https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/covertype
http://homepages.uni-paderborn.de/frahling/coremeans.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://archive.ics.uci.edu/ml/datasets/bag+of+words

N o gk W

84:9

ESA 2022

https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/covertype
http://homepages.uni-paderborn.de/frahling/coremeans.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://archive.ics.uci.edu/ml/datasets/bag+of+words

84:10

An Empirical Evaluation of k-Means Coresets

Preprocessing & Experimental Setup

To understand how denoising effects the quality of the outputted coresets, we applied Principal
Component Analysis (PCA) on Caltech, Census, Covertype, and NYTimes by using the
k singular vectors corresponding to the largest singular values. We did not perform any
preprocessing on Tower due to its low dimensionality.

We followed the same experimental procedure with respect to the choice of parameter
values for the algorithms as prior works [1, 22]. For the target coreset size T', we experimented
with T" = mk for m = {50, 100,200,500}. On Caltech, Census, Covertype, and NY Times,
we used values k in {10, 20, 30, 40,50}, while for Tower we used larger cluster sizes k €
{20, 40, 60,80,100}. On the benchmark, we used k € {10, 20, 30, 40}.

We implemented Sensitivity Sampling, Group Sampling, Ray Maker, and StreamKM++
in C4++. The source code can be found on GitHub®. For BICO, we used the authors’
reference implementation®. The source code was compiled with gcc 9.3.0. The experiments
were performed on a machine with Intel Core i9 10940X 3.3GHz 14-Core and 2x DDR4
PC3200 128GB RAM.

Outcome of Experiments

We observed that in the majority of our experiments, varying the coreset sizes does not
significantly change the performance profiles of individual algorithms when comparing them
against each other. Therefore, in the following sections, we focus on a cross-section of the
experiments where m = 200 i.e., coreset sizes T' = 200k. For numerical results including
variances of all the experiments and tables containing distortions, costs and running times,
we refer to the full version of this paper.

In Figure 2, we summarized the distortions of the experiments with coreset sizes T' = 200k.
All five algorithms are matched on the Tower dataset. The worst distortions across the
algorithms are close to 1, and performance between the algorithms is negligible. The
performance difference between sampling-based and movement-based methods become more
pronounced as the number of dimensions increase. On Cowvertype with its 54 features, Ray
Maker performs the worst followed by BICO and Group Sampling while Sensitivity Sampling
and StreamKM++ perform the best. Differences in performance are more noticeable on
Census, Caltech, and NYTimes where methods based on importance sampling perform much
better. Sensitivity Sampling and Group Sampling perform the best, StreamKM++ come
in second while BICO and Ray Maker perform the worst across these data sets. On the
Benchmark, Ray Maker is the worst while Sensitivity Sampling and Group Sampling are the
best. StreamKM++ performs also very well compared to BICO.

Interpretation of Experimental Results

Optimization versus Compression. While all five algorithms are equally matched when
optimizing on the candidate coresets, coreset quality performance differ significantly (see Fig-
ure 2). For all data sets, the obtained costs differed insignificantly for all values of k,
irrespective of the coreset algorithm used, while distortions varied strongly, depending on
the coreset algorithm.

8 https://github.com/sheikhomar/eval-k-means-coresets
9 https://1s2-www.cs.tu-dortmund.de/grav/en/bico

https://github.com/sheikhomar/eval-k-means-coresets
https://ls2-www.cs.tu-dortmund.de/grav/en/bico

C. Schwiegelshohn and O. A. Sheikh-Omar 84:11

112 Tower

Algorithms
T 110 == BICO
mmm Group Sampling
51.08 mmm Ray Maker
S 1.06 mmm Sensitivity Sampling
k= = StreamKM-++
S1.04
°
o] | ull il wll
k=20 k=40 k=60 k=80 k=100
Covertype Covertype+PCA
1.25 —
<
3 1.20 S .20
£
c 115 Z 115
2 g
S110 S110
bl had
21.05 I 0 1.05 l
oo Ml M. Hil.. o W _oiﬁ- e . Hal... Hal .
k=10 k=20 k=30 k=40 k=50 k=10 k=20 k=30 k=40 k=50
Census 2.0 Census+PCA
=18 -18
S16 3
Er g
§14 14
£ €
<] S
@12 w12
o [s} I l
10 | Meialluaiin el el HB e BB w B @ B.H N
k=10 o k=20 k=30 k=40 k=50
5 Caltech 2.50 Caltech+PCA
3 2.
= Eirs
s 5.
£ £ 1.50
52 s
@
2 4125 I
N | wn L. m H_ N = 1.00 ..._._..-n- e EEw W _._- .
Tk=10 20 30 k=40 k=50 k=10 20 30 40 k=50
gg NYTimes .10 NYTimes+PCA
<100 <
1.08
g 75 g
Z 50 E1oe
S S
£ 21.04
2 25 2
= @
) I B8 1.02 l I l I
e Bl el —. - —. - —. 0o ML mm "N A. = _._.
k=10 k=20 =40 k=10 k=20 k=30 k—40 k=50
5 Benchmark 6 Benchmark Z Benchmark 6 Benchmark Algorithms
—~ — —~ -5
=4 =5 =5 = === BICO
2 o4 24 o4 mmm Group Sampling
£3 §3 £ §,3 = Ray Maker
3 P .
'g .5 _g .g -_— ztensltlv;xfimplmg
=l m Stream
5?2 52 52 52
£ S £ £
o 0 o o
a a a a
1 e 1 .. 1 . __mm 1 .
k=10 k=20 k=30 k=40

Figure 2 The average distortions of the evaluated coreset algorithms with coreset size T' = 200k
on five real-world data sets and on four benchmark instances. Black bars indicate standard deviations.
Notice that the axis is non-linear as otherwise the bars for Sensitivity Sampling and Group Sampling
would disappear on the plots as their distortions are close to 1.

ESA 2022

84:12

An Empirical Evaluation of k-Means Coresets

1.0 Data set
—— NYTimes
Caltech

g 0.8 —— Census
© —— Covertype
o
£ —— Tower
—
O 0.6
et
[}
=]
©
3
I 0.4
©
IS
S
= 0.2

0.0

10 20 30 40 50 70 100 200
Number of centers k

Figure 3 Depicts how clustering costs of five real-world data sets decrease as the number of
centers increase. Plotting the cost curve allows us to study whether we can observe a difference
between coreset construction and optimization in a data set when evaluating a coreset based on cost.

Nevertheless, the cost drop with increasing values of k is a predictor for the quality of
certain coresets. It is not uncommon for the k-means cost of real-world data sets to drop
significantly for larger values of k. Figure 3 illustrates this behavior for several real-world
data sets. The more the curve bends, the less of a difference there is between computing a
coreset and a clustering with low cost. For data sets with an L-shaped cost curve, a coreset
algorithm adding more centers to the coreset will seem to be performing well when evaluating
it based on the outcome of the optimization. Tower is a good example of a data set where
optimization is very close to compression. Its cost curve bends the most which indicates
that adding more centers help reduce the cost. One of the strengths of the benchmark is
that there is no way of reducing the cost without capturing the right subclusters within a
benchmark instance. This means that the cost does not decrease markedly beyond a certain
value of k even if more centers are added.

For BICO, Ray Maker, and StreamKM++, there is a correlation between the steepness
of the cost curve for a data set and the distortion of the generated coreset. On data sets
where the curve is less steep, we observed higher distortions. The effect is more pronounced
for BICO and Ray Maker than for StreamKM-++. Importance sampling approaches (Group
Sampling and Sensitivity Sampling) seem to be free from this behavior as they consistently
generate high quality coresets irrespective of the shape of cost curve.

Movement-based versus Sampling-based Approaches. In general, movement-based con-
structions perform the worst in terms of coreset quality. We observed that BICO and
Ray Maker have the highest distortions across all data sets including on the benchmark
instances. Among the sampling-based algorithms, Sensitive Sampling performs well with
Group Sampling generally being competitive. This runs contrary to theory where Group
Sampling has the better (currently known) theoretical bounds. StreamKM++ is an inter-
esting case. Like the movement-based methods, its distortion increases with the dimension.
Nevertheless, it generally performs significantly better than BICO and Ray Maker. This can
be attributed to the fact that the coreset produced by StreamKM++ consists entirely of

C. Schwiegelshohn and O. A. Sheikh-Omar

k-means++ centers weighted by the number of points of a minimal cost assignment. This is
similar to movement-based algorithms such as BICO. Nevertheless, it also retains some of
the performance from pure importance schemes.

In practice as well as in theory, the distortion of movement-based algorithms are affected
by the dimension. By comparison, sampling-based algorithms are affected very little. Theor-
etically, there should not exist a difference, as the sampling bounds are independent of the
dimension. What little effect can be observed is likely due to PCA making it easier to find
low cost solutions that form the backbone of all coreset constructions. StreamKM++ is an
interesting case, as it is still affected by the dimension, though less than the other movement
based methods.

A notable exception is the benchmark. Here, sensitivity sampling generally found the
lowest cost clustering, with BICO finding the second lowest cost clustering. This happens
despite BICO generally having a worse distortion than for example Group Sampling or
StreamKM++-.

Impact of PCA. On almost all our data sets, the performance improves when input data
is preprocessed with PCA, especially for the movement-based algorithms. Empirically, the
more noise is removed (i.e., small k value), the lower the distortion. Notice that k is the
number of principal components that the input data is projected on to. The rest of the low
variance components are treated as noise and removed. Method utilizing sampling (Group
Sampling, Sensitivity Sampling and StreamKM++) are less effected by the preprocessing
step. On Covertype, PCA does not change the distortions by much because almost all the
variance in the data is explained by the first five principal components. On Caltech and
NYTimes, the quality of the coresets by BICO and Ray Maker improves greatly because the
noise removal is more aggressive. Even if the quality is much better for movement-based
coreset, constructions due to PCA, importance sampling methods are still superior when it
comes to the quality of the compression. Summarizing, all methods benefit from PCA, and
in case of movement-based constructions, we consider PCA a necessary preprocessing step.
For the sampling-based methods, the computational expense of using PCA in preprocessing
does not seem justify the comparatively meager gains in coreset distortion.

5 Conclusion

In this work, we studied how to assess the quality of k-means coresets computed by state-of-
the-art algorithms. Previous work generally measured the quality of optimization algorithms
run on the coreset, which we empirically observed to be a poor indicator of coreset quality.
For real-world data sets, we sampled candidate clusterings and evaluated the worst case
distortion on them. Complementing this, we also proposed a benchmark framework which
generates hard instances for known k-means coreset algorithms. Our experiments indicate
a general advantage for algorithms based on importance sampling over movement-based
methods. Despite movement-based methods running on very efficient code, it is necessary
to complement them with rather expensive dimension reduction methods, rendering what
efficiency they might have over importance sampling somewhat moot.

Two results bear further investigation. First, the currently known provable coreset sizes
for Sensitivity Sampling are worse than those provable via Group Sampling. Empirically,
we observed the opposite: While Group Sampling is competitive, Sensitivity Sampling
always outperforms it. Since Group Sampling requires somewhat cumbersome computational
overhead, practical applications should prefer Sensitivity Sampling. In light of these results,
a theoretical analysis for Sensitivity Sampling matching the performance of Group Sampling
would be welcome.

84:13

ESA 2022

84:14

An Empirical Evaluation of k-Means Coresets

The second point of interest focuses on the performance of StreaemKM++. The distortion
of this algorithm is significantly better than what one would expect from its theoretical
analysis. Empirically, StreamKM++ is notably better than the other movement-based
constructions across all data sets, and especially on high dimensional data. While it is
not competitive to the pure importance sampling algorithms, there are several reasons
for investigating it further. It essentially only requires running k-means++ for additional
iterations, which is already a nearly ubiquitous algorithm for the k-means problem. Although
the other sampling-based coreset algorithms can also be readily implemented, doing so might
be cumbersome. In particular, the theoretically (but not empirically) best algorithm Group
Sampling requires extensive preprocessing steps. This begs the question whether there exist
a better theoretical analysis for StreamKM++-.

In addition, StreamKM++ currently weighs each point by the number of points assigned
to it. It may also be possible to improve the performance of the algorithm in both theory
and practice by using a different weighting scheme. We leave this as an open problem for
future research.

—— References

1 Marcel R. Ackermann, Marcus Martens, Christoph Raupach, Kamil Swierkot, Christiane
Lammersen, and Christian Sohler. Streamkm++: A clustering algorithm for data streams.
ACM Journal of Ezperimental Algorithmics, 17(1), 2012. doi:10.1145/2133803.2184450.

2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation
via coresets. In Combinatorial and computational geometry, MSRI, pages 1-30. University
Press, 2005.

3 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the Fighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1027-1035, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283494.

4 Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegel-
shohn. Oblivious dimension reduction for k-means: beyond subspaces and the johnson-
lindenstrauss lemma. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoeniz, AZ, USA, June 23-26, 2019, pages 1039-1050, 2019.
doi:10.1145/3313276.3316318.

5 Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. Unsupervised fea-
ture selection for the k-means clustering problem. In Advances in Neural Informa-
tion Processing Systems 22: 23rd Annual Conference on Neural Information Processing
Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, Brit-
ish Columbia, Canada., pages 153-161, 2009. URL: http://papers.nips.cc/paper/
3724-unsupervised-feature-selection-for-the-k-means-clustering-problem.

6 Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-
means clustering. In Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada., pages 298-306, 2010. URL:
http://papers.nips.cc/paper/3901-random-projections-for-k-means-clustering.

7 Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas. Randomized
dimensionality reduction for k-means clustering. IEEE Trans. Information Theory, 61(2):1045—
1062, 2015. doi:10.1109/TIT.2014.2375327.

8 Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Xuan Wu. Coresets
for clustering in excluded-minor graphs and beyond. In Déniel Marx, editor, Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pages 2679-2696. STAM, 2021. doi:10.1137/1.9781611976465.159.

https://doi.org/10.1145/2133803.2184450
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.1145/3313276.3316318
http://papers.nips.cc/paper/3724-unsupervised-feature-selection-for-the-k-means-clustering-problem
http://papers.nips.cc/paper/3724-unsupervised-feature-selection-for-the-k-means-clustering-problem
http://papers.nips.cc/paper/3901-random-projections-for-k-means-clustering
https://doi.org/10.1109/TIT.2014.2375327
https://doi.org/10.1137/1.9781611976465.159

C. Schwiegelshohn and O. A. Sheikh-Omar

10

11

12

13

14

15

16

17

18

19

20

21

22

Timothy M. Chan. Dynamic coresets. Discret. Comput. Geom., 42(3):469-488, 2009. doi:
10.1007/s00454-009-9165-3.

Ke Chen. On coresets for k-median and k-means clustering in metric and Euclidean spaces
and their applications. SIAM J. Comput., 39(3):923-947, 2009.

Yeshwanth Cherapanamjeri and Jelani Nelson. Terminal embeddings in sublinear time. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1209-1216. IEEE, 2021. doi:10.1109/F0CS52979.2021.00118.

Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 163-172, 2015.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn.
Towards optimal lower bounds for k-median and k-means coresets. In Stefano Leonardi and
Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of
Computing, Rome, Italy, June 20 - 24, 2022, pages 1038-1051. ACM, 2022. doi:10.1145/
3519935.3519946.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. Improved coresets and
sublinear algorithms for power means in euclidean spaces. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, ed-
itors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pages 21085-21098, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
b035d6563a2adac9£822940c145263ce-Abstract.html.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 169-182. ACM, 2021.

Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 49—60, 2017. doi:10.1109/F0CS.2017.14.

Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay. Clustering
large graphs via the singular value decomposition. Machine Learning, 56(1-3):9-33, 2004.
do0i:10.1023/B:MACH.0000033113.59016.96.

Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci.,
697:1-36, 2017. doi:10.1016/j.tcs.2017.06.021.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 569-578, 2011.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca, and projective clustering. STAM J. Comput., 49(3):601—
657, 2020. doi:10.1137/18M1209854.

Zhili Feng, Praneeth Kacham, and David P. Woodruff. Dimensionality reduction for the
sum-of-distances metric. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 3220-3229. PMLR, 2021.
URL: http://proceedings.mlr.press/v139/feng2la.html.

Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Christian
Sohler. BICO: BIRCH meets coresets for k-means clustering. In Algorithms - ESA 2013 -

21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
pages 481-492, 2013.

84:15

ESA 2022

https://doi.org/10.1007/s00454-009-9165-3
https://doi.org/10.1007/s00454-009-9165-3
https://doi.org/10.1109/FOCS52979.2021.00118
https://doi.org/10.1145/3519935.3519946
https://doi.org/10.1145/3519935.3519946
https://proceedings.neurips.cc/paper/2021/hash/b035d6563a2adac9f822940c145263ce-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b035d6563a2adac9f822940c145263ce-Abstract.html
https://doi.org/10.1109/FOCS.2017.14
https://doi.org/10.1023/B:MACH.0000033113.59016.96
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.1137/18M1209854
http://proceedings.mlr.press/v139/feng21a.html

84:16

An Empirical Evaluation of k-Means Coresets

23

24

25

26

27

28

29

30

31

32

33

34

35

Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
209-217, 2005.

Panos Giannopoulos, Christian Knauer, Magnus Wahlstrém, and Daniel Werner. Hardness of
discrepancy computation and e-net verification in high dimension. J. Complez., 28(2):162-176,
2012. doi:10.1016/j.jco.2011.09.001.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discret. Comput. Geom., 37(1):3719, 2007. doi:10.1007/s00454-006-1271-x.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 291-300, 2004.

Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering
(with outliers) in doubling metrics. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 814-825, 2018.
doi:10.1109/F0CS.2018.00082.

Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for clus-
tering with fairness constraints. In Hanna M. Wallach, Hugo Larochelle, Alina Bey-
gelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Inform-
ation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 7587-7598, 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
810dfbbebb17302018ae903e9cb7a483-Abstract.html.

Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: im-
portance sampling is nearly optimal. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 1416-1429. ACM, 2020. doi:10.1145/3357713.3384296.

Piotr Indyk, Sepideh Mahabadi, Shayan Oveis Gharan, and Alireza Rezaei. Composable
core-sets for determinant maximization problems via spectral spanners. In Shuchi Chawla,
editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 1675-1694. STAM, 2020. doi:10.1137/1.
9781611975994 .103.

Jan-Philipp W. Kappmeier, Daniel R. Schmidt, and Melanie Schmidt. Solving k-means on
high-dimensional big data. In FExperimental Algorithms - 14th International Symposium,
SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings, pages 259—270, 2015. doi:
10.1007/978-3-319-20086-6_20.

Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 299-308, 2010. doi:10.1109/F0CS.2010.35.
Michael Langberg and Leonard J. Schulman. Universal e-approximators for integrals. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 598-607, 2010. doi:10.1137/1.
9781611973075.50.

Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. Fast and accurate least-mean-squares
solvers. In Advances in Neural Information Processing Systems, pages 8307-8318, 2019.
Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn.
Nonlinear dimension reduction via outer bi-lipschitz extensions. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 1088—-1101, 2018. doi:10.1145/3188745.3188828.

https://doi.org/10.1016/j.jco.2011.09.001
https://doi.org/10.1007/s00454-006-1271-x
https://doi.org/10.1109/FOCS.2018.00082
https://proceedings.neurips.cc/paper/2019/hash/810dfbbebb17302018ae903e9cb7a483-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/810dfbbebb17302018ae903e9cb7a483-Abstract.html
https://doi.org/10.1145/3357713.3384296
https://doi.org/10.1137/1.9781611975994.103
https://doi.org/10.1137/1.9781611975994.103
https://doi.org/10.1007/978-3-319-20086-6_20
https://doi.org/10.1007/978-3-319-20086-6_20
https://doi.org/10.1109/FOCS.2010.35
https://doi.org/10.1137/1.9781611973075.50
https://doi.org/10.1137/1.9781611973075.50
https://doi.org/10.1145/3188745.3188828

C. Schwiegelshohn and O. A. Sheikh-Omar

36

37

38

39

40

41

42

43

44

45

46

47

Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification — Simplified and
strengthened. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 11643-11654, 2021. URL: https://proceedings.neurips.
cc/paper/2021/hash/6098ed616e715171f0dabad60a8e5197-Abstract . html.

Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA,
June 23-26, 2019, pages 1027-1038, 2019. doi:10.1145/3313276.3316350.

Marina Meila. Comparing clusterings: an axiomatic view. In Luc De Raedt and Stefan Wrobel,
editors, Machine Learning, Proceedings of the Twenty-Second International Conference (ICML
2005), Bonn, Germany, August 7-11, 2005, volume 119 of ACM International Conference
Proceeding Series, pages 577-584. ACM, 2005. doi:10.1145/1102351.1102424.

Marina Meila. The uniqueness of a good optimum for k-means. In William W. Cohen and
Andrew W. Moore, editors, Machine Learning, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of
ACM International Conference Proceeding Series, pages 625—-632. ACM, 2006. doi:10.1145/
1143844 .1143923.

Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians
design pattern for approximation and streaming algorithms. Kiinstliche Intell., 32(1):37-53,
2018. doi:10.1007/s13218-017-0519-3.

Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Wood-
ruff. On coresets for logistic regression. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Monltréal,
Canada, pages 6562—6571, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
63bfd6e8£26d1d3537£4c5038264ef36-Abstract.html.

Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean
space. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA, June 23-26,
2019, pages 1064-1069. ACM, 2019. doi:10.1145/3313276.3316307.

Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming
algorithms for fair k-means. In Approzimation and Online Algorithms - 17th International
Workshop, WAOA 2019, Munich, Germany, September 12-13, 2019, Revised Selected Papers,
pages 232-251, 2019. doi:10.1007/978-3-030-39479-0_16.

Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace ap-
proximation: Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 802-813, 2018.
doi:10.1109/F0CS.2018.00081.

Suresh Venkatasubramanian and Qiushi Wang. The johnson-lindenstrauss transform: An
empirical study. In Matthias Miiller-Hannemann and Renato Fonseca F. Werneck, editors,
Proceedings of the Thirteenth Workshop on Algorithm Engineering and Ezperiments, ALENEX
2011, Holiday Inn San Francisco Golden Gateway, San Francisco, California, USA, January
22, 2011, pages 164-173. STAM, 2011.

Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 604—612,
2016.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A new data clustering al-
gorithm and its applications. Data Min. Knowl. Discov., 1(2):141-182, 1997. doi:10.1023/A:
1009783824328.

84:17

ESA 2022

https://proceedings.neurips.cc/paper/2021/hash/6098ed616e715171f0dabad60a8e5197-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6098ed616e715171f0dabad60a8e5197-Abstract.html
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1145/1102351.1102424
https://doi.org/10.1145/1143844.1143923
https://doi.org/10.1145/1143844.1143923
https://doi.org/10.1007/s13218-017-0519-3
https://proceedings.neurips.cc/paper/2018/hash/63bfd6e8f26d1d3537f4c5038264ef36-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/63bfd6e8f26d1d3537f4c5038264ef36-Abstract.html
https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1109/FOCS.2018.00081
https://doi.org/10.1023/A:1009783824328
https://doi.org/10.1023/A:1009783824328

	1 Introduction
	2 Coreset Algorithms
	3 Benchmark Construction
	4 Experiments
	5 Conclusion

