
36th International Symposium on
Distributed Computing

DISC 2022, October 25–27, 2022, Augusta, Georgia, USA

Edited by

Christian Scheideler

LIPIcs – Vo l . 246 – DISC 2022 www.dagstuh l .de/ l ip i c s

Editors

Christian Scheideler
Universität Paderborn, Germany
scheideler@upb.de

ACM Classification 2012
Software and its engineering → Distributed systems organizing principles; Computing methodologies →
Distributed computing methodologies; Computing methodologies → Concurrent computing methodologies;
Hardware → Fault tolerance; Information systems → Data structures; Networks; Theory of computation;
Theory of computation → Models of computation; Theory of computation → Design and analysis of
algorithms

ISBN 978-3-95977-255-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-255-6.

Publication date
October, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DISC.2022.0

ISBN 978-3-95977-255-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-5278-528X
mailto:scheideler@upb.de
https://www.dagstuhl.de/dagpub/978-3-95977-255-6
https://www.dagstuhl.de/dagpub/978-3-95977-255-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.DISC.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-255-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

DISC 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Christian Scheideler . 0:ix

Organization
. 0:xi

Awards
. 0:xv

2022 Edsger W. Dijkstra Prize in Distributed Computing
. 0:xvii

Principles of Distributed Computing Doctoral Dissertation Award
. 0:xix

Invited Talks

Graph Coloring, Palette Sparsification, and Beyond
Sepehr Assadi . 1:1–1:1

Managing the Cyber Risk in a Decoupled World: Does This Bring Potential
Opportunities in Computer Science?

Roberto Baldoni . 2:1–2:1

Using Linearizable Objects in Randomized Concurrent Programs
Jennifer L. Welch . 3:1–3:1

Regular Papers

Good-Case Early-Stopping Latency of Synchronous Byzantine Reliable
Broadcast: The Deterministic Case

Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani 4:1–4:22

Polynomial-Time Verification and Testing of Implementations of the Snapshot
Data Structure

Gal Amram, Avi Hayoun, Lior Mizrahi, and Gera Weiss . 5:1–5:20

Almost Universally Optimal Distributed Laplacian Solvers via Low-Congestion
Shortcuts

Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic,
and Themis Gouleakis . 6:1–6:20

Byzantine Connectivity Testing in the Congested Clique
John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev 7:1–7:21

Efficient Classification of Locally Checkable Problems in Regular Trees
Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený,
and Jukka Suomela . 8:1–8:19

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Exponential Speedup over Locality in MPC with Optimal Memory
Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov,
Yannic Maus, Dennis Olivetti, and Jara Uitto . 9:1–9:21

Holistic Verification of Blockchain Consensus
Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić,
Pierre Tholoniat, and Josef Widder . 10:1–10:24

How to Meet at a Node of Any Connected Graph
Subhash Bhagat and Andrzej Pelc . 11:1–11:16

Liveness and Latency of Byzantine State-Machine Replication
Manuel Bravo, Gregory Chockler, and Alexey Gotsman . 12:1–12:19

Oracular Byzantine Reliable Broadcast
Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira 13:1–13:19

Byzantine Consensus Is Θ(n2): The Dolev-Reischuk Bound Is Tight Even in
Partial Synchrony!

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli,
Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira . 14:1–14:21

Dynamic Probabilistic Input Output Automata
Pierre Civit and Maria Potop-Butucaru . 15:1–15:18

How to Wake up Your Neighbors: Safe and Nearly Optimal Generic Energy
Conservation in Radio Networks

Varsha Dani and Thomas P. Hayes . 16:1–16:22

Contention Resolution Without Collision Detection: Constant Throughput And
Logarithmic Energy

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak 17:1–17:21

Smoothed Analysis of Information Spreading in Dynamic Networks
Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport 18:1–18:22

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm
Fabien Dufoulon, Shay Kutten, William K. Moses Jr., Gopal Pandurangan,
and David Peleg . 19:1–19:24

Locally Restricted Proof Labeling Schemes
Yuval Emek, Yuval Gil, and Shay Kutten . 20:1–20:22

Distributed Construction of Lightweight Spanners for Unit Ball Graphs
David Eppstein and Hadi Khodabandeh . 21:1–21:23

Improved Deterministic Connectivity in Massively Parallel Computation
Manuela Fischer, Jeff Giliberti, and Christoph Grunau . 22:1–22:17

Fault Tolerant Coloring of the Asynchronous Cycle
Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie 23:1–23:22

Distributed Randomness from Approximate Agreement
Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh . 24:1–24:21

Fragmented ARES: Dynamic Storage for Large Objects
Chryssis Georgiou, Nicolas Nicolaou, and Andria Trigeorgi . 25:1–25:24

Contents 0:vii

Fast Distributed Vertex Splitting with Applications
Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin . 26:1–26:24

Broadcast CONGEST Algorithms Against Eavesdroppers
Yael Hitron, Merav Parter, and Eylon Yogev . 27:1–27:19

Routing Schemes and Distance Oracles in the Hybrid Model
Fabian Kuhn and Philipp Schneider . 28:1–28:22

On Payment Channels in Asynchronous Money Transfer Systems
Oded Naor and Idit Keidar . 29:1–29:20

The Space Complexity of Scannable Objects with Bounded Components
Sean Ovens . 30:1–30:18

Near-Optimal Distributed Computation of Small Vertex Cuts
Merav Parter and Asaf Petruschka . 31:1–31:21

Õptimal Dual Vertex Failure Connectivity Labels
Merav Parter and Asaf Petruschka . 32:1–32:19

Safe Permissionless Consensus
Youer Pu, Lorenzo Alvisi, and Ittay Eyal . 33:1–33:15

Packet Forwarding with a Locally Bursty Adversary
Will Rosenbaum . 34:1–34:18

The Weakest Failure Detector for Genuine Atomic Multicast
Pierre Sutra . 35:1–35:19

On Implementing SWMR Registers from SWSR Registers in Systems with
Byzantine Failures

Xing Hu and Sam Toueg . 36:1–36:19

Space-Stretch Tradeoff in Routing Revisited
Anatoliy Zinovyev . 37:1–37:16

Brief Announcements

Brief Announcement: Authenticated Consensus in Synchronous Systems with
Mixed Faults

Ittai Abraham, Danny Dolev, Alon Kagan, and Gilad Stern . 38:1–38:3

Brief Announcement: It’s not easy to relax: liveness in chained BFT protocols
Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard,
and Florian Suri-Payer . 39:1–39:3

Brief Announcement: Distributed Algorithms for Minimum Dominating Set
Problem and Beyond, a New Approach

Sharareh Alipour and Mohammadhadi Salari . 40:1–40:3

Brief Announcement: Survey of Persistent Memory Correctness Conditions
Naama Ben-David, Michal Friedman, and Yuanhao Wei . 41:1–41:4

Brief Announcement: Minimizing Congestion in Hybrid Demand-Aware Network
Topologies

Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, and Stefan Schmid 42:1–42:3

DISC 2022

0:viii Contents

Brief Announcement: Computing Power of Hybrid Models in Synchronous
Networks

Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport,
Martín Ríos-Wilson, and Ioan Todinca . 43:1–43:3

Brief Announcement: New Clocks, Fast Line Formation and Self-Replication
Population Protocols

Leszek Gąsieniec, Paul Spirakis, and Grzegorz Stachowiak . 44:1–44:3

Brief Announcement: Performance Anomalies in Concurrent Data Structure
Microbenchmarks

Rosina F. Kharal and Trevor Brown . 45:1–45:3

Brief Announcement: Gathering Despite Defected View
Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura,
Yoshiaki Katayama, and Toshimitsu Masuzawa . 46:1–46:3

Brief Announcement: An Effective Geometric Communication Structure for
Programmable Matter

Irina Kostitsyna, Tom Peters, and Bettina Speckmann . 47:1–47:3

Brief Announcement: Distributed Quantum Interactive Proofs
François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura 48:1–48:3

Brief Announcement: Null Messages, Information and Coordination
Raïssa Nataf, Guy Goren, and Yoram Moses . 49:1–49:3

Brief Announcement: Asymmetric Mutual Exclusion for RDMA
Jacob Nelson-Slivon, Lewis Tseng, and Roberto Palmieri . 50:1–50:3

Brief Announcement: Foraging in Particle Systems via Self-Induced Phase Changes
Shunhao Oh, Dana Randall, and Andréa W. Richa . 51:1–51:3

Brief Announcement: Temporal Locality in Online Algorithms
Maciej Pacut, Mahmoud Parham, Joel Rybicki, Stefan Schmid,
Jukka Suomela, and Aleksandr Tereshchenko . 52:1–52:3

Preface

Welcome to DISC 2022, the 36th International Symposium on Distributed Computing, held
on October 25–27, 2022, in Augusta, Georgia, USA. DISC is an international forum on the
theory, design, analysis, and implementation of distributed systems and networks, focusing on
distributed computing in all its forms. DISC is organized in cooperation with the European
Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2022. We received 117 regular paper
submissions and 2 brief announcement submissions. The program committee consisted
of 34 members, and the committee was assisted by 110 external reviewers. All submissions
were evaluated by at least three reviewers. The program committee used a relaxed form
of double-blind review: the submissions were anonymous but the authors were allowed to
disseminate their work through arXiv or other online repositories and to give presentations
of their works. Final decisions were made during a virtual PC meeting. We accepted 34
regular papers (an acceptance rate of 29%) and 15 brief announcements for presentation at
DISC 2022. The keynotes were given by Roberto Baldoni, Jennifer Welch, and Sepehr Assadi.

This volume also includes the citations for the best paper and best student paper awards
at DISC 2022, as well as citations for two awards jointly sponsored by DISC and the ACM
Symposium on Principles of Distributed Computing (PODC):

The 2022 Edsger W. Dijkstra Prize in Distributed Computing was presented at PODC
2022 to Maged M. Michael for his paper “Safe Memory Reclamation for Dynamic Lock-Free
Objects Using Atomic Reads and Writes” and to Maurice Herlihy, Victor Luchangco, and
Mark Moir for their paper “The Repeat Offender Problem: A Mechanism for Supporting
Dynamic-Sized, Lock-Free Data Structures.”
The 2022 Principles of Distributed Computing Doctoral Dissertation Award was presented
at DISC 2022 to Dr. Naama Ben-David for her dissertation “Theoretical Foundations for
Practical Concurrent and Distributed Computation” and to Dr. Manuela Fischer for her
dissertation “Local Algorithms for Classic Graph Problems.”

I would like to thank everyone who contributed to DISC 2022: the authors of the submitted
papers, PC members and external reviewers, keynote speakers, members of the organizing
committee, workshop organizers, members of the award committees, and participants at the
conference. I would also like to thank the members of the steering committee, former chairs
and many other members of the community for their valuable assistance and suggestions,
EATCS for their support, and the staff at Schloss Dagstuhl – Leibniz-Zentrum für Informatik
for their help in preparing these proceedings.

October 2022 Christian Scheideler
DISC 2022 Program Chair

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.

Program Chair

Christian Scheideler Paderborn University (Germany)

Program Committee

John Augustine IIT Madras (India)
Naama Ben David VMware Research (USA)
Borzoo Bonakdarpour Michigan State University (USA)
Marthe Bonamy University of Bordeaux (France)
Christian Cachin University of Bern (Switzerland)
Artur Czumaj University of Warwick (UK)
Joshua Daymude Arizona State University (USA)
Michal Dory ETH Zürich (Switzerland)
Robert Elsässer University of Salzburg (Austria)
Laurent Feuilloley University of Lyon (France)
Michele Flammini Gran Sasso Science Institute (Italy)
Paola Flocchini University of Ottawa (Canada)
Davide Frey Inria centre at Rennes University (France)
Luisa Gargano University of Salerno (Italy)
Magnús M. Halldórsson Reykjavik University (Iceland)
Mohammad Taghi Hajiaghayi University of Maryland (USA)
Alex Kogan Oracle Labs (USA)
Shay Kutten Technion (Israel)
Thomas Locher DFINITY Foundation (Switzerland)
Victor Luchangco Algorand (USA)
Yannic Maus TU Graz (Austria)
Othon Michail University of Liverpool (UK)
Boaz Patt-Shamir Tel Aviv University (Israel)
David Peleg Weizmann Institute (Israel)
Maria Potop-Butucaru Sorbonne University (France)
Sergio Rajsbaum UNAM (Mexico)
Peter Robinson Augusta University (USA)

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Organization

Jared Saia University of New Mexico (USA)
Christian Scheideler (Chair) Paderborn University (Germany)
Stefan Schmid TU Berlin (Germany)
Gokarna Sharma Kent State University (USA)
Jukka Suomela Aalto University (Finland)
Yukiko Yamauchi Kyushu University (Japan)
Haifeng Yu National University of Singapore (Singapore)

Organizing Committee

Bogdan Chlebus Augusta University (USA)
Darek Kowalski Augusta University (USA)
Yannic Maus (Workshops Chair) TU Graz (Austria)
Regina White (Business Manager) Augusta University (USA)
Caroline Eaker Augusta University (USA)
Dennis Olivetti (DISC Webmaster) Gran Sasso Science Institute (Italy)
Reza Rahaeimehr (Local Web Co-Chair) Augusta University (USA)
Peter Robinson (Workshop Coordinator) Augusta University (USA)
Alex Schwarzmann (Chair) Augusta University (USA)
Edward Tremel (Local Web Co-Chair) Augusta University (USA)
Steve Weldon (Local Arr.) Augusta University (USA)
Costas Busch (Student Grants Chair) Augusta University (USA)

Steering Committee

Hagit Attiya Technion (Israel)
Seth Gilbert National University of Singapore (Singapore)
Moti Medina Bar-Ilan University (Israel)
Calvin Newport Georgetown University (USA)
Andréa Richa (Chair) Arizona State University (USA)
Christian Scheideler Paderborn University (Germany)
Jukka Suomela (Vice Chair) Aalto University (Finland)

External Reviewers

Ittai Abraham Duncan Adamson Vitaly Aksenov
Nada Almalki Abdullah Almethen Orestis Alpos
Ignacio Amores-Sesar Paul Attie Philipp Bamberger
Kiarash Banihashem Gregor Bankhamer Nicolas Bousquet
Manuel Bravo Trevor Brown Soumyottam Chatterjee
Gregory Chockler Matthew Connor Gennaro Cordasco
Sam Coy Emilio Cruciani Varsha Dani
Paolo D’Arco Peter Davies Yoann Dieudonne
Oyendrila Dobe Fabien Dufoulon Mahsa Eftekhari
Ryota Eguchi Giovanni Farina Roberto Ferrara
Orr Fischer Matthias Függer Ritam Ganguly

Organization 0:xiii

Chryssis Georgiou Jacob Gilbert Robert Gmyr
Emmanuel Godard Guy Goren Thorsten Götte
Samira Goudarzi Christoph Grunau Chetan Gupta
Yael Hitron Tzu-Han Hsu Mohammad Abirul Islam
Taisuke Izumi Peyman Jabbarzade William K. Moses Jr.
Eleni Kanellou Mahimna Kelkar Yonghwan Kim
Valerie King Marina Knittel Dariusz Kowalski
Rustam Latypov David Lehnherr Dean Leitersdorf
Stefano Leucci David Liedtke Giuseppe Antonio Di Luna
Nancy Lynch Gianluca De Marco Giovanna Melideo
Darya Melnyk Jovana Micic Gopinath Mishra
Slobodan Mitrović Mark Moir Anisur Rahaman Molla
Pedro Montealegre Anish Mukherjee Junya Nakamura
Alfredo Navarra Alexandre Nolin Krzysztof Nowicki
Dennis Olivetti Jan Olkowski Krzysztof Onak
Fukuhito Ooshita Andreas Padalkin Shreyas Pai
Gopal Pandurangan Ashish Parihar Merav Parter
Sathya Peri Yvonne-Anne Pignolet Julian Portmann
Srikkanth Ramachandran Srivatsan Ravi Adele Rescigno
Etienne Rivière Nicola Santoro Elad Schiller
Philipp Schneider Michele Scquizzato Yangguang Shi
George Skretas Alberto Sonnino Yuichi Sudo
Aishwarya Thiruvengadam Giovanni Viglietta Tijn de Vos
Daniel Warner Yuanhao Wei Julian Werthmann
Sravya Yandamuri Sheng Yang Maxwell Young
Luca Zanolini Goran Zuzic

Acknowledgements

DISC 2022 acknowledges the use of Easychair for handling submissions and managing the
review process and LIPIcs for producing and publishing the proceedings. DISC 2022 sponsors
are:

DISC is organized in cooperation with the
European Association for Theoretical Computer
Science (EATCS).

DISC 2022

Awards

Best Paper

The DISC Program Committee has selected the following paper to receive the DISC 2022
best paper award:

Smoothed Analysis of Information Spreading in Dynamic Networks
by Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport.

This paper applies smoothed analysis to the study of k-message broadcast in dynamic
networks. It shows that even with a small amount of smoothing, a simple distributed
random broadcast strategy can significantly outperform the existing worst-case lower bounds.
In addition to that, it proves that in static networks the runtime of this strategy further
improves, establishing that even in the context of smoothing, changing topologies remain
more difficult to move information through than their static counterparts. Interestingly, the
tools developed for these analyses can be applied to improve the best-known bounds for
k-message broadcast, without smoothing, in the well-mixed dynamic network setting.

Best Student Paper

The DISC Program Committee has selected the following two papers to receive the DISC
2022 best student paper award:

Polynomial-Time Verification and Testing of Implementations of the Snapshot
Data Structure

by Gal Amram, Avi Hayoun, Lior Mizrahi and Gera Weiss

and

Byzantine Consensus Is Θ(n2): The Dolev-Reischuk Bound Is Tight Even in
Partial Synchrony!

by Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid
Guerraoui, Jovan Komatovic, and Manuel Vidigueira.

The first paper focuses on the correctness of implementations of the snapshot data
structure in terms of linearizability and shows that such implementations can be verified
in polynomial time. This presents a significant improvement considering that verifying
linearizability of implementations of concurrent data structures, in general, is EXPSPACE-
complete in the number of program states, and testing linearizability is NP-complete in the
length of the tested execution.

The second paper presents SQUAD, a partially synchronous Byzantine consensus protocol
with quadratic worst-case communication complexity. The Dolev-Reischuk bound says
that any deterministic Byzantine consensus protocol has at least quadratic communication
complexity in the worst-case, but a protocol with such a complexity was only known for
synchronous environments and the previously best protocols for partial synchrony had a
cubic communication complexity.

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2022 Edsger W. Dijkstra Prize in Distributed
Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for outstanding papers
on the principles of distributed computing, whose significance and impact on the theory or
practice of distributed computing have been evident for at least a decade. It is sponsored
jointly by the ACM Symposium on Principles of Distributed Computing (PODC) and the
EATCS Symposium on Distributed Computing (DISC). The prize is presented annually, with
the presentation taking place alternately at PODC and DISC.

The 2022 Edsger W. Dijkstra Prize in Distributed Computing has been awarded to the
papers

Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic
Reads and Writes, by Maged M. Michael (Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing, PODC 2002, pages 21–30), and
The Repeat Offender Problem: A Mechanism for Supporting Dynamic-Sized,
Lock-Free Data Structures, by Maurice Herlihy, Victor Luchangco, and Mark Moir
(Proceedings of the 16th International Symposium on Distributed Computing, DISC 2002,
pages 339–353).

for providing the first general approach to memory reclamation in nonblocking data structures,
with significant impact both in research and practice.

Nonblocking concurrent data structures are central to the theory and practice of parallel
programming. Unfortunately, correct nonblocking structures are difficult to write. A key
challenge is to ensure, before reclaiming an unlinked node, that no still-active operation
retains a reference to that node.

Hazard Pointers, also known as the “Pass the Buck” solution to the Repeat Offenders
Problem, were the first general-purpose solution to the memory management problem in
nonblocking concurrent data structures. They remain the dominant solution today. By
maintaining a global set of references to objects (nodes) to which active threads hold private
references, they enable nonblocking code to determine when a node can safely be reclaimed.
By organizing the set as a collection of per-thread structures, each of which is accessed
primarily by its owner, they avoid most nonlocal references, keeping overhead low enough for
all but the most demanding applications.

Together, the winning papers revolutionized both the theory and practice of nonblocking
algorithms. They have inspired dozens of follow-on projects and well over a thousand citations.
Today, hazard pointers are used in an enormous variety of commercial libraries and systems,
making them essential to most of the world’s data centers and multicore devices.

2022 Award Committee:

Marcos Aguilera, VMware Research
Andrea Richa, Arizona State University
Alexander Schwarzmann, Augusta University
Alessandro Panconesi, Sapienza Università Di Roma
Christian Scheideler (chair), Universität Paderborn
Philipp Woelfel, University of Calgary

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2022 Principles of Distributed Computing
Doctoral Dissertation Award

Many exceptionally high-quality doctoral dissertations were submitted for the 2022 Principles
of Distributed Computing Doctoral Dissertation Award. After careful long deliberation, the
award committee decided to share the award among two:

Dr. Naama Ben-David for her dissertation “Theoretical Foundations for Practical
Concurrent and Distributed Computation.”
Dr. Manuela Fischer for her dissertation “Local Algorithms for Classic Graph Prob-
lems.”

Dr. Naama Ben-David completed her thesis on July 22nd, 2020, under the supervision
of Prof. Guy E. Blelloch, at Carnegie Mellon University. In her thesis, Dr. Ben-David
addressed three modern technologies that play a significant role in concurrent/distributed
computing and carefully developed faithful, clean, and theoretically elegant models for each.
Based on these models and theories she then developed for each a new distributed algorithm,
showed the algorithms applicability in practice, and finally developed practical tools to
enable practitioners and theoretical researchers to analyze these systems, and the benefits
of the new models and algorithms. The three technologies which Dr. Ben-David addressed
in her thesis are: (1) remote direct memory access (RDMA) as a means to share memory
among message- passing communicating processors whether in a large network or in a data
center, (2) non-volatile random access memories (NVRAM) for which she developed a general
simulation that can adapt many classic concurrent algorithms to a setting in which processes
using NVRAM can recover after a system fault, and (3) shared-memory concurrent access
where Dr. Ben-David developed new careful analysis reflecting their performance in practice.

Dr. Manuela Fischer completed her thesis on 14th June, 2021, under the supervision
of Prof. Mohsen Ghaffari, at ETH Zurich. Dr. Fischer’s thesis contains a large consistent
set of outstanding achievements in the design of distributed algorithms for numerous graph
problems in models such as LOCAL and CONGESTED-CLIQUE, with strong connections to
the MPC model for parallel computing. Dr. Fischer introduced new techniques for distributed
algorithm design, as well as for the analysis of randomized algorithms for graph problems.
Two of the results presented in her thesis resolve central problems that were open for over 25
years: the first efficient deterministic distributed algorithm for (2∆ − 1)-edge-coloring, and a
tight analysis of a randomized greedy MIS algorithm. The thesis is technically broad and
deep, spanning at least five intrinsically different technical challenges: (1) rounding for linear
programs, (2) bootstrapping Lovasz Local Lemma algorithms, (3) analyzing an intricate
stochastic process, (4) bounding convergence of a Markov chain via path coupling, and (5)
a number of randomized ideas in massively parallel computation. Dr. Fischer’s techniques
have already been adopted by the leading researchers in the field, and are used in several
follow-up works.

The award is sponsored jointly by the ACM Symposium on Principles of Distributed
Computing (PODC) and the EATCS Symposium on Distributed Computing (DISC). It is
presented annually, with the presentation taking place alternately at PODC and DISC. This
year it will be presented at DISC, to be held at Augusta, Georgia USA, October 25-27, 2022.

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xx 2022 Principles of Distributed Computing Doctoral Dissertation Award

The 2022 Principles of Distributed Computing Doctoral Dissertation Award Committee

Yehuda Afek (chair), Tel-Aviv University
Keren Censor-Hillel, Technion
Pierre Fraigniaud, CNRS and Université Paris Cité
Seth Gilbert, National University of Singapore
Gopal Pandurangan, University of Houston
Gadi Taubenfeld, Reichman University, Herzliya

Graph Coloring, Palette Sparsification, and Beyond
Sepehr Assadi #

Dept. of Computer Science, Rutgers University, New Jersey, USA

Abstract
Graph coloring is a central problem in graph theory and has numerous applications in diverse areas
of computer science. An important and well-studied case of graph coloring problems is the (∆ + 1)
(vertex) coloring problem where ∆ is the maximum degree of the graph. Not only does every graph
admit a (∆ + 1) coloring, but in fact we can find one quite easily in linear time and space via a
greedy algorithm. But are there more efficient algorithms for (∆ + 1) coloring that can process
massive graphs that even this algorithm cannot handle?

This talk overviews recent results that answer this question in affirmative across a variety
of models dedicated to processing massive graphs – streaming, sublinear-time, massively parallel
computation, distributed communication, etc. – via a single unified approach: Palette Sparsification.
We survey the ideas behind these results and techniques, their generalizations to various other
coloring problems and even beyond (e.g., to clustering problems), as well as their natural limitations.

The talk is based on a series of joint works with Noga Alon, Andrew Chen, Yu Chen, Sanjeev
Khanna, Pankaj Kumar, Parth Mittal, Glenn Sun, and Chen Wang.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parallel algorithms; Theory of computation → Distributed algorithms

Keywords and phrases Graph coloring, Palette Sparsification, Sublinear Algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.1

Category Invited Talk

© Sepehr Assadi;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
https://orcid.org/0000-0001-6482-6053
https://doi.org/10.4230/LIPIcs.DISC.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Managing the Cyber Risk in a Decoupled World:
Does This Bring Potential Opportunities in
Computer Science?
Roberto Baldoni #

National Cybersecurity Agency, Rome, Italy

Abstract
The last thirty years witnessed the growth of both globalization and digital transformation, charac-
terized by information systems becoming interconnected and distributed on a worldwide scale with
IT aimed to become a commodity. Cloud computing and blockchain being examples of such robust
and distributed technologies which have been the main driver of this globalization process. Global
technologies and infrastructures paved the way to organic and highly frequent interactions between
millions of companies and organizations in multiple countries almost irrespective of geopolitical
implications establishing global and complex interconnected supply chains whose aim was mainly
keeping software/devices costs low. This created a virtuous loop that generated an exponential
increase of countries’ digitalization process and globalized industries.

Like energy, IT progressively became a strategic geopolitical factor as the nation’s vital services
implementation went digital. As a consequence, governments realized IT cannot be a simple
commodity and that they have to manage the cyber risk associated with procured IT in strategic
sectors like, for instance, telecommunication, finance and transportation. Governments have to
understand and mitigate IT risks coming from these globalized supply chains against operations of
potential powerful adversaries. Even a single supply chain dependency can be a risk, also from a
national security perspective, when such dependency is established by a provider/vendor under the
direct political influence of an untrusted nation or a trusted provider/vendor victim of a state-backed
cyber attack. The recent Ukrainian crisis and the large degree of tension between US and China are
amplifying risks coming from globalized supply chains in a world that is politically liquid polarizing
in at least two blocks.

In addition, the globalization process has shown its natural limits and frailty culminating with
the global supply chain crisis created by the effect of the covid-19 pandemic and extreme events due
to climate change. Paradoxically, experience shows the main drawback of globalized supply chains is
the centralization of certain key manufacturing in restricted geographical areas, this is the case for the
infamous chip shortage. This centralization poses risks if a critical portion of these key manufacturing
are owned by untrusted actors. A parallel can be seen in the permissionless blockchain technologies
based on Proof-of-Work, where the decentralized worldwide spirit has mercilessly converged to a
more convenient but weaker almost centralized system which makes it easier for a powerful adversary
to take control of the whole blockchain.

The likely trends of the next few years will be a progressive decoupling of supply chains
particularly for all software/hardware manufacturing employed into vital services of a nation. This
will be a long and non-economically neutral process that will bring in a medium term towards
the composition of “friendshoring” or “almost domestic” supply chains where developing robust
technologies and algorithms compliant to society values. This is expected to increase the number,
the magnitude and complexity of cyber attacks coming from other geopolitical blocks for espionage
or terroristic reasons in a continuous hybrid warfare scenario. Computer scientists and engineers
will have to cope with the new challenges within this decoupled world. The keynote will be an
attempt to shed some light on what this could imply in terms of technology, computing paradigms
and nation IT capability.
2012 ACM Subject Classification Security and Privacy; Computing methodologies
Keywords and phrases Supply chain decoupling, technology risk, cyber attacks, computing paradigms
and methodologies
Digital Object Identifier 10.4230/LIPIcs.DISC.2022.2
Category Invited Talk

© Roberto Baldoni;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baldoni@diag.uniroma1.it
https://orcid.org/0000-0002-2097-0093
https://doi.org/10.4230/LIPIcs.DISC.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Using Linearizable Objects in Randomized
Concurrent Programs
Jennifer L. Welch #

Dept. of Computer Science and Enginering, Texas A&M University, Texas, USA

Abstract
Atomic shared objects, whose operations take place instantaneously, are a powerful technique for
designing complex concurrent programs. Since they are not always available, they are typically
substituted with software implementations. A prominent condition relating these implementations to
their atomic specifications is linearizability, which preserves safety properties of programs using them.
However linearizability does not preserve hyper-properties, which include probabilistic guarantees
about randomized programs. A more restrictive property, strong linearizability, does preserve hyper-
properties but it is impossible to achieve in many situations. In particular, we show that there are no
strongly linearizable implementations of multi-writer registers or snapshot objects in message-passing
systems. On the other hand, we show that a wide class of linearizable implementations, including
well-known ones for registers and snapshots, can be modified to approximate the probabilistic
guarantees of randomized programs when using atomic objects.

This is joint work with Hagit Attiya and Constantin Enea.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Concurrent objects, strong linearizability, impossibility proofs, message-
passing systems, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.3

Category Invited Talk

© Jennifer L. Welch;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:welch@cse.tamu.edu
https://orcid.org/0000-0001-7164-1436
https://doi.org/10.4230/LIPIcs.DISC.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Good-Case Early-Stopping Latency of Synchronous
Byzantine Reliable Broadcast: The Deterministic
Case
Timothé Albouy #

Univ Rennes, Inria, CNRS, IRISA, France

Davide Frey #

Univ Rennes, Inria, CNRS, IRISA, France

Michel Raynal #

Univ Rennes, Inria, CNRS, IRISA, France

François Taïani #

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
This paper considers the good-case latency of Byzantine Reliable Broadcast (BRB), i.e., the time
taken by correct processes to deliver a message when the initial sender is correct, and an essential
property for practical distributed systems. Although significant strides have been made in recent
years on this question, progress has mainly focused on either asynchronous or randomized algorithms.
By contrast, the good-case latency of deterministic synchronous BRB under a majority of Byzantine
faults has been little studied. In particular, it was not known whether a good-case latency below the
worst-case bound of t + 1 rounds could be obtained under a Byzantine majority. In this work, we
answer this open question positively and propose a deterministic synchronous Byzantine reliable
broadcast that achieves a good-case latency of max(2, t + 3− c) rounds, where t is the upper bound
on the number of Byzantine processes, and c the number of effectively correct processes.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Reliable Broadcast, Byzantine Faults, Synchronous Systems, Good-case
latency, Deterministic Algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.4

Funding This work was partially supported by the French ANR project ByBLoS (ANR-20-CE25-
0002-01), and by the PriCLeSS project granted by the Labex CominLabs excellence laboratory of
the French ANR (ANR-10-LABX-07-01).

Acknowledgements The authors would like to thank the anonymous reviewers whose careful reading
and suggestions helped them improve their paper.

1 Introduction

Introduced in the eighties [14, 20], Byzantine reliable broadcast (BRB) and Byzantine
Broadcast (BB) are two fundamental abstractions of distributed computing [5, 7, 9, 10, 19,
22, 23, 26, 25]. BRB assumes that one particular process, the sender, broadcasts a message
to the rest of the system and that correct (a.k.a. honest) processes all deliver the value
initially broadcast if the sender is correct or that, if it is not, either all agree on some value
or none delivers any value. BB further requires that all correct processes always deliver some

© Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 4; pp. 4:1–4:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothe.albouy@irisa.fr
mailto:davide.frey@inria.fr
mailto:michel.raynal@irisa.fr
mailto:francois.taiani@irisa.fr
https://doi.org/10.4230/LIPIcs.DISC.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Good-Case Early-Stopping Latency of Synchronous BRB

value.1 BRB and BB play a crucial role in many practical distributed applications, from
primary-backup state machine replication (SMR) (see, for instance, the discussion in [3]), to
broadcast-based money transfer [6, 8, 12, 18].

Good-case latency. In broadcast-based money transfer algorithms, for instance, a cryp-
tocurrency is implemented by merely broadcasting the transfer operations originating from
one participant (or in some sharded versions [8] from one authority) to the rest of the system.
These algorithms do not require consensus, and their performance is directly related to the
underlying (Byzantine-tolerant) reliable broadcast algorithm they use. Transfers issued by
correct participants are guaranteed to terminate and only involve a single broadcast operation
invoked by the issuer. As a result, the latency of these algorithms – as experienced by correct
participants – solely depends on the good-case latency of the BRB algorithm they use, defined
as the time taken for all correct parties to deliver a broadcast message when the initial
broadcaster is correct [3]. The good-case latency of Byzantine-tolerant broadcast algorithms
plays a similarly central role in the performance of SMR algorithms, with vast practical
consequences for the performance of BFT replication systems, including consortium [2, 17]
and committee-based blockchains [11].

Synchronous networks. In this paper, we focus on the good-case latency of BRB algorithms
subject to an arbitrary number of Byzantine failures (i.e., we assume n > t, where n is the
number of processes, and t is an upper bound on the number of Byzantine processes). We
further assume that processes can use signatures to authenticate messages. We follow in
this respect [16] and [27], and in part [3]. Since BRB cannot be solved even in a partially
synchronous model when t ≥ n/3 [15, 20, 24], we also assume a synchronous network, in which
messages are delivered during the same round in which they are sent. Although synchronous
wide-area networks are challenging to realize in practice, they can be approximated with
high probability by using sufficiently high timeouts. Synchronous algorithms are further
intriguing in their own right and can yield insights into the nature of distributed computing
that are useful beyond their specific use.

Randomized synchronous BRB algorithms. The study of randomized synchronous BRB
and BB algorithms tolerating arbitrary many Byzantine faults has progressed substantially
in recent years [3, 16, 27]. In particular, the solution proposed by Wan, Xiao, Shi, and
Devadas [27] and optimized by Abraham, Nayak, Ren, and Xiang [3] presents sublinear
worst- and good-case latency bounds in expectation (boiling down to constant numbers of
rounds when t, the maximal number of Byzantine processes, is assumed to be a fraction of n).
However, these works all rely on randomization. Moreover, they generally assume a weakly
adaptive adversary, an adversary that cannot erase messages sent “just before” a process
becomes Byzantine, where “just before” means in the same round. (A notable exception is
the solution presented in [26], which tolerates a strongly-adaptive adversary by exploiting
time-lock puzzles.) Further, these works do not leverage a lower number of actual faults
to provide an early stopping property [13]: their latency only involves n, the number of
processes, and t, the upper bound on the number of Byzantine processes, but not c, the
effective number of correct processes. As a result, they cannot exploit a low number of actual
failures to provide better latency performance.

1 In this paper, we will tend to conflate the two problems, as the protocols we discuss solve both BB and
BRB.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:3

This paper’s contribution. In contrast to randomized solutions, the good-case latency of
deterministic synchronous BRB and BB algorithms has been little studied. By definition, a
deterministic Byzantine-tolerant broadcast algorithm tolerates a strongly adaptive adversary
(one that can remove messages “after the fact”). In the worst case, however, its latency is
lower-bounded by t + 1 rounds [14, 15], and optimal algorithms in this respect have been
known since the eighties [14, 20].

An unsolved question to this date is thus whether a good-case latency lower than t + 1
rounds can be achieved using a deterministic algorithm subject to an arbitrary number of
Byzantine faults. In this paper, we answer this question positively and propose a deterministic
synchronous Byzantine reliable broadcast that achieves a good-case latency of max(2, t+3−c)
rounds, where t is the upper-bound on the number of Byzantine processes, and c the number
of effectively correct processes (c ≥ n − t). The algorithm we propose does not require correct
processes to know either n or c. Moreover, and differently from recently proposed solutions
to this problem [3, 16, 27], our solution:

is deterministic (which is why it trivially tolerates a strongly adaptive adversary),
only relies on signatures, eschewing richer cryptographic primitives (e.g. distributed
random coins [16, 27], verifiable random functions [21, 27] or time-lock puzzles [26]),
ensures delivery in just 2 rounds in good cases as soon as the effective number of correct
processes, c, is at least t + 1, thus improving on all existing solutions.2

The early stopping nature of our solution lends it a substantial advantage even when the
effective number of correct processes c is less than t + 1. For instance, assuming t < 3/4 × n,
and an intermediate situation where only ⌊t/2⌋ processes have effectively been compromised,
the good-case latency of our algorithm outperforms that of the best-known randomized
algorithm up to n ≤ 43, and is at least as good up to n ≤ 51, making it competitive in a
wide range of small- to medium-scale practical distributed systems.

Our algorithm, although not trivial, remains surprisingly simple. It exploits patterns in
signature chains, thus extending an idea as old as the problem itself [14, 20].

2 Background and Related Work

The Synchronous Byzantine Reliable Broadcast problem was first introduced in [24] by
Lamport, Shostak, and Pease, who proposed in [20] a deterministic solution based on
signature chains that requires t + 1 rounds (both in good and bad cases), where t < n is an
upper bound on the number of Byzantine processes present in the system. This worst-case
round complexity was shown by Dolev and Strong [14] to be optimal for deterministic
algorithms. This result was later refined by Dolev, Reischuk, and Strong who showed that
min(n−1, n−c+2, t+1) rounds are necessary to realize Synchronous Byzantine Broadcast [13],
where c ≥ n − t is the effective number of correct processes in a given run. They also present
in the same paper a deterministic signature-free algorithm that achieves this bound provided
that n > max(4t, 2t2 − 2t + 2). The salient properties of this algorithm are summarized in the
first column of Table 1 and compared to more recent works and to this paper (last column).

In recent years, substantial progress has been achieved to circumvent the hard bound
of t + 1 rounds for deterministic BRB and BB algorithm by exploiting randomization, and
generally assuming a weakly adaptive adversary, i.e., an adversary that can adaptively corrupt
processes, but cannot remove messages sent in the round when a process becomes Byzantine.

2 More generally, our good-case latency is early stopping [13], in that, in good cases, our algorithm will
stop earlier when the effective number of correct processes c increases.

DISC 2022

4:4 Good-Case Early-Stopping Latency of Synchronous BRB

Table 1 Assumptions, guarantees, and latencies of synchronous signature-based BRB algorithms
(∗ indicates an expected number of rounds).

Dolev, Reischuk Wan et al. [27] +
& Strong [13] Fitzi & Nielsen [16] Abraham et al. [3] This paper

Deterministic yes no no yes
Strong adversary yes no no yes
Early stopping yes no no yes
Dishonest majority no yes yes yes
n > max(4t, 2t2−2t+2) − − −
Worst-case latency min(n−c+2, t+1) max(7, ⌊ 3t−n

2 ⌋+7)+O(1) ∗ O
(
(n

n−t
)2) ∗ t + 1

Good-case latency 2 max(6, ⌊ 3t−n
2 ⌋+ 6)

⌈
n

n−t

⌉
+

⌊
n

n−t

⌋
max(2, t+3−c)

Assuming a majority of Byzantine processes, Fitzi and Nielsen proposed in [16] a randomized
algorithm that achieves Byzantine Agreement in an expected number of ⌊(3t−n)/2⌋+7+O(1)
rounds3, and a good-case latency of ⌊(3t − n)/2⌋ + 6 deterministic rounds.

In 2020, Wan, Xiao, Shi, and Devadas presented a randomized algorithm that achieves
BB in O

(
(n

n−t)2)
expected synchronous rounds [27]. Last year, in an in-depth study of the

good-case latency of BB and BRB algorithms [3] (extended version in [4]), Abraham, Nayak,
Ren, and Xiang proved a lower bound of ⌊n/(n − t)⌋ − 1 rounds for the good-case latency of
synchronous BRB. They then explained how the solution presented in [27] can be optimized
to deliver a good-case latency of ⌈n/(n − t)⌉ + ⌊n/(n − t)⌋ rounds (about 2n/(n − t) ± 1)
assuming a weakly adaptive adversary.4

The properties of these earlier works are summarized in Table 1, together with those
of the algorithm we propose. Among these works, only [13] is deterministic and therefore
tolerates a strongly adaptive adversary. It imposes, however, a strong constraint on n

(n > max(4t, 2t2−2t+2)) and does not tolerate a majority of Byzantine processes, which the
other algorithms do. Conversely, the algorithms of [3, 16, 27] all tolerate an arbitrary number
of Byzantine processes, but contrary to the solution we present, they rely on randomization
under a weakly adaptive adversary and do not exploit executions in which the number of
Byzantine processes is less than the upper bound t. (They are not early stopping.)

3 Computing Model and Specification

3.1 System model
Process model. The system is composed of n synchronous sequential processes denoted
Π = {p1, ..., pn}. Each process pi has an identity; all the identities are different and known
by all processes. To simplify, we assume that i is the identity of pi.

Regarding failures, up to t processes can be Byzantine, where a Byzantine process is a
process whose behavior does not follow the code specified by its algorithm [20, 24]. Let us
notice that Byzantine processes can collude to fool the non-Byzantine processes (also called

3 More precisely, this expected number of rounds can be broken down into a deterministic number of
synchronous rounds followed by an expected number of asynchronous rounds. The exact breakdown
depends, in turn, on the choice of shared random coin used in the algorithm.

4 Although correct processes can deliver their message in about 2× n/(n− t) rounds in this optimized
algorithm, they must continue to participate in the algorithm for about the same amount of time,
leading to an overall execution time of circa 4× n/(n− t) rounds in good-cases.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:5

correct processes). Let us also notice that, in this model, the premature stop (crash) of a
process is a Byzantine failure. c denotes the number of processes that effectively behave
correctly in an execution. Both c and n remain unknown to correct processes, but they are
used to analyze the properties of our algorithm.

Network model. Processes communicate by exchanging messages through a reliable syn-
chronous network, in which messages are delivered in the round in which they were sent.

Security model. As earlier works in this area [13, 16, 20, 24, 27], we assume a PKI (Public
Key Infrastructure) that provides an ideal signature scheme. Processes can sign the messages
they send, verify signatures, and forward content signed by other processes.

3.2 Byzantine Reliable Broadcast
Following [3, 16, 27], we consider a one-shot Byzantine-tolerant reliable broadcast (BRB
for short) in which the sending process psender is known beforehand. The BRB abstraction
provides two operations, brb_broadcast and brb_deliver. brb_broadcast(m) is invoked by the
sending process psender. When this happens, we say that psender brb-broadcasts m. When a
process pi invokes brb_deliver(m) we say that pi brb-delivers m. The BRB abstraction is
specified by the following five properties.

Safety:
BRB-Validity: If a correct process pi brb-delivers a message m and psender is correct,
then psender has brb-broadcast m.
BRB-No-duplication: A correct process pi brb-delivers at most one message.
BRB-No-duplicity: No two different correct processes brb-deliver different messages.

Liveliness:
BRB-Local-delivery: If psender is correct and brb-broadcasts a message, then at
least one correct process pj eventually brb-delivers some message.
BRB-Global-delivery: If a correct process pi brb-delivers a message, then all
correct processes brb-deliver a message.

4 A deterministic synchronous BRB algorithm

4.1 Underlying intuition
Signature chains. The original BRB algorithm of Lamport, Shostak, and Pease uses
signature chains to propagate what each process knows of the system’s state [20]. A
signature chain (or chain for short) starts by a message m signed by the sending process,
e.g. (m, isender, σpsender), where isender is the identify of the sending process, and σpsender is a
signature of (m, isender) with psender’s private key. Such a chain is of length 1, as it contains
one signature. A chain of length ℓ is extended by appending the identity iℓ+1 of a process
piℓ+1 not present in the chain, followed by piℓ+1 ’s signature of the resulting sequence:

(m, isender, σpsender , i2, σpi2
, .., iℓ, σpiℓ

, iℓ+1, σpiℓ+1
).

As in [14, 20], we use the compact notation m : psender : pi2 : .. : piℓ+1 to represent such a chain.

DISC 2022

4:6 Good-Case Early-Stopping Latency of Synchronous BRB

Valid chains. In Lamport, Shostak, and Pease’s original algorithm [20], further formalized
in [14], and algorithms based on the same idea [16], correct processes only accept valid
signature chains, i.e., signature chains that are acyclic and whose length matches the current
round. These conditions constrain the disruption power of Byzantine processes by limiting
how long they can hide a message from correct processes. In [14, 20], a message is considered
for delivery when backed by at least one chain containing t + 1 signatures: the length of
the chain (t + 1) ensures that Byzantine processes cannot reveal some message m to only a
subset of correct processes, while hiding it from others, and thus guarantees that all correct
processes use the same set of messages to decide which message should be delivered (using a
deterministic choice function).

From chains to certificates. The protocol we propose generalizes this intuition in a simple,
albeit non-trivial, way. Instead of single chains, our algorithm uses sets of chains forming a
particular pattern to trigger delivery. We call these chain patterns certificates. We constrain
how a certificate might be propagated to limit how long Byzantine processes can hide a
valid certificate from correct processes. A given certificate for a message m has a “weight”
representing how many processes are “backing” m. To back a message m, a process must
have witnessed it at the latest by the end of round 2. The heavier a certificate, the more
quickly a correct process can make a delivery decision in the absence of any contradictory
information. This approach is beneficial when the initial sender is correct , allowing correct
processes to terminate in this case in max(2, t + 3 − c) rounds5.

4.2 Notations
We use the following notations:

m : pi1 : pi2 : · · · : piℓ
is a chain of signatures (or chain for short) as in [14, 16, 20]. We say

that the length of the chain is ℓ. A valid chain must start with psender (i.e. psender = pi1),
only contain valid signatures, and be acyclic (a process’ signature can only appear once in
a given chain). As in [14], we assume a filter function removes any invalid chain from the
reception queue of correct processes, so that correct processes only receive valid chains.
In particular, correct processes will only accept chains of length R during round R. As a
shortcut, we might therefore say that a process pi has signed a chain π in round R to
mean that pi’s signature is the Rth signature in π.
π being a chain of signatures, message(π) denotes the message at the start of the chain.
We therefore have message(m : psender : pi2 : · · · : piℓ

) = m. By extension, if E is a set of
chains, message(E) is the direct image of E by message().
M being a set of messages, choice(M) deterministically returns one of the messages, i.e.,
the same message m is returned by all correct processes for the same input set M . The
function choice() can be implemented in various ways: e.g., the message with the smallest
value or smallest time-stamp. If M is empty, choice(M) returns ⊥.
γ = (pik,γ

)k∈[1..ℓ] ∈ Πℓ being a sequence of ℓ processes, for simplicity, we will use the
notation : γ : as a shorthand for the fragment of signature chain : pi1,γ

: · · · : piℓ,γ
: . For

instance, m : psender : γ : pi thus means m : psender : pi1,γ : · · · : piℓ,γ
: pi. We will similarly

equate the sequence γ with its supporting set set(γ) = {pik,γ
}k∈[1..ℓ] when unambiguous.

Thus q ∈ γ means q ∈ {pik,γ
}k∈[1..ℓ], |γ| = |{pik,γ

}k∈[1..ℓ]| = ℓ, X ∪ γ = X ∪ {pik,γ
}k∈[1..ℓ].

5 Similarly to other works studying synchronous broadcast with a dishonest majority [3, 16, 27], the
presented algorithm considers crashed processes as Byzantine, providing no guarantees for them. A
simple change, however, which adds one extra round, can ensure that crashed processes that brb-delivers
benefit from the BRB-No-duplicity and BRB-Global-delivery properties. See footnote 6.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:7

m : psender

Ei,R

pγ

γi

truncatet+2−w(γi)

Figure 1 The pattern of signature chains forming a certificate of weight w = 6 (psender, pγ and the
processes of Ei,R) at round R for message m at pi. The certificate must verify set(truncatet+2−w(γi))∩
Ei,R = ∅, which ensures its “conspicuity” (Lemma 4).

γ = (pik,γ
)k∈[1..ℓ] ∈ Πℓ being a sequence of ℓ processes, we note truncatek(γ) the sub-

sequence of γ that contains up to its first k elements (pik,γ
)k∈[1..min(ℓ,k)]. If |γ| ≤ k in

particular, truncatek(γ) = γ.

5 Description of the algorithm

5.1 Overview
Certificates and revealing chains. The algorithm revolves around the notion of certificate,
which can be informally described as a set of signature chains for a given message m that
fits a particular pattern. The weight of a certificate is defined as the number of processes
whose signature appears within the first two positions of some chains of the certificate. These
processes are said to be backing m in the certificate.

Just counting and propagating the round-2 signatures that correct processes observe
is, however, not enough, as it does not prevent Byzantine processes from hiding part of a
certificate from correct processes until the very last moment (round t + 1 in our case). The
certificates we use therefore add an additional constrain that limits the disruption power of
Byzantine processes: a certificate of weight w must contain a “revealing chain” m : psender : γi

(shown in red in Figure 1) whose makeup must “differ sufficiently” from the backing processes
documented by the certificate. “Differ sufficiently” means that besides the processes in
position 1 (psender in all cases) and position 2 (pγ in Figure 1), the processes from position 3
until position t + 3 − w of this revealing chain should not be backing processes.

This constraint limits what Byzantine processes can do when the sender is Byzantine
and allows correct processes to use an early delivery condition that is safe both in good and
bad cases. When psender is Byzantine (bad case), Byzantine processes may collude to forge
competing certificates for different messages. When doing so, however, Byzantine processes
can only use up to t signatures and must decide whether to invest these t signatures in the
backing part of each certificate (thus increasing the certificate’s weight) or in the revealing
chain of the certificate (thus delaying the time at which the message of a forged certificate
must be revealed to correct processes, but reducing the certificate’s weight).

Certificate conspicuity. The position t+3−w of the revealing chain enforces this constraint.
The signatures from positions 3 to t + 3 − w correspond to (t + 3 − w) − 3 + 1 = t + 1 − w

processes. Added to the w processes backing the certificate (Ei,R ∪ {psender, pγ} in Figure 1),
this represents t + 1 − w + w = t + 1 processes. These t + 1 processes must contain a correct
process; therefore, Byzantine processes that seek to forge a certificate must include the
signature of a correct process at the latest in round t + 3 − w. This correct process ensures

DISC 2022

4:8 Good-Case Early-Stopping Latency of Synchronous BRB

that the message of a forged certificate must be revealed to all correct processes at the latest
by round t + 3 − w. We call the round Rw = t + 3 − w the conspicuity round for weight w,
and this property Certificate Conspicuity.

By contrapositive, certificate conspicuity allows correct processes to ascertain the nonex-
istence of a certificate of a given weight for a message. This ability to be sure that a given
certificate does not exist, and the ability to propagate certificates that do, are the key
ingredients that allow our algorithm to terminate (much) faster than other chain-based
deterministic algorithms [14, 16, 20] in good cases, more precisely in max(2, t + 3 − c) rounds,
where c = n − f is the number of effective correct processes.

An example of certificate. Figure 1 shows a certificate of weight w = 6 for a message m

observed by pi at round R: each horizontal line represents a chain of signatures that starts
with m : psender, the green and red dots represent processes that have witnessed m : psender
in round 2 (and are therefore backing m), and m : psender : γi is the revealing chain, such
that the process appearing from position 3 to t + 3 − w (t − 3 here) in m : psender : γi (or
equivalently from position 2 to t + 2 − w in γi) do not appear in position 2 of any of the
certificate’s chains (equivalently the t + 2 − w truncation of γi, noted truncatet+2−w(γi), does
not appear in Ei,R, the set of processes in position 2 in chains of the certificate other than
m : psender : γi).

The certificate depicted in Figure 1 is of weight w = 6, as it proves that 6 distinct
processes are backing m, i.e. they have signed a chain containing m in round 1 (for psender)
or 2 (for the others). These processes are psender, pγ (the first process in γi), and the four
processes of Ei,R.

A special case: delivery in round 2. A special case occurs when the weight of a certificate
reaches w = t + 1. When this happens, any process pi observing the certificate knows that
either psender, pγ , or one of the processes of Ei,R is correct and, therefore, that all correct
processes must have received a chain containing m by round 2. Conversely if pi has not
received any chain containing a message m′ by round 2, pi knows that a certificate of weight
t + 1 cannot possibly exist for m′. As a result, a correct process that observes a certificate
a weight t + 1 for m and is not aware of any other message m′ ̸= m by round 2 can safely
brb-deliver m, as no other message will be able to “beat” m with a heavier certificate, even
if the sender psender is Byzantine.

Weak non-intersecting quorums. The reasoning for w = t + 1 mirrors the mechanism
of intersecting quorums used in asynchronous systems and requires a majority of correct
processes (or n > 2t) to be guaranteed to occur when the sender is correct. The proposed
certificate mechanism leverages the additional guarantees that a synchronous system brings
to generalize this idea to weaker non-intersecting “quorums”, whose ability to trigger a
brb-delivery decision requires additional temporal information (waiting until the conspicuity
round Rw = t + 3 − w).

5.2 Algorithms
In the pseudo-code of our algorithm, we use the operation broadcast(m) as a shorthand for
for all pj ∈ Π do send m to pj end for.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:9

For readability, the pseudo-code for the sending process psender is presented separately in
Algorithm 1. To brb-broadcast m, psender simply signs m and produces the signature chain
m : psender and broadcasts a protocol message msg({m : psender}) containing this chain to all
correct processes, before brb-delivering m locally.

Algorithm 1 brb-broadcast operation executed by psender.

1 In synchronous round R = 1 do
2 broadcast msg({m : psender})
3 brb_deliver(m)
4 end round

Algorithm 2 Certificate-based Synchronous BRB code for pi ̸= psender.

1 Init:
2 viewi ← [∅, ..., ∅] ▷Array of size t + 1 containing the chains observed by pi in each round
3 readyi ← false ; to_be_bcasti,1 ← ∅
4 end init

5 In each synchronous round R ∈ [1..t + 1] do

Communication step

6 broadcast msg(to_be_bcasti,R) ▷pi receives its own broadcast
7 viewi[R]←

{
π ∈ chainsj,R, such that msg(chainsj,R) ∈ receivedi,R

}
8 to_be_bcasti,R+1 ← {π : pi |π ∈ viewi[R] ∧ pi ̸∈ π}

Computation step

9 if readyi then quit()

10 known_msgsi,R ← message
(⋃

r∈[1..R] viewi[r]
)

11 if R = t + 1 then
12 Wi ←

{
w ∈ N

∣∣ ∃m ∈ known_msgsi,t+1 : certificatei(m, w)
}

; if Wi = ∅ then quit()
13 wmaxi ← max (Wi)
14 candidate_msgsi ←

{
m ∈ known_msgsi,t+1

∣∣ certificatei(m, wmaxi)
}

15 brb_deliver
(
choice(candidate_msgsi)

)
16 elseif known_msgsi,R = {m} ∧ certificatei(m, t + 3−R) then
17 brb_deliver(m) ; readyi ← true
18 end if
19 end round

Algorithm 2 constitutes the core of the proposed BRB. It uses up to t + 1 synchronous
rounds (lines 5-19). Each round is divided into a communication step (lines 6-8), during which
processes broadcast and receive messages exchanged during the round, and a computation
step (lines 9-18) during which they handle received messages and prepare the messages to
be sent during the next round. receivedi,R represents the messages received by process pi

during round R. It is directly updated by the (synchronous) network layer.
R is a global variable containing the sequence number of the current round. to_be_bcasti,R

contains the signature chains to be broadcast by pi during round R. In the first round
pi ̸= psender broadcasts an empty protocol message msg(∅). pi stores in the array viewi[R]
the signature chains it receives during round R (line 7). Chains that do not already contain
pi’s signature are signed by pi and stored for broadcasting in the next round (line 8).

DISC 2022

4:10 Good-Case Early-Stopping Latency of Synchronous BRB

Algorithm 3 Certificate function.

1 Function certificatei(m, w) is
2 Si,R ←

{
q ∈ Π

∣∣∣ m : psender : q ∈ truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)}
3 return ∃ri ∈ [2..t + 1], ∃γi ∈ Πri−1 :

{
m : psender : γi ∈ viewi[ri] ∧
|Si,R \ truncatet+2−w(γi)| ≥ w − 2

4 end function

pi’s behavior in the computation step depends on whether pi has reached round t + 1 or
not. In earlier rounds, pi used the conspicuity property of certificates to detect if a message m

is backed by a certificate “heavy enough” that cannot be beaten by any other message m′ ̸= m

(condition at line 16). If this is the case, m is brb-delivered at line 17, and the flag readyi is
toggled to stop the algorithm in the next round.6 “Heavy enough” means that pi should
observe a certificate of weight at least wR = t + 3 − R for m. The value wR is simply the
weight whose conspicuity round turns out to be R, as t+3−wR = t+3− (t+3−R) = R (see
Section 5.1). This implies that, by round R, all certificates of weight at least wR = t + 3 − R

must have become conspicuous and allows pi to make a safe brb-delivery.
If pi reaches round t + 1 without having delivered any message (line 11), it tallies all

messages known to it and keeps only messages backed by a certificate with maximal weight.
pi uses a deterministic function choice to break any tie that may appear.

The code for the function certificatei executed by pi is shown in Algorithm 3. certificatei

first computes the set of all length-2 prefixes of signature chains known to pi (set Si,R at
line 2), and seeks to find a “revealing chain” m : psender : γi known to pi so that after removing
the t + 2 − w truncation7 of γi from Si,R, enough distinct processes8 remain to ensure w

processes have signed m by round 2 (see Figure 1 and Section 5.1.)
In terms of vocabulary, we say that pi observes a certificate of weight w for a message

m during round R if certificatei(m, w) = true during the computation step of round R at
pi (lines 9-18 of Algorithm 2). Note that because viewi[R] is initially empty and is only
modified once (during round R, line 2 of Algorithm 2), certificatei(m, w) is stable (once true
during some round, certificatei(m, w) remains true in all subsequent rounds). For the same
reasons, and by definition of certificatei (Algorithm 3), if certificatei(m, w) = true for some
weight w, then certificatei(m, w′) = true for any smaller weight w′ ≤ w.

6 Proof of correctness

▶ Theorem 1. Algorithm 2 implements a Synchronous Byzantine Reliable Broadcast object.
If the initial sender psender is correct, correct processes brb-deliver in at most max(2, t + 3 − c)
rounds, where c is the effective number of correct processes.

6 The extra round of communication induced by readyi is needed to ensure all correct processes observe
the same certificate as pi. However, by delivering as soon as the condition of line 16 is true, the
algorithm does not ensure that crashed processes benefit from the BRB-No-duplicity and BRB-
Global-delivery properties. These additional guarantees can be provided at the cost of one extra
round by postponing the brb-delivery of m by one round from line 17 to line 9. See footnote 5.

7 The t + 2− w truncation of γi equals the subchain of m : psender : γi between positions 2 and t + 3− w.
8 certificatei(m, w) uses the threshold w−2 at line 3 to take into account that psender and the first process

of γi (called pγ in Figure 1) are also backing m. See our discussion in Section 5.1.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:11

▶ Remark 2. Note that if n > 2t, then because c ≥ n − t, we have c ≥ t + 1, and
max(2, t + 3 − c) = 2, all correct processes deliver in at most 2 rounds when the sender is
correct.
▶ Remark 3. Algorithm 2 can easily be adapted to solve Byzantine Broadcast by modifying
line 12 to brb-deliver some default value (e.g., ⊥) when the set Wi is empty.

6.1 Preliminary lemmas
Theorem 1 hinges on two fundamental properties: Certificate Conspicuity (Lemma 4) and
Certificate Final Visibility (Lemma 9). Lemmas 6-7 are used to prove Lemma 9.

As explained earlier, Certificate Conspicuity forces Byzantine processes that seek to hide
a certificate of weight w for a message m to reveal at the latest by round t + 3 − w (the
“conspicuity round” of w) that m exists. Certificate Final Visibility ensures that when the
initial sender psender is malicious, if a correct process reaches round t + 1, then this correct
process observes all the certificates ever observed by other correct processes.

▶ Lemma 4 (Certificate Conspicuity). Let pi and pj ̸= pi be correct processes, m a message,
and R ∈ [2..t + 1] a round. If pi observes a certificate of weight at least t + 3 − R for m at
some point of its execution (i.e. certificatei(m, t + 3 − R) = true) and pj executes round R,
then m ∈ known_msgsj,R at round R at pj.

Sketch of proof. (Detail in the appendix.) Let us note ri and γi a round and a process
sequence that render true the condition at line 3 in the definition of certificatei for pi

(Alg. 3). The proof depends on whether ri (the round in which pi observes the revealing
chain m : psender : γi, cf. Alg. 3) occurs before or after the round R, the round during which
we seek to prove that all correct processes are aware of m. If ri < R, because pi forwards
all chains it has not signed yet, all correct processes observe a chain containing m at the
latest by round ri + 1 ≤ R. If ri ≥ R, the fact that only the first process of truncatet+2−w(γi)
can be backing m in pi’s certificate implies that (t + 2 − w) + (w − 2) + 1 = t + 1 processes
(counting the (t + 2 − w)-prefix of γi, the remaining processes of Si,R not in the prefix, and
psender) have signed a chain containing m during the first R rounds of the protocol. One of
them must be correct, yielding the lemma. ◀

The following corollary from Lemma 4 states that if a correct process has not seen a
message m by round R ≥ 2, then no certificate of weight ≥ t + 3 − R will ever exist.

▶ Corollary 5. Let pi and pj ̸= pi be correct processes, m a message, and R ∈ [2..t + 1]
a round. If m ̸∈ known_msgsi,R at round R at line 16 of Algorithm 2 at pi, then for any
R′ ≥ R, certificatej(m, t + 3 − R′) = false during all of pj’s execution.

Proof. Consider pi and pj two correct processes. If m ̸∈ known_msgsi,R at round R of
pi, then by contrapositive of Lemma 4, then certificatej(m, t + 3 − R) = false during all
of pj ’s execution. Because of the inequality at line 3 of the definition certificate (Alg. 3),
certificatej(m, w) implies certificatej(m, w′) for any w′ ≤ w, and therefore certificatej(m, t +
3 − R) = false implies certificatej(m, t + 3 − R′) = false for any R′ ≥ R. ◀

In the coming lemmas, we use the following quantity to prove the final visibility of
certificates (Lemma 9), which is central to establishing the BRB-No-duplicity property.

Let T2,i[R] denote truncate2

(⋃
r′∈[2..R] viewi[r′]

)
. (1)

T2,i[R] contains all length-2 prefixes m : psender : q observed by pi by round R, i.e. pi’s
knowledge during round R of the processes that have signed m by the end of round 2.

DISC 2022

4:12 Good-Case Early-Stopping Latency of Synchronous BRB

The following lemma states that all length-2 prefixes known by a correct process pi ̸=
psender at round R are known by all other correct processes by round R + 1.

▶ Lemma 6. Let pi and pj ̸= pi be two correct processes, such that pi executes the computation
step (lines 6-8) of at least the R ≤ t first rounds, and pj executes the communication step of
at least the first R + 1 rounds. Then we have ∀R ∈ [1..t], T2,i[R] ⊆ T2,j [R + 1].

Proof. Note that since pi and pj execute Algorithm 2, they are both different from psender.
We prove the lemma by induction.

Case R = 1:
⋃

r′∈[2..1] viewi[r′] = ∅, and therefore T2,i[1] = ∅, trivially proving the case.
Induction case: Let us assume T2,i[R] ⊆ T2,j [R + 1] for some R ∈ [1..t − 1].

T2,i[R + 1] = truncate2

(⋃
r′∈[2..R+1] viewi[r′]

)
,

= truncate2

(⋃
r′∈[2..R] viewi[r′] ∪ viewi[R + 1]

)
,

= truncate2

(⋃
r′∈[2..R] viewi[r′]

)
∪ truncate2

(
viewi[R + 1]

)
,

= T2,i[R] ∪ truncate2
(
viewi[R + 1]

)
,

⊆ T2,j [R + 1] ∪ truncate2
(
viewi[R + 1]

)
by case assumption,

⊆ T2,j [R + 2] ∪ truncate2
(
viewi[R + 1]

)
as T2,j [R + 1] ⊆ T2,j [R + 2].

We now need to show that truncate2
(
viewi[R + 1]

)
⊆ T2,j [R + 2] to complete the proof.

Consider m : psender : γ ∈ viewi[R + 1], with γ ∈ ΠR. By assumption, pi ̸= psender, we
must therefore distinguish two cases depending whether pi appears in γ or not.

Case 1: If pi ∈ γ, pi has signed a chain m : psender : γ′ at line 8 of Alg. 2 during
a round R′ < R + 1 (where γ′ : pi is a prefix of γ), and pi has broadcast the chain
m : psender : γ′ : pi to all processes (since pi is correct) at line 6 during the communication
step of the following round R′ + 1 ≤ R + 1. Therefore m : psender : γ′ : pi ∈ viewj [R′ + 1],
which implies

truncate2(m : psender : γ) = truncate2(m : psender : γ′ : pi)∈ truncate2(viewj [R′+1])⊆T2,j [R+2].

Case 2: If pi ̸∈ γ, pi signs m : psender : γ during round R + 1 and as above broadcasts
m : psender : γ : pi at round R + 2 to all processes. (By construction, the fact that
pi executes the computation step of round R + 1 ≤ t implies that it executes the
communication step of round R + 2.) This similarly implies

truncate2(m : psender : γ) = truncate2(m : psender : γ : pi) ∈ truncate2(viewj [R+2]) ⊆ T2,j [R+2].

These two cases show that truncate2
(
viewi[R + 1]

)
⊆ T2,j [R + 2], which concludes the proof

of the lemma. ◀

The following lemma shows that if psender is Byzantine then all correct processes agree
on the length-2 prefixes they have observed by round t + 1.

▶ Lemma 7. Let psender be Byzantine, and pi and pj be two correct processes that execute
the communication step of round t + 1, then T2,i[t + 1] = T2,j [t + 1].

Sketch of proof. (Detail in the appendix.) The proof uses the fact that the length-2 prefixes
that pi receives in round t+1 have been propagated by t+1 processes. One of these processes
must be correct, and because psender is Byzantine, it must be a process that signed the
chain at the earliest in round 2, implying that the length-2 prefix is also known to pj . This
observation, together with Lemma 6 yields the proof. ◀

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:13

▶ Corollary 8. Let psender be Byzantine, pi and pj be two correct processes, such that pi

executes the computation step of at least the first r ∈ [1..t + 1] rounds, and pj executes the
communication step of all t + 1 rounds. Then we have T2,i[r] ⊆ T2,j [t + 1].

Proof. The proof follows either from Lemma 7 or 6, depending on whether r = t + 1 or not.
If r = t + 1, the corollary follows trivially from Lemma 7.
If r < t + 1, this follows from Lemma 6, and observing that T2,j [r + 1] ⊆ T2,j [t + 1]. ◀

The following lemma states that if psender behaves maliciously (for instance, by sending
different messages in round 1), if a certificate of weight w exists for a message m (meaning
that it is observed at some point by some correct process), then all correct processes that
reach round t + 1 observe a certificate of weight w for m by round t + 1, a property we have
dubbed Final Certificate Visibility.

▶ Lemma 9 (Certificate Final Visibility). Let psender be Byzantine, and pi and pj be correct
processes such that pi observes certificatei(m, w) = true at some round R ∈ [1..t + 1], and pj

executes the communication step of round t + 1. Then pj observes certificatej(m, w) = true
at round t + 1.

Proof. Assume a correct process pi observes certificatei(m, w) = true at some round R.
Consider pj another correct process that reaches round t + 1. Without loss of generality,
assume pj ̸= pi (as the case pi = pj is trivial).

In the following, ri and γi denote a round and a process sequence that render true the
condition at line 3 for pi in the definition of certificatei (Algorithm 3).

Let Ei,R be the value of Si,R \ truncatet+2−w(γi) at line 3 of Alg. 3 at pi in round R

Ei,R =
{

q ∈ Π \ truncatet+2−w(γi)
∣∣∣ m : psender : q ∈ truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)}
. (2)

By lemma assumption, |Ei,R| ≥ w − 2. Furthermore, as viewi[r′] is initially empty and
only updated during round r′, during round R, ∀r′ > R : viewi[r′] = ∅. At round R, we
therefore have truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)
= truncate2

(⋃
r′∈[2..R] viewi[r′]

)
= T2,i[R].

We can therefore rewrite (2) into

Ei,R = {q ∈ Π \ truncatet+2−w(γi) | m : psender : q ∈ T2,i[R]} . (3)

The rest of the proof distinguishes two cases, depending on whether pj ∈ γi or not, with
the case pj ̸∈ γi leading to more sub-cases.

Case pj ∈ γi: As pj is correct, pj ∈ γi implies pj has signed and therefore received a
chain m : psender : γj at line 8 of Alg. 2 during some round rj < ri, where γj is a prefix of
γi. As a result of this broadcast, at all rounds higher or equal to rj , we have

m : psender : γj ∈ viewj [rj]. (4)

As γj is a prefix of γi, truncatet+2−w(γj) is also a prefix of truncatet+2−w(γi), which
implies using (3)

Ei,R ⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,i[R]} ,

⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,j [t + 1]} using Corollary 8.

As |Ei,R| ≥ w − 2 (since certificatei(m, w) = true at round R by lemma assumption),
this last inclusion yields

|{q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,j [t + 1]}| ≥ w − 2. (5)

Equations (4) and (5) render true line 3 of certificatej(m, w) (Alg. 3) at round t + 1,
proving the lemma.

DISC 2022

4:14 Good-Case Early-Stopping Latency of Synchronous BRB

Case pj ̸∈ γi: If pj ’s signature is not in γi the approach to find rj and γj that fulfill line 3
of Alg. 3 for pj depends on the value of ri and on whether pi appears in the set Ei,R of
length-2 prefixes.
Line 3 of Alg. 3 implies viewi[ri] ̸= ∅. As viewi[ri] is initially empty and only updated in
the communication step of round ri, this implies R ≥ ri.

Case ri = t + 1: R ≥ ri yields R ≥ t + 1. As R ≤ t + 1 by lemma assumption, we
conclude R = t + 1. Since psender ̸∈ γi due to the acyclic nature of signature chains
accepted by correct processes, |{psender} ∪ γi| = |{psender}| + |γi| = 1 + ri − 1 = t + 1
(by case assumption). {psender} ∪ γi therefore contains at least one correct process
pk. As psender is Byzantine (by lemma assumption), pk ∈ γi. this means that pk has
broadcast to all processes a chain m : psender : γj during some round rj ≤ t + 1, where
γj is a prefix of γi. pj has received this chain, and we therefore have

m : psender : γj ∈ viewj [rj]. (6)

Furthermore, since γj is a prefix of γi, we have

Et+1,i ⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,i[t + 1]} ,

⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,j [t + 1]} , using Lemma 7.

As above, |Et+1,i| ≥ w−2 (since R = t+1, see above) implies that this last set contains
at least w − 2 elements. This fact with (6) renders true line 3 of certificatej(m, w)
(Alg. 3) at round t + 1, proving the lemma.
Case ri < t + 1:
∗ Sub-case pi ̸∈ Ei,R or |γi| ≥ t + 2 − w: Line 3 of Alg. 3 implies m : psender : γi ∈

viewi[ri]. If pi ̸∈ γi, pi signs the chain m : psender : γi (line 8, Alg. 2) and broadcasts
to all processes (since pi is correct) the chain m : psender : γi : pi during the communi-
cation step of round ri + 1. If pi ∈ γi, this means pi has already performed these
two steps (signing and broadcasting) at some earlier round.
In both cases, pj receives a chain m : psender : γ′

i : pi during some round rj ≤ ri + 1.
By choosing γj = γ′

i : pi, we therefore have

m : psender : γj ∈ viewj [rj]. (7)

If pi ∈ γi, then γj is a prefix of γi, truncatet+2−w(γj) ⊆ truncatet+2−w(γi) and

Ei,R ⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,i[R]} . (8)

If pi ̸∈ γi and |γi| ≥ t + 2 − w, then γ′
i = γi, truncatet+2−w(γj) = truncatet+2−w(γi)

and (8) still holds. Finally if pi ̸∈ γi and |γi| < t + 2 − w, then γ′
i = γi,

truncatet+2−w(γj) contains an extra terminal pi compared to truncatet+2−w(γi).
However, by case assumption |γi| < t + 2 − w implies pi ̸∈ Ei,R, and therefore (8)
continues to hold. Using Corollary 8 on (8) we therefore have independently of γi

Ei,R ⊆ {q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,j [t + 1]} .

As above, using |Ei,R| ≥ w − 2 on the above inclusion yields

|{q ∈ Π \ truncatet+2−w(γj) | m : psender : q ∈ T2,j [t + 1]}| ≥ w − 2. (9)

Equations (7) and (9) render true line 3 of certificatej(m, w) (Alg. 3) at round t + 1
(since rj = ri + 1 ≤ t + 1 by case assumption), proving the lemma.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:15

∗ Sub-case pi ∈ Ei,R and |γi| < t+2−w: pi ∈ Ei,R means that pi has signed m : psender.
Since pi is correct, it has therefore broadcast to all processes m : psender : pi during
round 2. As a result, from round 2 onward

m : psender : pi ∈ viewj [2]. (10)

By definition ri ≥ 2 (line 3 of Alg. 3), and therefore |γi| = ri − 1 ≥ 1, implying γi

is non-empty (and t + 2 − w > 1 by sub-case assumption). Consider pγ the first
process in γi. As |γi| < t + 2 − w (sub-case assumption), pγ ∈ truncatet+2−w(γi),
and therefore pγ ̸∈ Ei,R, by definition of Ei,R (Equations 2 and 3).
We construct a set of length-2 prefixes for pj by removing pi and adding pγ from/to
Ei,R. More precisely, we have(

Ei,R \ {pi}
)

∪ {pγ}
=

(
{q ∈ Π \ truncatet+2−w(γi) | m : psender : q ∈ T2,i[R]} \ {pi}

)
∪ {pγ},

=
(

{q ∈ Π \ {pi} | m : psender : q ∈ T2,i[R]} \ truncatet+2−w (γi)
)

∪ {pγ},

⊆ {q ∈ Π \ {pi} | m : psender : q ∈ T2,i[R]} ∪ {pγ}. (11)

Moreover as m : psender : γi ∈ viewi[ri] (line 3 of Alg. 3), and R ≥ ri, m : psender : pγ =
truncate2(psender : γi) ∈ T2,i[R]. Because pγ ̸= pi (since pi ∈ Ei,R and pγ ̸∈ Ei,R),
this last statement implies pγ ∈ {q ∈ Π \ {pi} | m : psender : q ∈ T2,i[R]} , which with
(11) yields(
Ei,R \ {pi}

)
∪ {pγ} ⊆ {q ∈ Π \ {pi} | m : psender : q ∈ T2,i[R]} ,

⊆ {q ∈ Π \ {pi} | m : psender : q ∈ T2,j [t + 1]} using Corollary 8.

As pi ∈ Ei,R by case assumption, and pγ ̸∈ Ei,R, |
(
Ei,R \ {pi}

)
∪ {pγ}| = |Ei,R| −

1 + 1 = |Ei,R|. As |Ei,R| ≥ w − 2 (since certificatei(m, w) = true at round R by
lemma assumption), the above inclusion leads to∣∣ {q ∈ Π \ {pi} | m : psender : q ∈ T2,j [t + 1]}

∣∣ ≥
∣∣(Ei,R \ {pi}

)
∪ {pγ}

∣∣ = |Ei,R| ≥ w − 2. (12)

By choosing γj = pi and rj = 2, (10) and (12) render true line 3 of certificatej(m, w)
(Alg. 3) at round t + 1 (since t ≥ 1, and t + 1 ≥ 2), proving the lemma. ◀

6.2 Proof of Theorem 1
Sketch of proof. (Detail in the appendix.)

BRB-Validity follows from the use of (secure) signatures and the fact that correct
processes only accept valid signature chains.
BRB-No-duplication is ensured by construction of the algorithm, and BRB-Local-
delivery from the code executed by psender when it is correct.
BRB-No-duplicity follows from BRB-Validity when psender is correct. When psender
is Byzantine, the no-duplicity follows from the Conspicuity of the certificates (Lemma 4)
and from their Final Visibility (Lemma 9).
Certificate conspicuity ensures that if two processes pi and pj brb-deliver a message
before round t + 1, the process with the “weaker” certificate (say pj) must be aware of
pi’s message when it brb-delivers its own message, and therefore must brb-deliver the
same message as pi, due to the condition at line 17.

DISC 2022

4:16 Good-Case Early-Stopping Latency of Synchronous BRB

If pi brb-delivers before round t + 1 and pj during round t + 1, then the Final Visibility of
certificates guarantees that pj will observe pi’s certificate at line 12. Corollary 5 implies
that pi’s message is guaranteed to have the “heaviest” certificate, ensuring agreement.
Finally, if both pi and pj deliver in round t + 1, Final Visibility guarantees they see the
same set of messages and certificates and that they brb-deliver the same message.
The good-case latency of the algorithm, max(2, t+3−c) rounds, follow from the observation
that all correct processes observe a certificate of weight c by the end of round 2 when the
initial sender, psender, is correct. As no other message exists in the system, the condition
at line 16 ensures that all correct processes have delivered psender’s message at the latest
either by the end of round 2 or by the end of round t + 3 − c, whichever occurs first.
BRB-Global-delivery follows from the above reasoning when psender is correct. When
psender is Byzantine, the property follows from Certificate Finality. ◀

7 Conclusion

Considering n-process synchronous distributed systems where up to t < n processes can be
Byzantine, this paper explored the good-case latency of deterministic Byzantine reliable
broadcast (BRB) algorithms, the time taken by correct processes to deliver a message when
the initial sender is correct.

In contrast to their randomized counterparts, no deterministic BRB algorithm was known
that exhibited a good-case latency better than t + 1 (the worst-case bound) under a majority
of Byzantine processes. This article has proposed a novel deterministic synchronous BRB
algorithm that substantially improves on this earlier bound and provides a good case latency
of max(2, t + 3 − c) rounds, where t is the upper bound on the number of Byzantine processes,
and c the number of effectively correct processes in the considered run.

The algorithm that has been presented extends the “signature chain mechanism” first
proposed four decades ago and allows correct processes to brb-deliver much earlier when
the context is favorable. In particular, when the sender is correct, and there are enough
effectively correct processes (c > t), our algorithm delivers in 2 rounds, thus outperforming
all known dishonest-majority BRB algorithms (whether deterministic or randomized).

Several crucial open questions remain, in particular, whether the upper bound of t + 3 − c

rounds can be further improved (for instance, using techniques employed in sub-linear
randomized algorithms [4, 27]). In terms of lower bounds, one might ask whether the lower
bound of ⌈n/(n − t)⌉ − 1 shown in [4] can be refined to include the effective number of correct
processes c, and whether this same lower bound can be strengthened in the deterministic
case, for instance considering the fact that Byzantine Agreement cannot be solved in a
(worst-case) sub-linear communication complexity using algorithms that tolerate a strongly
adaptive adversary (which include deterministic algorithms) [1].

References
1 Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In ACM Symposium
on Principles of Distributed Computing (PODC), pages 317–326, New York, NY, USA, 2019.
doi:10.1145/3293611.3331629.

2 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In IEEE Symposium on Security
and Privacy (S&P), pages 106–118, 2020.

https://doi.org/10.1145/3293611.3331629

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:17

3 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine
broadcast: A complete categorization. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 331–341, 2021.

4 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine
broadcast: A complete categorization. In arXiv:2102.07240v2, pages 1–38, 2021.

5 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

6 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Money transfer made simple:
a specification, a generic algorithm and its proof. Bulletin of EATCS, 132, 2020.

7 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Byzantine-tolerant causal
broadcast. Theoretical Computer Science, 885:55–68, 2021.

8 Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance byzantine
fault tolerant settlement. In ACM Advances in Financial Technologies, pages 163–177, 2020.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information & Computation,
75(2):130–143, 1987.

10 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

11 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777:155–183, 2019.

12 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In Dependable Systems and
Networks (DSN), pages 26–38. IEEE, 2020.

13 Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM, 37(4):720–741, 1990.

14 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

15 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

16 Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds sufficient for
authenticated byzantine agreement. In International Symposium on Distributed Computing
(DISC), pages 449–463. Springer, 2009.

17 Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and Marko Vukolic. The next 700 BFT
protocols. In EuroSys, pages 363–376. ACM, 2010.

18 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Seredin-
schi. The consensus number of a cryptocurrency. Distributed Computing, 35(1):1–15, 2022.

19 Damien Imbs and Michel Raynal. Trading off t-resilience for efficiency in asynchronous
byzantine reliable broadcast. Parallel Processing Letters, 26(4):1650017:1–1650017:8, 2016.

20 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

21 Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th
IEEE Symposium on the Foundations of Computer Science (FOCS), pages 120–130, 1999.

22 Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-free asynchronous
byzantine consensus with t < n/3 and o(n2) messages. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 2–9. ACM, 2014.

23 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In International Symposium on Distributed
Computing (DISC), volume 179 of LIPIcs, pages 28:1–28:17, 2020.

24 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

25 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems – An Algorithmic Ap-
proach. Springer, 2018.

DISC 2022

4:18 Good-Case Early-Stopping Latency of Synchronous BRB

26 Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. Round-efficient byzantine broadcast
under strongly adaptive and majority corruptions. In 18th Theory of Cryptography Conference
(TCC), LNCS 12550, pages 412–456. Springer, 2020.

27 Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. Expected constant round byzantine
broadcast under dishonest majority. In 18th Theory of Cryptography Conference (TCC), LNCS
12550, pages 381–411. Springer, 2020.

A Appendices

A.1 Proofs of preliminary lemmas
▶ Lemma 4 (Certificate Conspicuity). Let pi and pj ̸= pi be correct processes, m a message,
and R ∈ [2..t + 1] a round. If pi observes a certificate of weight at least t + 3 − R for m at
some point of its execution (i.e. certificatei(m, t + 3 − R) = true) and pj executes round R,
then m ∈ known_msgsj,R at round R at pj.

Proof. Assume a correct process pi observes certificatei(m, t+3−R) = true. In the following,
ri and γi denote a round and a process sequence that render true the condition at line 3 in
the definition of certificatei (Algorithm 3).

The remainder of the proof distinguishes two cases, depending on whether ri < R or not.
Case ri < R: m : psender : γi ∈ viewi[ri] implies that pi receives m : psender : γi during the
communication step of round ri < R (line 7 of Algorithm 2). If pi ̸∈ γi, pi signs the chain
(line 8, Alg. 2), and broadcast it during the communication step of round ri + 1 ≤ R

(line 6 of the same algorithm). If pi ∈ γi, pi has signed a chain m : psender : γ′ earlier, and
broadcast the result before or during round ri.
In both cases, this means all other correct processes receive some chain m : psender : γ′

i : pi

either during or before round R, and therefore that m ∈ known_msgsj,R at round R for
all correct processes pj that execute round R.
Case ri ≥ R: Let us note γR−1 = truncateR−1(γi). m : psender : γi ∈ viewi[ri] at line 3
means that |γi| = ri − 1. Since by case assumption ri ≥ R, |γi| ≥ R − 1, and therefore
|γR−1| = |truncateR−1(γi)| = R − 1.
Let E denote

{
q ∈ Π \ γR−1

∣∣∣ m : psender : q ∈ truncate2

(⋃
r′∈[1..ri] viewi[r′]

)}
.

The condition of line 3 implies |E| ≥ t + 1 − R. By construction of E, γR−1 ∩ E = ∅.
Similarly, because correct processes only accept acyclic signature chains, psender ̸∈ E.
For the same reason line 3 of Algorithm 3 implies psender ̸∈ γR−1 ⊆ γi. E, γR−1, and
{psender} are therefore pair-wise disjoint. We therefore have |E ∪ γR−1 ∪ {psender}| =
|E| + |γR−1| + 1 ≥ (t + 1 − R) + (R − 1) + 1 = t + 1. E ∪ γR−1 ∪ {psender} therefore
contains at least one correct process, pk.

If pk = psender, the sender is correct, and all correct processes observe message m

during round 1.
If pk ∈ E, pk has signed a chain of length 2 with message m and has broadcast this
chain to all processes during round 2.
Finally, if pk ∈ γR−1, the facts that γR−1 = truncateR−1(γi) and m : psender : γi ∈
viewi[ri] at line 3 of Alg. 3 imply that pk has signed a chain with message m and has
broadcast this chain to all processes during or before round R ≤ ri.

All three cases imply that all correct processes that have not stopped earlier have observed
message m at the latest by the end of the communication step of round R, i.e., that
m ∈ known_msgsj,R at line 16 of Algorithm 2. ◀

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:19

▶ Lemma 7. Let psender be Byzantine, and pi and pj be two correct processes that execute
the communication step of round t + 1, then T2,i[t + 1] = T2,j [t + 1].

Proof. By definition

T2,i[t + 1] = truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)
= truncate2

(⋃
r′∈[2..t] viewi[r′] ∪ viewi[t + 1]

)
,

= T2,i[t] ∪ truncate2
(
viewi[t + 1]

)
.

Applying Lemma 6 we have T2,i[t] ⊆ T2,j [t + 1], which with the previous equality yields

T2,i[t + 1] ⊆ T2,j [t + 1] ∪ truncate2
(
viewi[t + 1]

)
. (13)

We now prove that truncate2
(
viewi[t+1]

)
⊆ T2,j [t+1]. Consider m : psender : γ ∈ viewi[t+1].

As pi is correct, it only accepts acyclic signature chains, and psender ̸∈ γ. This implies
|psender ∪ γ| = |psender| + |γ| = 1 + t. {psender} ∪ γ therefore contains at least one correct
process, pk. As psender is Byzantine by lemma assumption, pk ∈ γ, and pk therefore has
signed a chain m : psender : γ′ at line 8 of Alg. 2 before or during round t, where γ′ : pk is a
prefix of γ. As a result, pk has broadcast the resulting chain m : psender : γ′ : pk to all other
processes during the following round R′ ≤ t + 1. This implies m : psender : γ′ : pk ∈ viewj [R′],
and hence

truncate2(m : psender : γ) = truncate2(m : psender : γ′ : pk) ∈ truncate2(viewj [R′]) ⊆ T2,j [t+1].

This last equation shows that truncate2(viewi[t + 1]) ⊆ T2,j [t + 1], which injected in (13)
yields T2,i[t + 1] ⊆ T2,j [t + 1]. By inverting pi and pj , by the same reasoning we obtain
T2,j [t + 1] ⊆ T2,i[t + 1], which concludes the Lemma’s proof. ◀

A.2 Proofs of Theorem 1
The proof of Theorem 1 follows from Lemmas 10-15, which follow.

▶ Lemma 10. Algorithm 2 verifies the BRB-Validity Property.

Proof. Consider pi a correct process.
If pi = psender, the brb-delivery of a message m at line 3 of Algorithm 1 trivially implies
that pi has executed Algorithm 1, and hence has brb-broadcast m.
If pi ̸= psender, pi may brb-deliver a message m either at lines 17 or 15 of Algorithm 2. In
both cases, m belongs to some known_msgsi,R variable computed at line 10, and must
therefore appear in a signature chain of the form m : pi1 : · · · : piℓ

received by pi at line 7.
As pi is correct, it only accepts and processes valid chains of signatures by assumption,
in which m is first signed by psender (i.e. pi1 = psender). Since psender is correct, and we
have assumed signatures to be secure, for m to be signed by psender, psender must have
executed line 2 of Algorithm 1, and must therefore have brb-broadcast m. ◀

▶ Lemma 11. Algorithm 2 verifies the BRB-No-duplication Property.

Proof. Trivially, this is because once a correct process executes a brb_deliver operation
(either at line 3 of Algorithm 1, or lines 17 or 15 of Algorithm 2), it terminates its execution,
either immediately or at line 9 in the next round, without invoking brb_deliver. ◀

DISC 2022

4:20 Good-Case Early-Stopping Latency of Synchronous BRB

▶ Lemma 12. Algorithm 2 verifies the BRB-Local-delivery property.

Proof. The property trivially follows from the code executed by psender (Algorithm 1). If
psender is correct it executes Algorithm 1 to broadcast a message m, then brb-delivers its
own message at line 3. ◀

▶ Lemma 13. Algorithm 2 verifies the BRB-No-duplicity Property.

Proof.
If psender is correct, psender brb-broadcasts one single message m (Algorithm 1), and by
BRB-Validity (Lemma 10), all correct processes that do brb-deliver a message only
brb-deliver m.
If psender is Byzantine, consider two correct processes pi and pj (both necessarily different
from psender) that each brb-deliver some message: pi brb-delivers mi and pj brb-delivers
mj . We distinguish three cases depending on the lines at which pi and pj execute
brb_deliver.

Case 1: Assume pi and pj both deliver their respective message at line 17 of Algorithm 2.
Due to the condition at line 16, there exist two rounds Ri and Rj such that the following
holds

known_msgsi,Ri
= {mi} ∧ certificatei(mi, t + 3 − Ri), and

known_msgsj,Rj
= {mj} ∧ certificatej(mj , t + 3 − Rj).

Without loss of generality, assume Ri ≤ Rj . By Lemma 4, certificatei(mi, t + 3 −
Ri) = true implies that mi ∈ known_msgsj,Ri

at round Ri at pj (since Ri ≤ Rj

implies that pj executes round Ri). Ri ≤ Rj further implies known_msgsj,Ri
⊆

known_msgsj,Rj
by definition of known_msgsj,−, and the way viewj is initialized

and updated. mi ∈ known_msgsj,Ri
therefore implies that mi ∈ known_msgsj,Rj

.
Combined with known_msgsj,Rj

= {mj}, this last statement yields mi = mj , proving
the lemma.
Case 2: Assume pi and pj both brb-deliver their respective message at line 15 of
Algorithm 2, during round t + 1. Let us consider the two following sets, defined at
round t + 1:

Wi =
{

w ∈ N
∣∣ ∃m ∈ known_msgsi,t+1 : certificatei(m, w)

}
,

and

Wj =
{

w ∈ N
∣∣ ∃m ∈ known_msgsj,t+1 : certificatej(m, w)

}
.

Consider w ∈ Wi. By Lemma 9, certificatei(m, w) = true implies certificatej(m, w) =
true for pj . Because of line 3 of the definition of certificate (Alg. 3), certificatej(m, w) =
true implies that m ∈ known_msgsj,t+1, and therefore that w ∈ Wj . Inverting pi and
pj leads to Wi = Wj , and therefore to wmaxi = wmaxj .
Using wmaxi = wmaxj , and following an identical reasoning on candidate_msgsi and
candidate_msgsj produces candidate_msgsi = candidate_msgsj , and therefore that
pi and pj brb-deliver the same message at line 15.
Case 3: Assume pi brb-delivers mi at line 17 of Algorithm 2, and pj brb-delivers mj

at line 15 of the same algorithm. Due to the condition at line 16, there exists a round
Ri such that the following holds

known_msgsi,Ri
= {mi} ∧ (14)

certificatei(mi, t + 3 − Ri). (15)

T. Albouy, D. Frey, M. Raynal, and F. Taïani 4:21

As in Case 2, let us consider the following set defined at round t + 1 at pj :

Wj =
{

w ∈ N
∣∣ ∃m ∈ known_msgsj,t+1 : certificatej(m, w)

}
.

Because of Lemma 9, certificatei(mi, t + 3 − Ri) = true implies that certificatej(mi, t +
3 − Ri) = true at pj at round t + 1. The condition at line 3 of the code of certificate
(Algorithm 3) further means that certificatej(mi, t + 3 − Ri) = true implies mi ∈
known_msgsj,t+1, and therefore that t + 3 − Ri ∈ Wj . This last inclusion yields that
wmaxj ≥ t + 3 − Ri at line 13 of Algorithm 2.
mj is brb-delivered by pj at line 15. Therefore by construction certificatej(mj , wmaxj)=
true. Due the condition at line 3 in the code of certificate (Alg. 3), wmaxj ≥ t+3−Ri

and certificatej(mj , wmaxj) = true yield certificatej(mj , t + 3 − Ri) = true. Using
Lemma 4 this last statement implies that mj ∈ known_msgsi,Ri

at round Ri at pi.
Combined with (14), this leads to mj = mi, proving the case and concluding the
lemma. ◀

▶ Lemma 14. If psender is correct, correct processes brb-deliver the message m brb-broadcast
by psender in at most max(2, t + 3 − c) rounds, where c = n − f is the number of effective
correct processes.

Proof. If psender is correct, it broadcasts m : psender to all correct processes (line 2 or Alg. 1),
and brb-delivers its own message in round 1. Every correct process pj other than psender
receives m : psender in round 1, and broadcasts m : psender : pj in round 2. At the end of
round 2, a correct process pi has therefore received at least c − 1 length-2 signature chains
for m:{

m : psender : pj

∣∣ pj ∈ Πc \ {psender}
}

⊆ viewi[2], (16)

where Πc is the set of correct processes. In round 2, we therefore have

∀q ∈ Πc \ {psender, pi}, m : psender : q ∈ truncate2 (viewi[2]) .

As at round 2, viewi[r′] = ∅ for all r′ > 2, this leads to

∀q ∈ Πc \ {psender, pi}, m : psender : q ∈ truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)
As truncatet+2−c(pi) is either the empty sequence or pi, this further leads to

Πc \ {psender, pi}

⊆
{

q ∈ Π \ truncatet+2−c(pi)
∣∣∣ m : psender : q ∈ truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)}
.

Because psender and pi are correct, |Πc \ {psender, pi}| = c − 2 and the previous inclusion
implies∣∣∣{q ∈ Π \ truncatet+2−c(pi)

∣∣∣ m : psender : q ∈ truncate2

(⋃
r′∈[2..t+1] viewi[r′]

)}∣∣∣ ≥ c−2. (17)

Because pi is correct, (16) further yields

m : psender : pi ∈ viewi[2]. (18)

By choosing ri = 2 and γi = pi, (17) and (18) render true line 3 of certificatei(m, c) (Alg. 3)
at round 2. In other words, pi (and thus every correct process other than psender) observes
a certificate of weight c for m at round 2. By definition of the certificate function, and

DISC 2022

4:22 Good-Case Early-Stopping Latency of Synchronous BRB

construction of viewi, certificatei(m, c) = true at round 2 implies that certificatei(m, c)
remains true during the rest of pi’s execution. In addition, as psender is correct and signatures
are secure, known_msgsi,R does not contain any other message than m. Therefore, if pi

does not brb-deliver m earlier, at the latest at round Rc = max(2, t + 3 − c) the condition of
line 16 becomes true, and pi brb-delivers m during the same round. ◀

▶ Lemma 15. Algorithm 2 verifies the BRB-Global-delivery property.

Proof.
If psender is correct, then using Lemma 14 all correct processes execute brb_deliver, the
lemma is verified.
If psender is Byzantine, consider pi and pj two correct processes ({pi, pj} ∩ {psender} = ∅)
and assume pi brb-delivers some message m. Whether pi brb-delivers m at line 15 or
at line 17, the brb-delivery implies that pi observes certificatei(m, w) = true for some
w ∈ N at some round Ri ≤ t + 1. Let ri and γi denote a round and a process sequence
that render true the condition at line 3 for pi in the definition of certificatei (Algorithm 3)
at round Ri. Since at round Ri, ∀r′ ∈ [Ri + 1..t + 1] : viewi[r′] = ∅. Line 3 further implies
that

truncate2(m : psender : γi) ∈ truncate2(viewi[ri])
⊆ T2,i[ri] since ri ≥ 2, and by definition of T2,i[ri].

Using Corollary 8 we have T2,i[ri] ⊆ T2,j [t + 1] and therefore truncate2(m : psender : γi) ∈
T2,j [t + 1].
Using the definition of T2,j [t + 1] (Equation 1), truncate2(m : psender : γi) ∈ T2,j [t + 1]
implies that

∃rj ∈ [2..t + 1], ∃πj ∈ viewj [rj] : truncate2(πj) = truncate2(m : psender : γi)

Because pj is correct, it only accepts valid signature chains, which implies that πj is of
the form πj = m : psender : γj for some γj ∈ Πrj−1 (since πj ∈ viewj [rj]). m : psender : γj ∈
viewj [rj] implies certificatej(m, 2) = true at pj at round rj (since line 3 of Algorithm 3
is trivially true for w = 2), and m ∈ known_msgsj,rj

.
If we assume pj does not brb-deliver any message before round t + 1, the fact that
certificatej(m, 2) = true at pj at round rj ≤ t + 1 means that certificatej(m, 2) = true
at pj at round t + 1, due to the definition of the function certificate (Algorithm 3).
Similarly, since known_msgsj,rj

⊆ known_msgsj,t+1, m ∈ known_msgsj,rj
implies m ∈

known_msgsj,t+1. The two facts m ∈ known_msgsj,t+1 and certificatej(m, 2) = true
at pj at round t + 1 imply Wj ̸= ∅ at line 12 of Algorithm 2, and therefore that
candidate_msgsj ̸= ∅, leading pj to brb-deliver some message at line 15. ◀

A.3 Numerical comparison
Assuming t < 3/4 × n, and that only ⌊t/2⌋ processes have effectively been compromised
(equivalently, c = n−⌊t/2⌋), the good-case latency of our algorithm outperforms the optimized
version of [27] presented in [4] up to n ≤ 43, and is at least as good up to n ≤ 51. (This claim
follows from an exhaustive computation of the values of max(2, t + 3 − c) and

⌈
n

n−t

⌉
+

⌊
n

n−t

⌋
over n ∈ [3..52], t ∈ [1..⌊3/4 × n⌋ − 1], with c = n − ⌊t/2⌋.)

It follows that the proposed algorithm is particularly well suited to small- and medium-size
synchronous distributed systems.

Polynomial-Time Verification and Testing of
Implementations of the Snapshot Data Structure
Gal Amram #

Ben Gurion University of the Negev, Beer-Sheva, Israel
IBM Research, Haifa, Israel

Avi Hayoun #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Lior Mizrahi
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Gera Weiss #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
We analyze correctness of implementations of the snapshot data structure in terms of linearizability.
We show that such implementations can be verified in polynomial time. Additionally, we identify a
set of representative executions for testing and show that the correctness of each of these executions
can be validated in linear time. These results present a significant speedup considering that verifying
linearizability of implementations of concurrent data structures, in general, is EXPSPACE-complete
in the number of program-states, and testing linearizability is NP-complete in the length of the
tested execution. The crux of our approach is identifying a class of executions, which we call simple,
such that a snapshot implementation is linearizable if and only if all of its simple executions are
linearizable. We then divide all possible non-linearizable simple executions into three categories
and construct a small automaton that recognizes each category. We describe two implementations
(one for verification and one for testing) of an automata-based approach that we develop based on
this result and an evaluation that demonstrates significant improvements over existing tools. For
verification, we show that restricting a state-of-the-art tool to analyzing only simple executions saves
resources and allows the analysis of more complex cases. Specifically, restricting attention to simple
executions finds bugs in 27 instances, whereas, without this restriction, we were only able to find 14
of the 30 bugs in the instances we examined. We also show that our technique accelerates testing
performance significantly. Specifically, our implementation solves the complete set of 900 problems
we generated, whereas the state-of-the-art linearizability testing tool solves only 554 problems.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Concurrent algorithms

Keywords and phrases Snapshot, Linearizability, Verification, Formal Methods

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.5

Related Version Full Version: https://github.com/hayounav/Thesis_experiments/blob/main/
snapshot verification and testing/Polynomial_time_verification_of_snapshot_
implementations_DISC_.pdf

Supplementary Material Software (Source Code): https://github.com/hayounav/Thesis_
experiments; archived at swh:1:dir:10be8bad714e0da40fec5d0a1a6aa34c550ccc33

Funding This research was partially funded by grant no. 2714/19 from the Israel Science Foundation
and by the Lynn and William Frankel Center for Computer Science at Ben-Gurion University.

1 Introduction

As concurrency is very effective for accelerating the performance of computer programs,
there is much scientific research and practical attention on the design, implementation, and
verification of data structures that allow parallel access. We focus on the well-known snapshot

© Gal Amram, Avi Hayoun, Lior Mizrahi, and Gera Weiss;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gal.amram@ibm.com
https://orcid.org/0000-0003-2138-7542
mailto:hayounav@post.bgu.ac.il
mailto:geraw@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.5
https://github.com/hayounav/Thesis_experiments/blob/main/snapshot verification and testing/Polynomial_time_verification_of_snapshot_implementations_DISC_.pdf
https://github.com/hayounav/Thesis_experiments/blob/main/snapshot verification and testing/Polynomial_time_verification_of_snapshot_implementations_DISC_.pdf
https://github.com/hayounav/Thesis_experiments/blob/main/snapshot verification and testing/Polynomial_time_verification_of_snapshot_implementations_DISC_.pdf
https://github.com/hayounav/Thesis_experiments
https://github.com/hayounav/Thesis_experiments
https://archive.softwareheritage.org/swh:1:dir:10be8bad714e0da40fec5d0a1a6aa34c550ccc33;origin=https://github.com/hayounav/Thesis_experiments;visit=swh:1:snp:c0bf53a16606bf096d4de1b2f4b80a175aaac284;anchor=swh:1:rev:f33145ea92d432d9aaaf87f2f202dc52aa6b31bb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Polynomial-Time Verification and Testing of the Snapshot Data Structure

data structure which is an essential building block of distributed arrays [4,7, 9]. This data
structure allows asynchronous processes to write values to a shared array of single-writer
registers, by executing update operations, and to take instantaneous snapshots of the array
values, by executing scan operations. It is useful for allowing processes to share information
while maintaining a correct joint view of the data.

For proving the correctness of implementations of the snapshot data structure, we consider
the standard linearizability [31] condition. Roughly speaking, linearizability is the requirement
that for every execution of a given implementation, the procedure executions can be ordered
linearly such that (a) the resulting linear order is consistent with the definition of the data
structure; (b) it preserves the precedence of procedure executions in time. In the specific
case of snapshot, the definition of the data structure is that a sequential (linear) execution is
correct if every scan operation reports the value written by the last update operation of each
of the processes. Linearizability is widely accepted as a correctness criterion since, effectively,
it formulates the requirement that procedure executions are seen to a user as if they were
executed one after the other (i.e., atomically).

Automatic verification of linearizability is known to be computationally expensive. The
verification of finite-state implementations is EXPSPACE-complete in the number of program
states [5, 29] and undecidable for infinite-state implementations [14]. Testing linearizability,
i.e., deciding whether a given execution is linearizable, is NP-complete [28]. These complexities
do not stop the community from pursuing effective verification and testing techniques, because
it is very difficult to provide correct implementations of concurrent data structures; bugs
have been found in both academic and deployed implementations [18,20,42]. These made it
clear that there is an acute necessity for reliable verification and testing techniques.

One commonly used technique is the linearization points based verification approach, which
often does not work in the case of snapshot. A linearization point of a procedure execution is
an action that represents the moment at which the procedure “actually occurs”. Once fixed
linearization points are identified, verifying linearizability becomes PSPACE-complete [14].
Unfortunately, snapshot implementations do not usually admit fixed linearization points (e.g.,
all twelve published implementations listed in [35] do not admit such points). Researchers also
suggested using linearization points as an optimization: ask the user to provide them (whether
fixed or conditional) and use this information to accelerate verification [3, 6, 13, 50]. However,
practice shows that it is difficult to find and specify the linearization points of snapshot
implementations, even in a conditional manner. One difficulty is that the linearization points
of scan operations often belong to other, parallel, procedure executions (see [4, 11,46]).

In this paper, we propose an effective polynomial-time technique for verifying
snapshot implementations, and an effective linear-time technique for testing
snapshot executions. The crux of our techniques is an optimization approach that
exponentially reduces the number of reachable program states. Specifically, we prove that if
an algorithm is data-independent [54] then, in order to verify its correctness, it suffices to
consider only a small fraction of its executions which we call simple.

The simple executions that we focus on are those in which:
1. All but two processes invoke only update(v0) and scan operations, where v0 is the initial

value of the array segments. In other words, n−2 of the n processes are not allowed to
change the initial value in their segments;

2. Each of the two remaining processes may only change their data value once, to a
predetermined value: it executes only update(v0) and scan operations up to an arbitrary
point in the execution, after which it transitions to executing only update(v1) and scan
operations, where v1 ̸= v0 are fixed data values.

The focus on simple executions reduces the number of reachable states significantly, as n−2
entries of the array are essentially constants (see Section 3).

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:3

After showing that it is enough to verify the correctness of simple executions, we continue
and show that every non-linearizable simple execution falls into one of three categories that we
identify. Moreover, we show that each of these three possible bug patterns can be recognized
by an automaton with at most n states and n2 transitions (see Section 4). This enables
verifying linearizability of snapshot implementations via a reachability check applied to the
graph product of the implementation and the automatons where the target states of the
reachability are the automatons’ accepting states. As there are O(n2) combinations to choose
the two excluded processes, snapshot implementations can be verified with this method in
time O(mn4) where m is the number of reachable states via simple executions (which is
significantly smaller than the number of reachable states via all executions). Furthermore,
by feeding a simple execution to these automatons, an execution of length l can be tested
in time O(l). As it is sufficient to consider simple executions, this effectively means that
snapshot executions can be tested in linear-time (see Section 5).

We have implemented and evaluated the proposed verification and testing techniques and
ran them against state-of-the-art tools. For verification, we compared with the PAT [44] model
checker. The results show that our approach allows deeper exploration of implementations
from the literature. This allowed us to detect 27 of 30 inserted bugs, compared to 16 found
by the baseline method. Furthermore, we managed to verify an algorithm by Bowman [17]
for three and four processes, whereas the baseline method failed to do so. For testing, we
compared with the linearizability testing tool proposed by Lowe [41]. The results show that
our testing technique is robust and scalable and that it can cope with much longer histories
than the baseline (see Section 7).

Due to lack of space, we give proof sketches and skip technical details. We provide a
full version with complete proofs, and means to reproduce the experiments in the paper
supporting materials [49].

2 Preliminaries

This section presents definitions and notations used throughout this paper. We provide further
definitions, required for all complete proofs, and extended discussions in the supporting
materials [49, Appendix A].

Let Vals be an infinite set of abstract data values, and let v0 ∈ Vals be the distinguished
value used to initialize the segments of a snapshot. For n ∈ N, let p0, . . . , pn−1 be processes.
We model an execution of a snapshot algorithm by the processes as a sequence of actions.
Among the actions the processes perform, we are interested in the invocations and responses
of procedure executions. For process pi and data values u, u0, . . . , un−1, inv.updatei(u),
res.updatei, inv.scani, res.scani(u0, . . . , un−1) are pi-actions. Let Σ be the set of all such
actions.

Throughout the paper, we refer to these actions using general terms such as: an update
invocation, a scan response, a pi-invocation etc., which are defined in a straightforward
manner. For example, we may say that the action res.scani(u0, . . . , un−1) is a scan response,
or a pi-action, etc.

A history is a word h over Σ that exhibits the following properties:
1. For every process pi, the first pi-action in h, if any, is a pi-invocation.
2. For every pi-update (respectively, scan) invocation in h, the following pi-action in h, if

any, is a pi-update (respectively, scan) response.
3. For every pi-response in h, the following pi-action, if any, is a pi-invocation.

DISC 2022

5:4 Polynomial-Time Verification and Testing of the Snapshot Data Structure

inv.update0(x) inv.update1(y) res.update1 inv.scan1 res.scan1(x, y) inv.scan1

U1 = update0(x)
U2 = update1(y) S1 = scan1(x, y) S2 = scan1

time

Figure 1 A linearizable history. U2, S1 are complete, while U1, S2 are pending ops.

An operation is an execution of an update/scan procedure. We identify operations in
histories with their invocation and response actions. Operations that do not return are
identified by their invocation alone.

A complete operation in a history h = α0 · · · αm is a pair of actions, (αk, αl), where
k < l, αk is an updatei (respectively, scani) invocation, αl is an updatei (respectively, scani)
response, and there is no pi-action in between. A pending operation in h is a single action,
(αk), where αk is a pi-invocation, and there is no pi-action that follows αk in h.

Similarly to actions, we refer to operations using general terms: an operation O is, e.g., a
pi-operation, an update operation, a scani(u0, . . . , un−1) operation, etc. In a history h, for
an update(u) operation U , we write valh(U) = u, and for a scan(u0, . . . , un−1) operation S

and i < n, we write valh:i(S) = ui and valh(S) = (u0, . . . , un−1).
For a complete operation A = (αk, αl) and an operation B ∈ {(αm, αt), (αm)} in a history

h = α0α1 · · · , we write A <h B if l < m. Clearly, <h is a partial order over the operations
in h, in which pending operations are maximal elements. Figure 1 illustrates a two-process
history with pending and complete operations.

Linearizability [31] is the standard correctness condition for concurrent data structures.
Roughly speaking, a history h is linearizable if the partial ordering <h can be extended to a
linear ordering that satisfies the sequential specification of the snapshot data structure. That
is, each scan operation S returns in each entry i the value written by the maximal updatei

operation that precedes it. The extension should include all complete operations, and each
pending operation is either completed or omitted.

We now turn to define the linearizability condition formally:

▶ Definition 1. A history h is linearizable if it can be extended into a history h′ by appending
zero or more response events to h, such that there exists a linear ordering ≺h′ of the complete
operations in h′ that satisfies the following conditions:
1. For A, B ∈ h, if A <h B, then A ≺h′ B.
2. If S ∈ h′ is a scan operation and Ui ∈ h′ is the maximal updatei operation such that

Ui ≺h′ S, then valh(Ui) = valh:i(S). If no updatei operation precedes S in h′, then
valh:i(S) = v0.

Any ≺h′ that satisfies these conditions is said to be a linearization of h.

▶ Example 2. The history depicted in Figure 1 is linearizable by the order U1 ≺h U2 ≺h S1.
To obtain a linearization, we completed the pending operation U1, as its value is read by S1.
However, we chose to omit the pending scan operation S2.

Our main goal is to analyze the linearizability of snapshot algorithms, defined as follows:

▶ Definition 3 (Snapshot Linearizability). A snapshot algorithm is linearizable if all of its
histories are linearizable.

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:5

The data independence property, proposed by Wolper [54], roughly means that the
behavior of an algorithm does not depend on the data values passed as arguments to the
procedure executions. The formal definition employs the notion of a renaming: a function
f : Vals−→Vals. An algorithm is data-independent if for a every history h of the algorithm
and a renaming f : (1) the history f(h), obtained by replacing each data value u with f(u),
is also a history of the algorithm; and (2) if h = f(h′), then h′ is a history of the algorithm.
See full version [49] for more details.

Data independence is natural to assume, as snapshot implementations synchronize accesses
to a shared resource and thus are expected to be value-agnostic. This is substantiated by all
twelve different published implementations [4, 7–11,26,34–36,46] listed in [35].

Finally, a history is differentiated if no two update operations in it were invoked with the
same data value.1 Abdulla et al. [1] showed that it is sufficient to consider differentiated
histories to prove linearizability of data-independent algorithms.

3 Simple Histories

In this section, we identify a set of histories, which we name simple. We then prove that
a data-independent snapshot implementation is linearizable if and only if all of its simple
histories are linearizable. Therefore, this section shows that it is sufficient to consider only
some histories to determine the linearizability of data-independent snapshot implementations.

In a simple history, the update operations are invoked with only two distinct values. The
first is the initial value v0, and without loss of generality, we take some other v1 ∈ Vals as
the second value. All but two processes invoke only update(v0) and scan operations. The
remaining two execute only update(v0) and scan operations, and at some (possibly different)
point, each of the two processes shifts to executing only update(v1) and scan operations.

▶ Definition 4 (Simple histories). A history h of n processes is (i, j)-simple for i < j < n, if
there are ri, rj ∈ N such that the following conditions hold:
1. Let U be the r-th updatei operation in h. If r < ri, then U is an updatei(v0) operation,

and if r ≥ ri, then U is an updatei(v1) operation.
2. In the same way, let U be the r-th updatej operation in h. If r < rj, then U is an

updatej(v0) operation, and if r ≥ rj, then U is an updatej(v1) operation.
3. Any updatek operation is an updatek(v0) operation, if k /∈ {i, j} .
A history h is simple if it is (i, j)-simple for some i < j < n.

We are ready to prove the sufficiency of focusing on simple histories. We provide a proof
sketch below, and give a rigorous proof in the full version [49].

▶ Theorem 5. A data-independent snapshot algorithm Sn¡�°� is linearizable if and only if all
its simple histories are linearizable.

Proof sketch. Anderson’s shrinking lemma identifies five properties that are equivalent to
the linearizability of a snapshot history [8]. To prove the non-trivial direction of theorem 5
(‘if’), we assume that Sn¡�°� is not linearizable. Consider some non-linearizable differentiated
history h. Since Sn¡�°� is not linearizable, h violates (at least) one of the shrinking lemma’s
properties. Based on the violated property, we construct a renaming f : Vals → {v0, v1}, and
apply it to h to obtain a non-linearizable simple history. ◀

1 For generating differentiated histories, a minor modification is required: we should allow different initial
values for the array segments. See comment in full version [49, Appendix B]

DISC 2022

5:6 Polynomial-Time Verification and Testing of the Snapshot Data Structure

pk:

S

U0 U1 U2 U3 U4 U5{ }Ik(S)
time

Figure 2 The k-th interval of S, Ik(S).

▶ Remark 6. In the context of simple histories, scan operations return v0 in all entries
except for entries i and j. Thus, for the remainder of this paper, we use res.scank(ui, uj) as
shorthand for res.scank(v0, . . . , v0, ui, v0, . . . , v0, uj , v0, . . . , v0).

▶ Remark 7. From this point on, for readability, we will use 0 and 1 instead of v0 and v1,
respectively.

4 A Simple Condition for the Linearizability of Simple Histories

In this section, we formulate three properties that are equivalent to the linearizability of an
(i, j)-simple history. We then show that the negation of each property is regular, and present
a construction of a matching automaton. Before providing our properties (in upcoming
Theorem 10), we discuss each intuitively and explain why it is mandatory for linearizability.

Property 1: No Inversion. Assume that a scan operation S1 returns 0 at the ith entry (for
example), while S2 returns 1. This indicates that S2 read a more recent value from the ith
segment. Hence, in any linearization, S1 must precede S2. As the same reasoning goes for
the jth entry, it is forbidden for S1 to return 0 and 1 at the ith and jth entries, while S2
returns the opposite values.

Property 2: Non-Decreasing. If a scan operation S1 precedes a scan operation S2, then S2
must obtain more recent values from all array segments. Therefore, it is forbidden for S1 to
return 1 in entry k ∈ {i, j}, while S2 returns 0 in its kth entry.

Property 3: Appropriateness. We require that for each scan operation there are “appropri-
ate” update operations, Ui by pi and Uj by pj , that we can linearize before S. “Appropriate”
means that the next three conditions hold.

First condition. The timings of the update operations must not prevent them from being
linearized before S. For example, they must not succeed S. Formally, we require that
they belong to the interval of S, defined below and illustrated in Figure 2:
▶ Definition 8. Let S be a scan operation in a history h, and let k < n. The kth interval
of S, denoted Ik(S), is the set of updatek operations U ∈ h such that:
1. ¬(S <h U).
2. There is no updatek operation U ′ such that U <h U ′ <h S.

Second condition. The values of the update operations Ui and Uj are the values returned
by S in its corresponding entries.

Third condition. There is no, e.g., updatei operation between Ui and Uj . This is because
the existence of such an updatei operation, say Ui < U ′

i < Uj , would prevent us from
linearizing both Ui and Uj before S.

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:7

We formalize the notion of appropriateness in the following definition:

▶ Definition 9. Let S be a complete scan operation in an (i, j)-simple history h. A pair
(Ui, Uj) where Ui is an updatei operation and Uj is an updatej operation, is said to be
S-appropriate, if:
1. Ui ∈ Ii(S) and Uj ∈ Ij(S).
2. (valh(Ui), valh(Uj)) = (valh:i(S), valh:j(S)).
3. There is no updatei operation U ′

i such that Ui < U ′
i < Uj, and there is no updatej

operation U ′
j such that Uj < U ′

j < Ui.

So far, we have presented our properties and explained intuitively why they form a
necessary condition for linearizability: i.e., why their negation prevents linearizability. The
main theorem of this section asserts a much stronger claim: these properties also constitute
a sufficient condition for linearizability. We provide a proof for Theorem 10 in the full
version [49, Appendix D].

▶ Theorem 10. An (i, j)-simple history h is linearizable if and only if the following properties
hold.
No Inversion. There are no complete scan operations S1 and S2 in h such that

(valh:i(S1), valh:j(S1)) = (0, 1) and (valh:i(S2), valh:j(S2)) = (1, 0).
Non-Decreasing. If S1 and S2 are two complete scan operations in h such that S1 <h S2,

then valh:i(S1) ≤ valh:i(S2) and valh:j(S1) ≤ valh:j(S2).
Appropriateness. For each complete scan operation S in h, there exists an S-appropriate

pair of update operations.

4.1 Detecting Incorrect Simple Histories
Finally, we show that the properties of Theorem 10 can be detected by an NFA. We provide
here proof sketches for most claims, and full proofs for all claims in the full version [49,
Appendix E].

▶ Theorem 11. For i < j < n, there exists an automaton M with O(n) states and O(n2)
transitions, such that an (i, j)-simple history h is not linearizable if and only if h ∈ L(M).

To prove Theorem 11, we construct automatons that detect violations of the three
properties presented in Theorem 10.

4.1.1 Detecting Violations of No-Inversion
▶ Proposition 12. There exists an automaton M1 such that, for any (i, j)-simple history h,
h violates No-Inversion if and only if h ∈ L(M1). Moreover, M1 has O(1) states and O(n)
transitions.

Proof sketch. We demonstrate the construction for the case that n = 2:

qini

q1

q0

qacc
res.scan0(1, 0), res.scan1(1, 0)

res.scan0(0, 1), res.scan1(0, 1)

Σ

Σ

Σ

res.scan0(0, 1), res.scan1(0, 1)

res.scan0(1, 0), res.scan1(1, 0)

Σ

◀

DISC 2022

5:8 Polynomial-Time Verification and Testing of the Snapshot Data Structure

4.1.2 Detecting Violations of Non-Decreasing
▶ Proposition 13. There exists an automaton M2 such that, for any (i, j)-simple history
h, h violates Non-Decreasing if and only if h ∈ L(M2). Moreover, M2 has O(n) states and
O(n2) transitions.

Proof sketch. As an illustrative demonstration, we present below a simpler automaton.
It detects the existence of a violation of Non-Decreasing, for n = 2, and S1 < S2 where
valh:i(S1) = 1.

qini q1

q2

q3

qacc

Σ res.scan0(1, 0)

res.scan0(1, 1)

res.scan1(1, 0)

res.scan1(1, 1)

inv.scan0

inv.scan1 res.scan1(0, 0)

res.scan1(0, 1)

res.scan0(0, 0)res.scan0(0, 1)Σ

Σ

Σ
Σ

◀

4.1.3 Detecting Violations of Appropriateness
It remains to construct an automaton that accepts all (i, j)-simple histories that violate
Appropriateness. To this end, we reformulate Appropriateness as a regular safety property;
a word is rejected if and only if it has a “bad”-prefix.

▶ Lemma 14. Let h be an (i, j)-simple history, and let S be a complete scan operation in
h. For l ∈ {i, j}, let Fl be the first updatel(1) operation in h, if exists. Then, there is no
S-appropriate pair in h if and only if any of the following holds:
1. For l ∈ {i, j}, Fl exists, valh:l(S) = 0, and Fl <h S.
2. For l ∈ {i, j}, valh:l(S) = 1, and either S <h Fl or Fl doesn’t exist.
3. (valh:i(S), valh:j(S)) = (0, 1) and Fi <h Fj.
4. (valh:i(S), valh:j(S)) = (1, 0) and Fj <h Fi.

▶ Proposition 15. There exists an automaton M3 such that, for any (i, j)-simple history
h, h violates Appropriateness if and only if h ∈ L(M3). Moreover, M3 has O(n) states and
O(n2) transitions.

Proof sketch. The automaton is a “union” of four automatons, such that the kth automaton
checks whether there exists a complete scan operation S for which the kth case of Lemma 14
holds. Below, we provide an automaton that identifies the first case where l = i and S is a
scan0 operation (for n = 2). Hence, in fact, the first case is a union of 2n automatons. We
leave it for the reader to verify that (rather simple) automatons exist for all other cases.

qini q1 q2 q3 qacc

Σ Σ Σ Σ Σ
inv.updatei(1) res.updatei inv.scan0 res.scan0(0, 0)

res.scan0(0, 1)

◀

▶ Corollary 16. Theorem 11 is trivially correct by propositions 12, 13, and 15.

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:9

5 Verifying and Testing Linearizability

The results of the previous section allow us to both verify data-independent snapshot
implementations, and test the linearizability of simple snapshot histories, in polynomial time.

For verifying a data-independent snapshot implementation, by Theorem 5, it is sufficient
to verify that all of its simple histories are linearizable. Theorem 11 allows one to apply
model checking of regular properties [12, Chapter 4.2], i.e., one can check whether the
implementation admits an (i, j)-simple history accepted by the automaton (and thus not
linearizable). As there are O(n2) valuations for i and j, our first key result follows:

▶ Theorem 17 (Polynomial-time verification). Let Sn¡�°� be a data-independent snapshot
algorithm such that only finitely many states of Sn¡�°� are reachable by its simple histories.
Determining the linearizability of Sn¡�°� is decidable in O(mn4) time, where m is the size of
an automaton that accepts all simple histories of Sn¡�°�.

Moreover, Theorem 11 enables the testing of simple histories efficiently, by feeding the
automaton of Theorem 11 (or its determinization) with the (i, j)-simple histories to be tested.
The automaton will report acceptance once it identifies a non-linearizable prefix of the input
history h (which testifies that h is not linearizable). Hence, our second key result follows.

▶ Theorem 18 (Linear-time testing). For i < j < n, (i, j)-simple histories can be tested in
linear-time, i.e., in time O(|h|).

6 Optimization: Omitting Redundant Commands

The focus on simple histories yields an optimization that can significantly reduce the state
space of an examined snapshot algorithm, speeding up its verification. The optimization
relies on the observation that in the executions of (i, j)-simple histories, some commands are
vacuous. To elaborate, assume that register R stores the data value of process pk, k ̸= i, j.
In all executions of (i, j)-simple histories, R will only ever store the value 0. Thus, read and
write commands from and to R can be ignored, reducing the possible values of the program
counters. In some cases, we can even ignore R altogether, reducing the number of registers.

We use Bowman’s obstruction-free snapshot algorithm [17] (Algorithm 1) to demonstrate
the optimization. During an update operation, process pk writes its new value to register A[k]
(line 3). During a scan operation, the values stored in A[0], . . . , A[n−1] are read into the local
variables a[0], . . . , a[n−1] (lines 7-8). Let i < j be two process ids, and consider executions
of (i, j)-simple histories of Algorithm 1. In such executions, every write command to register
A[k], k /∈ {i, j}, writes 0. Hence, we may ignore and omit all registers A[k], k /∈ {i, j}.
This yields a simplified version of the algorithm, as shown in Algorithm 2, which has a
substantially smaller state space than Algorithm 1, as it employs fewer registers. Since we
omitted only vacuous commands (i.e. commands that always write and read 0) Algorithm 2
is linearizable if and only if all of Algorithm 1’s (i, j)-simple histories are linearizable.

7 Implementation and Evaluation

In this section, we describe implementations of the procedures described in Section 5, and the
experiments we performed to evaluate their efficiency. We provide the means to reproduce
all experiments in the paper’s supporting materials [49].

DISC 2022

5:10 Polynomial-Time Verification and Testing of the Snapshot Data Structure

Algorithm 1 Unoptimized algorithm.

1: procedure updatek(v)
2: Active ← ⊥
3: A[k]← v

4: procedure scank

5: repeat
6: Active ← k

7: for ℓ = 0, . . . , n−1 do
8: a[l]← A[l]
9: until Active = k

10: return (a[0], . . . , a[n−1])

Algorithm 2 Optimized for (i, j)-simple executions.

1: procedure updatek ▷ k /∈ {i, j}
2: Active ← ⊥

3: procedure updater(v) ▷ r ∈ {i, j}
4: Active ← ⊥
5: A[r]← v

6: procedure scanq ▷ q < n

7: repeat
8: Active ← q

9: a[i]← A[i]
10: a[j]← A[j]
11: until Active = q

12: return (0, . . . , 0, a[i], 0, . . . , 0, a[j], 0, . . . , 0)

Figure 3 Illustration of the redundant command omission optimization with Bowman’s algorithm.

7.1 Implementation of our Verification Procedures
We used the model checker PAT [44] as the basis for our two verification approaches. PAT
contains a system for checking the linearizability of a given concurrent algorithm against
an abstract specification, via refinement [38, 40]. We made use of this system in our first
verification approach: we encoded known snapshot algorithms from the literature (listed in
subsection 7.4), modified to admit only simple histories. We provided a matching abstract
simple-history snapshot specification.

For our second approach, we encoded the automaton from Theorem 11 in PAT. As that
automaton is a union of several automatons, we treated each one as a separate process,
and encoded the union as the parallel composition of these processes. We exploited PAT’s
reachability checker to encode the accepting states of the automaton. We then asked PAT to
check whether the algorithms listed in subsection 7.4 admit any simple histories that are
accepted by the automaton.

We note three sources of possible errors in our implementations: (1) We could have
encoded the snapshot algorithms incorrectly. (2) We could have encoded the automatons
or the abstract specification incorrectly. (3) PAT itself may have bugs. To mitigate the
first two threats, we used PAT’s linearizability system to ensure that the algorithms we
encoded are linearizable, that we manage to find several artificially-inserted bugs, and that
the reachability approach agrees with PAT’s standard refinement approach. We did not take
steps to mitigate the third threat, but as PAT is a widely used model checker which has itself
been partially model-checked [48], our confidence in its correctness is high., our confidence in
its correctness is high.

7.2 Implementation of our Testing Procedure
The testing procedure we implemented receives an (i, j)-simple history, and runs it through
an implementation of the automaton described in Theorem 11. The tool announces whether
the automaton accepts the history, indicating it is not linearizable, or it rejects the history,
indicating it is linearizable.

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:11

To validate that our implementation has no bugs, we generated hundreds of random
simple histories, both linearizable and non-linearizable, and ensured our implementation
classified them correctly.

7.3 Research Questions
We start with research questions related to our verification technique. As we propose a model
checking approach, although polynomial, it still suffers from the state explosion problem [23].
This holds since the algorithms we check admit an enormous number of states, even when
we restrict ourselves to simple histories. Model-checking approaches are mainly evaluated
based on their feasibility; their ability to verify correctness/find bugs, perhaps only up
to a reasonable depth, measured in the number of operations each process executes, with
real-world resources: realistic time and space and limitations. Hence, we formulate the
following research questions:
RQ1 Does the focus on simple histories help to prove/disprove correctness, in terms of

feasibility/depth to be processed?
RQ2 Is our polynomial-time technique efficient for proving/disproving correctness, in terms

of feasibility/depth to be processed?

We use the following research question to evaluate our testing technique:
RQ3 Is our testing technique efficient, in terms of feasibility, and time and space consumption?

7.4 Corpus
To address RQ1 and RQ2, we constructed a corpus for our experiments that includes several
snapshot algorithms from the literature: An obstruction-free [30] algorithm by Bowman [17],
denoted BOWMAN; A snapshot algorithm by Jayanti [35], denoted JAYANTI; The bounded
and unbounded versions of Afek et al. [4], denoted AFEK1 and AFEK2, respectively; and A
snapshot algorithm by Riany et al [46], denoted RIANY.

For each algorithm and n ∈ {3, 4, 5, 6} processes, we encoded the original version (denoted
“full”), as well as a modified version which generates only (0, 1)-simple histories, with the
optimization detailed in Section 6 (denoted “simple-only”).Then, for n ∈ {3, 4, 5, 6, 8, 10},
we also encoded buggy versions thereof (denoted, “buggy-full” and “buggy-simple-only”,
respectively). Overall, we created 100 configurations of pairs of algorithm encoding with n

processes.
To address RQ3, we began by generating 25 linearizable histories of length l ∈

{200, 500, 1000} with n ∈ {5, 8, 11, 14, 17, 20} processes, by randomly executing an atomic
snapshot implementation, and recording its actions. We then generated 25 non-linearizable
histories of length l ∈ {50, 100, 200} with n ∈ {3, 4, 5, 6, 8, 10} processes as follows: we
generated a random linearizable history, and changed its 20-length suffix by randomly
changing the values of the scan responses. We repeated this process until we obtained
25 non-linearizable histories. In the context of RQ3, we refer to a choice of l, n, and
“linearizable/non-linearizable” as a configuration. This resulted in 900 histories, divided into
18 linearizable and 18 non-linearizable configurations, added to our corpus.

7.5 Experiments and Results
In this section, we detail the experiments we performed to tackle our research questions, and
report our results. All experiments were performed on a rather ordinary laptop with an Intel
Core i7-6820HK CPU and 32GB of DDR4 RAM, running Windows 10 21H1 and the WSL2
Ubuntu 20.04.2 image from Microsoft.

DISC 2022

5:12 Polynomial-Time Verification and Testing of the Snapshot Data Structure

Table 1 Results of bug detection in non-linearizable implementations. b: max bound on
#operation per process, t: time used (sec.), and s: memory used (GB).

test normal simple polynomial normal simple polynomial
b t s b t s b t s b t s b t s b t s

algorithm 3 processes 4 processes
BOWMAN ∞ 11 0.64 ∞ 2 0.1 ∞ 2 0.3 3 168 12.0 ∞ 60 0.5 ∞ 54 0.6
JAYANTI 14 272 22.8 23 393 25.1 3 72 0.7 3 149 11.9 6 218 16.0 3 98 0.7
AFEK1 - - - 2 242 1.9 2 417 1.8 - - - 2 305 2.0 2 506 2.3
AFEK2 2 50 0.5 4 422 4.3 3 215 1.4 2 163 2.0 4 522 7.0 3 255 2.1
RIANY 6 285 4.1 9 445 5.4 27 595 2.0 3 172 12.1 6 275 17 24 512 1.9

algorithm 5 processes 6 processes
BOWMAN 1 9 0.4 3 290 18.4 40 575 4.4 1 66 3.8 1 7 0.5 35 507 3.3
JAYANTI 1 141 0.9 3 253 18.4 3 118 0.7 1 302 4.6 2 590 28.1 3 142 0.7
AFEK1 - - - 2 417 4.0 - - - - - - - - - - - -
AFEK2 1 21 0.4 3 441 18.4 3 298 2.6 1 95 4.2 1 7 0.5 3 326 2.8
RIANY - - - - - - 23 579 1.8 - - - - - - 21 508 2.2

algorithm 8 processes 10 processes
BOWMAN - - - 1 288 15.6 33 554 2.7 - - - - - - 30 558 2.9
JAYANTI - - - 1 386 15.6 3 197 0.7 - - - - - - 3 267 1.1
AFEK1 - - - - - - - - - - - - - - - - - -
AFEK2 - - - 1 256 15.7 3 402 3.2 - - - - - - 3 491 3.6
RIANY - - - - - - 19 502 2.2 - - - - - - 18 586 3.0

7.5.1 Verification Experiments
To address RQ1 and RQ2, we used PAT to verify the correctness of our configurations. We
ran three different types of linearizability experiments:
normal. Using PAT’s standard linearizability checker with full and buggy-full configurations.
simple. Using PAT’s standard linearizability checker with simple-only and buggy-simple-only

configurations.
polynomial. Using PAT’s reachability checker with simple-only and buggy-simple-only configu-

rations, in parallel to the automaton threads that detect bugs.

Furthermore, for each configuration and matching experiment type, we limited the number
of operations that each process was allowed to perform. As some algorithms employ infinite
data types (e.g. integers), at least in those cases, the bound is mandatory for PAT to
terminate. We set a timeout of 10 min. for buggy implementations, and 1 hr. for correct
implementations. We repeated each experiment with various bounds until we found the
maximal bound for which each experiment terminated in the allotted time.

▶ Remark 19. For simple configurations, we checked only (0, 1)-simple histories. For full
verification, it is required to test all (i, j)-histories. Nevertheless, this observation does not
affect the feasibility of the approach, since the tests for (i0, j0) and (i1, j1) simple histories
are independent, and can even run on separate machines. Furthermore, symmetry arguments
may increase confidence even when checking only (0, 1)-simple histories.

▶ Remark 20. We also tried to use Cave [21, 50] and its extension Poling [45, 55], static
analysis-based linearizability verifiers. Unfortunately, despite our best efforts, we could not
make either tool work for the algorithms we tried to encode. Even for toy correct and

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:13

Table 2 Results of verification of linearizable implementations. b: max bound on #operation
per process, t: time used (sec.), and s: memory used (GB).

test normal simple polynomial normal simple polynomial
b t s b t s b t s b t s b t s b t s

algorithm 3 processes 4 processes
BOWMAN 2 47 0.7 ∞ 3 0.1 ∞ 11 0.1 1 29 0.6 ∞ 134 1.8 ∞ 460 0.7
JAYANTI - - - - - - - - - - - - - - - - - -
AFEK1 1 113 1.0 1 15 0.2 1 31 0.3 - - - - - - - - -
AFEK2 1 12 0.2 2 2627 19.5 2 2675 7.5 - - - 1 154 1.9 1 269 1.5
RIANY - - - - - - - - - - - - - - - - - -

algorithm 5 processes 6 processes
BOWMAN - - - 1 158 1.4 1 121 0.5 - - - - - - - - -
JAYANTI - - - - - - - - - - - - - - - - - -
AFEK1 - - - - - - - - - - - - - - - - - -
AFEK2 - - - - - - - - - - - - - - - - - -
RIANY - - - - - - - - - - - - - - - - - -

incorrect algorithms that operate atomically, Cave reported errors, and Poling returned
unexpected responses. Perhaps the snapshot object deviates from the types of data structures
that these tools aim to handle. To the best of our knowledge, PAT, Cave, and Poling are
the only available tools that verify linearizability automatically, without requiring additional
input.

We present the bug-detection results in Table 1, and the verification results in Table 2.
For each configuration and linearizability experiment type, we report the maximal bound
on the number of operations per process, for which the experiment terminated before the
timeout. If the experiment terminated without imposing a bound, we report the value ∞.
Furthermore, for the max bound we found, we report time and space consumption by the
corresponding linearizability experiment. As an example, for RIANY buggy-simple-only with
4 processes, when we ran the polynomial linearizability experiment, we found the bug while
limiting each process to 24 operations. The execution took 512 sec. and consumed 1.9
GB. Accordingly, in the upper part of Table 1, the cells on the row titled “RIANY” and the
columns titled “polynomial; 4 processes” read: b:24, t:512, and s:1.9.

7.5.2 Testing Experiments

To address RQ3, we tested all linearizable and non-linearizable generated histories, applying
two methods: our implemented method, and a tool by Lowe [37,41], with a 10 min. timeout.
For each configuration and each tool, we report the percentage of tests that successfully
terminated within the allotted time. Furthermore, for the terminated executions, we report
the median running time and space consumption. Table 3 presents results for linearizable
configurations, and Table 4 for non-linearizable configurations. As an example, when we
applied our method to linearizable histories of length 500 with 20 processes, 100% of the tests
were successful, the median running time was 0.15sec, and the median space consumption
was 150MB. Hence, in Table 3, the cells on the rows titled “500:terminated”, “500;median
time”, and “500;median space” with the column titled “20;This paper” read 100%, 0.15, and
150, respectively.

DISC 2022

5:14 Polynomial-Time Verification and Testing of the Snapshot Data Structure

Table 3 Linearizable simple history testing results. Terminated tests (%), median time used
(sec.), and median memory used (MB).

#processes 5 8 11 14 17 20

len.
mth. This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe

200
term. 100% 100% 100% 100% 100% 100% 100% 84% 100% 52% 100% 32%
time 0.02 0.20 0.02 0.22 0.02 0.28 0.02 1.34 0.02 1.11 0.03 2.08
space 130 336 131 352 131 360 131 456 131 444 132 1228

500
term. 100% 100% 100% 100% 100% 100% 100% 80% 100% 48% 100% 16%
time 0.04 0.20 0.06 0.22 0.09 0.30 0.12 1.45 0.16 12.57 0.15 0.21
space 132 216 136 336 140 352 144 492 150 2414 150 346

1000
term. 100% 100% 100% 100% 100% 100% 100% 72% 100% 44% 100% 16%
time 0.07 0.21 0.14 0.21 0.21 0.33 0.33 1.36 0.40 3.29 0.56 0.85
space 136 344 146 336 156 352 171 482 182 1620 203 398

Table 4 Non-linearizable simple history testing results. Terminated tests (%), median time used
(sec.), and median memory used (MB).

#processes 3 4 5 6 8 10

len.
mth. This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe

50
term. 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
time 0.06 0.28 0.06 0.32 0.06 0.34 0.06 0.35 0.06 0.65 0.06 1.19
space 129 336 129 348 129 336 129 344 129 368 129 440

100
term. 100% 100% 100% 100% 100% 84% 100% 52% 100% 32% 100% 8%
time 0.03 0.48 0.03 1.45 0.03 3.76 0.03 24.61 0.03 61.93 0.03 179.80
space 129 340 129 508 129 2784 129 17896 129 12996 129 12192

200
term. 100% 36% 100% 4% 100% 0% 100% 0% 100% 0% 100% 0%
time 0.03 30.78 0.03 5.11 0.03 - 0.03 - 0.03 - 0.03 -
space 129 20392 129 3216 129 - 129 - 129 - 129 -

7.6 Analysis of the Results

Focusing on simple histories is beneficial, as both simple and polynomial outperform the normal
linearizability method of PAT for finding bugs. In addition, overall, polynomial performs
better than simple (see Table 1). normal found the bug in 14/30 cases, with up to 6 processes.
simple succeeded in 3 additional cases with up to 8 processes, with polynomial succeeding
in 26/30 cases with up to 10 processes. Importantly, simple allows for larger bounds than
normal in 16/17 cases, and the same bound in the remaining case. polynomial allows for larger
bounds than simple in 16 cases, and smaller bounds in 5 cases. This indicates that polynomial
enables deeper exploration than simple, and thus we conclude that it is more efficient. Both
polynomial and simple manage to explore implementations significantly deeper than normal.
We also observe that polynomial consumes less space, which is the main bottleneck of model
checking, than simple. The peak memory consumption we recorded for polynomial was 4.4GB,
whereas the peak we recorded for simple was 25.1GB, and 9/20 executions with more than
10GB. While the peak we recorded for normal was 22.8GB, it scaled much worse than simple
and failed to cope with the more challenging configurations.

In Table 2, we see that simple and polynomial enable the verification of BOWMAN with 3
and 4 processes. To the best of our knowledge, this is the first time that this algorithm has
been verified to some extent. Model-checking techniques are complete and mainly efficient for

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:15

bug detection. Verifying a concurrent algorithm for 4 processes is noteworthy (compare, e.g.,
to the results of [39]). Yet, excluding these results, although both methods perform better
than normal, we did not manage to verify other implementations. We mention that, in some
old evaluations we performed, we used a prototype tool we wrote that uses simple histories
(but does not employ the automatons of Section 4.1), and managed to verify JAYANTI with
3 processes within 21 sec. (reference hidden for double-blind review). As this deviates from
what Table 2 illustrates, we believe that further investigation is required.

Tables 3 and 4 show that our testing technique outperforms [41] by several orders of
magnitude, mainly and most importantly, in terms of feasibility. Our tool easily handled all
900 histories, while the competitor failed to cope with challenging configurations, successfully
handling only 554/900 histories. We also observe that our technique is scalable. The
differences in time and space consumption between extremum values are negligible.

Moreover, we note that our technique is insensitive to the correctness of the tested
history. In contrast, our competitor quickly fails over non-linearizable histories. To gain more
confidence in this observation, we further generated 25 non-linearizable histories of length
1000 for 20 processes, with a linearizable prefix of length at least 980. Our tool handled all
with a median running time of 0.55sec. Note that our competitor failed almost entirely over
non-linearizable histories of length 200, with 3-10 processes.

8 Related Work

Alur et al. proposed an EXPSPACE-technique for verifying linearizability [5], and Hamza
proved EXPSPACE-completeness [29]. Bouajjani et al. proved the undecidability of lineariz-
ability of infinite-state systems, and the PSPACE-completeness of linearizability with fixed
linearization points [14].

Due to the high complexity of the problem, sound and complete model-checking techniques
manage to perform limited verification with up to 3 processes [19,39,52]. [39] also verifies a
stack implementation for 4 processes, but only by limiting the stack size to two data values.
Hsu et al. [33] proposed a bounded model checking technique for hyper-LTL, and used it to
rediscover known bugs (see [25]) in the “Snark” dequeue implementation [24].

Static analysis efforts are incomplete, but can work for infinite-state implementations.
However, most ask for additional information from the user. The works [3, 6, 13, 50] ask
for linearization points, some in a conditional manner. The work [2] asks for linearization
policies. The work [47] asks for the specification of sub-operations and relations between
them. Cave [21,51] and Poling [55] work without further information. However, as we report
in Section 7, we did not manage to work with these tools. Perhaps the snapshot object
deviates from the types of data structures that these tools aim to handle.

The way we employ the data independence property resembles Abdulla et al. [1]. They ran
automatons in parallel to queue and stack implementations to detect bugs. Their approach
is incomplete, but works for infinite-state implementations. However, their automatons
detect incorrect sequential histories, in contrast to concurrent histories as we do, and thus
their approach requires specifying linearization points. It is rather simple to construct an
automaton that detects incorrect sequential snapshot histories, hence their approach can be
applied to the snapshot object straightforwardly. But, as linearization points of snapshot
implementations are evasive, the benefit of doing so is questionable.

Other works also focused on specific data structures. Bouajanni et al. [15] prove that ver-
ification of data-independent queue, stack, register, and mutex implementations is PSPACE-
complete for a fixed number of processes, and EXPSPACE-complete for infinitely many

DISC 2022

5:16 Polynomial-Time Verification and Testing of the Snapshot Data Structure

processes. In [16], Bouajjani et al. extend the latter result to data-independent and
projection-closed priority queues. To the best of our knowledge, those techniques have
not been implemented or evaluated. Chakraborty et al. [22] identified conditions that are
equivalent to the linearizability of data-independent queue implementations, and use them to
automatically verify Herlihy and Wing’s queue [31]. Abdulla et al. [3] used those conditions
and the results of [22] to extend their static analysis technique [2] to verify stack and queue
implementations without linearization points.

Wing and Gong considered the problem of testing linearizability, and gave an exponential-
time algorithm [53]. Gibbons and Korach proved NP-completeness [28], and further showed
that register-histories with k processes can be tested in time O(n2O(k)+n log n). Lowe [41]
suggested optimizations for the algorithm of [53]. Horn and Kroening suggested an optimiza-
tion that applies to set implementations [32]. Emmi and Enea [27] identified a class of data
structures for which a polynomial-time testing algorithm exists. This class includes queue,
stack, set, and map, but does not include snapshot.

9 Conclusion

We proved that a data-independent snapshot algorithm is linearizable if and only if all of its
simple histories are linearizable. This gives rise to an optimization for proving/disproving
the correctness of snapshot implementations, i.e, examining only simple histories. This opti-
mization can exponentially reduce the number of reachable states to inspect. Moreover, we
proved that non-linearizable simple histories are identified by a polynomial-sized automaton.
This enables a polynomial-time technique for verifying the linearizability of snapshot imple-
mentations, and a linear-time technique for testing the linearizability of snapshot histories.
We implemented our techniques, and reported on evaluations that support the efficiency of
our methods over existing techniques.

Future Work

We wonder if the notion of simple histories can be replicated to other data structures. In
particular, it would be interesting to investigate whether such an adaptation would admit
automata-based verification/testing techniques similar to those we presented for the snapshot
object. The automatons presented in [14] seem like a good place to begin in order to define
simple histories geared at queues and stacks. Another future direction is to extend our results
to multi-writer snapshots, and to implementations that are strongly linearizable [43].

References

1 Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. An
integrated specification and verification technique for highly concurrent data structures for
highly concurrent data structures. Int. J. Softw. Tools Technol. Transf., 19(5):549–563, 2017.
doi:10.1007/s10009-016-0415-4.

2 Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. Automated verification of
linearization policies. In Xavier Rival, editor, Static Analysis - 23rd International Symposium,
SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings, volume 9837 of Lecture Notes
in Computer Science, pages 61–83. Springer, 2016. doi:10.1007/978-3-662-53413-7_4.

https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/978-3-662-53413-7_4

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:17

3 Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. Fragment abstraction for concurrent
shape analysis. In Amal Ahmed, editor, Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10801 of Lecture Notes in Computer Science, pages 442–471. Springer,
2018. doi:10.1007/978-3-319-89884-1_16.

4 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.153741.

5 Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking of correctness
conditions for concurrent objects. Inf. Comput., 160(1-2):167–188, 2000. doi:10.1006/inco.
1999.2847.

6 Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Comparison
under abstraction for verifying linearizability. In Werner Damm and Holger Hermanns, editors,
Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany,
July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science, pages 477–490.
Springer, 2007. doi:10.1007/978-3-540-73368-3_49.

7 James H. Anderson. Composite registers. Distributed Comput., 6(3):141–154, 1993. doi:
10.1007/BF02242703.

8 James H. Anderson. Multi-writer composite registers. Distributed Comput., 7(4):175–195,
1994. doi:10.1007/BF02280833.

9 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM
model. In Frank Thomson Leighton, editor, Proceedings of the 2nd Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’90, Island of Crete, Greece, July 2-6, 1990,
pages 340–349. ACM, 1990. doi:10.1145/97444.97701.

10 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Efficient atomic snapshots using lattice
agreement (extended abstract). In Adrian Segall and Shmuel Zaks, editors, Distributed
Algorithms, 6th International Workshop, WDAG ’92, Haifa, Israel, November 2-4, 1992,
Proceedings, volume 647 of Lecture Notes in Computer Science, pages 35–53. Springer, 1992.
doi:10.1007/3-540-56188-9_3.

11 Hagit Attiya and Ophir Rachman. Atomic snapshots in o(n log n) operations. SIAM J.
Comput., 27(2):319–340, 1998. doi:10.1137/S0097539795279463.

12 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
13 Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv. Thread

quantification for concurrent shape analysis. In Aarti Gupta and Sharad Malik, editors,
Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA,
July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer Science, pages
399–413. Springer, 2008. doi:10.1007/978-3-540-70545-1_37.

14 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Verifying concurrent
programs against sequential specifications. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems - 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes in
Computer Science, pages 290–309. Springer, 2013. doi:10.1007/978-3-642-37036-6_17.

15 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing linearizability
to state reachability. Inf. Comput., 261:383–400, 2018. doi:10.1016/j.ic.2018.02.014.

16 Ahmed Bouajjani, Constantin Enea, and Chao Wang. Checking linearizability of concurrent
priority queues. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference
on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85
of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.CONCUR.2017.16.

DISC 2022

https://doi.org/10.1007/978-3-319-89884-1_16
https://doi.org/10.1145/153724.153741
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/BF02242703
https://doi.org/10.1007/BF02242703
https://doi.org/10.1007/BF02280833
https://doi.org/10.1145/97444.97701
https://doi.org/10.1007/3-540-56188-9_3
https://doi.org/10.1137/S0097539795279463
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1016/j.ic.2018.02.014
https://doi.org/10.4230/LIPIcs.CONCUR.2017.16
https://doi.org/10.4230/LIPIcs.CONCUR.2017.16

5:18 Polynomial-Time Verification and Testing of the Snapshot Data Structure

17 Jack R Bowman. Obstruction-free snapshot, obstruction-free consensus, and fetch-and-add
modulo k. Technical report, Technical Report TR2011-681, Dartmouth College, Computer
Science, Hanover, NH, 2011.

18 Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Checkfence: checking consistency
of concurrent data types on relaxed memory models. In Jeanne Ferrante and Kathryn S.
McKinley, editors, Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, pages
12–21. ACM, 2007. doi:10.1145/1250734.1250737.

19 Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: a complete
and automatic linearizability checker. In Benjamin G. Zorn and Alexander Aiken, editors,
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 330–340.
ACM, 2010. doi:10.1145/1806596.1806634.

20 Jacob Burnim, George C. Necula, and Koushik Sen. Specifying and checking semantic atomicity
for multithreaded programs. In Rajiv Gupta and Todd C. Mowry, editors, Proceedings of
the 16th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011, pages 79–90.
ACM, 2011. doi:10.1145/1950365.1950377.

21 CAVE Website. https://people.mpi-sws.org/~viktor/cave/. Last Accessed: Aug. 31,
2021.

22 Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented
linearizability proofs. Log. Methods Comput. Sci., 11(1), 2015. doi:10.2168/LMCS-11(1:
20)2015.

23 Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model checking
and the state explosion problem. In Bertrand Meyer and Martin Nordio, editors, Tools for
Practical Software Verification, LASER, International Summer School 2011, Elba Island, Italy,
Revised Tutorial Lectures, volume 7682 of Lecture Notes in Computer Science, pages 1–30.
Springer, 2011. doi:10.1007/978-3-642-35746-6_1.

24 David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Alan Martin, Nir Shavit, and Guy
L. Steele Jr. Even better dcas-based concurrent deques. In Maurice Herlihy, editor, Distributed
Computing, 14th International Conference, DISC 2000, Toledo, Spain, October 4-6, 2000,
Proceedings, volume 1914 of Lecture Notes in Computer Science, pages 59–73. Springer, 2000.
doi:10.1007/3-540-40026-5_4.

25 Simon Doherty, David Detlefs, Lindsay Groves, Christine H. Flood, Victor Luchangco,
Paul Alan Martin, Mark Moir, Nir Shavit, and Guy L. Steele Jr. DCAS is not a silver
bullet for nonblocking algorithm design. In Phillip B. Gibbons and Micah Adler, editors,
SPAA 2004: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, June 27-30, 2004, Barcelona, Spain, pages 216–224. ACM, 2004.
doi:10.1145/1007912.1007945.

26 Cynthia Dwork, Maurice Herlihy, Serge A. Plotkin, and Orli Waarts. Time-lapse snapshots.
SIAM J. Comput., 28(5):1848–1874, 1999. doi:10.1137/S0097539793243685.

27 Michael Emmi and Constantin Enea. Sound, complete, and tractable linearizability monitoring
for concurrent collections. Proc. ACM Program. Lang., 2(POPL):25:1–25:27, 2018. doi:
10.1145/3158113.

28 Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM J. Comput.,
26(4):1208–1244, 1997. doi:10.1137/S0097539794279614.

29 Jad Hamza. On the complexity of linearizability. Comput., 101(9):1227–1240, 2019. doi:
10.1007/s00607-018-0596-7.

30 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-
ended queues as an example. In 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), 19-22 May 2003, Providence, RI, USA, pages 522–529. IEEE Computer
Society, 2003. doi:10.1109/ICDCS.2003.1203503.

https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1950365.1950377
https://people.mpi-sws.org/~viktor/cave/
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/3-540-40026-5_4
https://doi.org/10.1145/1007912.1007945
https://doi.org/10.1137/S0097539793243685
https://doi.org/10.1145/3158113
https://doi.org/10.1145/3158113
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1007/s00607-018-0596-7
https://doi.org/10.1007/s00607-018-0596-7
https://doi.org/10.1109/ICDCS.2003.1203503

G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:19

31 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.

32 Alex Horn and Daniel Kroening. Faster linearizability checking via p-compositionality. In
Susanne Graf and Mahesh Viswanathan, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 35th IFIP WG 6.1 International Conference, FORTE 2015, Held
as Part of the 10th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, volume 9039 of Lecture Notes
in Computer Science, pages 50–65. Springer, 2015. doi:10.1007/978-3-319-19195-9_4.

33 Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour. Bounded model checking for
hyperproperties. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part
I, volume 12651 of Lecture Notes in Computer Science, pages 94–112. Springer, 2021. doi:
10.1007/978-3-030-72016-2_6.

34 Prasad Jayanti. f -arrays: implementation and applications. In Aleta Ricciardi, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing,
PODC 2002, Monterey, California, USA, July 21-24, 2002, pages 270–279. ACM, 2002.
doi:10.1145/571825.571875.

35 Prasad Jayanti. An optimal multi-writer snapshot algorithm. In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 723–732. ACM, 2005. doi:10.1145/1060590.
1060697.

36 Lefteris M. Kirousis, Paul G. Spirakis, and Philippas Tsigas. Reading many variables in one
atomic operation: Solutions with linear or sublinear complexity. IEEE Trans. Parallel Distrib.
Syst., 5(7):688–696, 1994. doi:10.1109/71.296315.

37 Linearizability Tester Website. http://www.cs.ox.ac.uk/people/gavin.lowe/
LinearizabiltyTesting/. Last Accessed: Aug. 31, 2021.

38 Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking linearizability via
refinement. In Ana Cavalcanti and Dennis Dams, editors, Proceedings of the Second World
Congress on Formal Methods (FM’09), volume 5850 of Lecture Notes in Computer Science,
pages 321–337. Springer, 2009.

39 Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking linearizability via
refinement. In Ana Cavalcanti and Dennis Dams, editors, FM 2009: Formal Methods,
Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings,
volume 5850 of Lecture Notes in Computer Science, pages 321–337. Springer, 2009. doi:
10.1007/978-3-642-05089-3_21.

40 Yang Liu, Wei Chen, Yanhong A. Liu, Jun Sun, Shao Jie Zhang, and Jin Song Dong. Verifying
linearizability via optimized refinement checking. IEEE Trans. Software Eng., 39(7):1018–1039,
2013. doi:10.1109/TSE.2012.82.

41 Gavin Lowe. Testing for linearizability. Concurr. Comput. Pract. Exp., 29(4), 2017. doi:
10.1002/cpe.3928.

42 Maged M Michael and Michael L Scott. Correction of a memory management method for
lock-free data structures. Technical report, University of Rochester, Computer Science, 1995.

43 Sean Ovens and Philipp Woelfel. Strongly linearizable implementations of snapshots and other
types. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019, pages 197–206. ACM, 2019. doi:10.1145/3293611.3331632.

44 PAT Website. https://pat.comp.nus.edu.sg/. Last Accessed: Aug. 31, 2021.
45 Poling Website. https://github.com/rowangithub/Poling/. Last Accessed: Aug. 31, 2021.
46 Yaron Riany, Nir Shavit, and Dan Touitou. Towards a practical snapshot algorithm. Theor.

Comput. Sci., 269(1-2):163–201, 2001. doi:10.1016/S0304-3975(00)00412-6.

DISC 2022

https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-19195-9_4
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/1060590.1060697
https://doi.org/10.1145/1060590.1060697
https://doi.org/10.1109/71.296315
http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/
http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1109/TSE.2012.82
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1145/3293611.3331632
https://pat.comp.nus.edu.sg/
https://github.com/rowangithub/Poling/
https://doi.org/10.1016/S0304-3975(00)00412-6

5:20 Polynomial-Time Verification and Testing of the Snapshot Data Structure

47 Vineet Singh, Iulian Neamtiu, and Rajiv Gupta. Proving concurrent data structures linearizable.
In 27th IEEE International Symposium on Software Reliability Engineering, ISSRE 2016,
Ottawa, ON, Canada, October 23-27, 2016, pages 230–240. IEEE Computer Society, 2016.
doi:10.1109/ISSRE.2016.31.

48 Jun Sun, Yang Liu, and Bin Cheng. Model checking a model checker: A code contract
combined approach. In Jin Song Dong and Huibiao Zhu, editors, Formal Methods and Software
Engineering - 12th International Conference on Formal Engineering Methods, ICFEM 2010,
Shanghai, China, November 17-19, 2010. Proceedings, volume 6447 of Lecture Notes in
Computer Science, pages 518–533. Springer, 2010. doi:10.1007/978-3-642-16901-4_34.

49 Supporting materials. https://github.com/hayounav/Thesis_experiments/tree/main/
snapshot%20verification%20and%20testing.

50 Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In Neil D. Jones
and Markus Müller-Olm, editors, Verification, Model Checking, and Abstract Interpretation,
10th International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009.
Proceedings, volume 5403 of Lecture Notes in Computer Science, pages 335–348. Springer,
2009. doi:10.1007/978-3-540-93900-9_27.

51 Viktor Vafeiadis. Automatically proving linearizability. In Tayssir Touili, Byron Cook, and
Paul B. Jackson, editors, Computer Aided Verification, 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer
Science, pages 450–464. Springer, 2010. doi:10.1007/978-3-642-14295-6_40.

52 Martin T. Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects. In
Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June
7-13, 2008, pages 125–135. ACM, 2008. doi:10.1145/1375581.1375598.

53 Jeannette M. Wing and Chun Gong. Testing and verifying concurrent objects. J. Parallel
Distributed Comput., 17(1-2):164–182, 1993. doi:10.1006/jpdc.1993.1015.

54 Pierre Wolper. Expressing interesting properties of programs in propositional temporal logic.
In Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, USA, January 1986, pages 184–193. ACM Press,
1986. doi:10.1145/512644.512661.

55 He Zhu, Gustavo Petri, and Suresh Jagannathan. Poling: SMT aided linearizability proofs.
In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II, volume 9207 of Lecture Notes in Computer Science, pages 3–19. Springer, 2015.
doi:10.1007/978-3-319-21668-3_1.

https://doi.org/10.1109/ISSRE.2016.31
https://doi.org/10.1007/978-3-642-16901-4_34
https://github.com/hayounav/Thesis_experiments/tree/main/snapshot%20verification%20and%20testing
https://github.com/hayounav/Thesis_experiments/tree/main/snapshot%20verification%20and%20testing
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1006/jpdc.1993.1015
https://doi.org/10.1145/512644.512661
https://doi.org/10.1007/978-3-319-21668-3_1

Almost Universally Optimal Distributed Laplacian
Solvers via Low-Congestion Shortcuts∗

Ioannis Anagnostides #

Carnegie Mellon University, Pittsburgh, PA, USA

Christoph Lenzen #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Bernhard Haeupler #

ETH Zürich, Switzerland

Goran Zuzic #

ETH Zürich, Switzerland

Themis Gouleakis #

National University of Singapore, Singapore

Abstract
In this paper, we refine the (almost) existentially optimal distributed Laplacian solver recently
developed by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally
optimal distributed Laplacian solver.

Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show
that any Laplacian system on an n-node graph with shortcut quality SQ(G) can be solved after
no(1)SQ(G) log(1/ε) rounds, where ε is the required accuracy. This almost matches our lower
bound that guarantees that any correct algorithm on G requires Ω̃(SQ(G)) rounds, even for a crude
solution with ε ≤ 1/2. Several important implications hold in the unknown-topology (i.e., standard
CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that
terminates in D · no(1) log(1/ε) rounds, where D is the hop-diameter of the network; as well as
no(1) log(1/ε)-round algorithms for the case of SQ(G) ≤ no(1), which holds for most networks of
interest. Conditioned on improvements in state-of-the-art constructions of low-congestion shortcuts,
the CONGEST results will match the Supported-CONGEST ones.

Moreover, following a recent line of work in distributed algorithms, we consider a hybrid
communication model which enhances CONGEST with limited global power in the form of the
node-capacitated clique (NCC) model. In this model, we show the existence of a Laplacian solver
with round complexity no(1) log(1/ε).

The unifying thread of these results, and our main technical contribution, is the study of a novel
ρ-congested generalization of the standard part-wise aggregation problem. We develop near-optimal
algorithms for this primitive in the Supported-CONGEST model, almost-optimal algorithms in
(standard) CONGEST (with the additional overhead due to standard barriers), as well as a simple
algorithm for bounded-treewidth graphs with a quadratic dependence on the congestion ρ. This
primitive can be readily used to accelerate the Laplacian solver of Forster, Goranci, Liu, Peng, Sun,
and Ye, and we believe it will find further independent applications in the future.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, Laplacian solvers, low-congestion shortcuts

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.6

Related Version Full Version: https://arxiv.org/abs/2109.05151

∗ The author ordering was randomized using https://www.aeaweb.org/journals/policies/
random-author-order/generator. It is requested that citations of this work list the authors sep-
arated by \textcircled{r} instead of commas: Anagnostides r⃝ Lenzen r⃝ Haeupler r⃝ Zuzic r⃝
Gouleakis.

© Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, and Themis Gouleakis;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 6; pp. 6:1–6:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ianagnos@cs.cmu.edu
mailto:lenzen@cispa.de
mailto:haeuplb@ethz.ch
mailto:goran.zuzic@inf.ethz.ch
mailto:tgoule@nus.edu.sg
https://doi.org/10.4230/LIPIcs.DISC.2022.6
https://arxiv.org/abs/2109.05151
https://www.aeaweb.org/journals/policies/random-author-order/generator
https://www.aeaweb.org/journals/policies/random-author-order/generator
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

Funding Bernhard Haeupler : Supported in part by NSF grants CCF-1814603, CCF-1910588, NSF
CAREER award CCF-1750808, a Sloan Research Fellowship, funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC
grant agreement 949272), and the Swiss National Foundation (project grant 200021-184735).
Goran Zuzic: Supported in part by the Swiss National Foundation (project grant 200021-184735).
Themis Gouleakis: Supported in part by an NRF Fellowship for AI (R-252-000-A33-133). Part of
the work was done while visiting the Simons Institute for Theory of Computing).

Acknowledgements We are grateful to the anonymous reviewers for their valuable feedback.

1 Introduction

The Laplacian paradigm has emerged as one of the cornerstones of modern algorithmic graph
theory. Integrating techniques from combinatorial optimization with powerful machinery
from numerical linear algebra, it was originally pioneered in [47] who established the first
nearly-linear time solvers for a (linear) Laplacian system. Thereafter, there has been a
considerable amount of interest in providing simpler and more efficient solvers [34, 33, 37].
Indeed, this framework has led to some state of the art algorithms for a wide range of
fundamental graph-theoretic problems; e.g., see [5, 40, 10, 48, 32, 43, 4], and references
therein. In the distributed setting, a major breakthrough was very recently made in [18]. In
particular, the authors developed a distributed algorithm that solves any Laplacian system
on an n-node graph after no(1)(

√
n + D) log(1/ε) rounds of the standard CONGEST model,

where D represents the hop-diameter of the underlying network and ε > 0 is the error of
the solver. Moreover, they showed that their algorithm is existentially optimal, up to the
no(1) factor, establishing a lower bound of Ω̃(

√
n + D) rounds via a reduction from the s − t

connectivity problem [13].
This existential lower bound in the CONGEST model of distributed computing should

hardly come as any surprise. Indeed, it is well-known by now that a remarkably wide range
of global optimization problems, including minimum spanning tree (MST), minimum cut
(Min-Cut), maximum flow, and single-source shortest paths (SSSP), require Ω̃(

√
n + D)

rounds1 [41, 15, 13]. The same limitation generally applies to any non-trivial approximation
and even under randomization. Nonetheless, these lower bounds are constructed on some
pathological graph instances that arguably do not occur in practice. This begs the question:
Can we obtain more refined performance guarantees based on the underlying topology of
the communication network? The framework of low-congestion shortcuts, introduced by
[20], demonstrated that bypassing the notorious Ω(

√
n) lower bound is possible: MST and

Min-Cut on planar graphs can be solved in Õ(D) rounds. This is crucial, given that in many
graphs of practical significance the diameter is remarkably small; e.g., D = polylog(n) (as is
folklore, this holds for most social networks), implying exponential improvements over generic
algorithms used for general graphs. In the context of the distributed Laplacian paradigm, we
raise the following question:

Is there a faster distributed Laplacian solver under “non-worst-case” families of
graphs in the CONGEST model?

The only known technique in distributed computing for designing algorithms that go
below the

√
n-bound is the low-congestion shortcut framework of Ghaffari and Haeupler [20],

and the large ecosystem of tools built around it [25, 26, 29, 21, 50, 23, 27]. However, the “ρ-
congested minor” primitive introduced and extensively used in the novel distributed Laplacian

1 As usual, we use the notation Õ(·) and Ω̃(·) to suppress polylogarithmic factors on n.

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:3

solver [18] is out of reach from the current set of tools available in the low-congestion shortcut
framework. We address this issue by introducing an analogous primitive called ρ-congested
part-wise aggregation, which greatly simplifies the interface used by [18]. We then extend the
low-congestion shortcut framework with new techniques that enables it to near-optimally solve
this primitive: we provide both an algorithm that utilizes the very recent hop-constrained
expander decompositions for shortcut construction [27] to solve the primitive in general
graphs with a linear dependence on ρ, as well as a very simple algorithm with a quadratic
ρ-dependence for bounded-treewidth graphs. Finally, we settle our original question in
the positive by establishing that our new primitive can be readily used to accelerate the
distributed Laplacian solver for non-worst-case topologies.

Specifically, we show our new techniques are sufficient to lift the existentially optimal
algorithm [18] to a universally optimal algorithm – modulo no(1) factor inherent in the prior
approach – for distributedly solving a Laplacian system, meaning that, for any topology, our
algorithm is essentially as fast as possible. In other words, for any graph, our algorithm almost
matches the best possible (correct) algorithm for that graph. This result is unconditional
in essentially all settings of interest (see Theorem 2 for details), but relies on conjectured
improvements of current state-of-the-art constructions of low-congestion shortcuts to achieve
unqualified universal optimality – like all other results in the area.

Furthermore, another concrete way of bypassing the Ω̃(
√

n + D) lower bound, besides
investigating non-worst-case families of graphs, is by enhancing the local communication
network with a limited amount of global power. Indeed, research concerning hybrid net-
works was recently initiated in the realm of distributed algorithms [3], although networks
combining different communication modes have already found numerous applications in
real-life computing systems; as such, hybrid networks have been intensely studied in other
areas of distributed computing (see [9, 49, 31], and references therein). In this paper, we
will enhance the standard CONGEST model with the recently introduced node-capacitated
clique (henceforth NCC) [2]. The latter model enables all-to-all communication, but with
severe capacity restrictions for every node. The integration of these models will be referred to
as the HYBRID model for the rest of this work. This leads to the following central question:

Is there a faster distributed Laplacian solver in the HYBRID model?

Our paper essentially settles this question by showing the same ρ-congested part-wise
aggregation primitive can be efficiently solved in Õ(ρ) rounds of NCC, implying an almost
optimal no(1)-round distributed algorithm for solving Laplacian systems in the HYBRID
model. A conceptual contribution of our approach is that we treat both CONGEST,
Supported-CONGEST, and HYBRID in a unified way through the lens of the low-congestion
shortcut framework, by designing our algorithm using high-level primitives and leaving the
model-specific translations to the framework itself. A similar unified view of PRAM (i.e.,
parallel) and CONGEST (i.e., distributed) graph algorithms through the same lens has led
to very recent breakthroughs on long-standing open problems for both of these settings [45].

1.1 Overview of our Contributions and Techniques
The unifying thread and the main technical ingredient of our (almost) universally optimal
distributed Laplacian solvers is a new fundamental communication primitive referred to as
the congested part-wise aggregation problem. Specifically, we develop near-optimal algorithms
for solving this problem in the (Supported-)CONGEST and the NCC model (Section 3), and
then we utilize this primitive to develop almost universally optimal Laplacian solvers.

DISC 2022

6:4 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

1.1.1 The Congested Part-Wise Aggregation Problem
To introduce the congested part-wise aggregation problem, let us first give some basic
background. The aforementioned Ghaffari-Haeupler framework of low-congestion shortcuts
revolves around the so-called part-wise aggregation problem posed as follows: “The graph is
partitioned into disjoint and individually-connected parts, and we need to compute some
simple aggregate function for each part, e.g., the minimum of the values held by the nodes
in a given part” [20] (see Definition 4 for a formal definition). Importantly, it has been
shown that this primitive can be solved efficiently in structured topologies and that many
problems (including the MST, shortest path, min-cut, etc.) reduce to a small number of calls
to a part-wise aggregation oracle, leading to universally optimal algorithms. Unfortunately,
it is not clear how to reduce solving a Laplacian system to (a small number of) part-wise
aggregation calls; in this paper, we primarily address this issue.

Our first technical contribution is to extend the framework of low-congestion shortcuts by
studying a more general primitive: one that incorporates congestion (of the input parts) into
the underlying part-wise aggregation instance. More precisely, unlike the standard part-wise
aggregation problem, we allow each node to participate in up to ρ ∈ Z≥1 aggregation parts
(see Definition 13). We later show that efficient solutions to this primitive leads to efficient
distributed Laplacian solvers.

We first remark that a natural strategy for solving congested part-wise aggregation
instances does not work: congested instances cannot, in general, be directly reduced to a
“small” collection of 1-congested instances, thereby necessitating a more refined approach.
To this end, our approach is based on “lifting” the underlying communication network G

into its ρ-layered version ĜO(ρ): every edge is replaced with a matching and every node
with a ρ-clique. The importance of this transformation is that, as we show in Lemma 15,
the ρ-congested part-wise aggregation problem can be reduced to a 1-congested instance
on the ρ-layered graph (Section 3.1.1). This is first established under the assumption that
individual parts correspond to simple paths, and then we extend our results to general parts
by following [29]. In light of this reduction, we next focus on solving the 1-congested part-wise
aggregation instance on the layered graph.

As a warm-up, we treat graphs with bounded treewidth tw(G) (Definition 11). It is known
from [26] that on a graph G with treewidth tw(G), a 1-congested part-wise aggregation
instance can be solved in Õ(tw(G)D) rounds of CONGEST. Keeping this in mind, we first
show that the treewidth of the ρ-layered graph Ĝρ can only increase by a factor of ρ compared
to the original graph (Lemma 19). Hence, we can solve 1-congested instances in ĜO(ρ) in
Õ(ρ tw(G)D) rounds (when the underlying network is ĜO(ρ)), which in turn allows us to
solve ρ-congested instances on G in Õ(ρ2 tw(G)D) time in G (another ρ factor is necessary
to simulate ĜO(ρ) in G). This positive result poses a natural question: can we achieve similar
results on graphs with bounded minor density δ(G) (Definition 9)? However, the answer to
this question is negative: minor density can blow up even for a 2-layered planar graph (see
Observation 21), making such a result impossible.

Then, we look at arbitrary graphs G: it is known that 1-congested part-wise aggregation
instances can be solved in a number of rounds that is controlled by SQ(G), where SQ(G) is the
shortcut quality of G (a certain graph parameter we formalize in Definition 7). Specifically,
it can be solved in Õ(SQ(G)) rounds when the topology is known in advance2 [29] and
poly(SQ(G)) · no(1) in general CONGEST [27]. The shortcut quality parameter is significant

2 This model is also known as the supported CONGEST. That is, CONGEST under the assumption
that the topology is known; see Section 2 for a formal description of the model. Our techniques also
apply in the full generality of CONGEST, as we explain in the sequel.

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:5

since many distributed problems (including the MST, shortest path, min-cut, and – Laplacian
solving, as we show later) require Ω̃(SQ(G)) rounds in CONGEST to be solved on G [29].
Therefore, algorithms that have an upper bound close to SQ(G) are universally optimal.

With the end goal of solving the 1-congested part-wise aggregations on layered graphs
Ĝρ in time controlled by SQ(G), our main result established that the shortcut quality of
the ρ-layered graph does not increase (modulo polylogarithmic factors) as compared to the
original graph (Theorem 22). This has a plethora of important consequences: (1) when
SQ(G) ≤ no(1), we can unconditionally solve ρ-congested part-wise aggregation instances
in ρ · no(1) CONGEST rounds using the state-of-the-art shortcut construction [27], and (2)
when the topology of G is known (i.e., Supported-CONGEST), there exists a distributed
algorithm that solves any ρ-congested part-wise aggregation problem in ρ · Õ(SQ(G)) rounds
via [29]. As a consequence of our general result, the shortcut quality of any 2-layered planar
graph is Õ(D) since the shortcut quality of a planar graph is Õ(D) [20]. This is perhaps the
most natural example of a graph whose minor density is very far from the shortcut quality;
the only other example documented in the literature so far is that of expander graphs.

Our proof proceeds by employing alternative characterizations of the shortcut quality
in terms of certain communication tasks. Specifically, shortcut quality can be shown to be
equal (modulo polylogarithmic factors) to the following two-player max-min game: the first
(max) player chooses k sources and k sinks in the graph such that we can find k node-disjoint
paths matching the sources with the sinks; then the second (min) player finds the smallest
so-called quality Q such that there exist k paths matching the sources with the sinks with
the path lengths being at most Q and each edge of the underlying graph supporting at most
Q of second player’s paths. This characterization allows us to compare the shortcut quality
of Ĝρ with G as follows: take the worst-case (first player’s) set of sources and sinks in Ĝρ.
Project them to G and note they have node congestion ρ (due to the construction of Ĝρ).
Then, we show we can decompose (i.e., partition) these set of sources and sinks into Õ(ρ)
pairs of sub-sources and sub-sinks that are node-disjointly connectable in G. However, each
such set enjoys paths of quality SQ(G), hence embedding each such pair in a separate layer
of Ĝρ shows that the shortcut quality of SQ(Ĝρ) is at most Õ(SQ(G)). Although this general
approach improves over our result for treewidth-bounded graphs we previously described, our
approach for the latter class of graphs is substantially simpler and more suited in practice.

1.1.2 Almost Universally Optimal Laplacian Solvers
First, we note that any distributed Laplacian solver that always correctly outputs an answer
on a fixed graph G must take at least Ω̃(SQ(G)) rounds, giving us a lower bound to compare
ourselves with. Our refined lower bound uses the hardness result recently shown by [29] for
the spanning connected subgraph problem, applicable for any (i.e., non-worst-case) graph
G. Specifically, we show that a Laplacian solver can be leveraged to solve the spanning
connected subgraph problem, thereby substantially strengthening the lower bound in [18].

▶ Theorem 1. Consider a graph G with shortcut quality SQ(G). Then, solving a Laplacian
system on G with ε ≤ 1

2 requires Ω̃(SQ(G)) rounds in both CONGEST and Supported-
CONGEST models.

On the upper-bound side, we utilize the congested part-wise aggregation primitive to
improve and refine the Laplacian solver of [18], leading to a substantial improvement in the
round complexity under structured network topologies.

DISC 2022

6:6 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

▶ Theorem 2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.
There exists a distributed Laplacian solver with error ε > 0 with the following guarantees:

In the Supported-CONGEST model, it requires no(1) SQ(G) log(1/ε) rounds.
In the CONGEST model, it requires no(1) poly(SQ(G)) log(1/ε) rounds.
In the CONGEST model on graphs with minor density δ, it requires no(1)δD log(1/ε)
rounds.

We note that the above algorithm is almost (up to inherent no(1) factors) universally
optimality for most settings of interest. Since it is (almost) matching the SQ(G)-lower-
bound, it is unconditionally universally optimal when the topology is known in advance (i.e.,
Supported-CONGEST). Furthermore, in standard CONGEST, we give almost universally
optimal Dno(1) log(1/ε)-round algorithms for topologies that include planar graphs, no(1)-
genus graphs, no(1)-treewidth graphs, excluded-minor graphs, since all of them are graphs
with minor density δ(G) = no(1). Furthermore, for the realistic case of D ≤ no(1), it holds for
most networks of interest that SQ(G) ≤ no(1) (e.g., expanders, hop-constrained expanders, as
well as all classes mentioned earlier), for which we get no(1) log(1/ε)-round solvers. Finally, the
conjectured improvements of the state-of-the-art of almost-optimal low-congestion shortcut
constructions would immediately lift our results to be unconditionally universally optimal in
CONGEST; this issue is orthogonal and not within the scope of this paper.

Furthermore, in HYBRID we obtain an almost optimal complexity in general graphs:

▶ Theorem 3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complexity no(1) log(1/ε), where ε > 0 is the error of the solver.

This implies a remarkably fast subroutine for solving a Laplacian system in HYBRID
under arbitrary topologies. As a result, we corroborate the observation that a very limited
amount of global power can lead to substantially faster algorithms for certain optimization
problems, supplementing a recent line of work [8, 3, 35, 16, 7, 24, 36, 11]. Furthermore,
our framework based on the congested part-wise aggregation problem allows for a unifying
treatment of both (Supported-)CONGEST and HYBRID, and we consider this to be an
important conceptual contribution of our work. Indeed, as we previously explained, both of
our accelerated Laplacian solvers rely on faster algorithms for solving the congested part-wise
aggregation problem. In particular, for (Supported-)CONGEST we have already described
our approach in detail, while in the HYBRID model we employ certain communication
primitives developed in [2] for dealing with congestion in part-wise aggregations. A byproduct
of our results is that the framework of low-congestion shortcuts interacts particularly well
with the HYBRID model, as was also observed in [1].

1.2 Further Related Work
Our main reference point is the recent Laplacian solver of [18] with existentially almost-
optimal complexity of no(1)(

√
n + D) log(1/ε) rounds, where ε > 0 represents the error of

the solver. Specifically, they devised several new ideas and techniques to circumvent certain
issues which mostly relate to the bandwidth restrictions of the CONGEST model; these
building blocks, as well as the resulting Laplacian solver are revisited in our work to refine
the performance of the solver. We are not aware of any previous research addressing this
problem in the distributed context. On the other hand, the Laplacian paradigm has attracted
a considerable amount of interest in the community of parallel algorithms [44, 6].

Research concerning hybrid communication networks in distributed algorithms was re-
cently initiated by [3]. Specifically, they investigated the power of a model which integrates the
standard LOCAL model [38] with the recently introduced node-capacitated clique (NCC) [2],

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:7

focusing mostly on distance computation tasks. Several of their results were subsequently
improved and strengthened in subsequent works [35, 7] under the same model of computation.
In our work we consider a substantially weaker model, imposing a severe limitation on the
communication over the “local edges”. This particular variant has been already studied in
some recent works for a variety of fundamental problems [16, 24].

The NCC model, which captures the global network in all hybrid models studied thus
far, was introduced in [2] partly to address the unrealistic power of the congested clique
(CLIQUE) [39]. In the latter model each node can communicate concurrently and independ-
ently with all other nodes by O(log n)-bit messages. In contrast, the NCC model allows
communication with O(log n) (arbitrary) nodes per round. As a result, in the HYBRID
model and under a sparse local network, only Θ̃(n) bits can be exchanged overall per round,
whereas CLIQUE allows for the exchange of up to Θ̃(n2) (distinct) bits. As evidence for the
power of CLIQUE we note that even slightly super-constant lower bounds would give new
lower bounds in circuit complexity, as implied by a simulation argument in [14]. Finally, we
remark a subsequent work that leverages tools from the Laplacian paradigm in the broadcast
variant of the congested clique [17].

2 Preliminaries

General notation. We denote with [k] := {1, 2, . . . , k}. Graphs throughout this paper
are undirected. The nodes and the edges of a given graph G are denoted as V (G) and
E(G), respectively. We also use n := |V (G)| for brevity. The graphs are often weighted, in
which case we assume (as is standard) that for all e ∈ E(G), w(e) ∈ {1, 2, . . . , poly(n)}. We
will denote the hop-diameter of a graph G with D(G) (the hop-diameter ignores weights).
Moreover, we use A ⊎ B to denote the multiset union, i.e., each element is repeated according
to its multiplicity; this operation corresponds to disjoint unions when A ∩ B = ∅.

Communication models. The communication network consists of a set of n entities with
[n] := {1, 2, . . . , n} being the set of their IDs, and a local communication topology given by a
graph G.3 We define D := D(G) to be the (hop-)diameter of the underlying network. At
the beginning, each node knows its own unique O(log n)-bit identifier as well as the weights
of the incident edges. Communication occurs in synchronous rounds, and in every round
nodes have unlimited computational power to process the information they possess. We will
consider models with both local and global communication modes.

The local communication mode will be modeled with the CONGEST model [42] and
Supported-CONGEST model [46], for which in each round every node can exchange an
O(log n)-bit message with each of its neighbors in G via the local edges. In the (standard)
CONGEST model, each node v ∈ V (G) initially only knows the identifiers of each node in
v’s own neighborhood, but has no further knowledge about the topology of the graph. On
the other hand, in the Supported-CONGEST model, all nodes know the entire topology of
G upfront, but not the input.

The global communication mode will be modeled using NCC [2], for which in each round
every node can exchange O(log n)-bit messages with O(log n) arbitrary nodes via global
edges. If the capacity of some channel is exceeded, i.e., too many messages are sent to the

3 To avoid any possible confusion we point out that, for consistency with the nomenclature of [18], we
henceforth reserve G to denote the underlying communication network, while G is used in statements
regarding arbitrary graphs.

DISC 2022

6:8 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

same node, it will only receive an arbitrary (potentially adversarially selected) subset of the
information based on the capacity of the network; the rest of the messages are dropped. In
this context, we will let HYBRID be the integration of CONGEST and NCC (i.e., nodes
have both a local and a global communication mode at their disposal).

The performance of a distributed algorithm will be measured in terms of its round
complexity – the number of rounds required so that every node knows its part of the output.
For randomized algorithms it will suffice to reach the desired state with high probability.4 We
will assume throughout this work that nodes have access to a common source of randomness;
this comes without any essential loss of generality in our setting [19]. When talking about a
distributed algorithm for a specific problem (e.g., Laplacian solving, part-wise aggregation,
etc.) we assume the input is appropriately distributedly stored (i.e., each node will know
its own part) and, upon termination, it will be required that the output is appropriately
distributedly stored. The appropriate way to distributedly store the input and output will
be explained in the problem definition.

Low-Congestion Shortcuts. A recurring scenario in distributed algorithms for global
problems (e.g. MST) boils down to solving the following part-wise aggregation problem:

▶ Definition 4 (Part-Wise Aggregation Problem). Consider an n-node graph G whose node
set V (G) is partitioned into k (disjoint) parts P1 ⊎ · · · ⊎ Pk ⊆ V (G) such that each induced
subgraph G[Pi] is connected. In the part-wise aggregation problem, each node v ∈ V is given
its part-ID (if any) and an O(log n)-bit value x(v) as input. The goal is that, for every
part Pi, all nodes in Pi learn the part-wise aggregate

⊕
w∈Pi

x(w), where
⊕

is an arbitrary
pre-defined aggregation function.

Throughout this paper, we will assume that the aggregation function
⊕

is commutative and
associative (e.g. min, sum, logical-AND), although this is not strictly needed (e.g., see [23]).
To solve such problems, [20] introduced a natural combinatorial graph structure that they
refer to as low-congestion shortcuts.

▶ Definition 5 (Low-Congestion Shortcuts). Consider a graph G whose node set V (G) is
partitioned into k (disjoint) parts P1 ⊎ · · · ⊎ Pk ⊆ V (G) such that each induced subgraph
G[Pi] is connected. A collection of subgraphs H1, . . . , Hk is a shortcut of G with congestion
c and dilation d if the following properties hold: (i) the (hop) diameter of each subgraph
G[Pi] ∪ Hi is at most d, and (ii) every edge is included in at most c many of the subgraphs
Hi. The quantity Q = c + d will be referred to as the quality of the shortcut.

Importantly, a shortcut of quality Q allows us to solve the part-wise aggregation problem
in Õ(Q) rounds of CONGEST, as formalized below.

▶ Proposition 6. Suppose that P1, . . . , Pk is any part-wise aggregation instance in a commu-
nication network G. Given a shortcut of quality Q, we can solve with high probability the
part-wise aggregation problem in Õ(Q) CONGEST rounds.

Shortcut Quality and Construction of Shortcuts. Shortcut quality, introduced below, is a
fundamental graph parameter that has been proven to characterize the complexity of many
important problems in distributed computing.

4 We say that an event holds with high probability if it occurs with probability at least 1 − 1/nc for a
(freely choosable) constant c > 0.

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:9

▶ Definition 7. Given a graph G = (V, E), we define the shortcut quality SQ(G) of G as
the optimal (smallest) shortcut quality of the worst-case partition of V into disjoint and
connected parts P1 ⊎ P2 ⊎ . . . ⊎ Pk ⊆ V .

For fundamental problems such as MST, SSSP, and Min-Cut any correct algorithm
requires Ω̃(SQ(G)) rounds on any network G, even if we allow randomized solutions and (non-
trivial) approximation factors. In fact, this limitation holds even when the network topology
G is known to all nodes in advance [29]. We remark that Ω̃(D(G)) ≤ SQ(G) ≤ O(D(G)+

√
n),

and the upper bound is known to be tight in certain (pathological) worst-case graph instances.
Moreover, assuming fast distributed algorithms for constructing shortcuts of quality

competitive with SQ(G), all of the aforementioned problems can be solved in Õ(SQ(G))
rounds [20, 50, 23]. However, the key issue here is the algorithmic construction of the
shortcuts upon which the above papers rely. While there has been a lot of recent progress in
this regard, current algorithms are quite complicated and have sub-optimal guarantees. We
recall below these state-of-the-art SQ(G)-competitive construction results.

▶ Theorem 8. There exists a distributed algorithm that, given any part-wise aggregation
instance on any n-node graph G, computes with high probability a shortcut with the following
guarantees:

In CONGEST, the shortcut has quality poly
(
SQ(G)

)
·no(1) and the algorithm terminates

in poly
(
SQ(G)

)
· no(1) rounds [27].

In Supported-CONGEST, the shortcut has quality Õ(SQ(G)) and the algorithm terminates
in Õ(SQ(G)) rounds [29].

Universal Optimality. A distributed algorithm is said to be α-universally optimal if, on
every network graph G, it is α-competitive with the fastest correct algorithm on G [29].
Even the existence of such algorithms is not at all clear as it would seem possible that vastly
different algorithms are required to leverage the structure of different networks. Nevertheless,
a remarkable consequence of Theorem 8 is that in Supported-CONGEST we can design
Õ(1)-universally optimal algorithms for many fundamental optimization problems. Moreover,
efficient shortcut construction is the only obstacle towards achieving these results in the full
generality of CONGEST, which is an orthogonal issue and out of scope for this paper. Still,
the aforementioned results are sufficient to design no(1)-universally optimal algorithms on
graphs that have shortcut quality SQ(G) = no(1).

Graphs Excluding Dense Minors. It turns out that the crucial issue of efficient shortcut
construction can be resolved with a near-optimal, simple, and even deterministic algorithm
for the rich class of graphs with bounded minor density. Formally, let us first recall the
following definition.

▶ Definition 9 (Minor Density). The minor density δ(G) of a graph G is defined as

δ(G) = max
{

|E′|
|V ′|

: H = (V ′, E′) is a minor of G

}
.

Any family of graphs closed under taking minors (such as planar graphs) has a constant
minor density. For such graphs, [21] established efficient shortcut construction:

▶ Theorem 10 ([21]). Any graph G with hop-diameter D and minor density δ(G) admits
shortcuts of quality Õ(δD), which can be constructed with high probability in Õ(δD) rounds
of CONGEST.

DISC 2022

6:10 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

Some of our results apply for communication networks with bounded treewidth, so let us
recall the following definition.

▶ Definition 11 (Tree Decomposition and Treewidth). A tree decomposition of a graph G is a
tree T with tree-nodes X1, . . . , Xk, where each Xi is a subset of V (G) satisfying the following
properties:
1. V =

⋃k
i=1 Xi;

2. For any node u ∈ V (G), the tree-nodes containing u form a connected subtree of T ;
3. For every edge {u, v} ∈ E(G), there exists a tree-node Xi which contains both u and v.

The width w of the tree decomposition is defined as w := maxi∈[k] |Xi| − 1. Moreover,
the treewidth tw(G) of G is defined as the minimum of the width among all possible tree
decompositions of G.

Bounded-treewidth graphs inherit all of the nice properties guaranteed by Theorem 10,
as implied by the following well-known fact.

▶ Lemma 12. For any graph G, δ(G) ≤ tw(G).

3 The Congested Part-Wise Aggregation Problem

This section is concerned with a congested generalization of the standard part-wise aggregation
problem (Definition 4), formally introduced below.

▶ Definition 13 (Congested Part-Wise Aggregation Problem). Consider an n-node graph G

with a collection of k subsets of nodes P1, . . . , Pk ⊆ V (G) called parts such that each induced
subgraph G[Pi] is connected and each node v ∈ V (G) is contained in at most ρ ∈ Z≥1 many
parts, i.e., ∀v ∈ V (G) |{i : Pi ∋ v}| ≤ ρ. In the ρ-congested part-wise aggregation problem,
each node v is given the following as input: for each part Pi ∋ v node v knows the part-ID i

and an O(log n)-bit part-specific value xi(v). The goal is that, for each part Pi, all nodes in Pi

learn the part-wise aggregate
⊕

w∈Pi
xi(w), where

⊕
is a pre-defined aggregation function.

This congested generalization of the standard part-wise aggregation problem that we
study in this section turns out to be a central ingredient in our refined Laplacian solver; this
is further explained in Section 4. The remainder of this section is organized as follows. In
Section 3.1 we establish near-optimal algorithms for solving congested part-wise aggregations
in CONGEST, which is also the main focus of this section. We conclude by pointing out
the construction for NCC in Section 3.2. Due to space limitations, all the omitted proofs
are deferred to the full version of this paper.

3.1 Solving Congested Instances in the CONGEST Model
The first natural strategy for solving the ρ-congested part-wise aggregation problem of
Definition 13 is through a reduction to poly(ρ) 1-congested instances. However, this approach
immediately fails even if we allow ρ = 2. Indeed, there exist congested part-wise aggregation
instances for which every two (distinct) parts share a common node, even when ρ = 2, leading
to the following observation.

▶ Observation 14. For an infinite family of values n, there exists an n-node planar graph G

and a 2-congested part-wise aggregation instance I with k = Θ(
√

n) parts such that reducing
I to the union of k′ 1-congested part-wise aggregation instances on G requires k′ = Ω(

√
n).

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:11

Figure 1 A 2-congested part-wise aggregation problem on a 6 × 6 grid (the instance immediately
extends to an

√
n ×

√
n topology). Different colors highlight different parts of the instance.

Such a pattern is illustrated in Figure 1. Indeed, in that 2-congested part-wise aggregation
instance every two distinct parts share a common node. As a result, directly employing a
1-congested part-wise aggregation oracle is of little use since it would introduce an overhead
depending on the number of parts. In light of this, we develop a more refined approach that
leverages what we refer to as the layered graph.

3.1.1 The Layered Graph
Here we introduce the layered graph Ĝρ, associated with the underlying graph G. Then, we
reduce any ρ-congested part-wise aggregation on G to a 1-congested instance on ĜO(ρ).

Figure 2 An example of a transformation from G to the layered graph Ĝρ with ρ = 3. We have
highlighted with different colors different layers of the graph.

The Layered Graph. Consider an underlying network G and some ρ ∈ Z≥1, corresponding to
the congestion parameter in Definition 13. The layered graph Ĝρ is constructed in the following
way. First, we let Ĝρ be a disjoint union of ρ copies of G (called layers), namely G1, G2, . . . , Gρ.
Each node v ∈ V (G) is associated with its copies v1, v2, . . . , vρ ∈ V (Ĝρ). We also add an
edge between each two copies that originate from the same node (i.e., we add a clique to Ĝρ

on the set of copies associated with the same node v ∈ V (G)); this construction is illustrated
in Figure 2. The layered graph induces a natural projection operation π : V (Ĝρ) → V (G)
which maps a copy vi to its original node v = π(vi). Furthermore, we often talk about
simulating Ĝρ in G, by which we mean that each node v simulates – learns all the inputs and
can generate all outputs – for its copies v1, . . . , vρ. Throughout this paper, we will assume
that ρ = poly(n) so that any O(log n)-bit message on Ĝρ can be sent within O(1) rounds in
G; this also keeps the Õ-notation well-defined.

DISC 2022

6:12 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

The main goal of this section is to establish that the ρ-congested part-wise aggregation
problem on G can be reduced to a 1-congested instance on ĜO(ρ), as formalized below.

▶ Lemma 15 (Unrestricted Congested Part-Wise Aggregation). Let G be an n-node graph and
let Z≥1 ∋ ρ ≤ poly(n). Suppose that any (1-congested) part-wise aggregation on ĜO(ρ) can be
solved with a τ -round CONGEST algorithm on ĜO(ρ). Then, there exists an Õ(ρ · τ)-round
CONGEST algorithm on G that solves any ρ-congested part-wise aggregation instance on G.

Towards establishing this reduction, we first point out that any CONGEST algorithm
on Ĝρ can be simulated with only a ρ multiplicative overhead in the round complexity.

▶ Lemma 16 (Simulating Ĝρ in G). For any G and any Z≥1 ∋ ρ ≤ poly(n), we can simulate
any τ -round CONGEST algorithm on Ĝρ with a (ρ · τ)-round CONGEST algorithm on G.

Furthermore, we will use a folklore result showing how to color a (multi)graph of maximum
degree ∆ in O(∆) colors in O(log n) rounds of CONGEST. By multigraph here we simply
mean that there can be multiple parallel edges between the same pair of nodes, and every
such edge can carry an independent message per round.

▶ Lemma 17 (Folklore, [30]). Given a (multi)graph G with n nodes and maximum degree
∆ ≤ poly(n), there exists a randomized CONGEST algorithm that colors the edges of G with
O(∆) colors and completes in O(log n) rounds, with high probability. The coloring is proper,
i.e., two edges that share an endpoint are assigned a different color.

Using this lemma, we first prove a version of our main reduction (Lemma 15), but with
the slight twist that we restrict each part of the ρ-congested part-wise aggregation problem
to be a simple path.

▶ Lemma 18 (Path-Restricted Congested Part-Wise Aggregation). Let G be an n-node graph
and let Z≥1 ∋ ρ ≤ poly(n). Suppose that there exists a τ -round CONGEST algorithm
solving the (1-congested) part-wise aggregation on ĜO(ρ). Then, there exists an Õ(ρ · τ)-round
CONGEST algorithm on G that solves any ρ-congested part-wise aggregation instance on G

when each part is restricted to be a simple path5 (nodes are not repeated in simple paths).

Finally, our reduction in Lemma 15 follows by reformulating [29, Lemma 7.2].

3.1.2 Treewidth-Bounded Graphs
Here we leverage the reduction we established in Lemma 15 to obtain a simple algorithm
for solving the congested part-wise aggregation problem in treewidth-bounded graphs. The
crucial observation is that the treewidth of the layered graph can only grow by a factor of ρ

compared to the treewidth of the underlying graph, as we show below.

▶ Lemma 19. If the treewidth of G is tw(G), then tw(Ĝρ) ≤ ρ tw(G) + ρ − 1.

Combining this guarantee with Lemmas 12 and 15 and Theorem 10, we obtain the
following immediate consequence.

▶ Corollary 20. Let G be an n-node communication network of diameter at most D and
treewidth tw(G). Then, we can solve with high probability any ρ-congested part-wise aggrega-
tion problem in G within Õ(ρ2 · tw(G) · D) rounds of CONGEST.

5 I.e., there exists a simple path traversing all the nodes of the part, and each node knows the corresponding
incident edges of that path.

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:13

Minor Density in the Layered Graph. In light of Lemma 19, a natural question is whether
an analogous bound holds with respect to the minor density of the underlying graph; i.e.,
whether δ(Ĝρ) = poly(ρ)δ(G). Unfortunately, this is not possible, as illustrated in Figure 3.

▶ Observation 21. There exists an n-node graph G with minor density δ(G) = Õ(1), but its
2-layered version Ĝ2 has minor density δ(Ĝ2) = Ω(

√
n).

Figure 3 The layered graph Ĝρ of a 3 × 3 grid with every node having congestion ρ = 2 (left),
and a minor of Ĝρ induced by the connected components {C1, C2, C3, R1, R2, R3} (right).

3.1.3 General Graphs

We conclude with our main result of Section 3.1: a near-optimal distributed algorithm for
solving the ρ-congested part-wise aggregation problem in general graphs. In light of our
reduction in Lemma 15, the technical crux is to control the degradation in the shortcut
quality incurred by the transformation into the layered graph. Surprisingly, we show that
the shortcut quality of Ĝρ does not increase by more than a polylogarithmic factor even
when the number of layers is polynomial:

▶ Theorem 22. For any n-node graph G and any Z≥1 ∋ ρ ≤ poly(n), we have that
SQ(Ĝρ) = Õ(SQ(G)).

This theorem improves over our previous result for treewidth-bounded graphs (Lemma 19)
since the latter guarantee inevitably induces a linear factor of ρ in the shortcut quality of
Ĝρ. While this will not affect the asymptotic performance of the Laplacian solver, this
improvement might prove to be important for future applications. Assuming that we have
shown Theorem 22, we can then utilize the efficient shortcut constructions given in Theorem 8
to solve ρ-congested part-wise aggregations on any graph.

▶ Corollary 23. There exists a randomized distributed algorithm that, for any n-node graph
G and ρ ∈ Z≥1 ≤ poly(n), solves with high probability any ρ-congested part-wise aggregation
instance on G with the following guarantees:

In the CONGEST, the algorithm terminates in at most ρ · poly
(
SQ(G)

)
· no(1) rounds.

In the CONGEST model on graphs with minor density δ, it requires Õ(ρ · δ · D) rounds.
In the Supported-CONGEST, the algorithm terminates in Õ(ρ · SQ(G)) rounds.

The rest of this subsection is dedicated to the proof of Theorem 22. First, to argue about
the shortcut quality of the layered graph, we need to develop several generalized notions of
node connectivity.

DISC 2022

6:14 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

Pair Node Connectivity. Given a (multi)set of source-sink pairs P = {(si, ti)}k
i=1 in G, we

say that P has pair node connectivity ρ if there exist paths P1, . . . , Pk, with si and ti being
the endpoints of each Pi, such that every node v ∈ V (G) is contained in at most ρ many
paths, i.e., for all v we have |{i : V (Pi) ∋ v}| ≤ ρ. If P has pair node connectivity 1 we say
that they are pair node-disjointly connectable.

Any-to-Any Node Connectivity. Suppose that we are given multisets of k sources S =
{s1, . . . , sk} and k sinks T = {t1 . . . , tk}. We say that (S, T) have any-to-any node connectiv-
ity ρ if there is a permutation π : {1, . . . , k} → {1, . . . , k} such that the pairs {(si, tπ(i))}k

i=1
have pair node connectivity ρ. If (S, T) have any-to-any node connectivity 1 we say they are
any-to-any node-disjointly connectable.

The following decomposition lemma states that two sets with any-to-any node connectivity
ρ can be decomposed into Õ(ρ) many pairs of subsets that are any-to-any node-disjointly
connectable.

▶ Lemma 24. Given a graph G, suppose we are given any two multisets of nodes S ⊆ V (G)
and T ⊆ V (G) of size k := |S| = |T | that have any-to-any node connectivity ρ. Then, we can
partition S = S1 ⊎ S2 ⊎ . . . ⊎ SO(ρ log k) and T = T1 ⊎ T2 ⊎ . . . TO(ρ log k) such that |Si| = |Ti|
and (Si, Ti) are any-to-any node-disjointly connectable.

Next, we introduce two communication tasks that will be useful for characterizing the
shortcut quality.

Multiple-Unicast Problem. Suppose that we are given k source-sink pairs P = {(si, ti)}k
i=1.

The goal is to find the smallest possible completion time τ such that there are k paths
P1, . . . , Pk for which (1) the endpoints of each Pi are exactly si and ti; (2) the dilation is τ ,
i.e., each path Pi has at most τ hops; and (3) the congestion is τ , i.e., each edge e ∈ E(G) is
contained in at most τ many paths.

Any-to-Any-Cast Problem. Suppose we are given k sources S = {s1, . . . , sk} and k sinks
T = {t1 . . . , tk}. The goal is to find the smallest completion time τ such that there ex-
ists a permutation π : {1, . . . , k} → {1, . . . , k} for which the multiple-unicast problem on
{(si, tπ(i))}k

i=1 has a completion time of at most τ .
Finally, we now recall (a reinterpretation of) a result characterizing shortcut quality from

[28, 29]. Shortcut quality was originally defined as the smallest completion-time of the worst-
case generalized (with respect to parts) multiple-unicast (i.e., multi-commodity) problem
over a pair node-disjointly connectable instance (Definition 7). Using recent network coding
gap results, we can equivalently express shortcut quality as the smallest completion-time of
the worst-case any-to-any-cast (i.e., single-commodity) problem over sources and sinks that
are any-to-any node-disjointly connectable. The formal statement follows.

▶ Theorem 25 ([28, 29]). Consider any graph G and let τ be the worst-case completion
time of any-to-any-cast problems taken over all any-to-any node-disjointly connectable sets
(S ⊆ V (G), T ⊆ V (G)). Then, τ = Θ̃(SQ(G)).

Finally, combining all of the previous ingredients, we are ready to show Theorem 22.

Proof of Theorem 22. Let S ⊆ V (Ĝρ) and T ⊆ V (Ĝρ) be any-to-any node-disjointly
connectable sets such that the completion time of any-to-any-cast between S and T is
Θ̃(SQ(Ĝρ)) (Theorem 25). Let k := |S| = |T |, and suppose that S′ :=

⊎
s∈S{π(s)} ⊆ V (G)

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:15

and T ′ :=
⊎

t∈T {π(t)} ⊆ V (G) are the multisets induced by projecting S and T to G,
respectively. By construction of Ĝρ, S′ and T ′ have any-to-any node connectivity ρ; to see
this, consider the witness paths disjointly connecting them in Ĝρ and project them to G.
Therefore, we can partition S′ = S′

1 ⊎ . . . ⊎ S′
O(ρ log k) and T ′ = T ′

1 ⊎ . . . ⊎ T ′
O(log k) such that

|S′
i| = |T ′

i | and (S′
i, T ′

i) are any-to-any node-disjointly connectable in G (Lemma 24).
By definition of shortcut quality, for each i ∈ {1, . . . , O(ρ log k)} there exists a set of paths

(P i
j)|S′

i|
j=1 in G between S′

i and T ′
i of quality (i.e., both congestion and dilation) at most SQ(G).

Then, we inject the first O(log k) collections of paths (P 1
j)j , (P 2

j)j , . . . , (P O(log k)
j)j to the

first layer G1 of Ĝρ; the second O(log k) collections to the second layer G
2, and so on, until

we finally inject the last O(log k) collections to the last layer Gρ. Note that only the paths on
the same layer interact, so both the congestion and dilation after injecting all paths into Ĝρ is
O(SQ(G) log k). Hence, the same applies for the shortcut quality. Finally, to solve the any-to-
any-cast problem on S and T one might need to add an between-layer edge at the beginning
and at the end since each injected path is restricted to some adversarially chosen layer.
However, this only increases the congestion and dilation by O(1). Hence, the completion time
of any-to-any-cast between S and T is Õ(SQ(G)), implying that SQ(Ĝρ) = Õ(SQ(G)). ◀

3.2 The NCC Model
We next turn our attention to the NCC model. We observe that the ρ-congested part-wise
aggregation problem admits a solution in poly(ρ, log n) rounds of NCC. This is established
after appropriately translating the communication primitives established for NCC in [2].

▶ Lemma 26. Let G be an n-node graph. Then, we can solve with high probability any
ρ-congested part-wise aggregation problem on G after O(ρ + log n) rounds of NCC.

4 Almost Universally Optimal Laplacian Solvers

In this section, we relate the congested part-wise aggregation problem we studied in the
previous section with the Laplacian solver in [18]. To present a unifying analysis for both
CONGEST and HYBRID, as well as for future applications and extensions, we analyze
the distributed Laplacian solver under the following hypothesis.

▶ Assumption 27. Consider a model of computation which incorporates CONGEST. We
assume that we can solve with high probability any ρ-congested part-wise aggregation problem
in Q(ρ) = O(ρcQ(1)) rounds, for some universal constant c ≥ 1.

One of our crucial observations is that the performance of the Laplacian solver of [18] can
be parameterized in terms of the complexity of the congested part-wise aggregation problem.
Indeed, we revisit and refine the main building blocks of their solver, leading to the following.

▶ Theorem 28. Consider a weighted n-node graph G for which Assumption 27 holds for
some Q(ρ) = O(ρcQ), where c is a universal constant and Q = Q(G) is some parameter.
Then, we can solve any Laplacian system after no(1)Q log(1/ε) rounds.

Combining this theorem with Corollary 23 and Lemma 26 yields the following immediate
consequences.

DISC 2022

6:16 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

▶ Theorem 2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.
There exists a distributed Laplacian solver with error ε > 0 with the following guarantees:

In the Supported-CONGEST model, it requires no(1) SQ(G) log(1/ε) rounds.
In the CONGEST model, it requires no(1) poly(SQ(G)) log(1/ε) rounds.
In the CONGEST model on graphs with minor density δ, it requires no(1)δD log(1/ε)
rounds.

▶ Theorem 3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complexity no(1) log(1/ε), where ε > 0 is the error of the solver.

Lower Bound in Supported-CONGEST. Finally, we complement our positive results with
an almost-matching lower bound on any graph G, applicable even under the Supported-
CONGEST model, thereby establishing universal optimality up to an no(1) factor. Our
reduction leverages the refined hardness result established in [29] for the spanning connected
subgraph problem [13]. In this problem a subgraph H of G is specified with nodes knowing
all of the incident edges belonging to H. The goal is to let every node learn whether H is
connected and spans the entire network.

▶ Theorem 29 ([29]). Let A be any algorithm which is always correct with probability6 at
least 2

3 for the spanning connected subgraph problem, and T (G) = maxI TA(I; G) be the
worst-case round-complexity of A under G. Then, T (G) = Ω̃(SQ(G)).

In this context, we show that a Laplacian solver can be leveraged to solve the spanning
connected subgraph problem, leading to the following lower bound.

▶ Theorem 1. Consider a graph G with shortcut quality SQ(G). Then, solving a Laplacian
system on G with ε ≤ 1

2 requires Ω̃(SQ(G)) rounds in both CONGEST and Supported-
CONGEST models.

5 Conclusions

In this paper, we have established almost universally optimal Laplacian solvers for both the
(Supported-)CONGEST and the HYBRID model. One of our main technical contributions
was to introduce and study a congested generalization of the standard part-wise aggregation
problem, which we believe may find further applications beyond the Laplacian paradigm in
the future. For example, one candidate problem would be to refine the distributed algorithm
for max-flow due to [22].

We also hope that our accelerated Laplacian solvers will be used as a basic primitive
for obtaining improved distributed algorithms for other fundamental optimization problems
as well. For example, our results directly imply an exact O(m1/2+o(1) SQ(G)) algorithm
for the max-flow problem using a standard reduction [12]. On the other hand, there are
substantial obstacles in obtaining further improvements and strengthening the max-flow
algorithm of [18], which in turn relies on the more recent techniques of [40, 10], as that would
require solving exactly the single-source shortest paths problem in almost SQ(G) rounds.

6 Note that [29] only proved this for always-correct algorithms with probability 1, but the extension we
claim here follows readily from their argument.

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:17

References
1 Ioannis Anagnostides and Themis Gouleakis. Deterministic distributed algorithms and lower

bounds in the hybrid model. In 35th International Symposium on Distributed Computing,
DISC 2021, volume 209 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.5.

2 John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler,
Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In
Christian Scheideler and Petra Berenbrink, editors, The 31st ACM on Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2019, pages 69–79. ACM, 2019. doi:
10.1145/3323165.3323195.

3 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. Shortest paths in a hybrid network model. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1280–1299.
SIAM, 2020. doi:10.1137/1.9781611975994.78.

4 Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for faster minimum
cost flow in unit-capacity graphs. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 93–104. IEEE, 2020. doi:10.1109/FOCS46700.2020.00018.

5 Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster sparse minimum cost flow by
electrical flow localization. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, pages 528–539. IEEE, 2021. doi:10.1109/FOCS52979.2021.00059.

6 Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and
Kanat Tangwongsan. Nearly-linear work parallel SDD solvers, low-diameter decompos-
ition, and low-stretch subgraphs. Theory Comput. Syst., 55(3):521–554, 2014. doi:
10.1007/s00224-013-9444-5.

7 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance computations
in the hybrid network model via oracle simulations. In 38th International Symposium on
Theoretical Aspects of Computer Science, STACS 2021, volume 187 of LIPIcs, pages 21:1–21:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.
21.

8 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. On sparsity awareness
in distributed computations. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd
ACM Symposium on Parallelism in Algorithms and Architectures, pages 151–161. ACM, 2021.
doi:10.1145/3409964.3461798.

9 Tao Chen, Xiaofeng Gao, and Guihai Chen. The features, hardware, and architectures of data
center networks: A survey. Journal of Parallel and Distributed Computing, 96:45–74, 2016.
doi:10.1016/j.jpdc.2016.05.009.

10 Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in õ (m10/7 log W) time (extended
abstract). In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 752–771. SIAM, 2017. doi:10.1137/
1.9781611974782.48.

11 Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian
Scheideler, Philipp Schneider, and Martijn Struijs. Near-shortest path routing in hybrid
communication networks, 2022. arXiv:2202.08008.

12 Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, 2008, pages 451–460. ACM, 2008. doi:10.1145/1374376.1374441.

13 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 363–372, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1993636.1993686.

DISC 2022

https://doi.org/10.4230/LIPIcs.DISC.2021.5
https://doi.org/10.1145/3323165.3323195
https://doi.org/10.1145/3323165.3323195
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1109/FOCS52979.2021.00059
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://doi.org/10.1145/3409964.3461798
https://doi.org/10.1016/j.jpdc.2016.05.009
https://doi.org/10.1137/1.9781611974782.48
https://doi.org/10.1137/1.9781611974782.48
http://arxiv.org/abs/2202.08008
https://doi.org/10.1145/1374376.1374441
https://doi.org/10.1145/1993636.1993686

6:18 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

14 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, pages 367–376. ACM, 2014.

15 Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, pages 331–340, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/1007352.1007407.

16 Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. In 24th International Conference on Principles
of Distributed Systems, OPODIS 2020, volume 184 of LIPIcs, pages 31:1–31:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.2020.31.

17 Sebastian Forster and Tijn de Vos. The laplacian paradigm in the broadcast congested clique.
In PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno, 2022, pages
335–344. ACM, 2022. doi:10.1145/3519270.3538436.

18 Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and Mingquan
Ye. Minor sparsifiers and the distributed laplacian paradigm. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, pages 989–999. IEEE, 2021. doi:10.1109/
FOCS52979.2021.00099.

19 Mohsen Ghaffari. Near-Optimal Scheduling of Distributed Algorithms, pages 3–12. Association
for Computing Machinery, New York, NY, USA, 2015. doi:10.1145/2767386.2767417.

20 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
pages 202–219. SIAM, 2016. doi:10.1137/1.9781611974331.ch16.

21 Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense
minors. In PODC ’21: ACM Symposium on Principles of Distributed Computing, 2021, pages
213–221. ACM, 2021. doi:10.1145/3465084.3467935.

22 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow: Extended abstract. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pages 81–90.
ACM, 2015. doi:10.1145/2767386.2767440.

23 Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In PODC
’22: ACM Symposium on Principles of Distributed Computing, 2022, pages 281–291. ACM,
2022. doi:10.1145/3519270.3538429.

24 Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. In PODC ’21: ACM Symposium on Principles of
Distributed Computing, pages 457–468. ACM, 2021. doi:10.1145/3465084.3467932.

25 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, pages 451–460. ACM, 2016. doi:10.1145/
2933057.2933112.

26 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion shortcuts
on bounded parameter graphs. In Distributed Computing – 30th International Symposium,
DISC 2016, volume 9888 of Lecture Notes in Computer Science, pages 158–172. Springer, 2016.
doi:10.1007/978-3-662-53426-7_12.

27 Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. Hop-constrained expander decom-
positions, oblivious routing, and distributed universal optimality. In STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, 2022, pages 1325–1338. ACM, 2022.
doi:10.1145/3519935.3520026.

28 Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion times
of multiple unicasts. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 494–505. IEEE, 2020. doi:10.1109/FOCS46700.2020.00053.

https://doi.org/10.1145/1007352.1007407
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.1145/3519270.3538436
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1145/2767386.2767440
https://doi.org/10.1145/3519270.3538429
https://doi.org/10.1145/3465084.3467932
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1007/978-3-662-53426-7_12
https://doi.org/10.1145/3519935.3520026
https://doi.org/10.1109/FOCS46700.2020.00053

I. Anagnostides, C. Lenzen, B. Haeupler, G. Zuzic, and T. Gouleakis 6:19

29 Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 1166–1179. ACM, 2021. doi:10.1145/3406325.3451081.

30 Öjvind Johansson. Simple distributed δ + 1-coloring of graphs. Information Processing Letters,
70(5):229–232, 1999.

31 Udit Narayana Kar and Debarshi Kumar Sanyal. An overview of device-to-device communica-
tion in cellular networks. ICT Express, 4(4):203–208, 2018. doi:10.1016/j.icte.2017.08.002.

32 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, pages 217–226. SIAM, 2014. doi:
10.1137/1.9781611973402.16.

33 Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving SDD systems in nearly-linear time. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, 2013, pages 911–920. ACM, 2013. doi:10.1145/2488608.2488724.

34 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. SIAM J. Comput., 43(1):337–354, 2014. doi:10.1137/110845914.

35 Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In Proceedings of the 39th Symposium on Principles of Distributed Computing,
PODC ’20, pages 109–118. Association for Computing Machinery, 2020.

36 Fabian Kuhn and Philipp Schneider. Routing schemes and distance oracles in the hybrid
model, 2022. arXiv:2202.06624.

37 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians – fast,
sparse, and simple. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, pages 573–582. IEEE Computer Society, 2016. doi:
10.1109/FOCS.2016.68.

38 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

39 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in O(log log n)
communication rounds. In Arnold L. Rosenberg and Friedhelm Meyer auf der Heide, editors,
SPAA 2003: Proceedings of the Fifteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, 2003, pages 94–100. ACM, 2003. doi:10.1145/777412.777428.

40 Aleksander Madry. Computing maximum flow with augmenting electrical flows. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
pages 593–602. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.70.

41 D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed
mst construction. In 40th Annual Symposium on Foundations of Computer Science, pages
253–261, 1999. doi:10.1109/SFFCS.1999.814597.

42 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
43 Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In

Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, pages 1862–1867. SIAM, 2016. doi:10.1137/1.
9781611974331.ch130.

44 Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, pages 333–342.
ACM, 2014.

45 Václav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected
(1+ϵ)-shortest paths via minor-aggregates: near-optimal deterministic parallel and distributed
algorithms. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
2022, pages 478–487. ACM, 2022. doi:10.1145/3519935.3520074.

DISC 2022

https://doi.org/10.1145/3406325.3451081
https://doi.org/10.1016/j.icte.2017.08.002
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1145/2488608.2488724
https://doi.org/10.1137/110845914
http://arxiv.org/abs/2202.06624
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1145/777412.777428
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1145/3519935.3520074

6:20 Almost Universally Optimal Distributed Laplacian Solvers via Shortcuts

46 Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn control. HotSDN
2013 – Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, pages 121–126, 2013. doi:10.1145/2491185.2491198.

47 Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl.,
35(3):835–885, 2014. doi:10.1137/090771430.

48 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, pages 919–930. IEEE, 2020. doi:10.1109/FOCS46700.2020.00090.

49 Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T.S. Eu-
gene Ng, Michael Kozuch, and Michael Ryan. C-through: Part-time optics in data centers.
In Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 327–338.
Association for Computing Machinery, 2010. doi:10.1145/1851182.1851222.

50 Goran Zuzic, Gramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun. Universally-
optimal distributed shortest paths and transshipment via graph-based ℓ1-oblivious routing.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2549–2579. SIAM, 2022. doi:10.1137/1.9781611977073.100.

https://doi.org/10.1145/2491185.2491198
https://doi.org/10.1137/090771430
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1145/1851182.1851222
https://doi.org/10.1137/1.9781611977073.100

Byzantine Connectivity Testing in the Congested
Clique
John Augustine #

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

Anisur Rahaman Molla #

Indian Statistical Institute, Kolkata, India

Gopal Pandurangan #

Department of Computer Science, University of Houston, TX, USA

Yadu Vasudev #

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

Abstract
We initiate the study of distributed graph algorithms under the presence of Byzantine nodes. We
consider the fundamental problem of testing the connectivity of a graph in the congested clique
model in a Byzantine setting. We are given a n-vertex (arbitrary) graph G embedded in a n-node
congested clique where an arbitrary subset of B nodes of the clique of size up to (1/3 − ε)n (for any
arbitrary small constant ε > 0) can be Byzantine. We consider the full information model where
Byzantine nodes can behave arbitrarily, collude with each other, and have unlimited computational
power and full knowledge of the states and actions of the honest nodes, including random choices
made up to the current round.

Our main result is an efficient randomized distributed algorithm that is able to correctly
distinguish between two contrasting cases: (1) the graph G \ B (i.e., the graph induced by the
removal of the vertices assigned to the Byzantine nodes in the clique) is connected or (2) the graph
G is far from connected, i.e., it has at least 2|B| + 1 connected components. Our algorithm runs in
O(polylog n) rounds in the congested clique model and guarantees that all honest nodes will decide
on the correct case with high probability. Since Byzantine nodes can lie about the vertices assigned
to them, we show that this is essentially the best possible that can be done by any algorithm. Our
result can be viewed also in the spirit of property testing, where our algorithm is able to distinguish
between two contrasting cases while giving no guarantees if the graph falls in the grey area (i.e.,
neither of the cases occur).

Our work is a step towards robust and secure distributed graph computation that can output
meaningful results even in the presence of a large number of faulty or malicious nodes.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Probabilistic algorithms; Mathematics of computing → Discrete mathematics

Keywords and phrases Byzantine protocols, distributed graph algorithms, congested clique, graph
connectivity, fault-tolerant computation, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.7

Funding John Augustine: Supported in part by Extra-Mural Research Grant (file number EMR/2016
/003016), MATRICS grant (file number MTR/2018/001198), and VAJRA faculty program funded by
SERB, Government of India; also supported by the potential Centre of Excellence in Cryptography
Cybersecurity and Distributed Trust (CCD) under the IIT Madras Institute of Eminence scheme.
Anisur Rahaman Molla: Research supported in part by DST Inspire Faculty research grant DST/IN-
SPIRE/04/2015/002801 and ISI DCSW/TAC Project (file number E5412).
Gopal Pandurangan: This work was supported in part by NSF grants CCF-1717075, CCF-1540512,
IIS-1633720, BSF grant 2016419, and by the VAJRA faculty program of the Government of India.

© John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustine@iitm.ac.in
https://orcid.org/0000-0003-0948-3961
mailto:molla@isical.ac.in
https://orcid.org/0000-0002-1537-3462
mailto:gopal@cs.uh.edu
https://orcid.org/0000-0001-5833-6592
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
https://doi.org/10.4230/LIPIcs.DISC.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Byzantine Connectivity Testing in the Congested Clique

1 Introduction

Computation in the presence of faulty or malicious (also called Byzantine nodes) is a central
issue in distributed computing. Indeed, since the introduction of the Byzantine agreement and
broadcast problems in the early 1980s by Lamport, Pease, and Shostak [30, 24], Byzantine
protocols have been studied extensively for the last four decades (see e.g, [10, 4, 21, 20, 2]
and the references therein). These protocols have focused mainly on addressing fundamental,
but “primitive” computational tasks such as agreement, leader election, broadcast etc in
complete networks. Some of these protocols work in the CONGEST model as well (for e.g.,
the protocols of [21, 2]) where messages are of small size, i.e., polylog n size in networks of size
n and still guarantee fast algorithms, running in polylog n rounds. Hence these Byzantine
protocols solve these fundamental tasks of agreement and leader election in complete networks
in the CONGEST model (i.e., using only small-sized messages).

In this paper we take a step towards addressing more complex computational tasks under
presence of a large number of Byzantine nodes. In this direction, we initiate the study of
distributed graph algorithms under the presence of Byzantine nodes.

We focus on the fundamental problem of testing the connectivity of a graph in the
congested clique model in a full information Byzantine setting. Graph connectivity and
related problems such as minimum spanning tree (MST) have been studied extensively in
the congested clique model in the last decade or so (see e.g., [27, 17, 13, 18]). In this model,
we have a network that is a clique on n nodes and an (arbitrary) input graph G having n

vertices that is embedded in the clique (with each vertex of G mapped to a node of the
clique). Throughout we use “nodes” to denote the processors of the congested clique and
“vertices” to denote the vertices of the input graph G. Connectivity (as well as MST) of the
input graph G can be solved very efficiently in the congested clique, i.e., in O(log n) rounds
[31]. In fact, after a long line of research, it is now known that these problems can be solved
even faster, i.e., in O(1) rounds [18]. All known results in the congested clique (or in the
closely related k-machine model [22, 23, 14, 28, 29] or in the Massively Parallel Computing
(MPC) model [3, 25, 19, 1] used in distributed large-scale graph computations) assume that
all processors are honest and faithfully participate in the computation. However, in many
applications, e.g., in distributed big data computations by a large network of processors,
some of the processors can be faulty or even malicious.1 Motivated by such scenarios, we
assume that an arbitrary subset of B nodes of the clique of size up to (1

3 − ε)n (for any
arbitrary small constant ε > 0) can be Byzantine. We assume the full information model
where Byzantine nodes can behave arbitrarily, collude with each other, and have unlimited
computational power and full knowledge of the states and actions of the honest nodes,
including random choices made up to the current round. Our goal is to study how meaningful
graph computations can be accomplished efficiently (say, running in a small number of
rounds) even in the presence of a large number of Byzantine nodes.

It is not a priori clear how to do meaningful graph computation under a large number
of Byzantine nodes. We note that Byzantine nodes can arbitrarily deviate from the correct
protocol. In particular, they can lie about the edges of G incident on themselves. For
example, a Byzantine node can say that an edge incident on itself is not present to some
honest nodes, while saying the contrary to some other honest nodes. They can also create

1 The situation in the MPC or the k-machine model is harder compared to the congested clique model
since the number of processors (some of which can be faulty) is much smaller than the number of nodes
and thus each processor is responsible for many nodes in the input graph. This setting is left for future
work, while the congested clique setting addressed here is a first step in this direction.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:3

fake edges that are not originally present in G and selectively lie about them to honest nodes.
Despite such malicious behavior we show that one can design efficient protocols such that all
honest nodes end up computing non-trivial meaningful results.

Our main contribution is an efficient randomized Byzantine distributed protocol that is
able to correctly distinguish between two contrasting cases: (1) the graph G \B (i.e., the
input graph induced by the removal of the vertices assigned to the Byzantine nodes in the
clique) is connected or (2) the graph G is far from connected, i.e., it has at least 2|B|+ 1
connected components.2

Since Byzantine nodes can lie about the vertices assigned to them, we show that the
above gap between the two cases is essentially the best possible that can be done by any
algorithm. Our algorithm is efficient in the sense that it takes only O(polylog n) rounds
in the n-node congested clique and guarantees that all honest nodes will decide on the
correct case with high probability. (The exact power of the polylog n depends on Byzantine
agreement and committee election protocols used in prior works that also takes polylog n

rounds (cf. Section 2.2).) Our focus in this paper, as in prior works on agreement and
committee election [21, 8]), is to show that the more challenging problem of Byzantine
connectivity testing can also be accomplished efficiently, i.e., in polylog n rounds.

Our result can be viewed also in the spirit of property testing. In the property testing
model ([16, 32]) one has query access to an input, say a graph. The goal is to test whether the
input has a property, or is far (in an appropriately defined way) from the property by querying
a small part of the input. Property testing algorithms in this setting has been studied for a
variety of problems (see [15] for a detailed exposition). Property testing algorithms in the
CONGEST model was introduced by Censor-Hillel et al. ([6]), and algorithms for properties
like connectivity, cycle-freeness, bipartiteness, planarity have been studied ([9, 11, 26]). Our
current work extends this to testing connectivity in the presence of Byzantine nodes. Our
algorithm checks if the input graph G with B ⊆ V Byzantine nodes is far from connected or
whether G \B is connected; we will precisely define the notion of being far from connected
momentarily.

1.1 Model and Problem Statement
We assume the well-studied synchronous congested clique model consisting of n nodes
(representing processors or computing devices) with each node identified by a unique ID
from {1, 2, . . . , n} = [n]. (The choice of [n] as the space of IDs is without loss of generality
with respect to the usual assumption that IDs are from a poly(n) space because nodes know
each others’ IDs and can use their ordinal numbers in the sorted ordering of IDs instead of
actual IDs.) Communication happens over synchronized rounds, where in each round a node
can communicate with any of the other n− 1 nodes by sending a message of O(log n) bits
(i.e., the CONGEST model). We are given an arbitrary (input) graph G which is embedded
in the clique and is known only locally to the nodes in the network. Every vertex in G is
mapped to a node (processor) in the clique and each clique node has knowledge of the edges
incident to the vertex of G mapped to it. We assume that an arbitrary subset of B nodes of
the clique of size up to (1

3 − ε)n (for any arbitrary small constant ε > 0) can be Byzantine.
We assume that Byzantine nodes can behave arbitrarily, collude with each other, and have

2 It might seem a bit unnatural that in the problem definition the yes and no instances consider two
different graphs: G and G\B. However, we cannot say anything about G itself – whether it is connected
or not – (as is usually the case in a non-Byzantine setting), since even the presence of one Byzantine
node can lead to both possibilities.

DISC 2022

7:4 Byzantine Connectivity Testing in the Congested Clique

unlimited computational power and full knowledge of the states and actions of the honest
nodes, including random choices made up to the current round. This is the so-called full
information model. We note that the Byzantine nodes in the clique are chosen after the
assignment of the graph vertices to the clique.

Our goal is to test properties of the input graph G despite the presence of Byzantine nodes.
The complexity measure of interest is the number of rounds to decide if G has the property.
We would like to design efficient algorithms, i.e., running in a small number of rounds. In
this paper, we describe an algorithm to test connectivity of a graph G in the presence of
Byzantine nodes. We would like all honest nodes to output a common “meaningful” decision
which we define next.

Since Byzantine nodes can lie about the edges incident on them, it is not possible to
test connectivity in the usual sense. For example, assume that G has a cut edge and both
the endpoints are assigned to Byzantine nodes. Then the Byzantine node can lie about the
presence of this edge to other (honest) nodes. Hence honest nodes may conclude that the
graph is not connected.3 More generally, there is no way to verify whether the subgraph of G

induced on the set of Byzantine nodes is indeed connected or not. This example, motivates
that we have to relax the notion of testing connectivity as follows.

The notion of connectivity that we would like to solve is the following. Let b, be the
(upper bound) number of Byzantine nodes.4 Our goal is to test whether G \B is connected
or G is “far from connected.” We say that G is f -far from connected, if one must add at
least f edges to G in order to make it connected (in other words, there are at least f + 1
components in G). All honest (good) nodes must report correctly when G \B is connected
(output TRUE) or G is f -far from connected where f = 2b (output FALSE). If neither
of these hold, then in this case, all honest nodes can output either TRUE or FALSE, but
they should output a common decision value. We will show in Theorem 3 that this gap is
essentially the best possible for any algorithm to distinguish.

While the above gap is the best possible, it helps one to distinguish between two reasonably
contrasting cases. If the input graph G is well connected, say for example, it is b+1-connected,
then the algorithm will correctly output that G \ B is connected, since no matter which
vertices are assigned to Byzantine nodes, deletion of those vertices will still leave the graph
connected. On the other hand, if G far from connected, i.e., it has lot of connected components
(at least 2b + 1 of them), then again, no matter which vertices are assigned to the Byzantine
nodes, then the algorithm will correctly identify that G is far from connected. If neither
of these scenarios occur, then the algorithm will output an arbitrary value (but consistent
across all honest nodes).

1.2 Our Results
Our main result is the following theorem.

▶ Theorem 1. Given a graph G embedded in an n-node congested clique, out of which an
(arbitrary) subset of B nodes (|B| < (1/3− ϵ)n), for any arbitrary small constant ε > 0, are
Byzantine, we present a randomized Byzantine protocol, that with high probability5, runs in
O(polylog n) number of rounds and outputs:

3 Note that the two Byzantine nodes assigned to the endpoints of the cut edge may lie to some honest
nodes and not to others to prevent the honest nodes from reaching a common decision which is required;
this is also an issue that one has to contend with.

4 We assume that honest nodes have knowledge of this upper bound on the number of Byzantine nodes.
Note that, in general, this is the best possible, since some Byzantine nodes can act as good nodes
throughout the protocol.

5 Throughout, “with high probability” means “with probability at least 1 − 1/nc” for some constant c > 0.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:5

TRUE if G \B is connected;
FALSE if G is 2|B|-far from connected;
TRUE or FALSE if neither of the above hold.

All honest nodes output the same answer with high probability.

We also present a simple and deterministic solution. The result is stated in the following
theorem. We defer a proof of this theorem to an extended version of this paper.

▶ Theorem 2. Given a graph G embedded in an n-node congested clique, out of which an
(arbitrary) subset of B nodes are Byzantine, where |B| < n/3. There is a deterministic
algorithm that tests the connectivity of G in O(n) rounds and outputs:

TRUE if G \B is connected;
FALSE if G is 2|B|-far from connected;
TRUE or FALSE if neither of the above hold.

We note that the usual bound of |B| < n/3 Byzantine nodes in the full information
model [30] for agreement holds here as well.

The gap in between the two extreme cases, i.e., whether G \ B is connected or if it
is 2|B|-far from connected is the best possible that one can achieve in the presence of B

Byzantine nodes. We defer the proof to the appendix of this paper.

▶ Theorem 3. There is no algorithm that is guaranteed to distinguish whether a graph G

embedded in an n-node congested clique containing a set B of b Byzantine nodes is f-far
from being connected, or whether G \B is connected with probability at least 1/2 + ϵ (for any
fixed ϵ > 0), unless f ≥ 2b.

1.3 Technical Challenges and Overview
The main difficulty in designing a protocol as claimed in Theorem 1 is correctly distinguishing
the two cases or conclude it is in the gray area. If there are no Byzantine nodes, then one
can simply run a distributed connectivity algorithm, in particular, a distributed minimum
spanning tree (MST) algorithm (assuming all weights are 1) such as the Gallagher-Humblet-
Spira (GHS) algorithm [12] – which is essentially the distributed Boruvka algorithm – on the
congested clique (see e.g., [31]). This algorithm can be easily implemented to run in O(log n)
rounds (deterministically) in the congested clique. However, in the presence of Byzantine
nodes, this algorithm does not work.

There are two main challenges. First is to ensure that the MST algorithm correctly
operates in a consistent manner despite the Byzantine nodes lying (selectively as well) about
the presence or absence of edges incident to the vertices assigned to them. Second is to
ensure that the algorithm operates fast, i.e., in O(polylog n) rounds in the congested clique.

To illustrate the difficulties, as a warm up, we outline an algorithm (the detailed algorithm
and its proof appears in the full version of the paper) that correctly solves the problem (i.e.,
it outputs correctly TRUE or FALSE depending on the cases), but takes polynomial, i.e.,
O(n) rounds. The algorithm is deterministic. The high-level idea behind this algorithm is
as follows. Each node acts as a leader and verifies all the edges of the graph. Byzantine
nodes can try to foil the above algorithm by suggesting fake edges, i.e., edges that don’t
exist. This can be done selectively by sending different information to different honest nodes.
Byzantine nodes can also reject edges that are suggested by good nodes. To overcome this,
an honest node needs to verify if an edge is valid by querying both its endpoints; if both
endpoints validate the edge then it is accepted; otherwise it is rejected. We show that adding

DISC 2022

7:6 Byzantine Connectivity Testing in the Congested Clique

a validated or qualified edge is fine for the correctness of the algorithm; but this is not true
for non-validated edges and hence they should not be added. At the end of the computation,
an honest node will have all the validated edges. We show that an honest node can decide
correctly by checking whether the largest connected component has at least n− b nodes.

The above gives a fairly straightforward algorithm, though different honest nodes might
decide on different answers (because of selective lying by Byzantine nodes). However, we
show that if the input graph G falls in one of the cases, then all honest nodes will decide on
the same answer. However, if the input graph falls in the gray area, then different honest
nodes can end up with different answers. However, one can resolve this, by performing
an efficient Byzantine agreement protocol. To keep the solution deterministic, we use a
deterministic agreement protocol by Dolev et al. [8].

A main drawback of the above approach is that, validating all the edges can cause lot of
congestion. For example, it can happen that Θ(n) edges have a common endpoint and this
information has to be conveyed to every honest node which verifies it. This takes at least
Θ(n) rounds.

Our main contribution is a significantly faster algorithm that runs in O(polylog n) rounds
that is able to avoid congestion and still correctly output the desired answer. At the beginning
of the algorithm, we elect a leader committee of O(log n) leaders. The key technical part of
the algorithm is for each one of the leaders to decide YES/NO. Then the O(log n) leaders
will do Byzantine agreement among themselves to decide the final output (that all honest
nodes can sample). Each leader implements the distributed version of Boruvka’s algorithm
([12]) on the graph, but instead of each node running the algorithm, we create committees of
nodes6, and delegate the algorithm to these committees. The crucial technical ingredient is
a way to construct O(log n)-sized committees for each of the nodes such that the fraction of
committee members that are honest is proportional to the actual fraction of honest nodes in
the network. The leader samples O(log n) many hash functions which are broadcast to every
node in the network. The honest nodes can use these to compute the committee pertaining
to each node in the network. This makes the committees common knowledge among the
nodes in the network, and prevents any tampering by Byzantine nodes. Furthermore, our
construction ensures that each of the committees have a consistent view of the edges in the
graph. We will then run the algorithm constructing the spanning tree via these committees.

2 Preliminaries

2.1 Tail inequalities and hash functions with limited independence
We make use of hash functions with limited independence to save messages (and hence avoid
congestion). These hash functions use c-wise independence and hence we use the following
tail inequalities and properties of such hash functions.
The following tail inequalities are from [33].

▶ Lemma 4. Let c ≥ 4 be an even integer. Suppose Z1, Z2, . . . , Zt are c-wise independent
random variables taking values in [0, 1]. Let Z =

∑t
i=1 Zi and µ = E[Z], and let λ > 0.

Then,

Pr[|Z − µ| ≥ λ] ≤ 2
(

ct

λ2

)c/2
.

6 The idea of communicating using committees has been used before, see e.g., [5, 20]. Note that these
“node” committees are different from the leader committee, elected once at the beginning.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:7

▶ Lemma 5. Suppose that X is the summation of n 0-1 random variables X1, X2, . . . , Xn,
each with mean p. Let µ satisfy µ ≥ E[X] = np. If the Xis are µδ-wise independent, then
for every δ ≥ 1

P[X ≥ (1 + δ)µ] ≤ exp(−δµ/3}).

The following is Definition 7 in [7].

▶ Definition 6. For N , L, c ∈ N, such that c ≤ N , a family of functions H = {h :
[N]→ [L]} is c-wise independent if for all distinct x1, x2, . . . , xc ∈ [N], the random variables
h(x1), h(x2), . . . , h(xc) are independent and uniformly distributed in [L] when h is chosen
uniformly at random from H.

The following lemma appears as Corollary 3.34 in [34].

▶ Lemma 7. For every a, b, c, there is a family of c-wise independent hash functions
H = {h : {0, 1}a → {0, 1}b} such that choosing a random function from H takes c ·max{a, b}
random bits, and evaluating a function from H takes poly(a, b, c) computation.

2.2 Byzantine agreement and committee election
As a subroutine in our protocols, we utilize the following results from King et al. [21]
that gives efficient protocols (running in O(polylog n) rounds) for Byzantine agreement and
committee election in a n-node complete network (i.e., congested clique) that can tolerate up
to (1/3− ϵ)n Byzantine nodes in the full information model. We note that the protocol of
King et al. has the property that every honest node sends and processes only O(polylog n)
number of bits throughout the course of the algorithm. This constrains them to achieving
only almost-everywhere agreement where only 1− o(1) fraction of the honest nodes agree.
If we allow each node of the clique to send O(log n) bits per clique edge per round, then
one can achieve everywhere agreement (i.e., all honest nodes agree) in a straightforward
manner [21]. Similarly, in the committee election problem, all honest nodes can be informed
of the identities of the committee nodes.

For the sake of completeness, we first define Byzantine agreement and Byzantine committee
election.

In Byzantine (everywhere) agreement, starting with each node having an input value (0
or 1), the goal is for all honest nodes to agree on a common value, which should also be an
input value of some honest node.

In Byzantine committee election, the goal is to elect a committee of size Θ(log n) such
that with high probability, the committee consists of at least 2

3 fraction of honest processors.

▶ Theorem 8 (Byzantine committee election [21]). Consider a n-node congested clique model
where up to (1/3− ϵ)n (for any arbitrary small constant ε > 0) of the nodes can be Byzantine
in the full information model. Then there is a randomized protocol that elects a committee of
size Θ(log n) that, with high probability, contains at least 2/3-fraction of honest nodes in the
committee. The protocol runs in O(polylog n) rounds and all honest nodes in the network
know the identities of the committee members.

▶ Theorem 9 (Randomized Byzantine everywhere agreement [21]). Consider a n-node congested
clique model where up to (1/3− ϵ)n (for any arbitrary small constant ε > 0) of the nodes can
be Byzantine in the full information model. There is a randomized protocol that, with high
probability, solves Byzantine agreement such that all honest nodes in the network agree on
a common value (which will be the input value of a honest node) and runs in O(polylog n)
rounds.

DISC 2022

7:8 Byzantine Connectivity Testing in the Congested Clique

We also use a deterministic protocol that solves Byzantine everywhere agreement that
takes linear (in the size of the network) number of rounds. We use this protocol only on a
O(log n)-size network (i.e., a committee of size O(log n)) and hence the time taken is O(log n)
rounds.

▶ Theorem 10 (Deterministic Byzantine Everywhere Agreement [8]). Consider a k-node
congested clique model where fewer than k/3 of the nodes can be Byzantine in the full
information model. There is a protocol that deterministically solves Byzantine agreement
such that all honest nodes in the network agree on a common value (which will be the input
value of a honest node) and runs in O(k) number of rounds.

3 An O(polylog n)-round Algorithm

In this section we give a O(polylog n)-round algorithm for testing connectivity by building
committees for each vertex in the graph such that the communication between nodes is
delegated to their respective committees. We ensure that the committee members are chosen
randomly so that all committees, with high probability, comprise more than 2/3-fraction of
good nodes. Thus, even bad nodes are represented by good committees and this significantly
limits the power of the Byzantine nodes.

We first build a leader committee L of O(log n) size so that more than a 2/3-fraction of
the nodes in the committee are good; see Algorithm 1. This can be done in O(polylog n)
rounds using the protocol of [21] (cf. Theorem 8). This protocol also ensures that all
honest nodes know the identities of all the committee members. Now each ℓ ∈ L acts as
a leader and orchestrates the execution of distributed Boruvka algorithm and decides on
the output; thus, Boruvka’s algorithm is invoked independently by each ℓ ∈ L. This is the
key technical part of the algorithm that we explain next. Once all nodes ℓ ∈ L arrive at
their respective decisions, they can perform a deterministic Byzantine agreement protocol
among the committee members using the protocol of [8] (cf. Theorem 10). We will run
the protocol of [8] for each node in the leader committee acting as a transmitter.7 This
guarantees consistent agreement among the committee nodes of the value of this transmitter
node. (The running time will be O(log2 n) rounds since one run of the transmitter protocol
takes linear number of rounds in the size of the committee which is O(log n).) Since the
majority of the nodes in the leader committee are honest, this also ensures that the majority
answer is the correct answer agreed by all honest nodes in the committee. All other honest
nodes can then query all the committee nodes and then take their majority output as their
own output. The formal steps are outlined in Algorithm 1.

We now briefly comment on how each ℓ ∈ L orchestrates the execution of Boruvka’s
algorithm. We show that it is possible for each ℓ to construct committees of size O(log n) for
each vertex with the property that if at most a β fraction of the nodes in the network are
Byzantine for a fixed constant β < 1/3, then, with high probability, in every committee at
most β + ϵ < 1/3 fraction of nodes are Byzantine (for a small constant ϵ > 0). Moreover,
each committee Comm(v) learns the edges incident at the node v that it represents and can
interact with committees representing v’s neighbors. In other words, the committees (in a
collective sense) learn a consistent view of the graph. Finally, the nodes are balanced across
the committees in the sense that no node needs to be a member of more than O(log2 n)
committees. Theorem 15 proves all these properties formally. We then show how to construct
the spanning tree using these committees and thus test connectivity.

7 This is to ensure majority consensus, i.e., the agreed value is also the majority value among the inputs,
if such a majority exists.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:9

Algorithm 1 The main stem.

1: Use the protocol in [21] to elect a leader committee L of size Θ(log n). /* (cf.
Theorem 8 for relevant properties.) */

2: for each ℓ ∈ L in parallel do
3: Invoke Algorithm 8 with leader ℓ.
4: /* ℓ learns either accept or reject as its outcome */
5: The nodes in L perform Byzantine agreement on their outcomes using [8] (as outlined

above) to reach their final outcomes.
6: Each ℓ ∈ L sends their final outcome to all nodes in [n] \ L.
7: All nodes in [n] \ L set their final outcomes to the value sent by a majority in L.

3.1 Committees Takeover
We now consider the case where a single leader ℓ is able to produce a committee structure that
maps every node v in the network to its representative Θ(log n)-sized committee Comm(v)
comprising sufficiently many good nodes. Moreover, this committee structure must be
common knowledge in the sense that every node u should be able to compute Comm(v) for all
nodes v. Each Comm(v) can then perform computation and communication on behalf of the
node v that it represents. However, each Comm(v) must first learn the required information
(such as the neighborhood of v). If v is Byzantine, the information Comm(v) learns may be
incorrect and inconsistent, but the committees should ensure consistency and also ensure
correctness as far as possible.

We assume the following throughout this section. Let β < 1/3 and ε < 1/3− β be fixed
constants; thus, β + ε is fixed and strictly below 1/3. We assume that, out of a total of
|V | = n nodes, the number of Byzantine nodes is at most βn. Let η be a sufficiently large
constant that depends on β and ε, and let k = ⌈η log n⌉. Recall that the set of nodes in the
network are [n]. When we refer to vertex v ∈ [n], we are referring to the vertex in G that is
assigned to v. Similarly, for u ∈ [n] and v ∈ [n], we use (u, v) ∈ E(G) (resp., (u, v) /∈ E(G))
to denote that the vertices assigned to u and v form an edge (resp., do not form an edge) in
G. Finally, we use N(v) to denote the set {u ∈ [n] \ {v} | (v, u) ∈ E(G)}.

The leader ℓ uses k-wise independent hash functions (cf. Definition 6) in order to build
the committee structure. From Lemma 7, we know that there is a k-wise independent family
of hash functions H with each h ∈ H mapping [n]→ [n]. Moreover, picking a random h only
requires k + 2⌈log n⌉ ∈ O(log n) bits. Thus, ℓ generates the required Θ(log2 n) random bits
that can be used to pick k random hash functions h1, h2, . . . , hk. The leader then broadcasts
those O(log2 n) bits to all nodes in the network, thereby making the k hash functions common
knowledge amongst all the nodes. The committee for each node v ∈ [n] comprises nodes in
{hi(v)|1 ≤ i ≤ k}, thereby making the entire committee structure common knowledge. Thus,
we can summarize the properties of the committee structure as follows.

▶ Lemma 11. The committee structure created by a good leader node ℓ comprises commonly
known committees Comm(v) for all v ∈ V such that |Comm(v)| ≤ k ∈ O(log n). Moreover,
the randomness in the choice of committee members ensures WHP that:
1. the proportion of Byzantine nodes within each committee is at most β + ε + o(1) < 1/3,

and
2. for every c ∈ V , C(c) ≜ {v|c ∈ Comm(v)}, i.e., the set of nodes that c represents as a

committee member, has a cardinality of at most O(log2 n).

DISC 2022

7:10 Byzantine Connectivity Testing in the Congested Clique

Algorithm 2 Committees-Learn-Incident-Edges.

Require: Assume a good leader ℓ is elected and known to all nodes. Let k = ⌈η log n⌉ for a
sufficiently large but fixed η.

Ensure: For each v ∈ V , an associated committee Comm(v) is created. See Theorem 15 for
a detailed listing of all other guarantees.

1: The leader ℓ generates Θ(log n) bits drawn uniformly and independently at random and
broadcasts them to all other nodes.

2: All nodes v use those Θ(log n) bits to draw h1, h2, . . . , hk from the k-wise independent family
H of hash functions.
/* Thus, any node v can compute the committee Comm(u) = {hi(u)|1 ≤ i ≤ k} associated
with any node u. */

3: In parallel ∀v ∈ V do
4: Node v sends the cardinality of its neighborhood |N(v)|

to every c ∈ Comm(v).
5: In parallel ∀c ∈ Comm(v), and ∀i ∈ {1, 2, . . . , |N(v)|} do
6: c elects a routing committee RouteComm(c, v, i) of cardinality Θ(log n) WHP in the

following manner. For every u ∈ V \ {c, v}, P[u ∈ RouteComm(c, v, i)] = Θ(log n
n

),
independently over all u and all i.

7: c sends a request for ith neighbor of v to all members in RouteComm(c, v, i).
8: In parallel each r ∈ RouteComm(c, v, i) do
9: if c ∈ Comm(v) then

10: r conveys the message from c to v.
11: Let q be the number of request messages c conveyed to v through r.
12: if q ∈ O(log n) then
13: v responds to r’s request with the ID of its ith neighbor.

14: r relays the responses back to c.
15: End parallel
16: Let µ be the ID reported by most nodes in RouteComm(c, v, i).
17: if a majority in RouteComm(c, v, i) reported µ then
18: c records the ith neighbor as µ.
19: else
20: Reject the response.
21: /* c can conclude that v is Byzantine. */
22: End parallel
23: End parallel
24: In parallel ∀ pairs u ∈ V and v ∈ V do
25: Ensure all good nodes in Comm(u) and Comm(v) have a consistent record of whether

edge (u, v) ∈ E(G). Note that if both u and v are good, then their record, in addition to
being consistent, must be correct. This is achieved by calling Algorithm 6.

26: End parallel

In order to execute graph algorithms, we require one more crucial ingredient. For each
vertex v, the members of Comm(v) must learn the list of neighbors of v and that procedure
is specified in Algorithm 2. One may be tempted to think that this can be achieved simply
by v sending its adjacency list to each c ∈ Comm(v), but this will take time proportional to
v’s degree, which can be linear in n leading to an algorithm that is linear in n. To sidestep
this delay, we can try random routing to parallelize this process; node v communicates the

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:11

ID of each neighbor of v to each c ∈ Comm(v) through a randomly chosen intermediate
node. However if the random intermediate node is Byzantine, the information may be
misrepresented. To overcome this, we use randomly chosen routing committees as formally
described in Algorithm 2. Some care must be exercised because routing committees can
also contain Byzantine nodes and the information passing through them has to therefore be
vetted.

▶ Lemma 12. By the end of the first parallel loop in Algorithm 2 ending in line number 23,
every c ∈ Comm(v) for v ∈ [n] has learned a list of neighbors of v with the guarantee that
if both c and v are good, the list matches N(v) correctly. Moreover, the time taken for that
first parallel loop to complete is O(polylog(n)) WHP.

At the end of the first parallel loop (line number 23), the nodes in the committees
pertaining to two nodes u and v may not reach the same conclusion about whether (u, v) ∈
E(G) or not. To ensure consistency and correctness (to the extent possible), we perform some
agreement and consistency tie-breaks in the second parallel loop (post line number 23). To
implement this second loop, we need Algorithm 6, which in turn utilizes some key primitives.
The main idea is to first ensure that for each u, the committee Comm(u) first reaches an
agreement on whether there is an edge from u to each v. Each committee therefore has
to perform n − 1 agreements, thereby requiring a total of n(n − 1) agreements. These
large number of agreements are performed in parallel in O(polylog(n)) time (WHP) using
Algorithm 5.

We begin with some simpler primitives that will then be used by Algorithm 5 and
Algorithm 6. Our first primitive is Algorithm 3 where each the committee members of a
node u can communicate messages pertaining to all other nodes v in O(polylog(n)) rounds.

Algorithm 3 Communication between committee members across committees. This
algorithm is described from the perspective of a node c.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a message m(c, u, v).
/* There are O(n2 log n) such messages WHP. */

Ensure: Every c′ ∈ Comm(v) must learn m(c, u, v) as long as c is good.
1: for each u ∈ C(c) and each c′ ∈ Comm(v) do /* Recall that for each c ∈ V ,
|C(c)| ∈ O(log2 n) WHP by Lemma 11. */

2: Node c sends m(c, u, v) to c′.
3: Node c receives m(c′, v, u) sent by c′.

▶ Lemma 13. Algorithm 3 terminates in Θ(log4 n) rounds WHP. Moreover, for every good c,
all its messages are correctly conveyed (i.e., all messages are passed to the intended recipient).

The second primitive is Algorithm 4 wherein for each u, the members of Comm(u)
broadcast messages to each other. Specifically, each c ∈ Comm(u) has a message pertaining
to the pair u and v. Thus, c is in possession of O(n) messages under the role of c ∈ Comm(v);
it may have other such messages as a member of other committees. All those O(n) messages
must reach all other c′′ ∈ Comm(u). Due to the number of messages, c cannot directly send
them to c′′. Instead, c sends each message pertaining to the pair u and v to the members
of Comm(v) using Algorithm 3 and then the members of Comm(v) echo them back to the
members in Comm(u). When c and c′′ are good, clearly, c′′ will hear a majority of consistent
messages correctly from c′′ because the committees that are used to echo the messages are
all dominated by good nodes. Furthermore, Algorithm 4 only requires O(log n) calls to
Algorithm 3, thereby allowing us to conclude the following.

DISC 2022

7:12 Byzantine Connectivity Testing in the Congested Clique

▶ Lemma 14. For every pair u and v, every good node c ∈ Comm(u) will be able to
broadcast its messages of the form m(c, u, v) (see Algorithm 4) to all nodes in Comm(u) using
Algorithm 4. Moreover, its complexity is O(log5 n) rounds WHP.

Algorithm 4 Broadcasting within each committee.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a message m(c, u, v).
/* As before, there are O(n2 log n) such messages WHP. */

Ensure: For all u, every c′ ∈ Comm(u) must learn m(c, u, v) (∀c ∈ Comm(u)) correctly as
long as c is good. /* Note that each c will possess O(n log n) messages of the form
m(c, ·, ·) and it must learn O(n log n) messages. */

1: /* To describe this algorithm, we focus on a pair u and v and a c ∈ Comm(u)
and trace each copy of m(c, u, v) as it makes its way to all other c′′ ∈ Comm(u). This
process must be executed in parallel for every u and v and every c ∈ Comm(u). For this
reason, note that m(c, u, v) cannot be directly sent to all c′′ ∈ Comm(u) because there
are a linear in n number of messages of the form m(c, u, ·) that must reach c′′. */

2: The message m(c, u, v) reaches each c′ ∈ Comm(v). This requires one invocation of
Algorithm 3.

3: Each c′ ∈ Comm(v) now sends m(c, u, v) to each c′′ ∈ Comm(u). This requires O(log n)
invocations of Algorithm 3.

/* Each c′′ ∈ Comm(u) has at most k copies of m(c, u, v) sent by each
c′ ∈ Comm(v). */

4: for each c′′ ∈ Comm(u) do
5: if at least ⌈(k + 1)/2⌉ copies of m(c, u, v) are identical then
6: c′′ accepts the majority copy of m(c, u, v).
7: else
8: Reject the message m(c, u, v).

Having established the two primitives Algorithm 3 and Algorithm 4, we now present
Algorithm 5 and Algorithm 6.

Algorithm 5 Parallel Agreement.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a bit b(c, u, v).
1: /* As before, there are O(n2 log n) such bits WHP. */

Ensure: For each u and each v, the members of Comm(u) must reach an agreement over
the bits b(c, u, v) over all c ∈ Comm(u).

2: In parallel each pair u and v do
3: The members of Comm(u) implement an O(polylog n) round Byzantine Agreement

algorithm [8] using Algorithm 4 to communicate with each other.
4: End parallel

▶ Theorem 15. Consider the protocol described in Algorithm 2. Consider any constant
β < 1/3 and a sufficiently small ϵ ∈ (0, 1/3− β) to be fixed constants. We assume that the
leader ℓ is good and the number of Byzantine nodes B < βn. The following hold with high
probability.
1. Algorithm 2 ensures that every node v ∈ V is represented by a committee Comm(v) ⊆ V

of cardinality Θ(log n). Each node participates in at most O(log2 n) committees.
2. This committee structure is common knowledge amongst all nodes.
3. Byzantine nodes amount to a fraction of at most β + ϵ+o(1) < 1/3 within each committee.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:13

Algorithm 6 Ensuring a consistent view of edges.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a bit b(c, u, v). If u is
good then b(c, u, v) = 1 iff (u, v) ∈ E(G). /* Note that c can be Byzantine and
may misrepresent its bit values. */

Ensure: For every u ∈ V and v ∈ V , the members of Comm(u) must reach an agreement on
whether (u, v) exists. Moreover, it should be consistent with the agreement reached by
Comm(v) regarding edge (u, v), i.e., Comm(u) must agree that the edge (u, v) exists iff
Comm(v) agrees that (u, v) exists. Finally, if both u and v are good, then both Comm(u)
and Comm(v) must agree that edge (u, v) exists iff (u, v) ∈ E(G).

1: Use Algorithm 5 to ensure that for every u and every v, the members in Comm(u)
reach an agreement (using their b(c, u, v) bits). Denote the agreed bit as a(u, v). Each
c ∈ Comm(u) sets a(c, u, v)←− a(u, v).

2: Use Algorithm 3 to ensure that for every u and every v, the members of Comm(v)
learn a(c, u, v) for every c ∈ Comm(u). /* This also means that the members of
Comm(u) learn a(c′, v, u) for every c′ ∈ Comm(v). */

3: For every u and every v, the members of Comm(u) learn a(v, u) by taking majority over
all a(·, v, u) values received in the previous step.

4: For every u and every v, the members of Comm(u) set their final agreement bit f(u, v)
to 1 iff both a(u, v) = 1 and a(v, u) = 1.

4. For every pair of nodes u and v, Comm(u) has reached an agreement about whether
(u, v) ∈ E(G). Note that Comm(v) has also reached its own agreement. The agreements
satisfy the following two properties.

Consistency. Comm(u) reaches the agreement that (u, v) ∈ E(G) iff Comm(v) reaches
the agreement that (u, v) ∈ E(G).

Correctness. If u is good and (u, v) /∈ E(G), the committees reach the agreement that
(u, v) /∈ E(G). Furthermore, if both u and v are good nodes, then, their committees
reach the agreement that (u, v) ∈ E(G) iff (u, v) ∈ E(G).

5. Finally, the protocol terminates in O(polylog n) rounds.

Proof. Item (i) follows immediately from Lemma 11. Item (ii) follows from Algorithm 2
where the leader sends the O(log2 n) bits to all the nodes and the nodes can then compute
the committee structure locally at all nodes. Item (iii) is proved in item (i) of Lemma 11.
Item (v) follows from Lemma 12, Lemma 13, Lemma 14, and the fact that Algorithm 6 only
requires O(log n) invocations of Algorithm 3 and Algorithm 4.

For item (iv), let us focus our attention on Algorithm 6. Note that for each u the
associated Comm(u) internally reaches agreement in Line 1 about whether (u, v) ∈ E(G)
for every other v. Then, for each pair u and v, their respective committees learn about the
agreement reached by the other committee; see Line 3. In Line 4, both committees reach a
consistent agreement. Moreover, they reach a common agreement that the edge (u, v) ∈ E(G)
iff both Comm(u) and Comm(v) internally reached that agreement. Thus, as long as one of
them (i.e., either u or v) is good, Comm(u) and Comm(v) cannot reach a joint agreement
that (u, v) ∈ E(G) when (u, v) /∈ E(G). On the flip side, when both u and v are good, their
committees would have reached the correct internal agreement and therefore the common
agreement will also be correct. ◀

DISC 2022

7:14 Byzantine Connectivity Testing in the Congested Clique

3.2 Constructing a spanning tree using committees

As mentioned earlier, we will implement a distributed version of Boruvka’s algorithm by
delegating the work done by each of the vertices in the network to their corresponding
committees. We will start by describing an implementation of Boruvka’s algorithm in the
congested clique in the absence of Byzantine nodes.

The algorithm proceeds in phases, and in phase i, we have a collection of fragments
F1, F2, . . . , Fr that are disjoint connected components of the underlying graph. Each fragment
Fi has an associated fragment identifier, which is the name of one of the vertices in the
fragment. We will maintain the invariant that after each phase, every vertex in the graph
knows the fragment ids of every other vertex in the graph. Initially, the fragments are
individual vertices, and the fragment ids are their own ids. Every vertex transmits their id
to every other vertex in the clique.

Suppose that after the ith phase, the fragments are F1, F2, . . . , Fr and that the invariant
holds. Let fv denote the fragment id of the vertex v. We will assume that the algorithm
always chooses the lexicographically smallest outgoing edge from a fragment. Now, each
vertex chooses the lexicographically least u in the neighborhood of v such that fu ̸= fv

and broadcasts the id of u to every vertex in the clique. Now, each node can calculate
the lexicographically least outgoing edge from every fragment and hence compute the new
fragments and their ids. Since the number of fragments reduce by a factor of at least two
every step, the number of rounds is O(log n). Notice that this algorithm is deterministic,
and ends when the graph has been partitioned into connected components. Now we will see
how to implement this algorithm in the presence of Byzantine nodes using committees as
described in the previous subsection.

Algorithm 7 Single phase of Distributed Boruvka.
Require: Graph partitioned into fragments F1, F2, . . . , Fr, with a fragment id associated

with each fragment. Conditions of Theorem 15 hold. For each u, Comm(u) knows the
fragment id of u which we will denote by fu.

Ensure: Find one inter-fragment edge per fragment, and update fragment ids
1: In parallel ∀c ∈ V do
2: ∀u such that c ∈ Comm(u), send (id(u), fu) to every vertex in the clique
3: End parallel
4: In parallel ∀c ∈ V do
5: ∀u such that c ∈ Comm(u), find u with smallest id such that fu ̸= fv and send (id(u), id(v))

to every vertex in the clique.
6: End parallel

Correctness and Complexity. From Lemma 11, we know that, with high probability, at
least half of the nodes in a committee is good. Hence, for each u, every vertex v can compute
the committee of u, Comm(u) and use the majority value of its messages from Comm(u) to
compute fu. Similarly, for each u, majority of the vertices in Comm(u) will correctly calculate
its smallest outgoing edge. Thus each vertex v, can use the majority answer from Comm(u)
to find the outgoing edge from u. Thus, each vertex can compute the correct outgoing edge
from a fragment and update the fragment ids accordingly. By Lemma 11, we know that,
with high probability, each node c is present in the committee of O(log n) other vertices.
Hence the round complexity of Algorithm 7 is O(log2 n).

We now describe the final algorithm.

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:15

Algorithm 8 Connectivity Testing.

Require: Graph G in the congested clique model, and a node ℓ designated as leader known
to every vertex in the graph

Ensure: Leader ℓ outputs accept (TRUE) if G\B is connected, and outputs reject (FALSE)
if G is 2|B|+ 1-far from being connected.

1: Use Algorithm 2 to obtain committees for each of the nodes in the graph that satisfies
the conditions of Theorem 15.

2: Set every vertex u as a singleton fragment with fragment id as the vertex id.
3: Each node executes Algorithm 7 until there are no inter-fragment edges.
4: Leader ℓ accepts if there is a component of size at least n− |B|. Else ℓ rejects.

The following two lemmas prove the correctness of the algorithm. Lemma 16 shows that
if indeed G \B is connected, then this will be observed by the leader with high probability,
and Lemma 17 shows that the leader will reject, with high probability, if G is 2|B|-far from
being connected. If neither of the two conditions hold, then all the honest nodes converges
on a consistent answer even though we can give no guarantee on what that answer will be.

▶ Lemma 16. If the graph G \ B is connected, then the leader returns accept with high
probability in Algorithm 8.

▶ Lemma 17. Let β < 1/3 be a constant such that |B| = βn. If the graph G is 2|B|-far
from being connected, then the leader returns reject with high probability in Algorithm 8.

We now show how to combine the results for the proof of Theorem 1.

Proof of Theorem 1. First, we will elect a leader committee of Θ(log n) nodes such that
at least 2/3-fraction of these nodes are honest. For this we use Theorem 8. Now, each
leader node in this committee runs Algorithm 8 to check the connectivity of the graph.
From Lemmas 17 and 16, we can conclude that if the leader node is honest, then it obtains
the correct answer with high probability. To obtain the final answer we use the consensus
algorithm of [8] (Theorem 10), which guarantees that the consensus obtained by the leader
committee is the value of the transmitter node. Since each honest node has the wrong answer
with probability at most 1/nc, for some constant c, by a union bound we can conclude that
with high probability all honest nodes have the correct answer. Thus, repeating the consensus
algorithm of [8] with each node acting as the transmitter ensures that for the majority of the
values are the correct answer with high probability. ◀

4 Conclusion and Future Work

In this paper, we take a step towards robust and secure distributed graph computation by a
network of nodes that can output meaningful results even in the presence of a large number
of faulty or malicious nodes. This can be relevant in distributed big data applications where
a large number of processors operate on a (large-scale) input and some of the processors
can be faulty or malicious. We address the fundamental problem of connectivity and show
that non-trivial meaningful computation can be performed in an efficient manner even in
the presence of a large number of Byzantine nodes. One of the key aspects of studying
graph problems in this Byzantine fault-tolerant setting is arriving at the correct problem
formulation. One must contend with the fact that Byzantine nodes will enforce a “gap”
between two solvable ends of a spectrum of input instances. Our work shows that we can
indeed formulate such gap problems in a meaningful way. The techniques used in this paper
may be useful in Byzantine distributed computation of other problems in the congested
clique.

DISC 2022

7:16 Byzantine Connectivity Testing in the Congested Clique

Our approach can serve as a starting point for a general technique for transforming
non-Byzantine congested-clique algorithms to Byzantine ones. This work which addresses the
basic connectivity problem is a step towards this larger goal which is harder. For example,
generalizing our approach to even the closely related MST problem (in a weighted graph) is
not immediate as it is not clear what a meaningful output for MST will be in a weighted
graph in a Byzantine setting. This is an important next step and is left for future work.

Several open questions arise from our work. While the focus of this work is fast algorithms
(running in polylog(n) rounds), it is also relevant to consider the message complexity of the
protocol. The proposed algorithm takes O(n2 polylog(n)) messages in the worst case. This
message complexity is essentially optimal (upto a polylog(n) factor) in the so-called KT0
model (where nodes don’t have apriori information about the identities of its neighbors) since
Ω(n2) is a lower bound for connectivity testing in the congested clique even when there are
no Byzantine nodes[17]. The situation is not clear if nodes have knowledge of the identities
of their neighbors initially (so-called KT1 model). In this case, the question of whether o(n2)
or even O(n polylog n) message algorithms are possible is open. Note that this is possible if
there are no Byzantine nodes [17].

An interesting way to characterize performance of Byzantine protocols for more compli-
cated problems such as connectivity is to parameterize the complexity of the performance
in terms of the number of calls to Byzantine agreement which is a basic primitive. In this
direction, the goal is to reduce the number of calls to agreement as much as possible.

A major next step is addressing even more challenging problems such as MST and other
graph problems.

References
1 A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong. Parallel graph connectivity in log

diameter rounds. In Proc. IEEE FOCS, pages 674–685, 2018.
2 John Augustine, Valerie King, Anisur Rahaman Molla, Gopal Pandurangan, and Jared Saia.

Scalable and secure computation among strangers: Message-competitive byzantine protocols.
In 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020,
Virtual Conference, volume 179 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

3 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6):40:1–40:58, 2017.

4 Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-
information model in o(log n) rounds. In Proc. of the 38th Annual ACM Symposium on Theory
of Computing (STOC), pages 179–186, 2006.

5 Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In Proc. of the
10th Theory of Cryptography Conference (TCC), pages 356–376, 2013.

6 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Comput., 32(1):41–57, 2019. doi:10.1007/
s00446-018-0324-8.

7 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring
in the congested clique. Proceedings of the 39th Symposium on Principles of Distributed
Computing, July 2020. doi:10.1145/3382734.3405751.

8 Danny Dolev, Michael J. Fischer, Robert J. Fowler, Nancy A. Lynch, and H. Raymond
Strong. An efficient algorithm for byzantine agreement without authentication. Inf. Control.,
52(3):257–274, 1982.

https://doi.org/10.1007/s00446-018-0324-8
https://doi.org/10.1007/s00446-018-0324-8
https://doi.org/10.1145/3382734.3405751

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:17

9 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes
on distributed property testing. In Andréa W. Richa, editor, 31st International Symposium
on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91
of LIPIcs, pages 15:1–15:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.DISC.2017.15.

10 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. SIAM J. Comput., 26(4):873–933, 1997.

11 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Trans. Parallel
Comput., 6(3):12:1–12:20, 2019. doi:10.1145/3322811.

12 R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, January 1983. doi:
10.1145/357195.357200.

13 Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In George
Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 19–28. ACM, 2016.

14 S. Gilbert and L. Li. How fast can you update your MST. In Proc. ACM SPAA, pages 531–533,
2020.

15 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. doi:
10.1017/9781108135252.

16 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

17 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and
Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity and
MST. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 91–100. ACM, 2015.

18 Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In Artur
Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2620–2632. SIAM,
2018.

19 H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce. In Proc.
ACM SPAA, pages 938–948, 2010.

20 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: Scalable byzantine agreement
with an adaptive adversary. J. ACM, 58:18:1–18:24, July 2011.

21 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA,
pages 990–999, 2006.

22 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Distributed
computation of large-scale graph problems. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 391–410. SIAM, 2015.

23 C. Konrad, S. V. Pemmaraju, T. Riaz, and P. Robinson. The complexity of symmetry breaking
in massive graphs. In Proc. DISC, volume 146, pages 26:1–26:18, 2019.

24 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

25 S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving graph
problems in MapReduce. In Proc. ACM SPAA, pages 85–94, 2011. doi:10.1145/1989493.
1989505.

26 Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the CONGEST
model. Distributed Comput., 34(1):15–32, 2021. doi:10.1007/s00446-020-00382-3.

27 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in o(log
log n) communication rounds. In Arnold L. Rosenberg and Friedhelm Meyer auf der Heide,
editors, SPAA 2003: Proceedings of the Fifteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, June 7-9, 2003, San Diego, California, USA (part of FCRC
2003), pages 94–100. ACM, 2003.

DISC 2022

https://doi.org/10.4230/LIPIcs.DISC.2017.15
https://doi.org/10.4230/LIPIcs.DISC.2017.15
https://doi.org/10.1145/3322811
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.1017/9781108135252
https://doi.org/10.1017/9781108135252
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1007/s00446-020-00382-3

7:18 Byzantine Connectivity Testing in the Congested Clique

28 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms
for connectivity and MST in large graphs. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 429–438. ACM, 2016.

29 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed complexity
of large-scale graph computations. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18, 2018, pages 405–414.
ACM, 2018.

30 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

31 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia,
2000.

32 Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and over
rational domains. In Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, pages 23–32. ACM/SIAM, 1992.

33 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM J. Discret. Math., 8(2):223–250, 1995.

34 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

A Proof from Section 1

Proof of Theorem 3. Consider any 1 ≤ b ≤ n and f = 2b − 1. Suppose (for the sake of
contradiction) that there is an algorithm A that can distinguish the following two cases with
probability at least 1/2 + ϵ: (i) G is f -far from being connected, or (ii) G \B is connected.
For clarity, we will use the term global algorithm to refer to the collective execution of an
algorithm at all nodes and the term protocol to refer to the specific execution at an algorithm
at a particular node.

We prove this theorem by constructing two graphs: (i) Gf that is f -far from being
connected and (ii) Gc with a connected component of size n− b. We then show embeddings
of these graphs on n node congested cliques with b Byzantine nodes such that the Byzantine
nodes can render both embeddings indistinguishable to the global algorithm A.

Figure 1 Graphs used in the proof of Theorem 3.

To aid us in formally showing this indistinguishability, we first construct two graphs G0
and G1 (that only differ in one edge) and embed them in congested cliques. See Figure 1
for schematics. Executing A on G0 and G1 will provide us with specific protocols executed
by specific nodes in their respective congested cliques that can be used to precisely specify
the protocols executed by Byzantine nodes in the embeddings of Gc and Gf . Both G0 and
G1 comprise a clique of size n− f (numbered 1 through n− f). G0 (resp., G1) has a “tail”
comprising b− 1 nodes (resp., b nodes) numbered n− f + 1 to n− f + b− 1 (resp., n− f + b).

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:19

Specifically, the tail is a path comprising b− 1 nodes (resp., b nodes) with one of its ends
(node numbered n− f + 1) connected to the (n− f)th node in the clique. Additionally, G0
(resp., G1) comprises f − b+1 (resp., f − b) nodes numbered n−f + b to n (resp, n−f + b+1
to n) that are isolated. The embedding is straightforward. Vertex i is embedded into node i

for all 1 ≤ i ≤ n. Some arbitrary b nodes in this embedding are Byzantine. Let A0
i (resp.,

A1
i) denote the protocol executed by node i in the embedding of G0 (resp., G1) given that i

is good. Note that A is not required to interpret Gj , 0 ≤ j ≤ 1, correctly because neither is
Gj \B connected nor is Gj f -far from connected.

Gf comprises one clique of n− f vertices (numbered 1 to n− f) and f isolated vertices
(numbered n − f + 1 to n); thus it is f -far from connected. See Figure 1 for a schematic
representation of Gf . The clique is embedded into the first n − f nodes of the congested
clique and the isolated vertices are embedded into the remaining f nodes. The b Byzantine
nodes are nodes n − f, n − f + 1, . . . , n − f + b − 1. The adversary specifies the protocol
executed by the Byzantine nodes i, n− f ≤ i ≤ n− f + b, to be A1

i . All other nodes i, by
the design of A and the vertex embedded into them (along with incident edges matching
Gg), execute their respective Ai. Intuitively, this again produces a view of the graph that
combines G0 and G1 with the one edge between vertices n− b and n− b + 1 under contention.
The protocol A1

n−b executed by n− b will essentially operate under the existence of the edge
while An−b+1 executed by node n− b + 1 will operate under its non-existence.

Similarly, Gc comprises one clique on n− f vertices (numbered 1 to n− f) and a path
on vertices numbered n− f to n. See Figure 1 for a schematic representation of Gc. The
embedding is natural, i.e., vertex i in Gc is embedded into node i in the congested clique.
The b Byzantine nodes are n− b + 1 to n and the adversary respectively executes protocol
A0

i , n− b + 1 ≤ i ≤ n, on those vertices. The rest of the vertices i, 1 ≤ i ≤ n− b, by their
design execute protocol Ai. Importantly, this embedding is such that Gc \B is connected.
Intuitively, this embedding again produces a view of the graph that combines G0 and G1
with the one edge between vertices n− b and n− b + 1 under contention. The protocol An−b

executed by n− b will essentially operate under the existence of the edge while A0
n−b+1 will

be executed by node n− b + 1 under its non-existence.
It is easy to verify that the protocols executed at corresponding nodes in both Gf and Gc

execute the same code under the same local input. Thus, the global algorithm executed by
the two embeddings of Gf and Gc are statistically identical. However, the global algorithm
executed by the two embeddings must be able to distinguish with probability 1/2 + ϵ whether
the underlying graph is Gc or Gf , thereby establishing the contradiction. ◀

B Proofs from Section 3

Proof of Lemma 11. Item (i) is easy to prove through a simple application of the Cher-
noff bound. Fix some node u. Recall that when h ∈ H is chosen uniformly at random,
P(h(u) = v) = 1/n. Thus, when the number of Byzantine nodes is at most βn, the
Pr(h(u) is Byzantine) ≤ β. Since the leader chooses hi, 1 ≤ i ≤ k = O(log n), independently
and uniformly at random from H, we can apply Chernoff bounds to bound the number of
Byzantine nodes in Comm(u). Let Xi = 1 if hi(u) is Byzantine, and 0 otherwise. Then,
X =

∑
i Xi will be the total number of Byzantine nodes in Comm(u). Clearly, µ = E[X] ≤ βk.

Then, by Chernoff bounds,

P(X ≥ (β + ε)k) = P(X ≥ (1 + ε/β)µ)
≤ exp (−µ(ε/β)2/3)
≤ 1/ poly(n).

DISC 2022

7:20 Byzantine Connectivity Testing in the Congested Clique

To complete the argument that the proportion of Byzantine nodes in Comm(u) is at most
β + ε, we also need to ensure that the committee is of cardinality at least k −O(1) WHP,
i.e., there aren’t too many duplicated hi(u) values. This is easy to argue because, for a fixed
i ∈ [k], the probability that hi(u) is a duplicated item is at most k/n = O(log n

n). Moreover,
for 1 ≤ i ≤ k, the hi(u) values are k-wise independent. Clearly then, with high probability, no
more than O(1) items in the committee are duplicated. Thus, we can conclude that the fraction
of Byzantine nodes in the committee will be at most (β +ε)k/(k−O(1)) = β +ε+o(1) < 1/3
WHP when k is sufficiently large. To complete the argument, we can take the union bound
over all u ∈ [n].

To prove item (ii), we use the k-wise independence of H and apply Lemma 5. Let us
focus on the first hash function h1 and one node c; later we can apply the union bound over
all hi and all c. Let Yu be 1 if h1(u) = c and 0 otherwise. If we then set Y =

∑
u Yu, we get

the number of committees in which c participates as the first node. Since the Yu values are
k-wise independent, we can apply Lemma 5 and get (for suitable δ ∈ Θ(log n))

P(Y ≥ (1 + δ)E[Y]) ≤ exp(−min(k, δ2t log n)) ≤ 1/ poly(n).

Item (ii) follows when we take the union bound over all hi and all c. ◀

Proof of Lemma 12. We first bound the time and then prove correctness.
First, we need to ensure that Line number 7 takes O(polylog(n)) rounds WHP and this

will be ensured as long as each c ∈ [n] sends at most O(polylog(n)) messages. To show this,
we need to bound the number of routing committees in which a node r will participate for a
particular v and c ∈ Comm(v). By a straightforward application of Chernoff bounds, we get
that required bound.

▶ Lemma 18. Fix any v, any c ∈ Comm(v), and an arbitrary r ∈ [n]. With high probability,

|{RouteComm(c, v, i) ∋ r | i ∈ [N(v)]}| ∈ O(log n).

The requests are relayed to v and back to c only if c ∈ Comm(v). So again, the congestion in
the links between c and r and between r and v will only be O(polylog(n)), implying that the
inner parallel loop (lines 8 to 15) completes in O(polylog(n)) rounds. Thus, by extension,
the running time for the first parallel loop is O(polylog(n)).

The correctness follows in a straightforward manner. If both c is good, then in expectation,
fewer than β proportion of nodes will be bad in the routing committee. Thus, by a standard
application of the Chernoff bound it follows that the the routing committees RouteComm(c, ·, ·)
are all good in the sense that fewer than 1/3 proportion of nodes will be bad. Of course,
bad nodes can claim to be in those routing committees. However, if v, c ∈ Comm(v), and
r ∈ RouteComm(c, v, i) (for some i) are all good, then they will all follow the protocol and
so each routing committee will provide a majority of correct responses. Thus, taking the
union bound over all i, the proof of Lemma 12 is complete. ◀

Proof of Lemma 13. Fix a pair of nodes c and c′ and consider their role as committee
members. Recall that |C(c)| and |C(c′)| are both O(log2 n) WHP. The number of messages c

sends to c′ is O(log4 n) because each u ∈ C(c) has an associated message m(c, u, v) for each
v ∈ C(c′) and all these messages must traverse the link between c and c′. Moreover, no other
message is passed.

The correctness follows because the messages are directly passed to all c′ ∈ Comm(v). ◀

J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:21

Proof of Lemma 16. If G\B is connected, then every non-Byzantine node is in a connected
component of size at least n− |B|. We know that after each step of Algorithm 7, with high
probability, every node knows the fragment ids of every non-Byzantine node. at the end of
Algorithm 8. Therefore, at the end of the algorithm, the leader ℓ has the fragment ids of
every non-Byzantine node. Since they all will lie in the same component, the leader will
accept. ◀

Proof of Lemma 17. If G is 2|B|-far from being connected, then then there are at least
2|B|+ 1 connected components in the graph. Since there are only |B| Byzantine nodes, there
are at most |B| components that contain them. Even if these Byzantine nodes claim to be
connected with each other, the size of the component is less than n−|B|. Otherwise, since we
have an additional |B|+1 components, the number of vertices would be ≥ n−|B|+|B|+1 > n.

We know that the fragment ids of each honest node is known to everyone else after each
run of Algorithm 7. At the end of the algorithm, the leader knows the fragment ids of
every non-Byzantine node in the network. From the previous analysis we know that no
component has size at least n− |B|, and hence, with high probability, the leader will reject
this graph. ◀

DISC 2022

Efficient Classification of Locally Checkable
Problems in Regular Trees
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy

Sebastian Brandt #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Yi-Jun Chang #

National University of Singapore, Singapore

Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Jan Studený #

Aalto University, Espoo, Finland

Jukka Suomela #

Aalto University, Espoo, Finland

Abstract
We give practical, efficient algorithms that automatically determine the asymptotic distributed
round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two
settings. We present one algorithm for unrooted regular trees and another algorithm for rooted
regular trees. The algorithms take the description of a locally checkable labeling problem as input,
and the running time is polynomial in the size of the problem description. The algorithms decide if
the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n1/k)
for some k = 1, 2, . . . , and in this case the algorithms also output the right value of the exponent k.

In rooted trees in the O(log n) case we can then further determine the exact complexity class
by using algorithms from prior work; for unrooted trees the more fine-grained classification in the
O(log n) region remains an open question.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases locally checkable labeling, locality, distributed computational complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.8

Related Version Full Version: https://arxiv.org/abs/2202.08544

1 Introduction

We give practical, efficient algorithms that automatically determine the asymptotic distributed
round complexity of a given locally checkable graph problem in rooted or unrooted regular trees
in the [Θ(log n), Θ(n)] region, for both LOCAL and CONGEST models, see Section 3 for the
precise definitions. In these cases, the distributed round complexity of any locally checkable
problem is known to fall in one of the classes shown in Figure 1 [22, 21, 11, 20, 14, 31, 12].
Our algorithms can distinguish between all higher complexity classes from Θ(log n) to Θ(n).

1.1 State of the art
Since 2016, there has been a large body of work studying the possible complexities of LCL
problems. After an impressive sequence of works, the complexity landscape of LCL problems
on bounded-degree general graphs, trees, and paths is now well-understood. For example,

© Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
mailto:brandt@cispa.de
mailto:cyijun@nus.edu.sg
mailto:dennis.olivetti@gssi.it
mailto:jan.studeny@aalto.fi
mailto:jukka.suomela@aalto.fi
https://doi.org/10.4230/LIPIcs.DISC.2022.8
https://arxiv.org/abs/2202.08544
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Efficient Classification of Locally Checkable Problems in Regular Trees

(a) Rooted regular trees in deterministic and randomized CONGEST and LOCAL:

Θ(1) ︸︷︷︸
prior
work
(EXP)

Θ(log∗ n) ︸︷︷︸
prior
work
(EXP)

Θ(log n) ︸︷︷︸
prior
work
(P)

. . . ︸︷︷︸
this

work
(P)

Θ(n1/3) ︸︷︷︸
this

work
(P)

Θ(n1/2) ︸︷︷︸
this

work
(P)

Θ(n)

(b) Unrooted regular trees in deterministic CONGEST and LOCAL:

Θ(1) ︸︷︷︸
unknown

Θ(log∗ n) ︸︷︷︸
unknown

Θ(log n) ︸︷︷︸
this

work
(P)

. . . ︸︷︷︸
this

work
(P)

Θ(n1/3) ︸︷︷︸
this

work
(P)

Θ(n1/2) ︸︷︷︸
this

work
(P)

Θ(n)

(c) Unrooted regular trees in randomized CONGEST and LOCAL:

Θ(1) ︸︷︷︸
unknown

Θ(log∗ n) ︸︷︷︸
unknown

Θ(log log n) ︸︷︷︸
unknown

Θ(log n) ︸︷︷︸
this

work
(P)

. . . ︸︷︷︸
this

work
(P)

Θ(n1/3) ︸︷︷︸
this

work
(P)

Θ(n1/2) ︸︷︷︸
this

work
(P)

Θ(n)

Figure 1 The most efficient algorithms for the classification of distributed round complexities. In
the figure we show all possible complexity classes. Each gap between two classes corresponds to a
natural decision problem: given a locally checkable problem, determine on which side of the gap its
complexity is. For each gap we indicate whether a practical algorithm was provided already by prior
work [9], whether it is first presented in this work, or whether the existence of such a routine is still
an open question. The figure also indicates whether the algorithms are in P (polynomial time in the
size of the problem description) or in EXP (exponential time in the size of the problem description).

it is known that there are no LCLs with deterministic complexity between ω(log∗ n) and
o(log n). The proofs of some of the complexity gaps implies that the design of asymptotically
optimal distributed algorithms can be automated in certain settings, leading to a series
of research studying the computational complexity of automated design of asymptotically
optimal distributed algorithms. See Section 2 for more details.

The most recent paper [9] in this line of research presented an algorithm that takes as
input the description of an LCL problem defined in rooted regular trees and classifies the
problem into one of the four complexity classes O(1), Θ(log∗ n), Θ(log n), and nΘ(1). The
classification applies to both the LOCAL and CONGEST models of distributed computing,
both for randomized and deterministic algorithms.

To illustrate the setting of locally checkable problems in rooted regular trees, consider,
for example, the following problem, which is meaningful for rooted binary trees:

Each node is labeled with 1 or 2. If the label of an internal node is 1, exactly one of
its two children must have label 1, and if the label of an internal node is 2, both of its
children must have label 1.

We can represent it in a concise manner as a problem C = {1 : 12, 2 : 11}, where a : bc

indicates that a node of label a can have its two children labeled with b and c, in some order.
We can take such a description, feed it to the algorithm from [9], and it will output that this
problem requires Θ(log n) rounds in order to be solved in a rooted tree with n nodes.

1.2 What was missing
What the prior algorithm from [9] can do is classifying a given problem into one of the four
main complexity classes O(1), Θ(log∗ n), Θ(log n), and nΘ(1). However, if the complexity is
nΘ(1), we do not learn whether its complexity is, say, Θ(n) or Θ(

√
n) or maybe Θ(n1/10).

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:3

There are locally checkable problems of complexity Θ(n1/k) for every k = 1, 2, . . . , and there
have not been any practical algorithm that would determine the value of the exponent k for
any given problem.

Furthermore, the algorithm from [9] is only applicable in rooted regular trees, while the
case of unrooted trees is perhaps even more interesting.

It has been known that the problem of distinguishing between e.g. Θ(n) and Θ(
√

n) is
in principle decidable, due to the algorithm of [20]. This algorithm is, however, best seen
as a theoretical construction. To the best of our knowledge, nobody has implemented it,
there are no plans of implementing it, and it seems unlikely that one could classify any
nontrivial problem with it using any real-world computer, due to its doubly exponential time
complexity. This is the missing piece that we provide in this work.

1.3 Contributions and motivations
We present polynomial-time algorithms that determine not only whether the round complexity
of a given LCL problem is Θ(n1/k) for some k, but they also determine the exact value of k.
We give one algorithm for the case of unrooted trees and one algorithm for the case of rooted
trees.

Our algorithms not only determine the asymptotic round complexity, but they also
output a description of a distributed algorithm attaining this complexity. If the given LCL
problem Π has optimal complexity Θ(n1/k), then our algorithms will output a description
of a deterministic distributed algorithm that solves Π in O(n1/k) rounds in the CONGEST
model. Similarly, if the given LCL problem Π has optimal complexity O(log n), then our
algorithms will output a description of a deterministic distributed algorithm that solves Π in
O(log n) rounds in the CONGEST model.

We have implemented both algorithms for the case of 3-regular trees, the proof-of-concept
implementations are freely available online,1 and they work fast also in practice.

From a practical point of view, together with prior work from [9], there is now a practical
algorithm that is able to completely determine the complexity of any LCL problem in rooted
regular trees.2 In the case of unrooted regular trees deciding between the lower complexity
classes below o(log n) remains an open question.

From a theoretical point of view, this work significantly expands the class of LCL problems
whose optimal complexity is known to be decidable in polynomial time. See Figure 1 for a
summary of the current state of the art on the classification of LCL complexities for regular
trees, showing where the new algorithms are applicable and where the state of the art is
given by existing results.

We note that the problem of determining the optimal complexity of an LCL problem is
computationally hard in general: It is undecidable in general [37], EXPTIME-hard even for
bounded-degree trees [20], and PSPACE-hard even for paths and cycles with input labels [2].
Hence, in order to understand whether polynomial-time algorithms are even possible, we
must restrict our consideration to restricted cases, such as LCLs with no inputs defined on
regular trees. In fact, it is known that it is possible to use LCLs with no inputs defined on
non-regular trees to encode LCLs with inputs, and hence, by allowing inputs, or constraints
that depend on the degree of the nodes, we would make decidability at least PSPACE-hard.

1 https://github.com/jendas1/poly-classifier
2 Even though some algorithms in [9] are exponential in the size of the description of the problem, they

are nevertheless very efficient in practice. In fact, the authors of [9] have implemented them for the case
of binary rooted trees and they are indeed very fast in practice [41].

DISC 2022

https://github.com/jendas1/poly-classifier

8:4 Efficient Classification of Locally Checkable Problems in Regular Trees

Motivations. Studying LCLs is interesting because, on the one hand, this class of problems
is large enough to contain a significant fraction of problems that are commonly studied in the
context of the LOCAL model (e.g., (∆ + 1)-coloring, (2∆ − 1)-edge coloring, ∆-coloring, weak
2-coloring, maximal matching, maximal independent set, sinkless orientation, many other
orientation problems, edge splitting problems, locally maximal cut, defective colorings, . . .),
but, on the other hand, it is restricted enough so that we can prove interesting results about
them, such as decidability and complexity gaps. Moreover, techniques used to prove results on
LCLs have been already shown to be extremely useful outside the LCL context: for example,
all recent results about lower bounds for locally checkable problems in the unbounded degree
case – e.g., for MIS, maximal matching, ruling sets, and other fundamental problems – use
techniques that originally were introduced in the context of LCLs [5, 19, 8, 6, 7].

In this work, we restrict our attention to the case of regular trees. The study of LCLs on
trees is related with our understanding of graph problems in the general setting. Actually, for
many problems of interest, unrooted regular trees are hard instances, and hence understanding
the complexity of LCLs on trees could help us in understanding the complexity of problems
in general unbounded-degree graphs. In fact, a relatively new and promising technique called
round elimination has been used to prove tight lower bounds for interesting graph problems
such as maximal matchings, maximal independent sets, and ruling sets, even if, for now, we
are only able to apply this technique for proving lower bounds on trees [15, 38, 5, 8, 4, 19, 6, 7].

As for the more restrictive setting of regular trees, we would like to point out that many
natural LCL problems have the same optimal complexity in both bounded-degree trees and
regular trees. This includes, for example, the k-coloring problem. For any tree T whose
maximum degree is at most ∆, we may consider the ∆-regular tree T ∗ which is the result
of appending degree-1 nodes to all nodes v in T with 1 < deg(v) < ∆ to increase the
degree of v to ∆. We may locally simulate T ∗ in the network T . As any proper k-coloring
of T ∗ restricting to T is also a proper k-coloring, this reduces the k-coloring problem on
bounded-degree trees to the same problem on regular trees, showing that the k-coloring
problem has the same optimal complexity in both graph classes. More generally, if an LCL
problem Π has the property that removing degree-1 nodes preserves the correctness of a
solution, then Π has the same optimal complexity in both bounded-degree trees and regular
trees, so our results in this work also apply to these LCLs on bounded-degree trees.

2 Related work

Locally Checkable Labeling problems have been introduced by Naor and Stockmeyer [37], but
the class of locally checkable problems has been studied in the distributed setting even before
(e.g., in the context of self-stabilisation [1]). For many locally checkable problems, researchers
have been trying to understand the exact time complexity, and while in many cases upper
bounds have been known since the 80s, matching lower bound have been discovered only
recently. Examples of this line of research relate to the problems of colorings, matchings,
and independent sets, see e.g. [25, 32, 33, 39, 28, 26, 5, 40, 34, 7, 29].

In parallel, there have been many works that tried to understand these problems from a
complexity theory point of view, trying to develop general techniques for classifying problems,
understanding which complexities can actually exist, and developing generic algorithmic
techniques to solve whole classes of problems at once. In particular, a broad class3 of locally
checkable problems, called Locally Checkable Labelings (LCLs), has been studied in the LOCAL
model of distributed computing, which will be formally defined later.

3 For example, our definition of LCL does not allow an infinite number of labels, so it does not capture
some locally checkable problems such as fractional matching.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:5

Paths and cycles. The first graph topologies on which promising results have been proved
are paths and cycles. In these graphs, we now know that there are problems with the
following three possible time complexities:

O(1): this class contains, among others, trivial problems, e.g. problems that require every
node to output the same label.
Θ(log∗ n): this class contains, for example, the 3-coloring problem [25, 32, 36].
Θ(n): this class contains hard problems, for example the problem of consistently orient
the edges of a cycle, or the 2-coloring problem.

For LCLs in paths and cycles, we know that there are no other possible complexities, that
is, there are gaps between the above classes. In other words, there are no LCLs with a time
complexity that lies between ω(1) and o(log∗ n) [37], and no LCLs with a time complexity that
lies between ω(log∗ n) and o(n) [21]. These results hold also for randomized algorithms, and
they are constructive: if for example we find a way to design an O(log n)-rounds randomized
algorithm for a problem, then we can automatically convert it into an O(log∗ n)-round
deterministic algorithm.

Moreover, in paths and cycles, given an LCL problem, we can decide its time complexity.
In particular, it turns out that for problems with no inputs defined on directed cycles, deciding
the complexity of an LCL is as easy as drawing a diagram and staring at it for few seconds [18].
This result has later been extended to undirected cycles with no inputs [23]. Unfortunately,
as soon as we consider LCLs where the constraints of the problem may depend on the given
inputs, decidability becomes much harder, and it is now known to be PSPACE-hard [2], even
for paths and cycles.

Trees. Another class of graphs that has been studied quite a lot is the one containing
trees. While there are still problems with complexities O(1), Θ(log∗ n), and Θ(n), there are
also additional complexity classes, and sometimes here randomness can help. For example,
there are problems that require Θ(log n) rounds for both deterministic and randomized
algorithms, while there are problems, like sinkless orientation, that require Θ(log n) rounds for
deterministic algorithms and Θ(log log n) rounds for randomized ones [17, 21, 30]. Moreover,
there are problems with complexity Θ(n1/k), for any natural number k ≥ 1 [22]. It is known
that these are the only possible time complexities in trees [22, 21, 11, 20, 14, 31]. In [12], it
has been shown that the same results hold also in a more restrictive model of distributed
computing, called CONGEST model, and that for any given problem, its complexities in the
LOCAL and in the CONGEST model, on trees, are actually the same.

Concerning decidability, the picture is not as clear as in the case of paths and cycles.
As discussed in the introduction, it is decidable, in theory, if a problem requires nΩ(1)

rounds, and, in that case, it is also decidable to determine the exact exponent [22, 20], but
the algorithm is very far from being practical, and in this work we address exactly this
issue. Moreover, for lower complexities, the problem is still open. Different works tried to
tackle this issue by considering restricted cases. In [4], authors showed that it is indeed
possible to achieve decidability in some cases, that is, when problems are restricted to the
case of unrooted regular trees, where leaves are unconstrained, and the problem uses only
two labels. Then, promising results have been achieved in [9], where it has been shown
that, if we consider rooted trees, then we can decide the complexity of LCLs even for no(1)

complexities. Unfortunately, it is very unclear if such techniques can be used to solve the
problem in the general case. In fact, we still do not know if it is decidable whether a problem
can be solved in O(1) rounds or it requires Ω(log∗ n) rounds, and it is not known if it is
decidable whether a problem can be solved in O(log∗ n) rounds or it requires Ω(log n) for

DISC 2022

8:6 Efficient Classification of Locally Checkable Problems in Regular Trees

deterministic algorithms and Ω(log log n) for randomized ones. These two questions are very
important, and understanding them may also help in understanding problems that are not
restricted to regular trees of bounded degree. This is because, as already mentioned before,
for many problems it happens that unrooted regular trees are hard instances, and studying
the complexity of problems in these instances may give insights for understanding problems
in the general setting.

General graphs. In general graphs, many more LCL complexities are possible. For example,
there is a gap similar to the one between ω(1) and o(log∗ n) of trees, but now it holds only
up to o(log log∗ n), and we know that there are problems in the region between Ω(log log∗ n)
and o(log∗ n). In fact, for any rational α ≥ 1, it is possible to construct problems with
complexity Θ(logα log∗ n) [13]. A similar statement holds for complexities between Ω(log n)
and O(n) [13, 11].

There are still complexity regions in which we do not know if there are problems or
not. For example, while it is known that any problem that has randomized complexity
o(log n) can be sped up to O(TLLL) [22], where TLLL is the distributed complexity of the
constructive version of the Lovász LOCAL Lemma, the exact value of TLLL is unknown, and
we only known that it lies between Ω(log log n) and O(poly log log n) [17, 24, 27, 40]. Another
problem that falls in this region is the ∆-coloring problem, for which we still do not know
the exact complexity.

Another open question regards the role of randomness. In general graphs, we know that
randomness can also help outside the O(log n) region [10], but we still do not know exactly
when it can help and how much.

In general graphs, unfortunately, determining the complexity of a given LCL problem is
undecidable. In fact, we know that this question is undecidable even on grids [37].

3 Preliminaries

Graphs. Let G = (V, E) be a graph. We denote with n = |V | the number of nodes of G,
with ∆ the maximum degree of G, and with deg(v), for v ∈ V , the degree of v. If G is a
directed graph, we denote with degin(v) and degout(v), the indegree and the outdegree of
v, respectively. The radius-r neighborhood of a node v is defined to be the subgraph of G

induced by the nodes at distance at most r from v.

Model of computing. In the LOCAL model of distributed computing, the network is
represented with a graph G = (V, E), where the nodes correspond to computational entities,
and the edges correspond to communication links. In this model, the computational power
of the nodes is unrestricted, and nodes can send arbitrarily large messages to each other.

This model is synchronous, and computation proceeds in rounds. Nodes all start the
computation at the same time, and at the beginning they know n (the total number of
nodes), ∆ (the maximum degree of the graph), and a unique ID in {1, . . . , nc}, for some
constant c ≥ 1, assigned to them. Then, the computation proceeds in rounds, and at each
round nodes can send (possibly different) messages to each neighbor, receive messages, and
perform some LOCAL computation.

At the end of the computation, each node must produce its own part of the solution. For
example, in the case of the (∆ + 1)-coloring problem, each node must output its own color,
that must be different from the ones of its neighbors. The time complexity is measured as
the worst case number of rounds required to terminate, and it is typically expressed as a
function of n, ∆, and c.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:7

4 Technical overview

Our new results build on several techniques developed in previous works [9, 23] designing
polynomial-time algorithms that determine the distributed complexity of LCL problems. In
this section, we first give a brief overview of these techniques, then we discuss how in this
paper we build upon them and obtain our new results. The aim of this section is to present
the intuition behind the results. To keep the discussion at a high level, the presentation here
will be a bit imprecise.

4.1 The high-level framework
Existing algorithms for deciding the complexity of a given LCL problem are often based on
the following approach.
1. Define some combinatorial property P of LCL problems.
2. Show that computing P (Π) for a given problem Π can be done efficiently.
3. Show that Π is in a certain complexity class if and only if P (Π) holds.

As discussed in [18, 23], any LCL Π on directed paths can be viewed as a regular language.
Taking the corresponding non-deterministic automaton, we obtain a directed graph G(Π)
that represents Π on directed paths.

For example, the maximal independent set problem can be described as the automaton
with states V = {00, 01, 10} and transitions E = {00 → 01, 01 → 10, 10 → 00, 10 → 01}.
Each state corresponds to a possible labeling of the two endpoints u and v of a directed edge
u → v. Each transition describes a valid configuration of two neighboring directed edges
u → v and v → w.

It has been shown [9, 18, 16, 23] that in several cases the distributed complexity of an
LCL can be characterized by simple graph properties of G(Π), even if the underlying graph
class is much more complicated than directed paths. The precise definition of G(Π) will
depend on the choice of the LCL formalism.

4.2 Paths and cycles
It was shown in [18, 23] that the distributed complexity and solvability of Π on paths and
cycles can be characterized by simple graph properties of G(Π). In particular, Π on directed
cycles is solvable in O(log∗ n) rounds if and only if G(Π) contains a node v that is path-flexible,
in the sense that there exists a number K such that, in G(Π), there is a length-k returning
walk for v, for each k ≥ K. If such a path-flexible node v exists in G(Π), then Π on directed
cycles can be solved in O(log∗ n) rounds in the following manner.
1. In O(log∗ n) rounds, compute an independent set I such that the distance between the

nodes in I is at least K and at most 2K.
2. Fix the labels for the nodes in I according to the path-flexible node v in G(Π).
3. By the path-flexibility of v, this partial labeling can be completed into a correct complete

labeling.

For example, in the automaton for maximal independent set described above, the state 01
is flexible, as for each k ≥ 5, there is a length-k walk starting and ending at 01, so a maximal
independent set can be found in O(log∗ n) rounds on directed cycles via the above algorithm.

The above characterization can be generalized to both paths and cycles, undirected and
directed, after some minor modifications, see [23] for the details. For further examples of
representing LCLs as automata and how the round complexity of an LCL can be inferred
from basic properties of its associated automaton, see [18, Fig. 3] and [23, Fig. 1 and 3].

DISC 2022

8:8 Efficient Classification of Locally Checkable Problems in Regular Trees

4.3 The O(log n) complexity class in regular trees

Subsequently, it was shown in [9, 16] that the class of O(log n)-round solvable LCL problems
on rooted and unrooted regular trees can be characterized in a similar way, based on the
notion of path-flexibility in the directed graph G(Π). To keep the discussion at a high level,
we do not discuss the difference between rooted and unrooted trees here. Roughly speaking,
Π can be solved in O(log n) rounds on rooted or unrooted regular trees if and only if there
exists a subset of labels S such that, if we restrict Π to S, then its corresponding directed
graph is strongly connected and contains a path-flexible node. Such a set S of labels is also
called a certificate for O(log n)-round solvability.4

A key property of such a directed graph is that there exists a number K such that, for
each pair of nodes (u, v), and for each integer k ≥ K, there is a length-k walk from u to v

(here we allow the possibility of u = v). The property can be described in the following more
intuitive manner. For any path of length at least K, regardless of how we fix the labels of its
two endpoints using S, it is always possible to complete the partial labeling into a correct
labeling w.r.t. Π of the entire path using only labels in S.

The intuition behind such a characterization is the fact [22] that all LCLs solvable
in O(log n) rounds on bounded-degree trees can be solved in a canonical way based on
rake-and-compress decompositions. Roughly speaking, a rake-and-compress process is a
procedure that decomposes a tree by iteratively removing degree-1 nodes (rake) and removing
degree-2 nodes (compress). This process partitions the set of nodes into several parts:
V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

L , where V R
i is the set of nodes removed by the rake

operation in the ith iteration and V C
i is the set of nodes removed by the compress operation

in the ith iteration. It can be shown that L = O(log n) [35].
There are several variants of a rake-and-compress process. Here the considered variant is

such that, in the compress operation, a degree-2 node v is removed if v belongs to a path
whose length is at least ℓ, so we may assume that the connected components in the subgraph
induced by V C

i are paths with length at least ℓ.
Let Π be any LCL problem satisfying the combinatorial characterization for O(log n)-round

solvability discussed above, and let the set of labels S be a certificate for O(log n)-round
solvability. By setting ℓ = K in the property of the combinatorial characterization, we may
obtain an O(log n)-round algorithm solving the given LCL problem Π using only the labels in
S. The high-level idea is that we can label the tree in an order that is the reverse of the one of
the rake-and-compress procedure: V R

L , . . . , V C
2 , V R

2 , V C
1 , V R

1 , as we observe that the property
of the combinatorial characterization discussed above ensures that any correct labeling of
V R

L ∪ · · · ∪ V R
i can be extended to a correct labeling of V R

L ∪ · · · ∪ V R
i ∪ V C

i−1 and similarly any
correct labeling of V R

L ∪ · · · ∪ V C
i can be extended to a correct labeling of V R

L ∪ · · · ∪ V C
i ∪ V R

i .
The requirement that Π is an LCL problem defined on regular trees is critical in the above

approach, as this requirement ensures that for each non-leaf node, the set of constraints is
the same, so we do not need to worry about the possibility for different nodes in the tree to
have different sets of constraints in Π. Indeed, if we allow nodes of different degrees to have
different sets of constraints, then the problem of determining the distributed complexity of
an LCL in bounded-degree trees becomes EXPTIME-hard [20].

4 Although the certificate described in [9] also includes the steps in the construction of S, the set S alone
suffices to certify that Π can be solved in O(log n) rounds, as the O(log n)-round algorithm described
in [9] uses only S.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:9

4.4 The polynomial complexity region in regular trees

In this work, we will extend the above approach to cover all complexity classes in the
[Θ(log n), Θ(n)] region. By [11, 20, 22], we know that the possible complexity classes in this
region are Θ(log n) and Θ(n1/k) for all positive integers k. Similar to the complexity class
O(log n), any LCL problem Π solvable in O(n1/k) rounds can be solved in a canonical way in
O(n1/k) rounds using a variant of rake-and-compress decomposition [20].

Specifically, Π is O(n1/k)-round solvable if and only if it can be solved in a canonical way
using a rake-and-compress decomposition, where in each iteration, we perform γ = O(n1/k)
rake operations and one compress operation. Similar to the case of complexity class O(log n),
in the compress operation, a degree-2 node v is removed if v belongs to a path whose length
is at least ℓ, where ℓ = O(1) is some sufficiently large number depending only on the LCL
problem Π. It can be shown [20] that by selecting γ = O(n1/k) to be large enough, the
number of layers L in the decomposition V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

L is k, and such a
decomposition can be computed in O(n1/k) rounds.

To derive a certificate for O(n1/k)-round solvability based on the result of [20], we will need
to take into consideration the following properties about the variant of the rake-and-compress
decomposition described above.

The number of layers L = k is now a finite number independent of the size of the graph n.
For technical reasons, this means that the certificate for O(n1/k)-round solvability cannot
be based on a single set of labels S, as the certificate for O(log n)-round solvability [9, 16].
We need to consider the possibility that different sets of labels are used for different layers
in the design of the certificate for O(n1/k)-round solvability.
The number of rake operations for a layer can be unbounded as n goes to infinity. That
is, V R

i is no longer an independent set, and each connected component in the subgraph
induced by V R

i can be a very large tree.

The certificate. Our certificate for O(n1/k)-round solvability will be based on the notion
of a good sequence of sets of labels. The definition of a good sequence relies on two functions
on a set of labels: trim and flexible-SCC. As we will later see, these two functions correspond
to rake and compress, respectively. Given an LCL problem Π and a set of labels S, trim(S)
and flexible-SCC are defined as follows.

trim(S) is the subset of S resulting from removing all labels σ ∈ S meeting the following
conditions: There exists some number i such that if the root of the complete regular tree
T of height i is labeled by σ, then we are not able to complete the labeling of T using
only labels in S such that the overall labeling is correct w.r.t. Π.
flexible-SCC(S) is a collection of disjoint subsets of S defined as follows. Consider the
directed graph representing the LCL problem Π restricted to S. Let flexible-SCC(S) be
the set of strongly connected components that have a path-flexible node. The intuition
behind this definition is similar to the intuition behind the certificate for O(log n)-round
solvability.

We briefly explain the connection between trim and rake. Suppose we want to find a
correct labeling of a regular tree T using only the labels in S. If a label σ is in trim(S), then
σ can only be used in places that are sufficiently close to a leaf. To put it another way, if we
do a large number of rakes to T , then the labels in trim(S) can only be used to label the
nodes that removed due to a rake operation.

DISC 2022

8:10 Efficient Classification of Locally Checkable Problems in Regular Trees

The connection between flexible-SCC to compress is due to the fact that the nodes removed
due to a compress operation form long paths, and we know that in order to label long paths
efficiently in O(log∗ n) rounds, it is necessary to use labels corresponding to path-flexible
nodes, due to the existing automata-theoretic characterization [18, 23] of round complexity
of LCLs on paths and cycles.

We say that a sequence (ΣR
1 , ΣC

1 , ΣR
2 , ΣC

2 , . . . , ΣR
k) is good if it satisfies the following rules,

where Σ is the set of all labels of Π.

ΣR
i =

{
trim(Σ) if i = 1,

trim(ΣC
i−1) if i > 1.

ΣC
i ∈ flexible-SCC(ΣR

i).
ΣR

k ̸= ∅.

The only nondeterminism in the above rules is the choice of ΣC
i ∈ flexible-SCC(ΣR

i) for each i.
We will show that such a sequence exists if and only if the underlying LCL problem can be
solved in O(n1/k) rounds. Intuitively, ΣR

i represents the set of labels that are eligible to label
the nodes in V R

i , and similarly ΣC
i represents the set of labels that are eligible to label the

nodes in V C
i .

The classification. The notion of a good sequence allows us to classify the complexity
classes in the region [Θ(log n), Θ(n)]. Specifically, we define the depth dΠ of an LCL problem
Π as the largest k such that a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k) exists. If there is no
good sequence, then we set dΠ = 0. If there is a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k)
for each positive integer k, then we set dΠ = ∞. We will show that dΠ characterizes the
distributed complexity of Π in the following manner.

If dΠ = 0, then Π is unsolvable in the sense that there exists a regular tree such that
there is no correct solution of Π on this rooted tree. This follows from the definition of
trim and the observation that dΠ = 0 if trim(Σ) = ∅.
If dΠ = k is a positive integer, then the distributed complexity of Π is Θ(n1/k).
If dΠ = ∞, then Π can be solved in O(log n) rounds. If we can have a good sequence
that is arbitrarily long, then there must be a fixed point S in the sequence such that
trim(S) = S and flexible-SCC(S) = {S}, because ΣR

1 ⊇ ΣC
1 ⊇ · · · ⊇ ΣR

k . We will show that
the fixed point S qualifies to be a certificate for O(log n)-round solvability.

The fixed point phenomenon explains why the notion of good sequence was not needed
in [9, 16], as the existence of a fixed point for the case Π is O(log n)-round solvable implies
that we may apply the same strategy according to the fixed point to label each layer of the
rake-and-compress decomposition to solve Π in O(log n) rounds.

To show correctness and efficiency of our characterization, we do the following.
Upper bound: Given a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k), show that there exists an
O(n1/k)-round algorithm solving Π. Therefore, dΠ = k implies O(n1/k)-round solvability.

Lower bound: Given an o(n1/k)-round algorithm solving Π, show that a good sequence
(ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k+1) exists. Therefore, dΠ = k implies Ω(n1/k)-round solvability.
Efficiency: Design a polynomial-time algorithm that computes dΠ for any given description

of an LCL problem Π.

The upper bound proof is relatively simple. Similar to the certificate O(log n)-round
solvability, we just need to show that Π can be solved in O(n1/k) rounds using rake-and-
compress decompositions given that a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k) exists.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:11

The lower bound proof is much more complicated. Given an algorithm A solving Π in
t = o(n1/k) rounds, we will consider a tree G that is a result of a hierarchical combination
of complete trees and paths of length greater than t. Intuitively, G is chosen to be the
fullest possible tree that can be partitioned into V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

k+1 with a
rake-and-compress decomposition of [20] with L = k + 1 layers. We will prove by induction
that if we take ΣR

i to be the set of possible output labels of A for V R
i ∪ V C

i ∪ · · · ∪ V R
k+1

and take ΣC
i to be the set of possible output labels of A for V C

i ∪ V R
i+1 ∪ · · · ∪ V R

k+1, then
(ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k+1) must be a good sequence. In particular, the non-emptiness of
ΣR

k+1 follows from the correctness of A.
To design a polynomial-time algorithm computing dΠ, we recall that the only nondeter-

minism in the rules for a good sequence is the choice of ΣC
i ∈ flexible-SCC(ΣR

i), so we will
just do a brute-force search for all possibilities. Although this seems inefficient, we recall that
flexible-SCC(ΣR

i) is a collection of disjoint subsets of ΣR
i , so the sum of the size of all sets of

labels considered in each level is at most the total number of labels |Σ| in Π. The number of
levels we need to explore is also bounded, as ΣR

1 ⊇ ΣC
1 ⊇ · · · ⊇ ΣR

k . If k exceeds |Σ|, then we
know that there is a fixed point ΣR

i such that ΣR
i = ΣC

i = ΣR
i+1 = ΣC

i+1 = · · · , so dΠ = ∞.

The differences between rooted and unrooted trees. The high-level proof strategy pre-
sented in this technical overview applies to both rooted and unrooted regular trees, showing
that these two graph classes behave very similarly in the complexity region [Θ(log n), Θ(n)].
There are still some technical differences between rooted and unrooted trees.

The formalisms for representing LCL problems are different for rooted and unrooted trees.
In the case of rooted trees, the problem can refer to orientations. For example, what is
permitted for a parent can be different from what is permitted for a child. Instead of
specifying node and edge configurations, we follow [9] and specify what are permitted
multisets of child labels for each node label.
For the upper bound, we need to generalize the rake-and-compress decomposition of [20]
so that it is applicable in rooted trees.
For the lower bound, the lower bound graph for unrooted trees does not work for the
rooted trees. Roughly speaking, this is because the presence of edge orientation increases
the symmetry breaking capability of nodes, so some indistinguishability arguments in the
lower bound proof for unrooted trees do not work for rooted trees. Therefore, we will
need to consider a different approach for crafting the lower bound graph for rooted trees.

5 Unrooted trees

In this section, we give a polynomial-time-computable characterization of LCL problems for
regular unrooted trees with complexity O(log n) or Θ(n1/k) for any positive integer k. Due
to the page limit, our results in regular rooted trees are left to the full version [3] of the
paper. A ∆-regular tree is a tree where the degree of each node is either 1 or ∆. An LCL
problem for ∆-regular unrooted trees is defined as follows.

▶ Definition 1 (LCL problems for regular unrooted trees). For unrooted trees, an LCL problem
Π = (∆, Σ, V, E) is defined by the following components.

∆ is a positive integer specifying the maximum degree.
Σ is a finite set of labels.
V is a set of size-∆ multisets of labels in Σ specifying the node constraint.
E is a set of size-2 multisets of labels in Σ specifying the edge constraint.

DISC 2022

8:12 Efficient Classification of Locally Checkable Problems in Regular Trees

We call a size-∆ multiset C of labels in Σ a node configuration. A node configuration C

is correct with respect to Π = (∆, Σ, V, E) if C ∈ V . We call a size-2 multiset D of labels in
Σ an edge configuration. An edge configuration D is correct with respect to Π = (∆, Σ, V, E)
if D ∈ E . We define the correctness criteria for a labeling of a ∆-regular tree in Definition 2.

▶ Definition 2 (Correctness criteria). Let G = (V, E) be a tree whose maximum degree is at
most ∆. For each edge e = {u, v} ∈ E, there are two half-edges (u, e) and (v, e). A solution
of Π = (∆, Σ, V, E) on G is a labeling that assigns a label in Σ to each half-edge in G.

For each node v ∈ V with deg(v) = ∆ its node configuration C is the multiset of ∆ half-
edge labels of (v, e1), (v, e2), . . ., (v, e∆), where e1, e2, . . . , e∆ are the ∆ edges incident to
v. We say that the labeling is locally-consistent on v if C ∈ V.
For each edge e = {u, v} ∈ E, its edge configuration D is the multiset of two half-edge
labels of (u, e) and (v, e). We say that the labeling is locally-consistent on e if D ∈ E.

The labeling is a correct solution if it is locally-consistent on all v ∈ V with deg(v) = ∆ and
all e ∈ E.

In other words, a labeling of G = (V, E) is correct if the edge configuration for each e ∈ E

is correct and the node configuration for each v ∈ V with deg(v) = ∆ is correct. All nodes
whose degree is not ∆ are unconstrained.

Although Π = (∆, Σ, V, E) is defined for ∆-regular unrooted trees, Definition 2 applies to
all trees whose maximum degree is at most ∆. We emphasize that all nodes v whose degree
is not ∆ are unconstrained in that there is no requirement about the node configuration of
v. Nevertheless, we may focus on ∆-regular unrooted trees without loss of generality. The
reason is that for any unrooted tree G whose maximum degree is at most ∆, we may consider
the unrooted tree G∗ which is the result of appending degree-1 nodes to all nodes v in G with
1 < deg(v) < ∆ to increase the degree of v to ∆. This only blows up the number of nodes
by at most a ∆ factor. We claim that the asymptotic optimal round complexity of Π is the
same in both G and G∗. Any correct solution of Π on G∗ restricted to G is a correct solution
of Π on G, as all nodes whose degree is not ∆ are unconstrained. Therefore, if we have an
algorithm for Π in ∆-regular unrooted trees, then the same algorithm also allows us to solve
Π in unrooted trees with maximum degree ∆ in the same asymptotic round complexity.

▶ Definition 3 (Complete trees of height i). We define the rooted trees Ti and T ∗
i recursively

as follows.
T0 is the trivial tree with only one node.
Ti is the result of appending ∆ − 1 trees Ti−1 to the root r.
T ∗

i is the result of appending ∆ trees Ti−1 to the root r.

Observe that T ∗
i is the unique maximum-size tree of maximum degree ∆ and height i.

All nodes within distance i − 1 to the root r in T ∗
i have degree ∆. All nodes whose distance

to r is exactly i are degree-1 nodes. Although Ti and T ∗
i are defined as rooted trees, they

can also be viewed as unrooted trees.

▶ Definition 4 (Trimming). Given an LCL problem Π = (∆, Σ, V, E) and a subset S ⊆ V of
node configurations, we define trim(S) as the set of all node configurations C ∈ S such that
for each i ≥ 1 it is possible to find a correct labeling of T ∗

i such that the node configuration
of the root is C and the node configurations of the remaining degree-∆ nodes are in S.

In the definition, note that if for some i ≥ 1 it is not possible to find such a labeling of
T ∗

i , then it is also not possible for any larger i. The reason is that if such a labeling for larger
i exists, then by taking subgraph, we obtain such a labeling for of T ∗

i . Here we use the fact
that nodes by taking subgraph, and using the fact that all nodes whose degree is not ∆ are
unconstrained.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:13

Intuitively, trim(S) is the subset of S resulting from removing all node configurations in
S that are not usable in a correct labeling of a sufficiently large ∆-regular tree using only
node configurations in S.

In fact, given any tree G of maximum degree ∆ and a node v of degree ∆ in G, after labeling
the half-edges surrounding v using a node configuration in trim(S), it is always possible to
extend this labeling to a complete correct labeling of G using only node configurations in
trim(S). Such a labeling extension is possible due to Lemma 5.

▶ Lemma 5 (Property of trimming). Let S ⊆ V such that trim(S) ̸= ∅. For each node
configuration C ∈ trim(S) and each label σ ∈ C, there exist a node configuration C ′ ∈ trim(S)
and a label σ′ ∈ C ′ such that the multiset {σ, σ′} is in E.

Proof. Assuming that such C ′ and σ′ do not exist, we derive a contradiction as follows. We
pick s to be the smallest number such that there is no correct labeling of T ∗

s where the node
configuration of the root r is in S \ trim(S) and the node configuration of each remaining
degree-∆ node of T ∗

s is in S. Such a number s exists due to the definition of trim.
Now consider a correct labeling of T ∗

s+1 where the node configuration of the root r is C

and the node configuration of each remaining degree-∆ node is in S. Such a correct labeling
exists due to the fact that C ∈ trim(S). Our assumption on the non-existence of C ′ and
σ′ implies that the node configuration C̃ of one child w of the root r of T ∗

s+1 must be in
S \ trim(S). However, the radius-s neighborhood of w in T ∗

s+1 is isomorphic to T ∗
s rooted

at w. Since the node configuration of w is in S \ trim(S), our choice of s implies that the
labeling of the radius-s neighborhood of w cannot be correct, which is a contradiction. ◀

Path-form of an LCL problem. Given an LCL problem Π = (∆, Σ, V, E) and a subset S ⊆ V
of node configurations, we define

DS = the set of all size-2 multisets D such that D is a sub-multiset of C for some C ∈ S.

To understand the intuition behind the definition DS , define the length-k hairy path
Hk as the result obtained by starting from a length-k path P = (v1, v2, . . . , vk+1) and then
adding degree-1 nodes to make deg(vi) = ∆ for all 1 ≤ i ≤ k + 1. If our task is to label
hairy paths using node configurations in S, then this task is identical to labeling paths using
node configurations in DS . In other words, the LCL problem (∆, Σ, S, E) on hairy paths is
equivalent to the LCL problem (2, Σ, DS , E) on paths. Hence (2, Σ, DS , E) is the path-form of
(∆, Σ, S, E).

Automaton for the path-form of an LCL problem. Given a set D of size-2 multisets whose
elements are in Σ, we define the directed graph MD as follows. The node set V (MD) of MD
is the set of all pairs (a, b) ∈ Σ2 such that the multiset {a, b} is in D. The edge set E(MD)
of MD is defined as follows. For any two pairs (a, b) ∈ V (MD) and (c, d) ∈ V (MD), we add
a directed edge (a, b) → (c, d) if the multiset {b, c} is an edge configuration in E . Note that
MD could contain self-loops.

The motivation for considering MD is that it can be seen as an automaton recognizing
the correct solutions for the LCL problem (2, Σ, D, E) on paths, as each length-k walk
(a1, b1) → (a2, b2) → · · · → (ak+1, bk+1) of MD corresponds to a correct labeling of a length-
k path (v1, v2, . . . , vk+1) where the labeling of half-edge (vi, {vi−1, vi}) is ai and the labeling
of half-edge (vi, {vi, vi+1}) is bi.

DISC 2022

8:14 Efficient Classification of Locally Checkable Problems in Regular Trees

Path-flexibility. With respect to the directed graph MD, we say that (a, b) ∈ V (MD) is
path-flexible if there exists an integer K such that for each integer k ≥ K, there exist length-k
walks (a, b)⇝ (a, b), (a, b)⇝ (b, a), (b, a)⇝ (a, b), and (b, a)⇝ (b, a) in MD. Throughout
this paper, we write u⇝ v to denote a walk starting from u and ending at v.

It is clear that (a, b) is path-flexible if and only if (b, a) is path-flexible. Hence we may
extend the notion of path-flexibility from V (MD) to D. That is, we say that a size-2 multiset
{a, b} ∈ D is path-flexible if (a, b) is path-flexible.

The following lemma is useful in lower bound proofs. For any {a, b} ∈ D that is not
path-flexible, the following lemma shows that there are infinitely many path lengths k such
that there is no length-k s⇝ t walk for some s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}. As
we will later see, this inflexibility in the possible path lengths implies lower bounds for
distributed algorithms that may use the configuration {a, b}.

▶ Lemma 6 (Property of path-inflexibility). Suppose that the size-2 multiset {a, b} ∈ D is not
path-flexible. Then one of the following holds.

There is no s⇝ t walk for at least one choice of s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}.
There is an integer 2 ≤ x ≤ |Σ|2 such that for any positive integer k that is not an integer
multiple of x, there are no length-k walks (a, b)⇝ (a, b) and (b, a)⇝ (b, a) in MD.

Proof. Suppose that {a, b} ∈ D is not path-flexible. We assume that there are s⇝ t walks
for all choices of s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}. To prove this lemma, it suffices to
show that there is an integer 2 ≤ x ≤ |Σ|2 such that for any positive integer k that is not an
integer multiple of x, there are no length-k walks (a, b)⇝ (a, b) and (b, a)⇝ (b, a).

First of all, we claim that for any integer K there is an integer k ≥ K such that there
is no length-k walk (a, b) ⇝ (a, b). If this claim does not hold, then there is an integer K

such that there is a length-k walk (a, b) ⇝ (a, b) for each k ≥ K. Combining these walks
with existing walks (a, b)⇝ (b, a) and (b, a)⇝ (a, b), we infer that there exists an integer K ′

such that for each integer k ≥ K ′, there exist length-k walks (a, b)⇝ (a, b), (a, b)⇝ (b, a),
(b, a) ⇝ (a, b), and (b, a) ⇝ (b, a) in MD, contradicting the assumption that {a, b} ∈ D is
not path-flexible.

Let U be the set of integers k such that there is a length-k walk (a, b)⇝ (a, b). Note that
by taking reversal, the existence of a length-k walk (a, b)⇝ (a, b) implies the existence of
a length-k walk (b, a)⇝ (b, a), and vice versa. Our assumption on the existence of a walk
(a, b)⇝ (a, b) implies U ≠ ∅. We choose x = gcd(U) to be the greatest common divisor of U ,
so that for any integer k that is not an integer multiple of x, there are no length-k walks
(a, b)⇝ (a, b) and (b, a)⇝ (b, a) in MD. We must have x ≥ 2 because there cannot be two
co-prime numbers in U , since otherwise there exists an integer K such that U includes all
integers that are at least K, contradicting the claim proved above. Specifically, if the two
co-prime numbers are k1 and k2, then we may set K = g(k1, k2) + 1 = k1k2 − k1 − k2 + 1,
where g(k1, k2) is the Frobenius number of the set {k1, k2} [42]. We also have x ≤ |Σ|2, since
the smallest number in U is at most the number of nodes in MD, which is upper bounded
by |Σ|2. ◀

For the special case of |Σ| = 1 and D ̸= ∅, we must have a = b in Lemma 6. Since there
is no integer x satisfying 2 ≤ x ≤ |Σ|2 when |Σ| = 1, Lemma 6 implies that if {a, a} is not
path-flexible, then there is no walk (a, a)⇝ (a, a), where {a, a} is the unique element in D.

Path-flexible strongly connected components. Since each {a, b} ∈ D corresponds to two
nodes (a, b) and (b, a) in MD, we will consider a different notion of a strongly connected
component. In Definition 7, we do not require the elements a, b, c, and d to be distinct. For
example, we may have {a, b} = {c, d} or a = b.

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:15

▶ Definition 7 (Strongly connected components). Let D be a set of size-2 multisets of elements
in Σ. For each {a, b} ∈ D and {c, d} ∈ D, we write {a, b} ∼ {c, d} if there is a walk s⇝ t in
MD for each choice of s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}.

Let D∼ be the set of all {a, b} ∈ D such that {a, b} ∼ {a, b}. Then we define the strongly
connected components of D as the equivalence classes of ∼ over D∼.

By taking reversal, the existence of an (a, b) ⇝ (c, d) walk implies the existence of
a (d, c) ⇝ (b, a) walk. Therefore, if there is a walk s ⇝ t in MD for each choice of
s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}, then there is also a walk t ⇝ s in MD for each
choice of s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}. Hence the relation ∼ in Definition 7 is
symmetric over D. It is clear from the definition of ∼ in Definition 7 that it is transitive
over D and it is reflexive over D∼, so ∼ is indeed an equivalence relation over D∼.

For any strongly connected component D′ of D, it is clear that either all {a, b} ∈ D′

are path-flexible or all {a, b} ∈ D′ are not path-flexible. We say that a strongly connected
component D′ is path-flexible if all {a, b} ∈ D′ are path-flexible. We define flexibility(D′) as
the minimum number K such that for each integer k ≥ K there is an (a, b)⇝ (c, d) walk of
length k for all choices of a, b, c, and d such that {a, b} ∈ D′ and {c, d} ∈ D′. Such a number
K exists given that D′ is a path-flexible strongly connected component. We define

flexible-SCC(D) = the set of all subsets of D that are a path-
flexible strongly connected component of D.

Clearly, elements in flexible-SCC(D) are disjoint subsets of D. It is possible that
flexible-SCC(D) is an empty set, and this happens when all nodes in the directed graph MD
are not path-flexible.

Restriction of a set of node configurations. Given an LCL problem Π = (∆, Σ, V, E), a
subset S ⊆ V of node configurations, and a set D of size-2 multisets whose elements are in Σ,
we define the restriction of S to D as follows.

S ↾D= {C ∈ S | all size-2 sub-multisets of C are in D}.

Lemma 8 shows that if we label the two endpoints of a sufficiently long path using
node configurations in S ↾D∗ , where D∗ ∈ flexible-SCC(DS), then it is always possible
to complete the labeling of the path using only node configurations in S in such a way
that the entire labeling is correct. Specifically, consider a path P = (v1, v2, . . . , vd+1) of
length d ≥ flexibility(D∗). Assume that the node configuration of v1 is already fixed to be
C ∈ S ↾D∗ where the half-edge (v1, {v1, v2}) is labeled by β ∈ C and the node configuration
of vd+1 is already fixed to be C ′ ∈ S ↾D∗ where the half-edge (vd+1, {vd, vd+1}) is labeled
by α′ ∈ C ′. Lemma 8 shows that it is possible to complete the labeling of P using only
node configurations in S, as we may label vi using the node configuration Ci where the two
half-edges (vi, {vi−1, vi}) and (vi, {vi, vi+1}) are labeled by αi and βi, for each 2 ≤ i ≤ d.

▶ Lemma 8 (Property of path-flexible strongly connected components). Let S ⊆ V be a
set of node configurations, and let D∗ ∈ flexible-SCC(DS). For any choices of C ∈ S ↾D∗ ,
C ′ ∈ S ↾D∗ , size-2 sub-multisets {α, β} ⊆ C, {α′, β′} ⊆ C ′, and a number d ≥ flexibility(D∗),
there exists a sequence α1, C1, β1, α2, C2, β2, . . . , αd+1, Cd+1, βd+1 satisfying the following
conditions.

First endpoint: α1 = α, β1 = β, and C1 = C.
Last endpoint: αd+1 = α′, βd+1 = β′, and Cd+1 = C ′.
Node configurations: for 1 ≤ i ≤ d + 1, {αi, βi} is a size-2 sub-multiset of Ci, and Ci ∈ S.
Edge configurations: for 1 ≤ i ≤ d, {βi, αi+1} ∈ E.

DISC 2022

8:16 Efficient Classification of Locally Checkable Problems in Regular Trees

Proof. By the path-flexibility of D∗, there exists a length-d walk (α, β)⇝ (α′, β′) in MDS .
We fix (α1, β1) → (α2, β2) → · · · → (αd+1, βd+1) to be any such walk. This implies that
{βi, αi+1} ∈ E for each 1 ≤ i ≤ d. Since {αi, βi} is a size-2 multiset of DS , there exists a
choice of Ci ∈ S for each 2 ≤ i ≤ d such that {αi, βi} is a sub-multiset of Ci. ◀

Good sequences. Given an LCL problem Π = (∆, Σ, V, E) on ∆-regular trees, we say that
a sequence (V1, D1, V2, D2, . . . , Vk) is good if it satisfies the following requirements.

V1 = trim(V). That is, we start the sequence from the result of trimming the set V of all
node configurations in the given LCL problem Π = (∆, Σ, V, E).
For each 1 ≤ i ≤ k − 1, Di ∈ flexible-SCC(DVi

). That is, Di is a path-flexible strongly
connected component of the automaton associated with the path-form of the LCL problem
(∆, Σ, Vi, E), which is Π restricted to the set of node configurations Vi.
For each 2 ≤ i ≤ k, Vi = trim(Vi−1 ↾Di−1). That is, Vi is the result of taking the
restriction of the set of node configurations Vi−1 to Di−1 and then performing a trimming.
Vk ̸= ∅. That is, we require that the last set of node configurations is non-empty.

It is straightforward to see that V1 ⊇ V2 ⊇ · · · ⊇ Vk since Vi = trim(Vi−1 ↾Di−1) is always
a subset of Vi−1. Similarly, we also have D1 ⊇ D2 ⊇ · · · ⊇ Dk−1, as Di ∈ flexible-SCC(DVi

)
is a subset of DVi and DVi is a subset of Di−1 due to the definition Vi = trim(Vi−1 ↾Di−1).

Depth of an LCL problem. We define the depth dΠ of an LCL problem Π = (∆, Σ, V, E) on
∆-regular trees as follows. If there is no good sequence, then we set dΠ = 0. If there is a good
sequence (V1, D1, V2, D2, . . . , Vk) for each positive integer k, then we set dΠ = ∞. Otherwise,
we set dΠ as the largest integer k such that there is a good sequence (V1, D1, V2, D2, . . . , Vk).
In the full version [3] of the paper, we prove the following results.

▶ Theorem 9 (Characterization of complexity classes). Let Π = (∆, Σ, V, E) be an LCL problem
on ∆-regular trees. We have the following.

If dΠ = 0, then Π is unsolvable in the sense that there exists a tree of maximum degree ∆
such that there is no correct solution of Π on this tree.
If dΠ = k is a positive integer, then the optimal round complexity of Π is Θ(n1/k).
If dΠ = ∞, then Π can be solved in O(log n) rounds.

▶ Theorem 10 (Complexity of the characterization). There is a polynomial-time algorithm A
that computes dΠ for any given LCL problem Π = (∆, Σ, V, E) on ∆-regular trees. If dΠ = k

is a positive integer, then A also outputs a description of an O(n1/k)-round algorithm for Π.
If dΠ = ∞, then A also outputs a description of an O(log n)-round algorithm for Π.

In Theorem 9, all upper bounds hold in the CONGEST model, and all lower bounds hold
in the LOCAL model. For example, if dΠ = 5, then Π can be solved in O(n1/5) rounds in the
CONGEST model, and there is a matching lower bound Ω(n1/5) in the LOCAL model. The
distributed algorithms returned by the polynomial-time algorithm A in Theorem 10 also work
in the CONGEST model. We note that there are several natural definitions of unsolvability
of an LCL w.r.t. a given graph class that are different from the one in Theorem 9, see [23].

References
1 Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its application to

self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997. doi:10.1016/S0304-3975(96)
00286-1.

2 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. The distributed complexity of locally checkable problems on paths is decidable. In
Proc. 38th ACM Symposium on Principles of Distributed Computing (PODC 2019), pages
262–271. ACM Press, 2019. doi:10.1145/3293611.3331606.

https://doi.org/10.1016/S0304-3975(96)00286-1
https://doi.org/10.1016/S0304-3975(96)00286-1
https://doi.org/10.1145/3293611.3331606

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:17

3 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studenỳ, and Jukka
Suomela. Efficient classification of local problems in regular trees. arXiv preprint, 2022.
arXiv:2202.08544.

4 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proc. 34th
International Symposium on Distributed Computing (DISC 2020), volume 179 of LIPIcs, pages
17:1–17:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
DISC.2020.17.

5 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In Proc. 60th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2019), pages 481–497.
IEEE, 2019. doi:10.1109/FOCS.2019.00037.

6 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Improved distributed
lower bounds for MIS and bounded (out-)degree dominating sets in trees. In PODC ’21: ACM
Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021,
pages 283–293. ACM, 2021. doi:10.1145/3465084.3467901.

7 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Deterministic δ-coloring
plays hide-and-seek. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2022). ACM, 2022.

8 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling
sets. In Proc. 61st IEEE Symp. on Foundations of Computer Science (FOCS), pages 365–376,
2020. doi:10.1109/FOCS46700.2020.00042.

9 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr
Tereshchenko. Locally checkable problems in rooted trees. In Proc. 40th ACM Symposium
on Principles of Distributed Computing (PODC 2021), pages 263–272. ACM Press, 2021.
doi:10.1145/3465084.3467934.

10 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does
randomness help with locally checkable problems? In Proc. 39th ACM Symposium on
Principles of Distributed Computing (PODC 2020), pages 299–308. ACM Press, 2020. doi:
10.1145/3382734.3405715.

11 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global
problems in the LOCAL model. Distributed Computing, 34:259–281, 2021. doi:10.1007/
s00446-020-00375-2.

12 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
checkable labelings with small messages. In 35th International Symposium on Distributed
Computing, DISC 2021, volume 209 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

13 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM Symposium
on Theory of Computing (STOC 2018), pages 1307–1318. ACM Press, 2018. doi:10.1145/
3188745.3188860.

14 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proc. 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 369–378. ACM Press, 2019. doi:10.1145/
3293611.3331605.

15 Sebastian Brandt. An automatic speedup theorem for distributed problems. In Proc. 38th
ACM Symposium on Principles of Distributed Computing (PODC 2019), pages 379–388. ACM,
2019. doi:10.1145/3293611.3331611.

16 Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhoň, and Zoltán
Vidnyánszky. Local problems on trees from the perspectives of distributed algorithms, finitary
factors, and descriptive combinatorics. In 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, volume 215 of LIPIcs, pages 29:1–29:26. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.29.

DISC 2022

http://arxiv.org/abs/2202.08544
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1145/3465084.3467901
https://doi.org/10.1109/FOCS46700.2020.00042
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1007/s00446-020-00375-2
https://doi.org/10.1007/s00446-020-00375-2
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.4230/LIPIcs.ITCS.2022.29

8:18 Efficient Classification of Locally Checkable Problems in Regular Trees

17 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC 2016), pages 479–488.
ACM Press, 2016. doi:10.1145/2897518.2897570.

18 Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proc. 36th ACM Symposium on Principles of Distributed Computing
(PODC 2017), pages 101–110. ACM Press, 2017. doi:10.1145/3087801.3087833.

19 Sebastian Brandt and Dennis Olivetti. Truly tight-in-∆ bounds for bipartite maximal matching
and variants. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC),
pages 69–78, 2020. doi:10.1145/3382734.3405745.

20 Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees.
In Proc. 34th International Symposium on Distributed Computing (DISC 2020), volume
179 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.DISC.2020.18.

21 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between random-
ized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122–143,
2019. doi:10.1137/17M1117537.

22 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

23 Yi-Jun Chang, Jan Studený, and Jukka Suomela. Distributed graph problems through an
automata-theoretic lens. In Proc. 28th International Colloquium on Structural Information
and Communication Complexity (SIROCCO 2021), LNCS. Springer, 2021. arXiv:2002.07659.

24 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász lo-
cal lemma and graph coloring. Distributed Comput., 30(4):261–280, 2017. doi:10.1007/
s00446-016-0287-6.

25 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

26 Manuela Fischer. Improved deterministic distributed matching via rounding. In Proceedings
of the 31st International Symposium on Distributed Computing (DISC 2017), pages 17:1–17:15,
2017. doi:10.4230/LIPIcs.DISC.2017.17.

27 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for lovász local
lemma, and the complexity hierarchy. In Proc. 31st International Symposium on Distributed
Computing (DISC 2017), volume 91 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.18.

28 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proc.
57th IEEE Symp. on Foundations of Computer Science (FOCS), pages 625–634, 2016. doi:
10.1109/FOCS.2016.73.

29 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In Proc. 62nd IEEE Annual Symposium on Foundations
of Computer Science (FOCS 2021), 2021.

30 Mohsen Ghaffari and Hsin-Hao Su. Distributed Degree Splitting, Edge Coloring, and Ori-
entations. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pages 2505–2523. Society for Industrial and Applied Mathematics, 2017. doi:10.1137/1.
9781611974782.166.

31 Christoph Grunau, Václav Rozhoň, and Sebastian Brandt. The landscape of distributed
complexities on trees, 2021. arXiv:2202.04724.

32 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

33 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/0215074.

https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3382734.3405745
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
http://arxiv.org/abs/2002.07659
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611974782.166
http://arxiv.org/abs/2202.04724
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074

A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, J. Studený, and J. Suomela 8:19

34 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In 34th
International Symposium on Distributed Computing, DISC 2020, volume 179 of LIPIcs, pages
16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
DISC.2020.16.

35 Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In Proc. 26th
Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 478–489. IEEE,
1985. doi:10.1109/SFCS.1985.43.

36 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J.
Discret. Math., 4(3):409–412, 1991. doi:10.1137/0404036.

37 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

38 Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation, 2020. URL:
https://github.com/olidennis/round-eliminator.

39 Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks.
Distributed Computing, 14(2):97–100, 2001. doi:10.1007/PL00008932.

40 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Proc. 52nd Annual ACM SIGACT Symposium on The-
ory of Computing (STOC 2020), pages 350–363. ACM, 2020. doi:10.1145/3357713.3384298.

41 Jan Studený and Aleksandr Tereshchenko. Rooted tree classifier, 2021. URL: https://github.
com/jendas1/rooted-tree-classifier.

42 J. J. Sylvester. On subvariants, i.e. semi-invariants to binary quantics of an unlimited order.
American Journal of Mathematics, 5(1):79–136, 1882. URL: http://www.jstor.org/stable/
2369536.

DISC 2022

https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.1109/SFCS.1985.43
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://doi.org/10.1007/PL00008932
https://doi.org/10.1145/3357713.3384298
https://github.com/jendas1/rooted-tree-classifier
https://github.com/jendas1/rooted-tree-classifier
http://www.jstor.org/stable/2369536
http://www.jstor.org/stable/2369536

Exponential Speedup over Locality in MPC with
Optimal Memory
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy
Sebastian Brandt #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Manuela Fischer #

ETH Zürich, Switzerland
Rustam Latypov #

Aalto University, Espoo, Finland

Yannic Maus #

TU Graz, Austria
Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Jara Uitto #

Aalto University, Espoo, Finland

Abstract
Locally Checkable Labeling (LCL) problems are graph problems in which a solution is correct if it
satisfies some given constraints in the local neighborhood of each node. Example problems in this
class include maximal matching, maximal independent set, and coloring problems. A successful line
of research has been studying the complexities of LCL problems on paths/cycles, trees, and general
graphs, providing many interesting results for the LOCAL model of distributed computing. In this
work, we initiate the study of LCL problems in the low-space Massively Parallel Computation (MPC)
model. In particular, on forests, we provide a method that, given the complexity of an LCL problem
in the LOCAL model, automatically provides an exponentially faster algorithm for the low-space
MPC setting that uses optimal global memory, that is, truly linear.

While restricting to forests may seem to weaken the result, we emphasize that all known
(conditional) lower bounds for the MPC setting are obtained by lifting lower bounds obtained in the
distributed setting in tree-like networks (either forests or high girth graphs), and hence the problems
that we study are challenging already on forests. Moreover, the most important technical feature of
our algorithms is that they use optimal global memory, that is, memory linear in the number of
edges of the graph. In contrast, most of the state-of-the-art algorithms use more than linear global
memory. Further, they typically start with a dense graph, sparsify it, and then solve the problem on
the residual graph, exploiting the relative increase in global memory. On forests, this is not possible,
because the given graph is already as sparse as it can be, and using optimal memory requires new
solutions.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed computing, Locally checkable labeling problems, Trees, Massively
Parallel Computation, Sublinear memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.9

Related Version Full Version: https://arxiv.org/abs/2208.09453

Funding Rustam Latypov: Supported in part by the Academy of Finland, Grant 334238.

1 Introduction

The Massively Parallel Computation (MPC) model, introduced in [42] and later refined
by [2, 12, 39], is a mathematical abstraction of modern data processing platforms such as
MapReduce [28], Hadoop [55], Spark [56], and Dryad [41]. Recently, tremendous progress
has been made on fundamental graph problems in this model, such as maximal independent
set (MIS), maximal matching (MM) [37, 25], and coloring problems [19, 27]. All these

© Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis Olivetti,
and Jara Uitto;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
https://orcid.org/0000-0001-5293-8365
mailto:brandt@cispa.de
https://orcid.org/0000-0001-5393-6636
mailto:manuela.fischer@inf.ethz.ch
https://orcid.org/0000-0002-0125-8957
mailto:rustam.latypov@aalto.fi
https://orcid.org/0000-0001-7124-3067
mailto:yannic.maus@ist.tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:dennis.olivetti@gssi.it
https://orcid.org/0000-0002-6600-6443
mailto:jara.uitto@aalto.fi
https://orcid.org/0000-0002-5179-5056
https://doi.org/10.4230/LIPIcs.DISC.2022.9
https://arxiv.org/abs/2208.09453
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Exponential Speedup over Locality in MPC with Optimal Memory

problems, and many others, fall under the umbrella of Locally Checkable problems, in which
the feasibility of a solution can be checked by inspecting local neighborhoods. They also
serve as abstractions for fundamental primitives in large-scale graph processing and have
recently gained a lot of attention [9, 7, 27, 29, 3, 18, 32]. Locally checkable labelings (LCLs)
are locally checkable problems restricted to constant degree graphs. A more formal definition
of LCLs is deferred to Section 2.

LCLs have been a rich source of research in various models of computation, because they
can be seen as a starting point to understand locally checkable problems in general, and
this holds independently of the model. For example, in the distributed setting, techniques
developed to understand LCLs [16] have then been used to prove lower bounds in the
unbounded degree setting, which the LCL setting does not include, e.g., for the the maximal
independent set problem, or the ∆-coloring problem [4, 6, 5]. In the distributed LOCAL
model of computing, a lot is known about LCLs: for example, if the graph on which we
want to solve the problem is a tree, then there is a discrete set of possible complexities,
and in some cases, given an LCL, we can even automatically decide its distributed time
complexity. Our goal is to bring to the parallel setting, and in particular to the MPC model,
the knowledge that researchers developed about LCLs in the distributed setting, while also
developing new techniques that can be used in the parallel setting. We show that, on forests,
the mere knowledge of what is the distributed complexity of a problem is enough to obtain
blazingly fast algorithms in the MPC setting. In particular, we obtain MPC algorithms that
are exponentially faster than the best distributed ones. We summarize our main result.

The complexity of any LCL problem on forests in the MPC model is exponentially lower
than its distributed complexity, even when using optimal memory bounds.

More in detail, in our work, we solve LCL problems in forests in the most restrictive
low-space MPC model with linear total memory, which is the most scalable variant of the
MPC model. Our results provide an automatic method that, for all LCL problems, yields an
algorithm that solves the given problem exponentially faster than its optimal distributed
counterpart. The resulting algorithms are component-stable [35, 26], which implies that the
solutions in individual connected components are independent of the other components. Our
results are in some sense optimal: for problems that in the LOCAL model can be solved in
no(1), finding more-than-exponentially faster component-stable algorithms would violate the
widely-believed 1 vs. 2 cycle conjecture in the MPC setting.

Why do we care about trees and forests? All known conditional lower bounds1 for
problems in the MPC setting are derived by lifting lower bounds that hold in the LOCAL
model of distributed computing [35, 26]. Most of the lower bounds known in the LOCAL
model are actually proved either on trees or on high-girth graphs (where the neighborhood
of each node corresponds to a tree): see, e.g., [44, 5, 4, 6, 16]. It follows that essentially all
the conditional lower bounds known in the MPC setting already hold on forests2. Despite
this fact, with a few exceptions, there is no work on upper bounds on forests in the MPC
model – a gap we aim to fill.

1 Proving unconditional lower bounds for the MPC model would imply a major breakthrough in circuit
complexity and seems out of reach [53].

2 As lifting lower bounds from the LOCAL model to the MPC model requires hereditary graph classes one
cannot immediately lift a lower bound in the LOCAL model that holds on trees. Instead, a lower bound
in the LOCAL model on trees implies the same lower bound in the LOCAL model for forests which can
then be lifted to a lower bound for MPC algorithms on forests.

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:3

Moreover, understanding the complexity of problems on trees has been already shown
to be essential in the LOCAL model: it is typically the case that interesting problems are
already challenging on trees, and often even in regular balanced trees of small degree. In
fact, most lower bounds known in the LOCAL model hold exactly in this setting. Due to
the lifting, the same statement adapted to forests is true for all recent MPC lower bounds.
Hence, to decrease the relevance of trees and forests, we either need completely new lower
bound techniques in the LOCAL model coupled with completely new lifting theorems, or
completely new lower bound techniques for the MPC model.

At first glance it may seem that our results are easy to achieve, because we restrict to
forests. Conversely, we would like to emphasize that many state-of-the-art algorithms for
problems like MIS and coloring work as follows [37, 25]: start with a dense graph which
requires a lot of memory to store, sparsify it, and then use the freed global memory to solve
the problem faster on the sparsified part. On forests, this is not possible, because the given
graph is already as sparse as it can be.

The MPC Model. In the MPC model, we have M machines who communicate in an
all-to-all fashion. We focus on problems where the input is modeled as a graph with n

vertices, m edges and maximum degree ∆; we call this graph the input graph. Each node has
a unique ID of size b = O(log n) bits from a domain {1, 2, . . . , N}, where N = poly(n). Each
node and its incident edges are hosted on a machine(s) with S = O(nδ) local memory, where
δ ∈ (0, 1) and the units of memory are words of O(log n) bits. When the local memory is
bounded by O(nδ), the model is called low-space (or sublinear). The number of machines is
chosen such that M = m/S = Θ(m/nδ). For trees, where m = Θ(n), this results in Θ(n1−δ)
machines, that is, a total memory (or global memory) of M · S = Θ(n). For simplicity3, we
assume that each machine i simulates one virtual machine for each node and its incident
edges that i hosts, such that the local memory restriction becomes that no virtual machine
can use more than O(nδ) memory.

During the execution of an MPC algorithm, computation is performed in synchronous,
fault-tolerant rounds. In each round, every machine performs some (unbounded) computation
on the locally stored data, then sends/receives messages to/from any other machine in the
network. Each message is sent to exactly one other machine specified by the sending machine.
All messages sent and received by each machine in each round, as well as the output, have
to fit into local memory. The time complexity is the number of rounds it takes to solve a
problem. Upon termination, each node (resp. its hosting machine) must know its own part
of the solution. For example in the case of node-coloring, the machine hosting node u must
decide on the color of u upon termination of the algorithm.

Unlike in most other works, our algorithms employ O(m + n) words of total memory,
which is the strictest possible as it is only enough to store a constant number of copies
of the input graph. Note that if we were to allow superlinear O(m1+δ) global memory in
our constant-degree setting, many LOCAL algorithms with complexity O(log n) could be
trivially sped up exponentially in the low-space MPC model by applying the well-known
graph exponentiation technique by Lenzen and Wattenhofer [45]. A crucial challenge that
comes with the linear global memory restriction is that only a small fraction of n1−δ of the
(virtual) machines can simultaneously utilize all of their available local memory. Thus, with

3 In practice, it is assumed that the virtual machines can be shuffled between physical machines, such
that the sum of the memory of the virtual machines hosted on any single physical machine is O(nδ).

DISC 2022

9:4 Exponential Speedup over Locality in MPC with Optimal Memory

strictly linear global memory we are forced to develop new techniques which must avoid
gathering local neighborhoods, i.e., fundamentally divert from direct simulations of message
passing algorithms.

1.1 The Distributed Complexity Landscapes
In the last decade, there has been tremendous progress in understanding the complexities
of LCLs in various models of distributed and parallel computing. A prime example is the
LOCAL model [46], where the input graph corresponds to a message passing system, and the
nodes must output their part of the solution according only to local information about the
graph. Another example is the CONGEST model, which is a LOCAL model variant where the
message size is restricted to O(log n) bits [52]. A curious fact about LCLs in the distributed
setting is the existence of complexity gaps, that is, some complexities are not possible at all.
For example, it is known that there are no LCLs with a distributed time complexity in the
LOCAL and CONGEST model that lies between ω(log∗ n) and o(log n). In these two models,
the whole complexity landscape of LCL problems is now understood for some important
graph families. For instance, a rich line of work [50, 20, 22, 11, 8, 3, 18] recently came to
an end when a complexity gap between ω(1) and o(log∗ n) was proved [40], completing the
randomized/deterministic complexity landscape of LCL problems in the LOCAL model for
trees. In the CONGEST model, the authors of [9] showed that, on trees, the complexity of
an LCL problem is asymptotically equal to its complexity in the LOCAL model, whereas
the same does not hold in general graphs. In the randomized/deterministic LOCAL and
CONGEST models, recent work showed that the complexity landscapes of LCL problems
for rooted regular trees are fully understood [7], while the complexity landscapes of LCL
problems in the LOCAL model for rings and tori have already been known for some while [17].
Even for general (constant-degree) graphs, the LOCAL complexity landscape of LCL problems
is almost fully understood [50, 16, 21, 22, 36, 30, 34, 10, 8, 54, 33], only missing a small part
of the picture related to the randomized complexity of Lovász Local Lemma (LLL).

In the case of trees, for deterministic algorithms in the LOCAL model, it is known that
there is a discrete set of possible complexities, that we divide into four categories:

Tiny regime: contains the complexities O(1) and Θ(log∗ n).
Example problems: maximal independent set, maximal matching, (∆ + 1)-vertex
coloring4, (2∆ − 1)-edge coloring, and trivial problems (e.g., all nodes must output 0).

Mid regime: contains the complexity Θ(log n).
Example problems: sinkless orientation [16], 3-coloring, and ∆-coloring.

High regime: contains the complexities Θ(n1/k), for all k ∈ N.
Example problems: 2-coloring and 2 1

2 -coloring [22].

Moreover, it is known that randomness can help only in the mid regime, and in partic-
ular that some problems requiring Θ(log n) for deterministic algorithms have randomized
complexity Θ(log log n), which constitutes our fourth category – Low regime. Problems
residing in the low regime include sinkless orientation and ∆-coloring.

On forests, the complexity landscape in the LOCAL model is the same as on trees. While
this is intuitively evident, it can also be shown formally using an analogous approach to the
one used in the proof of [40, Lemma 3.3].

4 We denote the maximum degree of the graph by ∆.

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:5

1.2 Our Contributions
Our main contribution is showing that, given any LCL problem (see Definition 4) on trees that
has deterministic (resp. randomized) complexity T in the LOCAL model, we can automatically
obtain an MPC algorithm with deterministic (resp. randomized) complexity O(log T) on
forests. In particular, we prove the following.

▶ Theorem 1. Consider an LCL problem on trees with deterministic time complexity f(n) and
randomized time complexity g(n) in the LOCAL model. This problem has deterministic time
complexity O(log f(n)) and randomized time complexity O(log g(n)) in the low-space MPC
model on forests using optimal O(m + n) words of global memory. The provided algorithms
are component-stable.

Put differently, a problem in the LOCAL model can only have a deterministic complexity
f(n) ∈ {Θ(1), Θ(log∗ n), Θ(log n)} ∪ {Θ(n1/k) | k ∈ N}, and we show that it is enough to
know the asymptotic value of f(n) in order to obtain a deterministic MPC algorithm with
complexity O(log(f(n))) ∈ {O(1), O(log log∗ n), O(log log n), O(log n)}.

Moreover, it is known that for all f(n) ̸∈ Θ(log n), the LOCAL randomized complexity of
the problem is the same as the deterministic one. Instead, for f(n) ∈ Θ(log n), the LOCAL
randomized complexity g(n) can be either Θ(log n) or Θ(log log n). If it is Θ(log log n), then
we provide an MPC algorithm with randomized complexity O(log log log n). If we dismiss
the component-stability requirement, we can obtain the same O(log log log n) runtime with a
deterministic MPC algorithm.

▶ Theorem 2. Consider an LCL problem on trees with randomized time complexity
g(n) = Θ(log log n) in the LOCAL model. This problem has deterministic time complexity
O(log log log n) in the low-space MPC model on forests using optimal O(m + n) words of
global memory. This algorithm is component-unstable.

By [35, 26], we know that Theorem 1 is in some sense optimal: if a problem requires T

deterministic rounds in the LOCAL model, then it requires Ω(min{log T, log log n}) rounds
in the low-space MPC setting for component-stable algorithms, assuming that the infamous 1
vs. 2 cycle conjecture holds [12, 35, 53]. In contrast, Theorem 2 shows that one can break the
conditional lower bound of Ω(log log n) for deterministic MPC algorithms for all LCL problems
in the aforementioned class by diverting to component-unstable algorithms. Achieving the
same result even for a single problem without dismissing the component-stability requirement
would be a major breakthrough, as it would falsify the conjecture.

As a subroutine for solving all problems that belong to the high regime in O(log n) MPC
rounds, we also develop an O(log n) round MPC algorithm for rooting a forest. This rooting
algorithm is component-stable, and may be of independent interest, since it is also compatible
with arbitrary degrees.

Additional observations. There is a long line of research that provided algorithms for MPC
that are exponentially faster than the best algorithms for the LOCAL model. Most existing
results achieved these speedup results by using additional global memory, that is, ω(m)
words [13, 32, 27, 26]. We emphasize that, deviating from the usual approach, all of our
results use optimal MPC parameters, in the sense that we work in the low-space setting with
O(nδ) words of local memory and O(m + n) words of global memory.

Hence, our contribution is twofold, on the one hand we prove that we can indeed achieve
this exponential speedup for all LCLs, while on the other hand we show that this exponential
speedup can be achieved without requiring any additional memory. Furthermore, graph

DISC 2022

9:6 Exponential Speedup over Locality in MPC with Optimal Memory

problems in trees and forests are widely unexplored, despite their central role that we have
already elaborated on. It is known that a 4-coloring, MIS, and maximal matching can be
found in O(log log n) rounds [32]. However, the coloring result heavily relies on randomness
and the MIS and matching results require a (small) overhead in the total memory. To
compare, our results deterministically yield a 3-coloring in O(log log n) rounds with linear
total memory. It is not clear whether randomness can even help in the case of 3-coloring,
which is a significant difference to the case of 4-coloring. Furthermore, it is not clear whether
the previous approaches to MIS and matching can be extended to work deterministically
with the same runtime and with linear total memory. While the previous work is designed
for arbitrary degree graphs, it is not clear whether the algorithms could be tuned to work
faster with constant degrees.

Open Questions. In the tiny regime, our results extend to general graphs (see Theorem 5).
In the low regime, our results extend to general graphs if we allow slightly more global
memory (see Theorem 6.5 in the full version). Once we reach the mid regime, i.e., logarithmic
distributed complexities, we do not know the behaviour in general graphs. This leads to
an interesting open question. As mentioned, the asymptotic complexity of any problem on
trees is identical in the LOCAL and CONGEST model, and the same is true (modulo the
exact complexity of the LLL in both models) on general graphs as long as the complexity is
sublogarithmic [9]. However, there is a an exponential separation between the models for
complexities that are at least logarithmic [9]. Does such a separation between the complexity
of an LCL in the LOCAL model and the MPC model also hold for large complexities? Here,
of course, we would want to have a doubly exponential separation.

Interestingly, current conditional lower bounds for the MPC model cannot prove MPC
lower bounds that are ω(log log n). So, while our results in the high regime show that any
problem on forests can be solved in O(log n) rounds in the MPC model, it remains unclear
whether we cannot improve on this bound, even without falsifying the 1 vs. 2 cycle conjecture.

Component-stability. The term of a component-stable MPC algorithm has been introduced
in [35] in the context of lifting distributed lower bounds to the MPC setting. By their
definition, informally, an algorithm is component-stable if the output of a node does not
change if other connected components in the graph are altered (see Definition 11).

While initially believed that it might be an artifact of their lifting techniques, Czumaj,
Davies and Parter [26] showed the contrary, i.e., they showed that component-unstable
algorithms can beat the conditional lower bounds of [35]. Their results hold assuming
their revised definition of component-stability, which is argued to be more robust (see
Definition 13). Under their definition, it is not strictly easier nor harder to design algorithms
to be component-stable, as compared to the definition of [35]. The main difference is that
they allow the output of component-stable algorithms to depend on the total number of
nodes in the graph and the maximum degree. In our work, we adopt the revised definition of
component-stability [26]. See Appendix A and the discussion therein for further details.

1.3 Challenges & Key Techniques
We now provide an overview of the challenges that we had to tackle in order to prove our
results, and a very high level explanation of the key techniques that we used to solve them.

The tiny regime serves as a good warm-up to see why using an optimal amount of global
memory is difficult. The most technically involved part is the high regime, where we obtain
an O(log n)-time MPC algorithm for any LCL problem.

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:7

Graph Exponentiation. A reoccurring challenge for all regimes lies in respecting the linear
global memory, which roughly means that on average, every node can use only a constant
amount of memory. This is particularly unfortunate because almost all recent MPC results –
and in particular all that achieve exponential speedups – rely on the memory-intense graph
exponentiation technique [45]. Informally, this technique enables a node to gather its 2k-hop
neighborhood in k communication rounds. Doing this in parallel for every node in the graph
results in a ∆2k overhead in global memory. For this technique to be useful, k has to be
ω(1), yielding a non-constant multiplicative increase in the global memory requirement. In
order to use this technique but not violate linear global memory, we develop new solutions
that are discussed in the following paragraphs.

Tiny regime f(n) = Θ(1) and f(n) = Θ(log∗ n). Handling the Θ(1) complexity is
trivial, since any LOCAL algorithm for LCLs can be simulated in the MPC setting. For the
Θ(log∗ n) class, it is known from prior work that all problems can be solved in the LOCAL
model in a very specific way: reduce to the problem of computing a distance-k coloring with
a small enough number of colors, where k is a constant that depends on the problem. In a
distance-k c-coloring, each node is assigned a color in {1, . . . , c} such that nodes at distance
at most k have different colors. Such a coloring can be computed in O(log∗ n) rounds in the
LOCAL model, and it could be computed easily in the MPC setting in O(log log∗ n) rounds,
by exploiting the graph exponentiation technique, if we allow an additional O(log∗ n) factor
overhead in the amount of global memory.

We show that this overhead is not required, by developing a novel MPC algorithm for
coloring. The algorithm that we provide reduces the problem of coloring a general graph
to coloring directed pseudoforests, that is, graphs where all edges are oriented and every
node has at most one outgoing edge. Then, we show that in directed pseudoforests, it is
possible to solve the coloring problem through a variant of graph exponentiation that only
requires keeping track of a constant number of IDs. This way, the memory use of each node
is constant, and the global memory is linear.

High regime f(n) = Θ(n1/k), for all k ∈ N. We explicitly provide, for any solvable LCL,
a novel algorithm that has a runtime of O(log n). Essentially, we solve each tree in the forest
separately, hence we will consider trees in the following argumentation. On a high level,
our algorithm first roots the tree using our O(log n)-time tree rooting algorithm, and then
proceeds in two phases. In the first phase, roughly speaking, the goal is to compute, for a
substantial number of nodes v, the set of possible output labels that can be output at v such
that the label choice can be extended to a (locally) correct solution in the subtree hanging
from v. This is done in an iterative manner, proceeding from the leaves towards the root.
The second phase consists of using the computed information to solve the given LCL from
the root downwards.

While this outline sounds simple, there are a number of intricate challenges that require
the development of novel techniques, both in the design of the algorithm and its analysis. For
instance, the depth of the input tree may be ω(log n) (which prevents us from performing
the above ideas in a sequential manner), and the storage of the required completability
information grows exponentially when using graph exponentiation, exceeding the available
global memory. Our key technical contributions are the following.

The design of a process that allows for interleaving graph exponentiation steps and
compressing the graph (and compatibility information) such that the process is also
reversible (second phase of the algorithm). The main challenge here is that multiple graph
exponentiation processes executed on individual parts of the tree have to be merged,
simultaneously or at different times, into one process during the execution.

DISC 2022

9:8 Exponential Speedup over Locality in MPC with Optimal Memory

The design of a fine-tuned potential function for the analysis of the complex algorithm
resulting from addressing the aforementioned issues and the highly non-sequential behavior
arising from interleaving graph exponentiation steps.

Mid regime f(n) = Θ(log n). We would wish to use the algorithm of Chang and Pettie [22]
as a black box. On a very high level idea, their LOCAL algorithm uses O(log n) rounds
to compute a rake-and-compress decomposition of size O(log n), which is essentially the
classic H-partition by Miller and Reif [49]. Then, compatibility information of the given LCL
problem is propagated layer by layer to the top, and then labels are fixed at the top and
propagated down.

Applying known MPC techniques like graph exponentiation to speed up this process
does not work out of the box for several reasons. First, the compatibility information
they propagate grows exponentially, which creates congestion in the MPC model. Secondly,
since the input graph is as sparse as it could possibly be, the direct application of graph
exponentiation would violate the optimal global memory bounds we are striving for. We
resolve the first issue by first observing that the compatibility information can be reduced to
constant size in every iteration. The second issue is remedied by interleaving exponentiation
steps with memory freeing steps in a balanced way.

Low regime g(n) = Θ(log log n). With an additional O(log n) factor of global memory,
this result is easy to obtain. Previous work [9] has a constant time reduction to instances of
size N = log n, resulting in a LOCAL algorithm with runtime poly(log N) = poly(log log n).
A straightforward application of graph exponentiation would yield an MPC algorithm with
runtime O(log log log n). Exploiting additional global memory in this manner has been used
in a similar setting in [26]. However, without the additional memory it is harder to solve
the small instances in triple logarithmic time. The work around for this memory issue is to
use our mid regime algorithm on the small instances, yielding a memory efficient algorithm
with runtime O(log log log n). To the best of our knowledge there is no other paper that
can efficiently deal with such occurring small instances – small instances occur also in many
other problems like MIS and graph coloring – with optimal global memory.

1.4 Further Related Work
For many of the classic graph problems, simple O(log n)-time MPC algorithms follow from
classic literature in the LOCAL model and PRAM [1, 46, 48]. In particular in the case of
bounded degree graphs, it is often straightforward to simulate algorithms from other models.
However, it is usually desirable to get algorithms that run much faster than their LOCAL
counterparts. If the MPC algorithms are given linear Θ(n) or even superlinear Θ(n1+δ) local
memory, fast algorithms are known for many classic graph problems.

In the sublinear (or low-space) model, [19] provided a randomized algorithm for the (∆+1)-
coloring problem that, combined with the new network decomposition results [54, 33], yields
an O(log log log n) MPC algorithm, that is exponentially faster than its LOCAL counterpart. A
recent result by Czumaj, Davies, and Parter [27] provides a deterministic O(log log log n)-time
algorithm for the same problem using derandomization techniques. For many other problems,
the current state of the art in the sublinear model is still far from the aforementioned
exponential improvements over the LOCAL counterparts, at least in the case of general
graphs. For example, the best known MIS, maximal matching, (1 + ϵ)-approximation
of maximum matching, and 2-approximation of minimum vertex cover algorithms run
in Õ(

√
log ∆ +

√
log log n) time [37], whereas the best known LOCAL algorithm has a

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:9

logarithmic dependency on ∆ [31]. For restricted graph classes, such as trees and graphs
with small arboricity5 α, better algorithms are known [15, 13]. Through a recent work by
Ghaffari, Grunau and Jin, the current state of the art for MIS and maximal matching are
O(

√
log α · log log α + log log n)-time algorithms using Õ(n + m) words of global memory [32].

As for lower bounds, [35] gave conditional lower bounds of Ω(log log n) for component-
stable sublinear MPC algorithms for constant approximation of maximum matching and
minimum vertex cover, and MIS. In addition, the authors provided a lower bound of
Ω(log log log n) for LLL. Their hardness results are conditioned on a widely believed conjecture
in MPC about the complexity of the connectivity problem, which asks to detect the connected
components of a graph. It is argued that disproving this conjecture would imply rather strong
and surprising implications in circuit complexity [53]. When assuming component-stability,
they also argue that all known algorithms in the literature are component-stable or can easily
be made component-stable with no asymptotic increase in the round complexity. However,
recent work [26] gave a separation between stable and unstable algorithms, and that some
particular problems (e.g., computing an independent set of size Ω(n/∆)) can be solved faster
with unstable algorithms than with stable ones.

It is also worth discussing the complexity of rooting a tree, as it is an important subroutine
in our high regime. On the randomized side, [15] gave an O(log d · log log n) time algorithm,
where d is the diameter of the graph. On the deterministic side, Coy and Czumaj [24] gave
an O(log n) time algorithm using (component-unstable) derandomization methods, which
is the current state of the art. In the full version we provide a totally different rooting
algorithm that is also deterministic and takes O(log n) time, but is component-stable. We
note that [43] uses similar techniques in a more general setting, but in ω(log n) time.

1.5 Outline
After the formal introduction of LCL problems and other notations in Section 2, we start
proving the exponential speedup for the different regimes in Theorem 1 in separate sections.
In Section 3, we warm up with the tiny regime. In Section 4, we present the high level ideas
for our most involved result, the exponential speedup for the high regime. We provide full
proofs and handle the remaining regimes in the full version of the paper.

Some of our speedup results use a description of a distributed algorithm with the claimed
runtime to obtain the speedup. In the full version of the paper, we show that such a
description can be inferred merely by knowing the distributed complexity class in which the
problem resides.

2 Definitions and Notation

We work with undirected, finite, simple graphs G = (V, E) with n = |V | nodes and m = |E|
edges such that E ⊆ [V]2 and V ∩E = ∅. Let degG(v) denote the degree of a node v in G and
let ∆ denote the maximum degree of G. The distance dG(v, u) between two vertices v, u in G

is the length of a shortest v − u path in G; if no such path exists, we set dG(v, u) := ∞. The
greatest distance between any two vertices in G is the diameter of G, denoted by diam(G).
For a subset S ⊆ V , we use G[S] to denote the subgraph of G induced by nodes in S. Let
Gk, where k ∈ N, denote the k:th power of a graph G, which is another graph on the same

5 The arboricity of a graph is the minimum number of disjoint forests into which the edges of the graph
can be partitioned.

DISC 2022

9:10 Exponential Speedup over Locality in MPC with Optimal Memory

vertex set, but in which two vertices are adjacent if their distance in G is at most k. In
the context of MPC, Gk is the resulting virtual graph after performing log k steps of graph
exponentiation [45].

For each node v and for every radius k ∈ N, we denote the k-hop (or k-radius) neighbor-
hood of v as Nk(v) = {u ∈ V : d(v, u) ≤ k}. The topology of a neighborhood Nk(v) of v

is simply G[Nk(v)]. However, with slight abuse of notation, we sometimes refer to Nk(v)
both as the node set and the subgraph induced by node set Nk(v). Neighborhood topology
knowledge is often referred to as vision, e.g., node v sees Nk(v). In trees and forests, the
number n of nodes and the number m of edges are asymptotically equal, and we may use
them interchangeably throughout the paper when reasoning about global memory.

2.1 LCL Definitions
In their seminal work [50], Naor and Stockmeyer introduced the notion of a locally checkable
labeling problem (LCL problem or just LCL for short). The definition they provide restricts
attention to problems where nodes are labeled (such as vertex coloring problems), but they
remark that a similar definition can be given for problems where edges are labeled (such
as edge coloring problems). A modern way to define LCL problems that captures both of
the above types of problems (and combinations thereof) labels half-edges instead, i.e., pairs
(v, e) where e is an edge incident to vertex v. Moreover, on trees it is known that all LCL
problems can be rephrased in a special form, called node-edge-checkable LCL problems [9, 40].
Let us first define a half-edge labeling formally, and then provide this modern LCL problem
definition.

▶ Definition 3 (Half-edge labeling). A half-edge in a graph G = (V, E) is a pair (v, e), where
v ∈ V is a vertex, and e ∈ E is an edge incident to v. A half-edge (v, e) is incident to some
vertex w if v = w. We denote the set of half-edges of G by H = H(G). A half-edge labeling
of G with labels from a set Σ is a function g : H(G) → Σ.

We distinguish between two kinds of half-edge labelings: input labelings that are part of
the input and output labelings that are provided by an algorithm executed on input-labeled
instances. Throughout the paper, we will assume that any considered input graph G comes
with an input labeling gin : H(G) → Σin and will refer to Σin as the set of input labels; if the
considered LCL problem does not have input labels, we can simply assume that Σin = {⊥}
and that each node is labeled with ⊥.

While the formal definition of a node-edge-checkable LCL (see below) appears complicated,
the intuition behind it is simple: essentially, we have a list of allowed output label combinations
around nodes, a list of allowed output label combinations on edges, and a list of allowed
input-output label combinations, all of which a correct solution for the LCL has to satisfy.

▶ Definition 4 (Node-edge-checkable LCL). Let ∆ be some non-negative integer constant.
A node-edge-checkable LCL is a quintuple Π = (Σin, Σout, N , E , g) where Σin and Σout are
finite sets, N = {N1, . . . , N∆} consists of sets Ni of cardinality-i multisets with elements
from Σout, E is a set of cardinality-2 multisets with elements from Σout, and g : Σin → 2Σout

is a function mapping input labels to sets of output labels. We call N1 ∪ · · · ∪ N∆ and E the
node constraint and edge constraint of Π, respectively. Furthermore, we call each element of
N a node configuration, and each element of E an edge configuration. For a node v, denote
the half-edges of the form (v, e) for some edge e by hv

1, . . . , hv
deg(v) (in arbitrary order). For

an edge e, denote the half-edges of the form (v, e) for some node v by he
1, he

2 (in arbitrary
order).

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:11

A correct solution for Π on a graph G is a half-edge labeling gout : H(G) → Σout such that
1. for each node v, the multiset of outputs assigned by gout to hv

1, . . . , hv
deg(v) is an element

of Ndeg(v),
2. for each edge e, the cardinality-2 multiset of outputs assigned by gout to he

1, he
2 is an

element of E, and
3. for each half-edge h ∈ H(G), we have gout(h) ∈ g(ι), where ι = gin(h) is the input label

assigned to h.

We say that an algorithm A solves an LCL problem Π on a graph class G if it provides a
correct solution for Π for every G ∈ G. Note that the LCL definitions above implicitly require
that graph class G has constant degree.

3 The Tiny Regime

In this section, we show that any LCL problem on general graphs that can be solved in the
LOCAL model in O(log∗ n) rounds, can be solved in the MPC model in O(log log∗ n) rounds.
By combining this result with known gaps in the landscape of possible complexities in the
LOCAL model [21], we obtain the following result.

▶ Theorem 5. Let Π be an LCL problem on general graphs. Assume that there is a determ-
inistic algorithm for the LOCAL model that solves Π in o(log n) rounds, or a randomized
algorithm that solves it in o(log log n) rounds. Then, the problem Π can be solved determin-
istically in O(log log∗ N) rounds in the low-space MPC model using O(m + n) words of global
memory, where N = poly(n) is the size of the ID space. The algorithm works even if the
graph consists of disconnected components, and it is components-stable.

The rest of this section is devoted to proving Theorem 5.

A Universal Algorithm. In the LOCAL model, it is known that, if an LCL can be solved
with an algorithm A in o(log n) deterministic rounds, or in o(log log n) randomized rounds,
then it can also be solved with a deterministic algorithm A′ that requires just O(log∗ n)
rounds [21]. In order to prove this result, [21] shows how to convert any such algorithm A

into an algorithm A′ that works as follows (for some constant k that depends on the problem
Π and the algorithm A):
1. Compute a distance-k O(∆2k)-coloring of the graph;
2. Run a k-round algorithm B that uses the computed coloring to produce the final output.
In [21] is shown that the constant k, and the k-round algorithm B, can be mechanically
determined from the original algorithm A. The runtime of algorithm A′ is O(log∗ n) rounds
since this is the runtime for the first step, while the second step only requires constant time.

Why it Works. The high-level purpose of computing the coloring in Item 1 is to provide
new identifiers at the nodes that are unique up to distance k and come from a much smaller
space than the original identifiers (that are part of the setting in the LOCAL model). Roughly
speaking, this ensures that the k-hop view of any node that interprets the computed colors as
identifiers is consistent with the node living in a constant-sized graph (with a constant-sized
identifier space).

In [21], it is argued why this approach works, and on a high level, the reason can be
summarized as follows. For some sufficiently large constant k, algorithm A can be executed
on all graphs of a suitable constant size with a runtime of just k rounds. Since each node
of the original graph executing this k-round algorithm cannot distinguish between living in

DISC 2022

9:12 Exponential Speedup over Locality in MPC with Optimal Memory

the original graph with the generated new identifiers and living in (a suitable) one of these
constant-sized graphs (on all of which the algorithm is correct), the k-round algorithm must
also be correct on the (much larger) original graph. This is just a high-level sketch of the
proof presented in [21]; there are a number of intricate details that have to be taken care of
and are explained in [21].

How We Proceed. For our purpose, we do not actually need to know the details of [21] on
how A′ is constructed as a function of A, and we just use the following statement that comes
from [21]: if the problem Π can be solved in o(log n) deterministic rounds or o(log log n)
randomized rounds, then it can also be solved in O(log∗ n) deterministic rounds using an
algorithm that first applies Item 1 and then applies Item 2. In fact, in our case, we are not
even given the algorithm A as input: we just know that the problem can be solved in o(log n)
deterministic or o(log log n) randomized rounds, but we are not given an algorithm A with
such a complexity. Hence, we cannot apply the construction of [21] directly.

In Section 7 of the full version, we show that this is not an issue, in the sense that, if an
algorithm exists, then it can be found by brute force. To show that, we use the following two
important ingredients presented in [50]:

Any constant time algorithm that solves an LCL in the LOCAL model can be transformed
into an algorithm that does not require nodes to have IDs.
For every k, it is decidable whether there exists a k-round algorithm that solves a given
problem in a setting where we do not have IDs and we are given a (suitable) distance-k
coloring. The reason is that, in this setting, there are only a finite number of possible
algorithm candidates (and they can be enumerated), and given a candidate, it is possible
to check if it constitutes a correct algorithm by using a centralized offline procedure.

We use the above ingredients as follows. If we just know that Π can be solved in o(log n)
deterministic rounds or o(log log n) randomized rounds, even if no algorithm is given, we can
use [21] to claim that there exists a k for which there is a k-round algorithm B that solves Π
given a distance-k coloring, and then use the first ingredient to claim that this algorithm
does not need the presence of IDs. Finally, we use the second ingredient to say that if we try
increasing values of k, we are going to find the algorithm B that we need.

From the above discussion, in order to prove Theorem 5, we only need to show how to
compute a distance-k O(∆2k)-coloring in O(log log∗ n) deterministic MPC rounds.

3.1 LOCAL Algorithm
We start by presenting an algorithm for computing such a coloring in the LOCAL model.
While computing such a coloring in the LOCAL model is easy, we present an algorithm
amenable to be converted into a faster MPC algorithm. This algorithm is not new: it has
been already presented in [38, 51], and we report it here, with minor modifications, for
completeness.

▶ Lemma 6. For any constant k, the distance-k O(∆2k)-coloring problem on general graphs
can be solved in the LOCAL model with a deterministic algorithm running in O(log∗ n) rounds.

Proof. We present an algorithm that is able to compute an O(∆2) coloring of a given graph
G, where ∆ is the maximum degree of G, in O(log∗ n) rounds. By simulating such an
algorithm on Gk, the k-th power of G, which has maximum degree ∆k, we obtain the claimed
result. Note that the running time is also asymptotically the same, since k is a constant.

The algorithm works as follows. At the beginning, each edge is oriented arbitrarily. Then,
each node marks its incident outgoing edges with different numbers from {1, . . . , ∆}. In
this way, we decomposed our graph G into ∆ edge-disjoint directed subgraphs G1, . . . , G∆,

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:13

where each Gi is the graph induced by edges marked i. Also, notice that by construction, for
each i, each node in Gi has at most a single outgoing edge, and hence each Gi is a directed
pseudoforest.

Assume we can color each directed pseudoforest with 3 colors in O(log∗ n) rounds. Then,
we can obtain a proper coloring for the nodes of G with 3∆ colors, by letting each node
construct the tuple c(v) = (c1(v), . . . , c∆(v)), where ci(v) is the color of v in Gi. In fact,
consider two neighboring nodes u and v connected through an edge e. Assume that e is
oriented from u to v, and that u marked e with value i. Then, in Gi, u and v are neighbors,
and hence they obtained different colors ci(u) and ci(v), implying that c(u) ̸= c(v). Once a
3∆-coloring is obtained, we can then spend O(3∆) rounds to reduce the number of colors to
O(∆2), by using a simple greedy algorithm.

We now show that each pseudoforest can be 3-colored efficiently. Let P be an arbitrary
pseudotree. At first, we can use the IDs of the nodes to produce a poly(n)-coloring of P . Then
we apply 1 round of Linial’s coloring algorithm [47] in order to obtain an O(log n)-coloring
of P . While this step of coloring is not necessary for the LOCAL algorithm, it allows us to
reduce the amount of information that we will later need to transmit in the MPC algorithm.
Nodes can then spend T = O(log∗ n) rounds to gather the color of their successors in P

at distance at most T , and it is known that, with this information, nodes can compute a
proper coloring of P , by simulating O(log∗ n) steps of a color reduction algorithm for directed
paths [38, 23]. ◀

3.2 MPC Implementation
We now show how to convert the LOCAL algorithm into an exponentially faster low-space
MPC algorithm. The LOCAL algorithm consists of two main steps: The distance-k O(∆2k)-
coloring and the k-round algorithm. Since k and ∆ are constant, the latter step is trivial, and
the former step can be computed efficiently using graph exponentiation, where nodes keep
track of the IDs of the two outermost nodes, and the colors of all nodes in between. Lemma 9
of the following paragraph proves the former step, completing the proof for Theorem 5.
Component-stability and compatibility with disconnected components follows directly from
the fact that all arguments are local, i.e., nodes in separate components never communicate,
and that the runtime depends only on N .

Distance-k Coloring. We show that the initial distance-k coloring can be computed in
O(log log∗ n) low-space MPC rounds, while respecting linear global memory. First, we observe
that using the standard graph exponentiation technique, we can compute the kth power
of a graph; for constant k, the memory overhead is only a constant. Then, we will apply
techniques similar to the ones used in the LOCAL model in Lemma 6.

▶ Observation 7. For an input graph G with n nodes, m edges, and maximum degree ∆, the
power graph Gk can be computed deterministically in O(log k) low-space MPC rounds with
O(∆k) words of local and O(m + n · ∆k) words of global memory, as long as ∆k < nδ.

▶ Observation 8. Every k-round LOCAL algorithm can be simulated in O(log k) low-space
MPC rounds with O(∆k) words of local and O(m + n · ∆k) words of global memory, as long as
∆k < nδ. If the LOCAL algorithm is deterministic, then the MPC algorithm is deterministic
as well.

Proof. Using Observation 7, we can collect the k-hop neighborhood of each node and hence,
simulate a k-round LOCAL algorithm in an additional O(1) low-space MPC rounds. Observe
that this also holds for general graphs. ◀

DISC 2022

9:14 Exponential Speedup over Locality in MPC with Optimal Memory

▶ Lemma 9. The distance-k O(∆2k)-coloring problem on general graphs can be solved in the
low-space MPC model with a O(log log∗ n + log k)-time deterministic algorithm, as long as
∆k < nδ. The algorithm requires O(∆k) words of local and O(m + n · ∆k) words of global
memory. If k and ∆ are constants, the runtime reduces to O(log log∗ n) and we require O(1)
words of local and O(m + n) words of global memory.

Proof. Using Observation 7, we can first compute Gk in O(log k) rounds, and operate on
Gk instead of the input graph G henceforth. The application of Observation 7 requires
O(∆k) words of local memory and O(m + n · ∆k) words of global memory. Then, similarly
to Lemma 6, we can reduce the coloring problem to O(1)-coloring of directed pseudoforests
that are initially colored with O(log n) colors.

Next, our goal is to use the graph exponentiation technique such that each node can collect
the topology and the colors of its O(log∗ n) successors in its pseudoforest in O(log log∗ n)
time. Here, we have to take care of the subtle detail that the color of a successor is not
enough to determine the machine on which this successor lies. Suppose that each node is
initially labeled with its O(log log n)-bit color and its O(log n)-bit identifier that encodes
both the identity (color) of the node and the machine containing the node. Then, in round 1,
each node knows the identifier and the color of its successor. For an inductive argument,
suppose that each node u knows the identifier the successor vi in distance i and the vector of
colors of all nodes in between u and vi, on the directed path from u to vi. Then, in O(1)
MPC rounds, u can learn the identifier of the 2i:th successor v2i and the colors of all nodes
between u and v2i. After learning the identifier of v2i, node u can forget about the identifier
of vi and hence, u only keeps track of one identifier. By induction, node u learns the colors
of its O(log∗ n) successors in O(log log∗ n) MPC rounds.

Using the vector of colors of the successors, in O(1) MPC rounds, each node can simulate
the O(log∗ n)-time LOCAL algorithm to obtain an O(∆2k)-coloring. This requires O(log∗ n ·
log log n+log n) = O(log n) bits of memory per node per pseudoforest that the node belongs to,
counting the colors of the successors and the identifier of the furthest successor. Altogether,
this results in a global memory requirement of O(n log n · ∆k) bits which fits O(n · ∆k)
words. ◀

4 The High Regime

In this section, we will prove that all solvable LCL problems on forests, i.e., all LCL problems
that have a correct solution on every forest, can be solved deterministically in O(log n) time in
the low-space MPC model using O(m + n) words of global memory. Our proof is constructive:
we explicitly provide, for any solvable LCL, an algorithm that has a runtime of O(log n). In
fact, our construction can be used to find an O(log n)-time algorithm even for unsolvable
LCLs, with the guarantee that on any instance that admits a correct solution the given output
will be correct (while the algorithm detects it if no solution exists). We show the following
theorem.

▶ Theorem 10. For any solvable LCL problem Π on a forest, there is an O(log n)-time
deterministic low-space MPC algorithm that is component-stable and uses O(m + n) words of
global memory.

In the full version, we provide a method to solve any LCL on forests if we can solve it on
trees. Hence, we can restrict attention to trees.

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:15

4.1 High-level Overview of the Algorithm and Its Analysis
Consider an arbitrary solvable LCL problem Π on trees. In the following, we will give a
slightly simplified view of the algorithm we will use to solve Π in O(log n) time. First, we root
the input tree by using the O(log n)-round rooting algorithm described in the full version.
Then, on a high level, the rest of the algorithm proceeds in 2 phases.

In the first phase, which we will refer to as the leaves-to-root phase, roughly speaking, the
goal is to compute, for a substantial number of edges e = (u, v), the set of output labels that
can be output at half-edge (v, e) such that the label choice can be extended to a (locally)
correct solution in the subtree hanging from v via e. This is done in an iterative manner,
proceeding from the leaves towards the root. When, at last, the root has computed this set
of output labels for each incident half-edge, it can, on each such half-edge, select an output
label from the computed set such that the obtained node configuration is contained in the
node constraint of Π and the input-output constraints of Π (given by the function g in the
definition of Π) are satisfied. Such a selection must exist due to the fact that Π has a correct
solution on the considered instance. We refer to these sets as the completability information.

The second phase, which we will refer to as the root-to-leaves phase, consists of completing
the solution from the root downwards, by iteratively propagating the selected solution further
towards the leaves. With the same argumentation as at the root, certain nodes v can select an
output label at the half-edge leading to its parent and output labels from the sets computed
on its incident half-edges leading to its children such that the obtained node configuration is
contained in the node constraint of Π, the obtained edge configuration on the edge from v

to its parent is contained in the edge constraint of Π, and the input-output constraints of
Π are satisfied. The fact that the selected labels come from the sets computed in the first
phase ensures that after each choice the current partial solution is part of a correct global
solution. While this outline sounds simple, there are a number of intricate challenges to
make the mentioned ideas work in O(log n) rounds while staying within the memory bound
of O(m + n).

Unfortunately, if the depth of the input tree is ω(log n) the outlined approach has ω(log n)
steps and running them sequentially is insufficient for an O(log n)-time algorithm. In order
to mitigate this issue, we will not only process the leaves of the remaining unprocessed
tree in each iteration, but also the nodes of degree 2, inspired by the rake-and-compress
decomposition by Miller and Reif [49] which guarantees that after O(log n) iterations of
removing all degree-1 and degree-2 nodes all nodes have been removed. The advantage of
degree-2 nodes over higher-degree nodes w.r.t. storing completability information (as in the
above outline) is that they form paths, which by definition only have two endpoints; the
idea, when processing such a path, is to simply store in the two endpoints the information
for which pairs of labels at the two half-edges at the ends of the path there exists a correct
completion of the solution inside the path. This allows to naturally add processing degree-2
nodes to the leaves-to-root phase, while for the root-to-leaves phase, the information stored
at the endpoints s, t of a path essentially allows us to start extending the current partial
solution on the path itself (and thereafter on the subtrees hanging from nodes on the path)
one step after the output labels at s and t are selected. Note that the degrees of nodes change
throughout the process due to the removal of nodes and hence new nodes might become
degree-2 nodes after every step of the algorithm.

Unfortunately, there are further challenges in obtaining an O(log n) runtime. In the
leaves-to-root phase, even when using graph exponentiation, processing a path of degree-2
nodes of length L involves coordination between its endpoints and takes Ω(log L) time,
whereas the O(log n) time guarantee of the rake-and-compress technique crucially relies on

DISC 2022

9:16 Exponential Speedup over Locality in MPC with Optimal Memory

the fact that each iteration (optimally, an iteration would remove all leaves and all degree-2
nodes) can be performed in constant time. Hence, essentially, we will only perform one
step of graph exponentiation on paths in each iteration. Here, a new obstacle arises: before
the graph exponentiation is finished, new nodes (that just became degree-2 nodes due to
all except one of their remaining children being conclusively processed in the most recent
iteration) might join the path. Nevertheless, we will show that this process still terminates in
logarithmic time by designing a fine-tuned potential function that is inspired by the idea of
counting how many nodes from certain groups of degree-2 nodes are contained in any fixed
“pointer chain” from some leaf to the root.

Another issue is that we have to be able to store the completability information that
we compute in the leaves-to-root phase until we use it (again) in the root-to-leaves phase.
Recall that the graph exponentiation technique adds new edges/pointers. Even on paths
their number can be up to logarithmic in n per node (even on average), yielding a logarithmic
overhead in global memory.

In order to remedy this problem, we perform preprocessing before the leaves-to-root phase,
and, as a result thereof, postprocessing after the root-to-leaves phase. The preprocessing can
be thought of as a more memory-efficient (hence relatively slower) version of (a few iterations
in) the leaves-to-root phase. It differs by processing the degree-2 nodes, i.e., paths, in a way
that guarantees that the number of new edges introduced by the graph exponentiation (which
we should rather call pointer forwarding at this point) on each path in each iteration is only
a constant fraction of the length of the respective path. This is achieved by finding, in each
iteration, a maximal independent set (MIS) on each path, letting only MIS nodes forward
pointers, and removing the MIS nodes afterwards. The preprocessing runs for Θ(log log n)
iterations, and computing an MIS on paths in each of them takes O(log∗ N) time, where N

is the size of the ID space. Note that due to the removal of vertices and the way we treat
paths, new paths can appear in each iteration and we need to pay the O(log∗ N) runtime
in each iteration, yielding a runtime of O(log log n · log∗ N) for the preprocessing, which is
much less than the target runtime of O(log n) rounds.

We will show that the number of remaining nodes is O(n/ log n) after the preprocessing.
This property ensures that the memory overhead of O(log n) edges per node introduced
in the leaves-to-root phase does not exceed the desired global memory of O(m + n) words.
The postprocessing runs for Θ(log log n) iterations and is conceptually very similar to the
preprocessing. We simply iteratively extend the partial solution (computed so far) on the
edges that were processed during preprocessing, analogous to the approach in the root-to-
leaves phase. Lastly, we also have to ensure that the local memory restrictions of low-space
MPC are not exceeded.

References

1 Noga Alon, László Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. Journal of Algorithms, pages 567–583, 1986.
doi:10.1016/0196-6774(86)90019-2.

2 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 574–583, 2014. doi:10.1145/2591796.2591805.

3 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of Distributed Binary Labeling Problems. In DISC, pages
17:1–17:17, 2020. doi:10.1145/3382734.3405703.

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/3382734.3405703

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:17

4 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower Bounds for Maximal Matchings and Maximal Independent Sets. In the
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages
481–497, 2019. doi:10.1109/FOCS.2019.00037.

5 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-Coloring
Plays Hide-and-Seek. In Proceedings of the Symposium on Theory of Computing (STOC),
2022. arXiv:2110.00643.

6 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed Lower Bounds for Ruling
Sets. In the Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS),
pages 365–376, 2020. doi:10.1109/FOCS46700.2020.00042.

7 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studeny, Jukka Suomela, and Aleksandr
Tereshchenko. Locally Checkable Problems in Rooted Trees. In the Proceedings of the
International Symposium on Principles of Distributed Computing (PODC), pages 263–272,
2021. doi:10.1145/3465084.3467934.

8 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and J. Suomela. Almost Global Problems in
the LOCAL Model. In Proceedings of the International Symposium on Distributed Computing
(DISC), pages 9:1–9:16, 2018. doi:10.4230/LIPIcs.DISC.2018.9.

9 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
Checkable Labelings with Small Messages. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 8:1–8:18, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

10 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. New Classes of Distributed Time Complexity. In Proceedings of the Symposium
on Theory of Computing (STOC), pages 1307–1318, 2018. doi:10.1145/3188745.3188860.

11 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of Minimal
Symmetry Breaking in Distributed Computing. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC), pages 369–378, 2019. doi:
10.1145/3293611.3331605.

12 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM (JACM), 64(6):40, 2017. doi:10.1145/3125644.

13 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively Parallel Computation of Matching
and MIS in Sparse Graphs. In the Proceedings of the International Symposium on Principles
of Distributed Computing (PODC), pages 481–490, 2019. doi:10.1145/3293611.3331609.

14 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Łącki, and Vahab Mir-
rokni. Near-Optimal Massively Parallel Graph Connectivity. In the Proceedings of the
IEEE Symposium on Foundations of Computer Science (FOCS), pages 1615–1636, 2020.
doi:10.1109/FOCS.2019.00095.

15 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the Linear-Memory Barrier
in MPC: Fast MIS on Trees with Strongly Sublinear Memory. In the Proceedings of the
International Colloquium on Structural Information and Communication Complexity, pages
124–138, 2019. doi:10.1007/978-3-030-24922-9_9.

16 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A Lower Bound for the Distributed Lovász Local
Lemma. In Proceedings of the Symposium on Theory of Computing (STOC), pages 479–488.
ACM Press, 2016. doi:10.1145/2897518.2897570.

17 Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R.J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański.
LCL Problems on Grids. In the Proceedings of the International Symposium on Principles of
Distributed Computing (PODC), pages 101–110, 2017. doi:10.1145/3087801.3087833.

18 Yi-Jun Chang. The Complexity Landscape of Distributed Locally Checkable Problems on
Trees. In Proceedings of the International Symposium on Distributed Computing (DISC), pages
18:1–18:17, 2020. doi:10.4230/LIPIcs.DISC.2020.18.

DISC 2022

https://doi.org/10.1109/FOCS.2019.00037
http://arxiv.org/abs/2110.00643
https://doi.org/10.1109/FOCS46700.2020.00042
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.4230/LIPIcs.DISC.2018.9
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3125644
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1007/978-3-030-24922-9_9
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.4230/LIPIcs.DISC.2020.18

9:18 Exponential Speedup over Locality in MPC with Optimal Memory

19 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1) Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. In the Proceedings of the International Symposium on
Principles of Distributed Computing (PODC), pages 471–480, 2019.

20 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed Edge
Coloring and a Special Case of the Constructive Lovász Local Lemma. ACM Transactions on
Algorithms (TALG), pages 1–51, 2019. doi:10.1145/3365004.

21 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model. SIAM Journal on Computing,
48(1):122–143, 2019. doi:10.1137/17M1117537.

22 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. SIAM
Journal of Computing, 48(1):33–69, 2019. doi:10.1137/17M1157957.

23 Richard Cole and Uzi Vishkin. Deterministic Coin Tossing with Applications to Optimal Par-
allel List Ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

24 Sam Coy and Artur Czumaj. Deterministic massively parallel connectivity. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, 2022.
doi:10.1145/3519935.3520055.

25 Artur Czumaj, Peter Davies, and Merav Parter. Graph Sparsification for Derandomizing
Massively Parallel Computation with Low Space. In Proceedings of the Symposium on Parallel
Algorithms and Architectures (SPAA), pages 175–185, 2020. doi:10.1145/3350755.3400282.

26 Artur Czumaj, Peter Davies, and Merav Parter. Component Stability in Low-Space Massively
Parallel Computation. In the Proceedings of the International Symposium on Principles of
Distributed Computing (PODC), pages 481–491, 2021. doi:10.1145/3465084.3467903.

27 Artur Czumaj, Peter Davies, and Merav Parter. Improved Deterministic (∆ + 1) Coloring
in Low-Space MPC. In the Proceedings of the International Symposium on Principles of
Distributed Computing (PODC), pages 469–479, 2021. doi:10.1145/3465084.3467937.

28 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Communications of the ACM, pages 107–113, 2008.

29 Michal Dory, Orr Fischer, Seri Khoury, and Dean Leitersdorf. Constant-Round Spanners
and Shortest Paths in Congested Clique and MPC. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC), pages 223–233, 2021. doi:
10.1145/3465084.3467928.

30 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic Distributed Algorithms for Lovász Local
Lemma, and the Complexity Hierarchy. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 18:1–18:16, 2017. doi:10.4230/LIPIcs.DISC.2017.18.

31 Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 270–277, 2016.
doi:10.1137/1.9781611974331.ch20.

32 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS,
Matching, and Coloring on Trees and Beyond. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 34:1–34:18, 2020. doi:10.4230/LIPIcs.DISC.2020.34.

33 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved Deterministic Network
Decomposition. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2904–2923, 2021. doi:10.1137/1.9781611976465.173.

34 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On Derandomizing Local Distributed
Algorithms. In the Proceedings of the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 662–673, 2018. doi:10.1109/FOCS.2018.00069.

35 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional Hardness Results for Massively
Parallel Computation from Distributed Lower Bounds. In the Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS), pages 1650–1663, 2019. doi:
10.1109/FOCS.2019.00097.

https://doi.org/10.1145/3365004
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1145/3465084.3467928
https://doi.org/10.1145/3465084.3467928
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.4230/LIPIcs.DISC.2020.34
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1109/FOCS.2019.00097

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:19

36 Mohsen Ghaffari and Hsin-Hao Su. Distributed Degree Splitting, Edge Coloring, and Ori-
entations. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2505–2523, 2017. doi:10.1137/1.9781611974782.166.

37 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications
in Massively Parallel Computation and Centralized Local Computation. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1636–1653, 2019. doi:
10.1137/1.9781611975482.99.

38 Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symmetry-breaking
in sparse graphs. SIAM J. Discret. Math., 1(4):434–446, 1988. doi:10.1137/0401044.

39 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simulation
in the Mapreduce Framework. In International Symposium on Algorithms and Computation
(ISAAC), pages 374–383, 2011. doi:10.1007/978-3-642-25591-5_39.

40 Christoph Grunau, Václav Rozhon, and Sebastian Brandt. The landscape of distributed
complexities on trees and beyond. In Alessia Milani and Philipp Woelfel, editors, PODC ’22:
ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022,
pages 37–47. ACM, 2022. doi:10.1145/3519270.3538452.

41 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In SIGOPS Operating Systems
Review, pages 59–72, 2007. doi:10.1145/1272996.1273005.

42 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
938–948, 2010. doi:10.1137/1.9781611973075.76.

43 Raimondas Kiveris, Silvio Lattanzi, Vahab Mirrokni, Vibhor Rastogi, and Sergei Vassilvitskii.
Connected Components in MapReduce and Beyond. In ACM Symposium on Cloud Computing,
pages 18:1–18:13, 2014. doi:10.1145/2670979.2670997.

44 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of the ACM (JACM), 63:17:1–17:44, 2016. doi:10.1145/2742012.

45 Christoph Lenzen and Roger Wattenhofer. Brief Announcement: Exponential Speed-Up of
Local Algorithms Using Non-Local Communication. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC), pages 295–296, 2010. doi:
10.1145/1835698.1835772.

46 Nathan Linial. Distributive Graph Algorithms - Global Solutions from Local Data. In the
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages
331–335, 1987. doi:10.1109/SFCS.1987.20.

47 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

48 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 1–10, 1985. doi:
10.1145/22145.22146.

49 Gary L. Miller and John H. Reif. Parallel Tree Contraction Part 1: Fundamentals. Adv.
Comput. Res., 5:47–72, 1989.

50 Moni Naor and Larry Stockmeyer. What Can Be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

51 Alessandro Panconesi and Romeo Rizzi. Some Simple Distributed Algorithms for Sparse
Networks. Distributed Computing, 14(2):97–100, 2001. doi:10.1007/PL00008932.

52 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

53 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits (On Lower
Bounds for Modern Parallel Computation). J. ACM, pages 1–12, 2018. doi:10.1145/3232536.

54 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-Time Deterministic Network Decom-
position and Distributed Derandomization. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 350–363, 2020. doi:10.1145/3357713.3384298.

DISC 2022

https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/0401044
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1145/3519270.3538452
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/2670979.2670997
https://doi.org/10.1145/2742012
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/22145.22146
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1007/PL00008932
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3357713.3384298

9:20 Exponential Speedup over Locality in MPC with Optimal Memory

55 Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012. doi:10.5555/1717298.
56 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster Computing with Working Sets. In USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2010. doi:10.5555/1863103.1863113.

A Component-stability

The notion of a component-stable MPC algorithm has been introduced in [35] in the context
of lifting distributed lower bounds to the MPC setting. It was later revised by Czumaj,
Davies and Parter [26] and argued to be made more robust.

▶ Definition 11 (Component-stability, [35]). An MPC algorithm is component-stable if the
outputs of nodes in different connected components are independent. Formally, assume that
for a graph G, DG denotes the initial distribution of the edges of G among the M machines
and the assignment of unique IDs to the nodes of G. For a subgraph H of G let DH be defined
as DG restricted to the nodes and edges of H. Let Hv be the connected component of node
v. An MPC algorithm A is called component-stable if for each node v ∈ V , the output of v

depends (deterministically) on the node v itself, the initial distribution and ID assignment
DHv of the connected component Hv of v, and on the shared randomness SM .

In their revised definition, [26] assume the setting where all input graphs are legal.

▶ Definition 12 (Legal graph). A graph G is called legal if it is equipped with functions ID,
name: V (G) −→ [poly(n)] providing nodes with IDs and names, such that all names are fully
unique and all IDs are unique in every connected component.

▶ Definition 13 (Component-stability (revised), [26]). A randomized MPC algorithm AMPC
is component-stable if its output at any node v is entirely, deterministically, dependent on
the topology and IDs (but independent of names) of v’s connected component (which we will
denote CC(v)), v itself, the exact number of nodes n and maximum degree ∆ in the entire
input graph, and the input random seed S. That is, the output of AMPC at v can be expressed
as a deterministic function AMPC(CC(v), v, n, ∆, S). A deterministic MPC algorithm AMPC is
component-stable under the same definition, but omitting dependency on the random seed S.

As opposed to [35], [26] allow the output of component-stable algorithms to depend on
the total number of nodes in the graph and the maximum degree of the graph. Additionally,
they assume the following setting: all input graphs are legal (see Definition 12), i.e., all
nodes have an ID that is unique in every connected component, and a name that is unique
across the whole input graph. Assuming the above setting, the output of a component-stable
algorithm is allowed to depend on the IDs of all nodes in the same components, but not the
names.

In our work, we adopt the revised definition of component-stability [26]. In all of our
algorithms, nodes from different components only communicate in order to maintain a certain
global synchrony. This synchrony influences when certain steps are executed and hence the
execution of our algorithms. However, the output at each node is not influenced by the global
communication.

Theorem 2 shows that the lower bounds for component-stable algorithms can be beaten
for a large class of problems on trees and forests even with optimal memory. The long term
effect of the term component-stable in this setting is unclear, but it provides room for many
interesting open questions. One interesting aspect would be to see under which circumstances
one can obtain algorithms with stronger component dependent guarantees, e.g., one may

https://doi.org/10.5555/1717298
https://doi.org/10.5555/1863103.1863113

A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:21

want to develop algorithms for which not just the output of a node, but also the time until
it has computed its output can only depend on the size of its component. Our algorithms
do not meet this stronger definition. Besides an ID space dependence our algorithms have
the following runtime behaviour. In the low and mid regime the time until we know the
output of a node depends on the number of nodes in the largest connected component. In
the high regime this time depends on the number of nodes in the whole graph. Going from
trees to forests in the high regime relies on the recent beautiful (deterministic) connected
components algorithm by Czumaj and Coy [24, 14].

DISC 2022

Holistic Verification of Blockchain Consensus
Nathalie Bertrand # Ñ

INRIA Rennes, France

Vincent Gramoli # Ñ

University of Sydney, Australia
Redbelly Network, Sydney, Australia

Igor Konnov # Ñ

Informal Systems, Wien, Austria

Marijana Lazić # Ñ

TU München, Germany

Pierre Tholoniat # Ñ

Columbia University, New York, NY, USA

Josef Widder # Ñ

Informal Systems, Wien, Austria

Abstract

Blockchain has recently attracted the attention of the industry due, in part, to its ability to
automate asset transfers. It requires distributed participants to reach a consensus on a block despite
the presence of malicious (a.k.a. Byzantine) participants. Malicious participants exploit regularly
weaknesses of these blockchain consensus algorithms, with sometimes devastating consequences. In
fact, these weaknesses are quite common and are well illustrated by the flaws in various blockchain
consensus algorithms [67]. Paradoxically, until now, no blockchain consensus has been holistically
verified.

In this paper, we remedy this paradox by model checking for the first time a blockchain consensus
used in industry. We propose a holistic approach to verify the consensus algorithm of the Red Belly
Blockchain [20], for any number n of processes and any number f < n/3 of Byzantine processes.
We decompose directly the algorithm pseudocode in two parts – an inner broadcast algorithm
and an outer decision algorithm – each modelled as a threshold automaton [37], and we formalize
their expected properties in linear-time temporal logic. We then automatically check the inner
broadcasting algorithm, under a carefully identified fairness assumption. For the verification of the
outer algorithm, we simplify the model of the inner algorithm by relying on its proven properties.
Doing so, we formally verify, for any parameter, not only the safety properties of the Red Belly
Blockchain consensus but also its liveness in less than 70 seconds.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms; Theory of
computation → Logic and verification

Keywords and phrases Model checking, automata, logic, byzantine failure

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.10

Funding This research is supported under Australian Research Council Future Fellowship funding
scheme (project number 180100496) entitled “The Red Belly Blockchain: A Scalable Blockchain
for Internet of Things”, Interchain Foundation (Switzerland), and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

© Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef
Widder;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathalie.bertrand@inria.fr
http://people.rennes.inria.fr/Nathalie.Bertrand
https://orcid.org/0000-0002-9957-5394
mailto:vincent.gramoli@sydney.edu.au
https://gramoli.github.io
https://orcid.org/0000-0001-5632-8572
mailto:igor.konnov@gmail.com
https://konnov.github.io/
https://orcid.org/0000-0001-6629-3377
mailto:lazic@in.tum.de
https://www7.in.tum.de/~lazic/
https://orcid.org/0000-0002-9222-6191
mailto:pierre@cs.columbia.edu
https://tholoniat.me/
https://orcid.org/0000-0003-2815-5357
mailto:josef@informal.systems
https://forsyte.at/people/widder/
https://orcid.org/0000-0003-2795-611X
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Holistic Verification of Blockchain Consensus

1 Introduction

1.1 Context
As blockchains require a distributed set of machines to agree on a unique block of transactions
to be appended to the chain, attackers naturally try to exploit consensus vulnerabilities: they
force participants to disagree so that they wrongly believe that two conflicting transactions
are legitimate, leading to what is known as a double spending. In 2014, malicious participants
managed to exploit Bitcoin consensus vulnerabilities to steal $83,000 through a network
attack. In August 2021, 570,000 transactions were reverted in a more recent version of Bitcoin,
Bitcoin SV, by forcing its blockchain consensus protocol to violate its safety property (i.e.,
agreement). With 3 attacks on the same blockchain within 4 months, thefts are becoming
commonplace.1 Unsurprisingly, various bugs in specifications and in proofs of blockchain
consensus protocols appear in the literature [1, 65]. This is illustrated by the flaws in the
consensus algorithms now used in in-production blockchains [67]. The crux of the problem is
that reasoning about distributed executions of blockchain consensus protocols is hard due to
several sources of non-determinism, and in particular asynchrony and faults. As a result,
formally verifying that a blockchain consensus protocol is safe and live is key to mitigate
financial losses.

Recent progress in mechanical proofs represent the first steps towards verifying blockchain
consensus. For instance, parameterized model checking aims at verifying algorithms for an
arbitrary number n of processes [11] that is unknown at design time. In some contexts, it
reduces the model checking for any fault number f and its upper bound t to bounded model
checking questions [30]. The threshold automaton (TA) framework for communication-closed
algorithms [37, 7] targets algorithms with thresholds in guards such as “number of messages
from distinct processes exceeds 2t + 1”, and in the resilience condition, typically of the
form n > 3t. The parameterized model checking of threshold automata builds upon a
reduction [27, 43] that reorders steps of asynchronous executions to obtain simpler executions,
which are equivalent to the original executions with respect to safety and liveness properties.
Such a technique has recently proved instrumental in verifying fully asynchronous parts of
consensus algorithms, like broadcast algorithms [37].

Due to the famous unfeasability of deterministic consensus in asynchronous setting [29],
this promising method was not applied to proving deterministic consensus algorithms correct2.
In fact, the aforementioned reduction technique cannot apply to partial synchrony [25]: moving
the message reception step to a later point in the execution might violate an assumed message
delay. Yet, these delays are important as typical partially synchronous consensus algorithms
feature timers to catch up with the unknown bound on the delay to receive a message. Most
known verification techniques therefore target either synchronous (lock-step) or asynchronous
semantics. In addition, partially synchronous consensus algorithms generally rely on a
coordinator process that helps other processes converge and whose identifier rotates across
rounds. Some efforts have been devoted to proving the termination of partially synchronous
consensus algorithms, like Paxos, assuming synchrony [31]. The drawback is that such
algorithms aim at tolerating non-synchronous periods before reaching a global stabilization
time (GST) after which they terminate. Proving that such an algorithm terminates under
synchrony does not show that the algorithm would also terminate if processes reached GST at

1 https://cointelegraph.com/news/bitcoin-sv-rocked-by-three-51-attacks-in-as-many-months
2 Here deterministic means that randomization is forbidden. However, the environment (e.g., communica-

tion delays, scheduler) introduces non-determinism in the algorithm execution.

https://cointelegraph.com/news/bitcoin-sv-rocked-by-three-51-attacks-in-as-many-months

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:3

different points of their execution. Instead, one would also need to show that correct processes
can catch up in the same round. This would, in turn, require proving the correctness of a
synchronizer algorithm [25].

Verifying consensus is even more subtle when processes are Byzantine as they can execute
arbitrary steps, changing their local state and the values they share. One needs to reason
about executions with all possible scenarios resulting from arbitrary behaviors, multiplying
the already large number of interleaved executions. This is probably the reason why, to our
knowledge, blockchain consensus algorithms have never been holistically verified. Despite
recent efforts towards proving consensus algorithms automatically, these were limited to
proving safety properties [3, 9], to checking proofs [46, 45], to synthesizing parameterized
distributed algorithms [66, 26, 48, 49], to deductively verifying implementations [21] or to
proving algorithms with fixed parameters [34]. Without a holistic approach, the verification
of parts of a protocol does not imply that the protocol is verified.

1.2 Contributions
In this paper, we verify holistically the safety and liveness properties of the Byzantine
consensus protocol used in the Red Belly Blockchain system [20], a scalable blockchain
used in industry. Our approach is holistic because it starts from the pseudocode of the
distributed algorithm as typically presented in the distributed computing literature, models
this pseudocode and its components into disambiguated threshold automata (TAs), model
checks both the safety and liveness properties of these components expressed in linear
temporal logic (LTL) formulae, and for any parameters n and f < n/3. The advantage is
that the formally verified algorithm matches the pseudocode and no user-defined invariants
or proofs need to be checked, which drastically reduces the risks of human errors.
1. We formally verify a Byzantine consensus algorithm [19] used for e-voting [14], for

accountability [18] and for blockchains [20]. This consensus algorithm now runs in the
network of the Red Belly Blockchain [20] maintained by the Redbelly Network company. It
executes in asynchronous rounds that broadcast binary values and compares the delivered
values to the parity of the round to decide. To model check the algorithm holistically,
we replace the partial synchrony assumption by a fairness assumption. Interestingly, our
fairness assumption only requires that in any infinite sequence of rounds, there exists a
round where, at all correct processes, a broadcast instance delivers the same binary value,
or bit, first.

2. We exploit the modularity of distributed algorithms in parameterized model checking.
We first model the consensus algorithm into two simpler algorithms modeled as threshold
automata (TAs): (i) an inner broadcast TA modeling a binary value variant of the reliable
broadcast [50] and (ii) an outer decision TA modeling a round-based execution that
inspects the delivered messages [19] to decide. We express the guarantees of the inner
broadcast primitive as temporal logic properties that we automatically verify and we
replace the inner TA in the global TA by a gadget TA that captures the proven temporal
specification. We automatically verify the global TA with model checking.

3. We show the practicality of our verification technique by running the parameterized
model checker ByMC [37] for any number n of processes and any arbitrary number
f < n/3 of Byzantine processes. We compare the execution times when model checking
the naive TA encoding the consensus algorithm and when model checking both the inner
TA encoding the broadcast algorithm and then the outer TA. We demonstrate empirically
that, although a parallel execution of ByMC on 64 cores could not prove the safety of
the naive TA within 3 days, it proves both the liveness and safety of the simplified TA in
about 70 seconds.

DISC 2022

10:4 Holistic Verification of Blockchain Consensus

1.3 Outline

In Section 2 we introduce our preliminary definitions, in Section 3 we model our binary value
broadcast algorithm pseudocode into a corresponding threshold automaton, in Section 4 we
explain how the formal verification of the properties of the broadcast algorithm helps us
model check the consensus algorithm and in Section 5 we verify the consensus algorithm.
In Section 6 we present the experimental results of the model checker. In Section 7, we
present the related work and in Section 8, we conclude. In the Appendix we explain the
multiple-round TA to one-round TA reduction (A), provide examples related to fairness (B),
missing proofs (C and E) and detailed specifications (D and F).

2 Preliminaries

The consensus algorithm runs over n asynchronous sequential processes from the set Π =
{p1, . . . , pn}. The processes communicate by exchanging messages through an asynchronous
reliable fully connected point-to-point network, hence there is no bound on the delay to
transfer a message but this delay is finite.

Failure model. Up to t < n/3 processes can exhibit a Byzantine behavior [56], and behave
arbitrarily. We refer to f ≤ t as the actual number of Byzantine processes. A Byzantine
process is called faulty, a non-faulty process is correct.

Algorithm semantics. The asynchronous semantics of a distributed algorithm executed by
processes in Π assumes discrete time and at each point in time, exactly one process takes a
step. We assume that two messages cannot be received at the same time by the same process.
The global execution then consists in an interleaving of the individual steps taken by the
processes. Process pi sends a message to pj by invoking the primitive “send header(m) to pj”,
where header indicates the type of message and m its contents. Process pi receives a message
by executing the primitive “receive()”. The shorthand broadcast(header, m) represents “for
each pj ∈ Π do send header(m) to pj”. And the right arrow in broadcast(header, m) →
messages indicates, when specified, that “upon reception of header(m) from process p′

j do
messages[p′

j]← messages[p′
j] ∪ {m}”. The process id is used as a subscript to denote that a

variable is local to a process – for instance var i is local to process pi – and is omitted when
it is clear from the context.

The verification method considered in this paper exploits the fact that the algorithms are
communication-closed [27], i.e. only messages from the current loop iteration or round of a
process may influence its steps. This can be implemented by tagging every message by its
round number r; during round r all received messages with tag r′ < r are discarded and all
received messages with tag r′ > r are stored for later.

The consensus problem. Assuming that each correct process proposes a binary value, the
binary Byzantine consensus problem is for each of them to decide on a binary value in such
a way that the following properties are satisfied:
1. Termination. Every correct process eventually decides on a value.
2. Agreement. No two correct processes decide on different values.
3. Validity. If all correct processes propose the same value, no other value can be decided.

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:5

Threshold automaton (TA). A threshold automaton [38] describes the behavior of a process
in a distributed algorithm. Its nodes are locations representing local states, and labeled edges
are guarded rules. Formally, it is a tuple ⟨L, I, Γ,P,R, RC ⟩ where L is the set of locations,
I ⊂ L is the set of initial locations, Γ is the set of shared variables that all processes can
update, P is the finite set of parameter variables, R is the set of rules, and RC is the
resilience condition over N|Π|

0 . Rules are defined as tuples ⟨from, to, ϕ, u⃗⟩, where from (resp.
to) describes the source (resp. destination) locations, and the rule label is ϕ 7→ u⃗. Formula ϕ

is called a threshold guard or simply a guard.

1: bv-broadcast(BV, ⟨val, i⟩):
2: broadcast(BV, ⟨val, i⟩)
3: repeat:
4: if (BV, ⟨v, ∗⟩) received from (t + 1) distinct processes and not yet re-broadcast then
5: broadcast(BV, ⟨v, i⟩)
6: if (BV, ⟨v, ∗⟩) received from (2t + 1) distinct processes then
7: contestants ← contestants ∪ {v}

Figure 1 The pseudocode of the binary value broadcast for process pi.

V0

V1

B0

B1

CB0

CB1

B01

C0

C1

C01

r1 : b0++

r2 : b1++

b0 ≥
2t+1−f

r3
b1≥t+1−f 7→ b1 ++r4

b0≥t+1−f 7→
b0++

r5
b1≥2t+1−f

r6

b1≥t+1−f 7→ b1 ++r7

b0 ≥
2t+1−f

r8
b1≥2t+1−fr9

b0≥t+1−f 7→
b0++

r10

b1≥2t+1−fr11

b0 ≥
2t+1−f

r12

Figure 2 The threshold automaton model for the binary value broadcast.

▶ Example 1. As an example, Fig. 1 presents the pseudocode of the binary value broadcast
and Fig. 2 its TA. (The modeling of pseudocode (Fig. 1) into TA (Fig. 2) will be described
in detail in Section 3.1.) To illustrate the TA notations, note that two of the locations in
L = {V0, V1, B0, B1, B01, C0, C1, CB0, CB1, C01} are initial: I = {V0, V1}. Shared variables
are b0 and b1 and can be updated by each process traversing the TA, while parameters
are n, t and f and remain unchanged across the execution. The set of rules R consists of
{ri | 1 ≤ i ≤ 12} together with 7 self-loops. The self- loops mimic the asynchrony between
processes in the system. For example, rule r3 is defined as ⟨B0, C0, b0≥2t+1−f, 0⃗⟩. The
resilience condition is n > 3t ∧ t ≥ f ≥ 0.

A multi-round threshold automaton is intuitively defined such that one round is represented
by a threshold automaton, and additional so-called round-switch rules connect final locations
with initial ones, and therefore allow processes to move from one round to the following one.
We typically depict those round-switch rules as dotted arrows. Examples of such multi-round
TA are depicted later in Figures 3 and 4. When it is clear from the context that there are
multiple rounds, we simply call them threshold automata, and to stress that a TA does not
have multiple rounds, we may call it a one-round TA.

DISC 2022

10:6 Holistic Verification of Blockchain Consensus

Counter systems. The semantics of a (one-round) threshold automaton TA are given by a
counter system Sys(TA) = ⟨Σ, I, T ⟩ where Σ is the set of all configurations among which I

are the initial ones, and T is the transition relation. A configuration σ ∈ Σ of a one-round TA
captures the values of location counters (counting the number of processes at each location
of L, therefore non-negative integers), values of global variables, and parameter values. A
transition t ∈ T is unlocked in σ if there exists a rule r = ⟨from, to, ϕ, u⃗⟩ ∈ R such that
ϕ evaluates to true in σ, and location counter of from is at least 1, denoted κ[from] ≥ 1,
showing that at least one process is currently in from. In this case we can execute transition t

on σ by moving a process along the rule r from location from to location to, which is modeled
by decrementing counter κ[from], incrementing κ[to], and updating global variables according
to the update vector u⃗.

A counter system Sys(TA) of a multi-round TA is defined analogously. A configuration
captures the values of location counters and global variables in each round, and parameter
values (that do not change over rounds). Then we define that a transition is unlocked in a
round R by evaluating the guard ϕ and the counter of location from in the round R. The
execution of the transition in σ accordingly updates κ[from, R], κ[to, R] and global variables
of that round, while the values of these variables in other rounds stay unchanged.

Linear temporal logic notations. Following a standard model checking approach, we use
formulas in linear temporal logic (LTL) [57] to formalize the desired properties of distributed
algorithms. The basic elements of these formulas, called atomic propositions, are predicates
over configurations related (i) to the emptiness of each location at each round and (ii)
to the evaluation of threshold guards in each round. They have the following form: (i)
κ[L, R] ̸= 0 expresses that at least one correct process is in location L in round R, while
κ[L, R] = 0 expresses the opposite (in one-round systems we just write κ[L] ̸= 0 or κ[L] = 0);
(ii) the evaluation of [b0, R]≥2t+1−f depends on the values of the shared variable b0 in
round R and parameters t and f (in one-round systems we just write b0≥2t+1−f). LTL
builds on propositional logic with ⇒ for “implication”, ∨ for ‘or’ and ∧ for “and”, and has
extra temporal operators ♢ standing for “eventually” and □ for “always”. LTL formulas
are evaluated over infinite runs of Sys(TA). Examples of LTL properties in a one-round
system are (BV − Justv), (BV −Oblv) and (BV − Unifv) (see page 9). LTL properties in
multi-round systems often have quantifiers over round variables, as for example in (Agreev)
and (Validv) (see page 13).

The tool ByMC is used to automatically verify a specific fragment of LTL on one-round
systems [36, 37], which is sufficient to express safety and liveness properties of consensus [10].
Moreover, thanks to communication-closure, the verification for this fragment of temporal logic
on multi-round systems reduces to one-round systems [10, Theorem 6] (see also Appendix A).

The assumption of reliable communication is modeled as follows at the TA level: if the
guard of a rule is true infinitely often, then the origin location of that rule will eventually be
empty. This reflects that an if branch of the pseudo-code is taken if the condition is true.
This progress assumption is in particular crucial to prove liveness properties: in the sequel,
we prepend it to the liveness properties in the TA specification.

3 The Binary Value Broadcast

To overcome the limited scalability of model checking tools, our holistic verification approach
consists of decomposing a distributed algorithm into encapsulated components of pseudocode
that can be modelled in threshold automata and verified in isolation to obtain a simplified
threshold automaton that is amenable to automated verification.

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:7

In this section we focus on a binary value broadcast, or bv-broadcast for short, that
will serve as the main building block of the Byzantine consensus algorithm of Section 4.
In Section 3.1 we formally model the bv-broadcast algorithm pseudocode as a threshold
automaton that tolerates a number f of Byzantine failures upper-bounded by t among n

processes. In Section 3.2 we model the specification of bv-broadcast in LTL and verify, within
10 seconds, that it holds. In Section 3.3 we introduce the fairness of an infinite sequence of
executions of bv-broadcast that will play a crucial role in verifying holistically in Section 5
the Byzantine consensus algorithm.

3.1 Modeling the binary value broadcast pseudocode into a threshold
automaton

The binary value broadcast [50], or bv-broadcast for short, is a communication primitive
guaranteeing that all binary values “bv-delivered” were “bv-broadcast” by a correct process.
It is particularly useful to solve the Byzantine consensus problem with randomization [51, 15]
or partial synchrony [19, 14]. As discussed before, Figures 1 and 2 in Section 2 give its
pseudocode and the corresponding threshold automaton, respectively. We now explain how
we model our bv-broadcast pseudocode (Fig. 1) parameterized by n and f into a threshold
automaton (Fig. 2) using the synthesis methodology [42].

Pseudocode of the binary value broadcast. The bv-broadcast algorithm pseudocode (Fig. 1)
aims at having at least 2t+1 processes broadcasting the same binary value. Each process
starts this algorithm in one of two states, depending on its input value 0 or 1. Once a correct
process receives a value from t+1 distinct processes, it broadcasts it (line 4) if it did not do
it already (line 4); broadcast is not Byzantine fault tolerant and just sends a message to all
the other processes. Once a correct process receives a value from 2t+1 distinct processes,
it delivers it. Here the delivery at process pi is modeled by adding the value to the set
contestants, which will simplify the pseudocode of the Byzantine consensus algorithm in
Section 4.1.

Threshold automaton of the binary value broadcast. To match the two initial states from
which a process starts the bv-broadcast algorithm, we start the corresponding TA of Fig. 2
with two initial locations V0 or V1, indicating whether the (correct) process initially has value
0 or 1, resp. We can see form the pseudocode (Fig. 1) that a correct process pi sends only
two types of messages, (BV, ⟨0, i⟩) and (BV, ⟨1, i⟩), these trigger the corresponding receptions
at other processes. We thus define in the TA (Fig. 2) two global variables b0 and b1, resp.,
to capture the number of the two types of messages sent by correct processes. Thus, for
example, b0++ models a process broadcasting message (BV, ⟨0, i⟩). Because the algorithm only
counts messages regardless of sender identities, we replace the messages from the pseudocode
into b0 and b1 shared variables that are increased whenever a message is sent.

From local to global variables for model checking. While producing a formal model, extra
care is needed to avoid introducing redundancies. For example, line 4 indicates that the
process broadcasts value v if it received v from t+1 distinct processes. Instead of maintaining
local receive variables, it is sufficient to enable a guard based on global send variables.
Indeed, to remove redundant local receive variables, one can use the quantifier elimination
for Presburger arithmetic [58] and obtain quantifier-free guard expressions over the shared
variables that are valid inputs to ByMC [39, 35]. For more details, note that Stoilkovska

DISC 2022

10:8 Holistic Verification of Blockchain Consensus

et al. [64] eliminated the quantifier over the similar receive variables in Ben-Or’s consensus
algorithm [8] with the SMT solver Z3 [22]. Finally, the point-to-point reliable channels ensure
that pj sends message m to pi implies that eventually pi receives message m from pj . Hence
shared variables b0 and b1 of the TA denote, respectively, the number of messages (BV, ⟨0, i⟩)
and (BV, ⟨1, i⟩) sent by correct processes in the pseudocode.

Modeling arbitrary (Byzantine) behaviors in the TA. In order to model that, among the
received messages, f messages could have been sent by Byzantine processes, we need to map
the “if” statement of the pseudocode, comparing the number of receptions from distinct
processes to t+1, to the TA guards, comparing the number b1+f of messages sent to t + 1.
As b1 counts the messages sent by correct processes and f is the number of faulty processes
that can send arbitrary values, a correct process can move from B0 to B01 as soon as t+1−f

correct processes have sent 1, provided that f faulty processes have also sent 1. As a result,
the guard of rule r4 only evaluates over global send variables as: if more than t+1 messages
of type b1 have been sent by correct processes (hence the guard b1 ≥ t+1−f), then the
shared variable b1 is incremented, mimicking the broadcast of a new message of type b1. Rule
r3 corresponds to lines 6–7 and delivers value v = 0 by storing it into variable contestants
upon reception of this value from 2t + 1 distinct processes. Hence, reaching location C0 in
the TA indicates that the value 0 has been delivered. As a process might stay in this location
forever, we add a self-loop with guard condition set to true.

Table 1 The locations of correct processes.

locations V0 V1 B0 B1 B01 C0 CB0 C1 CB1 C01

val. broadcast / / 0 1 0,1 0 0,1 1 0,1 0,1
val. delivered / / / / / 0 0 1 1 0,1

Other locations and rules. The locations of the automaton correspond to the exclusive
situations for a correct process depicted in Table 1. After location C0, a process is still able
to broadcast 1 and eventually deliver 1 after that. After location B01, a process is able to
deliver 0 and then deliver 1, or deliver 1 first and then deliver 0, depending on the order
in which the guards are satisfied. Apart from the self-loops, note that the automaton is a
directed acyclic graph. Also, on every path in the graph, a shared variable is incremented
only once. This reflects that in the pseudocode, a value may only be broadcast if it has not
been broadcast before.

3.2 Properties of the binary value broadcast
As was previously proved by hand [50, 51], the bv-broadcast primitive satisfies four properties:
BV-Justification, BV-Obligation, BV-Uniformity and BV-Termination. Here, we formalize
these properties in linear temporal logic (LTL) to formally and automatically prove they hold.
As we will discuss in Section 6, we verify them for any parameters n and t < n/3 in less than
10 seconds.

The BV-Justification property states: “If pi is correct and v ∈ contestantsi, then v has
been bv-broadcast by some correct process” where v ∈ {0, 1}. Alternatively, “if v is not
bv-broadcast by some correct process and pi is correct, then v /∈ contestantsi”. In the TA

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:9

from Fig. 2, v ∈ contestantsi corresponds to process i being in one of the locations Cv, CBv

or C01. Thus, justification can be expressed in LTL as the conjunction BV-Just0 ∧BV-Just1
where, BV-Justv is the following formula:

κ[Vv] = 0 ⇒ □
(
κ[Cv] = 0 ∧ κ[CBv] = 0 ∧ κ[C01] = 0

)
. (BV-Justv)

BV-Obligation requires that if at least (t+1) correct processes bv-broadcast the same
value v, then v is eventually added to the set contestantsi of each correct process pi. This
can again be formalized as BV-Obl0 ∧ BV-Obl1 where BV-Oblv is the following formula:

□
(

bv ≥ t+1 ⇒ ♢
(∧

L∈Locsv

κ[L] = 0
))

, (BV-Oblv)

where Locsv = {V0, V1, B0, B1, B01, C1−v, CB1−v} are all the possible locations of a process i

if v ̸∈ contestantsi.
BV-Uniformity requires that if a value v is added to the set contestantsi of a correct

process pi, then eventually v ∈ contestantsj at every correct process pj . We formalize this as
BV-Unif0 ∧ BV-Unif1 where BV-Unifv is the following:

♢ (κ[Cv] ̸=0 ∨ κ[CBv] ̸=0 ∨ κ[C01] ̸=0) ⇒ ♢
∧

L∈Locsv

κ[L]=0 , (BV-Unifv)

where Locsv is defined as in (BV-Oblv).
Finally, the BV-Termination property claims that eventually the set contestantsi of each

correct process pi is non empty. This can be phrased as the following LTL formula BV-Term:

♢
(
κ[V0]=0 ∧ κ[V1]=0 ∧ κ[B0]=0 ∧ κ[B1]=0 ∧ κ[B01]=0

)
, (BV-Term)

forcing each correct process to be in one of the “final” locations C0, C1, C01, CB0, CB1.

3.3 A fairness assumption to solve consensus
The traditional approach to establishing guarantee properties in verification is to require
that all fair computations, instead of all computations, satisfy the property [4]. We thus
introduce a crucial fairness assumption. In order to define it, we first define a good execution
of the bv-broadcast with respect to binary value v as an execution:

▶ Definition 2 (v-good bv-broadcast). A bv-broadcast execution is v-good if all its correct
processes bv-deliver v first.

We express this property in LTL. A bv-broadcast execution is v-good if no process ever visits
locations C1−v and CB1−v:

□
(

κ[C1−v] = 0 ∧ κ[CB1−v] = 0
)

.

Second, we consider an infinite sequence of bv-broadcast executions, tagged with r ∈ N. It
is important to stress that the setting is asynchronous, that is, processes invoke bv-broadcast
infinitely many times, but at their own relative speed. Thus, they do not all invoke the
bv-broadcast tagged with the same number r at the same time. Nonetheless, every process
invokes bv-broadcast infinitely many times and in the rth invocation its behavior depends
on the messages sent in the rth invocation of other processes. Therefore, we refer to the rth

execution of bv-broadcast even though the processes invoke it at different times.

DISC 2022

10:10 Holistic Verification of Blockchain Consensus

▶ Definition 3 (fairness). An infinite sequence of bv-broadcast executions is fair if there
exists an r such that the rth execution is (r mod 2)-good.

For simplicity, we use the terminology fair bv-broadcast when the infinite sequence of
bv-broadcast executions is fair. We illustrate in Appendix B a possible execution of
bv-broadcast whose existence implies fairness.

4 Simplified Automaton for Byzantine Consensus

In this section we exploit the results of the first verification phase of Section 3 to simplify
the threshold automaton of the Byzantine consensus algorithm. In Section 4.1 we introduce
the pseudocode of the Byzantine consensus algorithm and its threshold automaton obtained
with the naive modeling described in Section 3.1. In Section 4.2 we replace, in this threshold
automaton, the inner bv-broadcast automaton by a smaller one obtained thanks to the
bv-broadcast properties that are now verified. The verification of the resulting simplified
automaton is deferred to Section 5.

4.1 The Byzantine consensus algorithm
Algorithm 1 is the DBFT Byzantine consensus algorithm [19] that relies on the fair binary
value broadcast of Section 3. It is currently used in the Red Belly Blockchain, a recent
blockchain that achieves unprecedented scalability [20]. More precisely, the DBFT binary
consensus comes in two different variants: (i) a first variant that is safe but not live in the
asynchronous setting, (ii) a second variant that is safe and live under the partial synchrony
assumption. We use the first variant of it (without coordinator or timeout) here and show
that it is live under our new fairness assumption. The DBFT binary consensus invokes
bv-broadcast(·) at line 6 and uses a set contestants of binary values, whose scope is global,
updated by the bv-broadcast (Fig. 1, line 7) and accessed by propose(·) (Alg. 1, line 7).

Algorithm 1 The Byzantine consensus algorithm at process pi.

1: Global scope variable:
2: contestants ⊆ {0, 1}, set of binary values, init. ∅.

3: propose(est):
4: r ← 0
5: repeat:
6: bv-broadcast(est, ⟨est, i⟩)
7: wait until (contestants ̸= ∅)
8: broadcast(aux, ⟨contestants, i⟩)→ favorites
9: wait until ∃c1, . . . , cn−t : ∀1 ≤ j ≤ n − t favorites[cj] ̸= ∅∧ (qualifiers ←
∪∀1≤j≤n−t favorites[cj]) ⊆ contestants

10: if qualifiers = {v} then
11: est ← v

12: if v = (r mod 2) then decide(v)
13: else est ← (r mod 2)
14: r ← r + 1

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:11

V0

V1

B0

B1

B01

C0

C1

CB0

CB1

C01

E1

E0

D1

V ′
0

V ′
1

B′
0

B′
1

B′
01

C ′
0

C ′
1

CB′
0

CB′
1

C ′
01

E′
0

D0

E′
1

r1 : b0++

r2 : b1++

r3

r4

r5

r6

r13

r7

r8

r9

r10

r11

r12

r19

r14

r18

r15

r16

r17

r′
1 : b′

0++

r′
2 : b′

1++

r
′
3

r ′
4

r
′
5

r ′
6

r′
13

r ′
7

r′
8

r ′
9

r′
10

r′
19

r ′
11

r′
12

r′
14

r ′
18

r
′
15

r′
16

r ′
17

r20

r21

r 22

Figure 3 The naive threshold automaton of the Byzantine consensus of Algorithm 1 where the
embedded bv-broadcast automaton is depicted with dashed arrows. Precise formulations of all rules
are in Appendix D. Note that the rules r20, r21 and r22 represent transitions from the end of an
odd round to the beginning of the following (even) round of Algorithm 1, while the dotted edges
represent transitions from the end of an even round to the beginning of the following (odd) one.

As mentioned in Section 2, recall that the algorithm is communication-closed, so that for
simplicity in the presentation we omit the current round number r as the subscript of the
variables and the parameter of the function calls. Variable favorites is an array of n indices
whose jth slot records, upon delivery, the message broadcast by process j in the current round.
Each process pi manages the following local variables: the current estimate est, initially the
input value of pi; and a set of binary values qualifiers. This algorithm maintains a round
number r, initially 0 (line 4), and incremented at the end of each iteration of the loop at
line 14. Process pi exchanges estimate (est) and auxiliary (aux) messages (lines 6–8), until
it receives aux messages from n− t distinct processes whose values were bv-delivered by pi

(line 9). Process pi then tries at line 12 to decide a value v that depends on the content of
qualifiers and the parity of the round. If qualifiers is a singleton there are two possible cases:
if the value is the parity of the round then pi decides this value (line 12), otherwise it sets
its estimate to this value (line 11). If favorites contains both binary values, then pi sets its
estimate to the parity of the round (line 13). Although pi does not exit the infinite loop to
help other processes decide, it can safely exit the loop after two rounds at the end of the
second round that follows the first decision because all processes will be guaranteed to have
decided. Note that even though a process may invoke decide(·) multiple times at line 12,
only the first decision matters as the decided value does not change (see Section 5).

The effect of fairness. Note that the fairness notion from Section 3.3 ensures there is a
round r in which all correct processes bv-deliver (r mod 2) first. The following lemma states
that under the fairness assumption there is a round of Algorithm 1 in which all correct
processes start with the same estimate. The proof is deferred to Appendix C.

▶ Lemma 4. If the infinite sequence of bv-broadcast executions of Algorithm 1 is fair, with the
rth execution being (r mod 2)-good, then all correct processes start round r+1 of Algorithm 1
with estimate r mod 2.

Modeling deterministic consensus. Figure 3 depicts the threshold automaton (TA) obtained
by modeling Algorithm 1 with the method we detailed in Section 3.1. The TA depicts two
iterations of the repeat loop (line 5), since Algorithm 1 favors different values depending
on the parity of the round number. For simplicity, we refer to the concatenation of two
consecutive rounds of the algorithm as a superround of the TA. As one can expect, this
TA embeds the TA of the bv-broadcast which is depicted by the dashed arrows, just as

DISC 2022

10:12 Holistic Verification of Blockchain Consensus

V0

V1

M

M0

M1

M01

E0

D1

E1

V ′
0

V ′
1

M ′

M ′
0

M ′
1

M ′
01

D0

E′
1

E′
0

s1 : bvb0 ++

s2 : bvb1++

s3:
bvb0≥

1 7→
a0++

s4 : bvb1≥1 7→
a1 ++

s5 : a0 ≥ n− t− f

s6 : bvb1≥1

s 7
: b

vb 0≥
1

s8 : a1 ≥ n− t− f

s9 : a0 ≥
n−t−f

s10 : a0+a1≥n−t−f

s11 : a1 ≥ n−t−f

s12

s13

s 14

s′
1

s′
2

s′
3

s′
4

s′
5s′

6

s′
7

s′
8

s′
9

s′
10

s′
11

Figure 4 The simplified threshold automaton of the Byzantine consensus of Algorithm 1 obtained
after model checking the bv-broadcast. Rules s′

j , 1 ≤ i ≤ 11, are obtained from sj by replacing each
variable c ∈ {a0, a1, bvb0, bvb1} with its corresponding one c′.

Algorithm 1 invokes the bv-broadcast algorithm of Fig. 1. We thus distinguish the outer TA
modeling the consensus algorithm from the inner TA modeling the bv-broadcast algorithm.
Although Algorithm 1 is relatively simple, the global TA happens to be too large to be
verified through model checking, as we explain in Section 6; the main limiting factor is its
14 unique guards that constrain the variables to enable rules in the TA. The detail of each
rule of the TA is deferred to Appendix D.

4.2 Simplified threshold automaton

Our objective is to formally prove that Algorithm 1 is unconditionally safe, and that it is live
under the assumption of fairness at the bv-broadcast level. Since the threshold automaton
of Figure 3 is too large to be handled automatically, we build on the properties proved for
the bv-broadcast to simplify in the threshold automaton from Figure 3 the part representing
the bv-broadcast. On the resulting simpler threshold automaton, assuming fairness of the
bv-broadcast, we prove the termination of Algorithm 1 with ByMC in Section 6.

High-level idea. Ideally, the simplified threshold automaton could be obtained from the
one of Fig. 3 by merging all internal states of the bv-broadcast into a single state with two
possible outcomes. However, such a merge is not trivial because the bv-broadcast procedure
“leaks” into the consensus algorithm. First of all, line 7 of Algorithm 1 refers to contestants,
a global variable that is modified by the bv-broadcast algorithm (Fig. 1). Second, a process
can execute line 8 of Algorithm 1 even if the bv-broadcast has not terminated. To capture
this porosity, we introduce a new shared variable, some additional states and a transition
rule that exploits a correctness property of the bv-broadcast.

A superround R of the simplified automaton from Fig. 4 captures round 2R−1 followed
by round 2R of Algorithm 1. One can thus restate Lemma 4 as the following corollary in the
TA terminology. The proof is deferred to Appendix E.

▶ Corollary 5. Let r ∈ N be such that the rth execution of bv-broadcast in Algorithm 1 is
(r mod 2)-good. Then:

If there exists R ∈ N with r = 2R−1, then □
(
κ[M0, R] = 0) holds.

If there exists R ∈ N with r = 2R, then □ (κ[M ′
1, R] = 0

)
holds.

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:13

5 Verification of Byzantine Consensus

In this section we formally prove that Algorithm 1 solves the Byzantine consensus problem
with the fair bv-broadcast and without partial synchrony. (Appendix B provides a counter-
example illustrating why the algorithm does not terminate without the fair broadcast.) In
particular, we apply a methodology developed for crash fault tolerant randomized consen-
sus [10] to our context to prove both the safety (Section 5.1) and liveness (Section 5.2)
properties of the deterministic Byzantine consensus algorithm.

5.1 Safety

Under no fairness assumption, one can prove the safety properties – agreement and validity –
of the Byzantine consensus based on bv-broadcast. Precisely, we formulate these properties
in LTL and want to establish that they hold on the threshold automaton of Fig. 4.

Agreement requires that no two correct processes disagree, that is, if one process decides v

then no process should decide 1−v for all binary values v ∈ {0, 1}. Thus, we want to prove
that the following formula holds for both values of v:

∀R ∈ N, ∀R′ ∈ N
(
♢κ[Dv, R] ̸= 0 ⇒ □κ[D1−v, R′] = 0

)
, (Agreev)

stating that for any two superrounds R and R′, if eventually a process decides v, then globally
(in any superround) no process will decide 1− v. In terms of the TA from Fig. 4, if a process
enters location Dv no process should enter location D1−v (in that superround or any other).

Validity requires that if no process proposes a value v ∈ {0, 1}, no process should ever
decide that value. Hence, we want to prove the following formula for both values of v:

∀R ∈ N
(

κ[Vv, 1] = 0 ⇒ □κ[Dv, R] = 0
)

, (Validv)

stating that if initially no process has value v, then globally (in any superround) no process
decides v. In terms of the TA, if location Vv is initially empty (in superround 1), then no
process should enter location Dv in any superround.

ByMC can only check formulas of the form ∀R ∈ N φ[R] (see Appendix A). Thus, auto-
matically checking (Agreev) and (Validv) is non-trivial, as they both involve two superround
numbers: R and R′ in (Agreev), and 1 and R in (Validv). We instead check well-chosen
one-superround invariants (Inv1 v) and (Inv2 v):

∀R ∈ N
(
♢κ[Dv, R] ̸= 0 ⇒ □

(
κ[D1−v, R] = 0 ∧ κ[E′

1−v, R] = 0
))

, (Inv1 v)

∀R ∈ N
(
□κ[Vv, R] = 0 ⇒ □

(
κ[Dv, R] = 0 ∧ κ[E′

v, R] = 0
))

. (Inv2 v)

The choice of these invariants follows a previous approach used for the crash fault
tolerant consensus where it is shown that these invariants imply (Agreev) and (Validv) [10,
Proposition 2]. Intuitively, this follows from the fact that (i) emptiness of D0 and E′

0 in one
superround leads to the emptiness of V0 in the next superround, and (ii) emptiness of E′

1
(and D1) in one superround leads to the emptiness of V1 in the next superround. Therefore,
in order to prove agreement and validity, we only need to prove (Inv1 v) and (Inv2 v) for both
values v ∈ {0, 1}. We successfully do this automatically with ByMC (see Section 6).

DISC 2022

10:14 Holistic Verification of Blockchain Consensus

5.2 Liveness
We now aim at proving termination of Algorithm 1. First, we need to prove that every
superround eventually terminates, in the sense that for every round eventually there are no
processes in any location of that round with the exception of the final ones (D0, E′

0 and E′
1).

Formally, using ByMC we prove the following:

∀R ∈ N ♢
(∧

L∈L\{D0,E′
0,E′

1}

κ[L, R] = 0
)

. (SRoundTerm)

From this property and the shape of the TA from Fig. 4, it easily follows that if no process
ever enters E′

0 and E′
1 of some superround, then all processes visit D0 in that superround.

Similarly, if no process ever enters E0 and E1 of some superround, then all processes visit D1
in that superround. This allows us to express termination as the following LTL property on
the threshold automaton of Fig. 4:

∃R ∈ N
(
□

(
κ[E0, R] = 0 ∧ κ[E1, R] = 0

)
∨ □

(
κ[E′

0, R] = 0 ∧ κ[E′
1, R] = 0

))
. (Term)

In words, there is a superround R in which either (i) all processes visit D1, or (ii) all processes
visit D0. Here again formula (Term) is non-trivial to check since it contains an existential
quantifier over superrounds, that cannot be handled by the model checker ByMC. Adapting
the technique from [10, Section 7] to a non-randomized context, it is sufficient to prove a
couple of properties on the threshold automaton of Fig. 4, that we detail below. The first
property expresses that if no process starts a superround R with value v, then all processes
decide 1−v in superround R:

∀R ∈ N
(
□

(
κ[V0, R] = 0

)
⇒ □

(
κ[E0, R] = 0 ∧ κ[E1, R] = 0

))
∧

(
□

(
κ[V1, R] = 0

)
⇒ □

(
κ[E′

0, R] = 0 ∧ κ[E′
1, R] = 0

))
. (Dec)

The second property claims that (i) emptiness of M0 in superround R implies (emptiness of
E0 and therefore also) emptiness of D0 and E′

0 in R and (ii) emptiness of M ′
1 in superround R

implies emptiness of E′
1 in R:

∀R ∈ N
((

□κ[M0, R] = 0) ⇒ □ (κ[D0, R] = 0 ∧ κ[E′
0, R] = 0)

)
∧

(
□κ[M ′

1, R] = 0) ⇒ □κ[E′
1, R] = 0

))
. (Good)

The main idea is to exploit the fairness of bv-broadcast, which ensures the existence of a
round r which is (r mod 2)-good. Intuitively, the next superround R = ⌈r/2⌉ is the desired
witness for (Term), namely the one in which all processes decide (not necessarily for the first
time). We formalize this in our main result:

▶ Theorem 6. Assuming fairness of the bv-broadcast, Algorithm 1 terminates.

Proof. First we prove formulas (SRoundTerm) and (Dec) and (Good) automatically using
the model checker ByMC. Formula (SRoundTerm) guarantees that formula (Term) indeed
expresses termination. Next, we show that formulas (Dec) and (Good) together imply (Term).
Indeed, since we assume fairness of the bv-broadcast, from Corollary 5 we know that there is
a superround R in which one of the following two scenarios happen:

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:15

□κ[M ′
1, R] = 0. In this case formula (Good) implies □κ[E′

1, R] = 0. Note that the
form of the (dotted) round-switch rules yield that no process starts the superround
R+1 with value 1, that is, we have □κ[V1, R+1] = 0. Then formula (Dec) implies
□

(
κ[E′

0, R+1] = 0 ∧ κ[E′
1, R+1] = 0

)
, which makes formula (Term) true, that is, all

processes visit D0 in superround R+1.
□κ[M0, R] = 0. In this case formula (Good) implies □ (κ[D0, R]∧κ[E′

0, R] = 0)
)
. Now the

round-switch rules yield that no process starts the superround R+1 with value 0, that is, we
have □κ[V0, R+1] = 0. Then formula (Dec) implies □

(
κ[E0, R+1] = 0∧κ[E1, R+1] = 0

)
,

which satisfies formula (Term), that is, all processes visit D1 in R+1.
As a consequence, our automated proofs of properties (SRoundTerm) and (Dec) and (Good)
guarantee termination of Algorithm 1 under fairness of bv-broadcast. ◀

6 Experiments

In this section, we model check the safety but also the liveness properties of Byzantine
consensus for any parameters t and n > 3t. In particular, we show that we formally verify
the simplified representation of the blockchain consensus in less than 70 seconds, whereas we
could not model check its naive representation.

Experimental settings. We used the parallelized version of ByMC 2.4.4 with MPI. The
bv-broadcast and the simplified automaton were verified on a laptop with Intel® Core™
i7-1065G7 CPU @ 1.30GHz × 8 and 32 GB of memory. The naive Threshold Automaton
(TA) timed-out even on a 4 AMD Opteron 6276 16-core CPU with 64 cores at 2300MHz
with 64 GB of memory. Good and Dec are only relevant for the simplified automaton. The
specification of the termination for ByMC is deferred to Appendix F.

Table 2 Although none of the properties of the naive blockchain consensus could be verified
within a day of execution of the model checker, it takes about ∼4 s to verify each property on the
simplified representation of the blockchain consensus. Overall it takes less than 70 seconds to verify
both that the binary value broadcast and the simplified representation of the blockchain consensus
are correct.

TA Size Property # schemas Avg. length Time

bv-broadcast
(Fig. 2)

4 unique
guards
10 locations
19 rules

BV-Just0 90 54 5.61s
BV-Obl0 90 79 6.87s
BV-Unif0 760 97 27.64s
BV-Term 90 79 6.75s

Naive
consensus
(Fig. 3)

14 unique
guards
24 locations
45 rules

Inv10 >100 000 - >24h
Inv20 >100 000 - >24h
SRound-Term >100 000 - >24h

Simplified
consensus
(Fig. 4)

10 unique
guards
16 locations
37 rules

Inv10 6 102 4.68s
Inv20 2 73 4.56s
SRound-Term 2 109 4.13s
Good0 2 67 4.55s
Dec0 2 73 4.62s

DISC 2022

10:16 Holistic Verification of Blockchain Consensus

Results. Table 2 depicts the time (6th column) it takes to verify each property (3rd column)
automatically. In particular, it lists the TA (1st column) on which these properties were
tested, as well as the size of these TA (2nd column) as the number of guards locations and
rules they contain. A schema (4th column) is a sequence of unlocked guards (contexts) and
rule sequences that is used to generate execution paths [37] whose average length appears
in the 5th column. It demonstrates the efficiency of our approach as it allows to verify
all properties of the Byzantine consensus automatically in less than 70 seconds whereas a
non-compositional approach timed out. Although not indicated here, we also generated a
counter-example of Inv10 for n > 3t on the composite automaton in ∼4 s.

7 Related Work

Interactive theorem provers [62, 59, 70] already checked proofs of algorithmic components used
in the blockchain industry. In particular, Coq helped prove the Raft consensus algorithm [71]
and parts of crash fault tolerant distributed ledgers [12, 5], neither of which is Byzantine
fault tolerant, but also some safety properties of PBFT [60] and of the Byzantine consensus
algorithm of the Algorand blockchain [3]. In addition, Dafny [31] proved MultiPaxos, a
consensus algorithm that tolerates crash failures. Isabelle/HOL [54] was used to prove
Byzantine fault tolerant algorithms [17] and was combined with Ivy to prove a simplified
variant of the Byzantine consensus [45] of Stellar [44] but without its dynamic quorum
system [46]. Theorem provers check proofs, not the algorithms. Hence, one has to invest
efforts into writing detailed mechanical proofs.

Specialized decision procedures are a way of proving consensus algorithms. They were
used to prove Paxos [40], which could itself be used in the aforementioned crash fault tolerant
distributed ledgers. Crash fault tolerant consensus algorithms were manually encoded with
their invariants and properties to prove formulae using the Z3 SMT solver [24]. Decision
procedures also proved the safety of Byzantine fault tolerant consensus algorithms when
f = t [9] but not their termination. Similarly, a proof by refinement of the safety of a
Byzantine variant of Paxos was proposed [41] but its liveness is not proven. These decision
procedures require the user to fit the specification into a suitable logical fragment.

Explicit-state model checking fully automates verification of distributed algorithms [32, 72].
It allows to check the reliable broadcast algorithm [33], a common component of various
blockchain consensus algorithms [47, 19, 18]. TLC [72] checked a reduction of fault tolerant
distributed algorithms in the Heard-Of model that exploits their communication-closed
property [16]. And the agreement of consensus algorithms was proved in the asynchronous
setting [55]. These tools enumerate all reachable states and suffer from state explosion.

Symbolic model checkers [13] cope with this explosion by representing state transitions
efficiently. NuSMV and SAT helped check consensus algorithms for up to 10 processes [68, 69].
Apalache [34] uses satisfiability modulo theories (SMT) to check inductive invariants and
verify symbolic executions of TLA+ specifications of the reliable broadcast and crash fault
tolerant consensus algorithms but requires parameters to be fixed. These tools cannot be
used to prove (or disprove) correctness for an arbitrary number of processes.

Parameterized model checking [23] works for an arbitrary number n of processes [11].
Although the problem is undecidable [6] in general, one can verify specific classes of al-
gorithms [28]. Indeed, distributed algorithms with a ring-based topology were checked
with automata-theoretic method [2] and with Presburger arithmetics formulae verified by
an SMT solver [61]. Bosco [63] has been the focus of various parameterized verification
techniques [42, 7], however, it acts as a fast path wrapper around a separate correct consensus

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:17

algorithm that remains itself to be proven. The condition-based consensus algorithm [53, 52]
was verified [7] with the Byzantine model checker ByMC [37, 39, 35], only under the condition
that the difference between the numbers of processes initialized with 0 and 1 differ by at least t.
Recently, almost-sure termination was proved by assuming a round-rigid adversary [10], but
this is insufficient to prove our termination. In this paper, we also exploit ByMC but prove
the Byzantine consensus algorithm [19] of an existing blockchain [20].

8 Conclusion

We presented the first formal verification of a blockchain consensus algorithm thanks to a
new holistic approach. By modeling directly the pseudocode into a disambiguated threshold
automaton we guarantee that the “actual” algorithm is verified. By model checking the
threshold automaton for any parameters without the need for user-defined invariants and
proofs, we drastically reduce the risks of human errors.

References
1 Ittai Abraham, Guy Golan Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. Revisiting fast practical byzantine fault tolerance. Technical report, arXiv,
December 2017. arXiv:1712.01367.

2 C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach to the
verification of distributed algorithms. Information and Computation, 259(3):305–327, 2018.

3 Musab A. Alturki, Jing Chen, Victor Luchangco, Brandon M. Moore, Karl Palmskog, Lucas
Peña, and Grigore Rosu. Towards a verified model of the algorand consensus protocol in Coq.
In International Workshops on Formal Methods (FM’19), pages 362–367, 2019.

4 Rajeev Alur and Thomas A. Henzinger. Finitary fairness. In Annual IEEE Symposium on
Logic in Computer Science (LICS’94), pages 52–61. IEEE Computer Society Press, 1994.

5 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and
Jason Yellick. Hyperledger Fabric: A distributed operating system for permissioned blockchains.
In ACM European Conference on Computer Systems (CCS’18), 2018.

6 Krzysztof R Apt and Dexter C Kozen. Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters, 22(6):307–309, May 1986.

7 A. R. Balasubramanian, Javier Esparza, and Marijana Lazic. Complexity of verification and
synthesis of threshold automata. In International Symposium on Automated Technology for
Verification and Analysis (ATVA’20), pages 144–160, 2020.

8 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Annual ACM Symposium on Principles of Distributed
Computing (PODC’83), pages 27–30, 1983.

9 Idan Berkovits, Marijana Lazic, Giuliano Losa, Oded Padon, and Sharon Shoham. Verification
of threshold-based distributed algorithms by decomposition to decidable logics. In International
Conference on Computer Aided Verification (CAV’19), pages 245–266, 2019.

10 Nathalie Bertrand, Igor Konnov, Marijana Lazic, and Josef Widder. Verification of random-
ized consensus algorithms under round-rigid adversaries. In International Conference on
Concurrency Theory (CONCUR’19), pages 33:1–33:15, 2019.

11 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

12 Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: An introduction.
R3 CEV, August, 2016.

DISC 2022

http://arxiv.org/abs/1712.01367

10:18 Holistic Verification of Blockchain Consensus

13 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. In Annual Symposium on Logic in
Computer Science (LICS’90), pages 428–439, 1990.

14 Christian Cachin, Daniel Collins, Tyler Crain, and Vincent Gramoli. Anonymity preserving
Byzantine vector consensus. In European Symposium on Research in Computer Security
(ESORICS’20), pages 133–152, September 2020.

15 Christian Cachin and Luca Zanolini. Asymmetric Byzantine consensus. Technical Report
2005.08795, arXiv, 2020.

16 Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A reduction theorem
for the verification of round-based distributed algorithms. In International Workshop on
Reachability Problems (RP’09), pages 93–106, 2009.

17 Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. Formal verification of consensus
algorithms tolerating malicious faults. In SSS, pages 120–134, 2011.

18 Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable Byzantine agreement.
In Proceedings of the 41st IEEE International Conference on Distributed Computing Systems
(ICDCS’21), July 2021.

19 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient lead-
erless Byzantine consensus and its applications to blockchains. In International Sympo-
sium on Network Computing and Applications (NCA’18), 2018. URL: http://gramoli.
redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf.

20 Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red Belly: A secure, fair and scalable
open blockchain. In IEEE Symposium on Security and Privacy (S&P’21), 2021.

21 Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder. Communication-
closed asynchronous protocols. In International Conference on Computer Aided Verification
(CAV’19), pages 344–363, 2019.

22 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In In-
ternational Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’08), pages 337–340, 2008.

23 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

24 Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey. A
logic-based framework for verifying consensus algorithms. In International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI’14), pages 161–181, 2014.

25 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, April 1988.

26 Ali Ebnenasir and Alex P. Klinkhamer. Topology-specific synthesis of self-stabilizing parame-
terized systems with constant-space processes. IEEE Trans. Software Eng., 47(3):614–629,
2021.

27 Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into communication-
closed layers. Science of Computer Programming, 2(3):155–173, 1982.

28 E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the few. In
International Conference on Automated Deduction (CADE’17), pages 236–254, 2000.

29 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

30 Dana Fisman, Orna Kupferman, and Yoad Lustig. On verifying fault tolerance of distributed
protocols. In International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’08), pages 315–331, 2008.

31 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving practical distributed systems
correct. In Symposium on Operating Systems Principles (SOSP’15), pages 1–17, 2015.

32 Gerard Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

http://gramoli.redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf
http://gramoli.redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:19

33 Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Towards modeling
and model checking fault-tolerant distributed algorithms. In International Symposium on
Model Checking Software (SPIN’13), volume 7976 of LNCS, pages 209–226, 2013.

34 Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ model checking made symbolic.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):123:1–123:30, 2019.

35 Igor Konnov, Marijana Lazic, Ilina Stoilkovska, and Josef Widder. Tutorial: Parameterized
verification with byzantine model checker. In International Conference on Formal Techniques
for (Networked and) Distributed Systems (FORTE’20), pages 189–207, 2020.

36 Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. Para2: parameterized path
reduction, acceleration, and SMT for reachability in threshold-guarded distributed algorithms.
Formal Methods in System Design, 51(2):270–307, 2017.

37 Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In
Symposium on Principles of Programming Languages (POPL’17), pages 719–734. ACM, 2017.

38 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Information and Computation, 252:95–
109, 2017.

39 Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In ISoLA, pages 327–342,
2018.

40 Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz
Qadeer. Inductive sequentialization of asynchronous programs. In ACM-SIGPLAN Symposium
on Programming Language Design and Implementation (PLDI’20), pages 227–242, 2020.

41 Leslie Lamport. Byzantizing paxos by refinement. In International Symposium on Distributed
Computing (DISC’11), pages 211–224, 2011.

42 Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem. Synthesis of distributed
algorithms with parameterized threshold guards. In International Conference on Principles of
Distributed Systems (OPODIS’17), pages 32:1–32:20, 2017.

43 Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commu-
nications of the ACM, 18(12):717–721, 1975.

44 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
’19, pages 80–96, 2019.

45 Giuliano Losa and Mike Dodds. On the formal verification of the stellar consensus protocol.
In Workshop on Formal Methods for Blockchains (FMBC@CAV’20), pages 9:1–9:9, 2020.

46 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In Jukka
Suomela, editor, 33rd International Symposium on Distributed Computing, DISC 2019, volume
146 of LIPIcs, pages 27:1–27:15, 2019.

47 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Conference on Computer and Communications Security (CCS’16), 2016.

48 Nahal Mirzaie, Fathiyeh Faghih, Swen Jacobs, and Borzoo Bonakdarpour. Parameterized
synthesis of self-stabilizing protocols in symmetric networks. Acta Informatica, 57(1-2):271–304,
2020.

49 Hadi Moloodi, Fathiyeh Faghih, and Borzoo Bonakdarpour. Parameterized distributed
synthesis of fault-tolerance using counter abstraction. In Proceedings of the 40th International
Symposium on Reliable Distributed Systems (SRDS), pages 67–77. IEEE, 2021.

50 Achour Mostéfaoui, Hamouna Moumen, and Michel Raynal. Signature-free asynchronous
Byzantine consensus with T < N/3 and O(N2) messages. In Symposium on Principles of
Distributed Computing (PODC’14), pages 2–9, 2014.

51 Achour Mostéfaoui, Hamouna Moumen, and Michel Raynal. Signature-free asynchronous
binary Byzantine consensus with t < n/3, O(n2) messages and O(1) expected time. Journal
of the ACM, 2015.

DISC 2022

10:20 Holistic Verification of Blockchain Consensus

52 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evaluating
the condition-based approach to solve consensus. In Dependable Systems and Networks
(DSN’03), pages 541–550, 2003.

53 Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. Conditions on input vectors for
consensus solvability in asynchronous distributed systems. Journal of the ACM, 50(6):922–954,
November 2003.

54 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

55 Tatsuya Noguchi, Tatsuhiro Tsuchiya, and Tohru Kikuno. Safety verification of asynchronous
consensus algorithms with model checking. In International Symposium on Dependable
Computing (PRDC’12), pages 80–88, 2012.

56 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

57 Amir Pnueli. The temporal logic of programs. In IEEE Annual Symposium on Foundations of
Computer Science (FOCS’77), pages 46–57, 1977.

58 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
congrès de Mathématiciens des Pays Slaves, pages 92–101, 1929.

59 Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Formal specifica-
tion, verification, and implementation of fault-tolerant systems using EventML. Electronic
Communication of the European Association of Software Science and Technology, 72, 2015.

60 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. Velisarios:
Byzantine fault-tolerant protocols powered by coq. In Amal Ahmed, editor, Proceedings of
the 27th European Symposium on Programming (ESOP), volume 10801 of Lecture Notes in
Computer Science, pages 619–650. Springer, 2018.

61 Arnaud Sangnier, Nathalie Sznajder, Maria Potop-Butucaru, and Sébastien Tixeuil. Parame-
terized verification of algorithms for oblivious robots on a ring. Formal Methods in System
Design, 56(1):55–89, 2020.

62 Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with distributed
protocols. Proceedings of the ACM on Programming Languages, 2(POPL):28:1–28:30, 2018.

63 Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous consensus.
In International Symposium on Distributed Computing (DISC’08), pages 438–450, 2008.

64 Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Eliminating message
counters in threshold automata. In International Symposium on Automated Technology for
Verification and Analysis (ATVA’20), pages 196–212, 2020.

65 Pierre Sutra. On the correctness of egalitarian paxos. Information Processing Letters,
156:105901, 2020. doi:10.1016/j.ipl.2019.105901.

66 Amer Tahat and Ali Ebnenasir. A hybrid method for the verification and synthesis of
parameterized self-stabilizing protocols. In Maurizio Proietti and Hirohisa Seki, editors, 24th
International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR),
volume 8981 of Lecture Notes in Computer Science, pages 201–218. Springer, 2014.

67 Pierre Tholoniat and Vincent Gramoli. Formal verification of blockchain Byzantine fault
tolerance. In Workshop on Formal Reasoning in Distributed Algorithms (FRIDA’19), October
2019. arXiv:1909.07453.

68 Tatsuhiro Tsuchiya and André Schiper. Using bounded model checking to verify consensus
algorithms. In Gadi Taubenfeld, editor, Distributed Computing, pages 466–480, 2008.

69 Tatsuhiro Tsuchiya and André Schiper. Verification of consensus algorithms using satisfiability
solving. Distributed Computing, 23(5-6):341–358, 2011.

70 Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit
Jhala. Pretend synchrony: synchronous verification of asynchronous distributed programs.
Proceedings of the ACM on Programming Languages, 3(POPL):59:1–59:30, 2019.

https://doi.org/10.1016/j.ipl.2019.105901
http://arxiv.org/abs/1909.07453

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:21

71 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally verifying
distributed systems. In ACM-SIGPLAN Symposium on Programming Language Design and
Implementation (PLDI’15), pages 357–368, 2015.

72 Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifications. In
CHARME, pages 54–66, 1999.

A Reducing multi-round TA to one-round TA

Let us first formally define a (finite or infinite) run in a (one-round or multi-round) counter
system Sys(TA). It is an alternating sequence of configurations and transitions σ0, t1, σ1, t2, . . .

such that σ0 ∈ I is an initial configuration and for every i ≥ 1 we have that ti is unlocked in
σi−1, and executing it leads to σi, denoted ti(σi−1) = σi.

Here we briefly describe the reasoning behind the reduction of multi-round TAs to one-
round TAs [10, Theorem 6]. Note that the behavior of a process in one round only depends
on the variables (the number of messages) of that round. Namely, we check if a transition
is unlocked in a round by evaluating a guard and a location counter in that round. This
allows us to modify a run by swapping two transitions from different rounds, as they do
not affect each other, and preserve LTL-X properties, which are properties expressed in LTL
without the next operator X . The type of swapping we are interested in is the one where
a transition of round R is followed by a transition of round R′ < R. Starting from any
(fully asynchronous) run, if we keep swapping all such pairs of transitions, we will obtain a
run in which processes synchronize at the end of each round and which has the same LTL-X
properties as the initial one. This, so-called round-rigid structure, allows us to isolate a
single round and analyze it. Still, different rounds might behave differently as they have
different initial configurations. If we have a formula ∀R ∈ N. φ[R], where φ[R] is in the
above mentioned fragment of (multi-round) LTL, then Theorem 6 of [10] shows exactly that
it is equivalent to check that (i) this formula holds (or φ[R] holds on all rounds R) on a
multi-round TA, and (ii) formula φ[1] (or just φ) holds on the one-round TA′ (naturally
obtained from the TA by removing dotted round-switch rules) with respect to all possible
initial configurations of all rounds. Thus, we can verify properties of the form ∀R ∈ N. φ[R]
on multi-round threshold automata, by using ByMC to check φ on a one-round threshold
automaton with an enlarged set of initial configurations.

B Examples of fairness and of non-termination without fairness

First, we explain that the fairness is satisfied as soon as one execution of bv-broadcast has
correct processes delivering all values broadcast by correct processes first. Then, we explain
that the Byzantine consensus algorithm cannot terminate without an additional assumption,
like fairness.

Relevance of the fairness assumption

It is interesting to note that our fairness assumption is satisfied by the existence of an
execution with a particular reception order of some messages of the two broadcasts within
the bv-broadcast. Consider that t = ⌈n/3⌉−1 and that at the beginning of a round r, the two
following properties hold: (i) estimate r mod 2 is more represented than estimate (1−r) mod 2
among correct processes and (ii) all correct processes deliver the values broadcast by correct
processes before any value broadcast during the bv-broadcast by Byzantine processes are

DISC 2022

10:22 Holistic Verification of Blockchain Consensus

delivered. Indeed, the existence of such a round r in any infinite sequence of executions of
bv-broadcast implies that this sequence is fair (Def. 3): as r mod 2 is the only value that
can be broadcast by t+1 correct processes, this is the first value that is received from t+1
distinct processes and rebroadcast by the rest of the correct processes. This is thus also the
first value that is bv-delivered by all correct processes.

Non-termination without fairness

It is interesting to note why Algorithm 1 does not solve consensus when t < n/3 and without
our fairness assumption. We exhibit an example of execution of the algorithm with n = 4
and f = 1, starting at round r and for which the estimates of the correct processes are
kept as (1 − r) mod 2, (1 − r) mod 2, r mod 2 in rounds r and r+2. Repeating this while
incrementing r yields an infinite execution, so that the algorithm never terminates.

▶ Lemma 7. Algorithm 1 does not terminate without fairness.

Proof. Consider, for example, processes p1, p2, p3 and p4 where p4 is Byzantine and where
0, 0, 1 are the input values of the correct processes p1, p2, p3, respectively, at round 1. We
show that at the beginning of round 2, p1, p2, p3 have estimates 0, 1, 1. First, as a result of
the broadcast (line 2), consider that p1 and p2 receive 0 from p1, p2 and p4 so that p1, p2
bv-deliver 0. Second, p2 and p3 receive 1 from p3, p4 and finally p2 so that p2, p3 bv-deliver 1.
Third, p3 receives 0 from p0, p2 and finally from p3 itself, hence p3 bv-delivers 0. Now we have:
(a) p1, p2, p3 bv-deliver 0, 0, 1 and (b) p2, p3 later bv-deliver 1 and 0, respectively. As a result
of (a), we have p1, p2 broadcast, and say p4 sends, ⟨aux, 0, ·⟩ so that p0 receives these three
messages, p1, p2 broadcast ⟨aux, 0, ·⟩, and say p4 sends, ⟨aux, 1, ·⟩ to p2 so that p2 receives
these messages, p1 broadcasts ⟨aux, 0, ·⟩ while p3 broadcasts, and say p4 sends, ⟨aux, 1, ·⟩ so
that p3 receives these messages. Finally, by (b) we have contestants2 = contestants3 = {0, 1}.
This implies that the n−t first values inserted in favorites1, favorites2 and favorites3 in round
r are values {0}, {0, 1}, {0, 1}, respectively. Finally, qualifiers1, qualifiers2 and qualifiers3
are {0}, {0, 1} and {0, 1}, respectively. And p1, p2, p3 set their estimate to 0, 1, 1.

It is easy to see that a symmetric execution in round r′ = r + 1 leads processes to change
their estimate from 0, 1, 1 to 0, 0, 1 looping back to the state where r mod 2 = 1 and estimate
are (1− r) mod 2, (1− r) mod 2, r mod 2. ◀

C Starting a round with identical estimate

▶ Lemma 8 (Lemma 4). If the infinite sequence of bv-broadcast invocations of Algorithm 1
is fair, with the rth invocation (in round r) being (r mod 2)-good, then all correct processes
start round r+1 of Algorithm 1 with estimate r mod 2.

Proof. The argument is that all correct processes wait until a growing prefix of the bv-
delivered values that are re-broadcast implies that there is a subset of favorites, called
qualifiers, containing messages from n − t distinct processes such that ∀v ∈ qualifiers. v ∈
contestants. As we assume that the infinite sequence of bv-broadcast invocations of Al-
gorithm 1 is fair, with the rth invocation being (r mod 2)-good, then we know that in
round r for every pair of correct processes pi and pj we have pi .qualifiers ⊆ pj .qualifiers or
pj .qualifiers ⊆ pi .qualifiers. If pi .qualifiers = pj .qualifiers for all pairs, then by examination
of the code, we know that they will set their estimate est to the same value depending on
the parity of the current round.

N. Bertrand, V. Gramoli, I. Konnov, M. Lazić, P. Tholoniat, and J. Widder 10:23

Consider instead, with no loss of generality, that pi .qualifiers is a strict subset of
pj .qualifiers in round r. As their values can only be binaries, in {0, 1}, this means that
pi .qualifiers is a singleton, say {w}. As all correct processes bv-deliver r mod 2 first, which is
then broadcast into pi .favorites, we have w = r mod 2 and pi’s estimate becomes r mod 2 at
line 11. As pj .qualifiers is {0, 1}, the estimate of pj is also set to r mod 2 but at line 13. ◀

D Large TA

Table 3 details the rules for the first half of the threshold automaton from Fig. 3.

Table 3 The rules of the threshold automaton from Fig. 3. We omit self loops that have trivial
guard true and no update.

Rules Guard Update
r1 true b0++

r2 true b1++

r3 b0 ≥ 2t+1−f a0++

r4 b1 ≥ t+1−f b1++

r5 b0 ≥ t+1−f b0++

r6 b1 ≥ 2t+1−f a1++

r14, r15, r16 a0 ≥ n−t−f —
r8 b1 ≥ t+1−f b1++

r9 b1 ≥ 2t+1−f a1++

r10 b0 ≥ 2t+1−f a0++

r11 b0 ≥ t+1−f b0++

r12 b1 ≥ 2t+1−f —
r13 b0 ≥ 2t+1−f —
r7, r18, r19 a1 ≥ n−t−f —
r16 a0 ≥ n−t−f —
r17 a0+a1 ≥ n−t−f —
r20, r21, r22 true —

E Missing proof of Corollary 5

We restate here Corollary 5 and give its proof.

▶ Corollary 9. Let r ∈ N be such that the rth execution of bv-broadcast in Algorithm 1 is
(r mod 2)-good. Then:

If there exists R ∈ N with r = 2R−1, then □
(
κ[M0, R] = 0) holds.

If there exists R ∈ N with r = 2R, then □ (κ[M ′
1, R] = 0

)
holds.

Proof. By definition of an (r mod 2)-good execution, we know that in this particular invoca-
tion of bv-broadcast, all correct processes bv-deliver r mod 2 first. It follows from Lemma 4,
that all correct processes start the next round with estimate set to r mod 2. There are two
cases to consider depending on the parity of the round: If r mod 2 = 1, then this is the first
round of superround R, i.e., r = 2R− 1. As a result, □

(
κ[M0, R] = 0

)
. If r mod 2 = 0, then

this is the second round of superround R, i.e., r = 2R. As a result, □
(
κ[M ′

1, R] = 0
)
. ◀

DISC 2022

10:24 Holistic Verification of Blockchain Consensus

F Specification of the termination property in the simplified threshold
automaton for consensus algorithm

The reliable communication assumption and the properties guaranteed by the bv-broadcast
are expressed as preconditions for s_round_termination. The progress conditions work
exactly the same as in [10]. However, since the shared counters representing the bv-broadcast
execution do not represent regular messages, we cannot directly use the reliable communication
assumption. Instead, we use the properties of the bv-broadcast that we proved in a separate
automaton.

In practice, instead of using progress preconditions on the bv-broadcast counters in
s_round_termination, such as:

(locM == 0 || bvb1 < 1) && (locM == 0 || bvb0 < 1) &&
(locM1 == 0 || bvb0 < 1) && (locM0 == 0 || bvb1 < 1)

we use the following:

/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) && (locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) && (locM0 == 0 || aux1 == 0) &&

One can note that we do not use BV-Justification as a precondition in this specification.
Instead, the BV-Justification property is baked in the structure of the simplified threshold
automaton (in the guard of the transition M →M0, M1).

The complete specification of the termination property follows:

s_round_termination:
<>[](

(locV0 == 0) &&
(locV1 == 0) &&

/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) &&
(locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) &&
(locM0 == 0 || aux1 == 0) &&

/* Business as usual */
(locM1 == 0 || aux1 < N - T) &&
(locM0 == 0 || aux0 < N - T) &&
(locM01 == 0 || aux0 + aux1 < N - T) &&

(locD1 == 0) &&
(locE0 == 0) &&
(locE1 == 0) &&

/* BV-Termination */
(locMx == 0) &&
/* BV-Obligation */
(locM1x == 0 || bvb0x < T + 1) &&
(locM0x == 0 || bvb1x < T + 1) &&
/* BV-Uniformity */
(locM1x == 0 || aux0x == 0) &&
(locM0x == 0 || aux1x == 0) &&

(locM1x == 0 || aux1x < N - T) &&
(locM0x == 0 || aux0x < N - T) &&
(locM01x == 0 || aux1x < N - T) &&
(locM01x == 0 || aux0x < N - T) &&
(locM01x == 0 || aux0x + aux1x < N - T)
)

->

<>(
locV0 == 0 &&
locV1 == 0 &&
locM == 0 &&
locM0 == 0 &&
locM1 == 0 &&
locM01 == 0 &&
locE0 == 0 &&
locE1 == 0 &&
locD1 == 0 &&
locMx == 0 &&
locM0x == 0 &&
locM1x == 0 &&
locM01x == 0

);

inv1_0: <>(locD0 != 0) -> [](locD1 == 0 && locE1x == 0);

inv2_0: [](locV0 == 0) -> [](locD0 == 0 && locE0x == 0);

inv1_1: <>(locD1 != 0) -> [](locD0 == 0 && locE0x == 0);

inv2_1: [](locV1 == 0) -> [](locD1 == 0 && locE1x == 0);

dec_0: [](locV0 == 0) -> [](locE0 == 0 && locE1 == 0);

dec_1: [](locV1 == 0) -> [](locE0x == 0 && locE1x == 0);

good_0: [](locM0 == 0) -> [](locD0 == 0 && locE0x == 0);

good_1: [](locM1x == 0) -> [](locE1x == 0);

How to Meet at a Node of Any Connected Graph
Subhash Bhagat #

Département d’informatique, Université du Québec en Outaouais, Gatineau, Canada

Andrzej Pelc #

Département d’informatique, Université du Québec en Outaouais, Gatineau, Canada

Abstract
Two mobile agents have to meet at the same node of a connected graph with unlabeled nodes. This
intensely researched task is known as rendezvous. The adversary assigns the agents different starting
nodes in the graph and different integer labels from a set {1, . . . , L}. Time is slotted in synchronous
rounds. The adversary wakes up the agents in possibly different rounds. After wakeup, the agents
move as follows. In each round, an agent can either stay idle or move to an adjacent node. Each
agent knows its label but not the label of the other agent, and agents have no a priori information
about the graph. They do not know L. They execute the same deterministic algorithm whose
parameter is the agent’s label. The time of a rendezvous algorithm is the worst-case number of
rounds since the wakeup of the earlier agent till the meeting.

In most of the results concerning rendezvous in graphs, the graph is finite and rendezvous relies
on the exploration of the entire graph. Thus the time of rendezvous depends on the size of the graph.
This approach is inefficient for very large graphs, and cannot be used for infinite graphs. For such
graphs it is natural to seek rendezvous algorithms whose time depends on the initial distance D

between the agents. In this paper we adopt this approach and consider rendezvous in arbitrary
connected graphs with nodes of finite degrees, and whose set of nodes is finite or countably infinite.
Our main result is the first deterministic rendezvous algorithm working under this general scenario.

For any node v and any positive integer r, let P (v, r) be the number of paths of length r in
the graph, starting at node v. For any instance of the rendezvous problem where agents start at
nodes v1 and v2 at distance D, let P (v1, v2, D) = max(P (v1, D), P (v2, D)). It is well known that,
for example in trees, Ω(D + P (v1, v2, D) + log L) is a lower bound on rendezvous time for such an
instance. The time of our algorithm, working for arbitrary connected graphs of finite degrees, is
polynomial in this lower bound.

As an application we solve the problem of approach for synchronous agents in terrains in the
plane, in time polynomial in log L and in the initial distance between the agents in the terrain.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Distributed algorithms

Keywords and phrases Algorithm, graph, rendezvous, mobile agent, terrain

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.11

Funding Andrzej Pelc: Research supported by NSERC discovery grant 2018-03899 and by the
Research Chair in Distributed Computing at the Université du Québec en Outaouais.

1 Introduction

Two mobile agents have to meet at the same node of a connected graph. This intensely
researched task is known as rendezvous and has numerous applications. In computer networks,
such as the internet, software agents navigate in the network and the purpose of meeting
may be to share data collected from distributed databases and to plan further actions based
on these data. If the network models a labyrinth, or corridors in a contaminated mine,
mobile robots circulating in the network may have to meet to coordinate maintenance or
decontamination tasks. Finally, people may want to meet in an unknown mall or park whose
alleys are links of a network and crossings are its nodes.

© Subhash Bhagat and Andrzej Pelc;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:subhash.bhagat.math@gmail.com
https://orcid.org/0000-0003-4551-0613
mailto:pelc@uqo.ca
https://orcid.org/0000-0003-0598-1218
https://doi.org/10.4230/LIPIcs.DISC.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 How to Meet at a Node of Any Connected Graph

In most of the results concerning rendezvous in graphs, the graph is finite and rendezvous
relies on the exploration of the entire graph. Thus the time of rendezvous depends on the
size of the graph. This approach is inefficient for very large graphs, and cannot be used
for infinite graphs. For such graphs it is natural to seek rendezvous algorithms whose time
depends on the initial distance D between the agents. In this paper we adopt this approach
and consider deterministic rendezvous in arbitrary connected graphs with nodes of finite
degrees, and whose set of nodes is finite or countably infinite.

We also consider the problem of approach for synchronous1 agents in terrains in the plane.
This is the task of getting two agents with vision radius 1 navigating in a terrain (see the
definition below) to see each other, i.e., to reach positions w1 and w2 in the terrain, such
that the segment [w1, w2] is of length at most 1 and is included in the terrain.

1.1 The model
Graphs. We consider arbitrary simple connected graphs with nodes of finite degrees, and
whose set of nodes is finite or countably infinite. Nodes of the graph are unlabeled and ports
at each node of degree d are arbitrarily labeled 0, 1, . . . , d − 1. There is no coherence between
port numbering at different nodes. There are two agents to which the adversary assigns
different starting nodes in the graph and different integer labels from a set {1, . . . , L}. Time
is slotted in synchronous rounds. The adversary wakes up the agents in possibly different
rounds. After wakeup, the agents move as follows. In each round, an agent can either stay
idle or move to an adjacent node. An agent makes a move by choosing a port number at its
current node. When entering the adjacent node corresponding to the chosen edge the agent
learns the port of entry and the degree of this node. When agents cross each other in an
edge, traversing it simultaneously in opposite directions, they do not even notice this fact.
Agents cannot mark the visited nodes in any way. We assume that the memory of the agents
is unbounded: from the computational point of view they are modeled as Turing machines.
Each agent knows its label but not the label of the other agent, and agents have no a priori
information about the graph. They do not know L. They execute the same deterministic
algorithm whose parameter is the agent’s label. The time of a rendezvous algorithm is the
worst-case number of rounds since the wakeup of the earlier agent till the meeting. The
meeting can occur before the wake-up of the later agent.

We will use the following terminology. A walk in a graph is any sequence (v0, v1, . . . , vk),
such that {vi, vi+1} is an edge, for any i < k. A path in a graph is any walk (v0, v1, . . . , vk)
such that vi+2 ̸= vi for any i < k − 1. In other words, paths are walks with no immediate
backtrack. Since an agent learns the entry port number upon visiting a node, it can avoid
backtracking and thus it can travel only using paths.

Terrains. We consider mobile agents modeled by points moving in subsets of the Euclidean
plane E2 and equipped with compasses showing cardinal directions N, E, S, W , with a
common unit of length, with clocks ticking at the same rate, and with vision of radius 1.
This means that at any point u in the terrain, the agent sees all points v, such that the
segment [u, v] has length at most 1 and is included in the terrain.

Consider a finite or countably infinite family {O1, O2, . . . } of pairwise disjoint closed
convex subsets of the Euclidean plane E2, called obstacles. For any real ϵ > 0, such a family
is called ϵ-scattered if all distances between obstacles are at least ϵ. A terrain is a subset of

1 By this we mean that clocks of the agents tick at the same rate, and when they move, they travel at the
fixed speed 1; see section 1.1.

S. Bhagat and A. Pelc 11:3

the Euclidean plane which is the complement of the union of a ϵ-scattered family of obstacles,
for some ϵ > 0.2 Hence any terrain is an open connected subset of the Euclidean plane. A
terrain that is the complement of the union of a ϵ-scattered family of obstacles is itself called
an ϵ-scattered terrain.

Agents wake up at distinct points p1 and p2 of the terrain at possibly different times,
chosen by the adversary. The distance D in the terrain between points p1 and p2 is defined
as the infimum of lengths of all polygonal lines between points p1 and p2, included in the
terrain. The adversary also assigns different integer labels from a set {1, . . . , L} to the agents.
The clock of every agent starts at its wake-up time. Each agent knows its own label but not
the label of the other agent, and both of them know a common positive real ϵ ≤ D, such
that the terrain is ϵ-scattered. As before, the memory of the agents is unlimited. Each agent
executes a sequence of actions. An action can be either waiting at the current point for a
chosen time t, or moving along a segment I of length x ≤ 1 in a chosen direction dir, so that
I is included in the terrain. Notice that, since the vision radius of the agents is 1, an agent
can check the latter condition before the move. Whenever agents move, they move at the
same fixed speed 1. Recall that they may start at different times and that one agent may
move while the other waits. The approach is defined as the moment when the agents see
each other for the first time. The time of an approach algorithm is the worst-case time since
the wakeup of the earlier agent till the approach.

1.2 The lower bounds
We mention two well-known lower bounds on time, one for rendezvous in graphs and one for
approach in the terrain.

Graphs. For any node v and any positive integer r, let P (v, r) be the number of paths of
length r in the graph, starting at node v. For any instance of the rendezvous problem where
agents start at nodes v1 and v2 at distance D, let P (v1, v2, D) = max(P (v1, D), P (v2, D)).
It is well known that, for example in trees, Ω(D + P (v1, v2, D) + log L) is a lower bound on
rendezvous time for such an instance. Indeed, the lower bound Ω(D) is obvious, the lower
bound Ω(log L) follows from [14] (even in the two-node tree and even for simultaneous start)
and the lower bound Ω(P (v1, v2, D)) follows from the fact that the adversary can delay one
of the agents and place it at the last node at distance D visited by the other agent.

Terrains. For any instance of the approach problem in a terrain T , with agents starting
at points p1, p2, let D be the distance between p1 and p2 in T . Clearly, Ω(D) is a lower
bound on the time of approach, as agents have speed 1. On the other hand, the lower bound
Ω(log L) holds even in the empty plane and follows from [14]. Hence we get the lower bound
Ω(D + log L).

1.3 Our results
Our main result is the solution of the feasibility problem of rendezvous in connected graphs
under the above described general scenario. We design a rendezvous algorithm working for
arbitrary connected graphs with nodes of finite degrees, and whose set of nodes is finite or
countably infinite. Its execution time is polynomial in the above mentioned lower bound
Ω(D + P (v1, v2, D) + log L) for the rendezvous problem.

2 Notice that obstacles do not need to be bounded. In general, disjoint closed unbounded sets in the plane
may have distance 0 (such as a curve and its asymptote) but this possibility is precluded in terrains by
the fact that the family of obstacles is ϵ-scattered.

DISC 2022

11:4 How to Meet at a Node of Any Connected Graph

This result should be compared to four sets of previous results about rendezvous in graphs,
known in the literature. In [14, 19, 25], the authors considered rendezvous under the same
scenario but only for finite graphs. The method adopted in these papers crucially relies on
the finiteness of the graph, as it requires the exploration of the entire graph. Hence it cannot
be applied to infinite graphs, and even in very large finite graphs it is inefficient. In [11],
the authors considered some infinite graphs, such as the line and infinite multidimensional
grids. They designed almost optimal rendezvous algorithms but they used two very strong
assumptions: first, they assumed that the agents know their position in the graph, and
second, they assumed simultaneous start. Hence, their results are far from our generality. In
[7], the authors considered only trees (finite or infinite), and, in the unoriented case, only
regular trees. The regularity assumption was important, as they relied on knowing the size
of any ball of a given radius in the tree. (As explained in [7], the regularity assumption
could be weakened to assuming that the size of any ball of given radius is bounded and
that both agent know a common bound on this size). Hence again, while the complexity of
algorithms in [7] is better than ours, their results are far from our generality. Finally, in [13],
the authors designed a rendezvous algorithm working in arbitrary connected graphs (finite
or infinite), but worked under the asynchronous scenario. In this scenario, meeting at a node
cannot be guaranteed, and hence rendezvous conditions are relaxed to allow meeting inside
an edge. Moreover, the algorithm from [13] is very inefficient, in particular, its worst-case
cost is exponential in L.

To the best of our knowledge, we propose the first algorithm guaranteeing a meeting at a
node in arbitrary connected graphs with nodes of finite degrees when each agent knows only
its own label. This general result is possible by applying a new way of organizing activity and
waiting periods of the agents. These periods are decided according to bits of (transformed)
labels of agents. However, while in previous papers, activity meant either exploring the entire
finite graph [25] or exploring a ball in infinite trees [7], in the present paper activity means
traversing a single path. The second change consists in allocating rapidly increasing periods
of time devoted to processing consecutive paths. The agent uses the time allocated to a
given path π first traversing it, then waiting at the other end of it, and then traversing back
the path π. So even in its activity period the agent spends a long time staying idle. These
crucial changes (the “path-by-path” approach and long waiting periods at the end of each
path) made it possible to get rid of the assumption of finiteness of the graph in [25] and of
the regularity of the tree in [7].

As an application of this new method we solve the problem of approach for synchronous
agents in terrains in the plane, in time polynomial in log L and in the initial distance D in
the terrain between the agents. Hence in this scenario, the execution time of our algorithm
is polynomial in the lower bound Ω(D + log L) for the approach problem.

This result should be compared to five previous results about approach, known in the
literature. In [11], the authors designed an almost optimal algorithm for approach but their
algorithm had rather limited scope. First, it worked only for the obstacle-free plane, and
second, it used two strong assumptions: that the agents know their position in the plane,
and that they start simultaneously. In [13], the authors designed an algorithm for approach
working for even more general subsets of the Euclidean plane than we do, and working for
the asynchronous scenario but the worst-case cost of their algorithm was exponential in L.
In [4], the authors designed an almost optimal algorithm for asynchronous approach in the
obstacle-free plane, under a strong assumption that each agent knows its position in the
plane. In [15], the authors designed a polynomial algorithm for approach of agents with
possibly different steady speeds, but their algorithm worked only for the obstacle-free plane,

S. Bhagat and A. Pelc 11:5

hence had significantly more limited scope. Finally, in [8], the authors strengthened the result
from [15] by designing an algorithm for approach working for the asynchronous scenario at
cost polynomial in D + log L but, again, their algorithm worked only for the obstacle-free
plane.

1.4 Related Work
Results closest to the present paper were discussed in Section 1.3. In the present section
we mention other related work. Rendezvous was studied both in the randomized and
deterministic settings. An excellent survey of randomized rendezvous can be found in [2], cf.
also [1, 5]. Deterministic rendezvous in networks is overviewed in [23, 24]. Rendezvous was
also studied in geometric settings, such as the interval of the real line, e.g., [5, 6], and the
plane, e.g., [3, 9, 12]. The task of meeting for more than two agents, called gathering, was
investigated, e.g., in [16, 18, 20].

In the deterministic setting, investigations were mostly focused on the feasibility and
time complexity of synchronous rendezvous in networks. In most of the literature concerning
rendezvous in networks, nodes of the network are assumed to be unlabeled and marking nodes
by agents is not allowed. In this case, anonymous agents cannot meet in many symmetric
networks, e.g., in oriented rings, if they start simultaneously. The reason for this is the
symmetry of the initial configuration. In order to make the task feasible, symmetry is usually
broken by assigning the agents distinct labels and assuming that each agent knows only its
own label. This is the same scenario as in the present paper and in the previously mentioned
papers [7, 14, 19, 25]. Some authors studied a weaker scenario in which agents, as well as
nodes, are anonymous. Gathering many anonymous agents in unlabeled networks was the
subject of [16]. In this weak scenario, not all initial configurations of agents are possible to
gather, and the authors of [16] characterized all such configurations. Stronger scenarios were
also investigated. The authors of [22] studied the time of rendezvous in labeled networks, in
the context of algorithms with advice.

In the asynchronous model, an adversary controls the speed of agents. Asynchronous
rendezvous and approach in the plane was studied in [8, 10, 18], and asynchronous rendezvous
in graphs was introduced in [21] and later investigated in [4, 17].

2 Rendezvous in connected graphs

2.1 The algorithm
We first introduce some notation and terminology.

For any label ℓ ∈ {1, . . . , L} we define the transformed label Trans(ℓ) as follows. Let
(c1, . . . , cs) be the binary representation of ℓ (with c1 = 1). First we define the binary
sequence Trans1(ℓ) as follows. We replace each bit 1 by 10, each bit 0 by 01 and add bits
11 at the end. The obtained sequence is of length 2s + 2 and has the property that if we
start with two different labels then none of the obtained sequences can be a prefix of the
other (cf. [14]). In order to get Trans2(ℓ) we replace in Trans1(ℓ) each bit 1 by 10 and
each bit 0 by 01. The resulting sequence Trans2(ℓ) has length 4s + 4. Notice that since
binary representations of labels may have different lengths, the same is true for the resulting
sequences Trans2(ℓ). However, they have the property that if ℓ1 ̸= ℓ2 then there exists an
index j, such that the jth bit of Trans2(ℓ1) is 1 and the jth bit of Trans2(ℓ2) is 0. (Hence,
not only Trans2(ℓ1) and Trans2(ℓ2) differ in some bit but we can guarantee that in some
position the bits are 1 and 0 and in some other position the bits are 0 and 1). Finally, we

DISC 2022

11:6 How to Meet at a Node of Any Connected Graph

obtain Trans(ℓ) from Trans2(ℓ) by adding to it the prefix 011. The resulting sequence of
length 4s + 7 still has the previous two properties (being prefix-free and guaranteeing that if
ℓ1 ≠ ℓ2 then there exists an index j, such that the jth bit of Trans2(ℓ1) is 1 and the jth bit
of Trans2(ℓ2) is 0) and moreover it has the third property that the segment consisting of
bits with indices 2,3,4 is the only segment of three consecutive bits 1 in Trans(ℓ).

As an example consider label ℓ = 9. Then the binary representation of ℓ is 1001. We
have Trans1(ℓ) = (1001011011), Trans2(ℓ) = (10010110011010011010), and Trans(ℓ) =
(01110010110011010011010).

We define the infinite binary sequence Tape(ℓ) as the concatenation of infinitely many
copies of Trans(ℓ). We will call Tape(ℓ) the tape of the agent with label ℓ. The i-th copy of
Trans(ℓ) is called the i-th segment of Tape(ℓ).

Any path π = (v0, v1, . . . , vk) of length k starting at node v0 is coded as the sequence of
port numbers (p0, . . . , pk−1) such that port pi at node vi leads to node vi+1. We will often
identify a path with its code. The length k of path π is denoted by |π|. We denote by rev(π)
the reverse path (vk, vk−1, . . . , v0) coded by the sequence of port numbers (qk, qk−1, . . . , q1),
such that port qj at node vj leads to node vj−1. Since an agent learns the entry port upon
entering a node, an agent that has traversed the path π learns (the code of) the path rev(π).

For any node v, we define the infinite sequence of all finite paths (π1, π2, . . .) starting at
node v and ordered as follows: every path of smaller length precedes every path of larger
length, and paths of a given length are ordered lexicographically by their codes. Since in our
algorithm all paths of smaller lengths are traversed by the agents before all paths of larger
length, when an agent has finished processing all paths of length i, it knows (the codes of)
all paths of length i + 1 because when an agent is at the end of a path of length i, it sees the
degree of the final node.

The high-level idea of the Algorithm RV, guaranteeing rendezvous in any connected graph
with nodes of finite degrees, is the following. The algorithm is executed by an agent with
label ℓ starting at a node v. We assign rapidly increasing time periods ai (in our solution, the
integers ai increase quadratically) to process consecutive bits bi of Tape(ℓ) of the agent. If
the bit bi is in the j-th segment of Tape(ℓ), then its processing concerns the path πj starting
at v, in the following way:

if bi = 1 then the agent traverses path πj , waits ai − 2|πj | rounds at the end of it, and
traverses path rev(πj);
if bi = 0 then the agent waits ai rounds.

Note that the agent starts and ends processing each bit of Tape(ℓ) at its starting node v.
We will show that rendezvous must occur by the time when one of the agents processes all
bits of its Tape(ℓ) corresponding to the lexicographically smallest among shortest paths from
its initial position to the initial position of the other agent.

Below we give the pseudo-code of the algorithm. For any positive integer i we define
ai = 3i2. The algorithm is interrupted as soon as the agents meet.

▶ Remark. To show that the formulation of the algorithm is correct, we need to prove that if
bi is the i-th bit of Tape(ℓ) located in the j-th segment of Tape(ℓ) then ai ≥ 2|πj |. Indeed,
we have ai = 3i2 ≥ 2i ≥ 2j ≥ 2|πj |.

2.2 Correctness and complexity
In this section we prove the correctness of Algorithm RV and establish its complexity. For
an instance of the rendezvous problem, where agents A1 and A2 start at nodes v1 and v2
respectively, we define the critical segment of A1 as follows. Let π be the lexicographically

S. Bhagat and A. Pelc 11:7

Algorithm 1 Algorithm RV.
for i = 1, 2, . . . do

if bi is the i-th bit of Tape(ℓ) located in the j-th segment of Tape(ℓ) then
if bi = 1 then

traverse path πj ;
wait ai − 2|πj | rounds;
traverse path rev(πj);

else
wait ai rounds;

smallest among shortest paths from v1 to v2. We call path π the critical path of the agent.
The critical segment of the tape of agent A1 is the segment of its tape assigned to path π.
The critical segment of the tape of agent A2 is defined similarly.

The correctness of Algorithm RV follows from the two following lemmas.

▶ Lemma 1. Suppose that the agents start executing Algorithm RV simultaneously. Then
they meet by the end of the execution of the critical segment of the agent that starts its critical
segment first.

Proof. Let A1 be the agent that starts its critical segment earlier and let A2 be the other
agent. If both agents start their critical segments simultaneously, we call A1 and A2 arbitrarily.
Let T be the round in which A1 starts its critical segment. Consider two cases.
Case 1. Agent A2 starts some segment in round T . For i = 1, 2, let σi be the segment

that agent Ai starts in round T . There exists an index j such that the j-th bit of agent A1
is 1, the j-th bit of agent A2 is 0, and these bits are in segments σ1 and σ2, respectively.
Hence, in the first part of the execution of its j-th bit, agent A1 traverses its critical path,
while agent A2 waits at its other end. Thus the agents meet at the starting node of A2.

Case 2. Agent A2 does not start any segment in round T . Let σ2 be the segment which
agent A2 is processing in round T . Let (d1, d2, d3, d4) be the four bits that agent A2
executes starting in round T , i.e., while agent A1 executes the first four bits of its critical
segment. (d1, d2, d3, d4) are not the first four bits of the segment σ2 of agent A2. If all
bits d2, d3, d4 are within segment σ2 then at least one of them must be 0, as there cannot
be three consecutive bits 1 (apart from positions 2,3,4 in a segment). If some of these bits
are within the segment τ following σ2, then one of them must be 0, since every segment
starts with a 0. Hence, in any case, there exists an index j such that the j-th bit of agent
A1 is 1 and the j-th bit of agent A2 is 0. Hence, in the first part of the execution of its
j-th bit, agent A1 traverses its critical path, while agent A2 waits at its other end. Thus
the agents meet at the starting node of A2. ◀

▶ Lemma 2. Suppose that the agents do not start executing Algorithm RV simultaneously.
Then they meet by the end of the execution of the critical segment of the agent that starts
executing Algorithm RV earlier.

Proof. Let A1 be the agent that starts the execution of Algorithm RV earlier, and let A2 be
the other agent. Let T be the round in which A1 starts its critical segment and let k − 1 be
the index of the first bit in this segment. Hence agent A1 starts the execution of the second
bit of its critical segment (which is equal to 1) in round T ′ = T + ak−1. Let δ be the delay in
the start of execution of agent A2 w.r.t. the start of agent A1. We have following two cases.

DISC 2022

11:8 How to Meet at a Node of Any Connected Graph

Figure 1 An illustration for the proof of Lemma 2: when δ ≤ D, agent A1 meets agent A2 during
the execution of the k-th bit of agent A1.

δ ≤ D : Let us consider the time interval [T ′, T ′ + D − 1] (cf. Fig. 1). During this
time interval agent A1 traverses its critical path π (of length D) by processing its k-th
bit. Since δ ≤ D, the execution of the k − th bit of agent A2 starts in the time interval
[T ′, T ′ +D −1]. If the k-th bit of A2 is 0, then we are done, because agent A1 meets agent
A2 at the starting node of A2 during the execution of this bit of agent A2. Otherwise,
the k-th bit of A2 is 1 and we have the following two possibilities. If the k-th bit of A2
is not the first bit 1 of some segment σ2, then at least one among the (k + 1)-th and
(k + 2)-th bits of A2 is 0. Since the k-th, the (k + 1)-th and the (k + 2)-th bits of A1 are
1, the agents meet at the starting node of A2 during the execution of the first bit 0 of A2
following its k-th bit. Now consider the case when the k-th bit of A2 is the first bit 1 of
some segment σ2. The start of the execution of segment σ2 by agent A2 is delayed by at
most D with respect to the start of the execution of the critical segment by agent A1.
Hence, for some index m, the m-th bit of agent A1 is 1, the m-th bit of agent A2 is 0
and the delay between the executions of these bits is most D. Hence the agents meet at
the starting node of A2, during the executions of their m-th bits.

Figure 2 An illustration for the proof of Lemma 2: when δ > D and δ ≤ T ′′ − T ′ , agent A1

meets agent A2 during the execution of the k-th bit of agent A1.

S. Bhagat and A. Pelc 11:9

δ > D : Let j be the index of the bit which agent A2 is processing in round T ′ + D.
Since δ > D, we have j < k.
Consider the processing of the k-th bit of agent A1. Since this bit is 1, agent A1 first
traverses its critical path π (of length D), then waits ak − 2D rounds at the other end of
π (which is the starting node of A2), and finally traverses the reverse path rev(π). We
will use the following claim.

▷ Claim. ak − 2D > aj .

To prove the claim notice that aj ≤ ak−1, since j < k. Since 1 ≤ D ≤ k, we have

ak − aj ≥ ak − ak−1 = 3k2 − 3(k − 1)2 = 6k − 3 ≥ 6D − 3 > 2D,

which proves the claim.
Let T ′′ = T ′ + ak − D − 1. Consider the time interval I = [T ′ + D, T ′′] which is the time
interval during which agent A1 waits at the starting node of A2. If δ ≤ T ′′ − T ′ then the
start of the execution of the k-th bit of A2 happens during the time interval I, hence the
agents meet at the starting node of A2 (cf. Fig. 2). If δ > T ′′ − T ′ then during the last
round of interval I agent A2 executes some j-th bit, for j < k. By the claim, the start of
the execution of the j-th bit of agent A2 happens during the waiting period of agent A1
(cf. Fig. 3). Hence the agents meet at the starting node of A2 during time interval I.

Figure 3 An illustration for the proof of Lemma 2: when δ > D and δ > T ′′ − T ′, agent A1

meets agent A2 during the execution of the k-th bit of agent A1. ◀

We are now ready to prove the main result of this section.

▶ Theorem 3. Algorithm RV guarantees rendezvous of agents starting at nodes v1 and v2
at distance D in an arbitrary connected graph (finite or infinite) in time polynomial in
D + P (v1, v2, D) + log L.

Proof. Let A be the agent that started the execution of the algorithm first, and in the case
of simultaneous start, let it be the agent that started its critical segment first. Let v be the
starting node of A. By Lemmas 1 and 2 we know that the agents will meet by the end of
the execution of the critical segment of agent A. Let P be the number of paths of length at
most D starting at v. We have

DISC 2022

11:10 How to Meet at a Node of Any Connected Graph

P =
D∑

i=1
P (v, i) ≤ D · P (v, D).

The number of segments till the critical segment of A is at most P . Each segment contains
at most c log L bits, for some constant c. Hence the number B of all bits until the end of the
critical segment is at most cP log L. The execution time of the algorithm is at most

B∑
j=1

aj =
B∑

j=1
3j2 = B(B + 1)(2B + 1)

2 ∈ O(B3).

On the other hand we have

O(B3) ⊆ O((P log L)3) ⊆ O((D · P (v, D) · log L)3) ⊆ O((D · P (v1, v2, D) · log L)3),

which is polynomial in D + P (v1, v2, D) + log L. ◀

3 Approach in terrains

In this section we use the path-by-path method from Algorithm RV to solve the problem of
approach for synchronous agents in terrains, in time polynomial in log L and in the initial
distance D between the agents in the terrain. We do it in two steps. First, we modify
Algorithm RV to obtain an efficient rendezvous algorithm for arbitrary connected subgraphs
of the infinite oriented grid, and then we derive an algorithm for approach from this modified
algorithm.

We consider the infinite oriented grid Z × Z. Every node is adjacent to the four nodes
at distance 1 from it in directions North, East, South, West. Ports at nodes of the grid
are denoted N, E, S, W , according to the orientation. We define a shape as any connected
subgraph of this grid. Mobile agents navigate in a fixed shape along its edges. An agent
located at a current node of the shape knows which of the ports correspond to edges in
the shape. The agents have the same characteristics as described for general connected
graphs. Our first aim is to design a rendezvous algorithm working in arbitrary shapes in
time polynomial in log L and in the initial distance D between the agents in the shape.

If we were not concerned with the efficiency, we could directly use Algorithm RV, as shapes
are connected graphs. However, this would not give us the desired complexity polynomial in
log L and in D. Indeed, recall that Algorithm RV guarantees rendezvous of agents starting at
nodes v1 and v2 at distance D in time polynomial in P (v1, v2, D) + log L. For shapes (in fact
even for the empty grid) the number of paths of length D between two nodes at distance D

may be exponential in D. (For example, the number of paths of length 2a between nodes
(x, y) and (x + a, y + a) which are at distance 2a in the grid is

(2a
a

)
).

Luckily, we can significantly reduce the number of processed paths using the orientation of
the grid. As in Algorithm RV, paths in shapes are ordered so that every path of smaller length
precedes every path of larger length, and paths of a given length are ordered lexicographically
by their codes which are sequences of ports N, E, S, W ordered N < E < S < W . The key
change is to avoid processing all paths in the shape. We do it by associating to each node
w in the shape at distance i from the starting node v of the agent, a single specific path of
length i called canonical. This is the lexicographically smallest of all paths of length i from v

to w in the shape. Since all paths of smaller lengths are traversed by the agents before all
paths of larger length, when an agent has finished processing all canonical paths of length
i, it knows (the codes of) all canonical paths of length i + 1. Indeed, the canonical path

S. Bhagat and A. Pelc 11:11

of length i + 1 from v to w has a prefix of length i which is the canonical path from v to
a neighbor w′ of w at distance i from v in the shape. Thus the agent can determine this
canonical path to w before starting its traversal.

This is the only change we make in Algorithm RV: the sequence (π1, π2, . . .) is now the
sequence of all canonical paths in the shape, starting at v, ordered as above, and the rest
of the algorithm is as before.3 The resulting rendezvous algorithm, working for arbitrary
shapes, is called Algorithm Shape-RV. Let C(v, i) be the number of canonical paths of length
i in the shape, starting at node v. By definition, C(v, i) is equal to the number of nodes in
the shape at distance i from v, and since shapes are subgraphs of the grid, we have that
C(v, i) is in O(i2). The same analysis as for Algorithm RV proves the following lemma.

▶ Lemma 4. Algorithm RV-Shape guarantees rendezvous of agents starting at nodes v1 and
v2 at distance D in an arbitrary shape in time polynomial in D + log L. Rendezvous occurs
at the starting node of one of the agents.

We are now ready to make the second step in our design of the algorithm for approach in
terrains. Let us first consider agents operating in the same shape, as above, but in a slightly
changed model. Instead of operating in synchronous rounds (as is usually the case for the
graph setting) we allow the agents to start with any positive delay δ, not necessarily integer.
This means that the later agent may start while the earlier agent is traversing an edge. We
use the same algorithm as above, i.e, Algorithm RV-Shape. It is easy to see that Lemma 4
still holds in this slightly more general situation. Indeed, the proof of Lemma 1 does not
need any change (since it deals with the case δ = 0) and the proof of Lemma 2 requires
only minimal changes, replacing rounds by points in time. (For example, the time interval
[T ′, T ′ + D − 1] which meant a segment of D rounds in the proof of Lemma 2 would have to
be replaced by the time interval [T ′, T ′ + D] meant as a time segment of length D between
two points in time).

It is well known [13, 15] that the problem of approach in the empty plane (without
obstacles) can be reduced to that of rendezvous in an infinite oriented grid. For completeness
we sketch this reduction below. For any point v in the plane, consider the infinite oriented
grid Gv defined as the following graph embedded in the plane. One of the nodes of Gv

is v and every node u is adjacent to 4 nodes at Euclidean distance 1 from it, and located
North, East, South and West from node u. Ports at every node are labeled N, E, S, W, in
the obvious way.

Any rendezvous algorithm in the grid Gv (whose aim is to bring two agents starting
at arbitrary nodes of the grid with arbitrary delay to the same node at the same time)
can be transformed in an approach algorithm in the empty plane as follows. Let A be any
rendezvous algorithm for Gv. Algorithm A can be executed in the grid Gw, for any point w

in the plane. Consider two agents in the plane starting respectively from point v and from
another point w in the plane, with some delay δ. Let v′ be the node of Gv closest to point
w. We will say that v and v′ are companions. If there are more than one closest nodes, we
pick one of them arbitrarily. Notice that v′ is at distance at most

√
2/2 < 1 from w. Let

α be the vector v′w. Execute algorithm A on the grid Gv with agents starting at nodes
v and v′ with delay δ. Let u be the node of Gv in which these agents meet at some time
t. The transformed algorithm A∗ for approach in the plane works as follows: execute the

3 Notice that we could not apply this method for arbitrary connected graphs. In an anonymous graph
it is impossible to tell if two paths with given codes end up at the same node or not. This shows the
power of the grid orientation.

DISC 2022

11:12 How to Meet at a Node of Any Connected Graph

same algorithm A but with one agent starting at v and traveling in Gv and the other agent
starting at w and traveling in Gw, so that the starting time of the agent starting at w is
the same as the starting time of the agent starting at v′ in the execution of A in Gv; the
starting time of the agent starting at v does not change. In time t the agent starting at v

and traveling in Gv will be at point p, as previously. The agent starting at w and traveling
in Gw will get to some point q at time t. Clearly, p is a node of Gv, q is a node of Gw, points
p and q are companions and q = p + α. Hence both agents will be at distance less than 1 at
time t, which means that they accomplish approach in the (empty) plane. Notice that the
transformed algorithm A∗ has the same time as algorithm A.

Unfortunately, the above transformation does not guarantee approach even if there is one
closed convex obstacle in the plane. Indeed, this obstacle could be positioned in such a way
that the segment [p, q] intersects it, and hence although agents get close to each other, they
cannot see each other. This is why we need a preprocessing for the approach algorithm and
we need to carefully choose the length of edges of the grids depending on the given parameter
ϵ, such that the terrain is ϵ-scattered.

We will use the following geometric observation.

▶ Lemma 5. Let v be any point in an ϵ-scattered terrain. Let ξ = min(1, ϵ). Then there
exists a point v′ in the terrain at distance ξ/3 from v, such that the distance between v′ and
any obstacle is at least ξ/3.

Figure 4 An illustration for the proof of Lemma 5.

Proof. If the distance between v and any obstacle is at least ξ/3 then we can take v′ = v.
Hence suppose that the distance between v and the closest obstacle O is x < ξ/3. Let w be
the point in O such that the distance between v and w is x (cf. Fig. 4).

Let v′ be the (unique) point in the terrain in the line vw at distance ξ/3 from v. (The
existence of such a point follows from the fact that the terrain is ϵ-scattered, and the unicity
follows from the definition of x.) Clearly, v′ is at distance larger than ξ/3 from O. Consider
any other obstacle O′. It is enough to show that v′ is at distance at least ξ/3 from O′. Let u

be the point of O′ closest to v′ and let y be the distance between u and v′. Let the distance
between w and u be z. Consider the triangle wv′u. We have x + ξ/3 + y ≥ z ≥ ϵ ≥ ξ. Hence
y ≥ ξ/3. ◀

The preprocessing part of our algorithm for approach executed by agent A is the following
Procedure Away(ϵ) which takes as parameter a positive real ϵ such that the terrain is ϵ-
scattered. Recall that both agents get the same ϵ as input. Procedure Away(ϵ) works as

S. Bhagat and A. Pelc 11:13

follows. Let ξ = min(1, ϵ) and let λ = ξ/3. Let v be the starting point of agent A. If the
agent does not see any obstacles at distance less than λ then it defines v′ = v and terminates
the procedure. Otherwise, the agent defines w to be the closest point in the closest obstacle.
Then it goes along the line vw away from the point w to the point v′ at distance λ from v.
Since the terrain is ϵ-scattered, the point v′ is in the terrain. This concludes the procedure.
By Lemma 5, point v′ is at distance at least λ from any obstacle.

Consider the grid Hv′ which is defined similarly as the above grid Gv′ , with the only
exception that adjacent nodes are at distance λ instead of distance 1. Define the shape Sv′

as the subgraph of Hv′ induced by nodes that are points of the terrain. Now the Algorithm
Approach executed by agent A can be succinctly described as follows. Execute Procedure
Away(ϵ) to get to point v′ and then execute Algorithm RV-Shape in the shape Sv′ .

The following theorem proves the correctness and establishes the complexity of Algorithm
Approach.

▶ Theorem 6. Algorithm Approach accomplishes approach of arbitrary agents in any ϵ-
scattered terrain in time polynomial in D +log L, where D is the distance between the starting
points of the agents in the terrain.

Proof. Consider two agents A and B, starting from points v and w respectively. Let v′

and w′ be the points which the agents A and B reach after executing the Procedure Away.
Algorithm RV-Shape is now executed by agent A in shape Sv′ and by agent B in shape
Sw′ . First suppose that Sv′ = Sw′ . In this case Lemma 4 guarantees that agents will meet
either at v′ or at w′. Without loss of generality, suppose that they meet at w′. Now suppose
that Sv′ ̸= Sw′ . Hence the agents operate in different shapes. Let w∗ be the companion
node of w′. The point w∗ is a node in the shape Sv′ . Lemmas 1 and 2 can still be used to
guarantee that when agent A gets to node w∗ during the execution of its critical segment
(where the critical path is now from w′ to w∗) then agent B is at point w′. This is because
the considerations in the proofs of Lemmas 1 and 2 do not depend on which paths agent B is
traversing in the execution of Algorithm RV-Shape (these paths may depend on the shape in
which it operates) but only on the waiting times at its starting node which are independent
of the shape.

In view of Lemma 5, there is no obstacle at distance less than λ from point w′. The
companion w∗ of w′ is at distance smaller than λ from w′. Hence the segment w∗w′ is
contained in the terrain and has length smaller than 1, and thus the agents can see each
other. This proves the correctness of Algorithm Approach.

As for complexity, first observe that the duration of Procedure Away is at most λ ≤ D

(because agents were given a common ϵ ≤ D such that the terrain is ϵ-scattered, and λ ≤ ϵ).
Notice that since the shape Sv′ is the subgraph of Hv′ induced by nodes that are points of
the terrain, the distance between any two nodes of the shape (defined as the distance in
the graph) is at most twice the distance D between these points in the terrain. In view of
Lemma 4, we conclude that the execution time of Algorithm RV-Shape (which is the second
part of Algorithm Approach) is polynomial in D + log L. Hence the execution time of the
entire Algorithm Approach is also polynomial in D + log L. ◀

4 Conclusion

We presented two deterministic algorithms: one for rendezvous in arbitrary connected graphs
with nodes of finite degrees (whose set of nodes is finite or infinite) and the other for approach
in terrains in the plane. For the rendezvous algorithm the scope is the most general possible.
Indeed, rendezvous is obviously impossible in disconnected graphs, and if a graph has a

DISC 2022

11:14 How to Meet at a Node of Any Connected Graph

node of infinite degree then there is no rendezvous algorithm guaranteed to always finish in
any finite time T , even if agents start from adjacent nodes. The remaining open problem
concerns complexity. Our algorithm works in time polynomial in D + P (v1, v2, D) + log L

and we did not try to optimize the degree of this polynomial. The problem of designing a
rendezvous algorithm working for arbitrary connected graphs in optimal time remains open.
This is a challenging problem: it remains unsolved even for finite graphs, despite two decades
of intense research.

It is important to note that techniques used in the literature for rendezvous in finite
graphs do not seem to have an easy extension to the case of infinite graphs. For example, the
idea of trying increasing guesses on the size n of the graph and running known algorithms for
finite graphs does not seem to work in infinite graphs for the following reason. Rendezvous
algorithms for graphs with size bounded by n rely on exploration of the entire graph using
sequences UXS(n) (i.e., Universal Exploration Sequences of port numbers for graphs of size
at most n), cf. [25]. Such a sequence guarantees visiting all nodes of a graph of size at most
n but does not give any guarantee of visiting some ball in an infinite graph. This is due to
the anonymity of the graphs: an agent cannot detect if it enters a loop instead of visiting
all nodes at distance r. Existing rendezvous algorithms for finite graphs rely on one agent
waiting at its starting node and the other catching it by visiting this node, which could not
be guaranteed for any guess. Another possibility would be to exhaustively explore a ball
of a given radius r (for increasing values of r) by traversing all paths of length r (coded as
sequences of port numbers) starting at the starting node of the agent. However, in arbitrary
infinite graphs, there is no upper bound on the number of such paths, and thus it would be
impossible to determine a sufficiently long waiting period for agent A at its starting node to
guarantee that the other agent B certainly catches it. These difficulties forced us to invent
the “path-by-path” technique used in this paper.

For approach, three problems remain open: the first concerns the scope, the second
concerns information available to the agents, and the third concerns complexity. Our
algorithm works for ϵ-scattered terrains and its time is polynomial in D + log L, while
Ω(D + log L) is the lower bound on the complexity of approach. This invites three questions.
The first concerns the generality of the environment. While our class of terrains is fairly
large, it is natural to ask if there exists an algorithm for approach working in arbitrary
open connected subsets of the plane, with similar complexity. An algorithm for approach
working in all such subsets could be easily obtained by a modification of the result from
[13] but its complexity is prohibitive: it is exponential in L. The second problem concerns
the information available to the agents. We assumed that each agent knows its own label,
and both of them know a common real ϵ ≤ D, such that the terrain is ϵ-scattered. The first
assumption is necessary to break symmetry: anonymous agents walking at the same speed
cannot meet deterministically even in the empty plane, if they start simultaneously. However,
we may ask if agents can meet in ϵ-scattered terrains without any other knowledge, with
complexity similar to that of our algorithm. The third problem concerns optimal complexity
of approach. What is the optimal time of approach even only in our setting of ϵ-scattered
terrains? This is not known even for the plane without any obstacles. In this case, the
best known algorithm has time O(D2 log L) (folklore) and the best known lower bound is
Ω(D2 + D log L) and follows from [14].

References
1 Steve Alpern. The rendezvous search problem. SIAM Journal on Control and Optimization,

33(3):673–683, 1995. doi:10.1137/S0363012993249195.
2 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of

International series in operations research and management science. Kluwer, 2003.

https://doi.org/10.1137/S0363012993249195

S. Bhagat and A. Pelc 11:15

3 Edward J. Anderson and Sándor P. Fekete. Two dimensional rendezvous search. Operations
Research, 49(1):107–118, 2001. doi:10.1287/opre.49.1.107.11191.

4 Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, and Arnaud Labourel.
Almost optimal asynchronous rendezvous in infinite multidimensional grids. In Proc. 24th
International Symposium on Distributed Computing (DISC 2010), volume 6343, pages 297–311.
Springer, 2010. doi:10.1007/978-3-642-15763-9_28.

5 Vic Baston and Shmuel Gal. Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM Journal on Control and Optimization,
36(6):1880–1889, 1998. doi:10.1137/S0363012996314130.

6 Vic Baston and Shmuel Gal. Rendezvous search when marks are left at the starting points.
Naval Research Logistics (NRL), 48(8):722–731, 2001. doi:10.1002/nav.1044.

7 Subhash Bhagat and Andrzej Pelc. Deterministic rendezvous in infinite trees. CoRR,
abs/2203.05160, 2022. doi:10.48550/arXiv.2203.05160.

8 Sébastien Bouchard, Marjorie Bournat, Yoann Dieudonné, Swan Dubois, and Franck Petit.
Asynchronous approach in the plane: a deterministic polynomial algorithm. Distributed
Computing, 32(4):317–337, 2019. doi:10.1007/s00446-018-0338-2.

9 Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. Almost universal
anonymous rendezvous in the plane. In Proc. 32nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2020), pages 117–127. ACM, 2020. doi:10.1145/3350755.
3400283.

10 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed com-
puting by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.
doi:10.1137/100796534.

11 Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, and Russell A. Martin.
Synchronous rendezvous for location-aware agents. In Proc. 25th International Symposium
on Distributed Computing (DISC 2011), volume 6950, pages 447–459. Springer, 2011. doi:
10.1007/978-3-642-24100-0_42.

12 Jurek Czyzowicz, Leszek Gasieniec, Ryan Killick, and Evangelos Kranakis. Symmetry breaking
in the plane: Rendezvous by robots with unknown attributes. In Proc. 2019 ACM Symposium
on Principles of Distributed Computing (PODC 2019), pages 4–13. ACM, 2019. doi:10.1145/
3293611.3331608.

13 Jurek Czyzowicz, Andrzej Pelc, and Arnaud Labourel. How to meet asynchronously (almost)
everywhere. ACM Trans. Algorithms, 8(4):37:1–37:14, 2012. doi:10.1145/2344422.2344427.

14 Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69–96, 2006. doi:10.1007/s00453-006-0074-2.

15 Yoann Dieudonné and Andrzej Pelc. Deterministic polynomial approach in the plane. Distrib-
uted Computing, 28(2):111–129, 2015. doi:10.1007/s00446-014-0216-5.

16 Yoann Dieudonné and Andrzej Pelc. Anonymous meeting in networks. Algorithmica, 74(2):908–
946, 2016. doi:10.1007/s00453-015-9982-0.

17 Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asynchronously at
polynomial cost. SIAM Journal on Computing, 44(3):844–867, 2015. doi:10.1137/130931990.

18 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous robots with limited visibility. Theor. Comput. Sci., 337(1-3):147–168, 2005.
doi:10.1016/j.tcs.2005.01.001.

19 Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141–156, 2008. doi:10.1016/j.tcs.2008.02.010.

20 Wei Shi Lim and Steve Alpern. Minimax rendezvous on the line. SIAM Journal on Control
and Optimization, 34(5):1650–1665, 1996. doi:10.1137/S036301299427816X.

21 Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc,
and Ugo Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci.,
355(3):315–326, 2006. doi:10.1016/j.tcs.2005.12.016.

DISC 2022

https://doi.org/10.1287/opre.49.1.107.11191
https://doi.org/10.1007/978-3-642-15763-9_28
https://doi.org/10.1137/S0363012996314130
https://doi.org/10.1002/nav.1044
https://doi.org/10.48550/arXiv.2203.05160
https://doi.org/10.1007/s00446-018-0338-2
https://doi.org/10.1145/3350755.3400283
https://doi.org/10.1145/3350755.3400283
https://doi.org/10.1137/100796534
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1145/3293611.3331608
https://doi.org/10.1145/3293611.3331608
https://doi.org/10.1145/2344422.2344427
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/s00446-014-0216-5
https://doi.org/10.1007/s00453-015-9982-0
https://doi.org/10.1137/130931990
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2008.02.010
https://doi.org/10.1137/S036301299427816X
https://doi.org/10.1016/j.tcs.2005.12.016

11:16 How to Meet at a Node of Any Connected Graph

22 Avery Miller and Andrzej Pelc. Tradeoffs between cost and information for rendezvous and
treasure hunt. J. Parallel Distributed Comput., 83:159–167, 2015. doi:10.1016/j.jpdc.2015.
06.004.

23 Andrzej Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks,
59(3):331–347, 2012. doi:10.1002/net.21453.

24 Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in
Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 423–454.
Springer, 2019. doi:10.1007/978-3-030-11072-7_17.

25 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms, 10(3):12:1–12:15, 2014. doi:
10.1145/2601068.

https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1002/net.21453
https://doi.org/10.1007/978-3-030-11072-7_17
https://doi.org/10.1145/2601068
https://doi.org/10.1145/2601068

Liveness and Latency of
Byzantine State-Machine Replication
Manuel Bravo
Informal Systems, Madrid, Spain

Gregory Chockler
University of Surrey, UK

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

Abstract
Byzantine state-machine replication (SMR) ensures the consistency of replicated state in the presence
of malicious replicas and lies at the heart of the modern blockchain technology. Byzantine SMR
protocols often guarantee safety under all circumstances and liveness only under synchrony. However,
guaranteeing liveness even under this assumption is nontrivial. So far we have lacked systematic
ways of incorporating liveness mechanisms into Byzantine SMR protocols, which often led to subtle
bugs. To close this gap, we introduce a modular framework to facilitate the design of provably live
and efficient Byzantine SMR protocols. Our framework relies on a view abstraction generated by a
special SMR synchronizer primitive to drive the agreement on command ordering. We present a
simple formal specification of an SMR synchronizer and its bounded-space implementation under
partial synchrony. We also apply our specification to prove liveness and analyze the latency of three
Byzantine SMR protocols via a uniform methodology. In particular, one of these results yields what
we believe is the first rigorous liveness proof for the algorithmic core of the seminal PBFT protocol.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Replication, blockchain, partial synchrony, liveness

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.12

Related Version Extended Version: https://arxiv.org/abs/2202.06679 [17]

Funding This work was partially supported by an ERC Starting Grant RACCOON and by a research
grant from Nomadic Labs and the Tezos Foundation.

Acknowledgements We thank the following people for comments that helped improve the paper:
Lăcrămioara Aştefănoaei, Hagit Attiya, Alysson Besani, Armando Castañeda, Peter Davies, Dan
O’Keeffe, Idit Keidar, Giuliano Losa, Alejandro Naser, and Eugen Zălinescu.

1 Introduction

Byzantine state-machine replication (SMR) [52] ensures the consistency of replicated state
even when some of the replicas are malicious. It lies at the heart of the modern blockchain
technology and is closely related to the classical Byzantine consensus problem. Unfortunately,
no deterministic protocol can guarantee both safety and liveness of Byzantine SMR when
the network is asynchronous [33]. A common way to circumvent this while maintaining
determinism is to guarantee safety under all circumstances and liveness only under synchrony.
This is formalized by the partial synchrony model [26,32], which stipulates that after some
unknown Global Stabilization Time (GST) the system becomes synchronous, with message
delays bounded by an unknown constant δ and process clocks tracking real time. Before GST
messages can be lost or delayed, and clocks at different processes can drift apart.

© Manuel Bravo, Gregory Chockler, and Alexey Gotsman;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://arxiv.org/abs/2202.06679
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Liveness and Latency of Byzantine State-Machine Replication

Historically, researchers have paid more attention to safety of Byzantine SMR protocols
than their liveness. For example, while the seminal PBFT protocol came with a detailed
safety proof [23, §A], the nontrivial mechanisms ensuring its liveness were only given a
brief informal justification [25, §4.5.1], which did not cover their most critical properties.
However, ensuring liveness under partial synchrony is far from trivial, as illustrated by
the many liveness bugs found in existing protocols [2, 4, 8, 12, 22]. In particular, classical
failure detectors and leader oracles [26, 34] are of little help: while they have been widely
used under benign failures [38,39,47], their implementations under Byzantine failures are
either impractical [43] or detect only restricted failure types [30, 40, 46]. As an alternative, a
textbook by Cachin et al. [20] proposed a leader oracle-like abstraction that accepts hints
from the application to identify potentially faulty processes. However, as we explain in §8
and [17, §F], their specification of the abstraction is impossible to implement, and in fact,
the consensus algorithm constructed using it in [20] also suffers from a liveness bug.

Recent work on ensuring liveness has departed from failure detectors and instead revisited
the approach of the original DLS paper [32]. This exploits the common structure of Byzantine
consensus and SMR protocols under partial synchrony: such protocols usually divide their
execution into views, each with a designated leader process that coordinates the protocol
execution. If the leader is faulty, the processes switch to another view with a different
leader. To ensure liveness, an SMR protocol needs to spend sufficient time in views that are
entered by all correct processes and where the leader correctly follows the protocol. The
challenge of achieving such view synchronization is that, before GST, clocks can diverge and
messages that could be used to synchronize processes can get lost or delayed; even after GST,
Byzantine processes may try to disrupt attempts to bring everybody into the same view.
View synchronizers [16, 48, 49, 57] encapsulate mechanisms for dealing with this challenge,
allowing them to be reused across protocols.

View synchronizers have been mostly explored in the context of (single-shot) Byzantine
consensus. In this case a synchronizer can just switch processes through an infinite series of
views, so that eventually there is a view with a correct leader that is long enough to reach a
decision [16,49]. However, using such a synchronizer for SMR results in suboptimal solutions.
For example, one approach is to use the classical SMR construction where each command
is decided using a separate black-box consensus instance [52], implemented using a view
synchronizer. However, this would force the processes in every instance to iterate over the
same sequence of potentially bad views until the one with a correct leader and sufficiently
long duration could be reached. As we discuss in §8, other approaches for implementing
SMR based on this type of synchronizers also suffer from drawbacks.

To minimize the overheads of view synchronization, instead of automatically switching
processes through views based on a fixed schedule, implementations such as PBFT allow
processes to stay in the same view for as long as they are happy with its performance. The
processes can then reuse a single view to decide multiple commands, usually with the same
leader. To be useful for such SMR protocols, a synchronizer needs to allow the processes
to control when they want to switch views via a special advance call. We call such a
primitive an SMR synchronizer, to distinguish it from the less flexible consensus synchronizer
introduced above. This kind of synchronizers was first introduced in [48,49], but only used
as an intermediate module to implement a consensus synchronizer.

In this paper we show that SMR synchronizers can be directly exploited to construct
efficient and provably live SMR protocols and develop a general blueprint that enables such
constructions. In more detail:

M. Bravo, G. Chockler, and A. Gotsman 12:3

We propose a formal specification of an SMR synchronizer (§3), which is simpler and
more general than prior proposals [48, 49]. It is also strictly stronger than the consensus
synchronizer of [16], which can be obtained from the SMR synchronizer at no extra cost.
Informally, our specification guarantees that (a) the system will move to a new view if
enough correct processes call advance, and (b) all correct processes will enter the new
view, provided that for long enough, no correct process that enters this view asks to
leave it. These properties enable correct processes to iterate through views in search of a
well-behaved leader, and to synchronize in a view they are happy with.
We give an SMR synchronizer implementation and prove that it satisfies our specification
(§3.1). Unlike prior implementations [49], ours tolerates message loss before GST while
using only bounded space; in practice, this feature is essential to defend against denial-of-
service attacks. We also provide a precise latency analysis of our synchronizer, quantifying
how quickly all correct processes enter the next view after enough of them call advance.
We demonstrate the usability of our synchronizer specification by applying it to construct
and prove the correctness of several SMR protocols. First, we prove the liveness of a
variant of PBFT using an SMR synchronizer (§4-5): to the best of our knowledge, this is
the first rigorous proof of liveness for PBFT’s algorithmic core. The proof establishes a
strong liveness guarantee that implies censorship-resistance: every command submitted by
a correct process will be executed. The use of the synchronizer specification in the proof
allows us to abstract from view synchronization mechanics and focus on protocol-specific
reasoning. This reasoning is done using a reusable methodology based on showing that
the use of timers in the SMR protocol and the synchronizer together establish properties
similar to those of failure detectors. The methodology also handles the realistic ways in
which protocols such as PBFT adapt their timeouts to the unknown message delay δ. We
demonstrate the generality of our methodology by also applying it to a version of PBFT
with periodic leader changes [28,55,56] and a HotStuff-like protocol [57] (§7).
We exploit the latency bounds for our synchronizer to establish both bad-case and
good-case bounds for variants of PBFT implemented on top of it (§6). Our bad-case
bound assumes that the protocol starts before GST; it shows that after GST all correct
processes synchronize in the same view within a bounded time. This time is proportional
to a conservatively chosen constant ∆ that bounds post-GST message delays in all
executions [41,50]. Our good-case bound quantifies decision latency when the protocol
starts after GST and matches the lower bound of [5].

2 System Model

We consider a system of n = 3f + 1 processes. At most f of these can be Byzantine (aka
faulty), i.e., can behave arbitrarily. The rest of the processes are correct and we denote their
set by C. We call a set Q of 2f + 1 processes a quorum and write quorum(Q). We assume
standard cryptographic primitives [20, §2.3]: processes can communicate via authenticated
point-to-point links, sign messages using digital signatures, and use a collision-resistant hash
function hash(). We denote by ⟨m⟩i a message m signed by process pi.

We consider a partial synchrony model [26, 32]: for each execution of the protocol, there
exist a time GST and a duration δ such that after GST message delays between correct
processes are bounded by δ; before GST messages can get arbitrarily delayed or lost. As
in [26], we assume that the values of GST and δ are unknown to the protocol. This reflects the
requirements of practical systems, whose designers cannot accurately predict when network
problems leading to asynchrony will stop and what the latency will be during the following
synchronous period. We also assume that processes have hardware clocks that can drift
unboundedly from real time before GST, but do not drift thereafter.

DISC 2022

12:4 Liveness and Latency of Byzantine State-Machine Replication

1. Monotonicity. A process enters increasing views:
∀i, v, v′. Ei(v)↓ ∧ Ei(v′)↓ =⇒ (v < v′ ⇐⇒ Ei(v) < Ei(v′))

2. Validity. A process only enters v + 1 if some correct process has attempted to advance from v:
∀i, v. Ei(v + 1)↓ =⇒ Afirst(v)↓ ∧ Afirst(v) < Ei(v + 1)

3. Bounded Entry. For some V and d, if a process enters a view v ≥ V and no process attempts
to advance to a higher view within time d, then all correct processes will enter v within d:
∃V, d.∀v≥V.Efirst(v)↓ ∧ ¬(Afirst(v)<Efirst(v)+d) =⇒ (∀pi ∈ C.Ei(v)↓) ∧ Elast(v) ≤ Efirst(v)+d

4. Startup. Some correct process will enter view 1 if f + 1 processes call advance:
(∃P ⊆ C. |P | = f + 1 ∧ (∀pi ∈ P. Ai(0)↓)) =⇒ Efirst(1)↓

5. Progress. If a correct process enters a view v and, for some set P of f + 1 correct processes, any
process in P that enters v eventually calls advance, then some correct process will enter v + 1:
∀v. Efirst(v)↓ ∧ (∃P ⊆ C. |P | = f + 1 ∧ (∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓)) =⇒ Efirst(v + 1)↓

Figure 1 SMR synchronizer specification.

3 SMR Synchronizer Specification and Implementation

We consider a synchronizer interface defined in [48, 49], which here we call an SMR syn-
chronizer. Let View = {1, 2, . . .} be the set of views, ranged over by v; we use 0 to denote
an invalid initial view. The synchronizer produces notifications new_view(v) at a process,
telling it to enter view v. To trigger these, the synchronizer allows a process to call a function
advance(), which signals that the process wishes to advance to a higher view. We assume that
a correct process does not call advance twice without an intervening new_view notification.

Our first contribution is the SMR synchronizer specification in Figure 1, which is simpler
and more general than prior proposals [48, 49] (see §8 for a discussion). The specification
relies on the following notation. Given a view v entered by a correct process pi, we denote
by Ei(v) the time when this happens; we let Efirst(v) and Elast(v) denote respectively the
earliest and the latest time when some correct process enters v. We denote by Ai(v) the
time when a correct process pi calls advance while in v, and let Afirst(v) and Alast(v) denote
respectively the earliest and the latest time when this happens. Given a partial function f ,
we write f(x)↓ if f(x) is defined, and f(x)↑ if f(x) is undefined.

The Monotonicity property in Figure 1 ensures that views can only increase at a given
process. Validity ensures that a process may only enter a view v + 1 if some correct process
has called advance in v. This prevents faulty processes from disrupting the system by forcing
view changes. As a corollary of Validity we can prove that, if a view v′ is entered by some
correct process, then so are all the views v preceding v′.

▶ Proposition 1. ∀v, v′. 0 < v < v′ ∧ Efirst(v′)↓ =⇒ Efirst(v)↓ ∧ Efirst(v) < Efirst(v′).

Proof. Fix v′ ≥ 2 and assume that a correct process enters v′, so that Efirst(v′)↓. We prove
by induction on k that ∀k = 0..(v′ − 1). Efirst(v′ − k)↓ ∧ Efirst(v′ − k) ≤ Efirst(v′). The base
case of k = 0 is trivial. For the inductive step, assume that the required holds for some
k. Then by Validity there exists a time t < Efirst(v′ − k) at which some correct process pj

attempts to advance from v′ − k − 1. But then pj ’s view at t is v′ − k − 1. Hence, pj enters
v′ − k − 1 before t, so that Efirst(v′ − k − 1) < t < Efirst(v′ − k) ≤ Efirst(v′), as required. ◀

Bounded Entry ensures that, if some process enters view v, then all correct processes will
do so within at most d time units of each other (d = 2δ for our implementation). This only
holds if within d no process attempts to advance to a higher view, as this may make some
processes skip v and enter a higher view directly. Bounded Entry also holds only starting
from some view V , since we may not be able to guarantee it for views entered before GST.

M. Bravo, G. Chockler, and A. Gotsman 12:5

1 when the process starts or timer expires
2 advance();

3 upon new_view(v)
4 stop_timer(timer);
5 start_timer(timer, τ);

Figure 2 A simple client of the SMR synchronizer.

Startup ensures that some correct process enters view 1 if f + 1 processes call advance.
Given a view v entered by a correct process, Progress determines conditions under which
some correct process will enter the next view v + 1. This will happen if for some set P of
f + 1 correct processes, any process in P entering v eventually calls advance. Note that even
a single advance call at a correct process may lead to a view switch (reflecting the fact that
in implementations faulty processes may help this correct process). Startup and Progress
ensure that the synchronizer must switch if at least f + 1 correct processes ask for this. We
now illustrate a typical pattern of their use, which we later apply to PBFT (§5). To this
end, we consider a simple client in Figure 2, where in each view a process sets a timer for a
fixed duration τ and calls advance when the timer expires. Using Startup and Progress we
prove that this client keeps switching views forever as follows.

▶ Proposition 2. In any execution of the client in Figure 2: ∀v. ∃v′. v′ > v ∧ Efirst(v′)↓.

Proof. Since all correct processes initially call advance, by Startup some correct process
eventually enters view 1. Assume now that the proposition is false, so that there is a
maximal view v entered by any correct process. Let P be any set of f + 1 correct processes
and consider an arbitrary process pi ∈ P that enters v. When this happens, pi sets the
timer for the duration τ . The process then either calls advance when timer expires, or
enters a new view v′ before this. In the latter case v′ > v by Monotonicity, which is
impossible. Hence, pi eventually calls advance while in v. Since pi was chosen arbitrarily,
∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓. Then by Progress we get Efirst(v + 1)↓: a contradiction. ◀

Similarly to Figure 2, we can use an SMR synchronizer satisfying the properties in
Figure 1 to implement a consensus synchronizer [16, 49] without extra overhead. This lacks
an advance call and provides only the new_view notification, which it keeps invoking at
increasing intervals so that eventually the there is a view long enough for the consensus
protocol running on top to decide. We obtain a consensus synchronizer if in Figure 2
we propagate the new_view notification to the consensus protocol and set the timer to an
unboundedly increasing function of views instead of a constant τ . In [17, §A] we show that
the resulting consensus synchronizer satisfies the specification proposed in [16].

3.1 A Bounded-Space SMR Synchronizer
We now present a bounded-space algorithm that implements the specification in Figure 1
under partial synchrony for d = 2δ. Our implementation reuses algorithmic techniques from a
consensus synchronizer of Bravo et al. [16]. However, it supports a more general abstraction,
and thus requires a more intricate correctness proof and latency analysis (§3.2).

When a process calls advance (line 1), the synchronizer does not immediately move to the
next view v′, but disseminates a WISH(v′) message announcing its intention. A process enters
a new view once it accumulates a sufficient number of WISH messages supporting this. A
naive synchronizer design could follow Bracha broadcast [15]: enter a view v′ upon receiving

DISC 2022

12:6 Liveness and Latency of Byzantine State-Machine Replication

1 function advance()
2 send WISH(max(view + 1, view+))

to all;
3 advanced← true;

4 periodically ▷ every ρ time units
5 if advanced then
6 send WISH(max(view + 1, view+))

to all;
7 else if view+ > 0 then
8 send WISH(view+) to all;

9 when received WISH(v) from pj

10 prev_v, prev_v+ ← view, view+;
11 if v > max_views[j] then max_views[j]← v;
12 view ← max{v | ∃k. max_views[k] = v ∧

|{j | max_views[j] ≥ v}| ≥ 2f + 1};
13 view+ ← max{v | ∃k. max_views[k] = v ∧

|{j | max_views[j] ≥ v}| ≥ f + 1};
14 if view+ = view ∧ view > prev_v then
15 trigger new_view(view);
16 advanced← false;
17 if view+ > prev_v+ then
18 send WISH(view+) to all

Figure 3 A bounded-space SMR synchronizer. All counters are initially 0.

2f + 1 WISH(v′) messages, and echo WISH(v′) upon receiving f + 1 copies thereof; the latter
is needed to combat equivocation by Byzantine processes. However, in this case the process
would have to track all newly proposed views for which < 2f + 1 WISHes have been received.
Since messages sent before GST can be lost or delayed, this would require unbounded space.
To reduce the space complexity, in our algorithm a process only remembers the highest
view received from each process, kept in an array max_views (line 11). Variables view and
view+ respectively hold the (2f + 1)st highest and the (f + 1)st highest views in max_views
(lines 12-13). These variables never decrease and always satisfy view ≤ view+.

The process enters the view stored in view when this variable increases (line 15). A process
thus enters v only if it receives 2f + 1 WISHes for views ≥ v, and a process may be forced to
switch views even if it did not call advance; the latter helps lagging processes to catch up.
The variable view+ increases when the process receives f + 1 WISHes for views ≥ view+, and
thus some correct process wishes to enter a new view ≥ view+. In this case we echo view+

(line 18), to help other processes switch views and satisfy Bounded Entry and Progress.
The guard view+ = view in line 14 ensures that a process does not enter a “stale” view

such that another correct process already wishes to enter a higher one. Similarly, when
the process calls advance, it sends a WISH for the maximum of view + 1 and view+ (line 2).
Thus, if view = view+, so that the values of the two variables have not changed since the
process entered the current view, then the process sends a WISH for the next view (view + 1).
Otherwise, view < view+, and the process sends a WISH for the higher view view+. Finally,
to deal with message loss before GST, a process retransmits the highest WISH it sent every ρ

time units, according to its local clock (line 4). Depending on whether the process has called
advance in the current view (tracked by advanced), the WISH is computed as in lines 18 or 2.

Our SMR synchronizer requires only O(n) variables for storing views. Proposition 1 also
ensures that views entered by correct processes do not skip values, which limits the power of
the adversary to exhaust their allocated space (similarly to [11]).

3.2 SMR Synchronizer Correctness and Latency Bounds
The following theorem (proved in [17, §B]) states the correctness of our synchronizer as
well as and its performance properties. In §6 we apply the latter to bound the latency of
Byzantine SMR protocols. Given a view v that was entered by a correct process pi, we let
Ti(v) denote the time at which pi either attempts to advance from v or enters a view > v;
we let Tlast(v) denote the latest time when a correct process does so. We assume that every
correct process eventually attempts to advance from view 0 unless it enters a view > 0, i.e.,
∀pi ∈ C. Ti(0)↓.

M. Bravo, G. Chockler, and A. Gotsman 12:7

▶ Theorem 3. Consider an execution with an eventual message delay δ. The algorithm
in Figure 3 satisfies the properties in Figure 1 for d = 2δ and V = max{v | (Efirst(v)↓ ∧
Efirst(v) < GST + ρ) ∨ v = 0} + 1 if Afirst(0) < GST, and V = 1, otherwise. Furthermore:

A. ∀v. Efirst(v)↓ ∧ Afirst(0) < GST =⇒ Elast(v) ≤ max(Efirst(v), GST + ρ) + 2δ.

B. ∀v. Efirst(v + 1)↓ =⇒ Elast(v + 1) ≤

{
max(Tlast(v), GST + ρ) + δ, if Afirst(0) < GST;
Tlast(v) + δ, otherwise.

The theorem gives a witness for V in Bounded Entry: it is the next view after the highest
one entered by a correct process at or before GST+ρ (or 1 if no view was entered). Property A
bounds the latest time any correct process can enter a view that has been previously entered
by a correct process. It is similar to Bounded Entry, but also handles views < V . Property B
refines Progress: while the latter guarantees that the synchronizer will enter v + 1 if enough
processes ask for this, the former bounds the time by which this will happen.

4 PBFT Using an SMR Synchronizer

We now demonstrate how an SMR synchronizer can be used to implement Byzantine SMR.
More formally, we implement Byzantine atomic broadcast [20], from which SMR can be
implemented in the standard way [52]. This allows processes to broadcast values, and we
assume an application-specific predicate to indicate whether a value is valid [21] (e.g., a
block in a blockchain is invalid if it lacks correct signatures). We assume that all values
broadcast by correct processes in a single execution are valid and unique. Then Byzantine
atomic broadcast is defined by the following properties:

Integrity. Every process delivers a value at most once.
External Validity. A correct process delivers only values satisfying valid().
Ordering. If a correct process p delivers x1 before x2, then another correct process q

cannot deliver x2 before x1.
Liveness. If a correct process broadcasts or delivers x, then eventually all correct
processes will deliver x. (Note that this implies censorship-resistance: the service cannot
selectively omit values submitted by correct processes.)

The PBFT-light protocol. We implement Byzantine atomic broadcast in a PBFT-light
protocol (Figures 4-6), which faithfully captures the algorithmic core of the seminal Practical
Byzantine Fault Tolerance protocol (PBFT) [24]. Whereas PBFT integrated view synchro-
nization functionality with the core SMR protocol, PBFT-light delegates this to an SMR
synchronizer, and in §5 we rigorously prove its liveness when using any synchronizer satisfying
our specification. When using the synchronizer in Figure 3, the protocol also incurs only
bounded space overhead (see [17, §C.4] for details).

We base PBFT-light on the PBFT protocol with signatures and, for simplicity, omit
the mechanisms for managing checkpoints and watermarks; these can be easily added
without affecting liveness. The protocol works in a succession of views produced by the
synchronizer. A process stores its current view in curr_view. Each view v has a fixed leader
leader(v) = p((v−1) mod n)+1 that is responsible for totally ordering values submitted for
broadcast; the other processes are followers, which vote on proposals made by the leader.
Processes store the sequence of (unique) values proposed by the leader in a log array; at the
leader, a next counter points to the first free slot in the array. Processes monitor the leader’s
behavior and ask the synchronizer to advance to another view if they suspect that the leader
is faulty. A status variable records whether the process is operating as normal in the current
view (normal) or is changing the view.

DISC 2022

12:8 Liveness and Latency of Byzantine State-Machine Replication

1 function start()
2 if curr_view = 0 then advance();

3 when a timer expires
4 stop_all_timers();
5 advance();
6 status← advanced;
7 dur_delivery← dur_delivery + τ ;
8 dur_recovery← dur_recovery + τ ;

9 function broadcast(x)
10 pre: valid(x);
11 send ⟨BROADCAST(x)⟩i to all

periodically until x is delivered

12 when received BROADCAST(x)
13 pre: valid(x) ∧ status = normal ∧

(timer_delivery[x] not active) ∧
(∀k. k ≤ last_delivered =⇒
commit_log[k] ̸= x);

14 start_timer(timer_delivery[x],
dur_delivery);

15 send ⟨FORWARD(x)⟩i to
leader(curr_view);

16 when received FORWARD(x)
17 pre: valid(x) ∧ status = normal ∧

pi = leader(curr_view) ∧
∀k. log[k] ̸= x;

18 send ⟨PREPREPARE(curr_view,

next, x)⟩i to all;
19 next← next + 1;

20 when received ⟨PREPREPARE(v, k, x)⟩j
21 pre: pj = leader(v) ∧ curr_view = v ∧

status = normal ∧ phase[k] = start ∧
valid(x) ∧ (∀k′. log[k′] ̸= x)

22 (log, phase)[k]← (x, preprepared);
23 send ⟨PREPARE(v, k, hash(x))⟩i to all;

24 when received {⟨PREPARE(v, k, h)⟩j | pj ∈ Q} = C

for a quorum Q

25 pre: curr_view = v ∧ phase[k] = preprepared ∧
status = normal ∧ hash(log[k]) = h;

26 (prep_log, prep_view, cert, phase)[k]←
(log[k], curr_view, C, prepared);

27 send ⟨COMMIT(v, k, h)⟩i to all;

28 when received {⟨COMMIT(v, k, h)⟩j | pj ∈ Q} = C

for a quorum Q

29 pre: curr_view = v ∧ phase[k] = prepared ∧
status = normal ∧ hash(prep_log[k]) = h;

30 (commit_log, phase)[k]← (log[k], committed);
31 broadcast ⟨DECISION(commit_log[k], k, C);

32 when commit_log[last_delivered + 1] ̸= ⊥
33 last_delivered← last_delivered + 1;
34 if commit_log[last_delivered] ̸= nop then
35 deliver(commit_log[last_delivered])
36 stop_timer(

timer_delivery[commit_log[last_delivered]]);
37 if last_delivered = init_log_length ∧

status = normal then
38 stop_timer(timer_recovery);

39 when received DECISION(x, k, C)
40 pre: commit_log[k] ̸= ⊥ ∧

∃v. committed(C, v, k, hash(x));
41 commit_log[k]← x;

Figure 4 Normal operation of PBFT-light at a process pi.

Normal protocol operation. A process broadcasts a valid value x using a broadcast
function (line 9). This keeps sending the value to all processes in a BROADCAST message until
the process delivers the value, to tolerate message loss before GST. When a process receives
a BROADCAST message with a new value (line 12), it forwards the value to the leader in a
FORWARD message. This ensures that the value reaches the leader even when broadcast by a
faulty process, which may withhold the BROADCAST message from the leader. (We explain
the timer set in line 14 later.) When the leader receives a new value x in a FORWARD message
(line 16), it sends a PREPREPARE message to all processes (including itself) that includes x

and its position in the log, generated from the next counter. Processes vote on the leader’s
proposal in two phases. Each process keeps track of the status of values going through the
vote in an array phase, whose entries initially store start.

When a process receives a proposal x for a position k from the leader of its view v (line 20),
it first checks that phase[k] = start, so that it has not yet accepted a proposal for the
position k in the current view. It also checks that the value is valid and distinct from all values
it knows about. The process then stores x in log[k] and advances phase[k] to preprepared.
Since a faulty leader may send different proposals for the same position to different processes,
the process next communicates with others to check that they received the same proposal.

M. Bravo, G. Chockler, and A. Gotsman 12:9

To this end, it disseminates a PREPARE message with the position and the hash of the value x

it received. The process handles x further once it gathers a set C of PREPARE messages from
a quorum matching the value (line 24), which we call a prepared certificate and check using
the prepared predicate in Figure 6. In this case the process stores the value in prep_log[k],
the certificate in cert[k], and the view in which it was formed in prep_view[k]. At this point
we say that the process prepared the proposal, as recorded by setting its phase to prepared.
It is easy to show that processes cannot prepare different values at the same position and
view, since each correct process can send only one corresponding PREPARE message.

Having prepared a value, the process disseminates a COMMIT message with its hash. Once
the process gathers a quorum of matching COMMIT messages (line 28), it stores the value in a
commit_log array and advances its phase to committed: the value is now committed. The
protocol ensures that correct processes cannot commit different values at the same position,
even in different views. We call a quorum of matching COMMIT messages a commit certificate
and check it using the committed predicate in Figure 6. A process delivers committed values
in the commit_log order, with last_delivered tracking the position last delivered position.

To satisfy the Liveness property of atomic broadcast, similarly to [12], PBFT-light allows
a process to find out about committed values from other processes directly. When a process
commits a value (line 28), it disseminates a DECISION message with the value, its position
k in the log and the commit certificate (line 31). A process receiving a DECISION with a
valid certificate saves the value in commit_log[k], which allows it to be delivered (line 32).
The DECISION messages are disseminated via reliable broadcast ensuring that, if one correct
process delivers the value, then so do all others. To implement this, each process could
periodically resend the DECISION messages it has (omitted from the pseudocode). A more
practical implementation would only resend information that other processes are missing.
As proved in [32], such periodic resends are unavoidable in the presence of message loss.

View initialization. When the synchronizer tells a process to move to a new view v (line 42),
the process sets curr_view to v, which ensures that it will no longer accept messages from
prior views. It also sets status to initializing, which means that the process is not yet ready
to order values in the new view. It then sends a NEW_LEADER message to the leader of v with
the information about the values it has prepared so far and their certificates1.

The new leader waits until it receives a quorum of well-formed NEW_LEADER messages,
as checked by the predicate ValidNewLeader (line 48). Based on these, the leader computes
the initial log of the new view, stored in log′. Similarly to Paxos [45], for each index k the
leader puts at the kth position in log′ the value prepared in the highest view (line 50). The
resulting array may contain empty or duplicate entries. To resolve this, the leader writes nop
into empty entries and those entries for which there is a duplicate prepared in a higher view
(line 53). The latter is safe because one can show that no value could have been committed
in such entries in prior views. Finally, the leader sends a NEW_STATE message to all processes,
containing the initial log and the NEW_LEADER messages from which it was computed (line 56).

A process receiving a NEW_STATE first checks its correctness by redoing the leader’s
computation (ValidNewState, line 57). If the check passes, the process overwrites its log
with the new one and sets status to normal. It also sends PREPARE messages for all log
entries, to commit them in the new view. A more practical implementation would include a
checkpointing mechanism, so that a process restarts committing previous log entries only
from the last stable checkpoint [24]; this mechanism can be easily added to PBFT-light.

1 In PBFT this information is sent in VIEW-CHANGE messages, which also play a role similar to WISH
messages in our synchronizer (Figure 3). In PBFT-light we opted to eschew VIEW-CHANGE messages to
maintain a clear separation between view synchronization internals and the SMR protocol.

DISC 2022

12:10 Liveness and Latency of Byzantine State-Machine Replication

42 upon new_view(v)
43 stop_all_timers();
44 curr_view← v;
45 status← initializing;
46 send ⟨NEW_LEADER(curr_view, prep_view,

prep_log, cert)⟩i to leader(curr_view);
47 start_timer(timer_recovery, dur_recovery);

48 when received {⟨NEW_LEADER(v, prep_viewj ,

prep_logj , certj)⟩j | pj ∈ Q} = M

for a quorum Q

49 pre: pi = leader(v) ∧ curr_view = v ∧
status = initializing ∧
∀m ∈M. ValidNewLeader(m);

50 forall k do
51 if ∃pj′ ∈ Q. prep_viewj′ [k] ̸= 0 ∧

∀pj ∈ Q. prep_viewj [k] ≤ prep_viewj′ [k]
then log′[k]← prep_logj′ [k];

52 next← max{k | log′[k] ̸= ⊥};

53 forall k = 1..(next− 1) do
54 if log′[k] = ⊥ ∨ ∃k′. k′ ̸= k ∧

log′[k′] = log′[k] ∧ ∃pj′ ∈ Q. ∀pj ∈ Q.

prep_viewj′ [k′] > prep_viewj [k] then
55 log′[k]← nop

56 send ⟨NEW_STATE(v, log′, M)⟩i to all;

57 when received ⟨NEW_STATE(v, log′, M)⟩j =m

58 pre: status = initializing ∧
curr_view = v ∧ ValidNewState(m);

59 log← log′;
60 forall {k | log[k] ̸= ⊥} do
61 phase[k]← preprepared;
62 send ⟨PREPARE(v, k, hash(log[k]))⟩i

to all;
63 status← normal;
64 init_log_length← max{k | log[k] ̸= ⊥};
65 if init_log_length ≤ last_delivered then
66 stop_timer(timer_recovery);

Figure 5 View-initialization protocol of PBFT-light at a process pi.

prepared(C, v, k, h) ⇐⇒ ∃Q. quorum(Q) ∧ C = {⟨PREPARE(v, k, h)⟩j | pj ∈ Q}
committed(C, v, k, h) ⇐⇒ ∃Q. quorum(Q) ∧ C = {⟨COMMIT(v, k, h)⟩j | pj ∈ Q}

ValidNewLeader(⟨NEW_LEADER(v, prep_view, prep_log, cert)⟩_) ⇐⇒
∀k. (prep_view[k] > 0 =⇒ prep_view[k] < v ∧ prepared(cert[k], prep_view[k], k, prep_log[k]))

ValidNewState(⟨NEW_STATE(v, log′, M)⟩i) ⇐⇒ pi = leader(v) ∧ ∃Q, prep_view, prep_log, cert.
quorum(Q) ∧M = {⟨NEW_LEADER(v, prep_viewj , logj , certj)⟩j | pj ∈ Q} ∧
(∀m ∈ C. ValidNewLeader(m)) ∧ (log′ is computed from M as per lines 50-55)

Figure 6 Auxiliary predicates for PBFT-light.

Triggering view changes. We now describe when a process calls advance, which is key to
ensure liveness (§5). This happens either on start-up (line 2) or when the process suspects
that the current leader is faulty. To this end, the process monitors the leader’s behavior
using timers; if one of these expires, the process calls advance and sets status to advanced
(line 3). First, the process checks that each value it receives is delivered promptly: e.g.,
to guard against a faulty leader censoring certain values. For a value x this is done using
timer_delivery[x], set for a duration dur_delivery when the process receives BROADCAST(x)
(lines 14). The timer is stopped when the process delivers x (line 36). A process also checks
that the leader initializes a view quickly enough: e.g., to guard against the leader crashing
during the initialization. Thus, when a process enters a view it starts timer_recovery for a
duration dur_recovery (line 47). The process stops the timer when it delivers all values in the
initial log (lines 38 and 66). The above checks may make a process suspect a correct leader
if the timeouts are initially set too small with respect to the message delay δ, unknown to
the process. To deal with this, a process increases dur_delivery and dur_recovery each time a
timer expires, which signals that the current view is not operating normally (lines 7-8).

M. Bravo, G. Chockler, and A. Gotsman 12:11

5 Proving the Liveness of PBFT

Assume that PBFT-light is used with a synchronizer satisfying the specification in Figure 1;
to simplify the following latency analysis we let d = 2δ, as for the synchronizer in Figure 3.
We now prove that the protocol satisfies the Liveness property of Byzantine atomic broadcast;
we defer the proof of the other properties to [17, §C.1]. To the best of our knowledge, this is
the first rigorous proof of liveness for the algorithmic core of PBFT: as we elaborate in §8,
the liveness mechanisms of PBFT came only with a brief informal justification, which did
not cover their most critical properties [25, §4.5.1]. Our proof is simplified by the use of the
synchronizer specification, which allows us to abstract from view synchronization mechanics.

We prove the liveness of PBFT-light by showing that the protocol establishes properties
reminiscent of those of failure detectors [26]. First, similarly to their completeness property,
we prove that every correct process eventually attempts to advance from a bad view in which
no progress is possible (e.g., because the leader is faulty).

▶ Lemma 4. Assume that a correct process pi receives BROADCAST(x) for a valid value x

while in a view v. If pi never delivers x and never enters a view higher than v, then it
eventually calls advance in v.

The lemma holds because in PBFT-light each process monitors the leader’s behavior
using timers, and we defer its easy proof to [17, §C.2]. Our next lemma is similar to the
eventual accuracy property of failure detectors. It stipulates that if the timeout values are
high enough, then eventually any correct process that enters a good view (with a correct
leader) will never attempt to advance from it. Let dur_recoveryi(v) and dur_deliveryi(v)
denote respectively the value of dur_recovery and dur_delivery at a correct process pi while
in view v.

▶ Lemma 5. Consider a view v ≥ V such that Efirst(v) ≥ GST and leader(v) is correct. If
dur_recoveryi(v) > 6δ and dur_deliveryi(v) > 4δ at each correct process pi that enters v, then
no correct process calls advance in v.

Before proving the lemma, we informally explain the rationale for the bounds on timeouts
in it, using the example of dur_recovery. The timer timer_recovery is started at a process
pi when this process enters a view v (line 47), and is stopped when the process delivers
all values inherited from previous views (lines 38 or 66). The two events are separated
by 4 communication steps of PBFT-light, exchanging messages of the types NEW_LEADER,
NEW_STATE, PREPARE and COMMIT (Figure 7). However, 4δ would be too small a value
for dur_recovery. This is because the leader of v sends its NEW_STATE message only after
receiving a quorum of NEW_LEADER messages, and different processes may enter v and send
their NEW_LEADER messages at different times (e.g., pi and pj in Figure 7). Hence, dur_recovery
must additionally accommodate the maximum discrepancy in the entry times, which is d = 2δ

by the Bounded Entry property. Then to ensure that pi stops the timer before it expires, we
require dur_recoveryi(v) > 6δ. As the above reasoning illustrates, Lemma 5 is more subtle
than Lemma 4: while the latter is ensured just by the checks in the SMR protocol, the former
relies on the Bounded Entry property of the synchronizer.

Another subtlety about Lemma 5 is that the δ used in its premise is a priori unknown.
Hence, to apply the lemma in the liveness proof of PBFT-light, we have to argue that, if
correct processes keep changing views due to lack of progress, then all of them will eventually
increase their timeouts high enough to satisfy the bounds in Lemma 5. This is nontrivial due
to the fact that, as in the original PBFT [23, §2.3.5], in our protocol the processes update
their timeouts independently, and may thus disagree on their durations. For example, the

DISC 2022

12:12 Liveness and Latency of Byzantine State-Machine Replication

leader(v)

Elast(v)

NEW_LEADER(v)

NEW_LEADER(v)
NEW_STATE(v)

NEW_
STAT

E(v)

PREPARE

COMMIT

2𝛿

𝛿

𝛿

𝛿

𝛿

pi pj

Efirst(v)
start

timer_recovery

stop
timer_recovery

Figure 7 An illustration of the proof of Lemma 5.

first correct process pi to detect a problem with the current view v will increase its timeouts
and call advance (line 3). The synchronizer may then trigger new_view notifications at
other correct processes before they detect the problem as well, so that their timeouts will
stay unchanged (line 42). One may think that this allows executions in which only some
correct processes keep increasing their timeouts until they are high enough, whereas others
are forever stuck with timeouts that are too low, invalidating the premise of Lemma 5. The
following lemma rules out such scenarios and also trivially implies Lemma 5. It establishes
that, in a sufficiently high view v with a correct leader, if the timeouts at a correct process
pi that enters v are high enough, then this process cannot be the first one to initiate a
view change. Hence, for the protocol to enter another view, some other process with lower
timeouts must call advance and thus increase their durations (line 3).

▶ Lemma 6. Let v ≥ V be such that Efirst(v) ≥ GST and leader(v) is correct, and consider
a correct process pi that enters v. If dur_recoveryi(v) > 6δ and dur_deliveryi(v) > 4δ then pi

is not the first correct process to call advance in v.

Proof. Since Efirst(v) ≥ GST, messages sent by correct processes after Efirst(v) get delivered
to all correct processes within δ and process clocks track real time. By contradiction, assume
that pi is the first correct process to call advance in v. This happens because a timer expires
at pi. Here we only consider the case when it is timer_recovery, and handle timer_delivery
in [17, §C.2]. A process starts timer_recovery when it enters the view v (line 47), and hence,
at Efirst(v) at the earliest (Figure 7). Because pi is the first correct process to call advance
in v and dur_recoveryi(v) > 6δ, no correct process calls advance in v until after Efirst(v) + 6δ.
Then by Bounded Entry all correct processes enter v by Efirst(v) + 2δ. Also, by Validity no
correct process can enter v + 1 until after Efirst(v) + 6δ, and by Proposition 1 the same holds
for any view > v. Thus, all correct processes stay in v at least until Efirst(v) + 6δ.

When a correct process enters v, it sends a NEW_LEADER message to the leader of v, which
happens by Efirst(v)+2δ. When the leader receives such messages from a quorum of processes,
it broadcasts a NEW_STATE message. Thus, by Efirst(v) + 4δ all correct processes receive this
message and set status = normal. If at that point init_log_length ≤ last_delivered at pi,
then the process stops timer_recovery (line 66), which contradicts our assumption. Hence,
init_log_length > last_delivered. When a correct process receives NEW_STATE, it sends PREPARE
messages for all positions ≤ init_log_length (line 62). It then takes the correct processes at
most 2δ to exchange the sequence of PREPARE and COMMIT messages that commits the values
at all positions ≤ init_log_length. Thus, by Efirst(v) + 6δ the process pi commits and delivers
all these positions, stopping timer_recovery (line 38): a contradiction. ◀

M. Bravo, G. Chockler, and A. Gotsman 12:13

▶ Theorem 7. PBFT-light satisfies the Liveness property of Byzantine atomic broadcast.

Proof. Consider a valid value x broadcast by a correct process. We first prove that x is
eventually delivered by some correct process. Assume the contrary. We show:

▷ Claim 1. Every view is entered by some correct process.

Proof. Since all correct processes call start (line 1), by Startup a correct process eventually
enters some view. We now show that correct processes keep entering new views forever
(analogously to the proof of Proposition 2 in §3). Assume that this is false, so that there
exists a maximal view v entered by any correct process. Let P be any set of f + 1 correct
processes and consider an arbitrary process pi ∈ P that enters v. The process that broadcast
x is correct, and thus keeps broadcasting x until the value is delivered (line 11). Since x is
never delivered, pi is guaranteed to receive x while in v. Then by Lemma 4, pi eventually
calls advance while in v. Since pi was picked arbitrarily, we have ∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓.
Then by Progress we get Efirst(v + 1)↓, which yields a contradiction. Thus, correct processes
keep entering views forever. The claim then follows from Proposition 1. ◁

Let view v1 be the first view such that v1 ≥ V and Efirst(v1) ≥ GST; such a view exists
by Claim 1. The next claim is needed to show that all correct processes will increase their
timeouts high enough to satisfy the bounds in Lemma 5.

▷ Claim 2. Every correct process calls the timer expiration handler (line 3) infinitely often.

Proof. Assume the contrary and let Cfin and Cinf be the sets of correct processes that call
the timer expiration handler finitely and infinitely often, respectively. Then Cfin ̸= ∅, and
by Claim 1 and Validity, Cinf ̸= ∅. The values of dur_delivery and dur_recovery increase
unboundedly at processes from Cinf , and do not change after some view v2 at processes from
Cfin. By Claim 1 and since leaders rotate round-robin, there is a view v3 ≥ max{v2, v1} with
a correct leader such that any process pi ∈ Cinf that enters v3 has dur_deliveryi(v3) > 4δ and
dur_recoveryi(v3) > 6δ. By Claim 1 and Validity, at least one correct process calls advance
in v3; let pl be the first process to do so. Since v3 ≥ v2, pl cannot be in Cfin because none of
these processes increase their timers in v3. Then pl ∈ Cinf , contradicting Lemma 6. ◁

By Claims 1 and 2, there exists a view v4 ≥ v1 with a correct leader such that some correct
process enters v4, and for any correct process pi that enters v4 we have dur_deliveryi(v4) > 4δ

and dur_recoveryi(v4) > 6δ. By Lemma 5, no correct process calls advance in v4. Then, by
Validity, no correct process enters v4 + 1, which contradicts Claim 1. This contradiction
shows that x must be delivered by a correct process. Then, since the protocol reliably
broadcasts committed values (line 31), all correct processes will also eventually deliver x. ◀

6 Latency Bounds for PBFT

Assume that PBFT-light is used with our SMR synchronizer in Figure 3. We now quantify its
latency using the bounds for the synchronizer in Theorem 3, yielding the first detailed latency
analysis for a PBFT-like protocol. Due to space constraints we defer proofs to [17, §C.3].
To state our bounds, we assume the existence of a known upper bound ∆ on the maximum
value of δ in any execution [41,50], so that we always have δ < ∆. In practice, ∆ provides
a conservative estimate of the message delay during synchronous periods, which may be
much higher than the maximal delay δ in a particular execution. We modify the protocol in
Figure 4 so that in lines 7-8 it does not increase dur_recovery and dur_delivery above 6∆ and
4∆, respectively. This corresponds to the bounds in Lemma 5 and preserves the protocol

DISC 2022

12:14 Liveness and Latency of Byzantine State-Machine Replication

liveness. Finally, we assume that periodic handlers (line 4 in Figure 3 and line 11 in Figure 4)
are executed every ρ time units, and that the latency of reliable broadcast in line 31 under
synchrony is ≤ δ +ρ (this corresponds to an implementation that just periodically retransmits
DECISION messages).

We quantify the latency of PBFT-light in both bad and good cases. For the bad case we
assume that the protocol starts during the asynchronous period. Given a value x broadcast
before GST, we quantify how quickly after GST all correct processes deliver x. For simplicity,
we assume that timeouts are high enough at GST and that leader(V) is correct.

▶ Theorem 8. Assume that before GST all correct processes start executing the protocol and
one of them broadcasts x. Let V be defined as in Theorem 3 and assume that leader(V) is
correct and at GST each correct process has dur_recovery > 6δ and dur_delivery > 4δ. Then
all correct processes deliver x by GST + ρ + max{ρ + δ, 6∆} + 4∆ + max{ρ, δ} + 7δ.

Although the latency bound looks complex, its main message is simple: PBFT-light
recovers after a period of asynchrony in bounded time. This time is dominated by multiples
of ∆; without the assumption that leader(V) is correct it would also be multiplied by f due
to going over up to f views with faulty leaders. In [17, §C.3] we show the bound using the
latency guarantees of our synchronizer (Properties A and B in Theorem 3).

We now consider the case when the protocol starts during the synchronous period, i.e.,
after GST. The following theorem quantifies how quickly all correct processes enter the first
functional view, which in this case is view 1. If leader(1) is correct, it also quantifies how
quickly a broadcast value x is delivered by all correct processes. The bound takes into account
the following optimization: in view 1 the processes do not need to exchange NEW_LEADER
messages. Then, after the systems starts up, the protocol delivers values within 4δ, which
matches an existing lower bound of 3δ for the delivery time starting from the leader [5].

▶ Theorem 9. Assume that all correct processes start the protocol after GST with
dur_recovery > 5δ and dur_delivery > 4δ. Then the V defined in Theorem 3 is equal to
1 and Elast(1) ≤ Tlast(0) + δ. Furthermore, if a correct process broadcasts x at t ≥ GST and
leader(1) is correct, then all correct processes deliver x by max{t, Tlast(0) + δ} + 4δ.

7 Additional Case Studies

To demonstrate the generality of SMR synchronizers, we have also used it to ensure the
liveness of two other protocols. First, we handle a variant of PBFT that periodically forces a
leader change, as is common in modern Byzantine SMR [28,55,56]. In this protocol a process
calls advance not only when it suspects the current leader to be faulty, but also when it
delivers B values proposed by this leader (for a fixed B). Second, we have applied the SMR
synchronizer to a variant of the above protocol that follows the approach of HotStuff [57].
The resulting protocol adds an extra communication step to the normal path of PBFT
in exchange for reducing the communication complexity of leader change. Due to space
constraints, we defer the details about these two protocols to [17, §D] and [17, §E]. Their
liveness proofs follow the methodology we proposed for PBFT-light, establishing analogs of
Lemmas 4-6.

For PBFT with periodic leader rotation we have also established latency bounds when
using the synchronizer in Figure 3 (see [17, §D]). The most interesting one (Theorem 56)
demonstrates the benefit of PBFT’s mechanism for adapting timeouts to an unknown δ:
recall that in PBFT a process only increases its timeouts when a timer expires, which means
that the current view does not operate normally (§4). We show that, since the protocol does

M. Bravo, G. Chockler, and A. Gotsman 12:15

not increase its timeouts in good views (with correct leaders and under synchrony), it pays
a minimal latency penalty to recover the first time it encounters a bad leader – the initial
value of dur_recovery. This contrasts with the simplistic way of adapting the timeouts to an
unknown δ by increasing them in every view: in this case, as the protocol keeps changing
views, the timeouts would eventually increase up to the maximum (determined by ∆), and
the protocol would have to wait that much to recover from a faulty leader.

8 Related Work and Discussion

Failure detectors. Failure detectors and leader oracles [26,34] have been widely used for
implementing consensus and SMR under benign failures [38,39,47], but their implementations
under Byzantine failures are either impractical [43] or detect only restricted failure types [30,40,
46]. Another approach was proposed in a textbook by Cachin et al. [20]. This relies on a leader-
based Byzantine Epoch-Change (BEC) abstraction, which accepts “complain” hints from the
application suggesting that the trust in the current leader should be revoked. However, like
the classical leader oracles, BEC requires all correct processes to eventually trust the same
correct leader, which is impossible to achieve in Byzantine settings. In fact, the BEC-based
Byzantine consensus algorithm in §5.6.4 of [20] suffers from a liveness bug, which we describe
in [17, §F]. The bug has been confirmed with one of the textbook’s authors [19].

Although our advance is similar to “complain”, we use it to implement a weaker abstrac-
tion of an SMR synchronizer. We then obtain properties similar to accuracy and completeness
of failure detectors by carefully combining SMR-level timers with uses of advance (Lem-
mas 4-5). Also, while [20] does not specify constraints on the use of “complain” (see [17, §F]),
we give a complete characterization of advance and show its sufficiency for solving SMR.

BFT-SMaRt [13,54] built on the ideas of [20] to propose an abstraction of validated and
provable (VP) consensus, which allows its clients to control leader changes. Although the
overall BFT-SMaRt protocol appears to be correct, its liveness proof sketch suffers from
issues with rigor similar to those of [20]. In particular, the conditions on how to change the
leader in VP-Consensus to ensure its liveness were underspecified (again, see [17, §F]).

Emulating synchrony. Alternative abstractions avoid dependency on the specifics of a
failure model by simulating synchrony [14, 27, 35, 42]. The first such abstraction is due
to Awerbuch [10] who proposed a family of synchronizer algorithms emulating a round-
based synchronous system of top of an asynchronous network with reliable communication
and processes. The first such emulation in a failure-prone partially synchronous system
was introduced in the DLS paper [32]. It relied on an expensive clock synchronization
protocol, which interleaved its messages with every step of a high-level consensus algorithm
implemented on top of it. Later work proposed more practical solutions, which reduce
the synchronization frequency by relying on either timers [31] or synchronized hardware
clocks [3, 7, 36] (the latter can be obtained using one of the existing fault-tolerant clock
synchronization algorithms [29,53]). However, the DLS model emulates communication-closed
rounds, i.e., eventually, a process in a round r receives all messages sent by correct processes
in r. This property rules out optimistically responsive [51,57] protocols such as PBFT, which
can make progress as soon as they receive messages from any quorum.

Consensus synchronizers. To address the shortcoming of DLS rounds, recent work proposed
a more flexible abstraction (“consensus synchronizer” in §3) that switches processes through
an infinite series of views [16,49,57]. In contrast to rounds, each view may subsume multiple

DISC 2022

12:16 Liveness and Latency of Byzantine State-Machine Replication

communication steps. Although consensus synchronizers can be used for efficient single-shot
Byzantine consensus [16], using them for SMR results in suboptimal implementations. A
classical approach is to decide on each SMR command using a separate black-box consensus
instance [52]. However, implementing the latter using a consensus synchronizer would force
the processes in every instance to iterate over the same sequence of potentially bad views
until the one with a correct leader and sufficiently long duration could be reached.

An alternative approach was proposed in HotStuff [57]. This SMR protocol is driven by
a pacemaker, which keeps generating views similarly to a consensus synchronizer. Within
each view HotStuff runs a voting protocol that commits a block of client commands in a
growing hash chain. Although the voting protocol is optimistically responsive, committing
the next block is delayed until the pacemaker generates a new view, which increases latency.
The cost the pacemaker may incur to generate a view is also paid for every single block.

SMR synchronizers. In contrast to the above approaches, SMR synchronizers allow the
application to initiate view changes on demand via an advance call. As we show, this affords
SMR protocols the flexibility to judiciously manage their view synchronization schedule: in
particular, it prevents the timeouts from growing unnecessarily (§7) and avoids the overheads
of further view synchronizations once a stable view is reached (Lemma 5, §5).

The first synchronizer with a new_view/advance interface, which here we call an SMR
synchronizer, was proposed by Naor et al. [48,49]. They used it as an intermediate module in
a communication-efficient implementation of a consensus synchronizer. The latter is sufficient
to ensure the liveness of HotStuff [57] via either of the two straightforward SMR constructions
we described above. The specification of the new_view/advance module of Naor et al. was
only used as a stepping stone in the proof of their consensus synchronizer, and as a result, is
more low-level and complex than our SMR synchronizer specification. Naor et al. did not
investigate the usability of the SMR synchronizer abstraction as a generic building block
applicable to a wide range of Byzantine SMR protocols – a gap we fill in this paper. Finally,
they only handled a simplified version of partial synchrony where messages are never lost and
δ is known a priori, whereas our SMR synchronizer implementation handles partial synchrony
in its full generality. This implementation builds on the consensus synchronizer of Bravo et
al. [16]. However, its correctness proof and performance analysis are more intricate, since
the timing of the view switches is not fixed a priori, but driven by external advance inputs.

Aştefănoaei et al. [6] proposed another framework for implementing Byzantine SMR
protocols, based on DLS rounds. This uses a simple synchronizer that does not exchange
any messages: it recovers from a period of asynchrony by progressively increasing round
durations until they are long enough for all correct processes to overlap in the same round.
This way of view synchronization rules out optimistically responsive SMR protocols and does
not bound the time to reach a decision after GST, as we do.

SMR liveness proofs. PBFT [23–25] is a seminal protocol whose design choices have been
widely adopted [37,44, 55,56]. To the best of our knowledge, our proof in §5 is the first one
to formally establish its liveness. An informal argument given in [25, §4.5.1] mainly justifies
liveness assuming all correct processes enter a view with a correct leader and stay in that
view for sufficiently long. It does not rigorously justify why such a view will be eventually
reached, and in particular, how this is ensured by the interplay between SMR-level timeout
management and view synchronization (§5). Liveness mechanisms were also omitted from
the formal specification of PBFT by an I/O-automaton [23,25].

M. Bravo, G. Chockler, and A. Gotsman 12:17

Bravo et al. [16] have applied consensus synchronizers to several consensus protocols,
including a single-shot version of PBFT. These protocols and their proofs and are much
more straightforward than the full SMR protocols we consider here. In particular, since a
consensus synchronizer keeps switching processes between views regardless of whether their
leaders are correct, the proof of the single-shot PBFT in [16] does not need to establish
analogs of completeness and accuracy (Lemmas 4 and 5) or deal with the fact that processes
may disagree on timeout durations (Lemma 6).

Byzantine SMR protocols often integrate view synchronization into the core protocol,
enabling white-box optimizations [1,9,18,24]. Our work does not rule out this approach, but
allows making it more systematic: we can first develop efficient mechanisms for view syn-
chronization independently from SMR protocols, and do white-box optimizations afterwards.

References
1 DiemBFT v4: State machine replication in the Diem blockchain. URL: https://developers.

diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain
/2021-08-17.pdf.

2 Incorrect by construction-CBC Casper isn’t live. URL: https://derekhsorensen.com/docs/
CBC_Casper_Flaw.pdf.

3 Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
Byzantine agreement with expected O(1) rounds, expected O(n2) communication, and optimal
resilience. In Conference on Financial Cryptography and Data Security (FC), 2019.

4 Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-
Philippe Martin. Revisiting fast practical Byzantine fault tolerance. arXiv, abs/1712.01367,
2017. arXiv:1712.01367.

5 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of Byzantine
broadcast: a complete categorization. In Symposium on Principles of Distributed Computing
(PODC), 2021.

6 Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci-Piergiovanni, and Eugen Zălinescu. Tenderbake – A solution to dynamic repeated
consensus for blockchains. In Symposium on Foundations and Applications of Blockchain
(FAB), 2021.

7 Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. Generating fast indulgent
algorithms. In International Conference on Distributed Computing and Networking (ICDCN),
2011.

8 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Correctness of Tendermint-core blockchains. In Conference on Principles of
Distributed Systems (OPODIS), 2018.

9 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Dissecting Tendermint. In Conference on Networked Systems (NETYS), 2019.

10 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
11 Rida A. Bazzi and Yin Ding. Non-skipping timestamps for Byzantine data storage systems.

In Symposium on Distributed Computing (DISC), 2004.
12 Christian Berger, Hans P. Reiser, and Alysson Bessani. Making reads in BFT state machine

replication fast, linearizable, and live. In Symposium on Reliable Distributed Systems (SRDS),
2021.

13 Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. State machine
replication for the masses with BFT-SMART. In Conference on Dependable Systems and
Networks (DSN), 2014.

14 Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, and
André Schiper. Tolerating corrupted communication. In Symposium on Principles of Distributed
Computing (PODC), 2007.

DISC 2022

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
http://arxiv.org/abs/1712.01367

12:18 Liveness and Latency of Byzantine State-Machine Replication

15 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987.

16 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making Byzantine consensus live. In
Symposium on Distributed Computing (DISC), 2020.

17 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Liveness and latency of Byzantine
state-machine replication (extended version). arXiv, abs/2202.06679, 2022. arXiv:2202.06679.

18 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. arXiv,
abs/1807.04938, 2018. arXiv:1807.04938.

19 Christian Cachin. Personal communication, 2022.
20 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and

Secure Distributed Programming (2 ed.). Springer, 2011.
21 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient

asynchronous broadcast protocols. In International Cryptology Conference (CRYPTO), 2001.
22 Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild (keynote

talk). In Symposium on Distributed Computing (DISC), 2017.
23 Miguel Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts Institute of

Technology, 2001.
24 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Symposium on

Operating Systems Design and Implementation (OSDI), 1999.
25 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems, 20(4):398–461, 2002.
26 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267, 1996.
27 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed

systems with benign faults. Distributed Comput., 22(1):49–71, 2009.
28 Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Making

Byzantine fault tolerant systems tolerate Byzantine faults. In Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

29 Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dynamic fault-tolerant
clock synchronization. J. ACM, 42(1):143–185, 1995.

30 Assia Doudou, Benoît Garbinato, and Rachid Guerraoui. Abstractions for devising Byzantine-
resilient state machine replication. In Symposium on Reliable Distributed Systems (SRDS),
2000.

31 Cezara Dragoi, Josef Widder, and Damien Zufferey. Programming at the edge of synchrony.
Proc. ACM Program. Lang., 4(OOPSLA), 2020.

32 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

33 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

34 Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction.
ACM Comput. Surv., 43(2):9:1–9:40, 2011.

35 Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In Symposium
on Principles of Distributed Computing (PODC), 1998.

36 Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. On the message complexity of
indulgent consensus. In Symposium on Distributed Computing (DISC), 2007.

37 Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K.
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and
decentralized trust infrastructure. In Conference on Dependable Systems and Networks (DSN),
2019.

38 Rachid Guerraoui. Indulgent algorithms (preliminary version). In Symposium on Principles
of Distributed Computing (PODC), 2000.

http://arxiv.org/abs/2202.06679
http://arxiv.org/abs/1807.04938

M. Bravo, G. Chockler, and A. Gotsman 12:19

39 Rachid Guerraoui and Michel Raynal. The information structure of indulgent consensus. IEEE
Transactions on Computers, 53(4):453–466, 2004.

40 Andreas Haeberlen and Petr Kuznetsov. The fault detection problem. In Conference on
Principles of Distributed Systems (OPODIS), 2009.

41 Amir Herzberg and Shay Kutten. Fast isolation of arbitrary forwarding faults. In Symposium
on Principles of Distributed Computing (PODC), 1989.

42 Idit Keidar and Alexander Shraer. Timeliness, failure-detectors, and consensus performance.
In Symposium on Principles of Distributed Computing (PODC), 2006.

43 Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors
for solving consensus. The Computer Journal, 46(1):16–35, 2003.

44 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39, 2010.

45 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.
46 Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection in distributed computations.

In Workshop on Computer Security Foundations (CSFW), 1997.
47 Achour Mostéfaoui and Michel Raynal. Solving consensus using Chandra-Toueg’s unreliable

failure detectors: A general quorum-based approach. In Symposium on Distributed Computing
(DISC), 1999.

48 Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine
view synchronization. In Cryptoeconomics Systems Conference (CES), 2020.

49 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear Byzantine SMR. In Symposium on Distributed Computing (DISC), 2020.

50 Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In Symposium on Distributed Computing (DISC), 2017.

51 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2018.

52 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

53 Barbara Simons, Jennifer Welch, and Nancy Lynch. An overview of clock synchronization. In
Fault-Tolerant Distributed Computing, 1986.

54 João Sousa. Byzantine State Machine Replication for the Masses. PhD thesis, University of
Lisbon, 2017.

55 Chrysoula Stathakopoulou, Tudor David, and Marko Vukolić. Mir-BFT: High-throughput
BFT for blockchains. arXiv, abs/1906.05552, 2019. arXiv:1906.05552.

56 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. Spin
one’s wheels? Byzantine fault tolerance with a spinning primary. In Symposium on Reliable
Distributed Systems (SRDS), 2009.

57 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In Symposium on Principles of Distributed
Computing (PODC), 2019.

DISC 2022

http://arxiv.org/abs/1906.05552

Oracular Byzantine Reliable Broadcast
Martina Camaioni
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Matteo Monti
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
Byzantine Reliable Broadcast (BRB) is a fundamental distributed computing primitive, with
applications ranging from notifications to asynchronous payment systems. Motivated by practical
consideration, we study Client-Server Byzantine Reliable Broadcast (CSB), a multi-shot variant of
BRB whose interface is split between broadcasting clients and delivering servers. We present Draft,
an optimally resilient implementation of CSB. Like most implementations of BRB, Draft guarantees
both liveness and safety in an asynchronous environment. Under good conditions, however, Draft
achieves unparalleled efficiency. In a moment of synchrony, free from Byzantine misbehaviour, and
at the limit of infinitely many broadcasting clients, a Draft server delivers a b-bits payload at an
asymptotic amortized cost of 0 signature verifications, and (log2(c) + b) bits exchanged, where c

is the number of clients in the system. This is the information-theoretical minimum number of
bits required to convey the payload (b bits, assuming it is compressed), along with an identifier for
its sender (log2 (c) bits, necessary to enumerate any set of c elements, and optimal if broadcasting
frequencies are uniform or unknown). These two achievements have profound practical implications.
Real-world BRB implementations are often bottlenecked either by expensive signature verifications,
or by communication overhead. For Draft, instead, the network is the limit: a server can deliver
payloads as quickly as it would receive them from an infallible oracle.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine reliable broadcast, Good-case complexity, Amortized complexity,
Batching

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.13

Related Version The full version of this paper, which includes all detailed proofs and pseudocode, is
available online.
Full Version: https://arxiv.org/abs/ [17]

1 Introduction

Byzantine reliable broadcast (BRB) is one of the most fundamental and versatile building
blocks in distributed computing, powering a variety of Byzantine fault-tolerant (BFT)
systems [14, 28]. The BRB abstraction has recently been shown to be strong enough to
process payments, enabling cryptocurrency deployments in an asynchronous environment [29].
Originally introduced by Bracha [9] to allow a set of processes to agree on a single message
from a designated sender, BRB naturally generalizes to the multi-shot case, enabling higher-
level abstractions such as Byzantine FIFO [44, 12] and causal [7, 4] broadcast. We study a
practical, multi-shot variant of BRB whose interface is split between broadcasting clients and
delivering servers. We call this abstraction Client-Server Byzantine Reliable Broadcast (CSB).

© Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.13
https://arxiv.org/abs/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Oracular Byzantine Reliable Broadcast

CSB in brief. Clients broadcast, and servers deliver, payloads composed by a context and a
message. This interface allows, for example, Alice to announce her wedding as well as will
her fortune by respectively broadcasting"My wife is"︸ ︷︷ ︸

context cw

, "Carla"︸ ︷︷ ︸
message mw

 "All my riches go to"︸ ︷︷ ︸
context cr

, "Bob"︸ ︷︷ ︸
message mr

CSB guarantees that: (Consistency) no two correct servers deliver different messages for
the same client and context; (Totality) either all correct servers deliver a message for a
given client and context, or no correct server does; (Integrity) if a correct server delivers a
payload from a correct client, then the client has broadcast that payload; and (Validity) a
payload broadcast by a correct client is delivered by at least one correct server. Following
from the above example, Carla being Alice’s wife does not conflict with Bob being her sole
heir (indeed, cw ̸= cr), but Alice would not be able to convince two correct servers that she
married Carla and Diana, respectively. Higher-level broadcast abstractions can be easily
built on top of CSB. For example, using integer sequence numbers as contexts and adding
a reordering layer yields Client-Server Byzantine FIFO Broadcast. For the sake of CSB,
however, it is not important for contexts to be integers, or satisfy any property other than
comparability. Throughout the remainder of this paper, the reader can picture contexts as
opaque binary blobs. Lastly, while the set of servers is known, CSB as presented does not
assume any client to be known a priori. The set of clients can be permissionless, with servers
discovering new clients throughout the execution.

A utopian model. Real-world BRB implementations are often bottlenecked either by
expensive signature verifications [21] or by communication overhead [10, 34, 35]. With the
goal of broadening those bottlenecks, simplified, more trustful models are useful to establish
a (sometimes grossly unreachable) bound on the efficiency that an algorithm can attain in
the Byzantine setting. For example, in a utopian model where any agreed-upon process can
be trusted to never fail (let us call it an oracle), CSB can easily be implemented with great
efficiency. Upon initialization, the oracle organizes all clients in a list, which it disseminates to
all servers. For simplicity, let us call id a client’s position in the list. To broadcast a payload
p, a client with id i simply sends p to the oracle: the oracle checks p for equivocation (thus
ensuring consistency), then forwards (i, p) to all servers (thus ensuring validity and totality).
Upon receiving (i, p), a server blindly trusts the oracle to uphold all CSB properties, and
delivers (i, p). Oracle-CSB is clearly very efficient. On the one hand, because the oracle can
be trusted not to attribute spurious payloads to correct clients, integrity can be guaranteed
without any server-side signature verification. On the other, in order to deliver (i, p), a server
needs to receive just (⌈log2 (c)⌉ + |p|) bits, where c denotes the total number of clients, and
|p| measures p’s length in bits. This is optimal assuming the rate at which clients broadcast
is unknown1 or uniform2 [20].

Matching the oracle. Due to its reliance on a single infallible process, Oracle-CSB is not a
fault-tolerant distributed algorithm: shifting back to the Byzantine setting, a single failure
would be sufficient to compromise all CSB properties. Common sense suggests that Byzantine

1 Lacking an assumption on broadcasting rates, an adversarial scheduler could have all messages broadcast
by the client with the longest id, which we cannot guarantee to be shorter than ⌈log2 (c)⌉ bits.

2 Should some clients be expected to broadcast more frequently than others, we could further optimize
Oracle-CSB by assigning smaller ids to more active clients, possibly at the cost of having less active
clients have ids whose length exceeds ⌈log2 (c)⌉. Doing so, however, is beyond the scope of this paper.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:3

resilience will necessarily come at some cost: protocol messages must be exchanged to preserve
consistency and totality, signatures must be produced and verified to uphold integrity and,
lacking the totally-ordering power that only consensus can provide, ids cannot be assigned
in an optimally dense way. However, this paper proves the counter-intuitive result that
an asynchronous, optimally-resilient, Byzantine implementation of CSB can asymptotically
match the efficiency of Oracle-CSB. This is not just up to a constant, but identically. In a
synchronous execution, free from Byzantine misbehaviour, and as the number of concurrently
broadcasting clients goes to infinity (we call these conditions the batching limit3), our CSB
implementation Draft delivers a payload p at an asymptotic4, amortized cost of 0 signature
verifications5 and (⌈log2 (c)⌉ + |p|) bits exchanged per server, the same as in Oracle-CSB (we
say that Draft achieves oracular efficiency). At the batching limit a Draft server is dispensed
from nearly all signature verifications, as well as nearly all traffic that would be normally
required to convey protocol messages, signatures, or client public keys. Network is the limit:
payloads are delivered as quickly as they can be received.

CSB’s common bottlenecks. To achieve oracular efficiency, we focus on three types of
server overhead that commonly affect a real-world implementation of CSB:

Protocol overhead. Safekeeping consistency and totality typically requires some form of
communication among servers. This communication can be direct (as in Bracha’s original,
all-to-all BRB implementation) or happen through an intermediary (as in Bracha’s signed,
one-to-all-to-one BRB variant), usually employing signatures to establish authenticated,
intra-server communication channels through a (potentially Byzantine) relay.
Signature overhead. Upholding integrity usually requires clients to authenticate their mes-
sages using signatures. For servers, this entails both a computation and a communication
overhead. On the one hand, even using well-optimized schemes, signature verification
is often CPU-heavy enough to dominate a server’s computational budget, dwarfing in
particular the CPU footprint of much lighter, symmetric cryptographic primitives such
as hashes and ciphers. On the other hand, transmitting signatures results in a fixed
communication overhead per payload delivered. While the size of a signature usually
ranges from a few tens to a few hundreds of bytes, this overhead is non-negligible in a
context where many clients broadcast small messages. This is especially true in the case
of payments, where a message reduces to the identifier of a target account and an integer
to denote the amount of money to transfer.
Identifier overhead. CSB’s multi-shot nature calls for a sender identifier to be attached
to each broadcast payload. Classically, the client’s public key is used as identifier. This is
convenient for two reasons. First, knowing a client’s identifier is sufficient to authenticate
its payloads. Second, asymmetric keypairs have very low probability of collision. As such,
clients can create identities in the system without any need for coordination: locally
generating a keypair is sufficient to begin broadcasting messages. By cryptographic design,
however, public keys are sparse, and their size does not change with the number of clients.
This translates to tens to hundreds of bytes being invested to identify a client from a set
that can realistically be enumerated by a few tens of bits. Again, this communication
overhead is heavier on systems where broadcasts are frequent and brief.

3 The batching limit includes other easily achievable, more technical conditions that we omit in this section
for the sake of brevity. For the full definition, please refer to the extended version of this paper [17].

4 The asymptotic costs are reached quite fast, at rates comparable to C−1 or log(C) · C−1.
5 This does not mean that batches are processed in constant time: hashes and signature aggregations, for

example, still scale linearly in the size of a batch. The real-world computational cost of such simple
operations, however, is several orders of magnitude lower than that of signature verification.

DISC 2022

13:4 Oracular Byzantine Reliable Broadcast

On the way to matching Oracle-CSB’s performance, we develop techniques to negate all
three types of overhead: at the batching limit, a Draft server delivers a payload wasting 0
bits to protocol overhead, performing 0 signature verifications, and exchanging ⌈log2 (c)⌉
bits of identifier, the minimum required to enumerate the set of clients. We outline our
contributions below, organized in three (plus one) take-home messages (T-HMs).

T-HM1: The effectiveness of batching goes beyond total order. In the totally ordered
setting, batching is famously effective at amortizing protocol overhead [45, 3]. Instead of
disseminating its message to all servers, a client hands it over to (one or more)6 batching
processes. Upon collecting a large enough set of messages, a batching process organizes all
messages in a batch, which it then disseminates to the servers. Having done so, the batching
process submits the batch’s hash to the system’s totally-ordering primitive. Because hashes
are constant in length, the cost of totally ordering a batch does not depend on its size. Once
batches are totally ordered, so too are messages (messages within a batch can be ordered by
any deterministic function), and equivocations can be handled at the application layer (for
example, in the context of a cryptocurrency, the second request to transfer the same asset
can be ignored by all correct servers, with no need for additional coordination). At the limit
of infinitely large batches, the relative overhead of the ordering protocol becomes vanishingly
small, and a server can allocate virtually all of its bandwidth to receiving batches. This
strategy, however, does not naturally generalize to CSB, where batches lack total order. As
payloads from multiple clients are bundled in the same batch, a correct server might detect
equivocation for only a subset of the payloads in the batch. Entirely accepting or entirely
rejecting a partially equivocated batch is not an option. In the first case, consistency could
be violated. In the second case, a single Byzantine client could single-handedly “poison”
the batches assembled by every correct batching process with equivocated payloads, thus
violating validity. In Draft, a server can partially reject a batch, acknowledging all but
some of its payloads. Along with its partial acknowledgement, a server provides a proof of
equivocation to justify each exception. Having collected a quorum of appropriately justified
partial acknowledgements, a batching process has servers deliver only those payloads that
were not excepted by any server. Because proofs of equivocations cannot be forged for
correct clients, a correct client handing over its payload to a correct batching process is
guaranteed to have that payload delivered. In the common case where batches have little to
no equivocations, servers exchange either empty or small lists of exceptions, whose size does
not scale with that of the batch. This extends the protocol-amortizing power of batching to
CSB and, we conjecture, other non-totally ordered abstractions.

T-HM2: Interactive multi-signing can slash signature overhead. Traditionally, batching
protocols are non-interactive on the side of clients. Having offloaded its message to a correct
batching process, a correct client does not need to interact further for its message to be
delivered: the batching process collects an arbitrary set of independently signed messages and
turns to the servers to get each signature verified, and the batch delivered. This approach is
versatile (messages are not tied to the batch they belong to) and reliable (a client crashing
does not affect a batch’s progress) but expensive (the cost of verifying each signature is high
and independent of the batch’s size). In Draft, batching processes engage in an interactive
protocol with clients to replace, in the good case, all individual signatures in a batch with

6 In most real-world implementations, a client optimistically entrusts its payload to a single process,
extending its request to larger portions of the system upon expiration of a suitable timeout.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:5

a single, batch-wide multi-signature. In brief, multi-signature schemes extend traditional
signatures with a mechanism to aggregate signatures and public keys: an arbitrarily large set
of signatures for the same message7 can be aggregated into a single, constant-sized signature;
similarly, a set of public keys can be aggregated into a single, constant-sized public key. The
aggregation of a set of signatures can be verified in constant time against the aggregation
of all corresponding public keys. Unlike verification, aggregation is a cheap operation,
reducing in some schemes to a single multiplication on a suitable field. Multi-signature
schemes open a possibility to turn expensive signature verification into a once-per-batch
operation. Intuitively, if each client contributing to a batch could multi-sign the entire batch
instead of its individual payload, all multi-signatures could be aggregated, allowing servers
to authenticate all payloads at once. However, as clients cannot predict how their payloads
will be batched, this must be achieved by means of an interactive protocol. Having collected
a set of individually-signed payloads in a batch, a Draft batching process shows to each
contributing client that its payload was included in the batch. In response, clients produce
their multi-signatures for the batch’s hash, which the batching process aggregates. Clients
that fail to engage in this interactive protocol (e.g., because they are faulty or slow) do not
lose liveness, as their original signature can still be attached to the batch to authenticate
their individual payload. In the good case, all clients reply in a timely fashion, and each
server has to verify a single multi-signature per batch. At the limit of infinitely large batches,
this results in each payload being delivered at an amortized cost of 0 signature verifications.
The usefulness of this interactive protocol naturally extends beyond CSB to all multi-shot
broadcast abstractions whose properties include integrity.

T-HM3: Dense id assignment can be achieved without consensus. In order to efficiently
convey payload senders, Oracle-CSB’s oracle organizes all clients in a list, attaching to each
client a successive integral identifier. Once the list is disseminated to all servers, the oracle can
identify each client by its identifier, sparing servers the cost of receiving larger, more sparse,
client-generated public keys. Id-assignment strategies similar to that of Oracle-CSB can be
developed, in the distributed setting, building on top of classical algorithms that identify
clients by their full public keys (we call such algorithms id-free, as opposed to algorithms
such as Draft, which are id-optimized). In a setting where consensus can be achieved, the
identifier density of Oracle-CSB is easily matched. Upon initialization, each client submits its
public key to an id-free implementation of Total-Order Broadcast (TOB). Upon delivery of a
public key, every correct process agrees on its position within the common, totally-ordered
log. As in Oracle-CSB, each client can then use its position in the list as identifier within
some faster, id-optimized broadcast implementation. In a consensus-less setting, achieving a
totally-ordered list of public keys is famously impossible [26]. This paper, however, proves
the counter-intuitive result that, when batching is used, the density of ids assigned by a
consensus-less abstraction can asymptotically match that of those produced by Oracle-CSB
or consensus. In Dibs, our consensus-less id-assigning algorithm, a client requests an id from
every server. Each server uses an id-free implementation of FIFO Broadcast to order the
client’s public key within its own log. Having observed its public key appear in at least one
log, the client publicly elects the server in charge of that log to be its assigner. Having done
so, the client obtains an id composed of the assigner’s public key and the client’s position

7 Some multi-signature schemes also allow the aggregation of signatures on heterogeneous messages. In
that case, however, aggregation is usually as expensive as signature verification. Given our goal to
reduce CPU complexity for servers, this paper entirely disregards heterogeneous aggregation schemes.

DISC 2022

13:6 Oracular Byzantine Reliable Broadcast

within the assigner’s log. We call the two components of an id domain and index, respectively.
Because the set of servers is known to (and can be enumerated by) all processes, an id’s
domain can be represented in ⌈log2 (n)⌉ bits, where n denotes the total number of servers.
Because at most c distinct clients can appear in the FIFO log of any server, indices are at
most ⌈log2 (c)⌉ bits long. In summary, Dibs assigns ids to clients without consensus, at an
additional cost of ⌈log2 (n)⌉ bits per id. Interestingly, even this additional complexity can
be amortized by batching. Having assembled a batch, a Draft batching process represents
senders not as a list of ids, but as a map, associating to each of the n domains the indices
of all ids in the batch under that domain. At the limit of infinitely large batches (C ≫ N),
the bits required to represent the map’s keys are entirely amortized by those required to
represent its values. This means that, while (⌈log2 (n)⌉ + ⌈log2 (c)⌉) bits are required to
identify a client in isolation, ⌈log2 (c)⌉ bits are sufficient if the client is batched: even without
consensus, Draft asymptotically matches the id efficiency of Oracle-CSB.

Bonus T-HM: Untrusted processes can carry the system. In THM1, we outlined how
batching can be generalized to the consensus-less case, and discussed its role in removing
protocol overhead. In THM2, we sketched how an interactive protocol between clients and
batching processes can eliminate signature overhead. In employing these techniques, we
shifted most of the communication and computation complexity of our algorithms from servers
to batching processes. Batching processes verify all client signatures, create batches, verify
and aggregate all client multi-signatures, then communicate with servers in an expensive
one-to-all pattern, engaging server resources (at the batching limit) as little as an oracle
would. Our last contribution is to observe that a batching process plays no role in upholding
CSB’s safety. As we discuss in detail throughout the remainder of this paper, a malicious
batching process cannot compromise consistency (it would need to collect two conflicting
quorums of acknowledgements), totality (any server delivering a batch has enough information
to convince all others to do the same) or integrity (batches are still signed, and forged or
improperly aggregated multi-signatures are guaranteed to be detected). Intuitively, the only
damage a batching process can do to the system is to refuse to process client payloads8. This
means that a batching process does not need to satisfy the same security properties as a
server. CSB’s properties cannot be upheld if a third of the servers are faulty. Conversely,
Draft has both liveness and safety as long as a single batching process is correct. This
observation has profound practical implications. In the real world, scaling the resources of
a permissioned, security-critical set of servers can be hard. On the one hand, reputable,
dependable institutions partaking in the system might not have the resources to keep up with
its demands. On the other, more trusted hardware translates to a larger security cross-section.
Trustless processes, however, are plentiful to the point that permissionless cryptocurrencies
traditionally waste their resources, making them compete against each other in expensive
proofs of Sybil-resistance [39]. In this paper, we extend the classical client-server model
with brokers, a permissionless, scalable set of processes whose only purpose is to alleviate
server complexity. Unlike servers, more than two-thirds of which we assume to be correct,
all brokers but one can be faulty. In Draft, brokers act as an intermediary between clients
and servers, taking upon themselves the batching of payloads, verification and aggregation of
signatures, the dissemination of batches, and the transmission of protocol messages.

8 Or cause servers to waste resources, e.g., by transmitting improperly signed batches. Simple account-
ability measures, we conjecture, would be sufficient to mitigate these attacks in Draft. A full discussion
of Denial of Service, however, is beyond the scope of this paper.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:7

Roadmap. We discuss related work in Section 2. We state our model and recall useful
cryptographic background in Section 3. In Section 4, we introduce our CSB implementation
Draft: we overview Draft’s protocol in Section 4.1, and provide high-level arguments for Draft’s
efficiency in Section 4.2. We draw our conclusions and propose future work in Section 5.
The full formal analysis of our algorithms as well as their pseudocode can be found in the
extended version of this paper [17].

2 Related Work

Byzantine Reliable Broadcast (BRB) is a classical primitive of distributed computing, with
widespread practical applications such as in State Machine Replication (SMR) [38, 15, 11],
Byzantine agreement [40, 18, 32, 31, 47], blockchains [3, 22, 23], and online payments [29, 19,
33]. In classical BRB, a system of n processes agree on a single message from a single source
(one of the n processes), while tolerating up to f Byzantine failures (f of the n processes
can behave arbitrarily). A well known solution to asynchronous BRB with provably optimal
resilience (f < n/3) was first proposed by Bracha [8, 9] who introduced the problem. Bracha’s
broadcast reaches O(n2) message complexity, and O(n2L) communication complexity (total
number of transmitted bits between correct processes [48]), where L is the length of the
message. Since O(n2) message complexity is provably optimal [27], the main focus of BRB-
related research has been on reducing its communication complexity. The best lower bound
for communication complexity is Ω(nL + n2), although it is unknown whether it is tight.
The nL term comes from all processes having to receive the message (length L), while the n2

term comes from each of the n processes having to receive Ω(n) protocol messages to ensure
agreement in the presence of f = Θ(n) failures [27]. One line of research focuses on worst-case
complexity, predominantly using error correcting codes [43, 6] or erasure codes [41, 30, 16, 2],
and has produced various BRB protocols with improved complexity [2, 16, 13, 24, 40],
many of them quite recently. The work of Das, Xiang and Ren [24] achieves O(nL + kn2)
communication complexity (specifically, 7nL + 2kn2), where k is the security parameter (e.g.,
the length of a hash, typically 256 bits). As the authors note, the value of hidden constants
(and k, which is sometimes considered as a constant in literature) is particularly important
when considering practical implementations of these protocols. Another line of research
focuses on optimizing the good case performance of BRB, i.e., when the network behaves
synchronously and no process misbehaves [13, 18, 32, 42, 1]. As the good case is usually
the common case, in practice, the real-world communication complexity of these optimistic
protocols matches that of the good case. A simple and widely-used hash-based BRB protocol
is given by Cachin et al. [13]. It replaces the echo and ready phase messages in Bracha’s
protocol with hashes, achieving O(nL + kn2) in the good case (specifically, nL + 2kn2),
and O(n2L) in the worst-case. Considering practical throughput, some protocols also focus
on the amortized complexity per source message [18, 42, 36]. Combining techniques such
as batching [18] and threshold signatures [46], at the limit (of batch size), BRB protocols
reach O(nL) amortized communication complexity in the good case [42]. At this point, the
remaining problem lies in the hidden constants. In the authenticated setting, batching-based
protocols rely on digital signatures to validate (source) messages before agreeing to deliver
them [42]. In reality, each source message in a batch includes its content, an identifier of
the source (e.g., a k-sized public key), a sequence id (identifying the message), and a k-sized
signature. When considering systems where L is small (e.g., online payments), these can
take up a large fraction of the communication. To be precise, the good-case amortized
communication complexity would be O(nL + kn). In fact, message signatures (the kn factor)

DISC 2022

13:8 Oracular Byzantine Reliable Broadcast

are by far the main bottleneck in practical applications of BRB today [23, 47], both in terms
of communication and computation (signature verification), leading to various attempts at
reducing or amortizing their cost [22, 36]. For example, Crain et al. [22] propose verification
sharding, in which only f + 1 processes have to receive and verify all message signatures
in the good case, which is a 3-fold improvement over previous systems (on the kn factor)
where all n processes verify all signatures. However, by itself, this does not improve on the
amortized cost of O(nL + kn) per message. When contrasting theoretical research with
practical systems, it is interesting to note the gap that can surge between the theoretical
model and reality. The recent work of Abraham et al. [1], focused on the good-case latency
of Byzantine broadcast, expands on some of these mismatches and argues about the practical
limitations of focusing on the worst-case. Another apparent mismatch lies in the classical
model of Byzantine broadcast. In many of the applications of BRB mentioned previously
(e.g., SMR, permissioned blockchains, online payments), there is usually a set of servers (n,
up to f of which are faulty), and a set of external clients (X) which are the true sources of
messages. The usual transformation from BRB’s classical model into these practical settings
maps the set of n servers as the n processes and simply excludes clients as system entities,
e.g., assuming their messages are relayed through one of the servers. Since the number of
clients can be very large (|X| ≫ n), clients are untrusted (which can limit their usefulness),
and the focus is on the communication complexity of the servers, this transformation seems
reasonable and simplifies the problem. However, it can also limit the search for more practical
solutions. In this paper, in contrast with the classical model of BRB, we explicitly include the
set of clients X in our system while focusing on the communication complexity surrounding
the servers (i.e., the bottleneck). Furthermore, we introduce brokers, an untrusted set B

of processes, only one of which is assumed to be correct, whose goal is to assist servers in
their operation. By doing this, we can leverage brokers to achieve a good-case, amortized
communication complexity (for servers, information received or sent) of nL + o(nL).

3 Model & background

3.1 Model

System and adversary. We assume an asynchronous message-passing system where the set
Π of processes is the distinct union of three sets: servers (Σ), brokers (B), and clients (X).
We use n = |Σ|, k = |B| and c = |X|. Any two processes can communicate via reliable, FIFO,
point-to-point links (messages are delivered in the order they are sent). Faulty processes
are Byzantine, i.e., they may fail arbitrarily. Byzantine processes know each other, and may
collude and coordinate their actions. At most f servers are Byzantine, with n = 3f + 1. At
least one broker is correct. All clients may be faulty. We use ΠC and ΠF to respectively
identify the set of correct and faulty processes. The adversary cannot subvert cryptographic
primitives (e.g., forge signatures). Servers and brokers9 are permissioned (every process
knows Σ and B), clients are permissionless (no correct process knows X a priori). We call
certificate a statement signed by either a plurality (f + 1) or a quorum (2f + 1) of servers.
Since every process knows Σ, any process can verify a certificate.

9 The assumption that brokers are permissioned is made for simplicity, and can be easily relaxed to the
requirement that every correct process knows at least one correct broker.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:9

Good case. The algorithms presented in this paper are designed to uphold all their properties
in the model above. Draft, however, achieves oracular efficiency only in the good case. In the
good case, links are synchronous (messages are delivered at most one time unit after they
are sent), all processes are correct, and the set of brokers contains only one element. To
take advantage of the good case, Draft makes use of timers (which is uncommon for purely
asynchronous algorithms). A timer with timeout δ set at time t rings: after time (t + δ), if
the system is synchronous; after time t, otherwise. Intuitively, in the non-synchronous case,
timers disregard their timeout entirely, and are guaranteed to ring only eventually.

3.2 Background
Besides commonly used hashes and signatures, the algorithms presented in this paper make
use of two less often used cryptographic primitives, namely, multi-signatures and Merkle
trees. We briefly outline their use below. An in-depth discussion of their inner workings,
however is beyond the scope of this paper.

Multi-signatures. Like traditional signatures, multi-signatures [5] are used to publicly
authenticate messages: a public / secret keypair (p, r) is generated locally; r is used to
produce a signature s for a message m; s is publicly verified against p and m. Unlike
traditional signatures, however, multi-signatures for the same message can be aggregated. Let
(p1, r1), . . . , (pn, rn) be a set of keypairs, let m be a message, and let si be ri’s signature for
m. (p1, . . . , pn) and (s1, . . . , sn) can be respectively aggregated into a constant-sized public
key p̂ and a constant-sized signature ŝ. As with individually-generated multi-signatures, ŝ

can be verified in constant time against p̂ and m. Aggregation is cheap and non-interactive:
provided with (p1, . . . , pn) (resp., (s1, . . . , sn)) any process can compute p̂ (resp., ŝ).

Merkle trees. Merkle trees [37] extend traditional hashes with compact proofs of inclusion.
As with hashes, a sequence (x1, . . . , xn) of values can be hashed into a preimage and collision-
resistant digest (or root) r. Unlike hashes, however, a proof pi can be produced from
(x1, . . . , xn) to attest that the i-th element of the sequence whose root is r is indeed xi. In
other words, provided with r, pi and xi, any process can verify that the i-th element of
(x1, . . . , xn) is indeed xi, without having to learn (x1, . . . , xi−1, xi+1, . . . , xn). The size of a
proof of inclusion for a sequence of n elements is logarithmic in n.

4 Draft: Overview

In this section, we provide an intuitive overview of our CSB implementation, Draft, as well
as high-level arguments for its efficiency.

4.1 Protocol
Dramatis personae. The goal of this section is to provide an intuitive understanding of
Draft’s protocol. In order to do this, we focus on four processes: a correct client χ, a correct
broker β, a correct and fast server σ, and a correct but slow server σ̃. We follow the messages
exchanged between χ, β, σ and σ̃ as the protocol unfolds, as captured by Figure 1.

The setting. χ’s goal is to broadcast a payload p. χ has already used Draft’s underlying
Directory abstraction (DIR) to obtain an id i. In brief, DIR guarantees that i is assigned to
χ only, and provides χ with an assignment certificate a, which χ can use to prove that its id

DISC 2022

13:10 Oracular Byzantine Reliable Broadcast

Figure 1 Draft’s protocol. Having collected a batch of client payloads, a broker engages in an
interactive protocol with clients to reduce the batch, replacing (most of) its individual payload
signatures with a single, batch-wide multi-signature. The broker then disseminates the batch to all
servers, successively gathering a witness for its correctness and a certificate to commit (some of) its
payloads. Having had a plurality of servers deliver the batch, the broker notifies all clients with a
suitable certificate. In the bad case, servers can ensure totality without any help from the broker,
propagating batches and commit certificates in an all-to-all fashion.

is indeed i. As we discussed in Section 1, Draft uses DIR-assigned ids to identify payload
senders. This is essential to Draft’s performance, as DIR guarantees density: as we outline in
Section 4.2, ⌈log2 (c)⌉ bits are asymptotically sufficient to represent each id in an infinitely
large batch. Throughout the remainder of this paper, we say that a process π knows an id î

iff π knows the public keys to which î is assigned.

Building a batch. In order to broadcast its payload p, χ produces a signature s for p, and
then sends a Submission message to β (fig. 1, step 1). The Submission message contains p,
s, and χ’s assignment certificate a. Upon receiving the Submission message, β learns χ’s id
i from a, then verifies s against p. Having done so, β stores (i, p, s) in its submission pool.
For a configurable amount of time, β fills its pool with submissions from other clients, before
flushing it into a batch. Let us use (i1, p1, s1), . . . , (ib, pb, sb) to enumerate the elements β

flushes from the submission pool (for some n, we clearly have (i, p, s) = (in, pn, sn)). For
convenience, we will also use χj to identify the sender of pj (owner of ij). Importantly, β

flushes the pool in such a way that ij ̸= ik for all j ̸= k: for safety reasons that will soon be
clear, Draft’s protocol prevents a client from having more than one payload in any specific
batch. Because of this constraint, some payloads might linger in β’s pool. This is not an
issue: β will simply flush those payloads to a different batch at a later time. When building
the batch, β splits submissions and signatures, storing (i1, p1), . . . , (ib, pb) separately from
s1, . . . , sb.

Reducing the batch. Having flushed submissions (i1, p1), . . . , (ib, pb) and signatures
s1, . . . , sb, β moves on to reduce the batch, as exemplified in Figure 2. In an attempt
to minimize signature overhead for servers, β engages in an interactive protocol with clients
χ1, . . . , χb to replace as many signatures as possible with a single, batch-wide multi-signature.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:11

In order to do so, β organizes (i1, p1), . . . , (ib, pb) in a Merkle tree with root r (for brevity, we
call r the batch’s root). β then sends an Inclusion message to each χj (fig. 1, step 2). Each
Inclusion message contains r, along with a proof of inclusion qj for (ij , pj). Upon receiving
its Inclusion message, χ checks qn against r. In doing so, χ comes to two conclusions.
First, χ’s submission (i, p) = (in, pn) is part of a batch whose root is r. Second, because
no Draft batch can contain multiple payloads from the same client, that batch does not
attribute χ any payload other than p. In other words, χ can be certain that β will not
broadcast some spurious payload p′ ̸= p in χ’s name: should β attempt to do that, the
batch would be verifiably malformed, and immediately discarded. This means χ can safely
produce a multi-signature m for r: as far as χ is concerned, the batch with root r upholds
integrity. Having signed r, χ sends m to β by means of a Reduction message (fig. 1, step
3). Upon receiving χj ’s Reduction message, β checks χj ’s multi-signature mj against r.
Having done so, β discards χj ’s original signature sj . Intuitively, with mj , χj attested its
agreement with whatever payload the batch attributes to χj . Because this is equivalent to
individually authenticating pj , sj is redundant and can be dropped. Upon expiration of a
suitable timeout, β stops collecting Reduction messages: clearly, if β waited for every χj to
produce mj , a single Byzantine client could prevent the protocol from moving forward by
refusing to send its Reduction message. β aggregates all the multi-signatures it collected
for r into a single, batch-wide multi-signature m. In the good case, every χj is correct and
timely. If so, β drops all individual signatures, and the entire batch is authenticated by m

alone.

Figure 2 An example of partially reduced batch. B = 8 submissions are organized on the leaves
of a Merkle tree with root r. Each submission (ij , pj) is originally authenticated by an individual
signature sj . Upon collecting a multi-signature mj for r, the broker drops sj . Here the broker collected
multi-signatures m2, m5, m6 and m8, leaving a straggler set S = {(i1, s1), (i3, s3), (i4, s4), (i7, s7)}.
Upon expiration of a suitable timeout, the broker aggregates m2, m5, m6 and m8 into a single
multi-signature m. As such, every payload in the batch is authenticated either by m or by S.

The perks of a reduced batch. Having reduced the batch, β is left with a sequence of sub-
missions (i1, p1), . . . , (ib, pb), a multisignature m on the Merkle root r of (i1, p1), . . . , (ib, pb),
and a straggler set S holding the individual signatures that β failed to reduce. More pre-
cisely, S contains (ij , sj) iff β did not receive a valid Reduction message from χj before the
reduction timeout expired. We recall that m’s size is constant, and S is empty in the good
case. Once reduced, the batch is cheap to authenticate: it is sufficient to verify the batch’s

DISC 2022

13:12 Oracular Byzantine Reliable Broadcast

multi-signature against the batch’s root, and each straggler signature against its individual
payload. More precisely, let T denote the set of timely clients (χj is in T iff (ij , ..) is not
in S). Let t denote the aggregation of T ’s public keys. Provided with (i1, p1), . . . , (ib, pb),
m and S, any process that knows i1, . . . , ib can verify that the batch upholds integrity by:
(1) computing r and t from (i1, p1), . . . , (ib, pb) and S; (2) using t to verify m against r; and
(3) verifying each sj in S against pj . In the good case, authenticating the batch reduces to
verifying a single multi-signature. This is regardless of the batch’s size.

The pitfalls of a reduced batch. As we discussed in the previous paragraph, reducing a
batch makes it cheaper to verify its integrity. Reduction, however, hides a subtle trade-off:
once reduced, a batch gets easier to authenticate as whole. Its individual payloads, however,
become harder to authenticate. For the sake of simplicity, let us imagine that β successfully
dropped all the individual signatures it originally gathered from χ1, . . . , χb. In order to prove
that (χ = χn) broadcast (p = pn), β could naively produce the batch’s root r, (in, pn)’s
proof of inclusion qn, and the batch’s multi-signature m for r. This, however, would not
be sufficient to authenticate p: because the multi-signature mn that χ produced for r was
aggregated with all others, m can only be verified by the aggregation of all χ1, . . . , χb’s public
keys. This makes authenticating p as expensive as authenticating the entire batch: in order
to verify m, all (ij , pj) must be produced and checked against r, so that all corresponding
public keys can be safely aggregated.

Witnessing the batch. As we discuss next, proving the integrity of individual payloads is
fundamental to ensure Draft’s validity. In brief, to prove that some χk equivocated its payload
pk = (ck, lk), a server must prove to β that χk also issued some payload p′

k = (ck, l′
k ̸= lk).

Lacking this proof, a single Byzantine server could, for example, claim without basis that χ

equivocated p. This could trick β into excluding p, thus compromising Draft’s validity. As we
discussed in the previous paragraph, however, proving the integrity of an individual payload
in a reduced batch is difficult. While we conjecture that purely cryptographic solutions to this
impasse might be achievable in some schemes10, Draft has β engage in a simple protocol to
further simplify the batch’s authentication, replacing all client-issued (multi-)signatures with
a single, server-issued certificate. Having collected and reduced the batch, β sends a Batch
message to all servers (fig. 1, step 4). The Batch message only contains (i1, p1), . . . , (ib, pb).
Upon receiving the Batch message, σ collects in a set Uσ all the ids it does not know (ij

is in Uσ iff σ does not know ij), and sends Uσ back to β by means of a BatchAcquired
message (fig. 1, step 5). Upon receiving σ’s BatchAcquired message, β builds a set Aσ

containing all id assignments that σ is missing (aj is in Aσ iff ij is in Uσ). Having done
so, β sends a Signatures message to σ (fig. 1, step 6). The Signatures message contains
the batch’s multi-signature m, the straggler set S, and Aσ. We underline the importance of
sending id assignments upon request only. Thinking to shave one round-trip off the protocol,
β could naively package in a single message all submissions, all (multi-)signatures, and all
assignments relevant to the batch. In doing so, however, β would force each server to receive

10 For example, using BLS, β could aggregate the public keys of χ1, . . . , χn−1, χn+1, . . . , χb into a public
key t̃n, then show that the aggregation of t̃n with χ’s public key correctly verifies m against r. Doing so,
however, would additionally require β to exhibit a proof that t̃n is not a rogue public key, i.e., that t̃n

indeed results from the aggregation of client public keys. This could be achieved by additionally having
χ1, . . . , χb multi-sign some hard-coded statement to prove that they are not rogues. β could aggregate
such signatures on the fly, producing a rogue-resistance proof for t̃n that can be transmitted and verified
in constant time. This, however, is expensive (and, frankly, at the limit of our cryptographic expertise).

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:13

one assignment per submission, immediately forfeiting Draft’s oracular efficiency. At the
batching limit we assume that all servers already know all broadcasting clients. In that
case, both Uσ and Aσ are constant-sized, empty sets, adding only a vanishing amount of
communication complexity to the protocol. Upon receiving the Signatures message, σ

verifies and learns all assignments in Aσ. Having done so, σ knows i1, . . . , ib. As we outlined
above, σ can now efficiently authenticate the whole batch, verifying m against the batch’s
root r, and each ij in S against pj . Having established the integrity of the whole batch, σ

produces a witness shard for the batch, i.e., a multi-signature wσ for [Witness, r], effectively
affirming to have successfully authenticated the batch. σ sends wσ back to β by means of
a WitnessShard message (fig. 1, step 7). Having received a valid WitnessShard message
from f + 1 servers, β aggregates all witness shards into a witness w. Because w is a plurality
(f + 1) certificate, at least one correct server necessarily produced a witness shard for the
batch. This means that at least one correct server has successfully authenticated the batch
by means of client (multi-)signatures. Because w could not have been gathered if the batch
was not properly authenticated, w itself is sufficient to authenticate the batch, and β can
drop all (now redundant) client-generated (multi-)signatures for the batch. Unlike m, w is
easy to verify, as it is signed by only f + 1, globally known servers. Like m, w authenticates
r. As such, any pj can now be authenticated just by producing w, and (ij , pj)’s proof of
inclusion qj .

Gathering a commit certificate. Having successfully gathered a witness w for the batch, β

sends w to all servers by means of a Witness message (fig. 1, step 8). Upon receiving the
Witness message, σ moves on to check (i1, p1), . . . , (ib, pb) for equivocations. More precisely,
σ builds a set of exceptions Eσ containing the ids of all equivocating submissions in the
batch (ij is in Eσ iff σ previously observed χj submit a payload p′

j that conflicts with pj ; we
recall that pj and p′

j conflict if their contexts are the same, but their messages are different).
σ then produces a commit shard for the batch, i.e., a multi-signature cσ for [Commit, r, Eσ],
effectively affirming that σ has found all submissions in the batch to be non-equivocated,
except for those in Eσ. In the good case, every client is correct and Eσ is empty. Having
produced cσ, σ moves on to build a set Qσ containing a proof of equivocation for every
element in Eσ. Let us assume that σ previously received from some χk a payload p′

k that
conflicts with pk. σ must have received p′

k as part of some witnessed batch. Let r′
k identify

the root of p′
k’s batch, let w′

k identify r′
k’s witness, let q′

k be (ik, p′
k)’s proof of inclusion in r′

k.
By exhibiting (r′

k, w′
k, p′

k), σ can prove to β that χk equivocated: pk conflicts with p′
k, and

(ik, p′
k) is provably part of a batch whose integrity was witnessed by at least one correct server.

Furthermore, because correct clients never equivocate, (r′
k, w′

k, p′
k) is sufficient to convince β

that χk is Byzantine. For each ij in Eσ, σ collects in Qσ a proof of equivocation
(
r′

j , w′
j , p′

j

)
.

Finally, σ sends a CommitShard message back to β (fig. 1, step 9). The CommitShard message
contains cσ, Eσ and Qσ. Upon receiving σ’s CommitShard message, σ verifies cσ against r

and Eσ, then checks all proofs in Qσ. Having collected valid CommitShard messages from a
quorum of servers σ1, . . . , σ2f+1, β aggregates all commit shards into a commit certificate
c. We underline that each σj signed the same root r, but a potentially different set of
exceptions Eσj

. Let E denote the union of Eσ1 , . . . , Eσ2f+1 . We call E the batch’s exclusion
set. Because a proof of equivocation cannot be produced against a correct client, β knows
that all clients identified by E are necessarily Byzantine. In particular, because χ is correct,
(i = in) is guaranteed to not be in E.

DISC 2022

13:14 Oracular Byzantine Reliable Broadcast

Committing the batch. Having collected a commit certificate c for the batch, β sends c

to all servers by means of a Commit message (fig. 1, step 10). Upon receiving the Commit
message, σ verifies c, computes the exclusion set E, then delivers every payload pj whose
id ij is not in E. Recalling that c is assembled from a quorum of commit shards, at least
f + 1 correct servers contributed to c. This means that, if some ik is not in E, then at least
f + 1 correct servers found pk not to be equivocated. As in most BRB implementations [9],
this guarantees that no two commit certificates can be gathered for equivocating payloads:
Draft’s consistency is upheld.

The role of equivocation proofs. As the reader might have noticed, β does not attach any
proof of equivocation to its Commit message. Having received β’s commit certificate c, σ

trusts β’s exclusion set E, ignoring every payload whose id is in E. This is not because σ

can trust β to uphold validity. On the contrary, σ has no way to determine that β is not
maliciously excluding the payload of a correct client. Indeed, even if σ were to verify a proof
of exclusion for every element in E, a malicious β could still censor a correct client simply
by ignoring its Submit message in the first place. Equivocation proofs are fundamental to
Draft’s validity not because they force malicious brokers to uphold validity, but because they
enable correct brokers to do the same. Thanks to equivocation proofs, a malicious server
cannot trick a correct broker into excluding the payload of a correct client. This is enough
to guarantee validity. As we discuss below, χ successively submits p to all brokers until it
receives a certificate attesting that p was delivered by at least one correct server. Because
we assume at least one broker to be correct, χ is eventually guaranteed to succeed.

Notifying the clients. Having delivered every payload whose id is not in the exclusion set E,
σ produces a completion shard for the batch, i.e., a multi-signature zσ for [Completion, r, E],
effectively affirming that σ has delivered all submissions in the batch whose id is not in E.
σ sends zσ to β by means of a CompletionShard message (fig. 1, step 11). Upon receiving
f + 1 valid CompletionShard messages, β assembles all completion shards into a completion
certificate z. Finally, β sends a Completion message to χ1, . . . , χb (fig. 1, step 12). The
Completion message contains z and E. Upon receiving the Completion message, χ verifies
z against E, then checks that i is not in E. Because at least one correct server contributed
a completion shard to z, at least one correct process delivered all payloads that E did not
exclude, including p. Having succeeded in broadcasting p, χ does not need to engage further,
and can stop successively submitting p to all brokers.

No one is left behind. As we discussed above, upon receiving the commit certificate
c, σ delivers every payload in the batch whose id is not in the exclusion set E. Having
gotten at least one correct server to deliver the batch, β is free to disengage, and moves
on to assembling and brokering its next batch. In a moment of asynchrony, however, all
communications between β and σ̃ might be arbitrarily delayed. This means that σ̃ has no way
of telling whether or not it will eventually receive batch and commit certificate: a malicious
β might have deliberately left σ̃ out of the protocol. Server-to-server communication is thus
required to guarantee totality. Having delivered the batch, σ waits for an interval of time
long enough for all correct servers to deliver batch and commit certificate, should the network
be synchronous and β correct. σ then sends to all servers an OfferTotality message (fig.
1, step 13). The OfferTotality message contains the batch’s root r, and the exclusion set
E. In the good case, upon receiving σ’s OfferTotality message, every server has delivered
the batch and ignores the offer. This, however, is not the case for slow σ̂, which replies to

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:15

σ with an AcceptTotality message (fig. 1, step 14). Upon receiving σ̃’s AcceptTotality
message, σ sends back to σ̃ a Totality message (fig. 1, step 15). The Totality message
contains all submissions (i1, p1), . . . , (ib, pb), id assignments for i1, . . . , ib, and the commit
certificate c. Upon delivering σ’s Totality message, σ̃ computes r from (i1, p1), . . . , (ib, pb),
checks c against r, computes E from c, and delivers every payload pj whose id ij is not in E.
This guarantees totality and concludes the protocol.

4.2 Complexity
Directory density. As we introduced in Section 4.1, Draft uses ids assigned by its underlying
Directory (DIR) abstraction to identify payload senders. A DIR-assigned id is composed
of two parts: a domain and an index. Domains form a finite set D whose size does not
increase with the number of clients, indices are natural numbers. Along with safety (e.g.,
no two processes have the same id) and liveness (e.g., every correct client that requests an
id eventually obtains an id), DIR guarantees density: the index part of any id is always
smaller than the total number of clients c (i.e., each id index is between 0 and (c − 1)).
Intuitively, this echoes the (stronger) density guarantee provided by Oracle-CSB, the oracle-
based implementation of CSB we introduced in Section 1 to bound Draft’s performance. In
Oracle-CSB, the oracle organizes all clients in a list, effectively labeling each client with an
integer between 0 and (c − 1). In a setting where consensus cannot be achieved, agreeing on
a totally-ordered list of clients is famously impossible: a consensus-less DIR implementation
cannot assign ids if |D| = 1. However, DIR can be implemented without consensus if servers
are used as domains (D = Σ). In our DIR implementation Dibs, each server maintains an
independent list of public keys. In order to obtain an id, a client χ has each server add
its public key to its list, then selects a server σ to be its assigner. In doing so, χ obtains
an id (σ, n), where n ∈ 0..(c − 1) is χ’s position in σ’s log. In summary, a consensus-less
implementation of DIR still guarantees that indices will be smaller than c, at the cost of
a non-trivial domain component for each id. This inflates the size of each individual id by
⌈log2 (|D|)⌉ bits.

Batching ids. While DIR-assigned ids come with a non-trivial domain component, the size
overhead due to domains vanishes when infinitely many ids are organized into a batch. This
is because domains are constant in the number of clients. Intuitively, as infinitely many
ids are batched together, repeated domains become compressible. When building a batch,
a Draft broker represents the set I of sender ids not as a list, but as a map ĩ. To each
domain, ĩ associates all ids in I under that domain (n is in ĩ[d] iff (d, n) is in I). Because
ĩ’s keys are fixed, as the size of I goes to infinity, the bits required to represent ĩ’s keys are
completely amortized by those required to represent ĩ’s values. At the batching limit, the
cost of representing each id in ĩ converges to that of representing its index only, ⌈log2 (c)⌉.

Protocol cost. At the batching limit we assume a good-case execution: links are synchronous,
all processes are correct, and the set of brokers contains only one element. We additionally
assume that infinitely many clients broadcast concurrently. Finally, we assume all servers to
already know all broadcasting clients. Let β denote the only broker. As all broadcasting
clients submit their payloads to β within a suitably narrow time window, β organizes all
submissions into a single batch with root r. Because links are synchronous and all clients are
correct, every broadcasting client submits its multi-signature for r in time. Having removed
all individual signatures from the batch, β is left with a single, aggregated multi-signature m

and an empty straggler set S. β compresses the sender ids and disseminates the batch to

DISC 2022

13:16 Oracular Byzantine Reliable Broadcast

all servers. As m and S are constant-sized, the amortized cost for a server to receive each
payload p is (⌈log2 (c)⌉ + |p|) bits. As m authenticates the entire batch, a server authenticates
each payload at an amortized cost of 0 signature verifications. The remainder of the protocol
unfolds as a sequence of constant-sized messages: because all broadcasting clients are known
to all servers, no server requests any id assignment; witnesses are always constant-sized;
and because all processes are correct, no client equivocates and all exception sets are empty.
Finally, again by the synchrony of links, all offers of totality are ignored. In summary, at the
batching limit a server delivers a payload at an amortized cost of 0 signature verifications
and (⌈log2 (c)⌉ + |p|) bits exchanged.

Latency. As depicted in Figure 1, the latency of Draft is 10 message delays in the synchronous
case (fast servers deliver upon receiving the broker’s Commit message), and at most 13
message delays in the asynchronous case (slow servers deliver upon receiving other servers’
Totality messages). By comparison, the latency of the optimistic reliable broadcast algorithm
by Cachin et al. [13] is respectively 4 message delays (synchronous case) and 6 message
delays (asynchronous case). Effectively, Draft trades oracular efficiency for a constant latency
overhead.

Worst-case complexity. In the worst case, a Draft server delivers a b-bits payload by
exchanging O((log (c) + b)kn) bits, where c, k and n respectively denote the number of
clients, brokers and servers. In brief, the same id, payload and signature is included by
each broker in a different batch (hence the k term) and propagated in an all-to-all fashion
(carried by Totality messages) across correct servers (hence the n term). By comparison,
the worst-case communication complexity of Cachin et al.’s optimistic reliable broadcast
is O(ln) per server, where l is the length of the broadcast payload. A direct batched
generalization of the same algorithm, however, would raise the worst-case communication to
O

(
ln2)

per server, similar to that of Draft when n ∼ k. Both batched Bracha and Draft can
be optimized by polynomial encoding, reducing their per-server worst-case complexity to
O(ln) and O((log (c) + b)k) respectively. Doing so for Draft, however, is beyond the scope of
this paper.

5 Conclusions

Our contributions. In this paper we study Client-Server Byzantine Reliable Broadcast
(CSB), a multi-shot variant of Byzantine Reliable Broadcast (BRB) whose interface is
split between broadcasting clients and delivering servers. We introduce Oracle-CSB, a toy
implementation of CSB that relies on a single, infallible oracle to uphold all CSB properties.
Unless clients can be assumed to broadcast at a non-uniform rate, Oracle-CSB’s signature
and communication complexities are optimal: in Oracle-CSB, a server delivers a payload p

by performing 0 signature verifications, and exchanging (⌈log2 (c)⌉ + |p|) bits, where c is the
number of clients. We present Draft, our implementation of CSB. Draft upholds all CSB
properties under classical BRB assumptions (notably asynchronous links and less than a third
of faulty servers). When links are synchronous and all processes are correct, however, and at
the limit of infinite concurrently broadcasting clients, Draft’s signature and communication
complexities match those of Oracle CSB.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:17

Future work. We hope to extend Draft to allow multiple messages by the same client in the
same batch. We envision that this could be achieved by using other types of cryptographic
accumulators or variants of Merkle trees, such as Merkle-Patricia trees [25]. It would also be
interesting to see if the worst-case performance of Draft could be improved, e.g. by using
error correction codes (ECC) or erasure codes, without significantly affecting its good-case
performance. Lastly, we hope to use Draft’s keys ideas to implement a total-order broadcast
primitive, improving the scalability of existing SMR implementations.

References
1 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-Case Latency of Byzantine

Broadcast: A Complete Categorization. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, pages 331–341, New York, NY, USA, 2021.
Association for Computing Machinery.

2 Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof
systems. Cryptology ePrint Archive, 2021.

3 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

4 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Byzantine-tolerant causal
broadcast. Theoretical Computer Science, 885:55–68, 2021.

5 Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algorithms for
pairing-based cryptosystems. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
pages 354–369, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

6 Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 52–61,
1993.

7 Joseph T.A. Birman K.P. Reliable communication in the presence of failures. ACM Transactions
on Computer Systems, 5(1):47–76, 1987.

8 Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings of the
third annual ACM symposium on Principles of distributed computing, pages 154–162, 1984.

9 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

10 Gabriel Bracha and Sam Toueg. Asynchronous Consensus and Broadcast Protocols. JACM,
32(4), 1985.

11 Christian Cachin. State machine replication with byzantine faults. In Replication, pages
169–184. Springer, 2010.

12 Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

13 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

14 Christian Cachin and Jonathan A. Poritz. Secure Intrusion-tolerant Replication on the Internet.
In DSN, 2002.

15 Christian Cachin and Jonathan A Poritz. Secure intrusion-tolerant replication on the internet.
In Proceedings International Conference on Dependable Systems and Networks, pages 167–176.
IEEE, 2002.

DISC 2022

13:18 Oracular Byzantine Reliable Broadcast

16 Christian Cachin and Stefano Tessaro. Asynchronous Verifiable Information Dispersal. In
Proceedings of the 24th Symposium on Reliable Distributed Systems – SRDS 2005, pages
191–202, October 2005.

17 Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira. Oracular
Byzantine Reliable Broadcast (Extended Version), 2022.

18 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

19 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 26–38, 2020.
doi:10.1109/DSN48063.2020.00023.

20 Thomas Cover and Joy Thomas. Elements of Information Theory, Second Edition. John
Wiley & Sons, 2005.

21 Tyler Crain, Christopher Natoli, and Vincent Gramoli. Evaluating the Red Belly Blockchain.
CoRR, 2018.

22 Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: A secure, fair and scalable
open blockchain. In 2021 IEEE Symposium on Security and Privacy (SP), pages 466–483.
IEEE, 2021.

23 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 34–50, 2022.

24 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2705–2721, 2021.

25 Haitz Sáez de Ocáriz Borde. An overview of trees in blockchain technology: Merkle trees and
merkle patricia tries, 2022.

26 Xavier Défago, André Schiper, and Péter Urbán. Total Order Broadcast and Multicast
Algorithms: Taxonomy and Survey. ACM Comput. Surv., 36(4):372–421, December 2004.

27 Danny Dolev and Rüdiger Reischuk. Bounds on Information Exchange for Byzantine Agreement.
J. ACM, 32(1):191–204, January 1985.

28 Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: Asynchronous BFT Made Practical.
In CCS, 2018.

29 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos Seredinschi.
The Consensus Number of a Cryptocurrency. In PODC, 2019.

30 James Hendricks, Gregory R Ganger, and Michael K Reiter. Verifying distributed erasure-
coded data. In Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, pages 139–146, 2007.

31 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165–175, 2021.

32 Klaus Kursawe and Victor Shoup. Optimistic asynchronous atomic broadcast. In International
Colloquium on Automata, Languages, and Programming, pages 204–215. Springer, 2005.

33 Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei Tonkikh. Permissionless
and asynchronous asset transfer. In 35th International Symposium on Distributed Computing
(DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

34 D. Malkhi, M. Merritt, and O. Rodeh. Secure reliable multicast protocols in a wan. In
Proceedings of 17th International Conference on Distributed Computing Systems, pages 87–94,
1997.

35 Dahlia Malkhi and Michael Reiter. A High-Throughput Secure Reliable Multicast Protocol.
Journal of Computer Security, 5:113–127, 1996.

https://doi.org/10.1109/DSN48063.2020.00023

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira 13:19

36 Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast protocol.
Journal of Computer Security, 5(2):113–127, 1997.

37 Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference
on the theory and application of cryptographic techniques, pages 369–378. Springer, 1987.

38 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016.

39 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

40 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In 34th International Symposium on
Distributed Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

41 James S Plank and Lihao Xu. Optimizing cauchy reed-solomon codes for fault-tolerant network
storage applications. In Fifth IEEE International Symposium on Network Computing and
Applications (NCA’06), pages 173–180. IEEE, 2006.

42 HariGovind V Ramasamy and Christian Cachin. Parsimonious asynchronous byzantine-fault-
tolerant atomic broadcast. In International Conference On Principles Of Distributed Systems,
pages 88–102. Springer, 2005.

43 Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

44 Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(3), 1994.

45 Nuno Santos and André Schiper. Optimizing Paxos with batching and pipelining. Theoretical
Computer Science, 496:170–183, 2013. Distributed Computing and Networking (ICDCN 2012).

46 Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207–220. Springer, 2000.

47 Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. State machine replication
scalability made simple. In Proceedings of the Seventeenth European Conference on Computer
Systems, pages 17–33, 2022.

48 Andrew Chi-Chih Yao. Some Complexity Questions Related to Distributive Computing. In
Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
pages 209–213, New York, NY, USA, 1979. Association for Computing Machinery.

DISC 2022

Byzantine Consensus Is Θ(n2)
The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!

Pierre Civit
Sorbonne University, Paris, France

Muhammad Ayaz Dzulfikar
NUS Singapore, Singapore

Seth Gilbert
NUS Singapore, Singapore

Vincent Gramoli
University of Sydney, Australia
Redbelly Network, Sydney, Australia

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least)
quadratic communication complexity in the worst case. While it has been shown that the bound is
tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic
communication complexity can be obtained in partial synchrony. Until now, the most efficient
known solutions for Byzantine consensus in partially synchronous settings had cubic communication
complexity (e.g., HotStuff, binary DBFT).

This paper closes the existing gap by introducing SQuad, a partially synchronous Byzantine
consensus protocol with quadratic worst-case communication complexity. In addition, SQuad is
optimally-resilient and achieves linear worst-case latency complexity. The key technical contribution
underlying SQuad lies in the way we solve view synchronization, the problem of bringing all correct
processes to the same view with a correct leader for sufficiently long. Concretely, we present
RareSync, a view synchronization protocol with quadratic communication complexity and linear
latency complexity, which we utilize in order to obtain SQuad.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Optimal Byzantine consensus, Communication complexity, Latency complex-
ity

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.14

Related Version The extended version of this paper, which includes detailed proofs, is available
online.
Full Version: https://arxiv.org/abs/2208.09262 [19]

Funding This work is supported in part by the ARC Future Fellowship funding scheme (#180100496).
Seth Gilbert: Supported in part by Singapore MOE grant MOE2018-T2-1-160.

Acknowledgements The authors would like to thank Gregory Chockler and Alexey Gotsman for
helpful conversations.

© Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan
Komatovic, and Manuel Vidigueira;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://arxiv.org/abs/2208.09262
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Deterministic Byzantine Consensus Is Θ(n2)

1 Introduction

Byzantine consensus [38] is a fundamental distributed computing problem. In recent years,
it has become the target of widespread attention due to the advent of blockchain [22, 4, 31]
and decentralized cloud computing [41], where it acts as a key primitive. The demand of
these contexts for high performance has given a new impetus to research towards Byzantine
consensus with optimal communication guarantees.

Intuitively, Byzantine consensus enables processes to agree on a common value despite
Byzantine failures. Formally, each process is either correct or faulty; correct processes follow
a prescribed protocol, whereas faulty processes (up to f > 0) can arbitrarily deviate from it.
Each correct process proposes a value, and should eventually decide a value. The following
properties are guaranteed:

Validity: If all correct processes propose the same value, then only that value can be
decided by a correct process.
Agreement: No two correct processes decide different values.
Termination: All correct processes eventually decide.

The celebrated Dolev-Reischuk bound [25] says that any deterministic solution of the
Byzantine consensus problem requires correct processes to exchange (at least) a quadratic
number of bits of information. It has been shown that the bound is tight in synchronous
environments [10, 46]. However, for the partially synchronous environments [26] in which
the network becomes synchronous only after some unknown Global Stabilization Time
(GST), no Byzantine consensus protocol achieving quadratic communication complexity
is known.1 Therefore, the question remains whether a partially synchronous Byzantine
consensus with quadratic communication complexity exists [20]. Until now, the most efficient
known solutions in partially synchronous environments had cubic communication complexity
(e.g., HotStuff [56], binary DBFT [22]).

We close the gap by introducing SQuad, a partially synchronous Byzantine consensus pro-
tocol with quadratic worst-case communication complexity, matching the Dolev-Reischuk [25]
bound. In addition, SQuad is optimally-resilient and achieves optimal linear worst-case
latency.

Partially synchronous “leader-based” Byzantine consensus. Partially synchronous “leader-
based” consensus protocols [56, 55, 15, 13] operate in views, each with a designated leader
whose responsibility is to drive the system towards a decision. If a process does not decide
in a view, the process moves to the next view with a different leader and tries again. Once
all correct processes overlap in the same view with a correct leader for sufficiently long, a
decision is reached. Sadly, ensuring such an overlap is non-trivial; for example, processes can
start executing the protocol at different times or their local clocks may drift before GST ,
thus placing them in views which are arbitrarily far apart.

Typically, these protocols contain two independent modules:
1. View core: The core of the protocol, responsible for executing the protocol logic of each

view.
2. View synchronizer: Auxiliary to the view core, responsible for “moving” processes to new

views with the goal of ensuring a sufficiently long overlap to allow the view core to decide.

1 No deterministic protocol solves Byzantine consensus in a completely asynchronous environment [27].

P. Civit et al. 14:3

Immediately after GST , the view synchronizer brings all correct processes together to the
view of the most advanced correct process and keeps them in that view for sufficiently long.
At this point, if the leader of the view is correct, the processes decide. Otherwise, they
“synchronously” transit to the next view with a different leader and try again. In summary,
the communication complexity of such protocols can be approximated by n · C + S, where:

C denotes the maximum number of bits a correct process sends while executing its
view core during [GST , td], where td is the first time by which all correct processes have
decided, and
S denotes the communication complexity of the view synchronizer during [GST , td].

Since the adversary can corrupt up to f processes, correct processes must transit through
at least f + 1 views after GST , in the worst case, before reaching a correct leader. In
fact, PBFT [15] and HotStuff [56] show that passing through f + 1 views is sufficient
to reach a correct leader. Furthermore, HotStuff employs the “leader-to-all, all-to-leader”
communication pattern in each view. As (1) each process is the leader of at most one view
during [GST , td], and (2) a process sends O(n) bits in a view if it is the leader of the view,
and O(1) bits otherwise, HotStuff achieves C = 1 ·O(n) + f ·O(1) = O(n). Unfortunately,
S = (f + 1) ·O(n2) = O(n3) in HotStuff due to “all-to-all” communication exploited by its
view synchronizer in every view.2 Thus, S = O(n3) dominates the communication complexity
of HotStuff, preventing it from matching the Dolev-Reischuk bound. If we could design a
consensus algorithm for which S = O(n2) while preserving C = O(n), we would obtain a
Byzantine consensus protocol with optimal communication complexity. The question is if a
view synchronizer achieving S = O(n2) in partial synchrony exists.

Warm-up: View synchronization in complete synchrony. Solving the synchronization
problem in a completely synchronous environment is not hard. As all processes start executing
the protocol at the same time and their local clocks do not drift, the desired overlap can
be achieved without any communication: processes stay in each view for the fixed, overlap-
required time. However, this simple method cannot be used in a partially synchronous
setting as it is neither guaranteed that all processes start at the same time nor that their
local clocks do not drift (before GST). Still, the observation that, if the system is completely
synchronous, processes are not required to communicate in order to synchronize plays a
crucial role in developing our view synchronizer which achieves quadratic communication
complexity in partially synchronous environments.

RareSync. The main technical contribution of this work is RareSync, a partially syn-
chronous view synchronizer that achieves synchronization within O(f) time after GST , and
has O(n2) worst-case communication complexity. In a nutshell, RareSync adapts the
“no-communication” technique of synchronous view synchronizers to partially synchronous
environments.

Namely, RareSync groups views into epochs; each epoch contains f + 1 sequential views.
Instead of performing “all-to-all” communication in each view (like the “traditional” view
synchronizers [55]), RareSync performs a single “all-to-all” communication step per epoch.
Specifically, only at the end of each epoch do all correct processes communicate to enable
further progress. Once a process has entered an epoch, the process relies solely on its local
clock (without any communication) to move forward to the next view within the epoch.

2 While HotStuff [56] does not explicitly state how the view synchronization is achieved, we have that
S = O(n3) in Diem BFT [55], which is a mature implementation of the HotStuff protocol.

DISC 2022

14:4 Deterministic Byzantine Consensus Is Θ(n2)

Let us give a (rough) explanation of how RareSync ensures synchronization. Let E

be the smallest epoch entered by all correct processes at or after GST ; let the first correct
process enter E at time tE ≥ GST . Due to (1) the “all-to-all” communication step performed
at the end of the previous epoch E − 1, and (2) the fact that message delays are bounded by
a known constant δ after GST , all correct processes enter E by time tE + δ. Hence, from
the epoch E onward, processes do not need to communicate in order to synchronize: it is
sufficient for processes to stay in each view for δ + ∆ time to achieve ∆-time overlap. In brief,
RareSync uses communication to synchronize processes, while relying on local timeouts
(and not communication!) to keep them synchronized.

SQuad. The second contribution of our work is SQuad, an optimally-resilient partially syn-
chronous Byzantine consensus protocol with (1) O(n2) worst-case communication complexity,
and (2) O(f) worst-case latency complexity. The view core module of SQuad is the same
as that of HotStuff; as its view synchronizer, SQuad uses RareSync. The combination of
the HotStuff’s view core and RareSync ensures that C = O(n) and S = O(n2). By the
aforementioned complexity formula, SQuad achieves n ·O(n) + O(n2) = O(n2) communica-
tion complexity. SQuad’s linear latency is a direct consequence of RareSync’s ability to
synchronize processes within O(f) time after GST .

Roadmap. We discuss related work in §2. In §3, we define the system model. We introduce
RareSync in §4. In §5, we present SQuad. We conclude the paper in §6.

2 Related Work

In this section, we discuss existing results in two related contexts: synchronous networks and
randomized algorithms. In addition, we discuss some precursor (and concurrent) results to
our own.

Synchronous networks. The first natural question is whether we can achieve synchronous
Byzantine agreement with optimal latency and optimal communication complexity. Momose
and Ren answer that question in the affirmative, giving a synchronous Byzantine agreement
protocol with optimal n/2 resiliency, optimal O(n2) worst-case communication complexity
and optimal O(f) worst-case latency [46]. Optimality follows from two lower bounds: Dolev
and Reischuk show that any Byzantine consensus protocol has an execution with quadratic
communication complexity [25]; Dolev and Strong show that any synchronous Byzantine
consensus protocol has an execution with f + 1 rounds [23]. Various other works have tackled
the problem of minimizing the latency of Byzantine consensus [2, 42, 45].

Randomization. A classical approach to circumvent the FLP impossibility [27] is using
randomization [9], where termination is not ensured deterministically. Exciting recent results
by Abraham et al. [5] and Lu et al. [43] give fully asynchronous randomized Byzantine
consensus with optimal n/3 resiliency, optimal O(n2) expected communication complexity
and optimal O(1) expected latency complexity. Spiegelman [53] took a neat hybrid approach
that achieved optimal results for both synchrony and randomized asynchrony simultaneously:
if the network is synchronous, his algorithm yields optimal (deterministic) synchronous
complexity; if the network is asynchronous, it falls back on a randomized algorithm and
achieves optimal randomized complexity.

P. Civit et al. 14:5

Recently, it has been shown that even randomized Byzantine agreement requires Ω(n2)
expected communication complexity, at least for achieving guaranteed safety against an
adaptive adversary in an asynchronous setting or against a strongly rushing adaptive adversary
in a synchronous setting [1, 6]. (See the papers for details.) Amazingly, it is possible to break
the O(n2) barrier by accepting a non-zero (but o(1)) probability of disagreement [18, 21, 35].

Authentication. Most of the results above are authenticated: they assume a trusted setup
phase3 wherein devices establish and exchange cryptographic keys; this allows for messages
to be signed in a way that proves who sent them. Recently, many of the communication-
efficient agreement protocols (such as [5, 43]) rely on threshold signatures (such as [40]). The
Dolev-Reischuk [25] lower bound shows that quadratic communication is needed even in such
a case (as it looks at the message complexity of authenticated agreement).

Among deterministic, non-authenticated Byzantine agreement protocols, DBFT [22]
achieves O(n3) communication complexity. For randomized non-authenticated Byzantine
agreement protocols, Mostefaoui et al. [47] achieve O(n2) communication complexity – but
they assume a perfect common coin, for which efficient implementations may also require
signatures.

We note that it is possible to (1) work towards an authenticated setting from a non-
authenticated one by rolling out a public key infrastructure (PKI) [11, 7, 29], (2) set up
a threshold scheme [3] without a trusted dealer, and (3) asynchronously emulate a perfect
common coin [14] used by randomized Byzantine consensus protocols [51, 47, 5, 43].

Other related work. In this paper, we focus on the partially synchronous setting [26], where
the question of optimal communication complexity of Byzantine agreement has remained open.
The question can be addressed precisely with the help of rigorous frameworks [28, 32, 33] that
were developed to express partially synchronous protocols using a round-based paradigm.
More specifically, state-of-the-art partially synchronous BFT protocols [55, 13, 56, 30] have
been developed within a view-based paradigm with a rotating leader, e.g., the seminal
PBFT protocol [15]. While many approaches improve the complexity for some optimistic
scenarios [44, 52, 36, 37, 50], none of them were able to reach the quadratic worst-case
Dolev-Reischuk bound.

The problem of view synchronization was defined in [48]. An existing implementation
of this abstraction [30] was based on Bracha’s double-echo reliable broadcast at each view,
inducing a cubic communication complexity in total. This communication complexity has
been reduced for some optimistic scenarios [48] and in terms of expected complexity [49].
The problem has been formalized more precisely in [12] to facilitate formal verification of
PBFT-like protocols.

It might be worthwhile highlighting some connections between the view synchronization
abstraction and the leader election abstraction Ω [16, 17], capturing the weakest failure
detection information needed to solve consensus (and extended to the Byzantine context
in [34]). Leaderless partially synchronous Byzantine consensus protocols have also been
proposed [8], somehow indicating that the notion of a leader is not necessary in the mechanisms
of a consensus protocol, even if Ω is the weakest failure detector needed to solve the problem.
Clock synchronization [24, 54] and view synchronization are orthogonal problems.

3 A trusted setup phase is notably different from randomized algorithms where randomization is used
throughout.

DISC 2022

14:6 Deterministic Byzantine Consensus Is Θ(n2)

Concurrent research. We have recently discovered concurrent and independent research by
Lewis-Pye [39]. Lewis-Pye appears to have discovered a similar approach to the one that
we present in this paper, giving an algorithm for state machine replication in a partially
synchronous model with quadratic message complexity. As in this paper, Lewis-Pye makes
the key observation that we do not need to synchronize in every view; views can be grouped
together, with synchronization occurring only once every fixed number of views. This yields
essentially the same algorithmic approach. Lewis-Pye focuses on state machine replication,
instead of Byzantine agreement (though state machine replication is implemented via repeated
Byzantine agreement). The other useful property of his algorithm is optimistic responsiveness,
which applies to the multi-shot case and ensures that, in good portions of the executions,
decisions happen as quickly as possible. We encourage the reader to look at [39] for a different
presentation of a similar approach.

3 System Model

Processes. We consider a static set {P1, P2, ..., Pn} of n = 3f + 1 processes out of which at
most f can be Byzantine, i.e., can behave arbitrarily. If a process is Byzantine, the process
is faulty; otherwise, the process is correct. Processes communicate by exchanging messages
over an authenticated point-to-point network. The communication network is reliable: if a
correct process sends a message to a correct process, the message is eventually received. We
assume that processes have local hardware clocks. Furthermore, we assume that local steps
of processes take zero time, as the time needed for local computation is negligible compared
to message delays. Finally, we assume that no process can take infinitely many steps in finite
time.

Partial synchrony. We consider the partially synchronous model introduced in [26]. For
every execution, there exists a Global Stabilization Time (GST) and a positive duration δ

such that message delays are bounded by δ after GST . Furthermore, GST is not known
to processes, whereas δ is known to processes. We assume that all correct processes start
executing their protocol by GST . The hardware clocks of processes may drift arbitrarily
before GST , but do not drift thereafter.

Cryptographic primitives. We assume a (k, n)-threshold signature scheme [40], where
k = 2f+1 = n−f . In this scheme, each process holds a distinct private key and there is a single
public key. Each process Pi can use its private key to produce a partial signature of a message
m by invoking ShareSigni(m). A partial signature tsignature of a message m produced by a
process Pi can be verified by ShareVerifyi(m, tsignature). Finally, set S = {tsignaturei} of
partial signatures, where |S| = k and, for each tsignaturei ∈ S, tsignaturei = ShareSigni(m),
can be combined into a single (threshold) signature by invoking Combine(S); a combined
signature tcombined of message m can be verified by CombinedVerify(m, tcombined). Where
appropriate, invocations of ShareVerify(·) and CombinedVerify(·) are implicit in our descrip-
tions of protocols. P_Signature and T_Signature denote a partial signature and a (combined)
threshold signature, respectively.

Complexity of Byzantine consensus. Let Consensus be a partially synchronous Byzantine
consensus protocol and let E(Consensus) denote the set of all possible executions. Let
α ∈ E(Consensus) be an execution and td(α) be the first time by which all correct processes
have decided in α.

P. Civit et al. 14:7

A word contains a constant number of signatures and values. Each message contains at
least a single word. We define the communication complexity of α as the number of words
sent in messages by all correct processes during the time period [GST , td(α)]; if GST > td(α),
the communication complexity of α is 0. The latency complexity of α is max(0, td(α)−GST).

The communication complexity of Consensus is defined as

max
α∈E(Consensus)

{
communication complexity of α

}
.

Similarly, the latency complexity of Consensus is defined as

max
α∈E(Consensus)

{
latency complexity of α

}
.

We underline that the number of words sent by correct processes before GST is unbounded
in any partially synchronous Byzantine consensus protocol [53]. Moreover, not a single correct
process is guaranteed to decide before GST in any partially synchronous Byzantine consensus
protocol [27]; that is why the latency complexity of such protocols is measured from GST .

4 RareSync

This section presents RareSync, a partially synchronous view synchronizer that achieves
synchronization within O(f) time after GST , and has O(n2) worst-case communication
complexity. First, we define the problem of view synchronization (§4.1). Then, we describe
RareSync, and present its pseudocode (§4.2). Finally, we reason about RareSync’s
correctness and complexity (§4.3).

4.1 Problem Definition
View synchronization is defined as the problem of bringing all correct processes to the same
view with a correct leader for sufficiently long [12, 49, 48]. More precisely, let View = {1, 2, ...}
denote the set of views. For each view v ∈ View, we define leader(v) to be a process that is
the leader of view v. The view synchronization problem is associated with a predefined time
∆ > 0, which denotes the desired duration during which processes must be in the same view
with a correct leader in order to synchronize. View synchronization provides the following
interface:

Indication advance(View v): The process advances to a view v.
We say that a correct process enters a view v at time t if and only if the advance(v) indication
occurs at time t. Moreover, a correct process is in view v between the time t (including t)
at which the advance(v) indication occurs and the time t′ (excluding t′) at which the next
advance(v′ ̸= v) indication occurs. If an advance(v′ ≠ v) indication never occurs, the process
remains in the view v from time t onward.

Next, we define a synchronization time as a time at which all correct processes are in the
same view with a correct leader for (at least) ∆ time.

▶ Definition 1 (Synchronization time). Time ts is a synchronization time if (1) all correct
processes are in the same view v from time ts to (at least) time ts + ∆, and (2) leader(v) is
correct.

View synchronization ensures the eventual synchronization property which states that
there exists a synchronization time at or after GST .

DISC 2022

14:8 Deterministic Byzantine Consensus Is Θ(n2)

Complexity of view synchronization. Let Synchronizer be a partially synchronous view
synchronizer and let E(Synchronizer) denote the set of all possible executions. Let α ∈
E(Synchronizer) be an execution and ts(α) be the first synchronization time at or after GST
in α (ts(α) ≥ GST). We define the communication complexity of α as the number of words
sent in messages by all correct processes during the time period [GST , ts(α) + ∆]. The
latency complexity of α is ts(α) + ∆−GST .

The communication complexity of Synchronizer is defined as

max
α∈E(Synchronizer)

{
communication complexity of α

}
.

Similarly, the latency complexity of Synchronizer is defined as

max
α∈E(Synchronizer)

{
latency complexity of α

}
.

4.2 Protocol

This subsection details RareSync (Algorithm 2). In essence, RareSync achieves O(n2) com-
munication complexity and O(f) latency complexity by exploiting “all-to-all” communication
only once per f + 1 views.

Intuition. We group views into epochs, where each epoch contains f + 1 sequential views;
Epoch = {1, 2, ...} denotes the set of epochs. Processes move through an epoch solely
by means of local timeouts (without any communication). However, at the end of each
epoch, processes engage in an “all-to-all” communication step to obtain permission to move
onto the next epoch: (1) Once a correct process has completed an epoch, it broadcasts
a message informing other processes of its completion; (2) Upon receiving 2f + 1 of such
messages, a correct process enters the future epoch. Note that (2) applies to all processes,
including those in arbitrarily “old” epochs. Overall, this “all-to-all” communication step is
the only communication processes perform within a single epoch, implying that per-process
communication complexity in each epoch is O(n). Figure 1 illustrates the main idea behind
RareSync.

Figure 1 Intuition behind RareSync: Processes communicate only in the last view of an epoch;
before the last view, they rely solely on local timeouts.

Roughly speaking, after GST , all correct processes simultaneously enter the same epoch
within O(f) time. After entering the same epoch, processes are guaranteed to synchronize in
that epoch, which takes (at most) an additional O(f) time. Thus, the latency complexity
of RareSync is O(f). The communication complexity of RareSync is O(n2) as every
correct process executes at most a constant number of epochs, each with O(n) per-process
communication, after GST .

P. Civit et al. 14:9

Protocol description. We now explain how RareSync works. The pseudocode of
RareSync is given in Algorithm 2, whereas all variables, constants, and functions are
presented in Algorithm 1.

We explain RareSync’s pseudocode (Algorithm 2) from the perspective of a correct
process Pi. Process Pi utilizes two timers: view_timer i and dissemination_timer i. A timer
has two methods:
1. measure(Time x): After exactly x time as measured by the local clock, an expiration

event is received by the host. Note that, as local clocks can drift before GST , x time as
measured by the local clock may not amount to x real time (before GST).

2. cancel(): This method cancels all previously invoked measure(·) methods on that timer,
i.e., all pending expiration events (pertaining to that timer) are removed from the event
queue.

In RareSync, leader(·) is a round-robin function (line 10 of Algorithm 1).
Once Pi starts executing RareSync (line 1), it instructs view_timer i to measure the

duration of the first view (line 2) and it enters the first view (line 3).
Once view_timer i expires (line 4), Pi checks whether the current view is the last view of

the current epoch, epochi (line 5). If that is not the case, the process advances to the next
view of epochi (line 9). Otherwise, the process broadcasts an epoch-completed message
(line 12) signaling that it has completed epochi. At this point in time, the process does not
enter any view.

If, at any point in time, Pi receives either (1) 2f + 1 epoch-completed messages for
some epoch e ≥ epochi (line 13), or (2) an enter-epoch message for some epoch e′ > epochi

(line 19), the process obtains a proof that a new epoch E > epochi can be entered. However,
before entering E and propagating the information that E can be entered, Pi waits δ time
(either line 18 or line 24). This δ-waiting step is introduced to limit the number of epochs Pi

can enter within any δ time period after GST and is crucial for keeping the communication
complexity of RareSync quadratic. For example, suppose that processes are allowed to enter
epochs and propagate enter-epoch messages without waiting. Due to an accumulation
(from before GST) of enter-epoch messages for different epochs, a process might end up
disseminating an arbitrary number of these messages by receiving them all at (roughly) the
same time. To curb this behavior, given that message delays are bounded by δ after GST ,
we force a process to wait δ time, during which it receives all accumulated messages, before
entering the largest known epoch.

Finally, after δ time has elapsed (line 25), Pi disseminates the information that the epoch
E can be entered (line 26) and it enters the first view of E (line 30).

Algorithm 1 RareSync: Variables (for process Pi), constants, and functions.

1: Variables:
2: Epoch epochi ← 1 ▷ current epoch
3: View viewi ← 1 ▷ current view within the current epoch; viewi ∈ [1, f + 1]
4: Timer view_timer i ▷ measures the duration of the current view
5: Timer dissemination_timer i ▷ measures the duration between two communication

steps
6: T_Signature epoch_sigi ← ⊥ ▷ proof that epochi can be entered
7: Constants:
8: Time view_duration = ∆ + 2δ ▷ duration of each view
9: Functions:

10: leader(View v) ≡ P(v mod n)+1 ▷ a round-robin function

DISC 2022

14:10 Deterministic Byzantine Consensus Is Θ(n2)

4.3 Correctness and Complexity: Proof Sketch
This subsection presents a proof sketch of the correctness, latency complexity, and communi-
cation complexity of RareSync.

In order to prove the correctness of RareSync, we must show that the eventual syn-
chronization property is ensured, i.e., there is a synchronization time ts ≥ GST . For the
latency complexity, it suffices to bound ts + ∆−GST by O(f). This is done by proving that
synchronization happens within (at most) 2 epochs after GST . As for the communication
complexity, we prove that any correct process enters a constant number of epochs during
the time period [GST , ts + ∆]. Since every correct process sends O(n) words per epoch, the
communication complexity of RareSync is O(n2) = O(1) ·O(n) · n. We work towards these
conclusions by introducing some key concepts and presenting a series of intermediate results.

A correct process enters an epoch e at time t if and only if the process enters the first
view of e at time t (either line 3 or line 30). We denote by te the first time a correct process
enters epoch e.
Result 1: If a correct process enters an epoch e > 1, then (at least) f + 1 correct processes
have previously entered epoch e− 1.
The goal of the communication step at the end of each epoch is to prevent correct processes
from arbitrarily entering future epochs. In order for a new epoch e > 1 to be entered, at least
f +1 correct processes must have entered and “gone through” each view of the previous epoch,
e − 1. This is indeed the case: in order for a correct process to enter e, the process must
either (1) collect 2f + 1 epoch-completed messages for e− 1 (line 13), or (2) receive an
enter-epoch message for e, which contains a threshold signature of e−1 (line 19). In either
case, at least f + 1 correct processes must have broadcast epoch-completed messages for
epoch e− 1 (line 12), which requires them to go through epoch e− 1. Furthermore, te−1 ≤ te;
recall that local clocks can drift before GST .
Result 2: Every epoch is eventually entered by a correct process.
By contradiction, consider the greatest epoch ever entered by a correct process, e∗. In
brief, every correct process will eventually (1) receive the enter-epoch message for e∗

(line 19), (2) enter e∗ after its dissemination_timer expires (lines 25 and 30), (3) send an
epoch-completed message for e∗ (line 12), (4) collect 2f + 1 epoch-completed messages
for e∗ (line 13), and, finally, (5) enter e∗ + 1 (lines 15, 18, 25 and 30), resulting in a
contradiction. Note that, if e∗ = 1, no enter-epoch message is sent: all correct processes
enter e∗ = 1 once they start executing RareSync (line 3).

We now define two epochs: emax and efinal = emax + 1. These two epochs are the main
protagonists in the proof of correctness and complexity of RareSync.
Definition of emax : Epoch emax is the greatest epoch entered by a correct process before
GST ; if no such epoch exists, emax = 0.4

Definition of efinal : Epoch efinal is the smallest epoch first entered by a correct process at
or after GST . Note that GST ≤ tefinal . Moreover, efinal = emax + 1 (by Result 1).
Result 3: For any epoch e ≥ efinal, no correct process broadcasts an epoch-completed
message for e (line 12) before time te + epoch_duration, where epoch_duration = (f + 1) ·
view_duration.

4 Epoch 0 is considered as a special epoch. Note that 0 /∈ Epoch, where Epoch denotes the set of epochs
(see §4.2).

P. Civit et al. 14:11

This statement is a direct consequence of the fact that, after GST , it takes exactly
epoch_duration time for a process to go through f + 1 views of an epoch; local clocks
do not drift after GST . Specifically, the earliest a correct process can broadcast an epoch-
completed message for e (line 12) is at time te + epoch_duration, where te denotes the
first time a correct process enters epoch e.
Result 4: Every correct process enters epoch efinal by time tefinal + 2δ.
Recall that the first correct process enters efinal at time tefinal . If efinal = 1, all correct processes
enter efinal at tefinal . Otherwise, by time tefinal + δ, all correct processes will have received an
enter-epoch message for efinal and started the dissemination_timer i with epochi = efinal
(either lines 15, 18 or 21, 24). By results 1 and 3, no correct process sends an epoch-
completed message for an epoch ≥ efinal (line 12) before time tefinal +epoch_duration, which
implies that the dissemination_timer will not be cancelled. Hence, the dissemination_timer
will expire by time tefinal + 2δ, causing all correct processes to enter efinal by time tefinal + 2δ.
Result 5: In every view of efinal, processes overlap for (at least) ∆ time. In other words,
there exists a synchronization time ts ≤ tefinal + epoch_duration −∆.
By Result 3, no future epoch can be entered before time tefinal + epoch_duration. This is
precisely enough time for the first correct process (the one to enter efinal at tefinal) to go
through all f + 1 views of efinal , spending view_duration time in each view. Since clocks
do not drift after GST and processes spend the same amount of time in each view, the
maximum delay of 2δ between processes (Result 4) applies to every view in efinal . Thus,
all correct processes overlap with each other for (at least) view_duration − 2δ = ∆ time in
every view of efinal . As the leader(·) function is round-robin, at least one of the f + 1 views
must have a correct leader. Therefore, synchronization must happen within epoch efinal , i.e.,
there is a synchronization time ts such that tefinal + ∆ ≤ ts + ∆ ≤ tefinal + epoch_duration.
Result 6: tefinal ≤ GST + epoch_duration + 4δ.
If efinal = 1, all correct processes started executing RareSync at time GST . Hence,
tefinal = GST . Therefore, the result trivially holds in this case.

Let efinal > 1; recall that efinal = emax + 1. (1) By time GST + δ, every correct process
receives an enter-epoch message for emax (line 19) as the first correct process to enter
emax has broadcast this message before GST (line 26). Hence, (2) by time GST + 2δ,
every correct process enters emax .5 Then, (3) every correct process broadcasts an epoch-
completed message for emax at time GST +epoch_duration +2δ (line 12), at latest. (4) By
time GST + epoch_duration + 3δ, every correct process receives 2f + 1 epoch-completed
messages for emax (line 13), and triggers the measure(δ) method of dissemination_timer
(line 18). Therefore, (5) by time GST + epoch_duration + 4δ, every correct process enters
emax + 1 = efinal . Figure 2 depicts this scenario.

Note that for the previous sequence of events not to unfold would imply an even lower
bound on tefinal : a correct process would have to receive 2f + 1 epoch-completed messages
for emax or an enter-epoch message for emax + 1 = efinal before step (4) (i.e., before time
GST + epoch_duration + 3δ), thus showing that tefinal < GST + epoch_duration + 4δ.
Latency: Latency complexity of RareSync is O(f).
By Result 5, ts ≤ tefinal +epoch_duration−∆. By Result 6, tefinal ≤ GST+epoch_duration+4δ.
Therefore, ts ≤ GST +epoch_duration+4δ+epoch_duration−∆ = GST +2epoch_duration+
4δ −∆. Hence, ts + ∆−GST ≤ 2epoch_duration + 4δ = O(f).

5 If emax = 1, every correct process enters emax by time GST .

DISC 2022

14:12 Deterministic Byzantine Consensus Is Θ(n2)

Communication: Communication complexity of RareSync is O(n2).
Roughly speaking, every correct process will have entered emax (or potentially efinal = emax+1)
by time GST + 2δ (as seen in the proof of Result 6). From then on, it will enter at most
one other epoch (efinal) before synchronizing (which is completed by time ts + ∆). As for
the time interval [GST , GST + 2δ), due to dissemination_timer ’s interval of δ, a correct
process can enter (at most) two other epochs during this period. Therefore, a correct process
can enter (and send messages for) at most O(1) epochs between GST and ts + ∆. The
individual communication cost of a correct process is bounded by O(n) words per epoch:
O(n) epoch-completed messages (each with a single word), and O(n) enter-epoch
messages (each with a single word, as a threshold signature counts as a single word). Thus,
the communication complexity of RareSync is O(n2) = O(1) ·O(n) · n.

Figure 2 Worst-case latency of RareSync: ts + ∆ − GST ≤ 2epoch_duration + 4δ.

▶ Theorem 2. RareSync is a partially synchronous view synchronizer with (1) O(n2)
communication complexity, and (2) O(f) latency complexity.

5 SQuad

This section introduces SQuad, a partially synchronous Byzantine consensus protocol with
optimal resilience [26]. SQuad simultaneously achieves (1) O(n2) communication complexity,
matching the Dolev-Reischuk bound [25], and (2) O(f) latency complexity, matching the
Dolev-Strong bound [23].

First, we present Quad, a partially synchronous Byzantine consensus protocol ensuring
weak validity (§5.1). Quad achieves quadratic communication complexity and linear latency
complexity. Then, we construct SQuad by adding a simple preprocessing phase to Quad
(§5.2).

5.1 Quad
Quad is a partially synchronous Byzantine consensus protocol satisfying the weak validity
property:

Weak validity: If all processes are correct, then a value decided by a process was proposed.
Quad achieves (1) quadratic communication complexity, and (2) linear latency complexity.
Interestingly, the Dolev-Reischuk lower bound [25] does not apply to Byzantine protocols
satisfying weak validity; hence, we do not know whether Quad has optimal communication
complexity. As explained in §5.2, we accompany Quad by a preprocessing phase to obtain
SQuad.

Quad (Algorithm 3) uses the same view core module as HotStuff [56], i.e., the view
logic of Quad is identical to that of HotStuff. Moreover, Quad uses RareSync as its view
synchronizer, achieving synchronization with O(n2) communication. The combination of
HotStuff’s view core and RareSync ensures that each correct process sends O(n) words after
GST (and before the decision), i.e., C = O(n) in Quad. Following the formula introduced in
§1, Quad indeed achieves n · C + S = n ·O(n) + O(n2) = O(n2) communication complexity.
Due to the linear latency of RareSync, Quad also achieves O(f) latency complexity.

P. Civit et al. 14:13

View core. We now give a brief description of the view core module of Quad. The complete
pseudocode of this module can be found in [56].

Each correct process keeps track of two critical variables: (1) the prepare quorum certificate
(QC), and (2) the locked QC. Each of these represents a process’ estimation of the value
that will be decided, although with a different degree of certainty. For example, if a correct
process decides a value v, it is guaranteed that (at least) f + 1 correct processes have v in
their locked QC. Moreover, it is ensured that no correct process updates (from this point
onward) its prepare or locked QC to any other value, thus ensuring agreement. Lastly, a QC
is a (constant-sized) threshold signature.

The structure of a view follows the “all-to-leader, leader-to-all” communication pattern.
Specifically, each view is comprised of the following four phases:
1. Prepare: A process sends to the leader a view-change message containing its prepare

QC. Once the leader receives 2f + 1 view-change messages, it selects the prepare QC
from the “latest” view. The leader sends this QC to all processes via a prepare message.
Once a process receives the prepare message from the leader, it supports the received
prepare QC if (1) the received QC is consistent with its locked QC, or (2) the received
QC is “more recent” than its locked QC. If the process supports the received QC, it
acknowledges this by sending a prepare-vote message to the leader.

2. Precommit: Once the leader receives 2f + 1 prepare-vote messages, it combines them
into a cryptographic proof σ that “enough” processes have supported its “prepare-phase”
value; σ is a threshold signature. Then, it disseminates σ to all processes via a precommit
message. Once a process receives the precommit message carrying σ, it updates its
prepare QC to σ and sends back to the leader a precommit-vote message.

3. Commit: Once the leader receives 2f + 1 precommit-vote messages, it combines them
into a cryptographic proof σ′ that “enough” processes have adopted its “precommit-phase”
value (by updating their prepare QC); σ′ is a threshold signature. Then, it disseminates
σ′ to all processes via a commit message. Once a process receives the commit message
carrying σ′, it updates its locked QC to σ′ and sends back to the leader a commit-vote
message.

4. Decide: Once the leader receives 2f + 1 commit-vote messages, it combines them into
a threshold signature σ′′, and relays σ′′ to all processes via a decide message. When a
process receives the decide message carrying σ′′, it decides the value associated with σ′′.

As a consequence of the “all-to-leader, leader-to-all” communication pattern and the constant
size of messages, the leader of a view sends O(n) words, while a non-leader process sends
O(1) words.

The view core module provides the following interface:
Request start_executing(View v): The view core starts executing the logic of view v and
abandons the previous view. Concretely, it stops accepting and sending messages for the
previous view, and it starts accepting, sending, and replying to messages for view v. The
state of the view core is kept across views (e.g., the prepare and locked QCs).
Indication decide(Value decision): The view core decides value decision (this indication
is triggered at most once).

Protocol description. The protocol (Algorithm 3) amounts to a composition of RareSync
and the aforementioned view core. Since the view core requires 8 communication steps in
order for correct processes to decide, a synchronous overlap of 8δ is sufficient. Thus, we
parameterize RareSync with ∆ = 8δ (line 3). In short, the view core is subservient to

DISC 2022

14:14 Deterministic Byzantine Consensus Is Θ(n2)

RareSync, i.e., when RareSync triggers the advance(v) event (line 7), the view core starts
executing the logic of view v (line 8). Once the view core decides (line 9), Quad decides
(line 10).

Proof sketch. The agreement and weak validity properties of Quad are ensured by the
view core’s implementation. As for the termination property, the view core, and therefore
Quad, is guaranteed to decide as soon as processes have synchronized in the same view
with a correct leader for ∆ = 8δ time at or after GST . Since RareSync ensures the
eventual synchronization property, this eventually happens, which implies that Quad satisfies
termination. As processes synchronize within O(f) time after GST , the latency complexity
of Quad is O(f).

As for the total communication complexity, it is the sum of the communication complexity
of (1) RareSync, which is O(n2), and (2) the view core, which is also O(n2). The view
core’s complexity is a consequence of the fact that:

each process executes O(1) epochs between GST and the time by which every process
decides,
each epoch has f + 1 views,
a process can be the leader in only one view of any epoch, and
a process sends O(n) words in a view if it is the leader, and O(1) words otherwise, for an
average of O(1) words per view in any epoch.

Thus, the view core’s communication complexity is O(n2) = O(1) · (f +1) ·O(1) ·n. Therefore,
Quad indeed achieves O(n2) communication complexity. ◀

▶ Theorem 3. Quad is a Byzantine consensus protocol ensuring weak validity with (1)
O(n2) communication complexity, and (2) O(f) latency complexity.

5.2 SQuad: Protocol Description
At last, we present SQuad, which we derive from Quad.

Deriving SQuad from Quad. Imagine a locally-verifiable, constant-sized cryptographic
proof σv vouching that value v is valid. Moreover, imagine that it is impossible, in the case
in which all correct processes propose v to Quad, for any process to obtain a proof for a
value different from v:

Computability: If all correct processes propose v to Quad, then no process (even if
faulty) obtains a cryptographic proof σv′ for a value v′ ̸= v.

If such a cryptographic primitive were to exist, then the Quad protocol could be modified in
the following manner in order to satisfy the validity property introduced in §1:

A correct process accompanies each value by a cryptographic proof that the value is valid.
A correct process ignores any message with a value not accompanied by the value’s proof.

Suppose that all correct processes propose the same value v and that a correct process Pi

decides v′ from the modified version of Quad. Given that Pi ignores messages with non-valid
values, Pi has obtained a proof for v′ before deciding. The computability property of the
cryptographic primitive guarantees that v′ = v, implying that validity is satisfied. Given
that the proof is of constant size, the communication complexity of the modified version of
Quad remains O(n2).

Therefore, the main challenge in obtaining SQuad from Quad, while preserving Quad’s
complexity, lies in implementing the introduced cryptographic primitive.

P. Civit et al. 14:15

Certification phase. SQuad utilizes its certification phase (Algorithm 4) to obtain the
introduced constant-sized cryptographic proofs; we call these proofs certificates.6 Formally,
Certificate denotes the set of all certificates. Moreover, we define a locally computable function
verify: Value× Certificate→ {true, false}. We require the following properties to hold:

Computability: If all correct processes propose the same value v to SQuad, then no
process (even if faulty) obtains a certificate σv′ with verify(v′, σv′) = true and v′ ̸= v.
Liveness: Every correct process eventually obtains a certificate σv such that verify(v, σv) =
true, for some value v.

The computability property states that, if all correct processes propose the same value v to
SQuad, then no process (even if Byzantine) can obtain a certificate for a value different from
v. The liveness property ensures that all correct processes eventually obtain a certificate.
Hence, if all correct processes propose the same value v, all correct processes eventually
obtain a certificate for v and no process obtains a certificate for a different value.

In order to implement the certification phase, we assume an (f + 1, n)-threshold signature
scheme (see §3) used throughout the entirety of the certification phase. The (f + 1, n)-
threshold signature scheme allows certificates to count as a single word, as each certificate is
a threshold signature. Finally, in order to not disrupt Quad’s communication and latency,
the certification phase itself incurs O(n2) communication and O(1) latency.

A certificate σ vouches for a value v (the verify(·) function at line 21) if (1) σ is a threshold
signature of the predefined string “any value” (line 22), or (2) σ is a threshold signature of v

(line 23). Otherwise, verify(v, σ) returns false.
Once Pi enters the certification phase (line 1), Pi informs all processes about the value it

has proposed by broadcasting a disclose message (line 3). Process Pi includes a partial
signature of its proposed value in the message. If Pi receives disclose messages for the
same value v from f + 1 processes (line 4), Pi combines the received partial signatures into a
threshold signature of v (line 6), which represents a certificate for v. To ensure liveness, Pi

disseminates the certificate (line 7).
If Pi receives 2f + 1 disclose messages and there does not exist a “common” value

received in f + 1 (or more) disclose messages (line 9), the process concludes that it is
fine for a certificate for any value to be obtained. Therefore, Pi broadcasts an allow-any
message containing a partial signature of the predefined string “any value” (line 11).

If Pi receives f + 1 allow-any messages (line 12), it combines the received partial
signatures into a certificate that vouches for any value (line 14), and it disseminates the
certificate (line 15). Since allow-any messages are received from f + 1 processes, there
exists a correct process that has verified that it is indeed fine for such a certificate to exist.

If, at any point, Pi receives a certificate (line 18), it adopts the certificate, and disseminates
it (line 19) to ensure liveness.

Given that each message of the certification phase contains a single word, the certification
phase incurs O(n2) communication. Moreover, each correct process obtains a certificate after
(at most) 2 = O(1) rounds of communication. Therefore, the certification phase incurs O(1)
latency.

We explain below why the certification phase (Algorithm 4) ensures computability and
liveness:

Computability: If all correct processes propose the same value v to SQuad, all correct
processes broadcast a disclose message for v (line 3). Since 2f+1 processes are correct, no
process obtains a certificate σv′ for a value v′ ≠ v such that CombinedVerify(v′, σv′) = true
(line 23).

6 Note the distinction between certificates and prepare and locked QCs of the view core.

DISC 2022

14:16 Deterministic Byzantine Consensus Is Θ(n2)

Moreover, as every correct process receives f + 1 disclose messages for v within
any set of 2f + 1 received disclose messages, no correct process sends an allow-
any message (line 11). Hence, no process obtains a certificate σ⊥ such that
CombinedVerify(“any value”, σ⊥) = true (line 22). Thus, computability is ensured.
Liveness: If a correct process receives f + 1 disclose messages for a value v (line 4), the
process obtains a certificate for v (line 6). Since the process disseminates the certificate
(line 7), every correct process eventually obtains a certificate (line 18), ensuring liveness
in this scenario.
Otherwise, all correct processes broadcast an allow-any message (line 11). Since there
are at least 2f + 1 correct processes, every correct process eventually receives f + 1
allow-any messages (line 12), thus obtaining a certificate. Hence, liveness is satisfied in
this case as well.

SQuad = Certification phase + Quad. We obtain SQuad by combining the certification
phase with Quad. The pseudocode of SQuad is given in Algorithm 5.

A correct process Pi executes the following steps in SQuad:
1. Pi starts executing the certification phase with its proposal (line 2).
2. Once the process exits the certification phase with a certificate σv for a value v, it proposes

(v, σv) to Quadcer , a version of Quad “enriched” with certificates (line 5). While
executing Quadcer , correct processes ignore messages containing values not accompanied
by their certificates.

3. Once Pi decides from Quadcer (line 6), Pi decides the same value from SQuad (line 7).

▶ Theorem 4. SQuad is a Byzantine consensus protocol with (1) O(n2) communication
complexity, and (2) O(f) latency complexity.

6 Concluding Remarks

This paper shows that the Dolev-Reischuk lower bound can be met by a partially synchronous
Byzantine consensus protocol. Namely, we introduce SQuad, an optimally-resilient partially
synchronous Byzantine consensus protocol with optimal O(n2) communication complexity,
and optimal O(f) latency complexity. SQuad owes its complexity to RareSync, an “epoch-
based” view synchronizer ensuring synchronization with quadratic communication and linear
latency in partial synchrony.

References
1 Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication Complexity of Byzantine Agreement, Revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19, pages 317–326,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3293611.
3331629.

2 Ittai Abraham, Srinivas Devadas, Kartik Nayak, and Ling Ren. Brief Announcement: Practical
Synchronous Byzantine Consensus. In Andréa W. Richa, editor, 31st International Symposium
on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91
of LIPIcs, pages 41:1–41:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.DISC.2017.41.

3 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching Consensus for Asynchronous Distributed Key Generation. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 363–373.
ACM, 2021. doi:10.1145/3465084.3467914.

https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1145/3293611.3331629
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.1145/3465084.3467914

P. Civit et al. 14:17

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:
A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. In James Aspnes,
Alysson Bessani, Pascal Felber, and João Leitão, editors, 21st International Conference on
Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017,
volume 95 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.OPODIS.2017.25.

5 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically Optimal Validated
Asynchronous Byzantine Agreement. Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

6 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically Optimal Validated
Asynchronous Byzantine Agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing (PODC), pages 337–346, 2019.

7 Marcin Andrychowicz and Stefan Dziembowski. PoW-Based Distributed Cryptography with
No Trusted Setup. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
– CRYPTO 2015 – 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages
379–399. Springer, 2015. doi:10.1007/978-3-662-48000-7_19.

8 Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid Guerraoui, and Igor
Zablotchi. Leaderless Consensus. In Proceedings – International Conference on Distributed
Computing Systems, volume 2021-July, pages 392–402, 2021.

9 Michael Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols. Proceedings of the Second Annual Symposium on Principles of Distributed Computing,
pages 27–30, 1983.

10 Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal Distributed Consensus.
Computer Science: Research and Applications, pages 313–321, 1992.

11 Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

12 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making Byzantine Consensus Live.
In 34th International Symposium on Distributed Computing (DISC), volume 179(23), pages
1–17, 2020.

13 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
pages 1–14, 2018. arXiv:1807.04938.

14 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random Oracles in Constantinople:
Practical Asynchronous Byzantine Agreement Using Cryptography. J. Cryptol., 18(3):219–246,
2005. doi:10.1007/s00145-005-0318-0.

15 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. ACM Trans. Comput.
Syst., pages 359–368, 2002.

16 Tushar Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Proceedings of the 10th ACM Symposium on Principles of Distributed Computing,
pages 225–267, 1996.

17 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The Weakest Failure Detector for
Solving Consensus. Proceedings of the Annual ACM Symposium on Principles of Distributed
Computing, 43(4):147–158, 1992.

18 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. Algorand Agreement: Super
Fast and Partition Resilient Byzantine Agreement. Cryptology ePrint Archive, 377:1–10, 2018.
URL: https://eprint.iacr.org/2018/377.pdf.

19 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui,
Jovan Komatovic, and Manuel Vidigueira. Byzantine Consensus is Θ(n2): The Dolev-Reischuk
Bound is Tight even in Partial Synchrony! [Extended Version], 2022. doi:10.48550/ARXIV.
2208.09262.

20 Shir Cohen, Idit Keidar, and Oded Naor. Byzantine Agreement with Less Communication:
Recent Advances. SIGACT News, 52(1):71–80, 2021. doi:10.1145/3457588.3457600.

DISC 2022

https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1016/0890-5401(87)90054-X
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/s00145-005-0318-0
https://eprint.iacr.org/2018/377.pdf
https://doi.org/10.48550/ARXIV.2208.09262
https://doi.org/10.48550/ARXIV.2208.09262
https://doi.org/10.1145/3457588.3457600

14:18 Deterministic Byzantine Consensus Is Θ(n2)

21 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Brief Announcement: Not a COINcidence:
Sub-Quadratic Asynchronous Byzantine Agreement WHP. Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, pages 175–177, 2020.

22 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient Byzantine
Consensus with a Weak Coordinator and its Application to Consortium Blockchains. In 17th
IEEE International Symposium on Network Computing and Applications, NCA, pages 1–41,
2017. arXiv:1702.03068.

23 D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

24 Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dynamic Fault-Tolerant
Clock Synchronization. Journal of the ACM (JACM), 42(1):143–185, 1995.

25 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.
Journal of the ACM (JACM), 1985.

26 Cynthia Dwork, Lynch Nancy, and Larry Stockmeyer. Consensus in the Presence of Partial
Synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

27 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the Association for Computing Machinery,,
32(2):374–382, 1985.

28 Eli Gafni. Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony. Proceedings
of the Annual ACM Symposium on Principles of Distributed Computing, pages 143–152, 1998.

29 Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping
the Blockchain, with Applications to Consensus and Fast PKI Setup. In Michel Abdalla and
Ricardo Dahab, editors, Public-Key Cryptography – PKC 2018 – 21st IACR International
Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part II, volume 10770 of Lecture Notes in Computer Science, pages
465–495. Springer, 2018. doi:10.1007/978-3-319-76581-5_16.

30 Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael
Reiter, Dragos Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A Scalable and
Decentralized Trust Infrastructure. Proceedings – 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2019, pages 568–580, 2019.

31 Vincent Gramoli. From blockchain consensus back to Byzantine consensus. Future Gener.
Comput. Syst., 107:760–769, 2020. doi:10.1016/j.future.2017.09.023.

32 Rachid Guerraoui and Michel Raynal. The Information Structure of Indulgent Consensus.
IEEE Trans. Computers, 53(4):453–466, 2004.

33 Idit Keidar and Alexander Shraer. Timeliness, Failure-Detectors, and Consensus Performance.
Proceedings of the Annual ACM Symposium on Principles of Distributed Computing, 2006:169–
178, 2006.

34 Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzantine Fault Detectors
for Solving Consensus. The Computer Journal, 46(1):16–35, 2003.

35 Valerie King and Jared Saia. Breaking the O(n2) Bit Barrier: Scalable Byzantine agreement
with an Adaptive Adversary. Journal of the ACM, 58(4):1–24, 2011.

36 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. ACM Transactions on Computer Systems, 27(4), 2009.

37 Petr Kuznetsov, Andrei Tonkikh, and Yan X. Zhang. Revisiting Optimal Resilience of Fast
Byzantine Consensus. Proceedings of the Annual ACM Symposium on Principles of Distributed
Computing (PODC), 1(1):343–353, 2021.

38 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

39 Andrew Lewis-Pye. Quadratic worst-case message complexity for State Machine Replication
in the partial synchrony model, 2022. doi:10.48550/ARXIV.2201.01107.

http://arxiv.org/abs/1702.03068
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.48550/ARXIV.2201.01107

P. Civit et al. 14:19

40 Benoît Libert, Marc Joye, and Moti Yung. Born and Raised Distributively: Fully Distributed
Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares. Theoretical
Computer Science, 645:1–24, 2016.

41 JongBeom Lim, Taeweon Suh, Joon-Min Gil, and Heon-Chang Yu. Scalable and leaderless
Byzantine consensus in cloud computing environments. Inf. Syst. Frontiers, 16(1):19–34, 2014.
doi:10.1007/s10796-013-9460-7.

42 Thomas Locher. Fast Byzantine Agreement for Permissioned Distributed Ledgers. Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pages 371–382, 2020.

43 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal Multi-
Valued Validated Asynchronous Byzantine Agreement, Revisited. Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing, pages 129–138, 2020.

44 Jean Philippe Martin and Lorenzo Alvisi. Fast Byzantine Consensus. Proceedings of the
International Conference on Dependable Systems and Networks, pages 402–411, 2005.

45 Silvio Micali. Byzantine Agreement , Made Trivial, 2017.
46 Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzan-

tine Agreement. In 35th International Symposium on Distributed Computing (DISC), volume
209(32), pages 32:1–32:0. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Pub-
lishing, Germany, 2021.

47 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-Free Asynchronous
Binary Byzantine Consensus with t < n/3, O(n2) Messages, and O(1) Expected Time. J.
ACM, 62(4):31:1–31:21, 2015. doi:10.1145/2785953.

48 Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine
View Synchronization. Cryptoeconomic Systems, 2021.

49 Oded Naor and Idit Keidar. Expected Linear Round Synchronization: The Missing Link for
Linear Byzantine SMR. 34th International Symposium on Distributed Computing (DISC), 179,
2020.

50 Rafael Pass and Elaine Shi. Thunderella: Blockchains with Optimistic Instant Confirmation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 10821 LNCS:3–33, 2018.

51 Michael O. Rabin. Randomized Byzantine Generals. In 24th Annual Symposium on Foundations
of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 403–409. IEEE
Computer Society, 1983. doi:10.1109/SFCS.1983.48.

52 Hari Govind V. Ramasamy and Christian Cachin. Parsimonious Asynchronous Byzantine-Fault-
Tolerant Atomic Broadcast. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3974 LNCS:88–102, 2006.

53 Alexander Spiegelman. In Search for an Optimal Authenticated Byzantine Agreement. In
Seth Gilbert, editor, 35th International Symposium on Distributed Computing (DISC 2021),
volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:19,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DISC.2021.38.

54 T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. Journal of the Association
for Computing Machinery, 34(3):71–86, 1987.

55 The Diem Team. DiemBFT v4: State Machine Replication in the Diem Blockchain, 2021. URL:
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-
the-diem-blockchain/2021-08-17.pdf.

56 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
HotStuff: BFT Consensus with Linearity and Responsiveness. Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.

DISC 2022

https://doi.org/10.1007/s10796-013-9460-7
https://doi.org/10.1145/2785953
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.4230/LIPIcs.DISC.2021.38
https://doi.org/10.4230/LIPIcs.DISC.2021.38
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

14:20 Deterministic Byzantine Consensus Is Θ(n2)

Algorithm 2 RareSync: Pseudocode (for process Pi).

1: upon init: ▷ start of the protocol
2: view_timer i.measure(view_duration) ▷ measure the duration of the first view
3: trigger advance(1) ▷ enter the first view
4: upon view_timer i expires:
5: if viewi < f + 1: ▷ check if the current view is not the last view of the current

epoch
6: viewi ← viewi + 1
7: View view_to_advance ← (epochi − 1) · (f + 1) + viewi

8: view_timer i.measure(view_duration) ▷ measure the duration of the view
9: trigger advance(view_to_advance) ▷ enter the next view

10: else:
11: ▷ inform other processes that the epoch is completed
12: broadcast ⟨epoch-completed, epochi, ShareSigni(epochi)⟩
13: upon exists Epoch e such that e ≥ epochi and ⟨epoch-completed, e, P_Signature sig⟩

is received from 2f + 1 processes:
14: epoch_sigi ← Combine

(
{sig | sig is received in an epoch-completed message}

)
15: epochi ← e + 1
16: view_timer i.cancel()
17: dissemination_timer i.cancel()
18: dissemination_timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch
19: upon reception of ⟨enter-epoch, Epoch e, T_Signature sig⟩ such that e > epochi:
20: epoch_sigi ← sig ▷ sig is a threshold signature of epoch e− 1
21: epochi ← e

22: view_timer i.cancel()
23: dissemination_timer i.cancel()
24: dissemination_timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch
25: upon dissemination_timer i expires:
26: broadcast ⟨enter-epoch, epochi, epoch_sigi⟩
27: viewi ← 1 ▷ reset the current view to 1
28: View view_to_advance ← (epochi − 1) · (f + 1) + viewi

29: view_timer i.measure(view_duration) ▷ measure the duration of the view
30: trigger advance(view_to_advance) ▷ enter the first view of the new epoch

Algorithm 3 Quad: Pseudocode (for process Pi).

1: Modules:
2: View_Core core
3: View_Synchronizer synchronizer ← RareSync(∆ = 8δ)
4: upon init(Value proposal): ▷ propose value proposal
5: core.init(proposal) ▷ initialize the view core with the proposal
6: synchronizer .init ▷ start RareSync
7: upon synchronizer .advance(View v):
8: core.start_executing(v)
9: upon core.decide(Value decision):

10: trigger decide(decision) ▷ decide value decision

P. Civit et al. 14:21

Algorithm 4 Certification Phase: Pseudocode (for process Pi).

1: upon init(Value proposal): ▷ propose value proposal
2: ▷ inform other processes that proposal was proposed
3: broadcast ⟨disclose, proposal, ShareSigni(proposal)⟩
4: upon exists Value v such that ⟨disclose, v, P_Signature sig⟩ is received from f + 1

processes:
5: ▷ a certificate for v is obtained
6: Certificate σv ← Combine

(
{sig | sig is received in a disclose message}

)
7: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
8: exit the certification phase
9: upon for the first time (1) disclose message is received from 2f + 1 processes, and

(2) not exist Value v such that ⟨disclose, v, P_Signature sig⟩ is received from f + 1
processes:

10: ▷ inform other processes that any value can be “accepted”
11: broadcast ⟨allow-any, ShareSigni(“any value”)⟩
12: upon ⟨allow-any, P_Signature sig⟩ is received from f + 1 processes :
13: ▷ a certificate for “any value” is obtained
14: Certificate σ⊥ ← Combine

(
{sig | sig is received in an allow-any message}

)
15: broadcast ⟨certificate,⊥, σ⊥⟩ ▷ disseminate the certificate
16: exit the certification phase
17: ▷ a certificate for v is obtained; v can be ⊥, meaning that σv vouches for any value
18: upon reception of ⟨certificate, Value v, Certificate σv⟩:
19: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
20: exit the certification phase
21: function verify(Value v, Certificate σ):
22: if CombinedVerify(“any value”, σ) = true: return true
23: else if CombinedVerify(v, σ) = true: return true
24: else return false

Algorithm 5 SQuad: Pseudocode (for process Pi).

1: upon init(Value proposal): ▷ propose value proposal
2: start the certification phase with proposal
3: upon exiting the certification phase with a certificate σv for a value v:
4: ▷ in Quadcer , processes ignore messages with values not accompanied by their

certificates
5: start executing Quadcer with the proposal (v, σv)
6: upon Quadcer decides Value decision:
7: trigger decide(decision) ▷ decide value decision

DISC 2022

Dynamic Probabilistic Input Output Automata
Pierre Civit #

Sorbonne Université, CNRS, LIP6, Paris, France

Maria Potop-Butucaru #

Sorbonne Université, CNRS, LIP6, Paris, France

Abstract
We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems.
Our work extends dynamic I/O Automata formalism of Attie & Lynch [2] to the probabilistic setting.
The original dynamic I/O Automata formalism included operators for parallel composition, action
hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.
They can model mobility by using signature modification. They are also hierarchical: a dynamically
changing system of interacting automata is itself modeled as a single automaton. Our work extends all
these features to the probabilistic setting. Furthermore, we prove necessary and sufficient conditions
to obtain the monotonicity of automata creation/destruction with implementation preorder. Our
construction uses a novel proof technique based on homomorphism that can be of independent
interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et
al. [5] to dynamic settings, an important tool towards the formal verification of protocols combining
probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure
distributed computation, cybersecure distributed protocols, etc).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Automata, Distributed Computing, Formal Verification, Dynamic systems

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.15

Related Version Full Version: https://eprint.iacr.org/2021/798

1 Introduction

Distributed computing area faces today important challenges coming from modern applica-
tions such as peer-to-peer networks, cooperative robotics, dynamic sensor networks, adhoc
networks and more recently, cryptocurrencies and blockchains which have a tremendous
impact in our society. These newly emerging fields of distributed systems are characterized
by an extreme dynamism in terms of structure, content and load. Moreover, they have to
offer strong guaranties over large scale networks which is usually impossible in deterministic
settings. Therefore, most of these systems use probabilistic algorithms and randomized
techniques in order to offer scalability features. However, the vulnerabilities of these systems
may be exploited with the aim to provoke an unforeseen execution that diverges from the
understanding or intuition of the developers. Therefore, formal validation and verification of
these systems has to be realized before their industrial deployment.

It is difficult to attribute the pioneering of formalization of concurrent systems to
some particular authors [16, 10, 1, 15, 11, 13, 9]. Lynch and Tuttle [12] proposed the
formalism of Input/Output Automata to model deterministic asynchronous distributed systems.
Relationship between process algebra and I/O automata are discussed in [20, 14]. Later,
this formalism is extended by Segala in [19] with Markov decision processes [17]. In order to
model randomized distributed systems Segala proposes Probabilistic Input/Output Automata.
In this model each process in the system is an automaton with probabilistic transitions. The
probabilistic protocol is the parallel composition of the automata modeling each participant.

© Pierre Civit and Maria Potop-Butucaru;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.civit@lip6.fr
mailto:maria.potop-butucaru@lip6.fr
https://doi.org/10.4230/LIPIcs.DISC.2022.15
https://eprint.iacr.org/2021/798
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Dynamic Probabilistic Input Output Automata

The modelisation of dynamic behavior in distributed systems has been addressed by
Attie & Lynch in [2] where they propose Dynamic Input Output Automata formalism. This
formalism extends the Input/Output Automata with the ability to change their signature
dynamically (i.e. the set of actions in which the automaton can participate) and to create
other I/O automata or destroy existing I/O automata. The formalism introduced in [2] does
not cover the case of probabilistic distributed systems and therefore cannot be used in the
verification of recent blockchains such as Algorand [6].

In order to respond to the need of formalisation in secure distributed systems, Canetti
& al. proposed in [3] task-structured probabilistic Input/Output automata (TPIOA) spe-
cifically designed for the analysis of cryptographic protocols. Task-structured probabilistic
Input/Output automata are Probabilistic Input/Output automata extended with tasks that
are equivalence classes on the set of actions. The task-structure allows a generalisation of
“off-line scheduling” where the non-determinism of the system is resolved in advance by a
task-scheduler, i.e. a sequence of tasks chosen in advance that trigger the actions among the
enabled ones. They define the parallel composition for this type of automata, as well as the
notion of implementation for TPIOA. Informally, the implementation of a Task-structured
probabilistic Input/Output automata should look “similar” to the specification whatever will
be the external environment of execution. Furthermore, they provide compositional results
for the implementation relation. Even thought the formalism proposed in [5] (built on top of
the one of [3]) has been already used in the formal proof of various cryptographic protocols
[4, 21], this formalism does not capture the dynamicity of probabilistic dynamic systems such
as peer-to-peer networks or blockchains systems where the set of participants dynamically
changes or where subchains can be created or destroyed at run time [18].

Our contribution. In order to cope with dynamicity and probabilistic nature of modern
distributed systems we propose an extension of the two formalisms introduced in [2] and [3].
Our extension uses a refined definition of probabilistic configuration automata in order to cope
with dynamic actions. The main result of our formalism is as follows: the implementation of
probabilistic configuration automata is monotonic to automata creation and destruction. That
is, if systems XA and XB differ only in that XA dynamically creates and destroys automaton
A instead of creating and destroying automaton B as XB does, and if A implements B (in the
sense they cannot be distinguished by any external observer), then XA implements XB. This
result enables a design and refinement methodology based solely on the notion of externally
visible behavior and permits the refinement of components and subsystems in isolation
from the rest of the system. In our construction, we exhibit the need of considering only
creation-oblivious schedulers in the implementation relation, i.e. a scheduler that, upon the
(dynamic) creation of a sub-automaton A, does not take into account the previous internal
actions of A to output (randomly) a transition. Surprisingly, the task-schedulers introduced
by Canetti & al. [3] are not creation-oblivious. Interestingly, an important contribution
of the paper of independent interest is the proof technique we used in order to obtain our
results. Differently from [2] and [3] which build their constructions mainly on induction
techniques, we developed an elegant homomorphism based technique which aim to render
the proofs modular. This proof technique can be easily adapted in order to further extend
our framework with cryptography and time.

It should be noted that our work is an intermediate step before extending composable
secure-emulation [5, 8] to dynamic settings. This extension is necessary for formal verification
of secure dynamic distributed systems (e.g. blockchain systems).

P. Civit and M. Potop-Butucaru 15:3

Paper organization. The paper is organized as follows. Section 2 is dedicated to a brief
introduction of the notion of probabilistic measure and recalls notations used in defining
Signature I/O automata of [2]. Section 3 builds on the frameworks proposed in [2] and [3]
in order to lay down the preliminaries of our formalism. More specifically, we introduce
the definitions of probabilistic signed I/O automata and define their composition and
implementation. In Section 4 we extend the definition of configuration automata proposed
in [2] to probabilistic configuration automata then we define the composition of probabilistic
configuration automata. Section 5 contains definitions related to the behavioural semantic
of automata, e.g. executions, traces, etc. Section 6 introduces implementation relationship,
which allows to formalise the idea that a concrete system is meeting the specification
of an abstract object. The key result of our formalisation, the monotonicity of PSIOA
implementations with respect to creation and destruction, is presented in Section 7 and
demonstrated in the extended version. For a big picture, we recommend the reading of the
warm up section of the extended version [7].

2 Preliminaries on probability and measure

We assume our reader is comfortable with basic notions of probability theory, such as σ-
algebra and (discrete) probability measures. A measurable space is denoted by (S, FS), where
S is a set and FS is a σ-algebra over S that is, FS ⊆ P(S), is closed under countable union
and complementation and its members are called measurable sets (P(S) denotes the power
set of S). The union of a collection {Si}i∈I of pairwise disjoint sets indexed by a set I is
written as

⊎
i∈I Si. A measure over (S, FS) is a function η : Fs → R≥0, such that η(∅) = 0

and for every countable collection of disjoint sets {Si}i∈I in FS , η(
⊎

i∈I Si) = Σi∈Iη(Si). A
probability measure (resp. sub-probability measure) over (S, FS) is a measure η such that
η(S) = 1 (resp. η(S) ≤ 1). A measure space is denoted by (S, FS , η) where η is a measure
on (S, FS).

The product measure space (S1, Fs1 , η1) ⊗ (S2, Fs2 , η2) is the measure space (S1 ×
S2, Fs1 ⊗ Fs2 , η1 ⊗ η2), where Fs1 ⊗ Fs2 is the smallest σ-algebra generated by sets of
the form {A × B|A ∈ Fs1 , B ∈ Fs2} and η1 ⊗ η2 is the unique measure s.t. for every
C1 ∈ Fs1 , C2 ∈ Fs2 , η1 ⊗η2(C1 ×C2) = η1(C1) ·η2(C2). If S is countable, we note P(S) = 2S .
If S1 and S2 are countable, we have 2S1 ⊗ 2S2 = 2S1×S2 .

A discrete probability measure on a set S is a probability measure η on (S, 2S), such that,
for each C ⊂ S, η(C) =

∑
c∈C η({c}). We define Disc(S) and SubDisc(S) to be respectively,

the set of discrete probability and sub-probability measures on S. In the sequel, we often omit
the set notation when we denote the measure of a singleton set. For a discrete probability
measure η on a set S, supp(η) denotes the support of η, that is, the set of elements s ∈ S

such that η(s) ̸= 0. Given set S and a subset C ⊂ S, the Dirac measure δC is the discrete
probability measure on S that assigns probability 1 to C. For each element s ∈ S, we note
δs for δ{s}.

If {mi}i∈I is a countable family of measures on (S, FS), and {pi}i∈I is a family of non-
negative values, then the expression

∑
i∈I pimi denotes a measure m on (S, FS) such that,

for each C ∈ FS , m(C) =
∑

i∈I mifi(C). A function f : X → Y is said to be measurable
from (X, FX) → (Y, FY) if the inverse image of each element of FY is an element of FX ,
that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case, given a measure η on (X, FX),
the function f(η) defined on FY by f(η)(C) = η(f−1(C)) for each C ∈ Y is a measure on
(Y, FY) and is called the image measure of η under f .

Let (Q1, 2Q1) and (Q2, 2Q2) be two measurable sets. Let (η2, η2) ∈ Disc(Q1) × Disc(Q2).
Let f : Q1 → Q2. We note η1

f↔ η2 if the following is verified: (1) the restriction f̃ of f to
supp(η1) is a bijection from supp(η1) to supp(η2) and (2) ∀q ∈ supp(η), η(q1) = η2(f(q1)).

DISC 2022

15:4 Dynamic Probabilistic Input Output Automata

3 Probabilistic Signature Input/Output Automata (PSIOA)

This section aims to introduce the first brick of our formalism: the probabilistic signature
input/output automata (PSIOA). A PSIOA A is an automaton that can move from one state
to another through actions. At each state q some actions can be triggered in its signature
sig(A)(q). Such an action leads to a new state with a certain probability. The fact that the
signature can evolve throughout an execution is particularly convenient to model dynamicity.

3.1 PSIOA

We combine the SIOA of [2] with the PIOA of [19]. We use the signature approach from [2]. We
assume the existence of a countable set Autids of unique probabilistic signature input/output
automata (PSIOA) identifiers, an underlying universal set Auts of PSIOA, and a mapping
aut : Autids → Auts. aut(A) is the PSIOA with identifier A. We use “the automaton A”
to mean “the PSIOA with identifier A”. We use the letters A, B, possibly subscripted or
primed, for PSIOA identifiers.

▶ Definition 1 (PSIOA). A PSIOA A = (QA, q̄A, sig(A), DA), where:
QA is a countable set of states, (QA, 2QA) is the state space,
q̄A is the unique start state.
sig(A) : q ∈ QA 7→ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function
that maps each state to a triplet of mutually disjoint countable set of actions, respectively
called input, output and internal actions.
DA ⊂ QA × acts(A) × Disc(QA) is the set of probabilistic discrete transitions where
∀(q, a, η) ∈ DA : a ∈ ŝig(A)(q). If (q, a, η) is an element of DA, we write q

a→ η and
action a is said to be enabled at q. We note enabled(A) : q ∈ QA 7→ enabled(A)(q) where
enabled(A)(q) denotes the set of enabled actions at state q. We also note steps(A) ≜
{(q, a, q′) ∈ QA × acts(A) × QA|∃(q, a, η) ∈ DA, q′ ∈ supp(η)}.

In addition A must satisfy the following conditions:
E1 (input enabling) ∀q ∈ QA, in(A)(q) ⊆ enabled(A)(q).1

T1 (Transition determinism): For every q ∈ QA and a ∈ ŝig(A)(q) there is at most one
η(A,q,a) ∈ Disc(QA), such that (q, a, η(A,q,a)) ∈ DA.

We define ext(A)(q), the external signature of A in state q, to be ext(A)(q) =
(in(A)(q), out(A)(q)). We define loc(A)(q), the local signature of A in state q, to be
loc(A)(q) = (out(A)(q), int(A)(q)). For any signature component, generally, the .̂ operator
yields the union of sets of actions within the signature, e.g., ŝig(A) : q ∈ Q 7→ ŝig(A)(q) =
in(A)(q) ∪ out(A)(q) ∪ int(A)(q). Also we define acts(A) =

⋃
q∈Q ŝig(A)(q), that is acts(A)

is the “universal” set of all actions that A could possibly trigger, in any state.
Later, we will define execution fragments as alternating sequences of states and actions

with classic and natural consistency rules. But a subtlety will appear with the composability
of set of automata at reachable states. Hence, we will define execution fragments after “local
composability” and “probabilistic configuration automata”.

1 Since the signature is dynamic, we can require ŝig(A) = enabled(A)

P. Civit and M. Potop-Butucaru 15:5

3.2 Local composition
The main aim of a formalism of concurrent systems is to compose several automata A =
{A1, ..., An} to capture the idea of an interaction between them and provide guarantees by
composing the guarantees of the different elements of the system. Some syntactical rules
have to be satisfied before defining the composition operation.

▶ Definition 2 (Compatible signatures). Let S = {sigi}i∈I be a set of signatures. Then S is
compatible iff, ∀i, j ∈ I, i ̸= j, where sigi = (ini, outi, inti), sigj = (inj , outj , intj), we have:
1. (ini ∪ outi ∪ inti) ∩ intj = ∅, and 2. outi ∩ outj = ∅.

▶ Definition 3 (Composition of Signatures). Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be
compatible signatures. Then we define their composition Σ×Σ = (in∪ in′ − (out∪out′), out∪
out′, int ∪ int′)2.

Signature composition is clearly commutative and associative. Now we can define the
compatibility of several automata at a state with the compatibility of their attached signatures.
First we define compatibility at a state, and discrete transition for a set of automata for a
particular compatible state.

▶ Definition 4 (Compatibility at a state). Let A = {A1 , ..., An} be a set of PSIOA. A state
of A is an element q = (q1, ..., qn) ∈ QA ≜ QA1 × ... × QAn

. We note q ↾ Ai ≜ qi. We say
A1, ..., An are (or A is) compatible at state q if {sig(A1)(q1), ..., sig(An)(qn)} is a set of
compatible signatures. In this case we note sig(A)(q) ≜ sig(A1)(q1) × ... × sig(An)(qn) as
per definition 3 and we note η(A,q,a) ∈ Disc(QA), s.t. ∀a ∈ ŝig(A)(q), η(A,q,a) = η1 ⊗ ... ⊗ ηn

where ∀j ∈ [1 , n], ηj = η(Aj ,qj ,a) if a ∈ sig(Aj)(qj) and ηj = δqj otherwise. Moreover, we
note steps(A) = {(q, a, q′)|q, q′ ∈ QA, a ∈ sig(A)(q), q′ ∈ supp(η(A,q,a))}. Finally, we note
q̄A = (q̄A1 , ..., q̄An

).

Let us note that an action a shared by two automata becomes an output action and not an
internal action after composition. First, it permits the possibility of further communication
using a. Second, it allows associativity. If this property is counter-intuitive, it is always
possible to use the classic hiding operator that “hides” the output actions transforming them
into internal actions.

▶ Definition 5 (Hiding operator). Let sig = (in, out, int) be a signature and H a set of actions.
We note hide(sig, H) ≜ (in, out \ H, int ∪ (out ∩ H)).

Let A = (QA, q̄A, sig(A), DA) be a PSIOA. Let h : q ∈ QA 7→ h(q) ⊆ out(A)(q). We
note hide(A, h) ≜ (QA, q̄A, sig′(A), DA), where sig′(A) : q ∈ QA 7→ hide(sig(A)(q), h(q)).
Clearly, hide(A, h) is a PSIOA.

4 Probabilistic Configuration Automata

We combine the notion of configuration of [2] with the probabilistic setting of [19]. A
configuration is a set of automata attached with their current states. This will be a very
useful tool to define dynamicity by mapping the state of an automaton of a certain “layer”
to a configuration of automata of lower layer, where the set of automata in the configuration
can dynamically change from on state of the automaton of the upper level to another one.

2 not to be confused with Cartesian product. We keep this notation to stay as close as possible to the
literature.

DISC 2022

15:6 Dynamic Probabilistic Input Output Automata

4.1 Configuration
▶ Definition 6 (Configuration). A configuration is a pair (A, S) where

A = {A1, ..., An} is a finite set of PSIOA identifiers and
S maps each Ak ∈ A to a state of Ak.

In distributed computing, configuration usually refers to the union of states of all the
automata of the “system”. Here, there is a subtlety, since it captures a set of some automata
(A) in their current state (S), but the set of automata of the systems will not be fixed in the
time.

Since, (1) {A ∈ P(Autids)|A is finite} is countable, (2) ∀A ∈ Autids, QA is countable
by definition 1 of PSIOA and (3) the cartesian product of countable sets is a countable set,
we can deduce that the set Qconf of configurations is countable.

▶ Definition 7 (Compatible configuration). A configuration (A, S), with A = {A1, ..., An}, is
compatible iff the set A is compatible at state (S(A1), ..., S(An)) as per definition 4.

▶ Definition 8 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible
configuration. Then we define

auts(C) = A represents the automata of the configuration,
map(C) = S maps each automaton of the configuration with its current state,
TS(C) = (S(A1), ..., S(An)) yields the tuple of states of the automata of the configuration.
sig(C) = (in(C), out(C), int(C)) = sig(auts(C), TS(C)) in the sense of definition 4, is
called the intrinsic signature of the configuration

Here we define a reduced configuration as a configuration deprived of the automata
that are in the very particular state where their current signatures are the empty set. This
mechanism will be used later to capture the idea of destruction of an automaton.

▶ Definition 9 (Reduced configuration). reduce(C) = (A′, S′), where A′ = {A|A ∈
A and sig(A)(S(A)) ̸= ∅} and S′ is the restriction of S to A′, noted S ↾ A′ in the re-
maining.

A configuration C is a reduced configuration iff C = reduce(C).

We will define some probabilistic transition from configurations to others where some
automata can be destroyed or created. To define it properly, we start by defining “preserving
transition” where no automaton is neither created nor destroyed and then we define above
this definition the notion of configuration transition.

▶ Definition 10 (From preserving distribution to intrinsic transition).
(preserving distribution) Let ηp ∈ Disc(Qconf). We say ηp is a preserving distribution
if it exists a finite set of automata A, called family support of ηp, s.t. ∀(A′, S′) ∈
supp(ηp), A = A′.
(preserving configuration transition C

a
⇀ ηp) Let C = (A, S) be a compatible configuration,

a ∈ ŝig(C). Let ηp be the unique preserving distribution of Disc(Qconf) such that (1)
the family support of ηp is A and (2) ηp

T S↔ η(A,T S(C),a). We say that (C, a, ηp) is a
preserving configuration transition, noted C

a
⇀ ηp.

(ηp ↑ φ) Let ηp ∈ Disc(Qconf) be a preserving distribution with A as family support. Let
φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. Let Cφ = (φ, Sφ) ∈ Qconf with
∀Aj ∈ φ, Sφ(Aj) = q̄Aj

. We note ηp ↑ φ the unique element of Disc(Qconf) verifying
ηp

u↔ (ηp ↑ φ) with u : C ∈ supp(ηp) 7→ (C ∪ Cφ).

P. Civit and M. Potop-Butucaru 15:7

(distribution reduction) Let η ∈ Disc(Qconf). We note reduce(η) the element of
Disc(Qconf) verifying ∀c ∈ Qconf , (reduce(η))(c) = Σ(c′∈supp(η),c=reduce(c′))η(c′)
(intrinsic transition C

a=⇒φ η) Let C = (A, S) be a compatible configuration, let a ∈
ŝig(C), let φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. We note C

a=⇒φ η,
if η = reduce(ηp ↑ φ) with C

a
⇀ ηp. In this case, we say that η is generated by ηp and φ.

Preserving configuration transition (C, a, ηp) is the intuitive transition for configurations,
corresponding to the transition (TS(C), a, η(auts(C),T S(C),a)). The operator ↑ φ describes the
deterministic creation of automata in φ, who will be appear at their respective start states.
The reduce operator enables to remove “destroyed” automata from the possibly returned
configurations (see Figure 1).

Figure 1 An intrinsic transition where A1 is destroyed deterministically and automata in
φ = {A4, A5} are created deterministically. First, we have the preserving disribution ηp s.t. C

a
⇀ ηp

with ηp
T S↔ η(A,T S(C),a). Second, we take into account the created automata in φ, captured by the

distribution ηp ↑ φ. Third, we remove the automata in a particular state with associated empty
signature (A1 in our example). This is captured by distribution reduce(ηp ↑ φ).

4.2 Probabilistic configuration automata (PCA)
Now we are ready to define our probabilistic configuration automata (see figure 2). Such an
automaton define a strong link with a dynamic configuration.

▶ Definition 11 (Probabilistic Configuration Automaton). A probabilistic configuration auto-
maton (PCA) X consists of the following components:
1. A probabilistic signature I/O automaton psioa(X). For brevity, we define QX =

Qpsioa(X), q̄X = q̄psioa(X), sig(X) = sig(psioa(X)), steps(X) = steps(psioa(X)), and
likewise for all other (sub)components and attributes of psioa(X).

2. A configuration mapping config(X) with domain QX and such that, for all q ∈ QX ,
config(X)(q) is a reduced compatible configuration.

3. For each q ∈ QX , a mapping created(X)(q) with domain sig(X)(q) and such that ∀a ∈
sig(X)(q), created(X)(q)(a) ⊆ Autids with created(X)(q)(a) finite.

4. A hidden-actions mapping hidden-actions(X) with domain QX and such that hidden-
actions(X)(q) ⊆ out(config(X)(q)).

and satisfies the following constraints, for every q ∈ QX , C = config(X)(q), H = hidden-
actions(q).

DISC 2022

15:8 Dynamic Probabilistic Input Output Automata

1. (start states preservation) If config(X)(q̄X) = (A, S), then ∀Ai ∈ A, S(Ai) = q̄Ai
.

2. (top/down transition preservation) If (q, a, η(X,q,a)) ∈ DX , then ∃η′ ∈ Disc(Qconf) s.t.
η(X,q,a)

c↔ η′ with C
a=⇒φ η′, where φ = created(X)(q)(a) and c = config(X).

3. (bottom/up transition preservation) If q ∈ QX and C
a=⇒φ η′ for some action a, φ =

created(X)(q)(a), and reduced compatible probabilistic measure η′ ∈ Disc(Qconf), then
(q, a, η(X,q,a)) ∈ DX , and η(X,q,a)

c↔ η′ where c = config(X).
4. (signature preservation modulo hiding) ∀q ∈ QX , sig(X)(q) = hide(sig(C), H).

This definition, proposed in a deterministic fashion in [2], captures dynamicity of the
system. Each state is linked with a configuration. The set of automata of the configuration
can change during an execution. A sub-automaton A is created from state q by the action
a if A ∈ created(X)(q)(a). A sub-automaton A is destroyed if the non-reduced attached
configuration distribution leads to a configuration where A is in a state qϕ

A s.t. ŝig(A)(qϕ
A) = ∅.

Then the corresponding reduced configuration will not hold A. The last constraint states
that the signature of a state q of X must be the same as the signature of its corresponding
configuration config(X)(q), except for the possible effects of hiding operators, so that some
outputs of config(X)(q) may be internal actions of X in state q.

Figure 2 A PCA life cycle. V is destroyed at step (q2, h, q3), while W is created at step (q3, b, q4).

As for PSIOA, we can define hiding operator applied to PCA.

▶ Definition 12 (Hiding on PCA). Let X be a PCA. Let h : q ∈ QX 7→ h(q) ⊆ out(X)(q).
We note hide(X, h) the PCA X ′ that differs from X only on

psioa(X ′) = hide(psioa(X), h)
sig(X ′) = hide(sig(X), h) and
∀q ∈ QX = QX′ , hidden-actions(X ′)(q) = hidden-actions(X)(q) ∪ h(q).

The notion of local compatibility can be naturally extended to set of PCA.

P. Civit and M. Potop-Butucaru 15:9

▶ Definition 13 (PCA compatible at a state). Let X = {X1, ..., Xn} be a set of PCA. Let
q = (q1, ..., qn) ∈ QX1 × ... × QXn

. Let us note Ci = (Ai, Si) = config(Xi)(qi), ∀i ∈ [1, n].
The PCA in X are compatible at state q iff3:
1. PSIOA compatibility: psioa(X1), ..., psioa(Xn) are compatible at qX.
2. Sub-automaton exclusivity: ∀i, j ∈ [1 : n], i ̸= j : Ai ∩ Aj = ∅.
3. Creation exclusivity: ∀i, j ∈ [1 : n], i ̸= j, ∀a ∈ ŝig(Xi)(qi) ∩ ŝig(Xj)(qj) :

created(Xi)(qi)(a) ∩ created(Xj)(qj)(a) = ∅.

If X is compatible at state q, for every action a ∈ ŝig(psioa(X))(q), we note η(X,q,a) =
η(psioa(X),q,a) and we extend this notation with η(X,q,a) = δq if a /∈ ŝig(psioa(X))(q).

5 Executions, reachable states, partially-compatible automata

In previous sections, we have described how to model probabilistic transitions that might
lead to the creation and destruction of some components of the system. In this section, we
will define pseudo execution fragments of a set of automata to model the run of a set A
of several dynamic systems interacting with each others. With such a definition, we will
kill two birds with one stone, since it will allow to define reachable states of A and then
compatibility of A as compatibility of A at each reachable state.

5.1 Executions, reachable states, traces
▶ Definition 14 (Pseudo execution, reachable states, partial-compatibility). Let A =
{A1, ..., An} be a finite set of PSIOA (resp. PCA). A pseudo execution fragment of A
is a finite or infinite sequence α = q0a1q1a2... of alternating states and actions, such that:
1. If α is finite, it ends with a state. In that case, we note lstate(α) the last state of α.
2. A is compatible at each state of α, with the potential exception of lstate(α) if α is finite.
3. for ever action ai, (qi−1, ai, qi) ∈ steps(A).

The first state of a pseudo execution fragment α is noted fstate(α). A pseudo execution
fragment α of A is a pseudo execution of A if fstate(α) = q̄A. The length |α| of a finite
pseudo execution fragment α is the number of actions in α. A state q of A is said reachable
if there is a pseudo execution α s.t. lstate(α) = q. We note Reachable(A) the set of reachable
states of A. If A is compatible at every reachable state q, A is said partially-compatible.

▶ Definition 15 (Executions, concatenations). Let A be an automaton. An execution fragment
(resp. execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We
use Frags(A) (resp., Frags∗(A)) to denote the set of all (resp., all finite) execution fragments
of A. Execs(A) (resp. Execs∗(A)) denotes the set of all (resp., all finite) executions of A.

We define a concatenation operator ⌢ for execution fragments as follows:
If α = q0 a1 q1 ...anqn ∈ Frags∗(A) and α′ = q0 ′a1 ′q1 ′... ∈ Frags∗(A), we define α⌢α′ ≜
q0a1q1...anqn a1′q1′... only if s0 = qn, otherwise α⌢α′ is undefined. Hence the notation
α⌢α′ implicitly means fstate(α′) = lstate(α). Let α, α′ ∈ Frags(A), then α is a prefix of α′,
noted α ≤ α′, iff ∃α′′ ∈ Frags(A) such that α′ = α⌢α′′.

The trace of an execution α represents its externally visible part, i.e. the external actions.

3 We can remark that the conjunction of PSIOA compatibility and sub-automata exclusivity implies the
compatibility of respective configurations as defined later in definition 19

DISC 2022

15:10 Dynamic Probabilistic Input Output Automata

▶ Definition 16 (Traces). Let A be a PSIOA (resp. PCA). Let q0 ∈ QA, (q, a, q′) ∈ steps(A),
α, α′ ∈ Execs∗(A) × Execs(A) with fstate(α′) = lstate(α).

traceA(q0) is the empty sequence, noted λ,

traceA(qaq′)
{

a if a ∈ êxt(A)(q)
λ otherwise. ,

traceA(α⌢α′) = traceA(α)⌢traceA(α′)
We say that β is a trace of A if ∃α ∈ Execs(A) with β = traceA(α). We note Traces(A)

(resp. Traces∗(A), resp. Tracesω(A)) the set of traces (resp. finite traces, resp. infinite
traces) of A. When the automaton A is understood from context, we write simply trace(α).

The projection of a pseudo-execution α on an automaton Ai, noted α ↾ Ai, represents
the contribution of Ai to this execution.

▶ Definition 17 (Projection). Let A be a set of PSIOA (resp. PCA), let Ai ∈ A. We define
projection operator ↾ recursively as follows: For every (q, a, q′) ∈ steps(A), for every α, α′

being two pseudo executions of A with fstate(α′) = lstate(α).

(q, a, q′) ↾ Ai =
{

(q ↾ Ai), a, (q′ ↾ Ai) if a ∈ ŝig(Ai)(q ↾ Ai)
(q ↾ Ai) = (q′ ↾ Ai) otherwise.

,

(α⌢α′) ↾ Ai = (α ↾ Ai)⌢(α′ ↾ Ai)

5.2 PSIOA and PCA composition
We are ready to define composition operator, the most important operator for concurrent
systems.

▶ Definition 18 (PSIOA partial-composition). If A = {A1, ..., An} is a partially-compatible
set of PSIOA, with Ai = (QAi

, q̄Ai
, sig(Ai), DAi

), then their partial-composition A1||...||An,
is defined to be A = (QA, q̄A, sig(A), DA), where:

QA = Reachable(A)
q̄A = (q̄A1 , ..., q̄An

)
sig(A) : q ∈ QA 7→ sig(A)(q) = sig(A)(q)
DA = {(q, a, η(A,q,a))|q ∈ QA, a ∈ ŝig(A)(q)}

▶ Definition 19 (Union of configurations). Let C1 = (A1, S1) and C2 = (A2, S2) be con-
figurations such that A1 ∩ A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2,
is the configuration C = (A, S) where A = A1 ∪ A2 and S agrees with S1 on A1, and
with S2 on A2. Moreover, if C1 ∪ C2 is a compatible configuration, we say that C1 and
C2 are compatible configurations. It is clear that configuration union is commutative
and associative. Hence, we will freely use the n-ary notation C1 ∪ ... ∪ Cn, whenever
∀i, j ∈ [1 : n], i ̸= j, auts(Ci) ∩ auts(Cj) = ∅.

▶ Definition 20 (PCA partial-composition). If X = {X1, ..., Xn} is a partially-compatible set
of PCA, then their partial-composition X1||...||Xn, is defined to be the automaton X, with
the same components than a PCA, s.t. psioa(X) = psioa(X1)||...||psioa(Xn) and ∀q ∈ QX :

config(X)(q) =
⋃

i∈[1,n] config(Xi)(q ↾ Xi)
∀a ∈ ŝig(X)(q), created(X)(q)(a) =

⋃
i∈[1,n] created(Xi)(q ↾ Xi)(a), with the convention

created(Xi)(qi)(a) = ∅ if a /∈ ŝig(Xi)(qi)
hidden-actions(q) =

⋃
i∈[1,n] hidden-actions(Xi)(q ↾ Xi)

▶ Theorem 21 (PCA closeness under composition). Let X1, ..., Xn, be partially-compatible
PCA. Then X = X1||...||Xn is a PCA.

P. Civit and M. Potop-Butucaru 15:11

6 Scheduler, measure on executions, implementation

An inherent non-determinism appears for concurrent systems. Indeed, after composition (or
even before), it is natural to obtain a state with several enabled actions. The most common
case is the reception of two concurrent messages in flight from two different processes.
This non-determinism must be solved if we want to define a probability measure on the
automata executions and be able to say that a situation is likely to occur or not. To solve
the non-determinism, we use a scheduler that chooses an enabled action from a signature.

6.1 General definition and probabilistic space on execution fragments
A scheduler is hence a function that takes an execution fragment as input and outputs
the probability distribution on the set of transitions that will be triggered. We reuse the
formalism from [19] with the syntax from [3].

▶ Definition 22 (Scheduler). A scheduler of a PSIOA (resp. PCA) A is a function
σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈ supp(σ(α)) implies q = lstate(α).

Here SubDisc(DA) is the set of discrete sub-probability distributions on DA. Loosely speaking,
σ decides (probabilistically) which transition to take after each finite execution fragment α.
Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to
halt after α with non-zero probability: 1 − σ(α)(DA) > 0. We note schedulers(A) the set of
schedulers of A.

▶ Definition 23 (Measure ϵσ,α generated by a scheduler and a fragment). A scheduler σ and a
finite execution fragment α generate a measure ϵσ,α on the sigma-algebra FFrags(A) generated
by cones of execution fragments, where each cone Cα′ is the set of execution fragments that
have α′ as a prefix, i.e. Cα′ = {α ∈ Frags(A)|α′ ≤ α} . The measure of a cone Cα′ is defined
recursively as follows:

ϵσ,α(Cα′) = :

0 if both α′ ≰ α and α ≰ α′

1 if α′ ≤ α

ϵσ,α(Cα′′) · σ(α′′)(η(A,q′,a)) · η(A,q′,a)(q) if α ≤ α′′ and α′ = α′′⌢q′aq

In the remaining part of the paper, we will mainly focus on probabilistic executions of
A of the form ϵσ ≜ ϵσ,δq̄A

= ϵσ,q̄A . Hence, we will deal with probablistic space of the form
(Execs(A), FExecs(A), ϵσ).

Scheduler Schema

Without restriction, a scheduler could become a too powerful adversary for practical ap-
plications. Hence, it is common to only consider a subset of schedulers, called a scheduler
schema. Typically, a classic limitation is often described by a scheduler with “partial online
information”. Some formalism has already been proposed in [19] (section 5.6) to impose the
scheduler that its choices are correlated for executions fragments in the same equivalence
class where both the equivalence relation and the correlation must to be defined. This idea
has been reused and simplified in [4] that defines equivalence classes on actions, called tasks.
Then, a task-scheduler (a.k.a. “off-line” scheduler) selects a sequence of tasks T1, T2, ... in
advance that it cannot modify during the execution of the automaton. After each transition,
the next task Ti triggers an enabled action if there is no ambiguity and is ignored otherwise.
One of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA
creation, is ensured only for a certain scheduler schema, so-called creation-oblivious. However,
we will see that the practical set of task-schedulers are not creation-oblivious.

DISC 2022

15:12 Dynamic Probabilistic Input Output Automata

▶ Definition 24 (Scheduler schema). A scheduler schema is a function that maps every
PSIOA (resp. PCA) A to a subset of schedulers(A).

6.2 Implementation
In last subsection, we defined a measure of probability on executions with the help of a
scheduler to solve non-determinism. Now we can define the notion of implementation. The
intuition behind this notion is the fact that any environment E that would interact with
both A and B, would not be able to distinguish A from B. The classic use-case is to formally
show that a (potentially very sophisticated) algorithm implements a specification.

For us, an environment is simply a partially-compatible automaton, but in practice, he
will play the role of a “distinguisher”.

▶ Definition 25 (Environment). A probabilistic environment for PSIOA A is a PSIOA E
such that A and E are partially-compatible. We note env(A) the set of environments of A.

Now we define perception function which is a function that captures the pieces of
information that could be obtained by an external observer to attempt a distinction.

▶ Definition 26 (Perception function). A perception-function is a function f(.,.) parametrized
by a pair (E , A) of PSIOA (resp. PCA) where E ∈ env(A) s.t.

(Measurability) For every pair (E , A) of PSIOA (resp. PCA) where E ∈ env(A), f(E,A)
is a measurable function from (Execs(E||A), FExecs(E||A)) to some measurable space
(G(E,A), FG(E,A)) that has to be made explicit.
(Stability by composition) For every quadruplet of PSIOA (A1, A2, B, E), s.t. B is partially
compatible with A1 and A2, E ∈ env(B||A1) ∩ env(B||A2), ∀(C1, C2) ∈ FExecs(E||B||A1) ×
FExecs(E||B||A2), f(E||B,A1)(C1) = f(E||B,A2)(C2) =⇒ f(E,B||A1)(C1) = f(E,B||A2)(C2).

The first property is a standard measurability requirement, while the second captures the
fact that an environment E does not have a greater power of distinction than E composed with
another system B. Any reasonable function that captures the perception of an automaton A
by an environment E ∈ env(A) should be a perception function.

▶ Lemma 27. The function trace(.,.) and proj(.,.) s.t. for every PSIOA (resp. PCA)
A, ∀E ∈ env(A), trace(E,A) : α ∈ Execs(E||A) 7→ trace(E||A)(α) and proj(E,A) : α ∈
Execs(E||A) 7→ α ↾ E are perception functions.

Since a perception-function f(.,.) is measurable, we can define the image measure of ϵσ,µ

under f(E,A), i.e. the probability to obtain a certain external perception under a certain
scheduler σ and a certain probability distribution µ on the starting executions.

▶ Definition 28 (f -dist). Let f(.,.) be a perception-function. Let (E , A) be a pair of PSIOA
where E ∈ env(A). Let µ be a probability measure on (Execs(E||A), FExecs(E||A)), and
σ ∈ schedulers(E||A). We define f-dist(E,A)(σ, µ), to be the image measure of ϵσ,µ under
f(E,A) (i.e. the function that maps any C ∈ FG(E,A) to ϵσ,µ(f−1

(E,A)(C))) . We note f-
dist(E,A)(σ) for f -dist(E,A)(σ, δq̄(E||A)).

We can see next definition of f -implementation as the incapacity of an environment to
distinguish two automata if it uses only information filtered by the perception function f .

▶ Definition 29 (f -implementation). Let f(.,.) be an insight-function. Let S be a scheduler
schema. We say that A f -implements B according to S, noted A ≤S,f

0 B, if ∀E ∈ env(A) ∩
env(B), ∀σ ∈ S(E||A), ∃σ′ ∈ S(E||B), f-dist(E,A)(σ) ≡ f-dist(E,B)(σ′), i.e. ∀C ∈ supp(f-
dist(E,A)(σ)) ∪ supp(f -dist(E,B)(σ′)), f -dist(E,A)(σ)(C) = f -dist(E,B)(σ′)(C).

P. Civit and M. Potop-Butucaru 15:13

Figure 3 We say that A implements B if no environment E is able to distinguish A from B, i.e.
∀σA ∈ schedulers(E||A), ∃σB ∈ schedulers(E||B) (linked by pink arrow) s.t. every pair of corres-
ponding classes of equivalence of executions, related to the same perception by the environment (e.g.
(Cζ

A, Cζ
B) in blue for perception ζ) are equiprobable, i.e. f -dist(E,A)(σA)(ζ) = f -dist(E,B)(σB)(ζ).

We can restate classic theorem of (horizontal) substitutability of implementation in a
quite general form.

▶ Theorem 30 (Implementation substitutability). Let f(.,.) be a perception-function. Let S be
a scheduler schema. Let A1, A2, A3, B, B1, B2 be some PSIOA (resp. PCA).

(Composability) If A1 ≤S,f
0 A2 and B is partially compatible with A1 and A2, then

B||A1 ≤S,f
0 B||A2.

(Transitivity) If A1 ≤S,f
0 A2 and A2 ≤S,f

0 A3, then A1 ≤S,f
0 A3.

(Substitutability) If A1 ≤S,f
0 A2, B1 ≤S,f

0 B2, and both B1 and B2 are partially compatible
with both A1 and A2, then A1||B1 ≤S,f

0 A2||B2.

Substitutability constitutes one of the most important properties that an implementation
relation should satisfy, since it allows to reason in a modular way and avoid overwhelming
monolithic proof of correctness.

7 Dynamic vertical substitutability

In previous section, we have stated the classic horizontal substitutability of implementation
relation, which allows us to replace an idealized abstract object by its concrete implementation
without losing hyper-properties. In this section, we informally describe the main result of
this paper: the dynamic vertical substitutability of p-implementation.

Informally, if (1) XA and XB are PCA that differ only on the fact that B supplants
A in XB and (2) ARB for some preorder R implies (3) XARXB, then we say that R is
monotonic w.r.t. PSIOA creation/destruction. Monotonicity of implementation w.r.t. PSIOA
creation/destruction is the main contribution of the paper.

▶ Definition 31 ((Informal) corresponding w.r.t. A, B). Intuitively, XA and XB are cor-
responding w.r.t. A, B if they differ only in that XA dynamically creates and destroys
automaton A instead of creating and destroying automaton B as XB does. Some technical
minor assumptions have to be verified:

DISC 2022

15:14 Dynamic Probabilistic Input Output Automata

XA is A-conservative and XB is B-conservative: Each state of XA (resp. XB) is perfectly
defined by its configuration deprived of sub-automaton A (resp. B) and external actions
of A (resp. B) are not hidden.
XA is A-creation explicit and XB is B-creation explicit: the creation of A and B respect-
ively, are equivalent to the triggering of an action in a dedicated set.
config(XA)(q̄XA)◁AB config(XB)(q̄XB): The associated configuration of respective start
states are identical except that the automaton B supplants A but with the same external
signature.
XA, XB are creation&hiding-corresponding w.r.t. A, B: the two PCA hide some output
actions and create some PSIOA in the same manner, excepting for the creation of B that
supplants the creation of A.
∀K ∈ {A, B}, ∀q ∈ QXK , for every K-exclusive action a at state q, created(XK)(q)(a) =
∅, where a K-exclusive action is an action which is in the signature of sub-automaton K
only.

We would like to state the monotonicy of p-implementation, but it holds only for a certain
class of schedulers, so-called creation-oblivious that does not take past internal behaviours of
sub-automata into account to outputs the next action.

▶ Definition 32 ((Informal) creation-oblivious scheduler). Let Ã be a PSIOA, W̃ be a PCA,
σ̃ ∈ schedulers(W̃). We say that σ̃ is A-creation oblivious if for every triplet (α̃1, α̃2, α̃3)
s.t. (1) lstate(α̃1) = lstate(α̃2) = fstate(α̃3) and (2) α̃1 and α̃2 differ only on A-exclusive
actions and internal states of sub-automaton A, then (3) σ̃(α̃⌢

1 α̃3) = σ̃(α̃⌢
2 α̃3).

Formal definitions of two last concepts are available in the extended version. It is crucial
to limit the power of the scheduler to reduce the measure of a class of comportment as a
function of measures of classes of shorter comportment where no creation of A or B occurs
excepting potentially at very last action. This reduction is more or less necessary to obtain
monotonicity of implementation relation:

▶ Theorem 33 (p-implementation monotonicity). Let A, B ∈ Autids, XA and XB be PCA
corresponding w.r.t. A, B. Let S the schema of creation-oblivious scheduler and p = proj(.,.).
If A ≤S,p

0 B, then XA ≤S,p
0 XB

Proof Sketch. First, we defined the notion of executions-matching to capture the idea that
two automata have the same “comportment” along some corresponding executions. Basically
an executions-matching from a PSIOA A to a PSIOA B is a morphism fex : Execs′

A →
Execs(B) where Execs′

A ⊆ Execs(A) . This morphism preserves some properties along
the pair of matched executions: signature, transition, ... in such a way that for every
pair (α, α′) ∈ Execs(A) × Execs(B) s.t. α′ = fex(α), ϵσ(α) = ϵσ′(α′) for every pair of
schedulers (σ, σ′) (so-called alter ego) that are “very similar” in the sense they take into
account only the “structure” of the argument to return a sub-probability distribution, i.e.
α′ = fex(α) implies σ(α) = σ′(α′). When the executions-matching is a bijection function
from Execs(A) to Execs(B), we say A and B are semantically-equivalent (they differ only
syntactically). Second, we defined the notion of a PCA XA deprived of a PSIOA A, noted
(XA \ {A}). Such an automaton corresponds to the intuition of a similar automaton where A
is systematically removed from the configuration of the original PCA. Thereafter we shew that
under technical minor assumptions XA \ {A} and Ãsw are partially-compatible where Ãsw

and A are semantically equivalent. In fact Ãsw is the simpleton wrapper of A, that is a PCA

P. Civit and M. Potop-Butucaru 15:15

that only owns A in its attached configuration. Then we shew that there is an (incomplete)
execution-matching from XA to (XA \ {A})||Ãsw. The domain of this executions-matching
is the set of executions where A is not (re-)created before very last action. After this, we
always try to reduce any reasoning on XA (resp. XB) on a reasoning on (XA \ {A})||Ãsw

(resp. (XB \ {B})||B̃sw). We shew that, under certain reasonable technical assumptions
(captured in the definition of corresponding PCA w.r.t. A, B), (XA \ {A}) and (XB \ {B})
are semantically-equivalent. We can note Y an arbitrary PCA semantically-equivalent to
(XA \ {A}) and (XB \ {B}) . Finally, a reasoning on E||XA (resp. E||XB) can be reduced
to a reasoning on E ′||Ãsw (resp. E ′||B̃sw) with E ′ = E||Y . Since Ãsw implements B̃sw, we
have already some results on E ′||Ãsw and E ′||B̃sw and so on E||XA and E||XB. However, this
reduction, represented in figure 4, is valid only for the subset of executions without creation of
neither A nor B before very last action. Ideally, we would like to decompose an “aggregated”
class of perception, with arbitrary number of creations/destructions of A (resp. B)), into
“atomic” classes of perception without creation/destruction of A (resp. B)) before last action.
Some technical precautions have to be taken to be allowed to paste these fragments together
to finally say that A implements B implies XA implements XB. In fact, such a pasting is
generally not possible for a fully information online scheduler. This observation motivated
us to introduce the creation-oblivious scheduler, to manipulate independent atomic classes of
perception. We proved monotonicity of external behaviour inclusion for schema of creation
oblivious scheduler. Surprisingly, the fully-offline task-scheduler introduced in [3] (slightly
modified to be adapted to dynamic setting) is not creation-oblivious and so does not allow
monotonicity of implementation. ◀

8 Conclusion

We have extended dynamic I/O Automata formalism of Attie & Lynch [2] to probabilistic
setting in order to cope with emergent distributed systems such as peer-to-peer networks,
robot networks, adhoc networks or blockchains. Our formalism includes operators for parallel
composition, action hiding, action renaming, automaton creation and use a refined definition
of probabilistic configuration automata in order to cope with dynamic actions. The key result
of our framework is as follows: the implementation of probabilistic configuration automata is
monotonic to automata creation and destruction. That is, if systems XA and XB differ only
in that XA dynamically creates and destroys automaton A instead of creating and destroying
automaton B as XB does, and if A implements B (in the sense they cannot be distinguished
by any external observer), then XA implements XB. This results is particularly interesting
in the design and refinement of components and subsystems in isolation. In our construction
we exhibit the need of considering only creation-oblivious schedulers in the implementation
relation, i.e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not
take into account the previous internal behaviour of A to output (randomly) a transition.

As future work we plan to extend the composable secure-emulation of Canetti et al. [5] to
dynamic settings. This extension is necessary for formal verification of protocols combining
probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains,
secure distributed computation, cybersecure distributed protocols etc).

DISC 2022

15:16 Dynamic Probabilistic Input Output Automata

(a) The figure represents successive steps to reduce the problem of an environment E that tries to
distinguish two PCA XA and XB (represented at first column) to a problem of an environment ED that
tries to distinguish the automata A and B (represented at last column).

(b) The figure represents the homomorphism enabling the reduction reasoning, for set of executions that
do not create neither A nor B before last action. For every environment E , For every scheduler σA,
there exists a corresponding scheduler σB (mapped with pink arrow) s.t. for every possible perception
ζ (represented in light blue), the probability to observe ζ is the same for E in each world. There is an
homomorphism µA,+

e (orange arrow) between Ẽ ||XA and E||Ãsw (and similarly for XB and B̃sw) s.t. for
every scheduler σ̃A, alter-ego of σA, the measure of each corresponding perception is preserved. Hence,
for every environment Ẽ , for every scheduler σ̃A, there exists a corresponding scheduler σ̃B s.t. for every
possible perception ζ̃ (represented in dark blue), the probability to observe ζ̃ is the same for Ẽ in each
world.

Figure 4 homomorphism-based-proof.

P. Civit and M. Potop-Butucaru 15:17

References
1 Edward A. Ashcroft. Proving assertions about parallel programs. J. Comput. Syst. Sci.,

10(1):110–135, 1975. doi:10.1016/S0022-0000(75)80018-3.
2 Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal and composi-

tional model for dynamic systems. Inf. Comput., 249:28–75, 2016. doi:10.1016/j.ic.2016.
03.008.

3 Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and
Roberto Segala. Task-Structured Probabilistic {I/O} Automata. Journal of Computer and
System Sciences, 94:63—-97, 2018. doi:10.1016/j.jcss.2017.09.007.

4 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov, Nancy A. Lynch, Olivier
Pereira, and Roberto Segala. Using probabilistic I/O automata to analyze an oblivious transfer
protocol. IACR Cryptol. ePrint Arch., page 452, 2005. URL: http://eprint.iacr.org/2005/
452.

5 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira.
Compositional security for task-pioas. In 20th IEEE Computer Security Foundations Sym-
posium, CSF 2007, 6-8 July 2007, Venice, Italy, pages 125–139. IEEE Computer Society, 2007.
doi:10.1109/CSF.2007.15.

6 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 777:155–183, 2019. doi:10.1016/j.tcs.2019.02.001.

7 Pierre Civit and Maria Potop-Butucaru. Probabilistic dynamic input output automata
(extended version). Cryptology ePrint Archive, Paper 2021/798, 2021. doi:10.4230/LIPIcs.
DISC.2022.20.

8 Pierre Civit and Maria Potop-Butucaru. Brief announcement: Composable dynamic secure
emulation. In Kunal Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM
Symposium on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA, July 11 -
14, 2022, pages 103–105. ACM, 2022. doi:10.1145/3490148.3538562.

9 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,

3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.
11 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng., 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.
12 Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. A theory of atomic

transactions. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 326 LNCS:41–71, 1988. doi:
10.1007/3-540-50171-1_3.

13 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

14 Rocco De Nicola and Roberto Segala. A process algebraic view of input/output automata.
Theor. Comput. Sci., 138(2):391–423, 1995. doi:10.1016/0304-3975(95)92307-J.

15 Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319–340, 1976. doi:10.1007/BF00268134.

16 C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathem-
atik, Bonn, 1962.

17 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
Wiley series in probability and mathematical statistics. John Wiley & Sons, 1 edition, 1994.

18 Alejandro Ranchal-Pedrosa and Vincent Gramoli. Platypus: Offchain protocol without
synchrony. In Aris Gkoulalas-Divanis, Mirco Marchetti, and Dimiter R. Avresky, editors,
18th IEEE International Symposium on Network Computing and Applications, NCA 2019,
Cambridge, MA, USA, September 26-28, 2019, pages 1–8. IEEE, 2019. doi:10.1109/NCA.
2019.8935037.

19 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusettes Institute of technology, 1995.

DISC 2022

https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.jcss.2017.09.007
http://eprint.iacr.org/2005/452
http://eprint.iacr.org/2005/452
https://doi.org/10.1109/CSF.2007.15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.4230/LIPIcs.DISC.2022.20
https://doi.org/10.4230/LIPIcs.DISC.2022.20
https://doi.org/10.1145/3490148.3538562
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(95)92307-J
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/NCA.2019.8935037
https://doi.org/10.1109/NCA.2019.8935037

15:18 Dynamic Probabilistic Input Output Automata

20 Frits W. Vaandrager. On the relationship between process algebra and input/output automata.
In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),
Amsterdam, The Netherlands, July 15-18, 1991, pages 387–398. IEEE Computer Society, 1991.
doi:10.1109/LICS.1991.151662.

21 Kazuki Yoneyama. Formal modeling of random oracle programmability and verification of
signature unforgeability using task-pioas. Int. J. Inf. Sec., 17(1):43–66, 2018. doi:10.1007/
s10207-016-0352-y.

https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1007/s10207-016-0352-y
https://doi.org/10.1007/s10207-016-0352-y

How to Wake up Your Neighbors: Safe and Nearly
Optimal Generic Energy Conservation in Radio
Networks
Varsha Dani #

Department of Computer Science, Rochester Institute of Technology, NY, USA

Thomas P. Hayes #

Department of Computer Science, University at Buffalo, NY, USA

Abstract
Recent work [7, 8, 11] has shown that it is sometimes feasible to significantly reduce the energy
usage of some radio-network algorithms by adaptively powering down the radio receiver when it
is not needed. Although past work has focused on modifying specific network algorithms in this
way, we now ask the question of whether this problem can be solved in a generic way, treating the
algorithm as a kind of black box.

We are able to answer this question in the affirmative, presenting a new general way to modify
arbitrary radio-network algorithms in an attempt to save energy. At the expense of a small increase
in the time complexity, we can provably reduce the energy usage to an extent that is provably nearly
optimal within a certain class of general-purpose algorithms.

As an application, we show that our algorithm reduces the energy cost of breadth-first search in
radio networks from the previous best bound of 2O(

√
log n) to polylog(n), where n is the number of

nodes in the network
A key ingredient in our algorithm is hierarchical clustering based on additive Voronoi decompos-

ition done at multiple scales. Similar clustering algorithms have been used in other recent work on
energy-aware computation in radio networks, but we believe the specific approach presented here
may be of independent interest.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Radio Networks, Low Energy Computation, Clustering

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.16

Related Version Full Version: https://arxiv.org/abs/2205.12830

1 Introduction

For large networks of tiny sensors equipped with radio transceivers, the energy used in
communication can be a bottleneck cost. Although it has become standard practice to
measure the cost of communication in terms of the number of messages or bits sent, it has
been pointed out (see, for instance, [2, 30]) that the cost of using the receiver to listen for
messages is often comparable to, or even more than, the cost of transmission. This becomes
even more true as the size of the devices is scaled down.

Obviously, this fact suggests that we should try hard to avoid using our receiver to
listen for messages except at times when one is being sent. However, this is easier said than
done! In general, effective economization of receiver use probably requires redesigning our
communication protocols from the ground up. As an example, previous work by Dani, Gupta,
Hayes and Pettie [11] on solving the maximal matchings problem on a radio network with
low energy expenditure, presented an algorithm that was very specific to its problem, in the
sense that the algorithm is able to cleverly combine efficient message delivery with energy
conservation and residual degree manipulation, all at once.

© Varsha Dani and Thomas P. Hayes;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:varsha.dani@rit.edu
mailto:hayest@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2022.16
https://arxiv.org/abs/2205.12830
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 How to Wake up Your Neighbors

Nevertheless, it is tempting to ask whether, in spite of this, some general-purpose technique
can be used to minimize receiver usage when no messages are being sent nearby. In this
paper we give a positive answer to this question. More precisely, we present a generic way to
convert any given protocol into one that attempts to use its receiver more wisely, in a way
tailored to the activity pattern of the given algorithm. The amount of energy saved depends
on properties of the algorithm being simulated. For some protocols, our construction will
actually make them less energy efficient. However, for at least a few protocols of interest, our
technique improves the overall energy cost on size n networks from poly(n) to polylog(n).
Moreover, there is a sense in which our algorithm is nearly the best possible, as we shall see.

This potential decrease in overall energy cost is not completely free. Our algorithm incurs
modest (up to a polylog(n) factor) penalties in terms of overall running time, (sent) message
complexity, and local computation. These costs should be weighed against the possible
benefits before deciding whether to deploy our algorithm in a particular context.

We use a simple abstract model of distributed computation on Radio Networks [10],
specifically the variant introduced in [7]. In this model, local computation is treated as free,
and in each of a series of globally synchronized timesteps, each processor decides whether to
SEND, LISTEN, or SLEEP. Sending and Listening cost 1 unit of energy, but sleeping is free.
Messages can be up to O(log n) bits long. In this setting, we try to simultaneously minimize
the total time complexity of our protocol, as well as the maximum per-node energy usage.

The motivation for our new construction comes from the structure of the simplest possible
network algorithm: a naive broadcast protocol, in which a message is repeatedly transmitted
across the network at a rate of unit distance per timestep. Considering the behavior of the
“active set,” that is, the nodes that are actually transmitting or receiving a message in a
given timestep, we see that it behaves like a ripple moving across a pool of water, or the
frontier of a parallel BFS algorithm, or even a light-cone propagating across spacetime.

One aspect of this is that the active set moves with a known finite speed, which can
potentially allow us to shut down nodes when the active set is known to be far away from
them. In particular, any time a node is at distance at least d from the active set, it can
afford to sleep for at least d timesteps, because information cannot be transmitted faster
than one edge per timestep. Of course, to use this in practice, our hypothetical node needs
some way of getting advance warning of how far it is from the active set.

We achieve this by organizing nodes into clusters that spread information about the
location of the active set faster than the “speed of light” in our simulated protocol. Or, to
put it more prosaically, at the cost of increased latency, our network is able to transmit
advance notice of the active set before it arrives. To save as much energy as possible, we
try to do this at all distance scales simultaneously. Thus, while nodes whose distance to the
active set is only a few dozen may only know they can safely sleep for a dozen timesteps; at
the same time, nodes whose distance to the active set is in the thousands may know they
can safely sleep for hundreds of timesteps. At a high level, this sounds very similar to the
approach used by Chang, Dani, Hayes and Pettie [8] for reducing the energy cost of BFS
in the same model. Indeed, the main difference in our current approach is in the way the
clusters at different scales are generated and communicate with each other. As a result of
these differences, we are able to exponentially improve on the energy usage of BFS, while at
the same time, being immediately applicable to a broader range of algorithms.

We present a new general-purpose algorithm which we call SAF Simulation (see Al-
gorithm 2) after its mnemonic, “Sleep when Activity is Far.” SAF Simulation accomplishes
both the goal of building layered cluster decompositions, as well as using this structure to
effectively simulate a large class of algorithms. Our main result can be summarized (at a
high level) as

V. Dani and T. P. Hayes 16:3

▶ Theorem 1. For every Radio Network algorithm, A, SAF(A) runs in time
O(polylog(n) TIME(A)), and with probability 1− 1/poly(n) produces the same output as A.
Moreover, its energy cost satisfies, for every vertex v,

ENERGY(SAF(A), v) ≤ polylog(n)OPT(A, v),

where OPT is the least possible energy cost for a safe, synchronized, one-pass generic
simulation algorithm.

A more precise (and technical) statement appears in Theorem 14. Some specific problems
that can be solved by Algorithm 2 for only polylog(n) per-node energy include: Broadcast,
BFS, Leader Election, and Approximate Counting. Loosely speaking, the same can be said
for any algorithm that does the bulk of its computation in polylog(n) BFS-like sweeps across
the graph. In all cases, this represents an exponential improvement in energy usage, as
compared to the naive implementation.

Comparison to Previous Work

Our main tool for clustering our nodes is the ESTCluster algorithm of Miller, Peng and
Xu [26] (see also [27].) This results in clusters that are the cells of a kind of generalized
Voronoi diagram, as we discuss in Section 3.3. These clusters were used previously in the
context of low energy computation in the same radio network model by Chang, Dani, Hayes
and Pettie [8] for the problem of constructing breadth-first search.

In that work, they estimated long-range distances by recursively solving BFS on their
level-1 cluster graph. This has the apparent advantage that, in the resulting hierarchy of
clusters, each cluster is a coarsening of the previous lower-level cluster. However, it has the
disadvantage that the distortion of distances accumulates multiplicatively as one moves up
levels. This limits its usefulness for putting processors to Sleep, since one cannot risk missing
the arrival of the active set.

In the current work, by contrast, instead of recursively constructing clusters of clusters,
we instead run the ESTCluster algorithm on the base graph with different radius parameters,
to generate our entire hierarchy of clusters. An apparent disadvantage of this is that the
resulting clusterings are not coarsenings and refinements of each other. Fortunately, it turns
out that we do not need this property. Although it would be possible to use a sort of rounding
to replace our clusterings with ones that are nested, there are algorithmic disadvantages
to doing so. Specifically, one nice thing about the generalized Voronoi cells created by the
ESTCluster algorithm is that they are star-shaped, so the entire cluster is connected by a
BFS spanning tree rooted at the cluster center. This property would be lost if redefined the
clustering to be a coarsening of the lower-level clusterings. This would appear to necessitate
neighboring clusters to assist in what was previously intra-cluster communications.

Other related work on energy complexity in radio networks

A number of authors have studied energy complexity on single-hop radio networks. Here
the energy model is still that listening costs as much as sending, while sleeping and local
computation are free, but the underlying graph is a clique. When nodes choose to transmit
they are broadcasting their message to the entire graph, or at least anyone who is listening, and
the main issue is just how to resolve contention for the channel. Moreover, in much of this work,
there is no bound on message sizes. In this model, Nakano and Olariu [28] gave an O(log log n)
energy algorithm for selecting distinct IDs in {1, . . . , |V |= n}. Bender, Kopelowitz, Pettie

DISC 2022

16:4 How to Wake up Your Neighbors

and Young [3] showed that O(log(log∗ n)) energy suffices for all devices to send messages
if there is collision-detection available on the channel. Chang, Kopelowitz, Pettie, Wang
and Zhan [5] showed this to be optimal, and studied the problems of Leader Election and
Approximate Counting, both with and without randomization, with collision detection. They
also studied tradeoffs between time, energy and error probability. Similar tradeoffs were also
studied by Kardas et al. [21]. Jurdzinski, Kutylowski and Zatopianski [16, 15, 17, 18, 19].
studied the Leader Election and Approximate Counting problems in the absence of collision
detection.

The single-hop notion of energy complexity was extended to arbitrary networks by Chang,
Dani, Hayes, He, Li, and Pettie [7] where they studied the Broadcast problem, with and
without collision detection, and with and without randomization. The energy complexity
was shown to be polylog(n) in all cases. However, their broadcast algorithm did not transmit
messages along shortest paths. Later Chang, Dani, Hayes and Pettie [8] gave a 2O(

√
log n)

algorithm for BFS. They also showed that the diameter of a network is hard to approximate
to within factor 2 using sublinear energy.

Other models of energy cost have also been studied in the radio network literature.
Gasnieniec et al. [12], Berenbrink et al. [4] and Klonowski and Pajak [23], studied broadcast
and gossiping problems under a cost model where the goal is to minimize the worst case
number of transmissions per device. Klonowski and Sulkowska [24] defined a distributed
model in which devices can transmit messages at varying power levels, which can be chosen
online. The devices in question are at random locations in the d-dimensional cube. A
number of works [25, 20, 13, 22] also considered robustness of low-energy algorithms against
a jamming attack. Here an adversary attempts to foil the devices’ attempts to communicate
by making noise on the channel. The goal here is not precisely low-energy use, but rather
“resource competitive” energy use, where the processors combined cost for getting messages
through should be commensurate with the adversary’s budget for wreaking havoc.

A related model in distributed computing on wired networks is the Sleeping Model of
Chatterjee et al. [9]. In their model, which is a variant of CONGEST, nodes can also save
energy by going to sleep, in which case they may miss incoming messages. However, their
model is considerably more powerful than its radio network analog, in that they allow a node
to send or receive distinct messages from each of its awake neighbors in a single round.

Organization of the Paper

Section 2 contains a more detailed introduction to the radio network model. Section 3
discusses our method of cluster formation, and related issues. In Section 4, we discuss the
problem of simulating radio network algorithms, and give a formal definition of what we
mean by “optimal” simulation. In Section 5, we describe our simulation algorithm, and give
formal statements of our main results. In Section 6, we apply our simulation algorithm to
the breadth-first search problem, showing it can be solved in polylog energy. Due to space
considerations, all proofs have been relegated to the Appendix. A longer version of this paper
is available at arXiv:2205.12830[cs.DC].

2 Preliminaries: the Low Energy Radio Network Model

The Network

We assume there is a communication network on an arbitrary, undirected connected graph
G = (V, E). At each node in G, there is a processor equipped with a transmitter and receiver
to communicate with other nodes. There is an edge between nodes u and v in the graph if u

and v are within transmission range of each other.

V. Dani and T. P. Hayes 16:5

The processors are identical, except for having unique IDs. They do not know the
underlying graph G; indeed we assume that initially they do not even know their neighbors
in the graph. A processor will become aware of (and remember) any neighbor once it has
communicated with it. The processors do have a shared estimate on the size of the graph;
that is, a number n ≥ |V | is known to all the processors and may be used in any algorithms
they run. Accuracy of this estimate is not required for correctness of the algorithm, but the
time and energy usage of algorithms will depend on it. Additionally we assume that the
processors can generate independent streams of random bits. There is no shared randomness.
For randomized algorithms, we assume that each node does all of its coin flipping
prior to the beginning of the algorithm, generating a string of random bits to
be read off and used at the appropriate time in the algorithm. This is a standard
construct for viewing a randomized algorithm as a deterministic algorithm with an additional
random input.

Time

Time is divided into discrete, synchronous timesteps, and the processors agree on a time
t = 0. In each timestep a processor can choose to do one of three actions: transmit, listen, or
sleep. When a processor decides to transmit at time t, it sends a message of size O(log n) bits,
whereupon it is potentially heard by any of its neighbors who happen to be listening at time
t. We say “potentially” because there are a number of different models for what happens if
a listening node encounters a collision, i.e. two or more of its neighbors are broadcasting
messages in the timestep that it is listening. Nevertheless, at a minimum, we can say that a
message travels from a node u to a neighbor v of u at time t if

u decides to transmit at time t,
v decides to listen at time t and
no other neighbor of v decides to transmit at time t.

Collisions and Message Delivery

There are several different models for how to handle collisions, that is, what information does
a listening node receive when two or more of its neighbors are sending messages in a single
round? In the most permissive of these, the Broadcast CONGEST model, v receives all
the messages sent by its neighbors, as if they were being sent on separate channels.

A more restrictive model is the Collision Detection model (CD) where, when a
listener is next to more than one sender, a special “noise” message is received, which is
distinguishable from silence (no neighbors sending), but carries no further information.

Another model of interest is the No Collision Detection model (no-CD), which is
even more restrictive: here, collisions are indistinguishable from silence.

Exponential backoff, introduced in the context of radio networks by Bar-Yehuda, Goldreich
and Itai [1], is a commonly used technique for handling collisions. Among other uses, it
can be used to eliminate the problem of collisions; see, for example, [6, 7, 8]. The basic
idea is to simulate each timestep using O(log2 n) timesteps, divided into O(log n) rounds of
O(log n) timesteps each. A listener listens for the entire interval of length O(log2 n) or until
a message is received. In each round, senders flip coins at each timestep to decide whether
to (re-)transmit, or to retire for the rest of the round, resulting in a constant probability
that, in a particular round, there is at least one timestep in which a unique neighbor of the
listener is sending, and therefore a message is successfully received, regardless of the collision
model. The net result of this O(log2 n)-time backoff procedure is that, with probability
1− 1/poly(n), every listener successfully receives a message, assuming at least one neighbor
is a sender.

DISC 2022

16:6 How to Wake up Your Neighbors

The fact that collisions can be handled in this manner inspires the definition of the
following alternative message delivery model without collisions. In the “OR” model of
message delivery, every time a node listens, it receives an arbitrary message sent by one of
its neighbors in that timestep. The only exception is when no neighbor of the listening node
chose to send in that timestep, in which case no message is received. For convenience, we will
assume for the rest of this paper that we are working in the OR model of message delivery.

Energy Usage

We measure the cost of our algorithms in terms of their energy usage. We assume that a
node incurs a cost of 1 energy unit each time that it decides to send or listen. When the
node is sleeping there is no energy cost. We also assume that local computation is free.
The goal of energy-aware computation is to design algorithms where the nodes can schedule
sleep and communication times so that the per-node energy expenditure is small, ideally
polylog(n), without compromising the time complexity too much, i.e., the running time
remains polynomial in n. In fact, our simulation algorithm does better: its time complexity
is only a polylog(n) factor greater than that of the simulated algorithm.

3 Cluster Graphs and Distance Approximation

In this section we introduce our framework for getting distance estimates that will be used
by the nodes in the simulation algorithm.

3.1 Graph theoretic preliminaries

Let G = (V, E) be a graph. Let d : G×G→ N be the shortest path metric on G. Consider
a partition P = (V1, V2, . . . , Vk) of V into pairwise disjoint sets of vertices. We will call each
Vi a “cluster”. The cluster graph, also called the quotient graph and denoted G/P , is a graph
whose vertex set is the set of clusters, {V1, . . . Vk}. There is an edge in the cluster graph
between Vi and Vj if there are vertices u ∈ Vi and v ∈ Vj such that (u, v) ∈ E.

Although the definition of a quotient graph does not require either G or the subgraphs
induced by the clusters Vi to be connected, in our work we will assume that both are the
case. It is easy to see that since G is connected, so is G/P.

Given a partition P , we will denote the cluster containing vertex u by [u]. Since the cluster
graph is a graph, we can also define the shortest path distance metric on the cluster graph.
We are interested in partitions where the individual clusters have comparable diameters, and
the distances between clusters in the cluster graph are (approximately) scaled versions of the
distances in the underlying graph.

3.2 Approximately Distance-Preserving Partitions

▶ Definition 2. Let G = (V, E) be a graph, and let R, α, β ≥ 1. Let P be a partition of V .
Let d denote the distance metric in G and d∗ denote the distance in G/P. We say P is an
(R, α, β)-approximately distance-preserving partition if

for every pair of nodes u and v with d(u, v) ≤ R, we have d∗([u], [v]) ≤ α

for every pair of nodes u and v with d∗([u], [v]) = 0, (that is, u and v are in the same
cluster) we have d(u, v) ≤ βR.

V. Dani and T. P. Hayes 16:7

Taken together, the two halves of the above definition ensure that up to a multiplicative
factor in the range [1/α, β], as well as possible rounding issues, we have, for all u, v ∈ V , that
d∗([u], [v]) ≈ d(u,v)

R . Specifically,

▶ Lemma 3. Let G = (V, E) be a graph, and P be an (R, α, β)-approximately distance-
preserving partition of V . Let d and d∗ denote the shortest path distance metrics in G and
G/P respectively. Then, for all u, v ∈ V ,⌊

d(u, v)
βR + 1

⌋
≤ d∗([u], [v]) ≤ α

⌈
d(u, v)

R

⌉
.

A nice example of an approximately distance-preserving partition is for the square grid.
Let G be the n× n square grid graph, and suppose R is a divisor of n. We partition V by
rounding each point (x, y) down to the nearest multiple of R,

(
R⌊ x

R⌋, R⌊ y
R⌋

)
, and placing

two vertices in the same cluster if they round to the same multiple of R. It is easy to see
that this example is an (R, 2, 2)-approximately distance-preserving partition. Quite similar
constructions can be done for all real R ≥ 1, and for many other “homogeneous” graphs,
such as lattice graphs of fixed dimension.

Although it may not be immediately obvious, such approximately distance-preserving
partitions exist for all graphs, for all R ≥ 1, and for α, β = O(log n), as we shall see next.

3.3 Additive Weights Voronoi Diagrams and the MPX Algorithm
Additively Weighted Voronoi Decomposition (AWVD) (see, e.g., Phillips [29]), also known
as hyperbolic Dirichlet tesselation, is a well-studied concept for real Euclidean domains.
Start with a finite set of points in the plane, called generators, each of which is assigned a
real-valued weight. Each point x in the plane is assigned to the generator g minimizing the
sum ∥x− g∥−W (g), where W (g) is the weight of g. After discarding any empty cells, this
defines a partition of the plane into a finite collection of cells. When the weights are all zero,
this corresponds to the usual notion of Voronoi diagram, and the boundaries of the cells are
line segments and rays. For general weights, the boundaries of the cells are hyperbolic arcs.
The cells are star-shaped with respect to their generators, but are generally not all convex.

For a finite graph, G = (V, E), the analogous concept is a partition of V based on
assigning a real-valued weight W (v) to each vertex v ∈ V . We say that vertex u belongs to
the cell generated by vertex v if v = arg minv′∈V d(v′, w)−W (v′). For convenience, we will
assume that no two weights W (v), W (v′) differ by an integer, so that the cells are defined
unambiguously. Two vertices belonging to the same cell is an equivalence relation, so each
AWVD gives rise to a corresponding cluster graph.

Miller, Peng, and Xu [26] proposed a simple randomized graph-partitioning algorithm
to obtain a decomposition with certain properties, specifically that the clusters have small
diameter and only a small fraction of the edges of the graph are cut. In their construction,
starting with a (common) parameter R, each vertex v independently samples a random
variable δv ∼ Exponential(1/R) from the exponential distribution with mean R. A cluster
starts forming at each vertex v at time −δv, and spreading through the graph at a uniform
rate of one edge per time unit. Each vertex u either joins the first cluster to reach it before
time −δu or starts its own cluster at time −δu if no other cluster has recruited it before that
time. Haeupler and Wajc [14] showed that with minor modifications, this algorithm can be
efficiently implemented in the Radio Network model.

We note that the MPX decomposition is, in fact, an AWVD where the weights W (v) are
independent exponentially-distributed random variables with mean R. We will now see that
this decomposition has some good distance approximating properties.

DISC 2022

16:8 How to Wake up Your Neighbors

As shown in [26], the clusters have diameter O(R log n). We state this more precisely:

▶ Lemma 4. With probability at least 1− 1
n2 , the clusters in the MPX decomposition with

parameter R have diameter at most 3R log n.

Furthermore, Chang et. al [8] showed that not too many clusters are close to a single
vertex. Specifically, if P is the partition determined by the MPX algorithm with parameter
R, and G∗ = G/P is the corresponding cluster graph, then Lemma 2.1 from [8] (translated
into our notation) can be stated as follows:

▶ Lemma 5. For every positive integer j and ℓ > 0, the probability that the number of
G∗-clusters intersecting BallG(v, ℓ) is more than j is at most (1− exp(−2ℓ/R))j

.

▶ Corollary 6. For any v ∈ V , P (At most 20 log n clusters intersect BallG(v, ℓ)) ≥ 1− 1
n2 .

Combining Lemma 4 and Corollary 6, we have shown that

▶ Proposition 7. With probability at least 1 − 2
n2 , the partition P produced by the MPX

algorithm with parameter R is a (R, 20 log n, 3 log n)-approximately distance-preserving parti-
tion

3.4 Multi-Scale Clustering
▶ Definition 8. Suppose, for 1 ≤ i ≤ ℓ, we have an approximately distance-preserving
partition Pi with parameters (Ri, αi, βi), where R1 < · · · < Rℓ. By convention, we extend
this definition to the case i = 0 by setting R0 = α0 = β0 = 1, and letting the i = 0 partition
be the partition of V into singleton vertex sets. Suppose further that for 1 ≤ i ≤ ℓ, we have

Rj+1

Rj
≥ (2αj + 1)(βj + 1)− 1. (1)

We call this a multi-scale clustering with parameters (R, α, β) = ((Ri), (αi), (βi))i∈{0,...ℓ}.

Notice that there is no requirement that the lower-level clusters be refinements of the
higher-level clusters. Despite this, as we will see, multi-scale clusterings have a useful, albeit
weaker, nesting property that controls the relationship between clusters at consecutive scales.

Suppose P1,P2, . . .Pℓ is a multi-scale clustering on G, with parameters (R, α, β). Let
G1, . . . Gℓ be the corresponding cluster graphs, and d1, . . . , dℓ the corresponding distance
metrics. For v ∈ V , let [v]j denote the cluster containing v in Pj . As usual, BallGj

([v]j , r)
denotes the ball of radius r in Gj . We will also need a notation for the vertices in the
underlying graph G, whose clusters belong to this ball. To this end we define

Bj(v, r) = {w ∈ V | dj([w]j , [v]j) ≤ r}.

The following nesting property is true for all vertices, at all scales.

▶ Lemma 9. Let 1 ≤ j < ℓ, u ∈ V , and v ∈ BallG(u, Rj+1 − Rj). That is, d(u, v) ≤
Rj+1 −Rj. Then Bj(v, 2αj) ⊂ Bj+1(u, 2αj+1).

Although the only restriction imposed so far on the parameters (R, α, β) is that the
Rjs grow at a certain rate relative to the αjs and βjs, an interesting and natural special
case is when (Rj) is an increasing geometric sequence, while sequences (αj) and (βj) are
approximately constant.

V. Dani and T. P. Hayes 16:9

▶ Definition 10. In the special case when, for 1 ≤ j ≤ ℓ, Rj = Rj, for some R > 12, and
αj = βj = ⌊

√
R/2⌋, we call this a geometric multi-scale clustering with parameter R.

We saw earlier that the MPX clustering with parameter R is, w.h.p, a (R, 20 log n, 3 log n)-
approximate distance-preserving partition. Naturally, it is also a (R, 20 log n, 12 log n) ap-
proximate distance-preserving partition. Setting α = β = 20 log n and R = Θ(log2 n) we
can get a geometric multi-scale clustering by constructing MPX partitions for all scales
R, R2, R3 . . .

3.5 Simulating cluster-graph algorithms on the underlying graph

Chang et al. [7] defined protocols called UPCAST, DOWNCAST, and INTERCAST for
communicating within and between clusters of nodes in a Radio Network. In the corresponding
section of the Appendix, we describe these protocols at a high level, and remind the reader
of some of their relevant properties.

4 Simulating Radio Network Algorithms

Let A be a radio network algorithm. When talking about the time and message complexity
of A, since one does not charge for listening, one usually only specifies which timesteps A

requires a node to SEND, with the implicit assumption that whenever a node is not SENDing
it is LISTENing. Given any algorithm in this form, it is trivial to naively convert it to
what we view here as the standard form, by making all LISTENs explicit. After such a
naive conversion, the algorithm will have per-node energy cost equal to its time complexity,
which is not good, unless the time complexity is already very small. Our plan for improved
energy efficiency is now to simulate this explicitly wasteful algorithm by one in which many
of the LISTENs have been replaced by SLEEPs without compromising the correctness of the
algorithm, and with a relatively small overhead in time complexity.

Whenever we talk about simulating a radio network algorithm in this paper, we mean
replacing it with another equivalent algorithm which is moreover safe black-box and syn-
chronized one-pass, terms which we are about to define. By equivalent, we mean that at
the end of the simulation, each node, v, in the network will have computed its view of
a correct transcript of the original algorithm; that is, a record of all messages v sent or
received at each timestep in the original algorithm, as well as the correct final internal state.
By black-box, we mean that when the simulating protocol wants to perform a step of the
simulated algorithm, it does so by invoking an oracle that tells it how to update its state,
whether to SEND, LISTEN, or SLEEP, and what messages to send. By safe, we mean that,
the simulating protocol never causes a node to SLEEP during a round in which the original
protocol would SEND or receive a message from a SENDing neighbor, regardless of what
oracle is provided. Specifically, we don’t just mean that the simulating algorithm performs
correctly when simulating A; it must avoid SLEEPing incorrectly for all possible simulated
algorithms. Finally, by synchronized one-pass, we mean that, at certain designated timesteps
τ(t), all nodes either SLEEP or simulate step t of the simulated algorithm. Each timestep
is simulated only once, and the timesteps τ(t) are a strictly increasing function of t. It so
happens that for our particular simulation algorithm, the timesteps τ(t) are a fixed function
of t, known in advance, rather than determined adaptively, but this will not be important
for our analysis.

DISC 2022

16:10 How to Wake up Your Neighbors

4.1 Characterizing Optimal Simulation
In order to come closer to getting our hands on what it would mean for a safe simulation
algorithm to be optimal or nearly optimal, we introduce the following generous abstract
model for what it needs to do.

Our notion of a generic algorithm simulator is a radio network algorithm, where, at some
timesteps, it invokes a black-box simulation of one timestep of the simulated algorithm, A,
and at other timesteps, it does its own thing, which may involve metadata gathered from
the usage pattern of A. Since A is arbitrary and unknown, we cannot count on knowing the
meaning of the messages sent by A, but it may, nevertheless, be useful to know which nodes
of A are SENDing, LISTENing, or SLEEPing at a given timestep.

With the above in mind, we define the Generic Simulation Model as follows. For each
timestep, at each node, our algorithm must choose to either SEND, LISTEN, SLEEP, or
SIMULATE. Steps when our algorithm SENDs, LISTENs or SLEEPS work the same way as
in the radio network model. On a SIMULATE step, a black-box for the simulated algorithm,
A, simulates one timestep, which may involve SENDING, LISTENING, or SLEEPing. Each
node v is given the following information:
1. whether v chose to SEND, LISTEN, or SLEEP in the simulated step.
2. whether any message was received by v in the simulated step.
3. the identity of the next timestep, tv, at which A would make v SEND, under the

assumption that no further messages were received by v before tv.

At the beginning of the algorithm, we further suppose that the simulator at each node v

is given to know the first timestep tv, at which A would make v SEND, under the assumption
that no messages were received by v before tv. We note that, if the simulated algorithm A

were fully event-driven and deterministic, the “unprovoked next-send times” tv would all be
+∞, except for those nodes that send in the first timestep. However, for general algorithms,
and in particular, for randomized algorithms, such as the MPX clustering algorithm, there
may be many times at which new sequences of SEND steps start without being directly
preceded by an incoming message. For randomized algorithms, since we have assumed that
each node does all of its coin flipping prior to the beginning of the algorithm, note that
the times tv can be accurately predicted in advance. Since the definition of tv assumes
that no new external information reaches node v between the current step and timestep
tv, the information needed for this calculation is always available to the simulator at the
current timestep. Here, we are taking full advantage of the standard assumption that local
computation is free; however, we also believe that in most settings, calculating tv at time
t can be done much more quickly than the ultra-naive approach of doing tv − t steps of
black-box simulation of A.

Next, we define a Psychic Synchronized Generic Simulation Model, as follows. Everything
about it is the same as for the Generic Simulation Model, above, except that, in addition
to being informed about messages received by v in the preceding time step, in this model,
we assume that the simulator starts out knowing the entire graph, including node IDs, and
is informed, at each time step, of the entire history of metadata at all nodes, including the
information about times at which the current node was asleep. In particular, this includes
knowing exactly which nodes SENT, LISTENed, and SLEPT at all times ≤ t, as well as all
timesteps tnext(w, t) at which future messages are scheduled to be sent in the absence of
provocation, for all vertices w ∈ V .

The other crucial assumption we make in the PSGSM is that all nodes advance their
simulation of A in a synchronized way. That is, every node simulates the behavior of A

at time t at the same time. This assumption seems natural, considering that the success

V. Dani and T. P. Hayes 16:11

or failure of the message deliveries depends on whether collisions occur, but it is still an
assumption. Now, considering that in the PSGSM model, all nodes receive, for free, the
entire history of relevant metadata for the entire graph, at each timestep they are awake,
there seems to be no point in further communication between nodes, except for when steps
of A are being simulated. Thus, we find that, in the PSGSM model, the simulated algorithm
A should always run in real time.

Now, in both of the above models, we have at least one expectation of a simulation
algorithm, and that is correctness: at the end of the simulation, we want every node to have
its local view of the transcript of the actual computation done by A from the given inputs.
In the case of randomized algorithms, we view each node’s pre-flipped coins as part of its
input, which allows us to reduce to the case of a deterministic algorithm in the usual way.

Our motivation in introducing the Psychic Synchronized (PSGS) model is that, in this
model, we can precisely characterize the optimal energy usage of any correct simulation in
terms of the behavior of a simple greedy algorithm, Algorithm 1.

Algorithm 1 The Greedy Psychic Algorithm: conserve energy while simulating a given Radio
Network agorithm in the PSGSM model.

procedure GP(A) ▷ A: the simulated algorithm
t∗ ← 1
for t← 1 to T do

if t < t∗ then
SLEEP

else
SIMULATE timestep t of A

t∗ ← tnext(v, t) ▷ our next scheduled SEND
for every vertex w ̸= v do

psychically receive tnext(w, t) ▷ time of w’s next scheduled SEND
t∗ ← min{t∗, tnext(w, t) + (dist(v, w)− 1)}

▷ SLEEP until time t∗

▶ Theorem 11. This “Greedy Psychic” algorithm is optimal among all correct simulation
algorithms in the PSGSM model, in the sense that, for every simulation algorithm SIM in this
model, either there exists a radio network algorithm A and an input x such that SIM(A, x)
makes a mistake (some node does not end with the correct transcript), or, for every algorithm
A, input x, and vertex v, we have ENERGY(GP, A, x, v) ≤ ENERGY(SIM, A, x, v).

The main consequence of Theorem 11 will be that Algorithm SAF is within a polylog(n)
multiplicative factor of optimal, at least among algorithms that perform a single synchronized
simulation of the simulated algorithm A. This near-optimality holds in a vertex-by-vertex and
algorithm-by-algorithm manner. We point out that without the assumption of synchronicity,
we cannot expect to get guarantees of this kind. For example, if we want to make an
asynchronous algorithm that minimizes the listening cost for a specific vertex v, we can
make v wake up very infrequently, and ensure that its neighbors are always “holding v’s
messages ready for it.” In this way, the energy complexity for v can be reduced essentially
to the number of messages that v needs to send or receive; this favoritism towards v would
presumably be more than paid for by increased costs incurred at other vertices. This strongly
suggests that, without the assumption of synchronous one-pass simulation, there may not
exist a single simulation algorithm that simultaneously minimizes the energy costs for all
nodes.

DISC 2022

16:12 How to Wake up Your Neighbors

5 The Simulation Algorithm

In this section we describe our recursive simulation algorithm. We begin with a section
describing the underlying assumptions, and then give a high-level overview of the algorithm.
The actual pseudocode appears in Section 5.3. We analyze the the algorithm and its energy
complexity in Section 5.4.

5.1 Assumptions
We assume that we are given a function f describing protocol to be run on G, that is
guaranteed to succeed in the OR model of message delivery. Recall that, as mentioned in
Section 2, we may assume f is deterministic without loss of generality, since each node may
do any necessary coin flipping in advance, at the beginning of the algorithm. Note that, since
nodes are not privy to each others inputs, this assumption does not imply that randomness
is shared. In particular, if a node v were to randomly choose a timestep at which to SEND a
message, the other nodes would not automatically know which timestep it was; however, v

would know in advance, and the Simulation algorithm would have v warn its neighbors.
We also assume that, prior to attempting to execute our algorithms indexed by j, at least

levels 1, 2, . . . , j of a (R, α, β) multi-scale clustering have been computed. Each node knows
the ID of its cluster center, as well as its graphical distance to the cluster center. (This
information is used in UPCAST/DOWNCAST.)

Our algorithms all have the property that each call to one of the defining functions takes
the same number of timesteps, including those spent in recursive calls. In some cases, this
number of timesteps can be tedious to compute; therefore, we have taken the liberty to refer
to the number of “simulated” timesteps, namely the number of timesteps of the simulated
algorithm. This should be understood as a shorthand only. Here is a complete list of the
state information that each node must store in its memory.

Shared knowledge of the graph parameters n, ∆, D. Here, n is an upper bound on the
number of nodes in G, ∆ is an upper bound on the maximum degree of G, D is an upper
bound on the diameter of D. If ∆ and D are not specified, n− 1 can be used in their
place, (although better bounds lead to better performance). We require that all nodes in
the network start out initialized with the same values of these parameters.
The current timestep, t. Since we are assuming a synchronous network, this value is
always the same for all nodes.
The cluster parameters Rj , αj , βj , for 1 ≤ j ≤ ℓ. This knowledge is also shared by all
nodes in the network.
A unique ID for our node. If these are not specified, a random string of C log n bits may
be used; by the birthday paradox, these are distinct with high probability.
For 1 ≤ j ≤ ℓ, the ID of our level-j cluster center, as well as our graphical distance to the
cluster center. This is used for energy-efficient communication by the UPCAST/DOWN-
CAST subroutines (see [7]).
A message string, m. Initially null for all nodes. This is used in the NOTIFY protocol.
Any state information stored by our node in the simulated protocol, f .

5.2 Algorithm Overview
At a high level, the SAF simulation algorithm gets an algorithm f and a time interval I,
and has the goal of simulating a run of f on I while allowing processors that are far from
the action in f to save energy by sleeping until the appropriate time. To this end, SAF

V. Dani and T. P. Hayes 16:13

time Legend:
Level 3 cluster operations
Level 2 cluster operations
Level 1 cluster operations
Underlying simulation

Figure 1 Timeline of how cluster operations at various levels interleave with the underlying
simulated algorithm. Each node starts at the top level (here ℓ = 3) and participates in cluster
operations until it finds a level at which it can drop out. That level also determines when it will
wake up next: the next round of cluster operations at that level. If the node gets to the bottom
level of cluster operations without dropping out, then it stays awake for the underlying simulation
for the next few simulated timesteps.

simulation uses a multi-scale clustering to estimate the distance to the nodes where the
communication is happening, and to set SLEEP and WAKE schedules for the nodes that need
to wait. The main idea is that the clusters at level j, which are (Rj , αj , βj) approximately
distance-preserving, are equipped to make a decision (SLEEP/WAKE) from their cluster
that is pertinent to the next Rj steps of the simulated algorithm. This decision is made
for each cluster, collectively by its members, by performing internal cluster operations to
decide whether there is activity nearby. However, since their confidence in the prediction
of inactivity is only good for Rj simulated timesteps, this would appear to mean that they
must wake up and perform cluster operations after every Rj steps of the simulated algorithm.
When Rj is small, this would not actually help them save much energy. However, this is
where the clusterings at multiple scales come in. At the highest scale, ℓ, the clusters wake
up every Rℓ steps, so as long as the total simulated time that f needs to run is at most
Rℓpolylogn, the algorithm is in good shape. The notion of what it means for the action to
be far away has been tuned so that nesting property described in Lemma 9 ensures that if a
top level cluster has gone to sleep, then all the lower level clusters that are contained within
can also afford to sleep for the full time horizon of Rℓ steps. If a top level cluster decides to
stay awake, then it sets up a recursive call to enable affected lower level clusters to decide
how many times they must wake up with the shortened time horizon. Note that the top level
cluster staying awake does not mean that an individual node within that cluster must sat
awake for Rℓ timesteps. Indeed, that would expend far too much energy. Rather, it means
that such a node must participate in lower level cluster operations, until it can find a scale
at which the computational activity of f is far away from it. Only if a node finds itself to be
awake at all scales will it participate in the actual simulation of f , for the next interval of
the smallest scale length, R1.

DISC 2022

16:14 How to Wake up Your Neighbors

But how to get the multi-scale clustering to begin with? Herein lies the beauty of the
process. At the bottom level, an (R1, α1, β1) approximate distance-preserving partition can
be computed with polylog(n) energy and polylog(n) latency, with all processors staying
awake the whole time. (We need R1 to be polylog(n).) Thereafter, the simulation has a
multi-scale clustering to work with, with ℓ = 1 the first time around; and the partitioning
algorithm is itself a function that is suitable for being simulated recursively. Thus, each
subsequent level of the final multi-scale clustering is bootstrapped off the previous ones.

5.3 Pseudocode
Our code is divided into several pieces, which are presented as Algorithms 2 through 5. The
SAF Simulation algorithm is stated in a form where it can be applied using an arbitrary
multi-scale clustering. In general, we want to apply it to the multi-scale clustering we know
how to construct for general graphs, namely the ESTCluster algorithm of Miller, Peng, and
Xu. To build this clustering efficiently, we simulate it using the SAF algorithm inductively.
Finally, to efficiently run BFS from an arbitrary start node, we apply SAF Simulation to the
naive parallel BFS algorithm that has each node listen until the BFS frontier reaches it, then
send a message to its neighbors to advance the frontier while incrementing its level counter.

Algorithm 2 SAF Simulation Algorithm: Adaptively power down receiver to save energy while
simulating a given algorithm, f . Assumption: we have a hierarchy of α, β, R.

procedure SAF(j, I, f) ▷ j: current cluster height, I: interval of simulated times, f :
update rule for the simulated algorithm (on level 0 clusters)

if j = 0 then ▷ Bottom level (single node)
(Naively) execute f for |I| timesteps.

else
Partition I into disjoint subintervals, I1, I2, . . . , Ik, each of length Rj .
for i← 1 to k do

Internally simulate f on Ii assuming no messages received.

m←

{
null if we never sent during the simulation.
“Activity nearby!” if we sent anything during the simulation.

if Notify(j, m, 2αj) returns “OK TO SLEEP” then
SLEEP until end of last simulated timestep in Ii.
Update state based on the above simulation.

else
SAF(j − 1, Ii, f)

5.4 Formal Statements of the Results
▶ Definition 12. Suppose P is an ℓ-level multiscale clustering with parameters (R, α, β).
Then, for 0 ≤ j ≤ ℓ, we define a level-j epoch to be any time interval of the form

{iRj + 1, iRj + 2, . . . , (i + 1)Rj}.

We will use the following result relating distances from the active set to the event of
being awake and made to participate in the NOTIFY subroutine.

V. Dani and T. P. Hayes 16:15

Algorithm 3 Ensure that all nearby clusters (of a given height) wake up when something
interesting is happening nearby.

procedure Notify(j, m, r) ▷ j: current cluster height, m: message to send, r:
transmission radius ▷ If m = null, do not initiate sending, but do repeat any message you
hear.

for i← 1 to r do
Upcast(j,m)
Downcast(j,m)
Intercast(j,m)

Upcast(j,m)
Downcast(j,m)
if we received or sent any messages during this call to Notify then

return “STAY AWAKE”
else

return “OK TO SLEEP”

Algorithm 4 Naively build MPX clusters with radius parameter R.

procedure Naively-Build-MPX(R) ▷ R: radius parameter
my_cluster_center[j]←null
Sample a weight W from the exponential distribution with mean R.
tmax ← ⌈3R log(n)⌉
for i← 1 to tmax do

if my_cluster_center[j] ̸= null then
SEND message (my_cluster_center[j],my_cluster_depth[j]).
Break out of FOR loop, and SLEEP for remaining tmax − i timesteps.

else if i + W ≥ tmax then
my_cluster_center[j]←my_ID
my_cluster_depth[j]← 0

else
LISTEN this timestep.
if message (c, d) received then

my_cluster_center[j] ← c
my_cluster_depth[j]← d + 1

Algorithm 5 Efficiently build a geometric multiscale clustering with parameter O(log2 n).

procedure Build-MSC
R← C log2(n)
for j ← 1 to logR(n) do

SAF(j − 1, [0,
⌈
3Rj log(n)

⌉
], Naively-Build-MPX(Rj))

DISC 2022

16:16 How to Wake up Your Neighbors

▶ Lemma 13. For j ≥ 1, t = (i + 1)Rj, v ∈ V , if the distance from v to the nearest node
that would send in the epoch ending at time t is at least (2αj + 1)(βjRj + 1), then, v will not
participate in any calls to NOTIFY(j − 1) within this epoch.

Now we are ready to state our main result about our simulation algorithm.

▶ Theorem 14. Let f be any randomized radio network protocol in the OR model. Suppose
P is an ℓ-level multiscale clustering with parameters (R, α, β). Then SAF(ℓ, I, f) has the
following properties:

P (SAF(ℓ, I, f) succeeds) ≥ P (f succeeds)− 1/poly(n).
The running time of SAF(ℓ, I, f) is Tf polylog(n), where Tf is the running time of f .
The energy cost of SAF(ℓ, I, f) for a vertex v is at most E polylog(n) + T log n/Rℓ, where
E is the energy cost of the greedy psychic algorithm GP (f) for vertex v, and T = TIME(f)
is the time complexity of the simulated algorithm.

▶ Theorem 15. The Build-MSC algorithm (Algorithm 5) builds a multi-scale clustering
at all scales, with probability 1 − 1/poly(n), with total running time O(D polylog(n)) and
per-node energy usage O(polylog(n)).

6 BFS Revisited

In this section we apply our methodology to get a polylog energy algorithm for Breadth First
Search in radio networks, thus answering an open question from [8]

The algorithm is very simple: we simply simulate the naive BFS algorithm for radio
networks in our SAF simulation framework.

Algorithm 6 Solve BFS from a designated vertex, v in low energy. D is an upper bound on the
diameter.

procedure Efficient-BFS(v)
Build-MSC
SAF(ℓ, [0, D], Naive-Parallel-BFS(Rj))

▶ Theorem 16. The Efficient-BFS algorithm (Algorithm 6) computes the graphical distance
to each node from the root vertex, with probability 1− 1/poly(n). Its total running time is
O(D polylog(n)) and per-node energy usage is O(polylog(n)).

7 Conclusion

We have shown a new general-purpose methodology for reducing the energy cost of Radio
Network algorithms by collaborating with clusters of nearby nodes at multiple scales to
detect when it is safe to shut off the receiver due to there being no danger of message activity
nearby. Although similar techniques have been used in previous work, the precise way in
which we create and use our clusters leads, at least in some cases, to significantly improved
results. In particular, our methodology allows us to easily, and at least in the case of BFS,
significantly improve over known results.

References
1 R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-hop

radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences, 45(1):104–126, 1992.

V. Dani and T. P. Hayes 16:17

2 M. Barnes, C. Conway, J. Mathews, and D. K. Arvind. ENS: An energy harvesting wireless
sensor network platform. In Proceedings of the 5th International Conference on Systems and
Networks Communications (ICSNC), pages 83–87, 2010.

3 M. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with constant
throughput and log-logstar channel accesses. SIAM J. Comput., 47:1735–1754, 2018.

4 P. Berenbrink, C. Cooper, and Z. Hu. Energy efficient randomised communication in unknown
adhoc networks. Theoretical Computer Science, 410(27):2549–2561, 2009.

5 Y.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan. Exponential separations in
the energy complexity of leader election. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 771–783, 2017.

6 Yi-Jun Chang. Energy complexity of distance computation in multi-hop networks. CoRR,
abs/1805.04071, 2018. arXiv:1805.04071.

7 Yi-Jun Chang, Varsha Dani, Thomas P Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 37th ACM Symposium on Principles
of Distributed Computing (PODC), pages 95–104, 2018.

8 Yi-Jun Chang, Varsha Dani, Thomas P Hayes, and Seth Pettie. The energy complexity of BFS
in radio networks. In Proceedings of the 39th ACM Symposium on Principles of Distributed
Computing (PODC), pages 273–282, 2020.

9 Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. Sleeping is efficient: Mis
in o (1)-rounds node-averaged awake complexity. In Proceedings of the 39th Symposium on
Principles of Distributed Computing, pages 99–108, 2020.

10 I. Chlamtac and S. Kutten. On broadcasting in radio networks-problem analysis and protocol
design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

11 Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie. Wake up and join me! an
energy-efficient algorithm for maximal matching in radio networks. In Seth Gilbert, editor,
35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021,
Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 19:1–19:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.19.

12 L. Gasieniec, E. Kantor, D. R. Kowalski, D. Peleg, and C. Su. Energy and time efficient
broadcasting in known topology radio networks. In Proceedings 21st International Symposium
on Distributed Computing (DISC), pages 253–267, 2007.

13 S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and M. Young. (Near) optimal resource-
competitive broadcast with jamming. In Proceedings of the 26th ACM Symposium on Parallel-
ism in Algorithms and Architectures (SPAA), pages 257–266, 2014.

14 B. Haeupler and D. Wajc. A faster distributed radio broadcast primitive. In Proceedings of the
35th ACM Symposium on Principles of Distributed Computing (PODC), pages 361–370, 2016.

15 T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Efficient algorithms for leader election
in radio networks. In Proceedings of the 21st Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 51–57, 2002.

16 T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Energy-efficient size approximation of
radio networks with no collision detection. In Proceedings of the 8th Annual International
Conference on Computing and Combinatorics (COCOON), pages 279–289, 2002.

17 T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Weak communication in radio networks. In
Proceedings of the 8th International European Conference on Parallel Computing (Euro-Par),
pages 965–972, 2002.

18 T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Weak communication in single-hop radio
networks: adjusting algorithms to industrial standards. Concurrency and Computation:
Practice and Experience, 15(11–12):1117–1131, 2003.

19 T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-
hop radio networks. In Proceedings of the 13th International Symposium on Algorithms and
Computation (ISAAC), pages 535–549, 2002.

DISC 2022

http://arxiv.org/abs/1805.04071
https://doi.org/10.4230/LIPIcs.DISC.2021.19

16:18 How to Wake up Your Neighbors

20 J. Kabarowski, M. Kutylowski, and W. Rutkowski. Adversary immune size approximation
of single-hop radio networks. In Proceedings Third International Conference on Theory and
Applications of Models of Computation (TAMC), pages 148–158, 2006.

21 M. Kardas, M. Klonowski, and D. Pajak. Energy-efficient leader election protocols for single-
hop radio networks. In Proceedings 42nd International Conference on Parallel Processing
(ICPP), pages 399–408, 2013.

22 V. King, S. Pettie, J. Saia, and M. Young. A resource-competitive jamming defense. Distributed
Computing, 31:419–439, 2018.

23 M. Klonowski and D. Pajak. Brief announcement: Broadcast in radio networks, time vs.
energy tradeoffs. In Proceedings 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 115–117, 2018. doi:10.1145/3212734.3212786.

24 Marek Klonowski and Malgorzata Sulkowska. Energy-optimal algorithms for computing
aggregative functions in random networks. Discrete Mathematics & Theoretical Computer
Science, 17(3):285–306, 2016.

25 M. Kutylowski and W. Rutkowski. Adversary immune leader election in ad hoc radio networks.
In Proceedings 11th Annual European Symposium on Algorithms (ESA), pages 397–408, 2003.
doi:10.1007/978-3-540-39658-1_37.

26 G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random shifts. In
Proceedings of the 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 196–203, 2013.

27 Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 192–201, 2015.

28 K. Nakano and S. Olariu. Energy-efficient initialization protocols for single-hop radio networks
with no collision detection. IEEE Trans. Parallel Distrib. Syst., 11(8):851–863, 2000.

29 Daisy Phillips. Tessellation. Wiley Interdisciplinary Reviews: Computational Statistics,
6(3):202–209, 2014.

30 J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless research. In
Proceedings of the 4th International Symposium on Information Processing in Sensor Networks
(IPSN), pages 364–369, 2005.

A Proofs

Proof of Lemma 3. Let u, v ∈ V . Let d∗([u], [v]) = k and let W0, W1, . . . , Wk ∈ V (G/P)
be such that W0 = [u], Wk = [v] and W0, W1, . . . , Wk is a shortest path from [u] to [v] in
G/P. Then, for 0 ≤ i < k, since Wi and Wi+1 are adjacent in G/P, there are vertices
yi ∈ Wi, xi+1 ∈ Wi+1 such that (xi+1, yi) ∈ E(G). Let x0 = u and yk = v. For all i, since
xi and yi are in the same cluster, d(xi, yi) < βR, and if we connect these pairs by shortest
paths, we have constructed a path of length at most k + (k + 1)βR from u to v in G. It
follows that

d(u, v) ≤ k + (k + 1)βR = k(βR + 1) + βR

Since k = d∗([u], [v]), rearranging terms gives us the first inequality.
Now suppose d(u, v) = qR + r, where r < R. Consider a shortest path from u to v in G,

and let wi be the vertices at distance iR from u on the path. The path has thus been cut
into q′ = q + ⌊r/R⌋ = ⌈d(u, v)/R⌉ pieces each of length at most R. Let wq′ = v. By the first
property, d∗([wi], [wi+1]) ≤ α. Therefore, by the triangle inequality,

d∗([u], [v]) ≤ α

⌈
d(u, v)

R

⌉
which completes the proof. ◀

https://doi.org/10.1145/3212734.3212786
https://doi.org/10.1007/978-3-540-39658-1_37

V. Dani and T. P. Hayes 16:19

Proof of Lemma 4. If X is an exponentially distributed random variable with mean R then
P (X > t) = e−t/R. Thus, the probability that X > 3R log n is at most 1/n3. By a union
bound, it follows that with probability at least 1− 1

n2 the first cluster starts forming after
time −3R log n and since each vertex either joins a cluster or starts its own by time t = 0,
the cluster diameters are at most 3R log n. ◀

Proof of Lemma 5. This is just a restatement in our notation of Lemma 2.1 from [8], and
is proved there. ◀

Proof of Corollary 6. Setting ℓ = R we see that for any v ∈ V , the probability that there
are more than C log n clusters intersecting the ball of radius R around v is at most(

1− 1
e2

)C log n

≤ exp
(
−C log n

10

)
.

The result follows. ◀

Proof of Lemma 9. Let w ∈ Bj(v, 2αj). Then, by definition, dj([v]j [w]j) ≤ 2αj . Since Pj

is an (Rj , αj , βj) approximate distance-preserving partition, by Lemma 3,⌊
d(v, w)

βjRj + 1

⌋
≤ 2αj

Removing the floor and rearranging the terms, we get

d(v, w) ≤ (βjRj + 1)(2αj + 1)
≤ (2αj + 1)(βj + 1)Rj

≤ Rj+1 + Rj

where the last line follows from Equation (1). By the triangle inequality,

d(u, w) ≤ d(u, v) + d(v, w) ≤ Rj+1 −Rj + Rj+1 + Rj = 2Rj+1

Applying Lemma 3 again, we have

dj+1([u]j+1, [v]j+1) ≤ αj+1

⌈
d(u, v)
Rj+1

⌉
≤ 2αj+1

so that w ∈ Bj+1(u, 2αj+1), completing the proof. ◀

Proof of Theorem 11. The proof is by induction of the number of computational steps.
Suppose we have fixed A, v, x, and that SIM is known to be an always-correct simulator. Our
inductive hypothesis is that, by the times the cumulative energy costs of Greedy(A, v, x) and
SIM(A, v, x) both reach i, the greedy simulation will have completed simulating at least as
many timesteps of A as SIM will have. Assume the hypothesis for i− 1. Then SIM wakes up
for the i’th time at or before Greedy does, say at time t. At this point it can go back to sleep,
but the latest it can sleep is t∗(v, t), defined as above, since SIM needs to be safe. Greedy
wakes up for the i’th time at some time t′ ≥ t, and goes to sleep until time exactly t∗(v, t′).
Now, the crucial point is that the function t∗(v, ·) is an increasing function of its second
argument, which is clear from its intention, but also from the facts that tnext(w, ·) can only
decrease when w receives a message from a neighbor, which implies that t∗(w, t) − t ≤ 1,
and that dist(w, SENDERS) never decreases by more than 1 in a single timestep. Hence
t∗(v, t′) ≥ t∗(v, t) ≥ whenever SIM decides to wake back up, which completes the inductive
step. ◀

DISC 2022

16:20 How to Wake up Your Neighbors

Proof of Lemma 13. Let u be the nearest node to v that would initiate a SEND in the
epoch. In order to participate in a call to NOTIFY(j − 1), v must receive a “WAKE UP”
return value from the call to NOTIFY(j) at the beginning of the epoch. However, this
will not happen because, by Lemma 3, d∗([u], [v]) ≥

⌊
d(u,v)

βjRj+1

⌋
≥ 2αj , but this means, if v

participates in the NOTIFY, it will instead get a return value of “OK TO SLEEP.” Here
d denotes distance in the underlying graph, and d∗ denotes distance in the level-j cluster
graph. ◀

Proof of Theorem 14. First, observe that, after each NOTIFY operation, a node v stays
awake if and only if it is within 2αj level-j clusters of the set of active nodes for the beginning
of the corresponding level-j epoch. That is, assuming that all of our cluster operations
(Upcast/Downcast/Intercast) succeed. Since, with high probabiltity, this happens at all
timesteps, let us discount the 1/poly(n) chance of a failure.

Since the level-j epoch is Rj time units long, every active node in the entire epoch is
within distance Rj of the initial set of active nodes. By the definition of approximately
distance-preserving partition, these nodes are all within distance αj of the initial active
set in the level-j cluster graph. Since we doubled this radius of notification in the cluster
graph, it follows by Lemma 9 that all nodes in lower-level clusters that wake up during the
simulation of this level-j epoch are already awake at level j, and therefore their lower level
cluster operations will succeed.

In particular, at level 0, it follows that any time protocol f has a node Send, and one
of its neighbors Listen, that both nodes in question will be awake and simulating f at
the corresponding timestep. It follows by induction that the state of all processors at any
simulated time t is consistent with f run under the OR model until time t. Hence, the final
outcome will also be consistent with f run under the OR model.

For the latency analysis, we observe that the number of level-j epochs is Tf /Rj where
Tf is the running time of f . For each such epoch, we do O(αj) level-j cluster operations
(Upcast/Downcast/Intercast), which each require time O(βjRj log(n) log log(n)), since the
clusters have diameter at most βjRj , and the backoff requires log(log(n)) time because each
node is, with high probability next to O(log n) different clusters; the further O(log(n)) factor
is to guarantee success with high probability. Summing over all epochs, we get a total running
time of O(Tf αjβj log(n) log log(n)) attributable to level-j operations. Finally, summing over
the ≤ log(n) levels, and using that αj , βj = O(log n) for all j, we get a total running time of
O(Tf log4(n) log(log(n)).

For the energy analysis, we consider the time interval between two consecutive non-SLEEP
actions by the Greedy Psychic algorithm, so that OPT is spending one energy. If this interval
has length L, then we know that after the first i timesteps of this interval, the distance from
v to the nearest active vertex is always at least L− i. Consequently, applying Lemma 13,
we know that v can, at most, participate in a subset of the final (2αj + 1)βj of the calls to
NOTIFY(j) during this time interval, assuming j < ℓ. Since each call to NOTIFY costs at
most O(αj log n) energy per participating vertex, this means our algorithm spends at most
O(ℓαj log n) times more energy than the Greedy Psychic algorithm does. Finally, for the
top level, we get T/Rℓ calls to NOTIFY(ℓ) in all, each at a cost of αj log n, regardless of
distances. Summing these energy costs completes the proof. ◀

Proof of Theorem 15. By Theorem 14, we know that the algorithm succeeds in building
each level of the clustering with essentially the same success probability as Naive-Build-MPX
(Algorithm 4). Since the naive algorithm runs in time proportional to the radius parameter,
and these radius parameters form a geometric sequence from 1 up to O(D), the total running

V. Dani and T. P. Hayes 16:21

time for all the calls to Naive-Build-MPX is O(Dpolylog(n)). Similarly, we can estimate the
expected number of active j′-epochs for Naive-Build-MPX(Rj) as O(R). This is because the
active set moves out from the cluster centers at unit velocity, so once it gets within distance
Rj′ of a vertex, all activity within distance Rj′ ceases within at most 2Rj′ timesteps, by
the Triangle Inequality. Thus the total number of active j-epochs for a given node is O(1).
Summing over all 0 ≤ j ≤ ℓ, we get a total energy use of Õ(ℓ), which is polylog(n). ◀

Proof of Theorem 16. Theorem 15 gives us the running time and cost for the cluster
formation. Then we can use Theorem 14 to analyze the SAF simulation of the naive BFS
algorithm. The analysis of the number of active epochs here is essentially the same as in the
proof of Theorem 15, since the active set again passes very quickly through each region that
it enters. We leave the details to the reader. ◀

B Simulating cluster-graph algorithms on the underlying graph

Suppose we already have approximately distance-preserving partitions at all scales from 1
up to the diameter of G. The ability to run graph algorithms on the corresponding quotient
graphs will be a rather useful primitive to add to our toolbox. Because the distances in these
graphs are scaled down by a large factor, we may reasonably expect that they can be run at a
much lower cost. But what is the cost of simulating these algorithms on the actual network?

For the most part, this question was already answered by Chang, Dani, Hayes and
Pettie [7]. We briefly describe the approach used to simulate one timestep of computation on
the cluster graph. Each node within one cluster in our partition uses part of its memory to
record the state of a hypothetical processor corresponding to the cluster. At the beginning
and end of the simulated timestep, we require that this state be the same for every node
in the cluster. Depending on whether the cluster state indicates we should Send, Listen,
or Sleep, every node in the cluster does this (INTERCAST). Next, if the operation was
Listen, all the nodes that received a message propagate these up towards the cluster center
(UPCAST). Since every node in the cluster knows its distance from the root, this propagation
can be synchronized so that each node only needs to Listen once, in the same timestep that
its children might Send. Since we are in the OR model, we only require that, from among
the messages received, an arbitrary one is received. Next, the cluster center updates its state
based on the received message, and broadcasts the result within the cluster (DOWNCAST),
after which the simulation of one computational step on the cluster graph is complete.

Algorithm 7 High-level description of Upcast, Downcast, and Intercast algorithms, from [7].

▷ For each of the subroutines below, we require that either all the nodes in a particular
cluster participate, or none do.
procedure Upcast(j, m) ▷ j: current cluster height, m: message to send

▷ Guarantee: if any node in the cluster participates with a non-null message, then
one of these messages is received by the cluster center, who then stores it in their message
variable.
procedure Downcast(j, m) ▷ j: current cluster height, m: message to send

▷ Guarantee: if the cluster center participates with a non-null message, then
this message is received by each node in the cluster, who then stores it in their message
variable.
procedure Intercast(j, m) ▷ j: current cluster height, m: message to send

▷ Guarantee: if at least one neighboring node is contained in a participating level-j
cluster that has a non-null message, then this node receives such a message, and store it in
their message variable.

DISC 2022

16:22 How to Wake up Your Neighbors

Since the messages are being broadcast, rather than sent along edges, there are some
subtleties in the details. For instance, even though we have described the algorithm under
the assumption that message delivery in both the underlying graph, and in the cluster graph,
takes place using the collision-free OR model, there is still a need for backoff, to prevent
messages accidentally crossing between adjacent clusters during UPCAST and DOWNCAST.
However, for purposes of the present work, these details are unimportant.

Since each of the three stages, INTERCAST, UPCAST, and DOWNCAST, costs Õ(1)
energy per node in the cluster, the per-node energy cost for running an algorithm on the
cluster graph is within a polylog factor of the per-node energy cost for simulating it on the
underlying graph. When the cluster “radius” parameter is R, the latency for the UPCAST
and DOWNCAST is Õ(R), so this becomes a multiplicative factor for the time complexity.

Contention Resolution Without Collision Detection:
Constant Throughput And Logarithmic Energy
Gianluca De Marco #

Department of Computer Science, University of Salerno, Italy

Dariusz R. Kowalski #

School of Computer and Cyber Sciences, Augusta University, GA, USA

Grzegorz Stachowiak #

Institute of Computer Science, University of Wrocław, Poland

Abstract

A shared channel, also called a multiple access channel, is among the most popular and widely studied
models of communication in distributed computing. An unknown number of stations (potentially
unbounded) is connected to the channel and can communicate by transmitting and listening. A
message is successfully transmitted on the channel if and only if there is a unique transmitter at
that time; otherwise the message collides with some other transmission and nothing is sensed by the
participating stations. We consider the general framework without collision detection and in which
any participating station can join the channel at any moment. The contention resolution task is to
let each of the contending stations to broadcast successfully its message on the channel.

In this setting we present the first algorithm which exhibits asymptotically optimal Θ(1) through-
put and only an O(log k) energy cost, understood as the maximum number of transmissions performed
by a single station (where k is the number of participating stations, initially unknown). We also
show that such efficiency cannot be reproduced by non-adaptive algorithms, i.e., whose behavior
does not depend on the channel history (for example, classic backoff protocols). Namely, we show
that non-adaptive algorithms cannot simultaneously achieve throughput Ω

(
1

polylog(k)

)
and energy

O
(

log2 k
(log log k)2

)
.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Shared channel, Contention resolution, Throughput, Energy consumption,
Randomized algorithms, Lower bound

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.17

Funding Dariusz R. Kowalski: partially supported by the National Science Foundation grant No.
2131538 and the Polish National Science Center (NCN) grant UMO-2017/25/B/ST6/02553.

1 Introduction

A shared channel, or a multiple access channel, is one of the fundamental communication
models: it allows many autonomous computing entities to communicate over a shared medium
and the main challenge is how to efficiently resolve collisions occurring when more than one
entity attempts to access the channel at the same time (c.f., the surveys by Gallager [18]
and Chlebus [7]).

© Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gidemarco@unisa.it
mailto:dkowalski@augusta.edu
mailto:gst@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.DISC.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Contention Resolution Without Collision Detection

In this paper we consider a classical setting, formally described as follows (c.f., [6]).1
A potentially unbounded number of stations is attached to a shared channel, each of them
possessing a packet that can be transmitted in a single time slot. The stations are anonymous
in that they do not have any identification label (ID).2 The computation is decentralized:
every station acts independently by means of its own distributed protocol.

The communication proceeds in synchronous rounds. In each round a station can either
transmit a message or listen. A transmission is successful in a given round if and only if
exactly one station is transmitting in this round. In this case, the message is delivered
to all stations currently active on the channel. If more than one station transmits in the
same round we say that a collision occurs: the transmitted messages interfere each other
and retransmission is necessary. Messages could be either original packets or constant-size
control messages.3

Contention resolution problem. Each station wakes up at arbitrary time with a single
packet, and in each computation prefix the number of awaken stations is finite; we will often
denote it by parameter k. A station may terminate and leave the system (switches off) after
its packet has been successfully transmitted. When a station switches off, it disconnects
permanently from the channel. A station already awaken but not switched off yet, will be
called active.

A contention resolution algorithm is a distributed algorithm that schedules the trans-
missions for each participating station, guaranteeing that every active station eventually
transmits successfully. In other words, for each station the algorithm has to guarantee that
there exists a round at which that station transmits individually, i.e., without interfering
with other stations.

No collision detection. Our setting is without collision detection. This means that in case
of collision the stations do not perceive any special signal, so it will be impossible for them
to distinguish between the case when more stations transmit simultaneously and the case of
a silent round where no station transmits. The only feedback an active station can sense is
when some station itself transmits successfully, in which case all active stations receive the
transmitted message. This assumption, also called a (system) acknowledgement, is quite
common in the literature (see e.g. [1, 3, 2]), and well motivated by technological applications
such as CSMA/CA [4].

Dynamic scenario. The literature on the contention resolution problem started in the 70’s
and mostly considered the (simplified) static situation in which the stations are all activated
at the same time, and thus start simultaneously their protocols, or that the activation times
are based on statistical or adversarial-queueing models.

Continuing on a more recent line of research (cf [28, 17, 2, 3, 37, 36, 36, 35, 12, 11, 34]),
in this paper we consider a general and realistic dynamic scenario, in which the stations get
awake at arbitrary times and the sequence of activation times is totally determined by a
worst-case adaptive adversary. Since a station can start its local execution of the protocol
only after it has been woken up, there is no synchronization among the protocols. This
makes the problem of designing a distributed algorithm considerably more challenging with
respect to its simplified static counterpart.

1 This setting was also used for modelling and analysis of CSMA/CA technology, c.f., [4].
2 We assign names to the stations only for the purpose of distinguishing them in the analysis of correctness

and performance.
3 CSMA/CA and many other wireless technologies assume small-size control messages.

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:3

Local clock. Although the communication proceeds in synchronous rounds with the clocks
of all the stations ticking at the same rate, our model does not allow any global clock. Each
station can measure time only on the basis of its own local clock, which starts in the round
at which the station wakes up and therefore, in the dynamic scenario considered in this
paper, is not synchronized with the other clocks. We conventionally assume that a station is
activated at round 0 of its local clock and can start transmitting since round 1.

Algorithmic solutions. Since the stations are anonymous, they are identical from a determin-
istic perspective; consequently, the only feasible solutions must be randomized. We consider
randomized distributed algorithms for the contention resolution problem: every woken-up
station has to transmit successfully its packet, regardless of its (adversarial) activation time.

All our asymptotic bounds are to be understood as high probability bounds, that is,
they hold with high probability (in short: whp). We say that an event for an algorithm
holds whp(k), when for a predefined parameter η > 0, the parameters of the algorithm
can be chosen, so that for any k the event holds with probability at least 1− 1/kη. In the
intermediate steps of analysis, we will sometimes need to use the notion of whp not only
with respect to the pre-assumed parameter η; in such case we will say more specifically that
an event occurs “whp 1 − 1/kλ”, for some λ > 0. Parameter λ will typically be slightly
higher than η, so that at the end we could get the final result with the sought probability
at least 1− 1/kη.

Complexity measures. In this paper we measure the efficiency of the algorithms both in
terms of throughput and energy consumption. The throughput is defined as follows. Given
any time t > 0, if n[t] denotes the number of stations activated up to t and r[t] the number
of active rounds, that is the rounds at which at least one station is still in the system (i.e.,
not yet switched-off as a result of successful transmission), then the throughput is defined as
the ratio n[t]/r[t]. Again, the goal of an algorithm will be to maximize the throughput. The
ultimate goal is to achieve a constant throughput, i.e., to show that for any time round t, the
number of rounds with at least a station still active is at most a constant factor higher than
the number of stations activated until time t.

Finally, concerning the energy consumption, we evaluate the algorithm’s efficiency in
terms of the maximum, over all activated stations, number of transmissions performed by a
single station.

1.1 Previous work and our contribution
Contention resolution on a shared channel is a classical problem in distributed computing
that is getting a lot of attention recently. The first theoretical papers date back to the 70’s
and considered mainly deterministic solutions for the static scenario. Below we summarize
the results most relevant to ours.

Deterministic algorithms. Capetanakis [6], Hayes [22], and Tsybakov and Mikhailov [40]
independently presented a deterministic tree algorithm for conflict resolution in the model
with collision detection accomplishing the task in O(k + k log(n/k)) rounds, for every k and
n. Surprisingly, if k (or a linear upper bound on it) is given a priori to the stations, then
the same O(k + k log(n/k)) bound can be achieved even non-adaptively, without collision
detection, in simple channels with acknowledgments [25]. The proof is non-constructive; later
Kowalski [26] showed a more constructive solution, based on selectors (cf., [14, 23]), reaching
the same asymptotic bound. Clementi, Monti, and Silvestri [16] showed a matching lower

DISC 2022

17:4 Contention Resolution Without Collision Detection

bound of Ω(k log(n/k)), which also holds for adaptive algorithms. If collision detection is
available, there is an almost matching Ω(k log n/ log k) lower bound (also valid for adaptive
algorithms) demonstrated by Greenberg and Winograd [21]. All of the above results hold
for the static scenario. In the dynamic scenario, De Marco and Kowalski [17] showed that
O(k log n log log n) time rounds are sufficient to each station to transmit successfully with a
nonadaptive deterministic algorithm. Interestingly, this almost matches the Ω(k log n/ log k)
lower bound in [21], although the latter holds in a much stronger setting: for adaptive
algorithms, in the static scenario and with collision detection.

Randomized algorithms. As for randomized solutions, Greenberg, Flajolet and Ladner [19]
and Greenberg and Ladner [20] presented an algorithm with collision detection working
in 2.14k + O(log k) rounds with high probability without any a priori knowledge of the
number k of contenders. More recently, Fernández Anta, Mosteiro and Ramon Muñoz [1]
obtained the same asymptotic (optimal) bound in the model without collision detection with
a non-adaptive algorithm that also ignores any knowledge about contention size k. This
shows that in the static model, i.e., when all the packets arrive at the same time, there is
no asymptotic difference in the time complexity between adaptiveness and non-adaptiveness,
even in the absence of any knowledge about channel contention.

In the dynamic scenario considered in this paper, Bender et al. [2] designed an adaptive
algorithm with collision detection that, without any given bound on parameter k, exhibits
constant throughput, linear latency and O(log log∗ k) expected transmissions per station.
Later, De Marco and Stachowiak [28] proved that constant throughput and linear latency
can also be achieved, with high probability, even in the more severe setting without collision
detection, although at the expenses of a higher energy cost. In a recent breakthrough, Bender
et al. [3] improved the energy cost to O(log2 k), while preserving both constant throughput
and linear latency. They considered a more restricted setting where each station is obliged
to leave the system once it broadcasts its message.

Related work. The contention resolution problem has been also studied in the more general
framework of multi-hop radio networks, particularly in the context of problems such as
(multi-)broadcast, gossip and others in the so-called blindfold model, i.e. in total absence of
knowledge about topology and network parameters [9, 14, 29].

Developments where similar issues on selecting stations (included broadcasting in multi-
hop radio networks) under many assumptions, mainly regarding knowledge and synchrony,
can be found in [13, 12, 8, 10, 15, 17, 34, 33, 38, 37, 31, 32, 30].

Our contribution. In Section 2, we design a randomized adaptive algorithm which exhibits
constant throughput and only a logarithmic (in the number of participating stations k,
initially unknown to participants) energy cost. Our result holds with high probability in
the number of participants and this number is unknown and potentially unbounded. The
analysis is made against an adaptive adversary, c.f., Theorem 7. Exploiting the adaptivity
of the algorithm, we allow the stations to stay in the system even after their successful
transmission. Hence, our result improves on the polylogarithmic energy cost showed in [3] if
stations are not obliged to switch off once they successfully transmit their packet, but can
stay in the system communicating coordination information to the other stations.

Note that even if stations are allowed to stay in the system after their successful trans-
missions, they contribute to the throughput and energy cost; thus, in order to optimize these
measures, we have to limit such stay and additional communication to absolute minimum,
which is asymptotically negligible.

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:5

In Section 3 we show that any non-adaptive algorithm in the model with anonymous sta-
tions cannot achieve simultaneously throughput Ω

(
1

polylog(k)

)
whp and energy O

(
log2 k

(log log k)2

)
even with a constant probability, c.f., Theorem 8. Thus, they need an energy cost that
is worse than that of our algorithm by an Ω

(
log k

(log log k)2

)
factor for every algorithm with

throughput Ω
(

1
polylog(k)

)
. Non-adaptive protocols are such that each station chooses a

distribution of transmission rounds by itself without taking into account feedback from the
channel. Such protocols do not assume randomly independent choices in rounds, therefore
they include a wide class of algorithms such as backoff.

Our algorithmic approach. When designing a contention resolution algorithm for the
dynamic scenario, one has to deal with the problem caused by new arrivals of stations
that, being out of sync with stations activated earlier, can interfere with their transmissions
producing collisions. This interaction between new and old stations plays a major role in
any contention resolution algorithm and represents the most challenging obstacle. This is
made even more difficult if one has to save the number of transmissions per station, so to
keep the energy cost low.

In [3] this issue is overcome in an elegant way by allowing the older players to jam the new
players, so avoiding interference from the newcomers. This is done by a clever interaction
between the probabilities of real transmissions and the probabilities of jamming.

Our algorithm avoids the interference between old and new stations by keeping them
in two separated groups that are coordinated by means of a leader that periodically sends
information about the status of the system. There are many challenges that have been
tackled by our solution.

One is to assure that a leader sends information periodically, while keeping the energy
cost under a logarithmic threshold.

Another one comes from the fact that the adversary can partition the execution of the
algorithm in several disjoint activity intervals, each of them characterized by its own set of
contending stations. Estimating the total throughput of the whole execution required the
development of a new technical tool (see the notion of random variable condensed into a
vector in Section 2.2.2) for extending the analysis of throughput for a single activity interval
(with results holding with high probability with respect to the contention of the single interval,
i.e. the number of stations involved only in that interval) to the throughput for the union of
all disjoint activity intervals (with results holding with high probability with respect to the
total contention, i.e. the total number of participating stations during the whole execution).

Additionally, our approach involves several techniques for leader election, size approxima-
tion of the participating stations, testing efficiently whether a contention resolution has been
accomplished. This also highlights interesting relationships between contention resolution
and other classical problems in distributed computing.

Our lower bound approach. We construct and analyze different random wake-up patterns
to prove that any correct non-adaptive contention resolution algorithm that wants to be
efficient in terms of throughput has an energy cost Ω(log2 k/(log log k)2).

We start from a first weaker lower bound Ω(log k/ log log k), which is guaranteed even
for simple wake-up times uniformly distributed, and then we square this bound by building
some more complex random wake-up instances.

More precisely, we first show that if the sum of transmission probabilities is above a
logarithmic threshold in all rounds of an interval, then there are small chances of having
a successful transmission in that interval. Then we show how to define random wake-up

DISC 2022

17:6 Contention Resolution Without Collision Detection

patterns such that if the algorithm wants to keep a throughput Ω(1
loga k), then it has to

transmit as much as to keep the sum of transmission probabilities above the logarithmic
threshold in the first k

polylog(k) rounds. Therefore for some wake-up instances, k − k
polylog(k)

nodes already incur an energy cost Ω(log k
log log k).

Then, we could recursively “pump-up” the energy cost by recursively repeating the
construction for the remaining k

polylog(k) nodes.

1.2 Conventions and notation
By convention, we assume that a station is activated at round 0 of its local clock and can
start transmitting from its local round number 1. At each round a station can decide the
probability of transmission by means of a randomized algorithm. Since we are dealing with
adaptive algorithms, these probabilities may depend on the history of the channel feedback
and do not have to be independent over rounds.

Although there is no global time accessible to the stations, in the analysis we will need a
reference clock (not visible to the stations) that allows us to argue about the behaviour of all
the stations involved in the computation at a given moment.

For any time t of a given reference clock, we denote by Â[t] the set of stations activated
until time t. The transmission probability assigned by the protocol to a station v ∈ Â[t] at
time t will be denoted by qv[t]. Some already activated stations, however, may not be active
during the protocol execution in time t, because of switching off earlier; therefore, we use
A[t] ⊆ Â[t] to denote the set of stations that are still active at time t.

We define the sum of transmission probabilities at time t as follows: σ[t] =
∑

u∈A[t] qu[t].
Analogously, we will also need to consider the above sum over all activated stations until

time t (i.e. not considering switches-off): σ̂[t] =
∑

u∈Â[t] qu[t].
Surely, if t′ is the time of the first successful transmission, then σ̂[t] = σ[t] for every t < t′.

In our analysis we will also need to deal with the sum of probabilities used by a station
up to some time of its local clock. We define the sum of transmission probabilities of an
arbitrary station up to local time i as: s(i) =

∑i
j=1 p(j), where p(j) denotes the transmission

probability of the station at round j of its local clock. We do not need to specify the station
which this probabilities refers to, as it will be clear from the context.

2 An adaptive algorithm for unknown contention

We now describe our protocol AdaptiveCTLE, which resolves the contention with constant
throughput and logarithmic energy, without any knowledge on the number of contenders. The
number of contenders could be arbitrary and they could be activated during an arbitrarily
long time interval. Besides the data packet itself, each station can send a one-bit control
message. For the sake of presentation we will refer to these control messages as <D mode>

(encoded with bit 0) and <any D-station left?> (encoded with bit 1).

High-level description. The reader can refer to Figure 1 for a graphical representation of
algorithm’s behaviour. The algorithm alternates between two modes: a leader election mode
(L mode) and a dissemination mode (D mode). The first mode aims at getting a synchronized
subset of stations and electing a leader, which has the task of coordinating the computation
in the next dissemination mode (it will also help in Protocol Estimate&Increase, which
is a sub-routine executed in D mode). This is actually the contention resolution among
the synchronized subset of stations defined in the preceding execution of the leader election

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:7

z3

z4

z1

z2

u leader
v leader

w

L mode D mode L mode
time

Figure 1 Horizontal segments represent the activity periods of stations, black circles indicate first
successful transmissions for each station. Stations u, v and w start in L mode. Then, u is elected a
leader: the stations are now synchronized and the D mode starts. Thicker segments show the change
of leadership among stations every O(log k) rounds. Stations z1 and z2 wake up while u, v and w are
in D mode: they remain pending until the current D mode is active (see the middle interval on the
picture). Once u, v and w have switched off, z1 and z2 start a new L mode. Other stations (z3 and
z4) can possibly join in arbitrary times. Once a leader has been elected a new D-mode starts and so
forth. This process is iterated until a D mode ends and no station wakes up during its execution.

mode. The leader does not remain the same for the whole execution of the algorithm, but
the stations take turns in this role, in order to keep the maximum number of transmissions
below a logarithmic threshold (this will be assured by Protocol SlowIncrease).

All the stations running the D mode use a synchronized clock ticking rounds modulo 4.
Odd rounds are used to execute the actual contention resolution protocol, while even rounds
will be used together with the leader to learn and send additional information to the
participating stations.

At any time, the system is either in L mode or in D mode. A station involved in the
L mode (resp., D mode) will be called an L-station (resp., a D-station). A newly awaken
station learns the mode of the system during the first 4 rounds. Then it remains with
an empty status until it keeps receiving, once every 4 rounds, a message <D mode> from
the current leader. This message informs the newcomers that the system is busy with the
dissemination mode. We call these stations with an empty status pending stations. This
status of “pending” will last as long as the stations that are currently in D mode have not
switched-off. It is the leader that will inform when this happens by ceasing to send the <D
mode> message and switching off. When this happens, all the pending stations start a new
L mode, and so forth. This process is iterated until no new station is injected in the system;
more precisely, when, after the switching-off of all the current D-stations, no pending station
is waiting to start a new L mode.

A formal description of the algorithm can be found in the following pseudocodes.

2.1 Pseudocodes
The main protocols of the algorithm are AdaptiveCTLE (Protocol 1), which is the first
protocol executed by a station when it is activated, and AdaptiveLeader (Protocol 2), which
is executed by the leader.

Protocol 1 and 2 (AdaptiveCTLE and AdaptiveLeader). A newly awaken station u starts
with the execution of Protocol AdaptiveCTLE. It takes the status of pending station and
keeps it while in the loop in line 2 of this protocol, i.e., while it keeps receiving the <D

DISC 2022

17:8 Contention Resolution Without Collision Detection

Algorithm 1 AdaptiveCTLE (executed by any station u).

status← ∅
while status /∈ {L, D} do // a woken up station keeps waiting (pending station)

listen to the channel
if u does not receive message <D mode> in 4 consecutive rounds then

status← L // u becomes an L-station
while u is active do

if status = L then
execute DecreaseSlowly // the first successful station becomes the leader
if u has been elected the leader then

execute AdaptiveLeader // see Protocol 2
status← D // once a leader is elected, station switches to dissemination mode
time_counter← 0 /* now all awaken stations are synchronized and

time_counter will denote the current round number
started at the time the leader has been elected */

if status = D then
if time_counter is odd then

execute round ⌊(time_counter + 1)/2⌋ of Estimate&Increase(c) (switch-off
at the first successful transmission)

else if time_counter = 2x, for some integer x ≥ 2, then
transmit message <any D-station left?>

Algorithm 2 AdaptiveLeader (executed by the leader).

1: while u is the leader do
2: if time_counter is odd then
3: participate as leader in Estimate&Increase(c)
4: else if time_counter = 2x, for some x ≥ 2, then
5: transmit message <any D-station left?>

6: if the message is received then // if D mode has terminated
7: switch off
8: else transmit <D mode> // leader without acknowledgment => D mode continues

Algorithm 3 DecreaseSlowly (executed by a station u) [24].

1: q ← some constant > 0
2: i←0
3: while u is active do
4: transmit the message with probability q · 1

2q+i

5: if transmission is successful then
6: become a leader
7: i← i + 1

Algorithm 4 Estimate&Increase(c) (executed by a station u).

1: while Test is true do
2: Execute Estimate to obtain an estimate value k

3: Execute SlowIncrease(k, c)

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:9

mode> message once every 4 rounds. If within 4 consecutive rounds of waiting, station u

does not get the <D mode> message, then the system is not in D mode and three cases may
have occurred:
(a) there was no active station when u has been woken up;
(b) the system was in L mode when u has been woken up;
(c) a D mode was running when u has been woken up, but all D-stations delivered their

messages and switched off.
In all three cases, the station exits the loop in line 2 as an L-station and starts the

subsequent loop. Being an L-station, it starts executing protocol DecreaseSlowly (cf. the
pseudocode of Protocol 3). This is a wake-up protocol introduced in [24] whose goal is to get
just one successful transmission among an asynchronized set of stations.

Once a successful transmission appears in some round t, the station which transmitted in
t becomes the leader. At this point the leader and all other stations that were alive at round
t, are synchronized. They set up a new variable time_counter to 0 and a D mode starts:
the leader starts the execution of Protocol AdaptiveLeader, while the other synchronized
stations continue with the execution of AdaptiveCTLE.

Let us denote by C such a synchronized subset of stations (not including the leader). We
can assume that a global clock (represented by variable time_counter initiated by the leader)
starts for all the stations in C at the round in which the leader was elected. This allows us
to use a contention resolution protocol for a synchronized set of stations. We accomplish this
task with Protocol 4, Estimate&Increase, which guarantees that all synchronized stations
in C transmit successfully within O(|C|) rounds after the synchronization round whp in |C|.
During an execution of Estimate&Increase, all stations from set C switch off directly after
a successful transmission. In order for such a protocol to work properly, it is necessary to
avoid that stations that have woken up during its execution (newcomers) could interfere
disturbing the transmissions.

In order to make it possible that the newcomers understand what is happening in the
system, the algorithm Estimate&Increase is executed in odd rounds only, while even rounds
are devoted to performing the following kind of coordination. In rounds t = 2x, for some
integer x ≥ 2, the D-stations and the leader send message <any D-station left?>, as
stated in lines 17 and 5 of their respective Protocols 1 and 2 (note that this requires a number
of transmissions that is only logarithmic in the length of protocol Estimate&Increase, that
is O(log |C|)).

This message will be successfully heard by the leader (and delivered to the pending
stations busy in the loop of line 2) if and only if the leader is the only transmitter, that
is, when all the D-stations in set C have switched off. If the transmission is successful,
the leader switches off immediately. If, on the other hand, this message is not successfully
acknowledged, then it means that there is still some D-station active in the system. In
this case, in all subsequent even rounds that are not reserved to message <any D-station
left?>, the leader sends message <D mode> informing the pending stations that the D

mode has not terminated, and so they have to keep waiting (i.e., listening) in the loop.
We can now see how the above strategy guarantees that any station activated during

the execution of protocol Estimate&Increase, remains pending in the loop of line 2 silently
waiting for its termination and then it exits the loop as an L-station. Indeed, while
Estimate&Increase is running, the leader transmits a <D mode> message once every at
most 4 rounds (all even rounds with the exception of rounds 2x, for x ≥ 2). This keeps the
station waiting in the loop. Once, the D-mode has terminated, the pending station hears
no <D mode> message during 4 consecutive rounds and therefore it exits the loop as an
L-station, starting a new L-mode. This process is iterated until it happens that no pending
station is waiting in the loop of line 2, i.e. when no other station is injected in the system.

DISC 2022

17:10 Contention Resolution Without Collision Detection

Protocol 3 (DecreaseSlowly). This protocol is used to elect a leader among the set of
asynchronized stations running in L mode. For this task we use a wakeup protocol introduced
in [24]. This protocol let just one station to successfully transmit. This station takes the
role of a leader.

Protocol 4 (Estimate&Increase). The purpose of this protocol is to solve the contention
among the synchronized set of stations running in D mode. The leader will also participate
to the computation (as stated on line 3 of Protocol AdaptiveLeader). The purpose is
accomplished by means of a sequence of two protocols: first, Estimate, which computes a
2-approximation of the number of synchronized contenders, and subsequently, SlowIncrease,
which uses the previously computed estimate to let the stations to successfully transmit their
messages and switch off. The two protocols Estimate and SlowIncrease will be executed
repeatedly until all the stations have switched off. This condition is checked by a function
Test. Let us now describe in more details the behavior of each of these three ingredients.

Protocol Estimate. In order to compute our 2-approximation of the number of contenders,
we adapt Algorithm (1 + ϵ)-approximation for the beeping model [5] to our shared channel
without collision detection. Because in our model beeps are not explicitly recognized by the
channel, we emulate each round r of Algorithm (1 + ϵ)-approximation by the following two
echo rounds (see [27]) in our model:

round 2r of Protocol Estimate: if a participating station is scheduled to transmit in
the corresponding round r of (1 + ϵ)-approximation, it also transmits in round 2r of
Estimate;
round 2r + 1 of Protocol Estimate: if a participating station is scheduled to transmit in
the corresponding round r of (1 + ϵ)-approximation, it also transmits in round 2r + 1
and the leader transmits as well.

If nothing is heard in the first echo round and the leader is heard in the second echo
round, then it means there is no beep in round r of (1 + ϵ)-approximation; otherwise there
is a beep.

Protocol SlowIncrease(k, c). Once we have obtained an approximate estimate of the
number of participating stations, we can use an algorithm for contention resolution which
exploits such an information. For this task we can use protocol NonAdaptiveWithK (k, c) [28],
which uses an upper bound of the number k of contenders and a sufficiently large constant
c (which determines the probability of success). Each successfully transmitting station
automatically swaps the leadership role with the current leader, which switches off.

In order to assure logarithmic energy of the leader, if there is no swap in consecutive log k

rounds of the original protocol NonAdaptiveWithK (k, c) [28], the leader runs a tournament
that elects another leader in O(log k′) rounds, where k′ is the actual number of participants.
The binary search with echo protocol from [27] is used, coordinated by the leader, in the
beginning of which stations choose random ids from interval [1, O(k)]. It is possible that
more than one station selects the same id, in which case the leader discovers an echo for that
value, and runs the tournament again but this time only for the colliding stations. If the
time of the tournament exceeds 2 log k, its actual length divided by 2 is set as the power of 2
in the new estimate of k – the number of participating stations. Note that the time, and
thus also the energy, of the tournament is amortized by the value of log k of the estimate,
and so the following number of rounds in which the original protocol NonAdaptiveWithK
(k, c) is executed.

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:11

Function Test. Similarly as in the protocol Estimate, the same echo procedure (a single
2-round execution of it) is used with respect to the remaining participants of the superior
protocol and the current leader. If there is a beep, the test is true, otherwise it returns false.

2.2 Analysis of throughput and energy
Correctness and time complexity of our algorithm AdaptiveCTLE will be finally proved in
Theorem 7. We will go through the following steps.

First, we analyze algorithm AdaptiveCTLE in an activity interval, i.e. a maximal size
interval of consecutive active rounds. In doing so, we start from the analysis of the basic
sub-routine protocols (Section 2.2.1), and then put them together into the analysis of the
whole activity interval (Section 2.2.2).

Next, we put the disjoint activity intervals together, using their independence and
partitioning the activity of the adversary into classes of sub-adversaries, one for each activity
interval (Section 2.2.3).

2.2.1 Analysis of protocols
Consider an activity interval with k contenders. The first step is to analyze the performance
of procedure DecreaseSlowly. In [24], an algorithm Decrease Slowly has been presented for
the first time, and it was proven to solve the wake-up problem (i.e., allow just one successful
transmission) in O(k log k) rounds whp(k). In [28] it was improved to O(k) rounds whp(k).
Both analysis assumed non-adaptive adversary, i.e., an adversary scheduling the wake-up
times in advance. In the following lemma, we show more detailed properties of this algorithm,
under a stronger adaptive adversary (as considered in this paper). The proof is deferred to
the appendix.

▶ Lemma 1. Algorithm DecreaseSlowly finishes wake-up in O(k) rounds and with O(log k)
energy whp(k), where k is the number of activated stations during the activity interval of
this execution. Moreover, for any k′ > k, algorithm DecreaseSlowly finishes wake-up in
O(k log(k′/k)) rounds and with O(log k′) energy whp(k′).

The two ingredient protocols of algorithm Estimate&Increase satisfy the following:

▶ Lemma 2 ([5]). Protocol Estimate outputs a 2-approximation of the number k of stations
in D-mode in O(log k) rounds and O(log k) energy whp(k), and for any k′ > k, it outputs a 2-
approximation of the number k of stations in D-mode in O(log k′) rounds and energy whp(k′).

▶ Lemma 3 ([28]). Protocol SlowIncrease(k, c) solves the contention resolution problem
for at most k stations in D-mode in O(k) rounds and with O(log k) energy whp(k).

▶ Lemma 4. Algorithm Estimate&Increase(c) solves the contention resolution problem
within an activity interval in O(k) rounds and with O(log k) energy whp(k), where k is the
number of D-stations in the beginning of this execution. Moreover, for any k′ > k, algorithm
Estimate&Increase(c) solves the contention resolution problem within an activity interval
in O(k log(k′/k)) rounds and with O(log k′) energy whp(k′).

Proof. The first part follows from putting together Lemmas 2 and 3. The second part follows
from repeating the above independently O(log(k′/k)) times, until the Test becomes false
and the algorithm stops. The standard probabilistic argument applies here because of two
reasons: these repeating parts are synchronized by the Test run in the beginning of the loop,
and stations participate in only a single iteration of the loop.

DISC 2022

17:12 Contention Resolution Without Collision Detection

In the Protocol Estimate&Increase and the associated confirmation rounds, there is a
constant number of transmissions per one successful transmission, on average, thus O(log k)
whp(k) and O(log k′) whp(k′) in an execution of length O(k log(k′/k)). ◀

2.2.2 Analysis of a single activity interval
In order to show that the performance guarantees of our algorithm hold with high probability
with respect to the total number of stations awaken during any execution, independently of
how the execution is partitioned into disjoint activity intervals, we introduce the notion of
condensed random variables. Next, in Lemma 5, whose proof is in the appendix, we use such
a tool to show that the sum of the lengths of the activity intervals is bounded with high
probability with respect to the total number of stations awaken.

Let c > 0 be a sufficiently large constant, depending on the exponent η in the formula
for whp(). We say that positive integer random variables ℓi, for 1 ≤ i ≤ x, are condensed
into a vector κ = (w1, . . . , wy), for some positive integer y such that w1 ≤ . . . ≤ wy = x,
if for every 1 ≤ j ≤ y, set Lj = {i : E[ℓi] = O(2j) & ℓi ≤ c · 2j holds whp(2j) & ℓi ≤
c · 2j log(κ̄/2j) holds whp(κ̄)} is of size wj , where κ̄ = c ·

∑y
j=1 2jwj .

The following technical fact holds (see the appendix for the proof).

▶ Lemma 5. Let ℓi, for 1 ≤ i ≤ x, be random variables condensed into κ = (w1, . . . , wy),
for some positive integer y. Then,

∑x
i=1 ℓi = O(κ̄) whp(κ̄).

We now show the performance guarantees of our algorithm within each activity interval.

▶ Lemma 6. Algorithm AdaptiveCTLE solves the contention resolution problem within an
activity interval in O(k) rounds and with O(log k) energy whp(k), where k is the total number
of stations activated during this execution. Moreover, for any k′ > k, algorithm AdaptiveCTLE
solves the contention resolution problem within an activity interval in O(k log k′) rounds and
with O(log k′) energy whp(k′).

Proof. Let I be the interval of rounds involved in this execution of AdaptiveCTLE. The
system starts in L mode (apart from an initial waiting period of at most 4 rounds spent in
the first while loop of Protocol AdaptiveCTLE, during which the newly activated stations,
as pending stations, realize that the system was inactive) and then it enters the D mode.

The execution of the algorithm is composed of a sequence of L mode/D mode executions,
in such a way that the ith L mode is followed by the ith D mode. Each D mode execution
involves the same set of stations that participated to the previous L mode, and the ith L

mode execution, for i > 1, involves the stations that were pending in the previous D mode.
This will continue until the end of interval I which occurs when all the D-stations of the last
execution of Estimate&Increase switch off and there is no station pending at the end of it.

Let x be the number of such L mode/D mode executions. For 1 ≤ i ≤ x, let ℓL
i be the

length of the ith L mode and ℓD
i be the length of the following D mode. By Lemma 1 we

have that ℓL
i = O(mi) whp(mi), where mi is the number of stations that participated in the

ith L mode. This is also the number of stations involved in the next D mode. By Lemma 4,
it follows that (1) ℓD

i = O(mi) whp(mi), (2) E[ℓD
i] = O(mi) and (3) ℓD

i = O(mi log(k/pi)).
Hence, considering the lengths ℓLD

i = ℓL
i + ℓD

i of each L mode/D mode execution, we also
have (1) ℓLD

i = O(mi) whp(mi), (2) E[ℓLD
i] = O(mi) and (3) ℓLD

i = O(mi log(k/pi)).
Let wj be the number of executions i such that mi ≤ c · 2j . It follows that the random

variables ℓLD
i , for 1 ≤ i ≤ x, are condensed into (w1, w2, . . . , wy). By Lemma 5 we have that

ℓ =
∑x

j=1 ℓLD
j = O(

∑x
j=1 mj) = O(k) whp(k).

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:13

Lemmas 1 and 4 guarantee O(log k) energy whp(k) for the stations except the activity
of the leader in Protocol 1. It is easy to see that the transmissions of the leader could
continue for a large period of time, which could go over the desired O(log k) upper bound.
This is due to the total execution time of Protocol Estimate&Increase called on line 15,
during which the leader keeps sending messages (along with the other synchronized stations)
until it gets an acknowledgement. However, the algorithm resolves this issue by requesting
the stations participating to Estimate&Increase swapping the role of leader in such a way
that none of them transmits for more than O(log k) rounds, see description of Protocol
SlowIncrease(k, c). The second part of the lemma follows directly by applying second parts
of the results for the ingredient protocols (for any k′ > k), in Lemmas 1 and 4, and estimating
each log(k′/pi) from above by log k′. ◀

2.2.3 Putting activity intervals together
Finally, we are ready for the main theorem of this section. We will be using Lemma 5 again,
where the ℓi’s correspond now to the lengths of subsequent activity intervals and κ̄ is an
upper linear estimate of the activated stations in the whole considered execution.

▶ Theorem 7. Algorithm AdaptiveCTLE has constant throughput and O(log k′) energy,
whp(k′), where k′ is the total number of awaken station in a considered prefix of the execution
of Algorithm AdaptiveCTLE.

Proof. Fix an arbitrary execution of the algorithm. For any time round t, let Q[t] be the set
of rounds r ≤ t at which there is at least a station still active and n[t] be the total number
of stations activated until time t. We need to show that the size of Q[t] is at most a constant
factor higher than n[t].

Depending on the distance between consecutive activation times (that are controlled by
the adversary and can be arbitrarily large) the execution of the algorithm can be split into
several independent executions involving disjoint subsets of stations. At the end of each
execution, all the stations awaken during it will be switched-off. The time rounds between
two consecutive executions do not belong to Q[t].

Therefore, there exists an integer 1 ≤ x ≤ k such that Q[t] can be partitioned into disjoint
time intervals I1, . . . , Ix, each of them corresponding to an independent execution of the
algorithm on a set Si of stations, where all these subsets form a partition of the set of all
the stations activated until time t, formally

⋃
1≤i≤x Si = Â[t] and Si ∩ Sj = ∅ for i ̸= j. We

apply Lemma 5 to these intervals in exactly the same way as we applied it to the independent
executions of L mode and Estimate&Increase inside activity interval in the first part of
the proof of Lemma 6. Now, the base properties of the lengths of activity intervals are
guaranteed by Lemma 6, where k′ stands for the total number of awaken stations in the
considered prefix of execution, and Lemma 5 implies the theorem for k′ being upper bounded
by κ̄ with respect to a constant factor.

Finally, note that due to the independence of the activity intervals, each awaken station
participates in only one of them, therefore each station’s energy is O(log k′) whp(k′), by
Lemma 6 and the union bound over the participating k′ stations. ◀

3 A trade-off between throughput and energy of non-adaptive
algorithms

An arbitrary sequence of k activation times for k stations will be called an instance of at
most k stations and denoted by I(k). For any instance I(k), we will use a reference clock
starting when the first station is activated. All the following rounds t refer to this clock.

DISC 2022

17:14 Contention Resolution Without Collision Detection

Given an algorithm A, we let TA(I(k)) be the maximum time needed for A to assure a
successful transmission of any station in instance I(k) whp. Analogously, we let EA(I(k)) be
the expected number of transmissions per station spent by algorithm A on instance I(k).

▶ Theorem 8. Let τ(x) = Ω(1/(loga x)) for any constant a > 0. There exists an instance
I(k) such that any non-adaptive algorithm not knowing k and achieving throughput τ(k) whp,
requires Ω(log2 k/(log log k)2) expected transmissions per station.

Proof of Theorem 8. In order to prove the theorem, from now on we fix an arbitrary
non-adaptive algorithm A achieving throughput τ(k) = Ω(1/(loga x)) whp. All the following
results are meant to hold for such an algorithm A. Also, to simplify the description, all
bounds involving throughput are meant to hold with high probability even when not explicitly
stated. Moreover, we denote by T (k) (resp. E(k)) the maximum TA(I(k)) (resp. EA(I(k)))
taken over all instances I(k) activating k stations.

▶ Fact 9. T (k) ≤ k/τ(k).

Proof. Suppose on the contrary that T (k) > k/τ(k). Then for t = T (k), the ratio between
the number of activated stations and the number of active rounds will be

n[t]
r[t] ≤

k

T (k) <
k · τ(k)

k
= τ(k),

which contradicts the assumption on the throughput of algorithm A. ◀

We start with the following lemma showing a first lower bound on the average number of
transmissions. We will improve such a bound later on.

▶ Lemma 10. E(k) = Ω(log k/ log log k).

Proof. Let us build a random instance of k stations as follows. By the hypothesis on
throughput and Fact 9, we can assume that T (k) ≤ k/τ(k) whp. Let v be a station activated
at time 1 of the instance. By definition of T (k), v has to transmits successfully within T (k)
rounds whp. The number of rounds at which v transmits in the time period [1, T (k)] is a
random variable X such that

E(X) = E(k) = s(T (k)) =
∑

i∈[1,T (k)]

p(i) .

By Markov’s inequality we have

Pr (X < 2E(X)) > 1/2 . (1)

We now let the activation times of the other k − 1 stations be distributed uniformly at
random among the T (k) rounds. Each station transmits with probability p(1) at the first
round it switches on. Since the algorithm does not know k, the probability p(1) does not
depend on k. Therefore, we have that at any round of [1, T (k)] in which v transmits, the
probability that this transmission is not successful is the probability that any of the other
k − 1 stations transmits at the same time, that is (k − 1) · p(1) · (1/T (k)) = Ω(τ(k)), where
the asymptotic bound is due to the inequality T (k) ≤ k/τ(k). Thus, the probability of no
successful transmission for station v during the whole interval [1, T (k)] is at least Ω

(
τ(k)X

)
.

Hence, this probability is at most 1/kη for any predetermined constant η > 0, only when
the number of transmissions of v is X = Ω(log k/ log(1/τ(k))) = Ω(log k/ log log k). By
Equation (1), it follows that E(X) = Ω(log k/ log log k) and the lemma follows. ◀

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:15

Now we show that if the algorithm transmits as much to keep the sum of transmission
probabilities above a logarithmic threshold, then the probability of having a successful
transmission becomes very low. Notice that before the first successful transmission occurs,
we have A[t] = Â[t]. For this reason, in the following calculations we consider bounds on σ̂[t]
instead of σ[t], as they are equivalent until the first successful transmission appears.

▶ Lemma 11. Let T ≤ k2. There exists a constant γ > 0 such that if σ̂[t] ≥ γ log k for
every t ∈ [1, T], then the probability of having at least one successful transmission in the time
interval [1, T] is smaller than 1/k.

Proof. The probability of having at least one successful transmission in the time interval
[1, T], is equivalent to the probability of having the first transmission in any round t of this
interval. For a fixed round t, this probability is at most∑

v∈Â[t]

p(t− tv)
∏

w∈Â[t],w ̸=v

(1− p(t− tw)) ≤ σ̂[t]e−σ̂[t]+1 ,

which can be made smaller than 1/k3, for a sufficiently large γ. By taking the union bound
over all the T ≤ k2 rounds of the interval, we get that this probability is at most 1/k. ◀

The following lemma shows that the hypothesis on throughput implies that the sum of
transmission probabilities will be maintained above the logarithmic threshold determined
in the previous lemma. In other words, if the algorithm wants to be efficient in terms of
throughput, then it has to lose in terms of energy.

▶ Lemma 12. Let γ be the constant determined in Lemma 11. There exists a constant
c > 0 and an instance I1(k) such that, for k sufficiently large, σ̂[t] ≥ γ log k in all rounds
t ∈ [1, T (k/(c log1+a k))].

Proof. By the hypothesis on throughput and Fact 9 we know that T (k) ≤ O(k loga k). Hence,
T (k/ log1+a k) ≤ O(k/ log k). Consequently, for any constant c′ > 0 there exists a constant
c > 0 such that T (k/(c log1+a k)) ≤ k/(c′ log k), for k sufficiently large.

Construction of instance I1(k). Letting c′ = γ/p(1), we can construct an instance I1(k)
for k contending stations as follows. In each round t ∈ [1, T (k/(c log1+a k))] we switch on
c′ log k stations. Note that for this task, it is sufficient to activate at most k stations, indeed:

c′ log k · T
(

k

c log1+a k

)
≤ c′ log k · k

c′ log k
= k .

Each station transmits with probability p(1) in the round it is switched on. Therefore, in
every t ∈ [1, T (k/(c log1+a k))], σ̂[t] ≥ c′ log k · p(1) = γ log k. ◀

Now we can show that we can build an instance of k stations such that the transmissions
are mainly distributed at the end of the considered interval of T (k) rounds.

▶ Lemma 13. For some constant c, E(k)− E
(

k
c log1+a k

)
= Ω

(
log k

log log k

)
.

Proof. In order to prove the lemma, we build a corresponding instance I2(k) and analyze its
properties. We start as follows. Let γ be the constant determined by Lemma 11 and take
an instance I1(k/2) of k/2 stations as guaranteed by Lemma 12. This lemma implies that
σ̂[t] ≥ γ log(k/2) in all rounds t ∈

[
1, T

(
(k/2)

c′ log1+a(k/2)

)]
, for some constant c′. There exists

DISC 2022

17:16 Contention Resolution Without Collision Detection

a constant c such that T
(

(k/2)
c′ log1+a(k/2)

)
≥ T

(
k

c log1+a k

)
. Therefore, by Lemma 11, there is

no successful transmission in all rounds 1, 2, . . . , T
(

k
c log1+a k

)
whp. Hence, we can conclude

that whp a station v starting the protocol at round 1 is not able to transmit successfully in
the interval

[
1, T

(
k

c log1+a k

)]
.

Now we continue the construction of an instance I2(k) by distributing uniformly at
random the remaining k/2 stations in the interval [T (k/(c log1+a k), T (k)]. The non-adaptive
algorithm A assigns a fixed sequence of transmissions to v in this interval. Recalling Fact 9,
each of these transmissions is not successful with probability larger than (k/2)·p(1)·(1/T (k)) =
Ω(τ(k)) =Ω(1/ loga k).

Thus, in order to have a successful transmission with high probability, station v

needs to transmit Ω(log k/ log log k) times in the interval [T (k/(c log1+a k)), T (k)], as
(1/ loga k)Ω(log k/ log log k) = 1/poly(k).

Thus, analogously as in the proof of Lemma 10, in order to have a successful transmission
with high probability, station v needs to transmit Ω(log k/ log log k) times between round
T (k/(c log1+a k)) and T (k). Therefore, E(k)− E(k/(c log1+a k)) = Ω(log k/ log log k). ◀

Finally, the next lemma concludes the proof of Theorem 8.

▶ Lemma 14. E(k) = Ω(log2 k/(log log k)2).

Proof. We can write down a telescoping sum, where c is the constant determined in Lemma 13:

E(k) =
(
E(k)− E(k/(c log1+a k))

)
+
(
E(k/(c log1+a k))− E(k/(c log1+a k)2)

)
+

+
(
E(k/(c log1+a k)2)− E(k/(c log1+a k)3)

)
+ . . .

The thesis follows by noting that this sum has Ω(log k/ log log k) terms, and the first half
of these terms are Ω(log k/ log log k) by Lemma 13. ◀

4 Open problems

The most interesting open direction is to study tradeoff between energy consumption and
other measures. In particular, is logarithmic energy necessary for anonymous shared channel
against adaptive adversary in order to achieve constant throughput? If so, could we lower
the energy requirement by allowing slightly smaller throughput, and if so, how much
smaller? How the performance changes if we start restricting protocols, for instance, by
limiting randomness or/and number of listening rounds, not allowing any control bits or
requesting successful stations to disconnect immediately. Considering occasional failures
and/or accounting rounds when stations actively listen to the energy measure are examples
of other challenging directions.

References
1 A. Fernández Anta, M. A. Mosteiro, and J. Ramon Mu noz. Unbounded contention resolution

in multiple-access channels. Algorithmica, 67:295–314, 2013.
2 M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with log-logstar

channel accesses. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing (STOC), pages 499–508, Cambridge, MA, USA, 2016. ACM.

3 Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. Contention resolution
without collision detection. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 105–118, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384305.

https://doi.org/10.1145/3357713.3384305

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:17

4 Giuseppe Bianchi. Performance analysis of the ieee 802.11 distributed coordination function.
Selected Areas in Communications, IEEE Journal on, 18:535–547, April 2000. doi:10.1109/
49.840210.

5 Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pająk, and Roger Wattenhofer.
Fast size approximation of a radio network in beeping model. Theoretical Computer Science,
810:15–25, 2020. Special issue on Structural Information and Communication Complexity.
doi:10.1016/j.tcs.2017.05.022.

6 J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on
Information Theory, 25:505–515, 1979.

7 B. S. Chlebus. Randomized communication in radio networks. In P. M. Pardalos, S. Ra-
jasekaran, J. H. Reif, and J. D. P. Rolim, editors, Handbook on Randomized Computing, pages
401–456. Springer, New York, NY, USA, 2001.

8 Bogdan S. Chlebus, Leszek Gąsieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the
wake-up problem in radio networks. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, pages
347–359, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

9 Bogdan S. Chlebus, Leszek Gąsieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.
Deterministic broadcasting in unknown radio networks. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pages 861–870, USA, 2000. Society
for Industrial and Applied Mathematics.

10 Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC
’04, pages 266–274, New York, NY, USA, 2004. Association for Computing Machinery. doi:
10.1145/1011767.1011806.

11 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of
multi-channel single-hop radio networks. CoRR, abs/1411.4498, 2014. arXiv:1411.4498.

12 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of
multi-channel single-hop radio networks. Theor. Comput. Sci., 615:23–44, 2016. doi:10.1016/
j.tcs.2015.11.046.

13 Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Naming a channel with beeps.
Fundam. Informaticae, 153(3):199–219, 2017. doi:10.3233/FI-2017-1537.

14 M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks.
Journal of Algorithms, 43:177–189, 2002.

15 Marek Chrobak, Leszek Gasieniec, and Dariusz Kowalski. The wake-up problem in multi-
hop radio networks. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pages 992–1000, USA, 2004. Society for Industrial and Applied
Mathematics.

16 A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of
unknown topology. Theoretical Computer Science, 302:337–364, 2003.

17 G. De Marco and D. Kowalski. Fast nonadaptive deterministic algorithm for conflict resolution
in a dynamic multiple-access channel. SIAM J. Comput, 44(3):868–888, 2015.

18 Robert G. Gallager. A perspective on multiaccess channels. IEEE Trans. Information Theory,
31(2):124–142, 1985.

19 A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities of conflicts to
speed their resolution in multiple access channels. Journal of the ACM, 34(2):289–325, 1987.

20 A. G. Greenberg and R. E. Ladner. Estimating the multiplicities of conflicts in multiple access.
In IEEE, editor, Proc. of the 24th Annual Symp. on Foundations of Computer Science (FOCS)
(Tucson, AZ.)., pages 383–392, Tucson, AZ, USA, 1983. IEEE.

21 A. G. Greenberg and A S. Winograd. lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. Journal of ACM, 32:589–596,
1985.

DISC 2022

https://doi.org/10.1109/49.840210
https://doi.org/10.1109/49.840210
https://doi.org/10.1016/j.tcs.2017.05.022
https://doi.org/10.1145/1011767.1011806
https://doi.org/10.1145/1011767.1011806
http://arxiv.org/abs/1411.4498
https://doi.org/10.1016/j.tcs.2015.11.046
https://doi.org/10.1016/j.tcs.2015.11.046
https://doi.org/10.3233/FI-2017-1537

17:18 Contention Resolution Without Collision Detection

22 J. F. Hayes. An adaptive technique for local distribution. IEEE Transactions on Communica-
tions, 26:1178–1186, 1978.

23 P. Indyk. Explicit constructions of selectors and related combinatorial structures. In Proceedings,
13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 697–704, San Francisco,
CA, USA, 2002. ACM-SIAM.

24 T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop
radio networks. Theory Comput. Syst, 38(3):347–367, 2005.

25 J. Komlós and A. G. Greenberg. An asymptotically optimal nonadaptive algorithm for conflict
resolution in multiple-access channels. IEEE Trans. on Information Theory, 31:302–306, 1985.

26 D. Kowalski. On selection problem in radio networks. In Proceedings, 24th ACM Symposium
on Principles of Distributed Computing (PODC), pages 158–166, Las Vegas, NV, USA, 2005.
ACM.

27 Dariusz R. Kowalski and Andrzej Pelc. Time of deterministic broadcasting in radio networks
with local knowledge. SIAM Journal on Computing, 33(4):870–891, 2004. doi:10.1137/
S0097539702419339.

28 G. De Marco and G. Stachowiak. Asynchronous shared channel. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 391–400,
Washington, DC, USA, 2017. ACM. doi:10.1145/3087801.3087831.

29 Gianluca De Marco. Distributed broadcast in unknown radio networks. SIAM J. Comput.,
39(6):2162–2175, 2010. doi:10.1137/080733826.

30 Gianluca De Marco, Tomasz Jurdzinski, and Dariusz R. Kowalski. Optimal channel utilization
with limited feedback. In Leszek Antoni Gasieniec, Jesper Jansson, and Christos Levcopoulos,
editors, Fundamentals of Computation Theory - 22nd International Symposium, FCT 2019,
Copenhagen, Denmark, August 12-14, 2019, Proceedings, volume 11651 of Lecture Notes in
Computer Science, pages 140–152. Springer, 2019. doi:10.1007/978-3-030-25027-0_10.

31 Gianluca De Marco, Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rózanski, and Grzegorz
Stachowiak. Subquadratic non-adaptive threshold group testing. J. Comput. Syst. Sci.,
111:42–56, 2020. doi:10.1016/j.jcss.2020.02.002.

32 Gianluca De Marco, Tomasz Jurdzinski, Michal Rózanski, and Grzegorz Stachowiak. Sub-
quadratic non-adaptive threshold group testing. In Ralf Klasing and Marc Zeitoun, editors,
Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux,
France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer
Science, pages 177–189. Springer, 2017. doi:10.1007/978-3-662-55751-8_15.

33 Gianluca De Marco and Dariusz R. Kowalski. Towards power-sensitive communication on a
multiple-access channel. In 2010 International Conference on Distributed Computing Systems,
ICDCS 2010, Genova, Italy, June 21-25, 2010, pages 728–735. IEEE Computer Society, 2010.
doi:10.1109/ICDCS.2010.50.

34 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. In 27th IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages 525–533. IEEE
Computer Society, 2013. doi:10.1109/IPDPS.2013.68.

35 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. Theor. Comput. Sci., 689:1–13, 2017. doi:10.1016/j.tcs.2017.05.
014.

36 Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Brief announcement:
Deterministic contention resolution on a shared channel. In Ulrich Schmid and Josef Widder,
editors, 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 44:1–44:3. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.DISC.2018.44.

37 Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Deterministic contention
resolution without collision detection: Throughput vs energy. In 41st IEEE International
Conference on Distributed Computing Systems, ICDCS 2021, Washington DC, USA, July 7-10,
2021, pages 1009–1019. IEEE, 2021. doi:10.1109/ICDCS51616.2021.00100.

https://doi.org/10.1137/S0097539702419339
https://doi.org/10.1137/S0097539702419339
https://doi.org/10.1145/3087801.3087831
https://doi.org/10.1137/080733826
https://doi.org/10.1007/978-3-030-25027-0_10
https://doi.org/10.1016/j.jcss.2020.02.002
https://doi.org/10.1007/978-3-662-55751-8_15
https://doi.org/10.1109/ICDCS.2010.50
https://doi.org/10.1109/IPDPS.2013.68
https://doi.org/10.1016/j.tcs.2017.05.014
https://doi.org/10.1016/j.tcs.2017.05.014
https://doi.org/10.4230/LIPIcs.DISC.2018.44
https://doi.org/10.1109/ICDCS51616.2021.00100

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:19

38 Gianluca De Marco, Marco Pellegrini, and Giovanni Sburlati. Faster deterministic wakeup in
multiple access channels. Discret. Appl. Math., 155(8):898–903, 2007. doi:10.1016/j.dam.
2006.08.009.

39 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CBO9780511814075.

40 B. S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in a broadcast channel
with feedback. Prob. Inf. Transmission, 14:259–280, 1977.

A Appendix

A.1 Lemma 1
Proof of Lemma 1. Let us consider the first 32qk rounds, for some constant q > 0, following
the round at which the first station wakes up and starts the computation. We will prove
that by the end of this interval the wake up has been accomplished whp(k).

Following the algorithm, each awake station, starting from the round at which it wakes
up, transmits using the following sequence of probabilities: q · 1

2q , q · 1
2q+1 , q · 1

2q+2 , . . . If we
denote by pi the transmission probability of an arbitrary awake station u at the ith round of
its computation, we have that the sum of transmission probabilities of u over the first 32qk

rounds, after waking up, is

s(32qk) =
32qk∑
i=1

pi ≤ q

(32qk∑
i=1

1
i

)
≤ q(1 + ln(32qk)) , (2)

where in the last step we have used the right-hand inequality of the following known bounds
for the hth partial sum Hh of the harmonic series:

ln(1 + h) ≤ Hh =
h∑

i=1

1
i
≤ 1 + ln h . (3)

For any fixed round t, let us consider now the sum of transmission probabilities of all awake
stations at time t, denoted as in the previous section by σ(t). Since at most k stations can
be awake in each round, the average sum σ(t) for t ranging over our interval of 32qk rounds
will be

1
32qk

32qk∑
t=0

σ(t) ≤ s(32qk) · k
32qk

≤ q(1 + ln(32qk)) · k
32qk

≤ ln(32qk)
16 .

Of course, in at least half of the interval, σ(t) must be not larger than twice the average;
therefore there is a set T of at least 16qk rounds such that

σ(t) ≤ ln(32qk)
8 , (4)

for every t ∈ T . Let us consider only rounds in T . We say that a round t is heavy when
σ(t) > 1/2 and light otherwise. We distinguish two cases.
Case 1: there are at least 8qk heavy rounds. Recalling also (4), in at least 8qk rounds t, it

holds that

1
2 < σ(t) ≤ ln(32qk)

8 . (5)

DISC 2022

https://doi.org/10.1016/j.dam.2006.08.009
https://doi.org/10.1016/j.dam.2006.08.009
https://doi.org/10.1017/CBO9780511814075

17:20 Contention Resolution Without Collision Detection

In [24] (cf. Corollary 5.3.1) it is showed that if (5) holds, than the success probability at
round t is at least(

1
16

) ln(32qk)
8

≥ 1√
32qk

.

Therefore, the probability that the wake-up does not appear in 8qk heavy rounds is at
most (1− 1/

√
32qk)8qk = O(1/ka) for an arbitrary constant a depending on q.

Case 2: there are less than 8qk heavy rounds. So, there are at least δ = 8qk light rounds
in T . Let t1, t2, . . . , tδ be the sequence of consecutive light rounds. In [24] (cf. Claim 1
in the proof of Theorem 10.3) it is showed by induction on i that σ(ti) ≥ q/(2q + i), for
1 ≤ i ≤ δ. Consequently,

q/(2q + i) ≤ σ(ti) ≤ 1/2, for 1 ≤ i ≤ δ.

By Corollary 5.3.3 in [24], this implies that the probability of successfully waking up in
the ith light round is at least q/2(2q + i). Hence, the probability that the wakeup is not
successful is at most

δ∏
i=1

(1 − σ(ti)) ≤
δ∏

i=1

(
1 − q

2(2q + i)

)
≤
(1

e

)∑δ

i=1
q

2(2q+i)
≤
(1

e

) q
2 (
∑δ

i=1
1
i

−
∑2q

i=1
1
i

)

=
(1

e

) q
2 (Hδ−H2q)

≤
(1

e

) q
2 (ln(1+δ)−ln(4q))

=
(

4q

1 + 8qk

)q/2

≤
(1

2k

)q/2
,

where the second last inequality follows by (3) and choosing q ≥ e/2).

If in the above arguments the contention k is kept but the number of considered rounds is
extended by a factor log(k′/k), the probability of failure in the formulas is raised to log(k′/k),
which results in success whp(k′).

We can observe that Protocol 3 gives a maximum number of transmissions per station
of O(log k) whp. This follows from the fact that in expectation the sum of q/(2q + i) over
i up to O(k) is O(log k). The Chernoff bound and then the union bound over the stations
give the desired O(log k) bound whp(k). The same argument gives energy O(log k′) bound
whp(k′) when the length of the execution is O(k log(k′/k)). ◀

A.2 Lemma 5
In order to prove Lemma 5 we need to show concentration bounds on the lengths of the
activity intervals. To this aim, we will use, similarly as in [2], the Azuma-Hoeffding inequality
on martingales.

▶ Definition 15. A sequence of random variables X0, X1, . . . is said to be a martingale
sequence if for all i > 0, E[Xi| X0, . . . , Xi−1] = Xi−1.

The following theorem holds (see e.g. [39, p. 92]).

▶ Theorem 16 (Azuma-Hoeffding inequality). Let X0, X1, . . . be a martingale sequence such
that for each i,

|Xi −Xi−1| ≤ ci,

where ci may depend on i. Then, for all t ≥ 0 and any λ > 0,

Pr(|Xt −X0| ≥ λ) ≤ 2 exp
(
− λ2

2
∑t

i=1 c2
i

)
.

G. De Marco, D. R. Kowalski, and G. Stachowiak 17:21

Proof of Lemma 5. Fix a sufficiently large positive integer α. Pick any integer j, where
1 ≤ j ≤ y, and consider three cases covering all possible events (i.e., for each j, at least one
of the three cases holds):
Case (a): 2j is at least κ̄1/α. In such a case, 2j is a polynomial in κ̄. Therefore, each ℓi

for i ∈ Lj is, by the definition of Lj , upper bounded by c · 2j whp(κ̄1/α). Since α is a
constant, we can set a suitable parameter η > 0 in the definition of whp such that the
upper bound ℓi ≤ c · 2j also holds whp(κ̄). There are at most κ̄ of such events, by the
definition of κ̄. By applying the union bound to these events, and still choosing a suitable
parameter η > 0 in the definition of whp, we get that

∑
i∈Lj

ℓi is O(2jwj) holds whp(κ̄).
Case (b): case (a) does not hold and wj is at least κ̄3/α. Let P be the conditional probability

space restricted to all situations where the following event E holds: for all i ∈ Lj ,
ℓi ≤ c · 2j log(κ̄/2j). Let i1, i2, . . . , iwj be any order of the indices of Lj . We can
define a sequence of random variables Xi1 , Xi2 , . . . , Xiwj

such that for 1 ≤ v ≤ wj ,
Xiv = ℓi1 + · · ·+ ℓiv − vc · 2j log(κ̄/2j).

We can now observe that in the conditional probability space P the above sequence of
random variables is a martingale. Indeed, we have E[Xi| X0, . . . , Xi−1] = Xi−1 + E[Xi] =
Xi−1 + E[ℓi1] + · · · + E[ℓiv

] − vc · 2j log(κ̄/2j) = Xi−1. We have also that |Xi − Xi−1| =
|ℓiv
− c · 2j log(κ̄/2j)| = O(κ̄1/α log(κ̄)), where the last step follows because in P we have

that ℓi ≤ c · 2j log(κ̄/2j) holds for all i ∈ Lj and we are assuming that case (a) does not hold,
so 2j < κ̄1/α. Thus the assumptions of Theorem 16 are satisfied and we can estimate the
probability that ℓi1 + · · ·+ ℓiwj

is larger than E[
∑

i∈Lj
ℓi] + wj = O(2jwj) + wj = O(2jwj).

Specifically, the Azuma-Hoeffding inequality in our case implies that this probability, within
the conditional probability space P, is at most

2 exp
(
−

w2
j

2
∑wj

i=1 O(1)

)
= 2 exp

(
−

w2
j

2wjO(κ̄1/α log(κ̄/2j))

)
.

Since wj is at least κ̄3/α, the complementary event holds whp(κ̄) in the conditional probability
space P.

Recall that E , defining the conditional probability space P, is the event that for all
i ∈ Lj , ℓi ≤ c · 2j log(κ̄/2j). By the definition of Lj , ℓi ≤ c · 2j log(κ̄/2j) whp (κ̄). Hence, the
probability that event E does not hold (i.e., the case is outside P) is, by the union bound, at
most O(1/κ̄) for α > 3. This implies that

∑
i∈Lj

ℓi ≤ O(2jwj) holds whp(κ̄) in the whole
sample space.

Case (c): cases (a) and (b) do not hold, i.e., 2j < κ̄1/α and wj < κ̄3/α, which implies 2jwj

is smaller than κ̄4/α.

Putting all cases together, the total contribution of j satisfying Cases (a), (b) and (c)
is linear in O(

∑
j 2jwj) = O(κ̄) and holds whp(κ̄), by the union bound taken over at most

x ≤ κ̄ values j and using upper bound O(2jwj) that holds whp(κ̄) each. ◀

DISC 2022

Smoothed Analysis of Information Spreading in
Dynamic Networks
Michael Dinitz #

Johns Hopkins University, Baltimore, MD, USA

Jeremy Fineman #

Georgetown University, Washington, DC, USA

Seth Gilbert #

National University of Singapore, Singapore

Calvin Newport #

Georgetown University, Washington, DC, USA

Abstract
The best known solutions for k-message broadcast in dynamic networks of size n require Ω(nk)
rounds. In this paper, we see if these bounds can be improved by smoothed analysis. To do so,
we study perhaps the most natural randomized algorithm for disseminating tokens in this setting:
at every time step, choose a token to broadcast randomly from the set of tokens you know. We
show that with even a small amount of smoothing (i.e., one random edge added per round), this
natural strategy solves k-message broadcast in Õ(n + k3) rounds, with high probability, beating
the best known bounds for k = o(

√
n) and matching the Ω(n + k) lower bound for static networks

for k = O(n1/3) (ignoring logarithmic factors). In fact, the main result we show is even stronger
and more general: given ℓ-smoothing (i.e., ℓ random edges added per round), this simple strategy
terminates in O(kn2/3 log1/3(n)ℓ−1/3) rounds. We then prove this analysis close to tight with an
almost-matching lower bound. To better understand the impact of smoothing on information
spreading, we next turn our attention to static networks, proving a tight bound of Õ(k

√
n) rounds to

solve k-message broadcast, which is better than what our strategy can achieve in the dynamic setting.
This confirms the intuition that although smoothed analysis reduces the difficulties induced by
changing graph structures, it does not eliminate them altogether. Finally, we apply tools developed
to support our smoothed analysis to prove an optimal result for k-message broadcast in so-called
well-mixed networks in the absence of smoothing. By comparing this result to an existing lower
bound for well-mixed networks, we establish a formal separation between oblivious and strongly
adaptive adversaries with respect to well-mixed token spreading, partially resolving an open question
on the impact of adversary strength on the k-message broadcast problem.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Smoothed Analysis, Dynamic networks, Gossip

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.18

Related Version Full Version: https://arxiv.org/abs/2208.05998 [6]

Funding Michael Dinitz : Supported in part by NSF award CCF-1909111.
Jeremy Fineman: Supported in part by NSF grants CCF-1918989 and CCF-2106759.
Seth Gilbert: Supported in part by Singapore MOE grant MOE2018-T2-1-160.

1 Introduction

In this paper, we apply smoothed analysis to the study of k-message broadcast in dynamic
networks. We prove that even with a small amount of smoothing, a simple distributed
random broadcast strategy can significantly outperform the existing worst-case lower bounds.
We then prove that in static networks the complexity of this strategy further improves,

© Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdinitz@cs.jhu.edu
mailto:jfineman@cs.georgetown.edu
mailto:seth.gilbert@comp.nus.edu.sg
mailto:cnewport@cs.georgetown.edu
https://doi.org/10.4230/LIPIcs.DISC.2022.18
https://arxiv.org/abs/2208.05998
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Smoothed Analysis of Information Spreading in Dynamic Networks

establishing that even in the context of smoothing, changing topologies remain more difficult
to move information through than their static counterparts. Finally, we apply the tools
developed for these analyses to improve the best-known bounds for k-message broadcast,
without smoothing, in the well-mixed dynamic network setting. This result is significant
in part because when combined with an existing lower bound on well-mixed networks [8],
it provides a formal separation between strongly adaptive and oblivious adversaries for
k-message broadcast.

1.1 Background
In studying distributed network algorithms, it is common to represent the underlying topology
with a graph, where nodes correspond to processes and edges to communication links. In the
dynamic network setting, these graphs can change from round to round as determined by
an adversary. An upper bound proved in a dynamic network is considered strong as it can
tolerate the many sources of interference, failure or congestion that alter link availability in
real world networks (see [11] for a good review).

Kuhn et al. [12] sparked recent interest in the study of the k-message broadcast problem,
in which nodes in a network of size n must spread k messages (also called tokens) to the
whole network. In [12], the results assume the Broadcast CONGEST model in which in each
round, each node can broadcast a single bounded-size message, containing at most 1 token.
A primary result in the paper is a deterministic algorithm that solves k-message broadcast
in O(nk) rounds. For larger values of k, this is notably slower than the O(n + k) rounds
required to solve this problem in a static network, underscoring the difficulty of dynamic
topologies.

Follow-up work by Dutta et al. [8] proved this result close to optimal with a lower bound
that establishes Ω(nk/ log n + n) rounds are necessary to solve k-message broadcast in this
setting. This result is strong in that it holds even for randomized algorithms (with a strongly
adaptive adversary), and under the well-mixed token assumption in which each token has
independent constant probability of starting at each node.

1.2 Key question: is Ω̃(nk) fundamental?
Given the importance of information dissemination, an Ω̃(nk) lower bound on k-message
broadcast is unfortunately strong, especially for large networks attempting to disseminate
large amounts of information in a setting with limited bandwidth. Following the approach of
Dinitz et al. [7], however, we can investigate whether this bound is fundamental.

In more detail, there are two useful possibilities to consider here. First, this Ω̃(nk) bound
might be robust in the sense that something like nk rounds to broadcast k messages is a
natural consequence of network topologies that change. This would be reflected, for example,
in the existence of large classes of graphs in which this bound is obviously unavoidable. The
second possibility is that the bound is instead fragile in the sense that it requires carefully-
crafted pathological topologies to induce a complexity of this magnitude, and even small
changes to these worst-case graphs enable much more efficient solutions. These distinctions
are important because if the Ω̃(nk) lower bound due to [8] can be shown to be fragile, this
provides hope that more efficient information dissemination can be expected in most real
world settings. By contrast, if the bound is robust, this indicates that efficient communication
should not be expected in practice.

One approach to distinguishing between robustness and fragility is to apply smoothed
analysis. In more detail, in the study of sequential algorithms, Spielman and Teng introduced
smoothed analysis to help explain why the simplex algorithms works well in practice despite

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:3

pessimistic worst-case lower bounds [18, 19]. They proved that the introduction of small
random perturbations to otherwise worst-case inputs enabled stronger bounds, indicating
the existing lower bound was fragile.

Dinitz et al. [7] subsequently adapted smoothed analysis to the study of distributed
algorithms in dynamic networks. In this framework, as in the worst-case setting, an adversary
generates an arbitrary dynamic graph to describe the changing network. The individual
graphs, however, are then each augmented with ℓ additional random edges, for some smoothing
parameter ℓ, before the distributed algorithm in question is run.

For ℓ = 0, this reduces to the standard worst-case setting where existing lower bounds
apply. For ℓ =

(
n
2
)
, this reduces (more or less) to a random graph setting, in which much

stronger upper bounds results are typically possible. As argued in [7], if a worst case lower
bound is significantly diminished by smoothed analysis for small ℓ values, then this hints
that the original bound is fragile.

The processes and problems studied in [7] were flooding, random walks, and token
aggregation. (Follow-up work applied smoothed analysis to the study of the minimum
spanning tree [3] and leader election [16] in static graphs.) The k-message broadcast problem
features arguably the best-known pessimistic lower bound in the dynamic network setting,
but its examination using smoothed analysis was left in [7] as an open problem.

1.3 Our Results
We focus in this paper on random broadcast, one of the simplest possible algorithms for
disseminating tokens: in each round, each node broadcasts a token chosen uniformly at
random from its current token set. This simple strategy will enable us to prove a variety of
interesting results on k-message broadcast.

Smoothed analysis of random broadcast in dynamic networks
Applying smoothed analysis as our key tool, we prove that even a small amount of smoothing
(i.e., one random edge added per round) is sufficient to enable random broadcast to outperform
the worst-case lower bound. This implies both that the existing bound is fragile, and that
random broadcast is, in some sense, the right strategy for spreading tokens through a dynamic
network.

We first establish in Section 5 the baseline result that with no smoothing random
broadcast solves the problem in O(nk) rounds, with high probability in n. This matches the
deterministic bound from [12].1 We then investigate the impact of smoothing. In Section 6.2,
we show that even with a small amount of smoothing (i.e., ℓ = 1), random broadcast now
terminates in Õ(n + k3) rounds, with high probability in n, improving on the best-known
O(nk) bound for any k = õ(

√
n), and matching the static network lower bound of Ω(n + k)

for k = Õ(n1/3).
We emphasize that 1-smoothing adds at most one new edge to the network in each round,

which enables at most one extra token dissemination. This smoothing therefore changes
the overall bandwidth or connectivity of the graph by only a very small amount.2 Given
that Θ(nk) rounds might be necessary to solve k-message broadcast, our speed-up in time

1 Note that [12] gave a deterministic algorithm for the problem, and also explored the problem of
termination detection, which further complicates the problem.

2 Notice, for example, that to significantly increase the conductance or vertex expansion of the graph,
you would need to add many more edges.

DISC 2022

18:4 Smoothed Analysis of Information Spreading in Dynamic Networks

complexity in this context does not come simply from adding large amounts of extra capacity
to a worst-case network: most of the work of token dissemination must still occur over the
adversarially specified edges in the network. The smoothing accomplishes something more
subtle: as we elaborate in our below discussion of predecessor paths, these extra edges are
not eliminating bottlenecks in the underlying dynamic network, but instead providing just
enough random noise to allow us to bypass their corresponding potential for congestion.

In reality, our result for ℓ = 1 is proved as a corollary of our more general result (proved in
Section 6.1) showing that random broadcast solves k-message broadcast in O

(
kn2/3 log1/3 n

ℓ1/3

)
rounds, which for ℓ = 1 is upper bounded by the Õ(n + k3) bound claimed above for all n

and k. Notice that in this general form, for k = o(n1/3), random broadcast actually beats the
Ω(n + k) lower bound for static networks. This is possible because even a small number of
additional random edges enables tokens to not only bypass bottlenecks, but also skip ahead
in temporal paths, reducing the effective dynamic diameter of the network. As we increase
ℓ, we get further improvements. For ℓ = k3, for example, we get a sub-linear result, as the
increased smoothing both speeds up the rate at which tokens initially spread, and the rate
at which they subsequently jump over smoothed edges to locations near their destinations in
time and space (see below for elaboration).

Predecessor paths. A key technique in our analysis, presented in Section 4, is the use of
graph structures that we call predecessor paths, which capture paths that exist over time.
They are represented as a sequence of node/round pairs, (u1, r1), (u2, r2), . . . , (ux, rx), and
for each (ui, ri), for i < x, it is guaranteed that ui is connected to ui+1 during round ri.
We further customize these paths for a given token t, strengthening the guarantee for each
(ui, r1) such that not only will ui be connected to ui+1 in round ri, but it will broadcast
token t in this round, if it knows it.

For each given destination ux and token t, therefore, we can reduce the problem of
delivering t to ux to the problem of seeding token t into the appropriate predecessor path.
(Intuitively, we are establishing here a net over time and space that can capture a token
and then inexorably guide it to the center of the trap.) At a high-level, we can therefore
break our smoothed analysis of random broadcast into three phases. During the first phase,
we ignore the smoothed edges, and allow the natural dynamics of information spread in
these networks spread out each token to a larger set. During the second phase, we allow the
smoothed edges to seed these tokens onto the appropriate predecessor paths. During the
final phase, the tokens can then traverse these paths to their final destinations.

The lengths of these phases are inter-dependent. Increasing the initial spreading phase, for
example, decreases the second phase as now each smoothed edge has a higher probability of
selecting a node with a useful token. Similarly, relying on long predecessor paths also reduces
the second phase, as now each smoothed edge has more targets to which to deliver a token.
Longer predecessor paths, however, necessitate a longer third phase to given tokens time to
traverse to their destinations. Our final result balances these dependencies by optimizing the
time complexity when we fix all three phases to be the same length.

Lower bound. In Section 6.3, we complement our upper bound analysis of random broadcast
with a nearly-matching lower bound. In more detail we describe and analyze a dynamic star
topology in which the network graph forms a star in each round, but the identity of the
center node rotates over time. In this setting, we prove random broadcast’s expected time
to solve k-message broadcast is in Ω̃

(
min

(
kn2/3

(ℓ(k+ℓ))1/3 , kn
k+ℓ

))
. This result is approximately

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:5

a factor of (k + ℓ)1/3 below our upper bound analysis, confirming that significantly more
efficient analyses are not possible. Notably, this bound establishes the fundamental nature of
the drop from n to n2/3 in the presence of even a small amount of smoothing.

Smoothed analysis of random broadcast in static networks
A possible interpretation of our upper bounds is the following: “with a small amount of
smoothing, dynamic networks behave like static networks”. In other words, it might be
the case that smoothing removes the differences between dynamic and static networks. In
Appendix A, we investigate this issue by studying the behavior of random broadcast in the
network toplogies that do not change from round to round. We prove that in the presence of
minimum smoothing (i.e., ℓ = 1) random broadcast completes in static network a polynomial
factor of n faster than what is possible in dynamic networks. Formally, we prove that in any
static network with 1-smoothing random broadcast completes in Õ(k

√
n) rounds, with high

probability. (Recall, the relevant upper bound result in dynamic networks for 1-smoothing is
Õ(kn2/3) rounds.) We then prove this analysis is tight (within logarithmic) terms with a
matching lower bound.

At the core of our analysis is a decomposition of an arbitrary static network into at
most O(

√
n) components each with diameter at most O(

√
n). We demonstrate that given

a collection of t components that know the token, in a single spreading interval of Õ(k
√

n)
rounds, each of the t components is likely to send a given target token over a smoothed
edge to a unique new component, effectively doubling the number that now know it. We
leverage this doubling behavior to spread a token to a large fraction of the network in only a
logarithmic number of spreading intervals.

Well-mixed networks
In [8], the authors introduced the notion of a well-mixed network in the context of studying
k-message broadcast. They call a network well-mixed if for every node u and token t, node u

starts with token t with some independent constant probability. Surprisingly, they observe
that their Ω(nk) lower bound holds even for well-mixed networks. It turns out that even
starting with a very uniform token distribution does not make the problem easy.

Accordingly, they replace the broadcast communication model with the much more
powerful Symmetric-Diff CONGEST model in which each node can not only send a different
token on each outgoing edge, but also perform a set-difference with each of their neighbors
before deciding what tokens to send. Given this extra power, they show that it is possible to
solve k-message broadcast in a well-mixed network in Õ(n + k) rounds, with high probability.

Leveraging our predecessor path constructions introduced for our smoothed analysis
results, in Appendix B we prove, perhaps surprisingly, that our simple random broadcast
algorithm solves k-message broadcast in O((k/p) log n) rounds, with high probability, where
p is the probability that each nodes starts with each token. For the p = Θ(1) case considered
in [8], we strictly improve on the bound they achieved in their more powerful communication
model. Indeed, for constant p, our bound is within a single log factor of matching a trivial
Ω(k) lower bound for all algorithms in the broadcast communication model.

The key follow-up question, of course, is why our result does not violate the Ω(nk)
lower bound from [8]. The difference is found in the adversary assumptions. The existing
lower bound requires a strongly adaptive adversary that knows the nodes’ random choices in
advance and can construct the network topology for a given round based on the knowledge
of the tokens nodes are broadcasting in that round. We assume, by contrast, an oblivious
adversary that designs the network without advance knowledge of these random bits.

DISC 2022

18:6 Smoothed Analysis of Information Spreading in Dynamic Networks

Our well-mixed network result, therefore, opens a clear gap between the strongly adaptive
and oblivious adversaries in the context of k-message broadcast. This partially resolves
the open question presented in [8] as to whether or not the Ω(nk) lower bound applies to
oblivious adversaries as well.

2 Related Work

Many problems have been studied in various dynamic network models; e.g., [14, 10, 8, 4, 1,
5, 17, 9] (see [11] for a good survey). Interest in k-message broadcast in a dynamic network
with broadcast communication was sparked by Kuhn et al. [13], who established the original
O(nk) upper bound that provides the baseline for the smoothed analysis deployed in this
paper. The relevant matching lower bounds for arbitrary and well-mixed token distributions
were subsequently proved by Dutta et al. [8].

Dinitz et al. [7] adapted the smoothed analysis technique, originally introduced by
Spielman and Teng [18, 19] in the context of sequential algorithms, to dynamic networks.
They studied flooding, random walks and aggregation, and identified k-message broadcast as
an important open question. Subsequent work applied this smoothed analysis framework to
various other graph problems, including minimum spanning tree construction [3] and leader
election [16]. Recently, Meir et al. [15] proposed a variation of graph smoothing, suitable for
long-lived processes, in which the smoothing parameter ℓ can be fractional. As noted in [7],
smoothed analysis is not the only technique deployed in the literature for sidestepping fragile
dynamic network lower bounds. Denysyuk et al. [5], for example, circumvent an exponential
lower bound for random walks in dynamic graphs due to [2] by requiring the dynamic graph
to include a certain number of static graphs from a well-defined set. In the context of the
dynamic radio network model, Ghaffari et al. [9] studied the impact of adversary strength,
similarly finding a noticeable gap between oblivious and strongly adaptive adversaries in the
context of broadcast.

3 Preliminaries

Here we define the dynamic network models we study and the k-message problem we solve.
We also formalize ℓ-smoothing and establish some useful notation and probability results
leverage throughout the paper to follow.

Model

We study a dynamic network model in which an execution begins with an oblivious adversary
that chooses a dynamic graph,, defined as a sequence G = G1, G2, . . ., where each Gi is a
connected graph over a common node set V of size n = |V |. Time proceeds in synchronous
rounds. At the beginning of each round r ≥ 1, each node u ∈ V can reliably broadcast a
message to is neighbors in Gr. A key difficulty of these models is that u does not know its
neighbors in advance.

k-Message Broadcast

The k-message broadcast problem assumes a set T containing k ≥ 1 unique messages that
are also commonly called tokens or rumors. Each rumor in T starts the execution at one or
more nodes. The problem is solved once all nodes have received all k rumors in T . Following
the standard convention [12], we assume each node can broadcast at most 1 rumor per round.

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:7

ℓ-Smoothing

Fix a dynamic graph G = G1, G2, Fix a smoothing parameter ℓ ≥ 1. Our goal is to define
a smoothing process that adds ℓ random edges to each Gi in G. In an effort to maximize
generality, the original definition of ℓ-smoothing from [7] assumed that each Gi was replaced
by a graph Ĝi sampled uniformly from the set of graphs that are both “allowable” and within
edit distance k of Gi. This was meant to allow both additions and deletions while avoiding
illegal topologies (e.g., disconnected graphs).

The results for the Broadcast CONGEST model in [7], however, largely avoided much of
this generality, instead applying results (Lemmas 4.1 and 4.2) that establish that this model
approximates a simpler model in which edges are randomly added from the set of all edges.
For the sake of clarity, in this paper we directly deploy this simpler definition of smoothing.

Formally, after the adversary generates G, we smooth each Gi as follows: (1) randomly
generate ℓ edges (with replacement); (2) for each such edge, if it is not already in the
smoothed graph we are generating, add it to the graph.

Notation

In the following, we use Õ, Θ̃, and Ω̃ to suppress logarithmic factors with respect to n.
When we specify a result holds with high probability, we mean with failure probability upper
bounded by n−x for some sufficiently large constant x ≥ 1. We also use [x], for integer x ≥ 1,
to indicate the set {1, 2, . . . , x}.

Fix an execution of a k-message broadcast algorithm for some token set T of size k and
node set V . For each node u ∈ V and round r ≥ 1, let Tu(r) be the set of tokens u started
with or received by the beginning of round r. We say u knows the tokens in Tu(r) at the
beginning of round r. Finally, for a given token t ∈ T , let nt(r) = |{u | t ∈ Tu(r)}| be the
number of nodes that know token t at the beginning of r.

Useful Probability Results

Many of our high probability results that follow leverage the following useful form of a
Chernoff Bound:

▶ Theorem 1. Let X1, . . . , Xj be a series of independent random variables such that Xi ∈
[0, 1] where X =

∑j
i=1 Xi has expectation E[X] = µ. For ε ∈ [0, 1], Pr[X ≤ (1 − ε) · µ] ≤

exp(−(1/2) · ε2µ).

In several places in our analysis, we tame correlated random variables by applying the
following stochastic dominance result, which generalizes the above concentration bound. It
says that if the probability that the i’th variable is 1 is at least p no matter how the first
i− 1 variables are realized, then we can assume that we have independent Bernoulli variables
with parameter p.

▶ Lemma 2. Let X1, . . . , Xj be j random variables (not necessarily independent), each of
which is distributed over {0, 1}. Suppose there is some p ∈ [0, 1] such that for all i ∈ [j] and
for all x1, x2, . . . , xi−1 ∈ {0, 1},

Pr [Xi = 1 | Xk = xk ∀1 ≤ k < i] ≥ p.

Then

Pr
[

j∑
i=1

Xi ≤ (1− ε)pj

]
≤ exp(−(1/2) · ε2pj)

DISC 2022

18:8 Smoothed Analysis of Information Spreading in Dynamic Networks

Proof. Consider the following process for sampling random variables X̂1, . . . , X̂j . For i = 1
to j, do the following. Let x1, . . . , xi−1 ∈ {0, 1} be the values of X̂1, . . . , X̂i−1 respectively,
and let q = Pr[Xi = 1 | Xk = xk ∀1 ≤ k < i]. Note that by the assumption of the lemma,
q ≥ p. Sample an independent Bernoulli random variable Yi which is 1 with probability p

and is 0 otherwise. If Yi = 1 then set X̂i = 1. If Yi = 0, then set X̂i = 1 with probability
(q − p)/(1− p) and otherwise set X̂i = 0.

It is easy to see that X̂1, . . . , X̂j and X1, . . . , Xj have identical joint distributions. More
formally, let xi ∈ {0, 1} for all i ∈ [j]. Then

Pr[X̂i = xi ∀i ∈ [j]] =
j∏

i=1
Pr[X̂i = xi | X̂k = xk ∀k < i]

=
j∏

i=1

{
p + (1− p) Pr[Xi=1|Xk=xk ∀1≤k<i]−p

1−p if xi = 1
(1− p) 1−Pr[Xi=1|Xk=xk ∀1≤k<i]

1−p if xi = 0

=
j∏

i=1
Pr[Xi = xi | Xk = xk ∀1 ≤ k < i]

= Pr[Xi = xi ∀i ∈ [j]]

By the definition of X̂i, we also have the property that Yi ≤ X̂i for all i. Hence Theorem 1
implies that

Pr
[

j∑
i=1

Xi ≤ (1− ε)pj

]
= Pr

[
j∑

i=1
X̂i ≤ (1− ε)pj

]
≤ Pr

[
j∑

i=1
Yi ≤ (1− ε)pj

]
≤ exp(−(1/2) · ε2pj)

as claimed. ◀

4 Random Broadcast Predecessor Paths

Several of the results that follow are built on a structure that we call predecessor paths, which
are defined with respect to both a given dynamic graph G and the collection of random bits
that determine the choices during a given execution of the random broadcast algorithm. We
define and analyze these structures in a general way here. We will later deploy these results
to prove specific bounds on random broadcast.

To formally define a predecessor path, we first introduce the notion of a bit assignment
B to be a function B : V × Z>0 → {0, 1}∗, where B(u, r) are the random bits node u uses
to make its choice of which token to broadcast in round r of running random broadcast.
Notice, the combination of a dynamic graph G and bit assignment B, does not by itself fully
specify an execution of random broadcast, as knowledge of the initial token assignment is
also required. This information, however, is sufficient for our formal definition.3

▶ Definition 3. Fix a dynamic graph G defined over node set V , token set T , target node u ∈ V ,
target token t ∈ T , round pair r,r′, with 1 ≤ r < r′, and bit assignment B. A predecessor path
Pu,t(r, r′) for these parameters is a node/round sequence (u1, r1), (u2, r2), . . . , (uh, rh), where
r ≤ r1 < r2 < . . . < rh ≤ r′, and ui ̸= uj for i, j ∈ [h], i ̸= j, that satisfies the following with
respect to the execution of random broadcast in G according to bit assignment B:

3 A brief aside is that although we call these objects paths, the definition actually captures a more general
in-tree structure in the time expansion graph.

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:9

1. For each i ∈ [h − 1]: if t ∈ Tui(ri), then ui will broadcast t in round r and it will be
received by at least one node uj, for j > i.

2. If t ∈ Tuh
(rh), then uh will broadcasts t during round rh and it will be received by node u.

A natural corollary of this definition is that if any node ui in a predecessor path Pu,t(r, r′)
learns t by ri, then u will learn t by r′.

Our goal is to describe and analyze a procedure for generating a predecessor path for
a given set of parameters. We will then analyze the expected length of the paths created.
Roughly speaking, when studying random broadcast, the longer a predecessor path the
better, as it gives more opportunities for a given token to arrive at a node that can then
send it on its way to the desired destination.

Preliminaries

As discussed, we will be analyzing the simple algorithm in which every node broadcasts a
token that it knows uniformly at random. To ease the analysis, though, we assume without
loss of generality that (1) the tokens are labelled from 1 to k and that nodes know k; and (2)
that a node randomly selects a token to send in a given round by randomly permuting the
values from 1 to k and then broadcasting the first token from this sequence that it possesses.
Note that this gives the exact same process as the randomized algorithm we care about,
which is why this is without loss of generality. It allows us, however, to fix the random
process for how a token is chosen even when the available set of tokens to send is unknown.

For a given node set V , token set T , bit assignment B, and round r ≥ 1, let the primary
token for u in r, indicated δu(r), be the first token id in u’s random permutation for this
round as determined by B. In the practical setting where u permutes all values from 1 to k̂,
then the primary token is the first value in this permutation that correspond to an actual
token in T . The important property of a primary token is if δu(r) = t, then we know that if
t ∈ Tu(r), node u will broadcast t in this round.

Given a dynamic graph G = G1, G2, . . ., a non-empty node subset S ⊂ V , and a round
r ≥ 1, we further define the predecessor cut c(S, r) to be the set of nodes in V \ S that
neighbor nodes in S in Gr. Notice, because each graph is connected and S is a proper subset
of V , these cut partitions are always non-empty.

Predecessor Path Construction

We now describe how to construct a predecessor path for a given set of parameters. This
construction process works backwards in time from the end of the desired interval to the
beginning. While we describe this process algorithmically, we emphasize that this algorithmic
construction is used only in the analysis of our algorithms.

In the following, we assume a fixed dynamic network G = G1, G2, . . ., defined over some
node set V of size at least 2, a token set T of size k ≥ 1, and a fixed bit assignment B for
the nodes in V to run random broadcast. We then parameterize the construction process
with a node u ∈ V , token t ∈ T , and round range 1 ≤ r < r′. It returns a predecessor path
Pu,t(r, r′) for these parameters.

We now analyze the paths constructed by this procedure, showing establishing the
relationship between interval length (r′ − r) and path length.

▶ Theorem 4. Fix a dynamic graph G defined over node set V of size n > 1, token set T

of size k ≥ 1, random bit assignment B for V , and error exponent integer x > 0. For every
u ∈ V , t ∈ T , and rounds r, r′ where r′ − r = z ≥ 8xk ln n:
1. The sequence Pu,t(r, r′) produced by Path-Construction is a predecessor path.
2. With probability at least 1− n−x: |Pu,t(r, r′)| > z

2k .

DISC 2022

18:10 Smoothed Analysis of Information Spreading in Dynamic Networks

Algorithm 1 Path-Construction(u, t, r, r′).

Pu,t(r, r′)← ϵ;
i← r′;
S ← {u};
while i > r do

Si−1 ← c(S, (i− 1));
S

(t)
i−1 ← {v | v ∈ Si−1 ∧ δv(i− 1) = t};

if |S(t)
i−1| > 0 then

fix any v in S
(t)
i−1;

S ← S ∪ {v};
append (v, i− 1) to the front of Pu,t(r, r′);

end
i← i− 1;

end
return Pu,t(r, r′)

Proof. Fix values for the parameters specified and constrained in the theorem statement.
Consider the sequence Pu,r(r, r′) produced by the Path-Construction algorithm for these
parameters. By the definition of this algorithm, Pu,t(r, r′) is a valid predecessor path. We
turn our attention to bounding its size.

At each iteration of the main loop in the procedure, if |S| < n, then Si−1 is non-empty,
as V \ S is non-empty and Gi−1 is connected. Fix some u ∈ Si−1. This node is included
into S

(t)
i−1 only if δv(i − 1) = t, which occurs with probability exactly 1/k. Therefore, the

probability that our path expands in this iteration in the case that |S| < n is at least 1/k (it
could be larger if there are multiple nodes in Si−1).

For each round i ∈ [r, r′] in the interval, let Xi be the random indicator variable that
evaluates to 1 if one of the following conditions holds: (1) |S| = n; or (2) |S| < n and Pu,t(r, r′)
grows during the iteration corresponding to round i. Let Y =

∑
i∈[r,r′] Xi. Clearly, Y is an

upper bound on the size of Pu,t(r, r′) returned by the path construction procedure. As we
argued that Pr(Xi = 1) ≥ 1/k for each i, we can apply Lemma 2 for these z random variables,
p = 1/k, and ε = 1/2, to derive Pr

[
Y ≤ (1/2) z

k

]
≤ exp

(
− z

8k

)
. Given our assumption that

z ≥ 8xk ln n, this error bound is upper bounded by exp(−x ln n) = n−x, as needed. ◀

5 Random Broadcast in Worst-Case Networks

We begin by showing that in the absence of any additional assumptions, random broadcast
matches the best known bound of O(nk) rounds for solving k-message broadcast. The
sections that follow will then improve on this baseline. The intuition for this result is
straightforward: if token t is not fully spread by round r there is at least one edge over which
it could spread with probability at least 1/k. A union bound and stochastic dominance
argument are deployed in the following proof to dispatch dependency and varying token set
size issues, respectively.

▶ Theorem 5. Fix a dynamic network G of size n. Fix a rumor set T of size k ≤ n. With
high probability: random broadcast solves k-message broadcast in O(nk) rounds in G.

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:11

Proof. Fix a token t and round r. If nt(r) < n then there is at least one edge in the network
crossing the cut between nodes that do and nodes that do not know t. Token t is selected for
broadcast across this edge with probability at least 1/k. Let Xr be the random variable that
evaluates to 1 under the following two conditions: (1) nt(r) = n; or (2) nt(r) < n and at
least one new node learns t.

Clearly, regardless of the execution, for every r, Pr(Xr = 1) ≥ 1/k. Let Y =
∑αnk

r=1 Xr,
for a constant α ≥ 1 that we will fix later. We can apply Lemma 2 for p = 1/k, j = αnk,
and ε = 1/2 to derive that Pr[Y ≤ (1/2) · (1/k) · (αnk)] ≤ exp (−(1/8) · αn).

Notice, due to the large size of the expectation, for α ≥ 8, this bound gives us a failure
probability exponentially small in n. Clearly then, there is a sufficiently large constant α

such that this failure probability is less than or equal n−2, allowing us to apply a union
bound over all k ≤ n tokens to establish that with high probability: every token spreads to
all nodes in αnk rounds. ◀

6 Random Broadcast in Smoothed Networks

We now consider the random broadcast algorithm when the initial token distributions and
network topologies are arbitrary. In this worst-case setting, as mentioned, the best known
k-message broadcast solutions require nk rounds, a bound which is known to be tight within
log-factors under certain adversary assumptions. In the previous section, we showed that
random broadcast matched this bound as well. The goal of this section is to analyze random
broadcast under smoothed analysis.

We show here that if we run the simple random broadcast algorithm on an ℓ-smoothed
dynamic network (with ℓ > 0) then with high probability it solves k-message broadcast after
only O

(
kn2/3 log1/3 n

ℓ1/3

)
rounds. Note that even in the case of little smoothing, e.g., ℓ = 1,

this bound represents nearly an n1/3-factor improvement to the round complexity captured
by the worst-case bound. To simplify comparison to existing k-message broadcast results,
as well as the offline result proved later in this paper, we also prove that for ℓ = 1, this
complexity is upper bounded by O(n + k3 log n).

Finally, we note that following the approach of [7], we study only integer ℓ values. As
recently demonstrated in [15], fractional smoothing parameters, 0 < ℓ < 1, can also be
studied to capture behavior in long-lived networks with slow changes. Our results naturally
extend to this case, though we omit this analysis for the sake of clarity.

6.1 Random Broadcast with ℓ-Smoothing
In this section, we look at the case where there are ℓ smoothed edges added per round. Even
when ℓ = 1, we get significant improvements, despite the fact that one edge only enables at
most one additional token be transferred per round; thus any non-trivial advantage conveyed
by smoothing does not come from directly increasing the capacity of the underlying network.
Our goal is to prove the following:

▶ Theorem 6. Fix any dynamic network G of size n. Fix any rumor set size k ≤ n. With
high probability, random broadcast solves k-message broadcast in O

(
kn2/3 log1/3 n

ℓ1/3

)
rounds in

G with ℓ-smoothing.

Our proof proceeds in phases. Note that the algorithm is the same throughout, but our
analysis focuses on different quality guarantees in each phase. For the lemmas that follow,
assume we have fixed a dynamic graph G, size n, and rumor set T of size k, as specified in
the theorem.

DISC 2022

18:12 Smoothed Analysis of Information Spreading in Dynamic Networks

6.1.1 Phase #1: Spread
The initial distribution of tokens is arbitrary, and tokens may be located at very few nodes
initially. The goal of this first phase is to argue that after enough time tokens are spread out
sufficiently across the network, specifically spreading to a δ fraction of nodes. The parameter
δ is a function of n and k that we shall set later to balance the length of all phases. We show
here that Θ(kδn) rounds suffice to spread all tokens to δn nodes. Notice that if δ = 1, this
follows from Theorem 5.

▶ Lemma 7. For any constant x ≥ 1 and fraction δ with (1/n) ln n ≤ δ ≤ 1, there exists a
constant c1 ≥ 1 such that with probability at least 1− n−x: for all t ∈ T , nt(R) ≥ δn, where
R = c1kδn is the duration of the phase.

Proof. Fix a given token t ∈ T and round r ≤ R. Let Xr be the indicator random variable
that evaluates to 1 under two conditions: (1) nt(r) ≥ δn (recall that nt(r) is the number of
nodes that know token t at the beginning of round r); or (2) a node learns t for the first time
during round r. If the first condition does not hold then not all nodes know t at round r,
and hence there is at least one edge connecting a node u that knows t to a node v that does
not because the network is assumed to be connected. By the definition of random broadcast,
u selects t to broadcast with probability 1/|Tu(r)| ≥ 1/k. It follows that regardless of the
execution through the first r − 1 rounds: Pr(Xr = 1) ≥ 1/k.

Let Y =
∑R

r=1 Xr. We can apply our stochastic dominance result (Lemma 2) to p = 1/k,
j = R, and ε = 1/2 to derive the following:

Pr[Y ≤ (1/2) · (1/k) ·R] ≤ exp
(
−(1/8) · R

k

)
= exp (−(1/8) · c1δn)

≤ exp (−(1/8) · c1 ln(n)) = n−c1/8.

It is not hard to see that as long as c1 ≥ 2, then Y ≥ (1/2) · (1/k) · R implies that
nt(R) ≥ δn. This is because otherwise, it must be the case that every Xr which is equal to 1
is because a new node learned token t at round r (not because nt(r) ≥ δn). But this implies
that nt(R) ≥ Y ≥ (c1/2)δn ≥ δn.

So if we set c1 = 8(x + 1), we get that the probability that nt(R) < δn is at most
n−(x+1). A union bound over all k ≤ n tokens provides that nt(R) ≥ δn for every t ∈ T with
probability at least 1− n−x, proving the lemma. ◀

6.1.2 Phase #2: Seed
Now that we have spread each token to Ω(δn) nodes, we next rely on the edges added by
smoothing to help sparsely seed these tokens to new random nodes in the network. In the
third and final phase we will show that this seeding is likely to have foiled the adversary’s
attempts to keep certain nodes isolated from certain tokens, and will have instead planted
seeds sufficiently close on a temporal path to arrive their destinations.

In more detail, our goal is to show that, for some parameter γ, any sufficiently large set
S of size at least ln n/γ will have at least one node in the set receive a given token with high
probability during the seed phase. This phase will last for Θ((γ/δ)kn) rounds following the
conclusion of the spread phase.

For example, consider δ = 1/k and γ = 1/k2. Then the length of both the spread phase
and the seed phase are Θ(n) rounds. During the seed phase with these parameters, each
node has probability of at least 1/k2 of receiving a specific token under consideration. Thus

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:13

any set of size k2 ln n will receive the token with high probability. Note that these are not
the best choices of δ and γ. (With these choices, the total number of rounds including the
sink phase is O(n + k3 log n) by Lemma 9.)

Our analysis of the seed phase focuses almost entirely on the smoothed edges added to
the network topology graph in each round.

▶ Lemma 8. Consider any constant x ≥ 1 and positive fractions δ and γ. Fix any token
t ∈ T , node set S ⊆ V with |S| ≥ (1/γ) ln n, and round r0 ≥ 1 such that nt(r0) ≥ δn. With
probability at least 1− n−x: |S ∩ {u | t ∈ Tu(r0 + 2xR)}| > 0, where R = (γ/δ)kn/ℓ > k ln n

and 2xR is the length of the phase.

Proof. By assumption there are at least δn nodes that know t by the start of this phase (round
r0). If any node in S already knows t at the beginning of this phase, then we are already done.
So moving forward, assume no node in S knows t at the start of this phase. Consider the set of
potential edges that are useful, denoted Euseful , that would connect a node from the initial set
that knows t to a node in S. It follows |Euseful | ≥ (δn)|S| ≥ (δn)(ln n/γ) = kn2 ln(n)/(Rℓ).
We now calculate, for a given round of phase 2, the probability that a smoothed edge selected
is from Euseful . To do so we leverage the specific definition of smoothing established in
Section 3 that treats this as a purely additive process: select a random edge from all possible
edges; if it is not already present in the graph, add it to the graph; otherwise leave the graph
the same. Therefore, this probability is:

|Euseful |(
n
2
) >

|Euseful |
n2 ≥ (k ln n)/(Rℓ).

As there are ℓ smoothed edges in a round, the probability that none of them are useful is
(1− k ln n/(Rℓ))ℓ ≤ e−k ln n/R ≤ 1− k ln n/(2R).

We call a round in phase 2 good if an edge from Euseful is selected and the endpoint that
knows t selects t to broadcast. Because this latter selection event happens with probability
at least 1/k, we can lower bound the probability of a round being good as pgood ≥ ln n/(2R).
If a round is not good we call it bad. Assume phase 2 runs for 2xR rounds for constant x > 0.
Then the probability that every round is bad is bounded by:

(1− pgood)2xR ≤
(

1− ln n

2R

)2xR

< exp(−x ln n) = n−x,

as required by the lemma statement. ◀

6.1.3 Phase #3: Sink
In the second phase, we leveraged smoothed edges to sparsely seed each token throughout
the network in a manner that is independent of the adversary’s construction of the dynamic
graph. In this final phase, we deploy our predecessor path constructions to show it is likely
for each token t and destination node u, that t arrived at an appropriate location in both
time and topology to subsequently make its way to u like a flow heading toward a sink (hence
the phase name). In particular, we simply need the final phase to be long enough to achieve
a predecessor path of size Ω(ln n/γ). Putting this piece together with the previous phases
allows us to prove the following lemma, which almost immediately implies Theorem 6.

▶ Lemma 9. Fix any dynamic network G of size n. Let δ and γ be any values satisfying
(1/n) ln n ≤ δ ≤ 1 and 0 < γ ≤ 1. Then with high probability, random broadcast completes k

message broadcast with ℓ-smoothing in O(kδn + (γ/δ)kn/ℓ + k ln n/γ) rounds.

DISC 2022

18:14 Smoothed Analysis of Information Spreading in Dynamic Networks

Proof. Our analysis below makes use of a constant x ≥ 1 that we will fix later. Lemma 7
tells us that there exists a constant c1 ≥ 1, such that with probability least 1− n−x, for each
token t ∈ T , at least δn nodes know t by round c1kδn, for some integer c1 > 0. Let us call
this the spread condition.

Before we apply the seed phase to each token, we need to identify the sets we are
attempting to seed. So we look ahead to the sink phase. Let rS indicate the first round of
the sink phase, which we will calculate later based on the duration of the other two phases.
We run this phase for z = ⌈8xk ln n/γ⌉ rounds. That is, it runs between rounds r = rS and
r′ = rS + z. Theorem 4 tells us that with probability at least 1− n−x: for every node u ∈ V

and token t ∈ T , the resulting predecessor path Pu,t(r, r′) is of size greater than z
2k > ln n/γ.

This allows to apply our seed phase (Lemma 8) analysis to each such predecessor path.
This tells us that so long as the spread condition holds, for each such S = Pu,t(r, r′), the
probability that some node in S receives t during the seed phase is at least 1− n−x. The
duration of the seed phase is 2x(γ/δ)kn/ℓ rounds.

Finally, we note that by the definition of a predecessor path, if a node in Pu,t(r, r′)
receives a token t by round rS , then u receives t by round at most rS + z. We are left to pull
together the pieces. To do so, we note that success in solving k-message broadcast by the
end of the sink phase requires the following events to occur:
1. The spread condition holds. Call this Espread.
2. For every u ∈ V and t ∈ T , the predecessor path Pu,t(r, r′) is sufficient long. Call this

Epred(u, t).
3. For each destination node u ∈ V and token t ∈ T , at least one node in Pu,t(r, r′) receives

t during the seed phase. Call this Eseed(u, t).

By our above analysis the probability Espread fails is at most n−x, and the probability
Epred(u, t) fails for any u and t, as also upper bounded by n−x. For Eseed(u, t), the probability
of failure for each specific pair u and t, conditioned on Espread and Epred(u, t), is upper
bounded by n−x. Therefore, by a union bound, the probability that Eseed fails for any such
pair is less than n−(x+2). A final union bound then provides that probability any of these
events fail is less than n−x + n−x + n−(x+2) < 1/n for a sufficiently large constant x.

Plugging this constant value of x into our above round complexity bounds, and we get that
random broadcast succeeds with high probability in c1δkn + 2x(γ/δ)kn/ℓ + ⌈8xk ln n/γ⌉ =
O(δkn + (γ/δ)kn/ℓ + k ln n/γ) total rounds, as claimed in the theorem. ◀

Proof (of Theorem 6). Choose δ = (log n/(nℓ))1/3 and γ = (ℓ1/3)(log n/n)2/3. It follows
that γ/δ = (ℓ2/3)(log n/n)1/3. Then by Lemma 9 we get that broadcast completes in at most

O((log n/(nℓ))1/3kn + (log n/n)1/3kn/ℓ1/3 + k log n(n/ log n)2/3/ℓ1/3)

= O((kn2/3 log1/3 n)/ℓ1/3)

rounds, as claimed. ◀

6.2 1-Smoothing
The following result for 1-smoothing is a simple corollary, which allows us to more easily
compare to existing results.

▶ Corollary 10. Fix any dynamic network G of size n. Fix any rumor set size k ≤ n. With
high probability, random broadcast solves k-message broadcast in O

(
n + k3 log n

)
rounds in

G with 1-smoothing.

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:15

Proof. Theorem 6 implies that random broadcast takes at most O(kn2/3 log1/3 n) rounds.
It is easy to see that kn2/3 log1/3 n is at most n + k3 log n for all values of k. Alternatively,
we can set δ = 1/k and γ = 1/k2, and apply Lemma 9 with ℓ = 1. ◀

6.3 Lower Bound for Random Broadcast in Smoothed Networks
In this section we prove the following theorem.

▶ Theorem 11. For all n, k, ℓ ≥ 1, there are dynamic networks on n nodes and a starting
token distribution of k tokens such that random broadcast with ℓ-smoothing has expected
completion time of at least Ω̃

(
min

(
kn2/3

(ℓ(k+ℓ))1/3 , kn
k+ℓ

))
.

In most “reasonable” regimes (k and ℓ not overwhelmingly large) the minimum in the
above lower bound will be achieved by kn2/3

(ℓ(k+ℓ))1/3 . Note that this almost matches the upper
bound of Theorem 6: it is off by just a (k + ℓ)1/3 factor. In addition, we also note that
when ℓ is large the upper bound cannot be tight, while our lower bound can be. To see
this, consider the case where ℓ = n and k = o(n). For these parameters, essentially every
node is the endpoint of an edge added by smoothing in every round, and for each token the
probability of broadcasting it is at least 1/k, and hence for every token the number of nodes
who know it will double in at most O(k) rounds. Thus random broadcast will complete
after only O(k log n) rounds. For this case, where ℓ = n and k = o(n), our lower bound
from Theorem 11 correctly reduces to Ω̃(k), while the upper bound from Theorem 6 remains
at Õ(kn1/3). This hints that the modest gap between our upper and lower bounds might
ultimately be resolved to be closer to the latter result.

6.3.1 Proof of Theorem 11
Our lower bound instance will be the dynamic star. The vertices are v0, . . . , vn−1, and at
time i ∈ {1, 2, . . . , n} the graph will be a star with vi at the center. Initially node v0 knows
all of the tokens, while nodes v1, . . . , vn−1 knows all of the tokens except for token 1. So
random broadcast is complete once all nodes know token 1. Note that this graph is not
defined for more than n rounds, but the lower bound that we are trying to prove is at most
n due to the second term in the min, so we will not need to consider rounds past n.

Let t = min
(

kn2/3

(ℓ(k+ℓ))1/3 , kn
k+ℓ

)
/(2000 log n) (we have not optimized the constant or log

factors). We will argue that with constant probability, random broadcast has not completed
by time t.

Let A = {vi : 1 ≤ i ≤ t}. For vi ∈ A, we say that vi is a good node if, conditioned on vi

knowing token 1 in round i, vi will broadcast token 1 in round i (the round where vi is the
center). Let B denote the set of good nodes. Let Ci denote the set of nodes who know token 1
at the beginning of round i. Without smoothing we would have that Ci ⊆ {v0, v1, . . . , vi−1},
but with smoothing this is not necessarily true. We begin by analyzing Ci under a condition
on the good nodes.

▶ Lemma 12. Suppose that for every i ≤ t, either vi is not a good node or vi does not know
token 1 at the beginning of round i. Then |Ci| ≤ 100i

(
k+ℓ

k

)
log n for all i ≤ t with high

probability.

Proof. By assumption, for all i ≤ t the center node of the star does not broadcast token
1. Hence in round i, the nodes who learn token 1 consist of at most the center node and
some other nodes who learn token 1 via smoothed edges. Even if all of the ℓ smoothed edges

DISC 2022

18:16 Smoothed Analysis of Information Spreading in Dynamic Networks

had an endpoint in Ci, the expected number of them who transmit token 1 is at most ℓ/k.
Hence a Chernoff bound implies that |Ci| ≤ |Ci−1|+ 100 log n ·

(
1 + ℓ

k

)
with high probability.

This high probability allows us to do a union bound over the first t rounds, implying that
|Ci| ≤ 100i

(
k+ℓ

k

)
log n with high probability. ◀

We say that round i has productive smoothing if some node in B learns token 1 via
an edge added by smoothing. It is easy to see that if after t rounds there has not been
any round with productive smoothing, then the assumption in Lemma 12 holds, and hence
|Ci| ≤ 100i

(
k+ℓ

k

)
log n for all i ≤ t with high probability. Since t < nk

100(k+ℓ) log n this means
that not all nodes know token 1 at time t, and so random broadcast has not finished. So we
just need to argue that with constant probability, there have been no rounds with productive
smoothing before round t.

To see this, first note that by the definition of random broadcast, each node in A is
good independently with probability 1/k. Hence the expected number of good nodes is
|A|/k = t/k. A standard Chernoff bound then implies that |B| ≤ (10t/k) log n with high
probability, so from now on we will condition on this being true.

In order for round i to have productive smoothing, at least one of the ℓ edges added by
smoothing must have one endpoint in Ci, one endpoint in B, and the endpoint in Ci must
choose to broadcast token 1. The probability of this for a single random edge is |Ci|

n ·
|B|
n ·

1
k ,

and hence a union bound over all ℓ random edges added in rounded i implies that the
probability of productive smoothing in round i is at most

|Ci|
n
· |B|

n
· ℓ

k
≤ |Ct|

n
· 10t log n

kn
· ℓ

k
= |Ct| ·

10tℓ log n

(kn)2 .

If there has been no productive smoothing before round i, then Lemma 12 implies that
with high probability |Ci| ≤ 100i

(
k+ℓ

k

)
log n. This is high enough probability for us to take

a union bound and still have a high probability bound, so we will assume that if there has
been no productive smoothing before round i then |Ci| ≤ 100i

(
k+ℓ

k

)
log n.

Let Xi be an indicator random variable for the event that round i has productive
smoothing. Then

Pr[∃i ∈ [t] : Xi = 1] ≤
t∑

i=1
Pr

Xi = 1 |
i−1∑
j=1

Xj = 0

≤

t∑
i=1

(
100t

(
k + ℓ

k

)
log n

) (
10tℓ log n

(kn)2

)
= 1000t3ℓ (k + ℓ) log2 n

k3n2

Since t ≤ kn2/3

(2000ℓ(k+ℓ) log2 n)1/3 then this probability is at most 1/2, which (as discussed) implies
Theorem 11.

References
1 John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards robust and

efficient computation in dynamic peer-to-peer networks. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, 2012.

2 Chen Avin, Michal Koucký, and Zvi Lotker. How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In Proceedings of the International Colloquium
on Automata, Languages and Programming, 2008.

3 Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham. Distributed mst:
a smoothed analysis. In Proceedings of the 21st International Conference on Distributed
Computing and Networking, pages 1–10, 2020.

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:17

4 Andrea Clementi, Riccardo Silvestri, and Luca Trevisan. Information spreading in dynamic
graphs. In Proceedings of the ACM Symposium on Principles of Distributed Computing, 2012.

5 Oksana Denysyuk and Luís Rodrigues. Random walks on evolving graphs with recurring
topologies. In Proceedings of the International Symposium on Distributed Computing, 2014.

6 Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Smoothed analysis of
information spreading in dynamic networks, 2022. doi:10.48550/ARXIV.2208.05998.

7 Michael Dinitz, Jeremy T Fineman, Seth Gilbert, and Calvin Newport. Smoothed analysis of
dynamic networks. Distributed Computing, 31(4):273–287, 2018.

8 Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele
Viola. On the complexity of information spreading in dynamic networks. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 717–736. SIAM,
2013.

9 Mohsen Ghaffari, Nancy Lynch, and Calvin Newport. The cost of radio network broadcast for
different models of unreliable links. In Proceedings of the ACM Symposium on Principles of
Distributed Computing, 2013.

10 Bernhard Haeupler and David Karger. Faster information dissemination in dynamic networks
via network coding. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, 2011.

11 F. Kuhn and R. Oshman. Dynamic networks: models and algorithms. ACM SIGACT News,
42(1):82–96, 2011.

12 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
513–522, 2010.

13 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the ACM Symposium on Theory of Computing, 2010.

14 Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus in dynamic networks.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, 2011.

15 Uri Meir, Ami Paz, and Gregory Schwartzman. Models of smoothing in dynamic networks. In
Proceedings of the 34th International Symposium on Distributed Computing,, pages 36:1–36:16,
2020. doi:10.4230/LIPIcs.DISC.2020.36.

16 Anisur Rahaman Molla and Disha Shur. Smoothed analysis of leader election in distributed
networks. In International Symposium on Stabilizing, Safety, and Security of Distributed
Systems, pages 183–198. Springer, 2020.

17 Calvin Newport. Lower bounds for structuring unreliable radio networks. In Proceedings of
the International Symposium on Distributed Computing, 2014.

18 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

19 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Commun. ACM, 52(10):76–84, 2009.

A Random Broadcast in Smoothed Static Networks

As previously argued, a minimum amount of smoothing (i.e., ℓ = 1) improves the performance
of random broadcast in dynamic networks from O(kn) to Õ(kn2/3). To better understand
how smoothing supports information spreading, a natural follow-up question is to investigate
its impact on random broadcast in static networks. If smoothed analysis provides the same
bounds for both the dynamic and static settings, this would imply that smoothing essentially
bypasses the difficulties induced by changing graph edges. Here we show this is not the case.
In more detail, we prove that in static networks, 1-smoothing improves the complexity of
random broadcast down to Θ̃(k

√
n) rounds, beating what we can guarantee in the dynamic

DISC 2022

https://doi.org/10.48550/ARXIV.2208.05998
https://doi.org/10.4230/LIPIcs.DISC.2020.36

18:18 Smoothed Analysis of Information Spreading in Dynamic Networks

setting. This establishes a gap between static and dynamic networks with respect to random
broadcast, confirming the intuition that network dynamism introduces unique difficulties for
information dissemination that smoothing alone cannot fully overcome.

Due to space constraints, we only prove an upper bound of Õ(k
√

n). The matching lower
bound, as well as missing proofs, can be found in the full version [6].

Critical to our analysis is the following graph decomposition result:

▶ Lemma 13. Fix a connected static graph G = (V, E) of size n. There exists a partition of
V into components C1, C2, . . . , Cx, such that for each i, 1 ≤ i ≤ x: (1) |Ci| ≥

√
n; (2) the

subgraph of G induced by Ci is connected and has a diameter at most 6
√

n.

We are now ready to prove our upper bound. The key intuition in the following argument
is that we can we analyze the spread of a given target token within the context of the
components provided by Lemma 13. We will show, roughly speaking, that when the target
token is first spreading, if A is the set of components that known the target, it is likely
that within Õ(k

√
n) rounds, each component in A will succeed in seeding the target over a

smoothed edge to a unique component not in A, effectively doubling the number of components
that have learned the token. A logarithmic number of such doublings are sufficient to spread
the target to at least half the network, at which point the analysis shifts to the perspective
of the remaining components, and argues that within an additional Õ(k

√
n) rounds, each

is likely to connect to an already informed component by a smoothed edge and receive the
token. Care is needed in the formal argument to deal with both uneven-sized components
and dependencies between the smoothed edge behavior in different components during the
same spreading interval.

▶ Theorem 14. Fix some connected static graph G of size n. Fix any rumor set size k ≥ 1.
With high probability, random broadcast solves k-message broadcast in O(k

√
n log2 n) rounds

in G with 1-smoothing.

Proof. Fix a graph G = (V, E) of size n, and a rumor set of size k, as specified by the
theorem statement. Fix an arbitrary target token from the rumor set. We argue that this
target token will spread to full network with the stated complexity.

To do so, we first apply Lemma 13 to partition G into components C1, C2, . . . , Cx with
the specified properties. Moving forward, in a given round, we call a component seeded if at
least one node in the component knows the target token, and call it completed if every node
knows the target. It is straightforward to establish that once a component is seeded, it will
be completed, with high probability, in an additional O(k

√
n log n) rounds. One approach

to making this argument is to fix a breadth-first search tree in the component rooted at a
node that knows the target token. This root will broadcast the target in each round with
probability at least 1/k. Because each broadcast decision is independent, we can apply a
Chernoff bound to establish that in O(k log n) rounds, the root will broadcast the target at
least once, with high probability.

We can then repeat this analysis to show that within an additional O(k log n) rounds,
every node at level 1 in the tree will have sent the target token, informing every node at
level 2, applying union bounds to ensure that every node at level 1 succeeds with sufficient
probability. An additional O(k log n) rounds moves the token to level 3, and so on. By the
guarantees of Lemma 13, the tree has O(

√
n) levels, meaning that O(k

√
n log n) rounds is

sufficient to spread a target token through the whole component with high probability.
Returning to our main argument, fix a round r. Let Ar be the subset of components that

are seeded at the beginning of round r. Let nr be the number of nodes in components in Ar.
We first consider the case where nr < n/2. To do so, let Br be all the components not in

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:19

Ar. Our goal is to show that in an additional O(k
√

n log n) rounds, the target token will
be delivered over smoothed edges to a collection of components in Br, where they will then
spread to a total number of new nodes that is at least a constant fraction of nr – increasing
the number of nodes that know the target token by a constant factor.

To make this argument, we divide this period of O(k
√

n log n) rounds starting at round r

into three parts. During the first part, we wait for the target token to spread sufficiently
to complete every component in Ar. As argued above, with high probability, this takes
O(k
√

n log n) rounds.
Next we consider a stretch of an additional O(k

√
n log n) rounds that we call the seeding

interval. We will show that during this interval, smoothed edges between components in Ar

and Br, will seed the target token into a collection of Br components whose collective size
is a constant fraction of nr. The final O(k

√
n log n) rounds will be dedicated to allowing

these seeded Br components to complete. (Of course, it is possible that in the time we
spent completing components in Ar, the target token might have already made its way to
components in Br and started spreading, but this only speeds up our efforts.)

We are left then to study closely the behavior of the smoothed edges during the smoothing
interval of this period. Though Lemma 13 guarantees that each contains at least

√
n nodes,

it is possible that some might be much larger than this lower limit. It is useful for our
purposes to temporarily reorganize these already informed nodes into more uniform-sized
groups. With this in mind, let A′

r be a partition of the nodes in components in Ar into
groups that are all of size Θ(

√
n). For our purposes, it does not matter how this partition is

defined. The nodes in each S ∈ A′
r, for example, do not need to be connected. In the next

step of our analysis, we will only concern ourselves with the probability that a node in a
given group is selected as an endpoint of a smoothed edge.

Next, fix some arbitrary group S1 ∈ A′
r to consider first. Let n̂r be the number of nodes

in Br. Because we are still considering the high-level case where nr < n/2, we know n̂r ≥ n/2.
We now analyze the rounds of the seeding interval in order, stopping at the first round in
which: (1) a smoothed edge connects a node u ∈ S1 to a node in a component in Br; and
(2) u broadcasts the target token. It is straightforward to see that in any given round, a
productive connection of this type occurs with probability at least |S1|

n ·
n̂r

n ·
1
k ≥

1
2k

√
n

.
With high probability, therefore, we will find such a productive connection in a seeding

interval of length O(k
√

n log n). We now want to consider the other groups in A′
r, and

argue that they too will succeed in forming a productive connection during this same seeding
interval. This will require care to deal properly with dependencies.

The first thing we do is take the component in Br at the other end of the productive
connection from S1, and add it to a set C of successfully seeded components. Before proceeding
in our analysis of this seeding interval, we make two checks to see if we are already done.
Let n′ be the number of nodes in components in C at this point. If nr + n′ ≥ n/2, then we
can simply wait an additional O(k

√
n log n) rounds to complete the component in C, and be

done with the high-level case we are considering in which less than half of the nodes know
the target token. Similarly, if n′ ≥ nr/2, then we can finish our analysis of this particular
seeding interval as we have accomplished our proximate goal of increasing the number of
nodes that know the target token by a constant factor.

If we fail both checks, we must then continue with analyzing our same seeding interval
in the hopes of seeding more tokens into Br \ C. Fix a new group S2 ∈ A′

r \ S1. As before,
consider rounds in the seeding interval one by one, starting from the first round of the interval,
until we arrive at a with a productive connection from S2 to a not yet seeded component in
Br \ C. In each such round, we argue that the probability of a productive connection is still

DISC 2022

18:20 Smoothed Analysis of Information Spreading in Dynamic Networks

in Ω(1
k

√
n

). The main difference as compared to prior groups considered is that the number
of nodes that can receive a productive smooth edge decreases as we add more components
to C. By our above check, however, we know that the number of nodes in C is less than
nr/2 < n/4. Because we similarly assume that Br has at least n/2 nodes, then Br \ C must
still have at least n/4 total nodes. The probability of selecting an endpoint in Br \ C will
therefore always be at least 1/4, reducing the original productive connection probability
calculated for S1 by only a constant factor for later groups.

As previewed, however, we must also consider dependencies. When considering a given
round r′ in the seeding interval when considering group S2, there are two relevant possibilities:
(1) r′ was the productive connection from our analysis of S1; (2) r′ was not the productive
connection for S1. The first case introduces a problematic dependency, as being productive
for one group prevents you from being productive for another. To deal with this dependency
we simply ignore in our analysis any round that was part of a productive connection for a
previously studied group. The second case, by contrast, introduces a useful dependency:
knowing that r′ was not productive for S1 only increases the probability that it is productive
for S2. A standard negative correlation argument tells us that when lower bounding the
probability of a productive connection with respect to S2, it is fine to treat each round in
the second case as succeeding with an independent probability in Ω(1

k
√

n
).

It follows that with high probability, S2 will also have a productive connection in our
seeding interval. At this point, we can repeat the above analysis. Add the newly seeded
component to C. Check if we are done. If not, select a new set S3 ∈ A′

r \ {S1, S2} and study
the same interval again, round by round, ignoring now only the two rounds in which S1 and
S2 succeeded in forming productive connections, and so on, until we finally match the criteria
for stopping our analysis. (Notice that removing productive rounds from consideration in
the seeding interval is not a problem as there are at most O(

√
n) such productive rounds

possible given that |A′
r| = O(

√
n), and our interval length can be made sufficiently long to

still provide us the needed high probability of success even with up to O(
√

n) rounds omitted
from consideration.)

Moving on with our argument, recall that for our fixed round r, there are two different
criteria that might terminate the above seeding analysis. The first is that at least half the
nodes in the network learn the target token, at which point we are ready to move on to the
second half of our overall analysis, which we will discuss shortly. The second termination
criteria is that the number of nodes in components in Br that learn the target token is at
least a constant factor of nr. In this case, we fix a new round r′ after the seeding interval
in question is done, and after all components in C complete. We then reapply our above
analysis starting from r′, increasing the number of nodes that know the target node by
another constant factor. We can repeat this at most O(log n) times before at least half the
nodes know the target token.

We now consider what happens once we succeed in spreading the target token to at least
half the nodes in the network. We can now redeploy pieces of our above spreading argument
to show that target token will make it to all remaining nodes in just one more additional
spreading interval of length O(k

√
n log n) rounds.

We first dispense with the sub-case in which less than
√

n nodes do not the token; i.e.,
we are almost done. If this is true, each uninformed node u is within

√
n of at least one

informed node, meaning a straightforward spreading analysis will deliver the token to each
such u with high probability within O(k

√
n log n) rounds – completing the rumor spreading.

We are left with the sub-case in which somewhere between
√

n and n/2 nodes remain
that do not have the target token. Let A be the set of components that contain at least one
node that from this set of nodes that do not know the target. Some of these components are

M. Dinitz, J. Fineman, S. Gilbert, and C. Newport 18:21

seeded (i.e., at least one node in them knows the target) and some are not (i.e., no node
knows the token). Let A′ be the subset of A that contains only the non-seeded components.
Spend O(k

√
n log n) to complete the seeded components from A. We now turn our attention

exclusively to the components from A′, as these are the only components at this point which
can possibly contain any nodes that do not know the target token. We know each such
component is of size at least

√
n, and that at least half the total nodes in the network are not

in these components. We can therefore apply our above spreading analysis to the components
in A′, which establishes that in a single additional spreading interval, every component in
A′ will have a productive connection with a completed component, thus seeding it with the
target token. We can then complete these components, and therefore complete k-message
broadcast, in an additional O(k

√
n log n) rounds.

To conclude the proof, we note that all relevant growth and spreading arguments hold
with high probability, and that there are at most poly(n) such events that must succeed.
This allows us to deploy union bounds to prove that the entire problem is successful, with
high probability, after O(log n) intervals of length O(k

√
n log n), yielding the claimed overall

time complexity of O(k
√

n log2 n) rounds. ◀

B Random Broadcast in Well-Mixed Networks

Dutta et al. [8] introduced the notion a well-mixed network in the context of the k-message
broadcast problem. A network satisfies this property if for each token t and node u, with some
independent constant probability, u starts with t. The main Ω̃(nk) lower bound from [8]
also holds for well-mixed networks. To circumvent this bound, they assume a stronger
communication model that allows interactive communication on each edge, and provide a
randomized algorithm in this setting that solves k-message broadcast in Õ(n + k) rounds.

Here we deploy our predecessor path constructions, originally designed to support our
smoothed analysis, to now explore an alternative non-smoothing method to circumvent the
Ω̃(nk) lower bound: weakening the adversary. The lower bound in [8] assumes a strongly
adaptive adversary that knows all the nodes’ random bits, allowing it to generate a network
graph in each round based on the specific tokens nodes will broadcast during that round.
Another natural option is the oblivious adversary, in which the adversary generates the graph
without advance knowledge of the nodes’ random bits. Indeed, the question of whether an
oblivious adversary enabled better bounds was identified as important future work in [8].

Using predecessor paths, we prove that with an oblivious adversary, our simple random
broadcast strategy solves k-message broadcast in well-mixed networks in Õ(k) rounds. This
improves on the Ω̃(n + k) bound from [8], as it eliminates the n dependence. It also matches
the trivial Ω(k) lower bound that holds for all k-message broadcast algorithms in a well-mixed
network.4 Indeed, our result is actually more general, showing Õ(k/p) rounds are needed,
when p is the token probability; i.e., the definition of well-mixed in [8] assumes p = Θ(1).

This result opens a clear separation between strongly adaptive and oblivious adversaries
in the context of well-mixed networks, and hints such a separation might exist for arbitrary
token distributions as well. It also provide further evidence that the simple random broadcast
strategy is a highly effective strategy for information dissemination in these settings.

4 Fix a static line. Let u be one of the endpoints. With constant probability u is missing Ω(k) tokens in
its initial set. Because u can receive at most one token per round in a line topology, it requires at least
Ω(k) rounds for it to learn these missing tokens one by one.

DISC 2022

18:22 Smoothed Analysis of Information Spreading in Dynamic Networks

Formally, we consider the following generalized version of the property concerning initial
token distributions introduced in [8]:

▶ Definition 15. Fix a probability p > 0. We say an initial token distribution is p-mixed
if for each node u ∈ V and token t ∈ T : u’s initial token set includes t with independent
probability p.5

Given this definition, we prove our main upper bound result:

▶ Theorem 16. Fix a probability p > 0. Random broadcast solves k-message broadcast in
O((k/p) log n) rounds, with high probability, when run in a network with a p-mixed token
distribution.

Proof. Fix any u and t. Our first step is to choose a large enough r such that |Pu,t(1, r′)| ≥
α(1/p) ln n, for a constant α ≥ 1 we will fix later. We want this to hold with probability at least
1− n−4. To do so, we can apply Theorem 4 with x = 4, r = 1, r′ = 32kα(1/p) ln n. (Notice,
for our parameters, the corresponding z = r′−r value is lower bounded by 8xk ln n = 32k ln n,
as required by the theorem statement.) This tells us that with probability at least 1− n−4,
|Pu,t(1, r′)| > 32kα(1/p) ln n

2k ≥ α(1/p) ln n, as needed. A union bound over the nk ≤ n2 possible
combinations of processes and tokens, tells us that the probability that any predecessor path
is less than this length is less than n−2.

Fix some such path Pu,t(1, r′) that is sufficiently long; i.e., q = |Pu,t(1, r′)| ≥ α(1/p) ln n.
We apply the definition of p-mixed to argue that it is likely that at least one node in this
path starts the execution with token t. By definition, of a predecessor path, each node in
Pu,t(1, r′) is unique. By the definition of p-mixed, each ui starts the execution with token t

with independent probability p. Given this independence, we can use the indicator random
variable Xi to describe whether or not ui starts with token t, and then apply our Chernoff
Bound form from Theorem 1 to X =

∑r′

i=1 Xi, to bound the probability that X is far
from its expectation µ = pq. Formally, we get that Pr[Y ≤ µ/2] ≤ exp(−µ/8). Given that
µ = pq ≥ α ln n, then for α ≥ 32, it follows that Pr[Y = 0] < n−4.

A union bound over the nk < n2 node and token pairs tells us that if at all predecessor
paths are of length at least q, the the probability any path does not contain at least one
node starting with the path’s target token is less than n−2. A union bound over the failure
probabilities for these two events gives us the final result that with high probability, for every
u ∈ V and t ∈ T , at least one node in Pu,t(1, r′) starts with t. As argued in our previous
discussion of predecessor paths, if any node on Pu,t(1, r′) starts with t then u receives t by
round r′. Therefore, with high probability, random broadcast solves k-message broadcast in
a p-mixed network in r′ = O((k/p) log(n)) rounds, as claimed. ◀

5 A slight technicality of this definition is that as stated it allows for certain tokens to not show up at all,
making termination impossible. A simple fix is to assume that all k tokens are distributed arbitrarily to
at least one node, then the random process is deployed to further introduce more tokens into the system.

An Almost Singularly Optimal Asynchronous
Distributed MST Algorithm
Fabien Dufoulon #

Department of Computer Science, University of Houston, Houston, TX, USA

Shay Kutten #

Faculty of Industrial Engineering and Management,
Technion – Israel Institute of Technology, Haifa, Israel

William K. Moses Jr. #

Department of Computer Science, University of Houston, Houston, TX, USA

Gopal Pandurangan #

Department of Computer Science, University of Houston, Houston, TX, USA

David Peleg #

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Abstract
A singularly (near) optimal distributed algorithm is one that is (near) optimal in two criteria, namely,
its time and message complexities. For synchronous CON GEST networks, such algorithms are
known for fundamental distributed computing problems such as leader election [Kutten et al., JACM
2015] and Minimum Spanning Tree (MST) construction [Pandurangan et al., STOC 2017, Elkin,
PODC 2017]. However, it is open whether a singularly (near) optimal bound can be obtained for
the MST construction problem in general asynchronous CON GEST networks.

In this paper, we present a randomized distributed MST algorithm that, with high probability,
computes an MST in asynchronous CON GEST networks and takes Õ(D1+ε +

√
n) time and Õ(m)

messages1, where n is the number of nodes, m the number of edges, D is the diameter of the network,
and ε > 0 is an arbitrarily small constant (both time and message bounds hold with high probability).
Since Ω̃(D +

√
n) and Ω(m) are respective time and message lower bounds for distributed MST

construction in the standard KT0 model, our algorithm is message optimal (up to a polylog(n)
factor) and almost time optimal (except for a Dε factor). Our result answers an open question
raised in Mashregi and King [DISC 2019] by giving the first known asynchronous MST algorithm
that has sublinear time (for all D = O(n1−ε)) and uses Õ(m) messages. Using a result of Mashregi
and King [DISC 2019], this also yields the first asynchronous MST algorithm that is sublinear in
both time and messages in the KT1 CON GEST model.

A key tool in our algorithm is the construction of a low diameter rooted spanning tree in
asynchronous CON GEST that has depth Õ(D1+ε) (for an arbitrarily small constant ε > 0) in
Õ(D1+ε) time and Õ(m) messages. To the best of our knowledge, this is the first such construction
that is almost singularly optimal in the asynchronous setting. This tree construction may be of
independent interest as it can also be used for efficiently performing basic tasks such as verified
broadcast and convergecast in asynchronous networks.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Probabilistic algorithms; Mathematics of computing → Discrete mathematics

Keywords and phrases Asynchronous networks, Minimum Spanning Tree, Distributed Algorithm,
Singularly Optimal

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.19

Related Version Full Version: https://arxiv.org/abs/2210.01173

1 The Õ notation hides a polylog(n) factor and the Ω̃ notation hides a 1/ polylog(n) factor.

© Fabien Dufoulon, Shay Kutten, William K. Moses Jr., Gopal Pandurangan, and David Peleg;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 19; pp. 19:1–19:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabien.dufoulon.cs@gmail.com
https://orcid.org/0000-0003-2977-4109
mailto:kutten@technion.ac.il
https://orcid.org/0000-0003-2062-6855
mailto:wkmjr3@gmail.com
https://orcid.org/0000-0002-4533-7593
mailto:gopal@cs.uh.edu
https://orcid.org/0000-0001-5833-6592
mailto:david.peleg@weizmann.ac.il
https://orcid.org/0000-0003-1590-0506
https://doi.org/10.4230/LIPIcs.DISC.2022.19
https://arxiv.org/abs/2210.01173
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Funding Fabien Dufoulon: This work was supported in part by NSF grants CCF-1717075, CCF-
1540512, IIS-1633720, and BSF grant 2016419.
Shay Kutten: This work was supported in part by the Bi-national Science Foundation (BSF) grant
2016419 and supported in part by ISF grant 1346/22.
William K. Moses Jr.: This work was supported in part by NSF grants CCF1540512, IIS-1633720,
CCF-1717075, and BSF grant 2016419.
Gopal Pandurangan: This work was supported in part by NSF grants CCF-1717075, CCF-1540512,
IIS-1633720, and BSF grant 2016419.
David Peleg: This work was supported in part by the US-Israel Binational Science Foundation grant
2018043.

1 Introduction

1.1 Background and Motivation
Singularly (near) optimal distributed algorithms are those that are (near) optimal both in
their message complexity and in their time complexity.2 The current paper is intended as a
step in expanding the study of “which problems admit singularly optimal algorithms” from
the realm of synchronous CON GEST networks to that of asynchronous ones.

An important example of a problem that has been studied in the context of singularly
(near) optimal algorithms is minimum-weight spanning tree (MST) construction. This has
become a rather canonical problem in the sub area of distributed graph algorithms and was
used to demonstrate and study various concepts such as the congested clique model (Lotker
et al. [40]), proof labeling schemes (Korman et al. [36]), networks with latency and capacity
(Augustine et al. [3]), cognitive radio networks (Rohilla et al. [52]), distributed applications
of graph sketches (King et al. [33]), distributed computing with advice (Fraigniaud et
al. [21]), distributed verification and hardness of approximation (Kor et al. [34], Korman and
Kutten [35] and Das Sarma et al. [14]), self-stabilizing algorithms (Gupta and Srimani [29]
and many other papers), distributed quantum computing (Elkin et al. [19]) and more. The
study of the MST problem in what we now call the CON GEST model started more than
forty years ago, see Dalal, and also Spira [12, 13, 56].

The seminal paper of Gallager, Humblet, and Spira (GHS) [22] presented a distributed
algorithm for an asynchronous network that constructs an MST in O(n log n) time using
O(m + n log n) messages, where n and m denote the number of nodes and the number of
edges of the network, respectively. The time complexity was later improved by Awerbuch and
by Faloutsos and Moelle to O(n) [5, 20], while keeping the same order of message complexity.

The message complexity of GHS algorithm is (essentially) optimal, since it can be shown
that for any 1 ≤ m ≤ n2, there exists a graph with Θ(m) edges such that Ω(m) is a lower
bound on the message complexity of constructing even a spanning tree (even for randomized
algorithms) [38].3 Moreover, the time complexity bound of O(n) bound is existentially
optimal (in the sense that there exist graphs (of high diameter) for which this is the best
possible). However, the time bound is not optimal if one parameterizes the running time
in terms of the network diameter D, which can be much smaller than n. In a synchronous
network, Garay, Kutten, and Peleg [23] gave the first such distributed algorithm for the MST

2 In this paper, henceforth, when we say “near optimal” we mean “optimal up to a polylog(n) factor”,
where n is the network size.

3 This message lower bound holds in the so-called KT0 model, which is assumed in this paper. See Section
1.4 for more details.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:3

problem with running time Õ(D +n0.614), which was later improved by Kutten and Peleg [39]
to Õ(D +

√
n) (again for a synchronous network).However, both these algorithms are not

message-optimal as they exchange O(m + n1.614) and O(m + n1.5) messages, respectively.
Conversely, it was established by Peleg and Rubinovich [51] that Ω̃(D +

√
n) is a lower

bound on the time complexity of distributed MST construction that applies even to low-
diameter networks (D = Ω(log n)), and to the synchronous setting. The lower bound of
Peleg and Rubinovich applies to exact, deterministic algorithms. This lower bound was
further extended to randomized (Monte Carlo) algorithms, approximate constructions, MST
verification, and more (see [41, 40, 17, 14]).

Pandurangan, Robinson and Scquizzato [47, 49] showed that MST admits a randomized
singularly near optimal algorithm in synchronous CON GEST networks; their algorithm
uses Õ(m) messages and Õ(D +

√
n) rounds. Subsequently, Elkin [18] presented a simpler,

singularly optimal deterministic MST algorithm, again for synchronous networks.
For asynchronous networks, one can obtain algorithms that are separately time optimal

(by combining [39] with a synchronizer, see Awerbuch [4]) or message optimal [22] for the
MST problem, but it is open whether one can obtain an asynchronous distributed MST
algorithm that is singularly (near) optimal. This is one of the main motivations for this work.
An additional motivation is to design tools that can be useful for constructing singularly
optimal algorithms for other fundamental problems in asynchronous networks.

In general, designing singularly optimal algorithms for asynchronous networks seems
harder compared to synchronous networks. In synchronous networks, besides MST con-
struction, singularly (near) optimal algorithms have been shown in recent years for leader
election, (approximate) shortest paths, and several other problems [38, 30]. However, all
these results do not apply to asynchronous networks. Converting synchronous algorithms
to work on asynchronous networks generally incur heavy cost overhead, increasing either
time or message complexity or both substantially. In particular, using synchronizers [4] to
convert a singularly optimal algorithm to work in an asynchronous network generally renders
the asynchronous algorithm not singularly optimal. Using a synchronizer can significantly
increase either the time or the message complexity or both far beyond the complexities of
the algorithm presented here. Furthermore, there can be a non-trivial cost associated with
constructing such a synchronizer in the first place.

For example, applying the simple α synchronizer [4] (which does not require the a
priori existence of a leader or a spanning tree) to the singularly optimal synchronous MST
algorithm of [47, 49] or [18] yields an asynchronous algorithm with message complexity of
Õ(m(D +

√
n)) and time complexity of Õ(D +

√
n); this algorithm is time optimal, but

not message optimal. Some other synchronizers (see, e.g., Awerbuch and Peleg [9]), do
construct efficient synchronizers that can achieve near optimal conversion from synchronous
to asynchronous algorithms with respect to both time and messages, but constructing the
synchronizer itself requires a substantial preprocessing or initialization cost. For example,
the message cost of the synchronizer setup protocol of [9] can be as high as O(mn).

Another rather tempting idea to derive an MST algorithm that would be efficient both in
time and in messages would be to convert a result of Mashreghi and King [44] (see also [43] and
discussion in Section 1.4), originally designed in the asynchronous KT1 CON GEST model4
to the more common KT0 model assumed here. In particular, they give an asynchronous
MST algorithm that takes O(n) time and Õ(n1.5) messages. Note that one can convert an

4 In KT1 model it is assumed that nodes know the identities of their neighbors (cf. Section 1.4), unlike
the KT0 model, where nodes don’t have that knowledge.

DISC 2022

19:4 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

algorithm in the KT1 model to work in the KT0 model by allowing each node to communicate
with all its neighbors in one round; this takes an additional Õ(m) messages. Hence, with such
a conversion the message complexity of the above algorithm would be essentially optimal
(i.e., Õ(m)), but the time complexity would be O(n) which is only existentially optimal, and
can be significantly higher than the lower bound of Õ(D +

√
n). In fact, as we will discuss

later, our result answers an open question posed in [44] and gives MST algorithms with
improved bounds in asynchronous KT1 model (cf. Section 1.3).

Instead of using a synchronizer, a better approach might be to design an algorithm
directly for an asynchronous network. As an example, consider the fundamental leader
election problem, which is simpler than the MST construction problem. Till recently, a
singularly optimal asynchronous leader election algorithm was not known. Applying a
synchronizer to known synchronous singularly optimal leader election algorithms does not
yield singularly optimal asynchronous algorithms. For example, applying the simple α

synchronizer to the singularly optimal synchronous leader election algorithm of [38] yields an
asynchronous algorithm with message complexity of O(mD log n) and time complexity of
O(D); this algorithm is not message optimal, especially for large diameter networks. Other
synchronizers such as β and γ of [4] and that of [9], require the a priori existence of a leader
or a spanning tree and hence cannot be used for leader election. The work of Kutten et
al. [37] presented a singularly (near) optimal leader election for asynchronous networks that
takes Õ(m) messages and Õ(D) time.5 That algorithm did not use a synchronizer and was
directly designed for an asynchronous network. The leader election algorithm of [37] is a
useful subroutine in our MST algorithm.

1.2 The Distributed Computing Model

The distributed network is modeled as an arbitrary undirected connected weighted graph
G = (V, E, w), where the node set V represent the processors, the edge set E represents
the communication links between them, and w(e) is the weight of edge e ∈ E. D denotes
the hop-diameter (that is, the unweighted diameter) of G, in this paper, diameter always
means hop-diameter. We also assume that the weights of the edges of the graph are all
distinct. This implies that the MST of the graph is unique. (The definitions and the results
generalize readily to the case where the weights are not necessarily distinct.) We make
the common assumption that each node has a unique identity (this is not essential, but
simplifies presentation), and at the beginning of computation, each node v accepts as input
its own identity number (ID) and the weights of the edges incident to it. Thus, a node has
only local knowledge. We assume that each node has ports (each port having a unique port
number); each incident edge is connected to one distinct port. A node does not have any
initial knowledge of the other endpoint of its incident edge (the identity of the node it is
connected to or the port number that it is connected to). This model is referred to as the
clean network model in [50] and is also sometimes referred to as the KT0 model, i.e., the initial
(K)nowledge of all nodes is restricted (T)ill radius 0 (i.e., just the local knowledge) [50]. The
KT0 model is extensively used in distributed computing literature including MST algorithms
(see e.g., [50, 48] and the references therein). While we design an algorithm for the KT0
model, our algorithm also yields an improvement in the KT1 model [7, 50] where each node
has an initial knowledge of the identities of its neighbors.

5 This algorithm is singularly near optimal, since Ω(m) and Ω(D) are message and lower bounds for
leader election even for randomized Monte Carlo algorithms [38].

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:5

We assume that nodes have knowledge of n (in fact a constant factor approximation of n

is sufficient), the network size. We note that quite a few prior distributed algorithms require
knowledge of n, see e.g. [6, 53, 2, 37]. We assume that processors can access private unbiased
random bits.

We assume the standard asynchronous CON GEST communication model [50], where
messages (each message is of O(log n) bits) sent over an edge incur unpredictable but finite
delays, in an error-free and FIFO manner (i.e., messages will arrive in sequence). As is
standard, it is assumed that a message takes at most one time unit to be delivered across
an edge. Note that this is just for the sake of the analysis of time complexity, and does
not imply that nodes know an upper bound on the delay of any message. As usual, local
computation within a node is assumed to be instantaneous and free; however, our algorithm
will involve only lightweight local computations.

We assume an adversarial wake-up model, where node wake-up times are scheduled by
an adversary (who may decide to keep some nodes dormant) which is standard in prior
asynchronous protocols (see [1, 22, 55]). Nodes are initially asleep, and a node enters the
execution when it is woken up by the environment or upon receiving messages from other
nodes.6

The time complexity is measured from the moment the first node wakes up. The adversary
wakes up nodes and delays each message in an adaptive fashion, i.e., when the adversary
makes a decision to wake up a node or delay a message, it has access to the results of all
previous coin flips. In the asynchronous setting, once a node enters execution, it performs
all the computations required of it by the algorithm, and sends out messages to neighbors
as specified by the algorithm. At the end of the computation, we require each node to
know which of its incident edges belong to the MST. When we say that an algorithm has
termination detection, we mean that all nodes detect termination, i.e., each node detects
that its own participation in the algorithm is over.

1.3 Our Contributions
Almost Singularly Optimal Asynchronous MST Algorithm. Our main contribution is
a randomized distributed MST algorithm that, with high probability, computes an MST
in asynchronous CON GEST networks and takes Õ(D1+ε +

√
n) time and Õ(m) messages,

where n is the number of nodes, m the number of edges, D is the diameter of the network,
and ε > 0 is an arbitrarily small constant (both time and message bounds hold with high
probability) (cf. Theorem 9). Since Ω̃(D +

√
n) and Ω(m) are respective time and message

lower bounds for distributed MST construction in the KT0 model, our algorithm is message
optimal (up to a polylog(n) factor) and almost time optimal (except for a Õ(Dε) factor).

Asynchronous MST in KT1 in Sublinear Messages and Time. Our result answers an
open problem raised in Mashregi and King [44] (see also [45, 43]). They ask if there exists
an asynchronous MST algorithm that takes sublinear time if the diameter of the network
is low, and has Õ(m) message complexity. They remark that if such an algorithm exists,
then it would improve their result giving better bounds for asynchronous MST in KT1

6 Although standard, the adversarial wake up model, in our setting, is not more difficult compared to the
alternative simultaneous wake up model where all nodes are assumed to be awake at the beginning of
the computation. Indeed, in the adversarial wake up model, awake nodes can broadcast (by simply
flooding) a “wake up” message which can wake up all nodes; this takes only O(m) messages and O(D)
time and hence within the singularly optimal bounds.

DISC 2022

19:6 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

CON GEST . Our result answers their question in the affirmative by giving the first known
asynchronous MST algorithm that has sublinear time (for all D = O(n1−δ), where δ > 0 is an
arbitrarily small constant) and uses Õ(m) messages. Furthermore, as indicated in Mashregi
and King [44], this also yields the first asynchronous MST algorithm that is sublinear in both
time and messages in the KT1 CON GEST model. More precisely, plugging our asynchronous
MST algorithm in the result of [44]([Theorem 1.2]) gives an asynchronous MST algorithm
that takes Õ(D1+ε + n1−2δ) time and Õ(n3/2+δ) messages for any small constant ε > 0
and for any δ ∈ [0, 0.25] (cf. Theorem 10). This gives a tradeoff result between time and
messages. In particular, setting δ = 0.25 yields an asynchronous MST algorithm that has
(almost optimal) time complexity Õ(D1+ε +

√
n) and message complexity Õ(n7/4).

Low Diameter Spanning Tree Construction. A key tool in our algorithm is the construction
of a low diameter rooted spanning tree in asynchronous CON GEST that has depth Õ(D1+ε)
(for an arbitrarily small constant ε > 0) in time Õ(D1+ε) time and Õ(m) messages. To the
best of our knowledge, this is the first such construction that is almost singularly optimal in
the asynchronous setting. This tree construction is of independent interest as it can also
be used for efficiently (under both time and messages) performing tasks such as upcast and
downcast which are very common tools in distributed algorithms (these are described, for
completeness, in Appendix A). Informally, an upcast (using the tree) provides a feedback
(i.e., verification) to the broadcast (downcast) initiator such that (1) the broadcast initiator
knows when the broadcast terminates (based on acknowledgements from all nodes) and (2)
the initiator can get compute a value based on the inputs of all the nodes (e.g., their sum).
This verified broadcast is crucial in the asynchronous setting that allows the initiator to
know when the broadcast has reached all nodes and thereafter proceed to the next step of
the computation.

We note that one could have used a BFS tree instead of a low-diameter tree. However,
the best known BFS tree construction in the asynchronous setting is due to Awerbuch [6]
which takes O(D1+ε) time and O(m1+ε) messages (for arbitrarily small constant ε > 0).
This algorithm (which is deterministic) is not message optimal, unlike ours, and hence will
only yield an MST algorithm with O(m1+ε) message complexity. Furthermore, though our
algorithm does not compute a BFS (but it is sufficient for MST purposes) and is randomized, it
is significantly simpler to understand and prove correctness for when compared to Awerbuch’s
algorithm. We also note that apart from the leader election and spanning tree primitives,
the rest of the MST algorithm is deterministic.

1.4 Additional Related Work
The distributed MST problem has been studied intensively for the last four decades and
there are several results known in the literature, including several recent results, both for
synchronous and asynchronous networks (including the ones mentioned in Section 1), see
e.g., [18, 16, 48, 24, 30, 32, 45, 42, 47, 49] and the references therein.

We note that the results of this paper and that of leader election of [37] (for asynchronous
networks) as well as those of [47, 49] and [18] (for synchronous networks) assume the so-called
clean network model, a.k.a. KT0 [50] (see Section 1.2), where nodes do not have initial
knowledge of the identity of their neighbors. But the optimality of above results does not in
general apply to the KT1 model, where nodes have initial knowledge of the identities of their
neighbors. It is clear that for time complexity by itself, the distinction between KT0 and
KT1 does not matter (as one can simulate KT1 in KT0 in one round/time unit by each node
sending its ID to all its neighbors) but it is significant when considering message complexity

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:7

(as the just mentioned simulation costs Θ(m) messages). Awerbuch et al. [7] show that Ω(m)
is a message lower bound for broadcast (and hence for construction of a spanning tree as well)
in the KT1 model, if one allows only (possibly randomized Monte Carlo) comparison-based
algorithms, i.e., algorithms that can operate on IDs only by comparing them. (We note that
all algorithms mentioned earlier in this subsection are comparison-based, including ours.)

On the other hand, for randomized non-comparison-based algorithms, the message lower
bound of Ω(m) does not apply in the KT1 model. King et al. [33] presented a randomized,
non-comparison-based Monte Carlo algorithm in the KT1 model for MST construction in
Õ(n) messages (Ω(n) is a message lower bound) (see also [42]). While this algorithm achieves
o(m) message complexity (when m = ω(n polylog n)), it is not time-optimal, as it takes
time Õ(n) rather than Õ(D +

√
n). Algorithms with improved round complexity but worse

message complexity, and more generally, trade-offs between time and messages, are shown
in [26, 27]. We note that all these results are for synchronous networks. As discussed in
Section 1, the works of [44, 43, 45] address asynchronous MST construction in KT1 model
and present algorithms that take o(m) messages.

2 Low Diameter Spanning Tree Algorithm

Let us now describe a novel algorithm for constructing a low diameter spanning tree in a
time-efficient and (near) message-optimal manner in an asynchronous network. This serves
as a crucial ingredient for our MST algorithm of Section 3.

2.1 Randomized Low Diameter Decomposition (MPX)
Let G = (V , E) be any (undirected, unweighted) graph with n ≤ n nodes and m ≤ m

edges; in particular, G can be different from the communication graph. A probabilistic
(β, r) low diameter decomposition of G is a partition of V into disjoint node sets V 1, . . . , V t

called clusters. The partition satisfies (1) each cluster V i has strong diameter r, i.e.,
distG[Vi](u, v) ≤ r for any two nodes u, v ∈ V i, and (2) the probability that an edge e ∈ E is
an inter-cluster edge (that is, the endpoints of e are in different clusters) is at most β.

MPX Decomposition in Synchronous CON GEST . Let us describe a simple distributed
variant of the MPX decomposition algorithm of Miller et al. [46] – Procedure MPX –
executed in a synchronous setting with simultaneous wakeup on graph G. In Subsect. 2.2, we
execute the algorithm on virtual cluster graphs (where each node is in fact a set of nodes in
the communication graph G) and also describe the distributed simulation required to do so.

Let δmax = ⌊2 · ln n
β ⌋. Initially, each node v ∈ V draws a random variable δv from the

exponential random distribution with parameter β and sets its start-time variable Sv to
max{1, δmax − ⌊δv⌋}. Procedure MPX guarantees the following through simple flooding:
(1) each node v ∈ V is assigned to the cluster of the node u = argminw∈V {(distG(v, w) +
Sw, idw)} and (2) each cluster has a spanning tree of depth at most δmax. (Each node locally
keeps information about the edge to its parent in the spanning tree. In other words, the
spanning tree is oriented towards the root.)

More precisely, the “simple flooding” is done in δmax + 1 rounds. Initially, all nodes are
unassigned. In round i, each newly-assigned node v (i.e., assigned in round i − 1) sends to
its neighbors a message containing the ID of the cluster leader. Other assigned nodes do
nothing. Finally, for each unassigned node v, let Mid be the set containing all received IDs,
as well as idv if Sv = i. If Mid is the empty set, v does nothing. Otherwise, v assigns itself
to the cluster of the node u with the lexicographically smallest ID in Mid. If u ̸= v, v keeps

DISC 2022

19:8 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

the edge (an arbitrary one if there are multiple such edges) along which it receives idu as the
edge to its parent. (Note that this spanning tree guarantees that the cluster is connected
and has strong diameter at most 4 ln n

β .)

Analysis. The following lemmas are known results from [46, 31, 10, 11]. For completeness,
proofs are given in Appendix B.

▶ Lemma 1. Procedure MPX computes a (2β, 4 ln n
β) low-diameter decomposition of G

w.h.p. in O(ln n
β) time and O(m ln n

β) messages in the synchronous setting.

From the low diameter decomposition computed by Procedure MPX (or in fact, from
any partition P of V into disjoint node sets V 1, . . . , V t), one can define a cluster graph
G

∗ = (V ∗
, E

∗), as follows. Its node set V
∗ = {V 1, . . . , V t} consists of cluster nodes, one for

each cluster V i of the decomposition, and two cluster nodes V i and V j are adjacent in G
∗ if

there exist two nodes w, w′ in V such that w ∈ V i, w′ ∈ V j and (w, w′) ∈ E. We call G
∗

the cluster graph induced by P.

▶ Lemma 2. For any positive integer k ≥ 1, if the diameter of G satisfies D ≥ k ln2 n
β4 , then

the diameter of the cluster graph G
∗ is at most 2βD, with probability at least 1 − 1

nk−2 .

2.2 Rooted Spanning Tree
Let us now describe an asynchronous distributed algorithm to construct a low diameter
rooted spanning tree, given a pre-specified root, in a time-efficient and (near) message-optimal
manner – see Theorem 3. We assume that each node knows whether it is the pre-specified
root prior to the start of the algorithm. We also assume initially that the diameter of the
original graph, D, is known to the nodes. We explain how to remove this assumption at the
end of the section.

▶ Theorem 3. Given a graph G with n nodes, m edges and diameter D, as well as a
distinguished node R, and a constant parameter 1 ≥ ε > 0, the asynchronous distributed
Procedure ST-Cons(ε) computes an Õ(D1+ε)-diameter spanning tree rooted in R with
termination detection, using Õ(D1+ε) time with high probability and Õ(m) messages with
high probability.

Brief Description. We construct the low diameter spanning tree in a two stage process.
The first stage consists of building a sequence of increasingly coarser partitions of G = (V, E).
Each partition decomposes V into disjoint node sets, called clusters, with strong diameter
Õ(D1+ε); in fact, each cluster C is spanned by a tree T̂ (C) of depth Õ(D1+ε). (Unlike
in Subsect. 2.1, this spanning tree is oriented away from the root.) The unique cluster
containing the root node R will be denoted CR. The cluster graph induced by the final
partition (defined in Subsect. 2.1) has diameter Õ(1). These partitions are obtained by
simulating the synchronous MPX decomposition algorithm (see Subsect. 2.1) on G, then
on the obtained cluster graph, and so on, for im = ⌈log1/(3β) D⌉ times (where β = ln− 1

ε′ n

and ε′ ≤ 1 is to be derived in the analysis). In the second stage, we construct a breadth
first search (BFS) tree T BF S over the final cluster graph of phase 1, where the cluster CR

containing the pre-specified root R serves as the root of the BFS tree. We then use T BF S to
decide which edges of the original graph should be kept to obtain the desired rooted spanning
tree T̃ of G with depth Õ(D1+ε).

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:9

Detailed Description. Consider the initial graph G(V, E) = G0(V0, E0) and the initial
trivial partition P0 in which each node v ∈ V is its own cluster.

Stage 1: The first stage consists of im = ⌈log1/(3β) D⌉ phases, where β = ln−1/ε′
n

and we assume ln ln n ≥ 2ε′ ln 3. (If ln ln n ≤ 2ε′ ln 3 ≤ 2 ln 3, then constructing a low
diameter spanning tree efficiently is trivial.) Phase i starts with a partition Pi−1 of V

and the cluster graph induced by Pi−1 is denoted by Gi−1(Vi−1, Ei−1). We simulate one
instance of Procedure MPX (with parameter β) on Gi−1 in an asynchronous setting
by running an α-synchronizer between clusters, and within each cluster C, using the
spanning tree T̂ (C) to simulate the behavior of each cluster node of Vi−1. (Note that
this well-known synchronizer is described in more detail in Appendix A.) More precisely,
the root of the spanning tree T̂ (C) simulate the behavior of cluster C (in the simulated
Procedure MPX). To send a (same) message to its adjacent clusters, C broadcasts along
T̂ (C). To receive the message with the minimum ID (which is sufficient information for
Procedure MPX), C convergecasts along T̂ (C).
The output is a partition P∗

i of Vi−1 into disjoint (cluster node) sets U1, . . . , Ut such that
each Uj has a spanning tree T super

j of depth O(ln n
β). We transform P∗

i into a partition
Pi of V , the node set of the original graph, into disjoint node sets W1, . . . , Wt, such that
each Wj has a spanning tree T̂ (Wj) of depth O((ln n

β)i). (In fact, we only show how to
compute the spanning trees T̂ (Wj), which induces the node sets Wj .)
To transform P∗

i to Pi, we use a simple Procedure Transform, sketched next. Recall that
each cluster node in Uj keeps information about its parent in the spanning tree T super

j .
Procedure Transform consists of 2 ln n

β iterations. Each cluster node keeps an iteration
counter and these counters are kept locally synchronized by running an α-synchronizer
between cluster nodes. In the first iteration, the root cluster node CR sends its ID to
each adjacent cluster node C (which is its child in T super

j) over the edges of the set
Einter = {(u, w) ∈ E(G) | u ∈ CR, w ∈ C}, namely, all (original) inter-cluster edges
between CR and C. (Note that in fact, CR sends its ID to all adjacent cluster nodes, but
cluster nodes which are not children of CR simply ignore that message.) Among these
inter-cluster edges, every child cluster node C keeps (u∗, w∗) = argmin(u,w)∈Einter

{idw},
i.e., the edge whose endpoint w in C has the minimum ID. Cluster node C then reorients
its tree T̂ (C) to be rooted in w (and the inter-cluster edge is oriented towards w, i.e.,
from parent to child). In the next iteration, each C sends the ID of R to its children
cluster nodes, if they exist, which in turn reorient their tree in the same fashion. After
all iterations are done, the “combined” spanning tree T̂ (Wj) is completed, and a simple
broadcast allows all nodes in the newly computed cluster Wj to move on to the next
phase. (Note that T̂ (Wj) is oriented from the root outwards.)

Stage 2: At the end of stage 1, the final partition decomposes V into clusters with strong
diameter Õ(D1+ε) and induces a cluster graph Gf (Vf , Ef) of diameter O(log2+4/ε′

n);
in fact, each cluster C is spanned by a tree T̂ (C) of depth Õ(D1+ε). During stage 2,
the naive synchronous BFS tree construction algorithm (based on flooding, see [50]) is
simulated on Gf for O(log2+4/ε′

n) rounds, where the designated root in Vf is the cluster
CR that contains the pre-specified root in V . Once again, this is done by running an
α-synchronizer between clusters, and within each cluster, using the spanning tree T̂ (C)
to simulate the behavior of each cluster node C. After computing the BFS tree T BF S on
Gf , we use Procedure Transform – but this time for O(log2+4/ε′

n) rounds – to compute
a spanning tree T̃ of G, similarly to stage 1. This final output T̃ is a Õ(D1+ε) diameter
spanning tree of G.

DISC 2022

19:10 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Analysis. Lemma 4 upper bounds, for each phase, the diameter of the cluster graph as well
as that of the partition’s clusters. Corollary 5 is obtained from Lemma 4 by considering the
last phase. After which, we prove Theorem 3 using Lemma 4 and Corollary 5. The proofs of
Lemma 4 and Corollary 5 are deferred to Appendix B.

▶ Lemma 4. For each phase 1 ≤ i ≤ im, (1) diam(Gi−1) = max{(3β)i−1D, O(log2+4/ε′
n)}

w.h.p., and (2) each cluster C of the partition Pi−1 is spanned (in the original graph G) by a
tree T̂ (C) with diam(T̂ (C)) = (5 ln n

β)i−1.

▶ Corollary 5. At the end of phase im, (1) diam(Gim
) = O(log2+4/ε′

n) w.h.p., and (2)
each cluster C of the partition Pim is spanned (in the original graph G) by a tree T̂ (C) with
diam(T̂ (C)) = Õ(D1+ε).

Proof of Theorem 3. The correctness of the first stage follows from that of the simulation
(using an α-synchronizer between clusters), Procedure MPX and Procedure Transform.
Next, let us show the time and message complexity of the first stage. During each phase
1 ≤ i ≤ im, Procedure MPX is simulated on Gi−1 for O(log n

β) = Õ(1) rounds. Hence, each
cluster C simulates Õ(1) rounds. In each round, the cluster broadcasts once over the cluster’s
spanning tree T̂ (C), sends one message per inter-cluster edge over to adjacent clusters, and
convergecasts once over T̂ (C). By Lemma 4, T̂ (C) has depth Õ(D1+ε). Hence, each round
of Procedure MPX is simulated in at most Õ(D1+ε) time and using O(m). Adding up over
all phases results in Õ(D1+ε) time and Õ(m) messages. Note that running an α-synchronizer
(between the clusters) induces only an Õ(1) message overhead per (inter-cluster) edge over
all rounds, but no time overhead. Thus Procedure MPX is simulated in Õ(D1+ε) time
and using Õ(m) messages. Similarly, in Procedure Transform, each cluster C simulates
Õ(1) rounds. In each round, the cluster broadcasts twice over the cluster’s spanning tree
T̂ (C), sends one message per inter-cluster edge over to adjacent clusters, and convergecasts
twice over T̂ (C) (where the additional broadcast and convergecast allows to reorient T̂ (C)).
Therefore, it can be seen that Procedure Transform also takes Õ(D1+ε) time and uses Õ(m)
messages. Finally, the first stage has at most im = Õ(1) phases, and thus takes Õ(D1+ε)
time and uses Õ(m) messages.

By Corollary 5, the final cluster graph has a diameter of O(log2+4/ε′
n). Given that, the

correctness of the second stage follows from that of the simulation (using an α-synchronizer
between clusters), the naive synchronous BFS tree construction algorithm and Proce-
dure Transform. As for the time and message complexity, the same approach (used for
stage 1 above) shows that the second stage takes Õ(D1+ε) time and uses Õ(m) messages. ◀

Removing the Requirement of the Knowledge of D. In the previously described algorithm,
we assumed that each node knew the value of D, the diameter of the original graph. This
assumption can be removed by having each node guess the value of D = 21, 22, . . . until we
arrive at the correct guess (an at most 2-approximation of D).

An issue that must be addressed, however, is that nodes need some way to determine
whether they have correctly guessed the value of D or not. This can be done at the end of
the second stage. Recall that the naive synchronous BFS tree construction is simulated for
O(log2+4/ε′

n) = Õ(1) rounds. If the estimate of D is too small, the cluster graph obtained
at the end of the first stage, Gf , may have diameter strictly greater than O(log2+4/ε′

n), in
which case T BF S may not cover the whole graph Gf . As a result, once T̃ is constructed
from T BF S using Procedure Transform, some nodes may exist outside the spanning tree T̃ .
This condition can be detected by the leaves of T̃ and a simple convergecast can be used to

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:11

check if this condition holds true. In case it does, the root of T̃ can initiate a broadcast over
the entire original graph to update the guess of D and run the algorithm with this updated
guess. (Note that if the estimate of D is too small, it may still happen that T BF S covers the
whole graph Gf , in which case we correctly compute a low diameter spanning tree T̃ of G

and the algorithm terminates.)
This modification increases the time complexity of the algorithm by at most a constant

factor, and its message complexity by a factor of at most O(log D).

3 The Asynchronous MST Algorithm

In this section, we develop a randomized algorithm to construct an MST with high probability
for a given graph in Õ(D1+ε +

√
n) time with high probability and Õ(m) messages with high

probability (for any constant ε > 0).

3.1 High-level Overview of the Algorithm
We implement on an asynchronous network a variant of the singularly near optimal syn-
chronous MST algorithms of [18, 47]. The algorithm can be divided into three stages. In
stage I, we pre-process the network so that subsequent processes are fast and message efficient.
Stages II and III correspond to the actual MST algorithm.

In order to ensure that nodes participate in this multi-stage algorithm in the proper
sequence, we append a constant number of bits to each message to indicate the stage number
that message corresponds to. A node u knows which stage number it is currently in and can
queue received messages that belong to a later stage. These messages will be processed later,
once u reaches to the corresponding stage.

Stage I: Pre-Processing the Graph. In this stage, we run a few preparatory procedures on
the graph. Specifically, we first elect a leader, then construct a low diameter spanning tree
T , and finally estimate the diameter of T . In more detail, for the first stage we utilize the
singularly (near) optimal algorithm of [37] to elect a unique leader L in O(D + log2 n) time
and O(m log2 n) messages. Subsequently, we run the ST-Cons(ε) algorithm of Section 2 (for
a constant parameter 1 ≥ ε > 0) to construct a low diameter spanning tree T on G rooted
at L. Then, we use a known application of the Wave&Echo technique (see, e.g., [54, 58]) to
have the root calculate the diameter of the constructed spanning tree D′, which we know is
an Õ(Dε) approximation of the diameter D of the original graph G, in O(D′) time and O(n)
messages. Finally, all nodes in the tree participate in a simple broadcast on the spanning tree
T to send this knowledge of D′ to all nodes in the graph in O(D′) time and O(n) messages.

Stage II: Controlled-GHS. The Controlled-GHS algorithm, introduced in [23, 39], is a
synchronous version of the classical Gallager-Humblet-Spira (GHS) algorithm [22, 50] with
some modifications, aiming to balance the size and diameter of the resulting fragments. Here,
we convert to the asynchronous setting a variant of the (synchronous) Controlled-GHS as
described in [47, 49].

Recall that the synchronous GHS algorithm (see, e.g., [50]) consists of O(log n) phases. In
the initial phase, each node is an MST fragment, by which we mean a connected subgraph of
the MST. In each subsequent phase, every MST fragment finds a minimum-weight outgoing
edge (MOE) – these edges are guaranteed to be in the MST [57]. The MST fragments
are merged via the MOEs to form larger fragments. The number of phases is O(log n),
since the number of MST fragments gets at least halved in each phase. The message

DISC 2022

19:12 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

complexity is O(m + n log n), which is essentially optimal, and the time complexity is
O(n log n). Unfortunately, the time complexity of the GHS algorithm is not optimal, because
much of the communication during a phase uses only the MST fragment edges, and the
diameter of an MST fragment can be significantly larger than the graph diameter D (possibly
as large as Ω(n)).

In order to obtain a time-optimal algorithm, the Controlled-GHS algorithm controls
the growth of the diameter of the MST fragments during merging. This is achieved by
computing, in each phase, a maximal matching on the fragment forest with additional edges
being carefully chosen to ensure enough fragments merge together, and merging fragments
accordingly. Each phase essentially reduces the number of fragments by a factor of two, while
not increasing the diameter of any fragment by more than a factor of two. Since the number
of phases of Controlled-GHS is capped at max{⌈log2

√
n⌉, ⌈log2 D′⌉}, it produces at most

min{
√

n, n/D′} fragments, each of which has diameter O(D′ +
√

n). These are called base
fragments. Controlled-GHS up to phase max{⌈log2

√
n⌉, ⌈log2 D′⌉} can be implemented

using Õ(m) messages in Õ(D′ +
√

n) rounds in a synchronous network.
Stage II executes the Controlled-GHS algorithm in an asynchronous network. We

postpone the discussion of the technical details involved in efficiently implementing the
asynchronous algorithm to Section 3.2. The main challenge, however, is that the synchronous
version heavily relies on the phases being synchronized. Here, we cannot naively use
a synchronizer (such as α) for synchronization, as it would have increased the message
complexity substantially. Instead we use a light-weight synchronization that incurs only
Õ(m) overhead in messages.

Finally, we ensure that all nodes know the exact number of fragments that were constructed
at the end of this phase. The root of each fragment T calculates the number of nodes present
in T and forms a tuple consisting of this value and the ID of T . Subsequently, each fragment
root participates in the upcast of its tuple in the low diameter spanning tree T on G′. All
tuples are accumulated at L in O(min{

√
n, n/D′}+D′) time and O(n) messages. L continues

to listen for messages until the total number of nodes in all fragments it has heard from
is equal to n, i.e., all fragments have been heard from. Now L broadcasts the number of
fragments over T to all nodes in the graph in O(D′) time and O(n) messages.

Stage III: Merging the Remaining Fragments. This stage completes the fragment merging
process. However, the merging is done in a “soft” manner. The at most min{

√
n, n/D′} base

fragments (constructed at the end of Stage II) are still retained, but each base fragments
takes on an additional ID–a cluster ID, initially set to the base fragment ID. (A cluster is a
collection of base fragments; at the beginning of this stage, each base fragment forms its own
cluster.) Each base fragment finds an MOE to a different cluster, if such an MOE exists,
and merging consists of base fragments modifying their associated cluster IDs and marking
the corresponding MOE connecting clusters. All nodes participate in a simple upcast over
T , where the root of each base fragment is responsible to send up a tuple consisting of its
fragment & cluster IDs, a possible MOE and the associated fragment & cluster IDs the MOE
leads to.7 It is similar to the approach of [18, 47], which uses a BFS tree to upcast these
values to the root of tree; here, instead of BFS, we use the low-diameter spanning tree of

7 It is required that each base fragment’s root sends up this tuple even if it does not have an MOE (in
which case the tuple only has info on the fragment ID and cluster ID of the base fragment). This is to
ensure that the nodes detect termination as the root of T , L, already knows the fragment and cluster
IDs of the base fragments so it knows how many such messages to wait for.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:13

Section 2. Subsequently, the root calculates the appropriate MOEs (and the fragments they
connect and the clusters they lead to) for each cluster and downcast these values. Each
fragment then performs a broadcast of its (possibly new) cluster ID over the fragment tree
(to all nodes within the fragment). This process is repeated for O(log n) phases until only
one cluster remains, which represents the MST of the original graph.

Let us examine each phase i in more detail. Each base fragment finds its respective
MOE, if any, and sends it to L via an upcast.8 All fragment leaders can find their MOEs
in O(D′ +

√
n) time and O(m) messages. Upcasting these values to L using tree T takes

O(min{
√

n, n/D′} + D′) time and O(n) messages. L locally computes the overall MOEs of
the (soft-merged) base fragments and then merges them (locally). Subsequently, all nodes
of T participate in a downcast of these MOEs and modified cluster IDs (that L previously
calculated) in O(D′ +

√
n) time and O(n) messages. Each base fragment performs a broadcast

of its (possibly new) cluster ID to all nodes in its base fragment utilizing the base fragment
tree. For all base fragments to do this, it takes a total of O(D′ +

√
n) time and O(n) messages.

3.2 Detailed Algorithm Description

We now look at each stage in more detail.

Stage I. In this stage, the nodes first run Procedure LE on G to elect a unique leader L with
high probability. As a side benefit, the procedure also wakes up all nodes. Next, the nodes
participate in Procedure ST-Cons(ε) to construct an Õ(D1+ε) diameter spanning tree T of
G with L as its root. Subsequently, all nodes participate in Procedure Diam-Calc so that L
is now aware of the diameter D′ of T . Finally, all nodes participate in Frag-Bcast over T
to transmit this information of D′ to all nodes in the graph. (Procedures LE, Diam-Calc
and Frag-Bcast are described in Appendix A.)

Stage II. In this stage, the nodes execute an asynchronous version of the Controlled-GHS
algorithm [23, 47, 49]. Let us first recall the original (synchronous) Controlled-GHS
algorithm. This algorithm merges fragments (subtrees of the MST) in phases, similarly to
GHS. However, it guarantees two additional properties to hold at the end of each phase
i: (a) there are at most n/2i fragments, and (b) each fragment has diameter O(2i). These
guarantees are ensured through two measures. First, at the beginning of phase i, only
fragments with diameter ≤ 2i will participate in this phase and find MOEs. Second, in a
phase i, consider the fragment graph whose “nodes” are the fragments (including those that
do not participate) and whose edges are all the MOEs found. The algorithm first performs a
maximal matching on this fragment graph and removes from the fragment graph edges that
do not participate in this matching. Then, those fragments who participate in this phase
and remain unmatched add their MOEs back to the fragment graph. Connected components
of fragments in this final fragment graph then merge together. The algorithm is run from
phase i = 0 to phase i = max{⌈log2

√
n⌉, ⌈log2 D′⌉}. Due to a lack of space, the details of

the adaptation of the Controlled-GHS algorithm to the asynchronous setting can be found
in the full version of the paper.

8 Note that as the algorithm progresses, two adjacent base fragments may belong to the same overall
cluster, possibly resulting in one of those base fragments having no MOE to a different cluster.

DISC 2022

19:14 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

After completing the last phase of the above process, we are almost ready to move to
stage III of the algorithm.9 Some final cleanup is first needed. We need two things in order
to ensure our subsequent upcasts and downcasts over T have termination detection: (i) L
needs to be made aware of how many base fragments are present and their IDs and (ii) each
node in T needs routing information related to any fragment roots located in the subtree
rooted at that node in T .10

We need each fragment F to inform L of its existence and fragment ID. Now, the root of
each fragment F , with ID IDF , initiates Tree-Count to determine the number of nodes in
the fragment, sizeF . (Procedure Tree-Count is described in Appendix A.) Subsequently, all
nodes in the graph participate in Procedure Upcast over T where each base fragment’s root
sends up the tuple ⟨IDF , sizeF ⟩.11 L accumulates these messages until

∑
F sizeF = n, at

which point L knows the exact number of base fragments, say NUM-OF-BASE-FRAGMENTS,
and their IDs. Once L recognizes that it has received all the messages, it initiates a broadcast
of NUM-OF-BASE-FRAGMENTS over T . Now all nodes are aware of the number of base
fragments.

Stage III. In this stage, each node u maintains two sets of variables. One set of variables
relates to the base fragment B node u it belongs to at the end of phase two. These variables
store information about the base fragment such as the base fragment ID IDB , u’s parents in
B, and u’s children in B. The second set of variables relates to what we term a cluster, a
connected subgraph in H consisting of base fragments and MOEs between them, and they
store information that includes a cluster ID and cluster edges. Each node belonging to base
fragment B initially sets its cluster ID CLUSTER-IDB to be the same as its base fragment ID.
Each node u also stores a set of cluster edges adjacent to it in the set CLUSTER-EDGESu,
which is initially empty. Edges are added to CLUSTER-EDGESu in the course of stage III.
At the end of stage III, for a given node u, the set of edges in the MST is the union of the
set of edges in CLUSTER-EDGESu and its children and parent in B. Node L maintains, in
addition, information on the supergraph H formed by the base fragments (including the
updated cluster IDs of those base fragments) and any MOE edges that L computes in the
phases of stage III, to be described below.

In stage III, each node participates in the following process for ⌈log2 n⌉ phases until it
terminates. Once again, nodes use a β-synchronizer over T to keep track of the phase number
in stage III. In each phase, each base fragment B with root RB, fragment ID IDB, and
cluster ID CLUSTER-IDB runs Procedure Find-MOE to find its minimum outgoing edge,
say MOE-VALUEB, to a node with a different cluster ID, if there is any. All nodes in the
graph then participate in Procedure Upcast over T to send informatino on the fragments up
to L. Specifically, each base fragment B’s root sends up the tuple consisting of information
on B as well as the computed MOE, if any.

Once L receives this tuple from all base fragments, it locally computes the MOE edges
for each cluster in the supergraph H. Recall that a cluster is a connected subgraph of base
fragments in H. Thus, the MOE from a cluster is really an MOE from one of the base

9 As we use a β-synchronizer to keep track of which phase a node is in, it is possible to know when
max{⌈log2

√
n⌉, ⌈log2 D′⌉} phases are over.

10 Consider a node u and let node v be the root of a fragment located in the subtree rooted at u in T . We
say node u has routing information on v when u knows which of its children in T to send a message
destined for v

11 It is important to note that during Procedure Upcast, each node u in T learns about which of its
children in T lead to which fragment roots. In other words, u learns routing information related to any
fragments roots located in the subtree in T rooted at u, satisfying our second requirement from the
previous paragraph.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:15

fragments that constitutes it. Define FINAL-MOE-VALUEB as the MOE, if any, for base
fragment B. For each base fragment B, L computes its new cluster ID CLUSTER-IDB (if
multiple clusters merge, the smallest cluster ID becomes the ID of the new merged cluster),
and its FINAL-MOE-VALUEB (if the original value of FINAL-MOE-VALUEB broadcast by B

was selected as a new edge in H, FINAL-MOE-VALUEB is set to MOE-VALUEB , else it is set
to a null value).

All nodes participate in Procedure Downcast so that L may inform each base fragment’s
root about its possibly new cluster ID and MOE edge. (Procedure Downcast is described
in Appendix A.) Subsequently each base fragment participates in Procedure Frag-Bcast to
send these values to all nodes in the fragment. Each node updates its cluster ID if needed. If
there is information on a new MOE edge out of one of the nodes u, then u adds this edge to
CLUSTER-EDGESu. Once the final phase of stage III is complete, all nodes terminate the
algorithm.

4 Analysis of the MST Algorithm

We argue that Algorithm Sing-MST correctly outputs the MST with high probability and
subsequently analyze its running time and message complexity.

It is easy to see that the algorithm faithfully simulates Controlled-GHS in the asyn-
chronous setting. Recall that Controlled-GHS requires us to maintain two properties in
each phase of the algorithm: (i) at the end of phase i, there are at most n/2i fragments
and (ii) at the end of phase i, each fragment has diameter O(2i). Since the algorithm
faithfully simulates Controlled-GHS, it follows from the analysis of Controlled-GHS
(see e.g., [18, 47]) that these properties are maintained in stage II. In stage III, they are
also maintained via the “soft merge” process in a way that is time and message efficient.
Note that in stage III, we ensure that those properties hold now on clusters instead of on
fragments. These two properties guarantee that after the algorithm is over, there exists
one cluster such that all nodes belong to the cluster and the only edges in the cluster are
MST edges of the original graph. The high probability guarantee comes from the usage of
(randomized) Procedures LE and ST-Cons.

We now bound the running time and message complexity in each stage of the algorithm.
Due to a lack of space, the proofs of the following lemmas are deferred to the full version.

▶ Lemma 6. Stage I of Algorithm Sing-MST takes Õ(D1+ε) time with high probability and
Õ(m) messages with high probability, for any constant ε > 0.

▶ Lemma 7. Stage II takes Õ(D1+ε +
√

n) time and Õ(m) messages.

▶ Lemma 8. Stage III takes Õ(D1+ε +
√

n) time and Õ(m) messages to complete.

By Lemmas 6, 7, and 8 and our initial discussion about correctness, we get the following
theorem.

▶ Theorem 9. Algorithm Sing-MST computes the minimum spanning tree of an arbitrary
graph with high probability in the asynchronous KT0 CON GEST model in Õ(D1+ε +

√
n)

time with high probability and Õ(m) messages with high probability. Furthermore, nodes know
their edges in the MST and terminate when the algorithm is over.

As a consequence of the above theorem and a theorem due to Mashregi and King [44,
Theorem 1.2] we also get the following result in the KT1 model.

DISC 2022

19:16 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

▶ Theorem 10. There is an asynchronous algorithm that computes the minimum spanning
tree of an arbitrary graph with high probability in the asynchronous KT1 CON GEST model
in Õ(D1+ε + n1−2δ) time and Õ(n3/2+δ) messages for any small constant ε > 0 and for any
δ ∈ [0, 0.25].

The above theorem gives the first asynchronous MST algorithm in the KT1 CON GEST
model that has sublinear time (for all D = O(n1−ε′) for any arbitrarily small constant ε′ > 0)
and sublinear messages complexity.

5 Conclusion and Open Problems

Recall that while most of the paper deals with the common KT0 model, Theorem 10 includes
a contribution also under the KT1 model. This model has grown in popularity in recent years
first because one can claim it is a more natural model [8] and second because it allows reducing
the communication to o(m). Initially, it looked as if this reduction carries a significant cost
in time complexity, trading off the attempt to go below Ω(n) when the diameter is smaller
[33]. This went against the direction for the KT0 model, where algorithms managed to be
efficient both in time complexity and message complexity [18, 47, 28, 26]. Those results,
however, were in the synchronous model. Theorem 10 (together with [44][Theorem 1.2]) is
the first result that approaches optimal time while keeping message complexity o(m). It
would be interesting to see whether this is the best that can be obtained in this direction.
Results showing that other tasks can be obtained with o(m) messages but time efficiently in
KT1 would also be interesting.

The asynchronous distributed MST algorithm for KT0 presented here continues a long
line of work in distributed MST algorithms. Our algorithm essentially (up to a polylog(n)
factor) matches the respective time and message lower bounds, but for an arbitrarily small
constant factor ε in the exponent of D (with respect to time). Yet, several open problems
remain. Is it possible to achieve near singular optimality? That is, can we achieve optimality
within a polylog(n) factor in both time and messages? This seems related to constructing
a Õ(D) diameter spanning tree in a singularly optimal fashion which is also open. Our
low-diameter spanning tree construction comes close to achieving this, but for a Õ(Dε) factor
in the diameter and run time. This is also closely related to constructing a BFS (or nearly
BFS) tree in a singularly optimal fashion.

The tools and techniques used in this paper for accomplishing various tasks in a (almost)
singularly optimal fashion in an asynchronous setting can also be useful in solving other
fundamental problems such as shortest paths, minimum cut etc. In particular, the techniques
of this paper can be useful in showing that the partwise aggregation operation of Ghaffari and
Haeupler [25] can be implemented in the asynchronous setting in Õ(D1+ε +

√
n) and Õ(m)

messages. This would imply that problems such as exact minimum cut and (1 + ε)-single
source shortest path can be solved almost singularly optimally. We will elaborate on these in
more detail in the full version of the paper.

For our singularly optimal algorithms we focused on being (existentially) optimal in
time with respect to parameters n and D (i.e., with respect to the Ω̃(D +

√
n) bound). An

interesting direction of future work is obtaining asynchronous algorithms that are “universally
optimal” (Haeupler, Wajc, and Zuzic [32]) (with respect to time) and also optimal with
respect to messages.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:17

References
1 Yehuda Afek and Eli Gafni. Time and message bounds for election in synchronous and

asynchronous complete networks. SICOMP, 20(2):376–394, 1991.
2 Yehuda Afek and Yossi Matias. Elections in anonymous networks. Information and Computa-

tion, 113(2):312–330, 1994.
3 John Augustine, Seth Gilbert, Fabian Kuhn, Peter Robinson, and Suman Sourav. Latency,

capacity, and distributed minimum spanning tree. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), pages 157–167. IEEE, 2020.

4 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804–823, 1985.

5 Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems. In Proceedings of the 19th ACM Symposium on Theory
of Computing (STOC), pages 230–240, 1987.

6 Baruch Awerbuch. Distributed shortest paths algorithms (extended abstract). In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pages 490–500, 1989.

7 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. J. ACM, 37:238–256, 1990.

8 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols.Journal of the ACM (JACM), 37(2):238–
256, 1990.

9 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead.
In 31st Annual Symposium on Foundations of Computer Science (FOCS), pages 514–522,
1990.

10 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 95–104, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3212734.3212774.

11 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. The energy complexity of
bfs in radio networks. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, pages 273–282, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3382734.3405713.

12 Yogen K Dalal. A Distributed Algorithm for Constructing Minimal Spanning Trees in Computer-
Communication Networks. Stanford University, 1976.

13 Yogen K. Dalal. A distributed algorithm for constructing minimal spanning trees. IEEE
Trans. Software Eng., 13(3):398–405, 1987.

14 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

15 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.
org/gb/knowledge/isbn/item2327542/.

16 Michael Elkin. A faster distributed protocol for constructing minimum spanning tree. Journal
of Computer and System Sciences, 72(8):1282–1308, 2006.

17 Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433–456, 2006.

18 Michael Elkin. A simple deterministic distributed MST algorithm, with near-optimal time and
message complexities. In Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC), pages 157–163, 2017.

19 Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum
communication speed up distributed computation? In ACM Symposium on Principles of
Distributed Computing, PODC, pages 166–175. ACM, 2014.

DISC 2022

https://doi.org/10.1145/3212734.3212774
https://doi.org/10.1145/3382734.3405713
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/

19:18 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

20 Michalis Faloutsos and Mart Molle. A linear-time optimal-message distributed algorithm for
minimum spanning trees. Distributed Computing, 17(2):151–170, 2004.

21 Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local mst computation with
short advice. Theory of Computing Systems, 47(4):920–933, 2010.

22 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

23 Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Comput., 27(1):302–316, 1998.

24 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 202–219. SIAM, 2016.

25 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, MST, and min-cut. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 202–219, 2016.

26 Mohsen Ghaffari and Fabian Kuhn. Distributed MST and broadcast with fewer messages,
and faster gossiping. In Proceedings of the 32nd International Symposium on Distributed
Computing (DISC), pages 30:1–30:12, 2018.

27 Robert Gmyr and Gopal Pandurangan. Time-message trade-offs in distributed algorithms.
In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA,
USA, October 15-19, 2018, pages 32:1–32:18, 2018.

28 Robert Gmyr and Gopal Pandurangan. Time-message trade-offs in distributed algorithms. In
Proceedings of the 32nd International Symposium on Distributed Computing (DISC), pages
32:1–32:18, 2018.

29 Sandeep KS Gupta and Pradip K Srimani. Self-stabilizing multicast protocols for ad hoc
networks. Journal of Parallel and Distributed Computing, 63(1):87–96, 2003.

30 Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. Round-and message-optimal
distributed graph algorithms. In PODC, pages 119–128, 2018.

31 Bernhard Haeupler and David Wajc. A faster distributed radio broadcast primitive: Extended
abstract. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC ’16, pages 361–370, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2933057.2933121.

32 Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1166–1179. ACM, 2021.

33 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
MST in a distributed network with o(m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing (PODC), pages 71–80, 2015.

34 Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed MST verification. In
Proc. 28th Symp. on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs,
pages 69–80. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

35 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Dis-
tributed Computing, 20(4):253–266, 2007.

36 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Proc.24th ACM
Symp. on Principles of Distributed Computing (PODC), pages 9–18, 2005.

37 Shay Kutten, William K. Moses Jr., Gopal Pandurangan, and David Peleg. Singularly
near optimal leader election in asynchronous networks. In 35th International Symposium on
Distributed Computing (DISC), pages 27:1–27:18, 2021.

38 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. J. ACM, 62(1), 2015.

39 Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets and
applications. J. Algorithms, 28(1):40–66, 1998.

https://doi.org/10.1145/2933057.2933121

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:19

40 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput., 35:120–131, 2005.

41 Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter
graphs. In Proc. 20th ACM Symp. on Principles of Distributed Computing (PODC), pages
63–71, 2001.

42 Ali Mashreghi and Valerie King. Time-communication trade-offs for minimum spanning tree
construction. In Proceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN), 2017.

43 Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. In 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs,
pages 37:1–37:17, 2018.

44 Ali Mashreghi and Valerie King. Brief announcement: Faster asynchronous MST and low
diameter tree construction with sublinear communication. In Jukka Suomela, editor, 33rd In-
ternational Symposium on Distributed Computing, DISC 2019, October 14-18, 2019, Budapest,
Hungary, volume 146 of LIPIcs, pages 49:1–49:3, 2019.

45 Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. Distributed Computing, pages 1–17, 2021.

46 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’13, pages 196–203, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2486159.2486180.

47 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
Symposium on the Theory of Computing (STOC), pages 743–756, 2017.

48 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. The distributed minimum
spanning tree problem. Bulletin of the EATCS, 125, 2018.

49 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. ACM Transactions on Algorithms (TALG),
16(1):1–27, 2019.

50 David Peleg. Distributed Computing: A Locality Sensitive Approach. SIAM, 2000.
51 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of

distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–1442,
2000.

52 Deepak Rohilla, Mahendra Kumar Murmu, and Shashidhar Kulkarni. An efficient distributed
approach to construct a minimum spanning tree in cognitive radio network. In First Interna-
tional Conference on Sustainable Technologies for Computational Intelligence, pages 397–407.
Springer, 2020.

53 Baruch Schieber and Marc Snir. Calling names on nameless networks. Information and
Computation, 113(1):80–101, 1994.

54 Adrian Segall. Distributed network protocols. IEEE transactions on Information Theory,
29(1):23–35, 1983.

55 Gurdip Singh. Efficient leader election using sense of direction. Distributed Computing,
10(3):159–165, 1997. doi:10.1007/s004460050033.

56 Philip Spira. Communication complexity of distributed minimum spanning tree algorithms. In
Proceedings of the second Berkeley conference on distributed data management and computer
networks, 1977.

57 Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

58 Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

DISC 2022

https://doi.org/10.1145/2486159.2486180
https://doi.org/10.1007/s004460050033

19:20 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

A Toolbox

In this section, we present several procedures that are used as blackboxes in the current
paper. As these procedures are either from other papers or minor variations of those in other
papers, we merely mention what they do and their guarantees here.

Synchronization

Synchronizers are mechanisms that allow nodes to run synchronous algorithms in an asyn-
chronous network with some overhead, either in time or messages.

α-synchronizer. An alpha-synchronizer, presented by Awerbuch [4], is a well known mech-
anism for nodes to run synchronous algorithms in an asynchronous network in the same
running time (with a diameter overhead to time) while suffering a message overhead equiv-
alent to the product of the run time of the synchronous algorithm and O(m). Informally,
when simulating some synchronous algorithm Alg, each node v sends a “pulse” message to all
its neighbors after all of v’s messages in the current round of Alg were acknowledged. Thus,
v’s neighbors can keep track of which pulse, or “clock tick”, v has simulated. Additionally,
note that it takes O(D) time to initialize the α-synchronizer. A good description appears
also in [50]. We know the following about an α-synchronizer.

▶ Lemma 11 (Adapted from [50]). Consider a graph G with n nodes, m edges, and diameter
D in an asynchronous setting. The nodes of the graph may simulate a synchronous algorithm
that takes O(T) rounds and O(M) messages in the synchronous setting by utilizing an α-
synchronizer. The resulting simulated algorithm takes O(T + D) time and O(M + Tm)
messages and has termination detection.

β-synchronizer. A β-synchronizer is another type of synchronizer that reduces the message
overhead at the expense of time. An assumption is made that there exists a spanning tree
T , rooted at some node L, of depth d overlaid on top of the original graph and that each
node knows its parent and children in the tree, if any. Now, as with the α-synchronizer, a
synchronous algorithm that takes O(T) rounds and O(M) messages may be simulated in an
asychronous network with the help of pulses. However, here each node sends a pulse to its
parent once the current round is done and it has received pulses from each of its children in
the tree. Once the root receives the pulse and finishes the current round, it broadcasts a
message to move to the next round along the tree. The resulting simulated algorithm takes
O(T · d) time and O(M + Tn) messages.

▶ Lemma 12 (Adapted from [50]). Consider a graph G with n nodes in an asynchronous
setting. Assume that there exists a rooted spanning tree T of depth d overlaid on G such
that each node knows its parent and children, if any, in the tree. The nodes of the graph
may simulate a synchronous algorithm that takes O(T) rounds and O(M) messages in the
synchronous setting by utilizing a β-synchronizer over T . The resulting simulated algorithm
takes O(T · d) time and O(M + Tn) messages and has termination detection.

Notice that both α- and β-synchronizers can be used by nodes to enact a type of global
round counter up to any number that can be encoded using O(log n) bits.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:21

Leader Election

We make use of the leader election procedure, call it Procedure LE, of Kutten et al. [37]
to elect a leader with high probability. Adapting Theorem 11 to this setting, we have the
following lemma. Note that in the course of the procedure, all nodes are woken up but such
information was not mentioned in the theorem statement in [37], so we add it here.

▶ Lemma 13 (Theorem 11 in [37]). Procedure LE solves leader election with termination
detection with high probability in any arbitrary graph with n nodes, m edges, and diameter D

in O(D + log2 n) time with high probability using O(m log2 n) messages with high probability
in an asynchronous system with adversarial node wake-up. At the end of the procedure, all
nodes are awake.

Operations on a Fragment

In the course of our algorithm, we reach a situation where the graph G is partitioned into a
set of disjoint trees (called fragments), each with a distinct root, an associated fragment ID,
and an associated cluster ID (which may be different from its fragment ID). Each node knows
its parent and children in the fragment, if any. We now describe some common operations
that are to be performed on such trees.

Consider a tree T spanning a subset of the nodes of G, oriented towards a distinct root
R. Let the tree have fragment ID F , known to all nodes in T . Furthermore, all nodes of
T have the same cluster ID, say C, which may or may not be equal to F . Let size(T) and
depth(T) denote the number of vertices and the depth of T , respectively.

Broadcast on a Fragment. Suppose a message M , originating at the root R, must be
distributed to all nodes of the tree. Procedure Frag-Bcast performs this operation in a
straightforward manner. The root R sends M to all its neighbors. Intermediate nodes
receiving M on some round forward it to all their children in T in the next round.

To ensure termination detection, the procedure then performs a convergecast of acknowl-
edgements on T as follows. Each leaf, upon receiving M , sends back an “ack” message. Each
intermediate node waits until it receives an “ack” from all its children, and then sends an
“ack” to its parent. The operation terminates once the root receives an “ack” from all its
children.

▶ Lemma 14. Procedure Frag-Bcast, run by nodes in the tree T , performs broadcast of a
message originating at the root of T with termination detection in O(depth(T)) time and
O(size(T)) messages.

Upcast on a Fragment. Suppose m distinct and uncombinable messages, originating at
arbitrary locations in the tree, must be gathered to the root R. Procedure Upcast performs
this operation in a straightforward manner. Each node in the tree pipelines the messages it
has seen upwards in the tree (towards R), in some arbitrary order.

We assume that R knows the number m of such messages it expects to receive and ensure
this is true everywhere the procedure is called. Thus, R knows when it has received all m

messages. To ensure termination detection, the procedure then performs Frag-Bcast.

▶ Lemma 15. Procedure Upcast, run by nodes in the tree T , performs upcasting of m

distinct messages with termination detection in O(m + depth(T)) time and O(m · depth(T))
messages.

DISC 2022

19:22 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Downcast on a Fragment. Suppose m distinct and uncombinable messages M1, . . . , Mm,
originating at the root R, must be distributed to arbitrary destinations w1, . . . , wm in the
tree, respectively. Procedure Downcast performs this operation in a straightforward manner.
In each round i, R sends the pair (Mi, wi) to its neighbor on the unique R-wi path in T .
Intermediate nodes receiving a pair (Mi, wi) on some round forward it towards wi in the
next round. (Note that tie-breaking is not required.)

To ensure termination detection, the procedure then performs a convergecast of acknowl-
edgements, backtracking on the subtree T ′ marked by the downcast messages; namely, each
intermediate node that received ℓ messages from its parent and forwarded ℓj messages to its
child xj expects “ack - ℓj” from xj . After receiving all such “ack” messages from its children,
it sends “ack - ℓ” to its parent. The root detects termination upon receiving “ack” messages
from all relevant children.

▶ Lemma 16. Procedure Downcast, run by nodes in the tree T , performs downcasting of m

distinct messages with termination detection in O(m + depth(T)) time and O(m · depth(T) +
size(T)) messages.

Finding MOE of a Fragment. Informally, minimum outgoing edge (MOE) out of T is the
least weight edge out of T to a node with a different cluster ID (i.e, ̸= C). Formally, it is
a tuple ⟨u, v, C, C ′⟩ such that edge (u, v) is the MOE from T where u ∈ T with cluster ID
C and v /∈ T with cluster ID C ′(̸= C). Note that nodes not belonging to T but adjacent
to T may have the same cluster ID C as the nodes of T , and as such it is possible for T to
not have any MOE. Yet another application of Wave&Echo, taken from the algorithm of
[22], results in R being made aware of the MOE of T if such exists. Let us call this module
procedure Find-MOE.

▶ Lemma 17. Procedure Find-MOE, when run by the nodes of a tree T with distinct root
R, and cluster ID C, results in R knowing the minimum outgoing edge from T , if one exists,
where only edges to nodes with a cluster ID ̸= C are considered outgoing edges, in O(depth(T))
time and O(

∑
u∈T deg(u)) messages, where depth(T) is the depth of T and deg(u) is the

degree of node u. Furthermore, every node participating in procedure Find-MOE can detect
termination.

Size Calculation of a Fragment. We make use of a known tool (essentially a known
application of Wave&Echo, see PIF in [54]), to be run by the nodes of the tree and result
in R being made aware of how many nodes (including itself) belong to T . Let us call this
Procedure Tree-Count.

▶ Observation 18. Procedure Tree-Count, when run by the nodes of a tree T with distinct
root R, results in R knowing the total number of nodes in T in O(depth(T)) time and
O(size(T)) messages, where depth(T) is the depth of T and size(T) is the number of nodes
in T . Furthermore, nodes participating in procedure Tree-Count can detect termination.

Diameter Calculation of a Fragment. Another known application of Wave&Echo allows R

to calculate the diameter of the tree T , let us call that Procedure Diam-Calc.

▶ Observation 19. Procedure Diam-Calc, when run by the nodes of a tree T with distinct
root R, results in R knowing the diameter of T in O(depth(T)) time and O(size(T)) messages,
where depth(T) is the depth of T and size(T) is the number of nodes in T . Furthermore,
nodes participating in procedure Diam-Calc can detect termination.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:23

B Low Diameter Spanning Tree - Relegated Proofs

We first provide definitions and an auxiliary lemma (see Lemma 20) followed by proofs of
Lemmas 1 and 2, stated in Section 2.1. After which, we provide the proofs of Lemma 4 and
Corollary 5, stated in Section 2.2.

Consider some fixed execution of the algorithm and node v ∈ V . Then Du = Su +
dist(u, v) − 1 = δmax − ⌊δu⌋ + dist(u, v) − 1 denotes the (arrival) round of u, that is, the
first round in which v can receive a message from u’s cluster. For every integer 1 ≤ j ≤ n,
let zj be the node with the jth smallest arrival round in the execution. For every integer
1 ≤ k ≤ n, let Sk = {z1, . . . , zk}. Building upon these definitions, for a node v ∈ V , positive
integers 1 ≤ k, r ≤ n, let Ev,k,r denote the event that after the execution of the algorithm,
Dzk+1 − Dz1 ≤ r.

▶ Lemma 20. For any node v ∈ V and positive integers 1 ≤ k, r ≤ n,

Pr(Ev,k,r) ≤ (1 − exp(−(r + 1)β))k

Proof. We condition on Sk and D∗ = Dzk+1 . The proof is based on first showing the stated
upper bound on the probability of Ev,k,r conditioned on Sk and D∗, and then applying the
law of total probability to derive the lemma statement. We next describe the first half of the
proof in more detail.

For any integer i ≥ 1, let czi = δmax + dist(zi, v) − 1. We have Pr(Ev,k,r | Sk, D∗) ≤ p for

p = Pr

(
k∧

i=1

[D∗ − Dzi ≤ r]

)
= Pr

(
k∧

i=1

[δzi ≤ r + 1 + czi − D∗]

)
=

k∏
i=1

Pr(δzi ≤ r +1+czi −D∗),

where the last equality holds since the random variables δzi
are independent. Next, note

that D∗ ≥ Dzi
for any integer 1 ≤ i ≤ k, and thus Pr(⌊δzi

⌋ ≥ czi
− D∗) = 1. Hence,

Pr(δzi
≥ czi

− D∗) = 1 and

p =
k∏

i=1
Pr(δzi

≤ r + 1 + czi
− D∗ | δzi

≥ czi
− D∗).

Finally,

p ≤
k∏

i=1
Pr(δzi ≤ r + 1) =

k∏
i=1

(1 − exp(−(r + 1)β)) = (1 − exp(−(r + 1)β))k

where the inequality holds by the memorylessness of the exponential distribution. ◀

Proof of Lemma 1. We first note for any node v ∈ V , Pr[⌊δv⌋ > δmax] = Pr[δv > 2 ln n
β] =

exp(−2 ln n) = 1
n2 . Hence, by union bound, ⌊δv⌋ ≤ δmax for every node v ∈ V with high

probability. We hereafter exclude this unlikely event and assume δmax ≥ maxv∈V {⌊δv⌋}.
This implies that all nodes belong to a cluster.

Next, note that by the algorithm description, each cluster is spanned by a tree of depth
at most 2 ln n

β . Hence, all clusters have strong diameter at most 4 ln n
β . Finally, an edge is cut

if its two endpoints u and v are in different clusters. This implies that for node v (without
loss of generality), the two smallest arrival rounds differ by at most 1, which corresponds to
event Ev,1,1. By Lemma 20, Pr(Ev,1,1) ≤ (1 − exp(−2β)) ≤ 2β. The lemma follows. ◀

Proof of Lemma 2. Again, we assume δmax ≥ maxu∈V {δu}, which holds with high proba-
bility. For any node v ∈ V , let Cv denote the cluster containing v after the execution of the
algorithm.

DISC 2022

19:24 An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Consider any two nodes u, v ∈ V such that l = distG(u, v) > 3βD. (Note that if l ≤ 3βD,
then distG

∗(Cu, Cv) ≤ 3βD.) Let (w1, . . . , wl+1) be the shortest path between u and v

in G (where w1 = u and wl+1 = v). Moreover, for any integer i ∈ [1, l], let Xi be the
indicator random variable of wi and wi+1 being in the same cluster. Then, the random
variable X =

∑l
i=1 Xi is an upper bound on distG

∗(Cu, Cv). By Lemma 1, each edge is
an inter-cluster edge with probability at most 2β. Hence, by the linearity of expectation,
E[X] ≤ 2βl.

Next, let us provide a concentration bound for X by showing that the random variables Xi

are only locally dependent. First, for any two integers i, j ∈ [1, l] such that |i − j| > ⌊4 ln n
β ⌋,

Xi and Xj are independent (since the same node cannot affect wi and wj with our choice of
δmax). Then, we can color the random variables {Xi}i=1,...,l using χ = ⌊4 ln n

β ⌋ – by coloring
Xi with i mod (χ + 1) – such that variables with the same color are independent. In other
words, the random variables Xi are only locally dependent and thus we can apply a specific
Chernoff-Hoeffding bound (Theorem 3.2 from [15]): Pr(X ≥ E[X] + t) ≤ exp(−2t2/(χ · l)).
Hence, Pr(X ≥ 3βl) ≤ exp(−2(βl)2/(χ · l)) ≤ exp(−2β2l/χ). Since l > 3βD > 3k ln2 n

β3 ,
Pr(X ≥ 3βl) ≤ exp(− 3

2 k ln n) ≤ 1
nk . By taking a union bound over all n2 possible pairs of

nodes u, v ∈ V , the lemma statement follows. ◀

Proof of Lemma 4. By induction on i. The base case, i = 1, holds trivially.
Next, consider some i ≥ 1 for which the inductive hypothesis holds, i.e., diam(Gi−1) =

max{(3β)i−1D, O(log2+4/ε′
n)} w.h.p. and each cluster node C of the partition Pi−1 is

spanned (in the original graph G) by a tree T̂ (C) with diam(T̂ (C)) = (5 ln n
β)i−1. Running

Procedure MPX on Gi−1 yields a (2β, 4 ln n
β) low-diameter decomposition of Gi−1. In fact,

each super cluster C ′ of this decomposition on Gi−1 is spanned (in the cluster graph Gi−1)
by a tree T̂ (C ′) of diameter 4 ln n

β . Hence, the “combined” spanning tree computed by
Procedure Transform for the “analog” C ′′ of cluster C ′ on G, which is a cluster of the
newly constructed Gi, has diameter diam(T̂ (C ′′)) = (4 ln n

β + 1) · (5 ln n
β)i−1 ≤ (5 ln n

β)i. Next,
the diameter of Gi is the same as that of the cluster graph H induced by partition P∗

i . By
Lemma 2, the diameter of H is max{(3β)iD, O(log2+4/ε′

n)} w.h.p., and thus the lemma
statement holds. ◀

Proof of Corollary 5. By Lemma 4 (and applying one extra induction step), the diameter
of Gim

is Df = max{(3β)imD, O(log2+4/ε′
n)} and each cluster C of the partition Pim

is
spanned in G by a tree T̂ (C) of depth df = (5 ln n

β)im . Since im = ⌈log1/(3β) D⌉, we have
that (3β)im ≤ 1/D, so Df = O(log2+4/ε′

n). Moreover, by going through the computations,
we get:

df = exp(im ln(5 ln1+1/ε′
n)) ≤ (5 ln1+1/ε′

n) exp
(

ln D ln(5 ln1+1/ε′
n)

ln(1
3 ln1/ε′

n)

)

= (5 ln1+1/ε′
n) exp

(
ln D · ln 5 + (1 + 1/ε′) ln ln n

1
ε′ ln ln n − ln 3

)
= (5 ln1+1/ε′

n) exp
(

ln D ·
(

1 + ln 5 + ln 3 + ln ln n
1
ε′ ln ln n − ln 3

))
≤ (5 ln1+1/ε′

n) exp(ln D · (1 + 2ε′ ln 15)) ≤ (5 ln1+1/ε′
n) D1+ε ,

where, in order to make the last inequality hold, Procedure ST-Cons(ε) selects ε′ ≤
ε/(2 ln 15). ◀

Locally Restricted Proof Labeling Schemes
Yuval Emek #

Technion – Israel Institute of Technology, Haifa, Israel

Yuval Gil #

Technion – Israel Institute of Technology, Haifa, Israel

Shay Kutten #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
Introduced by Korman, Kutten, and Peleg (PODC 2005), a proof labeling scheme (PLS) is a
distributed verification system dedicated to evaluating if a given configured graph satisfies a certain
property. It involves a centralized prover, whose role is to provide proof that a given configured
graph is a yes-instance by means of assigning labels to the nodes, and a distributed verifier, whose
role is to verify the validity of the given proof via local access to the assigned labels. In this paper, we
introduce the notion of a locally restricted PLS in which the prover’s power is restricted to that of a
LOCAL algorithm with a polylogarithmic number of rounds. To circumvent inherent impossibilities
of PLSs in the locally restricted setting, we turn to models that relax the correctness requirements
by allowing the verifier to accept some no-instances as long as they are not “too far” from satisfying
the property in question. To this end, we evaluate (1) distributed graph optimization problems
(OptDGPs) based on the notion of an approximate proof labeling scheme (APLS) (analogous to the
type of relaxation used in sequential approximation algorithms); and (2) configured graph families
(CGFs) based on the notion of a testing proof labeling schemes (TPLS) (analogous to the type of
relaxation used in property testing algorithms). The main contribution of the paper comes in the
form of two generic compilers, one for OptDGPs and one for CGFs: given a black-box access to
an APLS (resp., PLS) for a large class of OptDGPs (resp., CGFs), the compiler produces a locally
restricted APLS (resp., TPLS) for the same problem, while losing at most a (1 + ϵ) factor in the
scheme’s relaxation guarantee. An appealing feature of the two compilers is that they only require a
logarithmic additive label size overhead.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Approximation algorithms analysis

Keywords and phrases proof labeling schemes, generic compilers, SLOCAL algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.20

Related Version Full Version: https://arxiv.org/abs/2208.08718 [8]

Funding This work was supported in part by the Technion Hiroshi Fujiwara Cyber Security Research
Center and the Israel National Cyber Directorate. In addition, the work of Shay Kutten was also
supported in part by ISF grant 1346/22.

1 Introduction

A proof system is a tool designed to verify the correctness of a certain claim. It is composed
of two entities: a prover, whose role is to provide proof for the claim in question; and a
computationally bounded verifier that seeks to verify the validity of the given proof. The
crux of a proof system is that the proof given by the prover cannot be blindly trusted. That
is, for a proof system to be correct, the verifier must be able to distinguish between an honest
prover, providing a correct proof, and a malicious prover who tries to convince the verifier of
a false claim.

© Yuval Emek, Yuval Gil, and Shay Kutten;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yemek@technion.ac.il
mailto:yuval.gil@campus.technion.ac.il
mailto:kutten@technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.20
https://arxiv.org/abs/2208.08718
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Locally Restricted Proof Labeling Schemes

In the realm of distributed computing, the study of proof systems, also known as distributed
proof systems, has attracted considerable attention. The goal of a distributed proof system is
to decide if a given configured graph satisfies a certain property. This is typically done by means
of a centralized prover, that has a global view of the entire configured graph, and a distributed
verifier, that operates at all nodes concurrently and is subject to locality restrictions. Various
models for distributed proof systems have been introduced in the literature, including proof
labeling schemes (PLSs) [19], locally checkable proofs [16], nondeterministic local decisions [12],
and distributed interactive proofs [17].

The current paper focuses on the PLS model, introduced by Korman, Kutten, and
Peleg [19] (see Sec. 2.1 for the formal definition). In a PLS, the prover generates its proof by
means of assigning a label to each node. The verification process performed by the verifier at
each node v has access to v’s label and to the labels of v’s neighbors, but it cannot access the
labels assigned to nodes outside its local neighborhood. The correctness requirements state
that if the given configured graph is a yes-instance, then all nodes must accept; and if the
given configured graph is a no-instance, then at least one node must reject. The standard
performance measure of a PLS is its proof size, defined to be the size of the largest label
assigned by the honest prover.

Recently, there is a growing interest from (sequential) computational complexity research-
ers in doubly efficient proof systems [15, 26]. These proof systems are characterized by
restricting the (honest) prover to “efficient computations” – i.e., polynomial time algorithms
– on top of the restrictions imposed on the computational power of the (still weaker) verifier.
For example, Goldwasser et al. [15] consider polynomial time provers vs. logarithmic space
verifiers, whereas Reingold et al. [26] consider polynomial time provers vs. linear time and
near-linear time verifiers.

Motivated by the success story of doubly efficient proof systems in sequential computa-
tional complexity, in this paper, we initiate the study of such proof systems in the distributed
computing realm. To do so, we adjust the notion of “efficient computations” from sequential
algorithms running in polynomial time to LOCAL algorithms running in a polylogarithmic
number of rounds [25]. This introduces a new type of PLSs, called locally restricted PLSs,
where the label assigned to a node v is computed by the (honest) prover based on the
subgraph induced by the nodes within polylogarithmic distance from v, rather than the
whole graph (refer to Sec. 2.2 for a formal definition).

Beyond the theoretical interest that lies in this new type of distributed proof systems, we
advocate for their investigation also from a more practical point of view: A natural application
of PLSs is local checking for self-stabilizing algorithms [2] which involves a detection module
and a correction module. In this mechanism, the verifier’s role is played by the detection
module and the prover’s role is played by a dedicated sub-module of the correction module
responsible for the label assignment to the nodes [19] (the correction module typically includes
another sub-module, responsible for constructing the actual solution, which is abstracted
away by the PLS). Since both modules operate as distributed algorithms, any attempt to
implement them in practice should take efficiency considerations into account. While classic
PLSs consider this efficiency requirement (only) from the verifier’s point of view, in locally
restricted PLSs, we impose efficiency demands on both the verifier and the prover.

It turns out that locally restricted PLSs are impossible for many interesting properties,
regardless of proof size (as shown in the simple observation presented in Appendix B). This
leads us to slightly relax the correctness requirements of a PLS so that the verifier may also
accept no-instances as long as they are not “too far” from satisfying the property in question.
Specifically, we consider locally restricted schemes in the context of two relaxed models called
approximate proof labeling schemes (APLS) [6, 7] and testing proof labeling schemes (TPLS).

Y. Emek, Y. Gil, and S. Kutten 20:3

Table 1 Locally restricted APLS (left) and TPLS (right) results, where ℓ stands for the proof
size and α stands for the approximation ratio.

OptDGP graph family α ℓ

min. weight vertex
cover

any 2(1 + ϵ) O(log n)

min. vertex cover odd-girth = ω(log n) 1 + ϵ O(log n)
max. ind. set any ∆(1 + ϵ) O(log n)

odd-girth = ω(log n) 1 + ϵ O(log n)
min. weight dom. set any O(log n) O(log n)
any canonical
OptDGP

any 1 + ϵ O(n2)

CGF ℓ

planarity O(log n)
bounded
arboricity

O(log n)

k-
colorability

O(log n)

forest O(log n)
DAG O(log n)

The APLS model was introduced by Censor-Hillel et al. [6] and studied further by Emek
and Gil [7]. For an approximation parameter α ≥ 1, the goal of an α-APLS for a distributed
graph optimization problem (OptDGP) is to distinguish between optimal instances and
instances that are α-far from being optimal (refer to Sec. 2 for the definitions). Interestingly,
for some classic edge-based covering/packing OptDGPs (e.g., maximum matching and
minimum edge cover), locally restricted APLSs are already established in previous works
[16, 6, 7]. In contrast, the existing APLSs for node-based covering/packing OptDGPs require
that the prover has a global view of the given configured graph (see, e.g., the APLS for
minimum weight vertex cover presented in [7]). In Sec. 4, we develop a generic compiler
that gets a (not necessarily locally restricted) α-APLS for an OptDGP Ψ, belonging to
a large class of node-based covering/packing OptDGPs, and generates a locally restricted
((1 + ϵ)α)-APLS for Ψ, where ϵ is a constant performance parameter. The proof size of the
locally restricted ((1 + ϵ)α)-APLS generated by our compiler is ℓΨ,α + O(log n), where ℓΨ,α

is the proof size of the α-APLS provided to the compiler. Refer to Section 4.3 for a high-level
overview of this construction.

The TPLS model is developed in the current paper based on the notion of property testing
[14, 1]. For a parameter δ > 0, the goal of a δ-TPLS for a configured graph family (CGF) Φ is
to distinguish between configured graphs belonging to Φ and configured graphs that are δ-far
from belonging to Φ, where the distance here is measured in terms of the graph topology. In
Sec. 5, we develop a generic compiler that gets a (not necessarily locally restricted) PLS for
a CGF Φ, that is closed under node-induced subgraphs and disjoint union, and generates a
locally restricted δ-TPLS for Φ. The proof size of the locally restricted δ-TPLS generated by
our compiler is ℓΦ + O(log n), where ℓΦ is the proof size of the PLS provided to the compiler.
Refer to Section 5.2 for a high-level overview of this construction.

The applicability of our compilers is demonstrated in Appendix A, where we show how
the two compilers can be used to obtain APLSs and TPLSs for various well-known OptDGPs
and CGFs, respectively; refer to Table 1 for a summary of these results. We conclude with
additional related work presented in Appendix C.

1.1 Paper’s Organization

In Section 2, we present the model. Preliminaries are presented in Section 3. Following that,
in Sections 4 and 5, we present our compiler for OptDGPs and CGFs, respectively. Within
these sections, a high-level overview of the compilers appears in Subsections 4.3 and 5.2.

DISC 2022

20:4 Locally Restricted Proof Labeling Schemes

2 Model

We consider distributed verification systems in which evaluated instances are called configured
graphs. A configured graph Gs = ⟨G, s⟩ is a pair consisting of an undirected graph G = (V, E)
and a configuration function s : V → {0, 1}∗ that assigns a bit string s(v), referred to as v’s
local configuration, to each node v ∈ V . Throughout this paper, we use the notation n = |V |
and m = |E|.

For a node v ∈ V , we stick to the convention that NG(v) = {u | (u, v) ∈ E} denotes the
set of v’s neighbors in G and that degG(v) = |NG(v)| denotes v’s degree in G. When G is
clear from the context, we may omit it from our notations and use N(v) and deg(v) instead
of NG(v) and degG(v), respectively.

We assume that all configured graphs considered in the context of this paper are identified,
i.e., the configuration function s : V → {0, 1}∗ assigns a unique id of size O(log n), denoted
by id(v), to each node v ∈ V . Moreover, we assume that the local configuration s(v)
distinguishes between node v’s incident edges by means of a set A(v) of abstract port names,
and a bijection ρs

v : N(v) → A(v), referred to as the internal port name assignment of v, that
assigns a (locally unique) port name ρs

v(u) to each node u ∈ N(v). More concretely, assume
that the local configuration s(v) includes a designated field for each neighbor u ∈ N(v) and
that this field is indexed by ρs

v(u). Unless stated otherwise, when we refer to an ordered
list u1, . . . , udeg(v) of v’s neighbors, it is assumed that the list is ordered by v’s internal port
name assignment.

Given a configured graph Gs consisting of graph G = (V, E) and configuration function
s, we say that a configured graph G′

s′ consisting of graph G′ = (V ′, E′) and configuration
function s′, is a configured subgraph of Gs if (1) G′ is a subgraph of G, i.e., V ′ ⊆ V and
E′ ⊆ E; and (2) the configuration function s′ is the projection of s on G′, where for each
node v ∈ V ′, the fields corresponding to nodes u ∈ NG(v) \ NG′(v) are omitted from the local
configuration s′(v) and the internal port name assignment ρs′

v associated with s′ is defined
so that ρs′

v (u) = ρs
v(u) for each u ∈ NG′(v). For a node subset U ⊆ V , let G(U) denote the

subgraph induced on G by U and let Gs(U) be the configured subgraph of Gs defined over
the subgraph G(U).

We define a configured graph family (CGF) as a collection of configured graphs. A CGF
type that plays a central role in this paper is that of a distributed graph problem (DGP)
Π, where for each configured graph Gs ∈ Π, the configuration function s is composed of an
input assignment i : V → {0, 1}∗ and an output assignment o : V → {0, 1}∗. We refer to such
a configured graph as an input-output (IO) graph and often denote it by Gi,o. The input
assignment i assigns to each node v ∈ V , a bit string i(v), referred to as v’s local input, that
encodes attributes associated with v and its incident edges (e.g., node ids, edge orientations,
edge weights, and node weights); whereas the output assignment o assigns a local output o(v)
to each node v ∈ V . For an input assignment i, we refer to the configured graph Gi = ⟨G, i⟩
as an input graph.

Consider a DGP Π. An input graph Gi is said to be legal (and the graph G and input
assignment i are said to be co-legal) if there exists an output assignment o such that Gi,o ∈ Π,
in which case we say that o is a feasible solution for Gi (or simply for G and i). For a DGP
Π, we denote the set of legal input graphs by LEG(Π) = {Gi | ∃o : Gi,o ∈ Π}.

A distributed graph minimization problem (MinDGP) (resp., distributed graph maximiza-
tion problem (MaxDGP)) Ψ is a pair ⟨Π, f⟩, where Π is a DGP and f : Π → Z is a function,
referred to as the objective function of Ψ, that maps each IO graph Gi,o ∈ Π to an integer
value f(Gi,o).1 Given a co-legal graph G and input assignment i, define

1 We assume for simplicity that the images of the objective functions used in the context of this paper are

Y. Emek, Y. Gil, and S. Kutten 20:5

OPTΨ(G, i) = inf
o:Gi,o∈Π

{f(Gi,o)}

if Ψ is a MinDGP; and

OPTΨ(G, i) = sup
o:Gi,o∈Π

{f(Gi,o}

if Ψ is a MaxDGP. We often use the general term distributed graph optimization problem
(OptDGP) to refer to MinDGPs as well as MaxDGPs. Given an OptDGP Ψ = ⟨Π, f⟩ and co-
legal graph G and input assignment i, the output assignment o is said to be an optimal solution
for Gi (or simply for G and i) if o is a feasible solution for Gi and f(Gi,o) = OPTΨ(G, i).

2.1 Proof Labeling Schemes
In this section we present the notion of proof labeling schemes as well as its approximation
variants. To that end, we first present the notion of gap proof labeling schemes, as defined
in [7].

Fix some universe U of configured graphs. A gap proof labeling scheme (GPLS) is a
mechanism designed to distinguish the configured graphs in a yes-family FY ⊂ U from the
configured graphs in a no-family FN ⊂ U , where FY ∩ FN = ∅. This is done by means
of a (centralized) prover and a (distributed) verifier that play the following roles: Given
a configured graph Gs ∈ U , if Gs ∈ FY , then the prover assigns a bit string L(v), called
the label of v, to each node v ∈ V . Let LN (v) = ⟨L(u1), . . . , L(udeg(v))⟩ be the vector of
labels assigned to v’s neighbors. The verifier at node v ∈ V is provided with the 3-tuple
⟨s(v), L(v), LN (v)⟩ and returns a Boolean value φ(v).

We say that the verifier accepts Gs if φ(v) = True for all nodes v ∈ V ; and that the
verifier rejects Gs if φ(v) = False for at least one node v ∈ V . The GPLS is said to be
correct if the following requirements hold for every configured graph Gs ∈ U :

▶ R1. If Gs ∈ FY , then the prover produces a label assignment L : V → {0, 1}∗ such that
the verifier accepts Gs.

▶ R2. If Gs ∈ FN , then for any label assignment L : V → {0, 1}∗, the verifier rejects Gs.

We emphasize that no requirements are made for configured graphs Gs ∈ U \ (FY ∪ FN); in
particular, the verifier may either accept or reject these configured graphs (the same holds
for configured graphs that do not belong to the universe U). The performance of a GPLS
is measured by means of its proof size defined to be the maximum length of a label L(v)
assigned by the prover to the nodes v ∈ V assuming that Gs ∈ FY .

Proof Labeling Schemes for CGFs. Consider some CGF Φ and let U be the universe of
all configured graphs. A proof labeling scheme (PLS) for Φ is the GPLS over U defined by
setting the yes-family to be FY = Φ; and the no-family to be FN = U \ FY . In other words,
a PLS for Φ determines whether a given configured graph Gs belongs to Φ.

integral. Lifting this assumption and allowing for real numerical values would complicate some of the
arguments, but it does not affect the validity of our results.

DISC 2022

20:6 Locally Restricted Proof Labeling Schemes

In this paper, we also define a relaxed model of PLSs for a CGF Φ in which we allow the
verifier to accept configured graphs that are not “too far” from belonging to Φ. To that end,
we use the following distance measure which is widely used in the realm of property testing
(see e.g., [1]).

let Gs and G′
s′ be two configured graphs. Given a parameter δ > 0, we say that Gs and

G′
s′ are δ-close if G′

s′ is a configured subgraph of Gs and G′ can be obtained from G by
removing at most δm edges (or vice versa).

Consider a CGF Φ. We say that a configured graph Gs is δ-far from belonging to Φ if
G′

s′ /∈ Φ for any configured graph G′
s′ which is δ-close to Gs. We define a δ-testing proof

labeling scheme (δ-TPLS) in the same way as a PLS for Φ with the sole difference that the
no-family is defined by setting FN = {Gs | Gs is δ-far from belonging to Φ}.

Proof Labeling Schemes for OptDGPs. Consider some OptDGP Ψ = ⟨Π, f⟩ and let
U = {Gi,o | Gi ∈ LEG(Π)}. A proof labeling scheme (PLS) for Ψ is defined as a GPLS over
U by setting the yes-family to be

FY = {Gi,o ∈ Π | f(Gi,o) = OPTΨ(G, i)}

and the no-family to be FN = U \ FY . In other words, a PLS for Ψ determines for a given
IO graph Gi,o ∈ U whether the output assignment o : V → {0, 1}∗ is an optimal solution
(which means in particular that it is a feasible solution) for the co-legal graph G = (V, E)
and input assignment i : V → {0, 1}∗.

In the realm of OptDGPs, a relaxed model called approximate proof labeling scheme has
been considered in [6, 7]. In this model, the correctness requirement of a PLS are relaxed so
that it may also accept feasible solutions that only approximate the optimal ones. Specifically,
given an approximation parameter α ≥ 1, an α-approximate proof labeling scheme (α-APLS)
for an OptDGP Ψ = ⟨Π, f⟩ is defined in the same way as a PLS for Ψ with the sole difference
that the no-family is defined by setting

FN =
{

U \ {Gi,o ∈ Π | f(Gi,o) ≤ α · OPTΨ(G, i)} , if Ψ is a MinDGP
U \ {Gi,o ∈ Π | f(Gi,o) ≥ OPTΨ(G, i)/α} , if Ψ is a MaxDGP

.

2.2 Locally Restricted Proof Labeling Schemes
In this paper, we focus on provers whose power is limited as follows. We say that a
GPLS is locally restricted if there exists a constant c such that for every configured graph
Gs = ⟨G = (V, E), s⟩ ∈ FY and for every node v ∈ V , the label L(v) is computed by the
prover as a function of Gs(Br(v)), where r = logc n and Br(v) denotes the set of nodes at
(hop) distance at most r from v in G. Equivalently, the prover is restricted to a distributed
algorithm operating under the LOCAL model [22, 25] with polylogarithmic rounds. We
emphasize that if Gs ∈ FN , then the verifier is required to reject Gs for any label assignment,
including label assignments that were not produced in a locally restricted fashion.

3 Preliminaries

Sequentially Local Algorithms. In the sequentially local (SLOCAL) model, introduced
in [13], each node v ∈ V maintains two (initially empty) bit strings denoted by info(v)
and decision(v). Nodes are processed sequentially in an arbitrary order p = v1, . . . , vn (i.e.,
irrespective of node ids). We refer to the time that node vi is processed as the i-th iteration

Y. Emek, Y. Gil, and S. Kutten 20:7

of the algorithm. In the i-th iteration, vi has a read/write access to info(u) for all nodes
u ∈ Br(vi), where r ∈ Z≥0 is a parameter referred to as the locality of the algorithm.
Following that, vi writes an irrevocable value into decision(vi) based strictly on Gs(Br(vi))
and the bit strings info(u) of all u ∈ Br(vi).

A consequence of the seminal work of Ghafari et al. [13, 27] is that any SLOCAL
algorithm with logO(1) n locality can be simulated by a LOCAL algorithm with logO(1) n

rounds. Therefore, in the context of a locally restricted GPLS, by allowing the prover to
compute the label L(v) of each node v ∈ V using an SLOCAL algorithm with locality
r = logO(1) n (rather than a LOCAL algorithm with logO(1) n rounds), we do not increase
the scheme’s power.

Comparison Schemes. Let U be a universe of configured graphs Gsa,b
, such that G = (V, E)

is a connected undirected graph and the configuration function sa,b : V → {0, 1}∗ assigns
two values a(v), b(v) ∈ R to each node v ∈ V . A comparison scheme is a mechanism
whose goal is to decide if

∑
v∈V a(v) ≥

∑
v∈V b(v) for a given configured graph Gsa,b

∈ U .
Formally, a comparison scheme is defined as a GPLS over U by setting the yes-family to be
FY = {Gsa,b

∈ U |
∑

v∈V a(v) ≥
∑

v∈V b(v)}; and the no family to be FN = U \ FY .
In [19, Lemma 4.4], Korman et al. present a generic design for comparison schemes as

follows. Consider a configured graph Gsa,b
∈ U . The label assignment L : V → {0, 1}∗

constructed by the prover encodes a spanning tree of G rooted at some (arbitrary) node
r ∈ V (see [19, Lemma 2.2] for details on spanning tree construction). In addition, the prover
encodes the sum of a(·) and b(·) values in the sub-tree rooted at node v for each v ∈ V . This
allows the verifier to check that the sums assigned at each node v ∈ V are correct (using
the sums assigned to v’s children); and the verifier at the root r can evaluate if Gsa,b

∈ FY .
The proof size of this scheme is O(log n + Ma,b), where Ma,b is the maximum length (in bits)
of values

∑
v∈U a(v) and

∑
v∈U b(v) over all node-subsets U ⊆ V . This comparison scheme

construction is used as an auxiliary tool in the compilers presented in Sec. 4 and 5.

4 Compiler for OptDGPs

In this section, we present our generic compiler for OptDGPs. It is divided into five subsections
as follows. First, in Sec. 4.1 we characterize the OptDGPs that are suited for our compiler,
referred to as canonical OptDGPs, based on the notions of locally checkable labelings and
covering/packing OptDGPs (these terms are formally defined in Sec. 4.1). In Sec. 4.2, we
establish an important property of optimal solutions for covering/packing OptDGPs that
serve the compiler construction. Sec. 4.4 and 4.5 are dedicated to the compiler construction.
More formally, these sections constructively prove the following theorem.

▶ Theorem 4.1. Let Ψ be a canonical OptDGP that admits an α-APLS with a proof size of
ℓΨ,α. For any constant ϵ > 0, there exists a locally restricted (α(1 + ϵ))-APLS for Ψ with a
proof size of ℓΨ,α + O(log n).

For convenience, the compiler construction is divided between Sec. 4.4 and 4.5 as follows.
In Sec. 4.4, we present an SLOCAL algorithm with logarithmic locality that partitions the
nodes into disjoint clusters, such that the subgraph induced by each cluster is of logarithmic
diameter. The goal of this partition is to enable the prover to construct the label of a node
as a function of the subgraph induced by its cluster (and possibly some nodes adjacent to its
cluster) without information on nodes that are farther away. This partition facilitates the
label assignment and verification process described in Sec. 4.5. In Sec. 4.3, we provide a
high-level overview of the SLOCAL algorithm and how it is used in the label assignment and
verification process.

DISC 2022

20:8 Locally Restricted Proof Labeling Schemes

4.1 Canonical OptDGPs

Locally Checkable Labelings. A DGP Π is said to be a locally checkable labeling
(LCL) (cf. [23]) if there exists a Boolean predicate family LΠ = {pΠ

d,ℓ : ({0, 1}∗)d+1 →
{True, False}}d∈Z≥0,ℓ∈{0,1}∗ such that for every legal input graph Gi ∈ LEG(Π), an
output assignment o : V → {0, 1}∗ is a feasible solution for G and i if and only
if pΠ

deg(v),i(v)(o(v), o(u1), . . . , o(udeg(v))) = True for every node v ∈ V with neighbors
u1, . . . , udeg(v).

For convenience, we assume that the local input i(v) of a node v ∈ V is partitioned into
two fields, denoted by prd(i(v)) and data(i(v)), where the former (fully) determines the
predicate pΠ

deg(v),i(v) associated with deg(v) and i(v) and the latter encodes all other pieces of
information included in i(v). This allows us to slightly abuse the notation and write pΠ

prd(i(v))
instead of pΠ

deg(v),i(v). We further assume that the Boolean predicate family LΠ includes
the trivial tautology predicate tautd : ({0, 1}∗)d+1 → {True, False}, d ∈ Z≥0, that satisfies
tautd(x) = True for every x ∈ ({0, 1}∗)d+1 and that this predicate is encoded by writing the
designated bit string tautd in the prd(·) field of the local input.

We say that an LCL Π is self-induced if the following two conditions are satisfied for
every legal input graph Gi ∈ LEG(Π) and node subset U ⊆ V : (1) Gi(U) ∈ LEG(Π); and (2)
if i′ : V → {0, 1}∗ is the input assignment derived from i by setting data(i′(v)) = data(i(v))
and prd(i′(v)) = tautdeg(v) for every v ∈ U , then Gi′ ∈ LEG(Π).

Let Π be an LCL and let Gi ∈ LEG(Π). For a subset U ⊆ V of nodes, we denote by
inner(U) = {u ∈ U | NG(u) ⊆ U} the set of nodes in U for which every neighbor is in U

and define inner2(U) = inner(inner(U)) and rim(U) = U \ inner2(U). We say that a
function g : U → {0, 1}∗ respects Π if pΠ

prd(i(v))(g(v), g(u1), . . . , g(udeg(v))) = True for each
v ∈ inner(U) with neighbors u1, . . . , udeg(v).

Canonical OptDGPs. A MinDGP (resp., MaxDGP) Ψ = ⟨Π, f⟩ is said to be a covering
(resp., packing) OptDGP if the following conditions hold: (1) Π is an LCL; (2) for each n-node
IO graph Gi,o ∈ Π, there exists a positive integer k = k(Π, n) = nO(1) such that the output
assignment o assigns a nonnegative integer o(v) ∈ {0, . . . , k}, referred to as v’s multiplicity,
to each node v ∈ V ; (3) for each predicate pΠ

d,ℓ ∈ LΠ, if pΠ
d,ℓ(x0, x1, . . . , xd) = True for

nonnegative integers x0, x1, . . . , xd ∈ {0, . . . , k}, then pΠ
d,ℓ(x′

0, x′
1, . . . , x′

d) = True for any
nonnegative integers x′

0, x′
1, . . . , x′

d ∈ {0, . . . , k} that satisfy x′
j ≥ xj (resp., x′

j ≤ xj) for all
0 ≤ j ≤ d; (4) for every legal input graph Gi ∈ LEG(Π), there exists a node-weight function
w : V → {1, . . . nO(1)} such that the weight w(v) of node v is encoded in v’s local input field
data(i(v)); and (5) f(Gi,o) =

∑
v∈V w(v) · o(v) for every Gi,o ∈ Π. The OptDGP Ψ = ⟨Π, f⟩

is said to be canonical if it is covering/packing and Π is self-induced.
Consider a covering/packing OptDGP Ψ = ⟨Π, f⟩. Let Gi ∈ LEG(Π) be a legal input

graph with the underlying node-weight function w : V → {1, . . . , nO(1)} and let U ⊆ V .
Given a function g : U → {0, . . . , k(Π, n)} that assigns a multiplicity value g(u) to each node
u ∈ U , we define w(U, g) =

∑
u∈U w(u) · g(u).

For a covering MinDGP Ψ, let wmin(U) denote the minimum possible value of w(U, g)
obtained by a function g : U → {0, . . . , k(Π, n)} that respects Π. Let N2(U) be the set of
nodes in V \ U at distance at most 2 from a node in U . For a packing MaxDGP, let wmax(U)
denote the maximum possible value of w(U, g) obtained by a function g : U ∪ N2(U) →
{0, . . . , k(Π, n)} that satisfies (1) g(v) = 0 for each node v ∈ N2(U); and (2) g respects Π.

Y. Emek, Y. Gil, and S. Kutten 20:9

4.2 Properties of Optimal Solutions for Covering/Packing OptDGPs
In the following lemmas, we establish important properties regarding optimal solutions of
covering and packing OptDGPs. Consider a covering (resp., packing) OptDGP Ψ = ⟨Π, f⟩.
Let Gi,o ∈ Π be an IO graph such that o : V → {0, . . . , k(Π, n)} is an optimal solution for G

and i.

▶ Lemma 4.2. If Ψ is a covering MinDGP, then w(inner2(U), o) ≤ wmin(U) for any U ⊆ V .

Proof. Assume by contradiction that w(inner2(U), o) > wmin(U) for some U ⊆ V . This
means that there exists an assignment o′ : U → {0, . . . , k(Π, n)} that respects Π, such that
w(inner2(U), o) > w(U, o′). Let õ be the output assignment defined as follows: õ(v) = o(v)
for all v ∈ V \ U ; õ(v) = o′(v) for all v ∈ inner2(U); and õ(v) = max{o(v), o′(v)} for
all v ∈ rim(U). Recall that o is a feasible solution for G and i and that o′ respects Π.
Since Ψ is a covering OptDGP, we get that pΠ

prd(i(v))(õ(v), õ(u1), . . . , õ(udegG(v))) = True for
each node v ∈ V (where u1, . . . , udegG(v) denote v’s neighbors in G). It follows that õ is a
feasible solution with objective value f(Gi,õ) = w(V, õ) ≤ w(V \ U, o) + w(inner2(U), o′) +
w(rim(U), o) + w(rim(U), o′) = w(V, o) − w(inner2(U), o) + w(U, o′) < w(V, o) = f(Gi,o)
which contradicts the optimality of o. ◀

▶ Lemma 4.3. If Ψ is a packing MaxDGP, then w(U, o) ≥ wmax(inner2(U)) for any U ⊆ V .

The proof of Lemma 4.3 is similar to the proof for Lemma 4.2. We defer it to the full version
of this paper [8].

4.3 Overview
In Sec. 4.4, we present an SLOCAL algorithm called Part_OPT that partitions the nodes
of a given IO graph Gi,o into clusters. Before formally describing the algorithm in Sec. 4.4,
let us provide some intuition by presenting the high-level idea of the partition and how
it is used in the label and verification process (as described in Sec. 4.5) for the case of a
canonical MinDGP Ψ (the high-level idea for MaxDGPs is similar and the differences are
mostly technical).

Given an IO graph Gi,o, where o is an optimal solution, we use a ball growing argument
to obtain a partition of the nodes into clusters such that: (1) the subgraph induced by each
cluster is of logarithmic diameter; and (2) the total weight of nodes in the rim of clusters (i.e.,
nodes with distance at most 2 from a different cluster) is an ϵ-fraction of the total weight of
inner nodes of clusters (i.e., nodes with distance at least 3 from a different cluster).

The goal of the partition obtained by Part_OPT is to allow the prover to compute the
label assigned to each node based on its cluster. Essentially, the prover seeks to provide
the verifier with a proof that the partition satisfies 2 main properties: (1) for each cluster
Vj , the weight of the given solution induced on the inner nodes is at most the weight of an
approximately optimal (global) solution induced on the cluster; and (2) the total weight of
nodes in the rim of clusters is at most an ϵ-fraction of the total weight of inner nodes.

While providing proof for the first property is rather straightforward using the labels
of an α-APLS for Ψ in a black box manner, providing proof for the second property is
somewhat more challenging. The reason is that the property as presented above is rather
global – not every cluster is guaranteed to have at most an ϵ-fraction of its weight assigned
to the rim nodes. Constructing a label that sums the total weights of rim and inner nodes of
all clusters is a global task and can not be accomplished in a locally restricted fashion. To
that end, during Part_OPT, we may assign some nodes with a secondary affiliation to an

DISC 2022

20:10 Locally Restricted Proof Labeling Schemes

adjacent cluster. The idea is that for each cluster Vj , the sum between weights of nodes with
secondary affiliation to Vj and nodes in rim(Vj) that do not have a secondary affiliation to
any cluster is bounded by an ϵ-fraction of Vj ’s inner nodes weight.

Throughout Part_OPT, each node v maintains a color whose role is to keep track of the
changeability status of v’s secondary affiliation. The color white indicates that the secondary
affiliation may still change; whereas black indicates that the secondary affiliation is final.

4.4 Partition Algorithm

Algorithm’s Description. We now provide a formal description of the Part_OPT algorithm.
Consider a canonical OptDGP Ψ = ⟨Π, f⟩. Let Gi,o ∈ Π be an IO graph such that o is
an optimal solution for G and i. The algorithm partitions the nodes of G into (possibly
empty) clusters V = V1∪̇ . . . ∪̇Vn. As usual in the SLOCAL model, the nodes are processed
sequentially in n iterations based on an arbitrary order v1, . . . , vn on the nodes, where node
vj is processed in the j-th iteration.

Throughout the execution of Part_OPT, each node v ∈ V maintains three fields referred
to as cluster(v), sec(v), and color(v). The field cluster(v) is initially empty and its role
is to identify v’s cluster, where each cluster Vj is identified by the id of node vj which is
processed in the j-th iteration, i.e., Vj = {v | cluster(v) = id(vj)}. The field sec(v) is initially
empty and its role is to identify v’s secondary affiliation to a cluster if such affiliation exists
(otherwise it remains empty throughout the algorithm). The field color(v) ∈ {black, white},
initially set to white, maintains v’s color.

We describe the j-th iteration of Part_OPT as follows. Let Gj be the subgraph induced
on G by V \ (V1 ∪ · · · ∪ Vj−1). If vj ∈ V1 ∪ · · · ∪ Vj−1, then we define Vj = ∅ and finish the
iteration; so, assume that vj is a node in Gj . For an integer r ∈ Z≥0, let Dr

j be the set of
nodes at distance exactly r from vj in Gj and let Br

j =
⋃r

r′=0 Dr′

j . Let whitej be the set of
nodes in Gj that are colored white in the beginning of the j-th iteration.

Suppose that Ψ is a MinDGP. We define r(j) to be the smallest integer that satisfies
w(inner2(Br(j)+6

j), o) ≤ (1 + ϵ) · w(inner2(Br(j)+2
j), o). Notice that inner2(·) is taken with

respect to nodes in G (and not Gj), i.e., inner2(Br(j)+6
j) (resp., inner2(Br(j)+2

j)) is the set
of nodes in B

r(j)+6
j (resp., B

r(j)+2
j) for which every node within distance 2 in G is in B

r(j)+6
j

(resp., B
r(j)+2
j). In the case that Ψ is a MaxDGP, define r(j) to be the smallest integer that

satisfies w(Br(j)+6
j , o) ≤ (1 + ϵ) · w(Br(j)+2

j , o).
Following the computation of r(j), we define the cluster Vj and modify the color and

secondary affiliation of some nodes as follows (this process is the same for MinDGPs and
MaxDGPs). Let Xj be the set of white nodes in inner2(Br(j)+6

j) at distance exactly
r(j) + 3 from vj , and let Yj be the set of white nodes in inner2(Br(j)+6

j) at distance exactly
r(j) + 4 from vj that have a neighbor in Xj . We complete the j-th iteration by setting
cluster(v) = id(vj) for each node v ∈ B

r(j)+2
j (i.e., setting Vj = B

r(j)+2
j); sec(v) = id(vj) for

each node v ∈ Xj ∪ Yj ; and color(v) = black for each node v ∈ Xj .

Algorithm’s Properties. We go on to analyze some properties of Part_OPT. Consider a
cluster Vj . Let sec(Vj) = {v | sec(v) = id(vj)} be the set of nodes whose secondary affiliation
is to Vj by the end of the algorithm and let ext(Vj) = Vj ∪ sec(Vj).

▶ Lemma 4.4. The subgraphs G(Vj) and G(ext(Vj)) induced on G by Vj and ext(Vj),
respectively, are connected and have diameter O(log n) for each j ∈ [n].

Y. Emek, Y. Gil, and S. Kutten 20:11

Proof. Suppose that Vj ̸= ∅ (as the lemma is trivial otherwise). First, observe that by
definition, all nodes v ∈ Vj are reachable from vj in G(Vj), thus G(Vj) is connected.

To see that G(ext(Vj)) is connected, we first observe that the subgraph G(Vj ∪ Xj ∪ Yj)
is connected. By the time cluster Vj is determined, we color the nodes of Xj black. Thus,
their secondary affiliation remains to Vj throughout the algorithm. At termination, it follows
that ext(Vj) = Vj ∪ Xj ∪ Y for some Y ⊆ Yj . Since the nodes of Y all have a neighbor in
Xj , we get that G(ext(Vj)) = G(Vj ∪ Xj ∪ Y) is connected.

To show that the diameters of G(Vj) and G(ext(Vj)) are O(log n) it is sufficient to show
that r(j) = O(log n). We use a ball growing argument. By definition, for every r′ < r(j) + 6,
it holds that

w(inner2(Br(j)+6
j), o) ≥ w(inner2(Br′

j), o) > (1 + ϵ) · w(inner2(Br′−4
j), o)

> (1 + ϵ)2 · w(inner2(Br′−8
j), o) > . . .

if Ψ is a MinDGP; and

w(Br(j)+6
j , o) ≥ w(Br′

j , o) > (1 + ϵ) · w(Br′−4
j , o) > (1 + ϵ)2 · w(Br′−8

j , o) > . . .

if Ψ is a MaxDGP. Since the terms w(inner2(Br(j)+6
j), o) and w(Br(j)+6

j , o) are both bounded
by a polynomial of n, it follows that r(j) = O((1/ϵ) log n) = O(log n) in both cases. ◀

A simple observation derived from Lemma 4.4 is that Part_OPT has locality O(log n).
This observation combined with the results of [13, 27] lead to the following corollary.

▶ Corollary 4.5. The algorithm Part_OPT can be simulated by a LOCAL algorithm with
polylogarithmic round-complexity.

For each j ∈ [n], define Sj = sec(Vj)∪{v ∈ rim(Vj) | sec(v) is empty} as the set of nodes
composed of nodes outside of Vj whose secondary affiliation is to Vj and nodes in rim(Vj)
that do not have a secondary affiliation. The following observation establishes an important
property regarding the sets rim(Vj) and Sj .

▶ Observation 4.6.
⋃

j∈[n] rim(Vj) ⊆
⋃

j∈[n] Sj

Proof. Consider a node v ∈ rim(Vj) for some j ∈ [n]. By definition, if sec(v) is empty, then
v ∈ Sj . If sec(v) is not empty, then there exists some j′ ∈ [n] such that v ∈ sec(Vj′), and
therefore v ∈ Sj′ . Overall, we get that v ∈

⋃
ℓ∈[n] Sℓ. ◀

4.5 Labels and Verification
In this section, we describe the label assignment and verification process of our compiler
for the case of MinDGPs. The description of the changes required to establish the same for
MaxDGPs is deferred to the full version of this paper [8]. In both cases, we establish the
proof size and correctness of our construction, thus proving Theorem 4.1.

Consider a canonical MinDGP Ψ = ⟨Π, f⟩ and an IO graph Gi,o ∈ Π, where o is an
optimal solution for G and i. The prover uses the SLOCAL algorithm Part_OPT presented
in Sec. 4.4 to compute the values r(j) and subsets Vj , sec(Vj), ext(Vj) = Vj ∪ sec(Vj), and
Sj = sec(Vj) ∪ {v ∈ rim(Vj) | sec(v) is empty} for all j ∈ [n].

The goal of the prover is to provide proof of four properties satisfied by the given solution
o and the outcome of Part_OPT. We refer to those properties as feasibility, rim, growth, and
optimality. The four properties are defined as follows. The feasibility property states that o

DISC 2022

20:12 Locally Restricted Proof Labeling Schemes

is a feasible solution for G and i, i.e., Gi,o ∈ Π; the rim property states that for each j ∈ [n]
and node v ∈ rim(Vj), there exists j′ ∈ [n], such that v ∈ Sj′ ; the growth property states
that w(Sj , o) ≤ ϵ · w(inner2(Vj), o) for each j ∈ [n]; and the optimality property states that
w(inner2(Vj), o) ≤ α · wmin(Vj) for each j ∈ [n].

The prover provides its proof by means of a label assignment L : V → {0, 1}∗ that
assigns each node v with a label L(v) = ⟨Lfeas(v), Lrim(v), Lgrw(v), Lopt(v)⟩. The label L(v)
is composed of the fields Lfeas(v), Lrim(v), Lgrw(v), and Lopt(v) that provide proof for the
feasibility, rim, growth, and optimality properties, respectively.

The field Lfeas(·) provides a proof for the feasibility property by setting Lfeas(v) = o(v)
for each node v ∈ V . Notice that since Π is an LCL, verifying o’s feasibility is done by
checking that Lfeas(v) = o(v), and pΠ

prd(i(v))(Lfeas(v), Lfeas(u1), . . . Lfeas(udegG(v))) = True at
each node v with neighbors u1, . . . , udegG(v).

The field Lrim(·) provides a proof for the rim property as follows. First, the sets Vj and
Sj are encoded for all 1 ≤ j ≤ n, where each of the sets is identified by id(vj). In addition,
each node v ∈ rim(Vj) is assigned the minimal distance to a node u /∈ Vj (notice that by
definition, these values are either 1 or 2). This allows the verifier to check that for each
node v ∈ rim(Vj), there exists j′ ∈ [n] such that v ∈ Sj′ , i.e., verify that the rim property is
satisfied.

The field Lgrw(·) provides a proof for the growth property simply by using a comparison
scheme (as defined in Sec. 3) that compares between w(Sj , o) and ϵ · w(inner2(Vj), o). This
comparison scheme is used concurrently for each ext(Vj) ̸= ∅, based on a shortest paths tree
of G(ext(Vj)) rooted at node vj . Observe that by Lemma 4.4, this tree spans the nodes of
ext(Vj) and has diameter O(log n).

The field Lopt(·) provides a proof for the optimality property as follows. First, for each
Vj ̸= ∅, the prover computes an assignment gj : Vj → {0, . . . , k(Π, n)}, such that gj respects
Π and w(Vj , gj) = wmin(Vj). The prover assigns each node v ∈ Vj with the multiplicity gj(v)
and proves that w(inner2(Vj), o) ≤ w(Vj , gj) by means of a comparison scheme based on a
shortest paths (spanning) tree of G(Vj) rooted at node vj . Finally, the prover proves that
w(Vj , gj) ≤ α · wmin(Vj) by means of an α-APLS for Ψ on the configured subgraph Gi,o(Vj).
Notice that an α-APLS for Ψ is well-defined over the instance Gi,o(Vj) since Π is self-induced,
and thus Gi(Vj) ∈ LEG(Π).

Proof Size and Correctness. We observe that the label assignment produced by the prover
can be computed by means of an SLOCAL algorithm with locality O(log n) and thus it can
be simulated by a locally restricted prover. Moreover, for each node v ∈ V , the sub-labels
Lfeas(v), Lrim(v), and Lgrw(v) are of size O(log n); whereas Lopt(v) is of size ℓΨ,α + O(log n),
where ℓΨ,α is the proof size of an α-APLS for Ψ. Overall, the proof size of this scheme is
ℓΨ,α + O(log n).

Regarding the correctness requirements, we start by showing the completeness requirement,
i.e., we show that if o is an optimal solution for G and i, then the verifier accepts Gi,o. To
that end, it is sufficient to show that all four aforementioned properties are satisfied. The
feasibility property holds since by definition, o is a feasible solution for G and i; the rim
property follows directly from Observation 4.6; the growth property holds by the construction
of the clusters Vj ; and the optimality property follows from Lemma 4.2. We note that as
established in Lemma 4.2, the optimality property is satisfied by o with parameter α = 1.
However, providing proof for this stronger property might be costly in terms of proof size.
Thus, to obtain a small proof size, we settle for an approximated version.

Y. Emek, Y. Gil, and S. Kutten 20:13

As for the soundness requirement, consider an IO graph Gi,o such that the veri-
fier accepts Gi,o. This means that all four properties hold for Gi,o. First, observe
that by the feasibility property, it holds that Gi,o ∈ Π. Let V L

1 , . . . V L
k and SL

1 , . . . SL
k

be the subsets Vj and Sj encoded by the prover in the field Lrim(·). By the rim
property, it holds that

⋃
j∈[k] rim(V L

j) ⊆
⋃

j∈[k] SL
j . From the growth property it fol-

lows that ϵ · w(
⋃

j∈[k] inner2(V L
j), o) ≥ w(

⋃
j∈[k] SL

j , o) ≥ w(
⋃

j∈[k] rim(V L
j), o). Let

o∗ : V → {0, . . . , k(Π, n)} be an optimal solution for G and i. We observe that for
any U ⊆ V , the assignment of o∗ on the nodes of U must respect Π, and therefore
w(U, o∗) ≥ wmin(U). The optimality property combined with the last observation implies that
w(

⋃
j∈[k] inner2(V L

j), o) ≤ α(wmin(V L
1)+· · ·+wmin(V L

k)) ≤ α(w(V L
1 , o∗)+· · ·+w(V L

k , o∗)) =
α · w(V, o∗) = α · f(Gi,o∗). Combining this inequality with the rim and growth proper-
ties implies that f(Gi,o) = w(V, o) = w(

⋃
j∈[k] inner2(V L

j), o) + w(
⋃

j∈[k] rim(V L
j), o) ≤

(1 + ϵ) · w(
⋃

j∈[k] inner2(V L
j), o) ≤ α · (1 + ϵ) · f(Gi,o∗), thus establishing the soundness

requirement.

5 Compiler for CGFs

In this section, we present our generic compiler for CGFs. It is divided into three subsections
as follows. First, in Sec. 5.1 we characterize the CGFs that are suited for our compiler,
namely SU-closed CGFs. Following that, Sec. 5.3 and 5.4 are dedicated to the compiler
construction. More formally, these sections constructively prove the following theorem.

▶ Theorem 5.1. Let Φ be an SU-closed CGF that admits a PLS with a proof size of ℓΦ.
For any constant δ > 0, there exists a locally restricted δ-TPLS for Φ with a proof size of
ℓΦ + O(log n).

For convenience, the compiler construction is divided between Sec. 5.3, in which we
present an SLOCAL partition algorithm (that plays a similar role to the one presented in the
OptDGP compiler), and Sec. 5.4, in which we describe the label assignment and verification
process. In Sec. 5.2, we provide a high-level overview of the SLOCAL algorithm and how it
is used in the label assignment and verification process.

5.1 SU-Closed CGFs
A CGF Φ is said to be closed under node-induced subgraphs if for every configured graph
Gs ∈ Φ and node subset U ⊆ V , it holds that Gs(U) ∈ Φ. We say that two configured
graphs Gs = ⟨G = (V, E), s⟩ and G′

s′ = ⟨G′ = (V ′, E′), s′⟩ are disjoint if V ∩ V ′ = ∅. We
define the disjoint union between two disjoint configured graphs Gs = ⟨G = (V, E), s⟩
and G′

s′ = ⟨G′ = (V ′, E′), s′⟩ as the configured graph G̃s̃ = ⟨G̃, s̃⟩ consisting of the graph
G̃ = (V ∪̇V ′, E∪̇E′) and the configuration function s̃ : V ∪̇V ′ → {0, 1}∗ that assigns the local
configuration s̃(v) = s(v) to any node v ∈ V ; and s̃(v) = s′(v) to any node v ∈ V ′. We
say that a CGF Φ is closed under disjoint union if for any two disjoint configured graphs
Gs, G′

s′ ∈ Φ with disjoint union G̃s̃, it holds that G̃s̃ ∈ Φ. We refer to a CGF Φ as SU-closed
if it is closed under node-induced subgraphs and under disjoint union.

5.2 Overview
In Sec. 5.3, we present an SLOCAL algorithm called Part_CGF that partitions the nodes of a
given configured graph Gs into clusters. Before formally describing the algorithm in Sec. 5.3,
let us provide some intuition by presenting the high-level idea of the partition and how it is
used to design the label assignment and verification process for an SU-closed CGF Φ.

DISC 2022

20:14 Locally Restricted Proof Labeling Schemes

Given a configured graph Gs ∈ Φ, we use a ball growing argument to obtain a partition of
the nodes into clusters such that: (1) the subgraph induced by each cluster is of logarithmic
diameter; and (2) the number of crossing edges between clusters is a δ-fraction of the number
of edges in the clusters.

In order to allow the prover to provide a proof for the second property by local means,
during Part_CGF, some nodes may be assigned a secondary affiliation to an adjacent cluster.
The idea is that for each cluster Vj , the number of crossing edges to nodes with secondary
affiliation to Vj is a δ-fraction of the number of edges within Vj .

5.3 Partition Algorithm
Algorithm’s Description. We now provide a formal description of the Part_CGF algorithm.
Consider an SU-closed CGF Φ and a configured graph Gs ∈ Φ. The algorithm partitions the
nodes of G into (possibly empty) clusters V = V1∪̇ . . . ∪̇Vn. As usual in the SLOCAL model,
the nodes are processed sequentially in n iterations based on an arbitrary order v1, . . . , vn

on the nodes, where node vj is processed in the j-th iteration.
Throughout the execution of Part_CGF, each node v ∈ V maintains two fields referred

to as cluster(v) and sec(v). The field cluster(v) is initially empty and its role is to identify
v’s cluster, where each cluster Vj is identified by the id of node vj which is processed in the
j-th iteration, i.e., Vj = {v | cluster(v) = id(vj)}. The field sec(v) is initially empty and its
role is to identify v’s secondary affiliation to a cluster if such affiliation exists (otherwise it
remains empty throughout the algorithm).

The j-th iteration of Part_CGF is executed as follows. Let Gj to be the subgraph induced
on G by V \ (V1 ∪ · · · ∪ Vj−1). If vj ∈ V1 ∪ · · · ∪ Vj−1, then we define Vj = ∅ and finish
the iteration; so, assume that vj is a node in Gj . For an integer r ∈ Z≥0, let Dr

j be the
set of nodes at distance exactly r from vj in Gj and let Br

j =
⋃r

r′=0 Dr′

j . Let Er
j be the

set of edges in the subgraph G(Br
j) and let Cr

j be the set of edges (u, v) ∈ E, such that
u ∈ Br

j and v /∈ Br
j . Define r(j) to be the smallest integer that satisfies |Cr(j)

j | ≤ δ · |Er(j)
j |.

The j-th iteration is completed by setting cluster(v) = id(vj) for each node v ∈ B
r(j)
j ; and

sec(v) = id(vj) for each node v ∈ D
r(j)+1
j .

Algorithm’s Properties. The following lemma establishes an upper bound on the diameter
of each subgraph G(Vj).

▶ Lemma 5.2. The diameter of subgraph G(Vj) is O(log n) for each j ∈ [n].

Proof. Suppose that Vj ̸= ∅ (as the lemma is trivial otherwise). To show that the diameter
of G(Vj) is O(log n) it is sufficient to show that r(j) = O(log n). We use a ball growing
argument. Note that for any integer r, it holds that |Er

j | ≥ |Er−1
j | + |Cr−1

j |. Thus, for every
r′ < r(j) + 1, we have

|Er(j)+1
j | ≥ |Er′

j | > (1 + δ) · |Er′−1
j | > (1 + δ)2 · |Er′−2

j | > . . .

and since n2 > m ≥ |Er(j)+1
j |, we get that r(j) = O((1/δ) log n) = O(log n). ◀

A simple observation derived from Lemma 5.2 is that Part_CGF has locality O(log n).
This observation combined with the results of [13, 27] lead to the following corollary.

▶ Corollary 5.3. The algorithm Part_CGF can be simulated by a LOCAL algorithm with
polylogarithmic round-complexity.

Y. Emek, Y. Gil, and S. Kutten 20:15

5.4 Labels and Verification
Consider an SU-closed CGF Φ and a configured graph Gs ∈ Φ. The prover uses the
SLOCAL algorithm Part_CGF presented in Sec. 5.3 to compute the values r(j) for all
1 ≤ j ≤ n, and the fields cluster(v), sec(v). The goal of the prover is to provide proof of two
properties satisfied by the given configured graph Gs and the outcome of Part_CGF. We
refer to those properties as secondary clusters, crossing edges, and inclusion. To that end,
the prover produces a label assignment L : V → {0, 1}∗ that assigns each node v with a
label L(v) = ⟨Lsec(v), Lcross(v), Linc(v)⟩. The label L(v) is composed of the fields Lsec(v),
Lcross(v), and Linc(v), that provide proof for the secondary clusters, crossing edges and
inclusion properties, respectively.

The secondary clusters property states that sec(v) is not empty for every node v that has
a neighbor belonging to a different cluster. To that end, the sub-label Lsec(v) assigns the
values cluster(v) and sec(v) to each node v ∈ V . Observe that this information is sufficient
for the verifier to verify the secondary clusters property.

For all j ∈ [n], let sec(Vj) = {v | sec(v) = id(vj)} be the set of nodes whose secondary
affiliation is to Vj by the end of the Part_CGF algorithm, and let Fj = {(u, v) ∈ E | u ∈
Vj , v ∈ sec(Vj)} denote the set of edges with one endpoint in Vj and the other endpoint in
sec(Vj). The crossing edges property states that each cluster Vj satisfies |Fj | ≤ δ · |Er(j)

j |.
The field Lcross(·) serves the crossing edges property by means of a comparison scheme
between |Fj | and δ · |Er(j)

j |. This comparison scheme is based on a shortest paths (spanning)
tree rooted at node vj for each cluster Vj ̸= ∅. Notice that each node v ∈ Vj knows its
incident edges from |Fj | based on the Lsec(·) field of its neighbors.

The inclusion property states that Gs(Vj) ∈ Φ for all Vj ̸= ∅. To that end, the prover
uses the field Linc(·) to encode a PLS for Φ concurrently on all subgraphs G(Vj).

Proof Size and Correctness. We observe that the label assignment produced by the prover
can be computed by means of an SLOCAL algorithm with locality O(log n) and thus it can
be simulated by a locally restricted prover. Moreover, the sub-labels Lsec(v) and Lcross(v) are
of size O(log n); and Linc(v) is of size ℓΦ, where ℓΦ is the proof size of a PLS for Φ. Overall,
the proof size of this scheme is ℓΦ + O(log n).

We now show that the correctness requirements are satisfied. We start with completeness,
i.e., showing that if Gs ∈ Φ, then the verifier accepts Gs. Observe that the secondary clusters
and crossing edges properties are satisfied by construction of Part_CGF. In addition, the
inclusion property follows from the fact that Φ is closed under node-induced subgraphs.

As for the soundness requirement, consider a configured graph Gs such that the verifier
accepts Gs. Let V L

1 , . . . V L
k be the clusters encoded in the field Lsec(·). For every j ∈ [k],

let EL
j denote the edge set of subgraph G(V L

j), let secL
j be the set of nodes for which the

field Lsec(·) encodes a secondary affiliation to V L
j , and let F L

j be the set of edges with one
endpoint in V L

j and one in secL
j . The inclusion property guarantees that Gs(V L

j) ∈ Φ for
each j ∈ [k]. Let G′

s′ be the disjoint union of Gs(V L
1), . . . , Gs(V L

k). Since Φ is closed under
disjoint union, we get that G′

s′ ∈ Φ. By the secondary clusters property, G′
s′ is the configured

subgraph obtained from Gs by removing the set F L
1 ∪ · · · ∪ F L

k of edges. The crossing edges
property implies that |F L

1 ∪ · · · ∪ F L
k | =

∑
j∈[k] |F L

j | ≤ δ ·
∑

j∈[k] |EL
j | ≤ δm. Thus, Gs is not

δ-far from belonging to Φ, i.e., Gs /∈ FN .
In conclusion, this scheme describes a correct locally restricted δ-TPLS for SU-closed

CGFs with a proof size of ℓΦ + O(log n), thus proving Theorem 5.1.

DISC 2022

20:16 Locally Restricted Proof Labeling Schemes

References
1 Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing triangle-freeness in

general graphs. SIAM J. Discret. Math., 2008.
2 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and

correction. In Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages
268–277, 1991.

3 Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October –
1 November 1989, pages 364–369. IEEE Computer Society, 1989.

4 Nir Bacrach, Keren Censor-Hillel, Michal Dory, Yuval Efron, Dean Leitersdorf, and Ami
Paz. Hardness of distributed optimization. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, 2019.

5 Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes versus silent
self-stabilizing algorithms. In Stabilization, Safety, and Security of Distributed Systems, pages
18–32, 2014.

6 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor.
Comput. Sci., 811:112–124, 2020.

7 Yuval Emek and Yuval Gil. Twenty-two new approximate proof labeling schemes. In 34th
International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference, 2020.

8 Yuval Emek, Yuval Gil, and Shay Kutten. Locally restricted proof labeling schemes (full
version), 2022. arXiv:2208.08718.

9 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. In 31st
International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, volume 91 of LIPIcs, pages 16:1–16:15, 2017.

10 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy
in distributed proofs. In 32nd International Symposium on Distributed Computing, DISC,
volume 121 of LIPIcs, pages 24:1–24:18, 2018.

11 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan
Todinca. Compact distributed certification of planar graphs. Algorithmica, 83(7):2215–2244,
2021.

12 Pierre Fraigniaud, Amos Korman, and David Peleg. Local distributed decision. In IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS, pages 708–717, 2011.

13 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 784–797. ACM,
2017.

14 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

15 Shafi Goldwasser, Guy N. Rothblum, and Yael Tauman Kalai. Delegating computation:
Interactive proofs for muggles. Electron. Colloquium Comput. Complex., page 108, 2017.

16 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. THEORY
OF COMPUTING, 12:1–33, 2016.

17 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
PODC 2018 - Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
pages 255–264, July 2018.

18 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Distrib-
uted Comput., 20(4):253–266, 2007.

19 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010.

20 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 2006.

http://arxiv.org/abs/2208.08718

Y. Emek, Y. Gil, and S. Kutten 20:17

21 Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pages 331–335. IEEE Computer Society, 1987.

22 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

23 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995.

24 Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in between.
In Stabilization, Safety, and Security of Distributed Systems - 19th International Symposium,
SSS, volume 10616, pages 1–17. Springer, 2017.

25 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, USA, 2000.

26 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. SIAM J. Comput., 50(3), 2021.

27 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompos-
ition and distributed derandomization. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
350–363. ACM, 2020.

A Bounds for Concrete OptDGPs and CGFs

A.1 OptDGPs
In this section, we show how the compiler presented in Section 4 can be used in the design
of locally restricted APLSs for some classical OptDGPs that fit the canonical structure. In
Sections A.1.1, A.1.2, and A.1.3, we present locally restricted APLSs with a logarithmic
proof size for the problems of minimum weight vertex cover, maximum independent set, and
minimum weight dominating set, respectively. Then, in Section A.1.4, we present a locally
restricted (1 + ϵ)-APLS that applies to any canonical OptDGP.

A.1.1 Minimum Weight Vertex Cover
Consider a graph G = (V, E) associated with a node-weight function w : V → {1, . . . , nO(1)}
and let C ⊆ E be a set of constrained edges. A vertex cover of C is a subset U ⊆ V of nodes
such that every edge e ∈ C has at least one endpoint in U . A minimum weight vertex cover
(MWVC) of C is a vertex cover U of C that minimizes w(U) =

∑
u∈U w(u).

Observe that MWVC is a covering OptDGP. Moreover, vertex cover is self-induced (notice
that this is in contrast to the common case of vertex cover where all edges are constrained).
Thus, MWVC is canonical. We aim to use our compiler to construct a locally restricted
2(1 + ϵ)-APLS for MWVC. To that end, we establish the following lemma.

▶ Lemma A.1. There exists a 2-APLS for MWVC with a proof size of O(log n).

Proof. As presented in [7], there exists a 2-APLS for the instance of MWVC where all edges
are constrained and the graph is connected. We can obtain a 2-APLS for MWVC in the more
general case where a subset C ⊆ E of edges are constrained simply by applying the 2-APLS
from [7] on the connected subgraphs induced by the constrained edge set C. The proof size
of this scheme is O(log n + log W), where W is an upper bound on the node-weights. Since
in our case W = nO(1), it follows that the proof size is O(log n). ◀

Plugging the 2-APLS obtained in Lemma A.1 into our compiler leads to the following
corollary.

DISC 2022

20:18 Locally Restricted Proof Labeling Schemes

▶ Corollary A.2. For any constant ϵ > 0, there exists a locally restricted (2(1 + ϵ))-APLS
for MWVC with a proof size of O(log n).

We now consider the unweighted version, simply referred to as minimum vertex cover
(MVC), on graphs with large odd-girth (where the odd-girth of a graph is defined to be
the shortest odd cycle). As the following theorem shows, this case allows for an improved
approximation ratio.

▶ Theorem A.3. For any constant ϵ > 0, there exists a locally restricted (1 + ϵ)-APLS for
MVC on graphs of odd-girth ω(log n) with a proof size of O(log n).

Proof. Recall that our compiler first partitions the nodes into clusters of diameter O(log n),
and then proceeds to apply an α-APLS concurrently on the subgraph induced by each cluster.
We observe that each of these subgraphs created by the partition is bipartite since the
odd-girth of the graph is ω(log n). Thus, it is sufficient to show that there exists a PLS for
MVC on bipartite graphs with a proof size of O(log n).

The well known König’s theorem states that in bipartite graphs the size of minimum
vertex cover is equal to the size of maximum matching. This allows for a PLS for MVC
in bipartite graphs with a proof size of O(log n) constructed as follows. The prover simply
encodes a maximum matching on the graph along with a proof that the size of this matching
is equal to the size of the given vertex cover (e.g., by means of a comparison scheme). ◀

A.1.2 Maximum Independent Set
Consider a graph G = (V, E) and let C ⊆ E be a set of constrained edges. An independent
set of C is a subset I ⊆ V of nodes, such that each node v ∈ I is incident on an edge in C

and every edge e ∈ C has at most one endpoint in I. A maximum independent set (MaxIS)
of C is an independent set I of C that maximizes |I|.

Observe that MaxIS is a packing OptDGP. Moreover, independent set is self-induced
(notice that this is in contrast to the common case of independent set where all edges are
constrained). Thus, MaxIS is canonical.

Let us denote by ∆ = maxv∈V {deg(v)} the largest degree in graph G = (V, E). In the
following lemma, we present a simple ∆-APLS for the MaxIS problem.

▶ Lemma A.4. There exists a ∆-APLS for MaxIS with a proof size of O(log n).

Proof. We use the fact that the ratio between the size of a maximum independent set and the
size of a maximal independent set (i.e., an independent set that is not a subset of any other
independent set) is at most ∆. The ∆-APLS construction is simple. The prover encodes a
maximal independent set along with the value of ∆ and a proof that its size is at most a
multiplicative factor of ∆ away from the given independent set. ◀

Plugging the ∆-APLS from Lemma A.4 into our compiler leads to the following corollary.

▶ Corollary A.5. For any constant ϵ > 0, there exists a locally restricted (∆(1 + ϵ))-APLS
for MaxIS with a proof size of O(log n).

Similarly to the MVC problem, restricting MaxIS to families of graphs with odd-girth
ω(log n) allows for a better approximation ratio, as established by the following theorem.

▶ Theorem A.6. For any constant ϵ > 0, there exists a locally restricted (1 + ϵ)-APLS for
MaxIS on graphs of odd-girth ω(log n) with a proof size of O(log n).

Y. Emek, Y. Gil, and S. Kutten 20:19

Proof. Similarly to the proof of Theorem A.3, it is sufficient to show that there exists a PLS
for MaxIS on bipartite graphs with a proof size of O(log n). To that end, we can use the
fact that in bipartite graphs, the size of MaxIS is equal to the size of a minimum edge cover.
We can now construct a PLS where the prover encodes a minimum edge cover of the graph,
along with a proof that it is equal in size to the given independent set. ◀

A.1.3 Minimum Weight Dominating Set

Consider a graph G = (V, E) associated with a node-weight function w : V → {1, . . . nO(1)}
and let C ⊆ V be a subset of constrained nodes. A dominating set of C is a subset D ⊆ V

of nodes, such that D ∩ (v ∪ N(v)) ̸= ∅ for each constrained node v ∈ C. A minimum weight
dominating set (MWDS) of C is a dominating set D of C that minimizes

∑
u∈D w(u).

Observe that MWDS is a covering OptDGP. Moreover, dominating set is self-induced
(notice that this is in contrast to the common case of dominating set where all nodes are
constrained). Thus, we get that MWDS is canonical. We aim to use our compiler to construct
a locally restricted O(log n)-APLS for MWDS. To that end, we establish the following lemma.

▶ Lemma A.7. There exists an O(log n)-APLS for MWDS with a proof size of O(log n).

Proof. An O(log n)-APLS for the instance of MWDS where all nodes are constrained and is
presented in [7]. The idea behind that O(log n)-APLS is that the prover provides a feasible
solution to the dual LP, such that the objective value of this dual solution is at most a
multiplicative factor of O(log n) from the given dominating set. We argue that this technique
can be applied to obtain O(log n)-APLS for MWDS (in its more generalized version described
above). This follows from the fact that the gap between an optimal MWDS solution and an
optimal dual solution remains O(log n) (since MWDS is an instance of set cover). ◀

Plugging the O(log n)-APLS obtained in Lemma A.7 into our compiler leads to the following
corollary.

▶ Corollary A.8. There exists a locally restricted O(log n)-APLS for MWDS with a proof
size of O(log n).

A.1.4 Generic Locally Restricted (1 + ϵ)-APLS for Canonical OptDGPs

We establish a generic upper bound that applies to any canonical OptDGP.

▶ Theorem A.9. Consider a canonical OptDGP Ψ. For any constant ϵ > 0, there exists a
locally restricted (1 + ϵ)-APLS for Ψ with a proof size of O(n2).

Proof. As stated in [19, Theorem 3.2], any decidable property admits a PLS. The idea
behind this universal PLS is that the prover can assign each node v with a label L(v) that
encodes the entire configured graph Gs. In response, the verifier at node v verifies that v’s
neighbors agree on the structure of the configured graph encoded in L(v), and that v’s local
neighborhood is consistent with the one encoded in L(v). Following that, the verifier can
evaluate whether Gs is a yes-instance or not.

Observe that applying the universal PLS described above for a canonical OptDGP requires
a proof size of O(n2). We can now plug this PLS construction into our compiler to obtain
the desired locally restricted (1 + ϵ)-APLS for Ψ. ◀

DISC 2022

20:20 Locally Restricted Proof Labeling Schemes

A.2 CGFs
In this section, we show how the compiler presented in Section 5 can be combined with known
PLS constructions to obtain locally restricted δ-TPLSs for various well-known SU-closed
CGFs.

A.2.1 Planarity
A graph G = (V, E) is called planar if it can be embedded in the plane. The following lemma
has been established by Feuilloley et al. [11].

▶ Lemma A.10. There exists a PLS for planarity with a proof size of O(log n).

Observe that planar graphs are SU-closed. Thus, plugging the PLS for planarity into our
compiler implies the following corollary.

▶ Corollary A.11. For any constant δ > 0, there exists a locally restricted δ-TPLS for
planarity with a proof size of O(log n).

A.2.2 Bounded Arboricity
The arboricity of a graph G = (V, E) is the minimum number k for which there exists an
edge partition E = E1∪̇ . . . ∪̇Ek such that Gi = (V, Ei) is a forest for each i ∈ [k]. Let
arb(G) denote the arboricity of graph G. We say that graph G is of bounded arboricity if
arb(G) = O(1).

▶ Lemma A.12. There exists a PLS for bounded arboricity with a proof size of O(log n).

Proof. As established in [19], there exists a PLS for forests with a proof size of O(log n). A
PLS for bounded can be implemented by using the PLS construction for forests concurrently
on arb(G) edge-induced subgraphs of G. ◀

Observe that bounded arboricity is SU-closed. Thus, plugging the PLS for bounded arboricity
into our compiler implies the following corollary.

▶ Corollary A.13. For any constant δ > 0, there exists a locally restricted δ-TPLS for
bounded arboricity with a proof size of O(log n).

A.2.3 k-Colorability
For a positive integer k, we say that a graph G = (V, E) is k-colorable if there exists a proper
k-coloring of its nodes. Observe that k-colorability admits a (simple) PLS with proof size
O(log k) and that it is SU-closed. Thus, combined with our compiler, we get the following
theorem.

▶ Theorem A.14. For any constant δ > 0, there exists a locally restricted δ-TPLS for
k-colorability with a proof size of O(log n).

A.2.4 Forests and DAGs
The following two lemmas have been established by Korman et al. [19].

▶ Lemma A.15. There exists a PLS for forests with a proof size of O(log n).

Y. Emek, Y. Gil, and S. Kutten 20:21

▶ Lemma A.16. There exists a PLS for directed acyclic graphs (DAGs) with a proof size of
O(log n).

Observe that both forests and DAGs are SU-closed. Thus, plugging the PLSs for forests and
DAGs into our compiler implies the following corollaries.

▶ Corollary A.17. For any constant δ > 0, there exists a locally restricted δ-TPLS for forests
with a proof size of O(log n).

▶ Corollary A.18. For any constant δ > 0, there exists a locally restricted δ-TPLS for
directed acyclic graphs with a proof size of O(log n).

B Impossibilities of Locally Restricted GPLS

In this section, we establish some inherent limitations of locally restricted GPLSs based on
the following observation.

▶ Observation B.1. If there exists a locally restricted GPLS over U with yes-family FY and
no-family FN , then there exists a LOCAL algorithm with a logO(1)(n) round-complexity that
given a configured graph Gs ∈ U , decides if Gs ∈ FY (in which case all nodes return True);
or Gs ∈ FN (in which case at least one node returns False).

Proof. Given a configured graph Gs ∈ U , we obtain a LOCAL algorithm by first simulating
the locally restricted prover on Gs (using a polylogarithmic number of rounds), and then
simulating the verifier (using 1 round). By the correctness requirements of a GPLS, the
outcome of this algorithm is that all nodes return True if Gs ∈ FY ; whereas at least one
node returns False if Gs ∈ FN . ◀

The observation above implies that it is impossible to construct a locally restricted GPLS
for verification tasks that require ω(poly log n) rounds in the LOCAL model. Notice that
this impossibility applies to a large class of verification tasks associated with OptDGPs and
CGFs. For example, using a simple indistinguishability argument, one can show that there is
no locally restricted PLS for forests (i.e., a PLS deciding if a given graph is a forest). Similar
arguments can be applied to exclude a locally restricted PLS for most of the OptDGPs and
CGFs considered in Section A.

C Additional Related Work

The PLS model was introduced by Korman, Kutten, and Peleg in [19] and studied extensively
since then, see, e.g., [11, 18, 5, 9, 24, 10]. Research in this field include [18], where a PLS
for minimum spanning tree is shown to have a proof size of O(log n log W), where W is the
largest edge-weight, and [11], where a PLS for planarity is shown to have a proof size of
O(log n).

In parallel, several researchers explored the limitations of the PLS model, often relying on
known lower bounds from nondeterministic communication complexity [20]. Lower bounds of
Ω(n2) and Ω(n2/ log n) are established in [16] with regards to the proof size of any PLS for
graph symmetry and non 3-colorability, respectively. A similar technique was used by the
authors of [4] to show that many classic optimization problems require a proof size of Ω̃(n2).

The lower bounds on the proof size of PLSs for some optimization problems have motivated
the authors of [6] to introduce the APLS notion, further studied recently in [7]. Optimization
problems considered in the context of APLS include maximum weight matching, which was

DISC 2022

20:22 Locally Restricted Proof Labeling Schemes

shown in [6] to admit a 2-APLS with a proof size of O(log W), and minimum weight vertex
cover, which was shown in [7] to admit a 2-APLS with a proof size of O(log n + log W),
where in both cases W refers to the largest weight value.

In the current paper, we also introduce the TPLS model which is suited for properties
that are not formulated as optimization problems. This model is based on the notion of
property testing [14]. More specifically, the TPLS model is formulated using the distance
measure between graphs defined in [1].

Our focus in this paper is on locally restricted APLSs and TPLSs, restricting the prover
to a LOCAL algorithm with a polylogarithmic number of rounds. Interest in the power of
deterministic LOCAL algorithms with polylogarithmic round-complexity was initiated by
Linial’s seminal work [21, 22]. One particular problem that raised a lot of interest in this
context is the network decomposition problem introduced by Awerbuch et al. in [3]. In a
recent breakthrough [27], Ghaffari and Rozhon presented a deterministic algorithm with
polylogarithmic round-complexity for the network decomposition problem. As established in
[13], a consequence of this result is that any SLOCAL algorithm with logO(1) n locality can
be simulated by a LOCAL algorithm with logO(1) n rounds. This simulation technique is
used in the construction of our compilers in Sections 4 and 5.

Distributed Construction of Lightweight Spanners
for Unit Ball Graphs
David Eppstein #

Department of Computer Science, University of California, Irvine, CA, USA

Hadi Khodabandeh #

Department of Computer Science, University of California, Irvine, CA, USA

Abstract
Resolving an open question from 2006 [14], we prove the existence of light-weight bounded-degree
spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple
O(log∗ n)-round distributed algorithm in the LOCAL model of computation, that given a unit ball
graph G with n vertices and a positive constant ϵ < 1 finds a (1+ϵ)-spanner with constant bounds on
its maximum degree and its lightness using only 2-hop neighborhood information. This immediately
improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju [13],
which runs in O(log∗ n) rounds in the LOCAL model, but has a O(log ∆) bound on its lightness,
where ∆ is the ratio of the length of the longest edge to the length of the shortest edge in the unit
ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing
its round complexity, hence proposing the first spanner construction for unit ball graphs in the
CONGEST model of computation. We further study the problem in the two dimensional Euclidean
plane and we provide a construction with similar properties that has a constant average number of
edge intersections per node. Lastly, we provide experimental results that confirm our theoretical
bounds, and show an efficient performance from our distributed algorithm compared to the best
known centralized construction.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Sparsification and spanners; Networks → Network control algorithms

Keywords and phrases spanners, doubling metrics, distributed, topology control

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.21

Related Version Full Version: https://arxiv.org/abs/2106.15234 [24]

1 Introduction

Given a collection of points V in a metric space with doubling dimension d, the weighted unit
ball graph (UBG) on V is defined as a weighted graph G(V, E) where two points u, v ∈ V

are connected if and only if their metric distance ∥uv∥ ≤ 1. The weight of the edge uv of the
UBG is ∥uv∥ if the edge exists. Unit ball graphs in the Euclidean plane are called unit disk
graphs (UDGs) and are frequently used to model ad-hoc wireless communication networks,
where every node in the network has an effective communication range R, and two nodes are
able to communicate if they are within a distance R of each other.

Spanners are sub-graphs of the input graph whose pair-wise distances approximate
distances in the input graphs, while having fewer edges than complete graphs. Given a
weighted graph G, a t-spanner on G can be defined as a graph S that has V (G) as its set of
vertices, while E(S) ⊆ E(G) and the following inequality is satisfied for every pair of vertices
u, v ∈ V (G):

distS(u, v) ≤ t · distG(u, v)

where distS(u, v) (or distG(u, v)) is the length of the shortest path between u and v using
the edges in S (or G, respectively). We call this inequality the bounded stretch property.
Because of this inequality, t-spanners provide a t-approximation for the pairwise distances

© David Eppstein and Hadi Khodabandeh;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
mailto:khodabah@uci.edu
https://orcid.org/0000-0003-3850-6739
https://doi.org/10.4230/LIPIcs.DISC.2022.21
https://arxiv.org/abs/2106.15234
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

between the vertices in G. The parameter t > 1 is called the stretch factor or spanning ratio
of the spanner and determines how accurate the approximate distances are; spanners having
smaller stretch factors are more accurate.

Spanners can be specifically defined on any graph coming from a metric space, where
a heavy or undesirable network is given and finding a sparse and light-weight spanner and
working with it instead of the actual network makes the computation easier and faster
(Figure 1). In particular, lightweight spanners have been gained extreme attention in the
geometric setting and in the metrics with bounded doubling dimension [29, 7, 6], which is a
generalization of the former. The problem of finding sparse light-weight spanners in these
spaces has appeared in many areas of computer science, including communication network
design and distributed computing. These subgraphs have few edges and are easy to construct,
leading them to appear in a wide range of applications since they were introduced [11, 34, 43].
In wireless ad hoc networks t-spanners are used to design sparse networks with guaranteed
connectivity and guaranteed bounds on routing length [3]. In distributed computing spanners
provide communication-efficiency and time-efficiency through the sparsity and the bounded
stretch property [5, 19, 4, 20]. There has also been extensive use of geometric spanners in
the analysis of road networks [21, 1, 10]. In robotics, geometric spanners helped motion
planners to design near-optimal plans on a sparse and light subgraph of the actual network
[16, 40, 15]. Spanners have many other applications including computing almost shortest
paths [17, 12, 44, 26], and overlay networks [8, 47, 32].

(a) Complete graph. (b) 2-spanner. (c) 1.2-spanner. (d) 1.05-spanner.

Figure 1 A comparison of the complete graph on 30 random points on the plane with spanners
of stretch 2, 1.2, and 1.05 on the same point set.

The special case where the underlying graph is a unit ball graph is motivated by the
application of unit ball graphs in modeling wireless and ad-hoc networks, where the com-
munication of the nodes are limited by their physical distances. The problem of finding
sparse lightweight spanners for unit ball graphs in this settings translates into efficient
topology control algorithms. Thus the necessity of a connected and energy-efficient topology
for high-level routing protocols led researchers to develop many spanning algorithms for
ad-hoc networks and in particular, UDGs. But the decentralized nature of ad-hoc networks
demands that these algorithms be local instead of centralized. In these applications, it is
important that the resulting topology is connected, has a low weight, and has a bounded
degree, implying also that the number of edges is linear in the number of vertices.

Several known proximity graphs have been studied for this purpose, including the relative
neighborhood graph (RNG), Gabriel graph (GG), Delaunay graph (DG), and Yao graph
(YG). It is well-known that these proximity graphs are sparse and they can be calculated
locally, using only the information from a node’s neighborhood. But further analysis shows
that they have poor bounds on at least one of the important criteria: maximum vertex
degree, total weight, and stretch-factor [39].

D. Eppstein and H. Khodabandeh 21:3

Researchers have modified these constructions to fulfill the requirements. Li, Wan, and
Wang [39] introduced a modified version of the Yao graph to resolve the issue of unbounded
in-degree while preserving a small stretch-factor, but they left as an open question whether
there exists a construction whose total weight is also bounded by a constant factor of the
weight of the minimum spanning tree. The localized Delaunay triangulation (LDT) [38] and
local minimum spanning tree (LMST) [37] were two other efforts in this way which failed
to bound the total weight of the spanner. Hence bounding the weight became the main
challenge in designing efficient spanners. The commonly used measure for the weight of the
spanners is lightness, which is defined as the weight of the spanner divided by the weight of
the minimum spanning tree.

In the distributed setting in particular, Gao, Guibas, Hershberger, Zhang, and Zhu [28]
introduced restricted Delaunay graph (RDG), a planar distributed spanner construction
for unit disk graphs in the two dimensional Euclidean plane that possessed a constant
stretch-factor, leaving the weight of the spanner unstudied. Later Kanj, Perković, and
Xia [33] presented the first local spanner construction for unit disk graphs in the two
dimensional Euclidean plane, which also was planar and had constant bounds on its stretch-
factor, maximum degree, and lightness. Their construction was also based on the Delaunay
triangulation of the point set and required information from k-th hop neighbors of every
node, for some constant k that depended on the input parameters.

In 2006, Damian, Pandit, and Pemmaraju [14] designed a distributed construction for
(1 + ϵ)-spanners of the UBGs lying in d-dimensional Euclidean space. Their algorithm ran in
O(log∗ n) rounds of communication and produced a (1 + ϵ)-spanner with constant bounds
on its maximum degree and lightness. They used the so-called leapfrog property to prove
the constant bound on the lightness of the spanner, which does not hold for the spaces of
bounded doubling dimension in general. Instead, they showed in another work [13] that the
weight of their spanner in the spaces of bounded doubling dimension is bounded by a factor
O(log ∆) of the weight of the minimum spanning tree, where ∆ is the ratio of the length of
the longest edge in the unit ball graph divided by the length of its shortest edge. Besides
these, their algorithm requires the knowledge of O(1

α−1)-hop neighborhood of the nodes,
which is costly in the CONGEST model of distributed computing, the more accepted and
practical model than the LOCAL model of computation.

In the 3D Euclidean space, Jenkins, Kanj, Xia, and Zhang [31] designed the first localized
bounded-degree (1 + ϵ)-spanner for unit ball graphs. They also presented a lightweight
construction which possessed constant bounds on its stretch-factor and maximum degree.
These algorithms again required k-th hop neighborhood information for every node, for
a constant k that depended on the input parameters. Although these constructions were
local, i.e. they ran in constant rounds of communication, they relied heavily on Euclidean
transformations which made them inapplicable for other metric spaces.

Finally, Elkin, Filtser, and Neiman [18] studied the topic of lightweight spanners for general
graphs and doubling graphs in the CONGEST model of distribution. For general graphs, they
presented (2k−1) · (1 + ϵ)-spanners with lightness O(k ·n1/k) in Õ(n0.5+1/(4k+2) +D) rounds,
where n is the number of vertices and D is the hop-diameter of the graph. For doubling
graphs, they presented a (1 + ϵ)-spanner with lightness ϵ−O(1) log n in (

√
n + D) ·no(1) rounds

of communication. Although these constructions are more general than the constructions of
[13] and they perform in a more restricted model (CONGEST), they do not imply a superior
result in the specific case of unit ball graphs in doubling metrics.

Apart from being a generalization of the Euclidean space, the importance of the spaces of
bounded doubling dimension comes from the fact that a small perturbation in the pairwise
distances does not affect the doubling dimension of the point set by much, while it can

DISC 2022

21:4 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

change their Euclidean dimension significantly, or the resulting distances might not even be
embeddable in Euclidean metrics at all [9]. This makes these metrics of bounded doubling
dimension to be more applicable in real-world scenarios. On the other hand, geometric
arguments are considered as a strong tool for proofs of sparsity and lightness bounds in
Euclidean spaces, but in doubling spaces the only available tool besides metric properties, is
the packing argument which is directly followed from the definition of the doubling dimension.
Therefore, the sparsity and lightness results are more difficult to achieve in the spaces of
bounded doubling dimension.

Since the work of Damian, Pandit, and Pemmaraju [13] in 2006, it has remained open
whether UBGs in the spaces of bounded doubling dimension possess lightweight bounded-
degree (1 + ϵ)-spanners and whether they can be found efficiently in a distributed model
of computation. On the other hand, the construction of [13] requires complete information
about the nodes in O(1

α−1) hops away, for some constant α. Acquiring this information is
costly in the CONGEST model of computation, which is a more accepted model in distributed
computing. Therefore, another open question arising from this line of work is to study the
round complexity of the aforementioned problem in the CONGEST model. In this paper, we
resolve both of these long-standing open questions by presenting centralized and distributed
algorithms, both in the LOCAL, and the CONGEST model, for the purpose of finding such
spanners.

1.1 Contributions

We have two main contributions in this paper. First, we resolve the proposed open question
that has remained open for more than a decade, and we prove the existence of light-weight
bounded-degree (1 + ϵ)-spanners of unit ball graphs in the spaces of bounded doubling
dimension. Our construction has constant bounds on its maximum degree and its lightness,
and it can be built in O(log∗ n) rounds of communication in the LOCAL model of computation,
where n is the number of vertices.

Second, we propose the first lightweight spanner construction for unit ball graphs in the
CONGEST model of computation. Even if we restrict our scope to the two dimensional
Euclidean plane, where we see most of the applications of unit disk graphs, prior to this work
there was no known CONGEST algorithm for finding light spanners of unit disk graphs. We
achieve this construction by making adjustments on our construction for the LOCAL model
to make it work in the CONGEST model in the same asymptotic number of rounds. The
bounds on the lightness and maximum degree of our spanner remain the same in this model.

Besides these main results, we modify these constructions for the two dimensional
Euclidean plane in order to have a linear number of edge intersections in total, implying a
constant average number of edge intersections per node. This is motivated by the observation
that a higher intersection per edge causes a higher chance of interference between the
corresponding endpoints. To the best of our knowledge, this is the first distributed low-
stretch low-intersection spanner construction for unit disk graphs.

A more detailed version of our results can be found in the following theorems. First, we
introduce a centralized algorithm Centralized-Spanner that,

▶ Theorem 8. Given a weighted unit ball graph G in a metric of bounded doubling dimension
and a constant ϵ > 0, the spanner returned by Centralized-Spanner(G,ϵ) is a (1 + ϵ)-
spanner of G and has constant bounds on its lightness and maximum degree. These constant
bounds only depend on ϵ and the doubling dimension.

D. Eppstein and H. Khodabandeh 21:5

We use this centralized construction to propose the distributed construction Distributed-
Spanner in the LOCAL model of computation,

▶ Theorem 16. Given a weighted unit ball graph G with n vertices in a metric of bounded
doubling dimension and a constant ϵ > 0, the algorithm Distributed-Spanner(G,ϵ) runs
in O(log∗ n) rounds of communication in the LOCAL model of computation, and returns a
(1 + ϵ)-spanner of G that has constant bounds on its lightness and maximum degree. These
constant bounds only depend on ϵ and the doubling dimension.

Next, we study the problem in the CONGEST model of computation. Our distributed
construction Distributed-Spanner requires complete information about 2-hop neighbor-
hood of a selected set of vertices, which is not easy to acquire in the CONGEST model. The
same issues exists in the distributed algorithm of [13], where they aggregate information
about the nodes that are O(1

α−1) hops away, for some constant α. A simple approach
for aggregating 2-hop neighborhoods would require O(d) rounds of communication in the
CONGEST model, which can be as large as Ω(n) if the input graph is dense. In our next
theorem, we break this barrier by making some adjustments for our algorithm to work in the
CONGEST model of computation. Despite adding to the complexity of the algorithm itself,
we prove that the round complexity of our new algorithm, CONGEST-Spanner, would
still be bounded by O(log∗ n).

▶ Theorem 21. Given a weighted unit ball graph G with n vertices in a metric of bounded
doubling dimension and a constant ϵ > 0, the algorithm CONGEST-Spanner(G,ϵ) runs in
O(log∗ n) rounds of communication in the CONGEST model of computation, and returns a
(1 + ϵ)-spanner of G that has constant bounds on its lightness and maximum degree. These
constant bounds only depend on ϵ and the doubling dimension.

The rest of the contributions are included in the full version of this paper due to page
limits. In the full version, We study the problem in the case of the two dimensional Euclidean
plane, where the greedy spanner on a complete weighted graph is known to have constant
upper bounds on its lightness [27], maximum degree, and average number of edge intersections
per node [23]. We observe that a simple change on the this algorithm can extend these results
for unit disk graphs as well. We call this modified algorithm Centralized-Euclidean-
Spanner and we show that

▶ Theorem 22. Given a weighted unit disk graph G in the two dimensional Euclidean plane
and a constant ϵ > 0, the spanner returned by Centralized-Euclidean-Spanner(G,ϵ) is
a (1 + ϵ)-spanner of G and has constant bounds on its lightness, maximum degree, and the
average number of edge intersections per node. These constant bounds only depend on ϵ and
the doubling dimension.

We use the aforementioned construction to propose Distributed-Euclidean-Spanner,
a specific distributed low-intersection construction for the case of the two dimensional
Euclidean plane that preserves the previously mentioned properties and adds the low-
intersection property.

▶ Theorem 26. Given a weighted unit disk graph G with n vertices in the two dimensional
Euclidean plane and a constant ϵ > 0, the algorithm Distributed-Euclidean(G,ϵ) runs
in O(log∗ n) rounds of communication and returns a bounded-degree (1 + ϵ)-spanner of G

that has constant bounds on its lightness, maximum degree, and the average number of edge
intersections per node. These constant bounds only depend on ϵ and the doubling dimension.

DISC 2022

21:6 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

We also prove that the last construction possesses sublinear separators and a separator
hierarchy in the two dimensional Euclidean plane. We generalize this result to work for higher
dimensions of Euclidean spaces. Finally, we provide experimental results on random point
sets in the two dimensional Euclidean plane that confirm the efficiency of our distributed
construction.

2 Preliminaries

2.1 Doubling metrics
We start by recalling the definition of the doubling dimension of a metric space,

▶ Definition 1 (doubling dimension). The doubling dimension of a metric space is the smallest
d such that for any R > 0, any ball of radius R can be covered by at most 2d balls of radius
R/2.

We say a metric space has bounded doubling dimension if its doubling dimension is upper
bounded by a constant. Besides the triangle inequality, which is intrinsic to metric spaces,
the packing lemma is an essential tool for the metrics of bounded doubling dimension. This
lemma states that it is impossible to pack more than a certain number of points in a ball of
radius R > 0 without making a pair of points’ distance less than some r > 0.

▶ Lemma 2 (Packing Property). In a metric space of bounded doubling dimension d, let X be
a set of points with minimum distance r, contained in a ball of radius R. Then |X| ≤

(4R
r

)d.

Proof. This is a well-known fact, see e.g. [46]. ◀

2.2 Spanners for complete graphs
For a weighted graph G in a metric space, where every edge weight is equal to the metric
distance of its endpoints, a t-spanner is defined in the following way,

▶ Definition 3 (t-spanner). A t-spanner of a weighted graph G is a subgraph S of G that for
every pair of vertices x, y in G,

distS(x, y) ≤ t · distG(x, y)

where distA(x, y) is the length of a shortest path between x and y in A. The lightness of
S is defined as w(S)/w(MST) where w is the weight function and MST is the minimum
spanning tree in G.

In other words, a t-spanner approximates the pairwise distances within a factor of t. Spanners
were studied for complete weighted graphs first, and several constructions were proposed
to optimize them with respect to the number of edges and total weight. Among these
constructions, greedy spanners [2] are known to out-perform the others.

A greedy spanner (Figure 1) can be constructed by running the greedy spanner algorithm
(Algorithm 1) on a set of points V in a metric space. This short procedure adds edges one at
a time to the spanner it constructs, in ascending order by length. For each pair of vertices, in
this order, it checks whether the pair already satisfies the distance inequality using the edges
already added. If not, it adds a new edge connecting the pair. Therefore, by construction,
each pair of vertices satisfies the inequality, either through previous edges or (if not) through
the newly added edge. The resulting graph is therefore a t-spanner.

D. Eppstein and H. Khodabandeh 21:7

Algorithm 1 The naive greedy spanner algorithm.

1: procedure Naive-Greedy(V)
2: Let S be a graph with vertices V and edges E = {}
3: for each pair (P, Q) ∈ V 2 in increasing order of ∥PQ∥ do
4: if distS(P, Q) > t · dist(P, Q) then
5: Add edge PQ to E

return S

Despite the simplicity of Algorithm 1, Farshi and Gudmundsson [25] observed that in
practice, greedy spanners are surprisingly good in terms of the number of edges, weight,
maximum vertex degree, and also the number of edge crossings in the two dimensional
Euclidean plane. All of these properties have been proven rigorously so far. Filster and
Solomon [27] proved that greedy spanners have size and lightness that is optimal to within a
constant factor for worst-case instances. They also achieved a near-optimality result for greedy
spanners in spaces of bounded doubling dimension. Borradaile, Le, and Wulff-Nilsen [7]
recently proved optimality for doubling metrics, generalizing a result of Narasimhan and
Smid [41], and resolving an open question posed by Gottlieb [29], and Le and Solomon
showed that no geometric t-spanner can do asymptotically better than the greedy spanner in
terms of number of edges and lightness [36].

In a recent work, Eppstein and Khodabandeh [23] showed that the number of edge
crossings of the greedy spanner in the two dimensional Euclidean plane is linear in the
number of vertices. Moreover, they proved that the crossing graph of the greedy spanner has
bounded degeneracy, implying the existence of sub-linear separators for these graphs [22].
This, together with the well-known fact that greedy spanners have bounded-degree in the
two dimensional Euclidean plane, makes greedy spanners more practical in this particular
metric space.

Although the degree of the greedy spanner is bounded in the two dimensional Euclidean
plane, it is known that there exist n-point metric spaces with doubling dimension 1 where
the greedy spanner has maximum degree n − 1 [27]. Gudmundsson, Levcopoulos, and
Narasimhan [30] devised a faster algorithm that was later proven to have bounded degree
as well as constant lightness and linear number of edges [27]. We call this algorithm
Approximate-Greedy in this paper, and we make use of it in our algorithms for the
metrics of bounded doubling dimension, while we take advantage of the extra low-intersection
property of Naive-Greedy in the two dimensional Euclidean plane.

2.3 Unit ball graphs
We formally define a unit ball graph on a set of points V in the following way,

▶ Definition 4 (unit ball graph). Given a set of points V in a metric space, the unit ball
graph G on V contains V as its vertex set and every two vertices x, y ∈ V are connected if
and only if ∥xy∥ ≤ 1. The weight of an edge (x, y) is equal to ∥xy∥ if the edge exists.

Unit ball graphs are an important subclass of the graphs called growth-bounded graphs,
which only limit the number of independent nodes in every neighborhood, a property that
holds for UBGs due to the packing property.

Kuhn, Moscibroda, and Wattenhofer [35] presented a O(log∗ n)-round distributed algo-
rithm for finding a maximal independent set (MIS) of a unit ball graph graph in a space with
bounded doubling dimension. This result was later generalized by Schneider and Watten-
hofer [45] for growth-bounded graphs. Throughout the paper we refer to their algorithm by

DISC 2022

21:8 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

Figure 2 The unit disk graph on the same point set introduced earlier. The red disks intersect,
therefore there is an edge between their centers.

Maximal-Independent. It turns out that Maximal-Independent will be a key ingredient
of our distributed algorithms, as well as their bottleneck in terms of the number of rounds.
This means that if a maximal independent set is known beforehand, our algorithms can be
executed fully locally, in constant number of rounds.

In section 3 we prove the existence of (1 + ϵ)-spanners with constant bounds on the
maximum degree and the lightness by introducing an algorithm that finds such spanners
in a centralized manner. In section 4 we propose a distributed construction that delivers
the same features through a O(log∗ n)-round algorithm. In the full version, we consider the
special case of two dimensional Euclidean plane and we design centralized and distributed
algorithms to construct a spanner that has the extra low-intersection property, making it
more suitable for practical purposes.

3 Centralized Construction

In this section we propose a centralized construction for a light-weight bounded-degree
(1 + ϵ)-spanner for unit ball graphs in a metric of bounded doubling dimension. Later in
section 4 we use this centralized construction to design a distributed algorithm that delivers
the same features.

It is worth mentioning that the greedy spanner would be a (1 + ϵ)-spanner of the UBG
if the algorithm stops after visiting the pairs of distance at most 1, and it even has a
lightness bounded by a constant, but as we mentioned earlier, there are metrics with doubling
dimension 1 in which its degree may be unbounded.

To construct a lightweight bounded-degree (1 + ϵ)-spanner of the unit ball graph, we
start with the spanner of [30], called Approximate-Greedy, which is returns a spanner
of the complete graph. It is proven in [41] that Approximate-Greedy has the desired
properties, i.e. bounded-degree and lightness, for complete weighted graphs in Euclidean
metrics, but as stated in [27], the proof only relies on the triangle inequality and packing
argument which both work for doubling metrics as well. Therefore, we may safely assume
that Approximate-Greedy finds a light-weight bounded-degree (1 + ϵ)-spanner of the
complete weighted graph defined on the point set. The main issue is that the edges of length
more than 1 are not allowed in a spanner of the unit ball graph on the same point set.
Therefore, a replacement procedure is needed to substitute these edge with edges of length
at most 1. Peleg and Roditty [42] introduced a refinement process which removes the edges
of length larger than 1 from the spanner and replaces them with three smaller edges to make
the output a subgraph of the UBG. The main issue with their approach is that it can lead to

D. Eppstein and H. Khodabandeh 21:9

vertices having unbounded degrees in the spanner, therefore missing an important feature.
Here, we introduce our own refinement process that not only replaces edges of larger than
1 with smaller edges and makes the spanner a subgraph of the unit ball graph, but also
guarantees a constant bounded on the degrees of the resulting spanner.

3.1 The algorithm

In the first step of the algorithm (Algorithm 2) we choose ϵ′ = ϵ/36, a smaller stretch
parameter than ϵ, to cover the errors that future steps might inflict to the spanner. Then we
call the procedure Approximate-Greedy on the set of vertices V to calculate a light-weight
bounded-degree (1 + ϵ′)-spanner S of the complete weighted graph on V . This spanner might
contain edges of length larger than 1, which we will replace by some edges of length at most
1 in the future steps.

Since an edge of length larger than 1 + ϵ′ in S cannot participate in the shortest path
between any two adjacent vertices in G, we simply remove and discard them from the spanner.
Then for every remaining edge e = (u, v) of length in the range (1, 1 + ϵ′] we find an edge
(x, y) of the original graph G so that ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′. We then replace such an edge
e by the edge (x, y). We call the pair (x, y) the replacement edge or the replacement pair
for the edge e. Since this procedure can end up assigning too many replacement edges to a
single vertex (x or y in this case) and hence increasing its degree significantly, we perform
a simple check before adding a replacement edge; we store the set R of previously added
replacement pairs in the memory and if a weak replacement pair (x′, y′) ∈ R exists, then we
prefer it over a newly found replacement pair (x, y) /∈ R. By weak replacement pair we mean
a pair (x′, y′) ∈ R that ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′, which is weaker than the definition of
the replacement pair. As we later see this weaker notion of replacement pair will help us to
bound the degree of the vertices.

After removing the edges of length larger than 1 and replacing the ones in the range
(1, 1 + ϵ′], we return the spanner to the output.

Algorithm 2 A centralized spanner construction.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure Centralized-Spanner(G, ϵ)
2: ϵ′ ← ϵ/36
3: S ← Approximate-Greedy(V , ϵ′)
4: R ← ∅
5: for e = (u, v) in S do
6: if |e| > 1 then
7: Remove e from S

8: if |e| ∈ (1, 1 + ϵ′] then
9: if ∃(x, y) ∈ E that ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′ then

10: if ∄(x′, y′) ∈ R that ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′ then
11: S ← S ∪ {(x, y)}
12: R← R ∪ {(x, y)}
13: return S

DISC 2022

21:10 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

3.2 The analysis
Now we prove that the output S of the algorithm is a light-weight bounded-degree (1 + ϵ)-
spanner of the unit ball graph G. Clearly, after the refinement is done the spanner S is a
subgraph of G, so we need to analyze the lightness, the stretch factor, and the maximum
degree of the spanner.

First we prove that the stretch-factor of the spanner is indeed bounded by 1 + ϵ.

▶ Lemma 5. The spanner returned by Centralized-Spanner has a stretch factor of 1 + ϵ.

The proof of this lemma is moved to Appendix A. Now we analyze the weight of the
spanner, proving its constant lightness.

▶ Lemma 6. The spanner returned by Centralized-Spanner has a weight of O(1)w(MST).

The proof of this lemma is also in Appendix A. In the final step, we bound the maximum
degree of the spanner.

▶ Lemma 7. The spanner returned by Centralized-Spanner has bounded degree.

The proof of this lemma is moved to Appendix A. Putting these together, we can prove
Theorem 8.

▶ Theorem 8 (Centralized Spanner). Given a weighted unit ball graph G in a metric of
bounded doubling dimension and a constant ϵ > 0, the spanner returned by Centralized-
Spanner(G,ϵ) is a (1 + ϵ)-spanner of G and has constant bounds on its lightness and
maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. Follows directly from Lemma 5, Lemma 6, and Lemma 7. ◀

4 Distributed Construction

In this section we propose our distributed construction for finding a (1 + ϵ)-spanner of a
unit ball graph using only 2-hop neighborhood information. The spanner returned by our
algorithm has constant bounds on its maximum degree and its lightness. This is the first
light-weight distributed construction for unit ball graphs in doubling metrics, to the best of
our knowledge.

In our distributed construction, we run our centralized algorithm on the 2-hop neighbor-
hoods of a an independent set of the unit ball graph, and we prove that putting these local
spanners together will achieve a spanner that possesses the desired properties.

4.1 The algorithm
For the distributed construction we propose Algorithm 3. There is a preprocessing step of
finding a maximal independent set I of G, which can be done using the distributed algorithm
of [35] in O(log∗ n) rounds. We refer to this algorithm by Maximal-Independent. Then
the Local-Greedy subroutine is run on every vertex w ∈ I to find a (1 + ϵ)-spanner Sw

of the 2-hop neighborhood of w, denoted by N 2(w). At the final step, every w ∈ I sends
its local spanner edges to the corresponding endpoints of every edge. Symmetrically, every
vertex listens for the edges sent by the vertices in I and once a message is received, it stores
the edges in its local storage. In other words, the final spanner is the union of all these local
spanners. We use the centralized algorithm of section 3 for every local neighborhood N 2(w)
to guarantee the bounds that we need.

D. Eppstein and H. Khodabandeh 21:11

Algorithm 3 The localized greedy algorithm.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d and an ϵ > 0.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure Distributed-Spanner(G, ϵ)
2: Find a maximal independent set I of G using [35]
3: Run Local-Greedy on the vertices of G

4: function Local-Greedy(vertex w)
5: Retrieve N 2(w), the 2-hop neighborhood information of w

6: if w ∈ I then
7: Sw ← Centralized-Spanner(N 2(w), ϵ)
8: for e = (u, v) in Sw do
9: Send e to u and v

10: Listen to incoming edges and store them

Similar to the aforementioned greedy algorithm (Algorithm 1), our algorithm seems very
simple in the first sight. But as we see later in this section, proving its properties, particularly
its lightness, is a non-trivial task.

4.2 The analysis
Now we show that the spanner introduced in Algorithm 3 possesses the desired properties.
First, we show the round complexity of O(log∗ n).

▶ Lemma 9. Distributed-Spanner can be done in O(log∗ n) rounds of communication.

The proof of this lemma is in Appendix B. Next we bound the stretch-factor of the
spanner.

▶ Lemma 10. The spanner returned by Distributed-Spanner has a stretch factor of 1 + ϵ.

The proof of this lemma is also included in Appendix B. Now we bound the maximum
degree of the spanner.

▶ Lemma 11. The spanner returned by Distributed-Spanner has a bounded degree.

The proof of this lemma is also in Appendix B. In order to bound the lightness of the
output, we assume that ϵ ≤ 1 and we make a few comparisons. First, for any w ∈ I we
compare the weight of Sw to the weight of the minimum spanning tree on N 2(w). Then we
compare the weight of the minimum spanning tree on N 2(w) to the weight of the minimum
Steiner tree on N 3(w), where the required vertices are N 2(w) and 3-hop vertices are optional.
Finally, we compare the weight of this minimum Steiner tree to the weight of the induced
subgraph of Centralized-Spanner(G, ϵ) on the subset of vertices N 3(w), which later
implies that the overall weight of Sws is bounded by a constant factor of the weight of the
minimum spanning tree on G.

Our first claim is that the weight of Sw is bounded by a constant factor of the weight of
the MST on N 2(w).

▶ Corollary 12. w(Sw) = O(1)w(MST (N 2(w)))

Proof. Follows from the properties of the centralized algorithm in section 3. ◀

DISC 2022

21:12 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

Next we compare w(MST (N 2(w))) to the weight of the minimum Steiner tree of N 3(w)
on the required vertices N 2(w).

▶ Lemma 13. Define T to be the optimal Steiner tree on the set of vertices N 3(w), where
only vertices in N 2(w) are required and the rest of them are optional. Then

w(MST (N 2(w))) ≤ 2w(T)

The proof of this lemma is included in Appendix B. We then compare the weight of
T to the weight of induced subgraph of Centralized-Spanner(G, ϵ) on the subset of
vertices N 3(w). The main observation here is that when ϵ ≤ 1 the induced subgraph of
the centralized spanner on N 3(w) would be a feasible solution to the minimum Steiner tree
problem on N 3(w), with the required vertices being the vertices in N 2(w). This will imply
that the weight of the induced subgraph is at least equal to the weight of the minimum
Steiner tree.

▶ Lemma 14. Let S∗ be the output of Centralized-Spanner(G, ϵ) and let S∗
w be the

induced subgraph of S∗ on N 3(w). Then

w(T) ≤ w(S∗
w)

The proof of this lemma is also in Appendix B. This lemma concludes our sequence of
comparisons. By putting together what we proved so far, we have

▶ Proposition 15. The spanner returned by Distributed-Spanner has a weight of
O(1)w(MST).

Proof. By Corollary 12, Lemma 13, and Lemma 14,

w(Sw) = O(1)w(S∗
w)

Summing up together these inequalities for w ∈ I,

w(output) = O(1)
∑
w∈I

w(S∗
w)

But we recall that every vertex, and hence every edge of S∗, is repeated O(1) times in the
summation above, so

w(output) = O(1)w(S∗) = O(1)w(MST (G)) ◀

Therefore we have all the ingredients to prove Theorem 16.

▶ Theorem 16 (Distributed Spanner). Given a weighted unit ball graph G with n vertices in
a metric of bounded doubling dimension and a constant ϵ > 0, the algorithm Distributed-
Spanner(G,ϵ) runs in O(log∗ n) rounds of communication in the LOCAL model of com-
putation, and returns a (1 + ϵ)-spanner of G that has constant bounds on its lightness and
maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. It directly follows from Lemma 9, Lemma 10, Lemma 11, and Proposition 15. ◀

D. Eppstein and H. Khodabandeh 21:13

5 Adjustments for the CONGEST Model

In this section we study the problem of finding a bounded-degree (1 + ϵ)-spanner in the
CONGEST model of computation, for a point set that is located in a doubling metric space.
In the CONGEST model, every node can send a message of bounded size to every other node
in a single round of communication. This makes it hard to gather any global information
about the graph.

The maximal independent set algorithm of [35] still works in O(log∗ n) rounds of commu-
nication in the CONGEST model. But our proposed distributed algorithm (Algorithm 3)
needs to gather 2-hop neighborhood information of every center in the MIS, which requires
O(D) rounds in the CONGEST model, where D is the maximum degree of a vertex in the
unit ball graph. The rest of the algorithm is performed locally and the number edges sent to
every neighbor in the end is bounded by a constant, so the remaining of the algorithm only
requires a constant number of rounds.

It is natural to ask whether our algorithm can be adapted to the CONGEST model, and
if it requires more communication rounds compared to the LOCAL model. In this section
we show how to modify our algorithm to work in the CONGEST model, and surprisingly,
have no asymptotic change on its number of communication rounds.

As we mentioned earlier, the only step of our algorithm that requires more than constant
rounds of communication is the aggregation of the 2-hop neighborhood information for every
center in the MIS. We passed the 2-hop neighborhoods to our centralized algorithm to find
an asymptotically optimal spanner on them, which was later distributed among the vertices
in the neighborhood to form the final spanner. Here, for our construction in the CONGEST
model, we directly address the problem of finding an asymptotically optimal spanner for the
2-hop neighborhoods, without the need to access all of the points in those neighborhoods.

Let w ∈ I be a center in the maximal independent set. We partition the edges of the
UBG on N 2(w) into two sets, depending on whether their length is larger than 1/2 or not.
We aim to find asymptotically optimal spanners for each partition separately. We use the
notation G≤α to refer to the subgraph of the unit ball graph that consists of edges of length
at most α. We similarly define G>α. Therefore, we can refer to the subgraphs induced by
the two partitions by G≤1/2 and G>1/2.

First, we show that in constant rounds of communication, we can find a covering of the
points in N 2(w) with at most a constant number of balls of radius 1/2. The existence of
such covering trivially follows from the definition of a doubling metric space, but finding
such covering in the distributed setting is not trivial. Therefore, we introduce the following
procedure: Every center v ∈ N 1(w) (including w itself) finds a maximal independent set
I1/4(v) of the vertices N 1(v) in G≤1/4, and sends it to w, all centers at the same time. Recall
that N 1(v) is the set of neighbors of v in the UBG, and a maximal independent set in G≤1/4
is simply a maximal set of vertices where the pair-wise distance of each two vertex is at least
1/4. Finding this maximal independent set for each v can be easily done using a (centralized)
greedy algorithm, and the size of such maximal independent set would be bounded by a
constant according to the packing lemma. Therefore, this step can be done in constant
number of rounds. Afterwards, w calculates a maximal independent set I(w) of the vertices
∪v∈N 1(w)I1/4(v) in G≤1/4. We show that the centers in I satisfy our desired properties.

▶ Lemma 17. The union of the balls of radius 1/2 around the centers in I(w) cover N 2(w).
Furthermore, the size of I(w) is bounded by a constant.

DISC 2022

21:14 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

The proof of this lemma is moved to Appendix C. Next, every center v ∈ I(w) calculates
a (1+ ϵ)-spanner S≤1/2(v) of the point set N 1(v) using the centralized algorithm, and notifies
its neighbors about their connections. We prove that the union of these spanners, would
be a spanner for one of the partitions, i.e. the edges of length at most 1/2 in N 2(w). The
pseudo-code of this procedure is available in Algorithm 5

▶ Lemma 18. The union of the spanners S≤1/2(v) for v ∈ I(w) is a (1 + ϵ)-spanner of
N 2(w) in G≤1/2. The maximum degree and the lightness of this spanner are both bounded by
constants.

The proof of this lemma can be found in Appendix C.

Algorithm 4 The CONGEST spanner algorithm.
Input. A unit ball graph G(V, E) in a metric with doubling dimension d and an ϵ > 0.
Output. A light-weight bounded-degree (1 + ϵ)-spanner of G.

1: procedure CONGEST-Spanner(G, ϵ)
2: Find a maximal independent set I of G using [35]
3: Run Span-Short-Edges on the vertices of G

4: Run Span-Long-Edges on the vertices of G

Algorithm 5 Finding a spanner of the edges of length smaller than 1/2 in N 2(w).

1: function Span-Short-Edges(vertex u)
2: if u ∈ I then
3: Send a signal of type 1 to every v ∈ N 1(u).
4: Wait for their maximal independent sets, I1/4(v)s.
5: Calculate a maximal independent set of ∪v∈N 1(u)I1/4(v) in G<1/4 greedily.
6: Store this maximal independent set in I(u).
7: Send a signal of type 2 to every v ∈ I(u).
8: if received type 1 signal from some w then
9: Calculate a maximal independent set of N 1(w) in G1/4 greedily.

10: Send this maximal independent set to w.
11: if received type 2 signal from some w then
12: Calculate S≤1/2(u)← Centralized-Spanner(N 1(u), ϵ)
13: for e = (a, b) in S≤1/2(u) do
14: Send e to a and b

15: Receive and store the edges sent by other centers

Now we find a spanner for the other partition, the edges of length larger than 1/2 in
N 2(w). The procedure is as follows: First, every center v ∈ N 1(w) calculates a maximal
independent set Iϵ/40(v) of N 1(v) in G≤ϵ/40 and sends it to w. Again, the size of each
maximal independent set is O(ϵ−d) by the packing lemma, which is constant. Therefore,
this step takes only constant number of rounds. Afterwards, w finds a maximal independent
set I ′(w) of ∪v∈N 1(w)Iϵ/40(v) in G≤ϵ/40. Then w constructs a (1 + ϵ/5)-spanner S ′(w) of
I ′(w) in G using the centralized algorithm, and announces the edges of the spanner to their
corresponding endpoints. Finally, every center v ∈ I ′(w) calculates a (1 + ϵ)-spanner S ′′(v)
of its ϵ/20 neighborhood and announces its edges to their endpoints. We show that the union
of S′(w) and S′′(v)s for v ∈ I ′(w) would form a (1 + ϵ)-spanner of the second partition, i.e.
the edges of larger than 1/2. The pseudo-code of this procedure is available in Algorithm 6

D. Eppstein and H. Khodabandeh 21:15

▶ Lemma 19. The union of the balls of radius ϵ/20 around the centers in I ′(w) cover N 2(w).
Furthermore, the size of I ′(w) is bounded by a constant.

Proof. Similar to the proof of Lemma 17. ◀

▶ Lemma 20. The union of the spanners S ′(w) and S ′′(v) for v ∈ I ′(w) forms a (1 + ϵ)-
spanner of N 2(w) in G>1/2. The maximum degree and the lightness of this spanner are btoh
bounded by constants.

The proof of this lemma is also in Appendix C.

Algorithm 6 Finding a spanner of the edges of length larger than 1/2 in N 2(w).

1: function Span-Long-Edges(vertex u)
2: if u ∈ I then
3: Send a signal of type 3 to every v ∈ N 1(u).
4: Wait for their maximal independent sets, Iϵ/40(v)s.
5: Calculate a maximal independent set of ∪v∈N 1(u)Iϵ/40(v) in G<ϵ/40 greedily.
6: Store this maximal independent set in I ′(u).
7: Send a signal of type 4 to every v ∈ I ′(u).
8: Calculate S ′(u)← Centralized-Spanner(I ′(u), ϵ/5)
9: for e = (a, b) in S ′(u) do

10: Send e to a and b

11: if received type 3 signal from some w then
12: Calculate a maximal independent set of N 1(w) in Gϵ/40 greedily.
13: Send this maximal independent set to w.
14: if received type 4 signal from some w then
15: Let N ϵ/20(u) be the ϵ/20 neighborhood of u, i.e. the set of vertices that are at

distance ϵ/20 or less from u.
16: Calculate S ′′(u)← Centralized-Spanner(N ϵ/20(u), ϵ)
17: for e = (a, b) in S ′′(u) do
18: Send e to a and b

19: Receive and store the edges sent by other centers

The union of the two spanners for the two partitions form a spanner for the 2-hop
neighborhood of w, the goal we wanted to achieve in the CONGEST model. This completes
our adjustments in this model.

▶ Theorem 21 (CONGEST Spanner). Given a weighted unit ball graph G with n vertices in
a metric of bounded doubling dimension and a constant ϵ > 0, the algorithm CONGEST-
Spanner(G,ϵ) runs in O(log∗ n) rounds of communication in the CONGEST model of
computation, and returns a (1 + ϵ)-spanner of G that has constant bounds on its lightness
and maximum degree. These constant bounds only depend on ϵ and the doubling dimension.

Proof. The proof follows from Lemma 18 and Lemma 20. ◀

We defer our low-intersection construction as well as our experimental results to the full
version of the paper due to space limitation.

DISC 2022

21:16 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

6 Conclusions

In this paper we resolved an open question from 2006 and we proved the existence of light-
weight bounded-degree (1+ϵ)-spanners for unit ball graphs in the spaces of bounded doubling
dimension. Moreover, we provided a centralized construction and a distributed construction
in the LOCAL model that finds a spanner with these properties. Our distributed construction
runs in O(log∗ n) rounds, where n is the number of vertices in the graph. If a maximal
independent set of the unit ball graph is known beforehand, our algorithm runs in constant
number of rounds. Next, we showed how to adjust our distributed construction to work in
the CONGEST model, without touching its asymptotic round complexity. In this way, we
provided the first CONGEST algorithm for finding a light spanner of unit ball graphs.

In the full version, we further adjusted these algorithms for the case of unit disk graphs in
the two dimensional Euclidean plane, and we presented the first centralized and distributed
constructions for a light-weight bounded-degree (1 + ϵ)-spanner that also has a linear number
of edge intersections in total. This can be useful for practical purposes if minimizing the
number of edge intersections is a priority. We proved, based on this low-intersection property,
that our spanner has sub-linear separators, and a separator hierarchy, and we were able to
generalize this result to higher dimensions of Euclidean spaces.

Finally, we performed experiments (in the full version) on random point sets in the two
dimensional Euclidean plane, to ensure that our theoretical bounds are also supported by
enough empirical evidence. Our results show that our construction performs efficiently with
respect to the maximum degree, size, and total weight.

References
1 Mohammad Ali Abam, Mark De Berg, Mohammad Farshi, and Joachim Gudmundsson.

Region-fault tolerant geometric spanners. Discrete & Computational Geometry, 41(4):556–582,
2009. doi:10.1007/s00454-009-9137-7.

2 Ingo Althöfer, Gautam Das, David Dobkin, and Deborah Joseph. Generating sparse spanners
for weighted graphs. In John R. Gilbert and Rolf Karlsson, editors, Proceedings of the
2nd Scandinavian Workshop on Algorithm Theory (SWAT), volume 447 of Lecture Notes in
Computer Science, pages 26–37. Springer, 1990. doi:10.1007/3-540-52846-6_75.

3 Khaled Alzoubi, Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Geometric
spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems,
14(4):408–421, 2003. doi:10.1109/TPDS.2003.1195412.

4 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time con-
struction of sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–277, 1998.
doi:10.1137/S0097539794271898.

5 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (α, β)-spanners. ACM Transactions on Algorithms, 7(1):5, 2010. doi:10.1145/1868237.
1868242.

6 Sujoy Bhore, Arnold Filtser, Hadi Khodabandeh, and Csaba D Tóth. Online spanners in
metric spaces. arXiv preprint, 2022. arXiv:2202.09991.

7 Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Greedy spanners are optimal in
doubling metrics. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2371–2379. Society for Industrial and Applied Mathematics, 2019. doi:
10.1137/1.9781611975482.145.

8 Rebecca Braynard, Dejan Kostic, Adolfo Rodriguez, Jeffrey Chase, and Amin Vahdat. Opus:
an overlay peer utility service. In Proceedings of the 5th IEEE Conference on Open Architectures
and Network Programming (OPENARCH), pages 167–178. IEEE, 2002. doi:10.1109/OPNARC.
2002.1019237.

https://doi.org/10.1007/s00454-009-9137-7
https://doi.org/10.1007/3-540-52846-6_75
https://doi.org/10.1109/TPDS.2003.1195412
https://doi.org/10.1137/S0097539794271898
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/1868237.1868242
http://arxiv.org/abs/2202.09991
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1109/OPNARC.2002.1019237
https://doi.org/10.1109/OPNARC.2002.1019237

D. Eppstein and H. Khodabandeh 21:17

9 T-H Hubert Chan and Anupam Gupta. Small hop-diameter sparse spanners for doubling
metrics. Discrete & Computational Geometry, 41(1):28–44, 2009.

10 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM Journal on Computing, 39(7):3403–3423, 2010. doi:10.1137/090758039.

11 Paul Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989. doi:10.1016/0022-0000(89)90044-5.

12 Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
Journal on Computing, 28(1):210–236, 1998. doi:10.1137/S0097539794261295.

13 Mirela Damian, Saurav Pandit, and Sriram Pemmaraju. Distributed spanner construction
in doubling metric spaces. In International Conference on Principles of Distributed Systems,
pages 157–171. Springer, 2006.

14 Mirela Damian, Saurav Pandit, and Sriram Pemmaraju. Local approximation schemes for
topology control. In Proceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing, pages 208–217, 2006.

15 Gautam Das. The visibility graph contains a bounded-degree spanner. In Proceedings of the
9th Canadian Conference on Computational Geometry (CCCG), pages 70–75, 1997. URL:
https://cccg.ca/proceedings/1997/.

16 Andrew Dobson and Kostas E. Bekris. Sparse roadmap spanners for asymptotically near-
optimal motion planning. International Journal of Robotics Research, 33(1):18–47, 2014.
doi:10.1177/0278364913498292.

17 Michael Elkin. Computing almost shortest paths. ACM Transactions on Algorithms, 1(2):283–
323, 2005. doi:10.1145/1103963.1103968.

18 Michael Elkin, Arnold Filtser, and Ofer Neiman. Distributed construction of light networks.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 483–492,
2020.

19 Michael Elkin and David Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM
Journal on Computing, 33(3):608–631, 2004. doi:10.1137/S0097539701393384.

20 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing, 18(5):375–385, 2006. doi:
10.1007/s00446-005-0147-2.

21 David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. North-Holland, 2000. doi:
10.1016/B978-044482537-7/50010-3.

22 David Eppstein and Siddharth Gupta. Crossing patterns in nonplanar road networks. In Pro-
ceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 1–9, 2017.

23 David Eppstein and Hadi Khodabandeh. On the edge crossings of the greedy spanner. In 37th
International Symposium on Computational Geometry, volume 12, page 37, 2021.

24 David Eppstein and Hadi Khodabandeh. Optimal spanners for unit ball graphs in doubling
metrics. arXiv preprint, 2021. arXiv:2106.15234.

25 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-spanners.
ACM Journal of Experimental Algorithmics, 14:1.3:1–1.3:29, 2009. doi:10.1145/1498698.
1564499.

26 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In Proceedings of the 16th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 745–754. Society for Industrial
and Applied Mathematics, 2005.

27 Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, pages 9–17, 2016.

28 Jie Gao, Leonidas J Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanners for
routing in mobile networks. IEEE journal on selected areas in communications, 23(1):174–185,
2005.

DISC 2022

https://doi.org/10.1137/090758039
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1137/S0097539794261295
https://cccg.ca/proceedings/1997/
https://doi.org/10.1177/0278364913498292
https://doi.org/10.1145/1103963.1103968
https://doi.org/10.1137/S0097539701393384
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1016/B978-044482537-7/50010-3
https://doi.org/10.1016/B978-044482537-7/50010-3
http://arxiv.org/abs/2106.15234
https://doi.org/10.1145/1498698.1564499
https://doi.org/10.1145/1498698.1564499

21:18 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

29 Lee-Ad Gottlieb. A light metric spanner. In Proceedings of the 56th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 759–772. IEEE, 2015. doi:10.1109/FOCS.
2015.52.

30 Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy algorithms
for constructing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479–1500,
2002.

31 Jonathan P Jenkins, Iyad A Kanj, Ge Xia, and Fenghui Zhang. Local construction of spanners
in the 3d space. IEEE Transactions on Mobile Computing, 11(7):1140–1150, 2012.

32 Lujun Jia, Rajmohan Rajaraman, and Christian Scheideler. On local algorithms for topology
control and routing in ad hoc networks. In Proceedings of the 15th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 220–229. ACM, 2003. doi:10.1145/
777412.777447.

33 Iyad A Kanj, Ljubomir Perković, and Ge Xia. Computing lightweight spanners locally. In
International Symposium on Distributed Computing, pages 365–378. Springer, 2008.

34 J. Mark Keil. Approximating the complete Euclidean graph. In Rolf Karlsson and Andrzej
Lingas, editors, Proceedings of the 1st Scandinavian Workshop on Algorithm Theory (SWAT),
volume 318 of Lecture Notes in Computer Science, pages 208–213. Springer, 1988. doi:
10.1007/3-540-19487-8_23.

35 Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. On the locality of bounded
growth. In Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, pages 60–68, 2005.

36 Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proceedings of the 60th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 1078–1100. IEEE, 2019.
doi:10.1109/FOCS.2019.00069.

37 Ning Li, Jennifer C Hou, and Lui Sha. Design and analysis of an mst-based topology control
algorithm. IEEE Transactions on Wireless Communications, 4(3):1195–1206, 2005.

38 Xiang-Yang Li, Gruia Calinescu, Peng-Jun Wan, and Yu Wang. Localized delaunay trian-
gulation with application in ad hoc wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 14(10):1035–1047, 2003.

39 Xiang-Yang Li, Peng-Jun Wan, and Yu Wang. Power efficient and sparse spanner for wireless
ad hoc networks. In Proceedings Tenth International Conference on Computer Communications
and Networks (Cat. No. 01EX495), pages 564–567. IEEE, 2001.

40 James D. Marble and Kostas E. Bekris. Asymptotically near-optimal planning with probabilistic
roadmap spanners. IEEE Transactions on Robotics, 29(2):432–444, 2013. doi:10.1109/TRO.
2012.2234312.

41 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
2007.

42 David Peleg and Liam Roditty. Localized spanner construction for ad hoc networks with
variable transmission range. ACM Transactions on Sensor Networks (TOSN), 7(3):1–14, 2010.

43 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

44 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

45 Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, pages 35–44, 2008.

46 Michiel Smid. The weak gap property in metric spaces of bounded doubling dimension. In
Efficient Algorithms, pages 275–289. Springer, 2009.

47 Wenjie Wang, Cheng Jin, and Sugih Jamin. Network overlay construction under limited
end-to-end reachability. In Proceedings of the 24th Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), volume 3, pages 2124–2134. IEEE, 2005.

https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1145/777412.777447
https://doi.org/10.1145/777412.777447
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/TRO.2012.2234312
https://doi.org/10.1109/TRO.2012.2234312
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1007/s00453-010-9401-5

D. Eppstein and H. Khodabandeh 21:19

A Omitted Proofs from Section 3

▶ Lemma 5. The spanner returned by Centralized-Spanner has a stretch factor of 1 + ϵ.

Proof. We recall that the output of Approximate-Greedy is a light-weight bounded-degree
(1 + ϵ′)-spanner of the complete weighted graph on the point set. So an edge e of length
|e| > 1 + ϵ′ cannot be used to approximate any edges in the UBG, i.e. if (x, y) ∈ E then e

cannot belong to the shortest path between x and y in S; otherwise the length of the path
would exceed 1 + ϵ′ which cannot happen. So we may safely remove these edges in the first
step of the refinement procedure without replacing them.

x
y

u v

x0

y0

 1

 1

 ✏0 ✏0

 2✏0 2✏0

2

Figure 3 An edge (x, y) of the UBG that uses a longer than unit length edge (u, v) of the spanner
on its shortest path, which is then replaced by (x′, y′) during the replacement procedure.

Also, any edge of length in the range (1, 1 + ϵ′] that is not used in a shortest path between
any two endpoints of an edge of UBG can be removed as well, because removing them does
not change the stretch-factor of the spanner. Now consider an edge (x, y) ∈ E of the UBG
that uses a spanner edge e = (u, v) ∈ S that |e| ∈ (1, 1 + ϵ′] on its shortest path. We want
to prove that after the replacement of e, the shortest path between x and y remains within
1 + ϵ factor of their distance. Clearly, we have ∥ux∥ ≤ ϵ′ and ∥vy∥ ≤ ϵ′; otherwise the length
of the path xuvy would be more than 1 + ϵ′, contradicting the fact that it is approximating
an edge of length at most 1. This shows that (x, y) would be a valid replacement edge for
e. So we can safely assume that the algorithm finds a (possible weak) replacement edge
(x′, y′) ∈ E for e (Figure 3). This replacement edge might be a normal replacement edge or
a weak replacement edge. Either way, we have ∥ux′∥ ≤ 2ϵ′ and ∥vy′∥ ≤ 2ϵ′. By the triangle
inequality

∥x′x∥ ≤ ∥x′u∥+ ∥ux∥ ≤ 2ϵ′ + ϵ′ = 3ϵ′

Similarly, ∥yy′∥ ≤ 3ϵ′. Therefore

∥x′y′∥ ≤ ∥x′x∥+ ∥xy∥+ ∥yy′∥ ≤ ∥xy∥+ 6ϵ′ (1)

Denote the shortest spanner path between x and x′ by Pxx′ and similarly define Pyy′ . Consider
the spanner path P = Pxx′x′y′Py′y that connects x and y. Using Equation 1 the length of
the path P is

|P | = |Pxx′ |+ ∥x′y′∥+ |Py′y| ≤ ∥xy∥+ 6ϵ′ + |Pxx′ |+ |Py′y| (2)

The changes that we make in the refinement process do not affect the length of short paths
like Pxx′ and Py′y. So we have

|Pxx′ | ≤ (1 + ϵ′)∥xx′∥ ≤ 3ϵ′(1 + ϵ′)

Similarly, |Pyy′ | ≤ 3ϵ′(1 + ϵ′). Putting these into Equation 2 and using ϵ = 36ϵ′,

|P | ≤ ∥xy∥+ 6ϵ′ + 6(1 + ϵ′)ϵ′ ≤ ∥xy∥+ ϵ

1 + ϵ′ (3)

DISC 2022

21:20 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

But since e was previously approximating the edge (x, y), we know that (1+ ϵ′)∥xy∥ ≥ |e| > 1
or equivalently ∥xy∥ > 1/(1 + ϵ′). Substituting this into Equation 3,

|P | ≤ ∥xy∥+ ϵ∥xy∥ = (1 + ϵ)∥xy∥

So S is a (1 + ϵ)-spanner of G. ◀

▶ Lemma 6. The spanner returned by Centralized-Spanner has a weight of O(1)w(MST).

Proof. Again, we use the fact that the output of Approximate-Greedy has weight
O(1)w(MST (G)). During the refinement process, every edge is replaced by an edge of
smaller length, so the whole weight of the graph does not increase during the refinement
process. Therefore in the end w(S) = O(1)w(MST (G)). ◀

▶ Lemma 7. The spanner returned by Centralized-Spanner has bounded degree.

Proof. It is clear from the algorithm that immediately after processing an edge e = (u, v),
the degree of u and v does not increase; it may decrease due to the removal of the edge which
is fine. But if a replacement edge (x, y) is added after the removal of e then the degree of x

and y is increased by at most 1. We need to make sure this increment is bounded for every
vertex.

Let x be an arbitrary vertex of G and let (x, y) and (x, z) be two replacement edges that
have been added to x in this order as a result of the refinement process. We claim that
∥yz∥ > ϵ′ holds. Assume, on the contrary, that ∥yz∥ ≤ ϵ′, and also assume that (x, z) has
been added in order to replace an edge (u, v) of the spanner. Then by the triangle inequality

∥vy∥ ≤ ∥vz∥+ ∥zy∥ ≤ 2ϵ′

Also ∥ux∥ ≤ ϵ′ < 2ϵ′ because (x, z) is added to replace (u, v). But the last two inequalities
contradict the fact that (x, y) cannot be a weak replacement for (u, v).

Now that we have proved ∥yz∥ > ϵ′ we can use the packing property of the bounded
doubling dimension to bound the number of such replacement edges around x. All the other
endpoints of such replacement edges are included in ball of radius 1 around x, and the
distance between every two such points is at least ϵ′. Thus by the packing property there
can be at most (4

ϵ′)d = ϵ−O(d) many replacement edges incident to x. ◀

B Omitted Proofs from Section 4

▶ Lemma 9. Distributed-Spanner can be done in O(log∗ n) rounds of communication.

Proof. The pre-processing step of finding the maximal independent set takes O(log∗ n)
rounds of communication [35]. Retrieving the 2-hop neighborhood information can be done
in O(1) rounds of communication. Computing the greedy spanner is done locally, and the
edges are sent to their endpoints, which again can be done in O(1) rounds of communication.
Overall, the algorithm requires O(log∗ n) rounds of communication. ◀

▶ Lemma 10. The spanner returned by Distributed-Spanner has a stretch factor of 1 + ϵ.

Proof. From section 3 we know that Sw is a light-weight bounded-degree (1 + ϵ)-spanner of
N 2(w). Let u, v ∈ V be chosen arbitrarily. We need to make sure there is a path of length
at most (1 + ϵ)dG(u, v) between u and v in the output.

First we prove this for the case that (u, v) ∈ E. So let e = (u, v) ∈ E. Then u is either
in I or has a neighbor in I, according to choice of I. In any case, the edge e belongs to
N 2(w) for some w ∈ I, which means that there is a path P ⊂ Sw of length at most (1 + ϵ)|e|

D. Eppstein and H. Khodabandeh 21:21

that connects u and v. The edges of P are all included in the final spanner according to the
algorithm, so the output includes this path between u and v, which has a length at most
(1 + ϵ)|e| and so the distance inequality is satisfied.

If (u, v) /∈ E, we can take the shortest path u = p0, p1, · · · , pk = v between them in
G and append the corresponding (1 + ϵ)-approximate paths P0, P1, · · · , Pk−1 of the edges
p0p1, p1p2, · · · , pk−1pk, respectively, to get a (1 + ϵ)-approximate path for p0p1 · · · pk. This
implies that the stretch factor of the output is indeed 1 + ϵ. ◀

▶ Lemma 11. The spanner returned by Distributed-Spanner has a bounded degree.

Proof. First we use the packing lemma to prove that any vertex v ∈ V appears at most a
constant number of times in different neighborhoods, N 2(w) for w ∈ I. Because v ∈ N 2(w)
implies that ∥vw∥ ≤ 2, any vertex w ∈ I such that v ∈ N 2(w) should be contained in the
ball of radius 2 around v. But all such ws are chosen from I, which is an independent set of
G, so the distance between every two such vertex is at least 1. By the packing property, the
maximum number of such vertices would be 8d = O(1).

Now that every vertex appears in at most in 8d different sets N 2(w), for w ∈ I, and
from section 3 we already knew that every vertex has bounded degree in any of Sws, it
immediately follows that every vertex has bounded degree in the final spanner. ◀

▶ Lemma 13. Define T to be the optimal Steiner tree on the set of vertices N 3(w), where
only vertices in N 2(w) are required and the rest of them are optional. Then

w(MST (N 2(w))) ≤ 2w(T)

Proof. This is a well-known fact that implies a 2-approximation for minimum Steiner tree
problem. The idea is if we run a full DFS on the vertices of T and we write every vertex
once we open and once we close it, then we get a cycle whose shortcut on optional edges will
form a path on the required vertices. The weight of the cycle is at least w(MST (N 2(w)))
and at most 2w(T), which proves the result. ◀

▶ Lemma 14. Let S∗ be the output of Centralized-Spanner(G, ϵ) and let S∗
w be the

induced subgraph of S∗ on N 3(w). Then

w(T) ≤ w(S∗
w)

Proof. We prove that for ϵ ≤ 1, S∗
w forms a forest that connects all the vertices in N 2(w) in

a single component. So S∗
w is a feasible solution to the minimum Steiner tree problem on the

set of vertices N 3(w) with required vertices being N 2(w). Thus w(T) ≤ w(S∗
w).

Now we just need to prove that the vertices in N 2(w) are connected in S∗
w. Let u be

an i-hop neighbor of w and v be an i + 1-hop neighbor of w for some w ∈ I and i = 0, 1.
Assume that (u, v) ∈ E. It is enough to prove that u and v are connected in S∗

w. In order
to do so, we observe that there is a path of length at most (1 + ϵ)∥uv∥ between u and v in
S∗. We show that this path is contained in N 3(w) and we complete the proof in this way,
because w(S∗

w) is nothing but the induced subgraph of S∗ on N 3(w).
Assume, on the contrary, that there is a vertex x /∈ N 3(w) on the (1 + ϵ)-path between u

and v. This means that x is not a 1-hop neighbor of any of u and v, because otherwise x

would have been in N 3(w). So ∥ux∥ > 1 and ∥vx∥ > 1. Thus the length of the path would
be at least ∥ux∥+ ∥xv∥ > 2 ≥ (1 + ϵ) ≥ (1 + ϵ)∥uv∥ which is a contradiction. ◀

DISC 2022

21:22 Distributed Construction of Lightweight Spanners for Unit Ball Graphs

C Omitted Proofs from Section 5

▶ Lemma 17. The union of the balls of radius 1/2 around the centers in I(w) cover N 2(w).
Furthermore, the size of I(w) is bounded by a constant.

Proof. Let v ∈ N 2(w) be an arbitrary point. Thus there exists u ∈ N 1(w) that v ∈ N 1(u).
Let I1/4(u) be the maximal independent set of the vertices N 1(u) in G≤1/4, that u calculates
and sends to w in the first step. There exists v′ ∈ I1/4(u) that ∥vv′∥ ≤ 1/4. Similarly, there
exists v′′ ∈ I(w) that ∥v′v′′∥ ≤ 1/4. By the triangle inequality, ∥vv′′∥ ≤ 1/2, i.e. v is covered
by a ball of radius 1/2 around v′′.

On the other hand, I(w) is contained in a ball of radius 2 and every pair of points in I(w)
have a distance of at least 1/4. Thus, by the packing lemma, he size of I(w) is bounded by
a constant. ◀

▶ Lemma 18. The union of the spanners S≤1/2(v) for v ∈ I(w) is a (1 + ϵ)-spanner of
N 2(w) in G≤1/2. The maximum degree and the lightness of this spanner are both bounded by
constants.

Proof. First, we prove the 1 + ϵ stretch-factor. Let (u, v) be a pair in N 2(w) such that
∥uv∥ ≤ 1/2. By Lemma 17 we know there exists u′ ∈ I(w) that ∥uu′∥ ≤ 1/2. Thus ∥vu′∥ ≤ 1
which means that u, v ∈ N 1(u′) and there would be a (1 + ϵ)-path for this pair in S≤1/2(u′),
which would be present in the union of the spanners.

The degree bound follows from the fact that, by the packing lemma, every point in N 2(w)
is appeared in at most a constant number of one-hop neighborhoods and therefore in at most
a constant number of spanners constructed the elements in I(w). Since in every spanner it
has a bounded degree, in the union it will have a bounded degree as well.

To prove the lightness bound we follow a similar approach to the proof of Proposition
15. The weight of each spanner S≤1/2(v) is O(1)w(MST (N 1(v))). The weight of the MST
is at most twice the weight of the optimal Steiner tree on N 2(v) with the required vertices
being N 1(v). And the weight of this optimal Steiner tree is at most equal to the weight of
the induced sub-graph of an (asymptotically) optimal (1 + ϵ)-spanner of G on the subset of
vertices N 2(v). Summing up these subgraphs for different vs and different ws would end up
with adding at most a constant factor to the weight of the optimal spanner, which proves
that the lightness would be bounded by a constant. ◀

▶ Lemma 20. The union of the spanners S ′(w) and S ′′(v) for v ∈ I ′(w) forms a (1 + ϵ)-
spanner of N 2(w) in G>1/2. The maximum degree and the lightness of this spanner are btoh
bounded by constants.

Proof. Again, we first prove the 1 + ϵ stretch-factor of the spanner. Let (u, v) be a pair in
N 2(w) that ∥uv∥ > 1/2. Let u′ and v′ be centers in I ′(w) that are at distance of at most
ϵ/20 from u and v, respectively. Such centers exist according to Lemma 19. Consider the
(1 + ϵ)-path connecting u to u′ in S ′′(u′) and the (1 + ϵ)-path connecting v to v′ in S ′′(v′).
We can attach these paths together with the (1 + ϵ/5)-path between u′ and v′ in S ′(w) to
get a path between u and v. The stretch of this path would be at most

(1 + ϵ)(∥uu′∥+ ∥vv′∥) + (1 + ϵ/5)∥u′v′∥
∥uv∥

= (1 + ϵ)(∥uu′∥+ ∥vv′∥)
∥uv∥

+ (1 + ϵ/5)∥u′v′∥
∥uv∥

But,

(1 + ϵ)(∥uu′∥+ ∥vv′∥)
∥uv∥

≤ (1 + ϵ)ϵ/10
1/2 ≤ 2ϵ

5

D. Eppstein and H. Khodabandeh 21:23

Also,

(1 + ϵ/5)∥u′v′∥
∥uv∥

≤ (1 + ϵ/5)(∥uv∥+ ∥uu′∥+ ∥vv′∥)
∥uv∥

≤ 1 + ϵ/5 + (1 + ϵ/5)ϵ/10
∥uv∥

Bounding the last term,

(1 + ϵ/5)ϵ/10
∥uv∥

≤ (6/5)ϵ/10
1/2 = 6ϵ

25

Therefore, the stretch of the uv-path would be upper bounded by,

2ϵ

5 + 1 + ϵ/5 + 6ϵ

25 < 1 + ϵ

An approach similar to the proof of Lemma 18 shows that the degree of every vertex in
the union of S ′′(v)s would be bounded by a constant. We do not repeat the details of the
proof here. From the properties of our centralized construction, the degree of every vertex
would be bounded in S ′(w) as well. Thus, the degree of every vertex in the union of these
spanners would be bounded by a constant.

To prove the lightness bound, we bound the weight of each spanner separately. First,
we bound the total weight of S ′(w). We know from the properties of our centralized con-
struction, that w(S ′(w)) = O(1)w(MST (I ′(w))). But w(MST (I ′(w))) ≤ 2MST (N 2(w)),
so w(S ′(w)) = O(1)w(MST (N 2(w))). Therefore, by Lemma 13 and Lemma 14 the total
weight of S ′(w) spanners for different centers w would sum up to at most a constant factor
of the weight of the optimal spanner.

Next, we bound the total weight of S ′′(v) spanners. Again, we know from the properties
of our centralized construction that w(S ′′(v)) = O(1)w(MST (N ϵ/20(v))). Assuming that S∗

is an optimal spanner on the point set, we can observe that any (1 + ϵ)-path (in S∗) between
any pair of vertices in N ϵ/20(v) must be completely contained in a ball of radius 3ϵ/20,
otherwise the length of the path would be more than (1 + ϵ)ϵ/10, the maximum allowed
length for any (1 + ϵ)-path of any pair in the N ϵ/20(v) neighborhood. Therefore, the induced
sub-graph of S∗ on N 3ϵ/20(v) has a connected component connecting the vertices of N ϵ/20(v).
Thus, its weight is at least equal to the weight of a minimum Steiner tree on N 3ϵ/20(v),
with the required vertices being N ϵ/20(v). This is at least equal to w(MST (N ϵ/20(v)))/2.
Therefore, the weight of S ′′(v) is bounded above by a constant factor of the weight of the
induced sub-graph of S∗ on N 3ϵ/20(v). Summing up these bounds for every v in every w

would lead to at most a constant repetitions of every vertex and every edge (similar to
Proposition 15) in S∗, which shows that the total weight of S ′′(v) for different vertices of v

would be bounded by a constant factor of the weight of the optimal spanner. ◀

DISC 2022

Improved Deterministic Connectivity in Massively
Parallel Computation
Manuela Fischer #

ETH Zürich, Switzerland

Jeff Giliberti #

ETH Zürich, Switzerland

Christoph Grunau #

ETH Zürich, Switzerland

Abstract
A long line of research about connectivity in the Massively Parallel Computation model has
culminated in the seminal works of Andoni et al. [FOCS’18] and Behnezhad et al. [FOCS’19].
They provide a randomized algorithm for low-space MPC with conjectured to be optimal round
complexity O(log D + log log m

n
n) and O(m) space, for graphs on n vertices with m edges and

diameter D. Surprisingly, a recent result of Coy and Czumaj [STOC’22] shows how to achieve the
same deterministically. Unfortunately, however, their algorithm suffers from large local computation
time.

We present a deterministic connectivity algorithm that matches all the parameters of the
randomized algorithm and, in addition, significantly reduces the local computation time to nearly
linear.

Our derandomization method is based on reducing the amount of randomness needed to allow
for a simpler efficient search. While similar randomness reduction approaches have been used before,
our result is not only strikingly simpler, but it is the first to have efficient local computation. This is
why we believe it to serve as a starting point for the systematic development of computation-efficient
derandomization approaches in low-memory MPC.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → MapReduce algorithms

Keywords and phrases Massively Parallel Computation, MPC, MapReduce, Deterministic Algo-
rithms, Connectivity, Hitting Set, Maximum Matching, Derandomization

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.22

Funding Christoph Grunau: Supported by the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement No. 853109).

1 Introduction

Due to the ever-increasing amount of data available, memory has grown to become a major
bottleneck, which makes many traditional graph algorithms inefficient or even inapplicable.
To overcome this obstacle, inspired by the MapReduce paradigm [17], several computation
frameworks for large-scale graph processing across multiple machines have been proposed.
The Massively Parallel Computation (MPC) model is a clean, theoretical abstraction of
these frameworks and thus serves as a basis for the systematic study of memory-restricted
distributed algorithms. Introduced by Karloff et al. [27] and Feldman et al. [19] in 2010, it
was later refined in a sequence of works and has become tremendously popular over the past
decade.

© Manuela Fischer, Jeff Giliberti, and Christoph Grunau;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuela.fischer@inf.ethz.ch
https://orcid.org/0000-0002-0125-8957
mailto:jeff.giliberti@inf.ethz.ch
https://orcid.org/0000-0003-3404-1647
mailto:cgrunau@inf.ethz.ch
https://orcid.org/0000-0002-1057-9429
https://doi.org/10.4230/LIPIcs.DISC.2022.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Improved Deterministic Connectivity in MPC

MPC Model

In the MPC model, the distributed network consists of M machines, having local memory
S each. The input is distributed across the machines and the computation proceeds in
synchronous rounds. In each round, each machine performs an arbitrary local computation
and then communicates up to S data. All messages sent and received by each machine in
each round have to fit into the machine’s local space. The main complexity measure of an
algorithm is its round complexity, that is, the number of rounds needed by the algorithm to
solve the problem. Secondary complexity measures of an algorithm are its global memory
usage – i.e., the number of machines times the memory per machine required – as well as the
total computation performed by machines to run the algorithm, i.e., the (asymptotic) sum of
the local computation performed by each machine.

We focus on the design of fully scalable graph algorithms in the low-memory MPC
model, where each machine has strongly sublinear memory. More precisely, an input graph
G = (V, E), with n vertices and m edges, is distributed arbitrarily across machines with
local memory S = O(nδ) each, for some constant 0 < δ < 1, so that the global space is
SGlobal = Ω(n + m).

Graph Algorithms and Connectivity

In this model, fundamental graph and optimization problems have recently gained a lot of
attention. There is a plethora of work on the problems of connectivity, matching, maximal
independent set, vertex cover, coloring, and many more (see, e.g., [6, 20, 12, 15, 7, 23, 16]).

One particularly important (and arguably the most central) graph problem that has
received increasing attention over the past few years is the one of connectivity. This is not
only a problem of independent interest, but it serves as a subroutine for many algorithms.

▶ Definition 1 (Connectivity Problem). Let G = (V, E) be an undirected graph. The goal is
to compute a function cc : V → N such that every vertex u ∈ V knows cc(u) and for any pair
of vertices u, v ∈ V , u and v are connected in G if and only if cc(u) = cc(v).

A sequence of works [3, 4, 29, 7, 33, 10, 7] on this problem culminated in a randomized
algorithm by Behnezhad et al. [7] that finds all connected components of a graph with
diameter D in O(log D + log log m

n
n) rounds.

In a very recent breakthrough, Coy and Czumaj [12] obtained the same round complexity
with a deterministic algorithm. Their derandomization approach, however, comes at a cost
of heavy local computation, which makes it impractical for large-scale applications.

Deterministic Algorithms and Derandomization

While the problem of connectivity is of independent interest, it is instructive to view the
above results in a broader context of deterministic algorithms and derandomization.

Notably, for almost a decade, (almost) all the research in the domain of Massively
Parallel Computation has focused on the study of randomized algorithms. Only recently,
a sequence of works has aimed at exploring the power of the (low-memory) MPC model
restricted to deterministic algorithms [5, 16, 13, 15, 12]. They demonstrate that several
graph problems can be solved deterministically with (asymptotic) complexity bounds that
are comparable to those of the randomized algorithms. The main ingredients of these results
are derandomization methods specifically tailored to the low-memory MPC model: they are
designed to cope with the limited memory per machine while exploiting the power of local
computation and all-to-all communication in this setting.

M. Fischer, J. Giliberti, and C. Grunau 22:3

This quest for efficient derandomization techniques has become one of the main problems
of the area. Unfortunately, current derandomization frameworks suffer from long local
running time (e.g., large polynomial or even exponential in nδ). In fact, as noted in [16],
allowing heavy local computation might provide an advantage in the context of distributed
and parallel derandomization. However, especially in performance-oriented scenarios, local
computation may quickly become a critical parameter. It thus emerges as a natural direction
to study deterministic algorithms whose total computation matches that of their randomized
counterparts.

1.1 Our Contribution
We address this issue by presenting the first computation-efficient deterministic algorithm
for the problem of graph connectivity in the strongly sublinear memory regime of MPC.

▶ Theorem 2 (Deterministic Connectivity). There is a strongly sublinear MPC algorithm that
given a graph with diameter D, identifies its connected components in O(log D + log log m

n
n)

rounds deterministically using O(n + m) global space and Õ(m) total computation.

The total computation of our algorithm significantly improves over the poly(n)-bound of
Coy and Czumaj [12], with no loss in the round complexity. In fact, our algorithm matches
even the state-of-the-art randomized algorithm [7] in all parameters up to a polylogarithmic
factor in the local running time.

While the connectivity algorithm is of independent interest, our result provides a number of
other qualitative advantages. For instance, our analysis relies only on pairwise independence
as opposed to the almost O(log n)-wise independence of [12]. Moreover, to the best of
our knowledge, our result is the first that uses the framework of limited independence for
derandomization without incurring a significant loss in one of the parameters (e.g., in the
total computation time), and hence may be of practical interest. Furthermore, due to their
simplicity, our analyses may serve as a friendly introduction to deterministic algorithms via
the framework of bounded independence and, hopefully, as a stepping stone to the more
systematic development of computation-efficient derandomization.

1.2 Randomized Connectivity Algorithms in a Nutshell
We present the intuition of the randomized connectivity algorithms by Andoni et al. [3] and
Behnezhad et al. [7]. For a broader overview of connectivity algorithms, see Section 1.4.

Vertex Contraction

The main idea behind connectivity algorithms working in Õ(log D) rounds is to repeatedly
perform vertex contractions [3]. Contracting (often also called relabeling) a vertex u to
an adjacent vertex v means deleting the edge {u, v} and connecting v to all the vertices
adjacent to u. The simplest way to implement this contraction-based approach is to first
appoint a random subset of the vertices as leaders (by letting each vertex independently
with probability 1

2 become a leader), and then to contract non-leader vertices to one of their
leader neighbors (if any). This approach requires O(log n) rounds with high probability.

Vertex Contraction with Levels and Budgets (Andoni et al. [3])

A crucial observation to speed up the vertex contractions – going back to the graph ex-
ponentiation approach by Lenzen and Wattenhofer [31] – is to let each vertex expand its
neighborhood to neighbors of neighbors by adding new edges (without changing the con-
nectivity). In fact, if every vertex reaches degree Ω(d) by expanding its neighborhood in

DISC 2022

22:4 Improved Deterministic Connectivity in MPC

O(log D) rounds, we can mark vertices to be a leader with probability ≈ log n
d . As a result,

each non-leader vertex has a leader in its neighborhood and the number of remaining vertices
is Õ(n

d).
In their algorithm, Andoni et al. [3] assign a level to every vertex which has not been

contracted yet. Vertices at level i have a budget of bi for expanding their neighborhood,
i.e., each vertex at level i can add at most bi neighbors. The initial budget b0 is set to
min(nδ/2,

√
m
n) to maintain global space O(m). At iteration i, every vertex either increases

its degree to bi or finds its connected component. As explained above, we thus can mark
leader vertices with probability log n

bi
and perform contractions to reduce the problem size

to Õ(n/bi). Hence, the budgets of remaining vertices can be updated to bi+1 = b1+c
i , for a

small constant c, while using the same global space. Overall, after O(log log m
n

n) iterations,
there will be a unique vertex left in each connected component.

Random Leader Contraction (Behnezhad et al. [7])

To further improve the round complexity, Behnezhad et al. [7] design an algorithm that
applies vertex contractions and increases the budgets of vertices in an asynchronous manner,
e.g., at a given time two active vertices can have different budgets. In each round, their
algorithm (informally) ensures that each vertex either learns its 2-hop neighborhood or
increases its budget. We here focus on the routine that defines the budgets’ increase, as this
is the only step involving randomness.

Consider the subgraph induced by vertices with budget level i. The crucial observation is
that if a vertex has Ω(bi) many neighbors of the same level, then contracting all of them
allows us to recuperate Ω(b2

i) budget. If each vertex is elected as a leader with probability
≈ log n

bi
, and non-leader vertices contracted to an arbitrary neighboring leader, then leaders

can increase their level without exceeding the total memory.

Increasing Initial Budget using Matching (Behnezhad et al. [7])

To allow each vertex to start with a poly log n budget, a randomized constant-round algorithm
(see [7, Algorithm 3]) reduces the number of vertices of G by a constant factor. By running it
for O(log log n) MPC rounds, the problem size decreases from n to n/poly log n. Intuitively,
this algorithm works by contracting a constant fraction of the vertices to their lowest-ID
neighbors as follows. Each vertex proposes to be contracted to its neighbor with smallest
ID. A deterministic conflict resolving phase results in a graph of size Ω(n) consisting of
vertex-disjoint paths. Contracting along the edges of a constant-approximate maximum
matching in this graph with maximum degree 2 thus allows to contract Ω(n) vertices as
desired.

1.3 Deterministic Connectivity: Comparison with the State-of-the-Art
We next present the main ideas behind the recent deterministic connectivity algorithm of
Coy and Czumaj [12].

Coy and Czumaj [12] identify and extract the only two sources of randomization from
the algorithms of [3, 7], namely matching and hitting set. On the one hand, as outlined in
Section 1.2, a constant approximation of matching in graphs with maximum degree 2 can be
used for the initial budget increase. On the other hand, the random leader contraction can
be formulated as a variant of set cover, which we refer to as hitting set with all sets of the
same size (see Definition 9 for a precise definition).

M. Fischer, J. Giliberti, and C. Grunau 22:5

As these are the only steps involving randomness (as outlined in Section 1.2), the (efficient)
derandomization of these two constant-round key algorithmic primitives immediately leads
to an (efficient) deterministic connectivity algorithm. In fact, their derandomization together
with the O(log D + log log n) randomized algorithm due to Behnezhad et al. [7] results in
the state-of-the-art deterministic connectivity algorithm in low-memory MPC [12].

Interestingly, because of the conditional lower bound framework (conditioned on the
widely believed 1-vs-2-cycles conjecture for low-space MPC algorithms) due to Ghaffari
et al. [22] and its extension to the deterministic setting due to Czumaj et al. [14], the
two underlying problems of matching and hitting set do not admit any component-stable1

constant-round deterministic algorithm. Hence, the authors in [12] incorporate in their work
derandomization techniques that are highly non-component-stable.

While their adopted derandomization framework is well-established, its efficient imple-
mentation for obtaining a deterministic connectivity algorithm on an MPC with low local
space and optimal global space requires to overcome several challenges. Although the algo-
rithm from [12] achieves optimal space guarantees, the computation is suboptimal for both
derandomization steps. We refine these to obtain a more efficient deterministic connectivity
algorithm, as explained next.

Maximum Matching

In [12], the problem of approximating maximum matching in graphs of maximum degree
at most two is solved by searching the space of a randomized process based on pairwise
independent hash functions, which are specified by (2 log n + O(1)) random bits. As each of
the O(n2) hash functions is evaluated O(n) times, with each evaluation taking poly log n time,
the resulting total computation is Õ(n3). We reduce the seed length, i.e., the total number of
random bits needed, to O(log log n) and, as a result, obtain Õ(n) total computation.

Hitting Set

For a hitting set instance with n elements and a collection of n subsets of size b, the algorithm
from [12] finds a hitting set of size O(nb−1/5) by derandomizing a simple random sampling
approach based on a O(logb(n))-wise 1/poly(n)-approximately independent family of hash
functions of size poly(n). The distributed implementation of the method of conditional
expectation for this process takes global space O(nb) and poly(n) total computation.

We provide a low-memory MPC algorithm that solves the same hitting set instance using
only pairwise independent random choices with n · poly(b) global space and n · poly(b) total
computation. Thus, the dependency on n improves polynomially when b ≪ n. It turns out
that using this hitting set algorithm as a subroutine in our connectivity algorithm allows us
to obtain an algorithm with total computation Õ(m). We also note that several other works
[9, 21, 39] solve the hitting set problem deterministically in the context of graph spanners in
CONGEST and CONGESTED-CLIQUE using similar derandomization techniques. However,
these are not straightforward to implement in the low-memory MPC model.

Finally, it is worth observing that because of the shorter seeds, the MPC implementation
of both matching and hitting set algorithms is significantly simplified as we can perform a
simple brute force search instead of using the method of conditional expectation.

1 The notion of component-stability intuitively refers to the property that the choices of any vertex over
the course of the algorithm are affected only by vertices in its same connected component.

DISC 2022

22:6 Improved Deterministic Connectivity in MPC

1.4 Further Related Work
The connectivity problem in low-memory MPC was studied by Andoni et al. [3] who presented
an O(log D · log log m

n
n) randomized algorithm, which improves upon the classic O(log n)

bound derived from earlier works in the PRAM model. Concurrently, for graphs with
large spectral gap λ, i.e., Ω(1/poly log(n)), the bound was improved in [4] developing a
randomized O(log log n + log(1/λ)) algorithm. Then, a near-optimal parallel randomized
algorithm that in O(log D + log log m

n
n) rounds determines all connected components was

developed by Behnezhad et al. [7]. Subsequently, Liu et al. [33] extended the same result
to the arbitrary CRCW PRAM model, which is less computationally powerful than MPC,
achieving such result with good probability2. Moreover, by developing a method that converts
randomized PRAM algorithms to highly randomness-efficient MPC algorithms, Charikar et
al. [10] achieved a super-polynomial saving in the randomness used in [7], showing that
(log n)O(log D+log logm/n n) random bits suffice (with good probability), provided that the global
space is Ω((n + m) · nδ). The current deterministic state-of-the-art algorithm for connectivity
is due to Coy and Czumaj [12] who obtained a deterministic O(log D + log log m

n
n) algorithm

with asymptotically optimal space.
Finally, let us note that the connectivity problem has been studied in other regimes as

well. Lattanzi et al. [30] gave a constant-round MPC connectivity algorithm in the superlinear
regime, i.e., each machine has local space Ω(n1+δ). By well-known connections between linear
memory MPC and the CONGESTED-CLIQUE model, [26] yields a O(1)-rounds randomized
connectivity MPC algorithm with optimal global space. Then, Nowicki [38] showed that the
same problem can be solved deterministically in O(1) MPC rounds with the same memory
guarantees.

On the hardness side, one of the most outstanding problems for low-space MPCcomplexity
is the problem of distinguishing whether an input graph is an n-vertex cycle or consists of two
n
2 -vertex cycles (see, e.g., [41, 37] for more information). Based on the conjectured Ω(log n)
low-memory MPC round-complexity lower bound for the 1-vs-2-cycles problem, Behnezhad
et al. [7] show an Ω(log D) lower bound for computing connected components in general
graphs with diameter D ≥ log1+Ω(1) n. Coy and Czumaj in [12] extend the same conditional
lower bound to the entire spectrum of D proving that no connectivity algorithm can achieve
o(log D) MPC round complexity.

2 Preliminaries

2.1 Primitives in Low-Space MPC
There are a number of well-known MPC primitives that will be used as black-box tools.
These have been studied in the MapReduce framework and can be implemented in the MPC
model with stricly sublinear space per machine and linear global space. We will use the
following lemma to refer to them:

▶ Lemma 3 ([25, 24]). For any positive constant δ, sorting, filtering, prefix sum, predecessor,
duplicate removal, and colored summation task 3 on a sequence of n tuples can be performed
deterministically in MapReduce (and therefore in the MPC model) in a constant number of
rounds using S = nδ space per machine, O(n) global space, and Õ(n) total computation.

2 with success probability at least 1 − 1/poly((m log n)/n)
3 Given a sequence of n pairs of numbers ⟨colori, xi⟩, i ∈ [n], with C = {colori | i ∈ [n]}, compute

Sc =
∑

i:colori=c
xi for all c ∈ C. Note that this problem can be easily solved by a constant sequence

of map, shuffle, and reduce steps with ⟨colori, xi⟩ as key-value pairs.

M. Fischer, J. Giliberti, and C. Grunau 22:7

Finally, observe that these basic primitives allow us to perform all of the basic computations
on graphs deterministically that we will need in a constant number of MPC rounds. This
includes the tasks of computing the degree of every vertex, ensuring neighborhoods of
all vertices are stored on contiguous blocks of machines, sums of values among a vertex’
neighborhood, and collecting the 2-hop neighborhoods provided that they fit in the memory
of a single machine.

2.2 Derandomization Framework
In this section, we give an overview of the common derandomization techniques used in
all-to-all communication models [9, 34] with a focus on deterministic algorithms in the
strongly sublinear memory regime of MPC. A systematic introduction to the framework of
limited independence can be found for example in [40, 36, 2, 35, 8, 42].

The first step is to obtain a randomized process that produces good results in expectation
based on a small search space (i.e., short random seed) by using random variables with some
limited independence. We will use a k-wise independent family of hash functions, which is
defined as follows:

▶ Definition 4 (k-wise independence). Let N, k, ℓ ∈ N with k ≤ N . A family of hash functions
H = {h : [N] → {0, 1}ℓ} is k-wise independent if for all I ⊆ {1, . . . , n} with |I| ≤ k, the
random variables Xi := h(i) with i ∈ I are independent and uniformly distributed in {0, 1}ℓ

when h is chosen uniformly at random from H. If k = 2 then H is called pairwise independent.
Random variables sampled from a pairwise independent family of hash functions are called
pairwise independent random variables.

The following is a well-known result about the existence and construction of such hash
families:

▶ Lemma 5 ([1, 11, 18]). For every N, ℓ, k ∈ N, there is a family of k-wise independent hash
functions H = {h : [N] → {0, 1}ℓ} such that choosing a uniformly random function h from
H takes at most k(ℓ + log N) + O(1) random bits, and evaluating a function from H takes
time poly(ℓ, log N) time.

If there is a randomized algorithm, over the choice of a random hash function, that gives
good results in expectation, one can derandomize it by finding the right choice of (random)
bits. To achieve that, if the seed length is small, one can brute force it without incurring an
overhead in the global space.

In previous works this was usually not possible due to a seed length depending on n of
Ω(log n) bits, which results in hash families of size larger than the space S of a single machine.
Instead, they used the method of conditional expectation or probabilities. There, one divides
the seed into several parts and fixes one part at a time in a way that does not decrease the
conditional expectation (or probability). This can be done with global coordination. We
refer the interested reader for more details of the method of conditional expectation to [12,
Section 2.5, Appendix A].

2.3 Reducing The Seed Length via Coloring
The following technique plays a central role for reducing the seed length of randomized
processes solving local graph problems. As showed in [5, 16, 15], if the outcome of a vertex
depends only on the random choices of its neighbors, then k-wise independence among
random variables of adjacent vertices is sufficient. Whenever this is the case, we can find a

DISC 2022

22:8 Improved Deterministic Connectivity in MPC

mapping from vertex IDs to shorter names (colors) such that adjacent vertices are assigned
different names. Linial gave a 1-round distributed coloring algorithm with O(∆2 log(n))
colors [32]. We here adapt a more explicit 1-round distributed coloring algorithm with
O(∆2 log2

∆(n)) colors by Kuhn [28] to the MPC model, which leads to the following lemma:

▶ Lemma 6. Let G = (V, E) be a graph of maximum degree ∆ ≤ nδ. There exists a
deterministic algorithm which computes an O(∆2 log2

∆ n) coloring of G in O(1) MPC rounds
using O(nδ) local space, O(n · poly(∆)) global space, and Õ(n · poly(∆)) total computation.

Proof. We start by recalling the high-level idea and then we give an efficient MPC imple-
mentation. We assume that each vertex in G is given a unique ID between 1 and n. Let p

be a prime with 10∆ log∆(n) ≤ p ≤ 20∆ log∆(n). It is well known that such a prime always
exist. Moreover, let d = ⌈log∆(n)⌉. There exists pd+1 ≥ n distinct polynomials of degree
at most d over Fp. We denote by fi the i-th such polynomial. Each color corresponds to a
tuple over Fp. Note that there are p2 = O(∆2 log2

∆ n) such tuples.
Let Ci = {(x, fi(x)) : x ∈ Fp}. Using ∆d < p together with the fact that a non-zero

polynomial of degree d can have at most d zeros implies that each vertex can choose a color
c(i) ∈ Ci such that c(i) /∈ Cj for every neighbor j. Now, assigning each vertex i the color
c(i) results in a valid coloring. It remains to discuss the MPC implementation. By using
the basic primitives of Lemma 3 and the assumption that ∆ ≤ nδ, we can assume that the
machine responsible to compute the coloring of the i-th vertex also stores the IDs of all
the neighbors of i. Note that a given polynomial can be evaluated in time poly(log n, ∆).
Computing the color c(i) boils down to O(∆ · p2) = poly(log n, ∆) polynomial evaluations.
Hence, the total computation time is Õ(n · poly(∆)), as desired. ◀

3 Constant Approximation of Maximum Matching

The first algorithmic step for the derandomization of the connectivity algorithm from [7]
consists of solving approximate maximum matching in graphs of maximum degree two. Coy
and Czumaj proved the following theorem:

▶ Theorem 7 (Theorem 4.2 of [12]). Let G = (V, E) be an undirected simple graph with
maximum degree ∆ ≤ 2. One can deterministically find a matching M of G of size at
least m/8 = Ω(m) in O(1) MPC rounds with local space S = O(nδ), and global space
SGlobal = O(n).

By extending their algorithm with the seed reduction technique mentioned earlier, we prove
the following result:

▶ Theorem 8. There exists an algorithm with the same properties as those in Theorem 7
using Õ(n) total computation.

We start by reviewing the main idea used in the algorithm proving Theorem 7.

Randomized Algorithm. The algorithm of Theorem 7 is based on derandomizing the
following simple random process. Let {Xe : e ∈ E} be a family of pairwise independent
random variables with Xe = 1 with probability p = 1/4 and Xe = 0 otherwise. Now, let M
be the matching that includes each edge e with Xe = 1 and Xe′ = 0 for every neighboring
edge e′. The expected size of this matching is:

M. Fischer, J. Giliberti, and C. Grunau 22:9

E[|M|] =
∑
e∈E

Pr[e ∈ M] ≥
∑
e∈E

Pr[Xe = 1] −
∑

e′∈E\{e} :
e′∩e̸=∅

Pr[Xe = 1 ∩ Xe′ = 1]

≥ m · (p − 2p2) ≥ m

8 ,

where the second inequality follows from pairwise independence of the random variable.
Hence, they can be specified by a seed of length 2 log n + O(1) by Lemma 5. As explained
in [12], this allows to use the method of conditional expectation to deterministically find a
matching of size at least m/8 in O(1) MPC rounds.

Reducing the Seed Length. We next show how one can further reduce the seed length
to O(log log n). The main observation is that the above analysis holds as long as for any
two neighboring edges the two corresponding variables are independent. This motivates the
following approach. First, we assign to each edge e a color c(e) from the set {1, 2, . . . , C}
for C = O(log2 n) by applying Lemma 6 such that two neighboring edges get assigned a
different color. Let {Xc : c ∈ [C]} be a family of pairwise independent random variables with
Xc = 1 with probability p = 1/4 and Xc = 0 otherwise. We now include each edge e in M
if Xc(e) = 1 and Xc(e′) = 0 for every neighboring edge e′. The same calculations as above
shows that E[M] ≥ m

8 .

MPC Algorithm. Now we are ready to present our deterministic MPC algorithm that proves
Theorem 8. In the following, we say that something can be efficiently computed if there
exists a deterministic MPC algorithm running in O(1) rounds with local space S = O(nδ),
global space SGlobal = O(n) and using Õ(n) total computation.

Let H = {h : [C] 7→ {0, 1}2} be a family of 2-wise independent hash functions of size at
most 22·log C+O(1) = poly(log n) obtained using Lemma 5. Observe that each hash function
h ∈ H defines a matching M(h) that includes each edge e with h(c(e)) = 0 and h(c(e′)) ̸= 0
for every neighboring edge e′, where h(i) denotes the length-2 bit sequence assigned to i by
the corresponding integer in {0, . . . , 3}.

The analysis of the randomized algorithm above implies that choosing a hash function
h uniformly at random from H results in a matching of expected size at least m/8. In
particular, this guarantees the existence of a hash function h∗ with M(h∗) ≥ m/8. We
efficiently compute |M(h)| for every h ∈ H and choose one good hash function that yields a
matching of size at least m/8.

First, we efficiently compute the coloring c using Lemma 6. Next, we compute the
approximate maximum matching in G by derandomizing the sampling approach analyzed
above. Since the size of our family of pairwise independent hash functions is poly log n, we
can store one number per hash function on every machine. Each machine Mj , which is
responsible for some edges Ej ⊆ [E], can compute locally the number of edges Mj(h) ⊆ Ej

in the matching generated by h ∈ H within a single round. Then, we efficiently aggregate
these numbers across all machines to compute the size of the matching M(h) =

∑
j Mj(h)

for every hash function h. The best h∗ ∈ H for which M(h∗) ≥ m
8 , breaking ties arbitrarily,

yields our approximate maximum matching. Finally, let us note that the global memory
occupied by the hash functions across all machines M is M · |H| ≪ M · O(nδ) = O(n)
and the overall computation performed to evaluate each hash function for every edge is
|H| · poly(log n) · O(n) = Õ(n).

DISC 2022

22:10 Improved Deterministic Connectivity in MPC

4 Computation-Efficient Derandomization of Hitting Set

In this section, we give a deterministic MPC algorithm for the following hitting set variant
defined in [12]:

▶ Definition 9 (Hitting Set for Leader Election). Let S1, . . . , Sn be subsets of [n] with i ∈ Si

and |Si| = b, for each i ∈ [n]. The goal is to find a (small) hitting set L ⊆ [n], that is, a set
for which Si ∩ L ̸= ∅ holds for all i ∈ [n].

Coy and Czumaj [12] gave an algorithm with the same parameters as those of the random
sampling approach in [7], except that they need large poly(n) computation.

▶ Theorem 10 (Theorem 5.6 of [12]). Let b and n be integers with log10(n) ≤ b ≤ n. One
can deterministically find a subset L ⊆ [n] that solves the Hitting Set for Leader Election
problem with |L| ≤ O(n(min{b, S})−1/5) within a constant number of MPC rounds using
local space S = O(nδ), global space SGlobal = O(nb), and total computation poly(n).

We extend the randomized approach their algorithm relies on by using the method of
alterations and reducing the amount of randomness needed to prove the following result:

▶ Theorem 11. There exists an algorithm with the same properties as those in Theorem 10
with two differences. The total computation reduces to O(n · poly(b)) and the global space
increases to O(n · poly(b)).

We will show in Section 5 that the algorithm from Theorem 11 together with minor
changes to the parameters of the connectivity algorithm results in a deterministic connectivity
MPC algorithm with near-linear total computation.

Review of Hitting Set Algorithm of Coy and Czumaj

Consider adding each element to L with probability p = b−1/5. Assuming full independence,
the assumption b ≥ log10(n) together with a simple Chernoff Bound implies that L is a
hitting set with high probability. The high probability bound still holds with O(logb n)-wise
independence, but fails to hold with o(logb n)-wise independence. As n k-wise independent
random variables require a seed length of Ω(k log n), using O(logb n)-wise independence
would not result in a seed length of O(log n), which is necessary for an O(1) MPC round
derandomization based on the method of conditional expectation. To shorten the seed length,
the authors of [12] use so-called k-wise ε-approximately independent random variables for
k = 15 logb(n) and ε = n−6. In particular, the starting point of their algorithm is the
following theorem.

▶ Theorem 12 ([12, Theorem 5.2]). Let log10(n) ≤ b ≤ n, k be even with k = 15 logb(n) ≥
4, ε = n−6, and p = b−1/5. Then, if X1, X2, . . . , Xn are k-wise ε-approximately independent
random variables with Xi = 1 with probability b−1/5 and Xi = 0 otherwise. Then each of the
following n + 1 events hold with probability at least 1 − 9n−3:
(1)

∑
j∈Si

Xj > 0 for every 1 ≤ i ≤ n, and
(2)

∑n
i=1 Xi ≤ 2nb− 1

5 .

Next, we explain our randomized approach, which bears some similarities with that of 12,
and proceed to the reduction of its seed length and its deterministic implementation on an
MPC with strongly sublinear memory.

M. Fischer, J. Giliberti, and C. Grunau 22:11

Pairwise Analysis

As a first step, we show that a minor modification to their randomized hitting set algorithm
results in a hitting set of expected size at most 2nb−1/5, assuming only pairwise independence.
As before, each element joins L with probability p = b−1/5. In expectation, b · p = b4/5

elements are sampled from each set. Using only pairwise independence and Chebyshev’s
inequality, this implies that a set is bad, i.e., no element is sampled from it, with probability
at most 1

b4/5 . This directly follows from the following lemma:

▶ Lemma 13. Let X1, . . . , Xn be pairwise independent random variables taking values in
[0, 1]. Let X = X1 + . . . + Xn and µ = E[X]. Then Var[X] =

∑n
i=1 Var[Xi] ≤ µ and

Pr [|X − µ| ≥ µ] ≤
∑n

i=1 Var[Xi]
µ2 ≤ 1

µ
.

Hence, by adding for each unhit set an arbitrary element to L, at most n/b4/5 additional
elements are added to L in expectation, resulting in a hitting set of expected size at most
n(b−1/5 + b−4/5).

Reducing The Seed Length

From the pairwise analysis above, we directly get a seed length of O(log n). Next, we show
how to reduce the seed length to O(log b), which allows for a simple brute-force search. We
again employ a coloring idea, which is based on the simple observation that we only require
pairwise independence between elements contained in the same set. Hence, the goal is to
color the elements with poly(b) colors such that all elements in a given set Si are colored
with a different color.

In general, this may not be possible as there might exist elements which are contained in
a lot of sets. Fortunately, a simple calculation shows that there exist at most n/b elements
which are contained in more than b2 different sets. Hence, by directly adding these elements
to L, we can assume “for free” that each element is contained in at most b2 sets, which we
will do from now on.

We can then obtain a coloring with the desired properties by finding a proper coloring in
the graph Gconflict, defined as follows. The vertex set consists of one vertex for each of the n

elements. Moreover, two elements are connected by an edge if there exists a set which contains
both elements. Note that the maximum degree ∆conflict of Gconflict is upper bounded by
b3. This follows from our assumption that each element is contained in at most b2 sets.
Therefore, we can efficiently color Gconflict with C = O(∆2

conflict log2(n)) = O(b6 log2 n)
colors. For each i ∈ [n], let c(i) denote the color assigned to the i-th element. Note that it
directly follows from the definition of Gconflict that all elements in a given set are assigned a
different color.

We are now ready to present our randomized process that produces a hitting set with the
desired properties. Let {Xc : c ∈ [C]} be a family of pairwise independent random variables
with Xc = 1 with probability p = b−1/5 and Xc = 0 otherwise. For simplicity, we assume
that 1/p is a power of 2, i.e., there exists ℓ ∈ N with 2ℓ = b1/5. According to Lemma 5, we
can generate these random variables with a seed of length 2(ℓ + log C) + O(1) = O(log b).
Now, we add each element i with Xc(i) = 1 to L. Then, for each set Si with

∑
j∈Si

Xc(j) = 0,
we add the element i ∈ Si to L. By the analysis and discussion above, L is a hitting set of
expected size O(nb−1/5).

DISC 2022

22:12 Improved Deterministic Connectivity in MPC

MPC Algorithm

It remains to discuss the MPC implementation, which will prove Theorem 11. In the
following, we say that something can be efficiently computed if there exists a deterministic
MPC algorithm running in O(1) rounds with local space = O(nδ), global space O(npoly(b)),
and using O(npoly(b)) total computation.

In the preprocessing step, we add all elements which are contained in at least b2 sets to
the hitting set and remove all sets which contain at least one such element from consideration.
The preprocessing step requires us to compute for each element in how many sets it is
contained in. This can be done efficiently by using the colored summation primitive.

Next, we explain how to efficiently construct the graph Gconflict. We generate the
edges of Gconflict in two steps. First, each set S = {e1, e2, . . . , eb} creates

(
b
2
)

entries
{{ei, ej} : i ̸= j ∈ [b]}. This can easily be done with poly(b) global space per set and
min(S, poly(b)) local space in O(1) rounds by using the primitives of Lemma 3. Hence, we
can efficiently generate all these edges in parallel. Afterwards, we use the duplicate removal
procedure of Lemma 3 to remove duplicate edges.

As Gconflict has maximum degree b3, we can use Lemma 6 to efficiently compute a
coloring of Gconflict with C = O(b6 log2 n) = poly(b) colors. As before, we denote with c(i)
the color assigned to the i-th element. For ℓ := log2(b1/5), let H = {h : [C] 7→ {0, 1}ℓ} be a
family of 2-wise independent hash functions of size at most 22(ℓ+log C)+O(1) = poly(b) such
that evaluating a function from H takes time poly(ℓ, log C) = poly(log b) time. Lemma 5
guarantees the existence of such a family.

For each function h ∈ H, we define a hitting set Lh as follows. First, each element i with
h(c(i)) = 0 is contained in Lh, where h(c(i)) denotes the length-ℓ bit sequence for c(i) by the
corresponding integer in {0, . . . , ℓ − 1}. Moreover, if for a given set Si no element contained
in it was added in the first step, then we add element i to Lh. The discussion above implies
that there exists at least one hash function h ∈ H with |Lh| = O(nb−1/5). Using Lemma 3,
it is easy to see that for a single hash function h ∈ H, we can efficiently compute Lh and its
size. As H only contains poly(b) hash functions, this implies that we can efficiently compute
Lh for every h ∈ H. After we have done this, we can output the hitting set Lh∗ of smallest
size. As remarked above, Lh∗ has size O(nb−1/5), which finishes the proof.

5 Connectivity Algorithm

In this section, we discuss the necessary changes to the randomized connectivity algorithm
of Behnezhad et al. [7] and its analysis in order to prove the main result of this paper.

The deterministic approximate matching from Section 3 is used to replace steps 5 and
6 of Algorithm 2 of [7]. The same modification was already done by [12] and they showed
that the total number of vertices drop by a constant factor, assuming that no isolated
vertex exists. Hence, by applying this modified algorithm O(log log m

n
n) times, one can

in O(log log m
n

n) rounds ensure that m ≥ n logC n, for a given constant C. All the steps
of the modified deterministic algorithm can be implemented by invoking the primitives of
Lemma 3 O(1) times, which in particular ensures that the algorithm can be implemented
with total computation Õ(m). Hence, we can from now on assume that m ≥ n logC n,
for a given constant C. It remains to prove that Algorithm 1 of [7] can be implemented
deterministically with the same asymptotic complexity and using Õ(m) total computation,
assuming m ≥ n logC(n) for a sufficiently large constant C. To this end, Coy and Czumaj
proved the following lemma:

M. Fischer, J. Giliberti, and C. Grunau 22:13

▶ Lemma 14 ([12, Lemma 6.3]). Let Si denote the set of saturated vertices at level i after
Step 2 of the RelabelIntraLevel routine in [7], let Li denote the set of selected leaders at
level i after Step 3 of the same execution of RelabelIntraLevel, let βi denote the budget
of vertices at level i, let b(v) denote the budget of vertex v, and let γ, ε be arbitrary constants
such that 0 < γ, ε < 1. If we make the following modifications to RelabelIntraLevel:

set βi+1 := βi · (min{βi, nε})γ/4,
replace Step 3 of RelabelIntraLevel with any MPC algorithm that in O(1) rounds
selects O

(
|Si|

(min{βi,nε})γ

)
leaders for each level i with high probability or deterministically,

and
replace the budget update rule in Step 4 of RelabelIntraLevel with

b(v) := b(v) · (min{b(v), nε})γ/4,

then the connectivity algorithm of [7] remains correct with the same asymptotic local and
global space complexity.

We extend the above lemma to make it work with the deterministic hitting set from
Section 4 by proving the following slight modification of it. The main technical challenge will
be to ensure that our deterministic hitting set algorithm, which adds a polynomial factor (in
b) increase in the memory and computation required, can still be run in parallel with linear
global space and total computation.

▶ Lemma 15. Let c ≥ 3 be the smallest integer such that both the global space and the total
computation required by the algorithm from Theorem 11 are bounded by n · bc, and let ε = δ/c

so that nc·ε ≤ nδ. The same result as that of Lemma 14 can be achieved with the following
modifications to RelabelIntraLevel:

set βi+1 := βi · (min{βi, nε})
γ
4c ,

replace Step 3 of RelabelIntraLevel with any MPC algorithm that in O(1) rounds
selects O

(
|Si|

(min{βi,nε})γ

)
leaders for each level i with high probability or deterministically

using at most nβc
i global space and total computation, and

replace the budget update rule in Step 4 of RelabelIntraLevel with

b(v) := b(v) · (min{b(v), nε})
γ
4c ,

and by replacing the initial budget
(

m
n

)1/2 assigned to each vertex with
(

m
n

)1/2c in Algorithm
1 of [7]. Then, the connectivity algorithm of [7] remains correct with the same asymptotic
local and global space complexity. Moreover, the resulting total computation is O(m).

Proof. We need to show that all claims and lemmas involving the modified steps of Algorithm 1
of [7] do not affect its correctness nor its bounds on local and global memory. As in [12], we
need to prove the following three key properties:
(1) for any vertex v, the value of ℓ(v) never exceeds O(log logm/n n) (cf. [7, Lemma 15]),
(2) the global space used is O(SGlobal) (cf. [7, Lemma 17]),
(3) the sum of the squares of the budgets does not exceed O(SGlobal) (cf. [7, Lemma 21]).

(1) Recall that the budget of each vertex is increased as βi+1 := βi · (min{βi, nε})
γ
4c and

that β0 =
(

m
n

)1/2c. Since the budget of any vertex cannot exceed n, we have that there
are at most O(log logm/n n) levels as required.

DISC 2022

22:14 Improved Deterministic Connectivity in MPC

(2) Let ni denote the number of vertices which ever reach level i over the course of the
algorithm. In the proof of Lemma 17 [7], it is shown that the total sum of the budget
increases over the course of the algorithm is O(m), namely

L∑
i=1

βini = O(m).

We extend this claim and prove that the total sum of the global space used by all hitting
set instances over all iterations of the algorithm is bounded by O(m), that is

L∑
i=1

βc
i · ni = O(m).

Analogously to [12], we first show that βc
i+1 · ni+1 ≤ βc

i · ni. We have that the number
of vertices at level i removed from the graph (i.e., not marked as a leader) per vertex
marked as leader is at least:

|Si \ Li|
|Li|

= |Si| − |Li|
|Li|

= Ω ((min{βi, nε})γ) ≫ (min{βi, nε})γ/2.

It then follows that

βc
i+1 · ni+1 =

(
βi · (min{βi, nε})

γ
4c

)c

ni+1

<
(

βc
i · (min{βi, nε})

γ
4

) (
ni(min{βi, nε})−γ/2

)
≤ βc

i · ni.

Using the fact that the maximum possible level for a vertex is L = O(log log n), we
obtain

L∑
i=1

βc
i · ni ≤ L · (βc

0 · n0) ≤ O(log log n) ·
(m

n

) 1
2 · n,

where the last inequality comes from the fact that β0 =
(

m
n

) 1
2c . Note that we can assume

that m ≥ n log20c(n) and therefore each vertex has an initial budget of β0 = (m/n)1/2c ≥
log10(n) ≫ O(log log n), as required by Theorem 11. This yields

O(log log n) ·
(m

n

) 1
2 · n ≪

(m

n

) 1
2 ·

(m

n

) 1
2 · n = O(m).

(3) Follows by the same line of reasoning as in property (2).

By the choice of c, repeating the same calculations as in property (b) proves that the total
computation required by running our deterministic hitting set algorithm over all instances in
each iteration of the algorithm does not exceed O(m). Moreover, Lemma 3 implies that all
the other steps of the algorithm can be implemented with total computation Õ(m). ◀

We are now ready to prove our main result.

Proof of Theorem 2. We apply Lemma 15 using our Hitting Set for Leader Election algo-
rithm from Theorem 11 setting γ = 1

5 (Note that m ≥ n logC(n) for a sufficiently large
constant C implies β0 ≥ log10(n)). Then, it follows directly from Lemma 6.4 of [12] combined
with Lemma 15 that copies of our hitting set algorithms can be run in parallel, for each
possible level and in a constant number of rounds within optimal global space and Õ(m)

M. Fischer, J. Giliberti, and C. Grunau 22:15

total computation. Thus, we proved that all relevant aspects of the proof of correctness
have been adjusted in comparison to [12, 7]. Finally, as noted in [12], our extension of
Lemma 15 in [7] proves that the number of iterations remains asymptotically the same and
that the deterministic algorithms replacing the O(1)-round random sampling approach take
asymptotically the same number of rounds. Thus, we conclude that the round complexity is
not affected. ◀

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:
10.1016/0196-6774(86)90019-2.

2 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
3 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel graph

connectivity in log diameter rounds. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 674–685, 2018. doi:10.1109/FOCS.2018.00070.

4 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC ’19, pages 461–470, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3293611.3331596.

5 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed coloring
with small bandwidth. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, pages 243–252, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3382734.3404504.

6 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching and
mis in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 481–490, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293611.3331609.

7 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab Mirrokni.
Near-optimal massively parallel graph connectivity. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1615–1636, 2019. doi:10.1109/FOCS.2019.
00095.

8 J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

9 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local distributed
algorithms under bandwidth restrictions. Distributed Computing, 33(3):349–366, June 2020.
doi:10.1007/s00446-020-00376-1.

10 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Brief announcement: A randomness-efficient
massively parallel algorithm for connectivity. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, pages 431–433, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3465084.3467951.

11 Benny Chor and Oded Goldreich. On the power of two-point based sampling. Journal of
Complexity, 5(1):96–106, 1989. doi:10.1016/0885-064X(89)90015-0.

12 Sam Coy and Artur Czumaj. Deterministic massively parallel connectivity. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
162–175, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3520055.

13 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring
in the congested clique. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, pages 309–318, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3382734.3405751.

DISC 2022

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/s00446-020-00376-1
https://doi.org/10.1145/3465084.3467951
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3382734.3405751

22:16 Improved Deterministic Connectivity in MPC

14 Artur Czumaj, Peter Davies, and Merav Parter. Component stability in low-space massively
parallel computation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 481–491, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467903.

15 Artur Czumaj, Peter Davies, and Merav Parter. Graph sparsification for derandomizing
massively parallel computation with low space. ACM Trans. Algorithms, 17(2), May 2021.
doi:10.1145/3451992.

16 Artur Czumaj, Peter Davies, and Merav Parter. Improved deterministic (delta+1) coloring
in low-space mpc. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 469–479, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467937.

17 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

18 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient
approximation of product distributions. Random Structures & Algorithms, 13(1):1–16, 1998.
doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

19 Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Cliff Stein, and Zoya Svitkina. On
distributing symmetric streaming computations. ACM Trans. Algorithms, 6(4), September
2010. doi:10.1145/1824777.1824786.

20 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS,
Matching, and Coloring on Trees and Beyond. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing (DISC 2020), volume 179 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 34:1–34:18, Dagstuhl, Germany, 2020. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2020.34.

21 Mohsen Ghaffari and Fabian Kuhn. Derandomizing Distributed Algorithms with Small
Messages: Spanners and Dominating Set. In Ulrich Schmid and Josef Widder, editors, 32nd
International Symposium on Distributed Computing (DISC 2018), volume 121 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1–29:17, Dagstuhl, Germany, 2018.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2018.29.

22 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1650–1663, 2019. doi:10.1109/FOCS.
2019.00097.

23 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. In Proceedings of the 2019
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1636–1653, 2019.
doi:10.1137/1.9781611975482.99.

24 Michael T. Goodrich. Communication-efficient parallel sorting. SIAM Journal on Computing,
29(2):416–432, 1999. doi:10.1137/S0097539795294141.

25 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation, pages 374–383, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-25591-5_39.

26 Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) Rounds of Congested Clique. In
Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2620–2632, 2018. doi:10.1137/1.9781611975031.167.

27 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 938–948, 2010. doi:10.1137/1.9781611973075.76.

28 Fabian Kuhn. Weak graph colorings: Distributed algorithms and applications. In Proceedings
of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures,
SPAA ’09, pages 138–144, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1583991.1584032.

https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3451992
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1145/1824777.1824786
https://doi.org/10.4230/LIPIcs.DISC.2020.34
https://doi.org/10.4230/LIPIcs.DISC.2018.29
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/S0097539795294141
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/1583991.1584032

M. Fischer, J. Giliberti, and C. Grunau 22:17

29 Jakub Lacki, Vahab S. Mirrokni, and Michal Wlodarczyk. Connected components at scale via
local contractions. CoRR, abs/1807.10727, 2018. arXiv:1807.10727.

30 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: A
method for solving graph problems in mapreduce. In Proceedings of the Twenty-Third Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 85–94, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1989493.1989505.

31 Christoph Lenzen and Roger Wattenhofer. Brief announcement: Exponential speed-up of local
algorithms using non-local communication. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages 295–296, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1835698.1835772.

32 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

33 Sixue Cliff Liu, Robert E. Tarjan, and Peilin Zhong. Connected Components on a PRAM in
Log Diameter Time, pages 359–369. Association for Computing Machinery, New York, NY,
USA, 2020. doi:10.1145/3350755.3400249.

34 Michael Luby. Removing randomness in parallel computation without a processor penalty.
Journal of Computer and System Sciences, 47(2):250–286, 1993. doi:10.1016/0022-0000(93)
90033-S.

35 Michael Luby and Avi Wigderson. Pairwise independence and derandomization. Foundations
and Trends in Theoretical Computer Science, 1(4):237–301, 2006. doi:10.1561/0400000009.

36 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university
press, 1995.

37 Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hardness in
massively parallel computations. Distributed Computing, 35(2):165–183, 2022. doi:10.1007/
s00446-021-00418-2.

38 Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant rounds of
congested clique. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1154–1165, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451136.

39 Merav Parter and Eylon Yogev. Congested Clique Algorithms for Graph Spanners. In Ulrich
Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing
(DISC 2018), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages
40:1–40:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.DISC.2018.40.

40 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.
doi:10.1016/0022-0000(88)90003-7.

41 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on
lower bounds for modern parallel computation). J. ACM, 65(6), November 2018. doi:
10.1145/3232536.

42 Mark N. Wegman and J. Lawrence Carter. New classes and applications of hash functions.
In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 175–182,
1979. doi:10.1109/SFCS.1979.26.

DISC 2022

http://arxiv.org/abs/1807.10727
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1137/0221015
https://doi.org/10.1145/3350755.3400249
https://doi.org/10.1016/0022-0000(93)90033-S
https://doi.org/10.1016/0022-0000(93)90033-S
https://doi.org/10.1561/0400000009
https://doi.org/10.1007/s00446-021-00418-2
https://doi.org/10.1007/s00446-021-00418-2
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3232536
https://doi.org/10.1109/SFCS.1979.26

Fault Tolerant Coloring of the Asynchronous Cycle
Pierre Fraigniaud #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Patrick Lambein-Monette1 #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Mikaël Rabie #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle Cn, where
each crash-prone node starts with its (unique) identifier as input. The algorithm is independent
of n ⩾ 3, and runs in O(log∗ n) rounds in Cn. This round-complexity is optimal thanks to a known
matching lower bound, which applies even to synchronous (failure-free) executions. The range of
colors used by our algorithm, namely { 0, . . . , 4 }, is optimal too, thanks to a known lower bound on
the minimum number of names for which renaming is solvable wait-free in shared-memory systems,
whenever n is a power of a prime. Indeed, our model coincides with the shared-memory model
whenever n = 3, and the minimum number of names for which renaming is possible in 3-process
shared-memory systems is 5.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph coloring; Computer systems organization → Dependable and fault-tolerant
systems and networks; Theory of computation → Models of computation

Keywords and phrases graph coloring, LOCAL model, shared-memory model, immediate snapshot,
renaming, wait-free algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.23

Related Version Full Version: https://arxiv.org/abs/2207.11198

Funding Pierre Fraigniaud: additional support from the project ANR-20-CE48-0006 (ducat).

1 Introduction

1.1 Motivation
Two forms of coloring tasks are at the core of distributed computing. One is vertex-
coloring [8] in the framework of synchronous distributed network computing [29]. The other
is renaming [3] in the framework of asynchronous shared-memory distributed computing [7].
For both tasks, each process starts with its own identifier as input, which is supposed to be
unique in the system, and must compute a color as output. The identifiers are supposed
to be in a large range of values (typically of size poly(n)), while the colors should lie in
a restricted range of values, typically { 0, . . . , k − 1 } for some k ⩾ 1. Depending on the
context, k may be an absolute constant, or may depend on parameters of the system, like the
maximum degree ∆ of the network, or even the total number n of processes. In the context
of network computing, the outputs must properly color the underlying graph of the network,
i.e., any two neighboring nodes must output distinct colors. In the context of shared-memory
computing, each process must output a color that is unique in the system, i.e., different from
the color of any other process.

1 Correponding author

© Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:patrick.lambein@irif.fr
https://orcid.org/0000-0002-9401-8564
mailto:mikael.rabie@irif.fr
https://orcid.org/0000-0001-6782-7625
https://doi.org/10.4230/LIPIcs.DISC.2022.23
https://arxiv.org/abs/2207.11198
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Fault Tolerant Coloring of the Asynchronous Cycle

On the negative side, it is “hard” to color cycles of even size using only two colors in a
distributed manner [26], in the sense that Ω(n) synchronous rounds of communication are
required to solve this problem in the n-node cycle Cn (n even; 2-coloring an odd length cycle
is impossible). A synchronous round consists of (1) an exchange of information between the
two end-points of every edge in the network, and (2) a local computation at every node.
Similarly, renaming the n processes of an asynchronous shared-memory system in a wait-free
manner using a palette with fewer than 2n− 1 names (i.e., k-renaming with k < 2n− 1) is
impossible [6, 14, 24] whenever n is a power of a prime number (n = 6 is the smallest integer
for which this bound does not hold [15]). Wait-free essentially means that each process
terminates in a bounded number of write/read steps, independently of the asynchronous
scheduling of the n− 1 other processes, i.e., independently of the interleaving of read and
write operations in the shared memory.

On the positive side, it is known that 3-coloring the n-node cycle Cn for n ⩾ 3 can
be achieved in 1

2 log∗ n + O(1) synchronous rounds thanks to deterministic coin tossing,
an efficient color-reduction technique due to Cole and Vishkin [17]2. This bound is tight,
as no algorithms can 3-color the n-node cycle in less than 1

2 log∗ n − 1 rounds, thanks to
Linial’s celebrated lower bound [26]. In shared-memory systems, while (2n− 2)-renaming
is impossible wait-free for infinitely many values of n, (2n− 1)-renaming can be achieved
wait-free for all values of n ⩾ 2 [3].

The above results are at the core of two separate lines of intensive research. One line
studies extensions of 3-coloring the synchronous cycle, in particular (∆+1)-coloring arbitrary
networks of maximum degree ∆; see, e.g., [9, 20, 23, 30] for recent contributions in this field.
This line also studies variants of (∆ + 1)-coloring, including, for example, ∆-coloring, edge-
coloring, weak-coloring, defective coloring; see, e.g., [8, 21, 22, 28]. The other line of research
studies variants of renaming (e.g., long-lived [1, 5]), renaming in different shared-memory
or message-passing models (e.g., [2, 16]), and the search for algorithms using fewer names
whenever n is not a power of a prime [4, 15].

1.2 Objective
Our aim is to study coloring tasks in a framework relaxing two strong assumptions made
in the aforementioned contexts. First, it relaxes the “all-to-all assumption” of the shared-
memory model, which enables some form of global communication between the processing
nodes, or processes. Second, our framework relaxes the “synchrony assumption” of the
LOCAL [29] model of network computing, where the processes proceed in lock-step, in the
sense that we allow processes to be fully asynchronous and crash-prone, while we keep reliable
and instantaneous communications (the latter is in contrast with the classic asynchronous
model known as message-passing [19], where, in addition, the delivery of messages is itself
asynchronous). Specifically, we consider a round-based, asynchronous computing model in
the n-node cycle Cn, where each round of a process consists of the following sequence of
operations: (1) writing in its local register, (2) reading the local registers of its two neighbors
in Cn, and (3) updating its local state.

The difference with the standard LOCAL model, in which vertex-coloring is typically
studied, is that the rounds are asynchronous. That is, the scheduler may allow some processes
to perform many rounds while other processes may perform just a few rounds, or even no

2 For every x > 0, let log(0) x := x and, for k ⩾ 0 such that log(k) x > 0, let log(k+1) x := log2(log(k) x);
log∗ x is then defined as the smallest k ⩾ 0 such that log(k) x ⩽ 1.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:3

rounds. Moreover, the operations performed during a round are also asynchronous, e.g., a
process can write, read, and then spend a lot of time idle before changing state. In particular,
the cycle may become disconnected, and processes may become isolated, due to processes
that are very slow, or even crashed (a crash is a full-stop form of failure: a crashed process
stops functioning, and does not recover). As a consequence, information may propagate
poorly in the network due to slow or crashed processes.

The difference between our setting and typical models (e.g., shared memory) used for
studying renaming [7] is that the processes do not share a single array of single-writer/multiple-
reader registers. Instead, only processes sitting on adjacent nodes in Cn can read each-other’s
registers. Thus, instead of having processes perform snapshot operations – i.e., read the
registers of all processes at once – or even immediate snapshots – i.e., write a value and read
everything all at once – each process is restricted to local (immediate) snapshots, i.e., that
only read the registers of its neighbors in the cycle.

We seek to address a few basic questions about this model. Is wait-free proper vertex-
coloring at all possible in Cn? That is, can the n processes of the asynchronous cycle pick
colors distinct from those of their neighbors in a bounded number of computational steps?
If yes, what is the smallest range of colors that make it possible to color the asynchronous
cycle Cn? And what is the smallest number of asynchronous rounds that a process may have
to perform in order to achieve this task?

Note that it is a priori unclear whether wait-free proper vertex-coloring is at all possible in
the asynchronous cycle, even if allowing a large range of colors (but less than the number n of
processes). Indeed, there are very similar problems which are not solvable in this framework.
An example is maximal independent set (MIS). MIS and 3-coloring are reducible one to
another in the cycle under the synchronous failure-free setting [26]; in contrast, MIS is not
solvable wait-free in the asynchronous crash-prone version of the LOCAL model considered in
this paper (Property 1). Indeed, as we detail further down, a wait-free algorithm for MIS could
be simulated in the asynchronous shared-memory model for solving strong symmetry-breaking
wait-free, which was proved impossible in [6].

1.3 Our Results
We describe a wait-free algorithm for proper coloring the n processes of the asynchronous
crash-prone cycle Cn. So, wait-free proper vertex-coloring is possible in Cn, as opposed
to, e.g., MIS. Our algorithm is independent of n ⩾ 3, and each process performs O(log∗ n)
asynchronous rounds in Cn. The round complexity of our algorithm is therefore asymptotically
optimal, thanks to Linial’s lower bound [26], which holds for the executions of our model
that are synchronous and failure-free.

The range of colors used by our algorithm, namely { 0, . . . , 4 }, is optimal too for the
class of all cycles, thanks to the aforementioned minimum number 2n− 1 of names for which
renaming is solvable wait-free in shared-memory systems, whenever n is a power of a prime.
Indeed, in the specific case of the cycle C3, our model coincides with the shared-memory
model with n = 3 processes, which implies that proper coloring C3 with less than five colors
is impossible.

To our knowledge, our algorithm is the first distributed coloring algorithm designed for a
framework combining the following two sources of difficulties: on the one hand, the possibility
of crash failures in a fully asynchronous setting, and, on the other hand, a network limiting
direct communications between processes.

Our Technique. Our main algorithm, given in Algorithm 3, has two components.

DISC 2022

23:4 Fault Tolerant Coloring of the Asynchronous Cycle

The first component of Algorithm 3 is introduced standalone in Algorithm 2. It bears
some resemblance to the rank-based (2n− 1)-renaming algorithm (see [7, Algorithm 55], and
[3, Step 4 in Algorithm A]). It is a wait-free 5-coloring algorithm for Cn, i.e., in each of its
executions over a cycle of length n ⩾ 3, the processes that perform enough computational
steps output a color in the set { 0, . . . , 4 }, and no two neighboring processes output the same
color. However, Algorithm 2 is slow, in the sense that its running time may be as large as
the longest sub-path of the cycle along which process identifiers are increasing, which can be
as large as Θ(n).

The second component of Algorithm 3 uses and modifies the identifiers, in parallel to the
first component. This quickly shortens such increasing sub-paths, until their length less than
some constant L ⩽ 10, in a manner directly inspired from Cole and Vishkin’s method [17].
Each process starts with its input identifiers, and successively tries to adopt new ones taken
from increasingly smaller ranges of identifiers, by performing O(log∗ n) identifier-reductions.
As this reduction process goes on, the identifiers might not remain unique in the cycle, but
we ensure that they nonetheless maintain a proper coloring, i.e., adjacent processes always
hold distinct identifiers. This invariant is difficult to enforce in an asynchronous environment,
and we resort to a synchronization mechanism by which a process awaits a “green light”
from both of its neighbors each time it seeks to change its identifier.

The second component of our algorithm is thus not wait-free by itself, since processes
are constantly waiting for “green lights” from their neighbors. However, it offers starvation
free progress [25]: termination is guaranteed whenever all processes perform infinitely many
computational steps. Our core result is that the interaction between the two components,
i.e., between the (wait-free) first component and the (starvation-free) second component,
remains itself wait-free, and has a running time O(log∗ n).

We can decompose the description of the first component further, into a starvation-free
subcomponent that looks for a color ap for every process p, which does not collide with the
colors of the neighbors of p with greater identifiers, and in another subcomponent that looks
for a (potentially different) color bp for process p, which doesn’t collide with the colors of any
of p’s neighbors. The latter subcomponent offers obstruction-free progress [25]: termination
is guaranteed whenever processes are scheduled to take multiple consecutive steps alone. As
obstruction-free progress and starvation-free progress are both strictly weaker than wait-free
progress, it is of independent interest that we are able to bootstrap a wait-free algorithm
from subcomponents that aren’t themselves wait-free.

1.4 Related Work
The closest recent contributions related to the current work are [13], and the follow-up
work [18], which consider a related model, albeit a distinct one. The former provides a
distributed algorithm for 3-coloring the ring, while the latter provides a distributed algorithm
for (∆+1)-coloring graphs with maximum degree ∆. The two papers assume n asynchronous
crash-prone processes occupying the n nodes of a reliable and synchronous network. That is,
the communications remain synchronous, and a message emitted by a node u at round r

reaches all nodes at distance d from u at round r + d. Moreover, no messages are lost, in
the sense that a late-waking process will find all messages that passed through the node it
occupies. Because it “decouples” the computing layer from the communication layer, this
model is called DECOUPLED in [13].

The DECOUPLED model is stronger than the fully asynchronous model considered in
this paper. In fact, [18] shows that, for every task (e.g., vertex-coloring, edge-coloring,
maximal independent set, etc.), if there exists an algorithm for solving that task in the

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:5

LOCAL model in t = O(polylog n) rounds, then there exists an algorithm for solving the
task in the DECOUPLED model in O(t)-round. In contrast, some tasks that are trivial in the
LOCAL and the DECOUPLED model become impossible in our fully asynchronous model,
like 3-coloring C3 (Property 3), or computing a maximal independent set (Property 1).

The model considered in this paper bears similarities with some models used in the
context of self-stabilization. Many papers (see, e.g., [9, 10, 11, 12]) have addressed the design
of self-stabilizing algorithms for 3-coloring the cycles, or for (∆ + 1)-coloring graphs with
maximum degree ∆. Self-stabilization assumes that the processes start in an arbitrarily bad
state (all variables can be corrupted). The objective is to design algorithms which, starting
from an arbitrary initial configuration, eventually compute a legal configuration (e.g., a
configuration in which the colors assigned to the nodes form a proper coloring) whenever no
failures occur during a sufficiently long period. In contrast, we assume an initial configuration
in which variables are correctly set. However, we do not assume that the system will be
failure-free during the execution of the algorithm, and the presence of crash-failures should
not prevent the correct processing nodes from computing a solution. While 3-coloring the
cycle Cn is possible in a self-stabilizing manner for all n ⩾ 3, k-coloring C3 is impossible in
our fully asynchronous model for k < 5 (Property 3).

2 Model and Observations

In this section, we first describe an asynchronous variant of the (synchronous) LOCAL
model, which we will call the partial immediate snapshot model for reasons that will soon
become apparent. The model can be viewed as a sort of asynchronous message-passing on a
graph with a local broadcast communication primitive and instantaneous message delivery.
Equivalently, it can be viewed as a shared-memory system where access to the shared memory
is mediated by a graph; we adopt the latter approach in our description. We define what is
a round in this model, what is the round complexity of an algorithm, what it means to be
wait-free, and then we provide lower bounds on the round-complexity and on the range of
colors for the problem of wait-free vertex-coloring the cycle.

2.1 Operational Model
The model is described for the cycle, but it can directly be extended to any network.
Specifically, we consider asynchronous wait-free computing in the n-node cycle Cn, where
the processes attached to each node exchange information between neighbors using single-
writer/multiple-reader registers. Each process is a deterministic (infinite) state machine. All
n processes are initially asleep; they may wake up at any time, and not all processes need to
wake up, or to take enough steps to terminate correctly (i.e., processes are prone to fail-stop
faults). Awakened processes proceed asynchronously, each with the objective of computing
a color in { 0, . . . , 4 }. We focus on wait-free tasks, i.e., where a process that takes enough
steps is guaranteed to terminate, regardless of the scheduling of the other processes, so as
to prevent deadlocks resulting from a process waiting for an event which will never occur
because another process has crashed.

Just like for the standard coloring and renaming tasks, the only input given to a process p

is its identifier Xp, which is an integer in the range [0, poly(n)] that is unique in the system.
We do not assume that the processes are aware of the length n of the cycle, nor even of an
upper bound on n. Every process proceeds with a sequence of exchanges of information with
its neighbors until some condition is satisfied by its local state, at which point it terminates
and outputs a color obtained by applying some function to this local state.

DISC 2022

23:6 Fault Tolerant Coloring of the Asynchronous Cycle

Immediate snapshots. Let us first recall how communication works using a standard
immediate snapshot communication primitive. In this model, the n processes p1, . . . , pn

communicate through n single-writer/multiple-readers registers R1, . . . , Rn, initialized with
an initial value ⊥. Every process can read all registers, but each process pi is the single writer
in register Ri, i ∈ { 1, . . . , n }. Each process pi goes through a (possibly infinite) sequence of
write-read-update steps, where in each step it: (1) writes a value in register Ri, (2) reads the
content of all registers, and (3) performs a private computation. Taken together, these three
steps constitute an asynchronous round of process pi.

Each of the rounds is instantaneous, but the time elapsed between two of pi’s rounds may
be arbitrarily long. For example, process pi may perform many rounds while pj performs
none, in which case pi will read the same value in register Rj every time, possibly ⊥ if pj

hasn’t awakened yet. Conversely, in-between two consecutive rounds of pi’s, there may be
faster processes that performed many writes in their registers.

The value read by a process in a register Rj is the one written by pj in its most recent
round. Multiple processes may perform a round at the same time. In this case, the system
behaves as if each of these processes first wrote a value in its own register, then all processes
read all registers, and, finally, they all performed their private computation. Note that
distinct processes may be at distinct rounds of their execution. For example, one process
may be just starting, i.e., in its first round, while another may already have been running for
some time, and so be at a later round.

Local immediate shapshots. Our model simply adds a graph to the above, which mediates
which registers a process is able to read. For example, in the cycle, a process only reads
three registers: its own register, and the register of each of its two neighbors. We do not
assume a coherent notion of left and right, i.e., each node assigns an arbitrary order to the
registers of its neighbors.

In this paper, we do not assume that the registers are bounded. Nevertheless, our
algorithms only manipulate a constant number of variables using O(log n) bits each.

2.2 Schedules and complexity
In our model, an execution is entirely characterized by the code of each process, the graph
(here, the cycle Cn), the input identifiers of each process, as well as the activation patterns of
each process. The latter is captured by the collection of n increasing sequences t

(1)
p , t

(2)
p , . . . of

positive integers, one for each process p ∈ [n], where t
(i)
p denotes the time in which process p

performs its i-th round.
As multiple processes may be performing rounds simultaneously, let us introduce, for t ⩾ 1,

the set σ(t) of activated processes at time t. We set: p ∈ σ(t) ⇐⇒ ∃i ⩾ 1 : t
(i)
p = t.

The schedule of an execution is the infinite sequence σ = σ(1), σ(2), . . . An execution of
a given algorithm on the cycle Cn is thus determined by the schedule σ and the input
identifiers (Xp)p∈[n].

We will say that a process p ∈ σ(t) is working if the stopping condition of p has not been
fulfilled before time t. This leads us to define, for any schedule σ, the restricted schedule σ

of working processes:

σ(t) := { p ∈ σ(t) | p has not fulfilled the stopping condition at time ⩽ t− 1 }.

An execution terminates if there exists some time t∗ such that σ(t) = ∅ for all subsequent
times t ⩾ t∗, i.e., if eventually all processes stop working. Note that a process stops working
according to two possible scenarios: it may have been activated sufficiently many times for

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:7

allowing it to fulfill the stopping condition, or it was not activated after some time t, before
it fulfilled the stopping condition. The latter scenario models the crash of a process (at
time t, or earlier in the execution). The round complexity of a terminating execution is then
defined as

max{ i ∈ N | ∃p ∈ [n] : p ∈ σ(t(i)
p) }.

The running time of an algorithm over the cycle Cn is then the supremum of the round
complexity for all possible executions, i.e., all possible identifier assignments and schedules.
Informally, the running time corresponds to the maximal number of times a process can be
activated before it is guaranteed to terminate. An algorithm is then wait-free if its running
time is finite.

2.3 Lower Bounds and Impossibility Results
We complete this section by a couple of observations on the round complexity, and on the
range of colors used by wait-free vertex-coloring algorithms for the cycle. Before that, we
formalize the fact that, as claimed in the introduction, the maximal independent set (MIS)
problem cannot be solved in the asynchronous cycle. Solving the MIS problem requires that,
at the end of every execution, (1) every node that terminates and outputs 0 is neighbor
of at least one node that terminates and output 1, and (2) no two neighboring nodes that
terminate output 1.

▶ Property 1. For every n ⩾ 3, MIS in the n-node cycle Cn, cannot be solved wait-free in
our model.

Proof. The proof is by reduction from the strong symmetry-breaking (SSB) problem, which
cannot be solved wait-free in the asynchronous shared-memory model (see [6, Theorem 11]).
We show that if there were an algorithm solving MIS in the n-node cycle, then there would
exist an algorithm for SSB in the n-node shared-memory system. Recall that SSB requires
that (1) if all processes terminate, then at least one processes outputs 0, and at least one
process outputs 1, and (2) in every execution, at least one process outputs 1. By way of
contradiction, let A be an algorithm solving MIS in Cn. The n processes of shared-memory
system can simulate the algorithm A as follows. Process pi, i = 0, . . . , n− 1, simulates the
execution of the algorithm A at the node of Cn with identifier i, and with neighbors the
nodes with identifiers i± 1 mod n, which are simulated by processes pi±1 mod n, respectively.
Since the algorithm A solves MIS, it guarantees that, if all processes terminate, then at least
one outputs 0, and at least one outputs 1. Moreover, in every execution of the algorithm A, a
node that terminates and is isolated (none of its neighbors terminated) must output 1, and a
node that terminates and has a neighbor that terminates is such that either itself outputs 1,
or at least one of its neighbors outputs 1. This guarantees that, in every execution, at least
one process output 1. The two conditions for solving SSB are therefore fulfilled by simulating
the algorithm A, and thus A cannot exist. ◀

We now show that the round-complexity of our vertex-coloring algorithm is optimal.

▶ Property 2. For every k ⩾ 2, the round-complexity of any wait-free algorithm for k-coloring
the vertices of the n-node cycles Cn, n ⩾ 3, requires Ω(log∗ n) rounds in the state model.

Proof. This directly follows from [26], which proved that, in synchronous and failure-free
executions, i.e., σ(t) = { 1, . . . , n } for all t ⩾ 1, k-coloring the vertices of the n-node cycles Cn,
requires Ω(log∗ n) rounds. ◀

DISC 2022

23:8 Fault Tolerant Coloring of the Asynchronous Cycle

Finally, we show that the range of colors used by our algorithm is optimal.

▶ Property 3. If a wait-free algorithm k-colors all asynchronous cycles C = {Cn | n ⩾ 3 },
then k ⩾ 5.

Proof. The partial shared-memory model in the cycle coincides with the standard shared-
memory model when n = 3, since the cycle C3 is complete. The result thus directly follows
from the impossibility for n = 3 asynchronous processes to solve renaming wait-free using
fewer than five names in an immediate snapshot shared-memory model [6, 14]. ◀

Note that Property 3 leaves open the possibility that, for specific values of n, fewer colors
could be used to color the cycle Cn wait-free, the same way the lower bound 2n− 1 on the
number of names for renaming only holds when n is a power of a prime. However, a generic
algorithm capable of proper coloring every cycle Cn, for all n ⩾ 3, must use at least 5 colors,
as our algorithm does. Nevertheless, the shared-memory model with immediate snapshots
does not coincide with our model when n > 3, and thus it may well be the case that fewer
than 5 colors could be used for some specific values of n > 3, although we conjecture that
this is not the case.

3 Asynchronously coloring the cycle in linear time

Here we develop asynchronous coloring algorithms, and show that a) they guarantee wait-
free progress – i.e., a process will terminate in all executions, provided that it is activated
sufficiently many times – and b) they are correct – i.e., the graph induced by the terminating
processes is properly colored by the output colors of these processes. These algorithms have
a poor runtime complexity of O(n) steps when compared to state-of-the-art algorithms in
the LOCAL model, which terminate in O(log∗ n) synchronous rounds. We will achieve a
similar runtime complexity in the next section by augmenting our wait-free algorithms with
a mechanism that speeds up termination.

We first present an algorithm that uses a 6-color palette. Although it uses one extra color
when compared to the theoretical minimum of 5 colors required to color the cycle C3, this
allows us to illustrate some of our main algorithmic ingredients. We then present another
wait-free algorithm that colors any cycle using a 5-color palette. Some of the longer proofs of
this section can be found in Appendix B.

3.1 Warm-up: using a palette of 6 colors
In Algorithm 1, we present a simple algorithm for wait-free coloring any cycle Cn (n ⩾ 3),
using the six colors in the set { (a, b) ∈ N×N |a+b ⩽ 2 }. Given a process p, we denote by Xp

its identifier, and by q and q′ its two neighboring process in the cycle. We denote by u ∼ v

the fact that processes u and v are neighbors in Cn. A process p, with neighbors q and q′,
is said to be locally extremal (with respect to the identifiers) if either Xp > max{Xq, Xq′ }
or Xp < min{Xq, Xq′ }.

Intuitively, Algorithm 1 guarantees that locally extremal processes quickly terminate,
by sticking to one of the two components ap or bp of their color cp = (ap, bp) (Lemma 7).
Termination then propagates throughout the cycle, due to the wait-free nature of the algorithm
(Lemmas 6 and 7). Given an initial coloring of Cn provided by the nodes’ identifiers, we will
show that the worst-case convergence time of a process is determined by its distance to its
nearest local extrema, which is bounded by O(min{n, maxp Xp −minq Xq }), which yields a
linear convergence time.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:9

Algorithm 1 6-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 cp = (ap, bp)← (0, 0) ∈ N× N

4 Forever:
5 write(Xp, cp) and read((Xq, cq), (Xq′ , cq′)) ▷ local immediate snapshot
6 if cp /∈ { cq, cq′ } then return(cp)
7 else
8 ap ← minN∖ { au | (u ∼ p) ∧ (Xu > Xp) }
9 bp ← minN∖ { bu | (u ∼ p) ∧ (Xu < Xp) }

▶ Theorem 4. In any execution of Algorithm 1 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input, we have:
Termination: every process terminates after having been activated at most ⌊3n/2⌋+ 4 times;
6-color palette: every process that terminates outputs a color in the set { (a, b) | a + b ⩽ 2 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

The rest of the subsection is dedicated to the proof of Theorem 4. Recall that, in a
schedule σ, a process p ∈ σ(t) is working in t if it has not returned before t. Once a working
process returns, it no longer partakes in the execution.

Notation. We will adopt the following notation for all algorithms throughout the paper. If
xp is a variable used by process p, we use xp(t) to denote the value of xp in p’s memory, at
the end of time t, and we use x̂p(t) to denote the value of xp visible to p’s neighbors at the
end of time t. Let xp(0) be given by the initialization of the algorithm, and let x̂p(0) = ⊥.
By definition, we have

x̂p(t) =
{

xp(t− 1) p ∈ σ(t)
x̂p(t− 1) p /∈ σ(t)

(1)

▶ Lemma 5. Let t ⩾ 0, and let p ∈ σ(t). We have cp(t) /∈ { ĉq(t) | q ∼ p }, and process p

returns at time t if and only if cp(t) = cp(t− 1).

Proof. Process p does not update cp when it returns, and so cp(t) = cp(t− 1) whenever p

returns at time t. Let us then assume that p ∈ σ(t) does not return at time t, and let q

be one of p’s neighbors. If q has not yet been activated then ĉq(t) = ⊥ ̸= ĉp(t). If q has
been already activated then, since the inputs form an initial proper coloring, we either
have Xp > Xq or Xp < Xq. In the former case, we have ap(t) ̸= âq(t), and in the latter
case, we have bp(t) ̸= b̂q(t). Either way, we have cp(t) ̸= ĉq(t), and so cp(t) ̸= cp(t − 1),
since cp(t− 1) = ĉp(t) ∈ { ĉq(t), ĉq′(t) } ◀

Lemma 5 provides us with an effective characterization of σ: for every t ⩾ 0 and
every p ∈ [n],

p ∈ σ(t) ⇐⇒ ∀t′ < t :
(
p ∈ σ(t′) =⇒ cp(t′) ̸= cp(t′ − 1)

)
. (2)

The next lemma formalize the intuition that a process terminates fast, unless the execution
is “very interleaved”.

DISC 2022

23:10 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 6. Let p be a process that is working at times t1 and t2 > t1, but is not activated
at any time t ∈ [t1 + 1, t2]. If neither of p’s neighbors is working in the time interval (t1, t2),
then process p returns at time t2.

Proof. The result directly follows from Lemma 5, using the fact that cp(t1) /∈ { ĉq(t1) | q ∼ p }
and ĉp(t2) = cp(t1). ◀

As the next lemma shows, a process cannot be prevented from returning by only one of
its neighbors.

▶ Lemma 7. Let process p be activated at times t1 < t2 < t3 < t4, but not at any other time
t ∈ (t1, t4). If ap(t1) = ap(t2) = ap(t3) = ap(t4), and Xp is not a local minimum, then p

returns at time at most t4. The same holds if bp(t1) = bp(t2) = bp(t3) = bp(t4) and Xp is not
a local maximum.

Note that, even though Xp(t) remains constant throughout the execution, the public
value X̂p(t) doesn’t, as initially its value is ⊥. To analyze executions of Algorithm 1, let us
introduce the sets

N+
p (t) := { q ∼ p | X̂q(t) > X̂p(t) } and N−

p (t) := { q ∼ p | X̂q(t) < X̂p(t) }.

We furthermore define the sets

Ap(t) :=

⋃

q∈N+
p (t)

(
Âq(t) ∪ { X̂q(t) }

)
p ∈ σ(t)

Ap(t− 1) p /∈ σ(t)
(3)

and

Bp(t) :=

⋃

q∈N−
p (t)

(
B̂q(t) ∪ { X̂q(t) }

)
p ∈ σ(t)

Bp(t− 1) p /∈ σ(t)
(4)

where Ap(0) = Bp(0) = ∅, and where the sets Âp(t), B̂p(t) are defined according to Equa-
tion (1). The set Ap(t) contains all processes that p has heard of at time t, and that are
linked to p through a subpath of Cn where process identifiers are increasing. Symmetrically,
the set Bp(t) contains processes that p has heard of, and that are linked to p through a
subpath where identifiers are decreasing.

▶ Lemma 8. Let t ∈ N, and let p ∈ [n] be a process. For every x ∈ Ap(t), we have X̂p(t) < x,
and, for every x ∈ Bp(t), we have X̂p(t) > x.

▶ Remark 9. This will be used in the next section, where we present a procedure for speeding
up Algorithm 2 by reducing the space of colors initially provided to the nodes thanks to their
identifiers. On the other hand, the claim X̂p(t) > max Bp(t) doesn’t generalize under the
same weaker condition.

In the case where Xp does not change, we can notice that Ap(t) and Bp(t) are increasing,
inclusion-wise, with time. Moreover, the elements of Ap(t) correspond to increasing identi-
fiers Xq following a path from p (decreasing in the case of Bp(t)). Hence, |Ap(t)| has a size
bounded by the length of the longest path of increasing identifiers from p.

If a process p ∈ σ(t) fails to return in time t, the sets Ap(t) and Bp(t) help us compute
its next color cp(t).

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:11

▶ Lemma 10. For any time t ⩾ 1, if a process p ∈ σ(t) fails to return at time t, then:
1. if

∣∣N+
p (t)

∣∣ ⩽ 1, then ap(t) ≡ |Ap(t)| mod 2;
2. if

∣∣N−
p (t)

∣∣ ⩽ 1, then bp(t) ≡ |Bp(t)| mod 2.

As a direct consequence of Lemma 10, we get the following.

▶ Lemma 11. Let t ⩾ 0, and let p ∈ [n] be non-extremal a process. If p ∈ σ(t), but p fails to
return at time t, then we have Ap(t) ̸= Ap(t− 1) or Bp(t) ̸= Bp(t− 1).

Proof. Using Lemma 10, if Ap(t) = Ap(t− 1) and Bp(t) = Bp(t− 1) then cp(t) = cp(t− 1),
and so by Lemma 5 process p returns, a contradiction. ◀

This leads us to the following complexity bound for processes that are not local extrema.
It relies on the distance of a process to its closest local extrema along monotone paths. Let
qi, i = 0, . . . , k + 1, be a set of distinct processes, excepted possibly qk+1 = q0. Let us assume
that these processes form a subpath of Cn, or possibly the entire cycle Cn if qk+1 = q0. That
is, q0 ∼ q1 ∼ q2 · · · ∼ qk ∼ qk+1. Let us assume that Xq0 < Xq1 and Xqk

< Xqk+1 , but
Xq1 > Xq2 > · · · > Xqk

, i.e., process q1 is locally maximal, process qk is locally maximal, and
for i ∈ { 1, . . . , k }, process qi is at monotone distance i− 1 from its closest local maximum
q1, and at monotone distance k − i from its closest local minimum qk.

▶ Lemma 12. Let p ∈ [n] be a non-extremal process, and let ℓ and ℓ′ be the monotone distances
from p to its closest extremal processes. Process p returns after at most min{ 3ℓ, 3ℓ′, ℓ+ℓ′ }+4
activations.

Proof. We know from Remark 9 that Ap(t) is increasing with time, and that its size is
bounded by ℓ. Thanks to Lemma 10, we have that ap(t) is determined by the size of Ap(t).
It follows that ap(t) changes at most ℓ + 1 times. Symmetrically, bp(t) changes at most ℓ′

times. By Lemma 7, we get that a process p cannot be activated more than 3 times while
keeping the same value for ap(t). It follows that process p can be activated at most 3ℓ + 4
times before it returns. Symmetrically, p can be activated at most 3ℓ′ + 4 times before it
returns. Finally, from Lemma 11, we get that p can be activated at most ℓ + ℓ′ + 1 times
before it returns. ◀

This last results allows us to conclude.

Proof of Theorem 4. As a direct corollary of Lemma 7, that local extrema return after
at most 4 steps: a maximum will maintain a(t) = 0, and a minimum, b(t) = 0. For the
other nodes, Lemma 12 gives us the complexity, knowing that min{ ℓ, ℓ′ } is bounded by
⌊3n/2⌋. ◀

▶ Remark 13. Lemma 12 states that the complexity of Algorithm 1 is linear in the length
of the longest chain of processes p1 ∼ p2 ∼ · · · that is monotone for the identifiers, i.e.,
Xp1 > Xp2 > · · ·. Throughout this section, we have assumed that the processes start with
their identifiers as input, and that each identifier is unique in the network, i.e., Xp ̸= Xq

whenever p ̸= q. Note however that Theorem 4 only requires that identifiers form a proper
coloring, i.e., Xp ≠ Xq whenever p ∼ q. In this case, the length of a monotone chain is
bounded by the number of initial colors, and so is the convergence of Algorithm 1. In the
Section 4, we exploit this property to dramatically accelerate our algorithms by dynamically
adjusting the “identifiers” Xp themselves, using a modification of Cole and Vishkin’s classic
algorithm [17], initially designed for the PRAM model, but easily adapted to the LOCAL
model. As we shall see, its adaptation to the asynchronous setting is more subtle.

DISC 2022

23:12 Fault Tolerant Coloring of the Asynchronous Cycle

3.2 Saving one color: wait-free 5-coloring the cycle
Here we present, in Algorithm 2, another wait-free coloring algorithm for the cycle, which
only uses a palette of five colors. As already noted, when the graph is a clique, asynchronous
coloring is identical to the renaming problem using an immediate snapshot communication
primitive, which implies that asynchronously coloring the cycle C3 requires at least a five-
colors palette. Our algorithm is thus optimal in terms of colors for the class C = {Cn | n ⩾ 3 }
of all cycles.

Algorithm 2 5-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 ap, bp ← 0 ∈ N

4 Forever:
5 write(Xp, ap, bp) and read((Xq, aq, bq), (Xq′ , aq′ , bq′)) ▷ local imm. snap.
6 P + ← {u ∈ { q, q′ } |Xu > Xp }
7 C+ ← { au | u ∈ P + } ∪ { bu | u ∈ P + }
8 C ← { aq, bq, aq′ , bq′ }
9 if ap /∈ C then return(ap)

10 else if bp /∈ C then return(bp)
11 else
12 ap ← minN∖ C+

13 bp ← minN∖ C

▶ Theorem 14. In any execution of Algorithm 2 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input, we have:
Termination: every process terminates after having been activated at most O(n) times;
5-color palette: every process that terminates outputs a color in the set { 0, . . . , 4 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

From the algorithm, we immediately deduce the following characterization of when a
process returns a value.

▶ Lemma 15. Let t ⩾ 1, and let p ∈ σ(t) be a process with neighbors q and q′. Let
C := { âq(t), b̂q(t), âq′(t), b̂q′(t) }. We have bp(t) /∈ C, and process p returns at time t if and
only if ap(t− 1) /∈ C or bp(t− 1) /∈ C.

Note that, as a consequence of the previous lemma, bp(t) ̸= bp(t − 1) unless p ∈ σ(t)
returns at time t, and so Lemma 6 continues to hold for Algorithm 2.

Defining the sets Ap(t) as we did for Algorithm 1, we get the following sufficient condition
for a process to terminate.

▶ Lemma 16. Suppose that process p ∈ [n] is not a local minimum for the identifiers. If p is
activated at times t1 < t2 < t3 < t4, and Ap(t1) = Ap(t2) = Ap(t3) = Ap(t4), then p returns
at time at most t4.

▶ Lemma 17. Let p ∈ [n] be a process that is not a local minimum for the identifiers, and
let ℓ denote the monotone distance from p to the closest maximal process. Process p returns
after at most 3 ℓ + 4 activations.

Proof. This is a direct consequence of the previous lemma: for p to keep working, its set Ap(t)
must increase at least every 4 activations. The claim follows. ◀

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:13

Proof of Theorem 14. Thanks to Lemma 17, processes that are not local minima return
after a number of steps that is at most ⌊3n/2⌋+ 4. Local minima terminate at most one
step after their two neighbors have terminated, i.e., in at most 3n + 8 rounds. The proper
coloring is an immediate consequence of Lemma 15. ◀

4 From Linear Time to Almost Constant Time

Here, we augment Algorithm 2 with a mechanism designed to reduce Xp, initially set to the
identifier of the process. As the identifiers3 will now be evolving through time, we will say that
a process p, with neighbors q, q′, is a local extremum at time t ⩾ 1 if X̂p(t) > X̂q(t), X̂q′(t).
The resulting algorithm, displayed as Algorithm 3, 5-colors the cycle Cn in O(log∗ n) steps.
Some of the longer proofs of this section can be found in Appendix B.

The intuition for Algorithm 3 is as follows. Every process p essentially runs Algorithm 2
unchanged, and stops whenever this algorithm terminates. However, in parallel, every
process p updates its identifier Xp, initially equal to the identifier of p, à la Cole and Vishkin
using a reduction function f defined hereafter. This helps to shorten long monotone chains
of identifiers down to a constant length, speeding up the convergence of Algorithm 2. This
addition to the algorithm is blocking, as, to maintain a proper coloring of the identifiers Xp

(which is crucial for the wait-free coloration algorithm), every process p must wait for the
approval of both its neighbors each time p wants to update its identifier, through the use
of a local counter rp which tracks the number of times process p tried to pick a smaller
identifier. If all processes advance “almost synchronously”, then they quickly (in O(log∗ n)
steps) reach a stage where the remaining monotone chains of identifiers are all shorter than
a constant L ⩽ 10. From then on, the algorithm behaves as Algorithm 2, and all processes
terminate in O(L) steps, that is, in constant time. The crux of the proof is therefore to
show that slow processes cannot delay the convergence of fast processes too much. Indeed, a
slow process may delay other processes, but if it blocks them during too many iterations
(with respect to the reduction of the identifiers Xp), then the system starts behaving as
Algorithm 2, and neighboring processes actually quickly terminate. On the other hand, if
a process is only “moderately slow”, and allows its neighbors to make some progress on
the reduction of their identifiers Xp, then other processes use this property for breaking
symmetry, and they stop waiting for the slow process.

4.1 Reducing identifiers with deterministic coin-tossing
The considerable speedup achieved in comparison to Algorithm 2 relies on an identifier-
reduction function f : N×N→ N, adapted from Cole and Vishkin’s algorithm [17], defined as
follows. For any natural number Z, we denote its binary decomposition by Z =

∑
k∈N Zk2k,

and its length by |Z| := ⌈log2(Z + 1)⌉. Given two natural numbers X and Y , we then set

f(X, Y) = 2i + Xi where i := min{ |X|, |Y | } ∪ { k ∈ N |Xk ̸= Yk } (5)

As f(x, y) ⩽ 2|x| + 1 = O(log(x)), one reaches a constant fixed point after O(log∗ n)
iterate calls to f , which gives the following. Recall that, for k ∈ N, the k-th iterate of a
function F : A→ A is recursively defined as F (0)(x) = x and, for k ⩾ 1, F (k) = F ◦ F (k−1).

3 For simplicity, we continue to refer to Xp(t) as process p’s “identifier”, even though it is now possible
that Xq(t) = Xp(t) for some other process q ≁ p.

DISC 2022

23:14 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 18. Let F : [1, +∞) → [1, +∞) be the function x 7→ F (x) = 2⌈log(x + 1)⌉ + 1.
There exists α > 0 such that, for every x ⩾ 1, there exists t ⩽ α log∗ x such that F (t)(x) < 10.

▶ Lemma 19. Let x, y ∈ N. If x > y ⩾ 10, then f(x, y) < y.

Proof. Let ℓ = |y|. By assumption, we have ℓ ⩾ 4. If ℓ = 4, then f(x, y) ⩽ 2ℓ + 1 = 9 < y.
If ℓ ⩾ 5, then we have y ⩾ 2ℓ−1, and so y − f(x, y) ⩾ 2ℓ−1 − 2ℓ − 1 > 0, where the last
inequality is because 2z > 4z + 2 whenever z ⩾ 5. ◀

The proper coloring maintained by the function f relies on the following Cole and
Vishkin-like property.

▶ Lemma 20. Let x, y, z ∈ N. If x > y > z, then f(x, y) ̸= f(y, z).

Proof. Let f(x, y) = 2i∗ + xi∗ . For all i < i∗, xi = yi, and if i∗ < |y| then xi ̸= yi. Suppose
that f(y, z) = f(x, y). Then yi∗ = xi∗ , and by the above i∗ ⩾ |y| ⩾ |z|. In this case, yi = zi

for all i < |y|, and thus y = z, contradicting our assumption y > z. ◀

4.2 5-coloring the cycle in near-constant time

Algorithm 3 Fast 5-coloring algorithm, code for process p with neighbors q and q′.

1 Input : Xp ∈ N

2 Initially:
3 ap, bp, rp ← 0 ∈ N

4 Forever:
5 write(Xp, rp, ap, bp) and read((Xq, rq, aq, bq), (Xq′ , rq′ , aq′ , bq′))
6 if ap /∈ { aq, bq, aq′ , bq′ } then return(ap)
7 else if bp /∈ { aq, bq, aq′ , bq′ } then return(bp)
8 else
9 ap ← minN∖ { au, bu | (u ∼ p) ∧ (Xu > Xp) }

10 bp ← minN∖ { aq, bq, aq′ , bq′ }
11 if (rp <∞) ∧ (rp ⩽ min{ rq, rq′ }) then
12 if min{Xq, Xq′ } < Xp < max{Xq, Xq′ } then
13 rp ← rp + 1
14 Y ← f(Xp, min{Xq, Xq′ }) ▷ f given in Equation (5)
15 if Y < min{Xq, Xq′ } then Xp ← Y

16 else
17 rp ←∞
18 if Xp < min{Xq, Xq′ } then
19 Xp ← min{Xp, min(N∖ { f(Xq, Xp), f(Xq′ , Xp) }) }

▶ Theorem 21. In any execution of Algorithm 3 over the cycle Cn with a proper coloring
provided by the values (Xp)p∈[n] given to the processes as input:
Termination: every process terminates after having been activated at most O(log∗ n) times;
5-color palette: every process that terminates outputs a color in the set { 0, . . . , 4 };
Correctness: the outputs properly color the graph induced by the terminating processes in Cn.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:15

A crucial ingredient in the proof of correctness is to establish that the coloring provided
by the evolving values of the local variables Xp, p ∈ [n], is always proper throughout any
execution.

▶ Lemma 22. Let p, q ∈ [n] be neighboring processes. For every t ∈ N, if X̂p(t) ̸= ⊥ then
X̂p(t) ̸= X̂q(t).

When discussing executions of Algorithm 3, we say that a process p is blocked at time t

if p has not yet returned at time t and rp(t) = r̂p(t) <∞. Since the value of Xp changes only
if rp increases, we have Xp(t) = X̂p(t) whenever process p is blocked at time t. A process p

that is not blocked at time t, will write a new value for r̂p(t) at its next activation. Moreover,
p writes a new value for X̂p(t) as well, unless p satisfies specific properties: Xp is a local
maximum, Xp is a local minimum, or p has a neighbor q with X̂q < 10. Note that, before its
first activation, every process p is unblocked, as rp(0) = 0 ̸= r̂p(0) = ⊥.

Every process that takes sufficiently many non-blocked steps, namely Ω(log∗ n) steps,
quickly reduces its identifier Xp until either Xp, or the identifier Xq of one of its neighbors q

becomes smaller than 10. At this stage of the execution, monotone chains of identifiers will
cease to evolve after an additional constant number of steps. Once the monotone chains of
identifiers cease to evolve, the analysis developed in the previous section shows that processes
terminate in a number of steps that is not larger than the length of monotone chains of
identifiers, which is itself bounded by a constant L ⩽ 10. In other words, when all processes
take Ω(log∗ n) non-blocked steps, they terminate in an additional O(1) steps.

In the following, we then focus on the case where the identifiers of the processes are still
greater than 10, and we will show fast convergence is guaranteed even in the presence of
blocked processes. Indeed, the main difficulty in proving Theorem 21 is to deal with blocked
processes. Mainly, we show that a process quickly terminates whenever it is not blocked at
too many steps.

▶ Lemma 23. Let p ∈ [n] be a process. For all t ⩾ 1, if p ∈ σ(t) and X̂p(t) is a local
maximum in some time t, then X̂p(t′) is a local maximum for all t′ ⩾ t.

Proof. Local maxima never update their identifiers; other processes might, but only to
decrease them. The claim follows. ◀

▶ Lemma 24. Let p ∈ [n] be a process, and let q, q′ be its two neighboring processes in the
cycle. Let us assume that processes p and q are blocked at some time t0, with r̂q(t0) < r̂p(t0),
X̂q(t0) > X̂p(t0) > X̂q′(t0), and X̂p(t0) ⩾ 10. Additionally, let us assume that process q

remains blocked throughout the whole time interval [t0, t1) for some t1 > t0, but becomes
activated and unblocked at time t1. Then, one of the following claims holds:

Xq is a local maximum at time t1.
If process q is activated again at some time t2 > t1, then Xp will become a local maximum
as soon as p is activated at a time t ⩾ t2.

▶ Lemma 25. Let k ⩾ 1, and let q0 ∼ q1 ∼ · · · ∼ qk be a sequence of k + 1 distinct
processes in the cycle. Let t0 ∈ N, and let t1 ∈ N ∪ {∞} with t1 > t0. Let us assume
that (1) for every t ∈ [t0, t1), q0 /∈ σ(t), (2) processes q1, . . . , qk are blocked at time t0,
with r̂q0(t0) < r̂q1(t0) < · · · < r̂qk

(t0) < ∞, and (3) X̂qk
(t0) ⩾ 10. Then, for every

i ∈ { 1, . . . , k }, process qi terminates after having been activated at most 3i + 1 times in the
time interval [t0, t1).

▶ Lemma 26. Let p, q ∈ [n] be two neighboring processes. If Xq is a local maximum at
time t0 ∈ N, and if r̂q(t0) =∞, then p terminates after having been activated O(log∗ n) times
during the time interval [t0,∞).

DISC 2022

23:16 Fault Tolerant Coloring of the Asynchronous Cycle

▶ Lemma 27. Let p ∈ [n] be a process. If p is blocked at every time t ∈ [t0, t1), and
if p takes 4 steps during that interval, then p takes up to O(log∗ n) steps in [t0,∞) before
terminating.

We are now ready to show Theorem 21.

Proof of Theorem 21. For a process p, there are two possible paths, both leading to p

returning:
1. Process p never gets blocked. By Lemma 18, if a process updates its identifier up

to O(log∗ n) times, its identifier ends up in the interval [0, 10]. Therefore, after O(log∗ n)
rounds, either Xp becomes a local maximum, or Xp ⩽ 10. In the first case, it stays a
maximum by Lemma 23, its ap(t) remains constant, and p terminates after 4 rounds,
thanks to Lemma 16. In the second case, it will stay at distance at most 10 from a local
minimum. As the processes of this path will no longer change their X−, Lemma 17 allows
us to conclude.

2. Process p becomes blocked. This can happen after at most O(log∗ n) rounds (otherwise
we would end up in the previous case). Lemma 27 ensures that at most O(log∗ n) rounds
will happen before p returns.

This complete the proof that 5-coloring the asynchronous cycles Cn, n ⩾ 3, can be achieved
in O(log∗ n) rounds. ◀

5 Conclusion and future works

We have presented a wait-free distributed algorithm for proper coloring the n nodes of the
asynchronous cycle Cn, for every n ⩾ 3. This algorithm performs in O(log∗ n) rounds, which
is optimal, thanks to Linial’s lower bound [26] that applies to the synchronous execution.
The algorithm uses 5 colors to proper color any cycle Cn, n ⩾ 3, matches the minimum
number 5 of colors required to properly color the asynchronous cycle C3 [6, 14, 24]. Even if,
for n > 3, the existence of a 3-coloring algorithm is not directly ruled out by [6, 14, 24], we
conjecture that k-coloring the n-node cycle Cn requires k ⩾ 5 for every n ⩾ 3.

A natural extension of this work is to consider wait-free coloring arbitrary graphs. Note
that, by the renaming lower bound, coloring graphs with maximum degree ∆ requires a
palette of at least 2∆ + 1 colors whenever ∆ + 1 is a power of a prime. This is because the
shared memory model and the model in this paper coincide in the case of coloring the clique
of n = ∆ + 1 nodes. We do not know if 2∆ + 1 colors suffice for properly coloring all graphs
of maximum degree ∆ in a wait-free manner. It is however easy to extend Algorithm 1 to
graphs with maximum degree ∆, for every ∆ ⩾ 2, using a range of colors of size O(∆2)
(see Appendix A). The running time of this algorithm may however be as large as the one
of Algorithm 1, i.e., O(n) rounds. In the synchronous setting, there is a O(∆2)-coloring
algorithm performing in O(log∗ n) rounds [26] in any graph. However, the techniques used
in the synchronous setting for reducing the number of colors from O(∆2) to ∆ + 1 (see [27])
seem hard to transfer to the asynchronous setting.

More generally, it would be interesting to characterize which classical graph problems
studied in synchronous failure-free networks admit wait-free solutions for asynchronous
networks, and which do not. And, for those solvable wait-free, what are their round-
complexities? For instance, 5-coloring can be solved wait-free in the asynchronous cycle,
in O(log∗ n) rounds, while maximal independent set (MIS) cannot be solved at all in
asynchronous cycles.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:17

References
1 Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming

made adaptive. In 18th ACM Symposium on Principles of Distributed Computing (PODC),
pages 91–103, 1999. doi:10.1145/301308.301335.

2 Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. Early deciding syn-
chronous renaming in o(log f) rounds or less. In 19th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO), LNCS 7355, pages 195–206.
Springer, 2012. doi:10.1007/978-3-642-31104-8_17.

3 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming
in an asynchronous environment. Journal of the ACM, 37(3):524–548, July 1990. doi:
10.1145/79147.79158.

4 Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the step
and namespace complexity of renaming. SIAM Journal on Computing, 48(1):1–32, 2019.
doi:10.1137/16M1081439.

5 Hagit Attiya and Arie Fouren. Polynominal and adaptive long-lived (2k-1)-renaming. In
14th International Conference on Distributed Computing (DISC), LNCS 1914, pages 149–163.
Springer, 2000. doi:10.1007/3-540-40026-5_10.

6 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming.
Journal of Parallel and Distributed Computing, 87:1–12, 2016. doi:10.1016/j.jpdc.2015.09.
002.

7 Hagit Attiya and Jennifer Welch. Distributed Computing. Wiley Series on Parallel and
Distributed Computing. John Wiley & Sons, Inc., Hoboken, NJ, USA, April 2004. doi:
10.1002/0471478210.

8 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2013. doi:10.2200/S00520ED1V01Y201307DCT011.

9 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ + 1)-
coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 437–446, 2018. doi:10.1145/3212734.3212769.

10 Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil.
Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks.
In 23rd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages
1–8, 2009. doi:10.1109/IPDPS.2009.5161053.

11 Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm.
Theoretical Computer Science, 444:28–39, 2012. doi:10.1016/j.tcs.2012.01.034.

12 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief Announcement: Memory Lower
Bounds for Self-Stabilization. In Jukka Suomela, editor, 33rd International Symposium on
Distributed Computing (DISC 2019), volume 146 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 37:1–37:3, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.DISC.2019.37.

13 Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and
Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of
Computing Systems, 63(2):344–365, 2019. doi:10.1007/s00224-017-9772-y.

14 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for re-
naming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010. doi:10.1007/
s00446-010-0108-2.

15 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming:
the upper bound. Journal of the ACM, 59(1):3:1–3:49, 2012. doi:10.1145/2108242.2108245.

16 Armando Castañeda, Michel Raynal, and Julien Stainer. When and how process groups can
be used to reduce the renaming space. In 16th International Conference on the Principles
of Distributed Systems (OPODIS), LNCS 7702, pages 91–105. Springer, 2012. doi:10.1007/
978-3-642-35476-2_7.

DISC 2022

https://doi.org/10.1145/301308.301335
https://doi.org/10.1007/978-3-642-31104-8_17
https://doi.org/10.1145/79147.79158
https://doi.org/10.1145/79147.79158
https://doi.org/10.1137/16M1081439
https://doi.org/10.1007/3-540-40026-5_10
https://doi.org/10.1016/j.jpdc.2015.09.002
https://doi.org/10.1016/j.jpdc.2015.09.002
https://doi.org/10.1002/0471478210
https://doi.org/10.1002/0471478210
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/3212734.3212769
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1016/j.tcs.2012.01.034
https://doi.org/10.4230/LIPIcs.DISC.2019.37
https://doi.org/10.1007/s00224-017-9772-y
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1007/s00446-010-0108-2
https://doi.org/10.1145/2108242.2108245
https://doi.org/10.1007/978-3-642-35476-2_7
https://doi.org/10.1007/978-3-642-35476-2_7

23:18 Fault Tolerant Coloring of the Asynchronous Cycle

17 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, July 1986. doi:10.1016/S0019-9958(86)
80023-7.

18 Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed
computing in the asynchronous LOCAL model. In 21st International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105–110. Springer,
2019. doi:10.1007/978-3-030-34992-9_9.

19 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985. doi:
10.1145/3149.214121.

20 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In 57th

IEEE Symposium on Foundations of Computer Science (FOCS), pages 625–634, 2016. doi:
10.1109/FOCS.2016.73.

21 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed
∆-coloring. Distributed Computing, 34(4):239–258, 2021. doi:10.1007/s00446-021-00397-4.

22 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara
Uitto. Improved distributed degree splitting and edge coloring. Distributed Computing,
33(3-4):293–310, 2020. doi:10.1007/s00446-018-00346-8.

23 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In 53rd ACM Symposium on Theory of Computing (STOC),
pages 1180–1193, 2021. doi:10.1145/3406325.3451089.

24 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

25 Maurice Herlihy and Nir Shavit. On the Nature of Progress. In Antonio Fernàndez Anta,
Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems, pages 313–328,
Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-25873-2_22.

26 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

27 Yannic Maus. Distributed Graph Coloring Made Easy. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’21, pages 362–372, New
York, NY, USA, July 2021. Association for Computing Machinery. doi:10.1145/3409964.
3461804.

28 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

29 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, USA, 2000.

30 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompo-
sition and distributed derandomization. In 52nd ACM Symposium on Theory of Computing
(STOC), pages 350–363, 2020. doi:10.1145/3357713.3384298.

A Coloring General Graphs

It is possible to extend Algorithm 1 to connected graphs with maximum degree ∆, for every
∆ ⩾ 2 (see Algorithm 4). By construction, every process running Algorithm 4 returns a color
taken in the set

{ (a, b) | a + b ⩽ ∆ },

of cardinality (∆+1)(∆+2)
2 = O(∆2). The proof of correctness for Algorithm 4 uses the same

arguments as for establishing the correctness of Algorithm 1. In particular, a process cannot
run forever whenever its identifier becomes a local extremum among the identifiers of its
active neighbors, which guarantee that every process eventually terminates.

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/978-3-030-34992-9_9
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1007/s00446-021-00397-4
https://doi.org/10.1007/s00446-018-00346-8
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1145/331524.331529
https://doi.org/10.1007/978-3-642-25873-2_22
https://doi.org/10.1137/0221015
https://doi.org/10.1145/3409964.3461804
https://doi.org/10.1145/3409964.3461804
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3357713.3384298

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:19

Algorithm 4 O(∆2)-coloring algorithm for general graphs, code for process p with
neighbors q1, . . . , qk, k ⩽ ∆.

1 Input : Xp ∈ N

2 Initially:
3 cp = (ap, bp)← (0, 0) ∈ N× N

4 Forever:
5 write(Xp, cp) and read((Xq1 , cq1), . . . , (Xqk

, cqk
))▷ immediate snapshot

6 if cp /∈ { cq1 , . . . , cqk
} then return(cp)

7 else
8 ap ← minN∖ { au | u ∼ p, Xu > Xp }
9 bp ← minN∖ { bu | u ∼ p, Xu < Xp }

B Technical proofs

B.1 Proofs of Section 3
Proof of Lemma 8. We proceed by induction on t ∈ N. For t = 0, the claim is vacuously true,
as Ap(t) = Bp(t) = ∅. For the inductive step, we suppose the claim holds for t = 0, . . . , T ,
and we show that it holds for t = T + 1. If p /∈ σ(T + 1) then we have X̂p(T + 1) = X̂p(T)
and Ap(T + 1) = Ap(T), Thus the claim holds by induction. Let us assume that p ∈
σ(T + 1), and let x ∈ Ap(t). By Equation (3) and the assumption p ∈ σ(T + 1), there
exists q ∈ N+

p (T + 1) such that either x = X̂q(T + 1) or x ∈ Âq(T + 1). In the former
case, we have X̂p(T + 1) < Y by the definition of N+

p . In the latter case, there must exist
some time t′ ⩽ T , with q ∈ σ(t′), for which X̂q(T + 1) = Xq(t′) and Âq(T + 1) = Aq(t′).
Since τ ⩽ T , we get that that X̂q(t′) < x, thanks to the induction hypothesis. Also, since the
value of Xq(t) is stable throughout the execution, we have Xq(t′) = Xq(t′ − 1) = X̂q(t′) < x.
Therefore X̂q(T + 1) < x, and, since q ∈ N+

p (T + 1), we have X̂p(T + 1) < X̂q(T + 1) < x,
which proves the claim.

The proof is symmetric for x ∈ Bp(t). ◀

Proof of Lemma 7. We establish the result for the case where Xp is not a local minimum
and ap(t1) = ap(t2) = ap(t3) = ap(t4). The proof uses the same arguments with local maxima
and bp(t1) = bp(t2) = bp(t3) = bp(t4).

Suppose that process p fails to return at time t1; we consider two cases.
If p is a local maximum, then we have âp(t) = 0 for all t. Moreover, if some process q ∼ p

is working in the interval [t1, t3], then aq(t3) ̸= 0. Furthermore, we have cp(t3) ̸= ĉq(t3) by
Lemma 5. In this case, either process q works in the interval [t3 + 1, t4], and âq(t4) ̸= 0, or it
does not work in this interval, and ĉq(t4) = ĉq(t3). Either way, we get ĉp(t4) ̸= ĉq(t4), and
thus p returns at time at most t4. Suppose now process p has a neighbor q′ that is inactive
in the interval [t1, t3]. If p’s other neighbor q is not working in the interval [t1 + 1, t2], then p

returns at time t2 by Lemma 6; if, on the other hand, q is working in this interval, then we
have aq(t2) ̸= 0, and, as above, process p returns at time at most t3.

If process p is not a local maximum, then it has a neighbor q′ with Xq′ > Xp. If we
had âp(t) = âq′(t), in any t ∈ { t2, t3, t4 }, then ap(t) would be switched, which contradicts
the lemma assumptions; hence we have ĉp(t) ̸= ĉq′(t) for t = t2, t3, t4. Suppose p fails to
return in t2. In this case, as before, either the other neighbor q of p is working in the
interval [t2 + 1, t3], and so aq(t3) ̸= âp(t4); or q is inactive in that interval and p returns at
time t3. Either way, process p returns at the latest at time t4. ◀

DISC 2022

23:20 Fault Tolerant Coloring of the Asynchronous Cycle

Proof of Lemma 10. We only treat the case
∣∣N+

p (t)
∣∣ ⩽ 1, as the other case is symmetric.

First, note that for any process q, X̂q(t) is equal to either ⊥ or Xq. In the former case,
process q is still inactive in time t, and thus Aq(t) = ∅. As a consequence, thanks to
Lemma 8, we have Xq /∈ Aq(t) for all t ∈ N.

Given p ∈ σ(t), we proceed by induction over |Ap(t)| by treating two base cases |Ap(t)| = 0,
|Ap(t)| = 1, and then the general case. For the base cases, as p ∈ σ(t), we have |Ap(t)| = 0 if
and only if N+

p (t) = ∅, which corresponds to p being a local maximum among its neighbors
awaken at time t. In this case, if p fails to return, then the algorithm enforces ap(t) = 0, as
desired, which gives the base case of the induction. If |Ap(t)| = 1, then the set N+

p (t) is a
singleton. Let { q } = N+

p (t). We have Ap(t) = { X̂q(t) } = {Xq }, and Âq(t) ∈ {∅, {Xq } }.
The set Âq(t) is therefore empty, i.e., âq(t) = 0, and thus the algorithm enforces ap(t) = 1 =
|Ap(t)|.

For the inductive case, let us assume that the claim is true for |Ap(t)| = 0, . . . , T with
T ⩾ 1, and let us show that it still holds for |Ap(t)| = T + 1 ⩾ 2. Here again, the set N+

p has
to be a singleton, say { q }, and so we have ap(t) = 1− âq(t), and Ap(t) = {Xq }∪ Âq(t), with
Xq /∈ Âq(t). Thus

∣∣∣Âq(t)
∣∣∣ = T , and there was an earlier time t′ < t where q ∈ σ(t′) failed to

return, and Âq(t) = Aq(t′). Since Xp < Xq, |N+
q (t′)| ̸= 2, and so aq(t′) ≡ T (mod 2) by the

induction hypothesis. Thus ap(t) = 1− aq(t′) ≡ T + 1 (mod 2), which completes the proof
of the claim. ◀

Proof of Lemma 16. We first show the following: if p ∈ σ(t) fails to return at time t ⩾ 1,
then

ap(t) = 0 ⇐⇒ |Ap(t)| ≡ 0 mod 2. (6)

We proceed by induction on |Ap(t)|. If |Ap(t)| = 0, then process p is a local maximum among
its active neighbors, and so in Algorithm 2 we have C+ ← ∅, which implies ap(t) = 0. For
the inductive step, suppose the result true for |Ap(t)| = k, and suppose that |Ap(t)| = k + 1.
Since process p is assumed to be non-minimal, it has one neighbor q with X̂q(t) > X̂p(t)
and |Âq(t)| = k, and we have ap(t) = minN∖ { âq(t), b̂q(t) }.

If k is even, then by inductive assumption we have âq(t) = 0, and so ap(t) ̸= 0. Otherwise,
k is odd, and by inductive assumption we have âq(t) > 0. In the code of Algorithm 2, we
have C+ ⊆ C, and so for any process u ∈ [n] and time τ ⩾ 0 we have bu(τ) ⩾ au(τ). Thus
in particular we have b̂q(t) ⩾ âq(t) > 0, and therefore ap(t) = 0.

For the main claim, let ℓ := |Ap(t1)| = |Ap(t2)| = |Ap(t3)| = |Ap(t4)|. If ℓ is even,
then ap(t) = 0 for all t ∈ [t1, t4]. Reasoning as in Lemma 7, if p still hasn’t returned by
time t4, then we have |Ap(t3)| = |Aq(t3)| − 1 = |Aq′(t3)| + 1 without loss of generality.
Then if neither q nor q′ is activated in the interval [t3 + 1, t4], p terminates by Lemma 6.
Otherwise, using again the fact that bu(τ) ⩾ au(τ) for any process u and time τ , we
have âp(t4) = 0 < min{ âq(t4), b̂q(t4), âq′(t4), b̂q′(t4) }, and so p returns in t4.

If ℓ is odd, we suppose without loss of generality that Xq > Xp > Xq′ . We have âp(τ) > 0
for all τ ∈ [t2, t4], and reasoning again as in Lemma 7, by time t4 we have âq′(t4) = 0, and p

terminates if it is still active. ◀

B.2 Proofs of Section 4
Proof of Lemma 22. We show the following: for every t ∈ N, Xp(t) /∈ {Xq(t), X̂q(t) },
proceeding by induction. The case t = 0 results from the initial proper coloring of the
identifiers.

For the induction, suppose the claim holds for t = 0, . . . , T . If p, q /∈ σ(T + 1), then
nothing changed, and the claim still holds for t = T + 1.

P. Fraigniaud, P. Lambein-Monette, and M. Rabie 23:21

Suppose p, q ∈ σ(T + 1). If rq(T + 1) = rq(T), the claim immediately follows, as does
it if Xq(T + 1) = Xq(T). Otherwise, by assumption we either have Xq(T) > Xp(T), or
the opposite. If the former, Xq(T + 1) = f(Xq(T), Xp(T)) < Xp(T), and by Lemma 20 we
have Xq(T +1) /∈ {Xp(T), Xp(T +1) }, and so Xp(T +1) /∈ { X̂q(T +1), Xq(T +1) }. Otherwise,
Xq(T) < Xp(T); if q is a local minimum in T + 1, then Xq(T + 1) ̸= f(Xp(T), Xq(T)), and
the claim follows from Xp(T + 1) ∈ {Xp(T), f(Xp(T), Xq(T)) }. If q is not a local minimum,
then Xq(T + 1) = f(Xq(T), Z) < Z for some Z < Xq(T); here again, the claim follows from
Lemma 20.

Finally, suppose p ∈ σ(T + 1) and q /∈ σ(T + 1). If Xp(T + 1) = Xp(T), then the claim
still holds. Otherwise, we have rp(T) < rp(T + 1) ⩽∞, and Xp(T + 1) < Xp(T). Process p

is then not a local maximum in T + 1, and the algorithm guarantees Xp(T + 1) < X̂q(T + 1).
If Xq(T + 1) = X̂q(T + 1), and in particular if rq(T + 1) = r̂q(T + 1), and the claim holds.

Suppose then that rq(T +1) < r̂q(T +1), and let t0 be the earliest time when rq(t0) = rq(T),
such that r̂q(t0) = r̂q(T +1). Process q takes no steps in the interval (t0, T +1], and because rq

increases in t0, we have r̂q(t0) ⩽ r̂p(t0). Thus r̂q(T + 1) ⩽ r̂p(t0) ⩽ r̂p(T + 1). Since rp

increases in T + 1, we have r̂p(T + 1) ⩽ r̂q(T + 1), and thus

r̂q(t0) = r̂p(t0) = r̂q(T + 1) = r̂p(T + 1),

i.e., r̂p(t) is constant for t ∈ [t0, T +1], and as a consequence, X̂p(T +1) = X̂p(t0). From here,
we proceed as in the previous case: Xq(T +1) = Xq(t0) was computed with q seeing X̂p(t0) =
X̂p(T + 1), and, since Xp(T + 1) was computed with p seeing X̂q(T + 1) = X̂q(t0), we have
indeed Xp(T + 1) /∈ {Xq(T + 1), X̂q(T + 1) }. ◀

Proof of Lemma 24. Since p ∼ q, and since p is blocked at time t0, we have r̂p(t0) =
r̂q(t0) + 1. Moreover, as X̂p(t0) ⩾ 10, the fact that X̂p(t0) is not a local minimum means
that r̂q′(t0) ⩾ r̂p(t0). Otherwise, by Lemma 19, Xp would be smaller than Xq′ . In particular,
process p remains blocked as long as process q is itself blocked.

Now, suppose that rq(t1) ̸= r̂q(t1). As processes p, q are blocked until t1, we have X̂q(t1) =
X̂q(t0) and X̂p(t1) = X̂p(t0), so X̂q(t1) > X̂p(t1), and q is not a local minimum in t1. The
case rq(t1) =∞ thus corresponds to X̂p(t0) being a local maximum at time t1. If rq(t1) <∞,
then rq(t1) = r̂q(t0)+1, and since X̂p(t1) = X̂p(t0) ⩾ 10, we get Xq(t1) = f(X̂q(t0), X̂p(t0)) <

X̂p(t0) by Lemma 19.
Finally, suppose then that q is next activated at time t2, and that p is activated at

time t ⩾ t2.Note that as long as q does not get activated again, p remains blocked, as it did not
see the update on rq. Moreover, as Xq(t1) is not a local maximum, Xq(t2) < X̂p(t1) = X̂p(t0).
Then process p sees X̂p(t0) to be a local maximum, and since it is no longer blocked by q we
have rp(t) =∞. ◀

Proof of Lemma 25. Under the hypotheses of the lemma, processes q1, . . . , qk remain
blocked throughout the time interval [t0, t1− 1], and we have X̂q0(t) > X̂q1(t) > · · · > X̂qk

(t)
whenever t0 ⩽ t < t1. By the same arguments as the ones used in the previous section for es-
tablishing Lemma 10, the sign of aqi

(t) is determined by the sign of the variables aq0 , . . . , aqi−1

throughout the time interval [t0, t]. In particular, the sign of âqi(t) stabilizes after qi has been
activated at most 3 i times, and thus process i itself terminates after having been activated
at most (3i + 1) times. ◀

Proof of Lemma 26. Let t1, t2, . . . be the consecutive steps taken by process p in the inter-
val [t0,∞), that is, for every k ⩾ 1, p is inactive during the whole time (tk, tk+1). Note that,
since r̂q(t0) =∞, we have âq(t) = 0 for all t ⩾ t0, and so âp(t) > 0 for all t ⩾ t2, as process q

will remain a local maximum forever.

DISC 2022

23:22 Fault Tolerant Coloring of the Asynchronous Cycle

Pick k ⩾ 2. If p is not a local minimum at any point in [tk, tk+3], then by Lemma 16 it
terminates in tk+3 at the latest. Conversely, if p is a local minimum throughout the same
interval, then we have repeatedly âp(ti) ∈ { âq′(ti), b̂q′(ti) }, i = k, . . . , k + 3. This implies
that âq′ is positive during that interval, otherwise p and q′ would eventually stop having
conflicts. By the same argument, process q′ terminates in a constant number of activations,
and so do process p. Therefore, for process p not to terminate the relative order of X̂p

and X̂q′ must switch every O(1) steps. Thus, every time p takes O(1) steps and fails to
return, it must be the case that X̂p has decreased. As argued before, this can happen at
most O(log∗ n) times before either Xp ⩽ 10 or Xq′ ⩽ 10, at which point convergence happens
in a bounded number of steps. ◀

Proof of Lemma 27. Since process p is blocked, a direct induction shows that p lies some-
where within a monotone chain of identifiers, as described in Lemma 25. That is, there is a
chain of distinct adjacent processes

q−k−1 ∼ q−k ∼ · · · ∼ q−1 ∼ q0 ∼ q1 ∼ · · · ∼ qℓ,

with q0 = p, and k, ℓ ⩾ 0, where, for every i ∈ [−k, ℓ], r̂qi
(t0) = r̂p(t0) + i, and ei-

ther r̂q−k−1(t0) = ⊥ (in which case k = r̂p(t0)) or r̂q−k−1(t0) = R − k − 1 (in which case
k < r̂p(t0). Moreover, all processes q−k, . . . , qℓ are blocked at time t0, and process q−k−1 is
not blocked at time t0.

We now distinguish two cases, depending on whether k = 0 or not. If k = 0, then, by
Lemma 25, process p terminates after taking 4 steps within the time interval [t0, t1). If k > 0,
then process q−1 is blocked; if process q−1 remains blocked while process p takes 3k + 1 steps,
then, by Lemma 25, p terminates. The same holds if q−1 takes a single non-blocked step. If
process q−1 ever becomes unblocked, and takes another step, then we meet the assumptions
of Lemma 24, and either of Xp or Xq−1 become a local maximum. If Xp becomes a local
maximum, then it terminates in O(1) steps. If Xq−1 becomes a local maximum, then, by
Lemma 26, process p terminates in O(log∗ n) steps. ◀

Distributed Randomness from Approximate
Agreement
Luciano Freitas #

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Petr Kuznetsov #

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Andrei Tonkikh #

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Abstract
Randomisation is a critical tool in designing distributed systems. The common coin primitive,
enabling the system members to agree on an unpredictable random number, has proven to be
particularly useful. We observe, however, that it is impossible to implement a truly random common
coin protocol in a fault-prone asynchronous system.

To circumvent this impossibility, we introduce two relaxations of the perfect common coin:
(1) approximate common coin generating random numbers that are close to each other; and (2) Monte
Carlo common coin generating a common random number with an arbitrarily small, but non-zero,
probability of failure. Building atop the approximate agreement primitive, we obtain efficient
asynchronous implementations of the two abstractions, tolerating up to one third of Byzantine
processes. Our protocols do not assume trusted setup or public key infrastructure and converge to
the perfect coin exponentially fast in the protocol running time.

By plugging one of our protocols for Monte Carlo common coin in a well-known consensus
algorithm, we manage to get a binary Byzantine agreement protocol with O(n3 log n) communication
complexity, resilient against an adaptive adversary, and tolerating the optimal number f < n/3
of failures without trusted setup or PKI. To the best of our knowledge, the best communication
complexity for binary Byzantine agreement achieved so far in this setting is O(n4). We also show
how the approximate common coin, combined with a variant of Gray code, can be used to solve an
interesting problem of Intersecting Random Subsets, which we introduce in this paper.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asynchronous, approximate agreement, weak common coin, consensus,
Byzantine agreement

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.24

Related Version Full Version: https://arxiv.org/abs/2205.11878 [18]

Funding Luciano Freitas: Nomadic Labs.
Petr Kuznetsov: TrustShare Innovation Chair.
Andrei Tonkikh: TrustShare Innovation Chair.

1 Introduction

Generating randomness in distributed systems is an essential part of many protocols, such
as Byzantine Agreement [4], Distributed Key Generation [21] or Leader Election [35]. Any
application that needs an unpredictable or unbiased result will most likely rely on randomness.
Although sometimes local sources of randomness are enough for some protocols [34], having
access to a common random number can guarantee faster termination [3]. Producing a
common unpredictable random number has been extensively studied in the literature on
cryptography and distributed systems under the names of random beacon, distributed (multi-
party) random number generation or common coin (even if the result is not binary). In
essence, these protocols ensure:

© Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 24; pp. 24:1–24:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lfreitas@telecom-paris.fr
https://orcid.org/0000-0002-7444-7345
mailto:petr.kuznetsov@telecom-paris.fr
https://orcid.org/0000-0003-1148-1228
mailto:tonkikh@telecom-paris.fr
https://orcid.org/0000-0002-8764-8760
https://doi.org/10.4230/LIPIcs.DISC.2022.24
https://arxiv.org/abs/2205.11878
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Distributed Randomness from Approximate Agreement

Termination: every correct process eventually outputs some value;
Agreement: no two correct processes output different values;
Randomness: the value output by a correct process must be uniformly distributed over some

domain D, |D| ≥ 2.

We call a protocol that ensures the three properties (Termination, Agreement, and
Randomness) a perfect common coin. There are many message-passing protocols without
trusted setup that implement a perfect common coin in the presence of Byzantine adversary
[40, 11, 25, 9, 7, 29, 19]. These protocols are either synchronous, meaning that every message
sent by a correct process is delivered within a certain (known a priori) bound of time, or
partially-synchronous, meaning that such a bound exists but is unknown.

In contrast, one can also consider an asynchronous system, where no bounds on communi-
cation delays can be assumed. In a seminal work of Fischer, Lynch, and Paterson, it has been
shown that the problem of consensus has no asynchronous fault-tolerant solutions [17]. As
we show in Appendix A, this impossibility also holds for perfect common coins: no algorithm
can implement a perfect common coin in a message-passing asynchronous system where
at least one process might crash. Note that this statement cannot be proven by a simple
black-box reduction from consensus to a perfect common coin and a reference to FLP [17].
Indeed, if such a reduction existed, the resulting protocol would have to always terminate in
a bounded number of steps, even with unfavourable outputs of the black-box common coin.
Hence, if we were to replace the common coin protocol by a protocol that always returns 0,
it would still provide termination as well as all other properties of consensus, violating [17].

Note that this impossibility applies even to systems with trusted setup, such as the one
assumed in [9]. Such protocols typically do not satisfy the Randomness property of a perfect
common coin. The outputs of these protocols follow deterministically from the information
received by the processes during the setup.

In light of the impossibility of a perfect coin, one might look for relaxed versions of
the common-coin problem that allow asynchronous fault-tolerant solutions. For example,
one can relax the Agreement property by only requiring the output to be common with
some constant probability, which results in an abstraction sometimes called weak common
coin1 or δ-matching common coin. In this paper, we call this abstraction a probabilistic
common coin, in order to avoid confusion with other relaxations we introduce. More
precisely, probabilistic common coins replace the Agreement property above with probabilistic
δ-consistency.

Probabilistic δ-Consistency: with probability at least δ, no two correct processes output
different values.

We also introduce the concept of a Monte Carlo common coin which is a probabilistic
common coin whose success rate δ can be parameterized as follows: the more rounds of the
protocol are executed, the more reliable the outcome is. In our case δ starts at 2

3 in the first
round of the protocol and converges to 1 at an exponential rate in the number of rounds. In
most probabilistic common coins, δ could be increased by decreasing the resilience level (the
allowed fraction of Byzantine processes). However, to the best of our knowledge, this paper
is the first to present an implementation of a Monte Carlo common coin that can achieve
arbitrarily small (but non-zero) δ by increasing the running time of the protocol (Sections 5
and 6).

1 Many weak common coin protocols such as the one in [10] also relax Randomness.

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:3

We also propose a novel, alternative relaxation of Agreement: instead of ensuring that
the same output is produced (with some probability), we may require that the produced
outputs are close to each other according to some metric. For this variant, we have to also
slightly relax randomness so that only one correct process is guaranteed to obtain a truly
random value. More precisely, assume a discrete range of possible outputs [0..D−1], and let
dq(x, y) denote the distance between x and y in the algebraic ring Zq.2 The Approximate
common coin abstraction then satisfies Termination and the following two properties:
Approximate ϵ-Consistency: if one correct process outputs value x and another correct

process outputs y, then dD(x, y) ≤ ⌈ϵD⌉, for a given parameter ϵ ∈ (0, 1];
One Process Randomness: the value output by at least one correct process must be uni-

formly distributed over the domain [0..D−1].3

Our implementations of Monte Carlo and Approximate common coins build upon the
abstraction of Approximate Agreement [15]. It appears that the abstraction perfectly matches
the requirements exposed by our relaxed common-coin definitions: it naturally grasps the
notion of outputs being close where the precision can be related to the execution time.
Building atop existing asynchronous Byzantine fault-tolerant implementations [15, 1], we
introduce and discuss an efficient implementation of the bundled version of this abstraction
which is, intuitively, equivalent to n parallel instances of Approximate Agreement, but is
much more efficient.

We discuss two applications of our protocols. First, we observe that our Monte Carlo
common coin can be plugged into many existing Byzantine agreement protocols [6, 10,
13, 33]. This helps us to obtain a binary Byzantine agreement protocol with O(n3λ log n)
communication complexity, where λ is the security parameter. The protocol exhibits optimal
resilience of f < n/3, tolerates adaptive adversary, and assumes no trusted setup or PKI. In
this setting, the best prior protocols for binary Byzantine agreement we are aware of have
communication complexity of O(n4λ) [28, 2].

We also introduce Intersecting Random Subsets, a new problem that can be used to
asynchronously choose random committees with large intersections. Using elements of coding
theory, namely Gray Codes [23, 36], we show how our Approximate common coin can be
used to solve this problem without additional communication overhead.

We present our model definitions in Section 2 and describe the building blocks used in
our constructions in Section 3. We present our protocols in Sections 4–6, provided with
implementation details and complexity analysis. In Section 7, we show how the Monte Carlo
common coin can be used in solving binary Byzantine agreement. In Section 8, we overview
the related work and in Section 9, we conclude the paper.

We provide some of the necessary complementary material in the appendices and we refer
the reader to the full version of the paper [18] for the remaining parts. In Appendix A, we
prove the impossibility of an asynchronous perfect common coin. Appendix B introduces
and shows how to solve the problem of Intersecting random subsets. In addition to the
contents of this paper, the full version [18] contains the proof of correctness of our common
coin constructions, it contains a modular presentation of the coin proposed by Canetti and
Rabin in 1993 [10], and it also presents two implementations of Random Secret Draw, one of
the major building blocks of our common coins.

2 I.e., d(x, y) = min{|x − y|, q − |x − y|}.
3 With a small modification to our protocol, we can easily achieve (f+1)-Process Randomness instead on

One Process Randomness. However, we do not know if it is possible to guarantee that all outputs of
correct processes are random without relaxing other properties.

DISC 2022

24:4 Distributed Randomness from Approximate Agreement

2 System Model

We consider a system of n processes able to communicate using reliable communication
channels. Among the participants, at most f < n

3 are Byzantine and might display arbitrary
behaviour.

We assume the adaptive adversarial model: up to f Byzantine processes are chosen by
the adversary depending on the execution. A non-Byzantine process is called correct. The
communication complexity of our baseline protocols can be improved by a factor of n using
Aggregatable Publicly Verifiable Secret Sharing (APVSS) [24]. However, as we are not aware
of APVSS implementations that are secure against the adaptive adversary, the improved
protocols can only be proved correct in the presence of the static one.

The adversary can control the time the messages sent by correct processes take to arrive,
as well as reorder them. However, it cannot drop a message sent by a correct process unless
it corrupts this process before the message has arrived.

We assume that each process has access to a local random number generator that can be
accessed as follows:

RandomInt(D): produces a uniformly distributed random integer number in the range
[0..D−1].

The proposed protocols as well as some of the building blocks rely on the use of crypto-
graphic hash functions. The hash of an arbitrary string s is denoted H(s) and has length λ

that we call the security parameter. It is computationally infeasible to find two strings s ̸= s′

such that H(s) = H(s′), as well as inverting a hash without knowing which input was used a
priori.

We assume a computationally bounded adversary, so that it is incapable of breaking
cryptographic primitives with all but negligible probability. However, since such a probability
exists, we allow the properties of all our protocols as well as all building blocks to be violated
with a negligible in λ probability.

3 Building Blocks

Our protocols make use of a wide range of building blocks. None of them are completely
new, but some of them are modified according to our needs. In particular, we introduce the
Random Secret Draw abstraction inspired by the ideas from [10] and [2] (Section 3.3). We also
provide a bundled version of the Approximate Agreement [15, 1] abstraction (Section 3.5). In
addition, we use Byzantine Reliable Broadcast [6, 14] (Section 3.1), Asynchronous Verifiable
Secret Sharing [8, 14] (Section 3.2), and Gather [10, 39] (Section 3.4).

3.1 Byzantine Reliable Broadcast
Byzantine Reliable Broadcast (BRB) [6] allows a designated leader to communicate a single
message to all processes in such a way that, if any correct process delivers a message, then
every other correct process eventually delivers exactly the same message (even if the leader
is Byzantine). More precisely, a BRB protocol must satisfy the following properties:
Validity: if the leader is correct and it broadcasts message m, then every correct process will

eventually deliver m;
Consistency: if two correct processes j and k deliver messages mj and mk, then mj = mk.
Totality: if a correct process j delivers some message m, then eventually all correct processes

will deliver m.

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:5

The performance of reliable broadcast is of crucial importance to our protocols. We
believe that the BRB implementation recently proposed by Das, Xiang, and Ren [14] will
be the most suitable option. It has total communication complexity of just O(n|M | + n2λ),
where |M | is the size of the message and λ is the security parameter, total message complexity
of O(n2), and the latency of 3 message delays in case of a correct leader and 4 message delays
in case of a Byzantine leader.

In this paper, we always use BRB in groups of n instances, with each process being the
leader of one. We use the following notation:
BRBi.Broadcast(m): allows process i to broadcast a message in an instance of BRB where

i is the leader;
BRBi.Deliver(m): an event indicating that message m from process i has been delivered.

3.2 Asynchronous Verifiable Secret Sharing
Asynchronous Verifiable Secret Sharing (AVSS) [8] allows a process to securely share infor-
mation with other participants and to keep its contents secret until the moment a threshold
of participants agree to open it.

In our protocols, AVSS is used with the following interface:
AVSSi.ShareSecret(x): allows process i to share a secret x among the participants;
AVSSi.SharingComplete(): an event issued when a secret is correctly shared by process i;
AVSSi.EnableRetrieve(): enables responses to retrieval requests;
AVSSi.Retrieve(): returns x if it was previously shared and all correct processes invoked

AVSSi.EnableRetrieve().

An AVSS implementation must satisfy the following properties:
Validity: if a correct process i invokes AVSSi.ShareSecret(x), then every correct process

eventually receives the AVSSi.SharingComplete() event and no value other than x can be
returned from the AVSSi.Retrieve() operation invoked by a correct process;

Notification Totality: if one correct process receives the AVSSi.SharingComplete() event,
then every correct process eventually receives it;

Retrieve Termination: if all correct processes invoke AVSSi.EnableRetrieve() and any correct
process invokes AVSSi.Retrieve(), then this operation will eventually terminate and the
process will obtain the shared secret;

Binding: if some correct process receives the AVSSi.SharingComplete() notification, then
there exists a fixed secret x such that no value other than x can be returned from the
AVSSi.Retrieve() operation invoked by a correct process;

Secrecy: if process i is correct and no correct process invoked AVSSi.EnableRetrieve(), then
the adversary has no information about the secret shared by i.

Das, Xiang, and Ren [14] proposed an AVSS protocol with quadratic communication
complexity, constant latency, and without assuming trusted setup. Notice that in order to
secretly share a long string s, it is better to follow the method proposed in [30]: encrypt s

using a much shorter secret key sym, reliably broadcast the encrypted value {s}sym and then
perform secret sharing of the key sym. Thus, we shall assume that the total communication
complexity of secret sharing of string s is O(n|s| + n2λ).

3.3 Random Secret Draw
One of the key ideas of the weak common coin protocol of Canetti and Rabin [10] is to assign
each process a random number in a given domain [0..D−1] in such a way that:

DISC 2022

24:6 Distributed Randomness from Approximate Agreement

Assignment Termination: if a correct process i participates, then it is eventually assigned a
value. Moreover, everyone will eventually receive a notification that i has been assigned a
random value;

Notification Totality: if process i receives a notification that some process j has been
assigned a value, then every correct process will eventually receive such a notification;

Randomness: the assigned numbers are independent and distributed uniformly over the
domain [0..D−1]. The distribution of the value assigned to process j cannot be affected
by the adversary even if j itself is Byzantine;

Unpredictability: until at least one correct process agrees to reveal the assigned values, the
value assigned to each process j remains secret, even to process j itself;

Retrieve Termination: if all correct processes invoke EnableRetrieve() and any correct process
invokes RetrieveValue(j), having received ValueAssigned(j), then this operation eventually
returns a value.

Although this idea has been widely used as part of the implementation of asynchronous
consensus protocols, to the best of our knowledge, it was never considered a separate primitive
and assigned a name. Hence, we shall call it Random Secret Draw (RSD).

This abstraction resembles a well known concept of a Verifiable Random Function
(VRF) [32]. However, the important difference is that process j itself cannot know the value
it is assigned until the reveal phase. Hence, a Byzantine process cannot choose whether
it wants to participate or not based on the random value it is assigned. Moreover, unlike
Random Secret Draw, VRF schemes typically require a seed chosen at random after the
process chose the public key for its pseudo-random function. In fact, a variant of RSD has
been recently used to generate such seeds [20].

We use the following interface for the RSD abstraction:
RSD.Start(): allows a process to start participating in RSD and, eventually, to be assigned

a random number. We assume that this function is non-blocking, i.e., that an invocation
of this function terminates after 0 message delays;

RSD.EnableRetrieve(): used by the processes to start participating in the process of recons-
tructing the assigned values;

RSD.RetrieveValue(j): returns the value assigned to process j if all correct processes invoked
RSD.EnableRetrieve() and process j has been assigned some value.

The original RSD implementation by Canetti and Rabin [10] used n2 instances of AVSS.
To the best of our knowledge, to this day, there is no known AVSS protocol that would allow
to do it with less than Ω(n4) bits of communication in total. Hence, in the full version of the
paper [18], we give two possible implementations of RSD. The first one is secure against an
adaptive adversary and does not rely on PKI, while the second one uses the implementation
from [2] that relies on Aggregatable Publicly Verifiable Secret Sharing instead of AVSS. While
saving a linear factor in communication complexity, this solution lacks security against
adaptive adversary and requires PKI. Since both [10] and [2] did not consider RSD as a
separate abstraction and did not provide separate pseudocode for it, in [18], we present both
RSD implementations.

3.4 Gather
Yet another important contribution made by Canetti and Rabin in their weak common
coin construction [10] is a multi-broadcast protocol that has been recently given the name
Gather [39, 2]. In this protocol, every process starts by broadcasting a single message through
Byzantine Reliable Broadcast. The processes then do a few more rounds of message exchanges

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:7

and, in the end, each participant i outputs a set of process ids Si such that for all j ∈ Si:
i has received the message of j through reliable broadcast.4 Moreover, the sets output by
correct processes satisfy a strong intersection property:
Binding Common Core: There exists a set S∗ of process ids of size at least n − f , called the

common core, such that for every correct process i: S∗ ⊆ Si. Moreover, once the first
correct process outputs, S∗ is fixed and the adversary cannot manipulate it anymore.

The fact that the adversary cannot affect the common core once a single correct process
outputs will be important in our protocols. The adversary should not be able to choose the
common core based on the generated random numbers after some of the correct processes
invoked EnableRetrieve.

We slightly generalize the interface of Gather by using it in conjunction with BRB, but
also with other similar primitives (in particular, AVSS and RSD) and their combinations.
When a process invokes Gather, it passes to it an arbitrary callable function GatherAccept
that takes a process id j and returns true if the message from this process is considered to
be delivered (not necessarily through BRB). We assume that Gather exports the following
interface:
Gather.Start(GatherAccept): allows a process to start participating in the Gather protocol;
Gather.DeliverSet(S): provides the output of the Gather protocol.

In order for the protocol to terminate, the GatherAccept function has to satisfy properties
similar to those of reliable broadcast.
Accept Validity: if a correct process i invoked Gather.Start, then for every correct process

j, GatherAccept(i) invoked by process j must eventually return true. Moreover, for all i,
once GatherAccept(i) returned to true to some correct process, it must never switch back
to false;

Accept Totality: if GatherAccept(i) invoked by one correct process returned true, then
eventually it must return true to all correct processes.

Thanks to the properties of AVSS and Random Secret Draw (in particular, to the
Notification Totality property), in our protocols, this assumption is trivially satisfied. For
Gather, we use the original protocol of [10] (to the best of our knowledge, it was first described
as a separate primitive in [39]).

3.5 Bundled Approximate Agreement
The last building block that we shall need is Approximate Agreement (AA) [16]. In a (one-
dimensional) AA instance, the processes propose inputs and produce outputs (real values) so
that the following properties are satisfied:
Validity: the outputs of correct processes must be in the range of inputs of correct processes.
Approximate ϵ̃-consistency: the values decided by non-faulty processes must be at most a

distance ϵ̃ apart from each other.5
Termination: every non-faulty process eventually decides.

In our algorithms, Approximate Agreement is always executed in bundles of n parallel
instances. For the sake of efficiency, one can treat it as a bundled problem with an input
vector of size n, corresponding to the different instances and then, for every message, send

4 In [39] and [2], Gather returns a set of pairs (id, value). However, for our purposes, working with sets of
ids is more convenient. The values will be delivered through normal BRB.Deliver event.

5 We use ϵ̃ to distinguish it from ϵ used in the definition of Approximate Common Coin.

DISC 2022

24:8 Distributed Randomness from Approximate Agreement

information about all instances at the same time, but treat them separately as before. We call
this abstraction Bundled Approximate Agreement (BAA). BAA should not be confused
with Multidimensional Approximate Agreement [31], which is a stronger abstraction than the
one we rely upon.

Assuming binary inputs, the processes access BAA via the following interface:
BAA.Run([x1, x2, . . . , xn]): Launches n instances of Approximate Agreement protocol,

where the input for the i-th instance is xi. For a given parameter ϵ̃, the protocol is
executed until ϵ̃-approximation is satisfied in every instance and then returns a vector of
outputs [y1, y2, . . . , yn].

For implementing BAA, we suggest using the Approximate Agreement protocol proposed
in [1] with resilience f < n

3 . Since in our protocols, the inputs are either 0 or 1, we do not need
the termination detection techniques described in [1] neither do we need the “init” phase of
the protocol. With the aforementioned BRB and some trivial changes6, this implementation
will give us the communication complexity of O(n3λ) and latency 4 · log2 (1/ϵ̃).

4 Approximate Common Coin

Algorithm 1 Approximate common coin.
1: Instance parameters: domain D, precision ϵ

2: Distributed objects:
3: ∀j ∈ [n] : AVSSj – instance of Asynchronous Verifiable Secret Sharing with leader j
4: Gather – instance of Gather
5: BAA – instance of Bundled Approximate Agreement with precision ϵ̃ = ϵ/f

6: function GatherAccept(j)
7: return true if received AVSSj .SharingComplete()

8: operation Toss() returns integer
9: x = RandomInt(D)

10: AVSSi.ShareSecret(x)
11: Gather.Start(GatherAccept)

12: wait for Gather.DeliverSet(S)

13: ∀j ∈ [n] : let wj =
{

1, j ∈ S,

0, otherwise

14: [w′
1, . . . , w′

n] = BAA.Run([w1, . . . , wn])
15: ∀j ∈ [n] : AVSSj .EnableRetrieve() // only after BAA completes

16: ∀j ∈ [n]: let xj =
{

AVSSj .Retrieve(), if w′
j ̸= 0

0, otherwise

17: // Compute and return the final random number
18: return

(⌈∑
j∈[n] xj · w′

j

⌉
mod D

)
The main idea of this protocol is to aggregate numbers locally generated by enough

different processes so that at least one of them is correct and the number it generated is truly
random and uniformly distributed. With a good aggregation function, the resulting value
will also be uniformly distributed. An example of such an aggregation function is addition
modulo the size of the domain. Indeed, it is easy to see that, if x is uniformly distributed

6 In the “report” messages, hashes of the values should be sent instead of the values themselves.

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:9

over [0..q−1] and y is any number chosen independently of x, then (x + y) mod q will also
be uniformly distributed over [0..q−1]. Another example of an aggregation operation that
satisfies a similar property is bit-wise xor (as long as the domain size is a power of 2).

However, without being able to solve consensus, we cannot just elect f + 1 or n − f

processes from whom we shall take these values. Thankfully, unlike xor, addition has one more
useful property: it is continuous. If we take two numbers, x and y, such that dq(x, y) ≤ α,
then for any number z, dq(z + x, z + y) ≤ α.7 Hence, a natural idea is to approximately elect
the set of processes to provide the random inputs.

More precisely, in order to produce an approximate common coin in the range [0..D−1],
each process locally generates and secret-shares a random number in this range. Then each
process gathers a set of ids of processes that have completed the sharing (line 12).

The next step is to create a binary vector with n positions, where each position j is set
to 1 if and only if j is present in the gathered set (line 13). This vector is then used as an
input for the BAA protocol (line 14), which outputs a vector W of weights such that for
each position j, the weights received by different processes are at most ϵ̃ apart.

The value of ϵ̃ = ϵ/f is chosen such that the final outputs of the coin are at most ϵ apart
from each other. For the details on how this particular value was computed, see [18].

Recall that BAA ensures that the output values lie within the range of of inputs of correct
processes. Moreover, by the properties of Gather and AVSS, if at least one correct process
has j in its gathered set, then j has correctly shared its value and it can be later retrieved
by the correct processes. Therefore if the j-th value is irretrievable, the j-th component
will always be assigned weight 0. On the other hand, due to the common core property of
Gather, at least n − f values will have weight 1, which guarantees that the result is uniformly
distributed in the desired range.

Finally, the processes reveal the secrets (lines 15 and 16) and compute the resulting
random number.

▶ Theorem 1. Algorithm 1 implements an approximate common coin.

The proof of Theorem 1 is presented in the full version of this paper [18].

Complexity analysis. The communication complexity of our approximate common coin can
be broken down into:

1. n instances of AVSS.ShareSecret in parallel ⇒ O(n3λ);
2. One instance of Gather ⇒ O(n3λ);
3. One instance of BAA with ϵ̃ = ϵ/f ⇒ O(n3λ(log f + log 1

ϵ));
4. n instances of AVSS.Retrieve in parallel ⇒ O(n3λ);

Hence, the total communication complexity is O(n3λ(log f + log 1
ϵ)) with Bundled Ap-

proximate Agreement being the bottleneck.
The time complexity of the protocol is O(log f + log 1

ϵ).

5 Monte Carlo Common Coin from Approximate Common Coin

In this section, we present a simple reduction from an approximate common coin to a Monte
Carlo common coin. The very short pseudocode is in Algorithm 2.

7 Recall that dq(x, y) is the distance between x and y in the ring Zq , i.e., dq(x, y) = min{|x−y|, q−|x−y|}.

DISC 2022

24:10 Distributed Randomness from Approximate Agreement

Algorithm 2 Monte Carlo Common Coin from Approximate Common Coin, code for process i.
19: Instance parameters: domain size D, success probability δ

20: let k = ⌈ 2
1−δ ⌉

21: Distributed objects:
22: AC – instance of approximate common coin with domain size kD and precision ϵ = 1

kD

23: operation Toss() returns integer

24: return
⌊AC.Toss()

k

⌋

The transformation requires first to generate an approximate common coin of domain
kD where k is an integer number ⌊ 2

1−δ ⌋ and ϵ = 1
kD . This implies that different processes

shall get values at most
⌈ 1

kD · kD
⌉

= 1 apart.
The domain of the approximate coin is k times larger than the domain of the targeted

Monte Carlo common coin. By dividing the result by k, we get the desired range of values
and success probability δ, where k values of the approximate common coin are mapped to
one value of Monte Carlo common coin.

▶ Theorem 2. Algorithm 2 implements a Monte Carlo common coin with domain D and
success probability δ.

Proof. Termination and Unpredictability follow from the properties of approximate common
coin, while Randomness follows from One Process Randomness since exactly k values from
the larger domain (kD) are mapped to each value in the smaller domain (D). Let x′ be the
resulting toss of the first correct process that completes BAA in its approximate common
coin toss. Then, as established, every other process will be at a distance at most 1 from it.
Hence, if the remainder of the division of x′ by k is neither 0 nor k − 1, every correct process
decides the same value:

Pr[failure] ≤ 2
k = 2

⌈ 2
1−δ ⌉

≤ 1 − δ. ◀

Complexity analysis. This protocol runs a single instance of an Approximate Common
Coin, with precision ϵ = 1

D⌊ 2
1−δ ⌋ . If used with our algorithm from Section 4, it will take

O(log f + log 1
ϵ) = O(log f + log D + log 1

1−δ) rounds of approximate agreement.
Hence, the overall time complexity of the protocol is O(log f + log D + log 1

1−δ) and the
communication complexity is O(n3λ(log f + log D + log 1

1−δ)).

6 Direct Implementation of Monte Carlo Common Coin

Overview. The main idea of this protocol is to assign to each process a random value and
a random ticket. Then, using approximate agreement, the protocol is able to select the
process with maximum ticket with adjustable probability of success and adopt the value
corresponding to this ticket as the coin value.

Tickets and values. The protocol first assigns random values and random tickets to each
participant, maintaining both secret until later (lines 37 and 38). Processes then gather a list
of participants who have both drawn a ticket and a value, guaranteeing that all processes
will hold sets that all intersect in at least n − f participants (line 39).

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:11

Algorithm 3 Monte Carlo Common Coin, code for process i.
25: Instance parameters: domain size D, success probability δ, security parameter λ

26: Functions:
27: Calibrate(w) – returns the weight to apply to a ticket given that BAA returned w

28: Distributed objects:
29: TicketDraw – instance of Random Secret Draw with domain size 2λ

30: ValueDraw – instance of Random Secret Draw with domain size D
31: Gather – instance of Gather
32: BAA – instance of Bundled Approximate Agreement with precision ϵ̃,
33: where ϵ̃ depends on the calibration function (see “Weight calibration” below)

34: function GatherAccept(j) returns boolean
35: return true iff received both TicketDraw.ValueAssigned(j) and ValueDraw.ValueAssigned(j)

36: operation Toss() returns integer
37: TicketDraw.Start()
38: ValueDraw.Start()
39: Gather.Start(GatherAccept)

40: wait for event Gather.DeliverSet(S)

41: ∀j ∈ [n] : let wj =
{

1, j ∈ S,

0, otherwise

42: [w′
1, . . . , w′

n] = BAA.Run([w1, . . . , wN])
43: candidates = {j ∈ [n] | w′

j > 0}

44: TicketDraw.EnableRetrieve()
45: ValueDraw.EnableRetrieve()
46: tickets = {TicketDraw.RetrieveValue(j) | j ∈ candidates}
47: values = {ValueDraw.RetrieveValue(j) | j ∈ candidates}

48: winner = arg max
j ∈ candidates

Calibrate(w′
j) · tickets[j]

49: return values[winner]

Approximate Agreement. In a similar manner as in the previous protocol, each process
runs Bundled Approximate Agreement inputting 1 in the dimensions corresponding to the
processes it has received from Gather, and 0 in the other dimensions (line 42). Similar to the
previous protocol, if a process has not made a valid draw it will always be assigned weight
zero, whereas if the weight is different than zero then it is possible to recover the secretly
drawn number.

Opening the secrets. Prior to the first decision of a correct process in BAA, no secrets
are leaked, as the underlying Random Secret Draw abstraction requires at least one correct
process to invoke the EnableRetrieve operation before any information about the generated
numbers is revealed. After this first decision of a correct process, the secrets can be opened
(line 45), but at this point the adversary can only induce other processes deciding values
which are at most ϵ̃ apart from the first decision, which does not undermine the safety of the
protocol.

Decision. With the tickets and values now openly available, the processes calibrate the
tickets by multiplying the plain ticket by a calibration function applied to the weights. The
simplest calibration function is an identify function, the calibrated ticket of a process i is
simply the product of the output i-th output of BAA and the original ticket ti. In their
final steps, processes decide the value corresponding to the highest calibrated ticket (lines 48
and 49).

DISC 2022

24:12 Distributed Randomness from Approximate Agreement

0 1
w

1

C
al

ib
ra

te
(w

)

ϵ

v

Figure 1 The weight calibration function.

Weight calibration. The protocol without weight calibration (i.e., with Calibrate(w) = w)
requires 3 + ⌈log2(n) + log2

(
1

1−δ

)
⌉ rounds of approximate agreement in order to achieve the

success probability δ. A similar performance is achieved by the protocol in Section 5.
In order to get rid of the log2(n) part in the time complexity, we use a calibration function

that is linear on (0, 1] with a discontinuity point at 0, as illustrated in Figure 1. If w1 > 0 and
w2 > 0 and |w1 − w2| = ϵ̃, then, after calibration, |Calibrate(w1) − Calibrate(w2)| ≈ ϵ̃ · (1 − v).
This is similar in effect to running extra log2

1
1−v rounds of approximate agreement, but at

no extra latency cost. We then balance the value of the parameter v in such a way that,
intuitively, the discontinuity at 0 is very unlikely to cause disagreement. An example of
a good value for v that achieves this goal is 1 − ln(2/(1−δ))

2n/3 . In order to achieve success

probability δ, 5 +
⌈
log2

(
1

1−δ

)
+ log2

(
log2

(
1

1−δ

))⌉
rounds of approximate agreement are

required.

▶ Theorem 3. Algorithm 3 implements a Monte Carlo common coin.

The proof of Theorem 3 is presented in the full version of this paper [18].

Complexity analysis. The communication complexity of our Monte Carlo common coin
can be broken down into:

1. 2 instances of Random Secret Draw ⇒ O(n3λ);
2. 1 instance of Gather ⇒ O(n3λ)
3. One instance of BAA with ϵ̃ = O(1/(1 − δ)) ⇒ O(n3λ log 1

1−δ);
4. 2n secret retrievals in parallel ⇒ O(n3λ);

Hence, the total communication complexity is O(n3λ log 1
1−δ) with Bundled Approximate

Agreement being the bottleneck. The time complexity of the protocol is O(log 1
1−δ).

7 Applications

Asynchronous Binary Byzantine Agreement. Monte Carlo common coins can be plugged
into any Byzantine Agreement protocol that makes a call to a probabilistic common coin,
such as [6, 10, 13, 33]. Given any probabilistic common coin with constant success probability,
these algorithms terminate in a constant number of rounds, exchanging at most O(n3λ) bits.

Using our Monte Carlo common coin obtained via the transformation from approximate
common coin (Section 5), we get a protocol that is secure against an adaptive adversary,
assumes no trusted setup or PKI, and exhibits communication complexity O(n3λ log n)
at the expense of extra O(log n) factor in time complexity (the complexity of coin flips

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:13

dominate the rest of the protocol). As far as we know, the best existing setup-free solutions
that are resilient against adaptive adversary and tolerate up to f < n/3 failures exhibit
communication complexity of O(n4λ) [28, 2].

Intersecting Random Subsets. An example of an interesting new application that can be
solved with Approximate Common Coins but not probabilistic common coins, with direct
consequences into the choice of committees among processes, is given in Appendix B.

8 Related Work

Ben-Or [4] proposed the first randomized consensus algorithm based on the “independent
choice” common coin. In this algorithm, every participant tosses a local random coin and
with probability 2−n, the values picked by n participants are identical. Bracha [6] extended
this algorithm to the Byzantine fault model with f < n/3 faulty participants.

Rabin [37] proposed an implementation of a perfect common coin based on Shamir’s
secret sharing [38], assuming trusted setup (a trusted dealer distributes a priori a large
number of secrets). Today, most protocols that allow trusted setup use the solution proposed
by Cachin et al. [9] who have described a practical perfect common coin based on threshold
pseudorandom functions (tPRF), assuming that a trusted dealer distributes a short tPRF
key. These protocols use the pre-distributed randomness in a clever way to obtain multiple
numbers that are computationally indistinguishable from random (much like a PRNG [5]).
In contrast, our algorithms do not assume trusted setup.

In the setup-free context, Canetti and Rabin [10] proposed a weak common coin algorithm
based on asynchronous verifiable secret sharing (AVSS), which resulted in an efficient
randomized binary consensus. In designing our protocols, we make use of multiple ideas
from this work, taking into account recent improvements, such as the use of Aggregatable
Publicly Verifiable Secret Sharing [24], suggested in a similar context by Abraham et al. [2].

Using standard PKI cryptography, Cohen et al. [12] built two common coins relying
on VRFs. The first one with resilience f < (1/3 − ϵ) achieves success rate δ = 18ϵ2+24ϵ−1

6(1+6ϵ) .
The second coin involves sampling committees among the processes and also guarantees a
constant success rate that depends on the system’s resilience.

Kogias et al. [28] proposed a relaxed abstraction called eventually perfect common coin.
They first build a weak distributed key generator (wDKG) which is a protocol that never
terminates: each party outputs a sequence of candidate keys to be used for encryption and
decryption with the property that they will eventually agree on a set of keys. This mechanism
can replace the trusted setup in [9]. Moreover, it can be shown that the participants may
disagree on the set of keys at most f + 1 times. The resulting coin eventually terminates
with a perfect result, hence its name. In contrast, the challenge of our work was to devise
(one-shot) unbiased common coins with provable termination.

Gao et al. [20] combined VRFs and AVSS to produce the first random coin which
has O(n3λ) communication complexity. With the advent of new broadcast and APVSS
implementations, the classic protocol of [10] gains the same complexity. They created a weak
form of Gather called core-set selection in which f + 1 correct participants share at least
n − f VRFs coming from different processes. They then use AVSS to build the seeds for
VRFs and whenever the highest VRF is in the common core, the nodes successfully agree in
the coin outcome. Their protocol assumes the static adversary, but it can be made adaptive
with a relatively weak form of trusted setup: a single common random number must be
published after the public keys of the participants are fixed. In contrast, our protocols do
not assume any form of trusted setup. Assuming static adversary, our protocols can achieve
the same communication cost while additionally enabling parameterized success rate.

DISC 2022

24:14 Distributed Randomness from Approximate Agreement

Our Monte Carlo coin from Section 6 was inspired by the Proposal Election protocol
recently introduced by Abraham et al. [2]. Technically, it is not a common coin per se but it
uses elements of it. In this protocol, every party inputs some externally valid value, and with
a constant probability, all parties output the same value that was proposed by a non-faulty
party chosen at random. Intuitively, the main contribution of the protocol in Section 6 is the
use of approximate agreement to amplify the success probability.

In the full information model, without using cryptography, King and Saia [27] observed
that the strength of the Byzantine adversary is in its anonymity, but it cannot bias the
coin indefinitely without being detected. Even though their Byzantine agreement algorithm
with polynomial expected time does allow the adversary to bias the coin, but amended this
with statistical tests aiming at detecting this kind of deviation and evicting misbehaving
participants. The resilience level of this algorithm is, however, orders of magnitude lower
than n (f < n/400 in the best case). Huang et al. [26] recently extended this work to achieve
the resilience of f < n/4. In contrast, our algorithms use cryptographic tools to produce
unbiased (approximate) outputs and maintain optimal resilience f < n/3.

Monte Carlo protocols are randomized algorithms that have a fixed number of rounds
and yield results that are correct with a given probability, while Las Vegas protocols always
give the correct results but do not have a fixed number of rounds. Notice that Las Vegas
algorithms must have a fixed probability of terminating every round and thus can be converted
into Monte Carlo by stopping after a fixed number of rounds and deciding a random value if
termination is not attained.

Such a transformation could be applied to [28], but since their latency is a function of
O(f), the resulting Monte Carlo common coin would also have a latency which is a function
of f , while our solution is independent of this parameter. Another option would be to create
a set of keys using [2] which could be run a fixed number of rounds and then to use [9]. Since
their expected number of rounds is not a function of f , this transformation would have the
same asymptotic complexity as ours, but it would include many unnecessary message delays
from the consensus protocol, from the verifiable gather and other parts of their ADKG that
are not present in a direct implementation such as ours.

9 Conclusion

In this paper, we suggest 2 new relations of the common coin primitive implementable in
a fully asynchronous environment. We provide efficient implementations based on a range
of novel techniques. Our protocols are the first use of approximate agreement to generate
random numbers, which is used to keep decided values close in the approximate common
coin protocol and to increase the probability of agreement in the direct implementation of
the Monte Carlo common coin. Moreover, we also introduced elements of coding theory that
were not previously applied to the distributed computing realm in the solution of what we
called intersecting random subsets.

Further studies are necessary to explore the full potential of using these new abstractions
in the design of distributed protocols and to understand the theoretical limits of their
performance.

Tight performance analysis for the Monte Carlo common coin. In the full version of
the paper, we proved that in order to achieve success probability δ, our probably common
coin protocol requires 3 + ⌈log2(n) + log2

(
1

1−δ

)
⌉ or 5 +

⌈
log2

(
1

1−δ

)
+ log2

(
log2

(
1

1−δ

))⌉
rounds of approximate agreement, depending on whether weight calibration is used. While it
seems to correctly reflect the asymptotic behaviour of the actual distribution, these bounds
seem to be rather pessimistic when only a few rounds of approximate agreement are run.

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:15

For example, according to these bounds, with weight calibration, we will need 8 rounds in
order to achieve δ = 2

3 . However, in practice, δ = 2
3 is achieved with 0 rounds of approximate

agreement as with probability at least 2/3 a process in the common core will have the largest
ticket. As we estimated empirically through simulations, the actual δ that we obtain after
running 8 rounds of approximate agreement is around 0.993 instead of 2/3.

Non-linear calibration function for the Monte Carlo common coin. Weight calibration
is necessary to achieve the latency of O(log 1

1−δ) rounds in our Monte Carlo common coin
protocol. We chose a concrete linear function because it was relatively simple to analyze
(as we could do a reduction to the case without the calibration). However, this function
is unlikely to be optimal. The extra log2(log2

1
1−δ) part in the resulting estimate on the

number of rounds of approximate agreement is likely to be due to sub-optimal choice of the
weight calibration function.

Approximate common coin without extra log2(f) rounds. Using the magic of weight
calibration, for Monte Carlo common coin, we managed to achieve O(log(1/ϵ)) time complex-
ity, which is likely to be optimal. However, our approximate common coin protocol requires
log2 f + log2(1/ϵ) rounds of approximate agreement and, hence, its time complexity depends
on two variables: f and ϵ. In some applications, ϵ may be constant and log2(f) can become
the bottleneck.

Creating a protocol without this extra delay or proving a Ω(log(f)) lower bound would be
an interesting contribution to the understanding of the approximate common coin abstraction.
It would also mean that the transformation from approximate common to Monte Carlo
common would result in more efficient coins of the latter type.

References
1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate

agreement. In 8th International Conference on Principles of Distributed Systems (OPODIS
2004), OPODIS’04, pages 229–239, Berlin, Heidelberg, 2004. Springer-Verlag. doi:10.1007/
11516798_17.

2 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing, pages 363–373, 2021.

3 Marcos K Aguilera and Sam Toueg. The correctness proof of ben-or’s randomized consensus
algorithm. Distributed Computing, 25(5):371–381, 2012.

4 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In PODC ’83: Proceedings of the annual ACM symposium on
Principles of distributed computing, pages 27–30, 1983.

5 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM journal on Computing, 13(4):850–864, 1984.

6 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

7 Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and randomness
beacons in ethereum. IEEE Security and Privacy on the blockchain (IEEE S&B), 2017.

8 Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifiable
secret sharing and proactive cryptosystems. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, pages 88–97, 2002.

9 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

DISC 2022

https://doi.org/10.1007/11516798_17
https://doi.org/10.1007/11516798_17

24:16 Distributed Randomness from Approximate Agreement

10 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
42–51, 1993.

11 Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public entities.
In International Conference on Applied Cryptography and Network Security, pages 537–556.
Springer, 2017.

12 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a COINcidence: Sub-Quadratic
Asynchronous Byzantine Agreement WHP. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing (DISC 2020), volume 179 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2020.25.

13 Tyler Crain. Two more algorithms for randomized signature-free asynchronous binary byzantine
consensus with t < n/3 and o(n2) messages and o(1) round expected termination, 2020.
doi:10.48550/ARXIV.2002.08765.

14 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2705–2721, 2021.

15 D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate
agreement in the presence of faults. Journal of the ACM, 33(3):499–516, July 1986.

16 A.D. Fekete. Asynchronous approximate agreement. Information and Computation, 115(1):95–
124, 1994. doi:10.1006/inco.1994.1094.

17 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

18 Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh. Distributed randomness from approxi-
mate agreement. arXiv preprint, 2022. arXiv:2205.11878.

19 Luciano Freitas de Souza, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana
Stan, Nicolas Quero, and Petr Kuznetsov. Randsolomon: Optimally resilient random number
generator with deterministic termination. In 25th International Conference on Principles of
Distributed Systems (OPODIS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

20 Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Efficient
asynchronous byzantine agreement without private setups. arXiv preprint, 2021. arXiv:
2106.07831.

21 Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 295–310. Springer, 1999.

22 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 51–68, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3132747.3132757.

23 Frank Gray. Pulse code communication. United States Patent Number 2632058, 1953.
24 Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin

Tomescu. Aggregatable distributed key generation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 147–176. Springer, 2021.

25 Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview
series, consensus system. CoRR, abs/1805.04548, 2018. arXiv:1805.04548.

26 Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with
near-optimal resilience. arXiv preprint, 2022. arXiv:2202.13452.

27 Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. J. ACM,
63(2), March 2016. doi:10.1145/2837019.

28 Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous Dis-
tributed Key Generation for Computationally-Secure Randomness, Consensus, and Threshold
Signatures, pages 1751–1767. Association for Computing Machinery, New York, NY, USA,
2020. doi:10.1145/3372297.3423364.

https://doi.org/10.4230/LIPIcs.DISC.2020.25
https://doi.org/10.48550/ARXIV.2002.08765
https://doi.org/10.1006/inco.1994.1094
http://arxiv.org/abs/2205.11878
http://arxiv.org/abs/2106.07831
http://arxiv.org/abs/2106.07831
https://doi.org/10.1145/3132747.3132757
http://arxiv.org/abs/1805.04548
http://arxiv.org/abs/2202.13452
https://doi.org/10.1145/2837019
https://doi.org/10.1145/3372297.3423364

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:17

29 Mikhail Krasnoselskii, Grigorii Melnikov, and Yury Yanovich. No-dealer: Byzantine fault-
tolerant random number generator. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 568–573. IEEE, 2020.

30 Hugo Krawczyk. Secret sharing made short. In Annual international cryptology conference,
pages 136–146. Springer, 1993.

31 Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
byzantine asynchronous systems. In Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pages 391–400, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2488608.2488657.

32 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th annual
symposium on foundations of computer science (cat. No. 99CB37039), pages 120–130. IEEE,
1999.

33 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary byzantine consensus with t < n/3, o(n2) messages, and o(1) expected time. J. ACM,
62(4), September 2015. doi:10.1145/2785953.

34 Achour Mostefaoui, Matthieu Perrin, and Michel Raynal. A new insight into local coin-based
randomized consensus. In 2019 IEEE 24th Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 207–20709. IEEE, 2019.

35 Achour Mostefaoui and Michel Raynal. Leader-based consensus. Parallel Processing Letters,
11(01):95–107, 2001.

36 Andre Neubauer, Jurgen Freudenberger, and Volker Kuhn. Coding theory: algorithms,
architectures and applications. John Wiley & Sons, 2007.

37 Michael Rabin. Randomized Byzantine generals. In Proceedings of the 24th Symposium on
Foundations of Computer Science, pages 403–409. IEEE Computer Society Press, November
1983.

38 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
39 Gilad Stern and Ittai Abraham. Living with asynchrony: the gather protocol. URL:

https://decentralizedthoughts.github.io/2021-03-26-living-with-asynchrony-the-
gather-protocol, 2021. Accessed: 2022-02-12.

40 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
2017 IEEE Symposium on Security and Privacy (SP), pages 444–460. Ieee, 2017.

A Impossibility of an Asynchronous Perfect Common Coin

A perfect common coin protocol makes sure that the correct processes agree on a random
number taken uniformly over a specific domain.

By reusing the classical arguments of the impossibility of asynchronous consensus [17], we
are going to show that no asynchronous perfect common coin protocol may exist, if a single
process is allowed to fail by crashing. Recall that we consider protocols in which processes
may non-deterministically choose its actions based on local coin tosses.

Formally, a protocol provides each process with an automaton that, given the process’
state and an input (a received message and a result of a local random coin toss), produces an
output (a finite set of messages to send and/or the application output). We assume that the
automaton itself is deterministic, i.e., all non-determinism is delegated to the outcomes of
local random coins. A step of process p is therefore a tuple (p, m, r), where m is the message
p receives (can be ⊥ if no message is received in this step) and r is the outcome of its local
random coin.

A configuration of the protocol assigns a local state to each process’ automaton and a set
of messages in transit (we call it the message buffer). The initial configuration Cinit assigns
the initial local state to each process and assumes that there are no messages in transit. A

DISC 2022

https://doi.org/10.1145/2488608.2488657
https://doi.org/10.1145/2785953
https://decentralizedthoughts.github.io/2021-03-26-living-with-asynchrony-the-gather-protocol
https://decentralizedthoughts.github.io/2021-03-26-living-with-asynchrony-the-gather-protocol

24:18 Distributed Randomness from Approximate Agreement

step s = (p, m, r) is applicable to a configuration C if m is ⊥ or m is in the message buffer of
C. The result of s applied to C is a new configuration C.s, where, based on the automaton
of p, the local state of p is modified and finitely many messages are added to the message
buffer.

A sequence of steps E = s1, s2, . . . is applicable to a configuration C0 if each si, i = 1, 2, . . .

is applicable to Ci−1, where, for all i ≥ 1, Ci = Ci−1.si. We use C0.E to denote the resulting
configuration; we also say that C = C0.E is an extension of C0. By convention, C is a trivial
extension of C.

An execution of the protocol is a sequence of steps E applicable to Cinit. A finite execution
E results in a reachable configuration CE . Somewhat redundantly, we call a sequence of
steps applicable to a reachable configuration CE an extension of E. It immediately follows
that steps of disjoint sets of processes commute:

▶ Lemma 4. Let C be a reachable configuration, and E and E′ be sequences of steps of
disjoint sets of processes. If both E and E′ are applicable to C, then C.E.E′ and C.E′.E are
identical reachable configurations.

In an infinite execution, a process is correct if it executes infinitely many steps. We
assume that every message m that is sent to a correct process p is eventually received, i.e.,
the execution will eventually contain a step (p, m, −). As we assume that at most one process
is allowed to fail by crashing, we only consider infinite executions in which at least n − 1 out
of n processes are correct.

Without loss of generality, we assume that the implemented coin is binary: the correct
processes either all output 0 or all output 1.

A configuration C is called bivalent if it has an extension C.E0 in which some process
outputs 0 and an extension C.E1 in which some process outputs 1. Notice that any configu-
ration preceding a bivalent configuration must be bivalent. Also, no process can produce a
random-coin output in a bivalent configuration: otherwise, we get an execution in which two
processes disagree on the output.

A protocol configuration that is not bivalent is called univalent: 0-valent if it has no
extension in which 1 is decided or 1-valent otherwise.

▶ Lemma 5. The initial configuration Cinit is bivalent.

Proof. The algorithm must output each of the two values with a positive probability. Thus,
for each v ∈ {0, 1}, there exists an assignment of local coin outcomes and a message schedule
that result in an execution with outcome v. ◀

▶ Lemma 6. Let C be a reachable configuration, and E and E′ be sequences of steps of a
process p applicable to C. If C.E and C.E′ are univalent, then they have the same valencies.

Proof. The difference between C.E and C.E′ consists in the local state of p and the message
buffer. Since the algorithm is required to tolerate a single crash fault, there must exist a
sequence of steps E′′ that does not include any steps of p such that some process q outputs
a value v ∈ {0, 1} in C.E′′. Moreover, as E′′ contains no steps of p, E′′ is also applicable to
both C.E and C.E′. But as the two configurations have opposite valences, and q decides the
same value in C.E.E′′ and C.E′.E′′. Thus, if C.E and C.E′ are univalent, then they must
have the same valencies. ◀

Following the steps of [17], we show that the protocol must have a critical configuration D

for which:

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:19

there exist steps sp and sq of processes p and q such that both sp and sq.sp are applicable
to D

D.sp is 0-valent;
D.sq.sp is 1-valent.

▶ Lemma 7. There must exist a critical configuration.

Proof. Starting with the initial (bivalent by Lemma 5) configuration C := Cinit, we pick
process p := p1 and check if there exists C ′, an extension of C, and sp, a step of p applicable
to C ′ in which the oldest message to p in the message buffer is consumed (if any), such that
C ′.sp is bivalent. If this is the case, we set C to C ′.sp, pick up the next process p := p2.
Again, if there exists C ′, an extension of C, and sp, a step of p in which the oldest message
to p in the message buffer is consumed, such that C ′.sp is bivalent, then we set C to C ′.sp.
We repeat the procedure, each time picking the next process (in the round-robin order, i.e.,
after pn we go to p1, etc.), as long as it is possible.

The first observation is that the procedure cannot be repeated indefinitely. Indeed,
otherwise, we obtain an infinite sequence of steps in which every process takes infinitely many
steps and receives every message sent to it (and which is, thus, an execution of the protocol)
that goes through bivalent configurations only. Hence, this execution cannot produce an
output – a contradiction with the Termination property.

Thus, there must exist a bivalent configuration C and a process p, such that for each C ′,
an extension of C and each sp = (p, m, −), a step of p applicable to C ′, C ′.sp is univalent,
where m is the oldest message addressed to p in C.

Let sp = (p, m, r) be a step of p applicable to C. Without loss of generality, let C.sp be
0-valent.

As C is bivalent, it must have an extension E = e1, . . . , ek such that C.E is 1-valent.
Let ℓ be the largest index in {1, . . . , k} such that either sp is not applicable to Cℓ =

C.e1, . . . , eℓ or Cℓ.sp is 1-valent. Such an index exists, as C.sp is 0-valent C.E is 1-valent and
for any C ′, an extension of C, if sp is applicable to C ′, then C ′.sp is bivalent.

Suppose first that sp is not applicable to Cℓ. As sp is applicable to every configuration
Cj = C.e1, . . . , ej , j = 1, . . . , ℓ − 1, eℓ must be be of the form (p, m, r′), i.e., eℓ must consume
the message received in sp = (p, m, r). By our assumption Cℓ = Cℓ−1.(p, m, r′) is univalent.
As Cℓ has a 1-valent descendant C ′, it must be 1-valent too.

But, by Lemma 6, Cℓ−1.sp = Cℓ−1.(p, m, r) and Cℓ = Cℓ−1.(p, m, r′), must have the same
valencies – a contradiction.

Thus, Cℓ.sp is 1-valent. Hence, we have a bivalent configuration D = Cℓ−1 and steps sp

and sq = eℓ such that both sp and sq.sp are applicable to D. Moreover, D.sp is 0-valent and
D.sq.sp is 1-valent. Thus, we get a critical configuration. ◀

Finally, we establish a contradiction by showing that:

▶ Lemma 8. No critical configuration may exist.

Proof. By contradiction, let a critical configuration D exist, and let sp and sq be steps of p

and q applicable to D such that D.sp is 0-valent and D.sq.sp be 1-valent.
If sq is a step of p, then Lemma 6 establishes a contradiction.
Otherwise, consider any infinite execution going through to D.sp in which all processes

but q take infinitely many steps in this execution after D.sp. By the Termination property,
there must exist a finite sequence of steps E such that some process outputs a value v ∈ {0, 1}
in D.sp.E. As D.sp is 0-valent, v = 0. Moreover, as E contains no steps of q and p has the
same state in D.sp and D.sq.sp, E is also applicable to D.sq.sp. Thus, 0 is also decided in
D.sq.sp.E – a contradiction with the assumption that D.sq.sp is 1-valent. ◀

DISC 2022

24:20 Distributed Randomness from Approximate Agreement

Lemmata 7 and 8 imply:

▶ Theorem 9. There does not exist a 1-resilient asynchronous random coin protocol.

B Intersecting Random Subsets

A direct application of an approximate common coin is a problem that we call intersecting
random subsets. In this problem the following information is globally known: a set S, where
|S| = s; and two parameters m and k, where 1 ≤ k ≤ m ≤ s. Each correct process i chooses
Si, a random subset of S with cardinality m, such that |

⋂
j – correct Sj | ≥ m − k. In other

words, there are at least m − k elements chosen at random that appear in all subsets.
The following variation of Gray Codes [23, 36] will be instrumental:

▶ Definition 10. Code Cs,m is a list of
(

s
m

)
−1 binary strings (called code words) satisfying

the following conditions:
for all i, Cs,m[i] is a string of m ones and s − m zeros;
every string of m ones and s − m zeros is present in Cs,m exactly once;
∀i ∈

{
1, . . . ,

(
s
m

)
−1

}
: Cs,m[i] and Cs,m[i−1] differ in two bits;

Cs,m[
(

s
m

)
−1] and Cs,m[0] differ in two bits.

The following recursive equation satisfies all requirements.

∀s ≥ 0 and m ∈ [0..s] : Cs,m =

[“ ”] if 0 = m = s

[“000 . . . 000”] if 0 = m < s

[“111 . . . 111”] if 0 < m = s

0∥Cs−1,m, reverse(1∥Cs,m−1) otherwise

In order to avoid computing all
(

s
m

)
code words, when s and m are large, we can use the

following recursive formula to efficiently (with O(poly(s)) operations) find a code word by
its index:

∀s ≥ 0 and m ∈ [0..s], i ∈ [0..

(
s

m

)
−1] :

Cs,m[i] =

“ ” if 0 = m = s

“000 . . . 000” if 0 = m < s

“111 . . . 111” if 0 < m = s

0∥Cs−1,m[i] if 0 < m < s, i <
(

s−1
m

)
1∥Cs−1,m−1[

(
s−1
m−1

)
−

(
i −

(
s−1
m

))
− 1] if 0 < m < s, i ≥

(
s−1
m

)
For example, here is C5,2: [00011, 00110, 00101, 01100, 01010, 01001, 11000, 10100, 10010,

10001].
Intuitively, this code is composed of binary strings of length s and it can be read in

the following manner: if the i-th position of the string is 1, then i-th element is selected,
otherwise it is considered to be left outside. Moreover, this code has the property that
consecutive numbers differ only by swapping exactly one position set to 1 with a position
marked with a 0. Therefore all consecutive subsets have the same fixed size and include m− 1
common elements and differ by only one. Hence, by generating an approximate common
random coin over the domain

{
0..

(
s
m

)
−1

}
with parameter ϵ ≤ k ·

(
s
m

)−1, processes can select
subsets of size m differing by at most k elements.

L. Freitas, P. Kuznetsov, and A. Tonkikh 24:21

This could be interesting for selecting a committee among n users in scenarios subject
to a mobile Byzantine adversary, i.e. on systems where the set of processes who display
malicious behaviour changes, provided the time to corrupt a majority of processes in any
given committee is higher than an asynchronous round. Note that this solution provides an
interesting alternative to committee elections in protocols such as Algorand [22]. It not only
is completely asynchronous, but it also guarantees a fixed committee size and provides a way
to control the intersection of quorums obtained by different users. Recall that in the case of
Algorand, with non-zero probability, it might happen that quorums do not intersect at all.

DISC 2022

Fragmented ARES:
Dynamic Storage for Large Objects
Chryssis Georgiou #

University of Cyprus, Nicosia, Cyprus

Nicolas Nicolaou #

Algolysis Ltd, Limassol, Cyprus

Andria Trigeorgi #

University of Cyprus, Nicosia, Cyprus

Abstract
Data availability is one of the most important features in distributed storage systems, made possible
by data replication. Nowadays data are generated rapidly and developing efficient, scalable and
reliable storage systems has become one of the major challenges for high performance computing.
In this work, we develop and prove correct a dynamic, robust and strongly consistent distributed
shared memory suitable for handling large objects (such as files) and utilizing erasure coding. We
do so by integrating an Adaptive, Reconfigurable, Atomic memory framework, called Ares, with
the CoBFS framework, which relies on a block fragmentation technique to handle large objects.
With the addition of Ares, we also enable the use of an erasure-coded algorithm to further split the
data and to potentially improve storage efficiency at the replica servers and operation latency. Our
development is complemented with an in-depth experimental evaluation on the Emulab and AWS
EC2 testbeds, illustrating the benefits of our approach, as well as interesting tradeoffs.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Distributed storage, Large objects, Strong consistency, High access concur-
rency, Erasure code, Reconfiguration

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.25

Related Version Full Version: https://arxiv.org/abs/2201.13292

Supplementary Material Dataset: https://github.com/atrigeorgi/fragmentedARES-data.git [3]

1 Introduction

Motivation and prior work. Distributed Storage Systems (DSS) have gained momentum
in recent years, following the demand for available, accessible, and survivable data storage
[32, 34]. To preserve those properties in a harsh, asynchronous, fail prone environment (as a
distributed system), data are replicated in multiple, often geographically separated devices,
raising the challenge on how to preserve consistency between the replica copies.

For more than two decades, a series of works [11, 26, 19, 15, 18, 23] suggested solutions
for building distributed shared memory emulations, allowing data to be shared concurrently
offering basic memory elements, i.e. registers, with strict consistency guarantees. Linerazibil-
ity (atomicity) [24] is the most challenging, yet intuitive consistency guarantee that such
solutions provide. The problem of keeping copies consistent becomes even more challenging
when failed replica hosts (or servers) need to be replaced or new servers need to be added
in the system. Since the data of a DSS should be accessible immediately, it is imperative
that the service interruption during a failure or a repair should be as short as possible. The
need to be able to modify the set of servers while ensuring service liveness yielded dynamic
solutions and reconfiguration services. Examples of reconfigurable storage algorithms are
RAMBO [22], DynaStore [7], SM-Store [25], SpSnStore [17] and Ares [28].

© Chryssis Georgiou, Nicolas Nicolaou, and Andria Trigeorgi;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chryssis@ucy.ac.cy
https://orcid.org/0000-0003-4360-0260
mailto:nicolas@algolysis.com
https://orcid.org/0000-0001-7540-784X
mailto:atrige01@ucy.ac.cy
https://orcid.org/0000-0002-3369-6767
https://doi.org/10.4230/LIPIcs.DISC.2022.25
https://arxiv.org/abs/2201.13292
https://github.com/atrigeorgi/fragmentedARES-data.git
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Fragmented ARES: Dynamic Storage for Large Objects

Currently, such reconfigurable emulations are limited to small-size, versionless, primitive
objects (like registers), hindering the practicality of the solutions when dealing with larger,
more common DSS objects (like files). Coverability [27] extends linearizability with the
additional guarantee that object writes succeed when associating the written value with the
“current” version of the object. In a different case, a write operation becomes a read operation
and returns the latest version and the associated value of the object. This is essential, for
example, for files. When updating the content of a file, one expects that the update is on the
previous version of the file; linearizable registers do not impose such restriction, i.e., a write
operation might change the value of the object arbitrarily, independently of the previously
written value. A recent work by Anta et al. [8], introduced a modular solution, called CoBFS,
which combines a suitable data fragmentation strategy, implemented as a Fragmentation
module (FM), with a distributed shared memory module (DSMM), to efficiently handle
and boost concurrency of large objects, while maintaining strong consistency guarantees
(coverability and linearizability), and minimizing operation latencies. The fragmentation
strategy enables two (or more) concurrent write operations on different fragments of the
object to both take effect, without violating the consistency of the object as a whole. These
solutions, as well as the one proposed in [16], were designed for the static environment
(fixed set of servers). In this work we study whether it is plausible to bring coverability and
fragmentation to dynamic environments, and how challenging such adaptation would be.

Contributions. This work is the first to consider dynamic (reconfigurable) Distributed
Shared Memory (DSM) tailored for versioned (coverable) and large (fragmentable) objects.
At the same time, we aim to introduce solutions that maximize the concurrency of operations
on the shared object while trading consistency on the whole object. In particular, we propose
a dynamic DSM that: (i) supports versioned objects, (ii) is suitable for large objects (such as
files), and (iii) is storage-efficient. To achieve this, we integrate the dynamic DSM algorithm
Ares [28] with the DSMM module in CoBFS. Ares is the first algorithm that enables
erasure coded based dynamic DSM yielding benefits on the storage efficiency at the replica
hosts. To support versioning we extend Ares to implement coverable objects, while high
access concurrency is preserved by introducing support for fragmented objects. Ultimately,
we aim to make a leap towards dynamic DSS that will be attractive for practical applications
(like highly concurrent and strongly consistent file sharing).
In summary, our contributions are the following:

We propose and prove the correctness of the coverable version of Ares, CoAres, the
first Fault-tolerant, Reconfigurable, Erasure coded, Atomic Memory, to support versioned
objects (Section 4).
We adopt the idea of fragmentation as presented in CoBFS [8], to obtain CoAresF,
which enables CoAres to handle large shared data objects and increased data access
concurrency (Section 5). The correctness of CoAresF is rigorously proven.
To reduce the operational latency of the read/write operations in the DSMM layer, we
apply and prove correct an optimization in the implementation of the erasure coded
data-access primitives (DAP) used by the Ares framework (which includes CoAres and
CoAresF). This optimization has its own interest, as it could be applicable beyond the
Ares framework, i.e., by other erasure coded algorithms relying on tag-ordered DAPs
(Section 6).
We have performed an in-depth experimental evaluation of our approach over both Emulab
and Amazon Web Services (AWS) EC2 (Section 7). Our experiments compare various
versions of our implementation, i.e., with and without the fragmentation technique or
with and without Erasure Code or with and without reconfiguration, illustrating tradeoffs
and synergies.

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:3

We note that although the extension of Ares and its integration with CoBFS might
appear conceptually simple, handling reconfiguration was quite subtle, and proving the
correctness of the integration was non-trivial. Appendix A provides a table comparing our
work with other distributed storage algorithms and systems.

2 Model and Definitions

In this section we present the system setting and define necessary terms we use in the
rest of the manuscript. As mentioned, our main goal is to implement a reconfigurable
strongly consistent shared memory that supports large shared objects and favors high access
concurrency. We assume read/write (R/W) shared objects that support two operations: (i)
a read operation that returns the value of the object, and (ii) a write operation that modifies
the value of the object.

Executions and histories An execution ξ of a distributed algorithm A is an alternating
sequence of states and actions of A reflecting the evolution in real time of the execution. A
history Hξ is the subsequence of the actions in ξ. A history Hξ is sequential if it starts with
an invocation action and each invocation is immediately followed by its matching response;
otherwise, Hξ is concurrent. Finally, Hξ is complete if every invocation in Hξ has a matching
response in Hξ, i.e., each operation in ξ is complete. An operation π1 precedes an operation
π2 (or π2 succeeds π1), denoted by π1→π2, in Hξ, if the response action of π1 precedes the
invocation action of π2 in Hξ. Two operations are concurrent if none precedes the other.

Clients and servers. We consider a system composed of four distinct sets of crash-prone,
asynchronous processes: a set W of writers, a set R of readers, a set G of reconfiguration
clients, and a set S of servers. Let I = W ∪ R ∪ G be the set of clients. Servers host data
elements (replicas or encoded data fragments). Each writer is allowed to modify the value of
a shared object, and each reader is allowed to obtain the value of that object. Reconfiguration
clients attempt to introduce new configuration of servers to the system in order to mask
transient errors and to ensure the longevity of the service. (In our implementations, a client
can perform any operation.)

Configurations. A configuration, c ∈ C, consists of: (i) c.Servers ⊆ S: a set of server identi-
fiers; (ii) c.Quorums: the set of quorums on c.Servers, s.t. ∀Q1, Q2 ∈ c.Quorums, Q1, Q2 ⊆
c.Servers and Q1 ∩ Q2 ̸= ∅; (iii) DAP (c): the set of data access primitives (operations at
level lower than reads or writes) that clients in I may invoke on c.Servers (cf. Section 3);
(iv) c.Con: a consensus instance with the values from C, implemented as a service on top of
the servers in c.Servers; and (v) the pair (c.tag, c.val): the maximum tag-value pair that
clients in I have. A tag consists of a timestamp ts (sequence number) and a writer id; the
timestamp is used for ordering the operations, and the writer id is used to break symmetry
(when two writers attempt to write concurrently using the same timestamp) [22]. We refer
to a server s ∈ c.Servers as a member of configuration c.

Fragmented objects. As defined in [8], a fragmented object is a totally ordered sequence
of block objects. Let F denote the set of fragmented objects, and B the set of block objects.
A block b ∈ B is a concurrent R/W object with a unique id and is associated with two
structures, val and ver: val(b) is composed of a pointer that points to the next block in the
sequence, and the data contained in the block; ver(b) = ⟨wid, bseq⟩, where wid ∈ I is the id

DISC 2022

25:4 Fragmented ARES: Dynamic Storage for Large Objects

of a writer and bseq ∈ N is a sequence number (initially 0). A fragmented object f ∈ F is a
sequence of blocks from B, with a value val(f) = ⟨b0, b1, b2, . . .⟩, where each bi ∈ B. Initially,
a fragmented object contains an empty block, i.e., val(f) = ⟨b0⟩ with val(b0) = ε; we refer
to it as the genesis block.

Coverability and Fragmented Coverability. Our goal is to implement fragmented linearizable
coverable objects. Linearizability [24] provides the illusion that a concurent object is accessed
sequentially when in reality is accessed concurrently by multiple processes. Coverability is
defined over a totally ordered set of versions and introduces the notion of versioned objects.
According to [27], a versioned object is a type of R/W object where each value written is
assigned with a version. A coverable object is a versioned object satisfying the properties
consolidation, continuity and evolution.

Intuitively, consolidation specifies that write operations may revise the object with a
version larger than any version modified by a preceding write operation, and may lead to
a version newer than any version introduced by a preceding write operation. Continuity
requires that a write operation may revise a version that was introduced by a preceding write
operation, according to the given total order. Finally, evolution limits the relative increment
on the version of an object that can be introduced by any operation. Their formal definitions
are given in Section 4.

In [27], the notion of a successful and unsuccessful write was introduced. A success-
ful write is denoted as cvr-ω(ver)[ver′, chg]p, which updates the object from version ver

to ver′ (along with the associated values), whereas an unsuccessful write is denoted as
cvr-ω(ver)[ver′, unchg]p (i.e., it becomes a read). Note that in [27], vers were implemented
as tags.

Fragmented linearizable coverability [8] guarantees that concurrent write operations
on different blocks would all prevail (as long as each write is tagged with the latest version
of each block), whereas only one write operation on the same block eventually prevails (all
other concurrent writes operations on the same block would become read operations).Thus,
a fragmented object implementation satisfying this property may lead to higher access
concurrency [8].

3 ARES: A Framework for Dynamic Storage

Ares [28] is a modular framework, designed to implement dynamic, reconfigurable, fault-
tolerant, read/write distributed linearizable (atomic) shared memory objects.

Similar to traditional implementations, Ares uses ⟨tag, value⟩ pairs to order the opera-
tions on a shared object. In contrast to existing solutions, Ares does not define the exact
methodology to access the object replicas. Rather, it relies on three, so called, data access
primitives (DAPs): (i) the get-tag, which returns the tag of an object, (ii) the get-data,
which returns a ⟨tag, value⟩ pair, and (iii) the put-data(⟨τ,v⟩), which accepts a ⟨tag, value⟩
as an argument.

As seen in [28], these DAPs may be used to express the data access strategy (i.e., how
they retrieve and update the object data) of different shared memory algorithms (e.g., [10]).
Using the DAPs, Ares achieves a modular design, agnostic of the data access strategies, and
enables the use of different DAP implementation per configuration (something impossible for
other solutions). For the DAPs to be useful, they need to satisfy a property, referred in [28]
as Property 1, which involves two conditions: (C1) if a put-data(⟨τ,v⟩ precedes a get-data
(or get-tag) operation, then the latter operation returns a value associated with a tag τ ′ ≥ τ,
and (C2) if a get-data returns ⟨τ ′, v′⟩ then there exists put-data(⟨τ ′, v′⟩ that precedes or is
concurrent to the get-data operation. A formal definition appears in [28].

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:5

DAP Implementations. To demonstrate the flexibility that DAPs provide, the authors
in [28], expressed two different atomic shared R/W algorithms in terms of DAPs. These are
the DAPs for the well celebrated ABD [10] algorithm, and the DAPs for an erasure coded
based approach presented for the first time in [28]. In the rest of the manuscript we refer to
the two DAP implementations as ABD-DAP and EC-DAP. An [n, k]-MDS erasure coding
algorithm (e.g., Reed-Solomon [31]) encodes k object fragments into n coded elements, which
consist of the k encoded data fragments and m encoded parity fragments. The n coded
fragments are distributed among a set of n different servers. Any k of the n coded fragments
can then be used to reconstruct the initial object value. As servers maintain a fragment
instead of the whole object value, EC based approaches claim significant storage benefits. By
utilizing the EC-DAP, Ares became the first erasure coded dynamic algorithm to implement
an atomic R/W object.

We now provide a high-level description of the two main functionalities supported by
Ares: (i) the reconfiguration of the servers, and (ii) the read/write operations on the shared
object.

Reconfiguration. Reconfiguration is the process of changing the set of servers. A configu-
ration sequence cseq in Ares is defined as a sequence of pairs ⟨c, status⟩ where c ∈ C, and
status ∈ {P, F } (P stands for pending and F for finalized). Configuration sequences are
constructed and stored in clients, while each server in a configuration c only maintains the
configuration that follows c in a local variable nextC ∈ C ∪ {⊥} × {P, F }.

To perform a reconfiguration operation recon(c), a client r follows 4 steps. At first, r

executes a sequence traversal to discover the latest configuration sequence cseq. Then it
attempts to add ⟨c, P ⟩ at the end of cseq by proposing c to a consensus mechanism. The
outcome of the consensus may be a configuration c′ (possibly different than c) proposed
by some reconfiguration client. Then the client determines the maximum tag-value pair
of the object, say ⟨τ,v⟩ by executing get-data operation and transfers the pair to c′ by
performing put-data(⟨τ,v⟩) on c′. Once the update of the value is complete, the client
finalizes the proposed configuration by setting nextC = ⟨c′, F ⟩ in a quorum of servers of
the last configuration in cseq (or c0 if no other configuration exists). As shown in [28],
this reconfiguration procedure guarantees that configuration sequences obtained by any two
clients cseqp and cseqq, then either cseqp is a prefix of cseqq, or vice versa.

Read/Write operations. A write (or read) operation π by a client p is executed by performing
the following actions: (i) π invokes a read-config action to obtain the latest configuration
sequence cseq, (ii) π invokes a get-tag (if a write) or get-data (if a read) in each configuration,
starting from the last finalized to the last configuration in cseq, and discovers the maximum
τ or ⟨τ, v⟩ pair respectively, and (iii) repeatedly invokes put-data(⟨τ ′, v′⟩), where ⟨τ ′, v′⟩ =
⟨τ +1, v′⟩ if π is a write and ⟨τ ′, v′⟩ = ⟨τ,v⟩ if π is a read in the last configuration in cseq, and
read-config to discover any new configuration, until no additional configuration is observed.

4 COARES: Coverable ARES

In this section we present and analyze the coverable extension of Ares, which we refer to as
CoAres.

Description. Below we describe the modification that need to occur on Ares in order to
support coverability. The reconfiguration protocol and the DAP implementations remain the
same as they are not affected by the application of coverability. The changes occur in the
specification of read/write operations, which we detail below.

DISC 2022

25:6 Fragmented ARES: Dynamic Storage for Large Objects

Read/Write operations. Algorithm 1 specifies the read and write protocols of CoAres.
The blue text annotates the changes when compared to the original Ares read/write protocols.
The local variable flag ∈ {chg, unchg}, maintained by the write clients, is set to chg when
the write operation is successful and to unchg otherwise; initially it is set to unchg. The state
variable version is used by the client to maintain the tag of the coverable object. At first,
in both cvr-read and cvr-write operations, the read/write client issues a read-config action to
obtain the latest introduced configuration; cf. line Alg. 1:14 (resp. line Alg. 1:43).

In the case of cvr-write, the writer wi finds the last finalized entry in cseq, say µ, and
performs a cseq[j].conf.get-data() action, for µ ≤ j ≤ |cseq| (lines Alg. 1:15–18). Thus, wi

retrieves all the ⟨τ, v⟩ pairs from the last finalized configuration and all the pending ones.
Note that in cvr-write, get-data is used in the first phase instead of a get-tag, as the coverable
version needs both the highest tag and value and not only the tag, as in the original write
protocol. Then, the writer computes the maximum ⟨τ, v⟩ pair among all the returned replies.
Lines Alg. 1:19 - 1:24 depict the main difference between the coverable cvr-write and the
original one: if the maximum τ is equal to the state variable version, meaning that the
writer wi has the latest version of the object, it proceeds to update the state of the object
(⟨τ, v⟩) by increasing τ and assigning ⟨τ, v⟩ to ⟨⟨τ.ts + 1, ωi⟩, val⟩, where val is the value it
wishes to write (lines Alg. 1:20–21). Otherwise, the state of the object does not change and
the writer keeps the maximum ⟨τ, v⟩ pair found in the first phase (i.e., the write has become
a read). No matter whether the state changed or not, the writer updates its version with
the value τ (line Alg. 1:24).

Algorithm 1 Write and Read protocols for CoAres.

CVR-Write Operation:
2: at each writer wi

State Variables:
4: cseq[]s.t.cseq[j] ∈ C × {F, P}

version ∈ N+ ×W ∪ {⊥} initially ⟨0,⊥⟩
6: Local Variables:

µ ∈ N+ initially 0, ν ∈ N+ initially 0
8: τ ∈ N+ ×W initially ⟨0, wi⟩

v ∈ V initially ⊥
10: flag ∈ {chg, unchg} initially unchg

Initialization:
12: cseq[0] = ⟨c0, F ⟩

operation cvr-write(val), val ∈ V
14: cseq ←read-config(cseq)

µ← max({i : cseq[i].status = F})
16: ν ← |cseq|

for i = µ : ν do
18: ⟨τ, v⟩ ← max(cseq[i].cfg.get-data(), ⟨τ, v⟩)

if version = τ then
20: flag ← chg

⟨τ, v⟩ ← ⟨⟨τ.ts + 1, ωi⟩, val⟩
22: else

flag ← unchg

24: version← τ
done← false

26: while not done do
cseq[ν].cfg.put-data(⟨τ, v⟩)

28: cseq ←read-config(cseq)
if |cseq| = ν then

30: done← true
else

32: ν ← |cseq|
end while

34: return ⟨τ, v⟩, f lag
end operation

36: CVR-Read Operation:
at each reader ri

38: State Variables:
cseq[]s.t.cseq[j] ∈ C × {F, P}

40: Initialization:
cseq[0] = ⟨c0, F ⟩

42: operation cvr-read()
cseq ←read-config(cseq)

44: µ← max({j : cseq[j].status = F})
ν ← |cseq|

46: for i = µ : ν do
⟨τ, v⟩ ← max(cseq[i].cfg.get-data(), ⟨τ, v⟩)

48: done← false
while not done do

50: cseq[ν].cfg.put-data(⟨τ, v⟩)
cseq ←read-config(cseq)

52: if |cseq| = ν then
done← true

54: else
ν ← |cseq|

56: end while
return ⟨τ, v⟩

58: end operation

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:7

In the case of cvr-read, the first phase is the same as the original, that is, it discovers the
maximum tag-value pair among the received replies (lines Alg. 1:46–47). The propagation
of ⟨τ, v⟩ in both cvr-write (lines Alg. 1:26–33) and cvr-read (lines Alg. 1:49–56)) remains
the same. Finally, the cvr-write operation returns ⟨τ, v⟩ and the flag, whereas the cvr-read
operation only returns (⟨τ, v⟩).

Correctness of COARES. CoAres is correct if it satisfies liveness (termination) and safety
(i.e., linearizable coverability). Termination holds since read, update and reconfig operations
on the CoAres always complete given that the DAP completes. As shown in [28], Ares
implements a linearizable object given that the DAP used satisfy Property 1. Given that
CoAres uses the same reconfiguration and read operations, while the write operation might
get converted to a read operation, then linearizability is not affected and can be shown that
it holds in a similar way as in [28].

The validity and coverability properties, defined formally below as Definitions 1 and 2,
remain to be examined. In CoAres, we use tags to denote the version of the register. Given
that the DAP (c) used in any configuration c ∈ C satisfies Property 1, we will show that any
execution ξ of CoAres satisfies the properties of Definitions 1 and 2.
Proof challenges: The main challenge is to show that CoAres satisfies the coverability
properties despite any reconfiguration in the system. In particular, we would like to ensure:
(i) new values are not overwritten, i.e., if a write is successfully completed then no subsequent
write successfully writes a value associated with an older version in any active configuration,
(ii) versions are unique, and (iii) eventually a single version path prevails.
Definitions and proofs: In the lemmas that follow, we refer to a successful write operation
as one that is not converted to a read operation. We say that a write operation revises
a version ver of the versioned object to a version ver′, or produces ver′, in an execution
ξ, if cvr-ω(ver)[ver′]pi

completes in Hξ. Let the set of successful write operations on a
history Hξ be defined as Wξ,succ = {π : π = cvr-ω(ver)[ver′]pi

completes in Hξ}. The
set of the object’s versions produced by writes operations in the history Hξ is defined by
Versionsξ ={veri :cvr-ω(ver)[veri]pi

∈Wξ,succ} ∪ {ver0}, where ver0 is the initial version of
the object. Observe that the elements in Versionsξ are totally ordered. Now we present the
validity property which defines explicitly the set of executions that are considered to be valid
executions.

▶ Definition 1 (Validity [27]). An execution ξ (resp. its history Hξ) is a valid execution
(resp. history) on a versioned object, for any pi, pj ∈ I:
1. ∀cvr-ω(ver)[ver′]pi

∈ Wξ,succ, ver < ver′,
2. for any operations cvr-ω(∗)[ver′]pi and cvr-ω(∗)[ver′′]pj in Wξ,succ, ver′ ̸= ver′′, and
3. for each verk ∈ V ersionsξ there is a sequence of versions ver0, ver1, . . . , verk, such that

cvr-ω(veri)[veri+1] ∈ Wξ,succ, for 0 ≤ i < k.

▶ Definition 2 (Coverability [27]). A valid execution ξ is coverable with respect to a total
order <ξ on operations in Wξ,succ if:
1. (Consolidation) If π1 = cvr-ω(∗)[veri], π2 = cvr-ω(verj)[∗] ∈ Wξ,succ, and π1 →Hξ

π2
in Hξ, then veri ≤ verj and π1 <ξ π2.

2. (Continuity) if π2 = cvr-ω(ver)[veri] ∈ Wξ,succ, then there exists π1 ∈ Wξ,succ s.t.
π1 = cvr-ω(∗)[ver] and π1 <ξ π2, or ver = ver0.

3. (Evolution) let ver, ver′, ver′′ ∈ V ersionsξ. If there are sequences of versions
ver′

1, ver′
2, . . . , ver′

k and ver′′
1 , ver′′

2 , . . . , ver′′
ℓ , where ver = ver′

1 = ver′′
1 , ver′

k = ver′,
and ver′′

ℓ = ver′′ such that cvr-ω(ver′
i)[ver′

i+1] ∈ Wξ,succ, for 1 ≤ i < k, and
cvr-ω(ver′′

i)[ver′′
i+1] ∈ Wξ,succ, for 1 ≤ i < ℓ, and k < ℓ, then ver′ < ver′′.

DISC 2022

25:8 Fragmented ARES: Dynamic Storage for Large Objects

We proceed with formal statements and proofs. Lemmas 3 to 5 help us show that CoAres
satisfies Validity.

▶ Lemma 3 (Version Increment). In any execution ξ of CoAres, if ω is a successful write
operation, and ver the maximum version it discovered during the get-data operation, then ω

propagates a version ver′ > ver.

Proof. This lemma follows from the fact that CoAres uses a condition before the propagation
phase in line Alg. 1:19. The writer checks if the maximum tag retrieved from the get-data
action is equal to the local version. If that holds, then the writer generates a new version
larger than its local version by incrementing the tag found. ◀

▶ Lemma 4 (Version Uniqueness). In any execution ξ of CoAres, if two write operations ω1
and ω2, write values associated with versions ver1 and ver2 respectively, then ver1 ̸= ver2.

Proof. A tag is composed of an integer timestamp ts and the id of a process wid. Let w1 be
the id of the writer that invoked ω1 and w2 the id of the writer that invoked ω2. To show
whether the versions generated by the two write operations are not equal we need to examine
two cases: (a) both ω1 and ω2 are invoked by the same writer, i.e. w1 = w2, and (b) ω1 and
ω2 are invoked by two different writers, i.e. w1 ̸= w2.
Case a: In this case, the uniqueness of the versions is achieved due to the well-formedness

assumption and the C1 term in Property 1. By well-formdness, writer w1 can only invoke
one operation at a time. Thus, the last put-data(ver1, ∗) of ω1 completes before the first
get-data of ω2.
If both operations are invoked and completed in the same configuration c then by C1,
the version ver′ returned by c.get-data, is ver′ ≥ ver1. Since the version is incremented
in ω2 then ver2 = ver′ + 1 > ver1, and hence ver1 ̸= ver2 as desired.
It remains to examine the case where the put-data was invoked in a configuration c

and the get-data in a configuration c′. Since by well-formedness ω1 → ω2, then by the
sequence prefix guaranteed by the reconfiguration protocol of Ares (second property)
the cseq1 obtained during the read-config action in ω1 is a prefix of the cseq2 obtained
during the same action in ω2. Notice that c′ is the last finalized configuration in cseq2 as
this is the configuration where the first get-data action of ω2 is invoked. If c′ precedes c

in cseq2 then by CoAres the write operation ω2 will invoke a get-data operation in c as
well and with the same reasoning as before will generate a ver2 ̸= ver1. If now c precedes
c′ in cseq2, then it must be the case that a reconfiguration operation r has been invoked
concurrently or after ω2 and added c′. By Ares [28], r, invoked a put-data(ver′) in c′

before finalizing c′ with ver′ ≥ ver1. So when ω2 invokes get-data in c′ by C1 will obtain
a version ver′′ ≥ ver′ ≥ ver1. Hence ver2 > ver′′ and thus ver2 ̸= ver1 as needed.

Case b: When w1 ̸= w2 then ω1 generates a version ver1 = {ts1, w1} and ω2 generates some
version ver2 = {ts2, w2}. Even if ts1 = ts2 the two version differ on the unique id of the
writers and hence ver1 ̸= ver2. This completes the case and the proof. ◀

▶ Lemma 5. Each version we reach in an execution is derived (through a chain of operations)
from the initial version of the register ver0.

Proof. Every tag is generated by extending the tag retrieved by a get-data operation starting
from the initial tag (lines Alg. 1:20–21). In turn, each get-data operation returns a tag
written by a put-data operation or the initial tag (as per C2 in Property 1). Then, applying
a simple induction, we may show that there is a sequence of tags leading from the initial tag
to the tag used by the write operation. ◀

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:9

From this point onward we fix ξ to be a valid execution and Hξ to be its valid history.
We now show coverability (Definition 2).

▶ Lemma 6. In any execution ξ of CoAres, all properties of Definition 2 are satisfied.

Proof. For consolidation we need to show that for two write operations ω1 = cvr-ω(∗)[τ1, chg]
and ω2 = cvr-ω(τ2)[∗, chg], if ω1 →ξ ω2 then τ1 ≤ τ2. According to C1 of Property 1, since
the get-data of ω2 appears after the put-data of ω1, the get-data of ω2 returns a tag higher
than the one written by ω1.

Continuity is preserved as a write operation first invokes a get-data action for the latest
tag before proceeding to put-data to write a new value. According to C2 of Property 1, the
get-data action returns a tag already written by a put-data or the initial tag of the register.

To show that evolution is preserved, we take into account that the version of a register
is given by its tag, where tags are compared lexicographically. A successful write π1 =
cvr-ω(τ)[τ ′] generates a new tag τ ′ from τ such that τ ′.ts = τ.ts + 1 (line Alg. 1:21).
Consider sequences of tags τ1, τ2, . . . , τk and τ ′

1, τ ′
2, . . . , τ ′

ℓ such that τ1 = τ ′
1. Assume that

cvr-ω(τi)[τi+1], for 1 ≤ i < k, and cvr-ω(τ ′
i)[τ ′

i+1], for 1 ≤ i < ℓ, are successful writes. If
τ1.ts = τ ′

1.ts = z, then τk.ts = z + k and τ ′
ℓ.ts = z + ℓ, and if k < ℓ then τk < τ ′

ℓ. ◀

Lemmas 3 to 6 show that CoAres satisfies validity (Def. 1) and coverability (Def. 2):

▶ Theorem 7. CoAres implements a linearizable coverable object, given that the DAPs
implemented in any configuration c satisfy Property 1.

5 COARESF: Integrate COARES with a Fragmentation approach

The work in [8] developed a distributed storage framework, called CoBFS, which utilizes
coverable fragmented objects. In this section we describe how CoAres can be integrated
with CoBFS to obtain what we call CoAresF, thus yielding a dynamic distributed memory
suitable for large objects. Furthermore, this enables to combine the fragmentation approach
of CoBFS with a second level of striping when EC-DAP is used, making storage efficient at
the servers. A particular challenge of this integration is how the fragmentation approach
should invoke reconfiguration operations, since CoBFS in [8] considered only static (non-
reconfigurable) systems. The main challenge of CoAresF, however, was to prove that
the blocks’ sequence of a fragmented object remains connected, despite the existence of
concurrent read/write and reconfiguration operations.

Overview of COBFS. The architecture of CoBFS is shown in Fig. 1 and it is composed
of two main modules: (i) a Fragmentation Module (FM), and (ii) a Distributed Shared
Memory Module (DSMM). In summary, the FM implements the fragmented object, which is
a totally ordered sequence of blocks (where a block is a R/W object with limited value size;
cf. Section 2), while the DSMM implements an interface to a shared memory service that
allows operations on individual block objects. To this respect, CoBFS is flexible enough to
utilize any underlying distributed shared memory implementation.

CoBFS mainly supports two operations, update and read, described next.

Update Operation. The update operation spans both modules, FM and DSMM. The FM
uses a Block Identification (BI) module, which draws ideas from the RSYNC (Remote
Sync) algorithm [33]. The BI includes three main modules, the Block Division, the Block
Matching and Block Updates.

DISC 2022

25:10 Fragmented ARES: Dynamic Storage for Large Objects

Figure 1 Basic architecture of CoBFS [8].

1. Block Division: This module splits a given fragmented object f into blocks. (This can be
done, for example, in files, by using rolling hashing, such as rabin fingerprints [30], as
we’ve done in our implementation.)

2. Block Matching: This module is used to find the differences between the new and the old
blocks, yielding four statuses: (i) equality, (ii) modified, (iii) inserted, (iv) deleted. (As
in our implementation, this can be done by using a string matching algorithm [13].)

3. Block Updates: Based on the retrieved statuses, the blocks of the fragmented object are
then written on the DSM using the DSMM as an external service. In the case of equality,
no operation is performed. In the case of modification, an update operation attempts to
write the modified block. If new blocks are inserted after an existing block b, the update

operation first writes the new blocks and then writes b so that the list of blocks remains
connected. Delete is treated as a modification that sets an empty value to a block.

Read Operation. When the system receives a read request from a client, the FM issues, to
the DSMM, a series of read operations on the fragmented object’s blocks, starting from the
genesis block and proceeding to the last block by following the next block ids. As blocks are
retrieved, they are assembled as a fragmented object.

Integration of COARES in COBFS. Integration with the CoBFS is achieved by using
CoAres as the external DSMM service. To accommodate the dynamic nature of CoAres,
we need to introduce the reconfiguration operation in CoAresF as shown next.

Reconfig Operation. The specification of reconfig on the DSMM is given in Alg. 2, while
the specification of reconfig on a fragmented object is given in Alg. 3.

When the system receives a reconfig request from a client, the FM issues a series of
reconfig operations on the fragmented object’s blocks, starting from the genesis block and
proceeding to the last block by following the next block ids (Alg. 3). The reconfig operation
executes the block reconfig operations on the shared memory (Alg. 2) using dsmm-reconfig
operations.

Algorithm 2 DSMM: Reconfig operation on block b at client p.

1: function dsmm-reconfig(c)b,p

2: b.reconfig(c)
3: end function

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:11

Algorithm 3 FM: Reconfig operation on fragmented object f at client p.

1: State Variables:
2: Lf a sequence of blocks, initially ⟨b0⟩;

3: function fm-reconfig(c)f,p

4: b← val(b0).ptr
5: Lf ← ⟨b0⟩

6: while b not NULL do
7: dsmm-reconfig(c)b,p

8: b← val(b).ptr
9: end while

10: end function

Correctness of COARESF. When a reconfig(c) operation is invoked in CoAres, a recon-
figuration client requests to change the configuration of the servers hosting the single R/W
object. By design, each instance of CoAres handles a single R/W object. In the case of a
fragmented object f , each block composing f is handled as a separate atomic object, and
thus assigned to a different Ares instance. Therefore, the main challenge of CoAresF is
to ensure that the sequence composing f remains connected and composed of the most recent
blocks, despite concurrent read/write and reconfig operations. Note that each individual
block may exist in different configurations and be accessed by different DAPs.

In the remainder we show that fragmented coverability (see Section 2) cannot be violated.
Before we prove any lemmas, we first state a claim that follows directly from the algorithm.

▷ Claim 8. For any block b ≠ b0, where b0 the genesis block, created by an update
operation, it is initialized with a configuration sequence cseqb = cseq0, where cseq0 is the
initial configuration.

Notice that we assume that a single quorum remains correct in cseq0 at any point in the
execution. This may change in practical settings by having an external service to maintain
and distribute the latest cseq that will be used in a created block.

We begin with a lemma that states that for any block in the sequence obtained by a read
operation, there is a successful update operation that wrote this block. Its proof follows the
proof of Lemma 4 presented in [9].

▶ Lemma 9. In any execution ξ of CoAresF, if ρ is a read operation on f that returns a
sequence L, then for any block b ∈ L, there exists a successful update operation on f that
either precedes or is concurrent to ρ.

In the following lemma we show that a reconfiguration moves a version of the object
larger than any version written by a preceding write operation to the installed configuration.

▶ Lemma 10. Suppose that ρ is a dsmm-reconfig(c2)b,∗ operation and ω a successful
cvr-write(v)b,∗ operation that changes the version of b to ver, s.t. ω → ρ in an execution ξ

of CoAresF. Then ρ invokes c2.put-data(⟨ver′, ∗⟩) in c2, s.t. ver′ ≥ ver.

Proof. Let cseqω be the last configuration sequence returned by the read-config action at ω

(Alg. 1:28), and cseqρ the configuration sequence returned by the first read-config action at
ρ (see Alg. 2:8 in [28]). By the prefix property of the reconfiguration protocol, cseqω will be
a prefix of cseqρ.

Let cℓ the last configuration in cseqω, and c1 the last finalized configuration in cseqρ.
There are two cases to examine: (i) c1 precedes cℓ in cseqρ, and (ii) c1 appears after cℓ in
cseqρ. If (i) is the case then during the update-config action, ρ will perform a cℓ.get-data()
action. By C1 in Property 1, the cℓ.get-data() will return a version ver′′ ≥ ver. Since the
ρ function will execute c2.put-data(⟨ver′, ∗⟩), s.t. ver′ is the max discovered version, then
ver′ ≥ ver′′ ≥ ver.

DISC 2022

25:12 Fragmented ARES: Dynamic Storage for Large Objects

In case (ii) it follows that the reconfiguration operation that proposed c1 has finalized
the configuration. So either that reconfiguration operation moved a version ver′′ of b s.t.
ver′′ ≥ ver in the same way as described in case (i) in c1, or the write operation would
observe c1 during a read-config action. In the latter case c1 will appear in cseqω and ω will
invoke a cℓ.put-data(⟨ver, ∗⟩) s.t. either cℓ = c1 or cℓ a configuration that appears after c1 in
cseqω. Since c1 is the last finalized configuration in cseqρ, then in any of the cases described
ρ will invoke a cℓ.get-data(). Thus, it will discover and put in c2 a version ver′ ≥ ver

completing our proof. ◀

Next we need to show that any sequence returned by any read operation is connected,
despite any reconfiguration operations that may be executed concurrently. This corresponds
to the most challenging part of the integration.

▶ Lemma 11. In any execution ξ of CoAresF, if ρ is a read operation on f that returns
a sequence of blocks L = {b0, b1, . . . , bn}, then it must be the case that (i) b0.ptr = b1, (ii)
bi.ptr = bi+1, for i ∈ [1, n − 1], and (iii) bn.ptr = ⊥.

Proof. Assume by contradiction that there exist some bi ∈ L, s.t. val(bi).ptr ≠ bi+1 (or
val(b0).prt ≠ b1). By Lemma 9, a block bi may appear in the sequence returned by a
read operation only if it was created by a successful update operation π, on block b. Let
B = ⟨b1, . . . , bk⟩ be the set of k − 1 blocks created in π, with bi ∈ B. Let us assume w.l.o.g.
that all those blocks appear in L as written by π (i.e., without any other blocks between any
pair of them).

By the design of the algorithm, π generates a single linked path from b to bk, by pointing
b to b1 and each bj to bj+1, for 1 ≤ j < k. Block bk points to the block pointed by b at
the invocation of π, say b′. So there exists a path b → b1 → . . . → bi that also leads to bi.
According again to the algorithm, bj+1 ∈ B is created and written before bj , for q ≤ j < k.
So when the bj .cvr-write is invoked, the operation bj+1.cvr-write has already been completed,
and thus when b is written successfully all the blocks in the path are written successfully as
well.

By the prefix property of the reconfiguration protocol it follows that for each bj written
by π, ρ will observe a configuration sequence bj .cseqρ, s.t. bj .cseqπ is a prefix of bj .cseqρ,
and hence cπ appears in bj .cseqρ. If cπ appears after the last finalized configuration cℓ in
bj .cseqρ, then the read operation will invoke cπ.get-data() and by the coverability property
and property C1, will obtain a version ver′ ≥ ver. In case cπ precedes cℓ then a new
configuration was invoked after or concurrently to π and then by Lemma 10 it follows that
the version of b in cℓ is again ver′ ≥ ver. So we need to examine the following three cases
for bi: (i) bi is b, (ii) bi is bk, and (iii) bi is one of the blocks bj , for 1 ≤ j < k.

Case (i): If bi is the block b then we should examine whether bi.ptr ̸= b1. Let ver the
version of b written by π and ver′ the version of b as retrieved by ρ. If ver = ver′ then ρ

retrieved the block written by ω as the versions by Lemma 4 are unique. Thus, bi.ptr = b1 in
this case, contradicting our assumption. In case ver′ > ver then there should be a successful
update operation ω′ that written block b with ver′. There are two cases to consider based
on whether ω′ introduced new blocks or not. If not then the b.ptr = b1 contradicting our
assumption. If it introduced a new sequence of blocks {b′

1, . . . , b′
k}, then it should have

written those blocks before writing b. In that case ρ would observe b.ptr = b′
1 and b′

1 would
have been part of L which is not the case as the next block from b in L is b1, leading to
contradiction.

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:13

Case (ii): This case can be proven in the same way as case (i) for each block bj , for
1 ≤ j < k.

Case (iii): If now bi = bk, then we should examine whether bi.ptr ̸= b′. Since b was pointing
to b′ at the invocation of π then b′ was either (i) created during the update operation that
also created b, or (ii) was created before b. In both cases b′ was written before b. In case (i),
by Lemma 9, the update operation that created b was successful and thus b′ must be created
as well. In case (ii) it follows that b is the last inserted block of an update and is assigned to
point to b′. Since no block is deleted, then b′ remains in L when bi is created and thus bi

points to an existing block. Furthermore, since π was successful, then it successfully written
b and hence only the blocks in B were inserted between b and b′ at the response of π. In
case the version of bi was ver′ and larger than the version written on bk by π then either bk

was not extended and contains new data, or the new block is impossible as L should have
included the blocks extending bk. So b′ must be the next block after bi in L at the response
of π and there is a path between b and b′. This completes the proof. ◀

We conclude with the main result of this section.

▶ Theorem 12. CoAresF implements a linearizable coverable fragmented object.

Proof. By the correctness proof in Section 4 follows that every block operation in CoAresF
satisfies linearizable coverability and together with Lemma 11, which shows the connectivity
of blocks, it follows that CoAresF implements a linearizable coverable fragmented object
satisfying the properties of fragmented linearizable coverability (cf. Section 2). ◀

6 EC-DAP Optimization

In this section, we present an optimization in the implementation of EC-DAP, to reduce
the operational latency of the read/write operations in DSMM layer. We show that this
optimized EC-DAP, which we refer to as EC-DAPopt, satisfies Property 1, and thus can be
used by any algorithm that utilizes the DAPs, like any variant of Ares (e.g., CoAres and
CoAresF).

Description of EC-DAPopt. The main idea of the optimization is to avoid unnecessary
object transmissions between the clients and the servers. Specifically, we apply the following
optimization: in the get-data primitive, each server sends only the tag-value pairs with a
larger or equal tag than the client’s tag. In the case where the client is a reader, it performs
the put-data action (propagation phase), only if the maximum tag is higher than its local
one. EC-DAPopt is presented in Alg. 4 and 5. Text in blue annotates the changed or newly
added code, whereas struck out blue text annotates code that has been removed from the
original implementation.

Following [28], each server si stores a state variable, List, which is a set of up to (δ + 1)
(tag, coded-element) pairs; δ is the maximum number of concurrent put-data operations. In
EC-DAPopt, we need another two state variables, the tag of the configuration (c.tag) and
its associated value (c.val). We now proceed with the details of the optimization. Note that
the c.get-tag() primitive remains the same as the original.

Primitive c.get-data(). A client, during the execution of a c.get-data() primitive, queries
all the servers in c.Servers for their List, and awaits responses from

⌈
n+k

2
⌉

servers. Each
server generates a new list (List′) where it adds every (tag, coded-element) from the List,

DISC 2022

25:14 Fragmented ARES: Dynamic Storage for Large Objects

Algorithm 4 EC-DAPopt implementation.

at each process pi ∈ I

2: procedure c.get-data()
send (query-list,c.tag) to each s ∈ c.Servers

4: until pi receives Lists from each server s ∈ Sg

↪→ s.t. |Sg| =
⌈

n+k
2

⌉
and Sg ⊂ c.Servers

6: T ags≥k
∗ = set of tags that appears in k lists

T ags≥k
dec = set of tags that appears in k lists

8: with values
t∗
max ← max T ags≥k

∗
10: tdec

max ← max T ags≥k
dec

if tdec
max = t∗

max then
12: if c.tag = tdec

max then
t← c.tag

14: v ← c.val
return ⟨t, v⟩

16: else if T ags≥k
dec ̸= ⊥ then

t← tdec
max

18: v ← decode value for tdec
max

return ⟨t, v⟩
20: end procedure

procedure c.put-data(⟨τ, v⟩))
22: if τ > c.tag then

code-elems = [(τ, e1), . . . , (τ, en)], ei

24: = Φi(v)
send (PUT-DATA, ⟨τ, ei⟩) to each si

↪→ ∈ c.Servers
26: until pi receives ack from

⌈
n+k

2

⌉
servers in

↪→ c.Servers
c.tag ← τ

28: c.val← v
end procedure

Algorithm 5 The response protocols at any server si ∈ S in EC-DAPopt for client requests.

at each server si ∈ S in configuration ck

2: State Variables:
List ⊆ T × Cs, initially {(t0, Φi(v0))}
Local Variables:
List′ ⊆ T × Cs, initially ⊥

4: Upon receive (query-list, tgb) si, ck from q
for τ, v in List do

6: if τ > tgb then
List′ ← List′ ∪ {⟨τ, ei⟩}

8: else if τ = tgb then
List′ ← List′ ∪ {⟨τ,⊥⟩}

10: Send List′ to q
end receive

12: Upon receive (put-data, ⟨τ, ei⟩) si, ck from q
List← List ∪ {⟨τ, ei⟩}

14: if |List| > δ + 1 then
τmin ← min{t : ⟨t, ∗⟩ ∈ List}

/* remove the coded value */
16: List← List\ {⟨τ, e⟩ : τ = τmin ∧ ⟨τ, e⟩

∈ List}
18: List← List ∪ {(τmin,⊥)}

Send ack to q
20: end receive

if the tag is higher than the c.tag of the client and the (tag, ⊥) if the tag is equal to c.tag;
otherwise it does not add the pair, as the client already has a newer version. Once the client
receives Lists from

⌈
n+k

2
⌉

servers, it selects the highest tag t, such that: (i) its corresponding
value v is decodable from the coded elements in the lists; and (ii) t is the highest tag seen
from the responses of at least k Lists (see lines Alg. 4:8–10) and returns the pair (t, v). Note
that in the case where any of the above conditions is not satisfied, the corresponding read
operation does not complete. The main difference with the original code is that in the case
where variable c.tag is the same as the highest decodable tag (tdec

max), the client already has
the latest decodable version and does not need to decode it again (see line Alg. 4:12).

Primitive c.put-data(⟨tw, v⟩). This primitive is executed only when the incoming tw is
greater than c.tag (line Alg. 4:22). In this case, the client computes the coded elements and
sends the pair (tw, Φi(v)) to each server si ∈ c.Servers. Also, the client has to update its
state (c.tag and c.val). If the condition does not hold, the client does not perform any of the
above, as it already has the latest version, and so the servers are up-to-date. When a server
si receives a message (put-data, tw, ci), it adds the pair in its local List and trims the pairs
with the smallest tags exceeding the length (δ + 1) (see line Alg. 5:17).

Correctness of EC-DAPopt. We prove the following theorem.

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:15

▶ Theorem 13 (Safety + Liveness). EC-DAPopt satisfies both conditions of Property 1, and
given that no more than δ write operations are concurrent with a read they guarantee that
any operation terminates.

The complete proof is given in Appendix B. The main challenge of the proof is to show
that reducing the values returned by the servers does not violate linearizability, and at the
same time, it does not prevent operations from reconstructing the written values, preserving
liveness. We prove safety by showing that EC-DAPopt satisfies both conditions of Property
1. Particularly, we prove that the tag returned by a get-data() operation is larger than or
equal to the tag written by any preceding put-data() operation, and the value returned by a
get-data() operation is either written by a put-data() operation or it is the initial value of
the object. Liveness is proven by showing that any put-data and get-data operation defined
by EC-DAPopt terminates. In the proof, we assume an [n, k] MDS code, |c.Servers| = n

of which no more than n−k
2 may crash, and that δ is the maximum number of put-data

operations concurrent with any get-data operation. Without this assumption on δ, a get-data
operation may not be able to discover a decodable value, and hence fail.

7 Experimental Evaluation

We now overview the experimental evaluation we conducted for evaluating our approach.
Additional results are given in Appendix C. For a more extensive exposition of our experi-
mental evaluation and obtained results, see [20]. The collected data are available in [3], so
one could validate our analysis.

We have implemented and evaluated the following algorithms: (i) CoABD: the cov-
erable version of the static ABD algorithm [27]; (ii) CoABDF: the fragmented version
of CoABD [8]; (iii) CoAresABD: CoAres that uses ABD-DAP; (iv) CoAresABDF:
fragmented CoAresABD; (v) CoAresEC: CoAres that uses EC-DAPopt; and (vi)
CoAresECF: fragmented CoAresEC.

In our implementations, we consider files, as an example of fragmented objects. In this
respect, we view a file as a linked-list of data blocks. Here, the first block, i.e., the genesis
block b0, is a special type of block that contains specific file information (such as the file path).
For the evaluation we generate a text file with random byte strings whose size increases
as the writers keep updating it. However, our implementations support any file type. The
algorithms were evaluated in terms of operational latency and the percentage of successful
file writes.

The experiments were executed on the emulation testbest Emulab [5], and the overlay
testbed Amazon Web Services (AWS) EC2 [12]. On Emulab we used a LAN using a DropTail
queue without delay or packet loss, consisting of physical nodes with one 2.4 GHz 64-bit
Quad Core Xeon E5530 “Nehalem” processor and 12 GB RAM. While on AWS we used a
cluster with 8 nodes of type t2.medium with 4 GB RAM, 2 vCPUs and 20 GB storage. For
each experiment on Emulab we reported the average over five runs, while AWS experiments
run only once.

Performance VS. Initial File Sizes. We varied the fsize from 1 MB to 512 MB by doubling
the file size in each experimental run. The performance of some experiments is missing
as the non-fragmented algorithms crashed when testing larger file sizes due to an out-of-
memory error. For Emulab we used |W| = 5, |R| = 5, |S| = 11, while for AWS we used
|W| = 1, |R| = 1, |S| = 6. Each client in Emulab performs 20 operations and in AWS 50

DISC 2022

25:16 Fragmented ARES: Dynamic Storage for Large Objects

operations. We used a stochastic invocation scheme in which clients pick a random time
between the interval [1...3sec] to invoke their next operations.

(a) (b)

Figure 2 Emulab results for File Size experiments.

(a) (b)

Figure 3 AWS results for File Size experiments.

Results. As shown in Fig. 2(a), the fragmented algorithms on Emulab achieve significantly
smaller write latency, since the FM writes only the new and modified blocks. Also, their
success ratio is higher as the file size increases, since the probability of two writes to collide
on a single block decreases. The corresponding AWS findings show similar trends.

As shown in Fig. 2(b), all the fragmented algorithms on Emulab have smaller read latency
than the non-fragmented ones. This happens since the readers in the shared memory level
transmit only the contents of the blocks that have a newer version. On the contrary, the read
latency of CoAres on AWS (Fig. 3(a)) has not improved with the fragmentation strategy.
The CoAresF operations perform at least two additional rounds (compared to CoABDF),
in order to read the configuration before each of the two phases. Thus, when the FM module
sends multiple read block requests, has a significant stable overhead for each block request in
the real network conditions of AWS (Fig. 3(b)).

We can also observe from the Figs. 2(a)-(b), 3(a) that the further increase of the parity
(m) of CoAresEC and CoAresECF algorithms (and thus higher fault-tolerance) the larger
the latency. In addition, the read and write latency of these algorithms when used with
EC-DAP are double than of the ones when our optimized DAP (EC-DAPopt) is used.

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:17

Trade-offs. During the deployment, the main trade-offs we have identified are the following:
Block size of FM. The performance of data striping highly depends on the block size. There

is a trade-off between splitting the object into smaller blocks, for improving the concurrency
in the system, and paying for the cost of sending these blocks in a distributed fashion.
Therefore, it is crucial to discover the “golden” spot with the minimum communication
delays (while having a large block size) that will ensure a small expected probability of
collision (as a parameter of the block size and the delays in the network).

Parity of EC. There is a trade-off between operation latency and fault-tolerance in the
system: the further increase of the parity (and thus higher fault-tolerance) the larger the
latency.

Parameter δ of EC. The value of δ is equal to the number of writers. As a result, as the
number of writers increases, the latency of the first phase of EC also increases, since each
server sends the list with all the concurrent values. In this point, we can understand the
importance of the optimization (EC-DAPopt) in the DSMM layer.

8 Conclusions

In this paper we have presented and rigorously proved correct CoAresF, the first dynamic
distributed shared memory that utilizes coverable fragmented objects and enables the use of
erasure coding. To achieve this, we developed a coverable version of Ares and integrated it
with CoBFS. When CoAresF is used with an (optimized) Erasure Coded DAP we obtain
a two-level striping dynamic and robust distributed shared memory system providing strong
consistency and high access concurrency to large objects (e.g., files). We have complemented
our development with an extensive experimental evaluation over the Emulab and AWS
testbeds. Compared to the approach that does not use the fragmentation layer of CoBFS
(CoAres), CoAresF is optimized with an efficient access to shared data under heavy
concurrency. For future work, we plan to explore how to reduce the overhead of read
operations. In addition, as our service achieves highly scalable performance, it seems suitable
for a P2P environment; any physical node could serve both as a client and a data host.

References
1 Cassandra. https://cassandra.apache.org/_/index.html.
2 Colossus. https://cloud.google.com/blog/products/storage-data-transfer/a-peek-

behind-colossus-googles-file-system.
3 Data repository. https://github.com/atrigeorgi/fragmentedARES-data.git.
4 Dropbox. https://www.dropbox.com/.
5 Emulab network testbed. https://www.emulab.net/.
6 Hdfs. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
7 M.K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without consensus.

In Proceedings of the 28th ACM symposium on Principles of distributed computing (PODC
’09), pages 17–25, New York, NY, USA, 2009. ACM.

8 A.F. Anta, C. Georgiou, T. Hadjistasi, E. Stavrakis, and A. Trigeorgi. Fragmented Object :
Boosting Concurrency of Shared Large Objects. In Proc.of SIROCCO, pages 1–18, 2021.

9 Antonio Fernández Anta, Chryssis Georgiou, Theophanis Hadjistasi, Nicolas Nicolaou, Ef-
stathios Stavrakis, and Andria Trigeorgi. Fragmented objects: Boosting concurrency of
sharedlarge objects. CoRR, abs/2102.12786, 2021. arXiv:2102.12786.

10 H. Attiya. Robust Simulation of Shared Memory: 20 Years After. Bulletin of the EATCS,
100:99–114, 2010.

11 H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message-Passing Systems.
Journal of the ACM (JACM), 42(1):124–142, 1995.

DISC 2022

https://cassandra.apache.org/_/index.html
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://github.com/atrigeorgi/fragmentedARES-data.git
https://www.dropbox.com/
https://www.emulab.net/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://arxiv.org/abs/2102.12786

25:18 Fragmented ARES: Dynamic Storage for Large Objects

12 AWS EC2. https://aws.amazon.com/ec2/.
13 Paul Black. Ratcliff pattern recognition. Dictionary of Algorithms and Data Structures, 2021.
14 A. Carpen-amarie. BlobSeer as a Data-Storage Facility for Clouds: Self-Adaptation, Integration,

Evaluation, PhD Thesis, France, 2012.
15 P. Dutta, R. Guerraoui, R.R. Levy, and A. Chakraborty. How fast can a distributed atomic

read be? In Prof. of PODC, pages 236–245, 2004.
16 Rui Fan and Nancy A. Lynch. Efficient replication of large data objects. In Faith Ellen Fich,

editor, Distributed Computing, 17th International Conference, DISC 2003, Sorrento, Italy,
October 1-3, 2003, Proceedings, volume 2848 of Lecture Notes in Computer Science, pages
75–91. Springer, 2003. doi:10.1007/978-3-540-39989-6_6.

17 E. Gafni and D. Malkhi. Elastic configuration maintenance via a parsimonious speculating
snapshot solution. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 9363:140–153, 2015. doi:
10.1007/978-3-662-48653-5_10.

18 C. Georgiou, N. Nicolaou, and A.A. Shvartsman. Fault-tolerant semifast implementations of
atomic read/write registers. Journal of Parallel and Distributed Computing, 69(1):62–79, 2009.

19 Chryssis Georgiou, Theophanis Hadjistasi, Nicolas Nicolaou, and Alexander A. Schwarzmann.
Implementing three exchange read operations for distributed atomic storage. J. Parallel
Distributed Comput., 163:97–113, 2022. doi:10.1016/j.jpdc.2022.01.024.

20 Chryssis Georgiou, Nicolas Nicolaou, and Andria Trigeorgi. Fragmented ARES: dynamic
storage for large objects. CoRR, abs/2201.13292, 2022. arXiv:2201.13292.

21 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. The
Google File System, 53(1):79–81, 2003.

22 Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. RAMBO: A robust, reconfig-
urable atomic memory service for dynamic networks. Distributed Comput., 23(4):225–272,
2010. doi:10.1007/s00446-010-0117-1.

23 Vincent Gramoli, Nicolas Nicolaou, and Alexander A. Schwarzmann. Consistent Distributed
Storage. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2021. doi:10.2200/S01069ED1V01Y202012DCT017.

24 M.P. Herlihy and J.M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

25 L. Jehl, R. Vitenberg, and H. Meling. Smartmerge: A new approach to reconfiguration
for atomic storage. In International Symposium on Distributed Computing, pages 154–169.
Springer, 2015.

26 N.A. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proc. of FTCS, pages 272–281, 1997.

27 N. Nicolaou, A.F. Anta, and C. Georgiou. Cover-ability: Consistent versioning in asynchronous,
fail-prone, message-passing environments. In Proc. of IEEE NCA 2016, pages 224–231. Institute
of Electrical and Electronics Engineers Inc., 2016. doi:10.1109/NCA.2016.7778622.

28 Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M. Konwar, Muriel
Medard, and Nancy Lynch. ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage.
ACM Transactions on Storage (TOS), 2022. Accepted. Also in arXiv:1805.03727.

29 Satadru Pan, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar,
Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap
Singh, Kestutis Patiejunas, J R Tipton, Theano Stavrinos, Ethan Katz-Bassett, and Wyatt
Lloyd. Facebook’s Tectonic Filesystem: Efficiency from Exascale, 2021. URL: https://www.
usenix.org/conference/fast21/presentation/pan.

30 M O Rabin. Fingerprinting by random polynomials, 1981. URL: http://www.xmailserver.
org/rabin.pdf.

31 Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
The Society for Industrial and Applied Mathematics, 8:300–304, 1960.

32 M.V. Steen and A.S. Tanenbaum. Distributed Systems, 3rd ed. distributed-systems.net, 2017.

https://aws.amazon.com/ec2/
https://doi.org/10.1007/978-3-540-39989-6_6
https://doi.org/10.1007/978-3-662-48653-5_10
https://doi.org/10.1007/978-3-662-48653-5_10
https://doi.org/10.1016/j.jpdc.2022.01.024
http://arxiv.org/abs/2201.13292
https://doi.org/10.1007/s00446-010-0117-1
https://doi.org/10.2200/S01069ED1V01Y202012DCT017
https://doi.org/10.1109/NCA.2016.7778622
https://arxiv.org/abs/1805.03727
https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
http://www.xmailserver.org/rabin.pdf
http://www.xmailserver.org/rabin.pdf

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:19

33 A. Tridgell and P. Mackerras. The rsync algorithm. Imagine, 1996.
34 P. Viotti and M. Vukolic. Consistency in non-transactional distributed storage systems. ACM

Computing Surveys (CSUR), 49:1–34, 2016.

A Our and Prior Work: A Comparative Table

Table 1 presents a comparison of the main characteristics of the distributed algorithms
and storage systems. As we can see, systems that use relaxed or eventual consistency have
serious issues when conflicting writes appear. Others guarantee strong consistency but have
centralized components. To our opinion the most appropriate model able to provide high
consistency, concurrency and availability seems to be the Atomic / Linearizability Consistency
model. Some previous attempts, such as LDR [16], were promising, but they seem to suffer
from communication delays and communication overheads since the whole object is still
transmitted in every message exchanged between the clients and the replica servers. Also,
the table shows well-known algorithms for reconfigurable atomic storage.

B Correctness of EC-DAPopt

To prove the correctness of EC-DAPopt, we need to show that it is safe, i.e., it ensures the
necessary Property 1, and live, i.e., it allows each operation to terminate. In the following
proof, we will not refer to the get-tag access primitive that the EC-DAP algorithm uses [28],
as the optimization has no effect on this operation, so it should preserve safety as shown
in [28].

For the following proofs we fix the configuration to c as it suffices that the DAPs preserve
Property 1 in any single configuration. Also we assume an [n, k] MDS code, |c.Servers| = n

of which no more than n−k
2 may crash, and that δ is the maximum number of put-data

operations concurrent with any get-data operation.
We first prove Property 1-C2 as it is later being used to prove Property 1-C1.

▶ Lemma 14 (C2). Let ξ be an execution of an algorithm A that uses the EC-DAPopt.
If ϕ is a c.get-data() that returns ⟨τπ, vπ⟩ ∈ T × V, then there exists π such that π is a
c.put-data(⟨τπ, vπ⟩) and ϕ did not complete before the invocation of π. If no such π exists in
ξ, then (τπ, vπ) is equal to (t0, v0).

Proof. It is clear that the proof of property C2 of EC-DAPopt is identical with that of
EC-DAP. This happens as the initial value of the List variable in each servers s in S is
still {(t0, Φs(vπ))}, and the new tags are still added to the List only via put-data operations.
Thus, each server during a get-data operation includes only written tag-value pairs from the
List to the List′. ◀

▶ Lemma 15 (C1). Let ξ be an execution of an algorithm A that uses the EC-DAPopt.
If ϕ is c.put-data(⟨τϕ, vϕ⟩), for c ∈ C, ⟨τϕ, vϕ⟩ ∈ T × V, and π is c.get-data() that returns
⟨τπ, vπ⟩ ∈ T × V and ϕ → π in ξ, then τπ ≥ τϕ.

Proof. Let pϕ and pπ denote the processes that invoke ϕ and π in ξ. Let Sϕ ⊂ S denote the
set of

⌈
n+k

2
⌉

servers that responds to pϕ, during ϕ, and by Sπ the set of
⌈

n+k
2

⌉
servers that

responds to pπ, during π.
Per Alg. 5:13, every server s ∈ Sϕ, inserts the tag-value pair received in its local List.

Note that once a tag is added to List, its associated tag-value pair will be removed only when
the List exceeds the length (δ + 1) and the tag is the smallest in the List (Alg. 5:14–17).

DISC 2022

25:20 Fragmented ARES: Dynamic Storage for Large Objects

Table 1 Comparative table of distributed algorithms and storage systems.

Algorithm/
System

Data
scalability

Data
access
Concurrency

Consistency
guarantees

Versioning Data
Striping

Non-
blocking
Reconfigu-
ration

GFS [21] YES concurrent
appends

relaxed YES YES YES
(short
downtime)

HDFS [6] YES files re-
strict one
writer at a
time

strong
(centralized)

NO YES YES

Cassandra [1] YES YES tunable
(default=
eventual)

YES NO NO

Dropbox [4] YES creates
conflicting
copies

eventual YES YES N/A

Colossus [2] YES concurrent
appends

relaxed YES YES YES

Blobseer [14] YES YES strong
(centralized)

YES YES YES

Tectonic [29] YES files re-
strict one
writer at a
time

strong YES YES YES

CoABD [27] NO YES strong YES NO NO
CoBFS [8] YES YES strong YES YES NO
RAMBO [22] NO NO strong NO NO YES
DynaStore
[7]

NO NO strong NO NO YES

SM-Store
[25]

NO NO strong NO NO YES

SpSnStore [17] NO NO strong NO NO YES
AresABD [28] NO NO strong NO NO YES
AresEC [28] NO NO strong NO YES YES
CoAresABD
[our work]

NO NO strong YES NO YES

CoAresEC
[our work]

NO NO strong YES YES YES

CoAresABDF
[our work]

YES YES strong YES YES YES

CoAresECF

[our work]

YES YES strong YES YES
(2 striping
methods)

YES

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:21

When replying to π, each server in Sπ includes a tag in List′, only if the tag is larger or
equal to the tag associated to the last value decoded by pπ (lines Alg. 5:6–9). Notice that as
|Sϕ| = |Sπ| =

⌈
n+k

2
⌉
, the servers in |Sϕ ∩ Sπ| ≥ k reply to both π and ϕ. So there are two

cases to examine: (a) the pair ⟨τϕ, vϕ⟩ ∈ Lists′ of at least k servers Sϕ ∩ Sπ replied to π, and
(b) the ⟨τϕ, vϕ⟩ appeared in fewer than k servers in Sπ.
Case a: In the first case, since π discovered τϕ in at least k servers it follows by the algorithm

that the value associated with τϕ will be decodable. Hence tdec
max ≥ τϕ and τπ ≥ τϕ.

Case b: In this case τϕ was discovered in less than k servers in Sπ. Let τℓ denote the last
tag returned by pπ. We can break this case in two subcases: (i) τℓ > τϕ, and (ii) τℓ ≤ τϕ.

In case (i), no s ∈ Sπ included τϕ in List′
s before replying to π. By Lemma 14, the

c.put-data(⟨τℓ, ∗⟩) was invoked before the completion of the ∗.get-data() operation from pπ

that returned τℓ. It is also true that pπ discovered ⟨τℓ, ∗⟩ in more than k servers since it
managed to decode the value. Therefore, in this case tdec

max ≥ τℓ and thus τπ > τϕ.
In case (ii), a server s ∈ Sϕ ∩ Sπ will not include τϕ iff |Lists′

s| = δ + 1, and therefore the
local List of s removed τϕ as the smallest tag in the list. According to our assumption though,
no more than δ put-data operations may be concurrent with a get-data operation. Thus, at
least one of the put-data operations that wrote a tag τ ′ ∈ Lists′

s must have completed before
π. Since τ ′ is also written in |S′| = n+k

2 servers then |Sπ ∩ S′| ≥ k and hence π will be able
to decode the value associated to τ ′, and hence tdec

max ≥ τℓ and τπ > τϕ, completing the proof
of this lemma. ◀

▶ Theorem 16 (Safety). Let ξ be an execution of an algorithm A that contains a set Π of
complete get-data and put-data operations of Algorithm 4. Then every pair of operations
ϕ, π ∈ Π satisfy Property 1.

Proof. Follows directly from Lemmas 14 and 15. ◀

Liveness requires that any put-data and get-data operation defined by EC-DAPopt
terminates. The following theorem captures the main result of this section.

▶ Theorem 17 (Liveness). Let ξ be an execution of an algorithm A that utilises the EC-
DAPopt. Then any put-data or get-data operation π invoked in ξ will eventually terminate.

Proof. Given that no more than n−k
2 servers may fail, then from Algorithm 4 (lines Alg. 4:21–

29), it is easy to see that there are at least n+k
2 servers that remain correct and reply to the

put-data operation. Thus, any put-data operation completes.
Now we prove the liveness property of any get-data operation π. Let pω and pπ be

the processes that invoke the put-data operation ω and get-data operation π. Let Sω be
the set of

⌈
n+k

2
⌉

servers that responds to pω, in the put-data operations, in ω. Let Sπ be
the set of

⌈
n+k

2
⌉

servers that responds to pπ during the get-data step of π. Note that in
ξ at the point execution T1, just before the execution of π, none of the write operations
in Λ is complete. Let T2 denote the earliest point of time when pπ receives all the

⌈
n+k

2
⌉

responses. Also, the set Λ includes all the put-data operations that starts before T2 such that
tag(λ) > tag(ω)}. Observe that, by algorithm design, the coded-elements corresponding to
tω are garbage-collected from the List variable of a server only if more than δ higher tags
are introduced by subsequent writes into the server. Since the number of concurrent writes
|Λ|, s.t. δ > |Λ| the corresponding value of tag tω is not garbage collected in ξ, at least until
execution point T2 in any of the servers in Sω. Therefore, during the execution fragment
between the execution points T1 and T2 of the execution ξ, the tag and coded-element pair
is present in the List variable of every server in Sω that is active. As a result, the tag

DISC 2022

25:22 Fragmented ARES: Dynamic Storage for Large Objects

(a) (b) (c)

Figure 4 Emulab results for Scalability experiments.

and coded-element pairs, (tω, Φs(vω)) exists in the List received from any s ∈ Sω ∩ Sπ

during operation π. Note that since |Sω| = |Sπ| =
⌈

n+k
2

⌉
hence |Sω ∩ Sπ| ≥ k and hence

tω ∈ Tags≥k
dec, the set of decode-able tag, i.e., the value vω can be decoded by pπ in π, which

demonstrates that Tags≥k
dec ̸= ∅.

Next we want to argue that tdec
max is the maximum tag that π discovers via a contradiction:

we assume a tag tmax, which is the maximum tag π discovers, but it is not decode-able,
i.e., tmax ̸∈ Tags≥k

dec and tmax > tdec
max. Let Sk

π ⊂ S be any subset of k servers that responds
with tmax in their List′ variables to pπ. Note that since k > n/3 hence |Sω ∩ Sk

π| ≥⌈
n+k

2
⌉

+
⌈

n+1
3

⌉
≥ 1, i.e., Sω ∩ Sk

π ̸= ∅. Then tmax must be in some servers in Sω at T2 and
since tmax > tdec

max ≥ tω. Now since |Λ| < δ hence (tmax, Φs(vmax)) cannot be removed from
any server at T2 because there are not enough concurrent write operations (i.e., writes in Λ)
to garbage-collect the coded-elements corresponding to tag tmax. Also since π cannot have a
local tag larger than tmax, according to the lines Alg. 5:6–9 each server in Sπ includes the
tmax in its replies. In that case, tmax must be in Tag≥k

dec, a contradiction. ◀

C Additional Experimental Results

C.1 Performance VS. Scalability of Nodes Under Concurrency

This scenario is constructed to compare the read, write and recon latency of the algorithms,
as the number of service participants increases.

Without Reconfiguration. In both Emulab and AWS, we varied the number of readers |R|
and the number of writers |W| from 5 to 25, while the number of servers |S| varies from 3 to
11. In AWS, the clients and servers are distributed in a round-robin fashion. We calculate all
possible combinations of readers, writers and servers where the number of readers or writers
is kept to 5. In total, each writer performs 20 writes and each reader 20 reads. The size of
the file used is 4 MB. The maximum, minimum and average block sizes were set to 1 MB,
512 kB and 512 kB respectively. To match the fault-tolerance of ABD-based algorithms, we
used a different parity for EC-based algorithms (except in the case of 3 servers to avoid
replication). With this, the EC client has to wait for responses from a larger quorums. The
parity value of the EC-based algorithms is set to m = 1 for |S| = 3, m = 2 for |S| = 5,
m = 3 for |S| = 7, m = 4 for |S| = 9 and m = 5 for |S| = 11.

C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:23

Figure 5 Emulab results when Reconfiguring
to the Same DAPs.

Figure 6 Emulab results when Reconfiguring
DAPs Randomly.

Results. The results obtained in this scenario are presented in Fig. 4. As expected,
CoAresEC has the lowest update latency among non-fragmented algorithms because of the
striping level. Each object is divided into k encoded fragments that reduce the communication
latency (since it transfers less data over the network) and the storage utilization. The
fragmented algorithms perform significantly better update latency than the non-fragmented
ones, even when the number of writers increases (see Fig. 4(a)).This is because the non-
fragmented writer updates the whole file, while each fragmented writer updates only a
subset of blocks. We observe that the update operation latency in algorithms CoABD
and CoAresABD increases as the number of servers increases, while the operation latency
of CoAresEC decreases or stays the same (Figs. 4(c)) That is because when increasing
the number of servers, the quorum size grows but the message size decreases. Therefore,
while both non-fragmented ABD-based algorithms and CoAresEC waits for responses the
decreased message size. When going from 7 to 9 servers, we observe a decrease in latency.
This is due the choice of parity value (parameter of EC-based algorithms) that we select
for 7 servers. Due to the block allocation strategy in fragment algorithms, more data are
successfully written (cf. Fig. 4(a), 4(b)), explaining the slower CoAresF read operation (cf.
Figs. 4(b)). The corresponding AWS findings show similar trends.

With Reconfiguration. We built four extra experiments in Emulab to verify the correctness
of the variants of Ares when reconfigurations coexist with read/write operations. The
experiments differ in the way the reconfigurer works; three experiments use |S| = 11
and are based on the way the reconfigurer chooses the next storage algorithm (i.e., two
reconfiguring to the same DAP and one reconfiguring to a random DAP); one in which the
reconfigurer changes the storage algorithm and the quorum of servers. In the latter scenario
the reconfigurer chooses randomly between [3, 5, 7, 9, 11] servers. All experiments run on
CoAres and CoAresF use one reconfigurer.

Results. Due to space limit, we report only one of the experiments (all results can be found
in [20]). As we mentioned earlier, our choice of k minimizes the coded fragment size but
introduces bigger quorums and thus larger communication overhead. As a result, in smaller
file sizes, Ares (either fragmented or not) may not benefit so much from the coding, bringing
the delays of the CoAresEC and CoAresABD closer to each other (cf. Fig. 5). However,
the read latency of CoAresECF is significant lower than of CoAresABDF. This is because
the CoAresECF takes less time to transfer the blocks to the new configuration.

DISC 2022

25:24 Fragmented ARES: Dynamic Storage for Large Objects

(a) (b) (c)

Figure 7 AWS results for Min/Avg/Max Block Sizes’ experiments.

C.2 Performance VS. Block Sizes
This scenario evaluates how the block size impacts the latencies when having a rather large
file size. We varied the minimum and average bsizes from 2 MB to 64 MB and the maximum
bsize from 4 MB to 1 GB. In total, each writer performs 20 writes and each reader 20 reads.
The size of the initial file used was set to 512 MB.

Emulab parameters: |W| = 5, |R| = 5, |S| = 11. For EC-based algorithms, m = 1 and the
quorum size is 11. For ABD-based algorithms we used quorums of size 4.

AWS parameters: |W| = 1, |R| = 1, |S| = 6. For EC-based algorithms, m = 1 and the
quorum size is 6. For ABD-based algorithms we used quorums of size 4.

Results. As all examined block sizes are enough to fit the text additions no new blocks are
created. All the algorithms achieve the maximal update latency as the block size gets larger
(Fig 7(a)). CoAresECF has the lower impact as block size increases mainly due to the extra
level of striping. Similar behaviour has the read latency in Emulab. However, in real time
conditions of AWS, the read latency of a higher number of relatively large blocks (Fig. 7(c))
has a significant impact on overall latency, resulting in a larger read latency (Fig. 7(b)).

Fast Distributed Vertex Splitting with Applications
Magnús M. Halldórsson #

Reykjavik University, Iceland

Yannic Maus #

TU Graz, Austria

Alexandre Nolin #

Reykjavik University, Iceland1

CISPA, Saarbrücken, Germany

Abstract
We present poly log log n-round randomized distributed algorithms to compute vertex splittings, a
partition of the vertices of a graph into k parts such that a node of degree d(u) has ≈ d(u)/k neighbors
in each part. Our techniques can be seen as the first progress towards general poly log log n-round
algorithms for the Lovász Local Lemma.

As the main application of our result, we obtain a randomized poly log log n-round CONGEST
algorithm for (1 + ε)∆-edge coloring n-node graphs of sufficiently large constant maximum degree ∆,
for any ε > 0. Further, our results improve the computation of defective colorings and certain tight
list coloring problems. All the results improve the state-of-the-art round complexity exponentially,
even in the LOCAL model.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Graph problems, Edge coloring, List coloring, Lovász local lemma, LOCAL
model, CONGEST model, Distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.26

Related Version Full Version: https://arxiv.org/abs/2208.08119

1 Introduction

Consider the following fundamental load-balancing problem: Partition the vertices of an
n-node degree-∆ graph into two parts so that each node has at most (1 + ε)∆/2 neighbors
in each part, where ε > 0 is an arbitrary given constant. When ∆ is large enough (say,
superlogarithmic), such a 2-splitting is trivially achieved w.h.p. without communication. Can
it be solved fast distributively for arbitrary ∆?

The 2-splitting problem can be formulated as an instance of the Lovász local lemma (LLL).
Consider some “bad” events over a probability space. The celebrated Lovász local lemma
states that if the events satisfy certain limited dependencies, then there is a positive probability
that none of them happens [16]. In the 2-splitting problem, the probability space is spanned
by each node picking a part uniformly at random and there is a bad event for each node that
occurs when too many of its neighbors are in any one of the parts. In the constructive version
of the LLL, the objective is to also compute an assignment avoiding all bad events, and using
known distributed LLL algorithms, it can be solved in O(log n) distributed rounds [41, 13].
For small ∆, there is a faster O(∆2 + poly log log n)-round algorithm [18], but it does not
improve the case of arbitrary ∆. This leaves a major open problem: Can we close the gap
between the O(log n) upper bound and Ω(log∆ log n) lower bound [2]? Clarifying this for
2-splitting would be the first step towards resolving the complexity of general distributed
LLLs.

1 Alexandre Nolin changed affiliation from Reykjavik University to CISPA after this work was completed.

© Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 26; pp. 26:1–26:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmh@ru.is
https://orcid.org/0000-0002-5774-8437
mailto:yannic.maus@ist.tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:alexandre.nolin@cispa.de
https://orcid.org/0000-0002-3952-0586
https://doi.org/10.4230/LIPIcs.DISC.2022.26
https://arxiv.org/abs/2208.08119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Fast Distributed Vertex Splitting with Applications

Our central technical result is to answer this question affirmatively, even in the bandwidth-
constrained CONGEST model, by giving a poly log log n-round algorithms for 2-splitting and
various other vertex- and edge splitting problems. Note that these are also exponential
improvements for the LOCAL model. Such splitting problems are pervasive in distributed
graph algorithmics [27, 28, 17, 19, 25, 23, 31, 2]. They can be viewed as questions of rounding
and discrepancy, and they are frequently the major building block in solving various classic
problems when using a divide-and-conquer approach.

We illustrate the reach of the techniques by giving much faster algorithms for two classic
coloring problems.

▶ Theorem 1 (Edge coloring). For any constant ε > 0, there is a poly log log n-round
randomized CONGEST algorithm to compute a (1 + ε)∆-edge coloring on any graph with
maximum degree ∆ ≥ ∆0 where ∆0 is a sufficiently large constant.

Notice that as a function of n alone, previous methods use at least Ω(log n) time, even
in the LOCAL model. The problem has a Ω(log∆ log n) lower bound [10]. Previously,
poly log log n-round algorithms were only known for 2∆ − 1-edge coloring [15, 29], and
O(log∆ n + poly log log n)-round algorithms for using any smaller number of colors [14, 42,
13, 15, 10], even in the LOCAL model. Tackling this problem in CONGEST is non-trivial as it
depends on LLL, which only has efficient known CONGEST solutions for the constant-degree
case [39].

In the second application, the (L, T)-list coloring problem, each node of a graph is given
a list of at least L colors such that any color in its list appears in at most T neighbors’ lists.
We ask for a valid node coloring where each node receives a color from its list, with the ratio
L/T as small as possible. Observe that the degree of a node can be much larger than its list
of colors, and thus greedy approaches are insufficient, even centrally.

▶ Theorem 2 (List coloring). There is a poly log log n-round randomized LOCAL algorithm
for the list coloring problem, for any T and L with L ≥ (1 + δ)T , for any δ > 0 and any
∆ ≥ ∆0, for some absolute constant ∆0.

Previous algorithms either used O(log n)-rounds [13] or required L/T ≥ C0 for a (large)
constant C0 [18]. See Appendix B for more related work on list coloring.

1.1 Contributions on Splitting problems
The main ingredient for both of the above applications is our efficient method to split graphs
into small degree subgraphs. A k-vertex splitting problem with discrepancy z is a partition
of the vertex set into k parts V1, . . . , Vk such that, for each i ∈ [k], each node v ∈ V has
d(v)/k ± z neighbors in Vi. Intuitively, splitting a graph into k parts with a discrepancy
of ε∆/k is useful to solve various problems that are easier on low-degree graphs. These
problems must be resilient to imperfect splits, which is ensured in coloring problems by
having a surplus of colors.

A Chernoff bound argument shows that such splittings are quite easy for high degrees
(∆ ≫ k log n). We obtain the following theorem:

▶ Theorem 3. There exists a universal constant c1 > 0 s.t.: For any ε > 0, maximum degree
∆ ≤ poly log n, and k ≤ c1 · (ε4∆/ ln ∆), there is a distributed randomized LOCAL algorithm
to compute a k-vertex splitting with discrepancy ε∆/k in O(1/ε) + poly log log n rounds.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:3

The poly log log n term in the runtime of Theorem 3 stems from solving LLL instances
of size N = poly log n deterministically. Any improvement on such algorithms immediately
carries over to our result. However, there is a lower bound of Ω(log∆ log n) rounds for
randomized and Ω(log∆ n) rounds for deterministic algorithms for the respective splitting
problems (and hence also for the LLL problem) [2]. These lower bounds even hold for a weak
variant of the vertex splitting problem, in which each node only needs to have one neighbor
of each color class.

Variants. Our main applications require subtle variations of the splitting problem. To this
end, we solve a more general problem, where we separate the two functions of each node: as
a variable (which part is it assigned to) and as an event (whether its neighborhood is evenly
split). In the bipartite k-vertex splitting problem with discrepancy z, we have a set V L of
nodes for the events and a set V R of nodes for the variables, with an edge between every
dependent variable-edge pair. We wish to partition V R into k parts such that each event
vertex u ∈ V L has d(u)/k ± z neighbors in each part.

▶ Theorem 4. There exists a universal constant c2 > 0 s.t.: For any ε > 0, maximum
degree ∆ ≤ poly log n and k ≤ c2 · (ε4∆L/ ln ∆), there is a distributed randomized LOCAL
algorithm to compute a bipartite k-vertex splitting problem with discrepancy ε∆L/k in O(1/ε)+
poly log log n rounds.

We also devise CONGEST versions of Theorems 3 and 4 that are essential to our edge
coloring result in CONGEST. The formal statement appears in Theorem 20 and requires k

to be a O(log2 log n) factor smaller than in Theorems 3 and 4.
In a d-defective c-coloring, each of the c color classes induces a graph of maximum

degree d. Defective colorings are frequently used in divide-and-conquer approaches to other
coloring problems [34, 3] and they have been studied in several works, e.g., [34, 3, 33, 26, 37],
usually stating variations of deterministic algorithms for computing d-defective coloring with
O((∆/d)2) colors. As any vertex splitting is also a defective coloring, Theorem 3 implies a
poly log log n-round algorithm for (1 + ε)∆/k-defective k-coloring. Previous algorithms for
(1 + ε)∆/k defective colorings either used O(k2) colors [34, 37] or a logarithmic number of
rounds through solving the respective LLL problem [13].

1.2 Challenges to Fast and Efficient Splitting
Known approaches to splitting (or any of the other problems we consider) all build on the
Lovász Local Lemma (LLL) for the low-degree case (∆ < log n). This hits a wall, since there
are no strongly sublogarithmic time distributed LLL algorithms known, in spite of intensive
efforts [12, 10].

There are two known approaches to distributed LLL algorithms. The breakthrough
Moser-Tardos method [41, 13] is based on stochastic local search, which appears to inherently
require logarithmic rounds. The other approach is to use the shattering technique, solving
most of the problem quickly, leading to small remaining “shattered” subgraphs for which we
can afford to apply slower techniques. This was introduced by Beck [5] in the centralized
setting and Alon [1] in the parallel setting.

Fischer and Ghaffari [18] proposed a shattering-based distributed algorithm, modeled on an
earlier sequential algorithm of Molloy and Reed [40]. Using recent network decompositions [46],
their method runs in O(∆2 + poly log log n) time, which is fast for low-degree graphs (∆ ≤
poly log log n) but doesn’t improve the general case. To understand the issue, let us examine
more closely the reasoning behind the method of [18] in the context of 2-splitting.

DISC 2022

26:4 Fast Distributed Vertex Splitting with Applications

A random assignment (of the nodes into the parts) is easily seen to satisfy the lion’s
share of the vertices, where “satisfied” means having discrepancy within the stated bound.
Each node is so likely to be satisfied that the remaining subgraph is indeed shattered: the
connected components induced by the set of unsatisfied nodes are of small size (assuming
∆ ≤ poly log n, which is the hard case). One natural approach is to undo the assignment
to the unsatisfied nodes, and then solve the problem separately on the unsatisfied nodes.
However, this causes new problems: Nodes that were previously satisfied may become hard
to satisfy. For instance, suppose a node v has neighbors u1, . . . , ut assigned to the first part
and nodes ut+1, . . . , u2t assigned to the second part, for a perfect split. But it is now possible
that all of u1, u2, . . . , ut are retracted, having their assignment undone. Then, satisfying v

now requires assigning its neighbors back to the second part, which leaves little flexibility,
and there may not be a valid solution.

Fischer and Ghaffari [18] (and [40]) fix this by sampling the random variables (i.e., which
part each node is assigned to) only gradually, i.e., at most one variable per event is sampled
simultaneously. Along with “freezing” (or deferring) certain nodes, this ensures that no vertex
experiences too heavy a setback caused by retractions. The gradual sampling is achieved by
first computing a distance-2 coloring of the graph using O(∆2) colors, and then sampling only
the nodes of a single color class at a time. The downside is that this unavoidably requires
time complexity at least ∆2.

A different type of challenge appears when aiming for bandwidth-efficient algorithms. Even
if one drastically improves upon the sketched O(∆2) “pre-shattering” procedure from [18], the
deterministic procedure used in the “post-shattering” phase of their algorithm to complete
the obtained partial solution makes heavy use of the unlimited bandwidth of the LOCAL
model. In fact, while both types of randomized distributed LLL methodologies [38, 13] are
themselves frugal in terms of bandwidth, known deterministic LLL algorithms are based on
bandwidth-hungry generic derandomization results [27, 23, 46].

1.3 Our Methods in a Nutshell
Fast splitting. Our approach is to sample gradually – like in [40, 18] – but faster. We group
the variables (representing the part assigned to a node) into buckets and then sample the
variables one bucket at a time. This is crucially done so that the impact of any given bucket
on any given event is limited (namely, the number of neighbors of a node in any given bucket
is upper bounded), so that we can recover from bad probabilistic assignments. Intuitively,
a node might have to “give up” on all of its neighbors inside a bucket, i.e., it may be that
their assignment is chosen adversarially. As we can guarantee that each event has to give up
on at most one bucket, it turns out to suffice to use a constant number of buckets to get a
good split, or more generally O(1/ε) buckets to get (1 + ϵ)-approximate split. Generating
this bucket assignment is itself a splitting problem (that we term a q-divide) requiring the
use of LLL, but one with less moving parts and a much simpler analysis in LOCAL. In the
CONGEST model, it still requires a novel post-shattering phase.

Post-shattering in CONGEST. We solve the post-shattering phase as a sequence of successive
relaxations, one for each disjoint group of clusters of the network decomposition. In effect,
we solve a new LLL for each cluster group, with progressively stricter criteria (due to
the accumulated discrepancy). Each relaxation is solved by a randomized, rather than a
deterministic, algorithm. Namely, we run O(log n) independent instances of the Moser-Tardos
process on the cluster, and since each succeeds with constant probability, we achieve at least
one valid solution, w.h.p. This parallel instance technique was introduced by Ghaffari [21]
for problems like ∆ + 1-coloring, a simpler setting where the problem is always solvable on
clusters processed later, regardless of how the earlier clusters are solved.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:5

In our edge-coloring application, we use splitting to whittle down the degree parameter
to a manageable size. Once degrees are down to poly log log n, we can simulate the known
algorithms from the LOCAL model, including derandomization techniques, to solve them also
in poly log log n CONGEST rounds.

For our list coloring results, we use our splitting procedure to first reduce the parameter
L and T to poly log log n while keeping the initial ratio L/T ≥ (1 + δ) almost intact. Then,
in additional color pruning steps we amplify the ratio until it is larger than a sufficiently
large constant, at which point the problem can be solved efficiently via a known LLL-based
method [18].

1.4 Further Related Work
The only known LLL algorithm in the CONGEST model is by Maus and Uitto [39] who
provide a poly log log n-round algorithm for LLLs with a polynomial criterion and constant
dependency degree. In this work, we observe that their runtime remains poly log log n, even
if the dependency degree is as large as poly log log n, see Lemma 21 for details.

Edge coloring. Dubhashi, Grable, and Panconesi [14] gave a distributed algorithm for
(1 + ϵ)∆-edge coloring based on the Rödl nibble method. Their results only apply to large
values of ∆. Elkin, Pettie, and Su [15] extended the reach to arbitrary ∆ by reduction to
distributed LLL, and obtained improved complexity of O(log∗ ∆ · ⌈log n/∆1−o(1)⌉). Chang
et al. [10] improved the complexity to O(log∆ n + log3+o(1) log n) for ε−1 ∈ O(1), and to
O(log n) for ε−1 ∈ Õ(

√
∆).

There are clear tradeoffs between the number of colors and the time complexity. Comput-
ing (2∆ − 1)-edge coloring can be achieved in poly log log n rounds [15] (even in CONGEST
[29]), and even in O(log∗ n) rounds for ∆ ≥ log2 n [15, 29]). Chang et al. [10] showed via the
round elimination method that computing a (2∆ − 2)-edge coloring requires Ω(log∆ log n)
rounds. A poly(∆, log n)-round algorithm is known for ∆ + 2-coloring [47] and very recently
for ∆ + 1-coloring [6]. Chang et al. [10] showed that an (possibly randomized) algorithm for
∆ + 1-coloring that can start with any partial coloring requires Ω(∆ log n) rounds. They also
showed that (1 + log ∆/

√
log ∆)∆-edge coloring can be found in O(log n) rounds.

Splitting. Ghaffari and Su [28] gave three LOCAL algorithms for splitting the edges of a
graph into two parts such that each node has at most (1 + ε)∆/2 incident edges in each part,
rounded up for their randomized result.

Their deterministic algorithms achieve complexity O(ε−1∆2 log5 n) when ∆ ≥ c ·ε−1 log n,
and complexity O(ε−3 log7 n) when ∆ ≥ c · ε−2 log n, where c is a suitable absolute constant.
Their randomized algorithm solves the problem for all ∆ in O(ε−2∆2 log4 n) rounds. These
results were later improved by [25] to O(ε−1−o(1) log n) rounds for deterministic algorithms
and O(ε−1−o(1) log log n) for randomized algorithms, with stronger guarantees on the split.
However, it is unclear whether these edge-splitting algorithms can be extended to the
CONGEST model, as the algorithms communicate simultaneously over various long paths in
the network. The importance of splitting problems for the area was highlighted in [27] and
[2]. The latter gave various direct reductions of the maximal independent set problem and
coloring problems to splitting problems. In addition, they studied several weak variants of
the splitting problem, e.g., splitting into two parts such that each node needs to have at least
one neighbors in each part. They show that even these have a Ω(log∆ log n) lower bound
for randomized algorithms and Ω(log∆ n) for deterministic algorithms. They also obtain a
poly log log n-round algorithm for the weak variant in the special case of regular graphs.

DISC 2022

26:6 Fast Distributed Vertex Splitting with Applications

1.5 Outline
In Section 2, we define the models, the setup for the Lovász Local Lemma and introduce
notation. Section 3 contains our algorithm for the q-divide that does not just serve as a
warm-up for our more involved splitting algorithms, but is also used as a subroutine in the
latter. Our main splitting algorithm is presented in Section 4 for LOCAL and in Section 5 for
CONGEST. In Section 6, we present our splitting applications for edge coloring in LOCAL,
and in Appendix A for CONGEST. In Appendix B, we provide more details on our second
application, i.e., list coloring. The appendix also contains our results on bipartite splitting
(Theorem 4). Further details, and the missing full proofs appear in the full version [30].

2 Models, Lovász Local Lemma, Shattering, and Notation

LOCAL and CONGEST model [36, 43]. In the LOCAL model, a communication network is
abstracted as an n-node graph with maximum degree ∆. Nodes communicate in synchronous
rounds, in each of which, a node can perform arbitrary local computations and send messages
of arbitrary size to each of its neighbors. Initially, each node is unaware of the network
topology and at the end of the computation a node has to output its own part of the solution,
e.g., the colors of its incident edges in an edge coloring problem. The main complexity
measure is the number of rounds until each node has produced an output. The CONGEST
model is identical, with the additional restriction that messages contain O(log n) bits.

Distributed Lovász Local Lemma. There are random variables Var and (bad) events X at
the nodes. Each event X depends on a subset Var(X) of the random variables. Let p(X)
denote the probability that event X occurs. As usual, we want to find an assignment to the
variables so that none of the events occur. We form the dependency graph H = (X , EH) on
the events, where two events X1, X2 ∈ X are adjacent if they depend on a common variable,
i.e., if Var(X1) ∩ Var(X2) ̸= ∅.

In a distributed setting, we assume that each variable and each event is associated with
some node of the communication graph G. For most LLL algorithms it is essential that the
dependency graph can be simulated efficiently in the communication network. In the LOCAL
model, one round of communication in H can be simulated in t rounds if the variables Var(X)
upon which the event X depends are within distance t in G of the node where X resides.
Let d be the maximum degree of H, while ∆ is the max degree of G.

Normally, an LLL is specified in terms of a function f , such that p(X)f(d) ≤ 1. The
original specification of Lovász has f(d) = e · d and ensures the existence of an assignment of
the variables such that all bad events are avoided. In the study of distributed LLL algorithms,
the functions d2 [13], c · d8 [18] (both polynomial criteria), and 2d (exponential criterion)
[7, 9, 8] have appeared in the literature.

▶ Example 5 (k-vertex splitting with discrepancy 6∆/k is an LLL). Let each node in the graph
pick one of k parts, V1, . . . , Vk, uniformly at random. Introduce a bad event Xv for each node
v ∈ V that holds if the number of neighbors of v within any one part deviates from the expected
value by more than 6∆/k, i.e., if |N(v) ∩ Vi| ̸= d(v)/k ± 6∆/k, for some i ∈ [k]. Formally,
there is one variable for each vertex indicating the part that the vertex joins. As the event
Xv shares variables only with the events in its 2-hop neighborhood, the dependency degree
of the LLL is d ≤ ∆2. A Chernoff bound shows that Pr(Xv) ≤ exp(−Ω(∆)) = exp(−Ω(

√
d)).

Hence, this splitting problem is an LLL with exponential criterion, if ∆ is above an absolute
constant.

The constant 6 is chosen somewhat arbitrarily in order to make the Chernoff bound-based
claim simple. In the following sections, we aim at splittings with discrepancy (1 + ε)∆/k.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:7

Shattering. Our algorithms make use of the influential shattering technique2 in which one
first uses a randomized algorithm to set the values of some of the variables such that unsolved
parts of the graph induce small connected components, which are solved in the post-shattering
phase. The following lemma shows that the remaining components are indeed small.

▶ Lemma 6 (Lemma 4.1 of [11]). Consider a randomized procedure that generates a subset
Bad ⊆ V of vertices. Suppose that for each v ∈ V , we have Pr[v ∈ Bad] ≤ ∆−3c, and the
events v ∈ Bad and u ∈ Bad are determined by non-overlapping sets of independent random
variables for nodes with distance larger than 2c. Then, w.p. 1 − n−Ω(c′), each connected
component in G[Bad] has size at most (c′/c)∆2c log∆ n.

The following standard result solves these small components efficiently.

▶ Lemma 7 ([46]). There is a deterministic LOCAL LLL algorithm with polynomial criterion
that runs in poly log N rounds on instances of size N , even with an ID space of size exponential
in N .

Proof Sketch. The result follows with the derandomization of the distributed version of
Moser-Tardos [41] via the network decomposition by Rozhon and Ghaffari [46], as explained
in [46]. Note that the exponential ID space is not an obstacle in the LOCAL model as it can
be circumvented by first computing a Θ(T)-distance coloring with poly N colors, e.g., by
using Linial’s coloring algorithm [35] if the algorithm runs in T rounds. ◀

Notation and concentration bounds. Given a graph G = (V, E) and a subset S ⊆ V

the induced graph G[S] is the graph with vertex set S that contains all edges of E with
both endpoints in S. Similarly, for an edge set F ⊆ E, the induced graph G[F] is the
graph with edge set F that contains all vertices that appear in an edge of F . We denote
[n] = {0, . . . , n − 1}. We use the following standard concentration bounds (see, e.g., [14]).

▶ Lemma 8 (Chernoff bounds,[14]). Let {Xi}r
i=1 be a family of independent binary random

variables with Pr[Xi = 1] = qi, and let X =
∑r

i=1 Xi. For any δ > 0, Pr[|X − E[X]| ≥
δ E[X]] ≤ 2 exp(− min(δ, δ2)E[X]/3).

▶ Corollary 9. With X of the same form as in Lemma 8, ∀µ, z s.t. z ≤ µ and E[X] ≤ µ,
Pr[|X − E[X]| ≥ z] ≤ 2 exp(−z2/(3µ)).

3 Warm-Up: Computing q-divides

For an integer q ≥ 1, a q-divide of a graph is a partition of its vertices into q parts (“buckets”)
V1, . . . , Vq such that each vertex has at most 8∆/q neighbors in each bucket. We show:

▶ Theorem 10. For any ∆ ≤ poly log n and q ∈ [1, (1/6)∆/ ln ∆], there is a LOCAL algorithm
to compute a q-divide in poly log log n-rounds.

We use q-divide as a subroutine in our k-splitting algorithm of Theorem 3. Additionally,
the techniques to compute a q-divide serve as a warm up for the more involved algorithm
for vertex splitting. There are two crucial differences between a (tight) k-splitting and a

2 The technique has been used extensively for efficient algorithms for various local distributed graph
problems and in particular symmetry breaking problems such as sinkless orientation [28], ∆ + 1-vertex
coloring [11], ∆-coloring [24], Maximal Independent Set [20], Maximal Matching [4], (2∆ − 1)-Edge-
Coloring [4], and also for general LLL algorithms on small degree graphs [18].

DISC 2022

26:8 Fast Distributed Vertex Splitting with Applications

q-divide: (1) A splitting guarantees both the minimum and maximum number of neighbors
of a node inside each part, while a q-divide gives only an upper bound, (2) the upper bounds
asked for by a q-divide are loose, i.e., we deviate by a factor 8 from a perfect partition, while
a splitting is within a (1 ± ε)-factor.

A q-divide is guaranteed to exist by LLL when q ∈ O(∆/ log ∆). A q-divide can also be
defined as a 8∆/q-defective 8∆/q-frugal q-coloring, where x-frugal means that each color
appears no more than x times in each neighborhood.
▶ Remark 11. For ∆/q = Ω(log n), there is a trivial zero round CONGEST algorithm for
q-dividing. Each vertex assigns itself to a bucket uniformly at random ; each vertex has
d(v)/q ≤ ∆/q neighbors in each bucket in expectation. By Lemma 8 (Chernoff bound), for
each vertex v and i ∈ [q], Pr[|N(v) ∩ Vi| > 8∆/q] ≤ exp(−∆/q) ∈ n−Ω(1). Therefore, w.h.p.,
no vertex has more than 8∆/q neighbors in a bucket.

For smaller ∆/q we give an algorithm based on shattering (that also works for large ∆/q).
The algorithm is parameterized with a threshold parameter z(v) for each vertex v. For

Theorem 10 we set z(v) = 8∆/q for all nodes. In the full version, we compute slightly
different versions of q-divides with different choices of z(v).

Algorithm. Phase I: (Pre-shattering) Each vertex picks one of the first q/2 buckets u.a.r.
Whenever a node has more than z(v) neighbors in a bucket, it deselects these, i.e., these
neighbors are removed from the bucket. Phase II: (Post-shattering) The post-shattering
instance is formed by all nodes that are not assigned to any bucket, together with their
neighbors. The objective is to add each unassigned node to one of the last q/2 buckets, such
that each node has at most z(v) neighbors in each bucket. In Lemma 13, we show that this
problem is an LLL instance with a polynomial criterion, and in Lemma 12 that it is induced
by connected components of small size. We solve it via Lemma 7 in LOCAL.

▶ Lemma 12. For threshold discrepancy z(v) = 8∆/q for all v ∈ V , the connected components
participating in the post-shattering phase of the algorithm are of size poly(∆) · log n, w.h.p.

Proof. For j ∈ [q/2] and node v, let Dj(v) be the number of neighbors of v in bucket j.
We have E[Dj] = 2∆/q for each of the q/2 buckets. By Chernoff (Lemma 8), a node v has
an unusually high number of neighbors (> z(v) = 8∆/q = (1 + 3)2∆/q) in a given bucket
w.p. at most exp(−2∆/q) ≤ ∆−12 , using q ≤ (1/6)∆/ ln ∆. A node v takes part in the
post-shattering phase if one of its neighbors or v itself renounced its choice of bucket, i.e., if
a node in its distance-2 neighborhood had too many neighbors in one of the buckets. This
occurs w.p. at most q · ∆2 · ∆−12 ≤ ∆−9, and is fully determined by the random choices
of nodes inside the 3-hop ball around v. Hence, by Lemma 6, the graph is shattered into
components of size O(∆6 log n), w.h.p. ◀

▶ Lemma 13. When z(v) = 8∆/q, for all v ∈ V , the instances formed in the post-
shattering phase are LLL problems with criterion f(d) = (q/2) exp(−2

√
d/q) and d ≤ ∆2.

For q ≤ (1/6)∆/ ln ∆, the error probability of the LLL is upper bounded by d−5.

Proof. Consider the following probabilistic process. Each node picks each part in [q] \ [q/2]
u.a.r., i.e., with probability p = 2/q. For j ∈ [q] \ [q/2], let Dj denote the random variable
describing the number of neighbors in bucket j. We have E[Dj] ≤ 2∆/q. Let Xv denote the
“bad” event that node v has more than z(v) = 8∆/q neighbors in one of the q/2 buckets. We
analyze the LLL formed by the events Xv and their underlying variables.

The event Xv is fully determined by the random choices of direct neighbors of v. Hence,
two bad events Xv and Xw are dependent on a shared variable iff v and w are at distance
2 or less, and each bad event shares a variable with at most ∆2 other events. Therefore,

M. M. Halldórsson, Y. Maus, and A. Nolin 26:9

the dependency graph of the LLL has maximum degree at most d ≤ ∆2. By Chernoff
(Lemma 8), Xv occurs w.p. at most (q/2) exp(−2∆/q). Hence, the LLL has criterion
f(d) = (q/2) exp(−2

√
d/q), which ranges from being polynomial to exponential depending

on how small q is compared to ∆ ≥
√

d. In the worst case, the bound q ≤ (1/6)∆/ ln ∆
implies that f(d) ≤ (∆/(12 ln ∆))∆−12 ≤ d−5. ◀

Proof of Theorem 10. The problem is solved by the algorithm above. The runtime is O(1)
rounds for the pre-shattering phase, and poly log log n rounds for the post-shattering phase
via Lemma 7. To apply this lemma we require Lemma 12 that shows that any component
in the post-shattering phase has size log n · poly ∆ = poly log n, w.h.p., and that Lemma 13
shows that these components form LLLs with a polynomial criterion. ◀

Note that in the special case of ∆/q = Ω(log n) we get the stronger property that, w.h.p.,
there will no post-shattering phase (see Remark 11).

4 Vertex Splitting in LOCAL

In this section, we prove the following result on vertex splitting.

▶ Theorem 3. There exists a universal constant c3 > 0 s.t.: For any ε > 0, maximum degree
∆ ≤ poly log n, and k ≤ c3 · (ε4∆/ ln ∆), there is a distributed randomized LOCAL algorithm
to compute a k-vertex splitting with discrepancy ε∆/k in O(1/ε) + poly log log n rounds.

When ∆ is logarithmically larger than k, there is an easy solution.

▶ Observation 14. If k ≤ ε2∆/(9 ln n), the trivial zero round algorithm in which each node
picks one of the k parts u.a.r. results in a k-vertex splitting with discrepancy ε∆/k, w.h.p.

Proof. For a node v and class i, let D be the number of neighbors of v that picked class i.
Then E[D] = dv/k. Let µ := ∆/k, z = ε∆/k. By Corollary 9 (Chernoff bound)

Pr[|D − E[D]| ≥ ϵ∆/k] ≤ 2 exp(−z2/(3µ)) = 2 exp(−ε2∆/(3k)) .

This is at most 2n−3 when k ≤ ε2∆/(9 ln n), so by union bound over all nodes v and classes
i we get a k-splitting w.h.p. ◀

4.1 Shattering for ε-Vertex-Splitting in O(1/ε) Rounds
Due to Observation 14, the most challenging case for a a poly log log n-round algorithm is
when ∆ ≤ poly log n and ∆/k = O(log n) holds. Next, we present our algorithm.

FastShattering. Find a q-divide χ for q = 24/ε. To avoid confusion between this partition
of the nodes and that of the k-splitting we are computing, let us refer to χ as a schedule
of the nodes, made of q slots, which we denote by N1, . . . , Nq. Go through the q slots of χ

sequentially, and temporarily assign each node in this slot one of the k parts uniformly at
random. If a node has received too few or too many neighbors in a part when processing
a slot, we retract the last batch of assignments within the neighborhood of that node and
freeze those nodes. We also freeze all nodes within distance 3 that are in later slots. All
non-frozen nodes (in slot j) keep their assignment permanently. The frozen nodes then get
solved in post-shattering (along with all neighbors acting as events, including non-frozen
neighbors). For each j ∈ [q], there is one such post-shattering instance stemming from nodes
that were frozen when processing slot j.

DISC 2022

26:10 Fast Distributed Vertex Splitting with Applications

v

sees frozen
variable

gets
frozen

gets
frozen

gets
retracted

retracts
and freezes

picks
wrong part

N(v) N2(v) N3(v) N4(v) N5(v)

Figure 1 Whether a node joins the post-shattering instance depends on random choices at
distance up to 5.

For the rest of this section, set the number of slots to q = 24/ε and define the following
threshold parameters for the pre-shattering and post-shattering phase zpre

j (v) = zpost
j (v) =

ε2∆/(72k) for all j ∈ [q], v ∈ V .

Detailed description of FastShattering. During the course of the algorithm nodes are either
frozen or non-frozen. Initially, all nodes are non-frozen. Pre-shattering: After computing
the q-divide, we iterate through the slots 1, . . . , q. In each iteration, we temporarily assign
the non-frozen nodes in slot j by sampling each u.a.r. into one of the k parts. Next, we
formalize the event that retracts these assignments. Fix a node v ∈ V , a slot j ∈ [q] and a
part i ∈ [k]. Let Nj(v) be the neighbors of node v in slot j. Let d̂j(v) denote the live degree
of node v when processing slot j, i.e., the number of vertices in Nj(v) that are not frozen
just before processing slot j. Let Di,j denote the number of neighbors of v in Nj(v) that
are temporarily assigned to part i. Event Bpre

i,j (v) holds if Di,j deviates from its expectation
E[Di,j] = d̂j(v)/k by more than the threshold parameter zpre

j (v). Let Bpre
j (v) =

∨
i∈k Bpre

i,j (v)
be the event that v sees such a large deviation from its expectation in some part i. Suppose
after sampling event Bpre

j (v) occurs, then node v undoes the temporal assignment of all
neighbors in slot j, i.e., of all nodes in Nj(v), and additionally freezes all unassigned nodes
in distance 3, i.e., the nodes in {u ∈ ∪j′>jNj(v) : d(u, v) ≤ 3}. Add all nodes that become
frozen when processing slot j to Badj . All (temporal) assignments that do not undergo
a retraction are kept permanently. While frozen nodes do not sample colors, each node
monitors how its neighbors are being colored and thus yields an event node in each of the q

iterations, regardless of whether it is frozen or not.
Post-shattering: For each j ∈ [q] there is a separate post-shattering LLL instance containing

a variable for each node in Badj and a bad event node Bv
j for each node v with a neighbor in

Badj . The random process of the j-th LLL is as follows: Each node in Badj picks one of the
k parts independently and u.a.r. For a node v the number of neighbors in Badj is denoted by
fj(v). Let Fi,j(v) be the number of neighbors of v in part i (restricted to neighbors in Badj).
Event Bpost

i,j (v) holds if Fi,j deviates from its expectation E[Fi,j(v)] = fj(v)/k by more than
the threshold parameter zpost

j (v). The bad event Bpost
j (v) =

∨
i∈k Bpost

i,j (v) holds if v sees such
a large deviation from its expectation in some part i. In Lemmas 6 and 19 we show that
for each j ∈ [q] we indeed obtain an LLL with polynomial criterion that can be solved via
Lemma 7 in the LOCAL model. All q instances are solved in parallel; their deviations add up
to (ε/3) · ∆/k as shown in Lemma 16.

Intuition for the runtime: The pre-shattering phase runs in O(q) = O(1/ε) rounds. The
post-shattering phase runs in poly log log n rounds for the following reason. Each component
in each of the q post-shattering instances forms an LLL and is of size N = poly(∆) · log n =
poly log n, see Lemma 18. As all components are independent, they can can be solved in
parallel in poly log N = poly log log n rounds in the LOCAL model via Lemma 7.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:11

Notation. We summarize and extend the notation that we need for the analysis.
V1, . . . , Vk parts (changing throughout the algorithm),
N(v) neighbors of v in G, Nj(v) neighbors of v in slot j, N̂j(v) ⊆ Nj(v) are the live
neighbors of v in bucket j, i.e., the unfrozen neighbors of v in slot j just before slot j is
processed, Fj(v) ⊆ N(v) neighbors of v in the j-th post-shattering instance,
d(v) = |N(v)|, dj(v) = |Nj(v)|, d̂j(v) = |N̂j(v)|, fj(v) = |F̂j(v)| .

▶ Observation 15. In FastShattering, any node can have at most one slot in which (some)
of its neighbors get their part assignment undone.

Proof. Let v be a node with a neighbor u ∈ Nj(v) that has its assignment retracted during
slot j. Then u is adjacent to a node that detected that too few or too many of its neighbors
were assigned a given part when processing slot j. That node is at distance at most 2 from v,
and it freezes the nodes in slots higher than j within distance 3. Therefore, all the unassigned
neighbors of v are frozen, and v will not see another retraction in its neighborhood (in fact,
it will not even see an assignment). ◀

4.2 Analysis of Discrepancy
In this section, we bound the deviation in the number of neighbors that a node v sees in the
i-th part from d(v)/k.

The full proof of the following lemma appears in Appendix C.

▶ Lemma 16. In the final assignment V1, . . . , Vk, i.e., after the pre- and post-shattering
phases, each node v has d(v)/k ± ε∆/k neighbors in every Vi, i ∈ [k].

Proof sketch. The discrepancy (deviation from expectation) for a node comes from three
sources, (a) slots with neighbors that got retracted, (b) the parts of other slots assigned
in the pre-shattering phase, and (c) the deviation summed up over all q post-shattering
instances. Due to Observation 15, there can be at most one slot with retracted nodes and the
deviation from that slot j∗ from the expectation can be upper bounded by dj∗(v)/k + z ≤
8∆/q + z ≤ ε/3∆ + z. For each other slot the discrepancy is at most z, and for each of
the q instances in the post-shattering phase the discrepancy is also at most z. Thus, with∑

j∈[q] zpre
j (v) =

∑
j∈[q] zpost

j (v) ≤ ε/3 · ∆/k and q = 24/ε the total discrepancy adds up to
8∆/q +

∑
j∈[q] zpre

j (v) +
∑

j∈[q] zpost
j (v) ≤ ε∆/k. ◀

4.3 Analysis of Bad Event Probabilities
Throughout our analysis of the pre-shattering and post-shattering parts of our algorithm,
we consider random processes and events which are essentially always the same: nodes in
some subgraph each pick a random bucket u.a.r. independently from other nodes, and for
each node we analyze the probability that the number of neighbors that pick a given bucket
deviates too much from expectation. Recall, that we set q = 24/ε and z = ε2∆/(72k) earlier.

▷ Claim 17. Let k, N be positive integers. Let D be a sum of at most N independent
Bernouilli random variables of parameter 1/k, and let z ≤ N/k. Consider the event B that
D deviates from its expectation by more than z. Pr(B) ≤ 2e−z2k/(3N).

In particular, for N = ∆, k ≤ ε4∆/(219 ln ∆) and z = ε2∆/(72k) we obtain Pr(B) ≤ ∆−24.
If D is a sum of only N = 8∆/q variables, k ≤ ε3∆/(217 ln ∆) suffices for the same bound.

DISC 2022

26:12 Fast Distributed Vertex Splitting with Applications

Throughout this paper, D is taken to be a sum of indicator random variables associated to a
set of nodes. More precisely, for a subset of nodes in a neighborhood N(v), we consider the
sum of the random variable indicating whether each node chose a specific part i out of k

choices.

Proof. The general bound on Pr(B) is from Corollary 9 (Chernoff bound).
When N = ∆, k ≤ ε4∆/(219 ln ∆) and z = ε2∆/(72k), exp(−z2/(3N)) simplifies to

exp(−ε4∆/(3 · 722k)) ≤ ∆−24. When N = 8∆/q (recall q = 24/ε), k ≤ ε3∆/(217 ln ∆) and
the same z as before, exp(−z2k/(3N)) simplifies to exp(−ε3∆/(722k)) ≤ ∆−24. ◁

4.4 Analysis of FastShattering
Next, we show that the post-shattering instances consist of small connected components.

▶ Lemma 18. After FastShattering, each connected component in each of the q post-shattering
instances is of size ∆10 log n, w.h.p.

The proof of Lemma 18 appears in Appendix C.2. In spirit it is similar to the proof of
Lemma 12, but it is more advanced as frozen variables need to be taken care of formally.

4.5 Post-shattering
In this section we show that the q post-shattering instances are indeed LLLs.

▶ Lemma 19. Each connected component in each of the q = O(1/ε) post-shattering instances
forms an LLL with dependency degree d′, bad events’ probabilities upper bounded by p′ such
that the polynomial criterion d′8p′ < 1 holds. In LOCAL, the dependency graph can be
simulated with O(1) overhead in the communication network G.

Proof. Consider a post-shattering instance j ∈ [q]. The LLL is formally defined in Section 4.1.
Recall, that in the associated random process each node in Badj joins one of the k parts
u.a.r. and that there is a bad event Bpost(v) =

∨
i∈[k] Bpost

i (v) for each node with neighbor in
Badj . The event Bpost(v) occurs if too many or too few neighbors join the i-th part. Thus, a
bad event only depends on the randomness of adjacent nodes and the dependency degree is
at most d′ = ∆2.

By Claim 17 (applied with N = ∆, and z = zpost
j (v) = ε2∆/(72k)), the probability that

Bpost
i (v) holds is at most ∆−24 if k ≤ ε4∆/(219 log ∆). With a union bound over all k parts

we obtain the upper bound p′ = k∆−24 = ∆−23 for the probability of each bad event.
Hence, we obtain p′d′11 < 1. ◀

4.6 Proof of Theorem 3
Assume k ≤ ε4∆/(219 log ∆) and recall that ∆ ≤ poly log n. The runtime of Fast-Shattering
is linear in the number of slots, i.e., O(q) = O(1/ε). Next, we show that the post-shattering
instances meet the requirements of Lemma 7. Due to Lemma 18 each connected component
is of size poly(∆) log n = poly log n, w.h.p. Further, due to Lemma 19 each such component
forms an LLL with polynomial criterion and the dependency graph can be simulated with
O(1) overhead in the communication network G. Thus, we can apply Lemma 7 (in parallel
for all q instances) and obtain a runtime of poly log log n rounds for the post-shattering phase.
Lemma 16 shows that the deviation of |N(v) ∩ Vi| from d(v)/k is upper bounded by ε∆/k

for any node v ∈ V .

M. M. Halldórsson, Y. Maus, and A. Nolin 26:13

5 Vertex Splitting in CONGEST

We obtain the following theorem for vertex splitting and bipartite vertex splitting.

▶ Theorem 20. There exists a universal constant c4 > 0 s.t.: For ε > 0, ∆ ≤ poly log n,
and k ≤ c4 · (ε4∆/(ln ∆ log2 log n)), there are distributed CONGEST algorithms to solve the
k-vertex splitting problem with discrepancy ε∆/k and to solve the bipartite k-vertex splitting
problem with discrepancy ε∆L/k in O(1/ε) + poly log log n rounds.

Theorem 20 requires k to be a O(log2 log n) factor smaller than in Theorems 3 and 4.
As the pre-shattering phase of Theorems 3 and 4 immediately works in the CONGEST

model, the main challenge to prove Theorem 20 is to design a new post-shattering method.
Recall, the post-shattering phase in the LOCAL model, i.e, the core steps of Lemma 7.
Each connected component in the post-shattering phase forms an LLL with a polynomial
criterion and has N = poly(∆) · log n = (poly log log n) · log n nodes. This small size allows
to compute a network decomposition (see Section 5.1) with poly log log n cluster diameter
and O(log log n) color classes with distance s = Ω(log N) = Ω(log log n) between clusters
of the same color. The latter is sufficient to derandomize the O(log N) = O(log log n) ≪ s

round LLL algorithm from [13]. The details of the derandomization are not important, but it
is based on gathering all information in the cluster and close-by nodes. In the LOCAL model,
this can be done in time that is linear in the cluster diameter, i.e., in poly log log n rounds.
One can show that in the CONGEST model all information of a cluster can be encoded
with N · poly log log n bits. By using a pipelining argument (see the full version and [39] for
details) and that the bandwidth of the CONGEST model is Θ(log n) bits, one can aggregate
all of this information at a cluster leader in N · poly log log n/bandwidth + clusterdiameter
rounds, as done in [39]. For ∆ = poly log log n, we obtain N = log n · poly log log n and this
method runs in poly log log n rounds. In summary, we obtain the following theorem3 and the
corollary thereafter.

▶ Lemma 21 ([39]). There is a randomized CONGEST algorithm with bandwidth = Θ(log n)
for LLL instances of size N ≤ log n · poly log log n, dependency degree d ≤ poly log log n and
error probability p < d−4, that runs in poly log log n rounds.

The algorithm works with an ID space that is exponential in N and is correct w.h.p in n.

▶ Corollary 22. There is a randomized CONGEST algorithms for LLL with error probability
p, dependency degree d and criterion p < d−8 that uses poly log log n rounds, whenever
d ≤ poly log log n. Here, the dependency graph is also the communication network.

Proof. The shattering framework of [18], w.h.p., reduces to the LLL problem to LLL problems
with error probability p′, the same dependency degree d and criterion p′ < d−4 on instances
of size N = log n · poly d. These can be solved in poly log log n rounds via Lemma 21. ◀

For ∆ ≫ poly log log n, any such gather all information approach inherently requires signific-
antly larger runtimes. The main ingredient for Theorem 20 is a new method for solving the
vertex splitting instances in the post-shattering phase, that can deal with degrees as large as
∆ = poly log log n while using only poly log log n rounds. We prove the following theorem.

3 The proof of Lemma 21 appears in the full version [30]. It is similar to an CONGEST LLL algorithm in
[39] for instances of size N = O(log n) and the case of d = O(1). In fact, following all dependencies on
d (and a slightly increased N) in the proof of [39] yields an algorithm with runtime poly(d, log log n),
which yields the desired runtime whenever d = poly log log n.

DISC 2022

26:14 Fast Distributed Vertex Splitting with Applications

▶ Lemma 23. There exists a universal constant c5 > 0 s.t.: For any ε > 0 and any k ≤
c5 · (ε2∆/(log ∆ log2 log n)), there is a poly log log n-round randomized CONGEST algorithm
with bandwidth = Θ(log n) that computes a k-vertex splitting with discrepancy ε∆/k on
instances of size N ≤ poly log n.

The algorithm works with an ID space that is exponential in N and is correct w.h.p in n.

The proof of Lemma 23 uses network decompositions that we introduce in Section 5.1,
before proving the lemma in Section 5.2. In Section 5.3, we prove Theorem 20.

5.1 Network Decomposition
A weak distance-s (C, β)-network decomposition with congestion κ is a partition of the vertex
set of a graph into clusters C1, . . . , Cp of (weak) diameter ≤ β , together with a color from
[C] assigned to each cluster such that clusters with the same color are further than s hops
apart. Additionally, each cluster has a communication backbone, a Steiner tree of radius
≤ β, and each edge of G is used in at most κ backbones. For additional information on such
decompositions we refer the reader to [39, 22]. For the sake of our proofs we only require that
such decompositions can be computed efficiently (Theorem 24) and that one can efficiently
aggregate information in all clusters of the same color in parallel in time that is essentially
proportional to the diameter β (see the full version [30] for the precise statement).

▶ Theorem 24 ([39]). For any constant C > 0 and s ∈ poly log log n, there is a deterministic
CONGEST algorithm with bandwidth b that, given a graph G with at most n nodes and unique
b-bit IDs from an exponential ID space, computes a weak (C log n, O(s/C · log3 n))-network
decomposition with cluster distance s and congestion O(s · log2 n) in O(log7 n · s2) rounds.

5.2 Efficient Post-shattering in CONGEST (Proof of Lemma 23)
In order to devise an efficient CONGEST post-shattering algorithm, we decompose each small
component into small clusters via the network decomposition algorithm from Theorem 24.
Then, the objective is to iterate through the color classes of the decomposition and when
processing a cluster we want to assign all nodes in that cluster to a part. When doing so
we ensure that each node of the graph obtains a discrepancy of at most (ε/Q)∆/k in each
iteration. Hence, over the Q iterations, each node’s discrepancy adds up to at most ε∆/k.

Proof of Lemma 23. First, compute a distance-3 network decomposition of the graph with
Q = 2 log log n colors via Theorem 24. Then, iterate through the color classes of the network
decomposition, processing all clusters of a color class as it gets considered.

When processing a cluster C, we set up a new instance of the vertex splitting problem as
follows: Let V L,C = N(C) be all nodes that have a neighbor in C; V L,C may contain many
nodes of C itself. Each node of C is supposed to join one one the parts V C

1 , . . . , V C
k such

that for each i ∈ [k] each node in v ∈ V L,C has dC(v)/k ± ε/Q · ∆/k neighbors in V C
i . After

processing all clusters we set Vi =
⋃

cluster C V C
i . As clusters processed at the same time are

in the same color class, they have distance-3, and no node has neighbors in more than one
simultaneously processed cluster. Hence, the deviation of the number of neighbors into one
Vi from d(v)/k is bounded by Q · ε/Q · ∆/k = ε∆/k.

The bounds on k and Q imply that the problem that we solve when processing one
cluster is an LLL LC with a polynomial criterion: Variables and the random process are
given by the nodes of C choosing one of the parts V C

1 , . . . , V C
k uniformly at random. For a

node v ∈ V L,C introduce a bad event BC
v that holds if for any i ∈ [k] node v does not have

dC(v)/k ± ε/Q · ∆/k neighbors in part V C
i . Due to the distance between clusters no node

can have a bad event for more than one of the simultaneously processed clusters.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:15

Due to Claim 17 (applied with N = ∆, z = ε/Q · ∆/k), we obtain that Pr(BC
v) ≤

k · exp(−ε2∆/(3Q2k)). Plugging in Q = 2 log log n and k ≤ Cε2∆/(log ∆ log2 log n), we get
Pr(BC

v) ≤ k · exp(− log ∆/(12C)) ≤ ∆−19 for C ≤ 2−8. As the dependency degree is at most
∆2, we obtain an LLL with a polynomial criterion of exponent 9.

The goal is to assign all nodes of C to a part such that all bad events BC(v) for v ∈ V L,C are
avoided. In order to do so, we run ℓ = 6 log n parallel instances of the LLL algorithm of [13]
on LC , each running for O(log N) = O(log log n) rounds. At the end of the proof we reason
that these ℓ instances can indeed be run efficiently in parallel, for now, we continue with the
remaining steps of the algorithm. We say that an instance is correct for an event of LC if it is
avoided under the computed assignment of the instance. By the properties of the algorithm
of [13], each instance is correct for all events of LC with probability ≥ (1 − 1/N) ≥ 1/2.
Hence, with probability 1 − 1/2ℓ = 1 − 1/n6 one of the ℓ instances is correct for all events of
LC . Then, each node holding an event of LC determines which instances are correct, and the
nodes agree on a winning instance, i.e., one that is correct for all of them.

Assume that nodes know in which instance their bad events are avoided. Then, agreeing
on a winning instance can be done efficiently as follows: Let each such node hold a bit string
of length ℓ = O(log n) in which the j-th bit indicates whether the bad event is avoided in
the outcome of the j-th instance. All nodes can agree on a winning instance in time linear
in the cluster’s weak diameter by computing a bitwise-AND of the bitstrings (see the full
version for details).

In order to determine the status of its events in each of the ℓ instances, node v only
needs to know which part each neighbor has chosen in which instance. As there are only
k parts, the index of the part can be communicated with O(log k) bits. Hence, a node u

can inform each neighbor about the parts node u chose in all ℓ instances by communicating
ℓ ·O(log k) = O(log n log log n) bits over each incident edge. Using bandwidth = Θ(log n), this
requires O(log log n) rounds. The same reasoning is also sufficient to run the ℓ instances of
[13] in parallel. In one iteration of [13], the variables of local ID minima in the graph induced
by violated events are re-sampled. We just reasoned that a node can determine the status of
its events in each of the ℓ instances in O(log log n) rounds, and with an additional round we
can compute a set of local ID minima of violated events for each instance. Then, nodes can
inform neighbors about the instances in which they need to re-sample their part. ◀

5.3 Proof of Theorem 20

The pre-shattering phase of computing the q-divide can immediately be implemented in the
CONGEST model. Its post-shattering phase is replaced with the stronger q-vertex splitting
result of Lemma 23 (with ε = 1 and k = q = 24/ε) that runs in poly log log n rounds.
Note that the hypotheses of Theorem 20 assume that ∆/(log ∆ log2 log n) is greater than an
absolute constant 1/c4. With c4 ≤ c5/24, q satisfies the hypotheses of Lemma 23.

The pre-shattering of the main algorithm can also immediately be implemented in the
CONGEST model. For each of its q post-shattering instances we use Lemma 23 with ε2/72
and the same k. Using the proof of Lemma 16, the total discrepancy of the pre-shattering
and the post-shattering phase is upper bounded by (2ε/3)∆/k and (ε/3)∆/k, respectively.

6 Application: (1 + ε)∆-edge coloring

In this section, we first prove the LOCAL version of the following theorem.

DISC 2022

26:16 Fast Distributed Vertex Splitting with Applications

▶ Theorem 1 (Edge coloring). For any constant ε > 0, there is a poly log log n-round
randomized CONGEST algorithm to compute a (1 + ε)∆-edge coloring on any graph with
maximum degree ∆ ≥ ∆0 where ∆0 is a sufficiently large constant.

We use the following result based on prior work to color small degree graphs.

▶ Theorem 25 ([18, 15, 10]). For any constant ε > 0, there is an absolute constant ∆0 such
that for ∆ ≥ ∆0, there is a randomized LOCAL algorithm with runtime O(d2) + poly log log n

for (1 + ε)∆-edge coloring where d = poly ∆.

The papers [15, 10] both solve the (1 + ε)∆-edge coloring problem via a constant number
of LLL iterations (for constant ε > 0). Their dependency graph can be simulated in the
original network with O(1) overhead and has dependency degree d = poly ∆. Plugging in
the runtime of O(d2) + poly log log n for solving such LLLs by [18] yields Theorem 25.

High level overview (1 + ε)∆-edge coloring algorithm. We recursively (two recursion
levels) partition the edge set of G into parts that induce small degree subgraphs. Then,
we color each subgraph with a disjoint color palette. More detailed, first we partition the
edge set into k = Θ(ε2∆/ log n) parts such that each part induces a graph of maximum
degree at most ∆′ = poly log n. Then, in another recursive step we partition the edge set of
each of these parts further into k′ = Θ(ε4∆′/ log2 log n) parts, each with maximum degree
∆′′ = poly log log n. We obtain k · k′ subgraphs, each with maximum degree at most ∆′′. We
color each part with a disjoint color palette with (1 + ε/10)∆′′ colors via Theorem 25 in
O((∆′′)2) + poly log log n = poly log log n rounds. The colors of the k · k′ subgraphs sum up
to (1 + ε)∆ colors in total.

Proof of Theorem 1, LOCAL. If ∆ ≤ poly log log n we skip the first two steps of the al-
gorithm and immediately apply Theorem 25 to compute a (1 + ε)∆-edge coloring in
poly log log n rounds. If ∆ ≤ poly log n, we skip the first step and set ∆′ = ∆, k = 1
and G1 = G, otherwise we first partition the graph into k = (ε/6)2∆/(9 log n) subgraphs
G1, . . . , Gk, each with maximum degree ∆′ = ∆/k + (ε/6) · ∆/k = poly log n. To this end, let
each edge uniformly at random and independently join one of the Gi’s. The same Chernoff
bound as in Observation 14 shows that w.h.p., the maximum degree of each Gi is upper
bounded by ∆′.

In the next step, we use Theorem 20 to split each Gi, i ∈ [k] in parallel into k′ =
c4(ε′)4∆′/ log2 log n graphs Gi,j , j ∈ [k′], each of maximum degree ∆′′ = ∆′/k′ + ε′∆′/k′ =
poly log log n. We set ε′ = ε/6. Recall, that c4 is the constant from Theorem 20. More
formally, we set up the following k bipartite splitting instances Bi = (V L

i ∪ V R
i , Ei), i ∈ [k]:

V R
i = E(Gi) and V L

i = V (Gi). Note that the degree dBi(v) = dGi(v) for a node v ∈ V R
i and

dBi(e) = 2 for a node e ∈ V R
i . Hence, Bi has maximum degree ∆′.

We use Theorem 4 (for each Bi in parallel and with the same k′ and ε′) to compute
a partition of V R

i into V R
i,1, . . . , V R

i,k′ such that each v ∈ V L
i has dBi(v)/k′ ± ε′∆′/k′ =

dG(v)/(k ·k′)±3ε′∆/(k ·k′) neighbors in each V R
i . Now, for i ∈ [k], j ∈ [k′] let Gi,j = Gi[V R

i,j]
and note that Gi,j has maximum degree at most ∆′′ = ∆′/k′ + ε′∆′/k′ = poly log log n.

In the last step, we apply Theorem 25 on each Gi,j , i ∈ [k], j ∈ [k′] in parallel to edge-color
Gi,j with (1 + ε/6)∆′′ colors in poly ∆′′ + poly log log n = poly log log n rounds.

The total number of colors used is upper bounded by

k · k′ · (1 + ε/6)∆′′ ≤ k · (1 + ε/6)2 · ∆′ ≤ (1 + ε/6)3 · ∆ ≤ (1 + ε)∆ . ◀

M. M. Halldórsson, Y. Maus, and A. Nolin 26:17

References
1 Noga Alon. A parallel algorithmic version of the local lemma. Random Structures & Algorithms,

2(4):367–378, 1991.
2 Philipp Bamberger, Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. On the

complexity of distributed splitting problems. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). ACM, 2019. doi:10.1145/3293611.3331630.

3 Leonid Barenboim and Michael Elkin. Distributed (∆ + 1)-coloring in linear (in ∆) time. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 111–120, 2009.

4 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016.

5 József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures &
Algorithms, 2(4):343–365, 1991.

6 Anton Bernshteyn. A fast distributed algorithm for ∆ + 1-edge-coloring. Journal of Combin-
atorial Theory, Series B, 152:319–352, 2022.

7 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages
479–488, 2016.

8 Sebastian Brandt, Christoph Grunau, and Václav Rozhon. Generalizing the sharp threshold
phenomenon for the distributed complexity of the Lovász local lemma. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pages 329–338. ACM, 2020.
doi:10.1145/3382734.3405730.

9 Sebastian Brandt, Yannic Maus, and Jara Uitto. A sharp threshold phenomenon for the
distributed complexity of the Lovász local lemma. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC), pages 389–398. ACM, 2019. doi:10.1145/
3293611.3331636.

10 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive Lovász local lemma. ACM Transactions on
Algorithms (TALG), 16(1):1–51, 2019.

11 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph
shattering. SIAM Journal on Computing, 49(3):497–539, 2020.

12 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM
Journal on Computing, 48(1):33–69, 2019.

13 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 134–143, 2014. doi:10.1145/2611462.2611465.

14 Devdatt P. Dubhashi, David A. Grable, and Alessandro Panconesi. Near-optimal, distributed
edge colouring via the nibble method. Theor. Comput. Sci., 203(2):225–251, 1998. doi:
10.1016/S0304-3975(98)00022-X.

15 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 355–370, 2015. doi:10.1137/1.9781611973730.26.

16 Paul Erdös and László Lovász. Problems and Results on 3-chromatic Hypergraphs and some
Related Questions. Colloquia Mathematica Societatis János Bolyai, pages 609–627, 1974.

17 Manuela Fischer. Improved deterministic distributed matching via rounding. In Proceedings
of the International Symposium on Distributed Computing (DISC), volume 91 of LIPIcs, pages
17:1–17:15. LZI, 2017. doi:10.4230/LIPIcs.DISC.2017.17.

18 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász
local lemma, and the complexity hierarchy. In Proceedings of the International Symposium
on Distributed Computing (DISC), volume 91 of LIPIcs, pages 18:1–18:16. LZI, 2017. doi:
10.4230/LIPIcs.DISC.2017.18.

DISC 2022

https://doi.org/10.1145/3293611.3331630
https://doi.org/10.1145/3382734.3405730
https://doi.org/10.1145/3293611.3331636
https://doi.org/10.1145/3293611.3331636
https://doi.org/10.1145/2611462.2611465
https://doi.org/10.1016/S0304-3975(98)00022-X
https://doi.org/10.1016/S0304-3975(98)00022-X
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18

26:18 Fast Distributed Vertex Splitting with Applications

19 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring
via hypergraph maximal matching. In Proceedings of the Symposium on Foundations of
Computer Science (FOCS), pages 180–191, 2017.

20 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 270–277,
2016.

21 Mohsen Ghaffari. Distributed maximal independent set using small messages. Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–820, 2019.

22 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2021. arXiv:2007.08253.

23 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pages 662–673, 2018.

24 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed
delta-coloring. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 427–436, 2018.

25 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara Uitto.
Improved distributed degree splitting and edge coloring. In Proceedings of the International
Symposium on Distributed Computing (DISC), pages 19:1–19:15, 2017.

26 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In Proceedings of the Symposium on Foundations of
Computer Science (FOCS), pages 1009–1020, 2021. doi:10.1109/FOCS52979.2021.00101.

27 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the ACM Symposium on Theory of Computing (STOC),
pages 784–797, 2017.

28 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2505–
2523, 2017.

29 Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via efficient
color sampling. In Proceedings of the International Colloquium on Structural Information and
Communication Complexity (SIROCCO), 2021.

30 Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin. Fast distributed vertex splitting
with applications, 2022. doi:10.48550/ARXIV.2208.08119.

31 David G. Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. In Proceedings of the Symposium on Foundations of Computer Science
(FOCS), pages 700–724, 2019.

32 Penny E. Haxell. A note on vertex list colouring. Comb. Probab. Comput., 10(4):345–347,
2001.

33 Ken-ichi Kawarabayashi and Gregory Schwartzman. Adapting local sequential algorithms
to the distributed setting. In Proceedings of the International Symposium on Distributed
Computing (DISC), volume 121 of LIPIcs, pages 35:1–35:17. LZI, 2018.

34 Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In Proceedings
of the ACM Symposium on Parallelism in Algorithms and Architecture (SPAA), pages 138–144,
2009.

35 Nathan Linial. Distributive graph algorithms – global solutions from local data. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 331–335, 1987.

36 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

37 Yannic Maus. Distributed graph coloring made easy. In Proceedings of the ACM Symposium
on Parallelism in Algorithms and Architecture (SPAA), pages 362–372. ACM, 2021. doi:
10.1145/3409964.3461804.

http://arxiv.org/abs/2007.08253
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.48550/ARXIV.2208.08119
https://doi.org/10.1145/3409964.3461804
https://doi.org/10.1145/3409964.3461804

M. M. Halldórsson, Y. Maus, and A. Nolin 26:19

38 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In
Proceedings of the International Symposium on Distributed Computing (DISC), pages 16:1–
16:18, 2020. doi:10.4230/LIPIcs.DISC.2020.16.

39 Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the Lovász local lemma. In
Proceedings of the International Symposium on Distributed Computing (DISC), volume 209 of
LIPIcs, pages 31:1–31:19. LZI, 2021. doi:10.4230/LIPIcs.DISC.2021.31.

40 Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 524–529, 1998.

41 Robin A. Moser and Gábor Tardos. A Constructive Proof of the General Lovász Local Lemma.
J. ACM, pages 11:1–11:15, 2010.

42 Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the Chernoff-Hoeffding bounds. SIAM Journal on Computing, 26(2):350–368,
1997. doi:10.1137/S0097539793250767.

43 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
44 Bruce Reed. The list colouring constants. Journal of Graph Theory, 31(2):149–153, 1999.

doi:10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.0.CO;2-\%23.
45 Bruce Reed and Benny Sudakov. Asymptotically the list colouring constants are 1. Journal of

Combinatorial Theory, Series B, 86(1):27–37, 2002.
46 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-

tion and distributed derandomization. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 350–363, 2020.

47 Hsin-Hao Su and Hoa T. Vu. Towards the locality of Vizing’s theorem. In Proceedings of the
ACM Symposium on Theory of Computing (STOC), pages 355–364, 2019.

A Edge coloring in CONGEST (similar to Section 6)

We begin with proving a CONGEST counterpart of Theorem 25 for very low degree graphs.

▶ Theorem 26. For any constant ε > 0, there is an absolute constant ∆0 such that there
is a randomized CONGEST algorithm with runtime poly log log n for (1 + ε)∆-edge coloring
any n-node graph with maximum degree ∆0 ≤ ∆ ≤ poly log log n.

Proof. Recall from the text after Theorem 25 that the edge-coloring problem can be solved
via a constant number of LLL instances that are defined on a dependency graph H such
that one round of communication can be simulated in O(1) rounds in LOCAL in the original
network [10]. The dependency degree of H is d = poly ∆. Hence, if ∆ ≤ poly log log n, one
round of communication in H can be simulated in poly log log n CONGEST rounds in the
communication network. The result follows via Corollary 22. The base case for the algorithm
of [10] is a 5∆-edge coloring step, which can also be solved in poly log log n CONGEST
rounds [29]. ◀

Proof of Theorem 1, CONGEST. We use the same high level algorithm as in the LOCAL
model, that is, we first split into subgraphs of ∆′ = poly log n maximum degree, then in
to subgraphs of ∆′′ = poly log log n degree, which we then color with disjoint color spaces,
with (1 + ε/6)∆′′ colors each. We refer to the LOCAL version for further the details on this
reduction. Here, we only explain which parts differ in the CONGEST model. First, each
edge is simulated by one of its endpoints. The reduction to poly log n degrees works in zero
rounds, just as in the LOCAL model.

The most challenging part is the reduction from poly log n degrees to poly log log n degrees.
The pre-shattering phases (in computing the q-divide and in the main algorithm) immediately
work in the CONGEST model. We only need to reason that the post-shattering phases (of

DISC 2022

https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.4230/LIPIcs.DISC.2021.31
https://doi.org/10.1137/S0097539793250767
https://doi.org/10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.0.CO;2-%23

26:20 Fast Distributed Vertex Splitting with Applications

q-divide and the q instances in the main algorithm) can be solved via Lemma 23. To this
end, we need to run ℓ = O(log n) instances of [13] in parallel with bandwidth = Θ(log n).
Observe that k ≤ poly log n holds. For each node to be able to evaluate the status of its bad
events in all ℓ instances in parallel, we have the node simulating each edge send to the other
endpoint the parts it chose in all ℓ instances (one part per instance). As the part index of an
edge can be encoded with O(log k) bits, the indices in the ℓ instances can be communicated
with ℓ · O(log k) = O(log n log log n) bits. With the available bandwidth this requires only
O(log log n) rounds. The other messages needed by the algorithm to simulate the ℓ instances
of [13] in parallel, such as whether the edge needs be re-sampled in each instance, similarly
never exceed O(log log n) rounds.

Once the degrees of the subgraphs are at most poly log log n we use Theorem 26 to color
the graphs. Formally, the color space is still large. To really use Theorem 26, vertices color
each subgraph with colors in the range from 1 to poly log log n, and map their color back to
the original color space at the end of the computation. ◀

B Application: List Coloring

▶ Definition 27. In an (L, T)-list-coloring instance on a graph G = (V, E), each node v ∈ V

is given a list L(v) of colors of at least L such that for each c ∈ L(v) there are at most T

neighbors u of v with c ∈ L(u). The parameter T is referred to as the color degree. Similarly
for c ∈ L(v), |{u ∈ N(v) | c ∈ L(u)}| is the color degree of color c for v.

Note that one cannot generally solve such the problem via a greedy approach, not even
centrally. Still, the objective is to find solutions for arbitrary L and T with a ratio L/T

as small as possible. Reed [44] gave a simple LLL argument for the existence of a solution
when L/T ≥ ⌈2e⌉. This was improved to L/T = 2 by Haxell [32]. Reed and Sudakov [45]
then showed that L/T = 1 + o(1) suffices. Reed’s famous list coloring conjecture states that
L = T + 2 colors always suffice [44]. We recall Reed’s argument for the existence if L/T > 2e.
In the distributed setting, there is an O(log n) round algorithm for L/T ≥ (1 + δ) [13], and a
O(poly ∆ + poly log log n) rounds for L/T ≥ C0 for a sufficiently large constant C0 [18].

LLL formulation (for existence only). Suppose each node picks a color from its list uniformly
at random. Define a bad event Bu,v,c for each edge {u, v} ∈ E and each color c if both u and v

choose the color c. The probability for such an event is at most p = 1/|L(v)| ·1/|L(u)| ≤ 1/L2.
The dependency degree of these events is d = 2L · T , because it can depend on at most L

colors for each of the endpoints of the edge and on T other incident edges for each of these
colors. Thus, we obtain the LLL criterion p · (2L · T) = 2T/L, and hence for L/T > 2e, a
the standard criterion epd < 1 is satisfied and a solution exists.

Distributed results. Reed’s argument leads to an O(log2 n)-round LOCAL algorithm for
any L/T > 2e with the classic Moser-Tardos algorithm [41]. Chang, Pettie and Su [13]
gave a algorithm for L/T = 1 + δ, with a quite involved analysis, that runs in time
O(log∗ L max(1, log n)/D(1−γ). Fischer and Ghaffari [18] showed using color pruning that
there exists some (possibly large) constant C to solve (L, T)-list coloring whenever L/T ≥ C

in poly(∆, log log n) rounds.
Our main theorem combines the effectiveness of [13] with the speed of [18].

▶ Theorem 2 (List coloring). There is a poly log log n-round randomized LOCAL algorithm
for the list coloring problem, for any T and L with L ≥ (1 + δ)T , for any δ > 0 and any
∆ ≥ ∆0, for some absolute constant ∆0.

M. M. Halldórsson, Y. Maus, and A. Nolin 26:21

Similarly to the edge-coloring problem our high level idea is to first reduce the size of the
relevant parameters to poly log log n, after which we can solve arbitrary LLLs efficiently on the
problem. However, the reduction and the base case (once parameters are of size poly log log n)
are significantly more involved than in the edge-coloring problem. We summarize the main
technical lemma showing that we can efficiently reduce the parameters L and T while keeping
the ratio of list size and color degree almost the same.

▶ Lemma 28 (List color sparsification). There exists a universal constant c6 > 0 s.t.: For any
ε > 1/ poly log log n and k ≤ c6 · (ε4L/ log L), there is a poly(ε−1, log log n)-round algorithm
for the following list coloring sparsification problem: Given a (L, T)-list coloring instance
with T < L ≤ poly log n on an n-node graph G = (V, E) the goal is to compute a sublist
L′(v) ⊆ L(v) for each node yielding a (L′, T ′)-list coloring instance on the same graph with

L′ = L/k ± εL/k, T ′ ≤ T/k + εT/k and L′/T ′ ≥ (1 − ε)L/T. (1)

We obtain the same properties in zero rounds if L > poly log n and k ≤ ε2∆/(9 ln n) holds
for ∆ = L · T .

C Missing Proofs

C.1 Vertex Splitting: Bounding the Discrepancy
In this section, we bound the deviation in the number of neighbors that a node v sees in
the i-th part from d(v)/k. For a node v let Npre(v) (Npost(v)) be the neighbors of v that
are permanently assigned to a part in the pre-shattering (post-shattering) phase. Also, let
dpre(v) = |Npre(v)| and dpost(v) = |Npost(v)|. Recall, the definition of zpre

j (v) = zpost
j (v) =

ε2/(72k) and q = 24/ε, which immediately yields the following claim.

▷ Claim 29. We have
∑

j∈[q] zpre
j (v) =

∑
j∈[q] zpost

j (v) ≤ ε/3 · ∆/k .

▶ Lemma 16 (restated with details). In the final assignment V1, . . . , Vk, i.e., after the
pre-shattering and post-shattering phase, we have the following guarantees on the split for
each part i ∈ [k]:
1. Node v has dpre(v)/k ± 2ε/3 · ∆/k neighbors in Vi ∩ Npre(v).
2. Node v has dpost(v)/k ± ε/3 · ∆/k neighbors in Vi ∩ Npost(v).
In total, for each i ∈ [k] any node v has d(v)/k ± ε∆/k neighbors in Vi.

Proof. We first prove the first claim. The discrepancy (deviation from expectation) for a
node v comes from two sources: (a) slots with neighbors that got retracted; (b) other slots.
We bound both separately. Consider a vertex v and fix a part Vi, i ∈ [k]. For the rest of
the proof let zj = zpre

j (v). We partition the vertices in Vi ∩ Npre(v) according to the q slots
N1(v), . . . Nq(v). Due to Observation 15 for at most one j does Nj(v) contain nodes whose
values were retracted. Denote this j (if any) by j∗, otherwise set j∗ = ⊥.

▷ Claim 30. If j∗ ̸= ⊥, then |Vi ∩ Nj∗(v) ∩ Npre(v)| ≤ d̂j∗(v)/k + zj .

Proof. If v caused the retraction then, Nj∗(v) ∩ Npre(v) = ∅, as v retracted all assignments of
nodes in Nj∗(v) and froze the nodes (they will only be assigned in the post-shattering phase).
Now consider the case that v did not cause the retraction, i.e., Bpre

j does not occur, and let
Xi be the nodes in part i in the temporal assignment of nodes in slot j before any retractions
happened (also before the ones caused by nodes u ≠ v). Since Bpre

j does not occur, we have
|Xi ∩ Nj∗ | ∈ d̂j∗/k ± zj . Some nodes of Xi might get retracted by other nodes u ̸= v, but we
obtain |Vi ∩ Nj∗(v) ∩ Npre(v)| ≤ |Xi ∩ Nj∗(v)| ≤ d̂j∗(v)/k + zj . ◁

DISC 2022

26:22 Fast Distributed Vertex Splitting with Applications

▷ Claim 31. For each j /∈ [q] \ j∗, we obtain |Vi ∩ Npre(v) ∩ Nj(v)| = d̂j(v)/k ± zj .

Proof. Since j ̸= j∗ there are no retracted variables in Nj(v). If the bound in the claim does
not hold, then Bpre

j (v) would have occurred after the sampling, and v would have retracted,
a contradiction. ◁

▷ Claim 32.
∑

j∈[q],j ̸=j∗ d̂j(v) ≤ dpre(v) ≤
∑

j∈[q] d̂j(v).

In the following we omit the explicit dependence on v, e.g., we write d̂j instead of d̂j(v).
Using,

∑
j∈[q] zj(v) ≤ ε∆/(3k) (Claim 29), d̂j∗ ≤ dj∗ ≤ 8∆/q = ε∆/3 (from the properties

of a q-divide), bounds on |Vi ∩ Npre(v) ∩ Nj(v)| (Claims 30 and 31), and Claim 32 we obtain

|Vi ∩ Npre(v)| ≤
∑
j∈[q]

(
d̂j/k + zj

)
≤ (dpre + d̂j∗)/k +

∑
j∈[q]

zj ≤ dpre/k + 2ε∆/(3k) and

|Vi ∩ Npre(v)| ≥
∑

j∈[q],j ̸=j∗

(
d̂j/k − zj

)
≥

(
dpre − d̂j∗

)
/k − ε∆/(3k) ≥ dpre/k − 2ε∆/(3k) .

For the second part of the claim, fix again some i ∈ [k] and a node v. There are q separate
post-shattering instances. Recall, the set of neighbors of a node participating in the j-th
instance is denoted by Fj(v) and fj(v) = |Fj(v)|. The solution to the LLL instance yields

|Vi ∩ Fj(v) ∩ Npost(v)| = fj(v)/k ± zpost
j (v). (2)

Summing over all q post-shattering instances, using dpost(v) =
∑

j∈[q] fj(v) and using Claim 29
to bound

∑
j∈[q] zpost

j (v) ≤ ε∆/3 ≤ ε∆/2 yields the second part of the claim. ◀

C.2 Analysis of FastShattering

▶ Lemma 18. After FastShattering, each connected component in each of the q post-shattering
instances is of size ∆10 log n, w.h.p.

Proof of Lemma 18. Let us focus on one post-shattering instance, instance number j,
formed of both the nodes in Badj that were frozen while processing slot j and all their
incident ’events nodes’. Let us say that a node v triggers if one of the events Bpre

i,j , i ∈ [k]
occurs, i.e., if Di,j(v) deviates too much from expectation. That a node triggers is entirely
determined by the random choices of its neighbors. By Claim 17 (applied with N = 8∆/q,
z = zpre

j (v) = ε2∆/(72k), and Di,j(v)), the probability that a node triggers is at most ∆−24.
A variable is frozen if it is within distance 3 of a triggering node. A node v joins the
post-shattering instance if it is frozen itself or one of its neighbors is frozen, which depends
on whether nodes within distance 4 of v trigger or not, which itself is entirely determined by
the random choices within distance 5 of v. Thus, whether two nodes at distance 10 participate
in the j-th post-shattering instance depends on two sets of non-overlapping random variables
from the processing of slot j.

By a union bound over the ∆4 nodes in the 4-hop neighborhood and the k parts, a
node participates in the j-th post-shattering instance w.p. at most k(∆4)∆−24 ≤ ∆−19. By
Lemma 6, the resulting connected components of the post-shattering instance are all of size
O(∆10 log∆ n), w.h.p. ◀

M. M. Halldórsson, Y. Maus, and A. Nolin 26:23

D Bipartite Vertex Splitting and Beyond

Another classic version is to split only one side of a bipartite graph. Given a bipartite graph
(V L ∪ V R, E) and an parameter k the objective is to split the variable vertices V R into k

parts V R
1 , . . . , V R

k such that the degree of every event vertex u ∈ V L into each part V R
i does

not deviate from d(u)/k by too much. More formally, each event node u ∈ V L comes with a
parameter z(u) that bounds the deviation. Let ∆L and ∆R be the maximum degree of nodes
in V L and V R respectively. With the same analysis as for Theorem 3 (reasons below) we
obtain the following theorem for bipartite vertex splitting.

▶ Theorem 4. There exists a universal constant c7 > 0 s.t.: For any ε > 0, maximum
degree ∆ ≤ poly log n and k ≤ c7 · (ε4∆L/ ln ∆), there is a distributed randomized LOCAL
algorithm to compute a bipartite k-vertex splitting problem with discrepancy ε∆L/k in O(1/ε)+
poly log log n rounds.

The simpler q-divide problem also naturally extends to this more general setup. The
objective of a bipartite q-divide is to partition the variable vertices into q parts such that
each event node has at most 8∆L/q neighbors in each part.

▶ Theorem 33. For any q ∈ [1, (1/6)∆L/ ln ∆], there is a LOCAL algorithm to compute a
bipartite q-divide in poly log log n-rounds.

1

5

4

3
2

6

1

5

4

2

6

3
1

2

4

3

V E

5

1

2

4

3

V

5

6 6

Figure 2 A graph and the bipartite splitting instance obtained from the vertex-splitting problem
on it by turning each node into a variable node (circles) and an event node (squares).

To better understand this more general setting and how our results for q-divide and
k-split extend to it, let us translate those problems into their bipartite versions. For a graph
G = (V, E), we construct a bipartite graph G′ = (V L ∪ V R, E′) such that a bipartite k-split
(bipartite q-divide) on G′ maps to a k-split (q-divide) on G. Let n = |V | be the number
of nodes of G and ∆ its maximum degree. In bipartite terminology, when computing a
k-split on G each node of G is acting both as an event node and a variable node, as we
must ensure the proper splitting of its neighborhood as well as assigning it. The bipartite
graph corresponding to this problem is the graph G′ = (V L ∪ V R, E′) where |V L| = |V R| = n,
∀i, j ∈ |V |2, vivj ∈ E ⇔

(
vL

i vR
j ∈ E′ ∧ vR

i vL
j ∈ E′). G′ has 2n nodes and maximum left and

right degree ∆L = ∆R = ∆. See Figure 2 for an illustration of the translation process.

Proof of Theorems 4 and 33. Our proofs of Theorems 3 and 10 naturally extend to the
bipartite setting. Intuitively, the algorithms follow the same pattern. We have a simple
random assignment procedure that we show properly partitions the neighborhood of a node
w.p. 1 − poly(∆). In addition, there is a way of running this procedure, retracting some
assignments and avoiding to assign some nodes that ensures that only small patches of the
graph remain unassigned and the partial assignment that is obtained can be completed to a
full assignment. All that we need to show is that our setting of parameters in the bipartite
setting are correct, i.e., control the amount of discrepancy as in the previous setting.

DISC 2022

26:24 Fast Distributed Vertex Splitting with Applications

Let ∆L be the degree of the left hand side vertices in V E and let ∆R be the degree of the
right hand side vertices in V . Let ∆ = max{∆L, ∆R}.

All probabilities are exponential in −Θ(z), or in Θ(−z · (z/(d(u)/k))) if the degree of a
node u is larger than k · z.

The union bound in the shattering over distance 5-neighborhoods introduces a multi-
plicative ∆5 term. Hence, we require that eΘ(z) and eΘ(z)·(z/(d(u)/k)) dominate the ∆5 term.
This, clearly holds if z = ε2∆/(72k) as before, given the assumed upper bound on k.

The proof of the discrepancy (in Section 4.2) remains exactly the same; just note that in
the bipartite vertex splitting the discrepancy values (z(v)s) depend on ∆L instead of ∆, and
hence we obtain a deviation from d(u)/k that is upper bounded by ε∆L/k. ◀

▶ Remark 34. In general, it is not possible to recursively use vertex-splitting to split into
smaller and smaller parts. Special properties of an instance (as we have with edge-splitting
and when solving list-coloring here) sometime still make it possible.
See the full information for more details on Remark 34

Broadcast CONGEST Algorithms Against
Eavesdroppers
Yael Hitron
Weizmann Institute of Science, Rehovot, Israel

Merav Parter
Weizmann Institute of Science, Rehovot, Israel

Eylon Yogev
Bar-Ilan University, Ramat-Gan, Israel

Abstract
An eavesdropper is a passive adversary that aims at extracting private information on the input
and output values of the network’s participants, by listening to the traffic exchanged over a subset
of edges in the graph. We consider secure congest algorithms for the basic broadcast task, in the
presence of eavesdropper (edge) adversaries.

For D-diameter n-vertex graphs with edge connectivity Θ(f), we present f -secure broadcast
algorithms that run in Õ(D +

√
fn) rounds. These algorithms transmit some broadcast message

m∗ to all the vertices in the graph, in a way that is information-theoretically secure against an
eavesdropper controlling any subset of at most f edges in the graph. While our algorithms are
heavily based on network coding (secret sharing), we also show that this is essential. For the basic
problem of secure unicast we demonstrate a network coding gap of Ω(n) rounds.

In the presence of vertex adversaries, known as semi-honest, we introduce the Forbidden-Set
Broadcast problem: In this problem, the vertices of the graph are partitioned into two sets, trusted
and untrusted, denoted as R, F ⊆ V , respectively, such that G[R] is connected. It is then desired
to exchange a secret message m∗ between all the trusted vertices while leaking no information to
the untrusted set F . Our algorithm works in Õ(D +

√
|R|) rounds and its security guarantees hold

even when all the untrusted vertices F are controlled by a (centralized) adversary.

2012 ACM Subject Classification Networks → Network algorithms; Theory of computation →
Distributed algorithms

Keywords and phrases congest, edge-connectivity, secret sharing

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.27

Funding Merav Parter : This project is funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 949083).

1 Introduction

Modern distributed networks are insecure by nature, and consequently, the private information
of their users is under a constant threat of leakage to untrusted parties. We consider
secure message passing algorithms against eavesdropper adversaries (also known as passive
wiretappers) who can eavesdrop on a bounded number of edges in the graph. Our main
objective is to provide round-efficient broadcast algorithms that ensure that the eavesdropper
obtains no knowledge on the broadcast message, in the information theoretic sense.

The (perfect) secure algorithms in this paper follow the standard congest model [29],
where the communication network is abstracted by an n-vertex graph G = (V, E) with
unique vertex identifiers of O(log n) bits. The communication proceeds in synchronous
rounds, where in each round, a vertex can exchange O(log n)-bit messages with each of
its neighbors. The communication occurs in the presence of a computationally unbounded
eavesdropper with full information on the graph topology and the protocols executed by

© Yael Hitron, Merav Parter, and Eylon Yogev;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Broadcast CONGEST Algorithms Against Eavesdroppers

the vertices. It is oblivious, however, to the internal randomness of the vertices. We strive
for information-theoretic f -secure algorithms, which informally guarantee that the messages
observed by the eavesdropper controlling at most f edges convey no information on the
designated transmitted messages. The design of such round-efficient secure algorithms finds
a wide range of applications, from digital voting systems to cryptocurrencies and blockchain.

While solutions exist under cryptographic assumptions (e.g., using public-key encryption),
our main challenge is in providing the graph-theoretical foundations for distributed algorithms
with information-theoretic (perfect) security. These solutions are usually easier to compute
and have everlasting unconditional security, which is not based on computational assumptions
that might be broken in the future. Moreover, information-theoretic security is well fitted to
the perspective of the congest model. The latter assumes that the vertices are computationally
unbounded, and therefore it makes sense to assume that the eavesdropper adversary is
computationally unbounded as well.

Perfect-secure algorithms against eavesdroppers. The notion of perfect security is among
the most fundamental and long-studied concepts in cryptography. Within this setting,
two main types of passive adversaries have been considered in the literature: semi-honest
(vertex adversary) and its edge-analogue, the eavesdropper, which we consider in this
paper. Throughout, an algorithm is called f -secure if it provides perfect-security against an
eavesdropper controlling f edges in the graph.

There has been a long line of work studying secure algorithms in specific graph topologies
and under various model assumptions. Most attention has been devoted for the f -secure
unicast problem where it is required for a source s to send a message m∗ to a designated target
t over an (f + 1) edge-connected graph. One of the earliest works in this area is by Dolev,
Dwork, Waarts, and Yung [8]. Their f -secure unicast algorithm exchanges the secret message
m∗ by sending secret-shares of m∗ along a collection of (f + 1) edge-disjoint s-t paths 1. In
a recent work, Hitron and Parter [15] showed that the length of such edge-disjoint paths
might be min{n, (D/f)Θ(f)}. This implies that algorithms that are based on exchanging
messages along edge-disjoint paths require linear number of rounds in the worst case, already
for f = Ω(log n).

The dependency in the length of the edge-disjoint paths appears to be unavoidable at first
glance. The reason is that resilience against computationally unbounded adversaries calls for
establishing graph-theoretical secure channels between pairs of vertices. The natural approach
for providing such channels is by means of exchanging information along with a collection of
sufficiently many edge (or vertex) disjoint paths; The latter guarantees that some of these
paths are fault-free, which allows the endpoints to overcome the adversarial effect. Indeed,
so-far, all existing secure broadcast algorithms for general graphs follow the above-mentioned
scheme (in one way or the other) and consequently required min{Θ(n), (D/f)Ω(f)} rounds
[23, 27, 24, 15].

Cai and Yeung [4] provided considerably improved solutions for the secure unicast problem
that are based on the notion of secure network coding for DAG graphs. Informally, this
approach provides the throughput advantage of the standard network coding scheme while
also providing perfect resilience against eavesdroppers. Feldman, Malkin, Servedio, and
Stein [9] generalized and simplified the method of [4] by designing perfect-secure algorithms to

1 In their model, the source s and the target t are connected by m wires, and the eavesdropper is listening
on a bounded number of wires. These wires may correspond to vertex-disjoint paths or edge-disjoint
paths.

Y. Hitron, M. Parter, and E. Yogev 27:3

exchange a message to a restricted subset of vertices for DAG networks. Jain [16] presented
a secure unicast algorithm, which as shown in this paper can be implemented in O(D)
congest rounds for D-diameter graphs. A similar algorithm was provided also by Gilboa and
Ishai [12]. As secure message transmission algorithms are currently limited to a bounded
number of targets and topologies, in this paper we ask the following fundamental question,
which for the best of our knowledge, is still vaguely open:

▶ Question 1. Is it possible to provide an f -secure broadcast algorithm in sub-linear number
of congest rounds, even for f = Ω(log n)?

A naïve solution for this problem can be provided by simply implementing Jain’s [16]
algorithm for every target t ∈ V , resulting in Ω(n) rounds. In this paper, we answer the
question above in the affirmative by presenting f -secure broadcast algorithms with round
complexity of Õ(D +

√
fn). Our algorithms are based on a particular type of network

coding, denoted as secret sharing, which is arguably one of the most foundational concepts
in cryptography [31]. We combine these tools with the well-known tree-packing of Nash-
Williams [22, 5]. We note that while the area of (perfect) secure message transmission against
eavesdroppers is well-established in the cryptography and the networking communities, this
setting has been barely addressed before in the context of message-passing models with
bandwidth limitations, such as the congest model. The only exception is the work of Parter
and Yogev [24] that designed f -secure compilers for f = 1, that translate any congest
(non-secure) r-round algorithm into a 1-secure algorithm with O(rD) rounds. Their (implicit)
extension to f faults introduces an overhead of (fD)Θ(f) rounds.

Network coding gaps in unicast communication. The task of unicast, in which a source
vertex s sends information to a designated target t, is one of the most basic and important
information dissemination primitives in distributed networks. In typical modern commu-
nication networks, it is usually required to run simultaneously many such primitives in
parallel. Starting with the influential work of Leighton, Maggs, and Rao [18], the scheduling
of multiple unicast tasks has been subject to thorough research over the years, under two
main classes of algorithms: (i) routing-based algorithms (also known as store-and-forward)
where messages are viewed as (atomic) tokens and vertices can only store and forward them,
and (ii) network coding algorithms where messages are allowed to be mixed together by any
form of coding [1]. One of the most intriguing questions in this area is whether coding has
a provable advantage over routing-based algorithms. The challenge of providing provable
network coding gaps has been addressed extensively over the years [30, 32, 33, 34]. In their
influential work, Haeupler, Wajc, and Zuzic [14] demonstrated that the network coding gap
for the round-complexity (i.e., makespan) of k unicast tasks is at most polylogarithmic in
k. In this work, we aim at understanding the network coding gap for the secure unicast
problem. In particular, as all known secure unicast algorithms against eavesdroppers are
based on some notion of coding schemes, we ask:

▶ Question 2. Is it possible to provide store-and-forward algorithms for secure unicast with
sublinear complexity?

We provide a negative answer by establishing a network coding gap of Ω(n) rounds. To
the best of our knowledge, all prior provable gaps were limited to the logarithmic regime,
even in adversarial settings. For example, Censor-Hillel, Haeupler, Hershkowitz, and Zuzic [6]
analyzed the throughput of broadcast algorithms in noisy radio networks, and established a
network coding gap of Θ(log n). In contrast, for the the fault-free setting, Alon et al. [2]
showed that this gap is bounded by a constant.

DISC 2022

27:4 Broadcast CONGEST Algorithms Against Eavesdroppers

1.1 Our Results
We present round-efficient secure algorithms for basic communication primitives. Our
main result is an f -secure broadcast algorithm for graphs with edge-connectivity of Θ(f).
Throughout, the adversarial edges controlled by the eavesdropper are denoted by F ∗ ⊆ E,
and the diameter of the graph is denoted by D. Let B = O(log n) be the edge bandwidth of
the congest model. The congestion of a distributed algorithm is an upper bound on the total
number of messages that the algorithm sends over a given edge [10].

Warm-Up: Secure unicast. We start by observing that the existing secure network coding
protocols for secure-unicast (e.g., by Jain [16]), can be implemented in near-optimal number
of congest rounds. Using random scheduling [19, 10], this provides also efficient solutions to
multicast tasks2.

▶ Lemma 3 (Optimal Secure-Unicast). Given a D–diameter graph G, there is an O(D)-round
algorithm that allows a private sender s to send a message m∗ to a public target t, while
leaking no information to the eavesdropper regarding the message m∗ or the identity of the
sender s, provided that s and t are connected in G \ F ∗ (i.e., even if G \ F ∗ is not connected).

A remarkable property of Lemma 3 is that its round complexity is independent of the actual
number of faults, and more specifically it does not depend on the diameter of the graph
G \ F ∗, as one might expect. Moreover, this unicast algorithm is secure provided that the
eavesdropper does not control any s-t cut in the graph (i.e., hence potentially protecting
against a large number of adversarial edges).

In the non-secure setting, the scheduling of multiple unicast problems has been usually
studied in the store-and-forward model [18, 14]. In this model, the messages are viewed as
atomic tokens rather than bits of information, and relay vertices can only forward some of
their received messages to their neighbors, but are not allowed to mix messages. While the
fault-free setting exhibits at most logarithmic gap w.r.t the number of congest rounds, we
show a linear gap for solving a single unicast instance, in the presence of eavesdroppers.

▶ Lemma 4 (Network Coding Gap for Secure Unicasts). There exists an n-vertex 2-diameter
graph G∗, an s-t pair, and a set F ∗ of adversarial edges, where s and t are connected in
G\F ∗, that satisfies the following: any store-and-forward algorithm that exchanges a message
from s to t in a secure manner must run in Ω(n) congest rounds (even if the vertices know
the topology of the graph). In contrast, using network coding, the problem can be solved in
O(1) congest rounds.

Secure broadcast algorithms. Our main result in this paper is given by an f -secure
broadcast algorithm that delivers all the vertices a given (secret) message m∗, while leaking
no information to the eavesdropper. We start by providing 1-secure broadcast algorithms for
2 edge-connected graphs. By a direct application of low-congestion cycle covers introduced
by Parter and Yogev [25, 26], we obtain:

▶ Theorem 5 (1-Secure Broadcast). For every 2 edge-connected D-diameter n-vertex graph
G, there is a 1-secure randomized broadcast algorithm that runs in D · no(1) rounds, w.h.p.

2 In the multicast problem, a source s sends a message m∗ to a subset of targets U ⊆ V .

Y. Hitron, M. Parter, and E. Yogev 27:5

Handling f adversarial edges (rather than just one) using cycle-covers inevitable leads to
a round complexity of (D/f)Θ(f) [15]. We devise a new algorithmic technique for broadcast
that overcomes this inherent (D/f)Θ(f) barrier exhibited by all prior algorithms in the
adversarial congest model. In particular, the round complexity of the algorithm is sub-linear
for every f ∈ o(n) faults.

▶ Theorem 6 (f -Secure Broadcast). For every (2f + 3)(1 + o(1)) edge-connected n-vertex
graph G, there exists a randomized f-secure broadcast algorithm for sending w.h.p a b-bit
message m∗ that runs in Õ(D +

√
f · b · n + b) rounds. The edge congestion of the algorithm

is Õ(
√

f · b · n + b). Moreover, the algorithm can also hide the identity of the source vertex
holding the message m∗.

It is interesting to note that our algorithm in fact solves the anonymous broadcast problem [20],
in which it is also desired to hide the identity of the transmitting source. This problem is used
as a black-box in many privacy-preserving applications such as anonymous communication
and distributed auctions. Prior work has addressed this problem in all-to-all communication
models [21], under cryptographic assumptions [7, 3], or alternatively using a large round
complexity [3]. To the best of our knowledge, there has been no round-efficient congest
algorithm that works for any sufficiently edge-connected graph topology.

For multiple sources S ⊆ V each holding a distinct b-bit message, one can generalize the
above algorithm to show:

▶ Corollary 7 (f -Secure Multi-Source Broadcast). Given is a (2f +3)(1+o(1)) edge-connected
n-vertex graph G = (V, E) and a subset of sources S ⊆ V each holding a b-bit message. There
exists a randomized f-secure broadcast algorithm that runs in Õ(D +

√
f · b · |S| · n + b|S|)

rounds. The edge congestion of the algorithm is Õ(
√

f · b · |S| · n + b|S|).

Handling vertex adversaries. A semi-honest adversary controlling a vertex v eavesdrops
over the set of all edges incident to v [13]. The broadcast problem as is cannot be defined in
the setting of semi-honest adversaries (as by the broadcast definition, all vertices, including
the adversarial ones, are required to receive the message). We note however that if the
vertices know which of their neighbors are eavesdropped, then it is indeed possible to hide
the content of the broadcast message from these vertices, as described next.

We introduce the task of Forbidden-Set Broadcast which can be thought of as the vertex-
analog to broadcast with eavesdroppers. In this broadcast problem the graph G = (V, E)
consists of two vertex types: trusted receivers R and untrusted vertices F , where R ∪ F = V .
It is then desired for the broadcast message m∗ to faithfully arrive at all vertices in R, while
all untrusted vertices F ⊆ V are required to learn nothing on m∗, in the information-theoretic
sense. I.e., the vertices in F are controlled by a semi-honest adversary. This formulation
might find many applications in real-life distributed networks, e.g., in settings that call for
private information exchange over a distributed network that contains also (untrusted) public
data-centers. We show:

▶ Theorem 8 (Forbidden-Set Broadcast). Given is a D-diameter graph G = (V, E), a vertex
partition into trusted receivers and untrusted vertices R ∪ F = V , and a source vertex s ∈ R

holding a broadcast message m∗ ∈ {0, 1}B. There is an Õ(D +
√

|R|)-round randomized
algorithm that allows all vertices in R to receive m∗, w.h.p, while leaking no information to
any of the vertices in R, provided that the subgraph G[R] is connected.

DISC 2022

27:6 Broadcast CONGEST Algorithms Against Eavesdroppers

It is easy to see that one can solve this task using Diam(G[R]) rounds. It is also clear that
the connectivity of G[R] is a necessary condition. Our improved algorithm is based on sending
messages through edges that are incident to the untrusted vertices, while guaranteeing that
the semi-honest adversary controlling these edges learns nothing. Using edges in G \ G[R] is
crucial in order to improve upon the trivial bound of O(Diam(G[R])) rounds.

A remark on the graph connectivity requirements. It is well-known that f -security requires
(f + 1) (edge) connectivity, as no security can be provided if the edges controlled by the
eavesdropper disconnect the graph. The secure algorithms presented in this paper ask for
two types of connectivity requirements. The secure unicast and forbidden-set broadcast
procedures of Lemma 3 and Theorem 8 ask for a minimal connectivity condition. E.g., as
long as s and t are connected in G \ F ∗, the unicast algorithm is secure. In contrast, the
broadcast algorithms of Theorems 5 and 6 require that the edge-connectivity of the graph
is sufficiently large (above some threshold value). Theorem 5 requires 2 edge-connectivity
(which is necessary), while Theorem 6 requires edge-connectivity of (2f + 3)(1 + o(1)). The
larger edge connectivity requirement comes from our use of the Nash-William theorem [22],
and more specifically from its implementation in the congest model by [5]. Providing efficient
broadcast algorithms for (f + 1) edge-connected graphs in o(n) rounds is a very interesting
open problem.

1.2 Preliminaries
1.2.1 Graph Notation and Basic Distributed Tools
Given a graph G = (V, E), denote its diameter by D. The neighbors of a vertex v ∈ V are
denoted by N(v). Given a tree T ⊆ G and a vertex v, let ch(v, T) denote the children of v in
T , and par(v, T) is the parent of v. When T is clear from the context, we may omit it. The
subtree of T rooted at v is denoted by Tv. For a subset of items X and a probability p ∈ [0, 1],
let X[p] denote the random sample obtained by sampling each item of X independently with
probability p.

Scheduling of distributed algorithms. Given a graph G, an algorithm A is said to have
congestion at most cong if A sends at most cong number of messages over each edge in the
graph. The dilation of A is the round complexity of the algorithm. We use the following
useful random scheduling procedure due to Leighton, Maggs, and Rao [18], and Ghaffari [10]:

▶ Theorem 9 ([18, 10]). Let A1, A2, . . . , Ak be a collection of distributed algorithms such
that each algorithm takes at most dilation rounds, and there are at most cong messages sent
through each edge in total throughout the execution of all these algorithms. The algorithms
A1, A2, . . . , Ak can be simulated in parallel using O(cong + dilation · log2 n) rounds w.h.p.

Basic operations on trees. Given a spanning tree T of diameter D(T), the computation
of aggregate functions over a set of input values of O(log n) bits, can be done in O(D(T))
rounds by a simple convergecast algorithm [28].

▷ Claim 10 ([28]). The convergecast of an associative and commutative function g with
input values {xu ∈ {0, 1}O(log n)}u∈Tv

over a rooted tree T can be performed in O(D(T))
rounds and O(1) congestion. Handling k functions g1, . . . , gk can be done in O(D(T) + k)
rounds, and congestion O(k).

Y. Hitron, M. Parter, and E. Yogev 27:7

Our broadcast algorithms are based on decomposing spanning trees into edge-disjoint subtrees
(denoted as fragments) of bounded size. Since the eavesdropper knows the graph topology,
these procedures can be applied in a non-secure manner, as they reveal no information on
the secret message(s) m∗. In the full version, we show:

▶ Lemma 11 (Decomposition of Trees into Small Fragments). Given an n-vertex spanning
tree T ⊆ G and a parameter K ∈ [1, n], there exists a randomized Õ(K)-round algorithm
DecomposeTree for decomposing the edges of T into edge-disjoint sub-trees T1, . . . , Tq ⊆ T ,
such that |Ti| ∈ Θ(K) for every tree Ti. In the distributed output format, for every sub-tree
Ti and a vertex v ∈ Ti, it holds that v knows its incident edges in Ti, as well as, a unique
identifier of the tree Ti.

1.2.2 The Adversarial Setting, Security Definitions and Basic Tools
The adversarial congest model. We consider the standard congest model [29], in the
presence of an eavesdropper controlling a fixed set of edges F ∗, denoted as adversarial. The
remaining edges E \ F ∗ are denoted as reliable. The vertices do not know the identity of the
edges in F ∗, but they do know a bound f on their number3. The eavesdropper is assumed to
be computationally unbounded. It is allowed to know the topology of the graph G, and the
algorithm description run by the vertices. However, it is oblivious to the internal randomness
of the vertices. Our congest algorithms provide a perfect notion of information theoretic
security, formally defined as follows.

Perfect security against eavesdroppers. For a given randomized algorithm A running
on an n-vertex graph G = (V, E), let Re ∈ {0, 1}∗∗ be the random variable specifying all
messages sent through e over the execution of A, for every edge e ∈ E. For a subset of edges
F ∗ = {e1, . . . , ef } ⊆ E, let MF ∗ = [Re1 , . . . , Ref

] be the vector of the random variables of
the F ∗ edges. Denote the n-length input (output) vector of the algorithm A by X (resp., Y).

Algorithm A is said to be secure against an eavesdropper adversary, if for every graph G

and every possible assignment of input values x1, x2, and output values y1, y2, it holds that
the following two are equivalent distributions:

{MF ∗ | X = x1, Y = y1} ≡ {MF ∗ | X = x2, Y = y2} .

In other words, the random variables MF ∗ and Y, X are fully independent. A distributed
algorithm is f -secure if it is secure against an eavesdropper controlling any fixed set of at
most f edges.

One-time pad encryption. Our algorithms encrypt messages by XORing them with random
keys. This type of encryption is defined as one-time encryption. To prevent the eavesdropper
from gaining information on these encrypted messages, it is crucial to use each random key
exactly once (hence the phrase one-time). See [17] for further details.

▶ Definition 12 (One-Time-Pad Encryption). Let x ∈ {0, 1}b be a b-bit message. In the
one-time pad encryption x is encrypted using a uniform random key K ∈ {0, 1}b, by setting
x̂ = x ⊕ K. To decrypt x̂ using K, simply let x = x̂ ⊕ K.

3 Note that in the algorithm of Lemma 3 it is not required to know f .

DISC 2022

27:8 Broadcast CONGEST Algorithms Against Eavesdroppers

Secret sharing. In a secret sharing scheme, the message is split into multiple parts, called
shares with the following property: knowing all shares uniquely restores the message, and
knowing all but one share reveals no information (in the information theoretic sense) on the
original message.

▶ Definition 13 (Secret Sharing [31]). Given a bound on the message size B, a message x ∈
{0, 1}B and a parameter k, the secret share SecretShare(x, k, B) is composed of k uniformly
randomly chosen strings x1, . . . , xk ∈ {0, 1}B called shares, conditioned on x =

⊕k
j=1 xj.

When the message x represents an integer number bounded by some integer q, the integer-
variant, denoted as SecretShareint(m, k, q), splits x into k randomly chosen integer shares
x1, . . . , xk ∈ Zq such that x = (

∑k
j=1 xj) mod q.

▶ Fact 14. The collection of k shares obtain by applying SecretShare(x, k, B)
(SecretShareint(m, k, q)) satisfies that the joint distribution of any k − 1 shares is uniformly
distributed over ({0, 1}B)k−1 (resp., (Zq)k−1).

2 Secure Unicast

2.1 Unicast and Multicast Algorithms
We start by observing that the existing coding-based algorithms for secure unicast [12, 16]
can be implemented in O(D) congest rounds. Recall that in the unicast problem, given
a (possible hidden) source s holding a message m∗, it is required for a public target t to
receive m∗ while leaking no information to the eavesdropping adversary. We next describe a
distributed implementation of Jain [16] whose security guarantees hold provided that s and t

are connected in G \ F ∗.

High level description of Alg. SecureUnicast(s, t, m∗). The algorithm starts by comput-
ing a BFS tree T rooted at the target t, and locally setting a value xv = 0 for every vertex
v ≠ s, and xs = m∗. The message m∗ is treated as a field element in Fq for some sufficiently
large polynomial prime q, hence

∑
v xv = m∗. In the first step of the algorithm, the vertices

orient the edges of G based on the given tree T . They then secret share their xv values, and
exchange these shares with some of their neighbors (based on the edge-orientation). At this
point, each vertex v holds a value yv which corresponds to the sum of its received share
values. The yv values are then aggregated over the tree T , from the leaf vertices to the root
t, which can then compute

∑
v xv = m∗. The security is based on a combinatorial argument

which essentially shows that the collection of all messages observed by the eavesdropper is
equivalent to a uniform sample of fair coins, hence learning nothing on m∗. The complete
proof of Lemma 3 is deferred to the full version.

Simultaneous unicasts and multicast. Using the random delay approach, we can also
implement several secure unicast procedures in parallel, and obtain:

▶ Lemma 15 (Simultaneous Unicasts). A collection of q instances for the secure unicast
problem given by {si, ti, mi} where each mi ∈ {0, 1}b, can be executed in parallel using a
randomized algorithm SecureSimUnicast. The round complexity is O(D log2 n + q · b/ log n)
rounds, and the edge congestion is Õ(q · b). The security holds provided that every si-ti pair
is connected in G \ F ∗. Moreover, the algorithm leaks no information on the identities of the
senders {si}, provided that G \ F ∗ is connected.

Y. Hitron, M. Parter, and E. Yogev 27:9

The proof of Lemma 15 is deferred to the full version. This immediately yields a secure
multicast procedure, where a single source s sends a message m∗ to a subset U of vertices.
Since our algorithm is based on applying the unicast algorithm with s as the private source,
the identity of s can be fully hidden from the eavesdropper.

▶ Corollary 16 (Multicast). Given is a private source s, a public subset of vertices U ⊆ V

and a b-bit message m∗ held by s. There is a randomized algorithm SecureMulticast(s, U, m∗)
that lets s securely send m∗ to all vertices in U provided that s-u are connected in G \ F ∗

for every u ∈ U . The round complexity is Õ(D + b · |U |). Moreover, the algorithm leaks no
information on the identity of s, provided that G \ F ∗ is connected.

2.2 A Network Coding Gap of Ω(n) Rounds for Secure Unicast
In this section, we show that when restricting to the class of store-and-forward algorithms, the
task of secure unicast requires Ω(n) rounds, providing the proof of Lemma 4. Interestingly,
we show that this lower bound holds even if the vertices know the identity of the edges in F ∗,
and the graph topology. In the store-and-forward model, messages are viewed as (atomic)
tokens and vertices can only store and forward them. Specifically, in the unicast problem, the
source vertex s can send one message to each neighbor in each round, and every other vertex
can send in round r only one of the messages it received by round r − 1 to each neighbor.
For every parameter n ≥ 4, we consider an n-vertex graph G∗ defined as follows.

The lower-bound graph G∗. The graph is composed of an (n − 1)-length s-t path P =
{v0 = s, v1 . . . , vn−2 = t}, and an additional vertex u connected to all the vertices in P

in a star-shape manner (see Figure 1). The eavesdropper listens to all the edges that are
adjacent to u, denoted as F ∗ (shown in red in the figure). We note that although s and t are
connected in G∗ \ F ∗, the diameter of G∗ \ F ∗ is Ω(n), while the diameter of G∗ is 2. As
we will see, our lower bound argument shows that any store-and-forward secure algorithm
must run in Ω(n) rounds on G∗, which stands in stark contrast to the network-coding based
solution of Lemma 3 that solves the task in O(1) rounds.

𝒔 = 𝒗𝟎 𝒕 = 𝒗𝒏−𝟐
𝑷

𝒗𝟏 𝒗𝟐

𝑭∗
𝒖

Figure 1 An illustration of the lower bound graph G∗.

On a high level, the key limitation of store-and-forward algorithms that we exploit in
our lower bound argument is that all messages sent throughout the algorithm must be
originated at the source vertex s. Therefore, for every vertex vi ∈ P , all messages received
by vi in round j ≤ i − 1 must have been sent over “shortcut” edges which are in F ∗. To be
more concrete, we show by induction on k, that for every round k ≥ 1 and i ≥ k + 1, the
eavesdropper can calculate the probability distribution of the messages received by vi by
round k. The key inductive argument is that for every vertex vi and a neighbor vj ∈ N(vi),
given the probability distribution on the messages that vj received up to round k − 1, as the
eavesdropper knows the protocol executed by vj , it can deduce the probability distribution
over the messages vj sent in the next round k.

DISC 2022

27:10 Broadcast CONGEST Algorithms Against Eavesdroppers

It then follows that if the round complexity of the algorithm is at most n − 3, the
eavesdropper can deduce the probability distribution, over all messages received by the target
t. Consequently, it can calculate the probability that t outputs a given message. By the
correctness of the algorithm, w.h.p, t outputs the correct message m∗, and therefore the
eavesdropper learns this message, w.h.p. We next provide the formal lower-bound proof.

Proof of Lemma 4. Let A be a randomized store-and-forward unicast algorithm, and
consider an application of A on G∗ where s wishes to send a message m∗ to t. Since A is
randomized, in each round k, every vertex can produce a set of random coins. For a vertex
v ∈ V and round k, let C≤k(v) be the collection of random coins produced by v up to round
k, and let C≤k =

⋃
v∈V C≤k(v).

We start by noting that for every vertex v and round r, the messages sent by v in round
r are fully determined by the random coins C≤r(v) and the information that v received by
round r − 1: the messages, along with the rounds and neighbors on which they were received.
For each vertex v, we denote the information received by v up to round k by:

Tk(v) = {(m, rm, vm) | rm ≤ k, v received the message m in round rm from vm}.

For every round k, let MF ∗(k) be the messages sent over the edges in F ∗ up to round
k. Towards proving Lemma 4, we show that for every round k ≥ 1 and i ≥ k + 1, the
eavesdropper can deduce the following probability distribution on the value of Tk(vi):

D(k, vi) = { Pr
C≤k

[Tk(vi) = τ | MF ∗(k)]}τ∈{0,1}∗ .

In Appendix A, we prove by induction the following claim:

▷ Claim 17. For every round k ≥ 1 and i ≥ k + 1, the eavesdropper can calculate the
probability distribution D(k, vi) by the end of round k.

We next show that in order to satisfy the security guarantee, the round complexity of Alg.
A must be at least n − 2. This completes the proof of Lemma 4.

▷ Claim 18. The round complexity of Alg. A is at least n − 2.

Proof. Assume by contradiction that the round complexity of A is bounded by µ ≤ n−3. We
next show that the eavesdropper can deduce the output message m∗, with high probability,
in contradiction to the security guarantee.

Let Mt be the message output by the target vertex t by the end of the algorithm. By the
correctness of Alg. A, it holds that:

Pr
C≤µ

[Mt = m∗] ≥ 1 − 1/nc. (1)

Since the algorithm maintains perfect security, the random variables MF ∗(µ) and Mt are
fully independent (see Section 1.2.2), and therefore:

Pr
C≤µ

[Mt = m∗ | MF ∗(µ)] = Pr
C≤µ

[Mt = m∗]. (2)

Hence, by Equations (1) and (2) it is sufficient to show that the eavesdropper can compute
the probability PrC≤µ

[Mt = m∗ | MF ∗(µ)]. By the law of total probability, it holds that:

Y. Hitron, M. Parter, and E. Yogev 27:11

Pr
C≤µ

[Mt = m∗ | MF ∗(µ)] =

=
∑

τ∈{0,1}∗

Pr
C≤µ

[Mt = m∗ | Tµ(t) = τ, MF ∗(µ)] · Pr
C≤µ

[Tµ(t) = τ | MF ∗(µ)] . (3)

We next show that the eavesdropper can compute each term in the right-hand side of
Equation (3). We will show that for every value τ ∈ {0, 1}∗ the eavesdropper can calculate
the probabilities:

P1(τ) = Pr
C≤µ

[Mt = m∗ | Tµ(t) = τ, MF ∗(µ)], and P2(τ) = Pr
C≤µ

[Tµ(t) = τ | MF ∗(µ)].

Since µ ≤ n − 3 and t = vn−2, by Claim 17 and the definition of D(µ, t), for every τ ∈ {0, 1}∗

the eavesdropper can calculate P2(τ). We next consider P1(τ). The output message Mt is
fully determined by the tuples in Tµ(t) and the random coins C≤µ(t). Hence, given the tuples
in Tµ(t) and the random coins C≤µ(t), the eavesdropper can determine the output message
Mt (with probability 1). It follows that the eavesdropper can compute the probability:

Pr
C≤µ

[Mt = m∗ | Tµ(t) = τ, MF ∗(µ)] = P1(τ).

Altogether, by combining Equations (1)–(3), it follows that the eavesdropper can deduce the
message m∗ w.h.p., in contradiction to the security guarantee. ◁

3 Secure Broadcast Algorithms

In this section, we present broadcast algorithms which remain confidential in the presence
of an eavesdropping adversary. We start by describing an Õ(D)-round algorithm for two
edge-connected graphs, in the presence of a single adversarial edge, i.e., |F ∗| = 1. Extending
this algorithm to multiple edges f can be provably shown to require (D/f)Ω(f) rounds
(by [15]). We then present an alternative approach that bypasses the (D/f)Ω(f)-barrier at
the cost of requiring a slightly larger edge-connectivity. Throughout this section, the source
vertex is denoted by s, and the broadcast message by m∗.

3.1 Handling a Single Adversarial Edge
The broadcast algorithm is based on the notion of low-congestion cycle covers introduced by
Parter and Yogev [25]. For a given 2 edge-connected graph G = (V, E), a (c, d)-cycle cover is
a collection of cycles C such that (i) each edge e ∈ G participates in at least one cycle, and
at most c cycles in C, and (ii) all cycles are of length at most d.

▶ Lemma 19 ([25, 26]). There is a deterministic r-round algorithm that for every n-vertex two
edge-connected graph G = (V, E) computes a (c, d)-cycle cover C for G, where c = 2O(

√
log n)

and d, r = D · 2O(
√

log n). In the distributed output format, each vertex knows its incident
edges on each cycle C as well as, a unique identifier for these cycles.

The algorithm. The algorithm has two main phases. The first phase provides a secret
key ru,v ∈ {0, 1}B for every neighboring pair u, v in G. These keys are hidden from the
eavesdropper. The second phase implements a standard (fault-free) broadcast algorithm
with the only distinction that the messages exchanged (in the fault-free algorithm) are now
encrypted with the {ru,v} keys.

DISC 2022

27:12 Broadcast CONGEST Algorithms Against Eavesdroppers

The algorithm starts by computing a cycle-cover C for G using Lemma 19. We use these
cycles to provide u, v with a key ru,v that is hidden from the eavesdropper. This is done by
letting u generate two independent random keys r′

u,v, r′′
u,v ∈ {0, 1}B which are then sent to v

using of the cycle Ce as follows: r′
u,v is sent directly over the edge (u, v), and r′′

u,v is sent to
v over the u-v path Ce \ {(u, v)}. The vertex v then sets ru,v = r′

u,v ⊕ r′′
u,v.

Finally, the algorithm propagates the message m∗ from s downwards a BFS tree rooted
at s. By round i ≥ 0 every vertex u at layer i are assumed to know m∗. In round i every
vertex u at layer i sends the encrypted message m∗ ⊕ ru,v to each child v in the tree. This
completes the description of the algorithm.

Correctness and security. Each neighboring pair (u, v) share the key ru,v. Therefore, each
vertex v can decrypt the received message and obtain m∗. Since the eavesdropper controls a
fixed edge in the graph, it learns nothing on the collection of {ru,v : (u, v) ∈ T} keys. To see
this, consider a single key ru,v exchanged over the cycle C. Since the eavesdropper controls at
most one edge on that cycle, it knows either r′

u,v or r′′
u,v (but not both). Therefore it learns

nothing on ru,v. Since all messages sent through the tree T are encrypted using one-time pad
encryption (Definition 12) with their corresponding keys, the eavesdropper learns nothing on
the message m∗.

Running time. The time consuming step is the exchange of the keys over all cycles in C.
For every edge (u, v), let A(u,v) be the algorithm that exchanges the O(log n)-length keys
r′

u,v, r′′
u,v over the cycle covering (u, v). By the properties of the (c, d) cycle-cover, each cycle

C ∈ C can be used to cover at most |C| ≤ d many edges, and since each edge participates in
at most c cycles, overall each edge participates in O(c · d) algorithms. Therefore, the total
congestion of the collection of m algorithms is bounded by O(c · d), and the dilation of each
algorithm is d. Using the random-delay based scheduling of Theorem 9, we can implement
the algorithms {A(u,v) : (u, v) ∈ E} simultaneously within Õ(c ·d) rounds. Theorem 5 follows
by Lemma 19.

3.2 Handling Multiple Adversarial Edges
We now turn to consider f -secure broadcast algorithms against f adversarial edges F ∗, and
prove Theorem 6. Let m∗ be a b-bit message held by the source. Our f -secure algorithm
is based on the distributed computation of a tree collection denoted as fractional tree
packing [5]. Note that to this date, there is no round-efficient algorithm for computing an
integral tree-packing.

▶ Definition 20 (Fractional Tree Packing). A fractional tree-packing of a graph G is a
collection of spanning trees T , and a weight function w : T → (0, 1], such that for every
edge e ∈ E,

∑
Ti∈T :e∈Ti

w(Ti) ≤ 1. The size of the fractional tree packing T is denoted by
χ(T) =

∑
Ti∈T w(Ti).

Our algorithm is based on the distributed computation of fractional tree packing, due
to Censor-Hillel, Ghaffari, and Kuhn [5]. Our setting requires a slight adaptation of the
construction by [5]4, as summarized in the next lemma. See the full version for the proof.

4 E.g., for our purposes, it is important that the running time would depend on the number of faulty
edges, f , rather than on the actual edge connectivity λ, which might be significantly larger than f .

Y. Hitron, M. Parter, and E. Yogev 27:13

▶ Lemma 21 (A slight adaptation of Theorem 1.3 [5]). Given a D-diameter λ edge-connected
n-vertex graph, and an integer parameter λ′ ≤ λ−1

2 (1 − o(1)), one can compute a fractional
tree packing T and a weight function w : T → (0, 1], such that:
1. for every Ti ∈ T , w(Ti) = ni

⌈log8 n⌉ for some positive integer ni ≥ 1,
2. χ(T) ∈ [λ′, λ′(1 + o(1))],
3. the round complexity of the algorithm is Õ(D +

√
λ′ · n) and the edge-congestion is

Õ(
√

λ′ · n).
We are now ready to provide the complete description of Alg. SecureEavesBroadcast given a
source s holding a broadcast message m∗ of b-bits (where possibly b = Ω(log n)).

Step (0): Fractional tree decomposition. Apply the fractional tree-packing algorithm of
Lemma 21 with λ′ = f + 1. Denote the output tree packing by T and its size by χ(T). By
the end of this computation, the vertices know the weights n1, . . . , n|T | of the trees in T (see
Lemma 21(1)).

Step (1): Multicasting secret shares of m∗ to sampled landmarks. The source vertex s

secret shares its b-bit broadcast message m∗ into

f̂ = χ(T) · ⌈log8 n⌉ shares (4)

using Procedure SecretShare(m∗, f̂ , b) (Definition 13), denoted as M∗ = (m1, . . . , m
f̂
), where

each share mi has b bits. Note that by Lemma 21(1), f̂ is an integer. Next, the algorithm
samples a collection of landmarks L = V [p] for

p = Θ(log n/ min{
√

f · b · n, n}).

This is done by letting each vertex join L independently with probability p. The identities of
the sampled vertices L are broadcast to all the vertices5 in O(D + |L|) rounds. Next, the
algorithm applies Alg. SecureMulticast(s, L, M∗) of Cor. 16 to securely send the landmarks
L the collection of all shares.

Step (2): Fragmentation of tree-packing and leader selections. Decompose each tree
Ti ∈ T into fragments Ti,j of size Θ(min{

√
f · b · n, n}) using Alg. DecomposeTree(Ti) of

Lemma 11. In addition, for every fragment Ti,j , let ℓi,j be some chosen vertex in L ∩ V (Ti,j),
denoted as the leader, which exists with high probability. This leader can be chosen in
D(Ti,j) rounds by a simple convergecast over each fragment, simultaneously.

Step (3): Shares propagation in each fragment. Recall that by Lemma 21(1), w(Ti) =
ni

⌈log8 n⌉ for some positive integer ni ≥ 1 for every tree Ti ∈ T . Our goal is to propagate a
distinct collection of ni shares in M∗ over each tree Ti. To do that, the landmark vertices
partition locally and canonically the shares of M∗ into disjoint subsets M∗

1 , . . . , M∗
k such

that |M∗
i | = ni for every i ∈ {1, . . . , k = |T |}. Note that by Equation (4),

∑
Ti∈T ni = f̂ .

The leader ℓi,j of each fragment Ti,j sends all the shares in M∗
i over its fragment. Finally,

each vertex v recovers the b-bit broadcast message, by setting m∗ = ⊕k
i=1 ⊕m∈M∗

i
m . This

completes the description of the algorithm.

5 This can be done in a non-secure manner, as the eavesdropper is allowed to know L.

DISC 2022

27:14 Broadcast CONGEST Algorithms Against Eavesdroppers

Correctness. Since the edge-connectivity of G is at least (2f + 3)(1 + o(1)), one can obtain
a fractional tree packing T of size χ(T) ∈ [f + 1, (f + 1)(1 + o(1))] using Lemma 21(2).
We claim that each vertex receives w.h.p. all the shares in M∗ and therefore recovers m∗

successfully. Since all the trees Ti ∈ T are spanning, a vertex v belongs to some fragment
Ti,jv

for every Ti ∈ T . Since each fragment has |V (Ti,j)| ∈ Θ(min{
√

f · b · n, n}) vertices,
and each vertex is sampled into L with probability p = Θ(log n/ min{

√
f · b · n, n}), by the

Chernoff bound, w.h.p., each fragment contains some landmark vertex in L. Therefore, each
vertex v receives all shares in M∗

i over the fragment Ti,jv , for every Ti ∈ T . The correctness
follows as

⋃k
i=1 M∗

i = M∗, where k denotes the number of trees in T .

Security. Recall that the eavesdropper is assumed to know G, therefore Step (0) and Step
(2) can be implemented in a non-secure manner. Since G \ F ∗ is connected, Step (1) is
f -secure by Cor. 16. We turn to consider Step (3) in which the shares in M∗ are sent
over the tree fragments of T . We show that there exists at least one share in M∗ that the
eavesdropper did not learn, and therefore, by Fact 14, it knows nothing on m∗. Since the
tree fragments of each Ti ∈ T are edge-disjoint, the number of shares in M∗ sent over an
edge e is bounded by:∑

e∈Ti

|M∗
i | =

∑
e∈Ti

ni ≤ ⌈log8 n⌉ , (5)

where the last inequality follows by the fractional tree packing guarantee that
∑

e∈Ti
w(Ti) ≤ 1,

and using the fact that w(Ti) = ni

⌈log8 n⌉ for every Ti ∈ T . Therefore, the number of shares
observed by the eavesdropper can be bounded by:

f · ⌈log8 n⌉ < χ(T) · ⌈log8 n⌉ = f̂ = |M∗| ,

where the first inequality is by Lemma 21(2) (with λ′ = f + 1), and the last equality follows
by Equation (4).

Round complexity. Finally, we turn to bound the round complexity and the edge congestion
of the algorithm. In Step (0) the computation of the fractional tree packing can be done in
Õ(D +

√
f · n) rounds by Lemma 21(3) with λ′ = f + 1. Step (1) takes Õ(D + f · b · |L|)

rounds, by Cor. 16. Since, w.h.p., |L| = Õ(
√

n/(f · b)), it takes Õ(D +
√

f · b · n) rounds. By
Lemma 11 Step (2) takes Õ(min{

√
f · b · n, n}) rounds. As for Step (3), since w(Ti) ≤ 1, it

holds that ni ≤ ⌈log8 n⌉ for every Ti ∈ T . Therefore, Step (3) propagates Õ(b)-bit messages
over the edge-disjoint fragments of size Θ(

√
f · b · n). This can be done in Θ̃(b +

√
f · b · n)

rounds via standard pipeline.
It remains to bound the edge congestion. By Lemma 21(3) the edge congestion of Step

(0) is Õ(
√

f · n). Step (1) sends Õ(
√

f · n) messages over each edge, by Cor. 16. The edge
congestion of Step (2) is bounded by Õ(

√
f · b · n), by Lemma 11. Finally, Step (3) sends

Õ(b) bits on each edge by Equation (5). Thus, overall the edge congestion is bounded by
Õ(b +

√
f · b · n).

Bonus property: Anonymous broadcast. We note that Alg. SecureEavesBroadcast can also
hide from the eavesdropper, not only the identity of the broadcast message m∗, but also
the identity of the sender s. The only involvement of the source s is in Step (1), i.e., in the
application of the SecureMulticast algorithm of Cor. 16. Since the latter hides the identity of
the source s, the final broadcast algorithm leaks no information on s, as well.

Y. Hitron, M. Parter, and E. Yogev 27:15

Extension to broadcast with multiple sources, proof of Cor. 7. Consider a collection of
sources S ⊆ V , where each s ∈ S holds a b-bit message m∗

s . For simplicity of explanation, in
the following, we do not try to hide the identity6 of S. Hence, within O(D + |S|) rounds, all
vertices can define an ordering on these sources, given by s1, . . . , sk (e.g., based on IDs).

The algorithm is based on a reduction to the (f -secure) single-source broadcast of Theorem
6 using message size of b′ = b · |S|. In the first phase, the algorithm picks some arbitrary
vertex s (possibly not in S) and let it locally define a b′-bit message r∗ chosen uniformly
at random in {0, 1}b′ . The source s applies Alg. SecureEavesBroadcast with the message
m∗ = r∗. This can done with Õ(D +

√
f · b · |S| · n) rounds. At this point, all the vertices

share a random string r∗ of b′ bits, which can be locally partitioned into |S| random keys
r1, . . . , r|S| ∈ {0, 1}b. Each ri is used as a random key for encrypting the broadcast message
of the ith source si ∈ S, as follows.

Each source si ∈ S encrypts its b-bit broadcast message m∗
s by letting r∗

s = m∗
s ⊕ ri

(one-time padding). Then, we apply the standard (i.e., non-secure) broadcast procedure
w.r.t each si and the message r∗

s . Using the random-delay approach of Theorem 9, all these
procedures can be done in parallel within Õ(D + b|S|) rounds. As each vertex v knows r∗, it
can recover the ith message by letting m∗

s = r∗
s ⊕ ri. The security of the algorithm simply

follows by the security guarantees of the single-source broadcast algorithm of Theorem 6.

4 Forbidden-Set Broadcast

In this section, we turn to consider secure broadcast algorithms in the presence of a semi-
honest adversary that controls a subset of the vertices. This adversary can be trusted to
run the protocol honestly but aim to extract information on the vertices’ input and output.
Recall that in the forbidden-set broadcast problem, given is an n-graph G = (V, E) with a
vertex partition R ∪ F = V , into trusted receivers R and untrusted vertices F , controlled
by a semi-honest adversary. It is assumed that each vertex knows whether it is in R or F

(hence, each vertex in R knows its neighbors in R), and that G[R] is connected (which is
essential). It is then required for a source vertex s ∈ R to send a broadcast message m∗

(say of O(log n)-bits) to all vertices in R, while leaking no information to the eavesdropper
controlling the vertices in F . That is, the collection of all messages received by the vertices
in F are required to convey no information on m∗, in the information-theoretic sense.

We start by observing that the security guarantees of the unicast and multicast algorithms
of Section 2 also hold in the presence of semi-honest adversaries, provided that G[R] is
connected. This allows us to securely exchange messages between s, t pairs in R using O(D)
rounds. In the full version, we show:

▷ Claim 22 (Secure Unicast and Multicast against Semi-Honest Adversaries). The security
guarantees of Alg. SecureUnicast and Alg. SecureMulticast hold in the presence of semi-honest
adversaries, provided that G[R] is connected.

A trivial solution for the problem works by sending the message m∗ over the graph G[R].
This, however, might possibly lead to a round complexity of |R|, which might be linear in n.
Instead, our Õ(D +

√
|R|)-round algorithm is based on using the untrusted vertices for the

purpose of faster communication (i.e., as relay vertices), but in a way that guarantees that
these vertices still learn nothing on the secret m∗. The algorithm has three phases. First,
it samples a collection of Õ(

√
|R|) vertices from R, denoted as landmarks. The source s

6 This can be done by small parametrization of Alg. SecureEavesBroadcast.

DISC 2022

27:16 Broadcast CONGEST Algorithms Against Eavesdroppers

sends the message m∗ to these landmarks using the secure multicast procedure of Claim 22
and Cor. 16. The algorithm then computes a MST T in G[R], and decomposes it into a
collection of tree fragments T , each of size Θ(

√
|R|) using Lemma 11. Note that, w.h.p.,

each fragment contains at least one sampled landmark. Finally, each landmark propagates
m∗ over the edges of its fragment, this is done in all the fragments of T , in parallel.

Algorithm 1 ForbiddenSetBroadcast.

Input: Graph G = (V, E), s holds a message m∗, a vertex partition V = F ∪ R.
Output: All vertices in R learn the message m∗, while leaking no information to F .

Step (1): Multicast m∗ to Õ(
√

|R|) Landmarks.
Sample a landmark set L = R[p] for p = Θ(log n/

√
|R|).

Apply Alg. SecureMulticast(s, L, m∗) of Cor. 16.
Step (2): Tree Fragmentation

Compute a spanning tree T in G[R] (e.g., using the MST algorithm of [11]).
Apply Alg. DecomposeTree(T,

√
|R|) to decompose T into edge-disjoint trees, T =

{T1, . . . , Tℓ} such that |Ti| = Θ(
√

|R|) and
⋃

i V (Ti) = R.
Step (3): Broadcast over the Fragments.

For each fragment Ti, each landmark ℓ ∈ Ti broadcasts m∗ over Ti.

Correctness and security. Since the size of each tree fragment Ti is Θ(
√

|R|), by the
Chernoff bound, we have that w.h.p. V (Ti) ∩ L ̸= ∅ for every Ti ∈ T . As the collection of
Ti trees covers all vertices in R, we get that, w.h.p., all vertices in R receive the message
m∗. We now consider security and show that a semi-honest adversary controlling all vertices
in F = V \ R learns nothing on m∗. The security of Step (1) follows by Claim 22. Since
the semi-honest adversary knows the graph topology, Step (2) reveals no information on
the secret message m∗. Additionally, Step (3) sends messages only on edges in G[R], and
therefore it is secure as well.

Running time. By Chernoff, w.h.p., it holds that |L| = O(
√

|R| · log n). Therefore by Cor.
16, Step (1) is implemented in Õ(D +

√
|R|) rounds. The computation of T can be done in

O(D +
√

|R|) rounds, using a standard MST procedure, e.g., applying the low-congestion
shortcut framework of [11]. The fragmentation of T into the trees T in Step (2) takes
Õ(

√
|R|) rounds, using Lemma 11. Finally, the communication in each tree Ti ∈ T of Step

(3) takes O(|Ti|) = O(
√

|R|) rounds. As all trees are edge-disjoint, this can be done in parallel
over all vertices using O(

√
|R|) rounds. Overall, the round complexity is Õ(D + |

√
|R|).

This completes the proof of Theorem 8.

References
1 Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network information

flow. IEEE Trans. Inf. Theory, 46(4):1204–1216, 2000.
2 Noga Alon, Mohsen Ghaffari, Bernhard Haeupler, and Majid Khabbazian. Broadcast through-

put in radio networks: Routing vs. network coding. In Chandra Chekuri, editor, Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1831–1843. SIAM, 2014.

Y. Hitron, M. Parter, and E. Yogev 27:17

3 Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre Meyer, and Tal Moran.
Topology-hiding communication from minimal assumptions. IACR Cryptol. ePrint Arch., page
388, 2021.

4 Ning Cai and Raymond W Yeung. Secure network coding. In Proceedings IEEE International
Symposium on Information Theory,, page 323. IEEE, 2002.

5 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decomposi-
tion. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles of
Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 156–165. ACM,
2014.

6 Keren Censor-Hillel, Bernhard Haeupler, D. Ellis Hershkowitz, and Goran Zuzic. Broadcasting
in noisy radio networks. In Elad Michael Schiller and Alexander A. Schwarzmann, editors,
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pages 33–42. ACM, 2017. doi:10.1145/3087801.
3087808.

7 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

8 Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message
transmission. In 31st Annual Symposium on Foundations of Computer Science, St. Louis,
Missouri, USA, October 22-24, 1990, Volume I, pages 36–45. IEEE Computer Society, 1990.

9 Jon Feldman, Tal Malkin, Cliff Stein, and Rocco A Servedio. On the capacity of secure
network coding. In Proc. 42nd Annual Allerton Conference on Communication, Control, and
Computing, pages 63–68. Cambridge University Press, 2004.

10 Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Chryssis Georgiou
and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages
3–12. ACM, 2015.

11 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 202–219. SIAM, 2016.

12 Niv Gilboa and Yuval Ishai. Compressing cryptographic resources. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 591–608. Springer, 1999.

13 Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge
University Press, 2004. doi:10.1017/CBO9780511721656.

14 Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion times
of multiple unicasts. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 494–505.
IEEE, 2020.

15 Yael Hitron and Merav Parter. General CONGEST compilers against adversarial edges. In
Seth Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021,
October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages
24:1–24:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

16 Kamal Jain. Security based on network topology against the wiretapping attack. IEEE Wirel.
Commun., 11(1):68–71, 2004.

17 Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

18 Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. Comb., 14(2):167–186, 1994.

19 Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and job-shop
scheduling ino (congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.

DISC 2022

https://doi.org/10.1145/3087801.3087808
https://doi.org/10.1145/3087801.3087808
https://doi.org/10.1017/CBO9780511721656

27:18 Broadcast CONGEST Algorithms Against Eavesdroppers

20 Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast
encryption: Adaptive security and efficient constructions in the standard model. In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, Public Key Cryptography - PKC
2012 - 15th International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes in Computer
Science, pages 206–224. Springer, 2012.

21 Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Secure anonymous broadcast. In Fabian
Kuhn, editor, Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX,
USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes in Computer Science,
pages 567–568. Springer, 2014.

22 C. St.J. A. Nash-Williams. Edge-Disjoint Spanning Trees of Finite Graphs. Journal of the
London Mathematical Society, s1-36(1):445–450, 1961.

23 Merav Parter and Eylon Yogev. Distributed algorithms made secure: A graph theoretic
approach. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1693–1710. SIAM, 2019.

24 Merav Parter and Eylon Yogev. Low congestion cycle covers and their applications. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1673–1692, 2019.

25 Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear time. In
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, pages 89:1–89:14, 2019.

26 Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear time.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 89:1–89:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

27 Merav Parter and Eylon Yogev. Secure distributed computing made (nearly) optimal. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 107–116, 2019.

28 David Peleg. Time-optimal leader election in general networks. J. Parallel Distributed Comput.,
8(1):96–99, 1990.

29 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
30 Christian Scheideler. Universal routing strategies for interconnection networks, volume 1390.

Springer Science & Business Media, 1998.
31 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
32 Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation algorithm for

packet routing and balancing local vs. global criteria. SIAM J. Comput., 30(6):2051–2068,
2000.

33 Chih-Chun Wang and Minghua Chen. Sending perishable information: Coding improves
delay-constrained throughput even for single unicast. IEEE Transactions on Information
Theory, 63(1):252–279, 2016.

34 Xunrui Yin, Zongpeng Li, Yaduo Liu, and Xin Wang. A reduction approach to the multiple-
unicast conjecture in network coding. IEEE Transactions on Information Theory, 64(6):4530–
4539, 2017.

A Missing Proofs of Section 2

Proof of Claim 17. We show by induction on k that given an assignment to the random coins
C≤k and the messages MF ∗(k), the eavesdropper can deduce Tk(vi) for every i ≥ k + 1. As
the eavesdropper knows the probability distribution of C≤k, it follows that the eavesdropper
can calculate the distribution D(k, vi) for every i ≥ k + 1.

Y. Hitron, M. Parter, and E. Yogev 27:19

For the base case of k = 1, in the first round, the only vertex that can send messages
is s = v0. Hence, for every i ≥ 2, the vertex vi receives no messages in the first round and
T1(vi) = ∅. Since the eavesdropper knows the graph topology, it can deduce that T1(vi) = ∅
(regardless of the coins C≤1 and the messages MF ∗(1)). Assume that given an assignment to
C≤k−1 and MF ∗(k), the eavesdropper can deduce Tk(vi), for every i ≥ k.

We next consider round k, and a fixed assignment to MF ∗(k) and C≤k. Let vi be a vertex
such that i ≥ k + 1. Since i ≥ k, by the induction assumption the eavesdropper can deduce
the tuples in Tk−1(vi) based on MF ∗(k − 1) ⊆ MF ∗(k) and C≤k−1 ⊆ C≤k. We are left to
show the eavesdropper can learn the messages received by vi from its neighbors in round k.

Recall that vi has three neighbors, vi−1, vi+1 and u. As the eavesdropper controls the
edge (u, vi) ∈ F ∗, the message sent from u to vi in round k is determined by MF ∗(k). For
vj ∈ {vi−1, vi+1}, we note that the message vj sent to vi in round k is fully determined by the
information received by vj up to round k − 1 (i.e., Tk−1(vj)) and the random coins C≤k(vj).
Since i − 1 ≥ k − 1, by the induction assumption the eavesdropper can deduce Tk−1(vj)
based on MF ∗(k − 1) and C≤k−1. It follows that given C≤k and MF ∗(k), the eavesdropper
can compute the messages vi−1 and vi+1 sent to vi in round k. The claim follows. ◀

DISC 2022

Routing Schemes and Distance Oracles in the
Hybrid Model
Fabian Kuhn #

Universität Freiburg, Germany

Philipp Schneider #

Universitä Freiburg, Germany

Abstract
The HYBRID model was introduced as a means for theoretical study of distributed networks that use
various communication modes. Conceptually, it is a synchronous message passing model with a local
communication mode, where in each round each node can send large messages to all its neighbors in
a local network (a graph), and a global communication mode, where each node is allotted limited
(polylogarithmic) bandwidth per round to communicate with any node in the network.

Prior work has often focused on shortest paths problems in the local network, as their global
nature makes these an interesting case study how combining communication modes in the HYBRID
model can overcome the individual lower bounds of either mode. In this work we consider a similar
problem, namely computation of distance oracles and routing schemes. In the former, all nodes have
to compute local tables, which allows them to look up the distance (estimates) to any target node in
the local network when provided with the label of the target. In the latter, it suffices that nodes
give the next node on an (approximately) shortest path to the target.

Our goal is to compute these local tables as fast as possible with labels as small as possible. We
show that this can be done exactly in Õ(n1/3) communication rounds and labels of size Θ(n2/3) bits.
For constant stretch approximations we achieve labels of size O(log n) in the same time. Further, as
our main technical contribution, we provide computational lower bounds for a variety of problem
parameters. For instance, we show that computing solutions with stretch below a certain constant
takes Ω̃(n1/3) rounds even for labels of size O(n2/3).

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph algorithms

Keywords and phrases Distributed Computing, Graph Algorithms, Complexity Analysis

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.28

Related Version Full Version: https://doi.org/10.48550/arXiv.2202.06624

1 Introduction

Real networks often employ multiple communication modes. For instance, mobile devices
combine high-bandwidth, short-range wireless communication with relatively low-bandwidth
cellular communication (c.f., 5G [4]). Other examples are software defined networking [22] or
hybrid data centers, which combine wireless and wired communication [11] or optical circuit
switching and electrical packet switching [23].

In this article we utilize the theoretical abstraction of such hybrid communication networks
provided by [5] which became known as hybrid model and was designed to reflect a high-
bandwidth local communication mode and a low-bandwidth global communication mode,
capturing one of the main aspects of real hybrid networks. Fundamentally, the hybrid model
builds on the concept of synchronous message passing, a classic model to investigate round
complexity in distributed systems.

© Fabian Kuhn and Philipp Schneider;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 28; pp. 28:1–28:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kuhn@cs.uni-freiburg.de
https://orcid.org/0000-0002-1025-5037
mailto:philipp.schneider@cs.uni-freiburg.de
https://orcid.org/0000-0001-9660-1270
https://doi.org/10.4230/LIPIcs.DISC.2022.28
https://doi.org/10.48550/arXiv.2202.06624
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Routing Schemes and Distance Oracles in the Hybrid Model

▶ Definition 1 (Synchronous Message Passing, c.f., [17]). Let V be a set of n nodes with
unique identifiers ID : V → [n] Def= {1, . . . , n}. Time is slotted into discrete rounds consisting
of the following steps. First, all nodes receive the set of messages addressed to them in the
last round. Second, nodes conduct computations based on their current state and the set of
received messages to compute their new state (randomized algorithms also include the result
of some random function). Third, based on the new state the next set of messages is sent.

Synchronous message passing has a clear focus on investigating round complexity, i.e., the
number of communication rounds required to solve a problem with an input distributed over
all nodes. For this purpose, nodes are usually assumed to be computationally unbounded.
Occasionally this model is “overexploited”, e.g., nodes are supposed solve N P-complete
problems on their local data, however we will refrain from that. The hybrid model places
additional restrictions on the size of message and which nodes can exchange them.

▶ Definition 2 (Hybrid model [5]). The HYBRID(λ, γ) model is a synchronous message
passing model (Def. 1), subject to the following restrictions. Local mode: nodes may send a
message per round of maximum size λ bits to each of their neighbors in a connected graph.
Global mode: nodes can send and receive messages of total size at most γ bits per round
to/from any other node(s) in the network. If the restrictions are not adhered to, then a strong
adversary selects the messages that are delivered.

The parameter spectrum of the HYBRID(λ, γ) model covers the standard models LOCAL,
CONGEST, CLIQUE (aka “Congested Clique”) and NCC (“Node Capacitated Clique”, [5])
as marginal cases: LOCAL: λ = ∞, γ = 0, CONGEST: λ = O(log n), γ = 0, CLIQUE (+
Lenzen’s routing protocol [16]): λ = 0, γ = n log n, NCC: λ = 0, γ = O(log2 n). Given the
ramifications of investigating HYBRID(λ, γ) in its entirety, we narrow our scope (for our
upper bounds) to a particular parametrization that pushes both communication modes to
one extreme end of the spectrum. Following the arguments of [5] we leave the size of local
messages unrestricted (modeling high local bandwidth) and allow only polylog n bits of
global communication per node per round (modeling severely restricted global bandwidth).
Formally, we define the “standard” hybrid model as combination of the standard LOCAL and
NCC models: HYBRID := HYBRID

(
∞, O(log2 n)

)
. Our lower bounds are given for the more

general HYBRID(∞, γ) model, which implies lower bounds for the weaker HYBRID model.
A fundamental aspect of the Internet Protocol is packet forwarding, where every node

has to compute a routing function, which – when combined with target-specific information
stored in the packet header – must indicate the neighbor which the packet has to be forwarded
to such that it reaches its intended destination. A correct routing scheme consists of these
routing functions and a unique label per node, such that the packet forwarding procedure
induces a path in the network from any source node to any destination node specified by the
corresponding label attached to the packet.

We distinguish stateful and stateless routing schemes. In the former, routing can be
based on additional information accumulated in the packet header as the packet is forwarded,
whereas in the latter routing decisions are completely oblivious to the previous routing path.
A related problem is the computation of distance oracles, which is similar to the all pairs
shortest paths (APSP) problem. Each node must compute an oracle function that provides
the distance (or an estimate) to any other node when provided with the corresponding label.
Formal definitions are given in Section 1.3 (Def. 3, 4 and 5).

The first goal is to gather the required data for labels, routing and oracle functions in as
few rounds as possible. This is particularly important for dynamic or unreliable networks
where changes in distances or topology necessitates (frequent) re-computation. In this

F. Kuhn and P. Schneider 28:3

work we allow to relabel nodes (a.k.a. labeling scheme), where the new labels may contain
information that helps with distance estimation and routing decisions. This gives rise to our
second goal; keeping node labels small.1 The third goal is to speed up the actual packet
forwarding process to minimize latency and alleviate congestion. Given a graph with edge
weights corresponding to (e.g.) link-latencies, we want to minimize the largest detour any
packet takes relative to the corresponding shortest path. This is also known as stretch.
Analogously, for distance oracles we want to minimize the worst estimation error relative to
the true distance.

In this work we are interested in solving the above problems in a distributed setting (c.f.,
Definition 1). This has particular importance given the distributed nature of many real
networks where routing problems are relevant (most prominently, the Internet) and where
providing a centralized view of the whole network is prohibitively expensive. Given that
usually vast quantities of data must be routed, we interested in computing routing schemes
and distance oracles for the local communication network, which offers the majority of the
throughput, whereas the throughput of global network is considered negligible. The global
mode is used to speed up the computation of routing schemes (significantly, as we will see in
this work) and can also be used to send the (relatively small) labels to a source, which can
then be stored at that node for the duration of a session.

From an algorithmic standpoint, computing routing schemes and distance oracles is an
inherently global problem. That is, allowing only local communication (i.e., the LOCAL model)
it takes Ω(n) rounds to accomplish this.2 A similar observation can be made for the global
communication mode (NCC model). If we are only allowed to use global communication and
each node initially only knows its incident edges in the local network, it takes Ω̃(n) 3 rounds
to compute routing schemes and distance oracles. This article addresses the question whether
the combination of the two communication modes in the HYBRID model can overcome the
Ω̃(n) lower bound of the individual modes LOCAL and NCC.

Our answer to this is two-pronged. First we show that indeed, we can compute routing
schemes and distance oracles significantly faster, for instance, Õ(n1/3) rounds and labels of
size Θ(n2/3) suffice for an exact solution (c.f., Theorem 27). This separates these problems
from the APSP problem, which can be used to solve our problems at hand, but has a Ω̃(

√
n)

lower bound even for extremely crude approximations [5]. Second, we show that the HYBRID
model is not arbitrarily powerful by giving polynomial lower bounds for these problems
(depending on the stretch) that hold even for relatively large labels and unbounded local
memory. For instance, we show that it takes Ω̃(n1/3) rounds to solve either problem exactly,
even for unweighted graphs and labels of size O(n2/3) (c.f., Theorem 14). We provide nuanced
results, depending on stretch and the type of problem, summarized in the following.

1.1 Contributions and Overview
Table 1 gives a simplified overview of our complexity results for the various forms of routing
scheme and distance oracle problems. Our main contributions revolve around computational
lower bounds for computing distance oracles and stateless and stateful routing schemes in

1 In other settings, the amount of information stored at nodes for routing and distance estimation is
considered, as well. Since the nodes in our model are computationally unbounded we do not focus on
that. Our lower bounds have also no restriction on the local information.

2 Note that any graph problem can be solved in O(n) rounds in LOCAL by collecting the graph and
solving the problem locally at some node. This makes global problems uninteresting for the LOCAL
model, unless communication restrictions are increased (c.f., CONGEST) or decreased (c.f., HYBRID).

3 The Õ(·) notation suppresses multiplicative terms that are polylogarithmic in n.

DISC 2022

28:4 Routing Schemes and Distance Oracles in the Hybrid Model

the HYBRID model. Lower bounds for approximations are summarized in the first three
groups of Table 1. We also consider lower bounds on unweighted graphs, see the first row of
the fourth group of Table 1. These lower bounds hold regardless of the allowed local memory
and hold for randomized algorithms with constant success probability.

Furthermore, we give upper bounds for the HYBRID model, summarized in the last two
groups of Table 1. The implied computational upper bounds for the exact and approximate
problem variants are almost tight with some of our corresponding lower bounds (more on
that further below). In the following paragraphs we aim to give some intuitive understanding
into how our techniques work by shedding most of the proof-details and occasionally pointing
out how the results are generalized in the main part. We also show how the techniques used
in this work relate to – and are distinct from – prior work.

In the main part, the results on lower bounds are formulated for the more general
HYBRID(∞, γ) model (which therefore hold for HYBRID(λ, γ)), and thus γ appears as
parameter. For instance, the precise bound on unweighted graphs or for approximations on
weighted graphs is Ω(n1/3/γ1/3) rounds for labels of size up to c·n2/3 ·γ1/3 for some c > 0
(c.f., Theorem 14). That is, we get a polynomial lower bound for the HYBRID(∞, γ) model
for any γ = nt for constant t < 1. For easier readability we plug in the “standard” HYBRID
model with γ = Õ(1), which lets us hide γ using the Ω̃ notation.

Table 1 Selected and simplified contributions of this paper.

problem stretch complexity label-size reference

distance oracles 3−ε Ω̃(n1/3) O(n2/3)† Theorem 20
ℓ Ω̃

(
n1/f(ℓ))‡

O
(
n2/f(ℓ))†‡ Theorem 20, 21

stateless routing
schemes

√
3−ε Ω̃(n1/3) O(n2/3)† Theorem 23√
5−ε Ω̃(n1/5) O(n2/5)† Theorem 23

1+
√

2−ε Ω̃(n1/7) O(n2/7)† Theorem 23

stateful routing
schemes

√
2−ε Ω̃(n1/3) O(n2/3)† Theorem 25

5
3 −ε Ω̃(n1/5) O(n2/5)† Theorem 25
7
4 −ε Ω̃(n1/7) O(n2/7)† Theorem 25

≈ 1.78 Ω̃(n1/11) O(n2/11) Theorem 25

all of the above on
unweighted graphs

exact Ω̃(n1/3) O(n2/3)† Theorem 14
1+ε Õ(n1/3/ε) Θ(log n) Theorem 28

all of the above on
weighted graphs

exact Õ(n1/3) Θ(n2/3) Theorem 27
3 Õ(n1/3) Θ(log n) Theorem 28

†) The lower bound on round complexity holds for node labels of at most that size.
‡) For some function f(ℓ) that is linear in ℓ.

Communication Lower Bound in HYBRID. The proofs of lower bounds are based on an
intermediate problem which describes the complexity of communicating information between
distinct node sets in the HYBRID model, which we can then translate into the realm of classic
information theory. We sketch the idea bottom up, neglecting generalizations and most of
the details. We start out with a two party communication problem, where Alice is given
the state of some random variable X and needs to communicate it to Bob (c.f., Definition
8). Any communication protocol that achieves this needs to communicate H(X) (Shannon
entropy of X, see Def. 29) bits in expectation (c.f., Corollary 31), which is a consequence of
the source coding theorem (replicated in Lemma 30).

F. Kuhn and P. Schneider 28:5

In Section 2 we reduce this to the HYBRID setting into what we call the node
communication problem. There, we have two sets of nodes A and B, where nodes in
A “collectively know” the state of some random variable X and need to communicate it to
B (for more precise information see Definition 7). We show a reduction where a HYBRID
algorithm that solves the node communication problem on sets A and B, which are at
sufficiently large distance in the local graph, can be used to derive a protocol for the two
party communication problem (c.f., Lemma 9). We conclude that for sets A, B with distance
at least h it takes Ω̃

(
min(H(X)/n, h)

)
rounds to solve this problem (Theorem 10).

The node communication problem extends on [13, 5] and can be seen as a natural
intermediate problem that lies at the core of many interesting problems in the HYBRID(∞, γ)
model and might be useful as black-box for other reductions. A major difference to [13] is that
there, two party set disjointness is reduced to a distributed decision problem, whereas we show
that learning super-linear information from distant parts of a graph is hard in the HYBRID
model. The APSP lower bound of [5] uses the observation that a large number of distances
has to be learned by a single node. However, labels (even as small as O(log n)) prohibit this
idea in our setting, as these must be treated as “free information” that can provide these
distances. On a technical level we generalize the approach for the HYBRID(∞, γ) model
and strengthen the proof for randomized protocols for any constant success probability (see
Appendix A).

Lower Bounds on Unweighted Graphs. In Section 3 we construct a reduction from the node
communication problem to distance oracle and routing scheme computation in the HYBRID
model. The goal is to encode some random variable X with large entropy (super-linear in n)
into some randomized part of our local communication graph such that some node set A

knows X by vicinity. We construct such a graph Γ (see Figure 1a) from the complete bipartite
graph Gk,k = (A, E) and a (i.i.d.) random k2-bit-string X = (xe)e∈E with H(X) = Θ(k2).
Then an edge e ∈ E of Gk,k is present in Γ iff xe = 1.

The nodes in A collectively know X since they are incident to the edges sampled from
Gk,k. We designate k nodes of A (one side of the bipartition in Gk,k) as the “target nodes”.
We connect each target with a path of length h to one of k “source nodes” which takes the
role of B (see Figure 1a). We show that if the nodes in B learn the distances to the target
nodes they also learn about the (non-)existence of the edges sampled from Gk,k and can
conclude the state of X and thus have solved the node communication problem. Balancing
the parameters k and h we conclude that Ω̃(n1/3) rounds of communication must have taken
place to solve the distance oracle problem exactly (Theorem 14).

For routing schemes we have to adapt the graph Γ. We add a slightly longer alternative
route from sources to targets (Figure 1a, left side) and show that the state of X can
be concluded from the first routing decision the sources have to make, i.e., whether this
alternative path is used or not. One caveat is that the nodes are only supposed to give a
distance or make a correct routing decision when also provided with the target-label. We
choose the labels sufficiently small such that the “free information”, given in form of the
labels of all targets, is negligible. Still, labels up to size O(n2/3) do not change the above
narrative, cf. Theorem 14.

Lower Bounds for Approximations. In Section 4 we show how to use graph weights
to obtain lower bounds for approximations. We replace Gk,k with a balanced, bipartite
graph G = (A, E) with k nodes and girth ℓ (length of the shortest cycle in G). As before,
the existence of an edge e ∈ E in Γ is determined by a random bit string X = (xe)e∈E ,

DISC 2022

28:6 Routing Schemes and Distance Oracles in the Hybrid Model

c.f., Figure 1b. If some edge e ∈ E is not in Γ, then the detour between endpoints of e

using other edges sampled from G is at least ℓ−1 edges, which translates into almost the
same multiplicative detour, by assigning large weights to those edges. Any algorithm for
distance oracles with stretch slightly smaller than ℓ−1 can then be used to solve the node
communication problem.

To maximize H(X) we need to maximize the density of G. However, it is known that
girth and density of a graph are opposing goals: a graph with girth 2g + 1 can have at most
O

(
n1+1/g

)
edges (c.f., [2], simplified in Lemma 34). This inherently limits the amount of

information we can encode in Γ and we show in Lemma 18 how graph density affects lower
bounds for the node communication problem. The good news is, that for some girth values,
graphs that achieve their theoretical density limit actually exist and have been constructed
(c.f., [6, 19], simplified form given in Lemma 35). For higher girth values, graphs that come
close to that limit are known (c.f., [15], simplified form in Lemma 36). Utilizing these graphs
we prove polynomial lower bounds for the distance oracle problem for small stretch values
(c.f., Theorem 20) but also for arbitrary constant stretch (c.f., Theorem 21). Theorem 21 is
heavily parametrized, but to sum it up in a simpler way: for any constant stretch ℓ we attain
a polynomial lower bound of Ω̃(n1/f(ℓ)), that is, f(ℓ) is constant as well (roughly f(ℓ) ≈ 3

2 ℓ).
A major part is dedicated to lower bounds for approximate stateless and stateful routing

schemes (c.f., Definitions 4, 5). Here, the introduction of weights, stretch and girth introduces
considerable complexity when using our techniques. The main reason for this is that in
routing problems a wrong routing decision at the source can often still be completed into a
routing path of relatively good quality, even more so for stateful routing, where a packet may
“backtrack” to try different paths (for those reasons the lower bounds are also more limited
in terms of stretch). We carefully optimize our bad case graph such that it maximizes the
stretch for certain round complexities. The results are given in the second and third group
of Table 1 with details in Theorems 23 and 25.

Our reductions from the node communication problem to various bad graph instances
for distance oracle and routing scheme problems are distinct from those in [13], which
shows a Ω̃(n1/3) lower bound for computing the diameter that reduces from the two party
set-disjointness problem. Our bad case graphs are also distinct from those for APSP in [5],
which creates a bottleneck for a single node, that must learn Ω̃(n) bits (which does not
work for labeling schemes). Lower bounds for the same problem in the CONGEST model
are provided by [12]. Here, the goal is to construct a graph G that has a communication
bottleneck (usually a small cut) and small diameter DG as the Ω(DG) lower bound is trivial.
By contrast, as the HYBRID model contains LOCAL, small cuts do not help us and we have
a trivial O(DG) upper bound, thus we need to look at graphs with relatively large diameter.

Upper Bounds. For our computational upper bounds (given in Section 5) we show how to
reduce the computation of distance oracles and routing schemes for general graphs in the
HYBRID model to shortest path problems. In particular we draw on fast solutions for the so
called random sources shortest paths problem (RSSP) [7], where all nodes must learn their
distance to a set of i.i.d. randomly sampled nodes, say S. After solving RSSP, our strategy
is to use the distance between a node u and the nodes in S as its label λ(u).

Roughly speaking, provided that u is sufficiently “far away”, a node v can combine λ(u)
with its own distances to S to compute its distance (estimate) to u. If u is “close” then we
can use the local network to compute the distance directly. While this gives us only distance
oracles, routing schemes can also be derived. Simply speaking, we can always send a packet
to a neighbor that has the best distance (estimate) to u, although some further care must be
taken for approximations. Note that this process is oblivious to previous routing decisions so
the obtained routing scheme is stateless (c.f., Definition 4).

F. Kuhn and P. Schneider 28:7

A trade-off arises from the local exploration around nodes and the global computation
depending on the size of S (since we solve RSSP on S), which balances out to a round
complexity of Õ(n1/3) with |S| ∈ Õ(n2/3). We obtain exact algorithms (distance oracles and
routing schemes) with labels of size Θ(n2/3) (however we can further decrease label size to
Θ(n2/3−ζ) at a cost of Õ(n1/3+ζ) rounds, c.f., Theorem 27). Note that this is tight up to
polylog n factors as is shown by the corresponding lower bound in Table 1 group 4 line 1
(which holds even on unweighted graphs).

For smaller labels we obtain a 3-approximation on weighted graphs and a (1 + ε)
approximation on unweighted graphs in Õ(n1/3) rounds (for constant ε > 0) with labels of
size O(log n) (c.f., Theorem 28), which is as small as labels can asymptotically be to be able
to identify the destination. Compare this to our lower bounds: even much larger labels of
size Θ(n2/3) do not help to improve the stretch by much, as this still takes Ω̃(n1/3) rounds
for stretch of 3−ε for distance oracles on weighted graphs, and stretch 1 on unweighted
graphs (see Table 1).

Our upper bounds separate the distance oracle (and routing) problem from the related
all pairs shortest paths (APSP) problem, where nodes must give their distance to all other
nodes without using labels and where a Ω̃(n1/2) lower bound is known even for stretch up
to some α ∈ Θ̃(n1/2) [13]. This separation is not the case in the LOCAL and NCC models,
where either problem has round complexity Θ̃(n) rounds in general. Our results show that
labels of limited size of O(log n) bits helps to significantly speed up computing (approximate)
distances to all destinations in the HYBRID model.

1.2 Related Work
There was an early effort to approach hybrid networks from a theoretic angle [1], with
a conceptually different model. Research on the current take of the HYBRID model was
initiated by [5] in the context of shortest paths problems, which most of the research has
focused on so far. As shortest paths problems problems are closely related, we give a brief
account of the recent developments. An overview of distance oracles and routing schemes in
other models is provided in the full version of this article [14].

Shortest Paths in the Hybrid Model. [5] introduced an information dissemination scheme
to efficiently broadcast small messages to all nodes in the network. Using this protocol,
they derive various solutions for shortest paths problems. For instance, for SSSP: a (1+ε)
stretch, Õ(n1/3)-round algorithm and a (1/ε)O(1/ε)-stretch, Õ(nε)-round algorithm. Further,
an approximation of APSP with stretch 3 in Õ(n1/2) rounds, which closely matches their
Ω̃(n1/2) lower bound (which holds for much larger stretch). Subsequently, [13] introduced a
protocol to efficiently uni-cast small messages between dedicated source-target pairs in the
HYBRID model, which they use to solve APSP and SSSP exactly in Õ(n1/2) and Õ(n2/5)
rounds, respectively. For computing the diameter they provide algorithms (e.g., a 3/2+ε

approximation in Õ(n1/3) rounds) and a Ω̃(n1/3) lower bound. [7] combines the techniques
of [13] with a densitiy sensitive approach, to solve n1/3-SSP (thus SSSP) exactly and compute
a (1+ε)-approximation of the diameter in Õ(n1/3) rounds. [8] uses density awareness in a
different way to improve SSSP to Õ(n5/17) rounds for a small stretch of (1+ε). For classes
of sparse graphs (e.g., cactus graphs) [10] demonstrates that exact solutions in Õ(1) rounds
are possible even in the harsher hybrid combination CONGEST and NCC. The recent result
of [24] implies an (1+ε) approximation of SSSP in Õ(1) rounds in general graphs in the
hybrid CONGEST and NCC regime, since their partwise aggregation model can be simulated
efficiently in the HYBRID model as shown by [3]. The article by [3] also derandomized the
dissemination protocol of [5] to obtain a deterministic APSP-algorithm with stretch log n

log log n

in Õ(n1/2) rounds.

DISC 2022

28:8 Routing Schemes and Distance Oracles in the Hybrid Model

1.3 Preliminaries
General Definitions. The scope of this paper is solving graph problems, typically in the
undirected local graph G = (V, E). Edges have weights w : E → [W], where W is at most
polynomial in n, thus the weight of an edge and of a simple path fits into a O(log n) bit
message (whereas define log := log2). Graph G is considered unweighted if W = 1. Let
w(P) =

∑
e∈P w(e) denote the length of a path P ⊆ E. Then the distance between two nodes

u, v ∈ V is dG(u, v) :=minu-v-path P w(P). A path with smallest length between two nodes is
called a shortest path. Let |P | be the number of edges (or hops) of a path P . The hop-distance
between two nodes u and v is defined as: hopG(u, v) :=minu-v-path P |P |. We generalize this
to sets U, W ⊆ V (whereas hopG(v, v) := 0): hopG(U, W) :=minu∈U,w∈W hopG(u, w). The
diameter of G is defined as: DG := maxu,v∈V hopG(u, v). Let the h-hop distance from u to v

be: dG,h(u, v) :=minu-v-path P,|P |≤h w(P). If there is no u-v path P with |P | ≤ h we define
dh(u, v) := ∞. We drop the subscript G, if G is clear from the context. We consider the
following problems:

▶ Definition 3 (Distance Oracles). Every node v ∈ V of a graph G = (V, E) needs to compute
a label λ(v) and an oracle function ov : λ(V) → N, such that ov(λ(u)) ≥ d(u, v) for all u ∈ V .
An oracle function ov is an (α, β)-approximation if ov(λ(u)) ≤ α · d(u, v) + β for all u, v ∈ V ,
that is, α, β are the multiplicative and additive approximation error, respectively. We speak
of a stretch of α in case of an (α, 0)-approximation. If the stretch is one, we call ov exact.

▶ Definition 4 (Stateless Routing Scheme). Every node v ∈ V of a graph G = (V, E) needs to
learn a label λ(v) and a routing function (sometimes called “table”) ρv : λ(V) → N(v) ∪ {v}
where N(v) are adjacent nodes of v in G (whereas we formally set ρv(λ(v)) := v). The
functions ρv must fulfill the following correctness condition. Let v0 := v and recursively
define vi := ρvi−1(λ(u)). Then the routing functions ρv, v ∈ V must satisfy vh = u for
some h ∈ N. Let Pρ(u, v) be the path induced by the visited nodes v0, . . . , vh. We call ρ an
(α, β)-approximation if w(Pρ(u, v)) ≤ αd(u, v) + β for all u, v ∈ V .

▶ Definition 5 (Stateful Routing Scheme). This is mostly defined as in the stateless case,
with the difference that ρv can additionally depend on the information gathered along the
path that has already been visited by a packet (which would be stored in its header). Note
that the routing path defined by such a function ρ might have loops.

▶ Definition 6 (Randomized Graph Algorithms). We say that an algorithm has success
probability p, if it succeeds with probability at least p on every possible input graph (however,
some of our results are restricted to unweighted input graphs). Specifically, for our upper
bounds we aim for success with high probability (w.h.p.), which means with success probability
at least 1 − 1

nc for arbitrary constant c > 0.

2 Node Communication Problem

In this section we create an “information bottleneck” in the HYBRID model between
two (distant) parts of the local communication graph. We do this for the more general
HYBRID(∞, γ) model, where we have a global communication bandwidth of γ bits per node
per round, which also has the advantage of avoiding logarithmic terms and O-notation as
long as possible (recall that HYBRID = HYBRID

(
∞, O(log2 n)

)
).

We first introduce some definitions. We say that the nodes from some set A ⊆ V

collectively know the state of a random variable X, if its state can be derived from the
information that the nodes A have. Or, in terms of information theory, given the state or

F. Kuhn and P. Schneider 28:9

input SA of all nodes A (interpreted as a random variable), then the conditional entropy
H(X|SA) (see Definition 29), also known as the amount of new information of X provided
that SA is already known, is zero. Similarly, we say that the state of X is unknown to B ⊆ V ,
if the initial information of the nodes B does not induce any knowledge on the outcome of X.
Or formally, that for the state SB of the nodes B we have that H(X|SB) = H(X), meaning
that all information in X is new even if SB is known.

▶ Definition 7 (Node Communication Problem). Let G = (V, E) be some graph. Let A, B ⊂ V

be disjoint sets of nodes and h := hop(A, B). Furthermore, let X be a random variable whose
state is collectively known by the nodes A but unknown to any set of nodes disjoint from A.
An algorithm A solves the node communication problem if the nodes in B collectively know
the state of X after A terminates. We say A has success probability p if A solves the problem
with probability at least p for any state X can take (in line with our Definition 6 of success
probability for graph algorithms).

The goal of Lemma 9 is to reduce a more basic communication problem, for which we can
provide lower bounds using information theory (c.f., Appendix A) to the node communication
problem. Analogously to node sets, we define that Alice knows some random variable X,
which is unknown to Bob as follows. Given that SAlice and SBob are their respective inputs
then we have H(X|SAlice) = 0 and H(X|SBob) = H(X).

▶ Definition 8 (Two Party Communication Problem). Given two computationally unbounded
parties, Alice and Bob, where initially Alice knows the state of some random variable X

which is unknown to Bob. A communication protocol P is said to solve that problem if after
its execution Bob can derive the state of X from the transcript of all exchanged messages.
Performance is measured in the length of the transcript in bits. We say P has success
probability p if P solves the problem with probability at least p for any state X can take.

The reduction from the 2-party communication problem to the node communication
problem uses the following simulation argument: Alice and Bob can together simulate a
HYBRID(∞, γ) model algorithm for the node communication problem and use it solve the
2-party communication problem. The proof is deferred to Appendix C.

▶ Lemma 9. Any algorithm A that solves the node communication problem (Def. 7) in
the HYBRID(∞, γ) model on some local graph G = (V, E) with n = |V | and A, B ⊂ V in
T < h = hop(A, B) rounds with success probability p can be used to obtain a protocol P that
solves the two party communication problem (Def. 8) with the same success probability p and
transcript length at most T · n · γ.

We plug in the lower bound for the 2-party communication problem (c.f. Lemma 32 in
Appendix A) to derive a lower bound for the node communication problem. Note that this
theorem only depends on the hop distance h between A, B, the entropy of X and the number
of nodes n and is otherwise agnostic to the local graph. Also note that a lower bound that
holds in expectation is also a worst case lower bound.

▶ Theorem 10. Any algorithm that solves the node communication problem (Def. 7) on
some n-node graph in the HYBRID(∞, γ) model with success probability at least p, takes at
least min

(pH(X)−1
n·γ , h

)
rounds in expectation, where H(X) denotes the entropy of X.

Proof. We have to show that a randomized, HYBRID(∞, γ) algorithm A that solves the
node communication problem in less than h rounds with success probability p takes at least
pH(X)−1

n·γ rounds. Presume, for a contradiction, that A has an expected running time T < h

and T < pH(X)−1
n·γ . This implies T · n · γ < p · H(X) − 1.

DISC 2022

28:10 Routing Schemes and Distance Oracles in the Hybrid Model

Invoking Lemma 9 gives us a protocol P with the same success probability p and with a
transcript of length at most T · n · γ. With the inequality above, this means in the protocol
P, Alice sends less than p · H(X) − 1 bits to Bob in expectation. This contradicts the fact
that p · H(X) − 1 is a lower bound for this due to Appendix A Lemma 32. ◀

We have to accommodate the fact that in the routing problem or distance oracle problem,
the nodes have to give a distance estimation or next routing neighbor only when provided
with the label of the target node. Therefore we have to slightly amend Theorem 10, which
will later allow us to argue that even if we assume that nodes have advance knowledge of a
selection of sufficiently small labels, the lower bound will not change asymptotically.

▶ Corollary 11. If A is allowed to communicate y bits to B for free, then any algorithm that
solves the node communication problem on some n-node graph (Def. 7) in the HYBRID(∞, γ)
model with success probability at least p, takes at least min

(pH(X)−1−y
n·γ , h

)
rounds in

expectation (i.e., also in the worst case).

3 Lower Bounds For Unweighted Graphs

In this and the following section we aim to reduce from the node communication problem
in the HYBRID(∞, γ) model given in Definition 7, to the problem of computing routing
tables or distance oracles, which works as follows. We define a graph Γ = (VΓ, EΓ) such
that, first, the solution of the routing or distance oracle problems informs a subset B ⊂ VΓ
about the exact state of some random variable X that is encoded by the subgraph induced
by A ⊂ VΓ. Second, X has a large entropy (we aim for super-linear in n). And third, the
distance hop(A, B) between both sets is sufficiently large.

▶ Definition 12. Let X = (xij)i,j∈[k] ∈ {0, 1}k2 be a bit sequence of length k2. Let Γ =
(VΓ, EΓ) (shown in Figure 1a) be an unweighted graph with source nodes s1, . . . , sk ∈ VΓ,
transit nodes u1, . . . , uk ∈ VΓ and target nodes t1, . . . , tk ∈ VΓ. Each source si has a path
of length h hops to the transit nodes ui. We have an edge between ui and tj if and only if
xij = 1. Additionally, there are two nodes v, v′ ∈ VΓ connected by a path of h hops. The
nodes v and v′ have an edge to each source si or target ti, respectively (Figure 1a).

This construction has the following properties.
(1) The distance from source si to tj is larger for xij = 0 than for xij = 1 (as shown by the

subsequent Lemma 13).
(2) For all i, j ∈ [k], independently set xij = 1 with probability 1

2 , else xij = 0. This
maximizes H(X) = −k2 · log(1/2)

2 = k2

2 .
(3) Let A={u1, ... , uk, t1, ... , tk}, B ={s1, ... , sk}, i.e., hop(A, B)=h.

▶ Lemma 13. If xij = 1 then d(si, tj) = h+1 and the shortest si-tj-path contains v, else
d(si, tj) = h+2 and it does not contain v.

Proof. Any path from si to tj has to cross the vertex cut U := {u1, . . . , uk, v′} (c.f., Figure
1a). Such a path has to include a path of length h to reach a node of U , as well as an
additional edge connecting U to tj and therefore d(si, tj) ≥ h + 1. However, we also have
d(si, tj) ≤ h + 2, due to the path along the nodes si, v, . . . , v′, tj (c.f., Figure 1a) that has
length h + 2.

If xij = 1, i.e., {ui, tj} ∈ E, then the path along the nodes si, . . . , ui, tj has length h + 1.
Note that all nodes in U \ {ui, v′} are at distance at least h + 2 from si (c.f., Figure 1a), so
every path via one of the nodes U \ {ui, v′} has distance at least h + 3. In the case xij = 0,
i.e., {ui, tj} /∈ EΓ, this is also true for the path via ui and the only path with distance h + 2
is the one via v′. ◀

F. Kuhn and P. Schneider 28:11

t1 t2 t3 tk

s1 s2 s3 sk

u1 u2 u3 ukv′

v

h hops

A

B

(a) Graph Γ = (VΓ, EΓ). Bit string X = (xij) ∈
{0, 1}k2

determines red edges. E.g., {u1, t2} /∈ EΓ
and {u1, t3}∈EΓ means x12 = 0 and x13 = 1.

t1 t2 t3 tk

s1 s2 s3 sk

u1 u2 u3 ukv′

h hops

w2

w0

w1 A

B

G∈Gk,`

v

(b) Graph Γ constructed around G = (A, E) ∈ Gk,ℓ

with m := |E| edges (red) and from X = (xe)e∈E ∈
{0, 1}m, where e ∈ E is part of Γ iff xe = 1.

Figure 1 Lower bound graphs. Unweighted (left) and weighted (right).

The idea to prove the next theorem is that if the nodes in B learn the distance to the
nodes in t1, . . . , tk, then their combined knowledge can be used to infer the state of the
random string X that is collectively known by the nodes in A. The proof the applies Theorem
10 and we maximize the lower bound by balancing k (which givers the size of H(X)) and h.
Formally, we apply Corollary 11 to account for the labels λ(t1), . . . , λ(tk) that are given “for
free” to the nodes in B, which gives us an upper bound on their size for which the lower
bound in round complexity still holds. The full proof is given in [14].

▶ Theorem 14. Even on unweighted graphs, any randomized algorithm that computes exact
(stateless or stateful) routing schemes or distance oracles in the HYBRID(∞, γ) model with
constant success probability takes Ω(n1/3/γ1/3) rounds. This holds for labels of size up to
c · n2/3 · γ1/3 (for a fixed constant c > 0).

4 Lower Bounds for Approximations

Our next construction relies on the existence of families of graphs that have high girth and
maintain relatively high density. We modify the basic construction above, essentially by
replacing the upper part of Γ with a random selection of edges from a graph of that family
(and also making Γ weighted). Besides high density we require the following.

▶ Definition 15. Gk,ℓ is a graph family, s.t. for all G=(A, E)∈Gk,ℓ: (i) |A| = 2k, (ii) G

has (even) girth at least ℓ, (iii) G is balanced and bipartite.

Removing an edge from G ∈ Gk,ℓ incurs a large detour of at least ℓ−1 hops between the
endpoints of that edge, since otherwise there would be a cycle shorter than ℓ in G. This
observation is often used to prove certain bounds for low stretch subgraphs (one prominent
example is the lower bound on the size of low stretch spanners). and can be exploited to
introduce a stretch into our lower bound construction. We construct this formally as follows
(however, first consulting Figure 1b will presumably be more helpful to the reader).

▶ Definition 16. Let G = (A, E) ∈ Gk,ℓ with m := |E| edges and let {u1, . . . , uk} ∪
{t1, . . . , tk} = A be the bipartition of G. Graph Γ = (VΓ, EΓ) (shown in Figure 1b) has a
similar structure as the unweighted construction (Def. 12), where the main difference is the
way how the nodes {u1, . . . , uk} ∪ {t1, . . . , tk} are connected by edges in Γ.

DISC 2022

28:12 Routing Schemes and Distance Oracles in the Hybrid Model

Let X = (xe)e∈E ∈ {0, 1}m be a bit string of length m = |E|, i.e., each bit xe corresponds
to an edge e of G. For each ui, tj we have {ui, tj} ∈ EΓ, if and only if {ui, tj} ∈ E and
x{ui,tj} = 1. In a slight change from the previous construction, we make the path from v to
v′ of hop length h−1. The weights of Γ are assigned as follows. Edges between the node v′

and some tj have weight w0. Edges between nodes ui, tj have weight w1. Edges incident to
some si have weight w2.

We have the following properties.
(1) Let e={ui, tj}∈E. w0, w1, w1 can be chosen s.t. d(si, tj) is much longer for xe = 0 than

for xe = 1 (c.f., Lemma 17).
(2) For each edge e ∈ E of G, set xe = 1 i.i.d. with probability 1

2 , else xe = 0. This maximizes
the entropy H(X) = m

2 .
(3) For nodes A of G and B := {s1, . . . , sk} we have hop(A, B) = h.

We observe that the distances d(si, tj) between nodes si, tj with e = {ui, tj} ∈ E depend
on whether e is in Γ (xe = 1), or not (xe = 0), the proof is deferred to Appendix D.
Conceptually, we later choose weights w1 ≪ w0, so that xe induces a large difference in
d(si, tj).

▶ Lemma 17. Consider Γ (Def. 16), constructed from G = (A, E) ∈ Gk,ℓ and X. Let
w1 < w0 < (ℓ − 1)w1. Let e = {ui, tj} ∈ E. Then we have:

(i) The shortest si-tj-path contains v if and only if xe = 0.
(ii) If xe = 1 then d(si, tj) = w2 + w1 + h − 1.

If xe = 0, then d(si, tj) = w2 + w0 + h − 1.

For the reduction from the node communication problem to our concrete routing and
distance oracle problems, we start with a technical lemma that analyzes the running time of
any algorithm A that solves the node communication problem in Γ for the dedicated node
sets A, B and the random variable X from which Γ is constructed.

In particular, we express the lower bound from Theorem 10 as function of n := |VΓ|, the
density of G ∈ Gk,ℓ given by a parameter δ and the global communication capacity γ. The
lemma is the result of balancing a trade off between the distance h = hop(A, B) and the
number of nodes Θ(k) of G (which governs the entropy H(X) = Θ(k1+δ) when the density
of G is fixed).For the proof details see [14].

▶ Lemma 18. Consider Γ constructed from random variable X and G = (A, E) ∈ Gk,ℓ (Def.
16) with |E| = Θ

(
k1+δ

)
edges (for δ > 0 and k of our choosing). Let A be an algorithm that

solves the node communication problem on Γ with X, node sets A, B ⊂ VΓ and h = hop(A, B)
in the HYBRID(∞, γ) model (all parameters as in Def. 16). We can choose k = Θ

(
n
h

)
such

that A takes Ω
(
(nδ

γ)
1

2+δ
)

rounds. There exists a constant c > 0 such that this holds even
when we allow exchanging c · k1+δ bits from A to B for free.

4.1 Distance Oracles
The first lower bound with stretch is for the distance oracle problem. The idea is as follows.
In case there is a direct edge e = {ui, tj} (i.e., xe = 1), the distance from si to tj is almost
ℓ−1 times shorter, than if that is not the case. Hence, by learning an approximation of
d(si, tj) with a stretch slightly lower than ℓ−1, the node si can conclude if e exists or not,
i.e., if xe = 1 or xe = 0. Hence the nodes B = {s1, . . . , sk} collectively learn the random
variable X and thus solve the node communication problem.

F. Kuhn and P. Schneider 28:13

This lemma is kept general such that we can plug in any graph with density parameter
δ and girth ℓ. Note that the girth ℓ fundamentally limits the density parameter δ; the
correspondence between the two is roughly δ ∈ O

(1
ℓ

)
as shown in Appendix B. For a more

intuitive understanding we suggest plugging in the complete bipartite graph Gk,k which has
girth ℓ = 4 and Θ(k2) edges (i.e., density parameter δ = 1). The proof appears in [14].

▶ Lemma 19. Consider Γ constructed from G = (A, E) ∈ Gk,ℓ with |E| = Θ
(
k1+δ

)
edges

for some δ > 0. Any algorithm that solves the distance oracle problem on Γ with stretch
αℓ = ℓ−1−ε (for any const. ε > 0) and constant success probability in the HYBRID(∞, γ)
model takes Ω

(
(nδ

γ)
1

2+δ
)

rounds, for labels up to size c · n
2δ

2+δ · γ
δ

2+δ (for a fixed const. c > 0).

It remains to insert graphs G ∈ Gk,ℓ into Lemma 19. We aim for graphs G = (V, E) ∈ Gk,ℓ

with |E| ∈ Θ
(
k1+δ

)
that maximize both girth ℓ and density parameter δ. As outlined in

Appendix B, these are opposing objectives, and for even girth ℓ ≥ 4 we know that δ ∈ O
(2

ℓ−2
)

(from applying Lemma 34 on uneven girth ℓ − 1). Bipartite graphs of girth ℓ that reach
δ ∈ Θ

(2
ℓ−2

)
can be constructed for small girth ℓ (summarized in Lemma 38) from which we

obtain Theorem 20. But for higher girth we have to settle for δ below this threshold (see
Lemma 39), this is reflected in Theorem 21.

▶ Theorem 20. Any algorithm that solves the distance oracle problem in the HYBRID(∞, γ)
model with constant success probability with

stretch 3−ε takes Ω
(
(n

γ) 1
3
)

rounds for label size ≤ c · (n2γ) 1
3

stretch 5−ε takes Ω
(

n1/5

γ2/5

)
rounds for label size ≤ c · (n2γ) 1

5

stretch 7−ε takes Ω
(

n1/7

γ3/7

)
rounds for label size ≤ c · (n2γ) 1

7

stretch 11−ε takes Ω
(

n1/11

γ5/11

)
rounds for label size ≤ c · (n2γ) 1

11

for any const. ε > 0 and a fixed const. c > 0.

Proof. By Lemma 38 there are bipartite, balanced graphs with girth ℓ ∈ {4, 6, 8, 12} and
Θ(n1+ 2

ℓ−2) edges, thus δ(ℓ) = 2
ℓ−2 . In particular, we have δ(4) = 1, δ(6) = 1

2 , δ(8) = 1
3 ,

δ(12) = 1
5 , which yield the desired results when plugged into Lemma 19. ◀

Applying Lemma 19 on the densest known graphs with larger girth (see Lemma 39), we
obtain the subsequent theorem. The parametrization is complex due to a case distinction in
Lemma 39, the upshot is that for any constant stretch and sufficiently small γ we still get
polynomial (in n) lower bounds for labels up to some polynomial size (in n).

▶ Theorem 21. Any algorithm that solves the distance oracle problem in the HYBRID(∞, γ)
model with constant success probability for any const. ε > 0 and a fixed const. c > 0, with

stretch ℓ−1−ε for ℓ ≥ 14 with ℓ ≡ 2 mod 4 takes Ω
(

n
2

3ℓ−8 /γ
3ℓ−10
6ℓ−6

)
rounds for label size

≤ c · n4/(3ℓ−8) · γ2/(3ℓ−8)

stretch ℓ−1−ε for ℓ ≥ 16 with ℓ ≡ 0 mod 4 takes Ω
(

n
2

3ℓ−10 /γ
3ℓ−12
6ℓ−8

)
rounds for label

size ≤ c · n4/(3ℓ−10) · γ2/(3ℓ−10).

Proof. By Lemma 39 there are bipartite, balanced graphs with even girth ℓ ≥ 14 that have
(i) Θ(n1+ 4

3ℓ−10) edges if ℓ ≡ 2 mod 4, or (ii) Θ(n1+ 4
3ℓ−12) edges if ℓ ≡ 0 mod 4. Thus in case

(i) we have δ(ℓ) = 4
3ℓ−10 and in case (ii) δ(ℓ) = 4

3ℓ−12 . Plugging δ(ℓ) into Lemma 19 gives
the desired result. ◀

4.2 Stateless Routing Scheme
For lower bounds of routing schemes we exploit the observation that for an edge e = {si, tj} ∈
E the node si learns about the existence of e in Γ, i.e., whether xe = 0 or xe = 1, from the
decision to send a packet with destination tj first to v or not. More precisely, we show that
xe = 0 if and only if v is the first routing neighbor for the packet with destination tj .

DISC 2022

28:14 Routing Schemes and Distance Oracles in the Hybrid Model

However, we have to decrease the stretch of our lower bound in order that this works.
The main obstacle is that the decision of si to send a packet with target tj directly towards
ui instead of node v (left path) does not impact the distance of the routing path that one
can still obtain by that much.

In particular, in the case of stateless routing, a packet that travels from si to ui and
finds that the direct edge {ui, tj} does not exist, could still use any other edge {ui, tp} and
then the two edges {tp, v′}, {v′, tj} to get to tj (e.g., in Figure 1b from s2 to t3). This would
mislead si as the first routing node was not v, yet xe = 0.

The target is to prohibit this and some other troublesome routing options by making them
exceed the stretch guarantee. However, this gives us additional restrictions that dominate the
resulting system of inequalities for higher girth ℓ of G, in particular we gain no improvement
in the stretch for ℓ ≥ 8. The proof is deferred to [14].

▶ Lemma 22. Consider Γ constructed from G = (A, E) ∈ Gk,ℓ with |E| = Θ
(
k1+δ

)
edges

for some δ > 0. For any constant ε > 0 let αℓ =
√

ℓ−1−ε for ℓ ≤ 6 and αℓ = 1+
√

2−ε

for ℓ ≥ 8. Any algorithm that computes a stateless routing scheme on Γ with stretch αℓ

and constant success probability in the HYBRID(∞, γ) model takes Ω
(
(nδ

γ)
1

2+δ
)

rounds. This
holds for labels of size c · n

2δ
2+δ γ

δ
2+δ and fixed constant c > 0.

We plug graphs G ∈ Gk,ℓ into Lemma 22. Since in this case we get no improvements in
the stretch for girth ℓ ≥ 8 it suffices to apply Lemma 38. Beside the changed values for the
stretch, the proof is the same as that of Theorem 20, we just have to use the corresponding
values of δ from Lemma 38 for ℓ = 4, 6, 8.

▶ Theorem 23. Any algorithm that solves the stateless routing problem in the HYBRID(∞, γ)
model with constant success probability with

stretch
√

3−ε takes Ω
(
(n

γ) 1
3
)

rounds for label size ≤ c · (n2γ) 1
3

stretch
√

5−ε takes Ω
(

n1/5

γ2/5

)
rounds for label size ≤ c · (n2γ) 1

5

stretch 1+
√

2−ε takes Ω
(

n1/7

γ3/7

)
rounds for label size ≤ c · (n2γ) 1

7

for any const. ε > 0 and a fixed const. c > 0.

4.3 Stateful Routing Scheme
We obtain similar lower bound results for the approximate stateful routing problem, however
with even smaller stretch. Recall that in the stateful version the problem is relaxed in the
sense that a routing decision may also depend on the information a packet has gathered
along the previous routing path.

Since this permits loops in the routing path, it opens up additional options for routing a
packet from si to tj that we need to prohibit. For instance, a packet could first travel to
ui, then check if the direct edge {ui, tj} is present, and if not travel back to si to take the
shorter route via v instead. Note that this path has the same number of red and blue edges
as the shortest path directly to v and then to tj (c.f. Figure 1b).

The trick is to make the weight w2 (orange edges) of all incident edges of si more expensive,
such that revisiting si breaks the approximation guarantee. This again forces the source si

to make the correct decision with the first node it routes the packet to, which renders the
ability to travel in loops and learn along the way useless. We carefully optimize the involved
parameters to obtain the following lemma (the details are given in [14]).

▶ Lemma 24. Consider Γ constructed from G = (A, E) ∈ Gk,ℓ with |E| = Θ
(
k1+δ

)
edges for

some δ > 0. For any constant ε > 0 let α4 =
√

2 − ε, α6 = 5
3 − ε, α8 = 7

4 − ε. For ℓ ≥ 10
let αℓ = 3+

√
17

4 − ε ≈ 1.78. Any algorithm that computes a stateful routing scheme on Γ with
stretch αℓ and constant success probability in the HYBRID(∞, γ) model takes Ω

(
(nδ

γ)
1

2+δ
)

rounds. This holds for labels of size c·n
2δ

2+δ ·γ
δ

2+δ and fixed constant c > 0.

F. Kuhn and P. Schneider 28:15

Again, our actual lower bounds come from inserting graphs G ∈ Gk,ℓ into Lemma 22.
Our best stretch is obtained for ℓ = 10, but unfortunately we have a gap for that value in
Lemma 38. Therefore, for the largest stretch value we use a graph G ∈ Gk,12 ⊆ Gk,10, which
has the drawback of not being as dense. Aside from different stretch values, the proof follows
that of Theorem 20, by inserting the values of δ from Lemma 38 for ℓ = 4, 6, 8, 12.

▶ Theorem 25. Any algorithm that solves the stateful routing problem in the HYBRID(∞, γ)
model with constant success probability with

stretch
√

2−ε takes Ω
(
(n

γ) 1
3
)

rounds for label size ≤ c · (n2γ) 1
3

stretch 5
3 −ε takes Ω

(
n1/5

γ2/5

)
rounds for label size ≤ c · (n2γ) 1

5

stretch 7
4 −ε takes Ω

(
n1/7

γ3/7

)
rounds for label size ≤ c · (n2γ) 1

7

stretch 3+
√

17
4 −ε takes Ω

(
n1/11

γ5/11

)
rounds for label size ≤ c · (n2γ) 1

11

for any const. ε > 0 and a fixed const. c > 0.

5 Upper Bounds

In this section, we sketch our algorithms for computing routing schemes and distance oracles
in the HYBRID model. Due to space limitations, the details are given in the full version [14],
where we will also show that distance oracles imply stateless routing schemes with the same
label-size, stretch and asymptotic round complexity, thus we concentrate on the former. We
combine two techniques to compute exact distance oracles, namely skeleton graphs and fast
algorithms for the random sources shortest paths (RSSP) problem, where all nodes need to
determine their distance to a set of nodes that was sampled i.i.d. from V .

Skeleton graphs were first used by [20] and became one of the main tools used in the
context of shortest path algorithms in the HYBRID model (c.f., [5, 13, 7]). Simply speaking,
a skeleton consists of a (usually relatively small) set of nodes sampled with some probability
1
x and virtual edges formed between sampled nodes at most h ∈ Õ(x) hops apart. The
main property is that for any u, v ∈ V , there is a sampled node at least every h hops on a
shortest path from u to v w.h.p. Here, we only require this sampling property, the explicit
construction of the skeleton graph occurs under the hood when solving the RSSP problem.
The following result is known.

▶ Lemma 26 (c.f., [7]). There is a HYBRID algorithm that solves the RSSP problem for
sampling probability 1/x for x ≥ 1 exactly and w.h.p. in Õ(n1/3 + n/x2) rounds.

Our algorithm to compute distance oracles roughly consists of the following steps. First,
we sample the nodes for the skeleton graph S i.i.d. with probability 1

x . Then we do a local
exploration to depth h ∈ Õ(x). If our target node has a shortest path with less or equal h

hops, distance decisions can be made based on the so acquired local knowledge.
For shortest paths from v to u with more than h hops we do the following. We first solve

the RSSP problem using Lemma 26. Then each node v puts the resulting distance to all
skeleton nodes in S within h hops into its label . Since there is a skeleton node on a shortest
path from v to u w.h.p., v can reconstruct the distance to u given the label λ(u) as follows.

ov(λ(u)) = min
(

dh(v, u), min
s∈S

d(v, s) + d(s, u)
)

It remains to balance the trade-off in round complexity of h ∈ Õ(x) between the local search
of h rounds and the HYBRID computation of RSSP distances (see Lemma 26), which is
optimal for x ∈ Õ(n1/3). Note that the size of labels scales in the number of sampled nodes,
thus O

(
n
x

)
= O(n2/3), however, by deviating from the optimal round complexity, we can

decrease the label size. The following proof of the following theorem is given in [14].

DISC 2022

28:16 Routing Schemes and Distance Oracles in the Hybrid Model

▶ Theorem 27. For any ζ ≥ 0 exact distance oracles and stateless routing schemes with
labels of size O(n 2

3 −ζ) bits can be computed in Õ(n 1
3 +ζ) rounds in the HYBRID model w.h.p.

We can also trade higher stretch for smaller labels. Given that each node u only puts its
distance to the closest skeleton node into its label λ(u) (which must be within h hops due to
the sampling property) we can still recover distance oracles with stretch 3 on weighted and
(1 + ε) on unweighted graphs with label size only O(log n). For details of the exact procedure
and the proof of the following theorem see [14].

▶ Theorem 28. Distance oracles and stateless routing schemes with label-size O(log n) can
be computed in HYBRID w.h.p. and

stretch 3 in Õ(n1/3) rounds on weighted graphs,
stretch 1+ε for 0<ε≤1 in Õ

(
n1/3

ε

)
rounds on unweighted graphs.

References
1 Yehuda Afek, Gad M. Landau, Baruch Schieber, and Moti Yung. The power of multimedia:

Combining point-to-point and multiaccess networks. Information and Computation, 84(1):97–
118, January 1990. doi:10.1016/0890-5401(90)90035-G.

2 Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular graphs. Graphs
and Combinatorics, 18, September 2001. doi:10.1007/s003730200002.

3 Ioannis Anagnostides and Themis Gouleakis. Deterministic Distributed Algorithms and
Lower Bounds in the Hybrid Model. In Seth Gilbert, editor, 35th International Symposium
on Distributed Computing (DISC 2021), volume 209 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2021.5.

4 Arash Asadi, Vincenzo Mancuso, and Rohit Gupta. An sdr-based experimental study of
outband d2d communications. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9, 2016. doi:10.1109/INFOCOM.2016.
7524372.

5 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. Shortest paths in a hybrid network model. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, pages 1280–1299, USA,
2020. Society for Industrial and Applied Mathematics.

6 Clark T. Benson. Minimal regular graphs of girths eight and twelve. Canadian Journal of
Mathematics, 18:1091–1094, 1966. doi:10.4153/CJM-1966-109-8.

7 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance Computations
in the Hybrid Network Model via Oracle Simulations. In Markus Bläser and Benjamin
Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science
(STACS 2021), volume 187 of Leibniz International Proceedings in Informatics (LIPIcs), pages
21:1–21:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.STACS.2021.21.

8 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. On sparsity awareness
in distributed computations. In Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’21, pages 151–161, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3409964.3461798.

9 Paul Erdős and Miklós Simonovits. Compactness results in extremal graph theory. Comb,
2(3):275–288, 1982.

10 Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. In Proc. of the 24th International Conference
on Principles of Distributed Systems (OPODIS 2020), pages 31:1–31:16, 2020. doi:10.4230/
LIPIcs.OPODIS.2020.31.

https://doi.org/10.1016/0890-5401(90)90035-G
https://doi.org/10.1007/s003730200002
https://doi.org/10.4230/LIPIcs.DISC.2021.5
https://doi.org/10.1109/INFOCOM.2016.7524372
https://doi.org/10.1109/INFOCOM.2016.7524372
https://doi.org/10.4153/CJM-1966-109-8
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://doi.org/10.1145/3409964.3461798
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31

F. Kuhn and P. Schneider 28:17

11 Kai Han, Zhiming Hu, Jun Luo, and Liu Xiang. Rush: Routing and scheduling for hybrid
data center networks. In 2015 IEEE Conference on Computer Communications (INFOCOM),
pages 415–423, 2015. doi:10.1109/INFOCOM.2015.7218407.

12 Taisuke Izumi and Roger Wattenhofer. Time lower bounds for distributed distance oracles. In
Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Principles of Distributed
Systems, pages 60–75, Cham, 2014. Springer International Publishing.

13 Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In Proceedings of the 39th Symposium on Principles of Distributed Computing,
PODC ’20, pages 109–118, New York, NY, USA, July 2020. Association for Computing
Machinery. doi:10.1145/3382734.3405719.

14 Fabian Kuhn and Philipp Schneider. Routing schemes and distance oracles in the hybrid
model. arXiv preprint, 2022. arXiv:2202.06624.

15 Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. Upper bounds on the order of
cages. the electronic journal of combinatorics, pages R13–R13, 1997.

16 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In Proc.
32nd Symp. on Principles of Distr. Comp. (PODC), pages 42–50, 2013.

17 Nancy A Lynch. Distributed algorithms. Elsevier, 1996.
18 Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical

journal, 27(3):379–423, 1948.
19 Robert Singleton. On minimal graphs of maximum even girth. J. Comb. Theory, 1:306–332,

1966.
20 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure

algorithms. Journal on Computing, 20(1):100–125, 1991.
21 Jacques Verstraëte. Extremal problems for cycles in graphs. In Recent trends in combinatorics,

pages 83–116. Springer, 2016.
22 Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure. Opportunities and research

challenges of hybrid software defined networks. SIGCOMM Comput. Commun. Rev., 44(2):70–
75, April 2014. doi:10.1145/2602204.2602216.

23 Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T.S. Eugene
Ng, Michael Kozuch, and Michael Ryan. C-through: Part-time optics in data centers. In
Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 327–338, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1851182.1851222.

24 Goran Zuzic, Gramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun. Universally-
optimal distributed shortest paths and transshipment via graph-based ℓ1-oblivious routing.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2549–2579. SIAM, 2022.

A Information Theoretic Concepts

The Shannon entropy of a random variable X can be thought of as the average information
conveyed by a realization of X and is defined as follows.

▶ Definition 29 (Entropy, c.f., [18]). The Shannon entropy of a random variable X :Ω→S

is defined as H(X) := −
∑

x∈S P(X = x) log
(
P(X = x)

)
. For two random variables X, Y

the joint entropy H(X, Y) is defined as the entropy of (X, Y). The conditional entropy is
H(X|Y) = H(X, Y)−H(Y). The transinformation is defined as I(X; Y) = H(X)−H(Y |X).

The Entropy H(X) gives a lower bound for expected number of bits required for encoding
the state of a random variable. This is entailed by Shannon’s [18] source coding theorem.

▶ Lemma 30 (c.f., [18]). Given a random variable X with outcomes from some set S and
an uniquely decodable code f : S → {0, 1}∗ with expected code length E(|f(X)|). Then
E(|f(X)|) ≥ H(X).

DISC 2022

https://doi.org/10.1109/INFOCOM.2015.7218407
https://doi.org/10.1145/3382734.3405719
http://arxiv.org/abs/2202.06624
https://doi.org/10.1145/2602204.2602216
https://doi.org/10.1145/1851182.1851222

28:18 Routing Schemes and Distance Oracles in the Hybrid Model

In particular, in a two party communication setting (see Definition 8) this implies that
H(X) constitutes a lower bound for the worst case number of bits that have to be transmitted
from one party that knows the state of X to some party that needs to learn it.

▶ Corollary 31. Bob must receive at least H(X) bits from Alice in expectation, as part of
any protocol solving the two party communication problem (Def. 8).

Proof. Assume, for a contradiction, that we have a protocol P in which sending less than
H(X) bits from Alice to Bob always suffices to solve the two party communication problem.
Clearly, for any two possible outcomes x1, x2 ∈ S of X, the transcript of the communication
occurring between Alice and Bob must be different as otherwise Bob would not be able to
distinguish x1 from x2. But then we could use the transcript of P for any given outcome
of x ∈ S of X as uniquely decodable code for x of expected length less than H(X), a
contradiction to Lemma 30. ◀

Using information theoretic concepts, the above statement generalizes for a protocol that
has a probability of at least p that Bob can successfully decode the state of X after it is
terminates.

▶ Lemma 32. Bob must receive at least p · H(X) − 1 bits from Alice in expectation, as part
of any protocol that solves the two party communication problem (c.f., Def. 8) with probability
at least p.

Proof. We assume that the random variable X has a finite number of outcomes (which is
sufficient for our purposes), i.e., X ∈ {x1, . . . , xk} for some k ∈ N. Assuming the outcome
X = xi, let yi be the output that Bob makes after the randomized communication protocol
terminates. Then

yi =
{

xi, with probability pi

xj and j ̸= i, with probability (1 − pi),

where p ≤ pi ≤ 1. That means we have another random variable Y dependent on X, which
describes Bob’s guess about the state of X. It remains to prove that the information about
X that is still contained in Y , is large. This is known as the transinformation I(X; Y) and
since Bob “learns” the state of Y , at least I(X; Y) must have been transmitted from Alice
to Bob. In particular, we want to show I(X; Y) ≥ p · H(X) − 1. The transinformation (see
Def. 29) can also be written as follows

I(X; Y) =
∑

i,j∈[k]

P(X =xi, Y =xj) · log P(X =xi, Y =xj)
P(X =xi)P(Y =xj)

Analyzing this directly is tricky since the output distribution of Y for the second case, where
Y ̸= X, is not specified (and can not be made such, without losing the generality of the
claim). So we have to take a detour by defining a third random variable Z that tells us if
the protocol was successful.

Z =
{

1, if yi = xi

0, else.

To simplify the analysis of the transinformation we assume that Bob gets to know Z “for free”
and since H(Z) ≤ 1 the additional information about X from learning Y is not significantly
reduced. Formally, we first show I(X; Y) ≥ I(X; Y, Z) − H(Z) which allows us to analyze
I(X; Y, Z) instead.

F. Kuhn and P. Schneider 28:19

The conditional entropy H(A|B) describes the amount of “new” information in some
random variable A given that we already know random variable B. In the following steps we
will use the fact that H(Z|X, Y) = 0 since Z is functionally dependent on X and Y and we
will the chain rule of entropy H(A, B) = H(A|B)+H(B). We plug this into the alternative
characterization of transinformation

I(X; Y, Z) = H(X) − H(X|Y, Z) def. of I(X; Y, Z)

= H(X) − H(X, Z|Y) + H(Z|Y) chain rule

= H(X) − H(Z|X, Y) − H(X|Y) + H(Z|Y) chain rule

= H(X) − H(X|Y) + H(Z|Y) H(Z|X, Y) = 0

= I(X; Y) + H(Z|Y) def. of I(X; Y)

≤ I(X; Y) + H(Z).

This implies I(X; Y) ≥ I(X; Y, Z) − H(Z), and it remains to show that I(X; Y, Z) is large.
The random variable Z helps in the following way. For any xi we have

P(Y =xi, Z=1) = pi · P(X=xi) = P(X=xi, Y =xi, Z=1),

since Z = 1 means that Y = xi is only possible if X = xi. We obtain

I(X; Y, Z) =
∑

i,j∈[k],z∈{0,1}

P(X=xi, Y =xj , Z=z) · log P(X=xi, Y =xj , Z=z)
P(X=xi) · P(Y =xj , Z=z)

≥
∑
i∈[k]

P(X=xi, Y =xi, Z=1) · log P(X=xi, Y =xi, Z=1)
P(X=xi) · P(Y =xi, Z=1)

=
∑
i∈[k]

pi · P(X=xi) · log 1
P(X=xi)

≥ p ·
∑
i∈[k]

P(X=xi) · log 1
P(X=xi)

= p · H(X)

Finally, we have I(X; Y) ≥ I(X; Y, Z) − H(Z) ≥ p · H(X) − 1. ◀

B Density of Bounded Girth Graphs

We reproduce a few known and conjectured results from extremal graph theory, in particular
that the number of edges in cycle-free graphs can be bounded from above and below. We are
going to formulate these results in the context and granularity that we require in this article
(neglecting constants, in particular). First, there is a long standing conjecture from Erdős
and Simonovits [9].4

▶ Conjecture 33 (by [9]). For any k ∈N, there is an n-node graph with girth ≥ 2k+1 and
Θ(n1+ 1

k) edges.

It is known that a graph with average degree d and girth 2k + 1 has n ∈ Ω(dk) nodes due
to [2]. This translates into the following lemma:

4 [9] states in Conjecture 5 that there are graphs without cycles of a fixed length with the claimed density,
and conjectures that the same holds for excluding smaller cycles as well (below Theorem 2 of [9]).

DISC 2022

28:20 Routing Schemes and Distance Oracles in the Hybrid Model

▶ Lemma 34 (c.f., [2]). Any n-node graph with girth at least 2k + 1, k ∈ N has at most
O(n1+ 1

k) edges.

Conjecture 33 is known to be true for some parameters of k due to [19] and [6].

▶ Lemma 35 (c.f., [19, 6]). For k = 2, 3, 5 there are n-node graphs with girth 2k+1 and
Θ(n1+ 1

k) edges.

There are more general lower bounds for graphs for arbitrary girth by [15] which the
survey [21] summarizes as follows:

▶ Lemma 36 (c.f., [15, 21]). For any k ≥ 2 there is a n-node graph with girth 2k+1 and
Θ(n1+ 2

3k−2) edges if k is even, and Θ(n1+ 2
3k−3) if k is odd.

Above we mention only uneven girth, whereas in this paper we are mostly interested in
(balanced) bipartite graphs which naturally have even girth. Note that given a graph with
girth 2k + 1, one easily obtains a balanced, bipartite graph of even girth 2k + 2 with the
same asymptotic order and size by constructing the bipartite double cover.

▶ Lemma 37. Let G=(V, E) be a n-node graph with girth 2k+1, then there is a balanced,
bipartite graph G′ =(V ′, E′) with girth 2k+2, |V ′|=2|V | and |E′|=2|E|.

Proof. Let V ′ :=
⋃

v∈V {v1, v2}, i.e., for each node v ∈ V we create two copies. Further, let
E′ =

⋃
{u,v}∈E{{u1, v2}, {v1, u2}}, i.e., for each edge {u, v} in E we create two “crossing”

edges between the node copies u1, v2 and u2, v1. Any cycle of G′ must form a corresponding
cycle in G, by taking the original edge {u, v} for each edge {u1, v2} in that cycle. Thus G′

can not have a cycle shorter than 2k + 1. Further, by construction, we have a (balanced)
bipartition of G′ given by the nodes with index 1 and 2, respectively. Since G′ is bipartite, it
can not contain an odd cycle, hence the girth is at least 2k + 2. ◀

Combining Lemma 37 with Lemma 35 and the n-node clique which has girth 3 and Θ(n2)
edges, we obtain the following lemma.

▶ Lemma 38. For ℓ = 4, 6, 8, 12 there are balanced, bipartite n-node graphs with girth ℓ and
Θ(n1+ 2

ℓ−2) edges.

Note that Lemma 38 this is tight, since for any even ℓ ≥ 4 we obtain the upper bounds
Ω(n1+ 2

ℓ−2) in Lemma 34 by plugging in the smaller uneven girth ℓ − 1. For all other even
girths we have to fall back on Lemma 36. Combining it with Lemma 37 gives us the lemma
below. Note that we do not apply this lemma for girth 10 as we can get the same asymptotic
number of edges for the higher (= better) girth 12 from Lemma 38.

▶ Lemma 39. For any even ℓ ≥ 14 there is a balanced, bipartite n-node graph with girth ℓ

and Θ(n1+ 4
3ℓ−10) edges if ℓ ≡ 2 mod 4, or Θ(n1+ 4

3ℓ−12) edges if ℓ ≡ 0 mod 4.

C Proof of Lemma 9

Proof. We derive a protocol P that uses (i.e., simulates) algorithm A in order to solve the
two-party communication problem. First, we make a few assumptions about the initial
knowledge of both parties in particular about the graph G from the node communication
problem, you can think of this information as hard coded into the instructions of P. The
important observation is that none of these assumptions give Bob any knowledge about X.

F. Kuhn and P. Schneider 28:21

Specifically, assume that Alice is given complete knowledge of the topology G and inputs
of all nodes in G (in particular the state of X and the source codes of all nodes specified by
A). Bob is given the same for the subgraph induced by V \ A, which means that the state of
X remains unknown to Bob (c.f., Def. 7). To accommodate randomization of A, both are
given the same copy of a string of random bits (determined randomly and independently
from X) that is sufficiently long to cover all “coin flips” used by any node in the execution
of A.

Alice and Bob simulate the following nodes during the simulated execution of algorithm
A. For i ∈ [h−1] let Vi := {v ∈ V | hop(v, A) ≤ i} be the set of nodes at hop distance at
most i from A. Note that A ⊆ Vi for all i. In round 0 of algorithm A, Alice simulates all
nodes in A and Bob simulates all nodes in V \ A. However, in subsequent rounds i > 0, Alice
simulates the larger set A ∪ Vi and Bob simulates the smaller set B ∪ V \ Vi.

Figuratively speaking, in round i Bob will relinquish control of all nodes that are at hop
distance i from set A, to Alice. This means, in each round, every node is simulated either
by Alice or by Bob. We show that each party can simulate their nodes correctly with an
induction on i. Initially (i = 0), this is true as each party gets the necessary inputs of the
nodes they simulate. Say we are at the beginning of round i > 0 and the simulation was
correct so far. It suffices to show that both parties obtain all messages that are sent (in the
HYBRID(∞, γ) model) to the nodes they currently simulate.

The communication taking place during execution of A in the HYBRID(∞, γ) model is
simulated as follows. If two nodes that are currently simulated by the same party, say Alice,
want to communicate, then this can be taken care as part of the internal simulation by Alice.
If a node that is currently simulated (w.l.o.g.) by Bob wants to send a message over the
global network to some node that Alice simulates, then Bob sends that message directly to
Alice as part of P, and that message becomes part of the transcript.

Now consider the case where a local message is exchanged between some node u simulated
by Alice and some node v simulated by Bob. Then in the subsequent round Alice will always
take control of v, as part of our simulation regime. Thus Alice can continue simulating v

correctly as she has all information to simulate all nodes all the time anyway (Alice is initially
given all inputs of all nodes). Therefore it is not required to exchange any local messages
across parties for the correct simulation.

After T simulated rounds, Bob, who simulates the set B until the very end (as T < h),
can derive the state of X from the local information of B with success probability at least
p (same as algorithm A). Hence, using the global messages that were exchanged between
Alice and Bob during the simulation of algorithm A we obtain a protocol P that solves the
two party communication problem with probability p. Since total global communication
is restricted by n · γ bits per round in the HYBRID(∞, γ) model, Alice sends Bob at most
T · n · γ bits during the whole simulation. ◀

D Proof of Lemma 17

Proof. Let U := {u1, . . . , uk, v} be the vertex cut that separates any si from any tj . The
shortest simple si-tj-path that crosses U via v has length w2 + w0 + h − 1 independently
from xe (simple implies that a path can not “turn around” and go via ui).

Consider the shortest si-tj-path that does not contain v. In the case xe = 1, i.e.,
e = {ui, tj} exists in Γ, this si-tj-path is forced to cross U via ui and then goes directly to tj

via e, and thus has length w2 + w1 + h − 1.

DISC 2022

28:22 Routing Schemes and Distance Oracles in the Hybrid Model

Let us analyze the length of the si-tj-path that does not contain v for the case xe = 0
(i.e., e /∈ EΓ). Let G′ be the subgraph that corresponds to G after removing each edge e′ ∈ E

with xe′ = 0. Then that si-tj-path has to traverse G′ to reach tj . The sub-path from ui to tj

in G′ has to use at least (ℓ−1) edges, because otherwise e = {ui, tj} would close a loop of less
than ℓ edges in G′ (and thus also in G), contradicting the premise that G has girth ℓ. Thus,
for e /∈ EΓ any si-tj-path that does not contain v has length at least w2 + (ℓ−1)w1 + h − 1.

We sum up the cases. If xe = 1, then the si-tj-path not containing v of length w2+w1+h−1
is shorter than the one via v of length w2 + w0 + h − 1, since w1 < w0. If xe = 0, then the
si-tj-path via v of length w2 + w0 + h − 1 is shorter than the one not containing v of length
at least w2 + (ℓ − 1)w1 + h − 1 due to w0 < (ℓ−1)w1. ◀

On Payment Channels in Asynchronous Money
Transfer Systems
Oded Naor
Technion, Haifa, Israel

Idit Keidar
Technion, Haifa, Israel

Abstract
Money transfer is an abstraction that realizes the core of cryptocurrencies. It has been shown that,
contrary to common belief, money transfer in the presence of Byzantine faults can be implemented
in asynchronous networks and does not require consensus. Nonetheless, existing implementations of
money transfer still require a quadratic message complexity per payment, making attempts to scale
hard. In common blockchains, such as Bitcoin and Ethereum, this cost is mitigated by payment
channels implemented as a second layer on top of the blockchain allowing to make many off-chain
payments between two users who share a channel. Such channels require only on-chain transactions
for channel opening and closing, while the intermediate payments are done off-chain with constant
message complexity. But payment channels in-use today require synchrony; therefore, they are
inadequate for asynchronous money transfer systems.

In this paper, we provide a series of possibility and impossibility results for payment channels
in asynchronous money transfer systems. We first prove a quadratic lower bound on the message
complexity of on-chain transfers. Then, we explore two types of payment channels, unidirectional
and bidirectional. We define them as shared memory abstractions and prove that in certain cases
they can be implemented as a second layer on top of an asynchronous money transfer system whereas
in other cases it is impossible.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Blockchains, Asynchrony, Byzantine faults, Payment channels

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.29

Related Version Full Version: https://arxiv.org/abs/2202.06693

Funding Oded Naor : Oded Naor is grateful to the Azrieli Foundation for the award of an Azrieli
Fellowship, and to the Technion Hiroshi Fujiwara Cyber-Security Research Center for providing a
research grant.

1 Introduction

The rise of cryptocurrencies, such as Bitcoin [33], Ethereum [42], Ripple [2], and many more,
has revolutionized the possibility of using decentralized money systems.

In 2019, Guerraoui et al. [20] defined the abstraction of asset transfer or money transfer
capturing the original motivation of Bitcoin. This abstraction is based on a set of known
users owning accounts, each account has some initial money, and the users can transfer
money between the accounts. It is well-known that deterministic consensus cannot be solved
in an asynchronous network [18], meaning that blockchains that rely on consensus require
synchrony to work properly. Nonetheless, Guerraoui et al. showed that the asset transfer
problem is weaker than consensus [28, 15], i.e., in the Byzantine message-passing model the
problem can be solved in an asynchronous network. They provide a concrete implementation
of the abstraction in this model using an asynchronous broadcast service.

© Oded Naor and Idit Keidar;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.29
https://arxiv.org/abs/2202.06693
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On Payment Channels in Asynchronous Money Transfer Systems

Table 1 Summary of the results.

Abstraction Operations Upper bound Lower bound
message complexity message complexity

Asset transfer transfer O(n2) [20, 4] Ω(n2) [Theorem 3]
read O(1)

Bidirectional payment channel open
Impossible in asynchronous networks [Theorem 5]transfer

close
Unidirectional payment channel open

Impossible in asynchronous networks [Theorem 7]with source close transfer
source close
target close

Unidirectional payment channel open O(n2)
[Alg. 4] Ω(n2) [Lemma 8]transfer O(1)

target close O(n2)

Yet, in this solution, each payment requires a message complexity of O(n2), where n is
the number of processes in the system. If the number of processes grows, this per-payment
quadratic message complexity can pose a real challenge in scaling the asset transfer network.
In fact, scalability is one of the major limiting factors of blockchains and consensus protocols,
and extensive research was done to reduce the message complexity [34, 17, 27, 43, 11] in
various settings.

A promising approach to scale blockchain payments is by using payment channels [36, 29,
38] as a second off-chain layer on top of the blockchain. A payment channel can be opened
between two blockchain account owners via an on-chain deposit made to fund the channel,
after which the two users can transfer payments on the channel itself off the blockchain. At
any time, one of the users can decide to close the channel, after which the current balance in
the channel of each of the users is transferred to their on-chain accounts. In this scheme,
opening or closing a channel requires a blockchain transaction, which incurs a large message
complexity, but all the intermediate payments on the channel require message exchange only
between the channel users, freeing the blockchain from these payments and messages.

Payment channels have been actively deployed in central blockchains. For example,
Bitcoin’s Lightning Network (LN) [36] is a highly used payment network, with active channels
holding a Bitcoin amount equivalent to hundreds of millions of dollars [40].

One of the downsides of using payment channels such as LN is that the payment channels
themselves rely on network synchrony. For example, in LN, suppose Alice and Bob have an
open payment channel between them and Alice acts maliciously and tries to steal money
by closing the channel at a stale state. LN provides a way for Bob to penalize Alice and
confiscate all the money in the channel. But to do so, Bob has to detect Alice’s misbehavior
on-chain and act within a predetermined time frame, making this method inappropriate with
asynchronous users.

In this paper, we explore the possibility of implementing payment channels in asynchronous
asset transfer systems. The results of the paper and prior art are summarized in Table 1.
We study four abstractions: asset transfer and different types of payment channels.

First, we prove a lower bound on the complexity of asset transfer without channels. We
show that no matter what implementation is provided for the asset transfer abstraction, it
still requires Ω(n2) messages for a single payment to be made by one party and observed by
others. This means that the upper bound is tight for the algorithm provided in [20], in which

O. Naor and I. Keidar 29:3

transferring money has O(n2) message complexity and reading the balance of an account
costs O(1). This fundamental result shows that while the synchrony requirement can be
relaxed for asset transfer, each payment still requires a rather large number of messages.
This means that second-layer solutions such as payment channels are required for scalability.

Next, we consider payment channel abstractions with operations for opening a channel,
transferring money in it, and closing the channel. We first consider a bidirectional payment
channel as a second layer atop an asset transfer system, where each side of the channel can
make payments to the other. This is similar to LN [36], Teechain [29], Sprites [31], and
more payment channel proposals. Once we formalize the problem, it is easy to show that
synchrony is required, and therefore a bidirectional channel cannot be implemented on top
of an asynchronous asset transfer system.

We next look at unidirectional payment channels, in which only one user, the channel
source, can make payments to the other user, the target. We differentiate between two types
of unidirectional payment channels: If we allow both the source and the target to close the
channel (the source and target close operations, respectively), we again show that synchrony
is required. Indeed, a previous design of similar channels [39] still requires synchrony.

On the other hand, if we allow only the target to close the channel, we provide a concrete
implementation that works in an asynchronous network. In this implementation, the opening
and closure of the channel require a payment using the asset transfer system, incurring O(n2)
message complexity, whereas every payment on the channel itself requires a single message
from the source user to the target user. We note that once the channel supports a target
close the target can claim its transferred funds in the channel, which is not the case when
only the source can close the channel.

Finally, we outline an extension of payment channels to payment chains, in which
payments are made across multiple channels atomically. Like their 2-party counterparts, a
chain payment over unidirectional channels with only target close can be implemented using
a technique used in LN. As for other channel types, k-hop chains are equivalent to k-process
consensus, i.e., have a consensus number [23] of k.

To conclude, our contributions in this paper are as follows:
We prove a quadratic message complexity lower bound for asynchronous asset transfer
systems.
We explore payment channels as a key scaling solution for asynchronous asset transfer
systems and provide a series of impossibility results for different channel types.
We provide a concrete possibility result and an implementation for an asynchronous
payment channel.

Structure. The rest of the paper is structured as follows: §2 describes the model and
preliminaries; §3 details the asset transfer abstraction and proves a lower bound on message
complexity; §4 discusses bidirectional payment channels and §5 discusses unidirectional
channels; §6 extends the discussion to chain payments; §7 discusses related work; and finally,
§8 concludes the paper. Some of the full proofs are deferred to Appendix A.

2 Model and preliminaries

We study a message-passing distributed system that consists of a set Π = {p1, . . . , pn} of n

processes. The processes can interact among themselves by sending messages. An adversary
can corrupt up to f < n/3 processes, where f ∈ Θ(n). If not mentioned explicitly, we assume
a corrupt process is Byzantine, i.e., it can deviate from the prescribed algorithm and act

DISC 2022

29:4 On Payment Channels in Asynchronous Money Transfer Systems

arbitrarily. Any non-corrupt process is correct. A crash-fail fault is when a process stops
participating in the algorithm. Every two processes share an asynchronous reliable link
between them, such that if one correct process sends a message to another correct process, it
eventually arrives, and the target can ascertain its source.

We assume the existence of a Public Key Infrastructure (PKI), whereby processes that
know a private key can use it to sign messages such that all other processes can verify
the signature. The adversary cannot forge a signature if the private key is owned by a
correct process. We assume each private key is owned by one process. We further assume
multisignatures [6], whereby in order to produce a valid signature matching a constant-sized
public key, more than one private key is used to sign the message. Note that signing can be
sequential.

We study algorithms in the message-passing model that implement abstractions that are
defined as shared-memory objects. A shared memory object has a set of operations, and
processes access the object via these operations. Each operation starts with an invocation
event by a process and ends with a subsequent response event. Invocations and responses
are discrete events.

An implementation or an algorithm π of a shared-memory object abstraction is a dis-
tributed protocol that defines the behaviors of processes as deterministic state machines,
where state transitions are associated with actions: sending or receiving messages, and
operation invocations or responses. A global state of the system is a mapping to states from
systems components, i.e., processes and links. An initial global state is when all processes
are in initial states and there are no messages on the links between the processes. A run
or an execution of an implementation is an alternating series of global states and actions,
beginning with some initial global state, such that state transitions occur according to π.
We assume that the first action of each process is an invocation of an operation and that it
does not invoke another operation before receiving a response for its last invoked operation.

Each execution creates a history H that consists of a sequence of matching invocations
and responses, each with the assigned process that invoked the operation and the matching
responses. A sub-history H ′ of H is a subset of H’s events. Let H|p denote the sub-history
of H with process p’s events.

A history defines a partial ordering: operation op1 precedes op2 in history H, labeled
op1 ≺H op2, if op1’s response event happens before op2’s invocation event in H. History H is
sequential if each invocation, except perhaps the last, is immediately followed by a matching
response. An operation is pending in history H if it has an invocation event in H but does
not have a matching response. A history H ′ is a completion of history H if it is identical
to H except for removing zero or more pending operations in H and by adding matching
responses for the remaining ones. A shared-memory abstraction is usually defined in terms
of a sequential specification. A legal sequential history is a sequential history that preserves
the sequential specification, i.e98., the sequential specification is the set of all legal histories.

The correctness criteria we consider is Byzantine sequential consistency (BSC). This
allows to extend sequential consistency [3] to runs with Byzantine processes and not only
crash-fail and is an adaptation of the definition of Byzantine linearizability [10].

First, we formally define a sequentially consistent history for runs with crash-fail faults.

▶ Definition 1 (sequentially consistent history). Let E be an execution of an algorithm, and
H its matching history. Then H is sequentially consistent if there exists a completion H̃ of
H and a legal sequential history S such that for every process p, S|p = H̃|p.

An algorithm is sequentially consistent if all its histories are sequentially consistent.

O. Naor and I. Keidar 29:5

For Byzantine sequential consistency (BSC), let H|c denote the sub-history of H with all
of the operations of correct processes. We say a history is BSC if H|c can be augmented with
operations of Byzantine processes such that the completed history is sequentially consistent.
Formally:

▶ Definition 2 (Byzantine sequential consistency (BSC)). A history H is BSC if there exists
a history H ′ such that H ′|c = H|c, and H ′ is sequentially consistent.

Similar to sequential consistency, an algorithm is BSC if all its histories are BSC. We choose
BSC as the correctness criterion and not Byzantine linearizability because it simplifies the
implementations we provide below. We explain in §5.3 how to change the implementation that
we provide to satisfy Byzantine linearizability. The difference between sequential consistency
and from linearizability [24] is that linearizability also preserves real-time order, i.e., for any
operations op1, op2 s.t. op1 ≺

H̃
op2, then op1 ≺S op2.

3 Asset transfer

3.1 Asset transfer abstraction
Let A be an asset transfer abstraction, which is based on the one defined in [20]. A holds a
set of accounts. Each account a ∈ A is defined by some public key, and there is a mapping
owner(a) : A 7→ Π, that matches for each account a the process that can produce a signature
corresponding to the public key associated with a. In case of an account b associated with a
multisignature, owner(b) is the set of processes whose private keys can produce a signature
matching b’s public key. The state of each account a is of the form A(a) ∈ R≥0 and represents
the balance of the account a. Each account initially holds its initial balance.

A has two operations: The first, A.read(a), returns the balance of account a, i.e., it returns
A(a) and can be called by any process. The second is A.transfer(a, [(b1, amt1), . . . , (bk, amtk)]),
which, for every 1 ≤ i ≤ k, transfers from account a’s balance amti and deposits it in bi. This
call succeeds, and returns success if it is called by owner(a) and if the account has enough
balance to make the transfer, i.e., A(a) ≥

∑k
i=1 amti. Otherwise, it returns fail and does

nothing.
The transfer operation is an extension of the one defined in [20] in that it allows to

transfer money from one account to multiple accounts, whereas the original work only allows
transferring money from one account to another each time.

In this paper, we consider implementations of the asset transfer abstraction that are
BSC. We note that the message-passing asset transfer implementation in [20] is based on a
reliable broadcast that preserves source order. Their correctness criteria is neither Byzantine
linearizability nor BSC, but it ensures that for every transfer operation, there exists a time t

such that if a correct process invokes the read operation after t, then it observes the changes
made by the transfer. This is a property we use throughout the proofs which are detailed
below.

3.2 Message complexity of asset transfer
We begin by proving a quadratic message complexity lower bound on any asset transfer
implementation in §3.2.1, and §3.2.2 shows this lower bound is tight by discussing a concrete
implementation of an asset transfer that has a quadratic message complexity for a transfer
operation and a constant message complexity for a read operation.

DISC 2022

29:6 On Payment Channels in Asynchronous Money Transfer Systems

3.2.1 Lower bound
We show that if f ∈ Θ(n), then there is a quadratic message complexity lower bound in runs
in which money is transferred to some account b, and multiple processes read the balance
of b. The proof we use for the lower bound follows the technique used in Dolev-Reischuk’s
lower bound for Byzantine Broadcast [14]. Formally, we prove the following theorem:

▶ Theorem 3. Consider an algorithm that implements the asset transfer abstraction. Then
there exists a run with a single transfer invocation and multiple read invocations in which the
correct processes send at least (f/2)2 messages.

Proof. Let π be an algorithm that implements asset transfer, and assume by contradiction
that in all its runs with a single transfer correct processes send less than (f/2)2 messages.
We look at all executions of π with two accounts a, b ∈ A s.t. owner(a) = p for some process
p ∈ Π, and initially A(a) = 1, A(b) = 0.

Consider first an execution σ0 in which the adversary, denoted adv0, corrupts a set V

of processes, not including p, such that |V | = ⌈f/2⌉. Denote the set of remaining correct
processes as U . In σ0, process p calls A.transfer(a, [(b, 1)]). By the correctness definition
of A, and since p is correct, there exists a time t0 during the run after which any correct
process that invokes A.read(b) returns 1.

The adversary adv0 causes the corrupt processes in V to simulate the behavior of correct
processes that call A.read(b) after t0, and follow the algorithm except for the following
changes: they ignore the first f/2 messages they receive from processes in U , and they do not
send any message to other processes in V . Note that while t0 is not known to the processes,
we construct the runs from the perspective of a global observer and may invoke read after t0.

Because correct processes send, in total, less than (f/2)2 messages and corrupt processes
do not send messages to other processes in V , then the processes in V together receive less
than (f/2)2 messages. Thus, by the pigeonhole principle, there exists at least one process
q ∈ V that receives less than f/2 messages. Denote the set of processes that send messages to
q as U ′, and denote U ′′ = U \ U ′. Note that U ′ may include process p, and that |U ′| < f/2.

Next, we construct a run σ1 with an adversary adv1 that are the same as σ0 and adv0,
respectively, except for the following changes: adv1 corrupts all the processes in V \ {q}, and
all the processes in U ′. Since |U ′| < f/2 and |V | ≤ ⌈f/2⌉, the adversary adv1 corrupts at
most f processes in σ1. adv1 prevents the corrupt processes from sending any message to q,
but causes them to behave correctly towards all other correct processes in U ′′.

By definition, the behavior of the corrupt processes in σ1, i.e., the processes in U ′∪(V \{q}),
towards the correct processes in U ′′ is the same as in σ0. Since process q simulates a correct
process that ignores the first f/2 messages in σ0, its behavior towards the processes in U

is identical in both runs as well. Thus, runs σ0 and σ1 are indistinguishable for the correct
processes in U ′′, ensuring that they behave the same. Since process q acts in σ0 like a correct
process that does not receive any message, both runs are indistinguishable to it as well.

Nonetheless, process q still has to return a value for its A.read(b) call. Denote the time
when the call returns as t1. If it returns a value different from 1, then we conclude the proof,
since it is a violation of the read call specification. Otherwise, we construct a run σ2 with
an adversary adv2 that are the same as σ1 and adv1, respectively, except that there is no
transfer invocation and all messages to q are delayed until after t1. For process q, runs σ1
and σ2 are indistinguishable until t1, therefore it returns 1 for the A.read(b) call, violating
the read call specification which should return 0, concluding the proof. ◀

We proved that the lower bound for the message complexity of an asset transfer object is
Ω(n2), assuming f ∈ Θ(n).

O. Naor and I. Keidar 29:7

3.2.2 Upper bound
In [20], an implementation in the message-passing model for the asset transfer abstraction is
provided. It uses a broadcast service defined in [30] that tolerates up to f < n/3 Byzantine
failures. This broadcast has all the guarantees of reliable broadcast [9] (integrity, agreement,
and validity), and also preserves source order, i.e., any two correct processes p1 and p2 that
deliver messages m and m′ broadcast from the same process p3, do so in the same order.
The read operation is computed locally, and the transfer operation consists of a broadcast of
a single message.

Several protocols can be used to implement such a source-order broadcast service, including
a protocol in [30]. Bracha’s reliable broadcast [9] can also be used to implement such a
service if each correct process adds a sequence number to each message it broadcasts, and
each correct process delivers messages from the same process in the order of the sequence
numbers. These protocols have a message complexity of O(n2) per broadcast, proving that
the lower bound message complexity we prove above is tight.

Note that our definition for the transfer call of the asset transfer abstraction allows
transferring in each invocation money from one account to multiple accounts, while in [20]
the transfer call allows a transfer to a single account for each invocation. The implementation
in [20] can easily be adjusted to support this change by including in each broadcast message
the multiple accounts to which money is transferred.

4 Bidirectional payment channel

We seek to analyze if payment channels that are used in common blockchains as a second
layer can also be used similarly on top of an asynchronous asset transfer system. We discuss
bidirectional payment channels, in which a channel is opened between two processes by
making a transfer on the asset transfer system. After the channel is opened, both processes
can make bidirectional payments on the same channel. Either process can close the channel
at any time, after which their accounts in the asset transfer system reflect the state of the
channel. This abstraction is similar to payment channels in the Lightning Network [36] in
Bitcoin [33] and Raiden [38] in Ethereum [42]. We compare our payment channel abstractions
to the currently available implementations in the related work in §7.

First, we formally define this abstraction, and then provide an impossibility result, proving
it cannot be implemented in asynchronous networks.

4.1 Definition
We define a bidirectional payment channel abstraction as a shared memory object BC. The
formal definition is in Specification 1. BC is defined based on the existence of an asset
transfer object A. A channel in BC is of the form (a, b), where a, b are accounts in A.

The state of a payment channel BC(a, b) is {R≥0 × R≥0} ∪ {⊥}. The channel BC(a, b)
can be open, and then BC(a, b) = (bala, balb), which represents the balances bala, balb of
accounts a, b in the channel (a, b), respectively. If the channel is closed, then its state is
BC(a, b) = ⊥.

The set of operations is the following:
open. We do not provide a detailed specification for this call, as we do not require the full
specification to prove that there is no implementation for a bidirectional payment channel
in the asynchronous message-passing model. Instead, we assume that all channels are
open at the beginning of the run with some initial balances.

DISC 2022

29:8 On Payment Channels in Asynchronous Money Transfer Systems

Specification 1 Bidirectional payment channel abstraction. Operations for pro-
cess p.

Shared Objects:
A - asset transfer object
BC - Bidirectional payment channel object

1 Procedure BC.transfer((a, b), amt):
2 if BC(a, b) = ⊥
3 return
4 (bala, balb)← BC(a, b)
5 if owner(a) = p ∧ bala ≥ amt
6 execute_payment((a, b),−amt, amt)
7 if owner(b) = p ∧ balb ≥ amt
8 execute_payment((a, b), amt,−amt)

9 Function execute_payment((a, b), amta, amtb):
10 (bala, balb)← BC(a, b)
11 new_bala ← bala + amta

12 new_balb ← balb + amtb

13 BC(a, b)← (new_bala, new_balb)

14 Procedure BC.close((a, b), bal):
15 if B(a, b) = ⊥
16 return fail
17 (curr_bala, curr_balb)← BC(a, b)
18 other_bal = curr_bala + curr_balb − bal
19 if owner(a) = p
20 if bal ̸= curr_bala
21 return fail
22 return execute_close((a, b), bal, other_bal)
23 if owner(b) = p
24 if bal ̸= curr_balb
25 return fail
26 return execute_close((a, b), other_bal, bal)
27 return fail

28 Function execute_close((a, b), amta, amtb):
29 A(a)← A(a) + amta

30 A(b)← A(b) + amtb

31 BC(a, b)← ⊥
32 return success

transfer((a, b), amt). A payment in channel (a, b) is possible if the channel is open, if the
caller process is a valid owner of either a or b, and the caller’s balance in the channel is
enough to make the payment. Otherwise, it does nothing. After the call ends, the state
BC(a, b) is changed to reflect the payment.
close((a, b), bal). This call can be invoked if the caller process is a valid owner of either a

or b. The close of the channel is successful if the process that invokes the call does not
try to close it with balance bal that is not the amount it has in the channel. Otherwise,
the call fails and does nothing. The call transfers to accounts a, b their balances from the
channel, and then changes its status to ⊥. This call returns success or fail to indicate
the outcome of the call.

In this paper, we consider sequentially consistent bidirectional channels.

4.2 Impossibility of a bidirectional payment channel object
We show that implementing a sequentially consistent bidirectional payment channel in the
message-passing model requires synchrony. To this end, we solve wait-free consensus among
2 processes with shared registers and an instance of BC. The consensus abstraction has one
call, propose(v), which is called with some proposal v, and returns a value. The returned
value for any process making the call has to be an input of the call from one of the processes,
and it has to be the same value for all invocations, regardless of the caller process. We assume
in this proof crash-fail faults, i.e., a process corrupted by the adversary stops participating in
the protocol but does not deviate from it. Since this is an impossibility result and crash-fail
faults are weaker than Byzantine faults, it also applies to runs with Byzantine processes.

▶ Lemma 4. Consensus has a wait-free implementation for 2 processes in the read-write
shared memory model with an instance of a bidirectional payment channel shared-memory
object and shared registers.

O. Naor and I. Keidar 29:9

Algorithm 2 Wait-free implementation of consensus among 2 processes using a
bidirectional payment channel. Operations for processes p1 = owner(a), p2 = owner(b).

Shared Objects:
A - asset transfer object, initially two accounts a, b ∈ A s.t. A(a) = A(b) = 0
BC - Bidirectional payment channel object, initially BC(a, b) = (1, 1)
R1, R2 - shared registers with read write calls, initially R1 = R2 = ⊥

// We assume that at the beginning of the run there exists an open payment channel (a, b) s.t.
BC(a, b) = (1, 1)
// Algorithm for process p1:

1 Procedure propose(v):
2 R1.write(v)
3 BC.transfer((a, b), 1)
4 BC.close((a, b), 0)
5 return make_decision()

// Algorithm for process p2:
6 Procedure propose(v):
7 R2.write(v)
8 BC.close((a, b), 1)
9 return make_decision()

// Algorithm for processes p1 and p2:
10 Procedure make_decision():
11 wait until A.read(b) ̸= 0
12 if A.read(b) = 2
13 return R1.read()
14 else
15 return R2.read()

Proof. The algorithm for solving consensus among two processes using a bidirectional
payment channel object is detailed in Alg. 2. We assume that there are two processes p1, p2
with ownership of accounts a, b, respectively, and an open payment channel (a, b) at the
beginning of the run with balances BC(a, b) = (1, 1).

Before either of the processes invokes an operation on the payment channel, they write
their proposal v in a shared register (Lines 2 and 7). Then, p1 attempts to make a payment on
the channel and then close it, and p2 tries to close the channel without making or accepting
any payment.

Because BC is sequentially consistent, the algorithm ensures that eventually after the
channel is closed either the payment from a to b on the channel succeeds or not, and the
balance in b’s account reflects it, i.e., there exists a time t after which invoking A.read(b)
returns either 1 or 2.

If the read call in Alg. 2 returns 2, then the channel was closed by p1 after it successfully
made the payment on the channel. Since before p1 makes the payment on the channel it
writes its proposal to register R1, then its value is already written by the time the channel is
closed, and it is returned by the propose call. If the return value of the read call is 1, then
process p2 closed the channel. Since p2 closes the channel after it writes its proposal in R2,
then its proposed value is returned.

In either case, when the channel is closed, there is already a proposal written in either R1
or R2, i.e., the returned value is an input to the propose call by either process, and both
processes return the same value. ◀

Based on the above theorem and FLP [18], we get the following result:

▶ Theorem 5. There does not exist an implementation of the bidirectional payment channel
abstraction in the asynchronous message-passing model.

5 Unidirectional payment channel

After proving that a bidirectional payment channel cannot be implemented in asynchronous
networks, we explore another type of payment channel, unidirectional. The main difference
from bidirectional channels is that unidirectional channels are asymmetric. There is only one

DISC 2022

29:10 On Payment Channels in Asynchronous Money Transfer Systems

Specification 3 Unidirectional payment channel abstraction. Operations for
process p.

Shared Objects:
A - asset transfer object, with initial accounts
B - unidirectional payment channel object

1 Procedure B.open((a, b), amt):
2 if p ̸= owner(a) ∨B(a, b) ̸= ⊥ ∨A(a) < amt
3 return fail
4 A(a)← A(a)− amt
5 B(a, b)← (amt, 0)
6 return success
7 Procedure B.transfer((a, b), amt):
8 if p ̸= owner(a) ∨B(a, b) = ⊥
9 return

10 (bala, balb)← B(a, b)
11 if bala < amt
12 return
13 new_bala ← bala − amt
14 new_balb ← balb + amt
15 B(a, b)← (new_bala, new_balb)
16 Procedure B.target_close((a, b), balb)):
17 if p ̸= owner(b) ∨B(a, b) = ⊥
18 return fail
19 (curr_bala, curr_balb)← B(a, b)
20 if balb ̸= curr_balb
21 return fail
22 bala ← curr_bala + curr_balb − balb
23 return execute_close((a, b), (bala, balb))

24 Procedure B.source_close((a, b), bala):
25 if p ̸= owner(a) ∨B(a, b) = ⊥
26 return fail
27 (curr_bala, curr_balb)← B(a, b)
28 if bala ̸= curr_bala
29 return fail
30 balb ← curr_bala + curr_balb − bala
31 return execute_close((a, b), (bala, balb))
32 Function execute_close((a, b), (bala, balb)):
33 A(a)← A(a) + bala
34 A(b)← A(b) + balb
35 B(a, b)← ⊥
36 return success

user, the source, who can open and transfer money in the channel. We show in which cases
unidirectional payment channels can be implemented in an asynchronous message-passing
network and in which cases they cannot. We begin by formally defining the unidirectional
payment channel abstraction.

5.1 Definition
We define a unidirectional payment channel abstraction as a shared memory object B. The
formal definition is in Specification 3. B is defined based on the existence of an asset transfer
object A. A payment channel in B is of the form (a, b) where a, b are accounts in A.

The state of a payment channel B(a, b) is {R≥0 × R≥0} ∪ {⊥}. Intuitively, a unidirectional
payment channel B(a, b) can either be open, and then B(a, b) = (bala, balb), or closed, and
then B(a, b) = ⊥. The initial state is that all unidirectional payment channels are closed,
e.g., for payment channel (a, b), the state is B(a, b) = ⊥ at the beginning of the run.

The set of operations is the following:
open((a, b), amt). A process that owns account a can open a unidirectional payment
channel with any other account b with amount amt, as long as it has enough balance in
A and does not already have an open payment channel with b. The call returns success if
the channel is opened successfully and fail otherwise.
transfer((a, b), amt). A payment in the payment channel (a, b) is possible if the channel is
open, if the caller of the operation a is owner(a) and a has enough balance in the channel
to make the payment. This call does not return a response.
source_close((a, b), bala). A source closing of a payment channel (a, b) can be called by
owner(a). The call succeeds if the process that invokes the call does not try to close it
with balance bala that is not the amount it has in the channel. After the call ends, the
balances in the channel are transferred to accounts a, b in the asset transfer system. The
call returns success if the channel is closed successfully and fail otherwise.

O. Naor and I. Keidar 29:11

target_close((a, b), balb). A target closure of a payment channel (a, b) is symmetrical to
the source_close call, but is invoked by owner(b).

We differentiate between two types of unidirectional payment channels, depending on
whether the source close call is included in the allowed set of operations of the shared object
or not. Note that without source close, the source depends on the target to close the channel
to receive its deposit back after the channel is opened. However, for the target to receive its
balance from the channel in the asset transfer system, it has to eventually close the channel.
When the target closes the channel, the source also receives its respective balance.

We do not consider a channel with source close and without target close, as in this
case only the source has operations it can call, and the target relies on the source for all
its operations regarding the channel, and cannot receive the funds transferred to it in the
channel on-chain unless the source closes the channel. Also, since in this case, only the source
has operations it can invoke, this abstraction can be implemented easily in an asynchronous
network as it does not require consensus or any interaction at all between the source and
target. We also believe this case does not correspond correctly to existing implementations
of payment channels as discussed in §7.

5.2 Impossibility of a unidirectional payment channel with source close
We show that a unidirectional payment channel that has the source close operation has a
consensus number of at least 2, and therefore cannot be implemented in an asynchronous
message passing network. Formally, we prove:

▶ Lemma 6. Consensus has a wait-free implementation for 2 processes in the read-write
shared memory model with an instance of a unidirectional payment channel with source close
shared memory object and shared registers.

The proof is similar to the proof of Lemma 4 and is deferred to Appendix A. Based on
the above lemma and FLP [18], we get the following result:

▶ Theorem 7. There does not exist an implementation of the unidirectional payment channel
abstraction with source close in the asynchronous message-passing model.

5.3 Unidirectional payment channel without source close
Next, we discuss unidirectional payment channel without the source close operation. We
first prove a lower bound on the message complexity of an implementation and then prove
that this lower bound is tight by providing an implementation for the abstraction in the
asynchronous message-passing model.

Lower bound. We prove that any algorithm that implements the unidirectional payment
channel specification incurs a combined message complexity for open, transfer, and close of
Ω(n2). To this end, we prove the following lemma:

▶ Lemma 8. Consider an algorithm that implements the unidirectional payment channel
abstraction B, and an asset transfer A. Then there exists a run with B.open, B.transfer,
B.target_close, and A.read calls, in which correct processes send at least (f/2)2 messages.

The full proof is deferred to Appendix A as it shares similar concepts to the lower bound
proof of Theorem 3. The intuition is that an A.transfer call can be simulated by opening a
channel, transferring money in it, and then closing it.

DISC 2022

29:12 On Payment Channels in Asynchronous Money Transfer Systems

Algorithm 4 Unidirectional payment channel without source_close implemen-
tation in the asynchronous message-passing model. Operations for process p.

Shared Objects:
A - asset transfer object

Local variables:
source[] - a dictionary with the balances of all channels that p is the source, initially ⊥
target[] - a dictionary with A multisig invocations for all channels p is the target, initially ⊥

// This call can be invoked by owner(a)
1 Procedure open((a, b), amt) :
2 if owner(a) ̸= p ∨ source[ab] ̸= ⊥ ∨ A.read(a) < amt
3 return fail
4 invoke A.transfer(a, [(ab, amt)]) // ab is multisig
5 create A.transfer(ab, [(a, amt), (b, 0)])

invocation tx
6 add p’s signature to tx // tx is not a valid

transaction without owner(b)’s signature
7 send ⟨"open", tx, amt⟩ to owner(b)
8 source[ab]← (amt, 0)
9 return success

// This message is received by owner(b)
10 Upon receiving ⟨"open", tx, amt⟩ and A.read(ab) =

amt:
11 let tx be A.transfer(ab, [(a, amt), (b, 0)]) invocation
12 if owner(b) ̸= p∨¬validate(tx, a)∨ target[ab] ̸= ⊥
13 return
14 target[ab]← tx

// This call can be invoked by owner(a)
15 Procedure transfer((a, b), amt):
16 if owner(a) ̸= p ∨ source[ab] = ⊥
17 return
18 (bala, balb)← source[ab]
19 if bala < amt
20 return
21 (new_bala, new_balb)← (bala − amt, balb + amt)
22 create A.transfer(ab, [(a, new_bala), (b, new_balb)])

invocation tx

23 add p’s signature to tx
24 send ⟨"transfer", tx, amt⟩ to owner(b)
25 source[ab]← (new_bala, new_balb)

// This message is received by owner(b)
26 Upon receiving ⟨"transfer", tx, amt⟩:
27 let tx be A.transfer(ab, [(a, bala), (b, balb)]) invoca-

tion
28 if owner(b) ̸= p ∨ ¬validate(tx, a) ∨ target[ab] = ⊥
29 return
30 get A.transfer(ab, [(a, c_bala), (b, c_balb)]) invoca-

tion from target[ab] // The currently
stored transaction

31 if c_bala ̸= bala − amt ∨ c_balb ̸= balb + amt
32 return
33 target[ab]← tx // store new transaction

// This call can be invoked by owner(b)
34 Procedure target_close((a, b), balb):
35 if owner(b) ̸= p ∨ target[ab] = ⊥
36 return fail
37 get A.transfer(ab, [(a, curr_bala), (b, curr_balb)])

transaction tx from target[ab]
38 if balb ̸= curr_balb
39 return fail
40 add p’s signature to tx // complete the multisig
41 invoke tx // invoke A with closing transaction
42 target[ab]← ⊥
43 send ⟨"close", (a, b)⟩ to owner(a)
44 return success

// This message is received by owner(a)
45 Upon receiving ⟨"close", (a, b)⟩ and A.read(ab) = 0:
46 source[ab]← ⊥

47 Function validate(tx, a):
48 return tx is a valid invocation of A and it contains

owner(a)’s signature

Upper bound. We provide an algorithm in the asynchronous message-passing model that
implements a unidirectional payment channel without source close. The algorithm assumes
an asset transfer system A, implemented as in [20], and discussed in §3.2.2. The algorithm is
detailed in Alg. 4. We denote an account name with a string c1c2 · · · ck ∈ A to refer to an
account with a public key that is a k-of-k multisignature of {owner(c1), . . . , owner(ck)}. For
example, to sign an invocation of the asset transfer object A of account ab, like transferring
money from ab to another account, both owner(a) and owner(b) need to sign the message
with their respective private keys before the call can be invoked. The transfer call with an
appropriate multisignature can be invoked by any process, in particular, the last process
to sign the invocation and complete the signature. When the algorithm mentions that a
process creates an A.transfer invocation, e.g., in lines 5 and 22, it does not mean the process
invokes the transfer operation, but rather that it adds its signature to a multisignature
message allowing an invocation of A’s operation. Any invocation of A.transfer call is explicitly
mentioned (lines 4, 40). We further assume FIFO order on messages sent between every two
processes. This can be easily implemented with sequence numbers.

O. Naor and I. Keidar 29:13

We explain below the implementation details of the algorithm for each of the operations:
Open. The open procedure of a channel (a, b) (Alg. 4) requires p1 = owner(a) to make an
initial deposit by invoking the transfer method of A from account a to a multisignature
account ab (Alg. 4). After the transfer is completed, p1 creates a transaction tx that
transfers the deposit back to its account and 0 to p2 = owner(b) and sends it to p2
(Alg. 4). Note that at this stage, process p1 cannot invoke A with tx since it requires a
multisignature, but when p2 receives it, it can add its signature as well and then invoke
A with the tx.
When p2 receives tx, this transaction message it also waits for the balance in account ab

to reflect the deposit (Alg. 4) to ensure the money was deposited in account ab using the
asset transfer system, after which it considers the account as open.
Transfer. When p1 wants to transfer money in an open channel (a, b) (Alg. 4) it creates a
transaction tx which is an A.transfer invocation transferring money from the multisig-
nature account ab to accounts a and b with the last balance of the channel after the
payment. E.g., if the balance of the channel is (10, 1), and p1 wants to make a payment of
1 on the channel, it creates transaction tx required to invoke A.transfer(ab, [(a, 9), (b, 2)]),
which transfers 9 money units to p1 and 2 to p2. Then p1 adds its signature to tx (Alg. 4),
and sends it to p2, which stores it. Note that p1 cannot invoke A with tx since it is
still missing p2’s signature. Thus, making a payment on the channel simply requires one
message from the source user to the target user containing tx, and multiple payments
can be made on the channel without invoking A’s transfer call.
Close. When p2 wants to close the channel (a, b) (Alg. 4), it takes the last transaction
of account ab it received from p1 and adds its signature to it (Alg. 4). p2’s signature
completes the multisignature, making it a valid transaction, and allowing p2 to use it to
invoke A’s transfer operation (Alg. 4). Process p2 notifies p1 that it closed the channel,
after which p1 considers the channel closed. After the channel is closed, p1 can reopen it
with a new call of the open operation.

Thus, opening and closing of the channel requires invoking a single A.transfer operation,
which incurs O(n2) messages because of the broadcast, but transferring money on the channel
itself requires only one message per transfer.

Correctness. We prove below that the implementation (Alg. 4) is Byzantine sequentially
consistent (BSC) with respect to the sequential specification (Specification 3).

▶ Definition 9. Let E be an execution of Alg. 4 and H its matching history. Let H̃ be a
completion of H by removing any pending open and close calls that did not reach A’s transfer
call invocation (Lines 4 and 41, respectively), and let H̃|c be H̃’s history with the operations
of correct processes.

Define H ′ as an augmentation of H̃|c as follows: For any correct process q = owner(b)
that invokes a successful B.target_close((a, b), balb) s.t. process p = owner(a) is a Byzantine
process, we add before the target close call the following two invocations to H ′ by p:

B.open((a, b), balb) with an account a s.t. A(a) ≥ balb. Since account a has enough money
to open the channel, the open call succeeds.
B.transfer((a, b), balb) which is invoked immediately after the previous open call returns.

The two added Byzantine calls ensure that when q invokes the close operation, it succeeds.
Next, we construct a linearization of H ′.

▶ Definition 10. Let H ′ be the augmented history of Alg. 4 as defined in Definition 9. Let
E′ be a linearization of H ′ by defining the following linearization points:

Any open or close call that fails is linearized immediately after its invocation.
A transfer call that returns because of the if statements (Lines 16, 19) is linearized
immediately after its invocation.

DISC 2022

29:14 On Payment Channels in Asynchronous Money Transfer Systems

Any successful open((a, b), amt) s.t. q = owner(b) is a correct process, then it linearizes
after q reaches Alg. 4. If q is Byzantine, the call linearizes when it ends.
Any transfer((a, b), amt) that reaches Alg. 4 s.t. q = owner(b) is a correct process, then it
linearizes after q reaches Alg. 4. If q is Byzantine, the call linearizes when it ends.
Any successful target_close((a, b), balb) s.t. p = owner(a) is a correct process, then it
linearizes after p reaches Alg. 4. If p is Byzantine, the call linearizes when it ends.

The open and transfer calls change the state of the channel. By the sequential specification,
the target can call target close with this new state. Therefore, the linearization point of these
calls occur after the target receives the message informing it of the new state. Regarding the
close call linearization point: the source can only reopen a channel after it learns that the
channel has been closed, and therefore the linearization point is when the source receives the
information of the closure and verifies it on-chain.

Next, we provide below the lemmas showing that the linearization E′ satisfies the
sequential specification. We defer the proofs of these lemmas to Appendix A.

▶ Lemma 11. A B.open call for channel (a, b) succeeds only if the channel is closed when
the call is invoked.

▶ Lemma 12. For any B.transfer call for channel (a, b) there is a preceding open call for
the channel in H ′.

▶ Lemma 13. For any successful B.target_close((a, b), balb) call in H ′ there is a preceding
B.open((a, b), amt) call for channel (a, b) s.t. amt ≥ balb, followed by a B.transfer call that
changes the state of the channel to (bala, balb) for bala = amt − balb.

▶ Lemma 14. In an infinite execution of Alg. 4 every call invoked by a correct process
eventually returns.

Thus, we can conclude the following result from the lemmas above:

▶ Theorem 15. Alg. 4 implements a Byzantine sequentially consistent unidirectional payment
channel without source close abstraction.

Changing the algorithm to be Byzantine linearizable. The algorithm can be changed
to be Byzantine linearizable by having each message answered with an ack message. E.g.,
after the open message is received in Alg. 4, the process sends an ack message back to the
original sender. The linearization point then is when the ack message is received. This
change requires sending more messages as part of the algorithm and also extends the latency,
but this change does not affect the overall asymptotic message complexity. This is also the
reason why we choose BSC as the correctness criterion, not Byzantine linearizability.

6 Chain payments

We can extend the discussion of payment channels to chain payments. A chain payment
system allows making payments off-chain between users who do not share a direct payment
channel between them but do share a route through intermediate users. For example, suppose
that Alice wants to make a payment to Bob, but she does not share a direct payment channel
with him. Rather, she has a channel with Charlie and Charlie has a channel with Bob. A
chain payment allows using the route from Alice to Bob via Charlie to make the payment on
all channels atomically. Chain payments are used extensively in Lightning Network [36].

O. Naor and I. Keidar 29:15

The intuitive way to define a chain payment abstraction is with a single operation that
makes a payment through a chain ((a1, a2), (a2, a3), . . . , (ak−1, ak)), and the outcome of the
payment affects all channels of the chain in an atomic manner. For example, suppose that
the balances of the above channels of the chain are (bal1, bal2), . . . , (balk−1, balk), respectively,
and a payment of amt is made via the chain. Then, after the linearization point, the balances
of the channels are (bal1 − amt, bal2 + amt), . . . , (balk−1 − amt, balk + amt), respectively. In
this case, assuming that the channels are bidirectional or unidirectional with source close, it
can be proven that the consensus number [23] of such chain payment object is k, meaning
this object can be used to solve consensus between k processes, in a similar manner to the
2-consensus we prove in this paper for these channel types.

We also note that even if the channels of the chain are unidirectional without source close,
implementing a chain payment is not intuitive and straightforward in asynchronous networks.
A possible solution is to adopt the use of Hash Time-Locked Contracts (HTLCs) [13, 25] which
are in use in the Lightning Network for chain payments. An HTLC is a special conditioned
payment between two users Alice and Bob. An HTLC allows Alice to make a conditioned
payment to Bob that includes some timeout ∆ and a hash value y. Bob can receive the
payment if he exposes on-chain a value x whose hash value is y before ∆ elapses. We can
equip the asset transfer system with a similar Hash Time Contract operation, without the
timeout component. That is, Bob receives the payment if he exposes x without any timeout
assumptions. With this, we can implement chain payments in asynchronous networks based
on the unidirectional channels without source close we presented in Alg. 4. We leave as open
future work to formalize these ideas and explore other possible asynchronous implementations
of chain payments.

7 Related work

A few works predating the blockchain era [35, 22], identified that a transfer-like system can
be implemented under asynchrony. The first definition of the asset transfer abstraction is
due to Guerraoui et al. [20]. Subsequentially, Auvolat et al. [4] provide a weaker specification
for asset transfer and detail an implementation that uses a broadcast service that guarantees
FIFO order between every two processes. Astro [12] implements and empirically evaluates
an asynchronous payment system.

Solving Byzantine consensus in an asynchronous network is possible by using randomiza-
tion to circumvent the FLP [18] result. Earlier protocols such as [7, 37] have exponential
message complexity. Later protocols such as [32, 1, 21, 27] improve the message complexity
in various settings, but they are not deterministic, and therefore their performance can only
be measured in the expected case.

There is also extensive research done on scaling cryptocurrencies using payment channels,
including the Lightning Network [36], Teechain [29], Bolt [19], Sprites [31], Perun [16], Duplex
Micropayment Channels [13], Raiden [38], and more. In Ethereum [42], there are multiple
second-layer networks like Arbitrum [26], StarkNet [8], and Optimism [41]. All these works
assume an underlying synchronous network to function correctly. E.g., Lightning Network
uses a penalizing mechanism where one side of the channel can confiscate the other side’s
balance in the channel if it misbehaves and tries to close the channel at a stale state. But for
this mechanism to work correctly, the penalizing party has to place a transaction on-chain
within a certain time period, thus requiring a synchronous network. Brick [5] is a payment
channel that preserves safety and liveness in asynchrony, but to do so requires a rather
complex third-party entities (referred to as wardens) which validate channel transactions
before they can be placed on-chain. This work also assumes rational (and not Byzantine)
behavior of the wardens.

DISC 2022

29:16 On Payment Channels in Asynchronous Money Transfer Systems

Spilman [39] proposed in 2013 a unidirectional payment channel implementation that
shares similar concepts to Alg. 4. Spilman’s design has a timeout for each channel. The
target of the channel has to close the channel before the timeout passes, otherwise, the source
side can refund its initial deposit in the channel. Because of the timeout, this design relies
on network synchrony. To the best of our knowledge, our implementation of a unidirectional
channel without source close is the first that works on an underlying asynchronous network
without requiring any third-party assistance to operate the channel, and in the presence of
Byzantine processes.

We are also the first to show a quadratic lower bound for payments in asset transfer systems,
as well as to explore second-layer payment channels as a scaling solution in asynchrony.

8 Conclusion

In this paper we presented the possibility of using payment channels in asynchronous asset
transfer systems as a scaling solution. We showed that an asset transfer system requires
a quadratic message complexity per payment. Then, we showed a series of possibility and
impossibility results regarding payment channels as a scaling solution.

References
1 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated

asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

2 Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and Erik
Zenner. Ripple: Overview and outlook. In International Conference on Trust and Trustworthy
Computing, pages 163–180. Springer, 2015.

3 Hagit Attiya and Jennifer L Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems (TOCS), 12(2):91–122, 1994.

4 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Money transfer made
simple: a specification, a generic algorithm, and its proof. Bull. EATCS, 132, 2020. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/629.

5 Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Dionysis Zindros. Brick:
Asynchronous incentive-compatible payment channels. In International Conference on Finan-
cial Cryptography and Data Security, pages 209–230. Springer, 2021.

6 Mihir Bellare and Gregory Neven. Identity-based multi-signatures from rsa. In Cryptographers’
Track at the RSA Conference, pages 145–162. Springer, 2007.

7 Shai Ben-David, Allan Borodin, Richard Karp, Gabor Tardos, and Avi Wigderson. On the
power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

8 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46, 2018.

9 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

10 Shir Cohen and Idit Keidar. Tame the Wild with Byzantine Linearizability: Reliable Broadcast,
Snapshots, and Asset Transfer. In Seth Gilbert, editor, 35th International Symposium on
Distributed Computing (DISC 2021), volume 209 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 18:1–18:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2021.18.

11 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement whp. In 34th International Symposium on Distributed
Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

http://eatcs.org/beatcs/index.php/beatcs/article/view/629
https://doi.org/10.4230/LIPIcs.DISC.2021.18

O. Naor and I. Keidar 29:17

12 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 26–38. IEEE,
2020.

13 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages 3–18. Springer,
2015.

14 Danny Dolev and Ruediger Reischuk. Bounds on information exchange for byzantine agreement.
In Proceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC ’82, pages 132–140, New York, NY, USA, 1982. Association for Computing
Machinery.

15 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

16 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment channels over cryptographic currencies. IACR Cryptol. ePrint Arch., 2017:635, 2017.

17 Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In 13th USENIX symposium on networked systems design and
implementation (NSDI 16), pages 45–59, 2016.

18 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

19 Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 473–489, 2017.

20 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian Seredin-
schi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 307–316, 2019.

21 Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster
asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 803–818, 2020.

22 Saurabh Gupta. A non-consensus based decentralized financial transaction processing model
with support for efficient auditing. Arizona State University, 2016.

23 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991.

24 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

25 HTLC. Hash time locked contracts. Accessed: 2022-02-05. URL: https://en.bitcoin.it/
wiki/Hash_Time_Locked_Contracts.

26 Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W Felten.
Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium 18, pages
1353–1370, 2018.

27 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165–175, 2021.

28 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

29 Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter Pietzuch.
Teechain: a secure payment network with asynchronous blockchain access. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages 63–79, 2019.

30 Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast protocol.
Journal of Computer Security, 5(2):113–127, 1997.

DISC 2022

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

29:18 On Payment Channels in Asynchronous Money Transfer Systems

31 Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Payment
channels that go faster than lightning. CoRR, abs/1702.05812, 2017. arXiv:1702.05812.

32 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016.

33 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

34 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr. In 34th International Symposium on Distributed Computing (DISC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

35 Fernando Pedone and André Schiper. Handling message semantics with generic broadcast
protocols. Distributed Computing, 15(2):97–107, 2002.

36 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

37 Michael O Rabin. Randomized byzantine generals. In 24th annual symposium on foundations
of computer science (sfcs 1983), pages 403–409. IEEE, 1983.

38 Raiden. Raiden network, 2020. Accessed: 2022-02-05. URL: https://raiden.network/.
39 Jeremy Spilman. Anti dos for tx replacement, April 2013. URL: https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html.
40 Lightning Network Statistics. Real-time lightning network statistics. Accessed: 2022-02-01.

URL: https://1ml.com/statistics.
41 Optimism website. Accessed: 2022-02-01. URL: https://www.optimism.io/.
42 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 151(2014):1–32, 2014.
43 Maofan Yin, Dahlia Malkhi, MK Reiter and, Guy Golan Gueta, and Ittai Abraham. HotStuff:

BFT consensus with linearity and responsiveness. In 38th ACM symposium on Principles of
Distributed Computing (PODC’19), 2019.

A Correctness proofs

In this section we provide the full deferred proofs from the paper.

▶ Lemma 6. Consensus has a wait-free implementation for 2 processes in the read-write
shared memory model with an instance of a unidirectional payment channel with source close
shared memory object and shared registers.

Proof. In Alg. 2, only process p1 transfers money to p2 using the channel, and they both
attempt to close the channel: p1 after the payment is made, and p2 without accepting the
payment. Thus, changing the close call in Alg. 2 to B.source_close and the call in Alg. 2
to B.target_close yields a consensus algorithm among 2 processes using a unidirectional
payment channel with source and target close operations. ◀

▶ Lemma 8. Consider an algorithm that implements the unidirectional payment channel
abstraction B, and an asset transfer A. Then there exists a run with B.open, B.transfer,
B.target_close, and A.read calls, in which correct processes send at least (f/2)2 messages.

Proof. We can simulate an A.transfer call between two accounts a, b with initial bal-
ances 1, 0, respectively. This is done by having owner(a) call B.open((a, b), 1), followed
B.transfer((a, b), 1), and lastly, having owner(b) call B.target_close((a, b), 1). If accounts a, b

are owned by the same process p, we can construct exactly the the same runs used in the
proof of Theorem 3 in order to prove this lemma. The only change is that we replace the
A.transfer call invoked by p in the original proof with the three calls mentioned above. ◀

http://arxiv.org/abs/1702.05812
https://raiden.network/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://1ml.com/statistics
https://www.optimism.io/

O. Naor and I. Keidar 29:19

Next, we provide the full proofs of the correctness of the unidirectional channel without
source close implementation in §5.3. We prove that E′, the linearization of H ′, satisfies the
sequential specification of a unidirectional payment channel without source close. We assume
that for channel (a, b), p = owner(a), q = owner(b).

▶ Lemma 11. A B.open call for channel (a, b) succeeds only if the channel is closed when
the call is invoked.

Proof. Immediate from the algorithm. A channel (a, b) opening fails if source[ab] = ⊥
(Alg. 4). This is the case for all channels at the beginning of the run, or if the channel was
previously closed successfully (Alg. 4). ◀

▶ Lemma 12. For any B.transfer call for channel (a, b) there is a preceding open call for
the channel in H ′.

Proof. If the transfer call in H ′ is invoked by a correct process, then from the algorithm
source[ab] ̸= ⊥. This is only possible by the algorithm if p invokes an open call for the channel
before the transfer invocation. If q is correct, then the open and transfer calls linearize when
q receives the messages for the corresponding calls (Lines 10, 24). Since we assume FIFO
order on the links between any two processes, then the open call linearizes before the transfer
call. If q is Byzantine, then the open and transfer calls linearize immediately after they
successfully return.

If p is Byzantine, then the transfer invocation is in H ′ because there is some close
invocation by a correct process q. Before that, there is also a matching open call by p. The
open call linearizes before the transfer call. ◀

▶ Lemma 13. For any successful B.target_close((a, b), balb) call in H ′ there is a preceding
B.open((a, b), amt) call for channel (a, b) s.t. amt ≥ balb, followed by a B.transfer call that
changes the state of the channel to (bala, balb) for bala = amt − balb.

Proof. If the close call ends successfully, then q has in target[ab] a valid transaction
A.transfer(ab, [(a, bala), (b, balb)]), otherwise, the call fails. Therefore, if p is a correct process,
it opens the channel (a, b) with some deposit amt, and transfers in the channel s.t. the
balances in the channel change to (bala, balb). Both the open and transfer are linearized
before the close invocation, otherwise, the close call fails. If p is Byzantine, then we add
the matching open and transfer invocations to H ′ which are linearized before the close
invocation. ◀

▶ Lemma 14. In an infinite execution of Alg. 4 every call invoked by a correct process
eventually returns.

Proof. In all cases where an open or close calls return fail it does so immediately, since it is
done prior to any invocation of A. Transfer calls that return due to the if statements (Lines
16, 19) also return immediately.

For the open call, the if condition in the channel open call (Alg. 4) ensures that the
process that invokes the call owns account a and that it has enough balance to open the
channel. We also assume that a correct process does not invoke a new call before a previous
call has a response event. Therefore, the conditions checked during the if statement hold
when A’s transfer call is invoked, and by the asset transfer specification the call succeeds.

A transfer call that does not invoke any of A’s calls, nor does it wait for a reply after it
sends the transaction in Alg. 4. Therefore, this call also returns immediately.

DISC 2022

29:20 On Payment Channels in Asynchronous Money Transfer Systems

A target_close call that returns success invokes A with a transfer call that transfers
money from account ab (Alg. 4). To reach this line, the process has to first check if the
channel is open, and it has the matching transaction in target[ab] during the if statement of
the call. Therefore, invoking A will eventually succeed by the asset transfer specification,
and the target_close call returns successfully. ◀

The Space Complexity of Scannable Objects with
Bounded Components
Sean Ovens
University of Toronto, Canada

Abstract
A fundamental task in the asynchronous shared memory model is obtaining a consistent view of
a collection of shared objects while they are being modified concurrently by other processes. A
scannable object addresses this problem. A scannable object is a sequence of readable objects called
components, each of which can be accessed independently. It also supports the Scan operation,
which simultaneously reads all of the components of the object. In this paper, we consider the
space complexity of an n-process, k-component scannable object implementation from objects with
bounded domain sizes. If the value of each component can change only a finite number of times,
then there is a simple lock-free implementation from k objects. However, more objects are needed if
each component is fully reusable, i.e. for every pair of values v, v′, there is a sequence of operations
that changes the value of the component from v to v′.

We considered the special case of scannable binary objects, where each component has domain
{0, 1}, in PODC 2021. Here, we present upper and lower bounds on the space complexity of any
n-process implementation of a scannable object O with k fully reusable components from an arbitrary
set of objects with bounded domain sizes. We construct a lock-free implementation from k objects of
the same types as the components of O along with ⌈n

b
⌉ objects with domain size 2b. By weakening

the progress condition to obstruction-freedom, we construct an implementation from k objects of
the same types as the components of O along with ⌈ n

b−1⌉ objects with domain size b.
When the domain size of each component and each object used to implement O is equal to b

and n ≤ bk − bk + k, we prove that 1
2 · (k + n−1

b
− logb n) objects are required. This asymptotically

matches our obstruction-free upper bound. When n > bk−bk +k, we prove that 1
2 · (b

k−1− (b−1)k+1
b

)
objects are required. We also present a lower bound on the number of objects needed when the
domain sizes of the components and the objects used by the implementation are arbitrary and finite.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases space complexity, lower bound, shared memory, snapshot object

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.30

Funding Support is gratefully acknowledged from the Natural Sciences and Engineering Research
Council of Canada under grant RGPIN-2020-04178 and the Ontario Graduate Scholarship (OGS)
Program.

Acknowledgements I thank my advisor, Faith Ellen, for the many helpful discussions and proofread-
ing throughout this project. I also thank the anonymous reviewers for their comments.

1 Introduction

A scannable object O consists of a sequence of objects O[1], . . . , O[k] called components,
each of which stores a value from some domain and supports Read along with some other
operations. The Apply(i, op) operation applies the operation op to O[i], where op is an
operation supported by O[i]. A scannable object also supports the Scan operation, which
returns a consistent view of O[1], . . . , O[k] at a point during the operation’s execution interval.

© Sean Ovens;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 The Space Complexity of Scannable Objects with Bounded Components

A snapshot object [1, 2, 4] is a scannable object whose components support the Read and
Write operations. Snapshot objects were formalized independently by Afek, Attiya, Dolev,
Gafni, Merritt, and Shavit [1], Anderson [2], and Aspnes and Herlihy [4]. They have been
used to simplify the description of obstruction-free consensus algorithms [10], approximate
agreement algorithms [8], and implementations of large classes of objects [4, 16].

It is known that a k-component snapshot object implemented from read/write registers
requires at least k registers [13]. There are many known implementations that match this
lower bound, but all of them either use objects that are large enough to store the result
of a Scan [1, 2, 17, 19, 20] or use unbounded sequence numbers [1, 9, 14, 15]. There
are also implementations that use significantly more than k base objects [3, 18, 7, 25].
Other implementations use unbounded version lists [24]. Prior to our work, it was not well
understood how the number of base objects required to implement a scannable object is
related to the domain sizes of the base objects and the components. In this paper, we
investigate the space complexity of scannable objects with bounded components that are
implemented from objects with bounded domains.

Last year, we considered the space complexity of scannable binary objects (i.e. scannable
objects whose components have domain {0, 1}) implemented from objects with domain
{0, 1}. In some circumstances, it is possible to implement a scannable binary object from
only k objects. For example, consider a scannable binary object O whose components are
test-and-set (TAS) objects. A TAS object supports Read and TAS, which changes the value
of the object to 1 and returns its previous value. There is a simple wait-free implementation
of O from k TAS objects T1, . . . , Tk. The object Ti stores the value of component O[i], an
Apply(i, Read) operation reads Ti, and an Apply(i, TAS) operation applies TAS to Ti. A
Scan repeatedly collects the values in T1, . . . , Tk (i.e. reads them one at a time) until it
observes the same sequence of values twice in a row. When this happens, the Scan returns
this sequence of values. Since the value of each component can change at most once, a Scan
operation will terminate after performing at most k + 2 collects. The implementation is
correct because the value of a component cannot change from v to a different value v′ and
then back to v. Hence, the sequence of values returned by the Scan must be the actual value
of the scannable object at some point during the execution interval of the Scan.

More generally, we gave a lock-free, n-process implementation of any k-component
scannable binary object from k objects with the same types as the components of the object
along with n binary registers. If the components of the scannable binary object are non-
monotonic (i.e. their value can be changed from 0 to 1 and from 1 to 0), we show that more
than k objects are required. Specifically, any obstruction-free, n-process implementation of a
scannable binary object with k non-monotonic components requires at least n + k − r − 2
objects with domain {0, 1}, where k ≥ 2 and 2k − 2k−r < n − 2 ≤ 2k − 2k−r−1. This lower
bound applies to single-updater implementations, where only a single process (called the
updater) is allowed to change the value of any component. Since the lower bound applies
to obstruction-free and single-updater implementations, it applies to lock-free and wait-free
implementations that support multiple updaters as well.

In this paper, we generalize our previous results significantly to obtain new upper and
lower bounds on the space complexity of scannable object implementations from objects with
arbitrary bounded domain sizes. As discussed with scannable binary objects, a k-component
scannable object has a wait-free implementation from k objects with the same domain sizes
as the components if each component’s value can change only a finite number of times. For
example, consider a k-component scannable object O consisting of b-bounded counters. A
b-bounded counter supports Read and Incb, which increases the value of the counter by 1

S. Ovens 30:3

if its current value is less than b − 1 and does nothing otherwise. The scannable object O

can be implemented from k b-bounded counters, each of which stores the value of one of the
components. A Scan repeatedly collects the values of the objects until it obtains the same
sequence of values twice in a row. Since the value of each component can increase at most
b − 1 times, a Scan will terminate after performing at most k(b − 1) + 2 collects.

We show how our lock-free, n-process implementation of any k-component scannable
binary object from n + k objects can be generalized to obtain a lock-free, n-process imple-
mentation of a k-component scannable object from k objects with the same domain sizes as
the components of the scannable object along with ⌈ n

b ⌉ objects that have domain size 2b, for
any b ≥ 1. We also construct an obstruction-free implementation from k objects with the
same domain sizes as the components of the scannable object along with ⌈ n

b−1 ⌉ read/write
registers that have domain size b. We generalize the notion of non-monotonic binary objects
to objects with larger domain sizes: An object is fully reusable if, for every pair of values
v, v′ in its domain, there is a sequence of operations that changes its value from v to v′. This
is a natural condition that includes many common objects like registers, compare-and-swap
objects, and modulo-b counters. A b-bounded counter is not fully reusable, since there is no
sequence of operations that changes its value from 1 to 0, for example.

We show that any obstruction-free, n-process implementation of a scannable object with
k fully reusable components that have domain size b requires at least 1

2 · (k + n−1
b − logb n)

objects with domain size b when n ≤ bk − bk + k. When n > bk − bk + k, we show that
1
2 ·

(
bk−1 − (b−1)k+1

b

)
objects with domain size b are required. We also prove a lower bound

on the number of objects required by any obstruction-free, n-process implementation of a
scannable object with k fully reusable components when the domain sizes of the components
and the objects used by the implementation are arbitrary, finite values. Just like our lower
bound for scannable binary objects, our lower bound in this paper applies to obstruction-free,
single-updater implementations, so it applies to lock-free and wait-free implementations that
support multiple updaters as well.

Our original lower bound proof for scannable binary objects involves inductively con-
structing an unordered set of k-component binary vectors {V1, . . . , Vℓ} and a configuration
Cℓ, for all ℓ ≤ min(n−2, 2k−1), that satisfy the following property: For any execution α from
Cℓ that does not involve the last ℓ scanners, if the scannable binary object does not contain
any of the vectors V1, . . . , Vℓ during α, then there is a set of ℓ objects that do not change
during α. We show how to obtain an (n − ℓ)-process implementation of a (k − 1)-component
scannable binary object by discarding these ℓ objects. This can be applied repeatedly until
we have a 2-process implementation of a scannable binary object with k′ < k components,
which we show requires at least k′ + 1 objects.

Our technique in this paper builds on these ideas. However, having objects with domain
sizes larger than 2 presents several challenges. First, it is not possible to show that some
objects stop changing entirely in certain executions from Cℓ. Instead, we show that there is
a set of forbidden values for each object in certain executions from Cℓ. Second, since it is
not possible to obtain a set of objects that stop changing, a new implementation cannot be
obtained by discarding objects. Finally, in this paper we need to construct a sequence of
vectors ⟨V1, . . . , Vℓ⟩ rather than a set of vectors. We will explain how our technique differs
from our scannable binary object lower bound in more detail in Section 5.

In Section 2, we briefly survey some other related work. We define our model of
computation in Section 3. In Section 4, we present our implementations of scannable objects
from objects with bounded domain sizes. We prove our space complexity lower bound in
Section 5. Finally, we discuss some possible future research directions in Section 6.

DISC 2022

30:4 The Space Complexity of Scannable Objects with Bounded Components

2 Related work

Scannable objects, like snapshot objects, have been used to simplify the description of many
distributed algorithms and implementations. Aspnes, Attiya, Censor-Hillel, and Ellen [3]
described an implementation of a 2-component max array, which is a scannable object that
consists of 2 max registers. A max register supports MaxWrite(x), which changes the value of
the object to x if and only if the current value of the max register is less than x, and MaxRead,
which returns the current value of the max register. The authors used a 2-component max
array to implement a limited-use snapshot object whose Scan and Update operations both
have polylogarithmic step complexity. Ellen, Gelashvili, Shavit, and Zhu [14] classified some
objects by the number of instances required to solve obstruction-free consensus. In certain
cases, they showed that it is possible to solve obstruction-free consensus using a scannable
object. For example, obstruction-free consensus can be solved among n processes using a
scannable object with n − 1 components that each support Read and Swap(v), which changes
the value of the component to v and returns its previous value.

Consider a k-component scannable object O whose components have domains D1, . . . , Dk.
Then O has a wait-free, single-updater implementation from one single-writer register with
domain D1 × . . . × Dk. A Scan simply reads the register. The updater locally stores the
current value of O in a variable V . When the updater performs an Apply(i, op) operation,
it locally applies op to V and then writes the resulting vector to the register. There is a
known wait-free implementation of a single-writer register with any finite domain size d from
d single-writer binary registers [23]. Hence, O has a wait-free, single-updater implementation
from

∏k
i=1 |Di| single-writer binary registers. Chen and Wei [12] gave an implementation of

an s-bit single-writer register from Θ(ns
t) instances of t-bit single-writer registers.

Jayanti [20] defined a generalization of a scannable object called an f -array, where f is a
function. Like a scannable object, an f -array consists of a sequence of components, each of
which has its own domain. The domain of an f -array is the cross product of the domains of
its components. The function f maps the domain of the f -array to some arbitrary set of
values. An f -array supports a generalization of Scan, which we call f -Scan, that returns the
result of applying f to the value of the object. When f is the identity function, f-Scan is
the same as Scan. Jayanti gives a wait-free implementation of a k-component f -array from k

objects of the same types as the components of the f -array along with a single LL/SC object
large enough to store the result of an f -Scan.

Wei, Ben-David, Blelloch, Fatourou, Ruppert, and Sun [24] described an approach for
implementing a scannable object whose components are compare-and-swap objects. Their
approach uses a versioned compare-and-swap object to store the value of a component.
A versioned compare-and-swap object also stores an unbounded version list, which has a
complete history of all the successful CAS operations applied to the object. Each element of
the version list also stores a timestamp. To Scan the scannable object, a process first obtains
a new timestamp ts and then traverses the version list of each component to find the value
with the latest timestamp that does not exceed ts.

Ellen, Fatourou, and Ruppert [13] proved that, for all n > k, an n-process, k-component
snapshot implementation requires at least k registers. Jayanti, Tan, and Toueg [21] proved
that n − 1 registers are required to implement a snapshot object with n components, where
each component can be modified by only a single process. Both of these lower bound proofs
used covering arguments, which were originally introduced by Burns and Lynch [11].

Covering arguments are a standard technique for proving space complexity lower bounds
for implementations that use historyless objects. A historyless object can support two kinds of
operations: trivial operations never change the value of the object, and historyless operations

S. Ovens 30:5

set the object to some fixed value that does not depend on the old value of the object. A set
of processes P covers a set of historyless objects B if |P| = |B| and, for every B ∈ B, there is
a process in P that is poised to apply a nontrivial, historyless operation to B in its next step.
If each of the processes in P takes its next step, then the information in B is overwritten. In
order to prove a lower bound of m on the space complexity of an implementation, it suffices
to construct a configuration of the implementation in which a set of processes P covers a set
of objects B with |B| = m. Therefore, the best space lower bound that can be obtained by a
covering argument is n, the number of processes. Hence, to obtain our lower bound, we need
to use different techniques. Furthermore, our lower bound applies to implementations that
use non-historyless objects.

3 Model

We use a standard asynchronous shared memory model in which n processes communicate
using shared objects. An object has a domain of possible values, a set of invocations that
can be applied to it, and a set of possible responses to each invocation. The sequential
specification of an object O defines, for each value v and each invocation Inv of O, the
resulting value of O and the response to Inv when Inv is applied to O.

An object O is fully reusable if, for all distinct values v, v′ of O, there is a sequence of
invocations on O that changes its value from v to v′. An example of a fully reusable object
with domain {0, . . . , b − 1} supports a single invocation that returns its current value x and
then changes its value to x + 1 mod b. An example of an object with the same domain that
is not fully reusable supports a single invocation that returns its current value x and then
changes its value to min(b − 1, x + 1). For example, there is no sequence of invocations that
would change this object’s value from 1 to 0.

In this paper, we implement new objects from a set of base objects, which are provided by
the system. An implementation of an object defines a set of base objects and an algorithm
for each process to follow for every invocation of the object. For the sake of clarity, we call
the invocations of base objects primitives, and we call the invocations of implemented objects
operations.

A configuration of an implementation consists of a value for every base object and a state
for every process. We use value(B, C) to denote the value of base object B in configuration
C. A step by a process consists of a primitive applied to some base object and a response
to that primitive, followed by a finite amount of local computation by that process, which
may then change its state. In an initial configuration of an implementation, no processes
have taken steps. An execution is an alternating sequence of configurations and steps that
begins with a configuration. If an execution is finite, then it ends with a configuration. If
C is a configuration and α is a finite execution starting with C, then Cα denotes the final
configuration of α. If an execution α only contains steps by processes in some set P , then we
say α is P -only. If P contains exactly one process pj , then we say α is pj-only.

Executions are produced by a scheduler that decides the order in which processes take
steps and the operations on the implemented object that they perform. In every initial
configuration of an implementation, every process is idle. When an idle process pi is chosen
to take a step by the scheduler, the scheduler specifies an instance of an operation to pi, and
then the process takes the first step of its algorithm for that operation. When pi’s algorithm
terminates, it returns a response to this operation instance, which is now complete, and then
pi becomes idle again. An instance of an operation by pi is ongoing in any configuration
that occurs after it is given the operation instance and before pi returns its response. When

DISC 2022

30:6 The Space Complexity of Scannable Objects with Bounded Components

the scheduler chooses a process that is not idle, the process only performs the next step of
its algorithm. Thus, a process can have at most one ongoing operation in any configuration.
When a process takes a step, the response to the primitive that it applies is determined
by the value of the base object to which the primitive is applied along with the sequential
specification of that base object. A configuration C is called P -idle, where P is a set of
processes, if all of the processes in P are idle in C. If P = {pi}, then we say C is pi-idle.

Two configurations C1, C2 are indistinguishable to a set of processes P if every process in
P has the same state in C1 and C2. We use C1

P∼ C2 to denote this. Suppose that α1, α2
are executions beginning with C1, C2, respectively. Then α1 and α2 are indistinguishable
to a set of processes P if C1

P∼ C2 and every process in P performs the same sequence of
steps (and receives the same responses to each of the primitives applied) in α1 and α2. We
use α1

P∼ α2 to denote this. If γ1 is a P -only execution from C1, the base objects accessed
by P during γ1 have the same values in C1 and C2, and C1

P∼ C2, then there is a P -only
execution γ2 from C2 such that γ1

P∼ γ2 [6].
An object is readable if it supports the Read invocation, which returns the value of the

object. A scannable object O is a sequence of readable objects called components. We use
O[i] to denote the i-th component of the scannable object O. The value of a k-component
scannable object O is a vector in D1 × . . . × Dk, where Di is the domain of component O[i].
The object O supports the invocation Apply(i, op), which applies the invocation op to O[i].
The object O also supports Scan, which reads every component of the object simultaneously.

A single-updater implementation of a scannable object allows only one process, called
the updater, to perform Apply invocations. The other processes, called scanners, can only
perform Scan invocations. Note that this is different from a single-writer implementation
[1, 2, 5], in which process pi can only perform Apply invocations on component i.

An execution α from an initial configuration of an implementation of an object O is
linearizable if there exists a sequence Π of operation instances and responses that satisfies
the following three properties.

(i.) Π contains every complete operation instance in α immediately followed by its response.
It also contains some subset of the remaining operation instances in α, each of which
is immediately followed by some response.

(ii.) If the response to an operation instance op1 appears before an operation instance op2
in α and op2 is in Π, then op1 appears before op2 in Π.

(iii.) Π satisfies the sequential specification of O.
The sequence Π is a linearization of α. An implementation is linearizable if every execution
from every initial configuration of the implementation is linearizable.

If an execution α is linearizable, then every complete operation instance in α can be
assigned a linearization point at which it appears to take effect. Each linearization point
must occur at or after the step containing the operation instance and at or before the step
containing its response. Operation instances that are not complete in α may also be assigned
linearization points, which must occur at or after the step containing the operation instance.
An operation instance that has been assigned a linearization point is said to be linearized. If
there is a sequence of operation instances and responses in which the linearized operation
instances are arranged according to their linearization points, each complete operation
instance in α is immediately followed by its response, each operation instance that is not
complete in α is immediately followed by some response, and Π satisfies the sequential
specification of O, then Π is a linearization of α.

An implementation is called wait-free if every operation instance by every process com-
pletes within a finite number of steps by that process. An implementation is called lock-free
if every infinite execution of the implementation contains an infinite number of complete

S. Ovens 30:7

operation instances. An implementation is called obstruction-free if every operation instance
by every process completes within a finite number of consecutive steps by that process. Note
that every wait-free implementation is also lock-free, and every lock-free implementation is
also obstruction-free.

4 Upper bound

In this section, we discuss two scannable object implementations from base objects with
bounded domain sizes. Throughout this section, let O be a scannable object with k com-
ponents. Let {p0, . . . , pn−1} be the set of processes. First, we argue that our lock-free
implementation of a scannable binary object from [22] can be generalized to use fewer base
objects with larger domain sizes. We obtain a lock-free implementation of O from k objects
with the same types as O[1], . . . , O[k] along with

⌈
n
b

⌉
base objects with domain equal to

the set of all binary strings of length b, each of which supports Read and Set-bit(i, v). The
Set-bit(i, v) invocation changes the i-th bit of the object’s value to v ∈ {0, 1}. Second, by
weakening our progress requirement to obstruction-freedom, we show how to obtain an
implementation from base objects with smaller domains. We construct an obstruction-free
implementation of O from k objects with the same types as O[1], . . . , O[k] along with ⌈ n

b−1 ⌉
multi-reader, multi-writer registers with domain size b.

4.1 Lock-free implementation
We presented a lock-free, n-process implementation of a k-component scannable binary object
S from k objects B1, . . . , Bk with the same types as S[1], . . . , S[k] along with n binary registers
R1, . . . , Rn [22]. The base objects B1, . . . , Bk are used to store the values of S[1], . . . , S[k],
and the registers R1, . . . , Rn are used by scanning processes to detect concurrent Apply
operations.

To perform an Apply(ℓ, op) operation, a process writes 0 to all of the registers R1, . . . , Rn

and then applies op to Bℓ. To Scan, process pi first collects the values in B1, . . . , Bk and
then writes 1 to Ri. Then pi repeatedly collects the values in B1, . . . , Bk, Ri. When it sees
the same sequence of values in B1, . . . , Bk and reads the value 1 from Ri n times in a row,
process pi returns the sequence of values it read from B1, . . . , Bk. If the value of some base
object Bℓ changed since pi’s last collect or Ri = 0, then pi writes 1 to Ri and restarts its
sequence of collects.

More generally, there is a lock-free, n-process implementation of O from k objects
B1, . . . , Bk with the same types as O[1], . . . , O[k] along with ⌈ n

b ⌉ base objects R1, . . . , R⌈n/b⌉
with domain equal to the set of all binary strings of length b, each of which supports Read
and Set-bit(i, v). To perform an Apply(ℓ, op) operation, a process sets all of the bits of
R1, . . . , R⌈n/b⌉ to 0. Then, the process applies op to Bℓ. To Scan, process pi first collects the
values in B1, . . . , Bk and then applies Set-bit(i mod b, 1) to R⌈(i+1)/b⌉. The remainder of
the implementation is similar to our implementation of a scannable binary object, except
that pi uses the (i mod b)-th bit of R⌈(i+1)/b⌉ to detect concurrent Apply operations.

4.2 Obstruction-free implementation
Implementation 1 is a linearizable, obstruction-free implementation of O. It uses k objects
B1, . . . , Bk with the same types as the components of O, along with ⌈ n

b−1 ⌉ multi-reader, multi-
writer registers R1, . . . , R⌈n/(b−1)⌉ with domain {0, . . . , b − 1}. The base objects B1, . . . , Bk

are used to store the values of the components. The registers R1, . . . , R⌈n/(b−1)⌉ are used by
scanning processes to determine whether other processes are concurrently taking steps.

DISC 2022

30:8 The Space Complexity of Scannable Objects with Bounded Components

Each process pi stores a pair of constants j = ⌈(i+1)/(b−1)⌉ and v =
(
i mod (b−1)

)
+1.

The constant j denotes the index of the register that pi accesses during its Scan operations,
and v is the value that pi writes to that register. Notice that v > 0 and process pi is the
only process that can write the value v to the register Rj . Hence, if pi writes the value v to
Rj and then pi later reads the value v from Rj , then pi knows no other process has modified
Rj since pi last wrote to it.

Process pi begins a Scan operation by collecting the values in B1, . . . , Bk on line 7 and
then writing the value v to Rj on line 9. Then process pi begins repeatedly collecting the
values in the base objects B1, . . . , Bk, Rj on lines 11-12. Once pi sees the same sequence of
values in B1, . . . , Bk and it sees the value v in Rj n times in a row, pi returns the sequence
of values it saw in B1, . . . , Bk. If pi sees that the value of some base object Bℓ has changed
since pi’s last collect, or the register Rj contains a value other than v, then pi enters the
block on line 13, writes the value v to Rj , and restarts its sequence of collects. Notice that,
unlike in the lock-free implementation, it is possible for a pair of scanning processes who
share the same register Rj to repeatedly interrupt each other and prevent progress. Hence,
this implementation is not lock-free.

An Apply(ℓ, op) operation simply writes 0 to all of the registers R1, . . . , R⌈n/(b−1)⌉ and
then applies the operation op to Bℓ.

Implementation 1 A linearizable, obstruction-free implementation of a k-component
scannable object from k + ⌈ n

b−1⌉ base objects.

shared:
B1, . . . , Bk, each initially 0, where Bℓ is the

same type as O[ℓ]
registers R1, . . . , R⌈n/(b−1)⌉ with domain
{0, . . . , b− 1}, each initially 0

local constants for process pi:
j := ⌈(i + 1)/(b− 1)⌉
v :=

(
i mod (b− 1)

)
+ 1

1 Apply(ℓ, op) by process pi:
2 for r ∈

{
1, . . . , ⌈n/(b− 1)⌉

}
do

3 Write(Rr, 0)
4 end
5 return op(Bℓ)

6 Scan by process pi:
7 S ← collect(B1, . . . , Bk)
8 c← 0
9 Write(Rj , v)

10 while c < n do
11 S′ ← collect(B1, . . . , Bk)
12 v′ ← Read(Rj)
13 if S ̸= S′ or v ̸= v′ then
14 S ← S′

15 c← 0
16 Write(Rj , v)
17 else
18 c← c + 1
19 end
20 end
21 return S

A process pi performing a Scan operation aims to perform a collect during which none of
the objects B1, . . . , Bk are modified. This way, pi can safely return the sequence of values it
returned by this collect. If an Update operation writes 0 to Rj before pi has read Rj for the
last time on line 12, then pi will restart its sequence of collects after it next reads Rj . It
is possible that an Apply operation finishes setting all of the registers R1, . . . , R⌈n/(b−1)⌉ to
0 just before a scanning process pi sets Rj to v. In this case, the Apply might change one
of the base objects B1, . . . , Bk during a collect by pi. However, in Lemma 1, we will argue
that, for every complete instance of a Scan operation sc, at least one of the last n collects
performed by sc does not overlap with any application of a primitive to B1, . . . , Bk on line 5.

▶ Lemma 1. Let α be an execution from the initial configuration of Implementation 1. For
any complete instance sc of a Scan operation in α, there is at least one collect among the
last n collects performed by sc during which no Apply operation applies a primitive to any
base object B1, . . . , Bk.

S. Ovens 30:9

Proof. Suppose that sc is performed by process pi. Let cl1 be the first of the final n collects
of B1, . . . , Bk performed by pi during sc, and let cln be the last. Process pi does not enter
the block on line 14 between cl1 and cln, as this would cause pi to perform at least n more
collects before returning from sc. Hence, pi does not write v to Rj after cl1 begins during
sc. Furthermore, immediately after each of the last n collects performed by pi during sc,
process pi reads the value v from Rj . Since pi is the only process that can write v to Rj , this
implies that no process writes to Rj after cl1 begins and before cln ends (i.e. after pi reads
R1 during cl1 and before pi reads R⌈n/(b−1)⌉ during cln). Every Apply operation writes 0 to
Rj on line 3 before applying a primitive to one of the base objects B1, . . . , Bk. Therefore,
every Apply operation that applies a primitive to a base object B1, . . . , Bk during one of the
final n collects performed by pi during sc must have written 0 to Rj before cl1 began. Hence,
at most n − 1 Apply operations apply a primitive to a base object B1, . . . , Bk during one of
the final n collects of sc. ◀

▶ Theorem 2. Implementation 1 is an obstruction-free, linearizable implementation of O.

Proof. Consider some execution α of Implementation 1. By Lemma 1, there is at least one
collect among the final n collects performed by any complete Scan operation sc during which
no Apply operation applies a primitive to any base object B1, . . . , Bk. We can linearize sc at
the beginning of this collect. All Apply operations in sc can be linearized when they apply
the primitive on line 5.

By inspection of the code, every complete Apply operation applies exactly ⌈n/(b − 1)⌉ + 1
primitives. A process performing a Scan operation by itself will execute at most n iterations
of the loop on line 10 before terminating. Hence, Implementation 1 is obstruction-free. ◀

5 Lower bound

In this section, we present a lower bound on the number of objects with bounded domain
sizes that are required to implement a scannable object. First, we explain the proof technique
that we used to obtain a space complexity lower bound for scannable binary objects, since our
proof in this section builds on this technique. A key concept in our technique is the notion of a
W-absent execution. Let I be an obstruction-free, single-updater, n-process implementation
of a scannable object O, where process p0 is the updater and processes p1, . . . , pn−1 are the
scanners. Let W be some set of values of O. Since I is a single-updater implementation
of O, we note that in any p0-idle configuration of I, the value of the scannable object O is
well-defined. Let α be an execution from some p0-idle configuration C of I. If p0 is idle in
Cα, then α is W-absent if, for every p0-idle configuration C ′ in α, the value of O in C ′ is not
in the set W . If p0 is not idle in Cα, then α is W-absent if αα′ is W-absent, where α′ is the
p0-only execution from Cα in which p0 finishes its ongoing operation in Cα. An execution β

from Cα is called a W-absent extension of α if αβ is W-absent. The following observation is
from [22].

▶ Observation 3. Let α be a W-absent execution from some p0-idle configuration C of I.
(a) If sc is an instance of a Scan operation in α whose response is also in α, then the

response of sc is not equal to any vector in W.
(b) Any execution from Cα in which only the scanners p1, . . . pn−1 take steps is a W-absent

extension of α.

We originally considered the case in which O is a scannable binary object and I only uses
binary base objects. We inductively construct, for all ℓ ≤ min(n − 2, 2k−1), a configuration
Cℓ and a set of ℓ binary k-component vectors {V1, . . . , Vℓ}, such that, for every {V1, . . . , Vℓ}-
absent execution α from Cℓ in which the last ℓ scanners take no steps, there is a set of ℓ

DISC 2022

30:10 The Space Complexity of Scannable Objects with Bounded Components

base objects that do not change during α. All of the vectors V1, . . . , Vℓ have a 1 in their k-th
component. We show that the ℓ base objects that stop changing can be discarded to obtain
an implementation of an (n − ℓ)-process, (k − 1)-component scannable binary object. This
idea is applied repeatedly until we have a 2-process implementation of a scannable binary
object with k′ < k components, which we show requires at least k′ + 1 base objects.

When the base objects have larger domain sizes, it is not possible to show that a set of
base objects stop changing after certain executions from Cℓ. Hence, we cannot obtain a new
implementation by discarding base objects. Instead, we will show how to construct a set of
forbidden values for each base object. More precisely, consider an obstruction-free, n-process,
single-updater implementation of a scannable object with k components that have domain
sizes c1, . . . , ck. We show that, for all ℓ ≤ min(n − 1,

∏k
y=1 cy −

∑k
y=1 cy + k − 1), there is

a sequence of distinct k-component vectors ⟨V1, . . . , Vℓ⟩, a configuration Cℓ, and a function
Xℓ that maps each base object to a set of forbidden values such that the following property
is satisfied: For any {V1, . . . , Vℓ}-absent execution α from Cℓ in which the last ℓ scanners
take no steps, no base object Bx contains any of its forbidden values Xℓ(Bx) at any point
during α. However, the updater is still able to change the object O to any vector other than
V1, . . . , Vℓ without using any forbidden value for any base object. This allows us to obtain a
lower bound on the number of base objects that are needed by the implementation.

In our construction for the scannable binary object lower bound, the order of the vectors
V1, . . . , Vℓ does not matter. However, for our construction, the order of the vectors is crucial.
In particular, for all i ∈ {1, . . . , ℓ}, it is important that every possible value of the scannable
object V ′ ̸∈ {V1, . . . , Vi} can be reached without changing its value to any of the vectors
V1, . . . , Vi. For example, consider a 2-component scannable object that consists of modulo-3
counters. Consider the sequence of vectors

〈
(0, 1), (1, 0)

〉
. Notice that it is impossible to

change the value of this scannable object from (0, 0) to (2, 2) without first changing its
value to either (0, 1) or (1, 0). Hence, our construction would not work with this particular
sequence of vectors.

Throughout the remainder of this section, we consider an obstruction-free, single-updater,
n-process implementation I of a scannable object O with k fully reusable components that
have bounded domain sizes. Let p0, . . . , pn−1 be the processes using I, where p0 is the
updater and p1, . . . , pn−1 are the scanners.

Let B be the set of base objects used by the implementation I. Let B1, . . . , B|B| be the
base objects in B, and, for all x ∈ {1, . . . , |B|}, let bx be the domain size of Bx. Without loss
of generality, we assume that the domain of Bx is {0, . . . , bx −1}. Let b′ = 1

|B|
∑|B|

x=1 bx be the
average domain size of the base objects in B. We assume that bx ≥ 2 for all x ∈ {1, . . . , |B|}.
Thus, b′ ≥ 2.

For all y ∈ {1, . . . , k}, let cy be the domain size of the y-th component O[y] of the
implemented object O. We assume that cy ≥ 2 for all y ∈ {1, . . . , k}. Let h = min

(
n −

1,
∏k

y=1 cy −
∑k

y=1 cy +k−1
)
. We will prove that |B| ≥ 1

2 ·
(∑k

y=1 logb′ cy + h
b′ − logb′(h+1)

)
.

In particular, consider the case in which b1, . . . , b|B|, c1, . . . , ck are all equal to b. Our lower
bound implies that,
1. if n ≤ bk − bk + k, then |B| ≥ 1

2 ·
(
k + n−1

b − logb n
)
, and

2. if n > bk − bk + k, then |B| ≥ 1
2 ·

(
bk−1 − (b−1)k+1

b

)
.

We will now show how to obtain the sequence of vectors discussed previously. Without
loss of generality, we assume that, for all y ∈ {1, . . . , k}, the domain of component O[y] is
{0, . . . , cy − 1}.

S. Ovens 30:11

For all y ∈ {1, . . . , k} and all u ∈ {0, . . . , cy −1}, define Ly(u) as the length of the shortest
sequence of operations that changes the value of O[y] from 0 to u. Since O[y] is fully reusable,
Ly(u) is well defined. Define a total order ≺y as follows: For all u, v ∈ {0, . . . , cy − 1},
u ≺y v if and only if either (a) Ly(u) < Ly(v), or (b) Ly(u) = Ly(v) and u < v. Consider
any shortest sequence of operations σ that changes the value of O[y] from 0 to u, for some
u ∈ {0, . . . , cy − 1}. By definition of ≺y, the sequence of values that O[y] takes during σ

does not contain any value v ∈ {0, . . . , cy − 1} with u ≺y v.
For all y ∈ {1, . . . , k} and all u ∈ {1, . . . , cy −1}, define L′

y(u) as the length of the shortest
sequence of operations that changes the value of O[y] from u to 0. Since O[y] is fully reusable,
L′

y(u) is well defined. Define a total order ≺′
y as follows: For all u, v ∈ {1, . . . , cy − 1},

u ≺′
y v if and only if either (a) L′

y(u) < L′
y(v), or (b) L′

y(u) = L′
y(v) and u < v. Consider

any shortest sequence of operations σ that changes the value of O[y] from u to 0, for some
u ∈ {1, . . . , cy − 1}. By definition of ≺′

y, the sequence of values that O[y] takes during σ

does not contain any value v ∈ {1, . . . , cy − 1} with u ≺′
y v.

Let U = {0, . . . , c1 − 1} × . . . × {0, . . . , ck − 1} be the set of values of the scannable object
O. Let V ⊊ U be the set of all vectors in U that have at least two components with nonzero
values. Note that |V| =

∏k
y=1 cy −

∑k
y=1 cy + k − 1. For all j ∈ {1, . . . , k − 1}, define Sj ⊆ V

as the set of all vectors in V whose first j − 1 components contain the value 0 and whose j-th
components contain a nonzero value. Notice that S1, . . . , Sk−1 is a partition of the set V.

For all j ∈ {1, . . . , k − 1}, let Γj be the sequence of all vectors in Sj ordered first by
decreasing lexicographical order of the final k − j components with respect to ≺y, and
then in decreasing order by the value in the j-th component with respect to ≺′

j . For
example, if O consists of k = 3 modulo-3 counters, then 2 ≺′

y 1 and 0 ≺y 1 ≺y 2 for
all y. In this case, Γ1 =

〈
[1, 2, 2], [2, 2, 2], [1, 2, 1], . . . , [2, 1, 0], [1, 0, 1], [2, 0, 1]

〉
and Γ2 =〈

[0, 1, 2], [0, 2, 2], [0, 1, 1], [0, 2, 1]
〉
. For all i ∈ {1, . . . , |V|}, define Vi as the i-th vector in the

concatenation of Γ1, . . . , Γk−1. We use [0, . . . , 0] to denote the k-component all 0 vector.

▶ Lemma 4. For any i ∈ {1, . . . , |V|}, any U ∈ U−{V1, . . . , Vi}, and any p0-idle configuration
C in which the scannable object O contains [0, . . . , 0], there is a p0-only, {V1, . . . , Vi}-absent
execution λ from C such that Cλ is p0-idle and the object O contains U in Cλ.

Proof. First suppose that U ∈ U − V . If U = [0, . . . , 0], then let λ be the empty execution.
Otherwise, let the j-th component of U be a nonzero value. Let λ be some p0-only execution
from C in which p0 changes the value of O[j] from 0 to U [j]. In every p0-idle configuration
of λ, the value of O is a vector in U − V . Hence, λ is {V1, . . . , Vi}-absent.

Otherwise, U = Vi′ , where i < i′ ≤ |V|. Suppose that Vi′ ∈ Sj , for some j ∈ {1, . . . , k −1}.
Let λj be the p0-only execution from C in which p0 performs a shortest sequence of operations
that changes the value of O[j] from 0 to Vi′ [j]. For all y ∈ {j +1, . . . , k}, let λy be the p0-only
execution from Cλj . . . λy−1 in which p0 performs a shortest sequence of operations that
changes the value of O[y] from 0 to Vi′ [y]. Note that the sequence of values of O[y] during
λy are in increasing order with respect to ≺y. Since Vi′ ∈ Sj , the first j − 1 components of
Vi′ contain the value 0. Hence, in Cλj . . . λk, the value of O is the vector Vi′ .

During the execution λj , the updater p0 changes the value of O[j] from 0 to Vi′ [j]. All
of the other components of O contain 0 throughout λj . Hence, the object O only contains
vectors in U − V during λj . Thus, λj is {V1, . . . , Vi}-absent.

In the configuration Cλj , component O[j] contains the value Vi′ [j], and component O[j]
is not changed during λj+1 . . . λk. Furthermore, the first j − 1 components of O contain the
value 0 throughout λj . . . λk. Hence, the value of the object O in every p0-idle configuration
that appears after Cλj in the execution λj+1 . . . λk is a vector in Sj . For all y ∈ {j +1, . . . , k},

DISC 2022

30:12 The Space Complexity of Scannable Objects with Bounded Components

every operation that p0 applies to O[y] increases the value of O[y] with respect to the order
≺y. Hence, the sequence of all values of O are in increasing lexicographical order with
respect to ≺y and the final vector in this sequence is Vi′ . Every vector V that appears before
Vi′ in Γj with V [j] = Vi′ [j] is lexicographically larger than Vi′ with respect to ≺y. Hence,
λ = λj . . . λk is {V1, . . . , Vi}-absent. ◀

▶ Lemma 5. For any i ∈ {1, . . . , |V|}, any U ∈ U−{V1, . . . , Vi}, and any p0-idle configuration
C in which the scannable object O contains the value U , there is a p0-only, {V1, . . . , Vi}-absent
execution τ from C such that Cτ is p0-idle and the object O contains [0, . . . , 0] in Cτ .

Proof. First suppose that U ∈ U − V . If U = [0, . . . , 0], then let τ be the empty execution.
Otherwise, let the j-th component of U be a nonzero value. Let τ be a p0-only execution
from C in which p0 changes the value of O[j] from U [j] to 0. In every p0-idle configuration
of τ , the value of O is a vector in U − V . Hence, τ is {V1, . . . , Vi}-absent.

Otherwise, U = Vi′ , where i < i′ ≤ |V|. Suppose that Vi′ ∈ Sj , for some j ∈ {1, . . . , k −1}.
Let τj be the p0-only execution from C in which p0 performs a shortest sequence of operations
that changes the value of O[j] from Vi′ [j] to 0. For all y ∈ {j + 1, . . . , k}, let τy be the
p0-only execution from Cτj . . . τy−1 in which p0 performs a shortest sequence of operations
that changes the value of O[y] from Vi′ [j] to 0. Since Vi′ ∈ Sj , the first j − 1 components of
Vi′ contain the value 0. Hence, in Cτj . . . τk, the value of O is [0, . . . , 0].

During the execution τj , the updater p0 changes the value of O[j] from Vi′ [j] to 0. None
of the other components are modified during τj . Recall that Sj is ordered first in decreasing
lexicographical order by the last k − j components with respect to ≺y, and then in decreasing
order by the j-th component with respect to ≺′

j . Every operation by p0 in τj decreases the
value of O[j] with respect to ≺′

j . In configuration Cτj , the value of O is a vector Y that
contains 0 in its first j + 1 components. Hence, either Y ∈ Sj+1 ∪ . . . ∪ Sk−1 or Y ∈ U − V .
Thus, τj is {V1, . . . , Vi}-absent.

Notice that p0 does not modify any of the first j+1 components of O after the configuration
Cτj in τj+1 . . . τk. That is, in every configuration of τj+1 . . . τk after Cτj , the value of the
object is a vector that contains 0 in its first j + 1 components. Thus, τ = τj . . . τk is
{V1, . . . , Vi}-absent. ◀

We will now prove our main technical lemma, which constructs a set of forbidden values
for each of the base objects in B. Let C0 be an initial configuration of I in which O contains
the value [0, . . . , 0]. In the following lemma, we use induction to show that, for all 0 ≤ ℓ ≤ h,
there is an execution αℓ from C0 and a function Xℓ that maps each base object Bx to a proper
subset of {0, . . . , bx − 1}, where Xℓ(Bx) represents the set of forbidden values for the base
object Bx. The first n − ℓ processes are idle and O contains [0, . . . , 0] in the configuration

C0

ρs
pn−ℓ−1∼ δs

αℓ ρs

{p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ+1}-absent

λ
p0-only

δs

pn−ℓ−1-only

Figure 1 The executions δs and ρs in the proof of Lemma 6. Notice that δs starts from C0αℓλ

and ρs starts from C0αℓ.

S. Ovens 30:13

C0αℓ. Furthermore, the number of forbidden values summed over all the base objects is
exactly ℓ. For any {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution from C0αℓ, none of
the forbidden values are used during that execution. To complete the inductive step, we
show how to obtain one more forbidden value by stalling the scanner pn−ℓ−1.

▶ Lemma 6. For all ℓ such that 0 ≤ ℓ ≤ h, there is an execution αℓ from C0 and a function
Xℓ that maps each base object Bx ∈ B to a proper subset of {0, . . . , bx − 1} such that
(a) C0αℓ is {p0, . . . , pn−ℓ−1}-idle,
(b) the object O contains the value [0, . . . , 0] in C0αℓ,
(c)

∑|B|
x=1 |Xℓ(Bx)| = ℓ,

(d) for every {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution γ from C0αℓ and every
Bx ∈ B, we have value(Bx, C0αℓγ) ̸∈ Xℓ(Bx).

Proof. We use induction on ℓ. Let α0 be the empty execution and let X0(Bx) = ∅ for all
Bx ∈ B. Since no processes have taken any steps in C0α0 = C0, part (a) holds. Since all of
the components contain the value 0 in the configuration C0α0 = C0, this gives us part (b).
Since X0(Bx) = ∅ for all Bx ∈ B, we know that

∑|B|
x=1 X0(Bx) = 0, which gives us part (c)

and part (d). This concludes the proof of the base case.
Now let 0 ≤ ℓ < h and suppose the lemma holds for ℓ. Then there exists an execution

αℓ from C0 that satisfies parts (a)–(d) of the lemma statement. By Lemma 4 (with i = ℓ,
U = Vℓ+1, and C = C0αℓ), there is a p0-only, {V1, . . . , Vℓ}-absent execution λ from C0αℓ

such that p0 is idle in C0αℓλ and the object O contains the value Vℓ+1 in C0αℓλ.
Process pn−ℓ−1 is idle in C0αℓ by property (a). Since pn−ℓ−1 takes no steps in λ, it is

idle in C0αℓλ as well. Let δ be the pn−ℓ−1-only execution from C0αℓλ in which pn−ℓ−1 does
a complete Scan. Since the value of O is Vℓ+1 in C0αℓλ, the Scan operation by pn−ℓ−1 in δ

returns the vector Vℓ+1. Furthermore, the execution δ is a {V1, . . . , Vℓ}-absent extension of
λ by Observation 3 (b). Let r be the number of steps by pn−ℓ−1 in δ. Define δs as the prefix
of δ consisting of the first s steps by pn−ℓ−1. (In particular, δ0 is empty and δr = δ.)

Let ρ0 be the empty execution from C0αℓ. Since pn−ℓ−1 takes no steps in λ, we know that
C0αℓ

pn−ℓ−1∼ C0αℓλ. Furthermore, since pn−ℓ−1 takes no steps in either ρ0 or δ0, we know
that ρ0

pn−ℓ−1∼ δ0. Since O contains the value [0, . . . , 0] in C0αℓρ0 = C0αℓ by property (b),
the execution ρ0 is {V1, . . . , Vℓ+1}-absent.

Let ρr be any {p0, . . . , pn−ℓ−1}-only execution from C0αℓ such that ρr
pn−ℓ−1∼ δr. Then

pn−ℓ−1’s Scan operation in ρr returns the vector Vℓ+1. Hence, by the contrapositive of
Observation 3 (a), the execution ρr is not {V1, . . . , Vℓ+1}-absent.

Let s ∈ {0, . . . , r − 1} be the maximum value such that there is a {p0, . . . , pn−ℓ−1}-only,
{V1, . . . , Vℓ+1}-absent execution ρs from C0αℓ such that ρs

pn−ℓ−1∼ δs. Then there is no
{p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ+1}-absent extension ρ′ of ρs such that ρsρ′ pn−ℓ−1∼ δs+1.
Suppose that pn−ℓ−1 is poised to access the base object Bw in C0αℓλδs and C0αℓρs. Let d

be the last step of δs+1. If there is a {p0, . . . , pn−ℓ−2}-only, {V1, . . . , Vℓ+1}-absent extension
ρ′ of ρs such that value(Bw, C0αℓρsρ′) = value(Bw, C0αℓδs), then ρsρ′d

pn−ℓ−1∼ δsd = δs+1.
By Observation 3 (b), the execution ρsρ′d is {V1, . . . , Vℓ+1}-absent. This contradicts the
definition of s. Hence,

value(Bw, C0αℓρsρ′) ̸= value(Bw, C0αℓλδs) for every {p0, . . . , pn−ℓ−2}-only,
{V1, . . . , Vℓ+1}-absent extension ρ′ of ρs. (1)

Let σℓ be the {p0, . . . , pn−ℓ−2}-only execution from C0αiρs in which the processes
p0, . . . , pn−ℓ−2 complete their pending operations in increasing order of their identifiers.
Suppose that σℓ = σ′

ℓσ
′′
ℓ , where σ′

ℓ is the prefix of σℓ that contains all of p0’s steps in σℓ.

DISC 2022

30:14 The Space Complexity of Scannable Objects with Bounded Components

Since p0 does not begin any new Apply operations during σ′
ℓ, it is a {V1, . . . , Vℓ+1}-absent

extension of ρs. Furthermore, since σ′′
ℓ only contains steps by the scanners p1, . . . , pn−1,

Observation 3 (b) implies that σ′′
ℓ is a {V1, . . . , Vℓ+1}-absent extension of ρsσ′

ℓ. Thus, σℓ is a
{V1, . . . , Vℓ+1}-absent extension of ρs.

Let Y be the value of the object O in configuration C0αℓρsσℓ. Since ρsσℓ is {V1, . . . , Vℓ+1}-
absent, we know that Y ∈ U − {V1, . . . , Vℓ+1}. By Lemma 5 (with i = ℓ + 1, U = Y , and
C = C0αℓρsσℓ), there exists a p0-only, {V1, . . . , Vℓ+1}-absent execution τℓ from C0αℓρsσℓ

such that p0 is idle in C0αℓρsσℓτℓ and the object O contains [0, . . . , 0] in C0αℓρsσℓτℓ.
Let αℓ+1 = αℓρsσℓτℓ. In configuration C0αℓρsσℓτℓ = C0αℓ+1, the object O contains the

value [0, . . . , 0]. This gives us property (b) for ℓ + 1.
By definition of σℓ, the configuration C0αℓρsσℓ is {p0, . . . , pn−ℓ−2}-idle. Since pro-

cesses p1, . . . , pn−ℓ−2 take no steps during τℓ, configuration C0αℓρsσℓτℓ = C0αℓ+1 is
{p1, . . . , pn−ℓ−2}-idle. Furthermore, this configuration is p0-idle by definition of τℓ. This
gives us property (a) for ℓ + 1.

For all Bx ∈ B, define

Xℓ+1(Bx) =
{

Xℓ(Bx) ∪ {value(Bx, C0αℓλδs)} if Bx = Bw

Xℓ(Bx) otherwise.

Recall that λδs is {V1, . . . , Vℓ}-absent. Hence, value(Bw, C0αℓλδs) ̸∈ Xℓ(Bw) by property (d)
for ℓ with γ = λδs. Thus, we have |Xℓ+1(Bw)| = |Xℓ(Bw)| + 1. Since

∑|B|
x=1 |Xℓ(Bx)| = ℓ by

property (c) for ℓ, we have
∑|B|

x=1 |Xℓ+1(Bx)| = ℓ + 1. This gives us property (c) for ℓ + 1.
Let γ′ be a {p0, . . . , pn−ℓ−2}-only, {V1, . . . , Vℓ+1}-absent execution from C0αℓ+1. Then

ρsσℓτℓγ
′ is a {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution from C0αℓ. By property (d)

for ℓ with γ = ρsσℓτℓγ
′, for every Bx ∈ B, we have value(Bx, C0αℓρsσℓτℓγ

′) ̸∈ Xℓ(Bx). By (1)
with ρ′ = σℓτℓγ

′, we have value(Bw, C0αℓρsσℓτℓγ
′) ̸= value(Bw, C0αℓλδs). This completes the

proof of property (d) for ℓ+1. Hence, by induction, the lemma holds for all ℓ ∈ {0, . . . , h}. ◀

We apply Lemma 6 with ℓ = h to obtain an execution αh and h forbidden values for the
base objects. We apply Lemma 4 to obtain p0-only, {V1, . . . , Vh}-absent executions from
C0αh in which p0 changes the value of O to the vectors in U − {V1, . . . , Vh}. None of the
forbidden values of any base objects can be used in these executions. This allows us to obtain
a lower bound on the number of base objects in B. We provide a sketch of the proof in the
following theorem, and complete the proof in Appendix A.

▶ Theorem 7. |B| ≥ 1
2 ·

(∑k
y=1 logb′ cy + h

b′ − logb′(h + 1)
)
.

Proof sketch. Apply Lemma 6 with ℓ = h to obtain an execution αh and a function Xh that
satisfy (a)–(d). By property (c), we have

∑|B|
x=1 |Xh(Bx)| = h. Since |Xh(Bx)| ≤ bx − 1 for all

Bx ∈ B, we have
∑|B|

x=1(bx − 1) ≥ h. Hence, 1
|B| ·

∑|B|
x=1(bx − 1) ≥ h

|B| . Therefore, |B| ≥ h
b′−1 .

Let V ′ be the set of all values of O except for V1, . . . , Vh. Then |V ′| =
∏k

y=1 cy − h. By
Lemma 6 (b), the object O contains the value [0, . . . , 0] in C0αh. For all V ′ ∈ V ′, there exists
a p0-only, {V1, . . . , Vh}-absent execution γV ′ from C0αh such that p0 is idle in C0αhγV ′ and
O contains V ′ in C0αhγV ′ by Lemma 4 (with i = h, U = V ′, and C = C0αh).

Let V ′
1 , V ′

2 be two distinct vectors in V ′. Consider the p1-only executions from C0αhγV ′
1

and C0αhγV ′
2

in which p1 finishes its ongoing Scan operation (if it has one) and then
performs a complete Scan. The complete Scan operation in p1’s solo execution from C0αhγV ′

1

returns the vector V ′
1 and the complete Scan operation in p1’s solo execution from C0αhγV ′

2

returns the vector V ′
2 ̸= V ′

1 . Since p1 takes no steps in γV ′
1

or γV ′
2
, it must be true that

C0αhγV ′
1

p1∼ C0αhγV ′
2
. Therefore, at least one base object must have different values in

C0αhγV ′
1

and C0αhγV ′
2
.

S. Ovens 30:15

Lemma 6 (d) implies that, for every p0-only, {V1, . . . , Vh}-absent execution γ from C0 and
every Bx ∈ B, we have value(Bx, C0αhγ) ̸∈ Xh(Bx). Thus, there are at most bx − |Xh(Bx)|
possible values for any base object Bx in C0αhγ. This means that the shared objects can
hold

∏|B|
x=1(bx − |Xh(Bx)|) distinct sequences of values after p0-only, {V1, . . . , Vh}-absent

executions from C0αh. Since γV ′ is a p0-only, {V1, . . . , Vh}-absent execution for all V ′ ∈ V ′,
we have

|B|∏
x=1

(
bx − |Xh(Bx)|

)
≥ |V ′| =

k∏
y=1

cy − h.

In Appendix A, we show how this implies that |B| ≥ 1
2 ·

(∑k
y=1 logb′ cy + h

b′ −logb′(h+1)
)

. ◀

A specific case that motivated our work in [22] is when c1 = . . . = ck = b1 = . . . = b|B| = b.
By applying Theorem 7 with b′ = c1 = . . . = ck = b, we obtain

|B| ≥ 1
2 · (

k∑
y=1

logb b + h

b
− logb(h + 1)).

Since
∑k

y=1 logb b = k, we have |B| ≥ 1
2 · (k + h

b − logb(h + 1)). When n ≤ bk − kb + k,
taking h = n − 1 gives us Corollary 8 (a). When n > bk − kb + k, taking h = bk − kb + k − 1
gives us |B| ≥ 1

2 ·
(
bk−1 + k−1

b − logb(bk − bk + k)
)
. Since logb(bk − bk + k) ≤ logb bk = k,

this gives us Corollary 8 (b).

▶ Corollary 8. If the domain sizes of every component O[1], . . . , O[k] and the domain sizes
of the base objects B1, . . . , B|B| are all equal to b, then
(a) |B| ≥ 1

2 · (k + n−1
b − logb n) when n ≤ bk − bk + k, and

(b) |B| ≥ 1
2 ·

(
bk−1 − (b−1)k+1

b

)
when n > bk − bk + k.

6 Conclusion

When the domain sizes of the components and base objects used by the implementation
are all equal to b and n ≤ bk − bk + k, our obstruction-free, single-updater lower bound of
1
2 · (k + n−1

b − logb
n−1

2) asymptotically matches our obstruction-free, multi-updater upper
bound of k + ⌈ n

b−1 ⌉. For all values of n, we conjecture that k + ⌈ n
b ⌉ base objects with

domain size b are required by any obstruction-free, multi-updater, n-process implementation
of a scannable object with k fully reusable components that have domain size b. When
n > bk −bk+k, we gave an obstruction-free, single-updater lower bound of 1

2 ·(bk−1− (b−1)k+1
b)

base objects. If b is a constant, then this asymptotically matches the wait-free, single-updater
implementation from bk binary registers in Section 1. This means that, in order to prove a
space lower bound better than bk for larger values of n, we need to consider more complex
executions that contain concurrent Apply operations. We may also be able to improve our
lower bound by considering stronger progress requirements like lock-freedom or wait-freedom.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, September 1993. doi:10.1145/153724.
153741.

2 James H. Anderson. Composite registers. Distributed Computing, 6(3):141–154, April 1993.
doi:10.1007/BF02242703.

DISC 2022

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1007/BF02242703

30:16 The Space Complexity of Scannable Objects with Bounded Components

3 James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Limited-use atomic
snapshots with polylogarithmic step complexity. J. ACM, 62(1):3:1–3:22, 2015. doi:10.1145/
2732263.

4 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.

5 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM
model. In Second Annual ACM Symposium on Parallel Algorithms and Architectures, pages
340–349, July 1990.

6 Hagit Attiya and Faith Ellen. Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2014. doi:
10.2200/S00551ED1V01Y201311DCT012.

7 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement.
Distributed Computing, 8(3):121–132, March 1995. doi:10.1007/BF02242714.

8 Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast? J. ACM, 41(4):725–
763, July 1994. doi:10.1145/179812.179902.

9 Hagit Attiya and Ophir Rachman. Atomic snapshots in o(n log n) operations. SIAM J.
Comput., 27(2):319–340, 1998. doi:10.1137/S0097539795279463.

10 Zohir Bouzid, Michel Raynal, and Pierre Sutra. Anonymous obstruction-free (n, k)-set agree-
ment with n− k + 1 atomic read/write registers. Distrib. Comput., 31(2):99–117, April 2018.
doi:10.1007/s00446-017-0301-7.

11 J.E. Burns and N.A. Lynch. Bounds on shared memory for mutual exclusion. Information
and Computation, 107(2):171–184, 1993. doi:10.1006/inco.1993.1065.

12 Tian Ze Chen and Yuanhao Wei. Step-optimal implementations of large single-writer registers.
Theoretical Computer Science, 826-827:40–50, 2020. Special issue on OPODIS 2016. doi:
10.1016/j.tcs.2020.04.008.

13 Faith Ellen, Panagiota Fatourou, and Eric Ruppert. Time lower bounds for implementations of
multi-writer snapshots. J. ACM, 54(6):30–es, December 2007. doi:10.1145/1314690.1314694.

14 Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-based classification
for multiprocessor synchronization. Distributed Computing, 33(2):125–144, April 2020. doi:
10.1007/s00446-019-00361-3.

15 Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory computing.
Distributed Comput., 20(3):165–177, 2007. doi:10.1007/s00446-007-0042-0.

16 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. doi:10.1145/114005.102808.

17 Jaap-Henk Hoepman and John Tromp. Binary snapshots. In Proceedings of the 7th Interna-
tional Workshop on Distributed Algorithms, WDAG ’93, pages 18–25, Berlin, Heidelberg, 1993.
Springer-Verlag.

18 Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-reader registers.
In Gerard Tel and Paul M. B. Vitányi, editors, Distributed Algorithms, 8th International
Workshop, WDAG ’94, Terschelling, The Netherlands, September 29 - October 1, 1994,
Proceedings, volume 857 of Lecture Notes in Computer Science, pages 130–140. Springer, 1994.
doi:10.1007/BFb0020429.

19 A. Israeli, A. Shaham, and A. Shirazi. Linear-time snapshot implementations in unbalanced sys-
tems. Mathematical systems theory, 28(5):469–486, September 1995. doi:10.1007/BF01185868.

20 Prasad Jayanti. F-arrays: Implementation and applications. In Proceedings of the Twenty-First
Annual Symposium on Principles of Distributed Computing, PODC ’02, pages 270–279, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/571825.571875.

21 Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking imple-
mentations. SIAM J. Comput., 30(2):438–456, April 2000. doi:10.1137/S0097539797317299.

22 Sean Ovens. The space complexity of scannable binary objects. In Proceedings of the 2021
ACM Symposium on Principles of Distributed Computing, PODC’21, pages 509–519, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3465084.3467916.

https://doi.org/10.1145/2732263
https://doi.org/10.1145/2732263
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.2200/S00551ED1V01Y201311DCT012
https://doi.org/10.2200/S00551ED1V01Y201311DCT012
https://doi.org/10.1007/BF02242714
https://doi.org/10.1145/179812.179902
https://doi.org/10.1137/S0097539795279463
https://doi.org/10.1007/s00446-017-0301-7
https://doi.org/10.1006/inco.1993.1065
https://doi.org/10.1016/j.tcs.2020.04.008
https://doi.org/10.1016/j.tcs.2020.04.008
https://doi.org/10.1145/1314690.1314694
https://doi.org/10.1007/s00446-019-00361-3
https://doi.org/10.1007/s00446-019-00361-3
https://doi.org/10.1007/s00446-007-0042-0
https://doi.org/10.1145/114005.102808
https://doi.org/10.1007/BFb0020429
https://doi.org/10.1007/BF01185868
https://doi.org/10.1145/571825.571875
https://doi.org/10.1137/S0097539797317299
https://doi.org/10.1145/3465084.3467916

S. Ovens 30:17

23 K. Vidyasankar. Converting lamport’s regular register to atomic register. Inf. Process. Lett.,
28(6):287–290, August 1988. doi:10.1016/0020-0190(88)90175-5.

24 Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’21, pages 31–46, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3437801.3441602.

25 Leqi Zhu and Faith Ellen. Atomic snapshots from small registers. In Emmanuelle Anceaume,
Christian Cachin, and Maria Gradinariu Potop-Butucaru, editors, 19th International Con-
ference on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes,
France, volume 46 of LIPIcs, pages 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.OPODIS.2015.17.

A Finishing the proof of Theorem 7

Proof. In the proof sketch of Theorem 7 in Section 5, we showed that

|B|∏
x=1

(
bx − |Xh(Bx)|

)
≥ |V ′| =

k∏
y=1

cy − h. (2)

Taking the base b′ logarithm of both sides of this inequality gives us the following.

|B|∑
x=1

logb′

(
bx − |Xh(Bx)|

)
≥ logb′

(k∏
y=1

cy − h
)

(3)

Let c =
∏k

y=1 cy. We will now show that logb′(c − h) ≥ logb′ c − logb′(h + 1). Notice that
logb′(c−h)−(logb′ c−logb′(h+1)) = logb′

(h+1)·(c−h)
c . In order to show that logb′

(h+1)·(c−h)
c ≥

0, it suffices to show that (h + 1) · (c − h) − c ≥ 0. Notice that (h + 1) · (c − h) − c =
hc − h2 − h = h(c − h − 1). Since h ≤

∏k
y=1 cy −

∑k
y=1 cy + k − 1, we have c ≥ h + 1. We

also have h ≥ 0. Thus, h(c − h − 1) ≥ 0, which implies that logb′
(h+1)·(c−h)

c ≥ 0. Therefore,
logb′(c − h) ≥ logb′ c − logb′(h + 1). By definition of c, this implies that logb′

(∏k
y=1 cy − h

)
≥

logb′

(∏k
y=1 cy

)
− logb′(h + 1). Substituting this into (3), we obtain the following.

|B|∑
x=1

logb′

(
bx − |Xh(Bx)|

)
≥ logb′

(k∏
y=1

cy

)
− logb′(h + 1)

=
k∑

y=1
logb′ cy − logb′(h + 1).

Dividing by |B| on both sides of this inequality, we obtain

|B|∑
x=1

1
|B|

· logb′

(
bx − |Xh(Bx)|

)
≥ 1

|B|
·
(k∑

y=1
logb′ cy − logb′(h + 1)

)
. (4)

DISC 2022

https://doi.org/10.1016/0020-0190(88)90175-5
https://doi.org/10.1145/3437801.3441602
https://doi.org/10.4230/LIPIcs.OPODIS.2015.17

30:18 The Space Complexity of Scannable Objects with Bounded Components

Since log is concave, Jensen’s inequality implies that
|B|∑

x=1

1
|B|

· logb′

(
bx − |Xh(Bx)|

)
≤ logb′

(|B|∑
x=1

1
|B|

·
(
bx − |Xh(Bx)|

))

= logb′

(
b′ − 1

|B|
·

|B|∑
x=1

|Xh(Bx)|
)

= logb′

(
b′ − h

|B|

)
.

Substituting this into (4), we have

logb′

(
b′ − h

|B|

)
≥ 1

|B|
·
(k∑

y=1
logb′ cy − logb′(h + 1)

)
.

Multiplying by |B| on both sides of the inequality, we obtain

|B| · logb′

(
b′ − h

|B|

)
≥

k∑
y=1

logb′ cy − logb′(h + 1). (5)

Let x = −
(

h
|B|

)
. So logb′

(
b′ − h

|B|
)

= logb′(b′ + x). Since |B| ≥ h
b′−1 , we have 1 − b′ ≤ x < 0.

The Maclaurin series expansion of logb′(b′ + x) is the following.

1 + x

b′ · ln(b′) − x2

2(b′)2 · ln(b′) + x3

3(b′)3 · ln(b′) − x4

4(b′)4 · ln(b′) . . .

The series converges provided |x| < |b′|. Since x < 0, every term of − x2

2(b′)2·ln(b′) + x3

3(b′)3·ln(b′) −
x4

4(b′)4·ln(b) . . . is negative. Hence, we have

1 + x

b′ · ln(b′) ≥ logb′(b′ + x). (6)

Notice that x
b′·ln(b′) − x

b′ = x·(1−ln(b′))
b′·ln(b′) ≤ 1, since |x| ≤ b′ − 1 and b′ ≥ 2. Hence, we have

1 + x
b′ ≥ x

b′·ln(b′) . Combined with (6) and the definition of x, this gives us

1 +
(

1 − h

|B| · b′

)
≥ 1 − h

|B| · b′ · ln(b′) ≥ logb′

(
b′ − h

|B|

)
.

Combined with (5), this gives us

|B| ·
(

2 − h

|B| · b′

)
≥ |B| · logb′

(
b′ − h

|B|

)
≥

k∑
y=1

logb′ cy − logb′(h + 1).

Thus, we have

2 · |B| − h

b′ ≥
k∑

y=1
logb′ cy − logb′(h + 1).

Add h
b′ to both sides and then divide by 2 to obtain

|B| ≥ 1
2 ·

(k∑
y=1

logb′ cy + h

b′ − logb′(h + 1)
)

.

This concludes the proof of the theorem. ◀

Near-Optimal Distributed Computation of Small
Vertex Cuts
Merav Parter #

Weizmann Institute, Rehovot, Israel

Asaf Petruschka #

Weizmann Institute, Rehovot, Israel

Abstract
We present near-optimal algorithms for detecting small vertex cuts in the CONGEST model of
distributed computing. Despite extensive research in this area, our understanding of the vertex
connectivity of a graph is still incomplete, especially in the distributed setting. To this date, all
distributed algorithms for detecting cut vertices suffer from an inherent dependency in the maximum
degree of the graph, ∆. Hence, in particular, there is no truly sub-linear time algorithm for this
problem, not even for detecting a single cut vertex. We take a new algorithmic approach for vertex
connectivity which allows us to bypass the existing ∆ barrier.

As a warm-up to our approach, we show a simple Õ(D)-round1 randomized algorithm for
computing all cut vertices in a D-diameter n-vertex graph. This improves upon the O(D +
∆/ log n)-round algorithm of [Pritchard and Thurimella, ICALP 2008].
Our key technical contribution is an Õ(D)-round randomized algorithm for computing all cut
pairs in the graph, improving upon the state-of-the-art O(∆ · D)4-round algorithm by [Parter,
DISC ’19]. Note that even for the considerably simpler setting of edge cuts, currently Õ(D)-round
algorithms are currently known only for detecting pairs of cut edges.

Our approach is based on employing the well-known linear graph sketching technique [Ahn,
Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator and
Tarjan, STOC 1981] . Combining this with a careful characterization of the survivable subgraphs,
allows us to determine the connectivity of G \ {x, y} for every pair x, y ∈ V , using Õ(D)-rounds.
We believe that the tools provided in this paper are useful for omitting the ∆-dependency even for
larger cut values.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Vertex-connectivity, Congest, Graph Sketches

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.31

Related Version Full Version: https://www.weizmann.ac.il/math/parter/sites/math.parter/
files/uploads/DistributedVertexCutsDISC22.pdf

Funding Merav Parter : Supported by the European Research Council (ERC) No. 949083), and by
the Israeli Science Foundation (ISF) No. 2084/18.

1 Introduction and Our Contribution

The vertex connectivity of the graph is a central concept in graph theory and extensive
attention has been paid to developing algorithms to compute it in various computational
models. Recent years have witnessed an enormous progress in our understanding of vertex cuts,
from a pure graph theoretic perspective [36] to many algorithmic applications [30, 28, 36, 20].

1 Throughout the paper, we use the notation Õ to hide poly-logarithmic in n terms.

© Merav Parter and Asaf Petruschka;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:merav.parter@weizmann.ac.il
mailto:asaf.petruschka@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.31
https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/DistributedVertexCutsDISC22.pdf
https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/DistributedVertexCutsDISC22.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Near-Optimal Distributed Computation of Small Vertex Cuts

Despite this exciting movement, our algorithmic toolkit for handling vertex cuts is still
somewhat limited. A large volume of the work, in the centralized setting, has focused on fast
algorithms for detecting minimum vertex cuts of size at most k, for some small number k.
Until recently, near-linear time algorithms where known only for k ≤ 2 [39, 21]. A sequence
of recent breakthrough results [5, 28] provides an almost-linear time sequential algorithm for
computing the vertex connectivity (even for large connectivity values).

As we see soon, the situation is considerably worse in distributed settings, where the
problem is still fairly open already for k = 1. Throughout, we consider the CONGEST
model [35]. In this model, each node holds a processor with a unique and arbitrary ID of
O(log n) bits, and initially only knows the IDs of its neighbors in the graph. The execution
proceeds in synchronous rounds and in each round, each node can send a message of
size O(log n) to each of its neighbors. The primary complexity measure is the number of
communication rounds. For n-vertex D-diameter graphs, Pritchard and Thurimella [37]
presented a randomized algorithm for detecting a (single) cut vertex (a.k.a articulation point)
within O(D + ∆/ log n) CONGEST rounds, where ∆ is the maximum degree of the graph.
[37] conclude their paper by noting:

[37] It would be interesting to know if our distributed cut vertex algorithm could
be synthesized with the cut vertex algorithm of [40] to yield further improvement.
Alternatively, a lower bound showing that no O(D)-time algorithm is possible for
finding cut vertices would be very interesting.

No progress on the complexity of this problem has been done since then. For small cut
values k, Parter [33] employed the well-known fault-tolerant sampling technique [42, 25]
for detecting k vertex cuts in (∆ · D)Θ(k) deterministic rounds. Turning to approximation
algorithms, for k = Ω(log n), Censor-Hillel, Ghaffari and Kuhn [4] provided a O(log n)
approximation for computing the value of the vertex connectivity of the graph within
Õ(D +

√
n) rounds. [4] also presented a lower bound of Ω̃(D +

√
n/k) V -CONGEST rounds.

In the V -CONGEST model, each node (rather than an edge) is restricted to send only O(log n)
bits, in total, in every round. As shown in this paper, this lower bound does not hold in the
standard CONGEST model.

We follow the terminology of [37]: a cut vertex is a vertex x such that G \ {x} is not
connected. A cut pair is a pair of vertices x, y such that G \ {x, y} is not connected. For
brevity we call these objects, small cuts. Our main results in this paper are near-optimal
algorithms for detecting these small cuts, in the sense that for every small cut, there is at
least one vertex in the graph that learns it. Our first contribution is in presenting a (perhaps
surprisingly) simple randomized algorithm2 that can detect all cut vertices in the graph in
Õ(D) rounds. The edge-congestion3 of the algorithm is Õ(1) bits4.

▶ Theorem 1. There is a randomized algorithm that w.h.p. identifies all single cut-
vertices in G within Õ(D) rounds. The edge congestion is Õ(1). In the output, each
vertex x ∈ V learns if it is a cut vertex.

2 As usual, all presented randomized algorithms in this paper have success guarantee of 1 − 1/nc, for any
given constant c > 1.

3 The edge congestion of a given algorithm is the worst-case bound on the total number of messages
exchanged through a given edge e in the graph.

4 We exploit this bounded congestion for detecting cut pairs.

M. Parter and A. Petruschka 31:3

This settles the question raised by [37]. Our algorithm is based on the well-known graph-
sketching technique of Ahn et al. [1]. This technique has admitted numerous applications
in the context of connectivity computation under various computational settings, e.g.,
[23, 22, 18, 26, 29, 17, 11, 8]. Yet, to the best of our knowledge, it has not been employed
before in the context of CONGEST algorithms for minimum vertex-cut computation.

We then turn to consider the problem of detecting cut pairs. It has been noted widely
in the literature that there is a sharp qualitative difference between a single failure and
two failures. This one-to-two jump has been accomplished by now for a wide-variety of
fault-tolerant settings, e.g., reachability oracles [6], distance oracles [9], distance preservers
[32, 19, 34] and vertex-cuts [21, 2, 3, 13]. While it is relatively easy to extend our algorithm
of Theorem 1 to detect cut pairs in Õ(D2) rounds, providing a near-optimal complexity of
Õ(D) rounds, turns out to be quite involved. Our key technical contribution is:

▶ Theorem 2. There is a randomized algorithm that w.h.p. identifies all cut pairs in
G within Õ(D) rounds. For each cut pair x, y, either x or y learns that fact.

We observe that even for the simpler problem of edge-connectivity (see Remark below), an
Õ(D)-round algorithm is currently only known for edge cuts of size at most two due to [37].
Hence, we are now able to match the complexity of these two problems for small cut values.
Our algorithm is based on distinguishing between two structural cases depending on the
locations of the cut pair x, y in a BFS tree of G. The first case which we call dependent
handles the setting where the x and y have ancestry/descendant relations. The second
independent case assumes that x and y are not dependent, i.e., LCA(x, y) /∈ {x, y}, where
LCA(x, y) is the lowest/least common ancestor of x and y in the BFS tree. Each of these
cases call for a different approach. We believe that the tools provided in this paper should
hopefully pave the way towards detecting larger vertex-cuts with no dependency in the
maximum degree ∆ (as it is the case for the state-of-the-art algorithm by [33]). For a more
in-depth technical overview, see Sec. 1.1.

Remark on the Edge-Connectivity. It is widely known that in undirected graphs, vertex
connectivity and vertex cuts are significantly more complex than edge connectivity and
edge cuts, for which now the following result are known: an Õ(m)-time centralized exact
algorithm [24, 16, 12] and an Õ(D +

√
n) exact distributed algorithms [7]. For constant

values of edge-connectivity a poly(D)-round algorithm is given in [33].

1.1 Our Approach, in a Nutshell
We provide the key ideas of our algorithms. Our end goal is to simulate a connectivity
algorithm in the graph G \ {x, y} for every pair of vertices x, y ∈ V . Note that this is not
trivial already for a single x, y pair as the diameter of the subgraph G \ {x, y} might be as
large as Ω(∆D), hence using on-shelf connectivity algorithms lead to a round complexity of
O(min{D +

√
n, ∆D}). We bypass this ∆ dependency by using the edges incident to the

vertices x, y as shortcuts. Then, to minimize the congestion imposed by running possibly
n2 connectivity algorithms in parallel, we employ a preprocessing phase in which we collect
graph-sketch information (explained next) at each vertex x. This information allows each
vertex x to pinpoint at a bounded number of cut-mate suspects. In addition, it allows x, in
certain cases, to locally simulate connectivity queries without using further communication.
Throughout, let T be a BFS tree rooted at some source s, and denote the T -paths by π(·, ·).

DISC 2022

31:4 Near-Optimal Distributed Computation of Small Vertex Cuts

We start by employing the well-known heavy-light tree decomposition technique by Sleator
and Tarjan [38]. This classifies the edges of T into light and heavy edges. The useful
properties are that each vertex v has O(log n) light edges on its tree path π(s, v), and in
addition, each v is the parent of one heavy edge, connecting v to its unique heavy child. It
is easy to compute this decomposition on T in Õ(D) rounds. For a vertex x, let Tx be the
subtree of T rooted at x.

Basic Tools: Graph Sketches and Borůvka Algorithm. A graph sketch of a vertex v is a
randomized string of Õ(1) bits that compresses v’s edges [1]. The linearity of these sketches
allows one to infer, given the sketches of subset of vertices S, an outgoing cut edge (S, V \ S)
with constant probability. A common approach for deducing the graph connectivity merely
from the sketches of the vertices is based on the well-known Borůvka algorithm [31]. This
algorithm works in O(log n) phases, where in each phase, from each growable component an
outgoing edge is selected. All these outgoing edges are added to the forest, while ignoring
cycles. Each such phase reduces the number of growable components by constant factor, thus
within O(log n) phases a maximal forest is computed. Since this algorithm only requires the
computation of outgoing edges it can simulated using O(log n) independent sketches for each
of the vertices. In our algorithms, we aggregate graph sketches over the BFS tree T which
allows the vertices x to locally simulate Borůvka in the graph G \ {x}. This is illustrated in
our algorithm for detecting a single cut vertex, described next.

Warm Up: Detecting Single Cut Vertices. Our algorithm starts by letting each vertex v

locally compute its individual SketchG(v). Then, by aggregating the sketches (using their
linearity) from the leaf vertices to the root s over the BFS tree T , each vertex v learns its
subtree-sketch SketchG(V (Tv)). Once this is completed, it is easy to let each vertex x ∈ V

learn the G-sketch information of all the connected components in T \ {x}. We then show
that x can locally modify these G-sketches into (G \ {x})-sketches. At this point, the vertex
x can locally apply the Borůvka algorithm in G \ {x} and deduce if G \ {x} is connected.
The full details (proof of Theorem 1) appear in Appendix A.

We now turn to consider the considerably more challenging task of detecting cut-pairs.
We classify these pairs into dependent and independent.

Detecting Dependent Cut Pairs. Our approach for the dependent case is based on designing
algorithms {Ay}y∈V , where Ay detects all xy cut pairs of the form x ∈ Ty. We show that
each such an algorithm Ay can be designed in a way that sends a total of Õ(1) messages
only along edges incident to V (Ty), and runs in Õ(D) rounds. The standard random delay
technique allows us then to schedule the execution of all n algorithms {Ay}y∈V within Õ(D)
rounds. At a high level, each algorithm Ay is based on employing the single-vertex cut
algorithm in the graph G \ {y}. Our challenge is then twofold: first, the diameter of the
graph G \ {y} might be as large as Ω(∆D), and second, communication is restricted to use
only edges incident to V (Ty). We overcome these challenges by using y as a coordinator,
providing global computation services and communication shortcuts that essentially enables
efficient simulation (in both dilation and congestion) of the vertex cut algorithm in G \ {y}.

Detecting Independent Cut Pairs. The most technically involved case is where x, y are
independent, namely, do not have ancestry relations in T . A-priori, the number of such
potential cut-mates y for a given vertex x might be even linear in n. To filter out irrelevant
options, the algorithm starts by computing at each vertex x a tree T̂x that encodes the

M. Parter and A. Petruschka 31:5

connectivity between s and the vertices in Vx = V (Tx) \ {x} in the graph G \ {x}. Let
Cx = {C1, . . . , Ck} denote the collection of maximal connected components in the graph
G[Vx]. The tree T̂x consists of k paths of the form π(s, uC) ◦ (uC , vC) for every component
C ∈ Cx, where vC is some representative vertex in C. It is then easy to observe that the
potential cut mates y must appear on the paths {π(s, uC) | C ∈ Cx}. For a given suspect
y, we call the Cx-components C for which y ∈ π(s, uC), y-sensitive. Our argument has the
following structure.

Multiple xy-Connectivity Algorithms, Under a Promise. For a fixed xy pair, we design
an algorithm AP

x,y that determines the connectivity in G \ {x, y} given an x-y path Πx,y

(on which x, y can exchange messages). The algorithm AP
x,y has the special property that

it sends messages either along Πx,y, or else along edges incident to a restricted subset
of vertices in Tx, Ty, defined as follows. Let LDS(x, y) ⊂ V (Tx) be the set of all vertices
which are descendants of the light children of x, and belong to a y-sensitive component
in Cx. The set LDS(y, x) is defined in an analogous manner. The algorithm AP

x,y is then
guaranteed to send Õ(1) messages only along Πx,y and along edges incident to the vertices
of LDS(x, y) ∪ LDS(y, x). This restriction is crucial in order to run multiple AP

x,y algorithms,
for distinct x, y, in parallel. Using the properties of the heavy-light tree decomposition and
our sensitivity definition, one can show that each vertex w ∈ V belongs to the LDS(x, y)
sets of at most Õ(D) pairs xy. The main challenge is in bounding the overlap between the
Πx,y paths, cross distinct xy pairs. We show that given a subset Q ∈ V × V , the collection
of {AP

x,y | (x, y) ∈ Q} algorithms can be scheduled in parallel in Õ(D) rounds, given that
following promise holds for Q:

[Promise:] There is a path collection PQ = {Πx,y | (x, y) ∈ Q} such that each path
has length O(D), and each edge appears on Õ(D) paths in PQ.

One can show, using the properties of heavy-light decomposition, that each vertex belongs
to the LDS(x, y) sets of at most Õ(D) pairs x, y. Hence, by combining this fact with the
promise, the algorithms for all the Q pairs can be run in parallel, using the random delay
approach [27, 14].

On a high level, each algorithm AP
x,y works by letting x and y jointly simulating the

Borůvka algorithm in G \ {x, y}. The main challenge is that the communication is restricted
to the edges incident to LDS(x, y) ∪ LDS(y, x), despite the fact that one should also take
into account the remaining vertices in Tx, Ty, e.g., descendants of the heavy children of x, y.
In each Borůvka phase, we maintain the invariant that x, y jointly hold the sketches of
connected-subsets (denoted as parts) in G \ {x, y}, where we split the responsibility between
x, y in a careful manner. We mainly distinguish between parts that contain a heavy child
of x, y and the remaining light parts that are contained in LDS(x, y) ∪ LDS(y, x). The
merges of the light parts are implemented by using communication between vertices in
LDS(x, y) ∪ LDS(y, x). The merges concerning the heavy parts are implemented by using the
direct xy communication over the Πx,y path. Each such Borůvka phase is implemented in
Õ(D) rounds. At the end of the simulation, x, y both learn whether G \ {x, y} is connected.

Omitting the Promise Based on Classification Into Light and Heavy Independent Pairs.
While the promise clearly holds for Õ(D) pairs, it clearly does not hold for all n2 pairs, in
general. Our approach is based on classifying the collection of the xy pairs into two classes:
light and heavy. This classification is based on the trees T̂x, T̂y, as well as on the heavy-light
decomposition of T . Informally, for a light pair xy, one can define a Πx,y that intersects

DISC 2022

31:6 Near-Optimal Distributed Computation of Small Vertex Cuts

a light subtree of either x or y. These paths can be shown to have a bounded overlap,
hence satisfying the promise. Handling the heavy pairs is more involved. Here we take a
mixed approach. We define a special subset of the heavy pairs for which the promise can be
satisfied (denoted as mutual pairs). This subset is chosen in a careful way that guarantees the
following, perhaps surprising, property: the remaining (not mutual) heavy pairs x, y can be
decided locally, at either x or y. Our key observation is that for a xy heavy pair, the graph
G \ {x, y} is connected iff one of the heavy children of x, y is connected to s in G \ {x, y}.
Hence, it is mainly essential for x, y to collect a sketch information on the components of
these heavy children in Cx, Cy. This information can be then aggregated over T . The formal
implementation of this step (completing the proof of Theorem 2) appears in the full version
of the paper.

1.2 Preliminaries
Throughout the paper, we fix a connected n-vertex graph G = (V, E), and a BFS tree T for
G rooted at some arbitrary source vertex s ∈ V . We denote the unique tree path from u to v

by π(u, v, T). When the tree T is clear from context, we may omit it and simply write π(u, v).
We use the ◦ operator for path-concatenation. An (undirected) edge between vertices u,v is
denoted by (u, v). For x, y ∈ V , a vertex subset S ⊆ V is said to be xy-connected if all the
vertices of S belong to the same connected component of G \ {x, y}.

Heavy-Light Tree Decomposition. We now present our heavy-light terminology, the notion
of compressed paths, and their distributed computation.

▶ Definition 3 (Heavy-light decomposition). For a non-leaf vertex v ∈ V (T), its heavy child,
denoted vh, is the child v′ of v maximizing5 the number of vertices in its subtree Tv′ . Any
other v-child of v is a light child. A tree vertex is heavy if it is the heavy child of its parent,
and light otherwise (so the root s is light). A tree edge is heavy if it connects a vertex to its
heavy child, and light otherwise. If (u, u′) is a heavy (resp., light) edge in the path π(s, v),
then u is a heavy ancestor (resp., light ancestor) of v, and v is a heavy descendant (resp,
light descendant) of u. (Note that e.g. a “heavy ancestor” need not be a heavy vertex itself.)
We denote by LA(v) (resp., LD(v)) the set of v’s light ancestors (resp., descendants). It is easy
to show that π(s, v, T) contains O(log n) light vertices/edges, hence also |LA(v)| = O(log n).

▶ Definition 4 (Compressed paths). Let v ∈ V (T). Let L = [s = v0, v1, . . . , vk] be the ordered
list of the light vertices on the root-to-v path π(s, v, T). The compressed path of v with
respect to T , denoted π∗(s, v, T) consists of the list L, along with a table mapping each vi to
the number of heavy vertices appearing between vi and vi+1 in π(s, v, T) (where we define
vk+1 = v). Note that the compressed path π∗(s, v, T) has bit-length O(log2 n).

Observe that the compressed paths can be used as ancestry labels in T : Given the
compressed path π∗(s, u, T) and π∗(s, v, T), one can check whether π(s, u, T) is a prefix of
π(s, v, T), and hence determine whether u is an ancestor of v.

In our context of distributed computation, we have the following lemma. Missing proofs
in this section appear in the full version of the paper.

▶ Lemma 5. For every tree T , there is an Õ(D(T))-rounds Õ(1)-congestion algorithm letting
each vertex v of T learn its heavy/light classification and its compressed path π∗(s, v, T).

5 Ties are broken arbitrarily and consistently.

M. Parter and A. Petruschka 31:7

Graph Sketches. We now give a formal but brief definition of graph sketches. We follow [8],
and refer the reader to Section 3.2.1 therein for a detailed presentation of the subject.
Throughout, let ⊕ denote the bitwise-XOR operator. The first required ingredients are
randomized unique edge identifiers:

▶ Lemma 6 (Modification of Lemma 3.8 in [8]). Using a random seed SID of O(log2 n) random
bits, one can compute a collection of M =

(
n
2
)

O(log n)-bit identifiers for the pairs in
(

V
2
)
,

denoted I = {UID(e1), . . . , UID(eM)}, with the following property: For any nonempty subset
E′ ⊆ E, Pr[⊕e∈E′ UID(e) ∈ I] ≤ 1/n10. Furthermore, for any e = (u, v), the identifier
UID(e) can be computed from ID(u), ID(v) and the random seed SID.

Next, we define the notion of extended edge identifiers, formed by augmenting the UID(e)
with the IDs and the T -ancestry labels of the endpoints based on compressed paths, namely
ANCT (v) = π∗(s, v, T). Formally, an edge e = (u, v) we have

EIDT (e) = [UID(e), ID(u), ID(v), ANCT (u), ANCT (v)] . (1)

Equipped with these definitions, we are ready to define the sketches. We now follow
[10, 11, 8] and use pairwise independent hash functions for this purpose. Choose L = c log n

pairwise independent hash functions h1, . . . , hL : {0, 1}Θ(log n) → {0, . . . , 2log M − 1}, and for
each i ∈ {1, . . . , L} and j ∈ [0, log M] define the edge set Ei,j = {e ∈ E | hi(e) ∈ [0, 2log M−j)}.
Each of these hash functions can be defined using a random seed of logarithmic length [41].
Thus, a random seed Sh of length O(L log n) can be used to determine the collection of all
these L functions. For each vertex v and indices i, j, let Ei,j(v) be the edges incident to v in
Ei,j . The ith basic sketch unit of each vertex v is then given by:

SketchG,i(v) = [⊕e∈Ei,0(v) EIDT (e), . . . , ⊕e∈Ei,log M (v) EIDT (e)].

We extend the sketches to be defined on vertex subsets by XORing. Namely, for every subset
of vertices S, we define SketchG,i(S) = ⊕v∈SSketchG,i(v). The sketch of each vertex v is
defined by a concatenation of L = Θ(log n) basic sketch units:

SketchG(v) = [SketchG,1(v), SketchG,2(v), . . . SketchG,L(v)] .

Again, we extend this definition to vertex subsets S ⊆ V by SketchG(S) = ⊕v∈SSketchG(v).
The main use of graph sketches is in finding outgoing edges:

▶ Lemma 7 (Modification of Lemma 3.11 in [8]). For any subset S, given a basic sketch unit
SketchG,i(S) and the seed SID one can compute, with constant probability6 EIDT (e) for an
outgoing edge e from S in G, if such exists.

▶ Lemma 8. Let S ⊆ V , and let E′ ⊆ E be a set of outgoing edges from S. Then, given
SketchG(S), the random seed Sh, and the extended identifiers EIDT (e) of all e ∈ E′, one can
compute the SketchG\E′(S).

Distributed Scheduling. The congestion of an algorithm A is defined by the worst-case
upper bound on the number of messages exchanged through a given graph edge when
simulating A. Throughout, we make an extensive use of the following random delay approach
of [27], adapted to the CONGEST model.

6 Over the choice of the random seeds SID and Sh.

DISC 2022

31:8 Near-Optimal Distributed Computation of Small Vertex Cuts

▶ Theorem 9 ([14, Theorem 1.3]). Let G be a graph and let A1, . . . , Am be m distributed
algorithms, each algorithm takes at most d rounds, and where for each edge of G, at most c
messages need to go through it, in total over all these algorithms. Then, there is a randomized
distributed algorithm that w.h.p. runs all the algorithms in Õ(c + d) rounds.

2 Dependent Cut Pairs

In this section we present an Õ(D)-rounds distributed algorithm for detecting dependent cut
pairs in G, i.e. pairs xy where x is a descendant of y in the BFS tree T rooted at s. Recall
that our approach is based on scheduling the execution of algorithms {Ay}y∈V , where Ay

detects all cut pairs xy such that x ∈ Ty (see Section 1.1). By employing the single-vertex
cut algorithm from Section A as a common preprocessing phase prior to the execution of the
{Ay}y∈V algorithms, we may assume that there are no 1-vertex cuts in G. Furthermore, by
carefully examining the properties of this algorithm, we may assume that every v ∈ V holds
the following preprocessing information:

The random seeds SID and Sh.
EIDT (e) for every edge e incident to v.
|V (Tv)| and |V (Tv′)| for every T -child v′ of v.
SketchG(v), SketchG(V), SketchG(V (Tv)) and SketchG(V (Tvi

)) for every T -child v′ of v.
An edge set Ẽ(v) ⊆ E \ E(T) such that T̃ (v) = (T \ {v}) ∪ Ẽ(v) is a spanning tree of
G \ {v}. For each e ∈ Ẽ(v), its extended identifier EIDT (e) is known.

We next describe the algorithms Ay:

▶ Lemma 10. Assuming all vertices know their preprocessing information, there is an
Õ(D)-rounds Õ(1)-congestion algorithm Ay that detects all cut pairs xy where x ∈ V (Ty).
The algorithm Ay sends messages only on edges incident to V (Ty).

Step 0: Local Computation of Component Tree for T̃ (y) in y. Throughout, let Ẽ = Ẽ(y)
and T̃ = T̃ (y), and denote the T -children of y by y1, . . . , yk. This preliminary step is executed
by local computation in y. It constructs the component tree C̃T in which every connected
component of T̃ \ Ẽ is contracted into a single node. Note that T̃ \ Ẽ = T \ {y}, namely
the nodes in C̃T correspond to connected components of T \ {y}. More concretely, for every
i = 1, . . . , k the component Ci = V (Tyi

) is a node of C̃T , and (unless y = s) there is another
node for the component C0 = V (T) \ V (Ty). Each edge (Ci, Cj) in C̃T correspond to the
unique Ẽ-edge incident to both Ci and Cj . Observe that the extended edge identifiers known
to y by preprocessing contain the T -ancestry labels of all endpoints of Ẽ-edges, as well as
those of the yi’s. Using these ancestry labels, y can determine the components incident to
each edge e ∈ Ẽ, and therefore construct C̃T .

For clarity of presentation we assume y ̸= s; the special case y = s is easier, and requires
only slight modifications. We set s as the root of T̃ , and accordingly C0 is the root of C̃T .
For each i = 1, . . . , k, denote by ei = (ri, pi) the unique edge in Ẽ connecting Ci to its parent
in C̃T , where ri is the endpoint of ei inside Ci, and pi is the endpoint lying in the parent
component. See Fig. 1 in Appendix B for an illustration.

Step 1: Construction of T̃ . The goal of this step is for each vertex in V (Ty) \ {y} to learn
its parent in T̃ . First, y sends its children their corresponding edges from Ẽ, namely each
yi learns EIDT (ei). The yi’s then propagate (in parallel) their received edges down their
T -subtrees, so that for all i = 1, . . . , k, all the vertices of component Ci know EIDT (yi).

M. Parter and A. Petruschka 31:9

Then, a BFS procedure initilized in ri is executed inside each tree Tyi (in parallel). This
completes the step, since the T̃ -parent of each vertex in Ci is its BFS-parent from this last
procedure, except for ri whose T̃ -parent is pi.

Step 2: Computing T̃ -Ancestry labels. In later steps, we will locally simulate Borůvka’s
algorithm similarly to Section A, but with the initial components being parts of T̃ . In order
to identify which components get merged by the outgoing edges, we will need ancestry labels
with respect to the tree T̃ rather than T . As we are restricted to send messages only on
V (Ty)-incident edges, we would like the T - and T̃ -labels to coincide for vertices in C0 (as
some of them cannot be informed of new labels). Note that the compressed paths of v ∈ C0
w.r.t. T and T̃ are generally different, even though π(s, v, T) = π(s, v, T̃), as the these trees
have different heavy-light notions. Hence, instead of relying solely on compressed paths in
T̃ , we take a hybrid approach and define new labels based on breaking each T̃ -path to a
T -part and a strictly T̃ -part, and compressing them accordingly. We still have the challenge
of computing (at least part of) the heavy-light decomposition of T̃ . As the diameter of T̃

might be Ω(∆D), we cannot use simple bottom-up or top-down computations on T̃ . The key
for overcoming this is utilizing y as a coordinator, enabling the parts Ci to work in parallel.
This yields the following claim. Missing proofs in this section appear in the full version of
the paper.

▷ Claim 11. In Õ(D)-rounds of computation with Õ(1) congestion, in which messages are
sent only on V (Ty)-incident edges, one can compute T̃ -ancestry labels ANC

T̃
(·) of Õ(1) bits,

such that every vertex v of T̃ learns ANC
T̃

(v).

Step 3: Computing Sketches w.r.t. G \ {y} and T̃ . First, we define new extended
edge identifiers for the edges of G \ {y} based on the spanning tree T̃ . Namely, for an edge
e = (u, v) of G \ {y}, let

EID
T̃

(e) = [UID(e), ID(u), ID(v), ANC
T̃

(u), ANC
T̃

(v)].

Now, for every vertex v ∈ V \ {y} we define its sketch SketchT̃
G\{y}(v) similarly to SketchG(v),

only ignoring edges incident to y in the sampling, and using the EID
T̃

identifiers for the
edges. By this point of the algorithm, computing these new sketches requires Õ(1) rounds of
communication, in which every v ∈ C1 ∪· · ·∪Ck sends ANC

T̃
(v) to all its (G\{y})-neighbors.

As the T - and T̃ -ancestry labels coincide on the vertices of C0, every vertex v ∈ V \ {y} can
now determine EID

T̃
(e) for every edge e incident to it in G \ {y}, and use the random seed

Sh to compute SketchT̃
G\{y}(v).

3.1: Computing T̃ -Subtree Sketches. Our next goal is for every x ∈ C1 ∪ · · · ∪ Ck to learn
the (G \ {y})-sketch of its T̃ -subtree (not T -subtree), namely SketchT̃

G\{y}(V (T̃x)) =

⊕
v∈T̃x

SketchT̃
G\{y}(v). This is done by using y as a coordinator similarly to the T̃ -

subtree sum computation of Step 2.1. We start by bottom-up XOR-aggregation of the
sketches on each Tyi

(in parallel), which produces the component sketches SketchT̃
G\{y}(Ci).

Next, within Õ(1) rounds, the component sketches are all passed to y from its children.
Observe that now y can locally compute the T̃ -subtree sketch of each ri as follows:
SketchT̃

G\{y}(V (T̃ri
)) = ⊕j∈J(i)SketchT̃

G\{y}(Cj) where J(i) is the set of all indices j such
that Cj is the subtree of Ci in the component tree C̃T . Then y sends each of its children

DISC 2022

31:10 Near-Optimal Distributed Computation of Small Vertex Cuts

yi the T̃ -subtree sketch of ri, and this information is then propagated down on each
Tyi

(in parallel), so that each ri learns its T̃ -subtree sketch. The ri’s then send their
T̃ -subtree sketches to their T̃ -parent, which are the pi’s. For each vertex v of T̃ , let

βv =

if v = pj : SketchT̃
G\{y}(v) + SketchT̃

G\{y}(V (T̃rj))
otherwise: SketchT̃

G\{y}(v)

Then by this point of the algorithm, every v ∈ C1 ∪ · · · ∪ Ck know its βv value. For
i = 1, . . . , k, let T̃ (i) be the tree induced on Ci by T̃ , where the parents in T̃ (i) are the
same as in T̃ . Equivalently, T̃ (i) is the tree obtained by rerooting Tyi

at the vertex ri.
Each of its leaves is either an original T̃ -leaf or a pj vertex for some j. The crux is that
for each x ∈ Ci it holds that SketchT̃

G\{y}(x) = ⊕
v∈T̃

(i)
x

βv. That is, the T̃ -subtree sketch
of x is equal to the sum-of-β’s in its T̃ (i)-subtree. Hence, we complete the computation in
this step by executing bottom-up XOR-aggregation of the βv values in each of the trees
T̃ (i) in parallel.

3.2: Computing the Sketch of V \ {y}. The last required sketch ingredient for the local
simulation of Borůvka in the next step is letting all vertices x ∈ C1 ∪ · · · ∪ Ck to learn the
global sum-of-sketches in G \ {y}, i.e. SketchT̃

G\{y}(V \ {y}). To this end, we carefully
examine the contribution of the vertices in C0 to this sum, as some of them are not
V (Ty)-adjacent and cannot participate in the computation. This enables us to transform
the global sketch SketchG(V) (known from preprocessing) to the desired global sketch in
G \ {y}. The details appear in the full version of the paper, in the proof of the following
claim:

▷ Claim 12. In Õ(D)-rounds of computation with Õ(1) congestion, in which messages
are sent only on V (Ty)-incident messages, each vertex x ∈ C1 ∪ · · · ∪ Ck can learn
SketchT̃

G\{y}(V \ {y}).

Step 4: Local Borůvka Simulation In G \ {x, y}. This entire step is executed by local
computation in which each x ∈ C1 ∪ · · · ∪ Ck determines whether it is a cut vertex in
G \ {y}, or equivalently if xy is a cut pair in G. This is done by locally simulating Borůvka’s
algorithms using the sketches of the components of T̃ \ {x} (which are known to x by Step
3) in an identical manner to the last step of the (single) cut vertex detection algorithm of
Section A, replacing G and T there with G \ {y} and T̃ . We note that the new ancestry
labels, extended identifiers and sketches, computed with respect to T̃ , are important for this
simulation to follow through exactly as in Section A. This completes the proof of Lemma 10.

We conclude this section by describing the scheduling of the algorithms {Ay}y∈V :

▶ Lemma 13. The collection of algorithms {Ay}y∈V can be executed simultaneously within
Õ(D) rounds, w.h.p.

Proof. The key observation is that every edge e participates in O(D) algorithms. Specifically,
since each algorithm Ay exchanges messages only on edges incident to V (Ty), we get that the
algorithms using e = (u, v) are exactly {Ay | y ∈ π(s, u, T) ∪ π(s, v, T)}. Therefore, the total
number of messages sent through e = (u, v) in the collection of n algorithms {Ay}y∈V is at
most Õ(1) · (|π(s, u, T)| + |π(s, v, T)|) = Õ(D). The proof follows by employing Theorem 9
with congestion and dilation bounds of Õ(D). ◀

M. Parter and A. Petruschka 31:11

3 Independent Cut Pairs

We now turn to consider the case where the cut pair xy is independent, i.e., x, y have
no ancestor-descendant relations. Throughout this section, for every vertex x ∈ V , let
Vx = V (Tx) \ {x}. Recall that we assume that there is no single cut vertex in the graph.
Our algorithm is based on the introduced notion of x-connectivity trees, T̂x, computed
locally at each vertex x. Let Cx = {C1, . . . , Ck} denote the maximal connected components
in the induced graph G[Vx]. For each C ∈ Cx, the tree T̂x contains a path πx(s, C) =
π(s, uC)◦(uC , vC), where (uC , vC) is a G-edge such that vC ∈ C, and x /∈ πx(s, C). Therefore,
T̂x encodes the connectivity of s to Vx in the graph G\{x}. We next describe the computation
of these T̂x trees, and later on show how they guide the identification of independent cut
pairs. Throughout, we assume that the ID of each vertex v contains also its compressed-path
information π∗(s, v). For every v ∈ Vx, let Cx,v denote the component containing v in Cx.
When v = xh, we let Hx = Cx,xh

and denote it as the heavy component of x.

3.1 Computing x-Connectivity Trees
The computation has two main steps, both are based on the bottom-up aggregation of certain
graph sketches over the BFS tree T . The purpose of first step is to allow every x ∈ V to
determine the connected components Cx in G[Vx] where each such component C is identified
by the vertex of largest ID among all the T -children of x in C. In addition, in the output
of this step each vertex u ∈ Vx learns the ID of its component Cx,u ∈ Cx. The second step
aggregates a special form of graph sketches that provide x with the required path information
in order locally compute T̂x.

Step 1: Computing Connectivity in G[Vx]. For ease of notation, let D = depth(T) and
dx = depth(x) denote the depth of x in T . We say that an edge e = (u, v) has depth d if
depth(LCA(u, v)) = d. To locally simulate the connectivity Borůvka algorithm in G[Vx] at
every x, it is required for x to learn SketchG[Vx](V (Tw)) for each T -child w of x. Observe
that the edges of G[Vx] can be identified as G-edges in Vx × (V \ {x}) of depth at least dx.
For this purpose, the algorithm is based on aggregating the information of D graph sketches,
for every depth d ∈ {1, . . . , D}. The computation of dth sketch Sketchd

G(·) will be restricted
to sampling only edges of depth at least d. We thus obtain the following lemma. Missing
proofs in this section appear in the full version of the paper.

▶ Lemma 14. There is a randomized Õ(D)-round algorithm that w.h.p. computes connectivity
in each G[Vx] for every x ∈ V simultaneously. At the end of the execution, each u holds a
component-ID in the graph G[Vx] for every x ∈ π(s, u). Moreover, within additional Õ(D)
rounds, each u can send its entire component-ID information (for every x ∈ π(s, u)) to all
its neighbors.

Step 2: Computing x-Connectivity Trees T̂x via Path-Sketches. Our next goal is to
provide each vertex x with the path information πx(s, C), for every component C ∈ Cx. Such
a path connects a vertex vC ∈ C to the source s in G \ {x}. As we assume that x is not a
cut vertex, such a path indeed exists. Towards that goal, we augment the identifier of each
edge (u, v) with the tree paths π(s, u), π(s, v). Formally,

EIDP
T (e) = [UID(e), ID(u), ID(v), ANCT (u), ANCT (v), π(s, u), π(s, v)] . (2)

In contrast to the extended-ID of Eq. (1) which have Õ(1) bits, the latter EIDP
T (e) identifiers

have Õ(D) bits. The sketches obtained with these EIDP
T (e) IDs are called path-sketches,

denoted as SketchP
G(S) for S ⊆ V . The advantage of these path-sketches is that any detected

DISC 2022

31:12 Near-Optimal Distributed Computation of Small Vertex Cuts

outgoing edge (u, v) obtained from SketchP
G(Q) includes the path information π(s, u) and

π(s, v). Note that the path-sketches SketchP
G(S) have Õ(D) bits, since the edge IDs have

now Õ(D) bits.
Our goal is to let each x learn the path-sketches SketchP

G(C) for each component C ∈ Cx.
Since each path-sketch has Õ(D) bits, we cannot allow to compute D sketches for each
depth d ∈ {1, . . . , D}. Instead we only aggregate the SketchP

G(u) information in a bottom-up
manner on T , which allows every vertex x to learn SketchP

G(V (Tw)) for each of its T -children
w. By combining with the output of the first step, x can then determine SketchP

G(C) for
every C ∈ Cx.

▶ Lemma 15. W.h.p., all vertices x can compute the x-connectivity trees T̂x within Õ(D)
randomized rounds.

For each x ∈ V and C ∈ Cx, we define the compressed path of πx(s, C) as π∗
x(s, C) =

π∗(s, vC) ◦ (vC , uC) (hence, π∗
x(s, C) has Õ(1) bits). We conclude the computation regarding

the connectivity trees by letting each vertex v learn the compressed-path π∗
x(s, Cx,v) for each

of its ancestors x ∈ π(s, v). Since the compressed-path has Õ(1) bits, a vertex is required to
receive Õ(D) bits of information, which can be done in Õ(D) rounds:

▶ Lemma 16. There is an Õ(D)-round algorithm that allows each vertex v to learn the
compressed path π∗

x(s, Cx,v) for each x ∈ π(s, v), as well as the entire path πx(s, Cx,v) for
each x ∈ LA(v). In addition, each vertex v can share all of this information with neighbors.

Proof. We let every vertex x send the full path πx(s, Cx,x′) to each light child x′ of x, and
the compressed path π∗

x(s, Hx) to its heavy child xh. This information is propagated towards
the leaf vertices of Tx. Since each vertex is required to receive Õ(D) bits of information from
each of its light ancestors, as well as Õ(1) bits from each of its heavy ancestors, overall it
is required to receive Õ(D) bits. This can be done in Õ(D) rounds, by standard pipeline
techniques. Since each v learns Õ(D) bits of information, the learned information can be
exchanged between every pair of neighbors within Õ(D) rounds, as well. ◀

3.2 Component Classification Based on Sensitivity
We next use the structure of the x-connectivity tree T̂x to classify the xy pairs into several
types. We also filter-out possibly many irrelevant xy pairs (for which we deduce immediately
that xy is not a cut) using the notion of sensitivity.

▶ Definition 17 (Sensitivity Notions of Cx Components). Fix an independent pair x, y. A
component C ∈ Cx is y-sensitive if y ∈ πx(s, C). The y-sensitive components of Cx are
further classified into two types: pseudo-sensitive and fully-sensitive, as follows. A component
C ∈ Cx is pseudo y-sensitive if the tree path πx(s, C) contains some edge (y, y′) such that
x /∈ πy(s, Cy,y′), where Cy,y′ is the component containing y′ in Cy. Finally, a y-sensitive
component C ∈ Cx is fully y-sensitive if C is not pseudo-sensitive.

Hence, in particular a component C ∈ Cx is fully y-sensitive if either that last edge of
πx(s, C) is incident to y, or that there is an edge (y, y′) ∈ πx(s, C) such that the component
Cy,y′ ∈ Cy is x-sensitive. Note that non-y-sensitive components are clearly connected to s in
G\{x, y}. We later on show that this is true also for pseudo y-sensitive components, therefore
their sensitivity to y is superficial. Let S(x, y), PS(x, y), FS(x, y) denote the components
in Cx that are y-sensitive, pseudo y-sensitive and fully y-sensitive, respectively7. We next

7 Notice that these notations are not symmetric in x, y, e.g. S(x, y) is different than S(y, x).

M. Parter and A. Petruschka 31:13

show that each vertex x can determine, for every C ∈ Cx, certain y vertices for which C

is fully y-sensitive by running the procedure described of the following lemma. Note that
by having the compressed-path π∗

y(s, Cy,y′) and the π∗(s, x), it is possible to determine if
x ∈ πy(s, Cy,y′), hence determining if Cy,y′ is x-sensitive.

▶ Lemma 18. There is an Õ(D)-round algorithm that computes the following for every
x ∈ V (in parallel):

π∗
y(s, Cy,y′) for every edge (y, y′) ∈ πx(s, C) and every C ∈ Cx \ {Hx}.

π∗
y(s, Cy,y′) for every light edge (y, y′) ∈ πx(s, Hx).

3.3 xy-Connectivity Algorithms Under a Promise
Throughout, we assume that all vertices applied the pre-processing steps of computing the
x-connectivity trees T̂x, as well as, applied the Õ(D)-round procedures of Lemma 16 and 18.
From this point on, we explain how to determine the connectivity in G \ {x, y}, first for a
single pair xy, and then for all pairs that satisfy a given promise.

Recall that LD(x) is the collection of light descendants of x in T . For a vertex y, let
LDS(x, y) be the collection of light descendants of x that are sensitive to y. Formally, the
light x-descendants y-sensitive vertices are defined by:

LDS(x, y) = {v ∈ LD(x) | y ∈ πx(s, Cx,v) \ V (Tx)} . (3)

▶ Observation 19. Every vertex v belongs to a total of O(D log n) sets LDS(x, y) for x, y ∈ V .

Proof. A vertex v ∈ V has O(log n) light ancestors (i.e., belongs to O(log n) sets of LD(x)).
In addition, for each light ancestor x ∈ π(s, v), there are O(D) vertices y ∈ πx(s, Cx,v).
Therefore, it belongs to O(D log n) sets as required. ◀

▶ Theorem 20 (xy-Connectivity Given an x-y Path). Fix x, y ∈ V and assume that there
is an x-y path Πx,y ⊆ G (known in a distributed manner) of length O(D). Then, there is
an xy-connectivity algorithm AP

x,y (i.e., that determines the connectivity in G \ {x, y}) in
Õ(D) and Õ(1)-congestion, by sending messages only along on the edges of Πx,y or edges
incident to LDS(x, y) ∪ LDS(y, x). At the end of the computation, both x and y know whether
G \ {x, y} is connected or not.

Before proving Theorem 20, we show that given a set of pairs Q ⊆ V × V , then all
algorithms {AP

x,y | (x, y) ∈ Q} can be scheduled simultaneously when provided a path
collection PQ = {Πx,y | (x, y) ∈ Q} that satisfies the following promise:

[Promise:] PQ-paths have length O(D), and each edge appears on Õ(D) paths in PQ.

By a straightforward application of the random delay approach, we obtain:

▶ Corollary 21. [All Pairs xy-Connectivity Under a Promise] Let Q ⊆ V × V be a collection
of independent pairs and let PQ = {Px,y | (x, y) ∈ Q} be a collection of x-y paths that satisfy
the promise. Then, the collection of algorithms {AP

x,y | (x, y) ∈ Q}, where each Ax,y uses the
corresponding path Πx,y ∈ PQ, can be scheduled simultaneously within Õ(D) rounds, w.h.p.

Description of the Connectivity Algorithm AP
x,y. The algorithm is based on simulating

the Borůvka algorithm using the sketch information of connected subsets in G \ {x, y}, held
jointly by x and y. Throughout, we refer to the given x-y path Πx,y as the xy channel.
Recall that the algorithm can send only Õ(1) bits on that channel. The input for the i ≥ 1

DISC 2022

31:14 Near-Optimal Distributed Computation of Small Vertex Cuts

phase of Borůvka is the following. There is a partitioning Pi−1 = {Pi−1,1, . . . , Pi−1,ki−1} of
the vertices in V \ {x, y} into connected subsets (in G \ {x, y}). We call each P ∈ Pi−1 a
part (to avoid confusion with the term “component” reserved for sets in Cx and Cy). We
mark a special vertex in each Pi,j ∈ Pi, called the leader of the part. The source vertex
s is the leader of its own part (called the s-part), and the leaders of the other parts are
some chosen T -children of x or y in these parts. The part-ID is the ID of its leader. The
part containing xh (resp., yh) is called x-heavy (resp., y-heavy)8. The parts that are free
of s, xh, yh are called light. Hence every light part is contained in LD(x) ∪ LD(y). A part
P is denoted as growable if there is an outgoing G-edge connecting P to V \ (P ∪ {x, y}).
The Borůvka algorithm has K = O(log n) forest growing phases in G \ {x, y}, each phase
reduces the number of growable parts by a constant factor, in expectation. We maintain the
following invariant for the beginning of each phase i ∈ {1, . . . , K}:
(I1) x, y know SketchG\{x,y}(P) of the part P ∈ Pi−1 containing s.
(I2) z ∈ {x, y} knows SketchG\{x,y}(P) for every light part P ∈ Pi−1 whose leader is in Tz.
(I3) x, y know SketchG\{x,y}(P) as well as the part-IDs of the heavy parts P in Pi−1.
(I4) z ∈ {x, y} knows, for each T -child z′ of z, the part-ID of the part containing z′ in Pi−1.

Satisfying the Invariant for the First Borůvka Phase. We start by defining the partitioning
P0 and in particular, focus first on the definition of the part containing s. Recall Def. 17
and that S(x, y), PS(x, y), FS(x, y) ⊆ Cx are the y-sensitive, pseudo y-sensitive and fully
y-sensitive components, respectively. Let NS(x, y) =

⋃
C∈Cx\FS(x,y) C. The set NS(y, x) is

defined in an analogous manner. Then the s-part in P0 is given by U(x, y) = (V \ (V (Tx) ∪
(Ty)))∪NS(x, y)∪NS(y, x) . The next observation exploits the fact that the pseudo y-sensitive
components in Cx and the pseudo x-sensitive components in Cy are all connected to s in
G \ {x, y}.

▶ Observation 22. G[U(x, y)] is connected.

We partition the responsibilities on the parts in P0 between x and y, as follows. Let P0,x =
FS(x, y) be the components in Cx that are fully-sensitive to y. Similarly, P0,y = FS(y, x).
The 0th partitioning of V \{x, y} is given by P0 = {U(x, y)}∪P0,x ∪P0,y. For every z ∈ {x, y},
the leader of each C ∈ P0,z is chosen as the vertex of largest ID among all the T -children of
x, y in C. The leader of U(x, y) is the root s. To satisfy the invariants for the beginning of
phase i ≥ 1, it is sufficient to show the following claims for x (as they apply in a symmetric
manner also for y):

▷ Claim 23. Within Õ(D) rounds, the vertex x can compute SketchG\{x,y}(C) for every
component C ∈ S(x, y). In addition, the vertex y can determine its neighbors in {v ∈
Vx | y /∈ πx(s, Cx,v)}. The communication is restricted to the edges of LDS(x, y) ∪ LDS(y, x)
and using the xy channel.

▷ Claim 24. By exchanging Õ(1) bits of information (using the promised channel), invariants
(I1-I4) hold w.r.t P0.

Simulation of the ith Borůvka Phase. We now describe the execution of phase i ≥ 1
assuming that at the beginning of the phase the invariant holds w.r.t Pi−1. The output of
the execution will be the partitioning Pi, for which we later show that the invariant holds

8 A part can be both x-heavy and y-heavy.

M. Parter and A. Petruschka 31:15

as well. Our goal is to let x, y simulate a Borůvka phase in which parts of Pi−1 are merged
along their outgoing edges. See Figure 2 in Appendix B for an illustration of this process.
The main objective of this phase is to reduce the number of growable parts by a constant
factor, in expectation. Throughout, we use the following auxiliary claim which allows the
vertices in every light part to exchange Õ(1) bits, in parallel.

▷ Claim 25. Let P be a light part in Pi−1 such that each vertex v ∈ P holds a Õ(1)-bit value
val(v). Then, there is an Õ(D)-round algorithm that allows all vertices in P to compute
any aggregate function of the val(v) values for v ∈ P , by sending messages only along edges
incident to P . Consequently, all light parts in Pi−1,x ∪ Pi−1,y can compute their respective
aggregate functions, in parallel.

For efficiency of computation, we restrict the merge shapes to be star shapes by using
random coins (see e.g., [15]). Such star merges are obtained by letting each part Pi−1 toss
a random coin, and allowing only merges centered on head-parts, each accepting incoming
suggested merge-edges from tail-parts. The leader of this head-part becomes the leader of
the merged part. We show that under the promise and the (i − 1)th invariant, this merging
phase can be implemented in Õ(D) rounds as follows. W.l.o.g., we make x be responsible for
the s-part Ps ∈ Pi−1.

Implementing Merges. Each vertex z ∈ {x, y} tosses a (fresh) random coin for each of
its parts in Pi−1,z. In addition, x tosses a coin for the s-part Ps. Next, for each of the tail
part P ∈ Pi−1,z, z locally computes an outgoing edge for each of its tail parts in Pi−1,z. In
addition, x computes an outgoing edge for the s-part (in case that the coin toss of that part is
tail). For each growable part P ∈ Pi−1,z, such an edge can be detected from SketchG\{x,y}(P)
with constant probability. The parts of Pi are formed by merging every head part P ∗ ∈ Pi−1
with all the tail parts in Pi−1 whose outgoing edges point at P ∗. The leader of the merged
part is the leader of the head part P ∗. For every tail part P ∈ Pi−1,x, let eP = (uP , vP) be
the detected outgoing edge obtained by x from SketchG\{x,y}(P).

▷ Claim 26. Using Õ(D) rounds of communication over edges incident to LDS(x, y) and
the given xy channel, z can determine for all its tail parts P ∈ Pi−1,z with an outgoing edge
eP = (uP , vP), the following information: (i) the part-ID of the second endpoint vP /∈ P and,
(ii) the coin-toss of the part of vP .

To implement the merges and satisfy the invariant, it is required for z ∈ {x, y} to learn
the updated sketch information of their head parts in Pi−1,z. We next explain how y can
compute the sketch information of each of its head parts P ∗ ∈ Pi−1,y. (A similar procedure
would work for x).

By Claim 26, x knows for every head part P ∗ ∈ Pi−1,y, the collection of tail parts in
Pi−1,x that should be merged with P ∗.
Any → Non-Light Merges. There are (at most three) non-light parts in Pi−1, corres-
ponding to at most two heavy parts and the s-part9. For each of these non-light part P ∗, x

aggregates that sketch information of the corresponding tail parts P ∈ Pi−1,x, and send it to
y over the xy channel.

From the point on, x considers the transfer of information concerning the light head parts
P ∗ in Pi−1,y.

9 The latter is held by x, so when revering the roles of x, y, y might be required to send x the sum of
sketch information of the tail parts in Pi−1,y that got merged with the s-part.

DISC 2022

31:16 Near-Optimal Distributed Computation of Small Vertex Cuts

Non-Light → Light Merges. It uses the xy channel to send y the sketch information of
its non-light tail parts P , along with the part-ID of their head parts (to which they should
be merged).
Light → Light Merges. The sketch of all other (light) parts in Pi−1,x are communicated to
y over the edges incident to the light sensitive xy descendants, LDS(x, y)∪LDS(y, x), as follows.
Using Claim 25, each light and tail part P ∈ Pi−1,x can learn SketchG\{x,y}(P) (as x holds
this information, by the invariant). Note that by definition P, P ∗ ⊆ LDS(x, y) ∪ LDS(y, x).
The vertices of P then send this received information to all their neighbors. At this point,
for every light head part P ∗ in Pi−1,y, and for every tail light part P in Pi−1,x, there is a
vertex vP ∈ P ∗ that holds SketchG\{x,y}(P). By applying Claim 25, all vertices in P ∗ can
learn the sum of all these sketches. This provides y with all the required information from x

to compute SketchG\{x,y}(P ∗) for each head part P ∗ ∈ Pi−1,y. In a symmetric manner, x

can compute the sketch of the merged parts for all its head parts in Pi−1,x. Using the xy

channel, x and y can exchange the part-ID and sketch information of the heavy parts and
the s-part in Pi. This satisfies (I1,I2,I3) for the partitioning Pi.

To satisfy (I4), note that the part-ID has changed only for tail parts in Pi−1. For the
tail-parts in Pi−1,z, z holds their new part-ID using Claim 26 (i.e., this is the part-ID of the
detected outgoing edges). This completes the description for phase i.

We are now ready to complete the proof of Theorem 20.

Proof of Theorem 20. By the description of the ith phase, the invariant holds w.r.t Pi. We
next show that the ith phase sends Õ(1) messages along edges incident to LDS(x, y)∪LDS(y, x),
as well as over the xy channel. It is also easy to see that given the promised channel that
running time is Õ(D) using Claim 25. Finally, we show that within k = O(log n) phases it
holds that there are no growable components in Pk.

Recall that a part P in Pj is denoted as growable if there is a G-edge (u, v) ∈ P × (V \
({x, y} ∪ P)). We claim that the number of growable part reduces by a constant factor in
each Borůvka phase. Given a sketch information SketchG\{x,y}(P) for a growable part P ,
one can infer an outgoing edge (u, v) from P with constant probability. In addition, with
probability 1/4 this edge is valid (i.e., P is a tail part and v is in a head part). Therefore,
overall the number of growable parts reduces by a constant factor, in expectation. By the
Markov inequality, w.h.p. there is no growable part after O(log n) phases. Since x, y jointly
hold the sketch information of all parts in Pk they can determine if there is more than one
part in Pk by exchanging information along their channel (i.e., if G \ {x, y} is not connected,
then w.h.p. either x or y holds a part whose leader is not s). The theorem follows. ◀

References

1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 459–467. SIAM, 2012.

2 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended abstract).
In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October – 1 November 1989, pages 436–441. IEEE Computer Society,
1989.

3 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with spqr-trees. Algorithmica, 15(4):302–318, 1996.

4 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decom-
position. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 156–165. ACM, 2014.

M. Parter and A. Petruschka 31:17

5 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022. doi:10.48550/arXiv.2203.00671.

6 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis Chatzigianna-
kis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 130:1–130:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016.

7 Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed
weighted min-cut in nearly-optimal time. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 1144–1153. ACM, 2021.

8 Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 445–455.
ACM, 2021.

9 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 506–515. SIAM,
2009.

10 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. CoRR,
abs/1607.06865, 2016. arXiv:1607.06865.

11 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 490–509, 2017.

12 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n) time. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

13 Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-vertex con-
nectivity in directed graphs. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming – 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 605–616. Springer, 2015.

14 Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, PODC, pages 3–12, 2015.

15 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, MST, and min-cut. In Robert Krauthgamer, editor, Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 202–219. SIAM, 2016.

16 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260–1279. SIAM, 2020.

17 Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago,
IL, USA, July 25-28, 2016, pages 19–28, 2016.

18 David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.
arXiv:1509.06464.

DISC 2022

https://doi.org/10.48550/arXiv.2203.00671
http://arxiv.org/abs/1607.06865
http://arxiv.org/abs/1509.06464

31:18 Near-Optimal Distributed Computation of Small Vertex Cuts

19 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 127:1–127:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017.

20 Zhiyang He, Jason Li, and Magnus Wahlström. Near-linear-time, optimal vertex cut sparsifiers
in directed acyclic graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors,
29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 52:1–52:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

21 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

22 Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams. In
Proceedings of the 2014 ACM symposium on Principles of distributed computing, pages 272–281,
2014.

23 Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pages 1131–1142. SIAM, 2013.

24 David R Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, 24(2):383–413, 1999.

25 Karthik C. S. and Merav Parter. Deterministic replacement path covering. In Dániel Marx,
editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10–13, 2021, pages 704–723. SIAM, 2021.

26 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
MST in a distributed network with o(m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21–23, 2015, pages 71–80, 2015.

27 Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and job-shop
scheduling ino (congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.

28 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Samir Khuller
and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 317–329. ACM, 2021.

29 Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. In 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pages 37:1–37:17, 2018.

30 Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. Break-
ing quadratic time for small vertex connectivity and an approximation scheme. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 241–252.
ACM, 2019.

31 Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Borůvka on minimum spanning
tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics,
233(1):3–36, 2001.

32 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, pages 481–490, 2015.

33 Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In 33rd
International Symposium on Distributed Computing, 2019.

34 Merav Parter. Distributed constructions of dual-failure fault-tolerant distance preservers. In
Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 21:1–21:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

M. Parter and A. Petruschka 31:19

35 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
36 Seth Pettie and Longhui Yin. The structure of minimum vertex cuts. In Nikhil Bansal,

Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 105:1–105:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

37 David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space
sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.

38 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983.

39 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

40 Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and bicon-
nected components. Journal of Algorithms, 23(1):160–179, 1997.

41 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

42 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via
fast matrix multiplication. ACM Transactions on Algorithms (TALG), 9(2):14, 2013.

A Single Cut Vertices

In this section we describe the distributed algorithm for detecting single vertex cuts of
Theorem 1. This serves both as a warm-up to our approach in the subsequent sections
devoted to dual vertex cuts detection, as well as for a detailed presentation of basic tools used
in these next sections. We assume each vertex v is equipped with its heavy/light classification
in T and with its ancestry label which is its compressed path, ANCT (v) = π∗(s, v, T). This
can be achieved in Õ(D) rounds by Lemma 5.

Step 0: Computing Extended Edge IDs. The source s samples a random seed SID of
Õ(1) bits and shares it with all vertices. Then, using Lemma 6, each vertex v can then
locally compute the unique edge-ID UID(e) for each of its incident edges. By letting all
neighbors in G exchange their ANCT -labels, each UID(e) can be concatenated with the
required information to create EID(e).

Step 1: Computing Subtree Sketches. The source s locally samples the random seed Sh

of Õ(1) bits and sends it to all the vertices. Along with the extended edge IDs, this provides
all the required information for the computation of SketchG(v) locally in each vertex v. By
XOR-aggregation of the individual sketches from the leaves of T up to the root s, each vertex
v obtains its subtree sketch, given by SketchG(V (Tv)) = ⊕u∈Tv

SketchG(v). Next, within
Õ(1) rounds, each vertex passes its subtree sketch to its parent, so that each vertex now
holds the subtree sketch for each of its children. Finally, the source s also broadcasts its
subtree sketch, which is SketchG(V), to all the other vertices.

Step 2: Local Connectivity Computation. This step is locally applied at every vertex
x, and requires no additional communication. We show that each vertex x, given the
received sketch information in Step 1, can locally simulate the Borůvka’s algorithm [31] in
the graph G \ {x}, and consequently determine if G \ {x} is connected. Let x1, . . . , xk be
the children of x in T . We assume that x ̸= s; the case x = s is easier and requires only
slight modifications. The connected components in T \ {x} are denoted by Cx = {V (Txj

) |
j = 1, . . . , k} ∪ {V \ V (Tx)}. By Step 1, x holds the G-sketch of each component in Cx: It

DISC 2022

https://doi.org/10.1561/0400000010

31:20 Near-Optimal Distributed Computation of Small Vertex Cuts

has explicitly received SketchG(V (Txj)) from each child xj . In addition, it can locally infer
Sketch(V \ V (Tx)) = Sketch(V) ⊕ Sketch(V (Tx)). To implement Borůvka’s algorithm on
these components, we first need to update these G-sketches into (G \ {x})-sketches.

2.1: Obtaining Sketch Information in G \ {x}. Recall x knows the random seed Sh as
well as the extended identifiers of its incident edges (from Step 0). For each such edge
(x, u), it first uses the ancestry label of u and of its T -children (found in the EIDT ’s) to
determine the component C of u in Cx. It then cancel this edges from the sketch of the
component C using Lemma 8. This allows x to obtain SketchG\{x}(C) for every C ∈ Cx.

2.2: Simulating Borůvka in G \ {x}. The input to this step is the (G \ {x})-sketch inform-
ation of the components in Cx,0 = Cx. The desired output is determining the connectivity
of G \ {x}. The algorithm consists of O(log n) phases of the Borůvka algorithm, and is
very similar to the (centralized) decoding algorithm of [8]. Each phase i will be given
as input a partitioning Cx,i = {Ci,1, . . . , Ci,ki

} of (not necessarily maximal) connected
components in G \ {x} along with their sketch information SketchG\{x}(Ci,j). The output
of the phase is a coarser partitioning Cx,i+1, along with the sketch information of the new
parts. A component Ci,j ∈ Cx,i is said to be growable if it has at least one outgoing edge
to a vertex in V \ (Ci,j ∪ {x}). To obtain outgoings edges from the growable components
in Cx,i, the algorithm uses the ith basic-unit sketch SketchG\{x},i(Ci,j) of each Ci,j ∈ Cx,i.
By Lemma 7, from every growable component Ci,j ∈ Cx,i, we get one outgoing edge
e = (u, v) with constant probability. To find the component Ci,j′ containing the other
endpoint of e (to be merged with Ci,j), we use the T -ancestry labels found in EIDT (e).
Say this endpoint is v. We determine the component of v in T \ {x}, i.e. the component
C0,q containing v in Cx,0, by querying the ancestry relation between v and each child of x

using ANCT (v) and the labels of x’s children. Then v belongs to the unique component
Ci,j′ ∈ Cx,i containing C0,q. The sketch information for the next phase i + 1 is given
by XORing over the sketches of the components in Cx,i that got merged into a single
component in Cx,i+1. Note that it is important to use fresh randomness (i.e., independent
sketch information) in each of the Borůvka phases [1, 23, 10]. Since each growable
component gets merged with constant probability, the expected number of growable
components is reduced by a constant factor in each phase. Thus after O(log n) phases,
the expected number of growable components is at most 1/n5, and by Markov’s inequality
we conclude that w.h.p. there are no growable components. The partitioning at this point
corresponds to the maximal connected components in G \ {x}, so its connectivity can be
inferred. This concludes the proof of Theorem 1.

Finally, we note that by tracking the merges throughout the Borůvka simulation, x can also
find a subset Ẽ of the outgoing edges received throughout the simulation such (T \ {x}) ∪ Ẽ

is a maximal spanning forest of G \ {x}.

M. Parter and A. Petruschka 31:21

B Figures

Figure 1 Left: Illustration of the trees T and T̃ . The dashed edges are T -edges adjacent to y,
and the solid edges are Ẽ-edges. The components C0, C1, . . . , C5 are each internally connected via
original T -edges. The tree T̃ is obtained by removing y and its incident edges from the T and adding
the Ẽ edges. Right: The component tree C̃T .

𝑠

𝑦ℎ 𝑦1 𝑦2𝑥3
𝑥ℎ

𝑥 𝑦

𝑥2 𝑥1

𝐿𝐷𝑆(𝑥, 𝑦) 𝐿𝐷𝑆(𝑦, 𝑥)

𝑈(𝑥, 𝑦)

Figure 2 Simulating the first Borůvka phase in algorithm AP
x,y. Each triangle corresponds to

a light component in Cx, Cy. The square boxes correspond to the heavy components Hx, Hy. The
framed triangles correspond the subtrees of x, y that belong to the set LDS(x, y) ∪ LDS(y, x). The
dashed green bidirectional arrow represents the xy channel given by the promise. The dashed
black arrows correspond to the outgoing edges obtained by x, y from the sketch information of
their components. In the example, the light subtrees Tx2 and Ty1 exchange information over their
outgoing edge, which allows y to compute the sketch of the merged component V (Tx2) ∪ V (Ty1).
The sketch of the merged component V (Tyh) ∪ V (Tx1) ∪ V (Txh) is computed by y by letting x send
SketchG\{x,y}(V (Tx1)) ⊕ SketchG\{x,y}(V (Txh)).

DISC 2022

Õptimal Dual Vertex Failure Connectivity Labels
Merav Parter #

Weizmann Institute, Rehovot, Israel

Asaf Petruschka #

Weizmann Institute, Rehovot, Israel

Abstract
In this paper we present succinct labeling schemes for supporting connectivity queries under vertex
faults. For a given n-vertex graph G, an f -VFT (resp., EFT) connectivity labeling scheme is a
distributed data structure that assigns each of the graph edges and vertices a short label, such that
given the labels of a vertex pair u and v, and the labels of at most f failing vertices (resp., edges) F ,
one can determine if u and v are connected in G \ F . The primary complexity measure is the length
of the individual labels. Since their introduction by [Courcelle, Twigg, STACS ’07], FT labeling
schemes have been devised only for a limited collection of graph families. A recent work [Dory and
Parter, PODC 2021] provided EFT labeling schemes for general graphs under edge failures, leaving
the vertex failure case fairly open.

We provide the first sublinear f -VFT labeling schemes for f ≥ 2 for any n-vertex graph. Our key
result is 2-VFT connectivity labels with O(log3 n) bits. Our constructions are based on analyzing the
structure of dual failure replacement paths on top of the well-known heavy-light tree decomposition
technique of [Sleator and Tarjan, STOC 1981]. We also provide f -VFT labels with sub-linear length
(in |V |) for any f = o(log log n), that are based on a reduction to the existing EFT labels.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Fault-Tolerance, Heavy-Light Decomposition, Labeling Schemes

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.32

Related Version Full Version: https://arxiv.org/abs/2208.10168

Funding Merav Parter : Supported by the European Research Council (ERC) No. 949083), and by
the Israeli Science Foundation (ISF) No. 2084/18.

Acknowledgements We would like to thank Michal Dory for useful discussions.

1 Introduction

Connectivity labels are among the most fundamental distributed data-structures, with a
wide range of applications to graph algorithms, distributed computing and communication
networks. The error-prone nature of modern day communication networks poses a demand
to support a variety of logical structures and services, in the presence of vertex and edge
failures. In this paper we study fault-tolerant (FT) connectivity labeling schemes, also known
in the literature as forbidden-set labeling. In this setting, it is required to assign each of
the graph’s vertices (and possibly also edges) a short name (denoted as label), such that
given the labels of a vertex pair u and v, and the labels of a faulty-set F , it possible to
deduce – using no other information – whether u and v are connected in G \ F . Since their
introduction by Courcelle and Twigg [9] and despite much activity revolving these topics, up
until recently FT-labels have been devised only for a restricted collection of graph families.
This includes graphs with bounded tree-width, planar graphs, and graphs with bounded
doubling dimension [9, 1, 2]. Hereafter, FT-labeling schemes under f faults of vertices (resp.,
edge) are denoted by f -VFT labeling (resp., f -EFT).

© Merav Parter and Asaf Petruschka;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 32; pp. 32:1–32:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:merav.parter@weizmann.ac.il
mailto:asaf.petruschka@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.32
https://arxiv.org/abs/2208.10168
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Õptimal Dual Vertex Failure Connectivity Labels

A recent work by Dory and Parter [11] provided the first EFT-labeling schemes for general
n-vertex graphs, achieving poly-logarithmic label length, independent of the number of faults
f . For graphs with maximum degree ∆, their labels immediately provide VFT-labels with
Õ(∆) bits1. The dependency on ∆ is clearly undesirable, as it might be linear in n. This
dependency can be explained by the fact that a removal of single vertex might decompose
the graph into Θ(∆) disconnected components. The latter behavior poses a challenge for the
labeling algorithm that must somehow compress the information on this large number of
components into a short label.

While the ∆ dependency seems to be inherent in the context of distributed vertex
connectivity [35, 31], Baswana and Khanna and Baswana et al. [27, 3] overcome this barrier
for the single vertex fault case. Specifically, they presented a construction of distance oracles
and labels, that maintain approximate distances in the presence of a single vertex fault
with near linear space. This provides, in particular, 1-VFT approximate-distance labels of
polylogarithmic length. Their constructions are based on exploiting the convenient structure
of single-fault replacement paths. 1-VFT connectivity labels of logarithmic length are easy
to achieve using block-cut trees [37], as discussed later on.

When turning to handling dual vertex failures, it has been noted widely that there
is a sharp qualitative difference between a single failure and two or more failures. This
one-to-two jump has been established by now for a wide-variety of fault-tolerant settings, e.g.,
reachability oracles [8], distance oracles [12], distance preservers [30, 21, 32] and vertex-cuts
[23, 4, 5, 17]. In the lack of any f -VFT labeling scheme with sublinear length for any f ≥ 2,
we focus on the following natural question:

Is it possible to design dual vertex failure connectivity labels of Õ(1) length?

The only prior 2-VFT labeling schemes known in the literature have been provided for
directed graphs in the special case of single-source reachabilty by Choudhary [8]. By using
the well-known tool of independent trees [18], [8] presented a construction of dual-failure
single-source reachability data structures, that also provide labels of O(log3 n) bits. Note
that in a sharp contrast to undirected connectivity that admit O(log n)-bit labels, (all-pairs)
reachability labels require linear length, even in the fault-free setting [15].

Representation of Small Vertex Cuts: Block-Cut and SPQR Trees. The block-cut tree
representation of a graph compactly encodes all of its single cut vertices (a.k.a. articulation
points), and the remaining connected components upon the failure of each such vertex [37].
By associating each vertex of the original graph with a corresponding node in the block-cut
tree and using standard tree labels techniques, 1-VFT connectivity labels are easily achieved.

Moving on to dual failures, we have the similar (but more complex) SPQR-tree representa-
tion [4], which encodes all cut pairs (i.e., vertex pair whose joint failure disconnects the graph).
However, it is currently unclear to us how to utilize this structure for 2-VFT connectivity
labels. The main issue is generalizing the vertex-node association from the block-cut tree to
SPQR tree: each vertex may appear in many nodes with different “virtual edges” adjacent to
it, corresponding to different cut-mates forming a cut-pair with it. Kanevsky, Tamassia, Di
Battista, and Chen [24] extended the SPQR structure to represent 3-vertex cuts. While these
representations are currently limited to cuts of size at most 3, we hope that the approach
taken in this paper can be extended to handle larger number of faults. In addition, it is
arguably more distributed friendly, as it is based on basic primitives such as the heavy-light
tree decomposition, which are easily implemented in the distributed setting.

1 By including in the label of vertex v the EFT labels of all edges incident to v.

M. Parter and A. Petruschka 32:3

On the Gap Between Edge vs. Vertex Connectivity. Recent years have witnessed an
enormous progress in our understanding of vertex cuts, from a pure graph theoretic perspective
[34] to many algorithmic applications [29, 28, 34, 22]. Despite this exciting movement, our
algorithmic toolkit for handling vertex cuts, especially in the distributed setting, is still
considerably limited compared to the counterpart setting of edge connectivity. Near-linear
time sequential algorithms for edge connectivity and minimum weighted edge cuts are known
for years since the celebrated result of Karger [26], and its recent improvements by [19, 16].
In contrast, only very recently, an almost-linear time algorithm for vertex connectivity has
been provided by combining the breakthrough max-flow result of Chen et al. [6] with the
work of Li et al. [28]. Turning to the distributed setting, near-optimal congest algorithms for
weighted edge-connectivity2 have been recently presented by Dory et al. [10] and Ghaffari
and Zuzic [20]. To this date, there are no distributed algorithms for vertex-connectivity that
runs in sublinear number of rounds, for the entire connectivity regime.

Additional Related Work. Our dual-failure vertex connectivity labels are also closely related
to connectivity sensitivity oracles [13, 14], that provide low-space centralized data-structure
for supporting connectivity queries in presence of vertex faults. The main goal in our setting
is to provide a distributed variant of such construction, where each vertex holds only S(n)/n

bits of information, where S(n) is the global space of the centralized data-structure. Duan
and Pettie [13, 14] provided an ingenues construction that supports multiple vertex faults in
nearly optimal space of Õ(n). These constructions are built upon highly centralized building
blocks, and their distributed implementation is fairly open.

1.1 Our Contribution
We first present new constructions of 1-VFT and 2-VFT labeling schemes with polylogarithmic
length. On a high level, our approach is based on analyzing the structure of dual failure
replacement paths, and more specifically their intersection with a given heavy-light tree
decomposition of (a spanning tree of) the graph. Throughout, we denote the number of
graph vertices (edges) by n (resp., m).

Warm-Up: 1-VFT Connectivity Labels. As a warm-up to our approach, we consider the
single fault setting and provide a simple label description that uses only the heavy-light
decomposition technique.

▶ Theorem 1 (1-VFT Connectivity Labels). For any n-vertex graph, there is a deterministic
1-VFT connectivity labeling scheme with label length of O(log2 n) bits. The decoding algorithm
takes poly(log n) time. The labels are computed in Õ(m) randomized centralized time, or
Õ(D) randomized congest rounds.

While this construction is presented mainly to introduce our technique, it also admits an
efficient distributed implementation which follows by the recent work of [33], which we present
in detail in the full version.

2-VFT Connectivity Labels. We then turn to consider the considerably more involved
setting of supporting two vertex failures. In the literature, heavy-light tree decomposition
have been proven useful mainly for handling single vertex faults, e.g. in [27]. The only

2 In the latter setting, the edges are weighted and it is required to compute the minimum weighted set of
edges that disconnects the graph.

DISC 2022

32:4 Õptimal Dual Vertex Failure Connectivity Labels

dual-failure scheme of [8] is tailored to the single-source setting. By carefully analyzing
dual-failure replacement paths and their interaction with the heavy-light tree decomposition
of a given spanning tree, we provide deterministic labeling schemes of O(log3 n) bits. Our
main technical contribution in this paper is stated as follow:

▶ Theorem 2 (2-VFT Connectivity Labels). For any n-vertex graph, there is a deterministic
2-VFT connectivity labeling scheme with label length of O(log3 n) bits. The decoding algorithm
takes poly(log n) time. The labels are computed in Õ(n2) time.

Our dual-failure labeling scheme uses, in a complete black-box manner, single-source
labels. For this purpose, we can use the O(log3 n)-bit labels of Choudhary [8]. We also
provide an alternative construction that is based on the undirected tools of heavy-path tree
decomposition, rather than using the tool of independent trees as in [8]. Our single-source
labels provide a somewhat improved length of O(log2 n) bits3, but more importantly convey
intuition for our all-pairs constructions. Since our labels are built upon a single arbitrary
spanning tree that can be assumed to have depth O(D), we are hopeful that this approach is
also more distributed-friendly. Specifically, as the depth of the independent trees using in [8]
might be linear in n, their distributed computation might be too costly for the purpose of
dual vertex cut computation. Moreover, currently the tool of independent trees is limited
to only two cut vertices, which also poses a barrier for extending this technique to handle
multiple faults. In the full version, we show:

▶ Lemma 3. There is a single-source 2-VFT connectivity labeling scheme with label length
O(log2 n) bits. That is, given an n-vertex graph G with a fixed source vertex s, one can
label the vertices of G such that given query of vertices ⟨t, x, y⟩ along with their labels, the
connectivity of s and t in G \ {x, y} can be inferred.

f -VFT Connectivity Labels. Finally, we turn to consider labeling schemes in the presence
of multiple vertex faults. By combining the notions of sparse vertex certificates [7] with the
EFT-labeling scheme of [11], in Appendix A we show:

▶ Theorem 4 (f -VFT Connectivity Labels). There is a f -VFT connectivity labeling scheme
with label length Õ(n1−1/2f−2) bits, hence of sublinear length of any f = o(log log n).

This for example, provides 3-VFT labels of Õ(
√

n) bits.

1.2 Preliminaries
Given a connected n-vertex graph G = (V, E), we fix an arbitrary source vertex s ∈ V , and
a spanning tree T of G rooted at s. We assume each vertex a is given a unique O(log n)-bit
identifier ID(a). Let par(a) be the parent of a in T , Ta be the subtree of T rooted at a,
and T +

a be the tree obtained from Ta by connecting par(a) to a. The (unique) tree path
between two vertices a, b is denoted T [a, b].4 Let depth(a) be the hop-distance of vertex a

from the root s in T , i.e. the number of edges T [s, a]. We say that vertex a is above or higher
(resp., below or lower) than vertex b if depth(a) is smaller (resp., larger) than depth(b). The
vertices a, b are said to be dependent if one of them is an ancestor of the other in T , and
independent otherwise.

3 We note that it might also be plausible to improve the label size of [8] to O(log2 n) bits, by reducing
the size of their range-minima labels.

4 Note that T [a, b] is a path, but Ta is a subtree.

M. Parter and A. Petruschka 32:5

For two paths P, Q ⊆ G, define the concatenation P ◦ Q as the path formed by concat-
enating Q to the end of P . The concatenation is well defined if for the last vertex pℓ of P

and the first vertex qf of Q it either holds that pℓ = qf or that (pℓ, qf) ∈ E. We use the
notation P (a, b] for the subpath of P between vertices a and b, excluding a and including b.
The subpaths P [a, b), P [a, b] and P (a, b) are defined analogously. We extend this notation
for tree paths, e.g. T (a, b] denotes the subpath of T [a, b] obtained by omitting a. When
we specify P as an a-b path, we usually think of P as directed from a to b. E.g., a vertex
c ∈ P is said to be the first having a certain property if it is the closest vertex to a among
all vertices of P with the property. A path P avoids a subgraph H ⊆ G if they are vertex
disjoint, i.e. V (P) ∩ V (H) = ∅.

For a subgraph G′ ⊆ G, let deg(a, G′) be the degree of vertex a in G′. We denote by
conn(a, b, G′) the connectivity status of vertices a and b in G′, which is 1 if a and b are
connected in G′ and 0 otherwise. We give arbitrary unique O(log n)-bit IDs to the connected
components of G′, e.g. by taking the maximal vertex ID in each component. We denote
by CID(a, G′) the ID of the connected component containing vertex a in G′. For a failure
(or fault) set F ⊆ V , we say that two vertices a, b are F -connected if conn(a, b, G \ F) = 1,
and F -disconnected otherwise. In the special cases where F = {x} or F = {x, y} for some
x, y ∈ V , we use respectively the terms x-connected or xy-connected.

Replacement Paths. For a given (possibly weighted) graph G, vertices a, b ∈ V and a faulty
set F ⊆ V , the replacement path Pa,b,F is the shortest a-b path in G \ F . In our context, as
we are concerned with connectivity rather than in shortest-path distances, we assign weights
to the graph edges for the purpose of computing replacement paths with some convenient
structure w.r.t a given spanning tree T . Specifically, by assigning weight of 1 to the T -edges,
and weight n to non T -edges, the resulting replacement paths “walk on T whenever possible”.
Formally, this choice of weights ensures the following property of the replacement paths: for
any two vertices c, d ∈ Pa,b,F such that T [c, d] ∩ F = ∅, Pa,b,F [c, d] = T [c, d]. Also note that
these replacement paths are shortest w.r.t our weight assignment, but might not be shortest
w.r.t their number of edges. We may write Pa,b,x when F = {x}.

Heavy-Light Tree Decomposition. Our labeling schemes use the classic heavy-light tree
decomposition technique introduced by Sleator and Tarjan [36]. This is inspired by the work
of Baswana and Khanna [27] applying this technique in the fault-tolerant setting. The heavy
child of a non-leaf vertex a in T , denoted h(a), is the child b of a that maximizes the number
of vertices in its subtree Tb (ties are broken arbitrarily in a consistent manner.). A vertex is
called heavy if it is the heavy child of its parent, and light otherwise. A tree edge in T is
called heavy if it connects a vertex to its heavy child, and light otherwise. The set of heavy
edges induces a collection of tree paths, which we call heavy paths. Let a, b ∈ V such that
a is a strict ancestor of b, and let a′ be the child of a on T [a, b]. Then a is called a heavy
ancestor of b if a′ is heavy, or a light ancestor of b if a′ is light. Note that a heavy ancestor of
b need not be a heavy vertex itself, and similarly for light ancestors. We observe that if b is a
light child of a, then Tb contains at most half of the vertices in Ta. Consequently, we have:

▶ Observation 5. Any root-to-leaf path in T contains only O(log n) light vertices and edges.

Our labeling schemes are based on identifying for each vertex a a small number of interesting
vertices, selected based on the heavy-light decomposition.

DISC 2022

32:6 Õptimal Dual Vertex Failure Connectivity Labels

▶ Definition 6. The interesting set of a vertex a is defined to be I(a) = {b ∈ T [s, a] |
b is light} ∪ {h(a)} (where {h(a)} is interpreted as the empty set if a is a leaf). That is, I(a)
consists of all the light vertices on T [s, a], along with the heavy child of a (if it exists). The
upper-interesting set of a is defined to be I↑(a) = {par(b) | b ∈ I(a)} ∪ {a}. That is, I↑(a)
consists of all the light ancestors of a and a itself.

We make extensive use of the following useful properties of interesting sets, which are
immediate to prove.

▶ Lemma 7. For any a ∈ V , |I(a)| = O(log n) and |I↑(a)| = O(log n).

▶ Lemma 8. Let a, b ∈ V such that a ∈ T [s, b].
(1) If a ̸= b, then for the child a′ of a on T [a, b] it holds that a′ ∈ I(a) ∪ I(b).
(2) If a /∈ I↑(b), then a ̸= b and the child of a on T [a, b] is h(a).

Extended Vertex IDs. To avoid cumbersome definitions in our labels, it is convenient to
augment the vertex IDs with additional O(log n) bits of information, resulting in extended IDs.
The main ingredient is ancestry labels [25]: these are O(log n)-bit labels ANCT (a) for each
vertex a, such that given ANCT (a) and ANCT (b) one can infer whether a is an ancestor of b

in T . The extended ID of a vertex a is5 EID(a) = [ID(a), ANCT (a), ID(h(a)), ANCT (h(a))].
Thus, given EID(a) and EID(b), one can determine whether a is an ancestor of b in T , and
moreover, whether it is a light or a heavy ancestor. We will not explicitly refer to the
extended IDs, but rather use them as follows:

The label of any vertex a always (implicitly) stores EID(a).
Whenever a label stores a given vertex a, it additionally stores EID(a).

This enables us to assume throughout that we can always determine the (heavy or light)
ancestry relations of the vertices at play.

2 Single Failure Connectivity Labels

In this section we warm-up by considering the single failure case of Theorem 1.
The construction of the labels for each vertex a is described in Algorithm 1. The label

length of O(log2 n) bits follows by Lemma 7.

Algorithm 1 Construction of label L1F(a) for vertex a.

1 for each b′ ∈ I(a) with par(b′) = b do
2 store vertices b, b′ and the values conn(s, b′, G \ {b}), CID(b′, G \ {b});

The key observation for decoding is:

▷ Claim 9. Given L1F(w) and L1F(x), one can determine the x-connectivity of w and s, and
also find CID(w, G \ {x}) in case w, s are x-disconnected.

Proof. If w is not a descendant6 of x, then T [s, w] is failure-free, so w and s are x-connected
and we are done. Assume now that w is a descendant of x, and let x′ be the child of x on
T [x, w]. Then T [x′, w] is failure-free, hence x′ and w are x-connected. Therefore, it suffices

5 If a is a leaf, we simply omit from EID(a) the information regarding h(a).
6 This is checked using extended IDs EID(w) and EID(x).

M. Parter and A. Petruschka 32:7

to determine the values conn(s, x′, G \ {x}) and CID(x′, G \ {x}). Lemma 8(1) guarantees
that x′ ∈ I(w) ∪ I(x), hence the required values are stored either in L1F(w) or in L1F(x) (by
setting b = x and b′ = x′). ◁

Given L1F(u), L1F(v) and L1F(x), we determine the x-connectivity of u, v as follows. We apply
Claim 9 twice, with w = u and with w = v. If we find the component IDs of both u and v in
G \ {x}, we compare them and answer accordingly. However, if this is not the case, then
we must discover that one of u, v is x-connected to s, so we should answer affirmatively iff
the other is x-connected to s. This completes the decoding algorithm of Theorem 1. The
preprocessing time analysis appears in the full version.

3 Dual Failure Connectivity Labels

3.1 Technical Overview
In the following we provide high-level intuition for our main technical contribution of dual
failure connectivity labels. Throughout, the query is given by the tuple ⟨u, v, x, y⟩, where x, y

are the vertex faults. Recall that our construction is based on some underlying spanning tree
T rooted at some vertex s (that we treat as the source). Similarly to the 1-VFT construction,
we compute the heavy-light tree decomposition of T , which classifies the tree edges into
heavy and light.

We distinguish between two structural cases depending on the locations of the two faults,
x and y. The first case which we call dependent handles the setting where x and y have
ancestry/descendant relations. The second independent case assumes that x and y are
not dependent, i.e., LCA(x, y) /∈ {x, y}, where LCA(x, y) is the lowest (or least) common
ancestor of x and y in T .

Our starting observation is that by using single-source 2-VFT labels in a black-box
manner, we may restrict our attention to the hard case where the source s is xy-disconnected
from both u and v. Quite surprisingly, this assumption yields meaningful restrictions on the
structure of key configurations, as will be demonstrated shortly.

Dependent Failures. To gain intuition, we delve into two extremes: the easy all-light case
where u, v, y are all light descendants of x, and the difficult all-heavy case where they are
all heavy descendants of x. Consider first the easy all-light case. As every vertex has only
O(log n) light ancestors, each of u, v, y has the budget to prepare by storing its 1-VFT label
w.r.t the graph G \ {x}. Then, for decoding, we simply answer the single-failure query
⟨u, v, y⟩ in G \ {x}.

We turn to consider the all-heavy case, which turns out to be an important core configur-
ation. Here, we no longer have the budget to prepare for each possible failing x, and a more
careful inspection is required. The interesting case is when y ∈ T [u, v]. We further focus in
this overview on the following instructive situation: y is not an ancestor of v, but is a heavy
ancestor of u. It is then sufficient to determine the xy-connectivity of h(y) and par(y). See
Figure 1 (left). Naturally, y is most suited to prepare in advance for this situation, as follows.
Let P = Ph(y),par(y),y be the h(y)-par(y) replacement path avoiding y, and let f ∈ P be the
first vertex (i.e., closest to h(y)) from T [s, par(y)]. Surprisingly, it suffices for the labeling
algorithm to include in the label of y the identity of f , along with a single bit representing
the connectivity of h(y) and par(y) in G \ {f, y}.

This limited amount of information turns out to be sufficient thanks to the useful
structures of the replacement paths. Since x is an ancestor of y, we need to consider the
possible locations of x within T [s, par(y)]. The key observation is that x cannot lie below

DISC 2022

32:8 Õptimal Dual Vertex Failure Connectivity Labels

𝑠

𝑣

𝑥

ℎ(𝑥)

𝑢
ℎ(𝑦)

𝑦
𝑝𝑎𝑟(𝑦)

𝑃[ℎ 𝑦 , 𝑓]

𝑠

𝑥

ℎ(𝑥)

𝑢

𝑢ො

𝑦

𝑇(௫)
𝑣ො

𝑣

𝑓ଵ

(𝑓ଶ)

𝑓ଷ

Figure 1 Left: Illustration of the all-heavy configuration. Letting P = Ph(y),par(y),y, the purple
path represents the prefix P [h(y), f] of P until the first time it hits T [s, par(y)]. Vertices f1, f2, f3

correspond to different options for the location of f : above x, equals x, or below x. The f1 option is
marked X as it is excluded by our analysis. Right: Illustration of the reduction to the all-heavy case.
The analog vertices û, v̂ are chosen from AnSet(u, x), AnSet(v, x), respectively.

f , i.e. in T (f, par(u)]: otherwise, T [u, h(y)] ◦ P [h(y), f] ◦ T [f, s] is a u-s path avoiding x, y,
which we assume does not exist! Now, if x is above f , i.e. in T [s, f), then P is fault-free, so
we determine that h(y), par(y) are xy-connected. If x = f , we simply have the answer stored
explicitly by the label of y. The complete solution for the all-heavy case is of a similar flavor,
albeit somewhat more involved.

We then handle the general dependent failures case by reducing to the all-heavy configur-
ation, which we next describe in broad strokes. First, the case where y is a light descendant
of x is handled directly using 1-VFT labels, in a similar manner to the all-light case. In
the remaining case where y ∈ Th(x), a challenge arises when (at least) one of u, v, say u, is
a light descendant of x. We exploit the fact that the label of u has the budget to prepare
for light ancestors, and store in this label a small and carefully chosen set of vertices from
Th(x), called the analog set AnSet(u, x). Our decoding algorithm in this case replaces the
given ⟨u, v, x, y⟩ query with an analogous all-heavy query ⟨û, v̂, x, y⟩ for some û ∈ AnSet(u, x)
and v̂ ∈ AnSet(v, x). See Figure 1 (right). The reduction’s correctness is guaranteed by the
definition of analog sets.

Independent Failures. Our intuition comes from our solution to the single-source inde-
pendent-failures case, described in the full version. As we assume that both u, v are
xy-disconnected from s, we know that the corresponding decoding algorithm rejects both
queries ⟨u, x, y⟩ and ⟨v, x, y⟩. Rejection instances can be of two types: explicit reject or
implicit reject.

If ⟨u, x, y⟩ is an explicit reject instance, then the algorithm rejects by tracking down an
explicit bit stored in one of the labels of u, x, y, and returning it. This bit is of the form
conn(s, ũ, G \ {x, y}) for some vertex ũ which is xy-connected to u. So, in explicit reject
instances, one of the vertices u, x, y has prepared in advance by storing this bit. In contrast,
if it is an implicit reject instance, then the algorithm detects at query time that ⟨u, x, y⟩
match a specific, highly-structured fatal configuration leading to rejection. Specifically, this
configuration implies that u is xy-connected to both h(x) and h(y). Thus, when reaching
implicit rejection, we can infer useful structural information.

Getting back to our original query ⟨u, v, x, y⟩, the idea is to handle all of the four possible
combinations of implicit or explicit rejects for ⟨u, x, y⟩ or ⟨v, x, y⟩. Our approach is then based
on augmenting the single-source 2-VFT labels in order to provide the decoding algorithm
with a richer information in the explicit rejection cases.

M. Parter and A. Petruschka 32:9

The presented formal solution distills the relevant properties of the corresponding (aug-
mented) single-source labels and decoding algorithm. This approach has the advantage
of having a succinct, clear and stand-alone presentation which does not require any prior
knowledge of our single-source solution, but might hide some of the aforementioned intuition.

Setting Up the Basic Assumptions. We now precisely describe the basic assumptions that
we enforce as preliminary step. These are:
(C1) u and v are both x-connected and y-connected.
(C2) Both u and v are xy-disconnected from the source s.
To verify condition (C1), we augment the 2-VFT label of each vertex with its 1-VFT label
from Theorem 1. If (C1) is not satisfied, then clearly u, v are xy-disconnected, so we are done.
For (C2), we further augment the labels with the corresponding single-source 2-VFT labels
of [8] (or alternatively, our own such labels of Lemma 3). Using them we check whether u

and v are xy-connected to s. If both answers are affirmative, then u, v are xy-connected. If
the answers are different, then u, v are xy-disconnected. Hence, the only non-trivial situation
is when (C2) holds. As the 1-VFT and single-source 2-VFT labels consume only O(log3 n)
bits each, the above mentioned augmentations are within our budget.

The following sections present our 2-VFT connectivity labeling scheme in detail: Section
3.2 handles the independent-failures case, and Section 3.3 considers the dependent-failure
case. The final label is obtained by adding the sublables provided in each of these sections.
We note that by using the extended IDs of the vertices, it is easy for the decoding algorithm
to detect which of the cases fits the given ⟨u, v, x, y⟩ query.

3.2 Two Failures are Independent
The independence of the failures allows us to enforce a stronger version of condition (C1):
(C3) u, v and s are all x-connected and y-connected.
Condition (C3) is verified using the 1-VFT labels of u, v, x, y and s. As the label of s is not
given to us, we just augment the label of every vertex also with the 1-VFT label of s. If (C3)
fails, we are done by the following claim.

▷ Claim 10. If condition (C3) does not hold, then u and v are xy-connected.

Proof. Assume (C3) does not hold. By (C1), this can happen only if one of u, v, say u, is
disconnected from s under one of the failures, say x. Namely, u, s are x-disconnected. Now,
(C1) also ensures that there is a u-v path P avoiding x. We assert that P also avoids y, which
completes the proof. Assume otherwise, and consider the u-s path P ′ = P [u, y] ◦ T [y, s].
By the independence of x, y we have that x /∈ P ′, which contradicts the fact that u, s are
x-disconnected. ◁

Our general strategy is to design labels LP(a) for each vertex a that have following property:
(P) For any ⟨u, v, x, y⟩ with independent failures7 x, y, there exists8 z ∈ {h(x), h(y)} such

that given the label LP(w) of any w ∈ {u, v} and the labels LP(x), LP(y), one can infer the
xy-connectivity of w, z, and also find CID(w, G \ {x, y}) in case w, z are xy-disconnected.

This suffices to determine the xy-connectivity of u, v by the following lemma:

▶ Lemma 11. Given the LP labels of u, v, x, y, one can determine the xy-connectivity of u, v.

7 Which satisfy conditions (C1), (C2) and (C3).
8 At least one of h(x), h(y) exists: else, x, y are leaves, so T \ {x, y} spans G \ {x, y}, contradicting (C2).

DISC 2022

32:10 Õptimal Dual Vertex Failure Connectivity Labels

Proof. We apply property (P) twice, for w = u and for w = v. If we find the component IDs
of both u and v in G \ {x, y} we just compare them and answer accordingly. However, if this
does not happen, then we must discover that one of u, v is xy-connected to z, so we should
answer affirmatively iff the other is also xy-connected to z. ◀

In order to preserve the symmetry between the independent failures x and y (which we
prefer to break in a more favorable manner in our subsequent technical arguments), we do
not explicitly specify, at this point, the identity of z ∈ {h(x), h(y)}. It may be useful for the
reader to think of z as chosen adversarially from {h(x), h(y)}, and our decoding algorithm
handles each of the two possible selections. Alternatively, this can be put as follows: our
labeling scheme will guarantee property (P) for z = h(x) and for z = h(y) (if both heavy
children exist).

Construction of LP Labels. We start with a useful property of single-fault replacement
paths. For a vertex a ∈ V with an s-a replacement path P = Ps,a,par(a), let ℓa ∈ P be the
last (closest to a) vertex in T \ Tpar(a).

▶ Observation 12. Ps,a,par(a) = T [s, ℓa] ◦ Q where Q ⊆ Tpar(a).

We are now ready to define the LP labels. These are constructed by Algorithm 2. The label
length of O(log3 n) bits follows by Lemma 7.

Algorithm 2 Construction of label LP(a) for vertex a.

1 for each b′ ∈ I(a) with par(b′) = b do
2 store vertices b, b′, ℓb′ ;
3 for each c ∈ I↑(ℓb′) do
4 store vertex c;
5 store CID(b′, G \ {b, c}), conn(b′, h(b), G \ {b, c}), conn(b′, h(c), G \ {b, c});

Decoding Algorithm for Property (P). Our goal is to show that given LP(w) for w ∈ {u, v}
and LP(x), LP(y) we can indeed satisfy the promise of (P); namely, determine the xy-
connectivity of w, z, and in case they are xy-disconnected also report CID(w, G \ {x, y}).

One of the failures, say x, must be an ancestor of w in T . Otherwise, w would have been
connected to s in G \ {x, y}, contradicting (C2). Denote by x′ the child of x on T [x, w]. The
independence of x, y guarantees that T [x′, w] is fault-free, hence x′, w are xy-connected.

It now follows from (C2) that x′, s are xy-disconnected, and from (C3) that x′, s are x-
connected. The latter ensures that ℓx′ is well-defined. By Observation 12, Ps,x′,x = T [s, ℓx′]◦Q

where Q ⊆ Tx, so y /∈ Q. On the other hand, it cannot be Ps,x′,x entirely avoids y, as we
have already established that s, x′ are xy-disconnected. It follows that y ∈ T [s, ℓx′]. See
illustration in Figure 2. Note that x′ ∈ I(w) ∪ I(x) by Lemma 8, hence the triplet of vertices
b = x, b′ = x′ and ℓb′ = ℓx′ is stored either in LP(w) or in LP(x). We next distinguish between
two cases, depending on whether y belongs to the upper-interesting set of ℓx′ .

Case 1: y ∈ I↑ (ℓx′). Then the following are also specified in the last label (with c = y):

CID(x′, G \ {x, y}), conn(x′, h(x), G \ {x, y}), conn(x′, h(y), G \ {x, y}).

Since x′, w are xy-connected, we can replace x′ by w in the three values above, and
reporting them guarantees property (P).

M. Parter and A. Petruschka 32:11

𝑥′

𝑥

𝑠

𝑤

𝑦

𝑦′

𝑇[𝑠, κ௫ᇲ]

κ௫ᇲ

𝑄

𝑇௫ 𝑇௬

Figure 2 Illustration of the decoding algorithm for the independent failures case. The path
T [s, ℓx′] is shown in green (right), and the path Q is shown in purple (left). The concatenation
T [s, ℓx′] ◦ Q forms the replacement path Ps,x′,x. The vertex y′ is the child of y on T [s, ℓx′]. The
case where y /∈ I↑(ℓx′) corresponds to y′ = h(y).

Case 2: y /∈ I↑ (ℓx′). Then the child of y on T [y, ℓx′] is h(y) by Lemma 8. Thus T [h(y), ℓx′]◦
Q is a h(y)-x′ path avoiding both x and y. Therefore, as w is xy-connected to x′, it is
also xy-connected to h(y). So, if z = h(y) we are done. However, if z = h(x), we recover
by simply repeating the algorithm when y, h(y), x play the respective roles of x, x′, y.
The triplet y, h(y), ℓh(y) is stored LP(y) since h(y) ∈ I(y). If x ∈ I↑(ℓh(y)), this label also
specifies

CID(h(y), G \ {x, y}), conn(h(y), h(x), G \ {x, y}),

and since w, h(y) are xy-connected we can replace h(y) by w in these values, and report
them to guarantee property (P). Otherwise, we deduce (by a symmetric argument) that
w and h(x) = z are xy-connected, so we are done. This concludes the decoding algorithm
for property (P). Finally, by Lemma 11, we obtain:
▶ Lemma 13. There are O(log3 n)-bit labels Lind supporting the independent failures case.

3.3 Two Failures are Dependent
In this section, we consider the complementary case where x and y are dependent. As
previously discussed, our strategy is based on reducing the general dependent-failures case to
the well-structured configuration of the all-heavy case:

▶ Definition 14. A query of vertices ⟨u, v, x, y⟩ is said to be all-heavy (AH) if u, v, y ∈ Th(x).

We first handle this configuration in Section 3.3.1 by defining sub-labels LAH that are tailored
to handle it. Then, Section 3.3.2 considers the general dependent-failures case.

3.3.1 The All-Heavy (AH) Case
Construction of LAH Labels. We observe another useful property of single-fault replacement
paths. For a vertex a ∈ V with an a-s replacement path P = Pa,s,par(a), let fa ∈ P be the
first (closest to a) vertex in T [s, par(a)).

▶ Observation 15. Pa,s,par(a) = Q ◦ T [fa, s] where Q avoids T [s, par(a)].

DISC 2022

32:12 Õptimal Dual Vertex Failure Connectivity Labels

𝑠 𝑥 ℎ(𝑥) 𝑝𝑎𝑟(𝑦) 𝑦 𝑦′ 𝑤𝑓௬ᇲ

𝑄up down

Figure 3 Illustration of the proof of Claim 16. The tree path from s to w is shown sideways,
where the depth increases from left to right. The path Q appears in green.

We are now ready to define the LAH labels. These are constructed by Algorithm 3. The label
length of O(log2 n) bits follows by Lemma 7.

Algorithm 3 Construction of label LAH(a) for vertex a.

1 for each b′ ∈ I(a) with par(b′) = b do
2 store vertices b, b′, fb′ ;
3 store conn(b′, par(b), G \ {b, fb′}), CID(b′, G \ T [s, b]);

Decoding Algorithm for (AH) Case. Assume we are given an (AH)-query ⟨u, v, x, y⟩ along
with the LAH labels of these vertices. The main idea behind the construction of the LAH
labels is to have:

▷ Claim 16. If w ∈ {u, v} is a descendant of y, then given the LAH labels of w, x, y, one can:
(1) find CID(w, G \ T [s, y]), and
(2) determine whether w and par(y) are xy-connected.

Proof. Let y′ be the child of y on T [y, w]. Then y′, w are xy-connected as T [y′, w] is fault-free.
Hence, in the following we can replace w by y′ for determining both (1) and (2). Also,
as w, y′ are (particularly) y-connected, and w, s are y-connected by (C1), we have that
y′, s are y-connected, so fy′ is well-defined. By Lemma 8, it holds that y′ ∈ I(w) ∪ I(y),
hence the triplet b = y, b′ = y′ and fb′ = fy′ is stored either in LAH(w) or in LAH(y). The
same label also includes CID(y′, G \ T [s, y]), so (1) follows. We also find there the value
conn(y′, par(y), G \ {y, fy′}). Note that if fy′ = x, then (2) follows as well. Assume now
that fy′ ̸= x. By Observation 15, the path Py′,s,y is of the form Q ◦ T [fy′ , s] where Q avoids
T [s, y]. We now observe that fy′ /∈ T [s, x): this follows as otherwise, the w-s path given by
T [w, y′] ◦ Q ◦ T [fy′ , s] is failure-free, contradicting (C2). As fy′ is, by definition, a vertex in
T [s, y), it follows that fy′ ∈ T (x, y). The y′-par(y) path Q ◦ T [fy′ , par(y)] now certifies that
y′, par(y) are xy-connected, which gives (2). See illustration in Figure 3. ◁

We next show how to use Claim 16 for determining the xy-connectivity of u, v. The proof
divides into three cases according to the ancestry relations between u, v and y.

Case 1: Neither of u, v is a descendant of y. Then y /∈ T [u, v]. Since both u, v ∈ Th(x),
also x /∈ T [u, v]. Thus u, v are xy-connected, and we are done.

Case 2: Only one of u, v is a descendant of y. W.l.o.g., assume the descendant is u. Then
y ̸= h(x), as otherwise v would also be a descendant of y. It follows that par(y) ∈ Th(x).
Hence T [par(y), v] ⊆ Th(x), so it avoids x. It also avoids y, as T [par(y), v] contains only
ancestors of par(y) or of v. Thus, v, par(y) are xy-connected. Finally, we use Claim 16(2)
with w = u to determine the xy-connectivity of u, par(y), or equivalently of u, v.

M. Parter and A. Petruschka 32:13

Case 3: Both u, v are descendants of y. We apply Claim 16 twice, with w = u and w = v.
Using (2), we check for both u and v if they are xy-connected to par(y). The only
situation in which we cannot infer the xy-connectivity of u, v is when both answers are
negative. When this happens, we exploit (1) and compare the component IDs of u, v

in G \ T [s, y]. If they are equal, then clearly u, v are xy-connected as x, y ∈ T [s, y].
Otherwise, we assert that we can safely determine that u, v are xy-disconnected.

▷ Claim 17. If (i) both u and v are xy-disconnected from par(y), and (ii) u and v are
T [s, y]-disconnected, then u, v are xy-disconnected.

Proof. Assume towards a contradiction that there exists a u-v path P in G \ {x, y}. By (ii),
P must intersect T [s, y]. Let a be a vertex in P ∩ T [s, y]. As a /∈ {x, y}, it holds that either
a ∈ T [s, x) or a ∈ T (x, y). If a ∈ T [s, x), then the path P [u, a] ◦ T [a, s] connects u to s

in G \ {x, y}, but this contradicts (C2). If a ∈ T (x, y), then the path P [u, a] ◦ T [a, par(y)]
connects u to par(y) in G \ {x, y}, contradicting (i). ◁

This concludes the decoding algorithm for the (AH) case, and proves:

▶ Lemma 18. There exist O(log2 n)-bit labels LAH supporting the all-heavy (AH) case.

3.3.2 The General Dependent-Failures Case

We assume w.l.o.g. that y is a descendant9 of x in T . Condition (C2) implies that both u

and v are also descendants of x. Recall that our general strategy is reducing to the (AH)
case, as follows. First, the case where y is not in Th(x) is handled by using 1-VFT labels
in the graph G \ {x}, which enable us to determine directly whether u, v are connected in
(G \ {x}) \ {y} = G \ {x, y}. In the remaining case where y ∈ Th(x), we show how to “replace”
u, v by xy-analogs: vertices û, v̂ that are xy-connected to u, v (respectively), and lie inside
Th(x). Thus, the query ⟨û, v̂, x, y⟩ is an analogous (AH)-query to answer.

Construction of Ldep Labels. The construction is based on defining, for any given vertex a

and ancestor b of a, a small set of vertices from Th(b), serving as candidates to be bc-analogs
of a for any c ∈ Th(b).

▶ Definition 19 (Analog Sets). For a, b ∈ V such that b is an ancestor of a in T , the analog
set AnSet(a, b) consists of two (arbitrary) distinct vertices c1, c2 with the following property:
ci ∈ Th(b) and there exists an a-ci path avoiding T +

h(b) \ {ci}. If there is only one such vertex,
then AnSet(a, b) is the singleton containing it, and if there are none then AnSet(a, b) = ∅.

The Ldep labels are constructed by Algorithm 4. We use the notation L1F(a, G′) to denote
the 1-VFT label of a ∈ V from Theorem 1 constructed w.r.t the subgraph G′ ⊆ G. The label
length of O(log3 n) bits follows by Lemma 7, Theorem 1 and Lemma 18.

Decoding Algorithm for Dependent Failures. Assume we are given a dependent-failures
query ⟨u, v, x, y⟩ where y is a descendant of x, along with the Ldep labels. We first treat the
easier case where x is a light ancestor of y using the 1-VFT labels in G \ {x}.

9 We can check this using the extended IDs, and swap the roles of x in y if needed.

DISC 2022

32:14 Õptimal Dual Vertex Failure Connectivity Labels

Algorithm 4 Construction of label Ldep(a) for vertex a.

1 store LAH(a);
2 for each b′ ∈ I(a) with par(b′) = b do
3 store vertices b, b′;
4 store L1F(a, G \ {b}), L1F(b′, G \ {b});
5 store vertex set AnSet(a, b), and LAH(ci) for each ci ∈ AnSet(a, b);
6 store CID(a, G \ T +

h(b));

Case: x is a light ancestor of y. Then the child xy of x on the path T [x, y] is light, hence
xy ∈ I(y). Therefore, the label of y contains the 1-VFT label L1F(y, G \ {x}). Let xu be
the child of x on the path T [x, u], and define

ũ =
{

if xu is light: u,

if xu is heavy: xu = h(x).

▷ Claim 20. It holds that (i) ũ is xy-connected to u, and (ii) one can find L1F(ũ, G \ {x}).

Proof. If xu is light: Then (i) is trivial. For (ii), note that xu ∈ I(u), hence the 1-VFT label
of ũ = u with respect to G \ {x}, which is L1F(u, G \ {x}), is stored in Ldep(u).

If xu is heavy: Then xu ̸= xy, hence the path T [xu, u] is failure-free, which proves (i).
For (ii), note that xu = h(x) ∈ I(x), hence the 1-VFT label of ũ = h(x) with respect to
G \ {x}, which is L1F(h(x), G \ {x}), is stored in Ldep(x). ◁
We define ṽ and find its 1-VFT label with respect to G \ {x} in a similar fashion. Finally,
we use the 1-VFT labels to answer the single failure query ⟨ũ, ṽ, y⟩ with respect to the graph
G \ {x}, which determines the xy-connectivity of ũ, ṽ, or equivalently of u, v. So in this case,
the decoding algorithm directly determine the xy-connectivity of u, v, and we are done.

From now on, we assume that x is a heavy ancestor of y, or equivalently that y ∈ Th(x).

Replacing u, v with their xy-analogs. In the following, we restrict our attention to u (and
the same can be applied to v). Again, let xu be the child of x on T [s, u]. The xy-analog û of
u is defined as:

û =

if xu is heavy: u,

if xu is light and AnSet(u, x) \ {y} ̸= ∅: c ∈ AnSet(u, x) \ {y},

if xu is light and AnSet(u, x) \ {y} = ∅: undefined.

The corner case where û is undefined can be alternatively described as follows:
(C4) xu is light, and no c ∈ Th(x) \ {y} is connected to u by a path internally avoiding T +

h(x).
The key observation for handling case (C4) is:

▷ Claim 21. If (C4) holds, then:
(1) For any vertex c ∈ Th(x) \ {y}, u and c are xy-disconnected.
(2) For any vertex c /∈ Th(x) ∪{x, y}, u and c are xy-connected iff they are T +

h(x)-connected.

Proof. For (1), assume towards a contradiction that there exists a u-c path P in G \ {x, y}.
Let c′ be the first (closest to u) vertex from Th(x) appearing in P . Since c′ ≠ y, and the
subpath P [u, c′] internally avoids T +

h(x), we get a contradiction to (C4).

M. Parter and A. Petruschka 32:15

The “if” direction of (2) is trivial as {x, y} ⊆ T +
h(x). For the “only if” direction, let P be

a u-c path in G \ {x, y}. It suffices to prove that P avoids Th(x), but this follows directly
from (1). ◁

We handle case (C4) as follows. If v ∈ Th(x), then by Claim 21(1) we determine that u, v are
xy-disconnected, and we are done. Else, the child xv of x on T [x, v] is light, hence xv ∈ I(v).
Therefore Ldep(v) contains CID(v, G \ T +

h(x)) (set a = v, b = x and b′ = xv). As xu is also
light by (C4), we can find CID(u, G \ T +

h(x)) in a similar fashion. By Claim 21(2), comparing
these CIDs allows us to determine the xy-connectivity of u, v, and we are done again.

If the corner case (C4) does not hold, then û is indeed a valid xy-analog of u. Namely:

▷ Claim 22. If û is defined, then (i) û ∈ Th(x), (ii) u, û are xy-connected, and (iii) one can
find the label LAH(û).

Proof. If xu is heavy: Then (i) and (ii) are trivial. For (iii) we simply note that Ldep(u)
stores LAH(u).

If xu is light and AnSet(u, x) \ {y} ≠ ∅: Then û ∈ AnSet(u, x) \ {y}. By definition of
AnSet(u, x) it holds that û ∈ Th(x), which gives (i), and that there is a u-û path avoiding
T +

h(x) \{û}, and consequently also {x, y}, which gives (ii). For (iii), we note that as xu is light
it holds that xu ∈ I(u). Thus, Ldep(u) stores the LAH labels of the vertices in AnSet(u, x),
and in particular stores LAH(û). ◁

Finalizing. We have shown a procedure that either determines directly the xy-connectivity
of u, v, or certifies that y ∈ Th(x) and finds xy-analogs û, v̂ ∈ Th(x) of u, v (respectively)
along with their (AH)-labels LAH(û), LAH(v̂). In the latter case, we answer the (AH)-query
⟨û, v̂, x, y⟩ using the LAH labels10 and determine the xy-connectivity of û, v̂, or equivalently
of u, v. This concludes the decoding algorithm for dependent failures. We therefore have:

▶ Lemma 23. There exists O(log3 n)-bit labels Ldep supporting the dependent failures case.

By combining the Ldep labels of Lemma 23 with the Lind labels of Lemma 13, we obtain
the 2-VFT labels of Theorem 2. The preprocessing time analysis is found in the full version.

References
1 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles

for planar graphs via forbidden-set distance labels. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 1199–1218, 2012.

2 Ittai Abraham, Shiri Chechik, Cyril Gavoille, and David Peleg. Forbidden-set distance labels
for graphs of bounded doubling dimension. ACM Trans. Algorithms, 12(2):22:1–22:17, 2016.

3 Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate
single source fault tolerant shortest path. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1901–1915. SIAM, 2018.

4 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended abstract).
In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989, pages 436–441. IEEE Computer Society,
1989.

10 LAH(x) and LAH(y) are stored in Ldep(x) and Ldep(y) respectively.

DISC 2022

32:16 Õptimal Dual Vertex Failure Connectivity Labels

5 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with spqr-trees. Algorithmica, 15(4):302–318, 1996.

6 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022. doi:10.48550/arXiv.2203.00671.

7 Joseph Cheriyan, Ming-Yang Kao, and Ramakrishna Thurimella. Scan-first search and sparse
certificates: an improved parallel algorithm for k-vertex connectivity. SIAM Journal on
Computing, 22(1):157–174, 1993.

8 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis Chatzigianna-
kis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 130:1–130:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

9 Bruno Courcelle and Andrew Twigg. Compact forbidden-set routing. In STACS 2007, 24th
Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February
22-24, 2007, Proceedings, pages 37–48, 2007.

10 Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed
weighted min-cut in nearly-optimal time. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 1144–1153. ACM, 2021.

11 Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 445–455.
ACM, 2021.

12 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 506–515. SIAM,
2009.

13 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 490–509, 2017.

14 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. SIAM
J. Comput., 49(6):1363–1396, 2020.

15 Maciej Duleba, Pawel Gawrychowski, and Wojciech Janczewski. Efficient labeling for reach-
ability in directed acyclic graphs. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors,
31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18,
2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 27:1–27:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

16 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n) time. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

17 Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-vertex con-
nectivity in directed graphs. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 605–616. Springer, 2015.

18 Loukas Georgiadis and Robert Endre Tarjan. Dominators, directed bipolar orders, and
independent spanning trees. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture
Notes in Computer Science, pages 375–386. Springer, 2012.

https://doi.org/10.48550/arXiv.2203.00671

M. Parter and A. Petruschka 32:17

19 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260–1279. SIAM, 2020.

20 Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In Alessia
Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed
Computing, Salerno, Italy, July 25 - 29, 2022, pages 281–291. ACM, 2022.

21 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 127:1–127:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

22 Zhiyang He, Jason Li, and Magnus Wahlström. Near-linear-time, optimal vertex cut sparsifiers
in directed acyclic graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors,
29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 52:1–52:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

23 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

24 Arkady Kanevsky, Roberto Tamassia, Giuseppe Di Battista, and Jianer Chen. On-line
maintenance of the four-connected components of a graph (extended abstract). In 32nd Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991,
pages 793–801. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185451.

25 Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992.

26 David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21–30.
ACM/SIAM, 1993.

27 Neelesh Khanna and Surender Baswana. Approximate shortest paths avoiding a failed vertex:
Optimal size data structures for unweighted graph. In 27th International Symposium on
Theoretical Aspects of Computer Science-STACS 2010, pages 513–524, 2010.

28 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Samir Khuller
and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 317–329. ACM, 2021.

29 Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. Break-
ing quadratic time for small vertex connectivity and an approximation scheme. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 241–252.
ACM, 2019.

30 Merav Parter. Dual failure resilient bfs structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, pages 481–490, 2015.

31 Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In 33rd
International Symposium on Distributed Computing, 2019.

32 Merav Parter. Distributed constructions of dual-failure fault-tolerant distance preservers. In
Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 21:1–21:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

33 Merav Parter and Asaf Petruschka. Near-optimal distributed computation of small vertex
cuts. In 36th International Symposium on Distributed Computing DISC, 2022.

DISC 2022

https://doi.org/10.1109/SFCS.1991.185451

32:18 Õptimal Dual Vertex Failure Connectivity Labels

34 Seth Pettie and Longhui Yin. The structure of minimum vertex cuts. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 105:1–105:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

35 David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space
sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.

36 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983.

37 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000.

A Sublinear f -VFT Labels

In this section, we provide an f -VFT labeling scheme with sublinear size for any f =
o(log log n). Note that labels of near-linear size are directly obtained by the f -EFT labeling
scheme of [11] (e.g., by including in the labels of a vertex, the EFT-labels of all its incident
edges). We show:

▶ Theorem 24 (f -VFT Labels with Sublinear Size). For every n-vertex graph G = (V, E)
and fixed parameter f = o(log log n), there is a polynomial time randomized algorithm for
computing f -VFT labels of size Õ(n1−1/2f−2). For every query ⟨u, v, F ⟩ for F ⊆ V , |F | ≤ f ,
the correctness holds w.h.p.

We use the EFT-labeling scheme of Dory and Parter [11], whose label size is independent
in the number of faults. The correctness guarantee holds w.h.p. for a polynomial number of
queries.

▶ Theorem 25 (Slight Restatement of Theorem 3.7 in [11]). For every undirected n-vertex
graph G = (V, E), there is a randomized EFT connectivity labeling scheme with labels
EL : V ∪ E → {0, 1}ℓ of length ℓ = O(log3 n) bits (independent in the number of faults). For
a given triplet along w the EL labels of u, v ∈ V and every edge set F ⊆ E, the decoding
algorithm determines, w.h.p., if u and v are connected in G \ F .

The Labels. Our starting observation is that one can assume, w.l.o.g., that |E(G)| ≤ fn

edges. This holds as it is always sufficient to apply the labeling scheme on the sparse f

(vertex) connectivity certificate of G, which has at most fn edges, see e.g., [7]. The labeling
scheme is inductive where the construction of f -VFT labels is based on the construction of
(f − 1) VFT labels given by the induction assumption. For the base of the induction (f = 2),
we use the 2-VFT labels of Theorem 2. The approach is then based on dividing the vertices
into high-degree and low-degree vertices based on a degree threshold ∆ = 2f · n1−1/2f−2 .
Formally, let VH be all vertices with degree at least ∆. By our assumption, the number of
high-degree vertices is at most |VH | ≤ O(fn/∆). Letting EL(·) denote that f -EFT labeling
scheme of Theorem 25 by [11], the f -VFT label of v is given by Algorithm 5.

The Decoding Algorithm. Consider a query ⟨u, v, F ⟩ ∈ V × V × V ≤f . We distinguish
between two cases, based on the degrees of the faults F in the graph G. Assume first that
there exists at least one high-degree vertex x ∈ F ∩ VH . In this case, the labels of every
w ∈ {u, v} ∪ (F \ {x}) includes the (f − 1) VFT label in G \ {x}, namely, VLf−1(v, G \ {w}).
We can then determine the F -connectivity of u,v using the decoding algorithm of the (f − 1)-
VFT labels (given by the induction assumption). It remains to consider the case where all

M. Parter and A. Petruschka 32:19

Algorithm 5 Construction of label VLf(v) of for vertex v.

1 store EL(v);
2 for each x ∈ VH do
3 store VLf−1(v, G \ {x});
4 if v ∈ V \ VH then
5 store EL(e = (u, v)) for every adjecent edge (u, v) ∈ G;

vertices have low-degrees. In this case, the VFT-labels include the EFT-labels of u, v, and
all failed edges, incident to the failed vertices. This holds as the label of every failed vertex
x ∈ F contains EL(e = (x, z)) for each of its incident edges (x, z) in G. This allows us to
apply the decoding algorithm of Theorem 24 in a black-box manner.

Label Size. We now turn to bound the label size. For every f ≤ n, let σV (f, n), σE(n) be
an upper bound on f -VFT (resp., EFT) labels for n-vertex graphs. Assume by induction on
g ≤ f − 1 that

σV (g, n) = 2g−2 · g · n1−1/2g−2
· c · log3 n , (1)

where c · log3 n is the bound on the EFT labels of Theorem 25. This clearly holds for g = 2
(by Theorem 2). Denote the length of the f -VFT label for vertex v by |VLf(v)|. By taking
∆(f, n) = 2f · n1−1/2f−2 to be the degree threshold ∆ in our f -VFT label construction, and
using Eq. (1), we have:

|VLf(v)| ≤ σV (f − 1, n − 1) · (2nf/∆(f, n)) + ∆(f, n) · σE(f, n) ≤ σV (f, n) .

This satisfies the induction step and provides a bound of σV (f, n) = Õ(n1−1/2f−2) for every
f = o(log log n), as desired. Theorem 24 follows.

DISC 2022

Safe Permissionless Consensus
Youer Pu
Cornell University, Ithaca, NY, USA

Lorenzo Alvisi
Cornell University, Ithaca, NY, USA

Ittay Eyal
Technion, Haifa, Israel

Abstract
Nakamoto’s consensus protocol works in a permissionless model, where nodes can join and leave
without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a
necessary concession to the severe demands of supporting a permissionless model? This paper shows
that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless con-
sensus algorithm that guarantees deterministic agreement and termination with probability 1 under
general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication
model, where, at all times, a majority of nodes (though their number is unknown) are correct and
synchronously connected, and allows nodes to join and leave at any time.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Consensus, Permissionless, Nakamoto, Deterministic Safety

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.33

Related Version Full Version: https://eprint.iacr.org/2022/796.pdf [25]

Funding This work was supported in part by the NSF grant CNS-CORE 2106954, BSF and IC3.

1 Introduction

The publication of Bitcoin’s white paper [22], besides jumpstarting an industry whose
market is expected to reach over $67B by 2026 [27], presented the distributed computing
community with a fundamental question [12]: how should the agreement protocol at the
core of Nakamoto’s blockchain construction (henceforth, Nakamoto’s Consensus or NC) be
understood in light of the combination of consensus and state machine replication that the
community has studied for over 30 years? The similarities are striking: in both cases, the
goal is to create an append-only distributed ledger that everyone agrees upon, which NC calls
a blockchain. But so are the differences. Unlike traditional consensus algorithms, where the
set of participants n is known and can only be changed by running an explicit reconfiguration
protocol, Nakamoto’s consensus is permissionless: it does not enforce access control and
allows the number and identity of participants to change without notice. It only assumes
that the computing power of the entire system is bounded, which effectively translates to
assuming the existence of an upper bound N on the number of participants. 1

To operate under these much weaker assumptions, NC adopts a new mechanism for
reaching agreement: since the precise value of n is unknown, NC forsakes explicit majority
voting and relies instead on a Proof of Work (PoW) lottery mechanism [22], designed to

1 The bound can be trivial, e.g., equal to the number of atoms in the Universe, but it needs to exist;
otherwise, if it would be possible for a large, unknown group of nodes to be secretly adding blocks onto
a different branch of the blockchain, and Nakamoto’s decisions would never be, even probabilistically,
safe.

© Youer Pu, Lorenzo Alvisi, and Ittay Eyal;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://eprint.iacr.org/2022/796.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Safe Permissionless Consensus

drive agreement towards the blockchain whose construction required the majority of the
computational power of all participants. Finally, whereas traditional consensus protocols
guarantee agreement deterministically, NC can do so only probabilistically; furthermore, that
probability approaches 1 only as termination time approaches infinity. Is settling for these
weaker guarantees the inevitable price of running consensus in a permissionless setting?

In this paper we show that, at least in a benign failure model, one can do much better.
We present Sandglass, a permissionless consensus algorithm that guarantees deterministic
agreement and terminates with probability 1. It operates in a model based on Nakamoto’s.
Our model allows an arbitrary number of participants to join and leave the system at any
time and stipulates that at no time the number of participants exceeds an upper bound N
(though the actual number n of participants at any given time is unknown). Further, like
Nakamoto’s, it is hybrid synchronous, in that, at all times, a majority of participants are
correct and able to communicate synchronously with one another. We call these participants
good; our protocol’s safety and liveness guarantees apply to them. Participants that are not
good (whether because they crash, perform omission failures, and/or experience asynchronous
network connections) we call defective. Sandglass proceeds in asynchronous rounds, with a
structure surprisingly reminiscent of Ben-Or’s classic consensus protocol [3]. Let’s review
it. Nodes propose a value by broadcasting it; in the first round, each node proposes its
initial value; in subsequent rounds, nodes propose a value chosen among those received in the
previous round. Values come with an associated priority, initialized to 0. The priority of v

depends on the number of consecutive rounds during which v was the only value received by
the node proposing v – whenever a node receives a value other than v, it resets v’s priority
back to 0. When proposing a value in a given round, node p selects the highest priority
value received in the previous round; if multiple values have the same priority, then it selects
randomly among them. A node can safely decide a value v after sufficiently many consecutive
rounds in which the proposals it receives unanimously endorse v (i.e., when v’s priority is
sufficiently high); and termination follows from the non-zero probability that the necessary
sequence of unanimous, consecutive rounds will actually eventually occur.

Of course, embedding this structure in a permissionless setting introduces unprecedented
challenges. Consider, for example, how nodes decide. In Ben-Or, a node decides v after
observing two consecutive, unanimous endorsements of v; it can do so safely because any two
majority sets of its fixed set of n nodes intersect in at least one correct node. This approach
is clearly no longer feasible in a permissionless setting, where n is unknown and the set of
nodes can change at any time.

Instead, Sandglass’s approach to establish safety is inspired by one of the key properties of
Nakamoto’s PoW: whatever the value of n, whatever the identity of the nodes participating
in the protocol at any time, the synchronously connected majority of good nodes will, in
expectation, be faster than the remaining nodes in adding a new block to the blockchain.

Think now of adding a block b at position i of the blockchain as implicitly starting a
new round of consensus for all the chain’s positions that precede i; for each position, the
new round proposes the corresponding block in the hash chain that ends at b. In this light,
the greater speed in adding blocks that PoW promises to the majority of connected nodes
translates into these nodes moving faster from one asynchronous round to the next in each
of the consensus instances.

This insight suggests an alternative avenue for achieving deterministic consensus among
good nodes – without relying on quorum intersection. Node p should decide on a value v

only after it has seen v unanimously endorsed for sufficiently many rounds that, if p is good,
the lead p (and all other good nodes) have gained over any defective node q proposing some
other value is so large that q’s proposals can no longer affect the proposal of good nodes.

Y. Pu, L. Alvisi, and I. Eyal 33:3

Why can’t the same approach be used to achieve deterministic consensus in Nakamoto’s
original protocol? Because Nakamoto’s PoW mechanism, notwithstanding its name, is an
indirect and imperfect vehicle for proving work. As evidence of performed work, Nakamoto
presents the solution to a puzzle: this solution, however, could just have been produced as
a result of a lucky guess. Thus, however unlikely, it is always possible in NC for defective
nodes proposing a value other than v to catch up with, or even overtake, good nodes and
reverse their decisions.

To avoid this danger, Sandglass relies on a different PoW mechanism, which ties the
ability to propose a value to a deterministic amount of work. In particular, Sandglass nodes
can propose a value in any round other than the first only after they have received a specific
threshold of messages from the previous round. Therefore, each proposed value implicitly
represents all the work required to generate the messages needed to clear the threshold. The
threshold value is chosen as a function of the upper bound N on the number of nodes that
at any time run the protocol, in such a way that, whatever is their actual number n, any
node that does not receive messages from good nodes will inevitably take longer than them
in moving from round to round.

The full power of this PoW mechanism, however, comes from pairing it with the idea,
which we borrow from Ben Or, of associating a priority with the values being proposed. With
a fixed set of n nodes, Ben Or leverages priorities and quorum intersection to safely decide a
value v once it has reached priority 2, because it can guarantee that henceforth every node
executing in the same round as a correct node will propose v. In a permissionless setting,
we show that the combination of priorities and our PoW mechanism allows Sandglass to
offer good nodes the same guarantee (though, as we will see, v will be required to reach a
significantly higher priority value!). Intuitively, by the time v reaches the priority necessary
to decide, any node q that manages not to fall behind (and thus become irrelevant) to the
unanimous majority of good nodes who have kept proposing v must have received some of the
messages proposing v from some good nodes. Furthermore, to keep up, q must have received
such messages often enough that, given how the priority of received values determines what
a node can propose, it would be impossible for q to propose any value other than v.

In summary, this paper makes the following contributions: (i) it formalizes Nakamoto’s
permissionless model in the vocabulary of traditional consensus analysis; (ii) it introduces
novel proof strategies suitable for this new model; (iii) it exposes the connection between PoW
and a voting mechanism that can be implemented by message passing; and (iv) it introduces
Sandglass, the first protocol that achieves deterministic agreement in a permissionless setting
under hybrid synchrony.

2 Related work

The consensus problem has been studied for decades, covering both benign and Byzantine
faults under different synchrony assumptions. Common across these classic works is the
assumption that the set of nodes that participate in running the protocol is either constant
or changes through an agreement among the incumbents (reconfiguration). In contrast,
Sandglass allows for participants to change arbitrarily and without any coordination, as long
as at all times a majority of nodes is correct and synchronously connected. More recent
papers also explore models where participants can change dynamically at any time, subject to
guarantees of well-behaved majority; unlike Sandglass, those works achieve only probabilistic
safety guarantees. We briefly review related prior work in more detail below.

DISC 2022

33:4 Safe Permissionless Consensus

The permissionless nature of our model implies that consensus solutions for classical
models (e.g., [13]) do not apply. For synchronous networks, previous solutions rely on
the fact that the number of failures is bounded in a period of time. They tolerate up
to (n − 1) benign failures [29] or Byzantine failures with authentication [7, 18]. For an
asynchronous network, Fisher, Lynch, and Paterson [8] show that it is impossible to solve
consensus with deterministic safety and liveness even with a single crash failure. Various
protocols (e.g., [16, 26, 28]) thus either solve asynchronous consensus with weaker liveness
guarantees than deterministic termination, or provide deterministic termination after a Global
Stabilization Time (GST) (e.g., [4]). They use logical rounds, and for each round collect
messages from a sufficient number of (authenticated) nodes, tolerating fewer than n

2 failures in
a benign failure model [3, 17], and n

3 failures with Byzantine failures and authentication [4, 31].
Although our model is not directly comparable, we note that our protocol matches the (n/2)
bound of a benign model in an asynchronous network, despite assuming synchrony among
good nodes.

Aspnes et al. [2] explore the consensus problem in an asynchronous benign model where
an unbounded number of nodes can join and leave [9], but where at least one node is required
to live forever, or until termination. It is easy to see that in their model, but without this
latter assumption, deterministic safety is impossible. In contrast, Sandglass, in a hybrid
synchronous model, guarantees deterministic safety while allowing all nodes to freely join
and leave.

Consider two groups of good nodes with different initial values running from t = 0, with
messages within the groups delivered immediately, but messages between the two groups are
delayed until at least one in each group decides. By validity of consensus, the two groups
will decide on different values, which violates agreement.

A newer line of work, starting with Nakamoto [22], studies systems where principals can
unilaterally join or leave without notifying previous participants. These protocols (e.g., [21,
30]) are based on probabilistic assumptions and provide probabilistic guarantees. Specifically,
participation is based on probabilistic proofs of work, and the assumption that no minority
can find most proofs of work in a long period. They provide safety with high probability,
given a sufficiently long running time (latency) [6, 15, 23, 10]. Nonetheless, they are all based
on probabilistic techniques and provide probabilistic guarantees, which cannot be directly
translated to deterministic guarantees.

Several protocols, inspired by the PoW approach, achieve consensus among a large group
of principals while requiring the active participation of only a subset of them. In the Sleepy
Model [24] participants join and leave (“sleep”); the assumptions and guarantees of the
consensus protocol presented for this model are as probabilistic as those of pure proof of
work. Momose and Ren [20] present a consensus protocol in the Sleepy Model with constant
latency and deterministic agreement; however, their protocol does not guarantee progress
until the participation is stable. Ouroboros [14, 5] forms a chain in the spirit of PoW but
using internal tokens for the random choice of participants, again leading to probabilistic
guarantees. In Algorand [11], committees elect one another in a series of reconfigurations,
with assumptions and guarantees similar to classical consensus, except that participants are
chosen at random from a large pool, with a negligible probability of a Byzantine majority –
again, providing probabilistic guarantees.

In contrast, despite its permissionless model, our protocol guarantees deterministic safety
and terminates with probability 1. We note other differences: Sandglass’s failure model
assumes only benign failure and is thus stronger than the Byzantine model adopted by many
of these works, but its network assumptions are weaker, as defective nodes can experience
asynchronous communication, and all nodes can join or leave instantaneously.

Y. Pu, L. Alvisi, and I. Eyal 33:5

Abraham and Malkhi [1] formalize Nakamoto’s Consensus within a classical disturbed
systems framework, and in particular abstract the PoW primitive as a Pre-Commit, Non-
Equivocation, Leader Election (PCNELE) Oracle. However, the power of this probabilistic
oracle is similar to that of Nakamoto’s PoW and yields a consensus protocol that provides
only probabilistic guarantees as Nakamoto.

Lewis-Pye and Roughgarden [19] show that deterministic consensus cannot be achieved in
a permissionless synchronous model with Byzantine nodes, let alone in a partially synchronous
model (where communication becomes synchronous only after some point unknown to the
processes). Sandglass shows, for the first time, that deterministic safety and termination
with probability 1 can be achieved in a permissionless model, though the network is hybrid-
synchronous rather than synchronous. The exploration of a Byzantine model remains for
future work.

3 Model

The system comprises an infinite set of nodes p1, p2, Time progresses in discrete steps;
in each step, a subset of the nodes is active and the rest are inactive. At each step, active
nodes are partitioned into good and defective subsets.

We assue a hybrid synchronous model. Good nodes are correct, and the network that
connects them to one another is synchronous; at all times, a majority of active nodes are
good. Defective nodes may suffer from benign failures, such as crashes and omission failures,
or simply lack a synchronous connection with some good node.

The system progress is orchestrated by a scheduler. In each step, the scheduler can
activate any inactive node pi (we say that pi has joined the system) and deactivate an active
node (which then leaves the system). The scheduler chooses which nodes to activate and
deactivate arbitrarily, subject only to the following three constraints: (i) The upper bound
of active nodes in any step is N ; (ii) there is at least one active node in every step; and (iii)
in every step the majority of active nodes is good.

In each step where it is active, each node pi executes the stateful protocol shown as
procedure Step in Sandglass’s pseudocode (see Algorithm 1). It can execute computations,
update its state variables, and communicate with other nodes with a broadcast network.
In particular, since Sandglass assumes benign failures, every active node, whether good or
defective, waits for a full step to elapse before sending its next message.

The network allows each active node to broadcast and receive unauthenticated messages.
Node pi broadcasts a message m with a Broadcasti(m) instruction and receives messages
broadcast by itself and others with a Receivei instruction. The network does not generate or
duplicate messages, i.e., if in step t a node pi receives message m with Receivei, then m was
sent in some step t′ < t.

The communication model is designed to capture the design of Nakamoto’s consensus,
which relies on an underlying network layer to propagate and store blocks. Nakamoto’s
network layer provides a shared storage of data structures, called blocks, and guarantees
delivery of published blocks within a bounded time. Each block includes cryptographically
secure references to all blocks seen by its creator. This allows a newly joined node to receive
and validate the entire history of published blocks. Thus, in our model, the scheduler
determines when each message is delivered to each node under the following constraints.

First, propagation time is bounded between any pair of good nodes. Formally: if a good
node pi calls Broadcasti(m) in step t, and if a good node pj calls Receivej in step t′ > t,
then m is returned, unless it was already received by pj in an earlier call to Receivej . Thus,
a newly activated good node is guaranteed, upon executing its first Receive, to receive all
messages from other good nodes broadcast in the steps prior to its activation.

DISC 2022

33:6 Safe Permissionless Consensus

Second, the network is reliable, but there is no delivery bound unless both nodes are
good. Formally: For any two nodes pi and pj , where at least one of pi and pj is defective,
and for a message m broadcast by pi, if node pj calls Receivej infinitely many times, then m

is eventually delivered.
Each node is initiated when joining the system with an initial value vi ∈ {a, b}. An active

node pi can decide by calling a Decidei(v) instruction for some value v. The goal of the
nodes is to reach a consensus based on these values:

▶ Definition 1 (Agreement). If a good node decides a value v, then no good node decides a
value other than v.

▶ Definition 2 (Validity). If all nodes that ever join the system have initial value v and any
node (whether good or defective) decides, then it decides v.

▶ Definition 3 (Termination). Every good node that remains active eventually decides.

4 Protocol

To form an intuition for the mechanics of Sandglass, it is useful to compare and contrast
it with Ben-Or. From a distance, the high-level structure of the two protocols is strikingly
similar: execution proceeds in asynchronous rounds; progress to the next round depends
on collecting a threshold of messages sent in the current round; safety and liveness depend
on the correctness of a majority of nodes; and nodes decide a value v when, for sufficiently
many consecutive rounds, all the messages they collect propose v. But looking a little closer,
the differences are equally striking. On the one hand, Sandglass’s notion of node correctness
and its hybrid synchronous model are stronger than Ben-Or’s. Sandglass assumes a majority
of good nodes that are not only free from crashes and omissions, but also synchronously
connected to one another. On the other hand, in Sandglass, unlike Ben-Or, the number n of
nodes running the protocol is not only unknown, but may be changing all the time. These
differences motivate four key aspects that separate the two protocols:
Choosing a threshold In Ben-Or, a node advances to a new round only after having received

a message from a majority of nodes. This strict condition for achieving progress is critical
to how Ben-Or establishes Agreement. Any node that, from a majority of the nodes in
round r, receives a set of messages that unanimously propose v, can be certain that (i)
there cannot exist in r also a unanimous majority proposing a value other than v and (ii)
no node can proceed to round (r + 1) unaware that v is among the values proposed in
round r. Nodes that isolate themselves from a majority simply do not make any progress;
and since all majority sets intersect, nodes cannot make contradictory decisions.
Unfortunately, this approach is unworkable in Sandglass: when the cardinality and
membership of the majority set can change at any time, receiving messages from a
majority can no longer serve as a binary switch to trigger progress. More generally,
thresholds based on the cardinality of the set of nodes from which one receives messages
become meaningless. Instead, Sandglass allows nodes to broadcast multiple messages
during a round, one in each of the round’s steps, and lets nodes move to round (r + 1)
once they have collected a specified threshold of messages sent in round r.
Think of the threshold T of messages that allows a node to move to a new round as the
number of grains of sands in a sandglass: a node (figuratively) flips the sandglass at the
beginning of a round, and cannot move to the next until all T sand grains have moved to
the bottom bulb. The value of T is the same for all nodes; the speed at which messages
are collected, however – the width of their sandglass’s neck – is not, and can change from

Y. Pu, L. Alvisi, and I. Eyal 33:7

step to step: if all nodes broadcast messages at the same rate, the larger the number of
nodes that one receives messages from in a timely fashion, the faster it will be to reach
the threshold. Thus, while in Sandglass setting a threshold cannot altogether prevent
nodes that don’t receive messages from a majority from making progress, it ensures that
they will progressively fall behind those who do.

Exchanging messages In each step of the protocol, a node currently in round r (i) determines,
on the basis of the messages received so far, what is the largest round rmax ≥ r for which
it has received the required threshold of messages and (ii) broadcasts a message for round
rmax, which includes the node’s current proposed value, as well as the critical metadata
discussed below.

Keeping history Unlike Ben-Or, Sandglass allows nodes to join the system at any time. To
bring a newly activated node up to speed, each message broadcast by a node p in round
r carries a message coffer that includes (i) the set of messages (at least T of them) p

collected in round r − 1 to advance to round r; (ii) recursively, the set of messages in
those messages’ coffers; and (iii) the set of messages p collected so far for round r.

Respecting priority In Ben-Or, a node decides v if, for two consecutive rounds, v is the only
value it collects from a majority set. To ensure the safety of that decision, Ben-Or assigns
a priority to the value v that a node p proposes: if v was unanimously proposed by all
the messages p collected in the previous round, it is given priority 1; otherwise, 0. Nodes
that collect more than one value in round r, propose for round r + 1 the one among them
with the highest priority, choosing by a coin flip in the event of a tie. Sandglass uses a
similar idea, although its different threshold condition requires a much longer streak of
consecutive rounds where v is unanimously proposed before v’s priority can be increased.
To keep track of the length of that streak, every message sent in a given round r carries a
unanimity counter, which the sender computes upon entering r.

4.1 Selecting the Threshold

Unlike Ben-Or, Sandglass’s threshold condition can not altogether prevent nodes from making
progress. It is perhaps surprising that, by leveraging only the assumption that at all times
a majority of nodes are good (i.e., correct and synchronously connected with each other)
without ever knowing precisely how many they actually are, Sandglass retains enough of the
disambiguating power of intersecting majorities to ultimately yield deterministic agreement.

In essence, Sandglass succeeds by causing defective nodes that isolate themselves from
the majority of nodes in the systen to fall eventually so far behind that they no longer share
the same round with good nodes. At the same time, it ensures that, once some good node
has decided on a value v, nodes that manage to keep pace with good nodes will never propose
anything other than v.

Of course, to obtain this outcome it is critical to set T appropriately. Consider two nodes,
one good and one defective, and suppose they flip their sandglass at the same time – i.e.,
they enter a new round in the same step. We want that, independent of how the number of
active nodes may henceforth vary at each step, if the defective node only receives messages
from other defective nodes (i.e., if it fails to hear from a majority of nodes), it will reach the
threshold T at least one step later than the good node will. The following lemma shows that
setting T to ⌈N 2

2 ⌉ (where N is the upper bound on the maximum number of nodes active in
any step) does the trick.

DISC 2022

33:8 Safe Permissionless Consensus

▶ Lemma 4. For any k, consider any time interval comprising (k + 1) consecutive steps.
Let the number of messages generated by good nodes and defective nodes in each step of
the interval be, respectively, g0, g1, ..., gk and d0, d1, ..., dk. Setting the threshold T to ⌈N 2

2 ⌉
ensures that, if Σi=k−1

i=1 gi < T , then Σi=k
i=0di < T .

Proof. Note how the lemma does not count the messages generated by good nodes in the
steps at the two ends of the interval. Recall that moving from the current round to the next
requires a node to receive at least a threashold T of messages sent in the current round.
Thus, we drop good messages from step 0 because good nodes that in step 0 enter a new
round r are unable to count against the threshold for round r messages generated by good
node that in step 0 are still in round r− 1. And we similarly drop step k because good nodes
may only need one of the messages sent by good nodes in step k to move to a new round –
and have no use for the remaining messages in gk.

We begin by observing that, when k is either 0 or 1, the lemma trivially holds, since
in all steps defective nodes generate fewer than N messages. For example, when k = 1,
d0 + d1 < N

2 + N
2 = N ≤ ⌈N 2

2 ⌉. We then prove the lemma for k ≥ 2.
Let ḡ = Σi=k−1

i=1 gi

k−1 and d̄ = Σi=k−1
i=1 di

k−1 denote, respectively, the average number of messages
generated by good nodes and by defective nodes during the k − 1 steps that include all but
the interval’s first and last step. Expressed in terms of ḡ and d̄, the lemma requires us to
show that, if ḡ · (k − 1) < T , then Σi=k

i=0di = d0 + d̄ · (k − 1) + dk < T when T is chosen to
equal ⌈N 2

2 ⌉.
Assume ḡ · (k − 1) < T ; then k − 1 < T

ḡ . Substituting for (k − 1) in the formula that
computes the messages generated by defective nodes, we have:

Σi=k
i=0di = d̄ · (k − 1) + d0 + dk

< d̄ · T
ḡ

+ d0 + dk (since (k − 1) <
T
ḡ

)

≤ d̄ · T
ḡ

+ N − 1
2 + N − 1

2 (since defective nodes are always a minority)

≤ d̄ · T
ḡ

+ T
N 2

2
(N − 1) (since T = ⌈N

2

2 ⌉ ≥
N 2

2)

= T (d̄

ḡ
+ 2(N − 1)

N 2).

Then, to establish that Σi=k
i=0di < T , it suffices to prove that d̄

ḡ + 2(N −1)
N 2 < 1.

Since for any i, di ≤ gi − 1 and di + gi ≤ N , we know that d̄ ≤ ḡ − 1 and d̄ + ḡ ≤ N .
Dividing both inequalities by ḡ yields d̄

ḡ ≤ min(1− 1
ḡ , N

ḡ − 1). Note that the largest value of
min(1− 1

ḡ , N
ḡ − 1) occurs when 1− 1

ḡ = N
ḡ − 1; solving for ḡ and plugging the solution back

in, gives us: min(1− 1
ḡ , N

ḡ − 1) ≤ N −1
N +1 .

Therefore, we have that d̄
ḡ + 2(N −1)

N 2 ≤ N −1
N +1 + 2(N −1)

N 2 = N 3+N 2−2
N 3+N 2 < 1. ◀

4.2 Protocol Mechanics
Protocol 1, besides showing how Sandglass initializes its key variables, presents the code that
node pi executes to take a step. Every step begins with adding all received messages, as well
as the messages in their message coffers, to a single set, Reci (lines 4 - 5). Going over the
elements of that set, pi determines the largest round rmax for which it has received at least
a threshold T of messages, and, if the condition at line 6 holds, sets the current round to
(rmax + 1) (line 7). Upon entering a new round, pi does four things. First, after resetting

Y. Pu, L. Alvisi, and I. Eyal 33:9

Algorithm 1 Sandglass: Code for node pi.

1: procedure Init(inputi)
2: vi ← inputi; priorityi ← 0; uCounteri ← 0; ri = 1; Mi = ∅; Reci = ∅; uidi = 0
3: procedure step
4: for all m = (·, ·, ·, ·, ·, M) received by pi do
5: Reci ← Reci ∪ {m} ∪M

6: if max|Reci(r)|≥T (r) ≥ ri then
7: ri = max|Reci(r)|≥T (r) + 1
8: Mi = ∅
9: for all m = (·, ri − 1, ·, ·, ·, M) ∈ Reci(ri − 1) do

10: Mi ←Mi ∪ {m} ∪M

11: Let C be the multi-set of messages in Mi(ri − 1) with the largest priority.
12: if all messages in C have the same value v then
13: vi ← v

14: else
15: vi ← one of{a, b}, chosen uniformly at random
16: if all messages in Mi(ri − 1) have the same value vi then
17: uCounteri ← 1 + min{uCounter|(·, ri − 1, vi, ·, uCounter, ·) ∈Mi(ri − 1)}
18: else
19: uCounteri ← 0
20: priorityi ← max(0,

⌊ uCounteri

T
⌋
− 5)

21: if priorityi ≥ 6T + 4 then
22: Decidei(vi)
23: uidi ← uidi + 1;
24: Mi ←Mi ∪Reci(ri)
25: broadcast (pi, uidi, ri, vi, priorityi, uCounteri, Mi)

its message coffer M , pi collects in the coffer all the messages it received from the previous
round – as well as the messages stored in the coffers of those messages (lines 8 - 10). Second,
pi chooses the value v that it will propose in the current round (lines 11 - 15): it picks the
highest-priority value among those collected in its coffer for the previous round ; if more
than one value qualifies, it chooses among them uniformly at random. Third, pi computes
the unanimity counter and the priority for all messages that pi will broadcast during the
current round (lines 16 -20). The counter represents, starting from the previous round and
going backwards, the longest sequence of rounds for which all corresponding messages in
pi’s coffer unanimously proposed v. The priority is simply a direct function of the value of
the unanimity counter: we maintain it explicitly because it makes it easier to describe how
Sandglass works. Finally, if v’s priority is high enough, pi decides v (lines 21- 22). Whether
or not it starts a new round, pi ends every step by broadcasting a message (line 25): before it
is sent, the message is made unique (line 23) and pi adds to the message’s coffer all messages
received for the current round (line 24).

5 Correctness: Overview

Sandglass upholds the definitions of Validity, Agreement, and Termination (with probability 1)
given in Section 3. We overview the proof below, as its approach differs from proofs of
classical, permissioned protocols. We defer the proof to the full version of this report [25],
which includes the formal statements of the lemmas we informally state below.

DISC 2022

33:10 Safe Permissionless Consensus

Validity is easily shown by induction on the round number, since if all nodes that join have
the same value, there is only one value that can be sent in each round. Establishing Agreement
and Termination is significantly more involved, and hinges on a precise understanding of the
kinematics of good and defective nodes – and how that interacts with the ability of good
nodes to converge on decision value and on the number of rounds necessary to do so safely.
How clustered are good nodes as they move from round to round? At what rate do good
nodes gain ground over defective nodes that cut themselves out from receiving messages
from good nodes? How often do defective nodes need to receive messages from good nodes
to be in turn able to have their messages still be relevant to good nodes?

The answer to these and similar questions constitute the scaffolding of lemmas and
corollaries on which the proofs of Agreement and Termination rely. We discuss it in greater
detail below, before moving on to the proofs.

5.1 The Scaffolding

The protocol achieves several properties that facilitate the consensus proof.
First, it keeps good nodes close together as they move from round to round. Specifically,

the following lemmas hold:

▶ Lemma 5. In any step two good nodes are at most one round apart.

▶ Lemma 6. If in any step a good node is in round r, then by the next step all good nodes
are guaranteed to be at least in round r.

A key intuition that guides the proof is that defective nodes move from round to round
slower than good ones. There is a complication, however: this intuition holds only when
defective nodes receive messages only from their own kind; in fact they can actually advance
faster than good ones by combining messages from good nodes with messages from defective
nodes that do not reach the good nodes. Nonetheless, we can show that

▶ Lemma 7. At any step a defective node is at most one round ahead of any good node.

Second, the protocol guarantees information sharing among good nodes. This may appear
trivial to establish, since good nodes are correct and synchronously connected, but the
laissez-faire attitude of the permissionless model, with nodes joining and leaving without
coordination at any step, complicates matters significantly, making it impossible to prove
seemingly basic properties. For example, consider a good node p that, in round r and step T ,
proposes a value v with a positive uCounter. It would feel natural to infer that all good
nodes must have proposed v in the previous round – but it would also be wrong. If p just
entered r in step T , it would in fact ignore any value proposed by good nodes that newly
joined the systems in step T , but are still in round r − 1. Fortunately, we show that a much
weaker form of information sharing among good nodes is sufficient to carry the day. As a
matter of terminology, let’s say that a node collects a message in a round if it receives the
message and does not ignore it (messages originated from a lower round number are ignored).
We then prove the following facts about collected messages:

▶ Lemma 8. In any round, a good node collects at least one message from a good node.

▶ Corollary 9. For any round, there exists a message from a good node that is collected by
all good nodes.

Y. Pu, L. Alvisi, and I. Eyal 33:11

Third, it allows us to establish the basis for a key insight about the kinematics of Sandglass
nodes that will be crucial for proving Agreement and Termination: in the long run, the only
values proposed by defective nodes that remain relevant to the outcome of consensus are
those that have been, in turn, recently influenced by values proposed by good nodes. This
insight stands on a series of intermediate results. We already saw (Lemma 4) that, given any
sequence of steps, if good nodes cannot generate enough messages to get into the next round,
neither can defective nodes, even if they, unlike good nodes, are allowed to count messages
generated in the two steps at the opposite ends of the period. It follows that

▶ Lemma 10. During the steps that good nodes spent in a round, defective nodes can generate
fewer than the T messages necessary to move to the next round.

It all ultimately leads to the following lemma, which quantifies the slowdown experienced
by defective nodes that don’t allow themselves to be contaminated by good nodes:

▶ Lemma 11. Defective nodes that do not collect any message from good nodes for kT
consecutive rounds fall behind every good node by at least (k − 1) rounds.

5.2 Agreement
The intuition behind our proof of Agreement is simple. To each value v proposed and
collected by Sandglass nodes is associated a uCounter, which records the current streak of
consecutive rounds for which all the messages collected by the proposer of v were themselves
proposing v. Once v’s uCounter reaches a certain threshold, v’s priority increases; and once
the value v proposed by a node reaches a given priority threshold, then a node decides v

(see Algorithm 1, line 21). Since, as we saw, good nodes share information from round to
round (recall Corollary 9), proving Agreement hinges on showing that, once a good node
decides v, no good node will ever propose a value other than v. To prove that, we must in
turn leverage what we learned about the kinematics of Sandglass nodes to identify a priority
threshold that makes it safe for good nodes to decide. It should be large enough that, after
it is reached, it becomes impossible for a defective node to change the proposal value of any
good node.

The technical core of the Agreement proof then consists in establishing the truth of the
following claim:

▷ Claim 12. Let pd be the earliest good node to decide, in round rd at step Td. Suppose pd

decides vd. Then, any good node pg that in any step (whether before, at, or after Td) finds
itself in a round rg that is at least as large as rd, proposes vd for rg with priority at least 1. 2

It is easy to see that if the above claim holds, then Agreement follows. Say that Td is
the earliest step in which a good node pd, currently in round rd, decides vd. The claim
immediately implies that no good node can decide a value other than vd in a round greater
or equal to rd, since, from rd on, every good node proposes vd. Recall that, since good nodes
are never more that one round apart at any step (Lemma 5), the earliest round a good node
can find itself at Td is (rd − 1); and that, by Lemma 6, every good node is guaranteed to be
at least in round rd by step (Td + 1). All that is left to show then is that no good node p′,

which at Td found itself in round (rd − 1), can decide some value v′ other than vd. To this
end, we leverage the information sharing that we proved exists among good nodes.

2 Although proving Agreement does not require that vd be proposed with priority at least 1, it makes
proving the claim easier.

DISC 2022

33:12 Safe Permissionless Consensus

By Corollary 9, there is at least a message m generated in round (rd − 2) by a good node
that is collected by all the good nodes. Since pd at Td has reached the priority threshold
required to decide vd, m must have proposed vd; but if so, it would be impossible for good
node p′, which also must have collected m, to have reached the priority threshold required to
decide a different value v′.

Proving Claim 12 is non trivial. The core of the proof consists in showing that any
node that proposes a value v′ other than the decided value vd must find itself, at Td, in a
much earlier round than the earliest round occupied by any good node. In fact, we show
something stronger: we choose a priority threshold large enough that any node, whether
good or defective, that at Td or later is within earshot of a good node (i.e., whose message
m can be collected by a good node), not only proposes vd, but it does so with a uCounter
large enough that allows whoever collects m to propose vd with priority at least 1.

To see why those who propose v′ are so far behind good nodes, note that the good node
pd that decided vd at Td must have received only messages proposing vd for a long sequence
of rounds, so long as to push vd’s priority over the (6T + 4) threshold required for a decision.
Let’s zoom in on that sequence of rounds. It took 6T unanimous rounds for vd to reach
priority 1 (see Algorithm 1, line 20); after clearing that first hurdle, vd’s priority increased
by 1 every T rounds.

Consider now the set S of messages collected by pd during the long climb that took vd’s
priority from 1 to (6T + 4). Any node p′ that during this climb proposes something other
than vd faces a dilemma. It can either refuse to collect any message in S – but if it does so, it
will advance more slowly than good nodes, and, by the time vd’s priority reaches the decision
threshold, it will be so far behind that no good node will collect its messages. Or p′ can try
to keep up by collecting messages from S – but, if it wants to keep proposing v′ ̸= vd, it can
do so in at most one round during the entire climb: since the first message collected from S

would reset v′ priority to 0, any further message from S collected by p′ in later rounds would
have higher priority than the one of v′, forcing p′ to henceforth propose vd instead of v′.

In short, since p′ can collect messages from S in at most one round, to ensure that any
node that in round rd is within earshot of good nodes will propose vd it suffices to choose a
large enough priority threshold for deciding. In particular, setting the threshold to (6T + 4)
ensures that (i) all messages collected by good nodes for round (rd − 1) will propose vd, and
(ii) vd’s uCounter in all these messages is at least (6T − 1), ensuring that all good nodes in
round rd will propose vd with uCounter at least 6T , i.e., with priority at least 1.

Finally, a simple induction argument shows that, if all good nodes propose vd with priority
at least 1 from rd on, then any node that, from step (Td + 1) on, continues to propose a
value other than vd, will fall ever more behind good nodes, as it will be allowed to collect
messages from good nodes only once every 6T rounds, on pain of being forced to switch its
proposed value to vd.

5.3 Termination
The Termination property requires good nodes that stay active to eventually decide. Sand-
glass’s Termination guarantee is probabilistic: for Termination to hold, Sandglass needs to
be lucky, so that it can build a sequence of consecutive rounds during which all messages
collected by good nodes propose the same value; long enough that the value will reach the
priority required for a node to decide. Luck is required because Sandglass allows some
randomness in the values that a node proposes: nodes are required to propose the highest
priority value from any message collected in the previous round, but, if they receive multiple
values with the same priority, they can choose among them uniformly at random.

Y. Pu, L. Alvisi, and I. Eyal 33:13

To help us prove that luck befalls Sandglass with probability 1, we introduce the inter-
dependent notions of lucky period, lucky value, and lucky round. Intuitively, a lucky period
is a sequence of steps that leads to a decision: all nodes that are active in the step that
immediately follows the end of the lucky period are guaranteed to decide in that step, if not
earlier. A lucky round is simply the first round of a lucky period. What is more interesting
is the quality that makes a period lucky: during a lucky period, whenever Sandglass allows
nodes to use randomness in picking which value they will propose in the current round, they
select the same value – the lucky value for that round.

A minimum requirement for a round’s lucky value is that it should be a plausible value
on which good nodes may converge, in the sense that it should not explicitly go counter the
value that some good node is required to propose in that round. Concretely, if the messages
collected by a good node require it to propose v and all other nodes can randomly choose
between v and v, then the round’s lucky value better not be v. In addition, to encourage the
possibility of a lucky period, the lucky value should be sticky: we would like random choices
to consistently pick the same value, round after round, unless doing so would make the value
implausible.

In the end, Sandglass adopts a definition of lucky value (see [25]) that, in addition to
upholding plausibility, has two additional properties that express its stickiness.

▶ Property 13. In every round good nodes collect at least one message that proposes the
lucky value of the previous round.

▶ Property 14. For the lucky value in the current round to change, some good node must
have collected a different value with priority at least 1 from the previous round.

Property 13 guarantees that under no circumstances the previous round’s lucky value will
simply be forgotten when moving to a new round; building on Property 13, Property 14
establishes that lucky values don’t flip easily.

To prove that Sandglass guarantees Termination with probability 1, we then proceed in
two steps.

First, we show that the uCounter of all good nodes active in the step that immediately
follows the end of the lucky period reaches a value that allows these good nodes to decide.
To this end, we begin by proving that, in any lucky period, the lucky value after a while
becomes locked: specifically, we show that the lucky value vℓ at round 6T in the lucky
period remains the lucky value until the end of the lucky period, and, further, that after
that round all good nodes propose vℓ. Then, leveraging techniques similar to those used to
prove Agreement, we show that any node p′ that proposes a value v′ other that vℓ must fall
behind good nodes during the lucky period. The reason is that, once vℓ is locked, p′ can
collect a message from a good node only every 6T rounds. If it did it more often, p′ would
collect a message proposing vℓ from a good node while v′ has priority 0, which would force
p′ to change its proposal to vℓ – even if v′ and vℓ both had priority 0, and p′ could choose
randomly among them, it would have to propose vℓ in the next round, since vℓ is the lucky
value. Thus, by choosing a sufficiently long lucky period, we ensure that nodes that propose
values other that vℓ fall so far behind good nodes that vℓ’s priority, for any good node that
is active in the step right after the end of a lucky period, reaches the threshold necessary for
deciding.

Second, we show that lucky periods occur with non-zero probability, since the probability
of a certain outcome of random choices for a finite number of nodes during a finite number
of steps is non-zero. Since in any infinite execution lucky periods appear infinitely often,
it follows that any good node that stays active, no matter when it joins, is guaranteed to
eventually decide.

DISC 2022

33:14 Safe Permissionless Consensus

6 Conclusion

Sandglass shows, for the first time, that it is possible to obtain consensus with deterministic
safety in a permissionless model. This result suggests that it is the probabilistic nature of its
PoW mechanism, rather that its permissionless model, that prevents deterministic safety
in Nakamoto’s consensus. It also opens up several additional interesting questions. First
among them is to understand how the interplay between permissionlessness and the hybrid
synchronous model shape the boundaries of what is possible, and at what cost. As we noted,
Sandglass matches the (n/2) bound of a benign model in an asynchronous network, even
though a majority of its nodes are synchronously connected. Perhaps at the root of this result
is that in both an asynchronous model and a permissionless hybrid one it is impossible for a
node to know when it has received all the messages that were intended for it. Regardless,
whether there exists a protocol that achieves deterministic safety and termination in a hybrid
synchronous model remains an open question. Another natural question is whether there
exists a deterministic solution to consensus in a hybrid-synchronous model with Byzantine
failures. Answering these questions might pave the way to a qualitative improvement of
permissionless systems that would provide deterministic guarantees; or, at the very least,
give us more insight about the nature of consensus.

References
1 Ittai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and bft. Bulletin of

EATCS, 3(123), 2017.
2 James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 524–533,
2002.

3 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, pages 27–30. ACM, 1983.

4 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

5 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018.

6 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and Nakamoto always wins. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
859–878, 2020.

7 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

8 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Technical report, Massachusetts Inst. of Tech., Cambridge
Lab for Computer Science, 1982.

9 Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and algorithms
for unbounded concurrency. In Proceedings of the twentieth annual ACM symposium on
Principles of distributed computing, pages 161–169, 2001.

10 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis
and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

11 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on
operating systems principles, pages 51–68, 2017.

Y. Pu, L. Alvisi, and I. Eyal 33:15

12 Maurice Herlihy. Blockchains and the future of distributed computing. In Proceedings of the
2017 ACM Symposium on Principles of Distributed Computing (PODC ’17), page 155, August
2017. Keynote Address.

13 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165–175, 2021.

14 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017.

15 Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 729–744, 2018.

16 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
speculative Byzantine fault tolerance. Communications of the ACM, 51(11):86–95, November
2008.

17 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

18 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

19 Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting.
arXiv preprint, 2021. arXiv:2101.07095.

20 Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. Cryptology ePrint
Archive, 2022.

21 Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs of storage. In
Annual International Cryptology Conference, pages 381–409. Springer, 2019.

22 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, December 2008. Accessed:
2015-07-01. URL: https://bitcoin.org/bitcoin.pdf.

23 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 643–673. Springer, 2017.

24 Rafael Pass and Elaine Shi. The sleepy model of consensus. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 380–409. Springer,
2017.

25 Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe permissionless consensus. Cryptology ePrint
Archive, Paper 2022/796, 2022. URL: https://eprint.iacr.org/2022/796.

26 Michael O Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pages 403–409. IEEE, 1983.

27 Research and Markets. Blockchain market with covid-19 impact analysis, by component
(platforms and services), provider (application, middleware, and infrastructure), type (private,
public, and hybrid), organization size, application area, and region - global forecast to 2026.
https://www.researchandmarkets.com, November 2021.

28 Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous consensus.
In International Symposium on Distributed Computing, pages 438–450. Springer, 2008.

29 TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

30 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

31 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

DISC 2022

http://arxiv.org/abs/2101.07095
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2022/796
https://www.researchandmarkets.com

Packet Forwarding with a Locally Bursty Adversary
Will Rosenbaum #

Amherst College, MA, USA

Abstract
We consider packet forwarding in the adversarial queueing theory (AQT) model introduced by
Borodin et al. We introduce a refinement of the AQT (ρ, σ)-bounded adversary, which we call a
locally bursty adversary (LBA) that parameterizes injection patterns jointly by edge utilization
and packet origin. For constant (O(1)) parameters, the LBA model is strictly more permissive
than the (ρ, σ) model. For example, there are injection patterns in the LBA model with constant
parameters that can only be realized as (ρ, σ)-bounded injection patterns with ρ + σ = Ω(n) (where
n is the network size). We show that the LBA model (unlike the (ρ, σ) model) is closed under packet
bundling and discretization operations. Thus, the LBA model allows one to reduce the study of
general (uniform) capacity networks and inhomogenous packet sizes to unit capacity networks with
homogeneous packets.

On the algorithmic side, we focus on information gathering networks – i.e., networks in which
all packets share a common destination, and the union of packet routes forms a tree. We show
that the Odd-Even Downhill (OED) forwarding protocol described independently by Dobrev et al.
and Patt-Shamir and Rosenbaum achieves buffer space usage of O(log n) against all LBAs with
constant parameters. OED is a local protocol, but we show that the upper bound is tight even
when compared to centralized protocols. Our lower bound for the LBA model is in contrast to
the (ρ, σ)-model, where centralized protocols can achieve worst-case buffer space usage O(1) for
ρ, σ = O(1), while the O(log n) upper bound for OED is optimal only for local protocols.

2012 ACM Subject Classification Theory of computation → Routing and network design problems;
Networks → Packet scheduling; Theory of computation → Distributed algorithms; Theory of
computation → Distributed computing models

Keywords and phrases packet forwarding, packet scheduling, adversarial queueing theory, network
calculus, odd-even downhill forwarding, locally bursty adversary, local algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.34

Acknowledgements This work was born from numerous discussions with Boaz Patt-Shamir, to
whom I am eternally grateful. I thank the anonymous reviewers for their thoughtful commentary
which helped improve this paper.

1 Introduction

Routing and forwarding are fundamental operations in the study of networks. In this context,
commodities – for example, data packets, fluid flows, or physical objects – appear at various
places in a network, and must be transferred to prescribed destinations. Movement is
restricted by the network’s topology. The goal is to get the commodities from source to
destination as efficiently as possible. Routing is the process of determining routes for the
commodities to follow from source to destination, while forwarding determines the particular
schedule by which items – which we will henceforth refer to as packets – move in the network.
In this work, we focus on the process of forwarding packets, assuming their routes are
pre-determined.

Two well-studied models of packet forwarding in networks are the adversarial queueing
theory (AQT) model introduced by Borodin et al. [2] and the network calculus model
introduced by Cruz [4, 5]. In both models, packets are assumed to have prescribed routes
from source to destination. Both models also parameterize packet arrivals in terms of long-

© Will Rosenbaum;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 34; pp. 34:1–34:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wrosenbaum@amherst.edu
https://orcid.org/0000-0002-7723-9090
https://doi.org/10.4230/LIPIcs.DISC.2022.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Packet Forwarding with a Locally Bursty Adversary

term average rates and short-term burstiness in order to disallow trivially infeasible injection
patterns that exceed network capacity constraints. AQT and network calculus also differ in
some crucial ways. AQT examines injections of discrete, indivisible packets at discrete time
intervals, and forwarding occurs in synchronous rounds. In network calculus, on the other
hand, packets are modeled as continuous flows and forwarding is a continuous-time processes.
Nonetheless, these flows can be discretized (or “packetized”) to be processed discretely. One
of the goals of this paper is to draw tighter connections between analogous parameters in the
AQT and network calculus models under the process of discretization.

In both AQT and network calculus, one natural measure of efficiency is the buffer space
usage of nodes in the network. That is, how much memory is required at each buffer in order
to store packets that are en route to their destinations. Traditionally, AQT has focused on
a qualitative measure of space usage, called stability, which merely requires that the space
usage of a protocol remains bounded (by some function of the network parameters) for all
time. A notable early exception is the work of Adler and Rosén [1], which gives a quantitative
buffer space upper bound for longest-in-system scheduling when the network is a directed
acyclic graph.

AQT has also traditionally focused on greedy forwarding protocols – i.e., protocols for
which every non-empty buffer forwards as many packets as it can in each round (subject to
capacity constraints). A more recent series of work [8, 6, 10, 11, 9] initiated by Miller and
Patt-Shamir [8] studies quantitative buffer space bounds for non-greedy forwarding policies.
In particular, these works show that in restricted network topologies (single-destination paths
and trees), non-greedy forwarding protocols can achieve significantly better buffer space
usage than greedy protocols. Specifically, non-greedy centralized forwarding protocols can
achieve O(1) buffer space usage [8, 9], while Θ(log n) buffer space is necessary and sufficient
for local (distributed) protocols [6, 10] (where n is the number of buffers in the network).
The work of Patt-Shamir and Rosenbaum [11] shows there is a smooth trade-off between a
protocol’s locality and optimal buffer space usage: if each node determines how may packets
to forward based on the state of its distance d neighborhood, then Θ(1

d log n) buffer space is
necessary and sufficient. These bounds are in contrast to greedy protocols, which require
Ω(n) buffer space in the worst case.

The bounds described in the preceding paragraph refer to the AQT injection model in
which edges in the network have uniform unit capacities – only one packet may cross any edge
in a given round – and the average injection rate ρ satisfies ρ ≤ 1, and the burst parameter σ

satisfies σ = O(1) (cf. Definition 2.1). The algorithms can be generalized to general uniform
edge capacities (C ≥ 1 packets can cross each edge in a round), but the generalized algorithms
are both more cumbersome to express, and correspondingly subtle to reason about (see, e.g.,
Section 1.1 in [6]). When dealing with general capacities, discretizations of continuous flows,
and heterogeneous (indivisible) packets, a natural strategy is to bundle packets into “jumbo
packets” [12]. This procedure can, however, lead to large bursts in the appearance of jumbo
packets in the network, even if the injection process has a small burst parameter (see e.g.,
Remark 2.10). Thus applying the analysis of the relatively simple unit-capacity versions of
algorithms in [8, 6, 10, 11, 9] directly to jumbo packets may not show any improvement over
greedy algorithms.

1.1 Our Contributions
In this paper, we introduce a refinement of Borodin et al. [2]’s (ρ, σ) parameterization of
injection patterns, that we call a the local burst model (see Definition 2.2). In addition
to the asymptotic rate ρ and global burst parameter σ, the local burst model has a third

W. Rosenbaum 34:3

parameter, β – the local burst parameter, that accounts for simultaneous bursts occurring
at distinct injection sites. Thus, for small values of β, a locally (ρ, σ, β)-bounded injection
pattern may still allow for large (e.g, Ω(n)) simultaneous packet injections, so long as not
too many packets are injected into the same buffer.

We prove that locally bursty injection patterns are essentially characterized as discretiza-
tions of what we call “locally dependent flows” (Definition 2.6) with similar parameters – see
Lemmas 2.7 and 2.9. We use this characterization to show that applying packet bundling
to a locally bursty injection pattern yields another locally bursty adversary with similar
parameters – see Proposition 3.1. Consequently, any space efficient algorithm for unit capacity
networks and homogeneous unit sized packets can be applied as a black-box to bundled
jumbo packets to achieve similar buffer space usage to the unit capacity case (Corollary 3.2).
We then show that a small modification of the framework can also be applied to the setting
of heterogeneous packet sizes.

On the algorithmic side, we analyze the odd-even downhill (OED) forwarding protocol
of [6, 10] against locally bursty adversaries. We show that for constant (O(1)) parameters ρ, σ,
and β, OED achieves worst-case buffer space O(log n) in information gathering networks of
size n – see Theorem 4.2. This result is strictly stronger than the analyses of [6, 10], as there
are locally bursty injection patterns with β = O(1) that can only be realized in the classical
(ρ, σ) model for σ = Ω(n). Combining our analysis of the OED protocol together with flow
discretization and/or bundling, buffer space of O(log n) can be achieved for forwarding with
general capacities, heterogeneous packets, and continuous flows – see Section 4.1.

Finally, in Section 5, we prove a matching lower bound of Ω(log n) for any centralized
randomized protocol against locally bursty adversaries (Theorems 5.1 and A.1). This lower
bound is in contrast to the deterministic upper bounds of [8, 11, 9] which show that O(1) buffer
space is achievable for (ρ, σ)-bounded adversaries for centralized and “semi-local” protocols.
Thus, our lower bound shows that the local burst model (with constant parameters) gives
the adversary strictly more power to inflict large (ω(1)) buffer space usage on centralized
algorithms. The performance of the asymptotically optimal local protocol is the same for the
local burst and traditional injection models, and in the local burst model, the (local) OED
protocol is asymptotically optimal, even when compared to centralized protocols.

1.2 Discussion of Our Results
The most natural application domains for this work are networks consisting of tightly syn-
chronized nodes, such as network-on-chips (NoCs) [7], software defined networks (SDNs) [13],
and sensor networks. In these contexts, trees and grids are common network topologies.
(In the case of grids, “single bend” routing allows one to treat the network essentially as a
disjoint union of paths.) Thus, while the topologies we consider are highly restricted, the
family of topologies is a fundamental and frequently used family for applications in which
our techniques might be applied.

In NoCs, SDNs, and sensor networks, the rate and source of packet injections may be
highly variable. Thus, the parameterizations of packet injections in both the standard AQT
model and the network calculus model may be too coarse to model the actual buffer space
requirement of observed injection patterns effectively. In the AQT model, allowing for
multiple simultaneous packet injections into different buffers requires a large burst parameter,
σ, even though the resulting injection pattern may be handled using buffer space ≪ σ (see
Example 2.4). On the other hand, the traditional network calculus model does not account
for dependencies between rates of packet injections into different buffers over time. Thus,
a standard analysis may severely overestimate the bandwidth or buffer space required to

DISC 2022

34:4 Packet Forwarding with a Locally Bursty Adversary

handle a given injection pattern. Our locally bursty injection model (and its continuous
analogue described in Section 2.2) refine both the AQT and network calculus models so as to
give more precise bounds on the buffer space requirement of many natural packet injection
patterns.

Together with the upper bounds of [8, 11, 9], Theorems 5.1 and A.1 imply that the locally
bursty injection model (with constant parameters) gives an adversary strictly greater power
to inflict large buffer space usage against centralized and semi-local forwarding protocols.
However, Theorem 4.2 implies that the local OED forwarding protocol achieves asymptotically
optimal buffer space usage. Thus, for locally bursty injection patterns, there is no (asymptotic)
advantage to implementing a centralized protocol, while OED still gives an exponential
improvement over greedy protocols. We believe this insight may be valuable in VLSI design
where protocols like OED could be implemented at a hardware level in order to reduce buffer
space requirements. Hardware implementations of similar protocols have been proposed, for
example in [3], in order to achieve decentralized (gradient) clock synchronization.

2 Model and Preliminaries

We model a packet forwarding network as a directed graph, G = (V, E). Each edge
e = (u, v) ∈ E has an associated buffer that stores packets in node u as they wait to cross
the edge (u, v) to v. We use the notation e = (u, v) to denote both the edge in G and its
associated buffer.

In our model, an execution proceeds in synchronous rounds. Each round consists of two
steps: an injection step in which new packets arrive in the network, and a forwarding
step in which buffers forward packets across edges of the graph. During the forwarding step,
each buffer chooses a subset of packets to forward, and forwards those packets across the
edge (u, v) associated with the buffer. These packets arrive at their next location – either
another buffer in node u, or are delivered to their destination – before the beginning of the
next round. Each edge e, has a capacity C(e), which is the maximum number of packets
that can cross e in a single forwarding step.

At a given time t, we use Lt(e) to denote the contents of buffer e during round t between
the injection and forwarding steps. |Lt(e)| is the load of e – i.e., number of packets stored
in buffer e.

A packet p is a pair (t, P) where t ∈ N and P = (v0, v1, . . . , vℓ) is a directed path in G.
The interpretation is that t indicates the time (round) at which P is injected, and P specifies
a route from P ’s source, e0 = (v0, v1) to P ’s destination vℓ. An adversary or injection
pattern A is a multi-set of packets.

Given a packet p = (t, (v0, v1, . . . , vℓ)), we say that p’s route contains an edge e ∈ E if
e = (vi, vi+1) for some i ∈ [ℓ − 1]. For a fixed adversary A and time interval T = [r, s] ⊆ N,
we define NT (e) to be the number of packets injected during times t ∈ T whose routes
contain e. That is

NT (e) = |{(t, P) ∈ A | t ∈ T and P contains e}| .

We also define a more refined measure of utilization of an edge e that differentiates packets
according to their origins. Specifically, for any subset S ⊆ E, we define

NT
S (e) = |{(t, P) ∈ A | t ∈ T, (v0, v1) ∈ S, and P contains e}|

In particular, we have NT (e) = NT
E (e). In the adversarial queueing model (AQT) of Borodin

et al. [2], the edge utilization of an adversary A is parameterized is follows.

W. Rosenbaum 34:5

▶ Definition 2.1. Given ρ > 0 and σ ≥ 0, we say that an adversary A is (ρ, σ)-bounded if
for all e and (finite) intervals T ⊆ N we have

NT (e) ≤ ρ |T | + σ. (1)

We denote the family of (ρ, σ)-bounded adversaries by A(ρ, σ).

For a (ρ, σ)-bounded adversary, the parameter ρ is an upper bound on the maximum
average utilization of an edge in the network, while σ measures “burstiness” – the amount
by which the average can be exceeded over any time interval. For example, taking T with
|T | = 1, (1) implies that at most ρ + σ packets are injected into any buffer in any single
round.

2.1 Locally Bursty Adversaries
Here, we define a more refined parameterization of adversaries, which we call the local burst
model. We refer to adversaries parameterized by the local burst model as locally bursty
adversaries, or LBAs.

▶ Definition 2.2. Let A be an adversary, ρ > 0, σ ≥ 0 and β : E → N. Then we say that A

is locally (ρ, σ, β)-bounded if for all finite intervals T ⊆ N, subsets S ⊆ E and e ∈ E, we
have

NT
S (e) ≤ ρ |T | + σ +

∑
f∈S

β(f). (2)

That is, for every subset S of buffers, the rate of injections into S that cross e only ever
exceeds ρ by σ more than the sum of the β(e) for e ∈ S. We denote the family of local
(ρ, σ, β)-bounded adversaries by L(ρ, σ, β). In the case that A ∈ L(ρ, σ, β) and there is a
constant B such that β(e) ≤ B for all buffers e, we will say that A is local (ρ, σ, B)-bounded.

We formalize the following observation that gives a relationship between the parameters
of (ρ, σ)-bounded adversaries and local (ρ, σ, β)-bounded adversaries.

▶ Observation 2.3. Fix a network G and parameters ρ, σ, and β : E → N. Suppose
A ∈ L(ρ, σ, β). Then A ∈ A(ρ, σ′) for σ′ = σ +

∑
e∈E β(e).

▶ Example 2.4. Let G be the single-destination path of size n. That is, G = (V, E)
where V = {1, 2, . . . , n, n + 1} and E = {(i, i + 1) | i ∈ [n]}. Further, all injected packets
have destination n + 1. We consider two injection patterns, A0 and A1
A0: in rounds 1, n + 1, 2n + 1, . . . , kn + 1, . . ., there are n packets injected into buffer 1 with

destination n + 1.
A1: in rounds 1, n + 1, 2n + 1, . . . , kn + 1, . . ., one packet is injected into each buffer i =

1, 2, . . . , n with destination n + 1.
Observe that both adversaries are in A(1, n − 1), but not in A(1, σ) for any σ < n − 1. Thus,
the parameters of Definition 2.1 do not distinguish A0 and A1. Yet A0 and A1 have vastly
different buffer space requirements. A0 requires buffer 1 to have space n for any forwarding
protocol, while simple greedy forwarding for A1 will achieve buffer space usage |Lt(i)| ≤ 1
for all t and i.

The parameters of the local burst model, however, can distinguish between A0 and A1.
A1 ∈ L(1, 0, 1) (i.e., β(i) = 1 for all i), while A0 ∈ L(1, σ, β) only for σ + β(1) ≥ n − 1.
We will show that in the case of information gathering networks – networks in which all

DISC 2022

34:6 Packet Forwarding with a Locally Bursty Adversary

packets share a common destination and the union of their routes forms a tree – all local
L(1, σ, B)-bounded adversaries can be forwarded using O(B log n + σ) space. Thus, the local
burst parameter β gives a more refined understanding of the buffer space requirement of a
given injection pattern.

2.2 Flows
Another well-studied model for packet forwarding is the network calculus model introduced
by Cruz [4, 5]. In the network calculus, packets are associated with flows, and their arrivals
are modeled as continuous time processes.

▶ Definition 2.5. Given a network G = (V, E), A flow ϕ = (a, P) consists of a right-
continuous arrival curve a : R → R and associated path P . We say that ϕ has rate (at most)
r and burst parameter b if for all s < t, the arrival curve a satisfies

a(t) − a(s) ≤ r · (t − s) + b. (3)

By convention, we assume a(t) = 0 for all t < 0.

For a single flow ϕ, the parameters r and b are analogous to the rate and burst parameters
ρ and σ in Definition 2.1. However, in a flow ϕ, all packets share a common route, P . In
particular, all packets associated with ϕ are injected to the same buffer and have the same
destination.

In order to consider scenarios in which packets have multiple routes, we must consider
multiple concurrent flows. In this setting, the analogy between equations (1) and (3) breaks
down, as the former bounds the total number packets utilizing any particular edge, while the
latter bounds the arrivals of packets in flows (i.e., along entire paths, rather than individual
edges). In order to tighten the connection between the AQT injection model and flows, we
introduce a dependent flow model in which we constrain the sum of arrival rates of flows
across edge.

▶ Definition 2.6. Let G = (V, E) be a network and Φ = {ϕ} be a family of flows. For an
edge e ∈ E, let Φe denote the set of flows in Φ whose paths contain e. That is,

Φe = {(a, P) ∈ Φ | e ∈ P} .

Suppose each ϕ ∈ Φ obeys a rϕ, bϕ bound as in (3). We say that Φ obeys a locally dependent
rate bound r and global burst parameter σ if for every edge e, every set Ψ ⊆ Φe of flows,
and all times s, t, we have∑

ϕ∈Ψ
(aϕ(t) − aϕ(s)) ≤ r · (t − s) + σ +

∑
ϕ∈Ψ

bϕ. (4)

We note the similarity between equations (4) and (2). In fact, Definition 2.6 is a strict
generalization of the LBA model: Given any injection pattern A, we can associate a family
ΦA of flows with A. Specifically, we define ΦA to be

ΦA =

(a, P)

∣∣∣∣∣∣ (t, P) ∈ A and a(t) =
∑

s∈N, s≤t

|{(s, P) ∈ A}|

 (5)

With this association, the following lemma is clear.

W. Rosenbaum 34:7

▶ Lemma 2.7. Suppose A is a locally (ρ, σ, β)-bounded adversary, and let ΦA be the cor-
responding flow defined by (5). Then for each flow ϕ = (aϕ, Pϕ) ∈ ΦA, a has rate at most
ρ, global burst parameter σ, and local burst parameter bϕ = β(iniϕ), where iniϕ denotes the
initial buffer in ϕ’s path. Moreover, ΦA obeys a locally dependent rate bound of ρ.

Conversely, LBAs arise naturally as discretizations (packetizations) of (locally dependent)
flows. We formalize this connection in the following definition and lemma.

▶ Definition 2.8. Let G = (V, E) be a network and Φ a family of flows on G. The
discretization of Φ is the AQT injection pattern AΦ defined as follows. For each flow
ϕ = (aϕ, Pϕ) ∈ Φ and time t = N, AΦ contains ⌊aϕ(t)⌋ − ⌊aϕ(t − 1)⌋ packets injected at time
t with route Pϕ.

We can view the discretization of a flow as forming packets via the following process.
Each buffer maintains a set of (complete) packets, as well as a reserve of “fractional” packets
associated with each flow originating at the buffer. At times s ∈ (t − 1, t], flows enter a
buffer e. At time t, the integral parts of each flow that has not yet been bundled as packets
are injected as complete packets into the buffer, while the fractional remainder is reserved.
The following lemma shows that for flows obeying a locally dependent rate bound, the
resulting packet injection pattern is locally bounded as well.

▶ Lemma 2.9. Let G = (V, E) be a graph and Φ a family of flows on G. For each ϕ ∈ Φ,
let iniϕ denote the initial buffer in ϕ’s path. Suppose Φ obeys a locally dependent rate bound
of r with global burst parameter σ, and define the function β : E → N by

β(e) =
∑

ϕ : iniϕ=e
(1 + bϕ).

Then the discretization AΦ of Φ is locally (r, σ, β) bounded.

Proof. Fix a set S ⊆ E of initial buffers, an edge e, and (discrete) time interval T = [t0, t1].
Let A = AΦ, and let Ψ ⊆ Φe be the subset of flows containing e and with origin in S. We
compute

NT
S (e) = |{(t, P) ∈ A | t ∈ T, (v0, v1) ∈ S, and P contains e}|

=
∑
ϕ∈Ψ

∑
s∈T

(⌊aϕ(s)⌋ − ⌊aϕ(s − 1)⌋)

=
∑
ϕ∈Ψ

(⌊aϕ(t1)⌋ − ⌊aϕ(t0 − 1)⌋)

≤ r · (t1 − t0 + 1) + σ +
∑
ψ∈Φ

(1 + bϕ) (6)

= r · |T | + σ +
∑
e∈S

β(e).

In Equation (6), we use the fact that ⌊a⌋ − ⌊b⌋ ≤ 1 + a − b. ◀

▶ Remark 2.10. The result of Lemma 2.9 is a significant refinement of the analogous
statement for the standard (ρ, σ) burst model. To see this, consider the single destination
path (Example 2.4), and take Φ = {ϕ1, ϕ2, . . . , ϕn} to be the family of flows where each ϕi
has arrival curve a(t) = 1

n t and associated path Pi = (i, i + 1, . . . , n + 1). In the associated
injection pattern AΦ, one packet is injected into every buffer at times n, 2n, 3n, . . . (cf. A1
in Example 2.4). Even though flows in Φ have burst parameter 0, large bursts appear in
AΦ as the result of the rounding process. Nonetheless, Lemma 2.9 asserts that Aϕ is locally
(1, 0, 1)-bounded, while the injection pattern is only (1, σ)-bounded for σ ≥ n − 1.

DISC 2022

34:8 Packet Forwarding with a Locally Bursty Adversary

3 Packet Bundling

In this section we assume that for a network G = (V, E), all edges have the same (integral)
capacity C. We examine the following strategy for dealing with general uniform capacity
networks: when packets arrive in a buffer, they are set in a reserve buffer until sufficiently
many (e.g., C) packets occupy the reserve buffer. Then the packets are bundled together,
and treated as one indivisible “jumbo” packet. This process is appealing because if all jumbo
packets have size C, then forwarding protocols designed for unit capacities can be applied to
jumbo packets. Thus, the approach sidesteps potential subtleties in reasoning about general
capacities (see Section 1.1 in [6]).

Our main results in this section show that if the original packet injection pattern obeys
an LBA bound, then the resulting injection pattern of jumbo packets obeys a similar LBA
bound with the parameters scaled down. Thus, if any algorithm guarantees some buffer
space usage for unit capacity networks, then applying the same algorithm to jumbo packets
will automatically give an analogous bound for general capacities.

3.1 Uniform Packets

We first consider the case where all packets have unit size (as in the standard AQT model),
but all edges in the network have capacity C ≥ 1. Now let A be any locally (C, σ, β)-bounded
adversary, and let Φ = ΦA be the corresponding family of flows. We define the C-reduction
of Φ, denoted 1

CΦ, to be

1
C

Φ =
{(

1
C

a, P

) ∣∣∣∣ (a, P) ∈ Φ
}

.

Similarly, we define the C-reduction of A, denoted 1
CA, to be the discretization (Definition 2.8)

of 1
CΦ.
Observe that 1

CA is derived from A via precisely the process of forming jumbo packets as
described above. The following proposition follows immediately from Lemmas 2.7 and 2.9.

▶ Proposition 3.1. Suppose A is locally (ρ, σ, β)-bounded. Then, 1
CA is locally (ρ/C, σ/C, 1+

β/C)-bounded.

Again, we emphasize that the analogue of Proposition 3.1 is not true for the standard
(ρ, σ)-bounded adversary model. The proposition has the following consequence.

▶ Corollary 3.2. Suppose F is a forwarding protocol that for any locally (1, σ, β)-bounded
adversary A on a unit-capacity network G = (V, E) achieves buffer space usage

sup
e∈E,t∈N

∣∣Lt(e)
∣∣ ≤ fG(σ, β).

Then for any uniform capacity C and locally (C, σ, β)-bounded adversary A, applying F to
1
CA achieves buffer space usage

sup
e∈E,t∈N

∣∣Lt(e)
∣∣ ≤ CfG(σ/C, 1 + β/C) + C.

We note that the additive C term in the final expression comes from the need to store
packets that have not yet been bundled.

W. Rosenbaum 34:9

3.2 Heterogeneous Packets
The framework described in Sections 2.2 and 3.1 shows how forwarding protocols for the
AQT model with unit edge capacities can be applied to (1) discretizations of continuous flows,
and (2) AQT adversaries with arbitrary uniform edge capacities and (uniform) unit-sized
packets. Here, we describe a slight modification of the framework that allows for indivisible
packets with heterogeneous sizes. To this end, we augment the AQT model as follows:

Each packet p has an associated size, denoted w(p).
In a single round, an edge with capacity C can forward a set of packets whose sizes sum
to at most C.
An adversary A is locally (ρ, σ, β) bounded if for any subset S of buffers, any edge e, and
in any T consecutive rounds, the sum of sizes of packets injected into S whose paths
contain e is at most ρ · T + σ +

∑
f∈S β(f).

The following example shows one complication caused by indivisible heterogeneous packets.

▶ Example 3.3. Consider a single edge e with capacity 1. Then a (1, 1)-bounded adversary
can inject 3 packets of size 2/3 every 2 rounds that must cross e. Since e has capacity 1, it
can only forward a single packet each round. Thus, the injection pattern is infeasible (i.e.,
cannot be handled with finite buffer space).

We can preclude infeasible injection patterns (such as Example 3.3) by further restricting
the allowable injection rate. Consider the following bundling procedure: when packets are
injected into a buffer, they are placed in a reserve buffer. If the load of the reserve buffer
exceeds 1

2 C, then its contents are bundled into packets, each of whose total load is at least 1
2 C.

Arguing as before, if the original injection pattern is locally (ρ, σ, β)-bounded with ρ ≤ 1
2 C,

then the resulting injection pattern of bundled packets is locally (1, σ/C, 1 + β/C)-bounded.
Note that even though the rate of the adversary is ρ ≤ 1/2, the rate of the bundled injections
can be as large as 1. This occurs, for example, if the adversary always injects C/2 packets
into a single buffer each round. These packets are then bundled, resulting in one complete
bundle appearing each round.

4 OED Upper Bound

In this section we prove worst-case buffer space upper bounds for “information gathering
networks” with a locally bursty adversary – i.e., instances in which all packets share a
common destination and the union of trajectories of all packets forms a tree. Specifically, we
show that the odd-even downhill (ODE) algorithm of [6, 10] requires O(B log n + σ) buffer
space for any (ρ, σ, β)-bounded adversary for which β(e) ≤ B for all buffers e. For clarity
and notational simplicity we describe the algorithm and argument in the simpler setting
where the network consists of a path. All of the results remain true for general information
gathering networks, and analogous arguments follow using the terminology and preliminary
results described in [10].

In the case of the single destination path, the network G = (V, E) consists of a path:
V = {1, 2, . . . , n + 1}, and E = {(i, i + 1) | i ≤ n}. All packets share the destination n + 1,
though they can be injected into any buffer. To cut down on notational clutter, we associate
a buffer (i, i + 1) with its index i. In this setting, we describe the Odd-Even Downhill
or OED algorithm independently introduced by Dobrev et al. [6] and Patt-Shamir and
Rosenbaum [10]. Following Section 3, we assume that all edge capacities are 1, and that
all packets have unit size. To simplify notation, we use Lt(i) to denote the the number of
packets in buffer i immediately before the forwarding step of round t.

DISC 2022

34:10 Packet Forwarding with a Locally Bursty Adversary

▶ Definition 4.1. The OED rule stipulates that i forwards a packet in round t if and only
if one of the following conditions is satisfied:
1. Lt(i) > Lt(i + 1), or
2. Lt(i) = Lt(i + 1) and Lt(i) is odd.
By convention, we set Lt(n + 1) = 0 for all t.

Both original papers [6, 10] show that for all (ρ, σ)-bounded adversaries, the maximum
buffer load under OED forwarding is O(log n + σ). We will show that OED forwarding
achieves similar buffer space usage for any local (ρ, σ, β)-bounded adversary.

▶ Theorem 4.2. Let G be a single-destination path of size n + 1, and let A be any local
(ρ, σ, β)-bounded adversary where β(i) ≤ B for all i. Then the worst case buffer load is
O(B log n + σ). That is,

sup
t,i

Lt(i) = O(B log n + σ).

Our proof of Theorem 4.2 follows the analysis of OED presented in [10]. Specifically,
their analysis considers the evolution of plateaus in the network.

▶ Definition 4.3 (cf. [10]). Let G be a single destination path and Lt : V → N a config-
uration – i.e., assignment of loads to buffers – at some time t. We say that an interval
I = [a, b] ⊆ V is a plateau of height h if I is a maximal sub-interval of V such that for all
i ∈ I, Lt(i) ≥ h. That is, every buffer in I has load at least h, and there is no larger interval
I ′ containing I with this property. We say that I is an even plateau if I is a plateau of
height h for some even number h.

We think of packets in G as being arranged vertically in buffers – see Figure 1. Since
packets share the same destination, for the purposes of our load analysis, we can treat all
packets in a buffer as indistinguishable.1 We refer to the height of a packet in a buffer as one
greater than the number of packets below it. Thus, for a buffer with load 1, its sole packet is
at height 1; a buffer with two packets has one at height 1 and the second at height 2, etc.
We say that a packet P is above a plateau I of height h if ht(P) > h. Given a configuration
L : V → N and a plateau I of height h, we denote the number of packets above I by Lh(I).
That is,

Lh(I) =
∑
i∈I

(L(i) − h). (7)

OED forwarding does not specify which packet is forwarded when a buffer is forwarded,
and the maximum load analysis of the algorithm is independent of this choice. Nonetheless,
for the purposes of bookkeeping, it will be convenient to adopt the following conventions:
1. Whenever a packet is injected or received as the result of forwarding, it occupies the

highest position in its buffer;
2. When a buffer forwards a packet, the highest packet in the buffer is forwarded.
That is – for the purposes of bookkeeping – we assume that the buffers operate as LIFO
(last-in, first-out) stacks.

With these conventions, we make some preliminary observations about the movement of
packets in an execution of the OED algorithm.

1 In order to analyze packet latency, one should distinguish packets by their age.

W. Rosenbaum 34:11

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

Buffer number

Pa
ck

et
 h

ei
gh

t

Figure 1 A configuration of packets. Each column represents a buffer, labeled 1 through 10, while
the vertical axis indicates heights. The load of each buffer corresponds to the height of the highest
packet in the buffer; for example, L(6) = 5. The indicated interval I = [4, 8] is a plateau of height 2.
The six shaded packets sit above the plateau I, so that L2(I) = 6. Corollary 4.8 states that the
number of packets above I is at most (B + 1) |I| + σ for any locally (1, σ, B)-bounded adversary.
The proof of Theorem 4.2 applies this corollary inductively to the nested sequence of even plateaus
containing the buffer with maximum load to show that the maximum load is at most logarithmic in
the size of the network.

▶ Lemma 4.4. Suppose L : V → N is a configuration immediately before forwarding and
L′ the configuration afterward. Suppose I = [a, b] ⊆ V is an even plateau of height h in
configuration L. Then in configuration L′, for all i ∈ [a, b − 1], we have L′(i) ≥ h. Thus, in
L′, the interval [a, b − 1] is contained in a plateau I ′ of height h.

Proof. Suppose i ∈ [a, b − 1]. Then in L, we have L(i), L(i + 1) ≥ h. Since h is even, i will
not forward unless L(i) ≥ h + 1. Therefore, L′(i) ≥ h + 1 − 1 = h. ◀

▶ Lemma 4.5. For any packet P , let htt(P) denote the height of P at time t,2 and let h be
an even number. If htt(P) ≤ h, then for all s ≥ t we have hts(P) ≤ h.

Proof. By our conventions of packet movement, the height of P in a fixed buffer is unchanged
until it is forwarded. Since the top packet is always forwarded, P can only be forwarded if
ht(P) = L(i), where i is the buffer containing P before forwarding. Since ht(P) ≤ h we also
have L(i) ≤ h. Since h is even, i only forwards if L(i + 1) ≤ h − 1. Therefore, the height of
P after forwarding is at most L(i + 1) + 1 ≤ h − 1 + 1 = h. Thus, P remains at height at
most h. ◀

▶ Corollary 4.6. Suppose L : V → N is a configuration and I = [a, b] is an even plateau of
height h. Suppose a packet P was injected at time s, and at time t ≥ s sits above I (i.e., P

occupies a buffer j ∈ I and htt(P) > h). Then P was injected into a buffer in I with an
initial height hts(P) > h.

2 Note that this quantity is well-defined for all t (until P is delivered to its destination) by the LIFO
conventions for height and packet movement.

DISC 2022

34:12 Packet Forwarding with a Locally Bursty Adversary

Proof. Suppose that at time t, P occupies buffer j ∈ [a, b]. Since packets are only forwarded
to a buffer with larger index, P was injected at some buffer i ≤ j at some time t0 ≤ t. By
Lemma 4.5, for all s ∈ [t0, t] we have hts(P) > h, whence the second assertion of the corollary
holds.

For the first assertion, we must show that i ∈ I. To this end, for each time s ∈ [t0, t], let
Is = [as, bs] denote the plateau of height h in which P is contained at time s. Thus, It0 is the
plateau above which P is initially injected so that j ∈ It0 , and It = I = [a, b]. By Lemma 4.4,
for all s < t, we have [as, bs − 1] ⊆ Is+1 = [as+1, bs+1]. Therefore, we have as ≥ as+1 for
all s. Thus, by induction, we have at ≤ at0 ≤ j, where the second inequality holds because
j ∈ It0 . This gives the desired result. ◀

We now quote a lemma from [10], which bounds the number of packets above even
plateaus for (ρ, σ)-bounded adversaries.

▶ Lemma 4.7 (cf. Lemma 3.4 in [10]). Let A be a (ρ, σ)-bounded adversary and suppose L is
a configuration realized by OED forwarding. Suppose I is an even plateau of height h. Then

Lh(I) ≤ |I| + σ.

▶ Corollary 4.8. Let A be a local (ρ, σ, β)-bounded adversary with β(i) ≤ B for all i, and
suppose L is a configuration realized by OED forwarding. Suppose I is an even plateau of
height h. Then

Lh(I) ≤ |I| + σ +
∑
i∈I

β(i) ≤ (B + 1) |I| + σ.

Proof. For any interval I, let AI ⊆ A be the injection pattern consisting of packets injected
into buffers i ∈ I. Since A is locally (ρ, σ, β)-bounded, AI is (ρ, σ, β′)-bounded with

β′(i) =
{

β(i) if i ∈ I

0 otherwise

Therefore, by Observation 2.3, AI is (ρ, σ′)-bounded, where σ′ = σ +
∑
i∈I β(i).

Now let I be an even plateau of height h. By Corollary 4.6, the configuration Lh (see
Equation (7)) consists entirely of packets injected into I – i.e., packets injected by AI . Since
AI is a (ρ, σ′)-bounded adversary, Lemma 4.7 implies that Lh(I) ≤ |I| + σ′, which gives the
desired result. ◀

We now have all the pieces together to prove Theorem 4.2. The idea is to use Corollary 4.8
inductively to show that plateaus cannot grow too tall.

Proof of Theorem 4.2. Assume without loss of generality that B is even, and consider any
configuration L attained by A. Let i∗ = arg maxi L(i) be a buffer with maximum load,
and define I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Iℓ where Ij is the plateau of height j containing i∗, and
ℓ = L(i∗).

Define m to be the maximum value such that∣∣Im(B+2)
∣∣ − σ

B + 1 ≥ 1, (8)

if such a value of m > 0 exists, and take m = 0 otherwise. Observe that for all k, we have

Lk(Ik) ≥
ℓ∑

j=k+1
|Ij | . (9)

W. Rosenbaum 34:13

Since the Ij are nested intervals, for any k < m we have

Lk(B+2)(Ik(B+2)) ≥ (B + 2)
m∑

j=k+1
Lj(B+2)(Ij(B+2)). (10)

Combining (10) with the result of Corollary 4.8, we find that for all j < m,

(B + 2)
m∑

j=k+1

∣∣Ij(B+2)
∣∣ ≤ (B + 1)

∣∣Ik(B+2)
∣∣ + σ. (11)

Rearranging (11) yields that for all k = 0, 1, . . . m − 1 we have

b
m∑

j=k+1

∣∣Ij(B+2)
∣∣ − σ

B + 1 ≤
∣∣Ik(B+2)

∣∣ where b = B + 2
B + 1 . (12)

Note that for k = m − 1, m − 2, . . ., (12) gives

b
∣∣Im(B+2)

∣∣ − σ

B + 1 ≤
∣∣I(m−1)(B+2)

∣∣ (13)

b
∣∣Im(B+2)

∣∣ + b
∣∣I(m−1)(B+2)

∣∣ − σ

B + 1 ≤
∣∣I(m−2)(B+2)

∣∣ (14)

...

Combining (13) and (14), we obtain

(b + b2)
∣∣Im(B+2)

∣∣ − (1 + b) σ

B + 1 ≤
∣∣I(m−2)(B+2)

∣∣ . (15)

Continuing in this way, a straightforward induction argument combined with the observation
that b > 1 gives

bm
(∣∣Im(B+2)

∣∣ − σ

B + 1

)
≤ |I0| = n. (16)

By the choice of m in (8), (16) implies that

m ≤ logb n. (17)

Again, from the definition of m, taking h = m(B + 2) + 2, we have

|Ih| < 1 + σ

B + 1 .

Applying Corollary 4.8, gives

Lh(Ih) ≤ (B + 1) |Ih| + σ ≤ B + 2σ + 1.

Since there are at most B + 2σ + 1 above Ih, the load of i∗ satisfies

L(i∗) ≤ h + B + 2σ + 1
≤ (B + 2)m + B + 2σ + 3
= O(B log n + σ),

which gives the desired result. ◀

DISC 2022

34:14 Packet Forwarding with a Locally Bursty Adversary

4.1 Consequences
Here, we list some consequences of the upper bound of Theorem 4.2 when applied in
combination with the packet bundling procedures described in Sections 2.2 and 3. For the
following results, we assume that G is an information gathering network with uniform edge
capacity C.

▶ Corollary 4.9. Suppose A is a locally (ρ, σ, β)-bounded adversary with ρ ≤ C and β(e) ≤ B

for all e ∈ E. Then OED forwarding applied to the C-reduction of A has buffer space usage
O((B + C) log n + σ).

▶ Corollary 4.10. Suppose Φ is a family of flows with locally dependent rate bound r ≤ C,
local burst parameters bϕ ≤ B, and global burst parameter σ. Then OED forwarding applied
to the discretization of the C-reduction of Φ requires buffer space O((B + C) log n + σ).

▶ Corollary 4.11. Suppose A is a locally (ρ, σ, β)-bounded adversary with indivisible het-
erogeneous packet injections, and ρ ≤ C/2. Then OED forwarding applied to the bundled
injection pattern described in Section 3.2 achieves buffer space usage O((B + C) log n + σ).

5 Lower Bounds on Buffer Size

In this section, we show that buffer space usage of the OED algorithm is asymptotically
optimal among deterministic forwarding protocols. In Appendix A, we generalize the lower
bound to randomized forwarding protocols.

▶ Theorem 5.1. Let F be any deterministic online forwarding protocol, and let G = (V, E)
be a single-destination path of length n. For any B let β(e) = B for all e ∈ E. Then there
exists a local (1, σ, β)-bounded adversary A such that

sup
t,i

Lt(i) = Ω(B logB n + σ). (18)

▶ Remark 5.2. The lower bound of (18) is in contrast to the centralized and semi-local
upper bounds of [8, 11, 9], which show that for (ρ, σ)-bounded adversaries, maximum buffer
space O(ρ + σ) (with no n dependence) is achievable. In particular, [11] gives a smooth
tradeoff between the locality of a forwarding protocol and the optimal buffer space usage.
Their work shows that if each node acts based on the state of its d-distance neighborhood,
then Θ(1

d log n + σ) buffer space is necessary and sufficient.3 Thus, for (ρ, σ)-bounded
adversaries, the worst-case buffer space usage for a protocol generally depends on the
protocol’s locality (d). Together, Theorems 4.2 and 5.1 show that this is not the case for
local (ρ, σ, β)-bounded adversaries, as OED – a local (d = O(1)) protocol – is asymptotically
optimal, even compared to centralized protocols. Thus, unlike for (ρ, σ)-bounded injection
patterns, non-local information does not asymptotically improve the performance against
local (ρ, σ, β)-bounded adversaries in information gathering networks.
▶ Remark 5.3. In the proof of Theorem 5.1, we describe an injection pattern as defined
by an adaptive offline adversary. That is, the choices made by the adversary are made in
response to an algorithm’s forwarding decisions (i.e., the current state of all buffers in the
network). If the forwarding protocol is deterministic, this assumption about the adversary
is without loss of generality, as the adversary can simulate the forwarding protocol and

3 In the case d = 1, the algorithm of [11] reduces to the OED algorithm.

W. Rosenbaum 34:15

construct an injection pattern in advance. In Appendix A, we will describe a (randomized)
oblivious adversary that is unaware of the forwarding protocol being used. Nonetheless, the
oblivious adversary will almost surely require buffer space usage of Ω(B log n + σ) against
any (centralized, randomized) online forward protocol.

Proof of Theorem 5.1. Without loss of generality, we assume that the network size is a
power of 2B, say, n = (2B)m. Given a deterministic, online forwarding protocol F , we
construct an adversary AF that injects packets in phases. Specifically, AF chooses a nested
sequence of sub-intervals I0 ⊇ I1 ⊇ I2 ⊇ · · · and in the kth phase, AF injects packets only
into Ik. Each Ik is chosen at the end of the (k − 1)st phase depending on the loads of buffers
in Ik−1. The kth phase lasts τk rounds.

We set τ1 = 1
2 n and I1 = [n]. Inductively, we define τk = 1

2B τk−1 and |Ik| = 1
2B |Ik−1|.

At the beginning of phase k, AF selects Ik and injects B packets into each buffer in Ik. For
k > 1, AF selects Ik as follows. Let

Ik−1 = I1
k−1 ∪ I2

k−1 ∪ · · · ∪ I2B
k−1,

where the Ijk−1 are consecutive intervals of size 1
2B |Ik−1|. Then AF selects Ik = Ijk−1 where

Ijk−1 has the largest total load at the end of the kth phase. That is, j = arg maxj L(Ijk−1).
Observe that for all k we have

τk = 1
2 |Ik| , and (19)

τk = B |Ik+1| . (20)

▷ Claim. For all k, at the end of the kth phase, the total load of Ik satisfies

L(Ik) ≥ k

(
B − 1

2

)
|Ik| . (21)

Proof of Claim. We argue by induction on k. For k = 1, at the beginning of the first phase,
B packets are injected into each buffer in the network. Thus, the total load is Bn = B |I1|.
After |τ1| = 1

2 n forwarding rounds, at most 1
2 n = 1

2 |I1| packets are forwarded by the last
buffer in I1, hence the total load in I1 is at least (B − 1/2) |I1|.

For the inductive step, assume that L(Ik−1) ≥ (k − 1)(B − 1/2) |Ik−1| at the end of the
(k −1)st phase. By the choice of Ik, we therefore have L(Ik) ≥ (k −1)(B −1/2) |Ik| at the end
of the (k − 1)st phase. At the beginning of the kth phase, AF injects B |Ik| packets into the
buffers in Ik, hence the load becomes at least (kB − (k − 1)/2) |Ik|. During the τk = |Ik| /2
rounds of the kth phase, the last buffer in Ik forwards at most τk = |Ik| /2 packets, hence the
total load of Ik decreases by at most this amount. Thus we have k(B − 1/2) |Ik| as desired.

◁

Applying the claim, after k = log2B n phases, we have |Ik| = 1 and L(Ik) = k(B − 1/2) =
Ω(B logB n)). The desired result follows by adding one more round in which AF injects σ

packets into Ik.
All that remains is to show that AF is local (1, σ, β)-bounded. To this end, suppose each

kth phase begins in round sk and ends in round tk. Then injections only occur in rounds
sk. Now fix any subset S of nodes and interval T = [s, t], and define j and ℓ such that
sj−1 < s ≤ tj , and ℓ with sℓ ≤ t ≤ tℓ. For k satisfying j ≤ k ≤ ℓ, define Sk = S ∩ Ik. Then
observe that in round sk, B |Sk| packets are injected into S. Therefore, the total number of
packets injected into S during T is N =

∑ℓ
k=j B |Sk| ≤

∑ℓ
k=j B |Ik|, while the total number

of rounds is |T | ≥ max
{

1,
∑ℓ−1
k=j+1 τk

}
. We bound N as follows:

DISC 2022

34:16 Packet Forwarding with a Locally Bursty Adversary

N = B |Sj | + B |Sj+2| + · · · + B |Sℓ|
≤ B |Sj | + B |Ij+2| + · · · + B |Iℓ|
= B |Sj | + τj+1 + · · · + τℓ−1

≤ B |S| + |T | .

The second equality comes from Equation (20). Thus, AF is local (1, σ, β) bounded. ◀

In Appendix A, we generalize the lower bound to randomized protocols.

References
1 Micah Adler and Adi Rosén. Tight bounds for the performance of longest-in-system on

dags. In Helmut Alt and Afonso Ferreira, editors, STACS 2002: 19th Annual Symposium
on Theoretical Aspects of Computer Science, Antibes - Juan les Pins, France, March 14–
16, 2002 Proceedings, pages 88–99, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-45841-7_6.

2 Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson.
Adversarial queuing theory. J. ACM, 48(1):13–38, January 2001. doi:10.1145/363647.363659.

3 Johannes Bund, Matthias Függer, Christoph Lenzen, Moti Medina, and Will Rosenbaum.
PALS: plesiochronous and locally synchronous systems. In 26th IEEE International Symposium
on Asynchronous Circuits and Systems, ASYNC 2020, Salt Lake City, UT, USA, May 17-20,
2020, pages 36–43. IEEE, 2020. doi:10.1109/ASYNC49171.2020.00013.

4 R. L. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE
Transactions on Information Theory, 37(1):114–131, January 1991. doi:10.1109/18.61109.

5 R.L. Cruz. A calculus for network delay. ii. network analysis. IEEE Transactions on Information
Theory, 37(1):132–141, 1991. doi:10.1109/18.61110.

6 Stefan Dobrev, Manuel Lafond, Lata Narayanan, and Jaroslav Opatrny. Optimal local buffer
management for information gathering with adversarial traffic. In Christian Scheideler and
Mohammad Taghi Hajiaghayi, editors, Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages
265–274. ACM, 2017. doi:10.1145/3087556.3087577.

7 S. Kundu and S. Chattopadhyay. Network-on-Chip: The Next Generation of System-on-Chip
Integration. CRC Press, 2018.

8 Avery Miller and Boaz Patt-Shamir. Buffer size for routing limited-rate adversarial traf-
fic. In DISC 2016: Proceedings of the 30th International Symposium on Distributed
Computing, Paris, France, September 27-29, 2016, pages 328–341. Springer, 2016. doi:
10.1007/978-3-662-53426-7_24.

9 Avery Miller, Boaz Patt-Shamir, and Will Rosenbaum. With great speed come small buffers:
Space-bandwidth tradeoffs for routing. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 117–126. ACM, 2019. doi:10.1145/3293611.
3331614.

10 Boaz Patt-Shamir and Will Rosenbaum. The space requirement of local forwarding on acyclic
networks. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, PODC 2017:
Proceedings of the ACM Symposium on Principles of Distributed Computing, Washington, DC,
USA, July 25-27, 2017, pages 13–22. ACM, 2017. doi:10.1145/3087801.3087803.

11 Boaz Patt-Shamir and Will Rosenbaum. Space-optimal packet routing on trees. In 2019 IEEE
Conference on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2,
2019, pages 1036–1044. IEEE, 2019. doi:10.1109/INFOCOM.2019.8737596.

https://doi.org/10.1007/3-540-45841-7_6
https://doi.org/10.1145/363647.363659
https://doi.org/10.1109/ASYNC49171.2020.00013
https://doi.org/10.1109/18.61109
https://doi.org/10.1109/18.61110
https://doi.org/10.1145/3087556.3087577
https://doi.org/10.1007/978-3-662-53426-7_24
https://doi.org/10.1007/978-3-662-53426-7_24
https://doi.org/10.1145/3293611.3331614
https://doi.org/10.1145/3293611.3331614
https://doi.org/10.1145/3087801.3087803
https://doi.org/10.1109/INFOCOM.2019.8737596

W. Rosenbaum 34:17

12 David Salyers, Yingxin Jiang, Aaron Striegel, and Christian Poellabauer. Jumbogen: Dynamic
jumbo frame generation for network performance scalability. SIGCOMM Comput. Commun.
Rev., 37(5):53–64, October 2007. doi:10.1145/1290168.1290174.

13 Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn control. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 121–126, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2491185.2491198.

A Generalization to Randomized Protocols

Here, we generalize the lower bound of Theorem 5.1 to randomized forwarding protocols.
Specifically, we construct a randomized oblivious injection pattern that requires buffer space
Ω(B log n + σ) against any online forwarding protocol.

▶ Theorem A.1. Let G = (V, E) be the single destination path of length n. Then for every
σ, and B, there exists a randomized injection pattern Arand ∈ L(1, σ, B) such that for any
(centralized, randomized) online forwarding protocol F , we have

sup
t,i

Lt(i) = Ω(B logB n + σ)

almost surely.

Again, we emphasize the order of quantifiers in the statement of the Theorem A.1:
the same randomized injection pattern achieves the lower bound (almost surely) for every
forwarding protocol.

The adversary Arand of Theorem A.1 is a straightforward modification of the adversary
AF constructed the proof of Theorem 5.1. Recall that AF injects packets into a nested
sequence of intervals I0 ⊇ I1 ⊇ · · · ⊇ Ik where k = O(logB n), and |Ik| = 1. Each for
j ≥ 1, Ij is chosen to be one of 2B sub-intervals of Ij−1 with maximum average load and
|Ij−1| = 2B |Ij |. The idea of Arand is to perform the same injection pattern as A, except that
Arand chooses each Ij ⊆ Ij−1 randomly, independent of the choices of the forwarding protocol.
We will show that for any execution of any forwarding protocol, injecting in this way yields
a load of Ω(B log n + σ) with probability Ω(1/n). Thus, by independently repeating the
randomized injection pattern ad infinitum, the lower bound is achieved almost surely (and
with high probability after O(n2) injection rounds).

In order to formalize our description of Arand, we first observe that the sequence I0 ⊇
I1 ⊇ · · · ⊇ Ik of intervals chosen by AF is uniquely determined by Ik = [ak], the final buffer
into which AF injects packets. We also note that the injection pattern AF consists of O(n)
injection rounds, in which O(Bn + σ) packets in total are injected. Let Ai denote such an
injection pattern in which Ik = [i] – i.e., i is the final buffer into which Ai injects packets.

▶ Definition A.2. Let Ai be the injection pattern described in the preceding paragraph. Then
the adversary Arand injects packets as follows. Repeat:
1. choose i ∈ [n] uniformly at random.
2. in O(n) rounds, inject packets as in Ai

3. wait Bn + σ rounds without injecting any packets
A single iteration of step 1–3 is an epoch, and each epoch consists of k = O(log n) phases
(corresponding to the sub-intervals Ij chosen in Ai).

DISC 2022

https://doi.org/10.1145/1290168.1290174
https://doi.org/10.1145/2491185.2491198

34:18 Packet Forwarding with a Locally Bursty Adversary

▶ Definition A.3. Consider an execution of some forwarding protocol F with adversary
Arand. We say that phase j > 0 of some epoch of Arand is good if at the beginning of the
phase we have

L(Ij)
|Ij |

≥ L(Ij−1)
|Ij−1|

.

We say that an epoch is good if all of its phases are good.

The following corollary follows immediately from the proof of Theorem 5.1.

▶ Corollary A.4. Suppose an execution of a protocol F with adversary Arand experiences
a good epoch with injection pattern Ai. Then in the epoch’s final injection round, L(i) =
Ω(B log n + σ).

By Corollary A.4, all that remains to prove Theorem A.1 is to show that each epoch is
good with sufficient probability.

▶ Lemma A.5. Consider a single epoch of an execution of a protocol F with adversary Arand.
Then each phase is good independently with probability at least 1/2B.

Proof. Consider the interval Ij−1 at the beginning of the jth phase. There are 2B choices of
the sub-interval Ij , and each is chosen with equal probability. By the pigeonhole principle, at
least one choice Ij is good. Since Ai is chosen uniformly at random with i ∈ [n], conditioned
on Ij−1, the choice of Ij is uniformly at random. Thus, the probability Ij is a good choice
is at least 1/2B. Finally, we note that since i is chosen uniformly at random, the choice of
which sub-interval of Ij−1 is chosen in phase j is independent of the sub-intervals chosen in
other phases. ◀

▶ Corollary A.6. Each epoch is good independently with probability at least 1/n.

Proof. Each epoch consists of log2B n phases, and each phase is good independently with
probability 1/2B. Therefore, the probability that all phases are good is (1/2B)log2B n = 1/n.
By construction, the choices of i used for each epoch are mutually independent. ◀

Proof of Theorem A.1. The proof of Theorem 5.1 implies that each Ai chosen by Arand is
locally (ρ, σ, β)-bounded. Waiting Bn + σ rounds with no injections between epochs ensures
that Arand is locally (ρ, σ, β)-bounded as well.

By Corollary A.4, if Arand experiences a good epoch, then it inflicts a buffer load of
Ω(B log n+σ). By Corollary A.6, the probability that the first k epochs are not good is at most
(1−1/n)k. Taking the limit as k → ∞, we find that Pr(supt,i′ Lt(i′) = o(B log n+σ)) = 0. ◀

▶ Remark A.7. The proof of Theorem A.1 shows that the probability that none of the first k

epochs are good is at most (1 − 1/n)k. This expression implies that a good epoch occurs
with high probability after k = O(n log n) epochs. Since each epoch lasts O(Bn + σ) rounds,
a good epoch (hence a load of Ω(B log n + σ)) occurs after O(Bn2 log n) rounds with high
probability.

The Weakest Failure Detector for Genuine Atomic
Multicast
Pierre Sutra #

Telecom SudParis, Palaiseau, France

Abstract
Atomic broadcast is a group communication primitive to order messages across a set of distributed
processes. Atomic multicast is its natural generalization where each message m is addressed to
dst(m), a subset of the processes called its destination group. A solution to atomic multicast is
genuine when a process takes steps only if a message is addressed to it. Genuine solutions are the
ones used in practice because they have better performance.

Let G be all the destination groups and F be the cyclic families in it, that is the subsets of G
whose intersection graph is hamiltonian. This paper establishes that the weakest failure detector to
solve genuine atomic multicast is µ = (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) ∧ γ, where ΣP and ΩP are the
quorum and leader failure detectors restricted to the processes in P , and γ is a new failure detector
that informs the processes in a cyclic family f ∈ F when f is faulty.

We also study two classical variations of atomic multicast. The first variation requires that
message delivery follows the real-time order. In this case, µ must be strengthened with 1g∩h, the
indicator failure detector that informs each process in g∪h when g∩h is faulty. The second variation
requires a message to be delivered when the destination group runs in isolation. We prove that its
weakest failure detector is at least µ ∧ (∧g,h∈G Ωg∩h). This value is attained when F = ∅.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Software
and its engineering→ Distributed systems organizing principles; General and reference → Reliability

Keywords and phrases Failure Detector, State Machine Replication, Consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.35

Related Version Extended Version: https://arxiv.org/abs/2208.07650 [37]

1 Introduction

Context. Multicast is a fundamental group communication primitive used in modern
computing infrastructures. This primitive allows to disseminate a message to a subset of the
processes in the system, its destination group. Implementations exist over point-to-point
protocols such as the Internet Protocol. Multicast is atomic when it offers the properties of
atomic broadcast to the multicast primitive: each message is delivered at most once, and
delivery occurs following some global order. Atomic multicast is used to implement strongly
consistent data storage [4, 11, 36, 32].

It is easy to see that atomic multicast can be implemented atop atomic broadcast. Each
message is sent through atomic broadcast and delivered where appropriate. Such a naive
approach is however used rarely in practice because it is inefficient when the number of
destination groups is large [31, 35]. To rule out naive implementations, Guerraoui and
Schiper [25] introduce the notion of genuineness. An implementation of atomic multicast is
genuine when a process takes steps only if a message is addressed to it.

Existing genuine atomic multicast algorithms that are fault-tolerant have strong synchrony
assumptions on the underlying system. Some protocols (such as [34]) assume that a perfect
failure detector is available. Alternatively, a common assumption is that the destination
groups are decomposable into disjoint groups, each of these behaving as a logically correct
entity. Such an assumption is a consequence of the impossibility result established in [25].

© Pierre Sutra;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.sutra@telecom-sudparis.eu
https://orcid.org/0000-0002-0573-2572
https://doi.org/10.4230/LIPIcs.DISC.2022.35
https://arxiv.org/abs/2208.07650
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The Weakest Failure Detector for Genuine Atomic Multicast

Table 1 About the weakest failure detector for atomic multicast. (
√√

= strongly genuine)

Genuiness Order Weakest
× Global Ω ∧ Σ [8, 15]√

· /∈ U2 [25]
· · ≤ P [34]
· · µ §5, §4
· Strict µ ∧ (∧g,h∈G 1g∩h) §6.1
· Pairwise (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) §7√√

Global if F = ∅ then µ ∧ (∧g,h∈G Ωg∩h) §6.2else ≥ µ ∧ (∧g,h∈G Ωg∩h)

This result states that genuine atomic multicast requires some form of perfect failure
detection in intersecting groups. Consequently, almost all protocols published to date (e.g.,
[30, 17, 20, 10, 29, 13]) assume the existence of such a decomposition.

Motivation. A key observation is that the impossibility result in [25] is established when
atomic multicast allows a message to be disseminated to any subset of the processes. However,
where there is no such need, weaker synchrony assumptions may just work. For instance,
when each message is addressed to a single process, the problem is trivial and can be solved
in an asynchronous system. Conversely, when every message is addressed to all the processes
in the system, atomic multicast boils down to atomic broadcast, and thus ultimately to
consensus. Now, if no two groups intersect, solving consensus inside each group seems both
necessary and sufficient. In this paper, we further push this line of thought to characterize
the necessary and sufficient synchrony assumptions to solve genuine atomic multicast.

Our results are established in the unreliable failure detectors model [9, 18]. A failure
detector is an oracle available locally to each process that provides information regarding the
speed at which the other processes are taking steps. Finding the weakest failure detector
to solve a given problem is a central question in distributed computing literature [18]. In
particular, the seminal work in [8] shows that a leader oracle (Ω) is the weakest failure
detector for consensus when a majority of processes is correct. If any processes might fail,
then a quorum failure detector (Σ) is required in addition to Ω [15].

A failure detector is realistic when it cannot guess the future. In [14], the authors prove
that the perfect failure detector (P) is the weakest realistic failure detector to solve consensus.
Building upon this result, Schiper and Pedone [34] shows that P is sufficient to implement
genuine atomic multicast. However, P is the weakest only when messages are addressed to all
the processes in the system. The present paper generalizes this result and the characterization
given in [25] (see Table 1). It establishes the weakest failure detector to solve genuine atomic
multicast for any set of destination groups.

Primer on the findings. Let G be all the destination groups and F be the cyclic families in
it, that is the subsets of G whose intersection graph is hamiltonian. This paper shows that the
weakest failure detector to solve genuine atomic multicast is µ = (∧g,h∈G Σg∩h)∧(∧g∈G Ωg)∧γ,
where ΣP and ΩP are the quorum and leader failure detectors restricted to the processes in
P , and γ is a new failure detector that informs the processes in a cyclic family f ∈ F when f

is faulty. Our results regarding γ are established wrt. realistic failure detectors.
This paper also studies two classical variations of the atomic multicast problem. The

strict variation requires that message delivery follows the real-time order. In this case, we
prove that µ must be strengthen with 1g∩h, the indicator failure detector that informs each

P. Sutra 35:3

process in g ∪ h when g ∩ h is faulty. The strongly genuine variation requires a message to
be delivered when its destination group runs in isolation. In that case, the weakest failure
detector is at least µ ∧ (∧g,h∈G Ωg∩h). This value is attained when F = ∅.

Outline of the paper. §2 introduces the atomic multicast problem and the notion of
genuineness. We present the candidate failure detector in §3. §4 proves that this candidate is
sufficient. Its necessity is established in §5. §6 details the results regarding the two variations
of the problem. We cover related work and discuss our results in §7. §8 closes this paper.
Due to space constraints, all the proofs are deferred to the extended version [37].

2 The Atomic Multicast Problem

2.1 System Model
In [9], the authors extend the usual model of asynchronous distributed computation to include
failure detectors. The present paper follows this model with the simplifications introduced in
[23, 22]. This model is recalled in [37].

2.2 Problem Definition
Atomic multicast is a group communication primitive that allows to disseminate messages
between processes. This primitive is used to build transactional systems [11, 36] and partially-
replicated (aka., sharded) data stores [17, 32]. In what follows, we consider the most standard
definition for this problem [4, 26, 12]. In the parlance of Hadzilacos and Toueg [26], it is
named uniform global total order multicast. Other variations are studied in §6.

Given a set of messages M, the interface of atomic multicast consists of operations
multicast(m) and deliver(m), with m ∈ M. Operation multicast(m) allows a process to
multicast a message m to a set of processes denoted by dst(m). This set is named the
destination group of m. When a process executes deliver(m), it delivers message m, typically
to an upper applicative layer.

Consider two messages m and m′ and some process p ∈ dst(m) ∩ dst(m′). Relation
m

p7→ m′ captures the local delivery order at process p. This relation holds when, at the time
p delivers m, p has not delivered m′. The union of the local delivery orders gives the delivery
order, that is 7→= ∪p∈P

p7→. The runs of atomic multicast must satisfy:

(Integrity) For every process p and message m, p delivers m at most once, and only if p

belongs to dst(m) and m was previously multicast.
(Termination) For every message m, if a correct process multicasts m, or a process delivers

m, eventually every correct process in dst(m) delivers m.
(Ordering) The transitive closure of 7→ is a strict partial order over M.

Integrity and termination are two common properties in group communication literature.
They respectively ensure that only sound messages are delivered to the upper layer and
that the communication primitive makes progress. Ordering guarantees that the messages
could have been received by a sequential process. A common and equivalent rewriting of this
property is as follows:

(Ordering) Relation 7→ is acyclic over M.

DISC 2022

35:4 The Weakest Failure Detector for Genuine Atomic Multicast

If the sole destination group is P , that is the set of all the processes, the definition above is
the one of atomic broadcast. In what follows, G ⊆ 2P is the set of all the destinations groups,
i.e., G = {g : ∃m ∈ M. g = dst(m)}. For some process p, G(p) denotes the destination groups
in G that contain p. Two groups g and h are intersecting when g ∩ h ̸= ∅.

What can be sent and to who. The process that executes multicast(m) is the sender of
m, denoted src(m). As usual, we consider that processes disseminate different messages
(i.e., src is a function). A message holds a bounded payload payload(m), and we assume
that atomic multicast is not payload-sensitive. This means that for every message m, and
for every possible payload x, there exists a message m′ ∈ M such that payload(m′) = x,
dst(m′) = dst(m) and src(m′) = src(m).

Dissemination model. In this paper, we consider a closed model of dissemination. This
means that to send a message to some group g, a process must belong to it (i.e., src(m) ∈
dst(m)). In addition, we do not restrict the source of a message. This translates into the
fact that for every message m, for every process p in dst(m), there exists a message m′ with
dst(m) = dst(m′) and src(m′) = p. Under the above set of assumptions, the atomic multicast
problem is fully determined by the destination groups G.

2.3 Genuineness
At first glance, atomic multicast boils down to the atomic broadcast problem: to disseminate
a message it suffices to broadcast it, and upon reception only messages addressed to the
local machine are delivered. With this approach, every process takes computational steps to
deliver every message, including the ones it is not concerned with. As a consequence, the
protocol does not scale [31, 35], even if the workload is embarrassingly parallel (e.g., when
the destinations groups are pairwise disjoint).

Such a strategy defeats the core purpose of atomic multicast and is thus not satisfying
from a performance perspective. To rule out this class of solutions, Guerraoui and Schiper [25]
introduce the notion of genuine atomic multicast. These protocols satisfy the minimality
property defined below.

(Minimality) In every run R of A, if some correct process p sends or receives a (non-null)
message in R, there exists a message m multicast in R with p ∈ dst(m).

All the results stated in this paper concern genuine atomic multicast. To date, this is the
most studied variation for this problem (see, e.g., [30, 20, 10]).

3 The Candidate Failure Detector

This paper characterizes the weakest failure detector to solve genuine atomic multicast.
Below, we introduce several notions related to failure detectors then present our candidate.

Family of destination groups. A family of destination groups is a set of (non-repeated)
destination groups f = (gi)i. For some family f, cpaths(f) are the closed paths in the
intersection graph of f visiting all its destination groups.1 Family f is cyclic when its
intersection graph is hamiltonian, that is when cpaths(f) is non-empty. A cyclic family f is
faulty at time t when every path π ∈ cpaths(f) visits an edge (g, h) with g ∩ h faulty at t.

1 The intersection graph of a family of sets (Si)i is the undirected graph whose vertices are the sets Si,
and such that there is an edge linking Si and Sj iff Si ∩ Sj ̸= ∅.

P. Sutra 35:5

p1 p2

p3

p4p5

(a)

g1

g2

g3

{p2}

{p1}

{p3}

(b)

g1 g3

g4

{p1}

{p1}
{p1, p4}

(c)

Figure 1 From left to right: the four groups g1, g2, g3 and g4, and the intersection graphs of the
two cyclic families f = {g1, g2, g3} and f′ = {g1, g3, g4}.

In what follows, F denotes all the cyclic families in 2G . Given a destination group g, F(g)
are the cyclic families in F that contain g. For some process p, F(p) are the cyclic families f

such that p belongs to some group intersection in f (that is, ∃g, h ∈ f. p ∈ g ∩ h).
To illustrate the above notions, consider Figure 1. In this figure, P = {p1, . . . , p5}

and we have four destination groups: g1 = {p1, p2}, g2 = {p2, p3}, g3 = {p1, p3, p4} and
g4 = {p1, p4, p5}. The intersection graphs of f = {g1, g2, g3} and f′ = {g1, g3, g4} are depicted
respectively in Figures 1b and 1c. These two families are cyclic. This is also the case of
f′′ = G = {g1, g2, g3, g4} whose intersection graph is the union of the two intersection graphs
of f and f′. This family is faulty when g2 ∩ g1 = {p2} fails. Group g2 belongs to two cyclic
families, namely F(g2) = {f, f′′}. Process p1 belongs to all cyclic families, that is F(p1) = F .
Differently, since p5 is part of no group intersection, F(p5) = ∅.

Failure detectors of interest. Failure detectors are grouped into classes of equivalence that
share common computational power. Several classes of failure detectors have been proposed
in the past. This paper makes use of two common classes of failure detectors, Σ and Ω,
respectively introduced in [15] and [8]. We also propose a new class γ named the cyclicity
failure detector. All these classes are detailed below.

The quorum failure detector (Σ) captures the minimal amount of synchrony to implement
an atomic register. When a process p queries at time t a detector of this class, it returns
a non-empty subset of processes Σ(p, t) ⊆ P such that:
(Intersection) ∀p, q ∈ P . ∀t, t′ ∈ N. Σ(p, t) ∩ Σ(q, t′) ̸= ∅
(Liveness) ∀p ∈ Correct. ∃τ ∈ N. ∀t ≥ τ. Σ(p, t) ⊆ Correct
The first property states that the values of any two quorums taken at any times intersect.
It is used to maintain the consistency of the atomic register. The second property ensures
that eventually only correct processes are returned.
Failure detector Ω returns an eventually reliable leader [16]. In detail, it returns a value
Ω(p, t) ∈ P satisfying that:
(Leadership) Correct ̸= ∅ ⇒ (∃l ∈ Correct. ∀p ∈ Correct. ∃τ ∈ N. ∀t ≥ τ. Ω(p, t) = l)
Ω is the weakest failure detector to solve consensus when processes have access to a shared
memory. For message-passing distributed systems, Ω ∧ Σ is the weakest failure detector.
The cyclicity failure detector (γ) informs each process of the cyclic families it is currently
involved with. In detail, failure detector γ returns at each process p a set of cyclic families
f ∈ F(p) such that:
(Accuracy) ∀p ∈ P . ∀t ∈ N. (f ∈ F(p) ∧ f /∈ γ(p, t)) ⇒ f faulty at t

(Completeness) ∀p ∈ Correct. ∀t ∈ N. (f ∈ F(p) ∧ f faulty at t) ⇒ ∃τ ∈ N. ∀t′ ≥ τ. f /∈
γ(p, t′)

DISC 2022

35:6 The Weakest Failure Detector for Genuine Atomic Multicast

Accuracy ensures that if some cyclic family f is not output at p and p belongs to it, then
f is faulty at that time. Completeness requires that eventually γ does not output forever
a faulty family at the correct processes that are part of it. Hereafter, γ(g) denotes the
groups h such that g ∩ h ̸= ∅ and g and h belong to a cyclic family output by γ.

To illustrate the above definitions, we may consider again the system depicted in Figure 1.
Let us assume that Correct = {p1, p4, p5}. The quorum failure detector Σ can return g1 or
g3, then g4 forever. Failure detector Ω may output any process, then at some point in time,
one of the correct processes (e.g., p1) ought to be elected forever. At processes p1, γ returns
initially {f, f′, f′′}. Then, once families f and f′′ are faulty – this should happen as p2 is faulty
– the output eventually stabilizes to {f′}. When this happens, γ(g1) = {g3, g4}.

Conjunction of failure detectors. We write C ∧D the conjunction of the failure detectors C

and D [23]. For a failure pattern F , failure detector C ∧ D returns a history in D(F) × C(F).

Set-restricted failure detectors. For some failure detector D, DP is the failure detector
obtained by restricting D to the processes in P ⊆ P . This failure detector behaves as D for
the processes p ∈ P , and it returns ⊥ at p /∈ P . In detail, let F ∩ P be the failure pattern F

obtained from F by removing the processes outside P , i.e., (F ∩ P)(t) = F (t) ∩ P . Then,
DP (F) equals D(F ∩ P) at p ∈ P , and the mapping p × N → ⊥ elsewhere. To illustrate this
definition, Ω{p} is the trivial failure detector that returns p at process p. Another example is
given by Σ{p1,p2} which behaves as Σ over P = {p1, p2}.

The candidate. Our candidate failure detector is µG = (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) ∧ γ.
When the set of destinations groups G is clear from the context, we shall omit the subscript.

4 Sufficiency

This section shows that genuine atomic multicast is solvable with the candidate failure
detector. A first observation toward this result is that consensus is wait-free solvable in
g using Σg ∧ Ωg. Indeed, Σg permits to build shared atomic registers in g [15]. From
these registers, we may construct an obstruction-free consensus and boost it with Ωg [24].
Thus, any linearizable wait-free shared objects is implementable in g [27]. Leveraging these
observations, this section depicts a solution built atop (high-level) shared objects.

Below, we first introduce group sequential atomic multicast (§4.1). From a computability
perspective, this simpler variation is equivalent to the common atomic multicast problem.
This is the variation that we shall implement hereafter. We then explain at coarse grain
how to solve genuine atomic multicast in a fault-tolerant manner using the failure detector
µ (§4.2). Further, the details of our solution are presented and its correctness informally
argued (§4.3).

4.1 A simpler variation
Group sequential atomic multicast requires that each group handles its messages sequentially.
In detail, given two messages m and m′ addressed to the same group, we write m ≺ m′

when src(m′) delivers m before it multicasts m′. This variation requires that if m and m′

are multicast to the same group, then m ≺ m′, or the converse, holds. Proposition 1 below
establishes that this variation is as difficult as (vanilla) atomic multicast. Building upon
this insight, this section depicts a solution to group sequential atomic multicast using failure
detector µ.

P. Sutra 35:7

▶ Proposition 1. Group sequential atomic multicast is equivalent to atomic multicast.

4.2 Overview of the solution
First of all, we observe that if the groups are pairwise disjoint, it suffices that each group
orders the messages it received to solve atomic multicast. To this end, we use a shared log
LOGg per group g. Then, consider that the intersection graph of G is acyclic, i.e., F is empty,
yet groups may intersect. In that case, it suffices to add a deterministic merge procedure in
each group intersection, for instance, using a set of logs LOGg∩h when g ∩ h ̸= ∅.

Now, to solve the general case, cycles in the order built with the shared logs must be
taken into account. To this end, we use a fault-tolerant variation of Skeen’s solution [5, 21]:
in each log, the message is bumped to the highest initial position it occupies in all the logs.
In the original algorithm [5], as in many other approaches (e.g., [20, 10]), such a procedure is
failure-free, and processes simply agree on the final position (aka., timestamp) of the message
in the logs. In contrast, our algorithm allows a disagreement when the cyclic family becomes
faulty. This disagreement is however restricted to different logs, as in the acyclic case.

4.3 Algorithm
Algorithm 1 depicts a solution to (group sequential) genuine atomic multicast using failure
detector µ. To the best of our knowledge, this is only algorithm with [34] that tolerates
arbitrary failures. Algorithm 1 is composed of a set of actions. An action is executable once
its preconditions (pre:) are true. The effects (eff:) of an action are applied sequentially until
it returns. Algorithm 1 uses a log per group and per group intersection. Logs are linearizable,
long-lived and wait-free. Their sequential interface is detailed below.

Logs. A log is an infinite array of slots. Slots are numbered from 1. Each slot contains one
or more data items. A datum d is at position k when slot k contains it. This position is
obtained through a call to pos(d); 0 is returned if d is absent. A slot k is free when it contains
no data item. In the initial state, every slot is free. The head of the log points to the first
free slot after which there are only free slots (initially, slot 1). Operation append(d) inserts
datum d at the slot pointed by the head of the log then returns its position. If d is already
in the log, this operation does nothing. When d is in the log, it can be locked with operation
bumpAndLock(d, k). This operation moves d from its current slot l to slot max(k, l), then
locks it. Once locked, a datum cannot be bumped anymore. Operation locked(d) indicates if
d is locked in the log. We write d ∈ L when datum d is at some position in the log L. A log
implies an ordering on the data items it contains. When d and d′ both appear in L, d <L d′

is true when the position of d is lower than the position of d′, or they both occupy the same
slot and d < d′, for some a priori total order (<) over the data items.

Variables. Algorithm 1 employs two types of shared objects at a process. First, for any
two groups h and h′ to which the local process belongs, Algorithm 1 uses a log LOGh∩h′

(line 2). Notice that, when h = h′, the log coincides with the log of the destination group h,
i.e., LOGh. Second, to agree on the final position of a message, Algorithm 1 also employs
consensus objects (line 3). Consensus objects are both indexed by messages and group
families. Given some message m and appropriate family f, Algorithm 1 calls CONSm,f

(lines 20 and 21). Two processes call the same consensus object at line 21 only if both
parameters match. Finally, to store the status of messages addressed to the local process,
Algorithm 1 also employs a mapping phase (line 4). A message is initially in the start
phase, then it moves to pending (line 15), commit (line 24), stable (line 33) and finally the
deliver (line 37) phase. Phases are ordered according to this progression.

DISC 2022

35:8 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 1 Solving atomic multicast with failure detector µ – code at process p.

1: variables:
2: (LOGh∩h′)h,h′∈G(p)
3: (CONSm,f)m∈M,f⊆G

4: phase[m]← λm.start

5: multicast(m) := // g = dst(m) ∧ g ∈ G(p)
6: pre: phase[m] = start
7: eff: LOGg.append(m)

8: pending(m) :=
9: pre: phase[m] = start

10: m ∈ LOGg

11: ∀m′ <LOGg m. phase[m′] ≥ commit
12: eff: for all h ∈ G(p) do
13: i← LOGg∩h.append(m)
14: LOGg.append(m, h, i)
15: phase[m]← pending

16: commit(m) :=
17: pre: phase[m] = pending
18: ∀h ∈ γ(g). (m, h,−) ∈ LOGg

19: eff: let k = max{i : ∃(m,−, i) ∈ LOGg},
20: let f = {h : ∃f′ ∈ F(p). g, h ∈ f′ ∧ g ∩ h ̸= ∅}
21: k ← CONSm,f.propose(k)
22: for all h ∈ G(p) do
23: LOGg∩h.bumpAndLock(m, k)
24: phase[m]← commit

25: stabilize(m, h) :=
26: pre: phase[m] = commit
27: h ∈ G(p)
28: ∀m′ <LOGg∩h m. phase[m′] ≥ stable
29: eff: LOGg.append(m, h)

30: stable(m) :=
31: pre: phase[m] = commit
32: ∀h ∈ γ(g). (m, h) ∈ LOGg

33: eff: phase[m]← stable

34: deliver(m) :=
35: pre: phase[m] = stable
36: ∀m′ <LOGg∩h m. phase[m′] = deliver
37: eff: phase[m]← deliver

Algorithmic details. We now detail Algorithm 1 and jointly argue about its correctness.
For clarity, our argumentation is informal – the full proof appears in [37].

To multicast some message m to g = dst(m), a process adds m to the log of its destination
group (line 7). When p ∈ g observes m in the log, p appends m to each LOGg∩h with
p ∈ g ∩ h (line 13). Then, p stores in the log of the destination group of m the slot occupied
by m in LOGg∩h (line 14). This moves m to the pending phase.

Similarly to Skeen’s algorithm [5], a message is then bumped to the highest slot it occupies
in the logs. This step is executed at lines 16-24. In detail, p first agrees with its peers on
the highest position k occupied by m (lines 19-21). Observe here that only the processes

P. Sutra 35:9

in g that share some cyclic family with p take part to this agreement (line 20). Then, for
each group h in G(p), p bumps m to slot k in LOGg∩h and locks it in this position (line 23).
This moves m to the commit phase.

The next steps of Algorithm 1 compute the predecessors of message m. With more details,
once m reaches the stable phase and is ready to be delivered, the messages that precede it
in the logs at process p cannot change anymore.

If g does not belong to any cyclic family, stabilizing m is immediate: the precondition at
line 32 is always vacuously true. In this case, m is delivered in an order consistent with the
order it is added to the logs (line 28). This comes from the fact that when F = ∅ ordering
the messages reduces to a pairwise agreement between the processes.

When F ̸= ∅, stabilizing m is a bit more involved. Indeed, messages can be initially in
cyclic positions, e.g., C = m1 <LOGg1∩g2

m2 <LOGg2∩g3
m3 <LOGg3∩g1

m1, preventing them
to be delivered. As in [5], bumping messages helps to resolve such a situation.

The bumping procedure is executed globally. A process must wait that the positions in
the logs of a message are cycle-free before declaring it stable. Waiting can cease when the
cyclic family is faulty (line 32). This is correct because messages are stabilized in the order
of their positions in the logs (lines 25-29). Hence, if a cycle C exists initially in the positions,
either (i) not all the messages in C are delivered, or (ii) the first message to get stable in C

has no predecessors in C in the logs. In other words, for any two messages m and m′ in C, if
m 7→ m′ then m is stable before m′.

A process indicates that message m with g = dst(m) is stabilized in group h with a pair
(m, h) in LOGg (line 29). When this holds for all the groups h intersecting with g such that
there exists a correct family f with f ∈ F(p) and g, h ∈ f, m is declared stable at p (line 32).
Once stable, a message m can be delivered (lines 34-37).

Algorithm 1 stabilizes then delivers messages according to their positions in the logs. To
maintain progress, these positions must remain acyclic at every correct process. Furthermore,
this should also happen globally when a cyclic family is correct. Both properties are ensured
by the calls to consensus objects (line 21).

Implementing the shared objects. In each group g, consensus is solvable since µ provides
Σg ∧ Ωg. This serves to implement all the objects (CONSm,f)m,f when dst(m) = g. Logs
that are specific to a group, namely (LOGg)g∈G , are also built atop consensus in g using a
universal construction [27].

Failure detector µ does not offer the means to solve consensus in g ∩ h. Hence we must
rely on either g or h to build LOGg∩h. Minimality requires processes in a destination group
to take steps only in the case a message is addressed to them. To achieve this, we have to
slightly modify the universal construction for LOGg∩h, as detailed next.

First, we consider that this construction relies on an unbounded list of consensus objects.2
Each consensus object in this list is contention-free fast [2]. This means that it is guarded
by an adopt-commit object (AC) [19] before an actual consensus object (CONS) is called.
Upon calling propose, AC is first used and if it fails, that is “adopt” is returned, CONS
is called. Adopt-commit objects are implemented using Σg∩h, while consensus objects are
implemented atop some group, say g, using Σg ∧ Ωg. This modification ensures that when
processes execute operations in the exact same order, only the adopt-commit objects are
called. As a consequence, when no message is addressed to either g or h during a run, only
the processes in g ∩ h executes steps to implement an operation of LOGg∩h.

2 In the failure detector model, computability results can use any amount of shared objects.

DISC 2022

35:10 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 2 Emulating Σ∩g∈Gg – code at process p.

1: variables:
2: (Ag,x)g∈G,x⊆g.p∈x

3: (Qg)g∈G ← λg.{g}
4: (qrg)g∈G ← λg.g

5: for all g ∈ G, x ⊆ g : p ∈ x do
6: let m such that dst(m) = g ∧ payload(m) = p

7: Ag,x.multicast(m)
8: when Ag,x.deliver(−)
9: Qg ← Qg ∪ {x}

10: when query
11: if p /∈

⋂
g∈G

g then
12: return ⊥
13: for all g ∈ G do
14: qrg ← choose arg max

y∈Qg

rank(y)

15: return (
⋃

g∈G
qrg) ∩ (

⋂
g∈G

g)

5 Necessity

Consider some environment E, a failure detector D and an algorithm A that uses D to solve
atomic multicast in E. This section shows that D is stronger than µ in E. To this end, we
first use the fact that atomic multicast solves consensus per group. Hence µ is stronger
than ∧g∈G (Ωg ∧ Σg). §5.1 proves that D is stronger than Σg∩h for any two groups g, h ∈ G.
Further, in §5.2, we establish that D is stronger than γ. This last result is established when
D is realistic. The remaining cases are discussed in §7.

5.1 Emulating Σg∩h

Atomic multicast solves consensus in each destination group. This permits to emulate ∧g∈GΣg.
However, for two intersecting groups g and h, Σg ∧ Σh is not strong enough to emulate
Σg∩h.3 Hence, we must build the failure detector directly from the communication primitive.
Algorithm 2 presents such a construction. This algorithm can be seen as an extension of the
work of Bonnet and Raynal [6] to extract Σk when k-set agreement is solvable. Algorithm 2
emulates Σ∩g∈Gg, where G ⊆ G is a set of at most two intersecting destination groups.

At a process p, Algorithm 2 employs multiple instances of algorithm A. In detail, for
every group g ∈ G and subset x of g, if process p belongs to x, then p executes an instance
Ag,x (line 2). Variable Qg stores the responsive subsets of g, that is the sets x ⊆ g for which
Ag,x delivers a message. Initially, this variable is set to {g}.

Algorithm 2 uses the ranking function defined in [6]. For some set x ⊆ P , function rank(x)
outputs the rank of x. Initially, all the sets have rank 0. Function rank ensures a unique
property: a set x is correct if and only if it ranks grows forever. To compute this function,
processes keep track of each others by exchanging (asynchronously) “alive” messages. At a
process p, the number of “alive” messages received so far from q defines the rank of q. The
rank of a set is the lowest rank among all of its members.

3 The two detectors may return forever non-intersecting quorums.

P. Sutra 35:11

At the start of Algorithm 2, a process atomic multicasts its identity for every instance
Ag,x it is executing (line 7). When, Ag,x delivers a process identity, x is added to variable
Qg (line 9). Thus, variable Qg holds all the instances Ag,x that progress successfully despite
that g \ x do not participate. From this set, Algorithm 2 computes the most responsive
quorum using the ranking function (line 14). As stated in Theorem 2 below, these quorums
must intersect at any two processes in ∩g∈Gg.

▶ Theorem 2. Algorithm 2 implements Σ∩g∈Gg in E.

5.2 Emulating γ

Target systems. A process p is failure-prone in environment E when for some failure pattern
F ∈ E, p ∈ Faulty(F). By extension, we say that P ⊆ P is failure-prone when for some
F ∈ E, P ⊆ Faulty(F). A cyclic family f is failure-prone when one of its group intersections
is failure-prone. Below, we consider that E satisfies that if a process may fail, it may fail at
any time (formally, ∀F ∈ E. ∀p ∈ Faulty(F). ∃F ′ ∈ E. ∀t ∈ N. ∀t′ < t. F ′(t′) = F (t′)∧F ′(t) =
F (t) ∪ {p}). We also restrict our attention to realistic failure detectors, that is they cannot
guess the future [14].

Additional notions. Consider a cyclic family f. Two closed paths π and π′ in cpaths(f)
are equivalent, written π ≡ π′, when they visit the same edges in the intersection graph.
A closed path π in cpaths(f) is oriented. The direction of π is given by dir(π). It equals
1 when the path is clockwise, and −1 otherwise (for some canonical representation of the
intersection graph). To illustrate these notions, consider family f in Figure 1b. The sequence
π = g3g1g2g3 is a closed path in its intersection graph, with |π| = 4 and π[0] = π[|π|−1] = g3.
The direction of this path is 1 since it is visiting clockwise the intersection graph of f in the
figure. Path π is equivalent to the path π′ = g1g3g2g1 which visits f in the converse direction.

Construction. We emulate failure detector γ in Algorithm 3. For each closed path π ∈
cpaths(f) with π[0]∩π[1] failure-prone in E, Algorithm 3 maintains two variables: an instance
Aπ of the multicast algorithm A, and a flag failed[π]. Variable Aπ is used to detect when a
group intersection visited by π is faulty. It this happens, the flag failed[π] is raised. When for
every path π ∈ cpaths(f), some path equivalent to π is faulty, Algorithm 3 ceases returning
the family f (line 16).

In Algorithm 3, for every path π ∈ cpaths(f), the processes in π[0] ∩ π[1] multicast their
identities to π[0] using instance Aπ (lines 4 and 5). In this instance of A, all the processes
in f but the intersection π[0] ∩ π[|π| − 2] participate (line 2). As the path is closed, this
corresponds to the intersection with the last group preceding the first group in the path.

When p ∈ π[i] ∩ π[i + 1] delivers a message (−, i), it signals this information to the other
members of the family (line 9). Then, p multicasts its identity to π[i + 1] (line 10). This
mechanism is repeated until the antepenultimate group in the path is reached (line 8). When
such a situation occurs, the flag failed[π] is raised (line 12). This might also happen earlier
when a message is received for some path π′ equivalent to π and visiting f in the converse
direction (line 13).

Below, we claim that Algorithm 3 is a correct emulation of failure detector γ.

▶ Theorem 3. Algorithm 3 implements γ in E.

DISC 2022

35:12 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 3 Emulating γ – code at process p.

1: variables:
2: (Aπ)π // ∀f ∈ F(p). ∀π ∈ cpaths(f). p /∈ π[0] ∩ π[|π| − 2]
3: failed[π]← λπ.false

4: for all Aπ : p ∈ π[0] ∩ π[1] do
5: Aπ.multicast(p, 0) to π[0]

6: signal(π, i) :=
7: pre: Aπ.deliver(−, i)
8: i < |π| − 2 ∧ p ∈ π[i + 1]
9: eff: send(π, i) to f

10: Aπ.multicast(p, i + 1) to π[i + 1]

11: update(π) :=
12: pre: ∃π′ ≡ π. rcv(π, j) ∧ ∨ j = |π| − 3
13: ∨ (rcv(π′, 0) ∧ π[j] = π′[0] ∧ dir(π) = −dir(π′))
14: eff: failed[π]← true

15: when query
16: return {f ∈ F(p) : ∃π ∈ cpaths(f). ∀π′ ≡ π. failed[π′] = false}

6 Variations

This section explores two common variations of the atomic multicast problem. It shows that
each variation has a weakest failure detector stronger than µ. The first variation requires
messages to be ordered according to real time. This means that if m is delivered before
m′ is multicast, no process may deliver m′ before m. In this case, we establish that the
weakest failure detector must accurately detect the failure of a group intersection. The second
variation demands each group to progress independently in the delivery of the messages. This
property strengthens minimality because in a genuine solution a process may help others
as soon as it has delivered a message. We show that the weakest failure detector for this
variation permits to elect a leader in each group intersection.

6.1 Enforcing real-time order
Ordering primitives like atomic broadcast are widely used to construct dependable services [7].
The classical approach is to follow state-machine replication (SMR), a form of universal
construction. In SMR, a service is defined by a deterministic state machine, and each replica
maintains its own local copy of the machine. Commands accessing the service are funneled
through the ordering primitive before being applied at each replica on the local copy.

SMR protocols must satisfy linearizability [28]. However, as observed in [3], the common
definition of atomic multicast is not strong enough for this: if some command d is submitted
after a command c get delivered, atomic multicast does not enforce c to be delivered before d,
breaking linearizability. To sidestep this problem, a stricter variation must be used. Below,
we define such a variation and characterize its weakest failure detector.

6.1.1 Definition
We write m⇝ m′ when m is delivered in real-time before m′ is multicast. Atomic multicast
is strict when ordering is replaced with: (Strict Ordering) The transitive closure of (7→ ∪⇝)
is a strict partial order over M. Strictness is free when there is a single destination group.

P. Sutra 35:13

Algorithm 4 Emulating 1g∩h – code at process p ∈ g ∪ h.

1: variables:
2: B ← if (p ∈ g \ h) then Ag else if (p ∈ h \ g) then Ah else ⊥ // Ag and Ah are distinct

instances of A

3: failed ← false

4: if B ̸= ⊥ then
5: B.multicast(p)
6: wait until B.deliver(−)
7: send(failed) to g ∪ h

8: when rcv(failed)
9: failed ← true

10: when query
11: return failed

Indeed, if p delivers m before q broadcasts m′, then necessarily m
p7→ m′. This explains why

atomic broadcast does not mention such a requirement. In what follows, we prove that strict
atomic multicast is harder than (vanilla) atomic multicast.

6.1.2 Weakest failure detector
Candidate. For some (non-empty) group of processes P , the indicator failure detector 1P

indicates if all the processes in P are faulty or not. In detail, this failure detector returns a
boolean which ensures that:

(Accuracy) ∀p ∈ P . ∀t ∈ N. 1P (p, t) ⇒ P ⊆ F (t)
(Completeness) ∀p ∈ Correct. ∀t ∈ N. P ⊆ F (t) ⇒ ∃τ ∈ N. ∀t′ ≥ τ. 1P (p, t′)

For simplicity, we write 1g∩h the indicator failure detector restricted to the processes in
g ∪ h (that is, the failure detector 1g∩h

g∪h). This failure detector informs the processes outside
g ∩ h when the intersection is faulty. Notice that for the processes in the intersection, 1g∩h

does not provide any useful information. This comes from the fact that simply returning
always true is a valid implementation at these processes.

Our candidate failure detector is µ ∧ (∧g,h∈G 1g∩h). One can establish that ∧g,h∈G1g∩h

is stronger than γ (see Proposition 4 below). As a consequence, this failure detector can be
rewritten as (∧g,h∈G Σg∩h ∧ 1g∩h) ∧ (∧g∈G Ωg).

▶ Proposition 4. ∧g,h∈G 1g∩h ≤ γ

Necessity. An algorithm to construct 1g∩h is presented in Algorithm 4. It relies on an
implementation A of strict atomic multicast that makes use internally of some failure detector
D. Proposition 5 establishes the correctness of such a construction.

▶ Proposition 5. Algorithm 4 implements 1g∩h.

Sufficiency. The solution to strict atomic multicast is almost identical to Algorithm 1. The
only difference is at line 32 when a message moves to the stable phase. Here, for every
destination group h with h ∩ g ̸= ∅, a process waits either that 1g∩h returns true, or that
a tuple (m, h) appears in LOGg. From Proposition 4, we know that the indicator failure
detector 1g∩h provides a better information than γ regarding the correctness of g ∩ h. As a
consequence, the modified algorithm solves (group sequential) atomic multicast.

DISC 2022

35:14 The Weakest Failure Detector for Genuine Atomic Multicast

Now, to see why such a solution is strict, consider two messages m and m′ that are
delivered in a run, with g = dst(m) and h = dst(m′). We observe that when m′ ⇝ m or
m′ 7→ m, m′ is stable before m, from which we deduce that strict ordering holds.

With more details, in the former case (m′ ⇝ m), this comes from the fact that to be
delivered a message must be stable first (line 35). In the later (m′ 7→ m), when message m

is stable at some process p, p must wait a message (m, h) in LOGg, or that 1g∩h returns
true. If (m, h) is in LOGg, then line 29 was called before by some process q. Because
both messages are delivered and m′ 7→ m, m′ must precedes m in LOGg∩h. Thus the
precondition at line 28 enforces that m′ is stable at q, as required. Now, if the indicator
returns true at p, m′ 7→ m tells us that a process delivers m′ before m and this must happen
before g ∩ h fails.

6.2 Improving parallelism
As motivated in the Introduction, genuine solutions to atomic multicast are appealing from
a performance perspective. Indeed, if messages are addressed to disjoint destination groups
in a run, they are processed in parallel by such groups. However, when contention occurs,
a message may wait for a chain of messages to be delivered first. This chain can span
outside of the destination group, creating a delay that harms performance and reduces
parallelism [17, 1]. In this section, we explore a stronger form of genuineness, where groups
are able to deliver messages independently. We prove that, similarly to the strict variation,
this requirement demands more synchrony than µ from the underlying system.

6.2.1 Definition
As standard, a run R is fair for some correct process p when p executes an unbounded amount
of steps in R. By extension, R is fair for P ⊆ Correct(R), or for short P -fair, when it is fair
for every p in P . If P is exactly the set of correct processes, we simply say that R is fair.

(Group Parallelism) Consider a message m and a run R. Note P = Correct(R) ∩ dst(m).
If m is delivered by a process, or atomic multicast by a correct process in R, and R is
P -fair, then every process in P delivers m in R.

Group parallelism bears similarity with x-obstruction freedom [38], in the sense that the
system must progress when a small enough group of processes is isolated. A protocol is said
strongly genuine when it satisfy both the minimality and the group parallelism properties.

6.2.2 About the weakest failure detector
Below, we establish that (∧g,h∈G Ωg∩h) is necessary. It follows that the weakest failure
detector for this variation is at least µ ∧ (∧g,h∈G Ωg∩h).

Emulating ∧g,h∈G Ωg∩h. Consider some algorithm A that solves strongly genuine atomic
multicast with failure detector D. Using both A and D, each process may emulate Ωg∩h, for
some intersecting groups g, h ∈ G. The emulation follows the general schema of CHT [8]. We
sketch the key steps below. The full proof appears in [37].

Each process constructs a directed acyclic graph G by sampling the failure detector D

and exchanging these samples with other processes. A path π in G induces multiple runs
of A that each process locally simulates. A run starts from some initial configuration. In
our context, the configurations I = {I1, . . . , In≥2} of interest satisfy (i) the processes outside

P. Sutra 35:15

g ∩ h do not atomic multicast any message, and (ii) the processes in g ∩ h multicast a single
message to either g or h. For some configuration Ii ∈ I, the schedules of the simulated runs
starting from Ii are stored in a simulation tree Υi. There exists an edge (S, S′) when starting
from configuration S(Ii), one may apply a step s = (p, m, d) for some process p, message m

transiting in S(Ii) and sample d of D such that S′ = S · s.
Every time new samples are received, the forest of the simulation trees (Υi)i is updated.

At each such iteration, the schedules in Υi are tagged using the following valency function:
S is tagged with g (respectively, h) if for some successor S′ of S in Υi a process in g ∩ h

delivers first a message addressed to g (resp. to h) in configuration S′(Ii). A tagged schedule
is univalent when it has a single tag, and bivalent otherwise.

As the run progresses, each root of a simulation tree has eventually a stable set of tags.
If the root of Υi is g-valent, the root of Υj is h-valent and they are adjacent, i.e., all the
processes but some p ∈ g ∩ h are in the same state in Ii and Ij , then p must be correct.
Otherwise, there exists a bivalent root of some tree Υi such that for g (respectively, h) a
correct process multicasts a message to g (resp., h) in Ii. In this case, similarly to [8], there
exists a decision gadget in the simulation tree Υi. This gadget is a sub-tree of the form
(S, S′, S′′), with S bivalent, and S′ g-valent and S′′ h-valent (or vice-versa). Using the group
parallelism property of A, we may then show that necessarily the deciding process in the
gadget, that is the process taking a step toward either S′ or S′′ is correct and belongs to the
intersection g ∩ h.

Solution when F = ∅. In this case, Algorithm 1 just works. To attain strong genuineness,
each log object LOGg∩h is implemented with Σg∩h ∧ Ωg∩h through standard universal
construction mechanisms. When F = ∅, µ ∧ (∧g,h∈G Ωg∩h) is thus the weakest failure
detector. The case F ̸= ∅ is discussed in the next section.

7 Discussion

Several definitions for atomic multicast appear in literature (see, e.g., [12, 26] for a survey).
Some papers consider a variation of atomic multicast in which the ordering property is
replaced with: (Pairwise Ordering) If p delivers m then m′, every process q that delivers
m′ has delivered m before. Under this definition, cycles in the delivery relation (7→) across
more than two groups are not taken into account. This is computably equivalent to F = ∅.
Hence the weakest failure detector for this variation is (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg).

In [25], the authors show that failure detectors of the class U2 are too weak to solve the
pairwise ordering variation. These detectors can be wrong about (at least) two processes. In
detail, the class Uk are all the failure detectors D that are k-unreliable, that is they cannot
distinguish any pair of failure patterns F and F ′, as long as the faulty processes in F and
F ′ are members of a subset W of size k (the “wrong” subset). The result in [25] is a corner
case of the necessity of Σg∩h when g ∩ h = {p, q} and both processes are failure-prone in
E. Indeed, Σ{p,q} /∈ U2. To see this, observe that if q is faulty and p correct, then {p} is
eventually the output of Σ{p,q} at p. A symmetrical argument holds for process q in runs
where q is correct and p faulty. In the class U2, such values can be output in runs where
both processes are correct, contradicting the intersection property of Σ{p,q}.

Most atomic multicast protocols [30, 17, 20, 10, 31, 29, 13, 33] sidestep the impossibility
result in [25] by considering that destination groups are decomposable into a set of disjoint
groups, each of these behaving as a logically correct entity. This means that there exists a
partitioning P(G) ⊆ 2P satisfying that (i) for every destination group g ∈ G, there exists

DISC 2022

35:16 The Weakest Failure Detector for Genuine Atomic Multicast

(gi)i ⊆ P(G) with g = ∪igi, (ii) each g ∈ P(G) is correct, and (iii) for any two g, h in P(G),
g ∩ h is empty. Since ∧g∈P(G) (Σg ∧ Ωg) ⪰ µ, we observe that solving the problem over P(G)
is always as difficult as over G. It can also be more demanding in certain cases, e.g., if two
groups intersect on a single process p, then p must be reliable. In Figure 1, this happens
with process p2. In contrast, to these prior solutions, Algorithm 1 tolerates any number of
failures. This is also the case of [34] which relies on a perfect failure detector.

Regarding strongly genuine atomic multicast, §6.2 establishes that µ ∧ (∧g,h∈G Ωg∩h) is
the weakest when F = ∅. The case F ̸= ∅ is a bit more intricate. First of all, we may
observe that in this case the problem is failure-free solvable: given a spanning tree T of the
intersection graph of G, we can deliver the messages according to the order <T , that is, if
m is addressed to g intersecting with h, h′, . . . with h <T h′ <T . . ., then g ∩ h delivers first
m, followed by g ∩ h′, etc.4 A failure-prone solution would apply the same logic. This is
achievable using µ ∧ (∧g,h∈G Ωg∩h) ∧ (∧g,h∈F 1g∩h), where g ∈ F holds when for some family
f ∈ F , we have g ∈ f. We conjecture that this failure detector is actually the weakest.

8 Conclusion

This paper presents the first solution to genuine atomic multicast that tolerates arbitrary
failures without using system-wide perfect failure detection. It also introduces two new
classes of failure detectors: (γ) which tracks when a cyclic family of destination groups is
faulty, and (1g∩h) that indicates when the group intersection g ∩ h is faulty. Building upon
these new abstractions, we identify the weakest failure detector for genuine atomic multicast
and also for several key variations of this problem. Our results offer a fresh perspective on the
solvability of genuine atomic multicast in crash-prone systems. In particular, they question
the common assumption of partitioning the destination groups. This opens an interesting
avenue for future research on the design of fault-tolerant atomic multicast protocols.

References
1 Tarek Ahmed-Nacer, Pierre Sutra, and Denis Conan. The convoy effect in atomic multicast.

In 35th IEEE Symposium on Reliable Distributed Systems Workshops, SRDS 2016 Workshop,
Budapest, Hungary, September 26, 2016, pages 67–72. IEEE Computer Society, 2016. doi:
10.1109/SRDSW.2016.22.

2 Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and writes
in the absence of step contention. In Pierre Fraigniaud, editor, Distributed Computing, 19th
International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings,
volume 3724 of Lecture Notes in Computer Science, pages 122–136. Springer, 2005. doi:
10.1007/11561927_11.

3 Carlos Eduardo Benevides Bezerra, Fernando Pedone, and Robbert van Renesse. Scalable
state-machine replication. In 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 331–342. IEEE
Computer Society, 2014. doi:10.1109/DSN.2014.41.

4 Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314, August 1991. doi:10.1145/128738.
128742.

5 Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures.
ACM Transactions on Computers Systems, 5(1):47–76, January 1987. doi:10.1145/7351.7478.

4 Strictly speaking, a spanning tree is required per connected component of the intersection graph.

https://doi.org/10.1109/SRDSW.2016.22
https://doi.org/10.1109/SRDSW.2016.22
https://doi.org/10.1007/11561927_11
https://doi.org/10.1007/11561927_11
https://doi.org/10.1109/DSN.2014.41
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478

P. Sutra 35:17

6 François Bonnet and Michel Raynal. Looking for the weakest failure detector for k-set
agreement in message-passing systems: Is πk the end of the road? In Stabilization, Safety,
and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France,
November 3-6, 2009. Proceedings, pages 149–164, 2009. doi:10.1007/978-3-642-05118-0_11.

7 Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In Indranil Gupta and Roger Wattenhofer, editors, Proceedings of
the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC
2007, Portland, Oregon, USA, August 12-15, 2007, pages 398–407. ACM, 2007. doi:10.1145/
1281100.1281103.

8 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996. doi:10.1145/234533.234549.

9 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

10 Paulo R. Coelho, Nicolas Schiper, and Fernando Pedone. Fast atomic multicast. In 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2017, Denver, CO, USA, June 26-29, 2017, pages 37–48. IEEE Computer Society, 2017.
doi:10.1109/DSN.2017.15.

11 James A. Cowling and Barbara Liskov. Granola: Low-overhead distributed transaction
coordination. In Gernot Heiser and Wilson C. Hsieh, editors, 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, pages 223–235. USENIX As-
sociation, 2012. URL: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/cowling.

12 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, December 2004.
doi:10.1145/1041680.1041682.

13 Carole Delporte-Gallet and Hugues Fauconnier. Fault-tolerant genuine atomic multicast to
multiple groups. In Franck Butelle, editor, Procedings of the 4th International Conference
on Principles of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000,
Studia Informatica Universalis, pages 107–122. Suger, Saint-Denis, rue Catulienne, France,
2000.

14 Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. A realistic look at failure
detectors. In 2002 International Conference on Dependable Systems and Networks (DSN
2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings, pages 345–353. IEEE Computer
Society, 2002. doi:10.1109/DSN.2002.1028919.

15 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamen-
tal problems in distributed computing. In Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, July 25-28, 2004, pages 338–346, 2004. doi:10.1145/1011767.1011818.

16 Swan Dubois, Rachid Guerraoui, Petr Kuznetsov, Franck Petit, and Pierre Sens. The weakest
failure detector for eventual consistency. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC ’15, pages 375–384, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2767386.2767404.

17 Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. Efficient replication via
timestamp stability. In Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian
Cadar, editors, EuroSys ’21: Sixteenth European Conference on Computer Systems, Online
Event, United Kingdom, April 26-28, 2021, pages 178–193. ACM, 2021. doi:10.1145/3447786.
3456236.

18 Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction.
ACM Comput. Surv., 43(2), February 2011. doi:10.1145/1883612.1883616.

19 Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’98, pages 143–152, New York, NY, USA, 1998. ACM. doi:
10.1145/277697.277724.

DISC 2022

https://doi.org/10.1007/978-3-642-05118-0_11
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/DSN.2017.15
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1109/DSN.2002.1028919
https://doi.org/10.1145/1011767.1011818
https://doi.org/10.1145/2767386.2767404
https://doi.org/10.1145/3447786.3456236
https://doi.org/10.1145/3447786.3456236
https://doi.org/10.1145/1883612.1883616
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/277697.277724

35:18 The Weakest Failure Detector for Genuine Atomic Multicast

20 Alexey Gotsman, Anatole Lefort, and Gregory V. Chockler. White-box atomic multicast. In
49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, June 24-27, 2019, pages 176–187. IEEE, 2019. doi:10.1109/DSN.
2019.00030.

21 R. Guerraoui and A. Schiper. Total order multicast to multiple groups. In Proceedings
of 17th International Conference on Distributed Computing Systems, pages 578–585, 1997.
doi:10.1109/ICDCS.1997.603426.

22 Rachid Guerraoui, Vassos Hadzilacos, Petr Kuznetsov, and Sam Toueg. The weakest failure
detectors to solve quittable consensus and nonblocking atomic commit. SIAM J. Comput.,
41(6):1343–1379, 2012. doi:10.1137/070698877.

23 Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy Lynch, and Calvin Newport. On
the weakest failure detector ever. In Proceedings of the Twenty-sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’07, pages 235–243, New York, NY, USA, 2007.
ACM. doi:10.1145/1281100.1281135.

24 Rachid Guerraoui and Michel Raynal. The alpha of indulgent consensus. Comput. J., 50(1):53–
67, 2007. doi:10.1093/comjnl/bxl046.

25 Rachid Guerraoui and André Schiper. Genuine atomic multicast in asynchronous distributed
systems. Theor. Comput. Sci., 254(1-2):297–316, 2001. doi:10.1016/S0304-3975(99)00161-9.

26 Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, 1994.

27 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 11(1):124–149, January 1991. doi:10.1145/114005.102808.

28 Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, July
1990. doi:10.1145/78969.78972.

29 Udo Fritzke Jr., Philippe Ingels, Achour Mostéfaoui, and Michel Raynal. Consensus-based
fault-tolerant total order multicast. IEEE Trans. Parallel Distributed Syst., 12(2):147–156,
2001. doi:10.1109/71.910870.

30 Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo R. Coelho, and Fernando Pedone. Ramcast:
Rdma-based atomic multicast. In Kaiwen Zhang, Abdelouahed Gherbi, Nalini Venkata-
subramanian, and Luís Veiga, editors, Middleware ’21: 22nd International Middleware
Conference, Québec City, Canada, December 6 - 10, 2021, pages 172–184. ACM, 2021.
doi:10.1145/3464298.3493393.

31 Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring paxos. In Robert S.
Swarz, Philip Koopman, and Michel Cukier, editors, IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2012, Boston, MA, USA, June 25-28, 2012, pages
1–12. IEEE Computer Society, 2012. doi:10.1109/DSN.2012.6263916.

32 Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency control
and consensus for commits under conflicts. In Kimberly Keeton and Timothy Roscoe, editors,
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 517–532. USENIX Association, 2016. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu.

33 Luís E. T. Rodrigues, Rachid Guerraoui, and André Schiper. Scalable atomic multicast. In
Proceedings of the International Conference On Computer Communications and Networks (IC-
CCN 1998), October 12-15, 1998, Lafayette, Louisiana, USA, pages 840–847. IEEE Computer
Society, 1998. doi:10.1109/ICCCN.1998.998851.

34 Nicolas Schiper and Fernando Pedone. Solving atomic multicast when groups crash. In
Theodore P. Baker, Alain Bui, and Sébastien Tixeuil, editors, Principles of Distributed
Systems, 12th International Conference, OPODIS 2008, Luxor, Egypt, December 15-18, 2008.
Proceedings, volume 5401 of Lecture Notes in Computer Science, pages 481–495. Springer,
2008. doi:10.1007/978-3-540-92221-6_30.

https://doi.org/10.1109/DSN.2019.00030
https://doi.org/10.1109/DSN.2019.00030
https://doi.org/10.1109/ICDCS.1997.603426
https://doi.org/10.1137/070698877
https://doi.org/10.1145/1281100.1281135
https://doi.org/10.1093/comjnl/bxl046
https://doi.org/10.1016/S0304-3975(99)00161-9
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/71.910870
https://doi.org/10.1145/3464298.3493393
https://doi.org/10.1109/DSN.2012.6263916
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://doi.org/10.1109/ICCCN.1998.998851
https://doi.org/10.1007/978-3-540-92221-6_30

P. Sutra 35:19

35 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. Genuine versus non-genuine atomic
multicast protocols for wide area networks: An empirical study. In 28th IEEE Symposium on
Reliable Distributed Systems (SRDS 2009), Niagara Falls, New York, USA, September 27-30,
2009, pages 166–175. IEEE Computer Society, 2009. doi:10.1109/SRDS.2009.12.

36 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial replication in
wide area networks. In 29th IEEE Symposium on Reliable Distributed Systems (SRDS 2010),
New Delhi, Punjab, India, October 31 - November 3, 2010, pages 214–224. IEEE Computer
Society, 2010. doi:10.1109/SRDS.2010.32.

37 Pierre Sutra. The weakest failure detector for genuine atomic multicast (extended version),
2022. doi:10.48550/ARXIV.2208.07650.

38 Gadi Taubenfeld. Contention-sensitive data structures and algorithms. Theoretical Computer
Science, 677:41–55, 2017. doi:10.1016/j.tcs.2017.03.017.

DISC 2022

https://doi.org/10.1109/SRDS.2009.12
https://doi.org/10.1109/SRDS.2010.32
https://doi.org/10.48550/ARXIV.2208.07650
https://doi.org/10.1016/j.tcs.2017.03.017

On Implementing SWMR Registers from SWSR
Registers in Systems with Byzantine Failures
Xing Hu
Department of Computer Science, University of Toronto, Canada

Sam Toueg
Department of Computer Science, University of Toronto, Canada

Abstract
The implementation of registers from (potentially) weaker registers is a classical problem in the
theory of distributed computing. Since Lamport’s pioneering work [14], this problem has been
extensively studied in the context of asynchronous processes with crash failures. In this paper, we
investigate this problem in the context of Byzantine process failures, with and without process
signatures. In particular, we first show a strong impossibility result, namely, that there is no wait-
free linearizable implementation of a 1-writer n-reader register from atomic 1-writer (n− 1)-reader
registers. In fact, this impossibility result holds even if all the processes except the writer are given
atomic 1-writer n-reader registers, and even if we assume that the writer can only crash and at most
one reader is subject to Byzantine failures. In light of this impossibility result, we give two register
implementations. The first one implements a 1-writer n-reader register from atomic 1-writer 1-reader
registers. This implementation is linearizable (under any combination of Byzantine process failures),
but it is wait-free only under the assumption that the writer is correct or no reader is Byzantine –
thus matching the impossibility result. The second implementation assumes process signatures; it is
wait-free and linearizable under any number and combination of Byzantine process failures.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms

Keywords and phrases distributed computing, concurrency, linearizability, shared registers

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.36

Related Version Full Version: https://arxiv.org/abs/2207.01470

Funding This work was partially funded by the Natural Sciences and Engineering Research Council
of Canada (Grant number: RGPIN-2014-05296).

Acknowledgements We thank Vassos Hadzilacos for his helpful comments on this paper.

1 Introduction

We consider the basic problem of implementing a single-writer multi-reader register from
atomic single-writer single-reader registers in a system where processes are subject to
Byzantine failures. In particular, (1) we give an implementation that works under some
failure assumptions, and (2) we prove a matching impossibility result for the case when these
assumptions do not hold. We also consider systems where processes can use unforgeable
signatures, and give an implementation that works for any number of faulty processes. We
now describe our motivation and results in detail.

1.1 Motivation
Implementing shared registers from weaker primitives is a fundamental problem that has
been thoroughly studied in distributed computing [3, 4, 5, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22].

© Xing Hu and Sam Toueg;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 36; pp. 36:1–36:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.36
https://arxiv.org/abs/2207.01470
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On Implementing SWMR Registers from SWSR Registers

In particular, it is well-known that in systems where processes are subject to crash failures,
it is possible to implement a wait-free linearizable m-writer n-reader register (henceforth
denoted [m, n]-register) from atomic 1-writer 1-reader registers (denoted [1, 1]-registers).

In this paper, we consider the problem of implementing multi-reader registers from single-
reader registers in systems where processes are subject to Byzantine failures. In particular,
we consider the following basic questions:

Is there a wait-free linearizable implementation of a [1, n]-register from atomic
[1, 1]-registers in systems with Byzantine processes?
If so, under which assumption(s) such an implementation exist?

The above questions are also motivated by the growing interest in shared-memory or
hybrid systems where processes are subject to Byzantine failures. For example, Cohen and
Keidar [6] give f -resilient implementations of several objects (namely, reliable broadcast,
atomic snapshot, and asset transfer objects) using atomic [1, n]-registers in systems with
Byzantine failures where at most f < n/2 processes are faulty. As another example, Aguilera
et al. use atomic [1, n]-registers to solve some agreement problems in hybrid systems with
Byzantine process failures [1]. Moreover, Mostéfaoui et al. [15] prove that, in message-passing
systems with Byzantine process failures, there is a f -resilient linearizable implementation of
a [1, n]-register if and only if at most f < n/3 processes are faulty.

1.2 Description of the results
To simplify the exposition of our results, we first state them in terms of two process groups:
correct processes that do not fail and faulty ones. We show that in a system with Byzantine
failures the following impossibility and possibility results hold. For all n ≥ 3:
(A) If the writer and some reader (even if only one of them) can be faulty, then there is no

wait-free linearizable implementation of a [1, n]-register from atomic [1, n− 1]-registers.
(B) If the writer or some readers (any number of them), but not both, can be faulty,

then there is a wait-free linearizable implementation of a [1, n]-register from atomic
[1, 1]-registers.

The case n = 2 is special: we give a wait-free linearizable implementation of a [1, 2]-register
from atomic [1, 1]-registers that works even if the writer and readers can be faulty.

This simple version of the results, however, leaves several questions open. Intuitively,
this is because the above results do not distinguish between the different types of faulty
processes (recall that, by definition, Byzantine failures encompass all the possible failure
behaviours, from simple crash to “malicious” behaviour). For example we may ask: what
happens if we can assume that some processes (say the writer) are subject to crash failures
only, while some other processes (say the readers) can fail in “malicious” ways? Is a wait-free
linearizable implementation of a [1, n]-register from atomic [1, 1]-registers now possible?

Note also that the above results consider linearizability and wait-freedom (intuitively,
“safety” and “liveness”) as an indivisible requirement of a register implementation. But it
can be useful to consider each requirement separately. For example, what happens if we
want to implement a [1, n]-register with the following properties: (1) it is always safe (i.e.,
linearizable) and (2) it may lose its liveness (i.e., it may lose its wait-freedom by “blocking”
some read or write operations) only if some specific “pattern/types” of failures occur?

To answer such questions, we now consider linearizability and wait-freedom separately,
and we partition processes into three separate groups: (1) those that do not fail, called correct
processes, (2) those that fail only by crashing, and (3) those that fail in any other way, called
malicious processes. In systems with a mix of such processes, we prove the following:

X. Hu and S. Toueg 36:3

(1) For all n ≥ 3, there is no wait-free linearizable implementation In of a [1, n]-register from
atomic [1, n− 1]-registers, even if we assume that the writer can only crash and at most
one of the readers can be malicious.

In fact, we show that this impossibility result holds even if all the processes except the
writer are given atomic [1, n]-registers that all processes can read; so the writer is the only
process that does not have an atomic [1, n]-register.

(2) For all n ≥ 3, there is an implementation In of a [1, n]-register from atomic [1, 1]-registers
such that:

In is linearizable, and
In is wait-free if the writer is correct or no reader is malicious.1

Note that this implementation guarantees linearizability, no matter which processes fail and
how they fail (even if most processes are malicious). However, it guarantees wait-freedom
only if the writer is correct or no reader is malicious.2 So if the readers are subject to crash
failures only, the implementation is wait-free even if the writer is malicious.
Note that the above impossibility and matching possibility results (1) and (2) imply
the simpler results (A) and (B) that we stated earlier for processes that are (coarsely)
characterized as either correct or faulty.

We also consider the problem of implementing a [1, n]-register from atomic [1, 1]-registers
in systems where processes are subject to Byzantine failures, but they can use unforgeable
signatures. In sharp contrast to the above results, we show that in such systems there is an
implementation of [1, n]-register from atomic [1, 1]-registers that is linearizable and wait-free
no matter how many processes fail and how they fail.

2 Result techniques

The techniques that we used to obtain our possibility and impossibility results (for the “no
signatures” case) are also a significant contribution of this paper.

To prove the impossibility result (1), one cannot use a standard partitioning argument:
all the processes except the writer are given atomic [1, n]-registers that all processes can read,
and the writer is given a [1, n− 1]-register that all the readers except one can read; thus it is
clear that the system cannot be partitioned.

So to prove this result we use an interesting reductio ad absurdum technique. Starting
from an alleged implementation of [1, n]-register from [1, n− 1]-registers, we consider a run
where the implemented register is initialized to 0, the writer completes a write of 1, and then
a reader reads 1. By leveraging the facts that: (1) in each step the writer can read or write
only [1, n− 1]-registers, (2) the writer may crash, (3) one of the readers may be malicious,
(4) and there are at least 3 readers, we are able to successively remove every read or write
step of the writer (one by one, starting from its last write operation) in a way that maintains
the property that some correct reader reads 1 and at most one process in the run is malicious.
As we successively remove the steps of the writer, the identity of the process that reads 1,
and the identity of the process that may be malicious, keep changing. By continuing this
process, we end up with a run in which the writer takes no steps, and yet a correct reader
reads 1.

1 That is, in every run of In where the writer is correct or no reader is malicious, correct processes
complete all their operations.

2 In fact it is slightly stronger than this: write operations are unconditionally “wait-free”, only read
operations may block if the condition is not met.

DISC 2022

36:4 On Implementing SWMR Registers from SWSR Registers

Note that this proof is reminiscent of the impossibility proof for the “Two generals’
Problem” in message-passing systems [7]. In that proof, one leverages the possibility of
message losses to successively remove one message at a time. The proof given here is much
more elaborate because it leverages the subtle interaction between crash and malicious
failures that may occur at different processes.

For the matching possibility result (2), we solve the problem of implementing a
[1, n]-register from [1, 1]-registers with a recursive algorithm: intuitively, we first give an al-
gorithm to implement a [1, n]-register using [1, n−1]-registers, rather than only [1, 1]-registers,
and then recurse till n = 2. We do so because the recursive step of implementing a
[1, n]-register using [1, n−1]-registers, is significantly easier than implementing a [1, n]-register
using only [1, 1]-registers. This is explained in more detail in Section 5.1.

3 Model Sketch

We consider systems with asynchronous processes that communicate via single-writer registers
and are subject to Byzantine failures. Recall that a single-writer n-reader register is denoted
as a [1, n]-register; the n readers are distinct from the writer.

3.1 Process failures
A process that is subject to Byzantine failures can behave arbitrarily. In particular, it may
deviate from the algorithm it is supposed to execute, or just stop this execution prematurely,
i.e., crash. To distinguish between these two types of failures, we partition processes as follows:

Processes that do not fail, i.e., correct processes.
Processes that fail, i.e., faulty processes. Faulty processes are divided into two groups:

processes that just crash, and
the remaining processes, which we call malicious.

3.2 Atomic and implemented registers
A register is atomic if its read and write operations are instantaneous (i.e., indivisible); each
read must return the value of the last write that precedes it, or the initial value of the
register if no such write exists. Roughly speaking, the implementation of a register from a
set of “base” registers is given by read/write procedures that each process can execute to
read/write the implemented register; these procedures can access the given base registers
(which, intuitively, may be less “powerful” than the implemented register). So each operation
on an implemented register spans an interval that starts with an invocation (a procedure
call) and completes with a corresponding response (a value returned by the procedure).

A register implementation is wait-free [2, 9, 13] if it guarantees that every operation
invoked by a correct process completes with a response in a finite number of steps.

3.3 Linearizability of register implementations
Unless we explicitly state otherwise, all the register implementations that we consider are
linearizable [10]. Intuitively, linearizability requires that every operation on an implemented
object appears as if it took effect instantaneously at some point (the “linearization point”)
in its execution interval.

As noted by [6, 15], however, the precise definition of linearizability depends on whether
processes can only crash, or they can also fail in a “Byzantine way”. We now explain this for
register implementations.

X. Hu and S. Toueg 36:5

In systems with only crash failures. It is well-known that a single-writer multi-reader
register implementation is linearizable if and only if it satisfies two simple properties. To
define these properties precisely, we first define what it means for two operations to be
concurrent or for one to precede the other.

▶ Definition 1. Let o and o′ be any two operations.
o precedes o′ if the response of o occurs before the invocation of o′.
o is concurrent with o′ if neither precedes the other.

We say that a write operation w immediately precedes a read operation r if w precedes r,
and there is no write operation w′ such that w precedes w′ and w′ precedes r.

Let v0 be the initial value of the implemented register, and vk be the value written by
the k-th write operation of the writer w (this is well-defined because we make the standard
assumption that each process applies operations sequentially).

▶ Definition 2 (Register Linearizability). In a system with crash failures, an implementation
of a [1, n]-register is linearizable if and only if it satisfies the following two properties:

Property 1 [Reading a “current” value] If a read operation r returns the value v then:
there is a write v operation that immediately precedes r or is concurrent with r, or
v = v0 and no write operation precedes r.

Property 2 [No “new-old” inversion] If two read operations r and r′ return values vk

and vk′ , respectively, and r precedes r′, then k ≤ k′.

In systems with Byzantine failures. The above definitions do not quite work for systems
with Byzantine failures. For example, it is not clear what it means for a writer w of an
implemented register to “write a value v” if w is malicious, i.e., if w deviates from the write
procedure that it is supposed to execute; similarly, if a reader r is malicious it is not clear
what it means for r to “read a value v”. The definition of linearizability for systems with
Byzantine failures avoids the above issues by restricting the linearization requirements to
processes that are not malicious. More precisely:

▶ Definition 3 (Register Linearizability). In a system with Byzantine process failures, an
implementation of a [1, n]-register is linearizable if and only if the following holds. If the
writer is not malicious, then:

Property 1 [Reading a “current” value] If a read operation r by a process that is not
malicious returns the value v then:

there is a write v operation that immediately precedes r or is concurrent with r, or
v = v0 and no write operation precedes r.

Property 2 [No “new-old” inversion] If two read operations r and r′ by processes that
are not malicious return values vk and vk′ , respectively, and r precedes r′, then k ≤ k′.

Note that if the writer is correct or only crashes, then readers that are correct or only crash
are required to read “current” values and also avoid “new-old” inversions. So in systems
where faulty processes can only crash, Definition 3 reduces to Definition 2.

Cohen and Keidar were the first to define linearizability for arbitrary objects in systems
with Byzantine failures [6], and their definition generalizes the definition of linearizability for
[1, n]-registers given by Mostéfaoui et al. in [15]. Definition 3 is consistent with both.

We now describe the results of this paper. Because of space limitations, some of the
proofs are omitted here; they can be found in [11].

DISC 2022

36:6 On Implementing SWMR Registers from SWSR Registers

4 Impossibility result

We now prove that in a system with n + 1 Byzantine processes, if the writer and one of
the n readers can be faulty, then there is no wait-free linearizable implementation of a
[1, n]-register from atomic [1, n− 1]-registers. In fact, by dividing faulty processes into those
that can only crash and those that can be malicious (as defined in Section 3), we show the
following stronger result.

▶ Theorem 4. For all n ≥ 3, there is no wait-free linearizable implementation of a
[1, n]-register from atomic [1, n− 1]-registers in a system with n + 1 processes that are
subject to Byzantine failures. This holds even if we assume that the writer of the implemented
[1, n]-register can only crash and at most one reader can be malicious.

Proof. Let n ≥ 3. Suppose, for contradiction, that there is a wait-free linearizable imple-
mentation I of a [1, n]-register R from atomic [1, n − 1]-registers, in a system where the
writer w of R can crash and one of the n readers of R can be malicious.

We now construct a sequence of executions of I that leads to a contradiction. In all these
executions, the initial value of the implemented R is 0, the writer w invokes only one operation
into R, namely a write of 1, and each reader reads R at most once (i.e., R is only a “one-shot”
binary register). Moreover, in each of these executions the writer is not malicious (it may
only crash) and there is at most one malicious reader; the other n− 1 readers are correct.
Since I is a linearizable register implementation and the writer of the register is not malicious,
these executions of I must satisfy Properties 1 and 2 of Definition 3.

Let S be the following execution of I (see Figure 1):
The writer w is correct.
All the readers take no steps.
The writer w invokes a write 1 operation on R. Let s0 denote the invocation step, and
let t0

w be the time when s0 occurs. This step is “local” to w, i.e., it does not invoke any
shared register operations.
During this write operation, w executes a sequence of steps s1, ..., sm such that each step
si is either the reading or the writing of an atomic [1, n− 1]-register. Let Ri denote the
register that w writes or reads in step si. Let ti

w be the time when si occurs.
Since I is a wait-free implementation and w is correct, w completes its write operation.
Let sm+1 denote the response step, and let tm+1

w be the time when sm+1 occurs. Like s0,
this step is also “local” to w.

▶ Definition 5. For all i, 0 ≤ i ≤ m + 1, the step si of the writer w is invisible to a reader x

if: (1) si is the invocation step s0, (2) si is the response step sm+1, (3) si is the reading of
an atomic register, or (4) si is the writing to an atomic register that is not readable by x.

Since there are n readers, and the registers that w uses are atomic [1, n − 1]-registers,
every write by w into one of these registers is invisible to one of the readers. So:

▶ Observation 6. For all 0 ≤ k ≤ m + 1, step sk is invisible to at least one of the n readers.

▶ Definition 7. For every k, 0 ≤ k ≤ m + 1, an execution of I has property Pk if the
following holds:
1. The writer w behaves exactly as in S up to and including time tk

w; then it crashes and
takes no steps after time tk

w. So, w executes steps s0, s1, . . . , sk and then crashes.
2. There is a reader x that is correct and such that:

Step sk is invisible to x.
After time tk

w, process x starts and completes a read operation on R that returns 1.
3. There is a set Z of n− 2 distinct readers that are correct and take no steps.

X. Hu and S. Toueg 36:7

!!" !!# !!1

"# "1

!!1%#

!

⋯

⋯

!!"

$
7

!!&

"&⋯

⋯

&'() → 1

"

,

,
"" "1%#

""

8

∉ "

Figure 1 Execution S.

!!" !!# !!$

"# "$

!!$%#

!

⋯

⋯

!!"

$
7

!!&

"&⋯

⋯

&'() → 1

"

,

,
"" "$%#

""

8

∉ "

Figure 2 An execution with property Pk.

!!" !!# !!1

"# "1

!!1%#

⋯

⋯

"" "1%#
∉ #

.
/

,

&'() → 1#912
8

Figure 3 Execution Am+1.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

#4

""

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

8
$452

""

&'() → 1

&'() → 1

∉ #

∉ #

8

Figure 4 Execution Ak.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

#4

""

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

8
$452

""

&'() → 1

&'() → 1

∉ #

∉ #

8

Figure 5 Execution Bk−1.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

%4526

""

()*+ → 1

& ()*+ → 1

resetting

!./

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

&4526

""

()*+ → 1

& ()*+ → 1

∉ #

∉ #

Figure 6 Execution Cr
k−1.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

%4526

""

()*+ → 1

& ()*+ → 1

resetting

!./

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

&4526

""

()*+ → 1

& ()*+ → 1

∉ #

∉ #

Figure 7 Execution Dr
k−1.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

"4526

""

&

!0/

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

'4526

""

()*+ → 1&

()*+ → 1

()*+ → 1
()*+ → 1

resetting

()*+ → 1

∉ #

∉ #∉ $

∉ $

Figure 8 Execution Er
k−1.

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

"4526

""

&

!0/

!!" !!&'# !!&

"&'# "&⋯

⋯

.
/

,

& − {$}

'4526

""

()*+ → 1&

()*+ → 1

()*+ → 1
()*+ → 1

resetting

()*+ → 1

∉ #

∉ #∉ $

∉ $

Figure 9 Execution F r
k−1.

!!"

.
/

!!#

"#

&'() → 1

,
""

#2

!!"

.
/ &'() → 1

,
""

#3

∉ #

8

8

Figure 10 Execution A1.

!!"

.
/

!!#

"#

&'() → 1

,
""

#2

!!"

.
/ &'() → 1

,
""

#3

∉ #

8

8

Figure 11 Execution A0.

DISC 2022

36:8 On Implementing SWMR Registers from SWSR Registers

Note that since n ≥ 3, the set Z is not empty. Also note that while the property Pk requires
the n− 1 readers in {x} ∪ Z to be correct, Pk does not restrict the behavior of the remaining
reader; in particular, it may be correct or malicious, and it may or may not take steps.

An execution of I with property Pk is shown in Figure 2. In this figure and all the
subsequent ones, correct readers are in black font, while the reader that may be malicious is
colored red; the steps that this process may have taken are not shown in the figure. The
“/∈ x” on top of a step si means that si is invisible to the reader x. The symbol ✖ indicates
where the crash of the writer w occurs.

▷ Claim. For every k, 0 ≤ k ≤ m + 1, there is an execution of I that has property Pk.

Proof. We prove the claim by a backward induction on k, starting from k = m + 1.

Base Case. k = m + 1. Consider the following execution denoted Am+1 (Figure 3):
The writer w behaves as in execution S up to and including time tm+1

w ; then it crashes.
A reader q is correct. After time tm+1

w , q starts a read operation on R. Since I is
a wait-free implementation, q completes its read operation. Since w is not malicious,
and the write operation by w immediately precedes the read operation by q, by the
linearizability of I, the read operation by q returns 1.
There is a set Z of n− 2 readers that are correct and take no steps, exactly as in S.
p is the remaining reader.

Since sm+1 is a response step, it is invisible to q. So it is clear that Am+1 has property
Pm+1.

Induction Step. Let k be such that 1 ≤ k ≤ m + 1. Suppose there is an execution Ak of
I that has property Pk (this is the induction hypothesis). We now show that there is an
execution Ak−1 of I that has property Pk−1. We consider two cases, namely, k > 1 and k = 1.

Case k > 1. Since execution Ak of I satisfies Pk, the following holds in Ak (see Figure 4):
The writer w behaves as in execution S up to and including time tk

w; then it crashes.
There is a reader q that is correct such that step sk is invisible to q. After time tk

w, q

starts and completes a read operation on R that returns 1.
There is a set Z of n− 2 readers that are correct and take no steps, exactly as in S.
p is the remaining reader.

Then the following execution Bk−1 of I also exists (Figure 5): Bk−1 is exactly like
Ak except that w crashes just before taking step sk (so Bk−1 is just Ak with the step sk

“removed”).
Bk−1 is possible because: (1) even though p may have “noticed” the removal of step

sk, p may be malicious (all other readers are correct in this execution), and (2) q cannot
distinguish between Ak and Bk−1 because sk is invisible to q, and p and all the readers in Z
behave as in Ak.

Since k > 1, Ak has a step sk−1 ̸= s0. There are two cases:
Case 1. sk−1 is invisible to q. Then Bk−1 is an execution of I that has the property Pk−1,

as we wanted to show.
Case 2. sk−1 is visible to q. Then sk−1 is invisible to p or to some reader in Z .
Let r be any process in Z . We construct the execution Cr

k−1 of I shown in Figure 6: Cr
k−1 is

a continuation of Bk−1 where, after the correct reader q reads 1, malicious p wipes out any
trace of the write steps that it has taken so far, and then a correct process r ∈ Z reads 1
(this is the only value that r can read, since correct q previously read 1). More precisely:

X. Hu and S. Toueg 36:9

Cr
k−1 is an extension of Bk−1.

After the correct reader q completes its read operation on R, q takes no steps.
All the readers in Z− {r} are correct and take no steps3.
After q completes its read operation, p resets all the atomic registers that it can write to
their initial values. Process p can do so because it may be malicious (all other readers are
correct in this execution). Let tr

p be the time when p completes all the register resettings.
A correct reader r starts a read operation on R after time tr

p. It takes no steps before
this read. Since I is a wait-free implementation, r completes its read operation. Since
w is not malicious and the read operation by correct q returns 1 and precedes the read
operation by r, by the linearizability of I, the read operation by r returns 1.

We can now construct the following execution Dr
k−1 of I (Figure 7). Dr

k−1 is obtained
from Cr

k−1 by removing all the steps of p. Despite this removal, q behaves the same as in
Cr

k−1 because q is now malicious. Correct r also behaves as in Cq
k−1 because it cannot see

the removal of p’s steps: in both Cr
k−1 and Dr

k−1, r does not “see” any steps of p. More
precisely in Dr

k−1:
w behaves exactly as in Cr

k−1.
p is correct and takes no steps. So all its registers retain their initial value.
All the readers in Z− {r} are correct and take no steps as in Cr

k−1.
q behaves the same as in Cr

k−1. This is possible because even though q may have “noticed”
the removal of p’s steps, q may be malicious (all other readers are correct in this execution).
After possibly malicious q “reads” 1, the correct reader r starts and completes a read
operation on R. Since r cannot see the removal of p’s steps, and q and all the readers in
Z− {r} behave the same as in Cr

k−1, r cannot distinguish between Dr
k−1 and Cr

k−1. So
the read operation by r returns 1 as in Cr

k−1.

Note that if sk−1 is invisible to process r, then the execution Dr
k−1 of I has property

Pk−1.
Recall that (1) the process r above is an arbitrary process in Z , and (2) sk−1 is invisible

to p or to some reader r′ ∈ Z. So there are two cases:
Subcase 2a. sk−1 is invisible to some reader r′ ∈ Z. In the above we proved that the

execution Dr′

k−1 of I has property Pk−1, as we wanted to show.
Subcase 2b. sk−1 is invisible to p. In this case we construct the continuation Er

k−1 of Dr
k−1

shown in Figure 8: after r reads 1, malicious process q wipes out any trace of the write
steps that it has taken so far (by reinitializing its registers), and then correct process p

applies a read operation to R. By wait freedom, this read operation by p must complete.
Since w is not malicious and correct r previously read 1, by linearizability, this read
operation by p must return 1.

Finally, we construct the execution F r
k−1 of I by removing all the steps of q from Er

k−1
(see Figure 9); so q (which was malicious in Er

k−1) is now a correct process that takes no
steps. Despite this removal, r behaves the same as in Er

k−1 because r (which was correct in
Er

k−1) may now be malicious. Moreover, correct p also behaves as in Er
k−1 because it cannot

see the removal of q’s steps: in both Er
k−1 and F r

k−1, p does not “see” any steps of q. So the
read operation by p returns 1 as in Er

k−1.
Note that, since sk−1 is invisible to p, F r

k−1 is an execution of I that has property Pk−1.

3 If n = 3, then the set Z− {r} is empty.

DISC 2022

36:10 On Implementing SWMR Registers from SWSR Registers

Case k = 1. By the induction hypothesis, there is an execution A1 as follows (Figure 10):
The writer w behaves exactly as in S up to and including time t1

w; then it crashes.
After time t1

w, a correct reader q starts and completes a read operation on R that
returns 1. Furthermore, s1 is invisible to q.
There is a set Z of n− 2 readers that are correct and take no steps.
p is the remaining reader.

Then the following execution A0 of I also exists (Figure 11): A0 is like A1 except
that w crashes just before taking step s1 (so A0 is just A1 with the step s1 “removed”).
A0 is possible because: (1) even though p may have “noticed” the removal of step s1, p may
be malicious (all other readers are correct in this execution), and (2) q cannot distinguish
between A0 and A1 because s1 is invisible to q, and p and all the readers in Z behave as in A1.
Since s0 is an invocation step, it is invisible to q. It is now easy to see that execution A0 of I
has property P0, as we wanted to show. ◁

By the claim that we just proved, implementation I has an execution A0 with property P0.
By this property, in A0 process w crashes immediately after the invocation step s0 of its write
1 operation, and some correct reader x later reads the value 1. Since the invocation step s0 is
invisible to all the readers (because it does not involve writing any of the shared registers), there
is an execution of A′

0 of I where: (1) w does not take any step at all (so it is not malicious),
and (2) a correct reader x reads 1 exactly as in A0 (because no reader can distinguish between
A0 and A′

0). This execution A′
0 of I violates the linearizability of I. ◀

It is easy to verify that the above proof holds (without any change) even if all the readers
have atomic [1, n]-registers that they can write and all processes can read. Thus:

▶ Theorem 8. For all n ≥ 3, there is no wait-free linearizable implementation of a
[1, n]-register in a system of n + 1 processes that are subject to Byzantine failures such that:
ss

the writer w of the implemented [1, n]-register has atomic [1, n− 1]-registers, and every
reader has atomic [1, n]-registers, and
w can only crash and at most one reader can be malicious.

5 Register implementation algorithm

We now give an implemention of a [1, n]-register from atomic [1, 1]-registers in systems with
Byzantine process failures; this implementation is linearizable, and it is wait-free provided
the writer of the register or any number of the readers but not both can be faulty. More
precisely, it is a valid implementation as defined below.

▶ Definition 9. A register implementation is valid if it satisfies the following:
It is linearizable.
It is wait-free if the writer is correct or no reader is malicious.

Note that, when executed in a system where processes can only crash, a valid register
implementation is linearizable and wait-free (unconditionally).

5.1 Some difficulties to overcome
Note that in a system with Byzantine process failures, implementing a [1, n]-register from
[1, 1]-registers is non-trivial, even if the writer can only crash. To see this, we now illustrate
some of the issues that arise. First note that with [1, 1]-registers the writer cannot simul-
taneously inform all the readers about a new write. So different readers may have different

X. Hu and S. Toueg 36:11

views of whether there is a write in progress: some readers may not see it, some readers may
see it as still in progress, while other readers may see it as having completed. Thus readers
must communicate with each other to avoid “new-old” inversions in the values they read.
With non-Byzantine failures, readers can easily coordinate their reads because they can trust
the information they pass to each other. With Byzantine failures, however, readers cannot
blindly trust what other readers tell them.

For example, suppose a reader q is aware that a write v operation is in progress (say
because the writer w directly “told” q about it via the register that they share). To avoid
a “new-old” inversion, q checks whether any other reader q′ has already read v (because it
is possible that from q′’s point of view, the write of v already completed). Suppose some
q′ “warns” q that it has already read the new value v, and so q also reads v. But what if q′

is malicious and “lied” to q (and only to q) about having read v? Note that q may be the
only correct reader currently aware that the write of v is in progress (say because w is slow).
Now suppose that a reader q′′ that is not aware of the write of v also wants to read: if q′′

reads the old value of the register this creates a “new-old” inversion with the newer value
v that q previously read; but if q′′ reads v because q warns q′′ that it had read v, then q′′

may be reading a value v that was never written by the correct writer w: q itself could be
malicious and could have “lied” about reading v!

The above is only one of many possible scenarios illustrating why it is not easy to
implement a [1, n]-register from [1, 1]-registers when some readers can be malicious, even if
the writer itself is not malicious.

5.2 A recursive solution
To simplify this task, we do not directly implement a [1, n]-register using only [1, 1]-registers.
Instead, we first give an implementation In of a [1, n]-register that uses some [1, n−1]-registers
together with some [1, 1]-registers. Then, by replacing the [1, n−1]-registers with In−1 imple-
mentations, we get an implementation of the [1, n]-register that uses some [1, n− 2]-registers
and some [1, 1]-registers. By recursing down to n = 2, this gives an implementation of the
[1, n]-register that uses only [1, 1]-registers. In other words, we can implement a [1, n]-register
from [1, 1]-registers with a recursive construction that gradually reduces the number of
readers of the base registers that it uses (all the way down to 1). We now describe this
recursive implementation and prove its correctness.

5.3 Implementing a [1,n]-register from [1,n-1]-registers
Algorithm 1 gives an implementation In of a [1, n]-register that is writable by a process w

and readable by every process in {p} ∪Q, where p is an arbitrary reader and all remaining
n− 1 readers are in Q. We distinguish p from the other readers in Q because p and q ∈ Q

use different procedures for reading the implemented [1, n]-register. In uses two kinds of
registers: atomic [1, 1]-registers and implemented [1, n− 1]-registers. We will show that In is
valid under the assumption that the [1, n− 1]-register implementations that it uses are also
valid (and therefore linearizable).

Notation. Recall that if R is an atomic register, all operations applied to R are instantaneous,
whereas if R is an implemented register, each operation spans an interval of time, from an
invocation to a response. However, since we assume that the [1, n−1]-register implementations
that In uses are valid and therefore linearizable, we can think of each operation on an
implemented [1, n− 1]-register as being atomic, i.e., as if it takes effect instantaneously at

DISC 2022

36:12 On Implementing SWMR Registers from SWSR Registers

Algorithm 1 Implementation In of a [1, n]-register writable by (an arbitrary) process w and
readable by the n processes in {p} ∪ Q, for n ≥ 2. It uses two [1, n − 1]-registers and some
[1, 1]-registers.

Atomic Registers
Rwp: [1, 1]-register; initially (commit, ⟨0, u0⟩)
For every processes q, q′ ∈ Q:

Rqq′ : [1, 1]-register; initially ⟨0, u0⟩
Implemented Registers

RwQ: [1, n−1]-register; initially (commit, ⟨0, u0⟩)
RpQ: [1, n− 1]-register; initially ⟨0, u0⟩

Local variables
c: variable of w; initially 0
last_written: variable of w; initially ⟨0, u0⟩
previous_k: variable of p; initially 0

Write(u): ▷ executed by the writer w

1: c← c + 1
2: call w(⟨c, u⟩)
3: return done

Read(): ▷ executed by any reader r in {p} ∪Q

4: call rr()
5: if this call returns some tuple ⟨k, u⟩ then
6: return u
7: else return ⊥

w(⟨k, u⟩): ▷ executed by w to do its k-th write
8: Rwp ← (prepare, last_written, ⟨k, u⟩)
9: RwQ ← (prepare, last_written, ⟨k, u⟩)

10: Rwp ← (commit, ⟨k, u⟩)
11: RwQ ← (commit, ⟨k, u⟩)
12: last_written ← ⟨k, u⟩
13: return done

rp(): ▷ executed by reader p

14: if Rwp = (commit, ⟨k, u⟩) for some ⟨k, u⟩ with k ≥ previous_k then
15: RpQ ← ⟨k, u⟩
16: previous_k ← k
17: return ⟨k, u⟩
18: elseif Rwp = (prepare, last_written,−) for some last_written then
19: return last_written
20: else return ⊥

rq(): ▷ executed by any reader q ∈ Q

21: if RwQ = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
22: return ⟨k, u⟩
23: elseif RwQ = (prepare, last_written, ⟨k, u⟩) for some last_written and some ⟨k, u⟩ then
24: cobegin

// Thread 1
25: repeat forever
26: if RwQ = (commit, ⟨k′,−⟩) for some k′ ≥ k then
27: return ⟨k, u⟩
28: if RwQ = (prepare,−, ⟨k′,−⟩) for some k′ > k then
29: return ⟨k, u⟩

// Thread 2
30: if RpQ = ⟨k′,−⟩ for some k′ ≥ k then
31: for every process q′ ∈ Q do Rqq′ ← ⟨k, u⟩
32: return ⟨k, u⟩
33: elseif Rq′q = ⟨k′,−⟩ for some q′ ∈ Q and some k′ ≥ k then
34: if RpQ = ⟨k′,−⟩ for some k′ ≥ k then
35: for every process q′ ∈ Q do Rqq′ ← ⟨k, u⟩
36: return ⟨k, u⟩
37: else return last_written
38: coend
39: else return ⊥

X. Hu and S. Toueg 36:13

some point during its execution interval [10]. Thus to read or write a register R we use the
same notation, irrespective of whether R is atomic or implemented. In particular, in our
implementation algorithm (shown in Figure 1) we use the following notation:

“R← v” denotes the operation that writes v into R.
“if R = val then . . .” means “read register R and if the value read is equal to val then . . .”

The shared registers used by the implementation are as follows:
Rrr′ is an atomic [1, 1]-register writable by process r and readable by process r′.4
RwQ is an implemented [1, n− 1]-register writable by w and readable by every q ∈ Q.
RpQ is an implemented [1, n− 1]-register writable by p and readable by every q ∈ Q.

Description. The implementation In of a [1, n]-register from [1, n− 1]-registers consists of
two procedures, namely Write() for the writer w, and Read() for each reader r in {p} ∪Q.
To write a value u, the writer w executes Write(u). If u is the k-th value written by w,
Write(u) first forms the unique tuple ⟨k, u⟩ and then it calls the lower-level write procedure
w(⟨k, u⟩) to write this tuple. Intuitively, Write() tags the values that it writes with a
counter value to make them unique and to indicate in which order they are written.

To read a value, a reader r ∈ {p} ∪Q calls Read(), and this in turn calls a lower-level
read procedure rr() that reads tuples written by w(). There are two version of the procedure
rr(): one used when r = p and one used when r ∈ Q. If rr() returns a tuple of the form
⟨j, v⟩, then Read() strips the counter j from the tuple and returns the value v as the value
read (otherwise Read() returns ⊥ to indicate a read failure).

Thus the lower-level procedures w(), rp(), and rq() for each q ∈ Q, are executed to write
and read unique tuples of the form ⟨k, u⟩. We now describe how these procedures work.

To execute w(⟨k, u⟩), process w first writes (prepare, last_written, ⟨k, u⟩) in the Rwp

register that p can read, and then in the RwQ register that every process in Q can read;
last_written is the last tuple written by w before ⟨k, u⟩ (so last_written = ⟨k− 1, u′⟩ for
some u′). Then, w writes (commit, ⟨k, u⟩) into Rwp and then into RwQ.
To execute rp(), process p reads Rwp (line 14). If p reads (commit, ⟨k, u⟩) with a k at
least as big as those it saw before, it returns ⟨k, u⟩ as the tuple read (line 17); just before
doing so, however, it writes ⟨k, u⟩ in the RpQ register that every process q ∈ Q can read
(line 15): intuitively, this is to “warn” them that p read a “new” tuple, to help avoid
“new-old” inversion in the tuples read.
If p reads (prepare, last_written, ⟨k, u⟩) (line 18), then it returns last_written as the
tuple read (without giving any “warning” about this to processes in Q).
If p reads anything else from Rwp, then it returns ⊥ (the writer is surely malicious).
To execute rq(), process q ∈ Q reads RwQ. If q reads (commit, ⟨k, u⟩) (line 21), it just
returns ⟨k, u⟩ as the tuple read in line 22 (without “warning” other processes).
If q reads (prepare, last_written, ⟨k, u⟩) (line 23), then q cannot simply return
last_written as the tuple read: this is because p could have already read (commit, ⟨k, u⟩)
from Rwp and so p could have already read the “newer” tuple ⟨k, u⟩ with rp(). So q must
determine whether to return last_written or ⟨k, u⟩. To do so, q forks two threads and
executes them in parallel (we will explain why below).5

4 If r = r′, this “shared register” is actually just a local register of process r.
5 If q does not read values of the form (prepare, last_written, ⟨k, u⟩) or (commit, ⟨k, u⟩) from RwQ, then

w is surely malicious, and q just returns ⊥ in line 39.

DISC 2022

36:14 On Implementing SWMR Registers from SWSR Registers

In Thread 1, process q keeps reading RwQ: if it ever reads (commit, ⟨k′,−⟩) with k′ ≥ k,
or (prepare,−, ⟨k′,−⟩) with k′ > k, it simply returns ⟨k, u⟩ as the tuple read. Note that if
the writer w is correct, then q cannot spin forever in this thread without returning ⟨k, u⟩.

In Thread 2, process q first reads the register RpQ to see whether p “warned” processes
in Q that it read a tuple at least as “new” as ⟨k, u⟩.

If q sees that RpQ contains a tuple at least as “new” as ⟨k, u⟩ (line 30), then q returns
⟨k, u⟩ as the tuple read (line 32); but before doing so, q successively writes ⟨k, u⟩ in each
register Rqq′ such that q′ ∈ Q (line 31): intuitively, this is to “warn” each process in Q

that q read this “new” tuple.
Otherwise, q reads every Rq′q register to avoid a new-old inversion with any tuple read by
any process q′ ∈ Q: if q sees that some Rq′q contains a tuple at least as “new” as ⟨k, u⟩
(line 33), then q reads RpQ again (line 34) (so q does not simply “trust” q′ and return
⟨k, u⟩!). If q sees that RpQ contains a tuple at least as “new” as ⟨k, u⟩ (line 34), then q

returns ⟨k, u⟩ as the tuple read (line 36); and before doing so q successively writes ⟨k, u⟩
to every register Rqq′ such that q′ ∈ Q (line 35).
Finally, if q does not see that RpQ or Rqq′ contain a tuple at least as “new” as ⟨k, u⟩ (in
lines 30 and 33), then q returns last_written (line 37).

Why two parallel threads? In a nutshell, this is to guarantee the wait-freedom of In in runs
where the writer is correct or no reader is malicious. This is required for our implementation
to be valid. It turns out that:
(A) if only Thread 1 is executed, then a faulty writer can block correct readers even if no

reader is malicious, and
(B) if only Thread 2 is executed, then malicious readers can block correct readers from

returning any value in this thread even if the writer is correct.

But if the writer is correct or no reader is malicious, we can show that every read operation
by a correct reader is guaranteed to complete with a return value in one of the two threads.

It is easy to see why a faulty writer (even one that just crashes) may block a correct
reader in Thread 1. We now explain how malicious readers may impede correct readers in
Thread 2.

In Thread 2 readers must read RpQ at least once (in line 30). Recall that (a) RpQ is an
implemented [1, n− 1]-register, and (b) we are only assuming that this implementation is
valid. In particular, if the writer p of RpQ crashes and some readers of RpQ are malicious,
the implementation of RpQ does not guarantee the wait-freedom of its read operations. In
other words, if p crashes and some readers of RpQ are malicious, a correct reader q may
block while trying to read RpQ!

Malicious readers may also prevent a correct reader q from reading any tuple in Thread 2
as follows. When q executes rq() the following can occur: (1) in line 33, q sees that some
Rq′q contains ⟨k′,−⟩ with k′ ≥ k , but (2) in line 34 q sees that RpQ does not contain ⟨k′,−⟩
with k′ ≥ k. We can show that this can occur only if at least one of p or q′ is malicious.
Note that if (1) and (2) indeed occur, then q terminates Thread 2 without returning any
tuple (because the if of line 34 does not have a corresponding else).

The correctness of the implementation In given by Algorithm 1 is stated in Theorem 10.
The proof of this theorem is given in [11].

▶ Theorem 10. For all n ≥ 2, In is an implementation of a [1, n]-register from implemented
[1, n − 1]-registers and atomic [1, 1]-registers. In is valid if the implementations of the
[1, n− 1]-registers that it uses (namely, RwQ and RpQ) are valid.

X. Hu and S. Toueg 36:15

It’s worth noting that for the case n = 2, there is a simple implementation I2
′ that

is stronger than the I2 implementation given by Algorithm 1: in contrast to I2 , I2
′ is

unconditionally wait-free. The implementation I2
′ is given by Algorithm 3 in Appendix A.

Note that Algorithm 3 is a simple version of Algorithm 1: the set of readers Q now contains
only one process q, and so preventing new-old inversions is much easier.

▶ Theorem 11. The implementation I2
′ (given by Algorithm 3 in Appendix A) is a wait-free

linearizable implementation of a [1, 2]-register from atomic [1, 1]-registers.

5.4 Implementing a [1,n]-register from atomic [1,1]-registers

We now show our main “possibility” result: in a system with Byzantine process failures,
there is an implementation of a [1, n]-register from atomic [1, 1]-registers that is linearizable
and wait-free provided that the writer or any number of readers, but not both, can fail. In
fact we show the following stronger result:

▶ Theorem 12. For all n ≥ 2, in a system of n + 1 processes that are subject to Byzantine
failures, there is a valid implementation In of a [1, n]-register from atomic [1, 1]-registers.

Proof. We show Theorem 12 by induction on n.

Base Case. Let n = 2. Consider the implementation I2 of Theorem 10. Since n = 2, the set
Q now contains only one process. So each register RwQ and RpQ in I2 can be implemented
directly by an atomic [1, 1]-register. Since these are valid implementations of RwQ and
RpQ, there is a valid implementation I2 of a [1, 2]-register from atomic [1, 1]-registers.6

Induction Step. Let n > 2. Suppose there is a valid implementation In−1 of a
[1, n− 1]-register that uses only atomic [1, 1]-registers. We must show there is a valid
implementation In of a [1, n]-register that uses only atomic [1, 1]-registers.

By Theorem 10, there is an implementation In of a [1, n]-register that uses:

1. two implemented [1, n− 1]-registers (namely, of registers RwQ and RpQ), and

2. some atomic [1, 1]-registers
such that In is valid if the implementations of the [1, n− 1]-registers RwQ and RpQ are valid.
Implement RwQ and RpQ in In using the valid implementation In−1 (In−1 exists by our in-
duction hypothesis). This gives an implementation In of a [1, n]-register that uses only atomic
[1, 1]-registers (because In−1 uses only atomic [1, 1]-registers). Since the implementations of
RwQ and RpQ are valid, In is valid. ◀

Since In is valid, it is linearizable (no matter which processes fail and how); and it is wait-
free provided the writer is correct or no reader is malicious. This matches the impossibility
result given by Theorem 4 in Section 4.

6 To show that I2 exists, we could also use the wait-free and linearizable implementation I2
′ mentioned

in Theorem 11.

DISC 2022

36:16 On Implementing SWMR Registers from SWSR Registers

Algorithm 2 Implementation Is of a [1, n]-register writable by process w and readable by a set
P of n processes in a system with unforgeable signatures. Is uses atomic [1, 1]-registers.

Atomic Registers
For every processes i and j:

Rij : atomic [1, 1]-register; initially ⟨0, u0⟩w.

Local variables

c: variable of w; initially 0
tuples: variable of each p ∈ P ; initially ∅.

Write(u): ▷ executed by the writer w

1: c← c + 1
2: call w(⟨c, u⟩w)
3: return done

Read(): ▷ executed by any reader p in P

4: call r()
5: if this call returns some tuple ⟨k, u⟩w then
6: return u
7: else return ⊥

w(⟨k, u⟩w): ▷ executed by w to do its k-th write
8: for every process i ∈ P do
9: Rwi ← ⟨k, u⟩w ▷ ⟨k, u⟩ signed by w

10: return done

r(): ▷ executed by any reader p ∈ P

11: tuples ← ∅
12: for every process i ∈ {w} ∪ P do
13: if Rip = ⟨ℓ, val⟩w for some ⟨ℓ, val⟩ validly signed by w then
14: tuples ← tuples ∪ {⟨ℓ, val⟩w}
15: ⟨k, u⟩w ← tuple ⟨ℓ, val⟩w with maximum sequence number ℓ in tuples
16: for every process i ∈ P do
17: Rpi ← ⟨k, u⟩w
18: return ⟨k, u⟩w

6 Implementation for systems with digital signatures

Algorithm 2 gives a linearizable and wait-free implementation Is of a [1, n]-register that is
writable by process w and readable by a set P of n processes. Is uses unforgeable signatures
of processes (actually only w does) and atomic [1, 1]-registers between each pair of processes.

As in Algorithm 1, to write a value u the writer w first adds a counter k to form a
tuple ⟨k, u⟩. It then signs ⟨k, u⟩, and the signed tuple is denoted ⟨k, u⟩w. As before, the
actual write and read operations are done by lower-level procedures w() and r(), which work
as follows:

To execute w(⟨k, u⟩w), the writer w simply writes ⟨k, u⟩w in Rwi for every process i.
To execute r(), the process p first reads the [1, 1]-register Rip of every process i to collect
a set tuples of the tuples with valid signature of w. Then p selects the tuple ⟨k, u⟩w with
maximum sequence number k in tuples, and return this tuple; but before doing so p writes
⟨k, u⟩w into every [1, 1]-register Rpi to notify every process i that it read this tuple.

The correctness of the implementation Is given by Algorithm 2 is stated in Theorem 13.
The proof of this theorem is given in [11].

▶ Theorem 13. Consider a system where processes are subject to Byzantine failures and can
use unforgeable signatures. For every n ≥ 2, Is is a wait-free linearizable implementation of
a [1, n]-register from atomic [1, 1]-registers that tolerates any number of faulty processes.

X. Hu and S. Toueg 36:17

7 Concluding remarks

The implementation of registers from weaker registers is a basic problem in distributed
computing that has been extensively studied in the context of processes with crash failures.
In this paper, we investigated this problem in the context of Byzantine processes failures,
with and without process signatures. We first proved that there is no wait-free linearizable
implementation of a [1, n]-register from atomic [1, n− 1]-registers. In fact, we showed that
this impossibility holds even if every process except the writer can use atomic [1, n]-registers,
and even under the assumption that the writer can only crash and at most one reader can
be malicious. This is in sharp contrast to the situation in systems with crash failures only,
where there is a wait-free linearizable implementation of a [1, n]-register even from safe
[1, 1]-registers [14].

In light of this strong impossibility result, we gave an implementation of a [1, n]-register
from atomic [1, 1]-registers that is linearizable (intuitively, “safe”) under any combination of
Byzantine process failures, but is wait-free (intuitively, “live”) only under the assumption
that the writer is correct or no reader is malicious; this matches the impossibility result. We
also gave an implementation that uses process signatures, and is wait-free and linearizable
under any number and combination of Byzantine process failures.

Perhaps surprisingly, none of the above results refers to a ratio of faulty vs. correct
processes, such as n/3 or n/2, that we typically encounter in results that involve Byzantine
processes. For example, Mostéfaoui et al. [15] prove that one can implement an f -resilient
[1, n]-register in message-passing systems with Byzantine process failures if and only if
f < n/3. As an other example, Cohen and Keidar [6] show that if f < n/2, one can
use atomic [1, n]-registers to get f -resilient implementations of reliable broadcast, atomic
snapshot, and asset transfer objects in systems with Byzantine process failures.

It is worth noting that, since atomic [1, 1]-registers can simulate message-passing chan-
nels, one can use the f -resilient implementation of a [1, n]-register for message-passing
systems given in [15], to obtain an f -resilient implementation of a [1, n]-register using atomic
[1, 1]-registers. But f -resilient implementations (such as the ones given in [6, 15]) require
every correct process to help the execution of every operation, even the operations of other
processes. In contrast, with wait-free object implementations in shared-memory systems,
processes that do not have ongoing operations take no steps.

References

1 Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor
Zablotchi. The impact of RDMA on agreement. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019, PODC ’19, pages 409–418, 2019. doi:10.1145/3293611.3331601.

2 James H Anderson and Mohamed G Gouda. The virtue of patience: Concurrent programming
with and without waiting. Citeseer, 1990.

3 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

4 B. Bloom. Constructing two-writer atomic registers. IEEE Trans. Comput., 37(12):1506–1514,
December 1988.

5 James E. Burns and Gary L. Peterson. Constructing multi-reader atomic values from non-
atomic values. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’87, pages 222–231, 1987. doi:10.1109/12.9729.

DISC 2022

https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/200836.200869
https://doi.org/10.1109/12.9729

36:18 On Implementing SWMR Registers from SWSR Registers

6 Shir Cohen and Idit Keidar. Tame the Wild with Byzantine Linearizability: Reliable Broadcast,
Snapshots, and Asset Transfer. In 35th International Symposium on Distributed Computing
(DISC 2021), volume 209, pages 18:1–18:18, 2021. doi:10.4230/LIPIcs.DISC.2021.18.

7 Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced Course,
pages 393–481, 1978. doi:10.1007/3-540-08755-9_9.

8 S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic variables
from regular variables. J. ACM, 42(1):186–203, January 1995. doi:10.1145/200836.200871.

9 Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing,
PODC ’88, pages 276–290, 1988. doi:10.1145/62546.62593.

10 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

11 Xing Hu and Sam Toueg. On implementing swmr registers from swsr registers in systems with
byzantine failures, 2022. doi:10.48550/arXiv.2207.01470.

12 Amos Israeli and Amnon Shaham. Optimal multi-writer multi-reader atomic register. In
Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing,
PODC ’92, pages 71–82, 1992. doi:10.1145/135419.135435.

13 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. J. ACM, 45(3):451–500, May 1998. doi:10.1145/278298.278305.

14 Leslie Lamport. On interprocess communication Parts I–II. Distributed Computing, 1(2):77–101,
1986. doi:10.1007/BF01786227.

15 Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic read/write
memory in signature-free byzantine asynchronous message-passing systems. Theory of Com-
puting Systems, 60, May 2017. doi:10.1007/s00224-016-9699-8.

16 Richard Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared variables. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’87, pages 232–248, 1987. doi:10.1145/41840.41860.

17 Gary L. Peterson. Concurrent reading while writing. ACM Trans. Program. Lang. Syst.,
5(1):46–55, January 1983. doi:10.1109/SFCS.1986.11.

18 Gary L. Peterson and James E. Burns. Concurrent reading while writing ii: The multi-writer
case. In 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California,
USA, 27-29 October 1987, SFCS ’87, pages 383–392, 1987. doi:10.1109/SFCS.1987.15.

19 Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The elusive atomic register
revisited. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’87, pages 206–221, 1987. doi:10.1145/41840.41858.

20 K. Vidyasankar. Converting Lamport’s regular register to atomic register. Inf. Process. Lett.,
28(6):287–290, August 1988. doi:10.1016/0020-0190(88)90175-5.

21 K. Vidyasankar. A very simple construction of 1-writer multireader multivalued atomic variable.
Inf. Process. Lett., 37(6):323–326, March 1991. doi:10.1016/0020-0190(91)90149-C.

22 Paul M. B. Vitanyi and Baruch Awerbuch. Atomic shared register access by asynchronous
hardware. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
233–243, 1986.

A A wait-free linearizable implementation of a [1,2]-register from
atomic [1,1]-registers.

Algorithm 3 gives a wait-free linearizable implementation I2
′ of a [1, 2]-register from atomic

[1, 1]-registers. This algorithm is a simpler version of Algorithm 1 for the valid implementation
In of a [1, n]-register: I2

′ has only two readers, namely p and q, so preventing new-old
inversions among readers is easier. In contrast to Algorithm 1, the code of Algorithm 3 has
no parallel threads.

https://doi.org/10.4230/LIPIcs.DISC.2021.18
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1145/200836.200871
https://doi.org/10.1145/62546.62593
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.48550/arXiv.2207.01470
https://doi.org/10.1145/135419.135435
https://doi.org/10.1145/278298.278305
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/s00224-016-9699-8
https://doi.org/10.1145/41840.41860
https://doi.org/10.1109/SFCS.1986.11
https://doi.org/10.1109/SFCS.1987.15
https://doi.org/10.1145/41840.41858
https://doi.org/10.1016/0020-0190(88)90175-5
https://doi.org/10.1016/0020-0190(91)90149-C

X. Hu and S. Toueg 36:19

Since the code of Algorithm 3 does not contain any loop or wait statement, it is clear
that every call to the Write() and Read() procedures by any correct process terminates
with a return value in a bounded number of steps; i.e., the implementation I2

′ is wait-free.
The proof that it is a linearizable implementation is given in [11]. So we have:

▶ Theorem 11. The implementation I2
′ (given by Algorithm 3 in Appendix A) is a wait-free

linearizable implementation of a [1, 2]-register from atomic [1, 1]-registers.

Algorithm 3 Implementation I2
′ of a [1, 2]-register writable by w and readable by p and q. I2

′ uses
some [1, 1]-registers.

Atomic Registers
Rwp: [1, 1]-register; initially (commit, ⟨0, u0⟩)
Rwq: [1, 1]-register; initially (commit, ⟨0, u0⟩)
Rpq: [1, 1]-register; initially ⟨0, u0⟩

Local variables
c: variable of w; initially 0
last_written: variable of w; initially ⟨0, u0⟩
last_read: variable of q initially ⟨0, u0⟩

Write(u): ▷ executed by the writer w

1: c← c + 1 s
2: call w(⟨c, u⟩)
3: return done

Read(): ▷ executed by any reader r ∈ {p, q}
4: call rr()
5: if this call returns some tuple ⟨k, u⟩ then
6: return u
7: else return ⊥

w(⟨k, u⟩): ▷ executed by w to do its k-th write
8: Rwp ← (prepare, last_written, ⟨k, u⟩)
9: Rwq ← (prepare, last_written, ⟨k, u⟩)

10: Rwp ← (commit, ⟨k, u⟩)
11: Rwq ← (commit, ⟨k, u⟩)
12: last_written ← ⟨k, u⟩
13: return done

rp(): ▷ executed by reader p

14: if Rwp = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
15: Rpq ← ⟨k, u⟩
16: return ⟨k, u⟩
17: elseif Rwp = (prepare, last_written,−) for some last_written then
18: return last_written
19: else return ⊥

rq(): ▷ executed by reader q

20: if Rwq = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
21: return ⟨k, u⟩
22: elseif Rwq = (prepare, last_written, ⟨k, u⟩) for some last_written and some ⟨k, u⟩ then
23: if Rpq = ⟨k′,−⟩ for some k′ ≥ k then
24: last_read ← ⟨k, u⟩
25: return ⟨k, u⟩
26: elseif last_read = ⟨k′,−⟩ and some k′ ≥ k then
27: return ⟨k, u⟩
28: else
29: return last_written
30: else return ⊥

DISC 2022

Space-Stretch Tradeoff in Routing Revisited
Anatoliy Zinovyev # Ñ

Boston University, MA, USA

Abstract
We present several new proofs of lower bounds for the space-stretch tradeoff in labeled network
routing.

First, we give a new proof of an important result of Cyril Gavoille and Marc Gengler that any
routing scheme with stretch < 3 must use Ω(n) bits of space at some node on some network with
n vertices, even if port numbers can be changed. Compared to the original proof, our proof is
significantly shorter and, we believe, conceptually and technically simpler. A small extension of the
proof can show that, in fact, any constant fraction of the n nodes must use Ω(n) bits of space on
some graph.

Our main contribution is a new result that if port numbers are chosen adversarially, then stretch
< 2k + 1 implies some node must use Ω

(
n

1
k log n

)
bits of space on some graph, assuming a girth

conjecture by Erdős.
We conclude by showing that all known methods of proving a space lower bound in the labeled

setting, in fact, require the girth conjecture.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Data structures design and analysis; Mathematics of computing → Discrete mathe-
matics

Keywords and phrases Compact routing, labeled network routing, lower bounds

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.37

1 Introduction

Network routing is an important subject in the field of distributed algorithms. Given a
network of nodes (routers) connected arbitrarily, the goal is to be able to transmit information
between any two nodes in the network. A network data packet must usually traverse multiple
routers in order to reach its destination, and these intermediate routers must be able to make
a decision as to where to forward the packet next based only on the packet and some local
information. This local information is usually referred to as a routing table or, more precisely,
a routing program, and one of the goals is to bound its size. This is particularly important in
practice since the memory inside a router must be fast and is therefore expensive. Another
goal one might pursue is the quality of the routes chosen by the routers. The route quality is
commonly characterized by the stretch factor defined as the ratio between the length of the
route and the shortest distance between the two nodes. In practice, it corresponds to latency
in a network that does not experience congestion.

In this paper we consider the problem of labeled routing: what is the best possible tradeoff
between routing program sizes and the stretch factor given that we are allowed to assign
arbitrary (but not long) labels to nodes which the sender must include in the routing header?
Although this model is of little practical interest since one doesn’t want to reconfigure the
labels each time the network changes, labeled routing schemes often serve as an ingredient in
name-independent routing: first a label is retrieved from a distributed dictionary after which
a labeled routing scheme is used [12, 5, 4, 1]. Additionally, the lower bounds for the labeled
routing setting imply the same lower bounds for the name-independent setting, where node
labels are chosen adversarially.

© Anatoliy Zinovyev;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolik@bu.edu
https://cs-people.bu.edu/tolik/
https://doi.org/10.4230/LIPIcs.DISC.2022.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Space-Stretch Tradeoff in Routing Revisited

1.1 Some general notation
For a natural number n, define [n] = {1, 2, ..., n}. For any vertex v, denote N (v) to be the
set of neighbors of v. Define deg(v) =

∣∣N (v)
∣∣, the degree of v.

1.2 Model
We deal with undirected connected graphs G with n nodes (routers). Let G = (V, E) where
V = [n]. Each x ∈ V possesses a unique label (name) lx ∈ {0, 1}∗, as well as a routing
program Rx. The goal of a (distributed) routing algorithm is to route data from any node x

to any node y given only the destination’s label ly. Routers are allowed to attach an arbitrary
header to messages and modify the header at each hop. Each router x has network ports
numbered {1, 2, ..., deg(x)} to which edges are attached. This port-edge relation is a bijection:
each edge is assigned exactly one port and each port is assigned exactly one edge. For x ∈ V

and 1 ≤ t ≤ deg(x) define τx(t) = y where y is the node such that {x, y} is the edge assigned
to port t at node x. So, τx : [deg(x)] → N (x) is a bijection. The routing program Rx at
node x accepts the header of the incoming message and the incoming port number as input
and outputs the new header and the outgoing port number: if Rx(h, q) = (h′, p), a message
with header h that comes in through port q leaves the router with header h′ through port p.

Formally, a routing scheme for G with node labels L = (l1, l2, ..., ln) and port functions
T = (τ1, τ2, ..., τn) is a collection of programs R = (R1, R2, ..., Rn) such that for all x, y ∈ V

there exists a finite walk x = v0, v1, ..., vt = y in G, a sequence h0, h1, ..., ht of headers, and
two sequences q0, ..., qt and p1, ..., pt+1 of port numbers such that:

for all 0 ≤ i < t:
Rvi

(hi, qi) = (hi+1, pi+1)
τvi

(pi+1) = vi+1
τvi+1(qi+1) = vi

h0 = ly
q0 = 0
Rvt(ht, qt) = (ϵ, 0)

This model can take different variations depending on whether the node labels and
the port assignment are adversarially chosen or not. In the most adversarial setting, both
assignments are given as part of the input and the goal is to construct a correct routing
scheme. In the least adversarial setting, only the graph G is given, and the goal is to generate
a routing scheme along with node labels and a port assignment. Models where only one
assignment is adversarial can also be considered. Generally, minimizing the size of routing
programs, node labels and headers is desirable. In this paper, we work with two models: one
has non-adversarial port assignment, and the other has adversarial port assignment. Both,
however, are models for labeled routing; i.e., node labels are non-adversarial.

Finally, we formally define routing stretch. We say a routing scheme has stretch s if for
all x, y, dR(x, y) ≤ s · dG(x, y) where dR(x, y) is the length of the path from x to y taken by
the routing scheme, and dG(x, y) is the distance between x and y in G.

1.3 Known results
Many routing schemes have been proposed in the literature. The state of the art for labeled
routing includes [17] by Thorup and Zwick who for every integer k ≥ 1 describe a scheme
that uses Õ

(
n

1
k

)
bits of space at every node and has stretch 4k − 5, [8] by Chechik who

shows a scheme using Õ
(
n

1
k log D

)
bits of space at every node and having stretch c · k for

A. Zinovyev 37:3

some c < 4 for sufficiently large integer k, and [15] by Roditty and Tov who show a routing
scheme using Õ

(1
ϵ n

1
k log D

)
bits of space at each node and having stretch 4k− 7 + ϵ for every

integer k ≥ 1; D is defined to be the normalized network diameter.

Surprisingly, there are also name-independent routing schemes with similar characteristics.
An optimal stretch-3 name-independent routing scheme that stores Õ

(√
n

)
bits at each node

is known [4]. Additionally, [3] constructs a routing scheme with O(k) stretch that uses Õ
(
n

1
k

)
bits of space at each node.

Lower bounds for routing schemes also exist and are the focus of this paper. The first
such lower bound appeared in the work of Peleg and Upfal [14] who showed that for any
s ≥ 1, any stretch-s routing scheme with adversarial port assignment on n nodes must use a
total of Ω

(
n1+ 1

s+2
)

bits, and thus Ω
(
n

1
s+2

)
bits at some node. Gavoille and Perennes [11]

prove that Ω
(
n2 log n

)
total bits is needed for shortest path routing, even when port numbers

can be chosen by the designer; however, node labels are assumed to be [n]. Buhrman et
al. [7] explore upper and lower bounds under various routing models. In the standard model,
that we consider here, they prove that shortest path routing requires Ω

(
n2)

bits of total
state, even when ports can be chosen by the designer, and labels can be arbitrary (short) bit
strings. Gavoille and Gengler [10] achieve the same lower bound under the same model, but
for any stretch s < 3. Finally, Thorup and Zwick [17] claim a lower bound of Ω

(
n1+ 1

k

)
total

bits of space for stretch s < 2k + 1 when the port assignment is adversarial, but their proof
idea does not seem to work in the standard model. We discuss their claim and proof idea
in the next subsection, and present a proof which works under the standard model, with a
log n factor improvement. Table 1 demonstrates known results for labeled routing. Note that
a lower bound that works for the non-adversarial port assignment implies the same lower
bound for the adversarial port assignment.

Table 1 Known lower bounds for labeled routing.

(a) Non-adversarial (+ adversarial) ports.

Work Stretch Total memory (bits) Local memory (bits) Notes
Gavoille and Perennes [11] < 5/3 Ω

(
n2 log n

)
Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. [7] 1 Ω
(
n2)

Ω(n) on Ω(n) nodes
Gavoille and Gengler [10] < 3 Ω

(
n2)

Ω(n)
This paper < 3 Ω

(
n2)

Ω(n) on cn nodes, ∀0 < c < 1

(b) Adversarial ports.

Work Stretch Total memory (bits) Local memory (bits) Notes
Peleg and Upfal [14] s ≥ 1 Ω

(
n1+ 1

s+2
)

Ω
(
n

1
s+2

)
Thorup and Zwick [17] < 2k + 1 Ω

(
n1+ 1

k

)
Ω

(
n

1
k

)
Works in a different model

This paper < 2k + 1 Ω
(
n1+ 1

k log n
)

Ω
(
n

1
k log n

)

All known lower bound proofs for stretch s > 1 (Peleg and Upfal [14], Thorup and
Zwick [17], our proof in section 3) rely on dense graphs of large girth. In an unweighted graph
where all cycles have length > s + 1, routing with stretch s between neighbor vertices x and
y must involve the edge {x, y}. Thus, x must “know” its neighbor y, and this is what proofs
rely on. Currently, however, the existence of dense graphs of large girth is an open question.
It is worth noting that Abraham et al. [2] overcome this conjecture in the name-independent
model and unconditionally show a Ω

(
(n log n) 1

k

)
-bit local memory requirement if weighted

networks are allowed.

DISC 2022

37:4 Space-Stretch Tradeoff in Routing Revisited

1.4 Our contribution
1.4.1 Lower bounds with non-adversarial port numbers
Our first contribution is a simpler proof of the result of Gavoille and Gengler ([10], with
the full proof in their research report [9]) that shows that any routing scheme with stretch
< 3 must use a total of Ω

(
n2)

bits of routing state, and thus Ω(n) bits at some node, on
some network with n nodes, even if nodes and port numbers are allowed to be renamed. Our
proof, presented in section 2, is three times shorter and, we believe, significantly simpler.
This is due to a simpler class of graphs considered, easier reasoning and calculations.

With a bit of additional effort, we are also able to show that, in fact, any constant fraction
of the n nodes must use Ω(n) bits of space on some graph. Previously, similar results were
obtained in [11] and [7] for shortest path routing.

[11] proves a total memory requirement of Ω
(
n2 log n

)
bits with local memory requirement

of Ω(n log n) bits on Ω(n) nodes. We note that Ω
(
n2 log n

)
-bit total memory requirement

implies Ω(n log n) bits on Ω(n) nodes using the following informal generic argument. Suppose
the total memory requirement is c0n2 log n bits, the shortest path routing table can be
described in c1n log n bits at each node, and there are x nodes that store > c2n log n bits.
Then x · c1n log n + (n−x) · c2n log n ≥ c0n2 log n which implies x ≥ c0−c2

c1−c2
n. Setting c2 = c0

2
achieves the result. The same reasoning can be used to show that the Ω

(
n2)

total memory
proved implies Ω(n) bits at Ω

(
n

log n

)
nodes, but this is the best possible generic argument.

Indeed, you could have O
(

n
log n

)
nodes storing O(n log n) bits and all other nodes storing 0

bits. To show that more nodes must store Ω(n) bits, one needs a deeper argument.
[7] proves a local memory requirement of Ω(n) bits on Ω(n) nodes which can easily be

extended to any constant fraction of all nodes. It uses a Kolmogorov random graph and
assuming too many nodes have small routing programs reaches a contradiction.

It also seems that Gavoille and Gengler’s proof [10] can be extended to show a local
memory requirement of Ω(n) bits on any constant fraction of all nodes. We provide an
extension in the context of our proof for completeness.

1.4.2 Lower bounds with adversarial port numbers
Our second contribution is a proof of a claim by Thorup and Zwick that if ports are assigned
adversarially, for any integer k ≥ 1, any labeled routing scheme with stretch < 2k +1 requires
a total of Ω

(
n1+ 1

k

)
bits of space, and so Ω

(
n

1
k

)
bits of space at some node, in the worst case,

assuming a well-known conjecture by Erdős regarding the existence of dense graphs with
large girth. This claim deserves special discussion.

In [17], Thorup and Zwick make this claim, deferring the full proof to the full version of
the paper which never appeared. It was stated, however, that the result should follow easily
from their other paper [16] about compact distance oracles. A compact distance oracle is a
small data structure for a graph that for any vertices u and v is able to return an approximate
distance (up to some constant factor) between them. Their lower bound for distance oracles
is now a standard incompressibility argument, perhaps first introduced by Matoušek [13],
and it goes as follows. Take a graph with m edges and girth 2k + 2 and consider all 2m

subgraphs. For any two subgraphs, there must be an edge {u, v} in one that is absent in the
other. If the distance oracle satisfies stretch < 2k + 1, then it must return distance [1, 2k + 1)
for u, v in the first graph, and distance ≥ 2k + 1 in the second graph. Thus, each subgraph
must have a distinct distance oracle data structure, one of them of size m bits. So, it appears
that the lower bound proof for routing that Thorup and Zwick had in mind is assuming the
existence of a routing scheme with stretch < 2k + 1 of total size < m bits, and constructing

A. Zinovyev 37:5

distance oracle data structures: given a graph with a compact routing scheme, construct
a program that for any vertices u, v traces the route from u to v returned by the routing
scheme and reports the length of the route. Clearly, if a routing scheme can be encoded with
< m bits, then < 2m routing schemes are needed to satisfy all graphs, and < 2m distance
oracle programs are needed, a contradiction. The problem with this argument is that one
cannot trace the route from u to v given the routing scheme alone. Each routing program
returns the port toward the next node, but we do not know what the next node is, and
encoding the port assignment takes at least m bits which would break the proof.

Obviously, however, this argument works in the model where the port must equal to the
node label it leads to, or if the ports are log n bit strings chosen adversarially, but this is less
natural than providing the router with a port in

{
1, ..., |N (v)|

}
, and is perhaps more suited

for wireless networks. Given that this lower bound was mentioned in the context of the
standard model in so many works ([12, 2, 5, 4, 1, 8]), we set out to close this gap and prove
the result in the standard, more natural, model. Instead of considering many graphs of large
girth, we fix one such dense graph, consider all possible port assignments, and show that a
single routing scheme cannot satisfy many of them; thus many routing schemes are needed.
Our bound is also slightly stronger: assuming Erdős’ conjecture, stretch < 2k + 1 requires
a total of Ω

(
n1+ 1

k log n
)

bits of space. This implies that the stretch-3 routing scheme of
Thorup and Zwick [17] has optimal up to

√
log n factor per-node space requirement.

To the best of our knowledge, the best previous lower bound for stretch s ≥ 3 routing
with adversarial ports in the standard model is given by Peleg and Upfal who showed a total
memory requirement of Ω

(
n1+ 1

s+2
)

[14]. Their proof is based on a probabilistic algorithm
for constructing dense graphs with large girth. In contrast, our proof decouples the existence
of such graphs and the lower bound argument, which lets us use the best known results
regarding the existence of such graphs. In particular, the graph construction in [14] can be
used in conjunction with the proof in this paper to obtain the lower bound result in [14], but
better graph constructions are available.

1.4.3 Known techiques require girth conjecture
Finally, in section 4 we show that all known methods for proving a space lower bound, that
is, finding the number of distinct routing schemes necessary, actually require the existence of
dense graphs with large girth.

2 Lower bounds with non-adversarial port numbers

We are interested in the complexity of a routing scheme defined by max
{
|Rv| : v ∈ V

}
– the

size of the largest routing algorithm.
The idea of the lower bound, as in [10], is to consider a family of graphs of girth 4 (where

all cycles have length ≥ 4) and show that 2Ω(n2) configurations of routing programs R are
needed to satisfy all graphs in the family with stretch < 3. From this it follows that at least
one routing program must have size Ω(n) bits, as shown by the following lemma.

▶ Lemma 1. Let n be a positive integer, and let S ⊆
(
{0, 1}∗)n be a collection of n-tuples

of binary strings with |S| > 0. Then some string must have length ≥ log |S|
n − 1.

Proof. Suppose all strings have length < log |S|
n − 1. Then all strings have length ≤ L =⌊ log |S|

n −1
⌋
. But then |S| ≤

(
2L+1−1

)n
<

(
2L+1)n ≤

(
2

log |S|
n

)n = |S| which is a contradiction.
◀

DISC 2022

37:6 Space-Stretch Tradeoff in Routing Revisited

▶ Theorem 2. There exists a function f(n) ∈ Ω(n) such that if node labels have size ≤ f(n)
bits, then there exists an unweighted graph with n nodes for which any routing scheme with
stretch < 3 contains a routing program of size Ω(n) bits.

Proof. Let n = 2q + 2 (the case where n is odd is analogous), V = A ∪ B where A =
{a0, a1, ..., aq} and B = {b0, b1, ..., bq}. Define G to be the set of all bipartite unweighted
graphs with parts A and B in which a0 has an edge to all vertices in B and b0 has an edge
to every vertex in A. The purpose of nodes a0 and b0 is to keep all graphs in G connected.
Bipartiteness implies that all graphs in G have girth 4 and |G| = 2q2 .

We will now bound the number of graphs in G that a single routing scheme can support.
This will give a lower bound on the number of different routing schemes for G.

Fix any routing scheme R and node labels L. For any node v ∈ A \ {a0}, consider the
map X : B → [deg(v)] defined by X(u) =

(
Rv(lu, 0)

)
2, i.e., the port number at v through

which a message originating from v to u is sent. Note that if {v, u} ∈ E then the port X(u)
at v should lead to u; otherwise, the path taken will have length ≥ 3 violating the stretch
requirement. We will now use this constraint to limit the number of different graphs in G
that can be supported by R and L assuming the port assignments T can be varied.

Define M = max{X(u) : u ∈ B}. First, observe that deg(v) ≥M because if deg(v) < M ,
then routing to u with X(u) = M will fail. Also observe that for each 1 ≤ i ≤ deg(v),
routing to the node behind port i will necessarily send the message directly to that node:
X(τv(i)) = i. Otherwise, routing to that node will traverse a different node and violate the
stretch requirement. Hence, M = deg(v) and X(u) partitions all nodes in B based on the
outgoing port number, each partition being non-empty.

For all 1 ≤ i ≤ M , define si to be the size of i’s partition: si =
∣∣{u ∈ B : X(u) = i

}∣∣.
We know that

∑M
i=1 si = |B| = q + 1 and that τv(i) has si possible values. Therefore, the

neighbors of v can take at most
∏M

i=1 si possible values, or in other words, N (v) is one of
at most

∏M
i=1 si possible configurations. It is known that the geometric average of a set of

non-negative numbers cannot exceed their arithmetic average. Hence,
∏M

i=1 si ≤
(

q+1
M

)M .
Differentiating the logarithm with respect to M , we find that the value is maximized when
M = q+1

e and thus
∏M

i=1 si ≤ e
q+1

e . Hence, the routing scheme R with labels L satisfies
at most e

q+1
e ·q graphs in G. I.e., if for a graph G, routing scheme R, labels L, and port

assignment T we define the predicate Sat(G,R,L, T) to be true if and only if (R,L, T)
satisfy G with routing stretch < 3, then∣∣∣{G ∈ G : ∃T , Sat(G,R,L, T)

}∣∣∣ ≤ e
q+1

e ·q.

Since the labels have size at most f(n) bits, the number of possible configurations of labels
L is at most (2f(n)+1 − 1)n < 2(f(n)+1)n. Hence, the number of graphs in G that R can
satisfy is∣∣∣{G ∈ G : ∃(T ,L), Sat(G,R,L, T)

}∣∣∣ < e
q+1

e ·q · 2(f(n)+1)n.

Therefore, the number of routing schemes necessary to satisfy each graph in G is larger
than

|G|
e

q+1
e ·q · 2(f(n)+1)n

= 2q2

e
q+1

e ·q · 2(f(n)+1)n
.

A. Zinovyev 37:7

Since

log 2q2

e
q+1

e ·q · 2(f(n)+1)n
= q2 − log e

e
q(q + 1)−

(
f(n) + 1

)
n =(n

2 − 1
)2
− log e

2e
n

(n

2 − 1
)
−

(
f(n) + 1

)
n =(1

4 −
log e

4e

)
n2 −

(
f(n) + 1

)
n +

(log e

2e
− 1

2

)
n + 1 ∈ Ω(n2)

for an appropriate f(n), one of the graphs in G requires Ω(n) bits of state at some node by
lemma 1. ◀

A small modification of this argument lets us prove a slightly stronger statement, that
any constant fraction of n nodes must have Ω(n) bits of state on some graph. Using the same
family of graphs G, simple counting manipulations, and the bound on the number of possible
neighbor sets of a given node from above, we count the number of possible graphs possessing
a routing scheme with too many small routing programs. We find that this number is less
than |G| implying that at least one graph must not have too many small routing programs.

▶ Theorem 3. For any 0 < c < 1 there exist functions f(n), g(n) ∈ Ω(n) (f depends on c)
such that if node labels have size ≤ f(n) bits, then there exists an unweighted graph with n

nodes for which any routing scheme with stretch < 3 contains ≥ cn routing programs of size
≥ g(n) bits.

Proof. Let 0 < c < 1, f(n) = 1−c
40 n, g(n) = n

8 , and define k =
⌊ 1−c

2 n− 1
⌋
. We consider the

same set of graphs G as in the previous theorem.
Fix node labels L and let A′ ⊆ A \ {a0} such that |A′| = k. Now suppose for all v ∈ A′,

|Rv| < g(n), v’s routing program is smaller than g(n) bits. Then there are less than 2g(n)+1

different routing programs for each node in A′. By the argument in the previous theorem,
each node in A′ can have < e

q+1
e · 2g(n)+1 distinct sets of neighbors. Trivially, all other

nodes in A can have at most 2q distinct sets of neighbors. Therefore, the number of possible
graphs is∣∣∣{G ∈ G : ∃(T ,R),

(
∀v ∈ A′, |Rv| < g(n)

)
∧ Sat(G,R,L, T)

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k
.

Therefore, if A′ can be arbitrary, the number of possible graphs is∣∣∣{G ∈ G : ∃(T ,R), Sat(G,R,L, T) ∧
∣∣{v ∈ A \ {a0} : |Rv| < g(n)

}∣∣ ≥ k
}∣∣∣ =∣∣∣{G ∈ G : ∃(T ,R, A′),

(
∀v ∈ A′, |Rv| < g(n)

)
∧ Sat(G,R,L, T)

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k · 2q

(assuming ∃A′ means A′ is taken from A \ {a0} such that |A′| = k).
If, in addition, the node labels can be varied, the number of possible graphs is∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T) ∧

∣∣{v ∈ A \ {a0} : |Rv| < g(n)
}∣∣ ≥ k

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k · 2q · 2(f(n)+1)n.

DISC 2022

37:8 Space-Stretch Tradeoff in Routing Revisited

This is less than 2q2
/2 since

log
((

e
q+1

e · 2g(n)+1)k · (2q)q−k · 2q · 2(f(n)+1)n
)

=

k
(q + 1

e
· log e + g(n) + 1

)
+ q(q − k) + q + (f(n) + 1)n =

−k
(

q − log e

e
(q + 1)− g(n)− 1

)
+ q2 + q + nf(n) + n =

−
⌊1− c

2 n− 1
⌋(n

2 − 1− log e

2e
n− n

8 − 1
)

+ n

2

(n

2 − 1
)

+ 1− c

40 n2 + n <

−
(1− c

2 n− 2
)(n

10 − 2
)

+ n

2

(n

2 − 1
)

+ 1− c

40 n2 + n =(1
4 −

1− c

40

)
n2 + O(n) <

(n

2 − 1
)2
− 1 = q2 − 1.

By symmetry, the number of possible graphs with a routing scheme having many small
programs in B \ {b0}∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T) ∧

∣∣{v ∈ B \ {b0} : |Rv| < g(n)
}∣∣ ≥ k

}∣∣∣ < 2q2
/2.

Hence, there are less than 2q2 graphs which have a routing scheme with at least k small
programs in A \ {a0} or B \ {b0}:∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T)∧(
|{v ∈ A \ {a0} : |Rv| < g(n)}| ≥ k ∨ |{v ∈ B \ {b0} : |Rv| < g(n)}| ≥ k

)}∣∣∣ < 2q2
.

So at least one graph G must have < k small routing programs in both parts of the graph
(excluding special vertices a0 and b0):

∀(T ,R,L), Sat(G,R,L, T)→∣∣{v ∈ A \ {a0} : |Rv| < g(n)
}∣∣ < k ∧

∣∣{v ∈ B \ {b0} : |Rv| < g(n)
}∣∣ < k.

It follows that the number of large programs must exceed n− 2− 2k ≥ cn. ◀

We note that it’s not true that all nodes must store Ω(n) bits of information. One can
choose a node v and include in the label for each node u v’s port toward u. This adds
O(log n) bits to each node label and v can have constant size state.

3 Lower bounds with adversarial port numbers

3.1 Stretch < 3
We will now prove an obvious fact which we haven’t seen elsewhere: if the port assignment
T are adversarially chosen and node labels are not, then some node must have Ω(n log n)
bits of state. Note the additional log n factor compared to the previous theorems. This
implies that the trivial shortest paths routing scheme has optimal space up to a constant.
Our main theorem in this section is strictly more general; however, this smaller result serves
as a warmup and also lets us prove an Ω(n log n) bit space lower bound for any constant
fraction of nodes, similar to theorem 3.

▶ Theorem 4. There exists a function f(n) ∈ Ω(n log n) such that if node labels have size
≤ f(n) bits, then there exists an unweighted graph with n nodes for which any routing scheme
with adversarial port assignment and stretch < 3 contains a routing program of size Ω(n log n)
bits.

A. Zinovyev 37:9

Proof. Let n = 2q (for odd n the proof is similar) and define f(n) = log(q!)
2 ∈ Ω(n log n).

We consider only one graph G = Kq,q, a full bipartite graph with parts of size q, and vary
the port assignments T . Let T̃ be the set of all possible port assignments for G. Then
|T̃ | = (q!)n.

Because the stretch must be less than 3, routing from a node u in one part of G to a
node v in the other part must traverse the edge {u, v}. Thus if we fix the node labels L,
every port assignment T requires a distinct routing scheme R. Then if node labels L are
varied, same routing scheme R can support at most 2(f(n)+1)n port assignments:∣∣∣{T ∈ T̃ : ∃L, Sat(G,R,L, T)

}∣∣∣ ≤ 2(f(n)+1)n.

Then there must be at least

|T̃ |
2(f(n)+1)n

= (q!)n

2(log(q!)
2 +1)n

distinct routing schemes to support all possible port assignments.
Since

log (q!)n

2(log(q!)
2 +1)n

= n log(q!)−
(log(q!)

2 + 1
)

n ∈ Ω(n2 log n),

some routing program must have size Ω(n log n) bits. ◀

Using the techniques in the proof of theorem 3, one can prove this space lower bound for
any constant fraction of nodes.

▶ Theorem 5. For any 0 < c < 1 there exist functions f(n), g(n) ∈ Ω(n log n) (f depends
on c) such that if node labels have size ≤ f(n) bits, then there exists an unweighted graph
with n nodes for which any routing scheme with adversarial port assignment and stretch < 3
contains ≥ cn routing programs of size ≥ g(n) bits.

3.2 Stretch < 2k + 1
We would like to show for any integer k ≥ 1 that when port assignment is adversarial, the
worst case per-node space complexity of a routing scheme of stretch < 2k + 1 is Ω

(
n

1
k log n

)
.

We are able to show this only assuming a well-known girth conjecture by Erdős.

▶ Definition 6. We say that an unweighted undirected graph G has girth s if and only if all
cycles in G have length ≥ s.

▶ Definition 7. For any integers s, n ≥ 1, define Ms(n) to be the largest m such that there
exists a graph with n vertices, m edges and girth s.

It is known that any graph with n nodes and n1+ 1
k edges must have a cycle of length at

most 2k. So, M2k+2(n) ∈ O
(
n1+ 1

k

)
. However, M2k+2(n) ∈ Ω

(
n1+ 1

k

)
has only been proven

for k = 1, 2, 3, 5; for other k it remains an open question. Also, M2k+1(n) ∈ Θ
(
M2k+2(n)

)
since any graph with n vertices, m edges and girth 2k + 1 must contain a bipartite subgraph
with ≥ m

2 edges (which necessarily has girth 2k + 2). For an overview of the best known
lower bounds for Ms(n), refer to [16]. We note that most constructions of large graphs with
some fixed girth rely on finite fields, and the number of vertices n is thus required to be some
polynomial of a prime or a prime power. To prove a lower bound for all sufficiently large n,
and thus justify the use of Ω, one can employ Bertrand’s postulate which states that for all

DISC 2022

37:10 Space-Stretch Tradeoff in Routing Revisited

natural numbers i, pi+1 < 2pi, where pi is the i-th prime number. Justification of Ω easily
follows from here: given an integer n, we construct a dense large girth graph with pi vertices
where n

2 < pi ≤ n, and add missing n− pi vertices along with n− pi edges keeping the final
graph connected.

Having a graph G with n vertices and Ω
(
n1+ 1

k

)
edges lets us show that there must be

at least 2Ω(n
1+ 1

k log n) routing schemes to satisfy all possible node labels T for G. Hence, at
least some node must use Ω

(
n

1
k log n

)
bits of space in the worst case. Weaker lower bounds

for M2k+2(n) give corresponding weaker results.

▶ Theorem 8. Let k ≥ 1 be an integer constant. If port numbers are adversarially chosen,
m
n is sufficiently large, there exists a graph with n vertices, m edges and girth 2k + 2, and all

node labels have size ≤ L = 1
16k · log m

n ·
m
n − 1, then there also exists a port assignment T

for G such that any routing scheme for (G, T) of stretch < 2k + 1 requires 1
32k · log m

n ·
m
n

bits of space at some node.

Proof. Let G = (V, E) be a graph with n vertices, m edges and girth 2k + 2, where V = [n].
For any pair of neighbors {x, y} ∈ E, the route from x to y chosen by a routing scheme of
stretch < 2k + 1 must be of length ≤ 2k. Therefore, during routing from x to y, x must send
the packet to y, most likely as the last step; otherwise, there would be a cycle in G of length
≤ 2k + 1 which violates the girth requirement. This doesn’t, however, mean that routing
from x to y must take the shortest path. x might send the message to some other neighbor z

which returns the message to x (with a modified header) which now sends the message to y.
In general, if you trace the message from x to y, the visited nodes and traversed edges form
an arbitrary tree (see figure 1).

x

y

1

2

3

4

56

7

Figure 1 Routing with stretch < 2k + 1 in a graph with girth 2k + 2.

We consider only a single graph G and all possible port assignments T for G. Define
mi = deg(i). Then the number of all possible port assignments for G is

∏n
i=1 mi!. As

in theorem 2, we will argue that any routing scheme cannot satisfy many distinct port
assignments.

Fix the node labels L (as the proof of theorem 2 shows, they do not have much of an
effect) and a routing scheme R. Here is the main idea of the proof. Take any pair of neighbors
{x, y} ∈ E. Then the port p = Rx(y, 0)2 through which x will send the message toward y is

A. Zinovyev 37:11

determined. The neighbor behind port p can be arbitrary, but if we fix it, say z, and we fix
z’s port to x, then the next hop is determined and the next out port through which z will
forward the message will also be determined. We can keep tracing the packet through the
network fixing the ports along the way. Eventually, however, node x must send the packet to
node y, and this is where we can “extract” a port assignment from the routing programs.
Hence, the routing scheme must “store” approximately every 4k-th port assignment.

To formalize this argument, we describe a program that, given node labels L, a routing
scheme R, port assignment on vertices with small degrees S =

{
x ∈ V : mx < m

n

}
, and a

bit string, can recover the port assignment T on all vertices. The program will iteratively
pick neighbor vertices x and y such that the port at x toward y is undefined, and try to
simulate the routing as in the example above reading the number of hops until the edge
{x, y} is traversed and unknown port assignments along the path from the bit string. We
will then argue that this bit string does not need to be long, which intuitively implies that
the routing scheme R must contain much information.

The program will work with a list of partial functions, one for each vertex, signifying
which ports have already been fixed. Denote the set of all possible such lists by P , and define
P⃗ ∈ P if and only if P⃗ = (P1, P2, ..., Pn) where each Pi ⊆ [mi] × N (i) such that for each
p ∈ [mi] there is at most one j such that (p, j) ∈ Pi and for each j there is at most one p

such that (p, j) ∈ Pi.
We now formally describe the program which has access to L = {li}i∈[n], R = {Ri}i∈[n]

and P⃗ such that ∀i ∈ S, |P⃗i| = mi and ∀i ∈ V \ S, |P⃗i| = 0, and reads bits from the input bit
string.

while ∃x ∈ [n], |P⃗x| < mx do
X ← {i ∈ [n] : |P⃗i| < mi}
M ← max{mi : i ∈ X}
x← min{i ∈ X : mi = M}
y ← min{i ∈ N (x) : (P⃗x)−1(i) is undefined}
r ← read ⌈log(2k − 1)⌉-bit number ▷ read the number of hops
h← ly
pin ← 0
for r times do

pout ← Rx(h, pin)2
h← Rx(h, pin)1
if P⃗x(pout) is undefined then

i← read ⌈log mx⌉-bit number ▷ read the “ID” of the neighbor behind port pout
P⃗x ← P⃗x ∪ {(pout,N (x)(i))} ▷ update the known port assignments

end if
z ← P⃗x(pout) ▷ next visited node
if (P⃗z)−1(x) is undefined then

p← read ⌈log mz⌉-bit number ▷ read the port we are entering through at z

P⃗z ← P⃗z ∪ {(p, x)}
end if
pin ← (P⃗z)−1(x)
x← z

end for
pout ← Rx(h, pin)2
P⃗x ← P⃗x ∪ (pout, y) ▷ learn this port assignment “for free”

end while
return P⃗

DISC 2022

37:12 Space-Stretch Tradeoff in Routing Revisited

We will now bound the length of the bit string needed for this program to run correctly.
The following outer loop invariant is claimed: if b is the number of bits read so far, then

b ≤
∑

i∈V \S

∣∣P⃗i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
.

It is correct before the loop starts since b = 0. Assume it is correct after some number of
iterations, and let b′ be the number of bits read and P⃗ ′ be the updated port assignment at
the end of the iteration. We need to prove that

b′ ≤
∑

i∈V \S

∣∣P⃗ ′
i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
.

Let t be the number of individual port assignments discovered through reading from the
bit string, and let z1, ..., zt be the nodes that own those ports. Notice that t ≤ 4k − 2 since
after 4k− 2 traversed ports, the next port must lead from x directly to y and we do not read
it from the bit string. Also notice that the degrees of the nodes z1, ..., zt do not exceed that
of x, the source node. This is because the algorithm picks x with the largest degree among
those that have free ports. Then∑

i∈V \S

∣∣P⃗ ′
i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
=

∑
i∈V \S

∣∣P⃗i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
+

t∑
i=1

(
⌈log(2k)⌉+

(
1− 1

4k

)
⌈log mzi

⌉
)

+

(
⌈log(2k)⌉+

(
1− 1

4k

)
⌈log mx⌉

)
≥

b + ⌈log(2k)⌉+
(
1− 1

4k

)(t∑
i=1
⌈log mzi⌉+ ⌈log mx⌉

)
=

b + ⌈log(2k)⌉+
t∑

i=1
⌈log mzi⌉+ ⌈log mx⌉ −

1
4k

(t∑
i=1
⌈log mzi⌉+ ⌈log mx⌉

)
[≥]

Since in this iteration of the outer loop we read ⌈log(2k − 1)⌉+
∑t

i=1⌈log mzi⌉ bits,

[≥]b′ + ⌈log mx⌉ −
1
4k

(t∑
i=1
⌈log mzi

⌉+ ⌈log mx⌉
)
≥

b′ + ⌈log mx⌉ −
1
4k

(
(4k − 2)⌈log mx⌉+ ⌈log mx⌉

)
≥ b′.

Hence, the loop invariant holds and the algorithm reads at most a total of B bits where

B =
∑

i∈V \S

mi

(
⌈log(2k)⌉+ (1− 1

4k
)⌈log mi⌉

)
≤

∑
i∈V \S

mi

(
(1− 1

4k
) log mi + log k + 3

)
.

Since node labels have size ≤ L = 1
16k · log m

n ·
m
n − 1, the number of all possible L is(

2L+1 − 1
)n ≤ 2(L+1)n = 2 1

16k ·log m
n ·m. Then, defining Sat(G,R,L, T) true if and only if

R is a correct routing scheme with stretch < 2k + 1 for graph G with labels L and port
assignment T ,∣∣∣{T : ∃L, Sat(G,R,L, T)

}∣∣∣ ≤ 2 1
16k ·log m

n ·m ·
∏
i∈S

mi! · 2B .

A. Zinovyev 37:13

Therefore, the number of routing schemes necessary to satisfy all port assignments is at
least ∏n

i=1 mi!
2 1

16k ·log m
n ·m ·

∏
i∈S mi! · 2B

.

We now calculate the logarithm of this expression.

log
∏n

i=1 mi!
2 1

16k ·log m
n ·m ·

∏
i∈S mi! · 2B

= log
∏

i∈V \S mi!
2 1

16k ·log m
n ·m · 2B

=

∑
i∈V \S

log
(
mi!

)
− 1

16k
· log m

n
·m−B[≥]

Using Stirling’s approximation,

[≥]
∑

i∈V \S

(mi log mi − cmi)−
1

16k
· log m

n
·m−B =

∑
i∈V \S

(mi log mi − cmi)−
1

16k
· log m

n
·m−

∑
i∈V \S

mi

((
1− 1

4k

)
log mi + log k + 3

)
=

∑
i∈V \S

mi

(
log mi − c−

(
1− 1

4k

)
log mi − log k − 3

)
− 1

16k
· log m

n
·m =

∑
i∈V \S

mi

(1
4k

log mi − c− log k − 3
)
− 1

16k
· log m

n
·m[≥]

If i ∈ V \ S, then mi ≥ m
n . Thus,

[≥]
∑

i∈V \S

mi

(1
4k

log m

n
− c− log k − 3

)
− 1

16k
· log m

n
·m[≥]

Assuming m
n is sufficiently large,

[≥]
∑

i∈V \S

1
8k

mi log m

n
− 1

16k
· log m

n
·m =

1
8k
· log m

n
·

∑
i∈V \S

mi −
1

16k
· log m

n
·m =

1
8k
· log m

n
·
(

2m−
∑
i∈S

mi

)
− 1

16k
· log m

n
·m ≥

1
8k
· log m

n
·
(

2m− n · m

n

)
− 1

16k
· log m

n
·m ≥

1
8k
· log m

n
·m− 1

16k
· log m

n
·m =

1
16k
· log m

n
·m.

By lemma 1, there is a port assignment on which some node must use 1
16k · log m

n ·
m
n −1 ≥

1
32k · log m

n ·
m
n bits of space. ◀

▶ Corollary 9. Let k ≥ 1 be an integer constant. If M2k+2(n) ∈ Ω(n1+ 1
k) and node labels

have size ≤ Ω(n 1
k log n), then for any n there is a graph G on n nodes and a port assignment

T for G such that any routing scheme for (G, T) of stretch < 2k + 1 requires Ω(n 1
k log n)

bits of space at some node.

DISC 2022

37:14 Space-Stretch Tradeoff in Routing Revisited

4 Known techniques require girth conjecture

All known proofs of lower bounds for space complexity of non-shortest path routing schemes
in the labeled setting, such as the ones in [14], [10] or this paper, consist of proving that
a large number of routing schemes are necessary to satisfy all possible graphs and port
assignments (if adversarially chosen). Then it follows that some graph and port assignment
requires a large number of bits stored at some node.

We note that proving that a large number of routing schemes is necessary must require
existence of graphs with large girth and many edges. Therefore, if one wishes to not use
a girth conjecture, some other technique, such as the one in [2] for the name-independent
setting, is needed.

We utilize spanners with low stretch and large girth.

▶ Definition 10. Let G be a graph with n vertices. We call a subgraph S of G a t-spanner if
and only if for any two vertices u, v connected in G, dS(u, v) ≤ t · dG(u, v) (distance in S is
stretched at most t times compared to the distance in G).

The following lemma is proved in [6], but we provide the proof for completeness.

▶ Lemma 11. Let G be a graph with n vertices. There exists a t-spanner S of G with girth
t + 2.

Proof. We construct a spanner S similarly to Kruskal’s minimum spanning tree algorithm.
Go through all edges in G, and for each edge {u, v}, add it to S if and only if there isn’t a
path between u and v in S of length ≤ t.

Clearly, at the end of the algorithm, for any edge {u, v} in G, dS(u, v) ≤ t. Therefore, S

is a t-spanner.
We only need to show that S has girth t + 2. Suppose during the algorithm we add an

edge and create a cycle of length l ≤ t + 1. Then there was already a path between the
endpoints of length l − 1 ≤ t, and we shouldn’t add an edge. ◀

▶ Theorem 12. Suppose n ≥ 2 and s ≥ 2 are integers, and N routing schemes are necessary
to satisfy all graphs with n vertices and all port assignments with stretch < s. Then
Ms+1(n) ≥ log N

4 log n − 1; i.e., there exists a graph with ≥ log N
4 log n − 1 edges and girth s + 1.

Proof. Suppose Ms+1(n) < log N
4 log n − 1; i.e., all graphs with girth s + 1 have < log N

4 log n − 1
edges. We want to show that then less than N routing schemes are sufficient to satisfy all
graphs and port assignments.

Given a graph G and a port assignment T , we simply encode in each node’s routing
program its ID, an (s− 1)-spanner S of G with girth s + 1 which exists by lemma 11, and
the port assignment T . All this information allows for stretch s− 1 routing.

It is easy to see that there are at most (n2)m graphs with n vertices and m edges. Also,
for each such graph there are at most (n2)m port assignments. Therefore, the number of
such routing schemes is at most

Ms+1(n)∑
i=0

(
n2)i ·

(
n2)i =

Ms+1(n)∑
i=0

(
n4)i =

(
n4)Ms+1(n)+1 − 1

n4 − 1 <
(
n4)Ms+1(n)+1

.

Since log
((

n4)Ms+1(n)+1
)

= 4
(
Ms+1(n)+1

)
log n < 4

(
log N
4 log n

)
log n = log N, less than N

routing schemes can satisfy all graphs with n vertices and all port assignments with stretch
< s. This is a contradiction. ◀

A. Zinovyev 37:15

▶ Corollary 13. Let k ≥ 1 be an integer constant. If 2Ω(n
1+ 1

k log n) routing schemes are
necessary to satisfy all graphs with n vertices and all port assignments with stretch < 2k + 1,
then M2k+2 ∈ Ω

(
n1+ 1

k

)
.

References
1 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Routing with improved communication-

space trade-off. In Rachid Guerraoui, editor, Distributed Computing, pages 305–319, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. doi:10.1007/978-3-540-30186-8_22.

2 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Lower bounds.
In Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’06, pages 207–216, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1148109.1148143.

3 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Upper bounds.
In Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’06, pages 217–224, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1148109.1148144.

4 Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact
name-independent routing with minimum stretch. ACM Trans. Algorithms, 4(3), July 2008.
doi:10.1145/1367064.1367077.

5 Ittai Abraham and Dahlia Malkhi. Name independent routing for growth bounded networks.
In Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’05, pages 49–55, New York, NY, USA, 2005. Association for Computing
Machinery. doi:10.1145/1073970.1073978.

6 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete Comput. Geom., 9(1):81–100, December 1993. doi:
10.1007/BF02189308.

7 Harry Buhrman, Jaap-Henk Hoepman, and Paul Vitányi. Optimal routing tables. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’96, pages 134–142, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/248052.248076.

8 Shiri Chechik. Compact routing schemes with improved stretch. In Proceedings of the 2013
ACM Symposium on Principles of Distributed Computing, PODC ’13, pages 33–41, New York,
NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2484239.2484268.

9 Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of stretch factor
three. Technical report, Laboratoire Bordelais de Recherche en Informatique, Université
Bordeaux, 1997. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
13.5857&rep=rep1&type=pdf.

10 Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of stretch factor three.
Journal of Parallel and Distributed Computing, 61(5):679–687, 2001. doi:10.1006/jpdc.2000.
1705.

11 Cyril Gavoille and Stéphane Pérennès. Memory requirement for routing in distributed networks.
In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’96, pages 125–133, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/248052.248075.

12 Goran Konjevod, Andréa W. Richa, and Donglin Xia. Scale-free compact routing schemes
in networks of low doubling dimension. ACM Trans. Algorithms, 12(3), June 2016. doi:
10.1145/2876055.

13 J. Matousek. On the distortion required for embedding finite metric spaces into normed spaces.
Israel Journal of Mathematics, 93:333–344, 1996. doi:10.1007/BF02761110.

14 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
ACM, 36(3):510–530, July 1989. doi:10.1145/65950.65953.

DISC 2022

https://doi.org/10.1007/978-3-540-30186-8_22
https://doi.org/10.1145/1148109.1148143
https://doi.org/10.1145/1148109.1148144
https://doi.org/10.1145/1367064.1367077
https://doi.org/10.1145/1073970.1073978
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/248052.248076
https://doi.org/10.1145/2484239.2484268
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5857&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5857&rep=rep1&type=pdf
https://doi.org/10.1006/jpdc.2000.1705
https://doi.org/10.1006/jpdc.2000.1705
https://doi.org/10.1145/248052.248075
https://doi.org/10.1145/2876055
https://doi.org/10.1145/2876055
https://doi.org/10.1007/BF02761110
https://doi.org/10.1145/65950.65953

37:16 Space-Stretch Tradeoff in Routing Revisited

15 Liam Roditty and Roei Tov. New Routing Techniques and Their Applications, pages 23–32.
Association for Computing Machinery, New York, NY, USA, 2015. doi:10.1145/2767386.
2767409.

16 Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Jeffrey Scott Vitter, Paul G.
Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 183–192. ACM, 2001.
doi:10.1145/380752.380798.

17 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Arnold L. Rosenberg, editor,
Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA 2001, Heraklion, Crete Island, Greece, July 4-6, 2001, pages 1–10. ACM, 2001.
doi:10.1145/378580.378581.

https://doi.org/10.1145/2767386.2767409
https://doi.org/10.1145/2767386.2767409
https://doi.org/10.1145/380752.380798
https://doi.org/10.1145/378580.378581

Brief Announcement: Authenticated Consensus in
Synchronous Systems with Mixed Faults
Ittai Abraham
VMware Research, Herzliya, Israel

Danny Dolev
The Hebrew University of Jerusalem, Israel

Alon Kagan
The Hebrew University of Jerusalem, Israel

Gilad Stern
The Hebrew University of Jerusalem, Israel

Abstract
Protocols solving authenticated consensus in synchronous networks with Byzantine faults have
been widely researched and known to exists if and only if n > 2f for f Byzantine faults. Similarly,
protocols solving authenticated consensus in partially synchronous networks are known to exist if
n > 3f + 2k for f Byzantine faults and k crash faults. In this work we fill a natural gap in our
knowledge by presenting MixSync, an authenticated consensus protocol in synchronous networks
resilient to f Byzantine faults and k crash faults if n > 2f + k. As a basic building block, we first
define and then construct a publicly verifiable crusader agreement protocol with the same resilience.
The protocol uses a simple double-send round to guarantee non-equivocation, a technique later used
in the MixSync protocol. We then discuss how to construct a state machine replication protocol
using these ideas, and how they can be used in general to make such protocols resilient to crash
faults. Finally, we prove lower bounds showing that n > 2f + k is optimally resilient for consensus
and state machine replication protocols.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases consensus, state machine replication, mixed faults, synchrony, lower bounds

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.38

Related Version Full Version: https://eprint.iacr.org/2022/805

Funding This work was supported in part by the HUJI Federmann Cyber Security Research Center
in conjunction with the Israel National Cyber Directorate (INCD) in the Prime Minister’s Office.

1 Introduction

In recent years there has been a surge of interest in Byzantine Fault Tolerance (BFT)
and Blockchain technologies. The security of both Bitcoin and later Ethereum’s proof-of-
work protocols depends on a synchronous model and obtains resilience against minority
corruptions [1, 2]. Following this direction there have been several academic papers that
advanced authenticated BFT protocols and systems in the synchronous model that use more
traditional membership assumptions. A major advantage of this model is that it can obtain
resilience as long as n > 2f which is qualitatively much better than protocols that assume
partial synchrony (or asynchrony) that can only obtain resilience of n > 3f .

In this paper we continue this line of research into authenticated BFT protocols and
merge it with yet another long line of research around mixed-faults. In the mixed-faults
model that we study in this paper, the adversary can corrupt up to f parties in a malicious
manner and can crash up to k additional parties. One motivation behind this assumption is
that it allows us to model a real world case where the non-faulty parties can detect some of

© Ittai Abraham, Danny Dolev, Alon Kagan, and Gilad Stern;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 38; pp. 38:1–38:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://eprint.iacr.org/2022/805
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Authenticated Consensus in Synchronous Systems with Mixed Faults

the corrupted parties (via some side broadcast channel, say the internet or a secure messaging
application) and publicly mark them as faulty, hence simulate a crash. Another motivation
is to model the case that there is some trusted hardware that may cause some of the parties
to crash if they become compromised. Another motivation, for a large set of parties, is that
some of the honest parties may be offline for large periods of time, and hence can be modeled
as crashed. Finally, there may be a need to model crash failures (due to hardware failures)
as a separate parameter from Byzantine failures (due to an adversary).

To the best of our knowledge, this problem of authenticated BFT in synchrony with
mixed-faults has not been systematically studied. It is well known that the best one can
hope for in partial synchrony (or asynchrony) is security when n > 3f + 2k. This is where
authenticated BFT in synchrony gives a major resilience advantage. The main result of this
paper is that it is possible to get security if and only if n > 2f + k. We note that we do not
find this bound very surprising, but we believe getting to this bound and proving tight upper
and lower bounds provides new insights into how to design authenticated BFT protocols in
the synchronous model.

Our Contributions – Upper Bounds. The main contribution of our paper is MixSync, an
authenticated consensus protocol in a synchronous network resilient to f Byzantine faults
and k crash faults if n > 2f +k. MixSync uses a simple technique for achieving authenticated
non-equivocation in synchronous networks with mixed-faults. As far as we know, this is
the first authenticated consensus protocol in a mixed-faults setting achieving a resilience of
n > 2f + k without limiting the power of the adversary. This is made possible by solving the
task in a synchronous setting, as opposed to the partially synchronous setting which requires
at least n > 3f + 2k replicas. The protocol is oblivious to the number of crash faults, so it is
possible to use it as long as some bound is known on the number of Byzantine replicas and
at least f + 1 honest replicas are guaranteed to stay online.

To construct our new authenticated consensus protocol we decompose it into an outer
protocol and an inner building block. We call this inner building block Publicly Verifiable
Crusader Agreement (PVCA). We show how to construct a simple and efficient PV CA

protocol in a network with mixed faults. In this task, there is a commonly known sender
with an input x, and replicas are required to output some value v and a proof π. If the
sender is honest, every honest replica that completes the protocol outputs x and a proof π,
showing that it is their actual output from the protocol. If the sender is faulty, then there
exists some value v such that every honest replica either outputs v or ⊥ with an appropriate
proof. Using these proofs, replicas can convince each other that the value they received is
correct, or alternatively that the sender was faulty by producing a proof for ⊥. This task
formalizes a rather strong notion of a non-equivocation round. By the end of the round,
every replica that hears a message from the sender, hears the same message, in addition to
proving that a given value was actually received from the sender (or that the sender was
faulty). The PV CA protocol relies on a simple technique: forwarding a received message to
all replicas, and then sending a second message immediately after that. A replica receiving
the second message knows that if its sender was non-Byzantine, the first message has already
been sent to all replicas.

Using the simple idea of a double-send, we then construct the MixSync protocol. The
protocol is based on the Sync HotStuff protocol, with slight adaptations made for it to solve
the task of single-shot consensus. Our protocol is view and leader based, and just like Sync
HotStuff, each view consists of a view change and a non-equivocation round. In order to
make our protocol resilient to k crash faults, all that is needed is using the double-send

I. Abraham, D. Dolev, A. Kagan, and G. Stern 38:3

technique from our PV CA protocol. In fact, we could use the PV CA protocol as a blackbox
inside the Sync HotStuff protocol, only requiring the addition of a view-change protocol, but
we open the blackbox in order to optimize the protocol. Finally, we discuss how to create a
State Machine Replication (SMR) protocol using the same double-send idea. This can either
be done generically by using our consensus protocol, or by adapting optimized protocols such
the Sync HotStuff protocol. Thankfully, in the Sync HotStuff protocol replicas already send
two messages to all replicas after receiving a value from the leader, meaning that the only
change required is making sure that replicas send them in a specific order.

These constructions suggest a possible general approach to constructing consensus and
SMR protocols in the authenticated synchronous mixed-fault scenario. If a protocol mainly
consists of a non-equivocation round and a view change protocol, replace the non-equivocation
round with our PV CA or simply a double-send, yielding a crash-resilient protocol. Specific
protocols might also require adapting other parts of the protocol if they rely on specific
properties of the non-equivocation round.

Our Contributions – Lower Bounds. In order to complete the picture, we also provide
tight lower bounds for consensus tasks in the presence of mixed-faults in the synchronous
model. First, we show that consensus is impossible in a system with f Byzantine faults
and k crash faults if n ≤ 2f + k. Secondly, in order to prove a similar lower bound for the
task of SMR, we first formalize the notion of a Write-Once Register. A Write-Once Register
is a shared memory object to which clients can write only once. That means that once a
client manages to write a value to the register, this value is final and cannot be changed.
Unlike registers that allow clients to overwrite previous values, the Write-Once Register
captures a specific idea of finality that is shared with consensus protocols. In SMR protocols,
replicas are required to commit to a value vs for each log position s ∈ N, which clients can
read by asking replicas to send their committed values. This means that SMR protocols
actually implement infinitely many Write-Once Registers. As such, we show that no protocol
virtualizing a Write-Once Register exists in a system with f Byzantine faults and k crash
faults if n ≤ 2f + k, yielding a lower bound on SMR protocols as well.

References
1 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis

and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015.

2 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 643–673. Springer, 2017.

DISC 2022

Brief Announcement: It’s not easy to relax:
liveness in chained BFT protocols
Ittai Abraham #

VMware Research, Herzliya, Israel

Natacha Crooks #

UC Berkeley, CA, USA

Neil Giridharan1 #

UC Berkeley, CA, USA

Heidi Howard #

Microsoft Research Cambridge, Cambridge, UK

Florian Suri-Payer #

Cornell University, Ithaca, NY, USA

Abstract
Modern chained BFT SMR protocols have poor liveness under failures as they require multiple
consecutive honest leaders to commit a single block. Siesta, our proposed new BFT SMR protocol,
is instead able to commit a block that spans multiple non-consecutive honest leaders. Siesta reduces
the expected commit latency of HotStuff by a factor of three under failures, and the worst-case
latency by a factor of eight.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Consensus, blockchain, BFT

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.39

Related Version Full Version: https://arxiv.org/abs/2205.11652 [1]

1 Introduction

Blockchain systems add two constraints over traditional BFT SMR protocols: 1) only valid
operations should be committed and 2) operation ordering should be fair. To address these
concerns, recent blockchain protocols such as Casper FFG [2], HotStuff [5], DiemBFTv4 [4],
and Fast-Hotstuff [3] are structured around two key building blocks: Chaining and Leader-
Speaks-Once (LSO).

Chaining. To ensure validity, existing protocols evaluate proposed blocks against the full
sequential history of the chain and check application-level preconditions are satisfied. Most
BFT protocols require a (worst-case) minimum of two voting rounds (henceforth phases).
Each voting phase aims to establish a quorum certificate (QC) by collecting a set of signed
votes from a majority of honest replicas. Blockchain systems pipeline the voting phases of
consecutive proposals to avoid redundant coordination and cryptography: the system can
use the quorum certificate of the second voting phase of block i to certify the first phase of
block i + 1. Each block requires (on average) generating and verifying the signatures of a
single QC. This is especially important for large participant sets as QC sizes grow linearly
with the number of replicas, increasing cryptographic costs.

1 Lead author.

© Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard, and Florian Suri-Payer;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 39; pp. 39:1–39:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iabraham@vmware.com
mailto:ncrooks@berkeley.edu
mailto:giridhn@berkeley.edu
mailto:hh360@cam.ac.uk
mailto:fs435@cornell.edu
https://doi.org/10.4230/LIPIcs.DISC.2022.39
https://arxiv.org/abs/2205.11652
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 It’s Not Easy to Relax: Liveness in Chained BFT

Leader-Speaks-Once (LSO). To minimize fairness concerns associated with leader-based
solutions and to decrease the influence of adaptive adversaries (adversaries who control the
network), BFT protocols targeted at blockchains adopt a leader-speak-once (LSO) model. In
LSO, each leader proposes and certifies a single block after which the leader is immediately
rotated out as part of a new view. Electing a different leader per block limits the leader’s
influence; it can manipulate transactions in the proposed block only. Traditional BFT
protocols, in contrast, adopt a stable-leader paradigm in which leaders are only replaced
if they fail to make progress through view change. View changes are intentionally costly
procedures and assumed to be infrequent. Complex view changes allow for a simpler and more
efficient failure-free steady state. LSO protocols instead perform view changes proactively in
each round, and thus are required to place the view change on the critical path of the system.

While a joint chained leader-speak-once (CLSO) approach is desirable for blockchains,
the combination of these two properties introduces a new liveness concern. We show in our
full paper [1] that faulty leaders can greatly reduce the throughput of any CLSO protocol.
Worse, this attack does not require any explicit equivocation; it suffices for a faulty leader
to delay responding, making it harder to detect. The root cause of the problem is simple:
CLSO protocols require the formation of k QCs in consecutive views in order to commit a
block (where k ∈ {2, 3} depending on protocol). In the remainder of the paper, we refer to
this constraint as the consecutive honest leader condition (CHLC).

To the best of our knowledge, the aforementioned liveness concern is present in all
CLSO protocols today, and thus represents a significant exploit opportunity for a Byzantine
attacker. Even without malicious participants, expected network asynchrony can cause
spurious view-changes, precluding the system from committing blocks. Consequently, this
paper asks: is CHLC fundamental, or can it be relaxed?

2 Results

▶ Definition 1 (Gap-Tolerance). A BFT protocol achieves gap-tolerance if it requires k QCs
in non-consecutive views to commit an operation.

We observe that CLSO protocols can achieve gap-tolerance in some settings: commitment
with non-consecutive QCs is possible when failures comprise of omission faults only. This
observation can be coupled with the active detection of commission failures to determine
when to (and when not to) relax the CHLC constraint. We prove the following theorem:

▶ Theorem 2. There exists a CLSO protocol that is resilient to f < n/3 Byzantine replicas,
is safe under asynchrony, and achieves gap-tolerance when failures are omission only.

After GST and view synchronization, if views v < v′ < v′′ have honest leaders, and block
B is proposed in view v, then either block B will be committed in view v′′ or a previously
undetected faulty replica will be detected and slashed (excluded from any future participation).

In this paper we propose Siesta (complete description is in our full paper [1]), a new
consensus protocol that satisfies Theorem 2. Siesta either (i) allows blocks to commit in
non-consecutive views or (ii) immediately and reliably detects equivocation and slashes
(punishes and removes) a malicious leader.

Two fundamental ideas lie at the center of Siesta:
No-QC Proofs. It is safe to commit a block in non-consecutive views as long as one can
prove that no QC for a conflicting block could have formed in between views. Siesta
carefully designs such proofs to be efficient.

I. Abraham, N. Crooks, N. Giridharan, H. Howard, and F. Suri-Payer 39:3

Equivocation proofs. Many BFT protocols do not include phase one messages in view
changes as conflicting phase one messages can exist in the presence of malicious leaders.
Although these messages cannot be used to successfully commit a block, we observe that
they can be used as an explicit proof of equivocation to hold perpetrators accountable.

2.1 Performance Results and Complexity

0 25 50 75 100 125
Number of Views

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CHLC (3)

CHLC (4)

Relaxed

Figure 1 CDF of the number of views needed to commit an operation n = 100.

We quantify the performance gains made possible by relaxing the consecutive honest
leader condition (CHLC). We compare Siesta to 1) two-phase CLSO protocols and 2) three-
phase CLSO protocols. We assume a random leader election strategy; experiments with
round-robin election convey similar results. We simulate each protocol and report how many
rounds were necessary to satisfy each protocol’s commit rule.

In CLSO protocols, the number of rounds directly influences both latency and throughput.
If a round has latency x, then commit latency for an operation will be x ∗ rounds while
throughput is calculated by dividing the batch size by the expected commit latency. We
write CHLC(4) for protocols requiring four consecutive honest leaders, CHLC(3) for three
consecutive honest leaders, and finally Relaxed for our own protocol Siesta. Figure 1 shows
the resulting commit latency CDF. Siesta achieves an expected commit latency of 4.5 rounds;
CHLC(3) requires ≈ 7 rounds. CHLC(4) has worst the expected performance, taking 12
rounds to commit. Worst-case commit latency is especially interesting: Siesta has relatively
low worst-case latency, with 18 rounds, while CHLC(3) protocols have a worst-case commit
time of 76 rounds. CHLC(4) has seven times worst latency, with a worst-case commit time
of 129 rounds.

References
1 Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard, and Florian Suri-Payer. It’s

not easy to relax: liveness in chained bft protocols, 2022. doi:10.48550/arXiv.2205.11652.
2 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint, 2017.

doi:10.48550/arXiv.1710.09437.
3 Mohammad M. Jalalzai, Jianyu Niu, and Chen Feng. Fast-hotstuff: A fast and resilient

hotstuff protocol, 2020. doi:10.48550/arXiv.2010.11454.
4 The Diem Team. DiemBFT v4: State machine replication in the diem blockchain, 2021.
5 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:

BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC ’19, 2019.

DISC 2022

https://doi.org/10.48550/arXiv.2205.11652
https://doi.org/10.48550/arXiv.1710.09437
https://doi.org/10.48550/arXiv.2010.11454

Brief Announcement: Distributed Algorithms for
Minimum Dominating Set Problem and Beyond,
a New Approach
Sharareh Alipour1 #

Tehran Institute for Advanced Studies, Iran

Mohammadhadi Salari #

Simon Fraser University, Burnaby, Canada

Abstract
In this paper, we study the minimum dominating set (MDS) problem and the minimum total
dominating set (MTDS) problem. We propose a new idea to compute approximate MDS and MTDS.
This new approach can be implemented in a distributed model or parallel model. We also show
how to use this new approach in other related problems such as set cover problem and k-distance
dominating set problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Distributed algorithms

Keywords and phrases Minimum dominating set problem, set cover problem, k-distance dominating
set problem, distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.40

1 Introduction

Let G = (V, E) be an undirected graph with the vertex set V and the edge set E and without
isolated vertex. We denote the set of adjacent vertices to a vertex v, neighbors of v, by N(v).
A set S ⊆ V is a dominating set of G if each node v ∈ V is either in S or has a neighbor
in S. Also, S ⊆ V is a total dominating set of G if each node v ∈ V has a neighbor in S.
Let γ(G) and γt(G) be the size of a minimum dominating set (MDS) and a minimum total
dominating set (MTDS) of G, respectively. It is easy to prove that

γ(G) ≤ γt(G) ≤ 2γ(G).

Also, a subset of vertices such that each edge of the graph G is incident to at least one
vertex of the subset is a vertex cover. A minimum vertex cover (MVC) of G is a vertex
cover with the smallest possible number of vertices. The size of MVC is denoted by β(G). A
subset of the vertices such that no two vertices in the subset represent an edge of G is an
independent set of G. An independent set with the largest possible number of vertices is
called a maximum independent set (MIS). The size of MIS is denoted by α(G).

An interesting problem is computing the MDS in the distributed model, which we will
consider in this paper. In a distributed model the network is abstracted as a simple n-node
undirected graph G = (V, E). There is a processor on each node v ∈ V , with a unique
Θ(log n)-bit identifier ID(v), who initially knows only its neighbors in G. Communication
happens in synchronous rounds. Per round, each node can send one, possibly different,
O(log n)-bit message to each of its neighbors. Ultimately, each node should know its own

1 corresponding author

© Sharareh Alipour and Mohammadhadi Salari;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 40; pp. 40:1–40:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sh.alipour@teias.institute
https://orcid.org/0000-0002-3626-8960
mailto:msalari@sfu.ca
https://doi.org/10.4230/LIPIcs.DISC.2022.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 MDS Problem and Beyond

part of the output. When computing the dominating set, each node knows whether it is
in the dominating set or has a neighbor in the dominating set [2]. When the size of the
messages is restricted to be O(log n), then the algorithm is CONGEST.

2 Theoretical result and the algorithm

For a given graph G, with no isolated vertex, we construct a graph G′ with the same set of
vertices as in G as follows. For each vertex v of degree at least two, we choose two of its
neighbors arbitrarily and add an edge between them in G′. If v is of degree one, we add a
loop edge on its neighbor. We call this edge the corresponding edge of v in G′ and denote it
by ev. Note that if the graph G has a cycle of length 4, with vertices a, b, c, d then the edge
bd can be the corresponding edge of both a and c in G′. Let α(G) and β(G) be the size of a
maximum independent set and the size of a minimum vertex cover of G, respectively (as
defined previously). Then, we have the following theorem.

▶ Theorem 1. γt(G) ≤ n − α(G′) = β(G′).

Proof. Suppose that D is a maximum independent set of G′, so |D| = α(G′). We show that
V \D is a total dominating set for G. For each vertex v, we choose two of its neighbors, for
example, u and w, and add an edge between them in G′. Since there is an edge between u

and w, at most, one of them can be in D, which means at least one of them is in V \D. The
same argument applies when an edge is a loop. Thus, for each vertex v, at least one of its
neighbors in G is in V \D, so V \D is a total dominating set for G. The size of |V \D| equals
n − α(G′) and we have γt(G) ≤ n − α(G′) = β(G′). ◀

Note that the graph G′ can be constructed is a constant number of rounds in the CONGEST
model. According to our time and space constraints, we can use the known distributed
algorithms for computing a vertex cover for G′ (See [3, 4]).

3 Extension to the other problems

Set cover problem
In the set cover problem we are given a set A = {a1, a2, . . . an} of n elements and m subsets,
A1, A2, . . . , Am of A. The goal is to choose the minimum number of subsets that cover all
the elements of A.

Our algorithm is as follows. Each element ai chooses a subset Aj with maximum size
such that ai ∈ Aj . Let xi be the number of times that Ai is chosen by the elements of A.
We construct a graph G′ that its vertices are the subsets A1, A2, . . . , Am. For each a ∈ A we
choose two subsets Ai and Aj with maximum values of xi’s such that a ∈ Ai and a ∈ Aj

and add an edge between them. Similar to the proof of Theorem 1, it can be shown that a
vertex cover for G′ is a set cover for A.

k-distance dominating set
An extension of the MDS problem is the minimum k-distance dominating set problem where
the goal is to choose a subset S ⊆ V with the minimum cardinality such that for every vertex
v ∈ V \S, there is a vertex u ∈ S where the shortest path between them at most k. The
minimum total k-distance dominating set is defined similarly. A k-observer Ob of a network
N is a set of nodes in N such that each message, that travels at least k hops in N , is handled
(and so observed) by at least one node in Ob. A k-observer Ob of a network N is minimum

S. Alipour and M. Salari 40:3

iff the number of nodes in Ob is less than or equal to the number of nodes in every k-observer
of N (See [1]). This problem is equivalent to the k-distance dominating set problem. In this
problem for each node v, the neighbors of v, is the set of nodes whose distance from v is less
than k + 1. Then we apply the proposed algorithms as before.

Note that computing a minimum k-distance dominating set for a graph G is equivalent
to computing a minimum dominating set for Gk, where Gk is a graph with the same vertex
set as G and we put an edge between two vertices in Gk if the distance between them in G

is less than k + 1.

References
1 Krishnendu Chakrabarty, S. Sitharama Iyengar, Hairong Qi, and Eungchun Cho. Grid coverage

for surveillance and target location in distributed sensor networks. IEEE Trans. Computers,
51(12):1448–1453, 2002. doi:10.1109/TC.2002.1146711.

2 Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In 32nd International Symposium on Distributed Computing,
DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pages 29:1–29:17, 2018. doi:
10.4230/LIPIcs.DISC.2018.29.

3 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi. Distributed weighted
vertex cover via maximal matchings. ACM Trans. Algorithms, 5(1):6:1–6:12, 2008. doi:
10.1145/1435375.1435381.

4 Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed complexity
of computing maximal matchings. SIAM J. Discret. Math., 15(1):41–57, 2001. doi:10.1137/
S0895480100373121.

DISC 2022

https://doi.org/10.1109/TC.2002.1146711
https://doi.org/10.4230/LIPIcs.DISC.2018.29
https://doi.org/10.4230/LIPIcs.DISC.2018.29
https://doi.org/10.1145/1435375.1435381
https://doi.org/10.1145/1435375.1435381
https://doi.org/10.1137/S0895480100373121
https://doi.org/10.1137/S0895480100373121

Brief Announcement: Survey of Persistent Memory
Correctness Conditions
Naama Ben-David #

VMware Research, Palo Alto, CA, USA

Michal Friedman #

ETH Zürich, Switzerland

Yuanhao Wei #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In this brief paper, we survey existing correctness definitions for concurrent persistent programs.

2012 ACM Subject Classification Hardware → Memory and dense storage; Theory of computation

Keywords and phrases Persistence, NVRAM, Correctness, Concurrency

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.41

Related Version Full Version: https://arxiv.org/pdf/2208.11114.pdf

1 Introduction

Non-Volatile Random Access Memory (NVRAM) is a new type of memory technology that
has recently hit the market. Its key feature is that it is persistent, like SSDs, but is fast
and byte-addressable, much like DRAM. This presents a huge paradigm shift from the
way persistence could be achieved in the past; techniques that worked well for sequential
block-granularity storage cannot be efficiently used with NVRAMs. Achieving persistence
with NVRAM has the potential to speed up applications by orders of magnitude.

However, before designing persistent algorithms for NVRAM, we must first answer a
more basic question: What does it mean for an algorithm to be persistent?

Despite algorithms relying on external storage for persistence for decades, the answer
to the above question is not clear in the context of faster, byte addressible NVRAM. In
particular, it is now realistic to require that virtually no progress be lost upon a crash, and
that a program be able to continue where it left off upon recovery.

The above requirement, while appealing, is in fact not very precise. Due to registers and
caches remaining volatile, individual instructions and memory accesses are applied to volatile
memory first, and are then persisted separately. If a system crash occurs between when an
instruction is executed and when its effect is applied to NVRAM, progress will inevitably
be lost. However, it is possible to define how much progress it is okay to lose, and at what
point in the execution we expect each instruction’s effect to be persisted. For example, we
can ensure no completed operation will be lost upon a crash.

In this brief survey, we discuss definitions of persistence that exist in the literature. As
this is an actively and quickly developing field of study, there are many different notations,
terminologies, and definitions that often refer to similar notions. We put these definitions into
the same terminology, and compare them to each other. Using this point of view, we arrange
the definitions into a hierarchy, based on the set of execution histories that satisfies every
definition. Interestingly, this hierarchy changes depending on specific model assumptions
made. We outline common model assumptions and illustrate their effect on these definitions.

© Naama Ben-David, Michal Friedman, and Yuanhao Wei;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 41; pp. 41:1–41:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bendavidn@vmware.com
mailto:michal.friedman@inf.ethz.ch
mailto:yuanhao1@cs.cmu.ed
https://doi.org/10.4230/LIPIcs.DISC.2022.41
https://arxiv.org/pdf/2208.11114.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Survey of Persistent Memory Correctness Conditions

We note that this survey is meant to make sense of the various persistence definitions
and to guide researchers and algorithm designers when choosing which model and definition
to adopt. However, this survey does not cover the many different algorithms, techniques,
and applications that have been developed for NVRAM programming in recent years.

2 Model Assumptions

We consider a system of n asynchronous processes p1 . . . pn. Processes may access shared
base objects with atomic read, write, and read-modify-write primitives. Each process also has
access to local variables that are not shared with any other process. Objects (both local and
shared) may be volatile or non-volatile, which affects their behavior upon a crash.

A history is a sequence of events. There are three types of events: an invocation event
obj.invi(op, v) which invokes operation op on object obj by process pi with argument v, a
response event obj.resi(op, v) in which obj responds to pi’s invocation on op with return
value v, and crash events. A crash resets all the volatile local variables of the associated
process, or all volatile objects if all processes crashed.

A response res is said to match an invocation inv in H if obj, op, and i are the same for
both, and res is the next event in H|p after inv. An operation is said to be complete in H if
both its invocation and a matching response appear in H. Otherwise, if an operation was
invoked but was not completed, the operation is said to be pending.

Given a property P and a history H, P is said to be local if given a history H in which,
for every object O, H|O satisfies P , H also satisfies P .

In the full version of this paper [4], we discuss model variants that appear in the literature
and their implications on correctness conditions and implementations.

3 Property Hierarchy

In this section, we present hierarchies relating the existing properties to each other under
various model assumptions. A complete list of all formal definitions, including those omitted
from this short paper [2, 3, 6, 7, 10], and a more profound comparison among them can be
found in the full version [4].

3.1 Same Processes are Invoked

(a) Same Processes (b) New Processes

Figure 1 Hierarchy of definitions when the same processes and new processes are allowed to be
invoked after a crash.

N. Ben-David, M. Friedman, and Y. Wei 41:3

In this subsection, we assume that the model allows the same processes to be invoked
after a crash. Under this model, the existing definitions can be arranged into the hierarchy
that is presented in Figure 1(a). The hierarchy is based on the sets of execution histories
that are allowed by each of the definitions; in Figure 1(a), each definition’s set of allowed
histories is represented by its labelled region.

To understand this hierarchy, it is useful to consider how each correctness condition
allows linearizing a given history. The correctness conditions differ by where they allow
each pending operation’s completion to be placed. Berryhill et al. [5] presented recoverable,
persistent, and strict linearizability in this light.

There are several points in a given history with respect to which it may make sense to
complete such a pending operation. One point of reference is the crash event that immediately
follows invop in H|p. Another is the next invocation by p in the history. Finally, we may
also consider the next invocation in H that occurs in the same object as op.

Strict linearizability [1] is the strongest (or strictest) condition, in that it allows for the
smallest set of histories. It requires every pending operation to be eliminated or completed
before the crash. In addition, it is local, meaning that every object that is built from
strictly linearizable objects is also strictly linearizable. To achieve this guarantee, one may
think of running a recovery operation directly after the crash, and before executing the
program. However, it might be too restrictive; in some scenarios, it makes sense to relax this
requirement to allow recovery (alternatively; the completion of pending operations) to occur
later in the execution.

While strict linearizability requires completions to be placed before the next crash event,
persistent atomicity [8] instead completes operations before the next invocation by the same
process. Note that, by the definition of legal histories, the next invocation by the same
process can never be placed before the current crash, and therefore persistent atomicity is
weaker than strict linearizability (i.e. the set of persistent histories contains the set of strict
histories). Due to this relaxation, it is not local. On the positive side, persistent atomicity
may be easier to implement than strict linearizability, since an operation only needs to be
recovered (if ever) when the same process invokes another operation.

Berryhill et al. [5] presented the recoverable linearizability definition, which is the most
relaxed one. It also requires pending operations to be completed (or removed) before the
crash, but practically, to “take effect” before the next invocation of the same process on the
same object. Therefore, it allows the most extensive set of histories.

3.2 New processes are invoked
In this subsection, we assume that the model does not allow the same processes to be invoked
after a crash, and new processes are spawned instead. This model was first suggested by
Izraelevitz et al. [9], as a simplification to previous models. Under this simplification, the
definitions that deal with execution continuations do not make sense. The hierarchy in this
model is presented in Figure 1(b).

When the same processes are never invoked after a crash, strict linearizability [1] still
remains the strongest condition as it requires every pending operation to be eliminated or
completed before the crash. Recall that the difference between persistent atomicity [8] and
recoverable linearizability [5] is only in recoveries by the same process, and thus these two
definitions have the same meaning as durable linearizability [9] which requires getting a
linearizable history after removing all crash events from the original history.

By disallowing the executions of the same processes, durable linearizability, persistent
atomicity and recoverable linearizability are local under this restriction. Buffered durable
linearizability [9] is similar to the others, but additionally allows operations that were
completed before the crash to be removed. It therefore is the weakest definition.

DISC 2022

41:4 Survey of Persistent Memory Correctness Conditions

References
1 Marcos K Aguilera and Svend Frølund. Strict linearizability and the power of aborting.

Technical Report HPL-2003-241, 2003.
2 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizability:

Modular constructions for non-volatile memory. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, pages 7–16. ACM, 2018.

3 Naama Ben-David, Guy E Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free con-
currency on faulty persistent memory. In The 31st ACM on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 253–264. ACM, 2019.

4 Naama Ben-David, Michal Friedman, and Yuanhao Wei. Survey of persistent memory
correctness conditions. arXiv preprint, 2022. arXiv:2208.11114.

5 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In 19th International Conference on Principles of Distributed Systems
(OPODIS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

6 Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A persistent lock-free
queue for non-volatile memory. In ACM SIGPLAN Notices, pages 28–40. ACM, 2018.

7 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. Distributed Computing,
32(6):535–564, 2019.

8 Rachid Guerraoui and Ron R Levy. Robust emulations of shared memory in a crash-recovery
model. In 24th International Conference on Distributed Computing Systems, 2004. Proceedings.,
pages 400–407. IEEE, 2004.

9 Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In International Symposium on
Distributed Computing, pages 313–327. Springer, 2016.

10 Nan Li and Wojciech Golab. Detectable sequential specifications for recoverable shared
objects. In 35th International Symposium on Distributed Computing (DISC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

http://arxiv.org/abs/2208.11114

Brief Announcement: Minimizing Congestion in
Hybrid Demand-Aware Network Topologies
Wenkai Dai #

Faculty of Computer Science, Universität Wien, Austria

Michael Dinitz #

Computer Science Department, Johns Hopkins University, Baltimore, MD, USA

Klaus-Tycho Foerster #

Computer Science Department, Technische Universität Dortmund, Germany

Stefan Schmid #

TU Berlin, Germany
Faculty of Computer Science, Universität Wien, Austria

Abstract
Emerging reconfigurable optical communication technologies enable demand-aware networks: net-
works whose static topology can be enhanced with demand-aware links optimized towards the
traffic pattern the network serves. This paper studies the algorithmic problem of how to jointly
optimize the topology and the routing in such demand-aware networks, to minimize congestion. We
investigate this problem along two dimensions: (1) whether flows are splittable or unsplittable, and
(2) whether routing on the hybrid topology is segregated or not, i.e., whether or not flows either
have to use exclusively either the static network or the demand-aware connections. For splittable
and segregated routing, we show that the problem is 2-approximable in general, but APX-hard
even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated
routing, we show an upper bound of O (log m/ log log m) and a lower bound of Ω (log m/ log log m)
for polynomial-time approximation algorithms, where m is the number of static links. Under
splittable (resp., unsplittable) and non-segregated routing, even for demands of a single source (resp.,
destination), the problem cannot be approximated better than Ω (cmax/cmin) unless P=NP, where
cmax (resp., cmin) denotes the maximum (resp., minimum) capacity. It is still NP-hard for uniform
capacities, but can be solved efficiently for a single commodity and uniform capacities.

2012 ACM Subject Classification Networks → Network architectures; Theory of computation →
Design and analysis of algorithms

Keywords and phrases Congestion, Reconfigurable Networks, Algorithms, Complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.42

Funding Research supported by the European Research Council (ERC), grant agreement No. 864228
(AdjustNet) Horizon 2020, 2020-2025, and NSF Award CCF-1909111.

1 Introduction

Emerging demand-aware networks, whose topologies are typically hybrid, in that a static
(and demand-oblivious) network is enhanced with reconfigurable (and demand-aware) links,
introduce unprecedented flexibility in adapting the network topology towards current traffic
demands. In such hybrid networks, the reconfigurable links are usually enabled by optical
circuit switches [1, 8, 13], and particularly, each optical circuit switch provides reconfigurable
links by establishing connections between pairs of its ports, i.e., a matching.

Extensive past works studied the question of how to jointly optimize topology and
routing of such hybrid (reconfigurable) networks [17] for different networking performance
metrics, e.g., latency [11], throughput [4, 7], routing length [14, 15, 16], flow times [3] etc.
Interestingly, min-congestion, a most central performance metric in traditional networks, is
still not well-understood in hybrid networks. Avin et al. [6] and Pacut et al. [12] study optimal

© Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, and Stefan Schmid;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 42; pp. 42:1–42:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wenkai.dai@univie.ac.at
https://orcid.org/0000-0002-2153-4250
mailto:mdinitz@cs.jhu.edu
https://orcid.org/0000-0002-2632-966X
mailto:klaus-tycho.foerster@tu-dortmund.de
https://orcid.org/0000-0003-4635-4480
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.4230/LIPIcs.DISC.2022.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Minimizing Congestion in Hybrid Demand-Aware Network Topologies

Table 1 Summary of our approximation upper and lower bounds on the MCHN problem (Def. 1).

Approximation Upper & Splittable Segregated Restrictions
Lower Bounds (Complexity) Flow Routing On Demands

2-approximation yes yes
APX-complete yes yes uniform and bipartite demands

O (log m/ log log m)-approximation no yes
Lower Bound: Ω (log m/ log log m) no both

(2 · cmax/cmin)-approximation yes no single source (resp., dest.)
Lower Bound: Ω (cmax/cmin) both no single source (resp., dest.)

bounded-degree topology designs to minimize both the route length and the congestion. Dai et
al. [2] worked on the same network model as us, showing that the problem is already NP-hard
for splittable (resp., unsplittable) and segregated (resp., non-segregated) routing models when
the static network is a tree of height at least two, but tractable for static networks of star
topologies. Zheng et al. [10] introduced a greedy-based heuristic algorithm for our segregated
model but on specific topologies of datacenters. However, not much more is known w.r.t.
corresponding approximation bounds, which motivates our study, summarized in Table 1.

2 Model

Network Model. We consider a hybrid network [5, 9] N = (V, E, E , c), where a static
network (V, E) is represented by an bidirected (simple) graph of nodes V , any two distinct
nodes vi, vj ∈ V imply a possible reconfigurable link denoted by a bidirected edge {i, j} in
E , and a function c : E⃗ ∪ E⃗ 7→ R≥0 defines capacities for both directions of each bidirected
link in E ∪ E with the maximum (resp., minimum) capacity denoted by cmax (resp., cmin).
The hybrid network N must decide a matching M ⊆ E to obtain an enhanced graph
N (M) = (V, E ∪ M, c), which determines the actual topology of the communicating network.

Traffic Demands. A certain communication pattern (demands) on nodes V is represented
by a matrix D := (di,j)|V |×|V |, where an entry di,j ∈ R≥0 denotes the traffic load (frequency)
or a demand from the node vi ∈ V to the node vj ∈ V .

Routing Models. The unsplittable routing requires that flows of each demand must be sent
along a single (directed) path, otherwise the routing is called splittable. For a hybrid network,
segregated routing requires that each demand di,j is either sent on the reconfigurable link
{i, j}, if it exists, or purely on the static network, otherwise it is unsegregated routing. Hence,
we consider four different routing models: Unsplittable & Segregated (US), Unsplittable &
Non-segregated (UN), Splittable & Segregated (SS), and Splittable & Non-segregated (SN).

▶ Definition 1 (Min-Congestion Hybrid Network Problem (MCHN)). Given a hybrid network
N = (V, E, E , c), a routing model τ ∈ {US, UN, SS, SN}, and a demand matrix D, find a
matching M ⊆ E, s.t., the congestion λ, i.e., the maximum load on E⃗ ∪ M⃗ , to serve D in
N (M) is minimized.

3 Our Contributions

We initiate the study of approximation algorithms for minimizing congestion in hybrid
demand-aware networks (for a given matrix of demands). Our results include an overview of
approximation results and complexity characterizations in general settings. We also provide
a fine-grained algorithmic analysis for restricted cases:

W. Dai, M. Dinitz, K.-T. Foerster, and S. Schmid 42:3

Segregated Routing. We can give a mixed-integer programming formulation for segregated
and un-/splittable flow models whose LP relaxation can be solved efficiently. For splittable
flows, we provide a 2-approximation algorithm by a novel deterministic rounding approach,
and also prove APX-hardness even if demands are uniform and bipartite. However, we also
show that the problem becomes tractable for demands with a single source (resp., dest.). For
unsplittable flows, we show that the hybrid network problem cannot be approximated better
than the min-congestion multi-commodity unsplittable flow problem (MCMF) [18], but any
ρ-approximation algorithm based on rounding techniques for the MCMF problem can be
utilized to give a 2ρ-approximation. This implies an approximability of Θ (log m/ log log m)
for segregated and unsplittable routing, where m = |E|.

Non-Segregated Routing. Under the splittable (resp., unsplittable) flow model, even for
demands of a single source (resp., destination), the problem cannot be approximated better
than Ω (cmax/cmin) unless P=NP, but still (2 · cmax/cmin)-approximable for the splittable
flow, where cmax (resp., cmin) denotes the maximum (resp., minimum) capacity on all links,
and it still remains NP-hard for uniform capacities, i.e., c : E⃗ ∪ E⃗ 7→ {a} for a ∈ R>0.
However, the problem with uniform capacities becomes efficiently solvable for demands of a
single commodity under un-/splittable flow.

References
1 S. Aleksic. The future of optical interconnects for data centers: A review of technology trends.

In 2017 14th International Conference on Telecommunications (ConTEL), June 2017.
2 W. Dai et al. Load-optimization in reconfigurable networks: Algorithms and complexity of

flow routing. SIGMETRICS Perform. Evaluation Rev., 48(3), 2020.
3 M. Dinitz and B. Moseley. Scheduling for weighted flow and completion times in reconfigurable

networks. In INFOCOM. IEEE, 2020.
4 A. Singla et al. High throughput data center topology design. In NSDI. USENIX, 2014.
5 B. Venkatakrishnan et al. Costly circuits, submodular schedules and approximate carathéodory

theorems. In SIGMETRICS, 2016.
6 C. Avin et al. Demand-aware network design with minimal congestion and route lengths. In

INFOCOM. IEEE, 2019.
7 D. Nikhil et al. Stable matching algorithm for an agile reconfigurable data center interconnect

(MSR-TR-2016-1140). Technical report, Microsoft Research, June 2016.
8 G. Wang et al. c-through: part-time optics in data centers. In SIGCOMM. ACM, 2010.
9 H. Liu et al. Scheduling techniques for hybrid circuit/packet networks. In CoNEXT. ACM,

2015.
10 J. Zheng et al. Dynamic load balancing in hybrid switching data center networks with

converters. In ICPP. ACM, 2019.
11 M. Ghobadi et al. Projector: Agile reconfigurable data center interconnect. In SIGCOMM.

ACM, 2016.
12 M. Pacut et al. Improved scalability of demand-aware datacenter topologies with minimal

route lengths and congestion. Perform. Evaluation, 152, 2021.
13 N. Farrington et al. Helios: a hybrid electrical/optical switch architecture for modular data

centers. In SIGCOMM. ACM, 2010.
14 T. Fenz et al. Efficient non-segregated routing for reconfigurable demand-aware networks.

Comput. Commun., 164, 2020.
15 K.-T. Foerster et al. On the complexity of non-segregated routing in reconfigurable data center

architectures. Comput. Commun. Rev., 49(2):2–8, 2019.
16 K.-T. Foerster and S. Schmid. Survey of reconfigurable data center networks: Enablers,

algorithms, complexity. SIGACT News, 50(2), 2019.
17 M. N. Hall et al. A survey of reconfigurable optical networks. Opt. Switch. Netw., 41, 2021.
18 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.

com/computer/theoretical+computer+science/book/978-3-540-65367-7.

DISC 2022

http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7

Brief Announcement: Computing Power of Hybrid
Models in Synchronous Networks
Pierre Fraigniaud #

IRIF, Université Paris Cité and CNRS, France

Pedro Montealegre1 #

Faculty of Engineering and Science, Universidad Adolfo Ibáñez, Santiago, Chile

Pablo Paredes #

Department of Mathematical Engineering, University of Chile, Santiago, Chile

Ivan Rapaport #

DIM-CMM (UMI 2807 CNRS), University of Chile, Santiago, Chile

Martín Ríos-Wilson #

Faculty of Engineering and Science, Universidad Adolfo Ibáñez, Santiago, Chile

Ioan Todinca #

LIFO, Université d’Orléans, France
INSA Centre-Val de Loire, Bourges, France

Abstract
During the last two decades, a small set of distributed computing models for networks have emerged,
among which LOCAL, CONGEST, and Broadcast Congested Clique (BCC) play a prominent role.
We consider hybrid models resulting from combining these three models. That is, we analyze the
computing power of models allowing to, say, perform a constant number of rounds of CONGEST,
then a constant number of rounds of LOCAL, then a constant number of rounds of BCC, possibly
repeating this figure a constant number of times. We specifically focus on 2-round models, and we
establish the complete picture of the relative powers of these models. That is, for every pair of such
models, we determine whether one is (strictly) stronger than the other, or whether the two models
are incomparable.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases hybrid model, synchronous networks, LOCAL, CONGEST, Broadcast
Congested Clique

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.43

Related Version Full Version: https://doi.org/10.48550/arXiv.2208.02640

Funding Additional support for ANR projects QuData and DUCAT. This work was supported by
Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers
of excellence from ANID-Chile, FONDECYT 11190482, FONDECYT 1220142 and PAI77170068.

1 Introduction

This paper analyzes the relative power of distributed computing models for networks,
all resulting from the combination of standard synchronous models such as LOCAL and
CONGEST [4], as well as Broadcast Congested Clique (BCC) [1]. Each of these three models
has its strengths and limitations. We investigate the power of models resulting from combining
these three models, in order to take advantage of their positive aspects without suffering
from their negative ones.

1 Corresponding Author
© Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport, Martín Ríos-Wilson, and Ioan
Todinca;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 43; pp. 43:1–43:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
mailto:p.montealegre@uai.cl
mailto:pparedes@dim.uchile.cl
mailto:rapaport@dim.uchile.cl
mailto:martin.rios@uai.cl
mailto:ioan.todinca@univ-orleans.fr
https://doi.org/10.4230/LIPIcs.DISC.2022.43
https://doi.org/10.48550/arXiv.2208.02640
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Computing Power of Hybrid Models in Synchronous Networks

For the sake of comparing models, we focus on the standard framework of distributed
decision problems on labeled graphs (see [2]). Such problems are defined by a collection L
of pairs (G, ℓ), where G = (V, E) is a graph, and ℓ : V → {0, 1}∗ is a function assigning
a label ℓ(u) ∈ {0, 1}∗ to every u ∈ V . Such a set L is called a distributed language. A
distributed algorithm A decides L if every node running A eventually accepts or rejects,
and the following condition is satisfied: for every labeled graph (G, ℓ), every node should
accept in a yes-instance (i.e., an instance (G, ℓ) ∈ L), and, in a no-instance (i.e., an instance
(G, ℓ) /∈ L), at least one node must reject.

For every t ≥ 0, let us denote by Lt the set of distributed languages L for which there is a
t-round algorithm in the LOCAL model deciding L. The sets Ct and Bt are defined similarly,
for the CONGEST and BCC models, respectively. Note that while it is easy to show, using
indistinguishability arguments, that, for every t ≥ 1, Lt ∖ Lt−1 ≠ ∅ and Ct ∖ Ct−1 ̸= ∅,
establishing that there is indeed a decision problem in Bt ∖ Bt−1 requires significantly more
work [3]. Also, we define L∗ = ∪t≥0Lt, C∗ = ∪t≥0Ct, and B∗ = ∪t≥0Bt. So, in particular,
L∗ is the class of distributed languages that can be decided in a constant number of rounds
in the LOCAL model.

2 Our Results

On the negative side, we provide a series of separation results between 2-round hybrid models.
In particular, we show that BC and CB are incomparable. That is, there are languages
in BC ∖ CB, and languages in CB ∖ BC. In fact, we show stronger separation results,
by establishing that BC ∖ C∗B ̸= ∅, and CB ∖ BL∗ ̸= ∅. That is, in particular, there
are languages that can be decided by a 2-round algorithm performing a single BCC round
followed by one CONGEST round, which cannot be decided by any algorithm performing k

CONGEST rounds followed by a single BCC round, for any k ≥ 1.
On the positive side, we show that, for any non-negative integers α1, . . . , αk, β1, . . . , βk,

k∏
i=1

LαiBβi ⊆ L
∑k

i=1
αiB

∑k

i=1
βi . (1)

That is, if a language L can be decided by a t-round algorithm alternating LOCAL and
BCC rounds, then L can be decided by a t-round algorithm performing all its LOCAL rounds
first, and then all its BCC rounds – with the notations of Eq. (1), t =

∑k
i=1(αi + βi). So,

in particular BL ⊆ LB. This inclusion is strict, since, as said before, CB ∖ BL∗ ̸= ∅. In
fact, this separation holds even if the number of LOCAL rounds depends on the number of
nodes n in the network, as long as the algorithm performs o(n) LOCAL rounds after its BCC
round. Another consequence of Eq. (1) is that the largest class of languages among all the
ones considered in this paper is L∗B∗, that is, languages that can be decided by algorithms
performing k LOCAL rounds followed by k′ BCC rounds, for some k ≥ 0 and k′ ≥ 0.

Interestingly, our separation results hold even for randomized protocols, which can err
with probability at most ϵ ≤ 1/5. That is, in particular, there is a language L ∈ CB (i.e.,
that can be decided by a deterministic 2-round algorithm) which cannot be decided with
error probability at most 1/5 by any randomized algorithm performing one BCC round first,
followed by k LOCAL rounds, for any k ≥ 1. All our results about 2-rounds hybrid models
are summarized on Figure 1.

P. Fraigniaud et al. 43:3

L

C B

CC BC CB

LC CL BL

LL LB

BB

Figure 1 The poset of 2-round hybrid models. An edge between a set of languages S1 and a
set S2, where S1 is at a level lower than S2, indicates that S1 ⊆ S2. In fact, all inclusions are
strict. Transitive edges are not displayed. Two sets that are not connected by a monotone path are
incomparable.

3 Our Techniques

All our separation results are obtained by reductions from communication complexity lower
bounds. However, we had to revisit several known communication complexity results for
adapting them to the setting of distributed decision, in which no-instances may be rejected
by a single node, and non necessarily by all the nodes. In particular, we revisit the classical
Index problem. Recall that, in this problem, Alice is given a binary vector x ∈ {0, 1}n, Bob is
given an index i ∈ [n], and Bob must output xi based on a single message received from Alice
(1-way communication). We define the XOR-Index problem, in which Alice is given a binary
vector x ∈ {0, 1}n together with an index i ∈ [n], Bob is given a binary vector y ∈ {0, 1}n

together with an index j ∈ [n], and, after a single round of 2-way communication, Alice must
output a boolean outA and Bob must output a boolean outB , such that outA ∧outB = xj ⊕yi.

That is, if xj ̸= yi then Alice and Bob must both accept (i.e., output true), and if xj = yi

then at least one of these two players must reject (i.e., output false). We show that the sum
of the sizes of the message sent by Alice to Bob and the message sent by Bob to Alice is
Ω(n) bits. This bound holds even if the communication protocol is randomized and may err
with probability at most 1/5, and even if the two players have access to shared random coins.

The fact that only one of the two players may reject a no-instance (i.e., an instance where
xj ⊕ yi = 0), and not necessarily both, while a yes-instance must be accepted by both players,
yields an asymmetry which complicates the analysis. We use information theoretic tools for
establishing our lower bound. Specifically, we identify a way to decorrelate the behaviors
of Alice and Bob, so that to analyze separately the distribution of decisions taken by each
player, and then to recombine them for lower bounding the probability of error in case the
messages exchanged between the players are small, contradicting the fact that this error
probability is supposed to be small.

References
1 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique

model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
pages 367–376, 2014.

2 Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bull. EATCS, 119,
2016.

3 Noam Nisan and Avi Widgerson. Rounds in communication complexity revisited. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pages 419–429, 1991.

4 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

DISC 2022

Brief Announcement: New Clocks, Fast Line
Formation and Self-Replication Population
Protocols
Leszek Gąsieniec # Ñ

University of Liverpool, UK

Paul Spirakis #

University of Liverpool, UK

Grzegorz Stachowiak #

Uniwersytet Wrocławski, Poland

Abstract
In this paper we consider a known variant of the standard population protocol model in which agents
can be connected by edges, referred to as the network constructor model. During an interaction
between two agents the relevant connecting edge can be formed, maintained or eliminated by the
transition function. The state space of agents is fixed (constant size) and the size n of the population
is not known, i.e., not hard-coded in the transition function.

Since pairs of agents are chosen uniformly at random the status of each edge is updated every
Θ(n2) interactions in expectation which coincides with Θ(n) parallel time. This phenomenon provides
a natural lower bound on the time complexity for any non-trivial network construction designed
for this variant. This is in contrast with the standard population protocol model in which efficient
protocols operate in O(poly log n) parallel time.

The main focus in this paper is on efficient manipulation of linear structures including formation,
self-replication and distribution (including pipelining) of complex information in the adopted model.

We propose and analyse a novel edge based phase clock counting parallel time Θ(n log n) in the
network constructor model, showing also that its leader based counterpart provides the same
time guaranties in the standard population protocol model. Note that all currently known phase
clocks can count parallel time not exceeding O(poly log n).
The new clock enables a nearly optimal O(n log n) parallel time spanning line construction (a key
component of universal network construction), which improves dramatically on the best currently
known O(n2) parallel time protocol, solving the main open problem in the considered model [9].
We propose a new probabilistic bubble-sort algorithm in which random comparisons and transfers
are allowed only between the adjacent positions in the sequence. Utilising a novel potential
function reasoning we show that rather surprisingly this probabilistic sorting (via conditional
pipelining) procedure requires O(n2) comparisons in expectation and whp, and is on par with
its deterministic counterpart.
We propose the first population protocol allowing self-replication of a strand of an arbitrary
length k (carrying a k-bit message of size independent of the state space) in parallel time
O(n(k + log n)). The pipelining mechanism and the time complexity analysis of the strand
self-replication protocol mimic those used in the probabilistic bubble-sort. The new protocol
permits also simultaneous self-replication, where l copies of the strand can be created in time
O(n(k + log n) log l). Finally, we discuss application of the strand self-replication protocol to
pattern matching.

Our protocols are always correct and provide time guaranties with high probability defined as
1 − n−η, for a constant η > 0.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Population protocols, network constructors, probabilistic bubble-sort, self-
replication

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.44

Related Version Full Version: https://arxiv.org/abs/2111.10822

© Leszek Gąsieniec, Paul Spirakis, and Grzegorz Stachowiak;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 44; pp. 44:1–44:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.a.gasieniec@liverpool.ac.uk
https://www.csc.liv.ac.uk/~leszek/
https://orcid.org/0000-0003-1809-9814
mailto:P.Spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:gst@cs.uni.wroc.pl
https://orcid.org/0000-0003-0463-3676
https://doi.org/10.4230/LIPIcs.DISC.2022.44
https://arxiv.org/abs/2111.10822
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Clocks, Line, and Self-Replication Population Protocol

1 Introduction

The model of population protocols originates from the seminal paper of Angluin et al. [1].
This model provides tools for the formal analysis of pairwise interactions between simple
indistinguishable entities referred to as agents. The agents are equipped with limited storage,
communication and computation capabilities. When two agents engage in a direct interaction
their states are amended according to the predefined transition function. The weakest possible
assumptions in population protocols, also adopted here, limit the state space of agents to a
fixed (constant) size disallowing utilisation of the size of the population n in the transition
function. In the probabilistic variant of population protocols adopted in this paper, in each
step the random scheduler selects from the whole population an ordered pair of agents formed
of the initiator and the responder, uniformly at random. The lack of symmetry in this pair
is a powerful source of random bits often used by population protocols. In this variant, in
addition to state utilisation one is also interested in the time complexity of the proposed
solutions. In more recent work on population protocols the focus is on parallel time defined
as the total number of pairwise interactions (sequential time) leading to the solution divided
by the size n of the whole population. For example, a core dissemination tool in population
protocols known as one-way epidemic [2] distributes simple (e.g., 0/1) messages to all agents
in the population utilising Θ(n log n) interactions or equivalently Θ(log n) parallel time. The
parallel time is meant to reflect on massive parallelism of simultaneous interactions. While
this is a simplification [4], it provides a good estimation on locally observed time expressed in
the number of interactions each agent was involved in throughout the computation process.

Unless stated otherwise we assume that any protocol starts in the predefined initial
configuration with all agents being in the same initial state. A population protocol terminates
with success if the whole population stabilises eventually, i.e., it arrives at and stays indefinitely
in the final configuration of states representing the desired property of the solution.

1.1 Our results and their significance
We study here several central problems in distributed computing by focusing on the adopted
variant of population protocols. These include the concept of phase clocks, a distributed
synchronisation tool with good space and accuracy guarantees. The first study of leader based
O(1) space phase clocks can be found in the seminal paper by Angluin et al. in [2]. Further
extensions including the junta based clock and nested clocks counting any Θ(poly log n)
parallel time were analysed in [6]. In a very recent work [5] Doty et al. study constant
resolution phase clocks utilising O(log n) states as the main engine in the optimal majority
computation protocols. In this work we propose and analyse a new phase clock based on a
matching allowing to count Θ(n log n) parallel time. This is the first clock able to confirm the
conclusion of the slow leader election protocol based on direct duels between the (remaining)
leader candidates. We also propose an edge-less variant of this clock based on the computed
leader. This clock powers a nearly optimal O(n log n) parallel time spanning line construction
(a key component of universal network construction), improving dramatically on the best
currently known O(n2) parallel time protocol, solving the main open problem from [9].

We also consider a probabilistic variant of the classical bubble-sort algorithm, in which
any two consecutive positions in the sequence are chosen for comparison uniformly at random.
We show that rather surprisingly this variant is on par with its deterministic counterpart
as it requires Θ(n2) random comparisons whp. While this new result is of an independent
algorithmic interest, together with the edge-less clock they conceptually power the strand
(line-segment carrying information) self-replication protocol studied at the end of this paper.

L. G. asieniec, P. Spirakis, and G. Stachowiak 44:3

In a wider context, self-replication is a property of a dynamical system which allows
reproduction. Such systems are of increasing interest in biology, e.g., in the context of how
life could have begun on Earth [8], but also in computational chemistry [10], robotics [7] and
other fields. In our case a larger chunk of information (well beyond the limited state capacity)
is stored collectively in a strand (line-segment) of agents. Such strands may represent strings
in pattern matching or a large value, or a code in more complex distributed process. In such
cases the replication mechanism facilitates an improved accessibility to this information. We
propose the first strand self-replication protocol allowing to reproduce a strand of size k in
parallel time O(n(k + log n)). This protocol permits simultaneous replication, where l copies
of a strand can be generated in parallel time O(n(k + log n) log l). The parallelism of this
protocol is utilised in efficient pattern matching.

The full version of this paper including definitions, algorithms and formal proofs is
available on arXiv.org [3].

2 Open Problems

We conjecture that our line formation protocol is optimal, i.e., no population protocol
can construct a line containing all agents in parallel time o(n log n) whp. Going beyond
the proposed strand self-replication protocol one could investigate whether other network
structures can self-replicate and at what cost.

References
1 D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks of

passively mobile finite-state sensors. In Proc. PODC 2004, pages 290–299, 2004.
2 D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a

leader. Distributed Comput., 21(3):183–199, 2008.
3 L. Gąsieniec, P.G. Spirakis, and G. Stachowiak. New clocks, optimal line formation and efficient

replication population protocols (making population protocols alive). CoRR, abs/2111.10822,
2021. arXiv:2111.10822.

4 A. Czumaj and A. Lingas. On truly parallel time in population protocols. CoRR,
abs/2108.11613, 2021. arXiv:2108.11613.

5 D. Doty, M. Eftekhari, L. Gąsieniec, E.E. Severson, G. Stachowiak, and P. Uznański. A time
and space optimal stable population protocol solving exact majority. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, pages 1044–1055, 2021.

6 L. Gąsieniec and G. Stachowiak. Enhanced phase clocks, population protocols, and fast space
optimal leader election. J. ACM, 68(1):2:1–2:21, 2021.

7 R.A. Freitas Jr and R.C. Merkle. Kinematic Self-Replicating Machines. Landes Bioscience,
Georgetown, TX, 2004.

8 T.A. Lincoln and G.F. Joyce. Self-sustained replication of an rna enzyme. In Science, Vol 323,
Issue 5918, pages 1229–1232. American Association for the Advancement of Science, 2009.

9 O. Michail and P. Spirakis. Simple and efficient local codes for distributed stable network
construction. Distributed Computing, 29(3):207–237, 2016.

10 E. Moulin and N. Giuseppone. Dynamic combinatorial self-replicating systems. In Constitu-
tional Dynamic Chemistry, pages 87–105. Springer, 2011.

DISC 2022

http://arxiv.org/abs/2111.10822
http://arxiv.org/abs/2108.11613

Brief Announcement: Performance Anomalies in
Concurrent Data Structure Microbenchmarks
Rosina F. Kharal # Ñ

University of Waterloo, Canada

Trevor Brown # Ñ

University of Waterloo, Canada

Abstract
Recent decades have witnessed a surge in the development of concurrent data structures with an
increasing interest in data structures implementing concurrent sets (CSets). Microbenchmarking
tools are frequently utilized to evaluate and compare performance differences across concurrent
data structures. The underlying structure and design of the microbenchmarks themselves can
play a hidden but influential role in performance results. However, the impact of microbenchmark
design has not been well investigated. In this work, we illustrate instances where concurrent data
structure performance results reported by a microbenchmark can vary 10-100x depending on the
microbenchmark implementation details. We investigate factors leading to performance variance
across three popular microbenchmarks and outline cases in which flawed microbenchmark design can
lead to an inversion of performance results between two concurrent data structure implementations.
We further derive a prescriptive approach for best practices in the design and utilization of concurrent
data structure microbenchmarks.

2012 ACM Subject Classification Computing methodologies → Parallel computing methodologies

Keywords and phrases concurrent microbenchmarks, concurrent data structures, high performance
simulations, PRNGs

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.45

Related Version Full Version: https://arxiv.org/abs/2208.08469

Funding This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) Collaborative Research and Development grant: CRDPJ 539431-19, the Canada
Foundation for Innovation John R. Evans Leaders Fund with equal support from the Ontario Research
Fund CFI Leaders Opportunity Fund: 38512, NSERC Discovery Program Grant: RGPIN-2019-04227,
and the University of Waterloo.

1 Introduction

An extensive variety of concurrent data structures have appeared over the past decade, with
a particular focus on data structures implementing concurrent sets (CSets). A CSet is an
abstract data type (ADT) which stores keys and provides three primary operations on keys:
search, insert, and delete. Insert and delete operations modify the CSet and are called update
operations. There are numerous concurrent data structures that can be used to implement
CSets, including trees, skip-lists, and linked-lists. Microbenchmarks are commonly used to
evaluate the performance of CSet data structures, essentially performing a stress test on the
CSet across varying search/update workloads and thread counts. A typical microbenchmark
runs an experimental loop bombarding the CSet with randomized operations performed by
threads until the duration of the experiment expires. Throughput, number of operations
performed by a CSet, is a key performance metric.

Multiple microbenchmarks exist to support CSet research. While CSet implementations
have been well studied [1-3], the popular microbenchmarks used to evaluate them have
not been scrutinized to the same degree. Microbenchmarking idiosyncrasies exist that can
significantly distort performance results across data structures.

© Rosina F. Kharal and Trevor Brown;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 45; pp. 45:1–45:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rkharal@uwaterloo.ca
https://mc.uwaterloo.ca/people.html
mailto:trevor.brown@uwaterloo.ca
http://tbrown.pro
https://doi.org/10.4230/LIPIcs.DISC.2022.45
https://arxiv.org/abs/2208.08469
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Performance Anomalies in Concurrent Data Structure Microbenchmarks

(a) Initial Performance Results (b) Common DS Implementation (c) Updates to Benchmarks
T

hr
ou

gh
pu

t

Figure 1 Throughput results across three microbenchmarks, Ascylib, Synchrobench and Setbench
executing on a 256-core system testing the lock-free BST [5]. Results displayed on a logarithmic
y-axis. Figure (a) results from unmodified microbenchmarks (as written by their authors). Figure (b)
equalize the data structure (DS) implementations only. Ascylib_DS and Synchro_DS are updated
with the imported lock-free BST implementation from Setbench. Figure (c) results for modified
versions of Synchrobench and Ascylib correcting for pitfalls in microbenchmark design.

2 Microbenchmark Idiosyncrasies

When testing a CSet implementation on three different microbenchmarks with identical
parameters, one would expect to observe similar performance results within a reasonable
margin of error. However, we found 10-100x performance differences on the same CSet data
structure tested across the Setbench [2], Ascylib [3], and Synchrobench [4] microbenchmarks.
These microbenchmarks are often employed for evaluation of high performance CSets.

In Figure 1(a) we observe a range of varying performance results on the popular lock-free
BST by Natarajan et al. [5] across the three microbenchmarks displayed using a logarithmic
y-axis in order to capture wide performance gaps on a single scale. We performed a systematic
review of the design intricacies within each microbenchmark. Our investigations led to the
discovery that seemingly minor differences in the architecture and experimental design
of a microbenchmark can cause a 10-100x performance boost erroneously indicating high
performance of the data structure when the underlying cause is the microbenchmark itself.
We perform successive updates to two of the microbenchmarks adjusting where errors or
discrepancies were discovered until performance is approximately equalized (Figure 1(c)). In
previous work by Arbel et al. [1], it was noted that data structure implementation differences
can account for varying performance results in microbenchmark experimentation. We adjusted
each microbenchmark to use a common lock-free BST implementation (Figure 1(b)) and still
observed large performance gaps. Adjustments to the microbenchmark design were necessary
to equalize results.

During our investigations, we found the following factors have the greatest impact
on microbenchmark performance: (1) Repeated benchmark code is prone to error. In
Synchrobench where the algorithm running performance experiments is duplicated for
each data structure, errors in the algorithm led Synchrobench results to exceed other
microbenchmarks by 100x. The microbenchmark testing algorithm should exist in one
centralized location and provide easy adaptation to new data structures. (2) Pseudo random
number generators (PRNGs) are typically used to generate random keys and operations.
The way that a PRNG is integrated into the microbenchmark can play a significant role in
experimental results. We investigate in detail in the full paper. (3) Microbenchmarks use
a variety of techniques for splitting the update rate between insert and delete operations.
For example, alternating between update operations, or flipping a biased coin to decide if

R. F. Kharal and T. Brown 45:3

the next update will be an insert or delete. This has a non-trivial impact on performance.
Recommended practice is to randomly distribute update operations between insert and
delete operations using per thread PRNGs. (4) Synchrobench introduced a setting to
enforce a specified rate of effective updates. An update operation is considered effective if
it successfully modifies the CSet. Enforcing effective updates is problematic because, for
example, in an almost full data structure, to perform an effective insert, one may need to
repeatedly attempt to insert many random keys until one succeeds. The attempts leading up
to the successful insert are essentially searches (which are faster than updates), and they are
counted towards throughput, inflating performance. (5) Memory reclamation can play an
influential role in performance results. The Ascylib microbenchmark memory reclamation
algorithm is leaking memory at higher thread counts. This may render some microbenchmark
experiments impracticable due to growth in memory usage. (6) Our recommended best
practice for microbenchmark design includes strategies to detect and mitigate errors in
the microbenchmark. We certainly recommend a checksum validation in microbenchmark
experiments: the sum of keys inserted minus the sum of keys deleted into the CSet during an
experiment should equal the final sum of keys contained in the CSet following the experiment.
In our work, adding checksum validation assisted in discovering microbenchmark and data
structure implementation errors. (7) We recommend a data structure prefilling step that
includes randomized insert and delete operations. This generates a prefilled CSet data
structure with a more realistic configuration, as opposed to a CSet that is produced by
insert-only operations.

2.1 PRNG Usage in Concurrent Microbenchmarks
PRNGs are heavily relied upon in microbenchmarks to generate randomized keys and/or
select randomized operations on a CSet. Researchers may be tempted to pre-generate a large
array of random numbers prior to an experiment, thereby moving the cost of generating
high quality randomness into the unmeasured setup phase of the experiment. We found
this approach to be counter productive due to the impact on processor caching. In our full
paper, we examine various PRNG methodologies and make practical recommendations for
generating fast, high quality randomness, using hardware support where available.

References
1 Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. Getting to the root of concurrent

binary search tree performance. In 2018 USENIX Annual Technical Conference, 2018.
2 Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. Non-blocking interpolation search

trees with doubly-logarithmic running time. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2020.

3 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency: The
secret to scaling concurrent search data structures. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems, 2015.

4 Vincent Gramoli. More than you ever wanted to know about synchronization: Synchrobench,
measuring the impact of the synchronization on concurrent algorithms. In Proceedings of the
Symposium on Principles and Practice of Parallel Programming, pages 1–10, 2015.

5 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, 2014.

DISC 2022

Brief Announcement: Gathering Despite Defected
View
Yonghwan Kim #

Nagoya Institute of Technology, Aichi, Japan

Masahiro Shibata #

Kyushu Institute of Technology, Fukuoka, Japan

Yuichi Sudo #

Hosei University, Tokyo, Japan

Junya Nakamura #

Toyohashi University of Technology, Aichi, Japan

Yoshiaki Katayama #

Nagoya Institute of Technology, Aichi, Japan

Toshimitsu Masuzawa #

Osaka University, Japan

Abstract
In this paper, we provide a new perspective on the observation by robots; a robot cannot necessarily
observe all other robots regardless of distances to them. We introduce a new computational model
with defected views called a (N ,k)-defected model where k robots among N − 1 other robots can be
observed. We propose two gathering algorithms: one in the adversarial (N ,N − 2)-defected model
for N ≥ 5 (where N is the number of robots) and the other in the distance-based (4,2)-defected
model. Moreover, we present two impossibility results for a (3,1)-defected model and a relaxed (N ,
N − 2)-defected model respectively. This announcement is short; the full paper is available at [1].

2012 ACM Subject Classification Computing methodologies → Self-organization

Keywords and phrases mobile robot, gathering, defected view model

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.46

Related Version Full Version: https://arxiv.org/abs/2208.08159

Funding This work was supported in part by JSPS KAKENHI Grant Numbers 18K18031, 19H04085,
19K11823, 20H04140, 20KK0232, 21K17706, and Foundation of Public Interest of Tatematsu.

1 Introduction

An autonomous mobile robot system is a distributed system consisting of many mobile
computational entities (called robots) with limited capabilities. Each robot observes the other
robots (Look), computes the destination based on the observation result (Compute), and
moves to the destination point (Move). Each robot autonomously and cyclically performs
the above three operations to achieve the given common goal. Since an autonomous mobile
robot system is firstly introduced in [2], many researchers are interested in clarifying the
relationship between the capabilities of the robots and solvability of the problems.

Generally, in Look operation, each robot can observe all other robots to compute the
destination point to move. In other words, each robot takes a snapshot consisting of all
other robots’ (relative) positions in its Look operation. However, from several practical
reasons (e.g., memory restriction, memory corruption, or sensing failure), the positions of all
robots may not be available necessarily available in Compute operation. This raises the main
question we address: “what occurs if a robot cannot observe some of other robots?”. More
precisely, “how many other robots should be observed to achieve the goals of the problems?”.

© Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura, Yoshiaki Katayama, and
Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 46; pp. 46:1–46:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kim@nitech.ac.jp
https://orcid.org/0000-0002-5437-7626
mailto:shibata@csn.kyutech.ac.jp
https://orcid.org/0000-0003-1414-8033
mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:junya@imc.tut.ac.jp
https://orcid.org/0000-0002-1363-4358
mailto:katayama@nitech.ac.jp
https://orcid.org/0000-0003-1683-2154
mailto:masuzawa@ist.osaka-u.ac.jp
https://orcid.org/0000-0003-4628-6393
https://doi.org/10.4230/LIPIcs.DISC.2022.46
https://arxiv.org/abs/2208.08159
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Gathering Despite Defected View

To provide some answers for the above research questions, we propose a new computational
model with restriction on the number of the robots that each robot can observe, named
the defected view model, where each robot observes only k other robots for 1 ≤ k < N − 1,
where N is the number of robots. It is obvious that when k becomes the lower, the problem
becomes the harder (possibly impossible) to solve. We consider two different defected view
models regarding which k robots are observed: the adversarial (N ,k)-defected model and the
distance-based (N ,k)-defected model (see Definition 1 for details).

As the first step of the study on the defected view model, we address the gathering
problem and get the following results: two gathering algorithms in the adversarial (N ,
N − 2)-defected model for N ≥ 5 and the distance-based (4,2)-defected model, and some
impossibility results to show the necessity of the assumptions the above algorithms use.

2 Model

Let R = {r1, r2, ..., rN } be the set of N autonomous mobile robots deployed in a plane.
Robots are identical, uniform, oblivious, and have no geometrical agreement; they do not
agree on any axis, the unit distance, nor chirality. A point in the plane is occupied if there
exists a robot at the point. We allow two or more robots to occupy the same point at the
same time. We call a robot a single robot if the point occupied by the robot has no other
robot. Otherwise, we call it an accompanied robot. Each robot cyclically and synchronously
performs the three operations, Look, Compute, and Move, we call the time duration in which
all robots perform the three operations once a round. Moreover, we assume an unlimited
visibility range and a weak multiplicity detection.

▶ Definition 1 ((N ,k)-defected model). Each robot r can get from Look operation the set of
occupied points (in its coordinate system) where k robots not accompanied with r are located
(i.e., the k robots contains no robot located at r’s current point). When the number of robots
not accompanied with r is less than k, all such robots are observed. The weak multiplicity
detection concerning the k robots is assumed: a point occupied by only one of the k robots
can be distinguished from that occupied by two or more of the k robots. Moreover, r can
distinguish whether r is single or accompanied.

We consider two options of the defected view model; adversarial (N ,k)-defected model
and distance-based (N ,k)-defected model. In the adversarial (N ,k)-defected model, k robots
observed by each robot are determined adversarially. In the distance-based (N ,k)-defected
model, each robot r observes the k closest robots to the r’s current point. Tie breaks among
the robots the same distance apart is determined in an arbitrary way. In this paper, we
consider the Gathering Problem to locate all robots at the same point under these models.

3 Proposed Algorithms and Impossiblity Results

Algorithm 1 presents an algorithm to achieve the gathering for robot ri in the adversarial
(N , N − 2)-defected model where N ≥ 5: OPSET() is a function that returns a set of points
{p | p is occupied by ri or by the robots that ri observed}, and isMulti(p) returns TRUE if
point p is occupied by two or more robots that ri observed (weak multiplicity), otherwise
FALSE. The following theorem holds (we omit the proof).

▶ Theorem 2. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in three rounds.

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 46:3

Algorithm 1 Algorithm for robot ri in the adversarial (N, N − 2)-defected model where N ≥ 5.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: move to the center of the smallest enclosing circle of OPSET()
7: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

Algorithm 2 Gathering algorithm for robot ri in the distance-based (4,2)-defected model.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: if OPSET() forms an equilateral triangle then
7: move to the center of the triangle (i.e., incenter)
8: else if OPSET() forms an isosceles triangle then
9: move to the midpoint of the base of the triangle

10: else ▷ the other triangle or collinear three points
11: move to the midpoint of the longest line
12: end if
13: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

We do not know whether the gathering problem in the adversarial (4,2)-defected model
is solvable or not yet. However, the gathering problem in the distance-based (4,2)-defected
model can be solved by Algorithm 2 (Theorem 3). Moreover, there is no (deterministic)
algorithm to solve the gathering problem in the defected view model for N = 3 (Theorem 4).

▶ Theorem 3. In the distance-based (4, 2)-defected model, Algorithm 2 solves the gathering
problem in four rounds.

▶ Theorem 4. There is no (deterministic) algorithm to solve the gathering problem in the
distance-based (3,1)-defected model.

The (N , k)-defected model assumes that k robots observed by robot r are chosen from
the robots that are not accompanied with r and that r can detect whether it is single
or accompanied. Natural relaxation of the model is to choose the k robots other than r

(i.e., robots at r’s current position can be chosen) and assume the weak multiplicity detection
for the k robots and r itself. We call the model with the relaxation the relaxed adversarial
(N ,k)-defected model. The following impossibility result holds.

▶ Theorem 5. There is no (deterministic) algorithm to solve the gathering problem in the
relaxed adversarial (N ,N − 2)-defected model.

References
1 Yonghwan Kim et al. Gathering despite defected view, 2022. doi:10.48550/ARXIV.2208.

08159.
2 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Formation

of Geometric Patterns. SIAM J. Comput., 28(4):1347–1363, 1999.

DISC 2022

https://doi.org/10.48550/ARXIV.2208.08159
https://doi.org/10.48550/ARXIV.2208.08159

Brief Announcement: An Effective Geometric
Communication Structure for Programmable
Matter
Irina Kostitsyna #

TU Eindhoven, The Netherlands

Tom Peters #

TU Eindhoven, The Netherlands

Bettina Speckmann #

TU Eindhoven, The Netherlands

Abstract
The concept of programmable matter envisions a very large number of tiny and simple robot particles
forming a smart material that can change its physical properties and shape based on the outcome of
computation and movement performed by the individual particles in a concurrent manner. We use
geometric insights to develop a new type of shortest path tree for programmable matter systems.
Our feather trees utilize geometry to allow particles and information to traverse the programmable
matter structure via shortest paths even in the presence of multiple overlapping trees.

2012 ACM Subject Classification Computing methodologies → Self-organization

Keywords and phrases Programmable matter, amoebot model, shape reconfiguration

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.47

Related Version Full Version: https://arxiv.org/abs/2202.11663

1 Introduction

The concept of programmable matter envisions a very large number of tiny and simple robot
particles forming a smart material that can change its physical properties and shape based
on the outcome of computation and movement performed by the individual particles in
a concurrent manner. We focus on the amoebot model, which was introduced in [2] and
refined in [1]. This model assumes a very small size of the particles and greatly restricts their
computation, communication, and movement capabilities.

In the amoebot model particles occupy nodes of a triangular grid G embedded in the
plane. A particle can occupy one (contracted particle) or two (expanded particle) adjacent
nodes of the grid. The particles have limited computational power due to constant memory
space, no common notion of orientation (disoriented), and no common notion of clockwise or
counter-clockwise order (no consensus on chirality). They are identical (no IDs and they all
execute the same algorithm), but can locally distinguish between their neighbors using six
(for contracted particles) or ten (for expanded particles) port identifiers. Ports are labeled
in order (either clockwise or counterclockwise) modulo six or ten, respectively. Particles
communicate by sending messages to their neighbors using the ports and we assume a particle
knows which of its neighbors ports is pointing to itself.

We call the set of particles and their internal states a particle configuration P. Let GP
be the subgraph of G induced by the nodes occupied by particles in P. We say that P is
connected if there is a path in GP between any two particles in P . A hole in P is an interior
face of GP with more than three vertices. A particle configuration P is simply connected if
it is connected and has no holes.

© Irina Kostitsyna, Tom Peters, and Bettina Speckmann;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 47; pp. 47:1–47:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.kostitsyna@tue.nl
mailto:t.peters1@tue.nl
mailto:b.speckmann@tue.nl
https://doi.org/10.4230/LIPIcs.DISC.2022.47
https://arxiv.org/abs/2202.11663
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 An Effective Geometric Communication Structure for Programmable Matter

2 Shortest path trees

Among the previously proposed primitives for amoebot coordination is the spanning forest
primitive [3] which organizes all particles into trees to facilitate movement while preserving
connectivity. However, the spanning forest primitive does not impose any additional structure
on the resulting spanning trees. We propose a type of shortest path trees, which we call
feather trees, in which the path from any particle p to the root r of the feather tree is not
longer than any unrestricted path from p to r in GP . Feather trees can be constructed
as fast as spanning forests, namely in time linear in the diameter d of GP . They can be
used for the same purposes, but have additional geometric properties that support efficient
communication and movement of particles even in the presence of multiple overlapping trees.

2.1 Feather trees
We construct a feather tree from a root r in the following way. We distinguish between
particles lying on shafts (emanating from the root r or other specific nodes) and branches
(see Fig. 1 (left)). Each particle stores the direction of its parent and whether it is on a
shaft or a branch. The root r chooses a maximum independent set of neighbors Nind ; the set
contains at most three particles and there are at most two ways to choose it. The particles
in Nind form the bases of shafts emanating from r. All other neighbors of r form the bases of
branches emanating from r. Specifically, let particle p be a neighbor of r across port i. The
parent of p is set to i + 3 (recall that arithmetic on ports is modulo six), translated to the
coordinate system of p. Particle p lies on a shaft if it is in Nind , and on a branch otherwise.

A shaft particle with a parent in direction i propagates the shaft straight to the particle
at i + 3, and branches into the two directions at ports i + 2 and i + 4. A branch particle
with a parent in direction i propagates the branch straight to the particle at i + 3.

We say a bend in a path is formed by three consecutive vertices that form a 120◦ angle. By
growing a feather tree according to the rules described so far, we process only particles that
are reachable from r by a path with a single bend. We hence need to extend our construction
around reflex vertices on the boundary of P that lie on branches. Specifically, if a branch
particle p has a parent at direction i, the direction i + 1 (or i − 1) does not contain a particle,
and the direction i + 2 (or i − 2) does contain a particle, then p initiates a growth of a new
shaft in direction i + 2 (or i − 2) (see Fig. 1 (right)). We hence have the following lemma:

▶ Lemma 1. Given a simply connected particle configuration P with diameter d, and a
particle r ∈ P, we can grow a feather tree from r in O(d) rounds.

Figure 1 Two feather trees growing from the dark blue root. Shafts are red and branches are blue.
Left: every particle is reachable by the initial feathers; Right: additional feathers are necessary.

I. Kostitsyna, T. Peters, and B. Speckmann 47:3

Every particle is reached by a feather tree exactly once, from one particular direction. Hence,
the feather tree is unique, independent of the activation sequence of the particles. In the
following we describe how to navigate a set of overlapping feather trees. To do so, we first
identify a useful property of shortest paths in feather trees.

We say that a vertex v of GP is an inner vertex, if v and its six neighbors are part of GP .
All other vertices are boundary vertices. We say that a bend is an inner bend if its middle
vertex is an inner vertex; otherwise the bend is a boundary bend.

▶ Definition 2 (Feather Path). A path in GP is a feather path if it does not contain two
consecutive inner bends.

The next lemma follows from the fact that inner bends can occur only on shafts, and any
path must alternate visiting shafts and branches.

▶ Lemma 3. Every path from the root to a leaf in a feather tree is a feather path.

3 Communicating over shortest path trees

Consider a token t traversing a single feather tree F in a network of overlapping feather trees.
Due to their limited memory, particles cannot store the identity of F . Despite that, due to
Lemma 3, particles can propagate tokens down a feather tree by simply counting the number
of inner bends. Thus, when a token is traversing a feather tree F down from the root, it
always reaches a leaf of F via a shortest path through P. In particular, it is always a valid
choice for p to propagate t straight ahead (if feasible). A left or right 120◦ turn is a valid
choice if it is a boundary bend, or if the last bend the token made was a boundary bend.
We cannot control which leaf of F the token t reaches, but it does so without leaving F and
hence along a shortest path. We can also broadcast token t to all leaves of F .

Consider now a node ℓ, which is a leaf of multiple feather trees. A token t starting out at
node ℓ will always reach the root of one of its feather trees along a shortest path. However,
we cannot control which root t reaches. Alternatively, we can broadcast t to all roots of the
trees containing node ℓ. As before, the token t navigates by keeping track of the number of
inner bends. In particular, if t already made one inner bend since its last boundary bend,
then the only valid choice is to continue straight ahead. Otherwise, all three options (straight
ahead or a 120◦ left or right turn) are valid.

References
1 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot

Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed
Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 20:1–20:19, 2021. doi:10.4230/LIPIcs.DISC.2021.20.

2 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot—A New Model for Programmable
Matter. In Proc. 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 220–222, 2014. doi:10.1145/2612669.2612712.

3 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader Election and Shape Formation with Self-organizing Programmable
Matter. In Proc. International Workshop on DNA-Based Computing (DNA), LNCS 9211,
pages 117–132, 2015. doi:10.1007/978-3-319-21999-8_8.

DISC 2022

https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-319-21999-8_8

Brief Announcement: Distributed Quantum
Interactive Proofs
François Le Gall #

Graduate School of Mathematics, Nagoya University, Japan

Masayuki Miyamoto #

Graduate School of Mathematics, Nagoya University, Japan

Harumichi Nishimura #

Graduate School of Informatics, Nagoya University, Japan

Abstract
The study of distributed interactive proofs was initiated by Kol, Oshman, and Saxena [PODC
2018] as a generalization of distributed decision mechanisms (proof-labeling schemes, etc.), and
has received a lot of attention in recent years. In distributed interactive proofs, the nodes of an
n-node network G can exchange short messages (called certificates) with a powerful prover. The
goal is to decide if the input (including G itself) belongs to some language, with as few turns of
interaction and as few bits exchanged between nodes and the prover as possible. There are several
results showing that the size of certificates can be reduced drastically with a constant number of
interactions compared to non-interactive distributed proofs.

In this brief announcement, we introduce the quantum counterpart of distributed interactive
proofs: certificates can now be quantum bits, and the nodes of the network can perform quantum
computation. The main result of this paper shows that by using quantum distributed interactive
proofs, the number of interactions can be significantly reduced. More precisely, our main result
shows that for any constant k, the class of languages that can be decided by a k-turn classical
(i.e., non-quantum) distributed interactive protocol with f(n)-bit certificate size is contained in the
class of languages that can be decided by a 5-turn distributed quantum interactive protocol with
O(f(n))-bit certificate size. We also show that if we allow to use shared randomness, the number
of turns can be reduced to 3-turn. Since no similar turn-reduction classical technique is currently
known, our result gives evidence of the power of quantum computation in the setting of distributed
interactive proofs as well.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Quantum computation theory

Keywords and phrases distributed interactive proofs, distributed verification, quantum computation

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.48

Related Version Full Version: https://arxiv.org/abs/2210.01390

Funding FLG was supported by the JSPS KAKENHI grants JP16H01705, JP19H04066, JP20H00579,
JP20H04139, JP20H05966, JP21H04879 and by the MEXT Q-LEAP grants JPMXS0118067394 and
JPMXS0120319794. MM was supported by JST, the establishment of University fellowships towards
the creation of science technology innovation, Grant Number JPMJFS2120. HN was supported
by the JSPS KAKENHI grants JP19H04066, JP20H05966, JP21H04879, JP22H00522 and by the
MEXT Q-LEAP grants JPMXS0120319794.

1 Introduction

In distributed computing, the topology of the communication network is fundamental
information and efficient verification of graph properties of the network is useful from both
theoretical and applied aspects. The study of this notion of verification in the distributed
setting has lead to the notion of “distributed NP” in analogy with the complexity class NP in
centralized computation: A powerful prover provides certificates to each node of the network

© François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 48; pp. 48:1–48:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:legall@math.nagoya-u.ac.jp
mailto:masayuki.miyamoto95@gmail.com
mailto:hnishimura@is.nagoya-u.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2022.48
https://arxiv.org/abs/2210.01390
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Distributed Quantum Interactive Proofs

in order to convince that the network has a desired property; If the property is satisfied, all
nodes must output “accept”, otherwise at least one node must output “reject”. This concept
of “distributed NP” has been formulated in several ways, including proof-labeling schemes
(PLS) [5], non-deterministic local decision (NLD) [2], and locally checkable proofs (LCP) [3].

As a motivating example, consider the problem of verifying whether the network is
bipartite or not. While this problem cannot be solved in O(1) round without prover, it
can easily be solved with a prover telling to each node to each part it belongs to, which
requires only a 1-bit certificate per node, and then each node broadcasting this information
to its adjacent nodes (here the crucial point is that if the network is non-bipartite, then at
least one node will be able to detect it). On the other hand, it is known that there exist
properties that require large certificate size to decide: Göös and Suomela [3] have shown that
recognizing symmetric graphs (Sym) and non 3-colorable graphs (3Col) require Ω(n2)-bit
certificates per node in the framework of LCP (which is tight since all graph properties are
locally decidable by giving the O(n2)-bit adjacency matrix of the graph).

To reduce the length of the certificate for such problems, the notion of distributed
interactive proofs (also called distributed Arthur-Merlin proofs) was recently introduced by
Kol, Oshman and Saxena [4] as a generalization of distributed NP. In this model there are
two players, the prover (often called Merlin), who has unlimited computational power and
sees the entire network but is untrusted (i.e., can be malicious), and the verifier (often called
Arthur) representing all the nodes of the network, who can perform only local computation
and brief communication with adjacent nodes. Generalizing the concept of distributed NP,
the nodes are now allowed to engage in multiple turns of interaction with the prover. As for
distributed NP, there are two requirements of the protocol: if the input is legal (yes-instance)
then all nodes must accept with high probability (completeness), and if the input is illegal
then at least one node must reject with high probability (soundness).

In the setting of [4], each node has access to a private source of randomness, and sends
generated random bits to the prover in Arthur’s turn. For instance, a 2-turn protocol contains
two interactions: Arthur first queries Merlin by sending a random string from each node,
and then Merlin provides a certificate to each node. After that, nodes exchange messages
with adjacent nodes to decide their outputs. The main complexity measures when studying
distributed interactive protocols are the size of certificates provided to each node, the size of
the random strings generated at each node and the size of the messages exchanged between
nodes. Let us denote dAM[k](f(n)) the class of languages that have k-turn distributed
Arthur-Merlin protocols where Merlin provides O(f(n))-bit certificates, Arthur generates
O(f(n))-bit random strings at each node and O(f(n))-bit messages are exchanged between
nodes. Kol et al. [4] showed the power of interaction by giving a dAM[3](log n) protocol for
graph symmetry (Sym) and a dAM[4](n log n) protocol for graph non-isomorphism (GNI),
which are known to require Ω(n2)-bit certificate in LCP [3].

2 Our Results

In this paper we introduce the quantum counterpart of distributed interactive proofs, which
we call distributed quantum interactive proofs (or sometimes distributed quantum interactive
protocols) and write dQIP, and show their power. Roughly speaking, distributed quantum
interactive proofs are defined similarly to the classical distributed interactive proofs (i.e.,
distributed Arthur-Merlin proofs) defined above, but the messages exchanged between the
prover and the nodes of the network can now contain quantum bits (qubits), the nodes can
now do any (local) quantum computation (i.e., each node can apply any unitary transform

F. Le Gall, M. Miyamoto, and H. Nishimura 48:3

to the registers it holds), and each node can now send messages consisting of qubits to its
adjacent nodes. In analogy to the classical case, the main complexity measures when studying
distributed quantum interactive protocols are the size of registers exchanged between the
prover and the nodes, and the size of messages exchanged between the nodes. We give the
formal definition of dQIP in the full version of our paper. The class dQIP[k](f(n)) is defined
as the set of all languages that can be decided by a k-turn dQIP protocol where both the size
of the messages exchanged between the prover and the nodes, and the size of the messages
exchanged between the nodes are O(f(n)) qubits.

Our first result is the following theorem.

▶ Theorem 1. For any constant k ≥ 1, dAM[k](f(n)) ⊆ dQIP[5](f(n)).

Theorem 1 shows that by using distributed quantum interactive proofs, the number of
interactions in distributed interactive proofs can be significantly reduced. To prove this
result, we develop a generic quantum technique for turn reduction in distributed interactive
proofs. Since no similar turn-reduction classical technique is currently known, our result
gives evidence of the power of quantum computation in the setting of distributed interactive
proofs as well.

We also show that if we allow to use randomness shared to all nodes (we denote this
model by dQIPsh), the number of turns can be further reduced to three turns.

▶ Theorem 2. For any constant k ≥ 1, dAM[k](f(n)) ⊆ dQIPsh[3](f(n)).

On the other hand, in the classical case, it is known that allowing shared randomness does
not change the class [1]: dAMsh[k](f(n)) ⊆ dAM[k](f(n)) for all k ≥ 3 (in fact, the authors
of [1] showed dAMsh[k](f(n)) ⊆ dAM[k](f(n) + log n) for all k ≥ 1 where the additional log n

comes from constructing a spanning tree, but for k ≥ 3, a spanning tree can be constructed
with O(1)-sized messages between the prover and the nodes in three turns [6]).

As mentioned above, for (classical) dAM protocols increasing the number of turns is
helpful to reduce the complexity (in particular, the certificate size) for many problems. Our
result thus shows if we allow quantum resource, such protocols can be simulated in five turns,
and in three turns if we allow shared randomness.

References
1 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-Offs in Distributed Interactive

Proofs. In Proceedings of the 33rd International Symposium on Distributed Computing (DISC
2019), pages 13:1–13:17, 2019.

2 Pierre Fraigniaud, Amos Korman, and David Peleg. Local distributed decision. In Proceedings
of the IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011),
pages 708–717, 2011.

3 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of
Computing, 12(1):1–33, 2016.

4 Gillat Kol, Rotem Oshman, and Raghuvansh R Saxena. Interactive distributed proofs. In
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC
2018), pages 255–264, 2018.

5 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing,
22(4):215–233, 2010.

6 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2020), pages 1096–115, 2020.

DISC 2022

Brief Announcement: Null Messages, Information
and Coordination
Raïssa Nataf #

Technion, Haifa, Israel

Guy Goren #

Technion, Haifa, Israel

Yoram Moses #

Technion, Haifa, Israel

Abstract
This paper investigates how null messages can transfer information in fault-prone synchronous systems.
The notion of an f-resilient message block is defined and is shown to capture the fundamental
communication pattern for knowledge transfer. In general, this pattern combines both null messages
and explicit messages. It thus provides a fault-tolerant extension of the classic notion of a message-
chain. Based on the above, we provide tight necessary and sufficient characterizations of the
generalized communication patterns that can serve to solve the distributed tasks of (nice-run)
Signalling and Ordered Response.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Reasoning about belief and knowledge

Keywords and phrases null messages, fault tolerance, coordination, information flow

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.49

Related Version Full Version: https://arxiv.org/abs/2208.10866

Funding Guy Goren: Guy Goren was partly supported by a grant from the Technion Hiroshi
Fujiwara cyber security research center and the Israel cyber bureau, as well as by a Jacobs fellowship.
Yoram Moses: Yoram Moses is the Israel Pollak academic chair at the Technion. Both his work and
that of Raïssa Nataf were supported in part by the Israel Science Foundation under grant 2061/19.

1 Introduction

In synchronous models with a global clock, it may be possible to transmit information by
not sending a message, which Lamport termed sending a null message in [7]. While null
messages have been successfully employed to optimize communication in useful protocols
(see, e.g., [1, 6] for early examples), the question of how null messages convey information,
and what information they convey, has only been partly addressed. In addition, when failures
can occur, the use of null messages can become rather challenging. If i does not receive a
message from j in such a setting, i might not be able to distinguish whether this is because j

purposely refrained from sending, or because j failed. Nevertheless, recent work [4] has
shown that when the number of failures is bounded (by f , say), it is still possible to use
null messages to transmit information. Very roughly speaking, their “Silent Choir” theorem
implies that in a failure-free execution, the only way that a process j can learn i’s value
without receiving an explicit message chain from i is for there to be a set of f + 1 processes
that received such a chain from i do not send a message to j. However, this is far from being
sufficient. Our purpose in this paper is to initiate a systematic analysis of the role of null
messages, and obtain sharper characterizations of their use when processes can fail.

© Raïssa Nataf, Guy Goren, and Yoram Moses;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 49; pp. 49:1–49:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raissa.nataf@campus.technion.ac.il
mailto:sgoren@campus.technion.ac.il
mailto:moses@ee.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.49
https://arxiv.org/abs/2208.10866
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Null Messages, Information and Coordination

We consider the standard synchronous message-passing model with crash failures. We
assume a finite set P of processes that are connected via a communication network, and all
start at time 0. Moreover, messages are reliably delivered in one time step. We call one of
the processes the “source,” and denote it by s. For simplicity, we restrict our attention to the
case in which s has a binary initial value vs ∈ {0, 1}, while every process i ̸= s has a unique
initial state (with a fixed initial value, say 0). We assume a bound of f on the number of
processes that can crash in any given run. Finally, we focus on deterministic protocols, so
a protocol Q describes what messages a process sends and what decisions it takes, as a
function of its local state. In particular, a protocol Q has a single run in which vs = 1 and no
failures occur. We call this run Q’s nice run, and denote it by r̂(Q), or simply by r̂ when Q

is clear from context. A process is said to be active at time m if it has not crashed by time
m − 1 and it correctly follows its protocol at time m. For more about our formal model, see
[8]. Our analysis makes use of a formal theory of knowledge to capture how null messages
affect what processes do or do not learn. See [3] for more details and a general introduction
to the topic.

When the model is synchronous, it is common to consider the event that i did not send
its neighbor j a message at time t in a given run as if i sent j a null message there. Of course,
j will be able to observe at time t + 1 that no message was received. Notice, however, that
if i never sends j a message at time t then this will not provide j any information whatsoever.
We say that i sends j a genuine null message at time t in a run r if, in addition, there is some
run r′ ̸= r in which i does send a message to j at time t. From here on, all null messages will
assumed to be genuine. To capture the information conveyed by a null message, we use the
following:

▶ Definition 1 (Null message sent in case φ). We say that in protocol Q process i sends a
null message to j at time t in case φ if for every run r of Q in which i is active at time t, it
does not send a message to j at time t in r if and only if φ holds at time t in r.

Clearly, in a failure-free system (i.e., if f = 0) if i sends j a null message at time t then, at
time t + 1 process j comes to know that φ was true. In the presence of failures, however, j is
not guaranteed to know this, and a more subtle analysis is required. We begin by considering
the problem of transmitting information about the initial value vs of the source process to
another process j ̸= s. More precisely, we define a problem called nice-run signalling (NS) in
the following manner. Following [2], we use the notation ⟨i, t⟩, which we call a process-time
node to stand for process i at time t. A protocol Q is said to solve nice-run signalling (NS)
between ⟨s, 0⟩ and ⟨j, m⟩ if Kj(vs = 1) holds at time m in Q’s nice run r̂(Q). Instances of
NS often appear when optimizing the communication costs of protocols that solve other
distributed tasks (e.g., optimizing the good-case costs of Consensus [5]).

2 f -resilient message block

We now turn to study the communication patterns that protocols solving NS and related
problems can use in their nice runs. We focus on “communication graphs,” denoted by
CGQ(r) = (V, Em, En, Eℓ), that account for the messages and the null messages that are sent
in a run r of a given protocol Q. The set V of nodes of the graph consists of all process-time
nodes θ = ⟨i, t⟩, with t ≥ 0. The set Em consists of directed edges (θ, θ′) such that a message
is sent in r at θ and delivered to θ′, while En consists of directed edges (θ, θ′) such that a
(genuine) null message is sent in r from θ to θ′. Finally, Eℓ consists of all edges of the form
(⟨i, t⟩, ⟨i, t + 1⟩), i ∈ P and t ≥ 0, between consecutive nodes along the timeline of a process.

R. Nataf, G. Goren, and Y. Moses 49:3

In general, a path in the communication graph CGQ(r) records a chain consisting of both
actual messages and null messages. We therefore refer to it as a weak message chain. We are
now ready to define a primitive that plays an essential role in solutions to NS.

▶ Definition 2 (f -resilient message block). Let θ, θ′ ∈ P × N be two nodes. An f -resilient
message block from θ to θ′ in CGQ(r) is a set Γ of paths between θ and θ′ such that for all
sets B ⊂ P with |B| ≤ f there is a path in CGQ(r) that does not contain null messages sent
by processes in B.

Notice that a path that does not contain null messages sent by a process j can still contain
messages sent by j. As a result, if the adversary crashes j, this path may still convey
information. In a precise sense, f -resilient message blocks are both necessary and sufficient
for solving nice-run signalling, and we can obtain a tight characterization of the communication
patterns needed for solving NS:

▶ Theorem 3.
(Necessity) If a protocol Q solves NS from θs = ⟨s, 0⟩ to θj = ⟨j, m⟩, then there must be
an f -resilient message block from θs to θj in CGQ(r̂). (Recall that r̂ is Q’s nice run.)
(Sufficiency) If a communication graph CG contains an f -resilient message block between
θs = ⟨s, 0⟩ and θj = ⟨j, m⟩, then there exists a protocol Q with CGQ(r̂) = CG. that solves
NS between θs and θj.

Beyond direct information transfer as captured by the NS problem, we proceed in [8]
to consider a coordination problem called Ordered Response (OR) in which processes must
perform actions in a linear temporal order as a reaction to a spontaneous event (See [2]).
Namely, each process ih ∈ {i1, i2, . . . , ik} has a specific action ah to perform, and these
actions should be performed only if initially vs = 1. Moreover, they need to be performed in
temporal order. I.e., denoting by th the time at which ih performs ah, it is required that
t1 ≤ t2 ≤ · · · ≤ tk. Finally, we consider the variant in which all actions are performed in the
nice run. One way to solve this while ensuring no OR violation in any run is, roughly speaking,
to create f -resilient message blocks in CG(r̂), i.e., solving NS between each consecutive
pair of processes in the order, to inform ih+1 that ih has acted. This would be governed
by Theorem 3. However, information may also be transferred indirectly: for instance, if
process i3 knows that i2 knows that vs = 1 and that f processes – not including i2 have
failed – then it can infer that a2 has been performed, and so i3 can “safely” perform a3. For
characterizations of the communication patterns used in solutions to OR, see [8].

References
1 Eugene S. Amdur, Samuel M. Weber, and Vassos Hadzilacos. On the message complexity of

binary byzantine agreement under crash failures. Distributed Computing, 5(4):175–186, 1992.
2 Ido Ben-Zvi and Yoram Moses. Beyond Lamport’s happened-before: On time bounds and the

ordering of events in distributed systems. Journal of the ACM (JACM), 61(2):1–26, 2014.
3 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning About

Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.
4 Guy Goren and Yoram Moses. Silence. J. ACM, 67:3:1–3:26, 2020. doi:10.1145/3377883.
5 Guy Goren and Yoram Moses. Optimistically tuning synchronous Byzantine consensus: another

win for null messages. Distributed Computing, 34(5):395–410, 2021.
6 Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agreement.

Mathematical Systems Theory, 26(1):41–102, 1993.
7 Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM

Trans. Program. Lang. Syst., 6:254–280, 1984. doi:10.1145/2993.2994.
8 Raïssa Nataf, Guy Goren, and Yoram Moses. Null messages, information and coordination:

Preliminary report. CoRR, abs/2208.10866, 2022. arXiv:2208.10866.

DISC 2022

https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/3377883
https://doi.org/10.1145/2993.2994
http://arxiv.org/abs/2208.10866

Brief Announcement: Asymmetric Mutual
Exclusion for RDMA
Jacob Nelson-Slivon #

Lehigh University, Betlehem, PA, USA

Lewis Tseng #

Boston College, MA, USA

Roberto Palmieri #

Lehigh University, Betlehem, PA, USA

Abstract
In this brief announcement, we define operation asymmetry, which captures how processes may
interact with an object differently, and discuss its implications in the context of a popular network
communication technology, remote direct memory access (RDMA). Then, we present a novel approach
to mutual exclusion for RDMA-based distributed synchronization under operation asymmetry. Our
approach avoids RDMA loopback for local processes and guarantees starvation-freedom and fairness.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Mutual exclusion, Synchronization, Remote direct memory access (RDMA)

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.50

Related Version Technical Report: https://arxiv.org/abs/2208.09540

Funding This material is based upon work supported by the National Science Foundation under
Grant No. CNS-2045976.

1 Introduction

In contrast to traditional message-passing, remote direct memory access (RDMA) is a popular
network communication technology that directly implements the shared-memory abstraction
in the distributed setting by allowing a process to access memory on a remote machine
without interacting with another process. These operations are known as one-sided, since
they only involve one process. In addition to reads and writes, RDMA also provides atomic
read-modify-write (RMW) operations on remote memory, like compare-and-swap (CAS) and
fetch-and-add (FAA). Hence, the API closely resembles that of modern shared-memory.

Also similar to modern architectures, the memory semantics of RDMA is not sequentially
consistent. Since remote operations complete asynchronously, local and remote access to a
given memory location may be reordered. Furthermore, while remote reads and writes are
atomic with their local counterparts due to cache coherent I/O (e.g., Intel’s DDIO), atomicity
between local and remote RMW operations is not guaranteed. Without global atomicity
support (i.e., atomicity among all local and remote operations), all processes must rely on
the RDMA-capable network interface controller (RNIC) for consistency. More precisely, local
processes should use the loopback mechanism, which allows a process to access memory on
its own machine by passing through the RNIC.

In practice, both one-sided RDMA RMW and message-passing (e.g., RPCs) have their
drawbacks. For the one-sided approach, RDMA loopback is still an order of magnitude slower
than local accesses and introduces internal congestion [2]. While RPCs are prevalent in
RDMA-based systems, in part due to the many challenges associated with synchronizing local

© Jacob Nelson-Slivon, Lewis Tseng, and Roberto Palmieri;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 50; pp. 50:1–50:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jjn217@lehigh.edu
mailto:lewis.tseng@bc.edu
mailto:palmieri@lehigh.edu
https://doi.org/10.4230/LIPIcs.DISC.2022.50
https://arxiv.org/abs/2208.09540
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Asymmetric Mutual Exclusion for RDMA

and remote processes, message-passing can nullify the performance benefits that one-sided
RDMA provides. Thus, a primary motivation for our work is how to balance the needs of
both local and remote processes in the context of one-sided RDMA.

To that end, this brief announcement introduces the concept of operation asymmetry, a
property that captures how processes interact with memory differently, and describes a new
mutual exclusion algorithm designed to capture the nuanced requirements of synchronizing
local and remote processes in RDMA-enabled systems. To the best of our knowledge, we are
the first to solve mutual exclusion specifically for RDMA in a manner that does not require
RDMA loopback or message-passing. Our solution is starvation-free (i.e., a calling process
eventually executes its critical section) and fair (i.e., first-come-first-served).

2 Mutual Exclusion Under Operation Asymmetry

In our system model, processes communicate by accessing local or remote shared memory,
consisting of registers. For each class of access (local/remote), the registers in our system
support three operations: read (Read/rRead), write (Write/rWrite) and compare-and-swap
(CAS/rCAS). Local operations access memory natively while remote operations pass through
the RNIC. An operation on a register is enabled for a process if the process is able to access
the register using the given operation. Intuitively, local accesses are only enabled for local
processes (i.e., on the same machine as the register).

We define an object as operation asymmetric if, given two processes, the intersection of
their respective enabled operations on the object is not equal to their union. Under one-sided
RDMA, registers are operation asymmetric since remote processes cannot perform local
accesses. To demonstrate the consequences of operation asymmetry, recall that the atomicity
of local and remote operations is not guaranteed. Due to this behavior, an RDMA RMW
operation (e.g., rCAS) appears to a local process as if it were a Read then Write. Hence,
local processes must utilize RDMA loopback to ensure atomicity of RMW operations with
remote processes.

When designing a mutual exclusion primitive for RDMA-based systems (without global
atomicity), remote RMW operations provide the necessary atomicity but RDMA loopback
introduces overhead for local processes and network congestion. Therefore in our model, to
avoid local processes using RDMA loopback, we restrict the set of enabled operations for
local processes to only include local operations. However, due to operation asymmetry, any
solution satisfying these constraints can only be built from the greatest common denominator:
atomic read-write registers. Thus, approaches like Peterson’s lock [5] are appropriate.

2.1 Algorithm Description
To implement multi-process synchronization using operation asymmetric registers, we modify
the original (two-process) Peterson’s lock algorithm to embed an orthogonal mutual exclusion
primitive whereby local and remote processes compete amongst themselves for the right to
participate in the Peterson’s lock protocol. To limit the number of remote operations required
for remote processes, we embed the widely used MCS queue lock [3], allowing processes to
spin locally while waiting to acquire the lock. Our combination of locks is an extension
of lock cohorting [1] to an RDMA-enabled distributed system, and we adopt the naming
conventions by calling Peterson’s lock the global lock and the MCS queue locks cohort locks.
In our approach, processes with the same set of enabled operations (local or remote) compete
amongst themselves using their cohort lock to determine a leader that then participates in
the global protocol, relying only on process-wide atomic operations (i.e., read and write).

J. Nelson-Slivon, L. Tseng, and R. Palmieri 50:3

The original Peterson’s lock algorithm has two global variables: flag[2], which is a two
element array of boolean values indicating interest in the critical section, and victim, which
is an integer deciding which process yields execution. We modify the algorithm by replacing
flag with our MCS queue cohort locks.

A process first announces interest in executing its critical section by locking the corre-
sponding (local or remote) cohort lock, effectively raising its flag. If the calling process
acquires the cohort lock from another member of its cohort, it may enter the critical section
without additional steps. Otherwise, the process must engage in the (global) Peterson’s lock
protocol, by setting victim to its own process identifier then waiting while the other cohort
lock is held and victim is not changed. Since Peterson’s lock is constructed from atomic
read-write registers, and local and remote reads and writes are atomic, local operations need
only use local accesses, remote operations use one-sided RDMA, and no RDMA loopback is
necessary. To unlock, a process simply releases its cohort lock, effectively lowering the flag
variable of the original algorithm.

Each cohort lock is specifically designed for the class of processes in the cohort. That is,
there is one for local processes and another for remote processes. Note that MCS queue locks
are particularly well-suited for RDMA since they perform local-spinning, meaning that a
process need not repeatedly access remote memory while waiting for the lock. To implement
fairness, we alter our MCS queue algorithms to support a budget, similar to the technique
used by Dice et al. [1]. Once the budget is exhausted, the detecting process is required to
reacquire the global lock. If there is a waiting process of the opposite cohort, it will be
allowed to proceed. Otherwise, the calling process reacquires the global lock then resets the
budget. Since the global lock is released after a bounded number of cohort lock acquisitions,
and the global lock is itself fair (i.e., a waiting process cannot be overtaken), our approach is
fair [1]. Our technical report [4] includes more details, the pseudo-code, and a model-checked
TLA+ specification of our mutual exclusion primitive.

3 Conclusion

Motivated by our definition of operation asymmetry, we propose a starvation-free and fair
mutual exclusion mechanism for RDMA, enabling local and remote processes to synchronize
while optimizing for their individual behavioral constraints. To the best of our knowledge,
we present the first mutual exclusion solution that synchronizes local and remote processes
while avoiding both RDMA loopback and message-passing.

References
1 David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique for

Designing NUMA Locks. In PPoPP ’12, pages 247–256, 2012. doi:10.1145/2145816.2145848.
2 Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, Chuanxiong Guo, and Danyang

Zhuo. Collie: Finding Performance Anomalies in RDMA Subsystems. In NSDI ’22, pages
287–305, Renton, WA, 2022.

3 John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, February 1991.
doi:10.1145/103727.103729.

4 Jacob Nelson-Slivon, Lewis Tseng, and Roberto Palmieri. Technical Report: Asymmetric
Mutual Exclusion for RDMA, 2022. arXiv:2208.09540.

5 Gary L. Peterson. Myths About the Mutual Exclusion Problem. Information Processing
Letters, 12:115–116, 1981.

DISC 2022

https://doi.org/10.1145/2145816.2145848
https://doi.org/10.1145/103727.103729
http://arxiv.org/abs/2208.09540

Brief Announcement: Foraging in Particle Systems
via Self-Induced Phase Changes
Shunhao Oh #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Dana Randall #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Andréa W. Richa #

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Abstract
The foraging problem asks how a collective of particles with limited computational, communication
and movement capabilities can autonomously compress around a food source and disperse when
the food is depleted or shifted, which may occur at arbitrary times. We would like the particles to
iteratively self-organize, using only local interactions, to correctly gather whenever a food particle
remains in a position long enough and search if no food particle has existed recently. Unlike previous
approaches, these search and gather phases should be self-induced so as to be indefinitely repeatable
as the food evolves, with microscopic changes to the food triggering macroscopic, system-wide
phase transitions. We present a stochastic foraging algorithm based on a phase change in the fixed
magnetization Ising model from statistical physics: Our algorithm is the first to leverage self-induced
phase changes as an algorithmic tool. A key component of our algorithm is a careful token passing
mechanism ensuring a dispersion broadcast wave will always outpace a compression wave.

2012 ACM Subject Classification Theory of computation → Self-organization; Theory of computa-
tion → Random walks and Markov chains

Keywords and phrases Foraging, self-organized particle systems, compression, phase changes

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.51

Related Version Full Version: http://arxiv.org/abs/2208.10720

Funding Shunhao Oh: NSF award CCF-1733812 and ARO MURI award W911NF-19-1-0233
Dana Randall: NSF awards CCF-1733812 and CCF-2106687 and ARO MURI award W911NF-19-1-
0233
Andréa W. Richa: NSF awards CCF-1733680 and CCF-2106917 and ARO MURI award W911NF-
19-1-0233

1 The Foraging Problem

Collective behavior of interacting agents is a fundamental, nearly ubiquitous phenomenon
across fields, reliably producing rich and complex coordination. Examples at the micro- and
nano-scales include coordinating cells (including our own immune system or self-repairing
tissue and bacterial colonies), micro-scale swarm robotics, and interacting particle systems
in physics; at the macro scale it can represent flocks of birds, coordination of drones, and
societal dynamics such as segregation. Common properties of many of these disparate systems
is that they 1) respond to simple environmental conditions and 2) undergo phase changes
as parameters of the systems are slowly modified, allowing collectives to gracefully toggle
between two often dramatically different macroscopic states.

In the foraging problem, we consider a collective of “ants” (i.e., particles) with limited
computational, communication and movement capabilities that reside on the triangular
lattice, along with a food particle (i.e., any resource in the environment, e.g., an energy
source) that may be placed at any point, removed, or shifted at arbitrary times, possibly
adversarially. We would like the particles to consistently self-organize, using only local

© Shunhao Oh, Dana Randall, and Andréa W. Richa;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 51; pp. 51:1–51:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ohoh@gatech.edu
mailto:randall@cc.gatech.edu
mailto:aricha@asu.edu
https://doi.org/10.4230/LIPIcs.DISC.2022.51
http://arxiv.org/abs/2208.10720
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Foraging in Particle Systems via Self-Induced Phase Changes

interactions, such that if a food particle remains in a position long enough, the particles
should transition to a gather phase in which many collectively form a single large component
with small perimeter around the food. Alternatively, if no food particle has existed recently,
the particles should undergo a self-induced phase change and switch to a search phase in
which they distribute themselves randomly throughout the lattice region to search for food.
Unlike previous approaches, this process should be indefinitely repeatable, withstanding
overlapping waves of phase changes that may interfere with each other. Like a physical
phase change, microscopic changes such as the deletion or addition of a single food particle
should trigger these macroscopic, system-wide transitions. This foraging problem has several
fundamental application domains, including search-and-rescue operations in swarms of nano-
or micro-robots; health applications (e.g., a collective of nano-sensors that could search for,
identify, and gather around a foreign body to isolate or consume it, then resume searching,
etc.); and finding and consuming/deactivating hazards in a nuclear reactor or a minefield.

2 Model and Preliminaries

In this work, we consider an abstraction of a self-organizing particle system (SOPS), where
particles sit on vertices of a finite region of the triangular lattice. We assume particles have
constant-size memory, but lack global orientation or any other global information beyond a
common chirality. Particles communicate by sending tokens to their nearest neighbors in
the lattice, where a token is a constant-size piece of information. Individual particles are
activated according to their own Poisson clocks, possibly with different rates, and perform
instantaneous actions upon activation. Particles are aware of their own and their neighbors’
current states and when a particle is activated, it may do a bounded amount of computation,
send at most one token (not necessarily identical) to each of its neighbors, and choose one of
its six neighbors in the lattice to see if it is unoccupied and move there.1

Cannon et al. [1] introduced a related non-adaptive compression and expansion algorithm
based on an input parameter λ that defines system-wide behavior. When λ is sufficiently
small, the system is in an expansion phase, desirable to search for food, while when λ is
large, the system will be in a compression phase, desirable when food has been discovered.2
More specifically, using insight from the Ising model in statistical physics, the authors proved
that adding a ferromagnetic attraction λ between particles suffices to stochastically lead
the particles in a SOPS to an α-compressed configuration with high probability, where the
constant α > 1 determines an upper bound on the ratio of the configuration perimeter by the
minimum possible system perimeter. The Markov chain is defined so that each configuration
σ appears with probability π(σ) = λ|E(σ)|/Z at stationarity, where |E(σ)| is the number of
edges in σ and Z is the normalizing constant. It is rigorously shown that the SOPS will reach
an α-compressed configuration at stationarity, for some constant α > 1, if the attraction
force λ is strong enough. Moreover, it is also shown that when the attraction forces are small,
the configurations will nearly maximize their perimeter and disperse if particles are allowed
to disconnect [2], as we do in our algorithm.

Our challenge here is to self-induce these system-wide behaviors upon the discovery or
depletion of a single food particle. When food is not present, particles communicate to
transition to the search phase by collectively lowering λ, and when food is discovered they
transition to the gather phase, collectively raising λ to compress around the food.

1 Our model can be seen as an abstraction of the (canonical) Amoebot model under a sequential scheduler.
2 A similar algorithm for the more general setting where particles are allowed to disconnect also provably

exhibits a bifurcation, but the notion of compression becomes more complicated [2].

S. Oh, D. Randall, and A. W. Richa 51:3

3 The Adaptive Foraging Algorithm

We present the first rigorous local distributed algorithm for solving the foraging problem, the
Adaptive α-Compression algorithm. There are two main (micro-level) states each particle
can be in at any point in time, dispersion or compression, corresponding to the macro-level
search and gather phases respectively. To switch to the search phase, particles are induced to
collectively transition to the dispersion state. Likewise, to switch to gather, particles are
induced to transition towards compression. Particles in the dispersion state move around
in a process akin to a simple exclusion process, where they perform a random walk while
avoiding two particles occupying the same site. Particles enter a compression state when food
is found and this information is propagated in the system, resulting in the system gathering
and forming a low-perimeter cluster (compressing) around the food. We prove the following:

▶ Theorem 1. Starting from any valid configuration, in the presence of a single food particle
that remains static for a sufficient amount of time, the Adaptive α-Compression algorithm
will converge to an α-compressed configuration, for any α > 1, connected to the food particle
at stationarity with high probability. Conversely, if there are no food particles in the system
for a sufficient amount of time, the system converges to a uniform distribution over all
possible assignments of particles to sites on the lattice.

We believe Adaptive α-Compression is the first adaptive algorithm to leverage a self-
induced phase change as an algorithmic tool. The challenge is to share information locally
and autonomously so that eventually most particles enter the correct state and the system
exhibits the appropriate phase behavior. We rely on token passing for the system to be able
to collectively transition between (multiple, possibly overlapping and interfering) gather and
search phases: Each particle locally adjusts its ferromagnetic bias parameter λ to be high
when it receives compression tokens, which are continuously generated by any particle in
contact with the food source, and to be low when it receives dispersion tokens, which are
flooded through the network once a food particle disappears. In order to ensure that, our
token passing scheme needs to be carefully engineered so that when the food particle moves
or vanishes, the rate at which the compressed cluster around the food dissipates (via particles
returning to the dispersion state) outpaces the rate at which the cluster may continue to grow
(via particles joining the cluster in a compression state), and thus that the broadcast wave of
dispersion tokens will always outpace the broadcast wave of compression tokens, ensuring
that whenever we have a situation where two phase change waves compete, the dispersion
wave will be the one which wins out in the end. This is done via a novel potential function
argument that carefully sets the dispersion and compression token passing probabilities.

We note that while Adaptive α-Compression is very similar to the non-adaptive compres-
sion algorithm [1] in the presence of food, allowing particles to compress around a single
fixed point (the food particle), this is a nontrivial generalization. Even proving ergodicity
of the underlying Markov Chain in the presence of a fixed (food) point from which other
particles cannot disconnect is quite complicated and does not follow directly from [1].

References
1 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain

algorithm for compression in self-organizing particle systems. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 279–288, 2016.

2 Shengkai Li, Bahnisikha Dutta, Sarah Cannon, Joshua J. Daymude, Ram Avinery, Enes Aydin,
Andréa W. Richa, Daniel I. Goldman, and Dana Randall. Programming active granular matter
with mechanically induced phase changes. Science Advances, 7(17):eabe8494, 2021.

DISC 2022

Brief Announcement: Temporal Locality in Online
Algorithms
Maciej Pacut #

Technische Universität Berlin, Germany

Mahmoud Parham #

Faculty of Computer Science, Universität Wien, Austria

Joel Rybicki #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Stefan Schmid #

TU Berlin, German
Fraunhofer SIT, Berlin, Germany

Jukka Suomela #

Aalto University, Espoo, Finland

Aleksandr Tereshchenko #

Aalto University, Espoo, Finland

Abstract
Online algorithms make decisions based on past inputs, with the goal of being competitive against an
algorithm that sees also future inputs. In this work, we introduce time-local online algorithms; these
are online algorithms in which the output at any given time is a function of only T latest inputs.
Our main observation is that time-local online algorithms are closely connected to local distributed
graph algorithms: distributed algorithms make decisions based on the local information in the spatial
dimension, while time-local online algorithms make decisions based on the local information in the
temporal dimension. We formalize this connection, and show how we can directly use the tools
developed to study distributed approximability of graph optimization problems to prove upper and
lower bounds on the competitive ratio achieved with time-local online algorithms. Moreover, we
show how to use computational techniques to synthesize optimal time-local algorithms.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Distributed computing models

Keywords and phrases Online algorithms, distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.52

Related Version Full Version: https://arxiv.org/abs/2102.09413

Funding This research has received funding from the German Research Foundation (DFG), grant
470029389 (FlexNets), 2021-2024, and the Marie Skłodowska-Curie grant agreement No. 840605.

1 Introduction

A common setting in theoretical computer science is that there is a sequence of n inputs and
we need to produce a sequence of n outputs. In the case of classic centralized algorithms,
each output may arbitrarily depend on any part of the input. However, there are two key
settings in which outputs are produced based on partial inputs (see Figure 1):

In distributed computing, we can interpret the input sequence as a path formed by n

computers; each computer holds a local input and each computer has to produce a local
output. In this setting, fast distributed algorithms are also local: if the algorithm stops
after T = O(1) communication rounds, then the output of computer number i only
depends on the inputs of computers i − T, . . . , i + T .

© Maciej Pacut, Mahmoud Parham, Joel Rybicki, Stefan Schmid, Jukka Suomela, and Aleksandr
Tereshchenko;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 52; pp. 52:1–52:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maciej@inet.tu-berlin.de
https://orcid.org/0000-0002-6379-1490
mailto:mahmoud.parham@univie.ac.at
https://orcid.org/0000-0002-6211-077X
mailto:joel.rybicki@ist.ac.at
https://orcid.org/0000-0002-6432-6646
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
mailto:jukka.suomela@aalto.fi
https://orcid.org/0000-0001-6117-8089
mailto:aleksandr.tereshchenko@aalto.fi
https://doi.org/10.4230/LIPIcs.DISC.2022.52
https://arxiv.org/abs/2102.09413
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Temporal Locality in Online Algorithms

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

input

output
Offline algorithms
Centralized algorithms

Online algorithms

Time-local
online algorithms

Local distributed
algorithms

time: day i = 1, 2, 3, …

space: node i = 1, 2, 3, …

Figure 1 Local decision-making in time vs. space dimensions.

In online algorithms [3], we can interpret the input sequence as a time series, and the
output sequence as a sequence of decisions. At each time point i we need to make a
decision that is based on past inputs. That is, output at time point i only depends on
the inputs at time points 1, . . . , i − 1.

While these two settings share the feature that each output value depends only on some
but not all input values, this connection does not seem to enable much technology transfer
between the two domains. In particular, online algorithms are fundamentally infinite objects,
as the output may depend on an unbounded number of previous inputs.

In this work, we introduce time-local online algorithms; these are online algorithms in
which the output at any given time is a function of only T latest inputs, instead of the
full history of past inputs. Such algorithms (1) have new attractive properties that are not
exhibited by general online algorithms and (2) have many similarities with local distributed
graph algorithms, enabling one to transfer tools and techniques between the two domains.

2 Benefits of Time-Local Online Algorithms

Fault-Tolerant Distributed Decision. Time-local online algorithms lead to fault-tolerant
distributed decision-making. Consider a setting in which many geographically distributed
computers need to make consistent decisions. All computers can observe the same input
stream, and each day each of them has to announce its own decision.

If all computers are started at the same time, we can take any deterministic online
algorithm and let each computer run its own copy of the algorithm. However, this approach
does not tolerate failures: if a computer crashes and is restarted, the local state of the
algorithm is lost, and as the decisions may depend in general on the full history of inputs, it
will no longer make consistent decisions with the others.

M. Pacut, M. Parham, J. Rybicki, S. Schmid, J. Suomela, and A. Tereshchenko 52:3

Deterministic time-local online algorithms automatically guarantee that all computers will
make consistent decisions. The system will tolerate an arbitrary number of failures and ensure
that the computers will also recover from transient faults, i.e., it is self-stabilizing [4]: in T

steps since the latest failure, all computers will deterministically make consistent decisions,
without any communication.

Random Access to the Decision History. Time-local online algorithms make it possible to
efficiently access any past decision with zero additional storage beyond the storage of the
input stream. To recover a past decision at any time i, it is sufficient to look up the last T

inputs at time i and apply the deterministic time-local algorithm.

3 Connection with Distributed Computing

As illustrated in Figure 1, time-local online algorithms are very similar to local distributed
algorithms in directed paths: distributed algorithms make decisions based on the local
information in the spatial dimension, while time-local online algorithms make decisions based
on the local information in the temporal dimension. One key difference is that time-local
online algorithms are one-sided – output i depends only on previous T inputs – while local
distributed algorithms are two-sided – output i can depend on T inputs in either direction.
However, it is easy to navigate between these two settings.

We consider two variants of time-local online algorithms. Unclocked algorithms make a
decision at time i without knowing the value of i. Such algorithms very similar to deterministic
distributed algorithms in the port-numbering model [1] – in particular, we face the same
challenge of local symmetry breaking. Clocked time-local online algorithms can depend on
the value of i. Such algorithms turn out to be similar to deterministic distributed algorithms
in the supported LOCAL model [5]. The key difference is that clocked time-local online
algorithms do not know the length of the input sequence in advance, while in the supported
LOCAL model the input size is also known.

4 Algorithm Synthesis

In the full version of this work, we describe an algorithm synthesis method that one can use
to design optimal time-local online algorithms for small values of T , for problems with finite
input and output domains. We demonstrate the power of the technique in the context of a
variant of the online file migration problem [2], and show that e.g. for two nodes and unit
migration costs there exists a 3-competitive time-local algorithm with horizon T = 4, while
no deterministic online algorithm (in the classic sense) can do better.

References
1 Dana Angluin. Local and global properties in networks of processors. In Proc. 12th Annual

ACM Symposium on Theory of Computing (STOC 1980), 1980. doi:10.1145/800141.804655.
2 Marcin Bienkowski. Migrating and replicating data in networks. Computer Science-Research

and Development, 27(3):169–179, 2012.
3 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.
4 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
5 Klaus-Tycho Foerster, Juho Hirvonen, Jukka Suomela, and Stefan Schmid. On the power

of preprocessing in decentralized network optimization. In Proc. 28th IEEE Conference on
Computer Communications (INFOCOM 2019), 2019. doi:10.1109/INFOCOM.2019.8737382.

DISC 2022

https://doi.org/10.1145/800141.804655
https://doi.org/10.1109/INFOCOM.2019.8737382

	p000-Frontmatter
	Preface
	Organization
	Awards
	2022 Edsger W. Dijkstra Prize in Distributed Computing
	2022 Principles of Distributed Computing Doctoral Dissertation Award

	p001-Assadi
	p002-Baldoni
	p003-Welch
	p004-Albouy
	1 Introduction
	2 Background and Related Work
	3 Computing Model and Specification
	3.1 System model
	3.2 Byzantine Reliable Broadcast

	4 A deterministic synchronous BRB algorithm
	4.1 Underlying intuition
	4.2 Notations

	5 Description of the algorithm
	5.1 Overview
	5.2 Algorithms

	6 Proof of correctness
	6.1 Preliminary lemmas
	6.2 Proof of Theorem 1

	7 Conclusion
	A Appendices
	A.1 Proofs of preliminary lemmas
	A.2 Proofs of Theorem 1
	A.3 Numerical comparison

	p005-Amram
	1 Introduction
	2 Preliminaries
	3 Simple Histories
	4 A Simple Condition for the Linearizability of Simple Histories
	4.1 Detecting Incorrect Simple Histories
	4.1.1 Detecting Violations of No-Inversion
	4.1.2 Detecting Violations of Non-Decreasing
	4.1.3 Detecting Violations of Appropriateness

	5 Verifying and Testing Linearizability
	6 Optimization: Omitting Redundant Commands
	7 Implementation and Evaluation
	7.1 Implementation of our Verification Procedures
	7.2 Implementation of our Testing Procedure
	7.3 Research Questions
	7.4 Corpus
	7.5 Experiments and Results
	7.5.1 Verification Experiments
	7.5.2 Testing Experiments

	7.6 Analysis of the Results

	8 Related Work
	9 Conclusion

	p006-Anagnostides
	1 Introduction
	1.1 Overview of our Contributions and Techniques
	1.1.1 The Congested Part-Wise Aggregation Problem
	1.1.2 Almost Universally Optimal Laplacian Solvers

	1.2 Further Related Work

	2 Preliminaries
	3 The Congested Part-Wise Aggregation Problem
	3.1 Solving Congested Instances in the CONGEST Model
	3.1.1 The Layered Graph
	3.1.2 Treewidth-Bounded Graphs
	3.1.3 General Graphs

	3.2 The NCC Model

	4 Almost Universally Optimal Laplacian Solvers
	5 Conclusions

	p007-Augustine
	1 Introduction
	1.1 Model and Problem Statement
	1.2 Our Results
	1.3 Technical Challenges and Overview

	2 Preliminaries
	2.1 Tail inequalities and hash functions with limited independence
	2.2 Byzantine agreement and committee election

	3 An O(polylog n)-round Algorithm
	3.1 Committees Takeover
	3.2 Constructing a spanning tree using committees

	4 Conclusion and Future Work
	A Proof from Section 1
	B Proofs from Section 3

	p008-Balliu
	1 Introduction
	1.1 State of the art
	1.2 What was missing
	1.3 Contributions and motivations

	2 Related work
	3 Preliminaries
	4 Technical overview
	4.1 The high-level framework
	4.2 Paths and cycles
	4.3 The O(log n) complexity class in regular trees
	4.4 The polynomial complexity region in regular trees

	5 Unrooted trees

	p009-Balliu
	1 Introduction
	1.1 The Distributed Complexity Landscapes
	1.2 Our Contributions
	1.3 Challenges & Key Techniques
	1.4 Further Related Work
	1.5 Outline

	2 Definitions and Notation
	2.1 LCL Definitions

	3 The Tiny Regime
	3.1 LOCAL Algorithm
	3.2 MPC Implementation

	4 The High Regime
	4.1 High-level Overview of the Algorithm and Its Analysis

	A Component-stability

	p010-Bertrand
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Outline

	2 Preliminaries
	3 The Binary Value Broadcast
	3.1 Modeling the binary value broadcast pseudocode into a threshold automaton
	3.2 Properties of the binary value broadcast
	3.3 A fairness assumption to solve consensus

	4 Simplified Automaton for Byzantine Consensus
	4.1 The Byzantine consensus algorithm
	4.2 Simplified threshold automaton

	5 Verification of Byzantine Consensus
	5.1 Safety
	5.2 Liveness

	6 Experiments
	7 Related Work
	8 Conclusion
	A Reducing multi-round TA to one-round TA
	B Examples of fairness and of non-termination without fairness
	C Starting a round with identical estimate
	D Large TA
	E Missing proof of Corollary 5
	F Specification of the termination property in the simplified threshold automaton for consensus algorithm

	p011-Bhagat
	1 Introduction
	1.1 The model
	1.2 The lower bounds
	1.3 Our results
	1.4 Related Work

	2 Rendezvous in connected graphs
	2.1 The algorithm
	2.2 Correctness and complexity

	3 Approach in terrains
	4 Conclusion

	p012-Bravo
	1 Introduction
	2 System Model
	3 SMR Synchronizer Specification and Implementation
	3.1 A Bounded-Space SMR Synchronizer
	3.2 SMR Synchronizer Correctness and Latency Bounds

	4 PBFT Using an SMR Synchronizer
	5 Proving the Liveness of PBFT
	6 Latency Bounds for PBFT
	7 Additional Case Studies
	8 Related Work and Discussion

	p013-Camaioni
	1 Introduction
	2 Related Work
	3 Model & background
	3.1 Model
	3.2 Background

	4 Draft: Overview
	4.1 Protocol
	4.2 Complexity

	5 Conclusions

	p014-Civit
	1 Introduction
	2 Related Work
	3 System Model
	4 RareSync
	4.1 Problem Definition
	4.2 Protocol
	4.3 Correctness and Complexity: Proof Sketch

	5 SQuad
	5.1 Quad
	5.2 SQuad: Protocol Description

	6 Concluding Remarks

	p015-Civit
	1 Introduction
	2 Preliminaries on probability and measure
	3 Probabilistic Signature Input/Output Automata (PSIOA)
	3.1 PSIOA
	3.2 Local composition

	4 Probabilistic Configuration Automata
	4.1 Configuration
	4.2 Probabilistic configuration automata (PCA)

	5 Executions, reachable states, partially-compatible automata
	5.1 Executions, reachable states, traces
	5.2 PSIOA and PCA composition

	6 Scheduler, measure on executions, implementation
	6.1 General definition and probabilistic space on execution fragments
	6.2 Implementation

	7 Dynamic vertical substitutability
	8 Conclusion

	p016-Dani
	1 Introduction
	2 Preliminaries: the Low Energy Radio Network Model
	3 Cluster Graphs and Distance Approximation
	3.1 Graph theoretic preliminaries
	3.2 Approximately Distance-Preserving Partitions
	3.3 Additive Weights Voronoi Diagrams and the MPX Algorithm
	3.4 Multi-Scale Clustering
	3.5 Simulating cluster-graph algorithms on the underlying graph

	4 Simulating Radio Network Algorithms
	4.1 Characterizing Optimal Simulation

	5 The Simulation Algorithm
	5.1 Assumptions
	5.2 Algorithm Overview
	5.3 Pseudocode
	5.4 Formal Statements of the Results

	6 BFS Revisited
	7 Conclusion
	A Proofs
	B Simulating cluster-graph algorithms on the underlying graph

	p017-DeMarco
	1 Introduction
	1.1 Previous work and our contribution
	1.2 Conventions and notation

	2 An adaptive algorithm for unknown contention
	2.1 Pseudocodes
	2.2 Analysis of throughput and energy
	2.2.1 Analysis of protocols
	2.2.2 Analysis of a single activity interval
	2.2.3 Putting activity intervals together

	3 A trade-off between throughput and energy of non-adaptive algorithms
	4 Open problems
	A Appendix
	A.1 Lemma 1
	A.2 Lemma 5

	p018-Dinitz
	1 Introduction
	1.1 Background
	1.2 Key question: is Omega~(nk) fundamental?
	1.3 Our Results

	2 Related Work
	3 Preliminaries
	4 Random Broadcast Predecessor Paths
	5 Random Broadcast in Worst-Case Networks
	6 Random Broadcast in Smoothed Networks
	6.1 Random Broadcast with l-Smoothing
	6.1.1 Phase #1: Spread
	6.1.2 Phase #2: Seed
	6.1.3 Phase #3: Sink

	6.2 1-Smoothing
	6.3 Lower Bound for Random Broadcast in Smoothed Networks
	6.3.1 Proof of Theorem 11

	A Random Broadcast in Smoothed Static Networks
	B Random Broadcast in Well-Mixed Networks

	p019-Dufoulon
	1 Introduction
	1.1 Background and Motivation
	1.2 The Distributed Computing Model
	1.3 Our Contributions
	1.4 Additional Related Work

	2 Low Diameter Spanning Tree Algorithm
	2.1 Randomized Low Diameter Decomposition (MPX)
	2.2 Rooted Spanning Tree

	3 The Asynchronous MST Algorithm
	3.1 High-level Overview of the Algorithm
	3.2 Detailed Algorithm Description

	4 Analysis of the MST Algorithm
	5 Conclusion and Open Problems
	A Toolbox
	B Low Diameter Spanning Tree - Relegated Proofs

	p020-Emek
	1 Introduction
	1.1 Paper's Organization

	2 Model
	2.1 Proof Labeling Schemes
	2.2 Locally Restricted Proof Labeling Schemes

	3 Preliminaries
	4 Compiler for OptDGPs
	4.1 Canonical OptDGPs
	4.2 Properties of Optimal Solutions for Covering/Packing OptDGPs
	4.3 Overview
	4.4 Partition Algorithm
	4.5 Labels and Verification

	5 Compiler for CGFs
	5.1 SU-Closed CGFs
	5.2 Overview
	5.3 Partition Algorithm
	5.4 Labels and Verification

	A Bounds for Concrete OptDGPs and CGFs
	A.1 OptDGPs
	A.1.1 Minimum Weight Vertex Cover
	A.1.2 Maximum Independent Set
	A.1.3 Minimum Weight Dominating Set
	A.1.4 Generic Locally Restricted (1+epsilon)-APLS for Canonical OptDGPs

	A.2 CGFs
	A.2.1 Planarity
	A.2.2 Bounded Arboricity
	A.2.3 k-Colorability
	A.2.4 Forests and DAGs

	B Impossibilities of Locally Restricted GPLS
	C Additional Related Work

	p021-Eppstein
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Doubling metrics
	2.2 Spanners for complete graphs
	2.3 Unit ball graphs

	3 Centralized Construction
	3.1 The algorithm
	3.2 The analysis

	4 Distributed Construction
	4.1 The algorithm
	4.2 The analysis

	5 Adjustments for the CONGEST Model
	6 Conclusions
	A Omitted Proofs from Section 3
	B Omitted Proofs from Section 4
	C Omitted Proofs from Section 5

	p022-Fischer
	1 Introduction
	1.1 Our Contribution
	1.2 Randomized Connectivity Algorithms in a Nutshell
	1.3 Deterministic Connectivity: Comparison with the State-of-the-Art
	1.4 Further Related Work

	2 Preliminaries
	2.1 Primitives in Low-Space MPC
	2.2 Derandomization Framework
	2.3 Reducing The Seed Length via Coloring

	3 Constant Approximation of Maximum Matching
	4 Computation-Efficient Derandomization of Hitting Set
	5 Connectivity Algorithm

	p023-Fraigniaud
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Our Results
	1.4 Related Work

	2 Model and Observations
	2.1 Operational Model
	2.2 Schedules and complexity
	2.3 Lower Bounds and Impossibility Results

	3 Asynchronously coloring the cycle in linear time
	3.1 Warm-up: using a palette of 6 colors
	3.2 Saving one color: wait-free 5-coloring the cycle

	4 From Linear Time to Almost Constant Time
	4.1 Reducing identifiers with deterministic coin-tossing
	4.2 5-coloring the cycle in near-constant time

	5 Conclusion and future works
	A Coloring General Graphs
	B Technical proofs
	B.1 Proofs of Section 3
	B.2 Proofs of Section 4

	p024-Freitas
	1 Introduction
	2 System Model
	3 Building Blocks
	3.1 Byzantine Reliable Broadcast
	3.2 Asynchronous Verifiable Secret Sharing
	3.3 Random Secret Draw
	3.4 Gather
	3.5 Bundled Approximate Agreement

	4 Approximate Common Coin
	5 Monte Carlo Common Coin from Approximate Common Coin
	6 Direct Implementation of Monte Carlo Common Coin
	7 Applications
	8 Related Work
	9 Conclusion
	A Impossibility of an Asynchronous Perfect Common Coin
	B Intersecting Random Subsets

	p025-Georgiou
	1 Introduction
	2 Model and Definitions
	3 ARES: A Framework for Dynamic Storage
	4 COARES: Coverable ARES
	5 COARESF: Integrate COARES with a Fragmentation approach
	6 EC-DAP Optimization
	7 Experimental Evaluation
	8 Conclusions
	A Our and Prior Work: A Comparative Table
	B Correctness of EC-DAPopt
	C Additional Experimental Results
	C.1 Performance VS. Scalability of Nodes Under Concurrency
	C.2 Performance VS. Block Sizes

	p026-Halldorsson
	1 Introduction
	1.1 Contributions on Splitting problems
	1.2 Challenges to Fast and Efficient Splitting
	1.3 Our Methods in a Nutshell
	1.4 Further Related Work
	1.5 Outline

	2 Models, Lovász Local Lemma, Shattering, and Notation
	3 Warm-Up: Computing q-divides
	4 Vertex Splitting in LOCAL
	4.1 Shattering for ε-Vertex-Splitting in O(1/ε) Rounds
	4.2 Analysis of Discrepancy
	4.3 Analysis of Bad Event Probabilities
	4.4 Analysis of FastShattering
	4.5 Post-shattering
	4.6 Proof of Theorem 3

	5 Vertex Splitting in CONGEST
	5.1 Network Decomposition
	5.2 Efficient Post-shattering in CONGEST (Proof of Lemma 23)
	5.3 Proof of Theorem 20

	6 Application: (1+epsilon)∆-edge coloring
	A Edge coloring in CONGEST (similar to Section 6)
	B Application: List Coloring
	C Missing Proofs
	C.1 Vertex Splitting: Bounding the Discrepancy
	C.2 Analysis of FastShattering

	D Bipartite Vertex Splitting and Beyond

	p027-Hitron
	1 Introduction
	1.1 Our Results
	1.2 Preliminaries
	1.2.1 Graph Notation and Basic Distributed Tools
	1.2.2 The Adversarial Setting, Security Definitions and Basic Tools

	2 Secure Unicast
	2.1 Unicast and Multicast Algorithms
	2.2 A Network Coding Gap of Omega(n) Rounds for Secure Unicast

	3 Secure Broadcast Algorithms
	3.1 Handling a Single Adversarial Edge
	3.2 Handling Multiple Adversarial Edges

	4 Forbidden-Set Broadcast
	A Missing Proofs of Section 2

	p028-Kuhn
	1 Introduction
	1.1 Contributions and Overview
	1.2 Related Work
	1.3 Preliminaries

	2 Node Communication Problem
	3 Lower Bounds For Unweighted Graphs
	4 Lower Bounds for Approximations
	4.1 Distance Oracles
	4.2 Stateless Routing Scheme
	4.3 Stateful Routing Scheme

	5 Upper Bounds
	A Information Theoretic Concepts
	B Density of Bounded Girth Graphs
	C Proof of Lemma 9
	D Proof of Lemma 17

	p029-Naor
	1 Introduction
	2 Model and preliminaries
	3 Asset transfer
	3.1 Asset transfer abstraction
	3.2 Message complexity of asset transfer
	3.2.1 Lower bound
	3.2.2 Upper bound

	4 Bidirectional payment channel
	4.1 Definition
	4.2 Impossibility of a bidirectional payment channel object

	5 Unidirectional payment channel
	5.1 Definition
	5.2 Impossibility of a unidirectional payment channel with source close
	5.3 Unidirectional payment channel without source close

	6 Chain payments
	7 Related work
	8 Conclusion
	A Correctness proofs

	p030-Ovens
	1 Introduction
	2 Related work
	3 Model
	4 Upper bound
	4.1 Lock-free implementation
	4.2 Obstruction-free implementation

	5 Lower bound
	6 Conclusion
	A Finishing the proof of Theorem 7

	p031-Parter
	1 Introduction and Our Contribution
	1.1 Our Approach, in a Nutshell
	1.2 Preliminaries

	2 Dependent Cut Pairs
	3 Independent Cut Pairs
	3.1 Computing x-Connectivity Trees
	3.2 Component Classification Based on Sensitivity
	3.3 xy-Connectivity Algorithms Under a Promise

	A Single Cut Vertices
	B Figures

	p032-Parter
	1 Introduction
	1.1 Our Contribution
	1.2 Preliminaries

	2 Single Failure Connectivity Labels
	3 Dual Failure Connectivity Labels
	3.1 Technical Overview
	3.2 Two Failures are Independent
	3.3 Two Failures are Dependent
	3.3.1 The All-Heavy (AH) Case
	3.3.2 The General Dependent-Failures Case

	A Sublinear f-VFT Labels

	p033-Pu
	1 Introduction
	2 Related work
	3 Model
	4 Protocol
	4.1 Selecting the Threshold
	4.2 Protocol Mechanics

	5 Correctness: Overview
	5.1 The Scaffolding
	5.2 Agreement
	5.3 Termination

	6 Conclusion

	p034-Rosenbaum
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion of Our Results

	2 Model and Preliminaries
	2.1 Locally Bursty Adversaries
	2.2 Flows

	3 Packet Bundling
	3.1 Uniform Packets
	3.2 Heterogeneous Packets

	4 OED Upper Bound
	4.1 Consequences

	5 Lower Bounds on Buffer Size
	A Generalization to Randomized Protocols

	p035-Sutra
	1 Introduction
	2 The Atomic Multicast Problem
	2.1 System Model
	2.2 Problem Definition
	2.3 Genuineness

	3 The Candidate Failure Detector
	4 Sufficiency
	4.1 A simpler variation
	4.2 Overview of the solution
	4.3 Algorithm

	5 Necessity
	5.1 Emulating Sigma_{g inter h}
	5.2 Emulating gamma

	6 Variations
	6.1 Enforcing real-time order
	6.1.1 Definition
	6.1.2 Weakest failure detector

	6.2 Improving parallelism
	6.2.1 Definition
	6.2.2 About the weakest failure detector

	7 Discussion
	8 Conclusion

	p036-Hu
	1 Introduction
	1.1 Motivation
	1.2 Description of the results

	2 Result techniques
	3 Model Sketch
	3.1 Process failures
	3.2 Atomic and implemented registers
	3.3 Linearizability of register implementations

	4 Impossibility result
	5 Register implementation algorithm
	5.1 Some difficulties to overcome
	5.2 A recursive solution
	5.3 Implementing a [1,n]-register from [1,n-1]-registers
	5.4 Implementing a [1,n]-register from atomic [1,1]-registers

	6 Implementation for systems with digital signatures
	7 Concluding remarks
	A A wait-free linearizable implementation of a [1,2]-register from atomic [1,1]-registers.

	p037-Zinovyev
	1 Introduction
	1.1 Some general notation
	1.2 Model
	1.3 Known results
	1.4 Our contribution
	1.4.1 Lower bounds with non-adversarial port numbers
	1.4.2 Lower bounds with adversarial port numbers
	1.4.3 Known techiques require girth conjecture

	2 Lower bounds with non-adversarial port numbers
	3 Lower bounds with adversarial port numbers
	3.1 Stretch < 3
	3.2 Stretch < 2k + 1

	4 Known techniques require girth conjecture

	p038-Abraham
	1 Introduction

	p039-Abraham
	1 Introduction
	2 Results
	2.1 Performance Results and Complexity

	p040-Alipour
	1 Introduction
	2 Theoretical result and the algorithm
	3 Extension to the other problems

	p041-Ben-David
	1 Introduction
	2 Model Assumptions
	3 Property Hierarchy
	3.1 Same Processes are Invoked
	3.2 New processes are invoked

	p042-Dai
	1 Introduction
	2 Model
	3 Our Contributions

	p043-Fraigniaud
	1 Introduction
	2 Our Results
	3 Our Techniques

	p044-Gasieniec
	1 Introduction
	1.1 Our results and their significance

	2 Open Problems

	p045-Kharal
	1 Introduction
	2 Microbenchmark Idiosyncrasies
	2.1 PRNG Usage in Concurrent Microbenchmarks

	p046-Kim
	1 Introduction
	2 Model
	3 Proposed Algorithms and Impossiblity Results

	p047-Kostitsyna
	1 Introduction
	2 Shortest path trees
	2.1 Feather trees

	3 Communicating over shortest path trees

	p048-LeGall
	1 Introduction
	2 Our Results

	p049-Nataf
	1 Introduction
	2 f-resilient message block

	p050-Nelson-Slivon
	1 Introduction
	2 Mutual Exclusion Under Operation Asymmetry
	2.1 Algorithm Description

	3 Conclusion

	p051-Oh
	1 The Foraging Problem
	2 Model and Preliminaries
	3 The Adaptive Foraging Algorithm

	p052-Pacut
	1 Introduction
	2 Benefits of Time-Local Online Algorithms
	3 Connection with Distributed Computing
	4 Algorithm Synthesis

